
Creating Commercial Components
CORBA Component Model (CCM)

•
Technical White Paper

View Contents

Date: December 1, 2000

Authors: Andrew Pharoah, ComponentSource
Jon Siegel, Object Management Group
Chris Brooke, ComponentSource

Email:

publishers@componentsource.com

US Headquarters European Headquarters

ComponentSource
3391 Town Point Drive,
 Suite 350,
 Kennesaw, GA 30144-7083
 USA

Tel: (770) 250 6100
Fax: (770) 250 6199
International: +1 (770) 250 6100

ComponentSource
30 Greyfriars Road,
Reading,
Berkshire RG1 1PE
United Kingdom

Tel: 0118 958 1111
Fax: 0118 958 1111
International: +44 118 958 1111

mailto:publishers@componentsource.com

Copyright © 1996-2003 ComponentSource™

Contents

Introduction

Commercial Overview

Component Overview

Identifying A Component Candidate
Analyze Application Functionality
Component Reusability
Expert Functionality

Component Architecture
Server-Side Components

CORBA Technology
Implementation Language Issues
Integration with Enterprise JavaBeans

 CCM™ Components

Introduction

Why use CCM Components?
Transaction Processing Monitors
Component Transaction Monitors

Design Considerations
Components, Assemblies, and Applications
Identify Component Scope
Prototype the Interface

Architecture of CCM Component
 Applications
Basic CCM Concepts
Container-Provided Services

CCM Services
Transaction Service
Security Service
Event Service
Naming Service
Persistence Services
Managing Server-Side Resources

Types of CCM Components
Service Components

Creating CCM Components
Component Interface
Home Interface
CCM Implementation
Deployment Descriptors
Property File
Assembly Descriptor
Error Handling
Threading

Roles in CCM Development and
 Deployment
Component Developer
Application Assembler
Application Deployer
Server Provider
Container Provider
Administrator

Documenting Commercial CCM Components

Documentation Benefits
Reduction In Pre/Post Sales Support
The Confidence Factor

Typical Documentation
Online Documentation
Demonstrations
Evaluations
Sample Code
Readme Files
Pre-requisites

Component Testing

Conclusion

Session Components
Process Components
Entity Components

Introduction
This white paper has been constructed to help component authors develop and enhance professional software
 components for server applications and for delivery on the open market. Information covered in the document
 is based on our knowledge and expertise of those component authors who successfully have established
 themselves in the component marketplace. The content is aimed at developers who wish to create components
 based on the Object Management Group's (OMG) Common Object Request Broker Architecture (CORBA)
 Component Model (CCM) specification. In the following chapter we discuss the business benefits of using
 components and identify the functionality suitable for server-side component development in CCM. Following
 this we detail the CCM architecture and the environment in which these components can be used.

Commercial Overview
The market for Software Components is expected to grow to around $4.4 billion by 2002, $1.0 billion from
 products and $3.4 billion from related services. (Source: PricewaterhouseCoopers)

Traditionally, server applications have been built using proprietary transaction processing monitor (TP Monitor)
 systems. This made it difficult to write portable, enterprise-class software. With the introduction of the CORBA
 Component Model, server-side, enterprise software applications may now be created as a collection of
 software components. These CCM-based applications may now be deployed on any CCM-compliant
 application server. Increasingly enterprise application developers are employing component-based software
 development techniques, which enable them to reduce their time to market and improve their software quality.
 Software authors who are experts in a specific horizontal or vertical market sector are now "componentizing"
 their applications to meet the increasing demand for sophisticated business components. As such this
 represents a huge opportunity for you to unlock hidden revenues from years of research and development.

Why is buying a software component a good idea?

Everybody, software developers included, admit that they do something, (write a program or subroutine), better
 second time around. This is the essence of a "component", built and continuously improved by an expert or
 organization and encapsulating business logic or technical functionality. By buying a component a developer
 can add functionality to their application without sacrificing quality. Indeed quality should improve, as the
 component will have gone through several development iterations and include feedback from 1,000's of users.

What type of components will people buy?

Initially software components were used to provide technical functionality, such as SMTP for email or enhanced
 user interfaces. Developers are now requesting sophisticated components that solve real business issues from
 component authors, such as Credit Card Authenticating components for E-Business applications. To find out
 what is in demand visit our Component Request Center: www.componentsource.com/business or look at the
 Case Studies of Authors who have already entered the 'open market' for components.

What is helping make this happen now?

The open, vendor-neutral CCM specification from the Object Management Group (OMG) is a component model
 for building server-side, enterprise class applications. In addition to its CORBA foundation, the CCM shares a
 base architecture with Enterprise JavaBeans™ (EJB), extending this popular environment to programming
 languages beyond Java™. CCM allows component authors to focus on creating portable and reusable
 components rather than spending time on building complex proprietary application framework environments

 that lock users into a particular technology. The CCM specification requires the application servers to provide a
 host of services that the CCM-based components may depend upon. Since the services are specified using
 CORBA technology interfaces expressed in OMG Interface Definition Language (IDL), the component
 implementation is not tied to any application server vendor's implementation of those services. The CCM
 specification also enables the application server vendors to provide a robust, scalable, secure and transactional
 environment to host the components. CCM components may, in principle be implemented in any programming
 language with an OMG-specified mapping from IDL. Currently, mappings from the CCM-specified IDL
 extensions have been defined for C++ and Java.

To find out about the CCM architecture and how to design, implement and deploy CCM components - read the
 remainder of this white paper.

Component Overview
Identifying A Component Candidate
How do I identify a component candidate? - Understanding how a component works and how
 functionality differs from applications is important when identifying a suitable component
 candidate. In this section we investigate existing applications for potential functionality, consider
 component reusability and finally discuss the importance of business knowledge and how this
 applies to the components you write.

a) Analyze Application Functionality
Developers should look at the functions encapsulated in their own applications and others to
 assess the commercial viability of componentizing particular functions. Each component
 advertises one or more business interfaces. The users (or clients) of the component interact with
 it only through these interfaces. The clients are completely decoupled from the implementation of
 the component. The component implementation may be changed or upgraded without affecting
 the clients. One of the main characteristics of a component is that the business logic is separate
 from the data that a component manipulates. However, this does not apply to single parameter
 data that is passed to methods of the interface. For example, in CCM, a special kind of
 components, known as Entity components, are used to model persistent data. However the
 underlying data may come from almost any data source that the programmer has tied into the
 implementation - the client has only an object view of the data!

b) Component Reusability
An important factor worth considering is a product's commercial viability. Market demand
 determines whether a component is commercially viable or should be used only within your own
 organization. Typical examples include components that are directly linked to hardware such as
 monitoring components for alarm systems. Unless the components can be sold separately from
 the hardware the ability to sell the product online is greatly reduced.

Components that can be integrated without any consultation will succeed in what's known as the
 'Open Market'. This market allows components to be distributed without any consultation or
 tailoring service. All information regarding the product is supplied in online documentation such
 as demonstrations, evaluations, help files and sample code.

For more information on the open market browse to:
 http://www.componentsource.com/services/cbdiopen_market.asp

c) Expert Functionality
Expertise and knowledge are the two areas you should focus on when writing a software
 component. If you are developing a component from scratch then consider the components
 already on the market and assess whether you could offer a different or superior solution. Where
 possible write components that are related to your core business area. It's likely that these
 functions will be more valuable than peripheral functionality designed to provide a basic solution.
 For example, if your core business provides insurance underwriting services then concentrate on
 these core functions first as opposed to peripheral components such as a basic user interface

http://www.componentsource.com/services/cbdiopen_market.asp

 components for data presentation in a grid or as a chart of graph.

Component Architecture
Where are components installed? - The CORBA component container provides robust
 persistence, transactionality, security, and distributed event-handling to the components installed
 in it. This is fine for the server side of an application, but too heavyweight for all but the most
 robust of clients. Therefore, you should write CCM-based components for the server side only.
 The client side of your application may be modular and composed of CORBA objects, but it will
 not contain CCM components.

Server-Side Components
Compared to the GUI elements that we're used to seeing as client-side components, server-side
 components are relatively new to the market. The server-side component runtime environment is
 termed a container. The container supports the components installed within it with critical
 services in two areas:

First, the container provides key enterprise services: Persistence of an object's state;
 transactionality; security; and event handling. This makes CCM Components easier to
 program, because the services are provided as run-time rather then coding-time
 constructs, through high-level interfaces that access CCM-generated code.
Second, the container manages server-side resources, primarily memory and CPU access,
 by activating or deactivating the code that executes component functionality as needed,
 according to patterns selected by the developer. This allows CCM applications to serve
 Internet hit rates on enterprise numbers of instances - that is, CCM applications scale.

As we'll show in this white paper, all of the boundaries in the system - both component-to-
component and container-to-component - and the services that flow across these boundaries -
 are well-defined. Well-defined container services and interfaces enable developers to produce
 components that install neatly into the container, taking advantage of the services and making
 efficient use of resources such as CPU and memory. Well-defined functional interfaces enable
 components to work together, with different types from potentially different suppliers assembling
 into a coherent application. Together, these aspects of the architecture support a dynamic market
 of third-party components, created by specialists in their functional areas.

A CCM Example - The Shopping Cart CCM example presented in CORBA 3 Fundamentals and
 Programming (Siegel, Jon; John Wiley and Sons, NY, 2000) is an example of a set of CORBA
 components that execute cooperatively in a CCM server environment. This set of interoperating
 components encapsulates the functionality of an online shopping application, including
 representations of the customer and the shopping cart as used by e-businesses. In the past,
 most online stores had their own proprietary implementations of a shopping cart. A ShoppingCart
 CCM implementation enables them use a well-tested, well-designed component in a "plug-and-
play" fashion - they simply need to integrate and configure the CCM into their applications. (The
 code in the book is a teaching example only; it would need a lot of work to become the kind of
 robust, tested component that would do well in an open market!)

CORBA Technology
CORBA technology has emerged as a very popular environment for building E-business
 applications. The CORBAservices define a rich set of classes that augment those provided by the
 container to extend the distributed environment out into the enterprise. CORBA foundations for
 the CCM include OMG Interface Definition Language (OMG IDL), now an ISO standard; strong
 typing for both objects and parameters, integrated with the type systems of Java and C++;
 seamless exception handling across network boundaries; and support for multi-threading.

Implementation Language Issues
CORBA is a multi-language environment. The CCM standard specifies all the services provided to
 server-side side components in OMG IDL interfaces. Although mappings from OMG IDL have
 been defined for eight programming languages, the CCM extensions have been mapped to only
 two thus far: Java, and C++. So, CORBA components can be programmed in either of these two

 languages. CCM clients, on the other hand, can be programmed in C, C++, Java, Ada, COBOL,
 Smalltalk, Lisp, PL/1, or the scripting languages Python and IDLscript. Clients in any of these
 languages can invoke operations directly on a CCM server.

 Integration with Enterprise JavaBeans
The CCM specification defines two levels of component: basic, and extended. Basic CCM
 components have exactly the capabilities of Release 1.1 Enterprise JavaBeans (EJBs), while
 Extended components add a number of capabilities including distributed event handling, multiple
 interfaces and navigation, segmented persistence, and more. The basic component environment
 takes advantage of the EJB parallel, and the requirement that EJBs interoperate using the IIOP
 protocol, to define an environment where EJBs and CCM Components can be assembled to form
 integrated applications.

 CCM™ Components
 Introduction
The CCM is a specification of a server-side component model for building and deploying enterprise-class
 applications. The enterprise application developer may build his/her application as a set of interconnected
 enterprise components and deploy it in a CCM-compliant run-time environment. This environment is structured
 as a number of containers supporting the different component types (service, session, process, and entity, as
 we'll explain shortly), each providing enterprise-level services to the components contained within it. The
 standard also specifies a set of interfaces that developer-written components must implement in order for them
 to be deployed in an CCM-compliant application server. That is, the CCM server promises a set of services
 and, in return, expects the components to implement certain interfaces so the server may manage these
 components. The CCM standard enables the enterprise developer to focus on the actual business logic of the
 application encoded in the components, leaving the CCM server responsible for the enterprise services it
 provides: Transaction Management and Concurrency, Persistence, Security Management, Event Handling,
 Identity (for Entity components), Distribution, and Resource Management. CCM based applications are
 transactional, secure, robust, scalable, and portable. To understand the problem space CCM addresses, let us
 consider the motivations for using this technology.

Why use CCM Components?

To understand the need for CCM, it is useful to understand the relative merits of TP Monitors and server-side
 systems. Here we present the strengths and weakness of both these architectures.

Transaction Processing Monitors

Traditionally enterprise-class systems were implemented using systems generally known as
 Transaction Processing Monitors or TP Monitors. Large scale enterprise applications such as
 banking, insurance and airline reservation systems are built using TP monitors. Some of the
 popular TP Monitors are IBM's CICS® and BEA Tuxedo®. TP Monitors were a natural choice for
 enterprise applications because they handled all the database transactions efficiently and in a
 manner where the enterprise developer did not have to explicitly write code to manage
 transactions.

 TP Monitors are designed to handle large workloads and manage concurrent access to
 enterprise application resources. TP Monitors also handle the security management, database
 access and the network connectivity for the enterprise applications. In other words, TP Monitors
 provide these services so that an application programmer may focus on implementing the
 business logic of the application.

In a way, you may think of the TP monitors as an Operating System for business applications.
 When you use a normal Operating System, you expect a host for services such as virtual
 memory management, file system management etc. from the system, you do not code for those
 services in your normal applications. Similarly, enterprise applications may expect to find services
 pertaining to Transaction, Security, Concurrency, Resource Management etc. from the TP

 Monitors.

Given that TP Monitors do so much for an enterprise programmer, why not use them? Why worry
 about CCM? For all their strengths, typical TP monitors suffer from two major drawbacks. First,
 most TP monitors do not have a component model. The services are offered, typically, as
 functions which leads to monolithic applications as opposed to component based applications. It
 is very hard to replace one service implementation with another. For example, for an e-commerce
 application, you might want to have the flexibility to replace the credit card processing object with
 a superior implementation. Lack of an object model prevents you from doing that easily. It also
 makes it hard for you to implement 'objects' that reside on the server but are dedicated to specific
 clients and execute programs, on the server, on behalf of their 'owner' clients. A typical example
 of this kind of application is a Shopping cart or a Mobile Smart Agent.

The second, and more serious, problem with typical TP Monitors is the lack of portability of
 enterprise applications implemented using them. Enterprise applications implemented on TP
 Monitors are usually tied to a proprietary API and model. It is usually a large effort to port an
 enterprise application from TP Monitor system to some other vendor's TP Monitor. The problem
 arises because there is no standard for TP Monitors. Each TP Monitor may implement all the
 necessary services that an application might require and use, but since each vendor exposes the
 services in a proprietary way, the enterprise application becomes non-portable.

Component Transaction Monitors

Enterprise JavaBeans Components essentially combine the strengths of traditional TP Monitors
 and CORBA. In other words, using CCM, you get all the benefits of TP Monitors and the
 portability and component model of CORBA. CCM servers belong to a class of systems
 commonly known as Component Transaction Monitors or CTM. Using a CCM-compliant
 server, an developer may build enterprise-class applications rapidly, focusing purely on the
 business and application logic. All the infrastructure services are now the responsibility of the
 server and are provided automatically to the application. The developer can configure these
 services declaratively - the configuration is specified using XML. The enterprise application is
 implemented as a set of CCM components, with well defined business interfaces, that are
 deployed on an CCM server. The developer is no longer tied to any one implementation of the
 application server and may simply deploy her application on any CCM-compliant application
 server, such as iPlanet, WebLogic, WebSphere or iPortal, without even recompiling the
 application! The CCM server generates the appropriate objects to provide the enterprise services
 and ties them with the developer-implemented components during the application deployment.

In summary, you would use the CCM component architecture if you want to build portable,
 component-based, scalable, secure, transactional and robust enterprise applications rapidly. You
 would also use components if you want to implement only the business logic and want the
 application server to handle all the system services.

 Design Considerations

How do I develop a software component? - Before writing a component you should analyze the functionality and
 architecture first. In this section we discuss components functional boundaries, assess where a component will
 physically run and how to implement an extensible interface. Considering these elements will prevent the
 inclusion of unnecessary functions and provide a focused solution for developers.

Components, Assemblies, and Applications
Although you could build an accounting system as a single CCM component with a single
 component reference, this type of application would not take advantage of the features that make
 the CCM scale to enterprise and the Internet loads. Instead, good CCM applications consist of
 some number of component types that work together to provide the total application functionality.
 In the deployed application (and in the component product offered for sale), each component
 type is represented by a factory (which we will see is referred to as a component home) which
 creates instances of its type at run-time as they are needed. For example, an e-Commerce
 application could consist of a customer component type, a shopping-cart component type, and a
 checkout component type, which work together to execute the entire shopping trip from customer

 registration (which only happens once), through shopping, to checkout and shipping. When an e-
commerce site buys this application, they don't get any actual customer, shopping cart, or
 checkout components - they actually get factories for these three component types. As it runs,
 the application will create a customer component instance for each new customer that logs in,
 and a new shopping cart component instance every time a customer starts shopping, and a
 checkout component instance every time a customer checks out. Customer component
 instances, which will be entity type components (which we'll explain later in this paper), will last
 forever since companies love their customers and want them to come back again and again,
 although the component infrastructure will de-activate and re-activate the instances as needed to
 conserve memory. Shopping cart instances will live as long as a shopping trip takes; when a
 customer checks out, his shopping cart is destroyed and its resources reclaimed. Checkout
 components are created, used once, destroyed and their resources reclaimed. These three
 patterns (and one more, that we'll present later) let our server use resource in a very
 parsimonious way, providing users with the ultimate in scalability.

The CCM infrastructure manages resources for the component instances. Because instances
 may be de-activated and re-activated to allow more of them to fit in available memory, it is
 important to design them to be a reasonable size. When an e-commerce site using your
 components grows to have tens of millions of customers, and millions of shopping carts, this will
 be key to keeping things running on a reasonable amount of hardware!

The combination of components that, working together, provides the functionality of an application
 is termed an assembly. We'll discuss assemblies further after we've introduced components.

Identify Component Scope

It is important, when designing a component, to identify the functionality that should be included
 and the functionality that is best incorporated into another component. A component should
 provide a precise solution rather than one that provides features over and above a basic
 requirement. For example, a business component that provides addressing services could
 include various functions such as address duplication, post coding and address formatting. In this
 example the three functions are mutually exclusive and should be implemented separately.

However, if the component was an address duplication component that incorporated extended
 functionality such as off-line batch duplication then this functionality should be included. It is
 possible to create one component that can be sold at three different levels. By using the
 ComponentSource licensing technology (C-LIC), it is possible to block extended functionality.
 This allows authors to publish one component but sell a separate standard, professional and
 enterprise edition, for example.

Confining component scope will help ensure that a component does not become monolithic and
 mimic an application without an interface. Unbundling functionality into separate components will
 prevent the component from becoming over complex and difficult to maintain. In addition,
 efficiency gains may be realized by splitting functionality off into different component types. For
 example, "use-once" functionality should be split off of service or session component types. The
 advent of online purchasing and the removal of packaging and shipping costs has meant there no
 longer is a need to bundle disparate functionality into one component or to market several
 components in one suite. Removal of this traditional cost factor will allow authors to publish highly
 focused discrete components and provide customers a wider choice of more efficient
 implementations.

 Prototype the Interface

Prototyping a component interface can be a useful exercise and will help determine the
 complexity of integrating the component into an application. Component integration should be a
 relatively quick process. If the interface has hundreds of public properties, methods and events
 then it's probably too complex and will confuse users and generate support issues. You may
 prevent this problem by writing the help file before implementation. This will help you detail a
 functional specification and pinpoint any areas that could be consolidated or improved upon.

Architecture of CCM Component Applications

As we've already mentioned, CCM Components are typically combined into an assembly of multiple component
 types that work together, and this assembly is deployed on CCM-compliant application servers. At runtime,
 CCM component instances execute within special constructs termed containers. The container is responsible
 for providing system-level enterprise services to the enterprise components that it manages.

Basic CCM Concepts

 CCM components reside on the server. Their functionality is exposed to their clients and callers
 through interfaces defined in OMG IDL. The callers may be in the same process space as the
 server objects or they could be in another process and even another machine. A CCM application
 will use both:

The (typically) initial call from a client that initiates a transaction on the server is virtually
 always a remote call, over the network.
The execution of the transaction typically involves a number of component types working
 together, calling each other to execute different parts of the work. These are typically local
 calls, staying within the same process.

In CORBA, invocation of objects and components is location transparent: That is, a client makes
 its invocation exactly the same way regardless of whether the target is local or remote. (Only the
 value assigned to the object reference changes.) This is a tremendous advantage: First of all, it
 unifies programming since invocations by the remote desktop client are programmed identically
 with those that involve one component type on the server calling another. And second, it enables
 the same server-side component implementations to run in either a single-process server, or in
 one that is split among a number of linked machines to provide load-balancing and fault-
tolerance.

OMG IDL compiles into a client stub and server skeleton. On the client side, the stub provides an
 interface proxy that is called by the client. The stub and Object Request Broker (ORB) work
 together to marshal input arguments and route the invocation out to the network. When it reaches
 its destination, the server ORB routes the invocation through the skeleton (which functions, in
 part, as a server-side proxy), unmarshals the arguments, and delivers them to code that executes
 the function of the target object. Return values, or exceptions if any were triggered, return via the
 reverse path.

Figure 1: CCM Components' Architectural Features.

CCM Components have four architectural features, shown in figure 1:

Facets: Extended components may bear multiple interfaces, termed facets. The CCM
 environment defines and implements navigation methods among the various facets.
Attributes: Used for configuration, these attributes let you write a component in a flexible
 way. The component is then configured to act in a particular way by setting the value of its
 configuration attributes at install time. A call to configuration_complete tells the system
 when installation is complete, and the installed component is ready to accept calls.
Receptacles: Client-side interfaces that the component uses to invoke operations on other
 component types, receptacles are supported by the CCM environment. You define which
 component type is to be called when you configure the assembly - that is, the combination
 of component types that work together as an application. At runtime, the CCM creates the
 target component and connects it to the receptacle.
Event sockets: The CCM supports a set of named, distributed event channels.
 Components may be either source or sink for one or more channels.

Container-Provided Services
As we've mentioned already, the container provides a number of enterprise services to the
 components installed within it. In addition, the container manages server-side resources -
 memory and persistent storage - allowing CCM applications to scale to enterprise numbers of
 objects, and Internet hit rates.

Figure 2 shows the container and its services:

The Component Home, defined by the CCM and provided by the container, provides
 factory operations (create, destroy) for its type. For entity components (which we'll define
 shortly), the Home also maintains a directory which keeps track of the extent (the set of
 objects that it has created). For other component types, you can easily add code to the
 home that keeps track of their extent as well. This makes it easy to add operations to the
 home that operate on the extent.
Persistence: The container provides access to the CORBA Persistent State Service
 which, through Persistent State Definition Language (PSDL), provides nearly transparent
 operations to store and recover the persistent state of a component instance. We'll
 describe this in more detail when we describe activation and de-activation of a servant,
 shortly.
Transactionality: The container also provides access to a transaction processing system.
 You can either code control of transactions' begin and end yourself, or leave it to the
 system by just declaring "transactionality=required" in your deployment configuration file
 (another CCM feature that we'll get to soon).
Security: The CCM also provides a secure environment which, as you might have
 guessed, may be controlled via the component configuration file.
Events: Access to event channels is mediated by the container.
Callback Interfaces: These interfaces, defined by the CCM standard, must be borne by
 the components you write, and implemented by you. They carry out functions necessary to
 allow the servants - that is, the code that performs the functions of the component - to be
 activated and deactivated by the container as it manages server resources.

CCM Services

The CCM application server provides a host of services to enterprise components:

Transaction Services
Security Services
Naming Service
Persistence
Resource Management

Transaction Service
 The CCM supports both container-managed transactions and self-managed transactions.
 Container-managed transactions, the simpler form to program, are declared in a component's
 deployment descriptor file and implemented entirely by the container. Self-managed transactions
 are programmed using the container's UserTransaction interface or direct calls to the CORBA
 Transaction Service.

Container-managed transactions may be fine-tuned by setting transaction policies at the
 component and operation level. Policies parallel those defined in the Enterprise JavaBean
 specification. Here is the set of CORBA policy attributes and their effects:

Attribute Description

Not Supported When a caller invokes a method, the caller's transaction, if any, is
 suspended and is resumed after the method call.

Required

The component requires a current transaction in order to execute. If
 the caller supplies a transactional context, the called component
 executes within the caller's transactional context. If the caller is not in
 a transactional context, the container starts a new transaction at the
 beginning of execution and attempts to commit when the operation
 completes.

Supports

If the caller supplies a transactional context, the called component
 becomes part of the caller's transactional context. If the caller is not
 in a transactional context, the operation executes outside of the
 scope of any transaction.

RequiresNew

The component requires its own transaction in order to execute. If the
 caller supplies a transactional context, the caller's transaction is
 suspended and a new transaction is created for the duration of this
 method execution. If the caller does not supply a transactional
 context, the container creates a new transaction for the duration of
 this method execution.

Mandatory

The caller must be in a transactional context before invoking a
 method on the component. The called component becomes part of
 the caller's transactional context. If the caller does not supply a
 transactional context, the container throws a
 TRANSACTION_REQUIRED CORBA exception.

Never

If the caller supplies a transactional context, the container throws the
 INVALID_TRANSACTION CORBA exception. If the caller does not
 supply a transactional context, the container does not start a new
 transaction.

Security Service
Security policy is applied consistently to all categories of components. The container relies on
 CORBA security to consume the security policy declarations from the deployment descriptor and
 to check the active credentials for invoking operations. The security policy remains in effect until
 changed by a subsequent invocation on a different component having a different policy.

Access permissions are defined by the deployment descriptor associated with the component.
 The granularity of permissions must be aligned by the deployer with a set of rights recognized by
 the installed CORBA security mechanism since it will be used to check permissions at operation
 invocation time. Access permissions can be defined for any of the component's ports as well as
 the component's home interface.

Event Service
CCM components use a simple subset of the CORBA notification service to emit and consume
 events. The subset can be characterized by the following attributes:

Events are represented as valuetypes to the component implementor and the component
 client
The event data structure is mapped to an any in the body of a structured event presented
 to and received from CORBA notification.
The fixed portion of the structured event is added to the event data structure by the
 container on sending and removed from the event data structure when receiving
Events have transaction and security policies associated with the component's event ports
 as defined in the deployment descriptor
All channel management is implemented by the container, not the component.
Filters are set administratively by the container, not the component.

Because events can be emitted and consumed by clients as well as component implementations,
 operations for emitting and consuming events are generated from the specifications in
 component IDL. The container maps these operations to the CORBA notification service.

 Naming Service

Clients that use the finder method to locate and execute an operation on a CCM component may
 look it up in the CORBA Naming Service or Trader Service if it is running on the network, or use
 the component home's find_by_primary_key method to locate an entity component. (With the
 factory method, of course, there is nothing to look up!)

 Persistence Services

The CCM supports persistence using CORBA's Persistent State Service (PSS). Modes of PSS
 operation support what EJB programmers would recognize as container-managed persistence
 and self-managed persistence. To use container-managed persistence, the programmer must
 define his component's state using OMG PSDL (Persistent State Definition Language, a superset
 of OMG IDL). In this mode, the saving and restoration of an object's state over a
 deactivation/activation cycle is transparent to the programmer. Under self-managed persistence,
 the programmer must save state explicitly when his component is called by the container prior to
 deactivation, and restore it explicitly when called during activation prior to method execution.

Managing Server-Side Resources

Architecturally, a typical CCM application consists of a set of component factories that create
 component instances as required, at runtime. For example, an e-commerce application could
 consist of customer components, shopping cart components, and checkout components. There is
 a customer component instance for each customer in our database. There is a shopping cart
 component instance for each customer who happens to be shopping at a particular instant. And,
 checkout component instances are created when a customer presses the "check out" button.
 They come into existence, perform the functions necessary for checkout (charging the customer's
 credit card, notifying the shipping department, creating a bill of lading, etc.), and disappear as
 soon as they're done.

CORBA entity and process components (which we'll present in more detail in the next section) are
 persistent - that is, their lifetime spans multiple calls; they may even be called after a server
 crash. Because there is no client API for component activation/deactivation in the CCM, all the
 client can do when it wants to invoke an operation on a component instance is do it. This keeps
 the architecture clean, and the client code simple. (In this discussion, it's important to differentiate
 between component creation/destruction¸ which happens only once for each instance and is
 definitely visible to the client, and activation/deactivation, which may happen repeatedly but is
 only visible to the server.)

So, if we have several million customers in our database, we wouldn't want every customer
 component instance and shopping cart instance to be active in memory all the time - this would
 be very wasteful of resource. So, the CCM runtime manages the instances, activating an
 instance when an invocation comes in, and deactivating it (and freeing its resources) when it's
 done. In the CCM (and CORBA in general, through the POA), activation/deactivation is a server-
side function, invisible to the client. From the client's point of view, its customer component is
 always running. The client has no API to activate a servant, as we just pointed out. The client has
 only to invoke an operation defined in the component's interface for it to execute and the
 response to come back. The CCM runtime will activate the component instance automatically, if
 necessary, before passing the invocation to it. So, even though the customer component is not
 always running, it is always available.

This sophisticated management capability optimizes resource use at runtime. With this capability,
 CCM servers can be used by any e-business, no matter how large, and no matter how heavily
 loaded their servers become. Think of how this expands the market potential for your CCM
 components.

The pattern of resource allocation that we just described - activation-per-invocation - is one of four
 patterns supported by the CCM, each with its own name and pattern. Here are descriptions of all
 four patterns:

Types of CCM Components

The CCM divides components into four categories:

Service Components
Session Components
Process Components
Entity Components

Of these four, Service and Session components have transient component references - that is, their references
 are rendered invalid should a server process terminate and be re-started. Even though UPS power and
 redundant hardware makes server process termination a rare event, it is still poor programming practice to
 store a transient reference in a permanent store such as a naming or trader service, so Service and Session
 type components are used only for brief, self-contained operations or functions. In contrast, Process and Entity
 components, whose references remain valid - even across server restarts - until the instance is explicitly
 deleted by a client authorized to do so by the security policies in effect at the site, are useful for long-lived
 records and functions and may usefully represent, for example, customers or bank accounts. If you need to
 store a component reference in a Naming or Trader service for lookup later, be sure that its component type is
 either Process or Entity.

Service Components have the briefest possible lifetime: a single call. They are useful for
 functions that are self-contained, such as checking out the contents of a shopping cart (that is,
 removing the items from inventory, billing the customer's credit card, and generating a bill of
 lading for the shipping department), or committing a particular transaction type. Because they are
 cheap to create and destroy, and consume resources only when active, they represent the most
 efficient component form of these four. By coding as much functionality as you can as service
 components, you will maximize the load that your component-based server will be able to handle.
 In particular, "use-once" functionality initiated by longer-lived Process or Entity components
 should be off-loaded to Service components, instead of coded into the Process or Entity
 component where it takes up space waiting to be called.

Session Components may be called more than once, but do not persist through a server outage:
 when a server goes down and is brought up again, all of its session components are gone. Even
 though outages will be rare for a server with redundant hardware and battery power backup, a
 well-designed application will not use session components for anything except transitory
 functions such as iterators.

Process Components represent, as their name implies, a process with a beginning and an end,

 such as applying for a mortgage or bank account. During the process, the component persists
 reliably, even over a server outage, maintaining its state from one invocation to the next.
 However, when the process completes, the product is something else - the mortgage or bank
 account, in our examples. So, the process component creates the product account component
 and vanishes, freeing up its resources.

Entity Components represent the truly persistent items in your application such as your
 customers, or their mortgages and accounts. Typically (although not always), they will represent
 data in your database, so their implementation will talk to your database through the CORBA
 Persistent State Service on the back end (as we showed in Figure 3), and serve these data to
 your application through the component interface front end. To help you keep track of these
 important representations, the CCM lets you assign a key to every instance of an entity
 component, and retrieve instances via their keys.

The CCM server assigns a resource allocation pattern to a component based on its category.
 Robustness increases as you go down the list, but so does resource usage, so try to stay as
 close to the top as you can without sacrificing reliability. Keep these categories in mind even at
 the beginning of your application design stage: If you can keep your entity components small by
 splitting single-use functionality off of into a session component, you in turn increase the load that
 your server can handle. Always consider the pros and cons of performance and resource usage
 when using entity components.

Creating CCM Components

To define a component in the CCM, the component developer has to define the:

1. Component Interface
2. A Portion of the Home Interface
3. Component Implementation
4. Configuration File
5. Deployment descriptor

Component Interface

Written in both OMG IDL and CIDL (Component Implementation Definition Language), this
 interface exposes the business functionality of the enterprise component to the clients that call it.
 Keep in mind that the "client" in a component-based application may be another component
 within the same server (or another!), and is not necessarily the remote desktop application. The
 interface represents the syntax portion of the contract between client and component: it lists the
 functionality this component provides, but not how the component provides it. From the client
 programmer's perspective, the interface lists all the business methods of the enterprise
 component that calling applications may invoke when using this component. Components for the
 open market are defined as 'Black Box' - that is, all functionality is encapsulated and no
 implementation code is available to the user. The CCM compiler generates skeletons for the
 component from this interface declaration.

Home Interface

This interface exposes the life cycle methods of the component. The CCM automatically
 generates methods to create and remove components on the server (but not to activate or
 deactivate them, since this is transparent to the client). Because only the default constructor is
 created automatically, you will have to add any others (i.e. differently parameterized constructors)
 that you need. Because the component home keeps track of its extent, this is the place to declare
 any operations you might want to define on the set of objects of its type.

Factory and Finder Methods: To use a service or session component, a client will use the
 factory method to literally create (not activate!) a new instance. The factory will return a
 component instance reference to the client; the reference is good for a single use of a service
 component, or repeated calls over a limited time on a session component. Although a client may
 use the factory method to create a new instance of a process or entity component, most

 accesses to process or entity component types will be to existing instances. To access Entity
 component instances, the client will use the finder method, using the find_by_primary_key
 operation defined on the component's home by the CCM. Process components do not support
 the find_by_primary_key operation even though their references are persistent, requiring a client
 to store their references itself for future use. References may be stored in a client cookie, or a
 Naming or Trader service.

CCM Implementation

This class contains the real implementation of the CCM component. The CCM implementation
 class has to implement:

1. All the methods specified in the remote interface
2. Operations defined in the home interface, except for the default constructor and
 destructor
3. Callback methods specified by the CCM specification so that the CCM container

 may manage and interact with the enterprise component by invoking these
 methods.

Deployment Descriptors

Every CCM needs a deployment description file. The outline of this file is generated automatically
 by the CIDL compiler, but you will have to fill in details because the CIDL compiler does not have
 all the information it needs. The deployment description is specified in XML, but will almost surely
 be generated by a tool (which will probably be provided by your CCM vendor, although you will
 have to write component-specific information into a file that it will use). Statements in the
 descriptor file determine the type of container (service, session, process, or entity) the
 component requires, and its policies regarding transactionality, security, threading, and other
 container-provided services.

Property File

This file details component and home attribute settings. As we've mentioned, attributes retain
 install-time configuration information for a component and, perhaps, its home. The CCM
 specification prescribes the format and use of the Property File. Properties set during assembly
 may be overridden at install time.

Assembly Descriptor

CCM Components assemble into applications. It is also possible to produce a partial assembly -
 that is, a grouping of a number of component types that work together but do not, by themselves,
 constitute a complete application. You may decide to add value to your product by marketing a
 partial assembly of CCM Components. If you do, you will have to produce an assembly descriptor
 file.

Error Handling

Handling errors in a component is not the same as handling application errors. Firstly, you need to
 consider that any error not handled in a component will be sent back to the client that called the
 method. For that reason, you must ensure that the information the client receives is meaningful.
 A client should be totally unaware that a component may be running a process. Therefore any
 error that occurs should be handled by the client and interpreted in such a way that any error
 message displayed is generated by the client and is in context with the process that has failed.

CORBA exception handling gives you a lot of help with this. If you declare type-specific
 exceptions in your IDL, your client may wrap component invocations in a try/catch loop. If you
 throw the exception in the component, the client will catch it (and its payload) after the invocation
 returns. This is a very natural way for your client programmer to access unavoidable errors.
 However, you should return as few errors as possible to the client.

Here are the main techniques for handling errors in CCM.

Handling Errors Internally - Handling errors within an CCM is no different to
 handling errors in a standard application. If a method unexpectedly generates an
 error then, unless an error handling routine is included, the calling application will
 crash. To avoid this situation, intercept the error, assess its severity and take
 corrective action, either by resuming to a specific line of code or by throwing an
 appropriate exception back to the invoking client.

Passing Errors Back to the Client - To return an error back to the calling client,
 you only need to throw one of the exceptions that you defined in your component's
 IDL, or one of the CORBA standard exceptions. CORBA will transport the
 exception and its payload back to the client, where it will be raised in the try/catch
 loop that wraps the call. CCM clients must be prepared to deal with these IDL-
defined exceptions, but it's up to you to create the right ones, and make them easy
 for client programmers to understand and recover from. It's OK (and usually
 unavoidable) to pass back errors resulting from bad, inconsistent, or out-of-range
 parameter values or bad operation sequences, since these errors can only be fixed
 by the calling client. In general, it's a bad idea to pass back exceptions that the
 client can not fix.

Raising Errors from Error Handlers - The majority of methods you write will
 contain error handler routines. Where an error handler receives an unexpected
 error then returning a generic 'unexpected error' exception will not help the client
 find a solution. If you can't do better than this, the least you must do is return the
 name of the method that failed and the parameters that were passed to it. The user
 could then pass this information back to the component author for investigation.

Handling Errors from Another Component - If your component invokes a third
 party CCM, it's good practice to handle all errors (known or unknown) that the
 secondary component may generate. Developers using your component will have
 no knowledge of the dependencies your component has unless you document
 them. If logical dependencies require, you may document these errors and pass
 them back to the client; otherwise, handle them yourself.

Threading
The EJB architecture assumes responsibility for managing concurrency. Do not try to explicitly
 manage threads or thread synchronization as this may interfere with the EJB server's thread
 management. Also, the EJB server is free to use multiple JVMs and your explicit thread
 management may not work correctly.

Roles in CCM Development and Deployment

The CCM specification defines a number of roles in the application development and deployment process. They
 are:

Component Developers
Application Assemblers
Application Deployers
Server Providers
Container Providers
Administrators

Component Developer

This role is played by the component developer who specifies the Remote Interface, Home
 Interface, Component implementation class, and deployment description. The component
 developer writes files in OMG IDL, OMG PSDL (Persistent State Definition Language), and OMG
 CIDL (Component Implementation Definition Language). Compilers for the OMG IDL and CIDL

 are provided by the vendor of the component runtime, while the compiler for the PDSL comes
 from the vendor of the Persistent State Service. Files output by these compilations, all in either
 Java or C++, include stubs and skeletons (Figure 1), plus generated code that implements or
 triggers resource and persistence management. Code executing business rules is inserted into
 these files by the component developer, who then compiles the language code. In a subsequent
 step, using a specialized tool supplied by the component container vendor, the developer
 packages his implementation along with a configuration file and properties file.

Application Assembler

There are two places where assembly may be done:

First, you may decide that it makes sense to package and sell functionality implemented as more
 than one component, working together. In this case, you would assemble these components
 together and offer the package for sale as a unit. Buyers might deploy and use this package just
 as you offered it, or have the option of assembling it with additional components (that they wrote
 themselves, perhaps, or compatible ones that they bought separately either from you or an
 independent company).

Second, buyers may purchase components separately and assemble them just prior to
 deployment, combining them either (as in the case we just described) components that they
 wrote themselves, or compatible components that they purchased separately.

Application Deployer

An Application Deployer is typically an IT manager who deploys, after modifying the deployment
 description file, the application on a CCM-compliant application server. Even though many run-
time configuration choices were made when the component was packaged, others remain to be
 set, and many that were set may be overridden.

Server Provider

This role is played by vendors who implement the application servers based on the CCM
 specification.

Container Provider

This role is played by the writers of containers that hold the CCM components. The components
 themselves reside within a server. This role is typically played by the Server Provider, although
 some groups are discovering that it is feasible to generate a CCM infrastructure on top of an
 ORB that they did not write themselves.

Administrator

This role is played by the CCM server administrator who would be responsible for managing the
 database connections, Naming and Trading Services, and performance monitoring.

Documenting Commercial EJB Components
Documentation Benefits
a) Reduction in Pre/Post Sales Support
Documentation for components sold in the open market is particular important as 'face to face'
 interaction does not take place between author and customer. Providing a comprehensive set of
 documentation will ensure that pre/post sales support is kept to a minimum. Providing pre sales
 documentation i.e. a thorough component specification prevents many of the refund situations
 common in traditional 'box product' channels.

Traditional channels sell product by providing marketing information but not the finer detail
 covered in help files and other technical documentation. Providing information such as help files
 and evaluations enables customers to make an 'informed' purchase decision. Documenting and
 publishing known issues such as Frequently Asked Questions (FAQ's) on a regular basis will also
 help reduce technical support after the sale.

b) The Confidence Factor
Components sold on the open market may be 'Black Box' i.e. the source code is hidden. Because
 of this, trust is extremely important between customer and author. Therefore, provision of detailed
 product information such as evaluations, help files and white papers is essential for building
 confidence in potential customers.

Typical Documentation
What documentation should I provide? - The following section provides a detailed insight into the
 different types of documentation that should be provided when selling components in a
 commercial market. For examples of presenting online documentation in a concise and
 professional style browse our top selling products at: http://www.componentsource.com

a) Online Documentation (HTML, HLP and PDF Files)
HTML is probably the best format of documentation you can provide and can be used for
 displaying information in text and graphical format. Typical examples include product overviews
 with screen shots and/or related diagrams. Customer can view HTML instantly as opposed to
 other document formats that must be downloaded first. Writing a help file is relatively easy and
 can be achieved using help authoring tools. More information on these tools can be found on our
 Web site: Help Authoring Tools.

Portable Data Files (PDF) are documents that can be viewed on IBM compatible or MAC
 platforms. The PDF file enables the creation of technical documentation in a 'book' format.
 Therefore, converting a published manual into an electronic form is probably the most efficient
 way to achieve this. The drawback with PDF files is the requirement of a free (though proprietary)
 viewer that must be downloaded first. PDF files may be generated from any Postscript file, or
 directly from many word processors. To write a PDF file you will need to download the Adobe®
 PDF Writer, or use one of a number of other tools Adobe provides for this purpose.

b) Demonstrations
Developing a product demonstration can prove a valuable asset in the documentation you provide
 customers. Exposing component functions will help users understand the benefits of the product
 as a component-based solution. Demonstrations are compiled applications assembled with the
 component. They are not like evaluations that allow developers to use the component in a
 development environment. More information on evaluations is covered in the following topic.

The objective of a demonstration is to educate users on the functionality incorporated inside the
 component. The interface should demonstrate the main functions in a format that is
 understandable for all customers. Because of this it's important to remove industry jargon and
 acronyms that may confuse users. For data bound components, providing the option of entering
 a Data Source could be of benefit. This allows users to connect to internal data sources in their
 own organization and apply meaningful data in context with the component.

Demonstrations often have dependencies and therefore testing the demonstration on a clean
 machine is extremely important. Clean systems contain freshly installed operating systems
 removing the potential hazards of previously loaded software. If your demonstration has any
 dependencies then you must create an installation kit. Sometimes it's beneficial to include the
 demonstrations within the evaluation kit and thus remove the need to write and maintain two
 separate kits.

Finally, the quality of a demonstration is directly correlated to the perceived quality of the final
 retail product. Where possible, design your demonstration in-line with an accepted standard. This
 helps build a perception of quality and trust with customers - remember demonstrations can
 make or break a sale.

http://www.componentsource.com/
http://www.componentsource.com/Browse.asp?G=3&GroupCode=HELPA&MTC=XXX%20
http://www.componentsource.com/Browse.asp?G=3&GroupCode=HELPA&MTC=XXX%20

c) Evaluations
Component authors recognize evaluations will help secure a product sale. Once a customer is
 happy with a specification they often trial the component to check the component will actually
 provide the functionality they are looking for. Customers do not doubt component based
 development, but may have concerns with an 'independent' solution. Because of this, component
 evaluations are essential. Unlike applications, component evaluations add value and play a
 significant role in the pre sales process.

Writing an evaluation will require consideration of security. Producing a component that displays a
 reminder screen or setting time limits hidden in cryptic keys within the registry are just some of
 the techniques currently used. Setting a 5-10 day trial period for technical components and 10-30
 days for complex business components is recommended. This gives the customer enough time
 to evaluate the product and make a decision whether to buy.

An ideal evaluation is the full retail restricted by a security feature detailed above. This prevents
 users having to download the evaluation and retail component separately. ComponentSource
 has made available a license protection facility called C-LIC primarily designed to protect
 evaluations that can be unlocked into full retail products. C-LIC displays a reminder screen
 requesting the user to enter a license key provided when the full retail is purchased.

d) Sample Code
Sample code is particularly useful when developers need to prototype and assess component
 functionality. A good technique is to provide the sample code used in the component
 demonstration. If possible, this should be provided in a basic, intermediate and advanced
 version. This will allow the developer to understand how the component operates.

Sample code usually is the final step that customers evaluate before making a decision whether
 to buy. Therefore its important to maintain a good perception by commenting all code and
 explaining exactly what happens and why. The quality of sample code will directly correlate to the
 perceived quality of your final product. Because of this professionally written sample code using
 correct naming conventions, coding structures and error handling is essential. If the sample code
 is well structured then it can be reused in actual projects. This makes the whole process of
 integration far less complex and useful for developers who need to rapidly assemble a
 component-based solution.

e) Readme Files
In this topic we list the various information that a Readme file should contain. Most installation
 scripts provide users with an opportunity to view a Readme file for last minute changes or errata
 information once installation is complete. These files should be written in a universal file format
 i.e. a text (TXT) file or HTML file. This prevents users having to own proprietary applications such
 as Microsoft Word to view the file. The following list provides an insight into the various
 information supplied in component Readme files.

Product Changes - this section is extremely important and should note all the
 functional changes that have been made in comparison to previous versions and
 any changes to documentation, installation etc.

Bug Fixing - bugs resolved from previous versions should be fully documented.
 Include the component version that contained the bug and a description of what
 has changed. This is particularly important if the component's interface has been
 changed.

System Requirements - Although compatibility information is supplied in our own
 sales documentation its worth reiterating this information in your Readme file. This
 should include information such as operating system for deployment, safety levels,
 threading standards etc.

Definitions of Component Filenames - Listing the filenames of all components
 (including dependencies) is particularly useful if the user is attempting to identify a
 problem. Although help and dependency files include this information, Readme files

 are often browsed as well.

Detailed Installation Notes - This should include information on how to de-install
 and update previous versions. A troubleshooting section should also be included
 defining solutions to common installation problems.

Notes on Sample Projects - Document any assumptions, known issues etc. If
 possible, describe each of the projects and the functions they expose. In addition to
 this defining a project's complexity i.e. basic, intermediate or advanced can also be
 of help.

Distribution Information - Particularly useful when a user creates an installation
 kit. Your component may reference many other dependencies, therefore detailing
 this information will help the developer create a tailored installation kit and prevent
 many of the 'missing dependency' issues when testing.

Known Issues - You must document all known issues. If possible, also explain why
 the problem arises. If you do not provide this information then it's likely that
 unnecessary technical support issues will arise. Documenting known issues will
 demonstrate that you care and are focused on providing a future solution.

f) Prerequisites
Prerequisites provide the customer with details on required software, product size, required
 memory, service packs where appropriate, and publicly available drivers. It is worth including the
 minimum and recommended size when defining memory and hard disk allocation.

Component Testing
How do I test a component? - Thorough testing is paramount to the success of a component
 being accepted in the open market. All evaluations and sample code should be tested in addition
 to the full retail product for functionality, installation and de-installation. An issue that should be
 approached with care is the dependencies referenced by your component. Most installation tools
 require the selection of the original component's project file. This allows the wizard to analyze all
 references selected at the time the component was compiled. Absence of dependent files
 referenced by other dependent files is probably the most common installation issue. This is why
 testing on a clean machine, on all operating systems and all development environments is
 imperative. Therefore, to create a clean machine you must:

Format Hard Disk - If you only reinstall the operating system then static files that
 do not require registration may have already been installed. Therefore, without
 formatting the disk there is no guarantee that the installation will work on all
 machines.

Install Operating System - Make a note of any service packs applied as this must
 be included in the component's documentation i.e. the Readme file

Install Development Environment - Again, document any service pack
 installations. Always select the standard installation otherwise certain files may be
 missing causing erroneous errors when you test. This may include the
 development language for design time testing and the application server for
 deployment testing.

Once the above steps are complete you can image the disk allowing you to re-clean
 your environment in minutes. Image applications take a snapshot of your clean
 system, with operating system and development environment installed. This
 prevents the long cycle of re-installing everything before testing can re-commence.
 A good practice is to allocate a hard disk per operating system per development

 environment. As several disks can be installed in one machine, imaging an
 environment provides an efficient solution.

Test installation - Although we test the product installation thoroughly we
 recommend you also test the product to your best ability. This will ensure the swift
 progress of the component through our QA system.

Conclusion
Build components and enter the component market now!

Customer demand for components is currently outstripping supply - as a result an opportunity exists for experts
 to create components and enter the "open market" for components.

If you have any feedback on this white paper or questions about creating commercial software components
 email us on: publishers@componentsource.com

ComponentSource

Copyright © 1996-2003 ComponentSource™

mailto:publishers@componentsource.com

	Local Disk
	corba.htm

