
Creating Commercial Components
Enterprise JavaBeans Technology

Based Components
•

Technical White Paper

View Contents

Date: June 5, 2000
Revised: January 5, 2001

Authors: Andrew Pharoah, ComponentSource
Faiz Arni, InferData Corporation

Email:

publishers@componentsource.com

farni@inferdata.com

US Headquarters European Headquarters

ComponentSource
3391 Town Point Drive,

Suite 350,

Kennesaw, GA 30144-7083

USA

Tel: (770) 250 6100
Fax: (770) 250 6199
International: +1 (770) 250 6100

ComponentSource
30 Greyfriars Road,
Reading,
Berkshire RG1 1PE
United Kingdom

Tel: 0118 958 1111
Fax: 0118 958 1111
International: +44 118 958 1111

mailto:publishers@componentsource.com
mailto:publishers@componentsource.com

Copyright © 1996-2003 ComponentSource™

Contents

Introduction

Commercial Overview

Component Overview

Identifying A Component Candidate
Analyze Application Functionality
Component Reusability
Expert Functionality

Component Architectures
Client-Side Components
Server-Side Components
Exceptions

Component Types
Visual Components
Non-Visual Components

Implementation Language Issues
Java™ Technology
Borland™ JBuilder

Enterprise JavaBeans™ Components

Introduction

Why use EJB ?
Transaction Processing Monitors
CORBA
Component Transaction Monitors

Architecture of Enterprise JavaBeans
 Components
Basic EJB Concepts
Types of EJB
Creating Enterprise JavaBeans Components

Remote Interface
Home Interface
Enterprise Bean
 Implementation
Deployment

Description

Design Considerations
Identify Component Scope
Choose Architecture
Prototype Interface

Session Beans
Stateless Session Beans
Stateful Session Beans

Entity Beans
Container Managed Persistence
Bean Managed Persistence

Roles in EJB
Bean Developer
Application Assembler
Application Deployer
Server Provider
Container Provider
Administrator

EJB Services
Transaction Services
Security Service
Naming Service
Persistence Service
Resource Management Service
Messaging Services

Documenting Commercial EJB Components

Documentation Benefits
Reduction In Pre/Post Sales Support
The Confidence Factor

Typical Documentation
Online Documentation
Demonstrations
Evaluations
Sample Code
Readme Files
Pre-requisites

Component Testing

Error Handling
Threading

Component Licensing
The Common Licensing Problem
C-LIC - The Common Licensing Solution

Conclusion

Introduction
This white paper has been constructed to help component authors develop and enhance 'off-the-shelf' software
 components for server-side deployment and successful delivery on the 'open market'. Additionally, applying the
 priciples of commercial-grade component development can greatly assist internal reuse, allowing components

to be leveraged in multiple projects. Developers then have the option of furthering their development
 investment and releasing components onto the open market, where we see a growing, pent-up demand.
 Information covered in the document is based on our knowledge and expertise of those component authors
 who successfully have established themselves in the component marketplace. The content is aimed at
 developers who wish to create components based on Sun Microsystems® Enterprise JavaBeans™ (EJB™)
 specification. In the following chapter we discuss the business benefits of using components and identify the

functionality suitable for server-side component development in Java™ technology. Following this we detail the
 EJB architecture and the environment in which these components can be used.

Commercial Overview
The market for Software Components is expected to grow to around $4.4 billion by 2002, $1.0 billion from
 products and $3.4 billion from related services. (Source: PricewaterhouseCoopers)

Traditionally, server applications were built using proprietary transaction processing monitor (TP Monitor)
 systems. This made it difficult to write portable, enterprise-class software. With the introduction of Enterprise
 JavaBeans Components , server-side, enterprise software applications may now be created as a collection of
 software components or enterprise beans. These EJB based applications may now be deployed on any EJB-
compliant application servers such as Sun-Netscape Alliance iPlanet™, IBM® WebSphere™, BEA™
 Weblogic® or IONA iPortal Application Server . Increasingly enterprise application developers are employing
 component-based software development techniques, which enable them to reduce their time to market and
 improve their software quality. Software authors who are experts in a specific horizontal or vertical market
 sector are now "componentizing" their applications to meet the increasing demand for sophisticated business

components. As such this represents a huge opportunity for you to unlock hidden revenues from years of
 research and development.

Why is buying a software component a good idea?

Everybody, software developers included, admit that they do something, (write a program or subroutine), better
 second time around. This is the essence of a "component", built and continuously improved by an expert or
 organization and encapsulating business logic or technical functionality. By buying a component a developer

can add functionality to their application without sacrificing quality. Indeed quality should improve, as the
 component will have gone through several development iterations and include feedback from 1,000's of users.

What type of components will people buy?

Initially software components were used to provide technical functionality, such as SMTP for email or enhanced
 user interfaces. Developers are now requesting sophisticated components that solve real business issues from
 component authors, such as Credit Card Authenticating components for E-Business applications.

What is helping make this happen now?

The open Enterprise JavaBeans specification from Sun Microsystems is a component model for building server-
side, enterprise class applications. EJB allows the component authors to focus on creating portable and
 reusable components rather than spending time on building complex proprietary "application framework
 environments" that "lock-in" users. The EJB specification requires the application servers to provide a host of
 services that the EJB-based components may depend upon. Since the services are specified using Java

technology interfaces, the bean implementation is not tied to any application server vendor's implementation of
 those services. The EJB specification also enables the application server vendors to provide a robust, scalable,
 secure and transactional environment to host the EJBs. EJBs are implemented using the Java Programming
 Language as specified by Sun Microsystems. The Java programming language is a rich, portable, and secure
 language that supports automatic garbage collection, reflection and dynamic method dispatch.

To find out about the EJB architecture and how to design, implement and deploy EJB components - read the
 remainder of this white paper.

Component Overview
Identifying A Component Candidate
How do I identify a component candidate? - Understanding how a component works and how
 functionality differs from applications is important when identifying a suitable component
 candidate. In this section we investigate existing applications for potential functionality, consider
 component reusability and finally discuss the importance of business knowledge and how this
 applies to the components you write.

a) Analyze Application Functionality
Developers should look at the functions encapsulated in their own applications and others to
 assess the commercial viability of componentizing particular functions. Each component
 advertises one or more business interfaces. The users (or clients) of the component interact with
 it only through these interfaces. The clients are completely decoupled from the implementation of
 the component. The component implementation may be changed or upgraded without affecting
 the clients. One of the main characteristics of a component is that the business logic is separate
 from the data that a component manipulates. However, this does not apply to single parameter

data that is passed to methods of the interface. For example, in EJB, a special kind of beans,
 known as Entity beans, are used to model persistent data. However the underlying data may
 come from any JDBC compliant data elements - the client has only an object view of the data !

b) Component Reusability
An important factor worth considering is a products commercial viability. Market demand
 determines whether a component is commercially viable or should be used only within your own
 organization. Typical examples include components that are directly linked to hardware such as
 monitoring components for alarm systems. Unless the components can be sold separately from
 the hardware the ability to sell the product online is greatly reduced.

Components that can be integrated without any consultation will succeed in what's known as the
 'Open Market'. This market allows components to be distributed without any consultation or
 tailoring service. All information regarding the product is supplied in online documentation such
 as demonstrations, evaluations, help files and sample code.

For more information on the open market browse to:
 http://www.componentsource.com/services/cbdiopen_market.asp

c) Expert Functionality
Expertise and knowledge are the two areas you should focus on when writing a software

component. If you are developing a component from scratch then consider the components
 already on the market and assess whether you could offer a different or superior solution. Where
 possible write components that are related to your core business area. It's likely that these
 functions will be more valuable than peripheral functionality designed to provide a basic solution.
 For example, if your core business provides insurance underwriting services then concentrate on

http://www.componentsource.com/services/cbdiopen_market.asp

 these core functions first as opposed to peripheral components such as a basic user interface
 components for data presentation in a grid or as a chart of graph.

Component Architectures
Where are components installed? - Components, unlike applications are deployed in either a
 client or sever environment. However, this can depend on the component containing a graphical
 user interface (GUI) A GUI or visual component would be of little use in an environment where

servers run without screens. Apart from this, component functionality can run on client or server
 machines. However, this may be dependent on the usage of the component and other aspects
 defined below.

a) Client-Side Components
Client-side components can be implemented in a variety of ways depending on the functionality
 required. Their overall characteristic is that all logic is encapsulated and run on the client as
 opposed to a server that may serve many clients. Another factor unique to client-side
 components is licensing. Depending on complexity, client-side components may be restricted
 with user run-time licenses. Due to the nature of a client component it is possible that unique
 licenses are required per client machine. Client-side components can be implemented in the form
 of Presentation, Technical and Business components. Examples of each are detailed in the topic
 'Component Types'.

b) Server-Side Components
Server-side components are relatively new to the commercial component market. Benefits enable
 the developer to provide solutions that run on a per server basis. These components serve many
 clients simultaneously without significant performance loss. Server-side components can also be
 upgraded efficiently removing the complexities of updating potentially thousands of desktop

machines. Component logic is often run on powerful servers as opposed to a desktop machine.
 This makes the server-side component an excellent candidate for systems that require efficient
 throughput and performance.

c) Exceptions
Where possible you should design components in either a client or server architecture. However,
 there are a few components that are exceptions to the two definitions above. Typical examples
 include components that have a user interface that run in an client environment and are tightly
 coupled to components that run in a server environment e.g. stock/trading systems. These
 architectures exist for security reasons only i.e. the server component will only communicate with
 a specific client component and the client component will only communicate to a specific server
 component.

Component Types
What types of component are there? - Two main types of component exist - visual and non-visual
 components. Both types can encapsulate either technical or business knowledge. The
 differences between the two are dependent on functionality. For example if the component
 provides only a benefit to the developer e.g. a TCP/IP communication library then the component
 is categorized as technical. Business components provide a benefit to the developer and end-
user by encapsulating business knowledge. Typical examples include address formatting and
 credit card validation components. Both visual and non-visual components have their benefits

and in the following topics we will look at different examples of both in a client and server based
 environment.

a) Visual Components
Visual components present a pre-designed presentation interface to the user. Examples include
 data grids and charting components. These components are traditionally implemented as
 JavaBeans™ Components, which is a Java technology-based component model. Visual
 components appear graphically in a component toolbox in Integrated Development Environments
 (IDE) such as IBM's VisualAge for Java™ and webGAIN's VisualCafé™. This allows the
 developer to select and physically draw the component onto a form and then manipulate
 properties via a design interface known as a property sheet. Another characteristic is that
 component functionality is run on the desktop machine as opposed to a powerful server. Because

 of this visual components are relatively lightweight on processing power. Visual components also
 provide developer licensing built in. This prevents users from copying the component into a
 development environment and using it at design-time. Developer licenses come as a file that
 must be on the users system in order for the component to work correctly.

Client and Server Based Examples - The Java Abstract Windowing Toolkit (AWT) and the Java
 Swing component set for building graphical user interfaces are examples of JavaBeans
 component implementations for client development. Server-side visual components such as Java
 applets reside on the web server and are automatically downloaded along with the web page that
 includes them. The downloaded applets execute within a "sandbox" on the client, thus protecting

the client's environment from any malicious applet.

b) Non-Visual Components
Non-visual components do not provide a pre-designed presentation interface to the user. These
 components are implemented as Enterprise JavaBeans Components or non-visual JavaBeans
 Components. For the EJB-based components, the functionality of the components is exposed
 only through the business interfaces, known as remote interfaces. For JavaBeans Components,
 the functionality is exposed primarily through properties of the beans. A non-visual JavaBean

Component may still be manipulated and configured in a graphical development environment.
 The JavaBean Components specification also specifies a helper class, known as a BeanInfo
 class, that may be implemented to expose the functionality of a non-visual JavaBean
 Component. Using BeanInfo, the bean developer may expose the properties, methods and
 events of a component. Non-visual components are adaptable and can be run in either client or
 server environments. This allows the functionality to be plugged into any n-tier architecture
 providing the application developer with a universal solution. Non-visual components, typically

designed to run in a server environment, allow many clients to access functionality
 simultaneously without loss in performance. Typical examples include online housekeeping
 functions that require the dedicated processing power of a server.

Client and Server Based Example - ShoppingCart EJB, which is one the components of BEA
 WebLogic Commerce Server™ , is an example of a 'non-visual' component that executes in a
 EJB server environment. This component encapsulates the functionality of an online shopping
 cart used by e-businesses. In the past, most online stores had their own proprietary
 implementations of the shopping carts. The ShoppingCart EJB enables them use a well-tested,
 well-designed component in a "plug-and-play" fashion - they simply need to integrate and
 configure the EJB in their applications. The DataAccess beans are an example of components
 that execute both in a client and a server environment. These components hide all the details of
 accessing data from commercial database systems. The users of these components build their
 applications based on the component interface without coupling their code to the actual database
 specific code. The feature enables the clients to access any database system without having to
 modify or recompile their code.

Implementation Language Issues
Enterprise JavaBeans Components may only be implemented using the Java programming
 language. The EJB standard specifies all the services provided to server-side side components in
 terms of Java technology interfaces and classes. Since the EJBs depend upon these services,
 they must be implemented using Java technology.

The Java 2 Platform Enterprise Edition™ (J2EE™) from Sun Microsystems specifies the support
 for using RMI/IIOP as the protocol of communication between clients and enterprise beans.
 Using RMI/IIOP enables the clients to use programming languages such as C++, C, Cobol and
 Java technology. RMI refers to Java's Remote Method Invocation. IIOP refers to the Internet
 Inter-Orb Protocol. IIOP, specified by the Object Management Group (OMG), is the
 communication protocol for CORBA™ (Common Object Request Broker Architecture) based
 systems. CORBA enables the interoperability between systems written in different programming
 languages. In CORBA, you can have a client implemented using C, C++ or COBOL that may
 invoke remote methods on a server object implemented in, say, Java. This interoperability is
 possible because of IIOP.

Java™ Technology

Java technology has emerged as a very popular language for building E-business applications.
 Java technology comes with a rich set of pre-built classes or components. One of the strong
 features of Java technology is that it is portable. You can write your application once and run it on
 any machine that supports a Java Virtual Machine™ (JVM™). Java technology enables the
 development of concurrent, multi-threaded programs. Classes may be loaded dynamically, even
 from across the Internet, in the run-time system. The language itself is very secure, in that, you
 cannot 'forge pointers' to arbitrary areas in memory. The memory management is done
 automatically, thus freeing the developer from the mundane and often error-prone tasks of
 explicit memory management. With the introduction of EJB, Java Servlet Technology and
 JavaServer Pages™ (JSP™), Java technology has become an important language for building

server applications.

Borland™ JBuilder

Borland JBuilder 4 provides rapid development capabilities for Pure Java Enterprise JavaBeans
 that are consistent with its well-established support for conventional Java Beans. It includes
 visual two-way EJB designers for adding and editing properties, methods and events; wizards for
 creating entity and session beans, including home and remote interfaces; and an EJB Test Client
 wizard for testing your applications.

JBuilder 4 introduces the concept of an EJB group, which is a logical grouping of one or more

beans that will be deployed to a jar file. This feature allows the user to create several EJB jars in
 a single project; an EJB group wizard simplifies the creation of EJB groups. For debugging,
 JBuilder 4 lets you launch a vendor's EJB container, and allows you to set breakpoints and debug
 your EJBs. Through the debugger, you can even step into server-side code from the client-side.
 The Entity Bean Modeler lets you create entity beans that map to existing tables, enabling
 object-to-relational database mapping of data sources, tables, and fields to entity beans. The
 modeler will create all the necessary Java code.

JBuilder 4 also simplifies deployment of your EJBs. A deployment descriptor gets created when
 you create your EJB group, or you can import existing deployment descriptors into your EJB
 group. You can use the visual Deployment Descriptor Editor to edit information contained in the
 deployment descriptors, such as runtime environment properties for the EJB. The deployment
 wizard lets you the deployment tool of your target appserver. JBuilder 4 provides tight integration
 with Borland Application Server 4.1and WebLogic 5.1, and allows the flexibility of adding other
 target application servers.

 Enterprise JavaBeans™ Components
 Introduction
Enterprise JavaBeans Components is a specification of the server-side component model for building and
 deploying enterprise-class applications. The enterprise application developer may build his/her application as a
 set of interconnected enterprise beans and deploy such an application in an EJB-compliant application server.

The specification also mandates that EJB-compliant application servers provide a set of enterprise services
 through well-defined Java interfaces. The standard also specifies certain interfaces that all developer-written

components should implement in order for them to be deployed in an EJB-compliant application server. In other
 words, the EJB server promises a set of services and, in return, expects the components (enterprise beans) to
 implement certain interfaces so the server may manage these components. The EJB standard enables the
 enterprise developer to focus on the actual business logic of the application, encoded in the beans, and the
 EJB server is responsible for all the enterprise services such as Concurrency, Persistence, Transaction
 Management, Security Management, Naming Services, Object Distribution and Resource Management. EJB
 based applications are secure, robust, scalable, portable and transactional. To understand the problem space
 EJB addresses, let us consider the motivations for using this technology.

Why use Enterprise JavaBeans Components?

To understand the need for EJB, it is useful to understand the relative merits of TP Monitors and CORBA
 systems. Here we present the strengths and weakness of both these architectures.

Transaction Processing Monitors

Traditionally enterprise-class systems were implemented using systems generally known as
 Transaction Processing Monitors or TP Monitors. Large scale enterprise applications such as
 banking, insurance and airline reservation systems are built using TP monitors. Some of the
 popular TP Monitors are IBM's CICS® and BEA Tuxedo®. TP Monitors were a natural choice for
 enterprise applications because they handled all the database transactions efficiently and in a
 manner where the enterprise developer did not have to explicitly write code to manage
 transactions.

 TP Monitors are designed to handle large workloads and manage concurrent access to
 enterprise application resources. TP Monitors also handle the security management, database
 access and the network connectivity for the enterprise applications. In other words, TP Monitors
 provide these services so that an application programmer may focus on implementing the
 business logic of the application.

In a way, you may think of the TP monitors as an Operating System for business applications.

When you use a normal Operating System, you expect a host for services such as virtual
 memory management, file system management etc. from the system, you do not code for those
 services in your normal applications. Similarly, enterprise applications may expect to find services
 pertaining to Transaction, Security, Concurrency, Resource Management etc. from the TP
 Monitors.

Given that TP Monitors do so much for an enterprise programmer, why not use them? Why worry

about EJB? For all their strengths, typical TP monitors suffer from two major drawbacks. First,
 most TP monitors do not have a component model. The services are offered, typically, as
 functions which leads to monolithic applications as opposed to component based applications. It
 is very hard to replace one service implementation with another. For example, for an e-commerce
 application, you might want to have the flexibility to replace the credit card processing object with
 a superior implementation. Lack of an object model prevents you from doing that easily. It also
 makes it hard for you to implement 'objects' that reside on the server but are dedicated to specific
 clients and execute programs, on the server, on behalf of their 'owner' clients. A typical example
 of this kind of application is a Shopping cart or a Mobile Smart Agent.

The second, and more serious, problem with typical TP Monitors is the lack of portability of
 enterprise applications implemented using them. Enterprise applications implemented on TP
 Monitors are usually tied to a proprietary API and model. It is usually a large effort to port an
 enterprise application from TP Monitor system to some other vendor's TP Monitor. The problem

arises because there is no standard for TP Monitors. Each TP Monitor may implement all the
 necessary services that an application might require and use, but since each vendor exposes the
 services in a proprietary way, the enterprise application becomes less-portable.

CORBA™

At this point it might be appropriate to present the other technology that attempts to address the
 shortcomings of the TP Monitors. CORBA is specified by the OMG and is a industry standard.
 CORBA provides a component model for the server-side programming and also specifies a host
 of services called CORBAServices such as OTS (Object Transaction Services) and
 SecurityServices. Server applications written in CORBA are for the most part portable across
 multiple ORBS (Object Request Brokers).

Component Transaction Monitors

Enterprise JavaBeans Components essentially combine the strengths of traditional TP Monitors

and CORBA. In other words, using EJB, you get all the benefits of TP Monitors and the portability
 and component model of CORBA. EJB servers belong to a class of systems commonly known as
 Component Transaction Monitors or CTM. Using an EJB-compliant server, an developer may

 build enterprise-class applications rapidly, focusing purely on the business and application logic.
 All the infrastructure services are now the responsibility of the server and are provided
 automatically to the application. The developer can configure these services declaratively - the
 configuration is specified using XML. The enterprise application is implemented as a set of EJB
 components, with well defined business interfaces, that are deployed on an EJB server. The
 developer is no longer tied to any one implementation of the application server and may simply
 deploy her application on any EJB-compliant application server, such as iPlanet, WebLogic,
 WebSphere or iPortal, without even recompiling the application! The EJB server generates the

appropriate objects to provide the enterprise services and ties them with the developer-
implemented components during the application deployment.

In summary, you would use the EJB component architecture if you want to build portable,

component-based, scalable, secure, transactional and robust enterprise applications rapidly. You
 would also use EJBs if you want to implement only the business logic and want the application
 server to handle all the system services.

Architecture of Enterprise JavaBeans Components

Enterprise JavaBeans Components are components that are deployed on EJB-compliant application servers.
 EJB components are contained within special objects known as containers. The container is responsible for
 providing the system-level enterprise services to the enterprise beans.

Basic EJB Concepts
The EJB components reside on the server. Their functionality is exposed to their clients and
 callers through well-defined interfaces. The callers may be in the same process space as the
 server objects or they could be in another process and even another machine. The callers
 communicate with the server object through the use of a Client-Proxy object. This Client-Proxy

object has the same interface as the EJB component, but for each method invocation by the
 caller on the Client-Proxy, the proxy simply sends a corresponding request to the real bean
 implementing the service on the server. This involves serializing the caller's request and sending

it, perhaps using network connections, to the server. On the server, another object, called a
 Skeleton Object, intercepts this request and re-creates the original method call from the
 serialized input it receives and eventually invokes the relevant method on the enterprise bean.
 The Skeleton object then obtains the return value from the enterprise bean, upon the completion
 of the bean method invocation, and sends it back to the Client-Proxy in a serialized form. Finally

the Client-Proxy de-serializes the return value and constructs the values of the appropriate types
 and returns them to the original caller. The presence of the Client-Proxy and the Skeleton is
 completely transparent to the caller - the caller thinks it is communicating with the enterprise
 bean. On the server, placed between the Skeleton object and the enterprise bean, is another
 object called the Server-Proxy or the EJBObject. Every call from the Skeleton to the enterprise

bean is routed through the EJBObject, which checks for concurrent access, transactional
 contexts and security contexts before allowing the methods on the enterprise bean to be invoked.
 You may think of this object as a form of guard object for the bean.

In summary, the Client-Proxy object resides on the client and is the server object's proxy on the
 client. The Client-Proxy is responsible for a) locating the target object (the server object for which
 this Client-Proxy serves as a proxy), b) sending the request to the server, usually in a serialized
 form, over the network and c) for retrieving the return values back from the server and
 constructing the return value for the caller. The Skeleton object and the EJBObject reside on the
 server along with the enterprise bean. The Skeleton is responsible for a) receiving the request
 from the client, possibly from across the network, b) de-serializing and constructing a call to the
 corresponding EJBObject and c) for obtaining the return value from the call to the EJBObject and
 sending that value, in a serialized fashion, possibly over the network, to the caller. The caller is
 invariably a Client-Proxy. The EJBObject, after it receives the call from the Skeleton object,
 ensures that it is safe and legal to carry out that operation. If the operation is legal, subject to
 security, transaction and concurrency policies, the EJBObject calls the corresponding method on
 the enterprise bean and returns any return value it gets back to the Skeleton object. And finally,
 the enterprise bean simply executes the business method that it had been programmed to do so
 by the bean developer.

As you may notice, the bean developer simply provides the bean implementation that concerns

itself only with business logic. All the objects that provide the enterprise services are generated
 by the system. The following table summarizes the various objects and their roles.

Object Created by Resides

on Service

ClientProxy EJB Compiler Client Marshals client requests to server and
 unmarshals return values

Skeleton EJB Compiler Server

Unmarshals ClientProxy's request and
 invokes the corresponding method on the

EJBObject and marshals the return value
 back to the ClientProxy.

EJBObject EJB Compiler Server

Intercepts all method invocations on the
 enterprise bean and provides the EJB

services. Delegates call to the enterprise
 bean.

Enterprise

Bean

Bean

Developer Server

Implements the real business logic of the
 application for the methods advertised in
 the remote interface.

 Types of Enterprise JavaBeans Components

Enterprise JavaBeans are divided into two broad categories:

Session Beans
Entity Beans

Session beans are used to model process or task-oriented aspects of your application. It is useful
 to think of a session bean as a client's representative on the server. Session beans provide a
 session-oriented view of the server to the client. Entity beans are used to model data, typically

persistent data, of an enterprise application. Enterprise beans correspond to rows in relational
 database tables or to objects in object-oriented database systems. We shall explore both these
 kind of beans in greater detail later in this document.

Creating Enterprise JavaBeans Components

 To define an EJB, the bean developer has to define the:

1. Remote interface
2. Home interface
3. Bean implementation
4. Deployment description information

Remote Interface
This interface exposes the business functionality of the enterprise bean in a
 declarative way. That is, the interface lists what functionality this bean would
 provide and not how it would provide it. From a client programmer's perspective,
 the interface lists all the business methods of the enterprise bean that calling
 applications may invoke when using this bean. Components for the open market
 are defined as 'Black Box'. This means that all functionality is encapsulated and

therefore no implementation code is available to the user except the Remote
 interface. The EJB compiler generates the Server-Proxy (EJBObject) and the
 Client-Proxy classes that implement this interface.

Home Interface
This interface exposes the life cycle methods of the enterprise bean. This interface

contains methods to create, remove or find beans on the server. The clients of the

 EJB use this interface to manage the life-cycle of the enterprise beans on the
 server. You may also think of this as the factory interface for the EJB components.

The EJB Compiler generates a pair of classes, one for the client-side and the other
 for the server-side, that implement this interface. The server-side implementation of
 the home object has the code to instantiate and initialize the enterprise bean,
 associate it with an EJBObject and finally return to the client a corresponding
 instance, in a serialized manner, of the Client-Proxy class. The client-side

implementation of this interface acts as a client-proxy for the server-side

implementation of this class. When an enterprise bean is deployed, the EJB server
 instantiates the server-side home object and registers this object in a Naming
 Context (Name Server) under a name specified in the deployment descriptor.

Enterprise Bean Implementation
This class contains the real implementation of the EJB component. The EJB
 implementation class has to implement:

1. All the methods specified in the remote interface.
2. Methods corresponding to methods specified in the home interface.
3. Callback methods specified by the EJB specification so that the EJB

container may manage and interact with the enterprise bean by invoking
these methods. All session beans must implement the interface,
javax.ejb.SessionBean. And all entity beans must implement the
interface, javax.ejb.EntityBean.

Deployment Descriptors
Every EJB needs a deployment description document to aid the application server
 in deploying the EJB and in generating the proxy classes for the home and remote
 interfaces. The deployment description is specified using XML. Sun Microsystems
 has defined a Document Type Definition (DTD) for EJB deployment descriptors. In
 the deployment descriptor, the bean developer associates the Remote Interface,
 the Home Interface and the Bean Implementation. The name, under which the
 server-side home object is registered on a Name Server, is also specified here.
 The deployment descriptor is also used to declaratively specify the transaction and
 security attributes of various methods of the remote and home interfaces. The
 deployment descriptor is used to specify the Access Control Lists (ACL) for each
 method. The deployment descriptor is also used to specify environmental variables,
 resource management information, enterprise bean type information, database

connection pools and database mapping information for Entity beans. The bean
 developer must provide reasonable default values for various attributes in the
 Deployment Descriptor file - the deployer may override some of these during
 deployment of the bean.

 Error Handling
Handling errors in a component is not the same as handling application errors.
 Firstly, you need to consider that any error not handled in a EJB will be sent back
 to the client that called the method. For that reason, you must ensure that the
 information the client receives is meaningful. A client interface should be totally
 unaware that a component it is using may be running other processes. Therefore
 any error that occurs should be processed by the component and only passed back
 to the client in a form that can be interpreted by that client. All errors produced by a
 component must be included in the specification of the component - this is what the
 client depends on. Below are the main techniques for handling errors in EJB.

Handling Errors Internally - Handling errors within an EJB is no

different to handling errors in a standard application. If a method

unexpectedly generates an error then unless an error handling
 routine is included, the calling application will crash. To avoid this
 situation, intercept the error, assess its severity and take corrective
 action, either by resuming to a specific line of code or by throwing an

 appropriate exception to the calling function.

Passing Errors Back to the Client - To return an error back to the
 calling client you must throw a RemoteException. Throwing a
 relevant RemoteException will let a client know about the cause of
 the error. All EJB clients must be prepared to deal with the possibility
 of receiving a RemoteException.

Raising Errors from Error Handlers - The majority of methods and
 properties you write will contain error handler routines. Where an
 error handler receives an unexpected error then returning a generic

'unexpected error' exception will not help the client find a solution. A
 good practice is to return the methods name that failed and the

parameters that were passed to it. This information can then be

passed back to the component author for investigation.

Handling Errors from Another Component - If your EJB references
 a third party EJB then you must handle all errors (known or unknown)
 that the secondary component may generate. Developers using your
 component may have no knowledge of these dependencies. Because
 of this, you must not raise these errors to your client application,
 unless they are specified in the interface of your component.

Threading
The EJB architecture assumes responsibility for managing concurrency. Do not try
 to explicitly manage threads or thread synchronization as this may interfere with the
 EJB server's thread management. Also, the EJB server is free to use multiple JVMs
 and your explicit thread management may not work correctly.

Design Considerations
How do I develop a software component? - Before writing a component you should analyze the
 functionality and architecture first. In this section we discuss components functional boundaries,

assess where a component will physically run and how to implement an extensible interface.
 Considering these elements will prevent the inclusion of unnecessary functions and provide a
 focused solution for developers.

a) Identify Component Scope
It is important when designing a component to identify the functionality that should be included
 and the functionality that is best incorporated into another component. A component should allow
 a developer to integrate a precise solution as opposed to one that provides features over and
 above a basic requirement. For example, designing a business component that provides
 addressing services could include various functions such as address duplication, post coding and
 address formatting. In this example the three functions are mutually exclusive and should be
 implemented separately.

However, if the component was an address duplication component that incorporated extended

functionality e.g. off-line batch duplication then this functionality should be included. It is possible
 to create one component that can be sold at three different levels. By using the
 ComponentSource licensing technology (C-LIC), it is possible to block extended functionality.

This allows authors to publish one component but sell a separate standard, professional and
 enterprise edition.

Defining component scope will help ensure a component does not become monolithic and mimic
 an application without an interface. Unbundling functionality into separate components will
 prevent the component from becoming over complex and difficult to maintain. The advent of
 online purchasing and the removal of packaging and shipping costs has meant there no longer is
 a need to bundle disparate functionality into one component or to market several components in
 one suite. Removal of this traditional cost allows authors to publish highly focussed discrete
 components and provide customers with a wider choice.

b) Choose Architecture
Choosing architecture will depend on the functionality the component will provide. As discussed
 earlier in the chapter 'Component Overview' client components are often visual in some respect
 such as grids, charting and toolbar components. However, non-visual components may fall into
 this category if the functionality is 'lightweight' and does not severely impact the processor.
 Typical examples include file encryption and communication components. If the component
 functionality can be used in a multi-user environment then consider developing a scalable server
 based component. This should be implemented preferably as an Enterprise JavaBean
 Component for scalability and transaction handling.

Installing components in a server environment is less time consuming than having to install a
 component on several client machines. The improved performance and upgradeability benefit
 that server components offer is reflected in the price and provides component authors with an
 opportunity to generate revenues based on a server architecture. Server based components will

provide the backbone to future Application Service Providers (ASP) and consequently developing
 server components now, will position you for the future growth in this market.

c) Prototype Interface
Prototyping a component interface can be a useful exercise and will help determine the
 complexity of integrating the component into an application. Component integration should be a
 relatively quick process. If the interface has hundreds of public properties, methods and events
 then it's probably too complex and will confuse users and generate support issues. A technique,
 which can help prevent this problem, is to write the help file before implementation. This will help
 you detail a functional specification and pinpoint any areas that could be consolidated or
 improved upon.

Session Beans
Session beans can be thought of as extensions of client's application on the server. Session

beans represent transient activities. Session beans should be used to represent particular
 business process steps, use cases or use case steps. They capture the interaction or
 conversation between the user and the system. Session beans are not sharable by multiple
 clients, i.e. each client has a reference to its own, private session bean on the server. Session
 beans are divided in to two categories:

Stateless Session Beans
Stateful Session Beans

Stateless Session Beans
Stateless Session beans do not maintain any state (at least none that the client can

depend on) between multiple remote method invocations by a client on the same
 Client-Proxy of the Session bean. The effect of using these beans is the same as
 invoking a remote function on a server. Use this kind of a bean for executing some
 process or program on the server where the duration of the method execution
 constitutes a complete unit of work or transaction from the client's perspective.
 Example of these kinds of beans are those that perform some atomic action on
behalf of a client, e.g. an AccountManager bean that has a business method,
createAccount, to create a new Account bean on the server.

Stateful Session Beans
Stateful Session beans maintain state across multiple remote method invocations
 by a client on the same Client-Proxy of the session bean. The client, through a
 Client-Proxy, has a reference to session bean on the server. Every method
 invocation by the client on the Client-Proxy is routed to the same session bean
 instance on the server. The session starts when the client obtains the Client-Proxy
 referencing a server-side session object and ends when the client explicitly
 removes the Client-Proxy. Use this kind of a session bean where you want to carry
 out a long conversation with the server and want the server object to save the
 conversational state. An example of this kind of a bean is an online shopping cart,
 where a client might use the remote methods to add, remove or modify the

 products in the shopping cart.

Entity Beans
Entity beans represent the persistent data part of an enterprise application. Entity beans are
 usually mapped either to records of a relational database system or to objects of an object
 oriented database. Entity beans are transactional, in that changes to their state typically occur
 within the context of a transaction. An instance of an Entity bean, unlike an instance of a session
 bean, may be referenced by multiple clients. Concurrent access is allowed, subject to the
 transactional state of the bean and the transaction isolation levels in force at the time of the
 concurrent method invocations on the bean. The container is responsible for ensuring that the
 data in the bean instance and the corresponding data on the database are synchronized. All
 entity beans require the presence of an object, called the Primary Key object, that represents the
 primary key fields of the table that this entity bean represents. Entity beans are divided into two
 categories:

Container Managed Persistence
Bean Managed Persistence

Container Managed Persistence
For Container Managed Persistence (CMP) Entity beans, the container is
 responsible for reading the data from the database to populate a bean (this may

entail a SQL query execution by the container) and for writing the contents of the
 bean to the database (this may entail a SQL insert or update to be executed by the
 container). The bean developer may build a CMP entity bean without having to
 write a single line of database code. However, the instance variables of the CMP
 entity bean that map to specific columns on a table have to be specified in the
 deployment descriptor, along with the table and database names. This mapping

information is crucial for the container to generate the necessary database code to
 manage persistence. In addition, with EJB 2.0, a query language has been
 introduced to support the specification of standardized search methods. CMP
 beans are easy to develop because the developer does not have to deal with
 database programming. However, CMP beans are not viable when you want to
 map entity beans onto proprietary storage forms.

Bean Managed Persistence
For Bean Managed Persistence (BMP) Entity beans, the bean developer is
 responsible for writing the database code for reading, writing, modifying and

deleting the records from the database in order to map the bean to some persistent
 data. Unlike CMP, the mapping of the bean to persistent data is coded into the
 bean's implementation. The database access methods are implemented as
 callbacks and the container is still responsible for invoking these methods on the
 bean at appropriate times during the life-time of the bean. BMP beans are more
 complex to develop and maintain, yet they are extremely flexible.

Roles in EJB

The EJB specification defines a number of roles in the application development and deployment

process. They are:

Bean Developers (Component Authors)
Application Assemblers
Application Deployers
Server Providers
Container Providers
Administrators

Bean Developer (Component Author)
This role is played by the component developer who specifies the Remote Interface,

 Home Interface, Bean implementation class and the deployment description. The
 Bean developer compiles all the source files and packages them in a JAR (Archive)
 file. The Bean developer then runs a vendor supplied tool, commonly referred to as
 an EJB Compiler, to generate the client and server proxy objects for the remote
 and home interfaces. Finally another JAR file is created containing all the compiled
 class files for developer written source files and EJB Compiler generated source

files. EJBs are packaged in such JAR files.

Application Assembler
This role is played by the application writers who re-use or buy EJB-based
 components and assemble them to create applications or other components.

Application Deployer
An Application Deployer is typically an IT manager who deploys, after modifying the

deployment description files, the application on a EJB-compliant application server.
 The deployer is responsible for setting the proper Access Control Lists (ACL),
 database mappings for CMP Entity Beans and the names of the home objects.

Server Provider
This role is played by vendors who implement the application servers based on the
 EJB specification. e.g. Sun-Netscape Alliance iPlanet™, IBM® WebSphere™,
 BEA™ Weblogic® or IONA iPortal Application Server .

Container Provider
This role is played by the writers of containers that hold he EJB components. The
 components themselves reside within a server. At this point, since the interface

between the container and the server is not fully specified, this role would be
 played by the Server Provider.

Administrator
This role is played by the EJB server administrator who would be responsible for
 managing the database connections, Naming Servers and performance
 monitoring.

EJB Services

 The EJB application servers provide a host of services for the enterprise beans listed below.

Transaction Services
Security Services
Naming Service
Persistence
Resource Management
Messaging Services

Transaction Service
The EJB architecture requires that the EJB container support the interface,
javax.transaction.UserTransaction, defined in the Java Transactions API

 (JTA). Transaction services may also be used without having to code against the
UserTransaction interface. This is because, a bean developer may set the
 transaction attributes declaratively in the deployment descriptor. The EJB system

also passes the transaction context implicitly with method calls on enterprise
 beans. For example, when a caller is in a transactional context and invokes a
 method on a bean, the caller's transaction context is passed implicitly to the bean's
 method. The following transaction attributes on methods are supported:

Attribute Description

Not Supported
When a caller invokes a method, the caller's transaction,
 if any, is suspended and is resumed after the method
 call.

Required

If the caller is in a transactional context, the called bean
 becomes part of the caller's transactional context. If the
 caller is not in a transactional context, the container
 starts a new transaction for the duration of the method.

Supports

If the caller is in a transactional context, the called bean
 becomes part of the caller's transactional context. If the
 caller is not in a transactional context, the container
 does not start a new transaction.

RequiresNew

If the caller is in a transactional context, the caller's
 transaction is suspended and a new transaction is
 created for the duration of this method execution. If the
 caller is not in a transactional context, the container
 creates a new transaction is created for the duration of
 this method execution.

Mandatory

The caller must be in a transactional context before
 invoking a method on the bean. The called bean
 becomes part of the caller's transactional context. If the
 caller is not in a transactional context, the container
 throws a
 javax.transaction.TransactionRequired

exception.

Never

If the caller is in a transactional context, the container
throws a java.rmi.RemoteException. If the caller is
 not in a transactional context, the container does not
 start a new transaction.

Security Service
The EJB security uses the javax.security.Principal class for identifying callers. When a
 client identifies itself to the server, then, for every remote method that the client invokes on the

server object, the client's security context is passed implicitly to the server object. The Server-
Proxy uses this security context information to authorize the invocation of the method on the
 enterprise bean. The authorization policies are specified in the deployment descriptor files. Even
 for inter-bean communication, the security context is passed implicitly, like a hidden argument.
 The security context is also available to the bean at run time, thus enabling the bean developer to
 implement object level security.

Naming Service
EJB servers use a naming service to register their home objects under names specified in the
 deployment descriptor. These naming services may be accessed using the Java Naming and
 Directory Interface (JNDI) API. The JNDI API has methods to register, un-register and lookup
 objects by name. Using JNDI enables the Naming Service provider to use any implementation as
 long as the API is JNDI.

Persistence Services
EJB architecture provides persistence support in the following two ways:

1. For CMP Entity beans, the container reads the data from the database into the bean before
the first time any method is executed on the bean in a transaction. The container
automatically writes out the bean to the database at the end of successful completion of a
transaction, say when a commit occurs.

2. For BMP, the container calls the appropriate callback methods (ejbLoad and ejbStore) on
the enterprise bean. The bean developer would have written the code in these two
methods to read the data from the database and update the data into the database

 respectively.

As you may notice, the bean developer is no longer responsible for synchronizing the bean with
 the underlying database, the container handles it automatically.

Resource Management Services
EJB architecture provides resource management services in a number of ways. Database

connections are typically pooled, as are the threads. This increases the performance noticeably.
 EJB servers also keep unattached enterprise bean instances in a pool and reuse these instead of
 invoking the memory manager. EJB servers achieve scalability by using a limited number of bean
 instances to serve a large number of clients. They do it by using a technique known as
 activation/passivation. When the system needs a bean to service a client and if the system does
 not have any free beans in the pool, the server 'passivates' a bean by writing out its state on to a
 secondary storage and reusing that beans memory. If at a later time, the passivated bean
 receives a request from the client, the server 'activates' it using an available bean instance.

Messaging Services

A noteworthy development with EJB 2.0 is the arrival of asynchronous messaging, integrated with
 the Java Message Service™ (JMS). This means that EJB clients no longer need to wait for an
 operation to return, but can invoke asynchronous transactions and continue processing. This is
 particularly valuable for Session Beans representing a client conversation, since control can be
 returned to the user while requests are processed.

Documenting Commercial EJB Components
Documentation Benefits
a) Reduction in Pre/Post Sales Support
Documentation for components sold in the open market is particular important as 'face to face'
 interaction does not take place between author and customer. Providing a comprehensive set of
 documentation will ensure that pre/post sales support is kept to a minimum. Providing pre sales
 documentation i.e. a thorough component specification prevents many of the refund situations

common in traditional 'box product' channels.

Traditional channels sell product by providing marketing information but not the finer detail
 covered in help files and other technical documentation. Providing information such as help files
 and evaluations enables customers to make an 'informed' purchase decision. Documenting and
 publishing known issues such as Frequently Asked Questions (FAQ's) on a regular basis will also
 help reduce technical support after the sale.

b) The Confidence Factor
Components sold on the open market may be 'Black Box' i.e. the source code is hidden. Because
 of this, trust is extremely important between customer and author. Therefore, provision of detailed
 product information such as evaluations, help files and white papers is essential for building
 confidence in potential customers.

Typical Documentation
What documentation should I provide? - The following section provides a detailed insight into the
 different types of documentation that should be provided when selling components in a
 commercial market. For examples of presenting online documentation in a concise and
 professional style browse our top selling products at: http://www.componentsource.com/java

a) Online Documentation (HTML, HLP and PDF Files)
HTML is probably the best format of documentation you can provide and can be used for

http://www.componentsource.com/java

displaying information in text and graphical format. Typical examples include product overviews
 with screen shots and/or related diagrams. Customer can view HTML instantly as opposed to
 other document formats that must be downloaded first. Writing a help file is relatively easy and
 can be achieved using help authoring tools. More information on these tools can be found on our
 Web site: Help Authoring Tools

Portable Data Files (PDF) are documents that can be viewed on IBM compatible or MAC

platforms. The PDF file enables the creation of technical documentation in a 'book' format.
 Therefore, converting a published manual into an electronic form is probably the most efficient
 way to achieve this. The drawback with PDF files is the requirement of a proprietary viewer that
 must be downloaded first. To write a PDF file you will need to download the Adobe® PDF Writer.

b) Demonstrations
Developing a product demonstration can prove a valuable asset in the documentation you provide
 customers. Exposing component functions will help users understand the benefits of the product
 as a component-based solution. Demonstrations are compiled applications assembled with the
 component. They are not like evaluations that allow developers to use the component in a
 development environment. More information on evaluations is covered in the following topic.

The objective of a demonstration is to educate users on the functionality incorporated inside the
 component. The interface should demonstrate the main functions in a format that is
 understandable for all customers. Because of this it's important to remove industry jargon and
 acronyms that may confuse users. For data bound components, providing the option of entering
 a Data Source could be of benefit. This allows users to connect to internal data sources in their
 own organization and apply meaningful data in context with the component.

Demonstrations often reference dependencies and therefore testing the demonstration on a clean
 machine is extremely important. Clean systems contain freshly installed operating systems
 removing the potential hazards of previously loaded software. If your demonstration references
 any dependencies then you must create an installation kit. Sometimes it's beneficial to include

the demonstrations within the evaluation kit and thus remove the need to write and maintain two
 separate kits.

Finally, the quality of a demonstration is directly correlated to the perceived quality of the final
 retail product. Where possible, design your demonstration in-line with an accepted standard. This
 helps build a perception of quality and trust with customers - remember demonstrations can
 make or break a sale.

c) Evaluations
Component authors recognize evaluations will help secure a product sale. Once a customer is
 happy with a specification they often trial the component to check the component will actually
 provide the functionality they are looking for. Customers do not doubt component based
 development, but may have concerns with an 'independent' solution. Because of this, component
 evaluations are essential. Unlike applications, component evaluations add value and play a
 significant role in the pre sales process.

Writing an evaluation will require consideration of security. Producing a component that displays a
 reminder screen or setting time limits hidden in cryptic keys within the registry are just some of
 the techniques currently used. Setting a 5-10 day trial period for technical components and 10-30
 days for complex business components is recommended. This gives the customer enough time
 to evaluate the product and make a decision whether to buy.

An ideal evaluation is the full retail restricted by a security feature detailed above. This prevents
 users having to download the evaluation and retail component separately. ComponentSource
 has made available a license protection facility called C-LIC primarily designed to protect
 evaluations that can be unlocked into full retail products. C-LIC displays a reminder screen
 requesting the user to enter a license key provided when the full retail is purchased.

d) Sample Code
Sample code is particularly useful when developers need to prototype and assess component

http://www.componentsource.com/Browse.asp?G=3&GroupCode=HELPA&MTC=XXX%20
http://www.componentsource.com/Browse.asp?G=3&GroupCode=HELPA&MTC=XXX%20
http://www.adobe.com/supportservice/custsupport/LIBRARY/acpwin.htm
http://www.adobe.com/supportservice/custsupport/LIBRARY/acpwin.htm

 functionality. A good technique is to provide the sample code used in the component
 demonstration. If possible, this should be provided in a basic, intermediate and advanced
 version. This will allow the developer to grasp how the demonstration was developed and the
 stages of advancement throughout its development cycle.

Sample code usually is the final step that customers evaluate before making a decision whether
 to buy. Therefore its important to maintain a good perception by commenting all code and
 explaining exactly what happens and why. The quality of sample code will directly correlate to the
 quality of your final product. Because of this professionally written sample code using correct
 naming conventions, coding structures and error handling is essential. If the sample code is well
 structured then it can be reused in actual projects. This makes the whole process of integration
 far less complex and useful for developer's who need to rapidly assemble a component-based
 solution.

e) Readme Files
In this topic we list the various information that a Readme file should contain. Most installation
 scripts provide users with an opportunity to view a Readme file for last minute changes or errata
 information once installation is complete. These files should be written in a universal file format

i.e. a text (TXT) file or HTML file. This prevents users having to own proprietary applications such
 as Microsoft Word to view the file. The following list provides an insight into the various
 information supplied in component Readme files.

Products Changes - this section is extremely important and should note all the
 functional changes that have been made in comparison to previous versions and
 any changes to documentation, installation etc.

Bug Fixing - bugs resolved from previous versions should be fully documented.
 Include the component version that contained the bug and a description of what
 has changed. This is particularly important if the component's interface has been
 changed.

System Requirements - Although compatibility information is supplied in our own
 sales documentation its worth reiterating this information in your Readme file. This
 should include information such as operating system for deployment, safety levels,
 threading standards etc.

Definitions of Component Filenames - Listing the filenames of all components
 (including dependencies) is particularly useful if the user is attempting to identify a
 problem. Although help and dependency files include this information, Readme files
 are often browsed as well.

Detailed Installation Notes - This should include information on how to de-install
 and update previous versions. A troubleshooting section should also be included
 defining solutions to common installation problems.

Notes on Sample Projects - Document any assumptions, known issues etc. If
 possible, describe each of the projects and the functions they expose. In addition to
 this defining a project's complexity i.e. basic, intermediate or advanced can also be
 of help.

Distribution Information - Particularly useful when a user creates an installation
 kit. Your component may reference many other dependencies, therefore detailing
 this information will help the developer create a tailored installation kit and prevent
 many of the 'missing dependency' issues when testing.

Known Issues - You must document all known issues. If possible, also explain why
 the problem arises. If you do not provide this information then it's likely that
 unnecessary technical support issues will arise. Documenting known issues will
 demonstrate that you care and are focused on providing a future solution.

f) Prerequisites
Prerequisites provides the customer with details on required software, product size, required
 memory, service packs where appropriate and publicly available drivers such as reference
 implementations of JNDI drivers. It is worth including the minimum and recommended size when
 defining memory and hard disk allocation.

Component Testing
How do I test a component? - Thorough testing is paramount to the success of a component
 being accepted in the open market. All evaluations and sample code should be tested in addition
 to the full retail product for functionality, installation and de-installation. An issue that should be
 approached with care is the dependencies referenced by your component. Most installation tools
 require the selection of the original component's project file. This allows the wizard to analyze all
 references selected at the time the component was compiled. Absence of dependent files
 referenced by other dependent files is probably the most common installation issue. This is why
 testing on a clean machine, on all operating systems and all development environments is
 imperative. Therefore, to create a clean machine you must:

Format Hard Disk - If you only reinstall the operating system then static files that
 do not require registration may have already been installed. Therefore, without
 formatting the disk there is no guarantee that the installation will work on all
 machines.

Install Operating System - Make a note of any service packs applied as this must
 be included in the component's documentation i.e. the Readme file

Install Development Environment - Again, document any service pack

installations. Always select the standard installation otherwise certain files may be
 missing causing erroneous errors when you test. This may include the
 development language for design time testing and the application server for
 deployment testing.

Once the above steps are complete you can image the disk allowing you to re-clean
 your environment in minutes. Image applications take a snapshot of your clean
 system, with operating system and development environment installed. This
 prevents the long cycle of re-installing everything before testing can re-commence.
 A good practice is to allocate a hard disk per operating system per development
 environment. As several disks can be installed in one machine, imaging an
 environment provides an efficient solution.

Test installation - Although we test the product installation thoroughly we
 recommend you also test the product to your best ability. This will ensure the swift
 progress of the component through our QA system.

Component Licensing
How do I license my component? - Unlike application licensing, few licensing utilities exist for
 component licensing. Those that currently exist often operate a 'two-phase unlock' process which
 requires manual intervention to generate the retail unlock key. However, this form of licensing
 does not suit 'mass market' adoption. The availability of the C-LIC (Common Licensing)
 component enables authors to provide a 'Try-Before-You-Buy' licensing solution.

a) The Common Licensing Problem
Components sold on the open market are typically 'Black Box' architecture. This means that all
 functionality is encapsulated and cannot be adapted by the developer except through the public
 interface. Because of this, providing an evaluation that allows the developer to 'road test' a
 component is important when securing a sale. Nowadays, customers expect one download that
 runs in evaluation mode for a set number of days. Once this evaluation has expired, functionality

 is disabled until a license key is purchased and entered, unlocking the component into a full retail
 version. Often the best form of protection is to use a reminder/nag screen that launches each
 time the calling application runs the component. This prevents users without a license from
 releasing an application into a commercial environment.

b) C-LIC - The Common Licensing Solution
C-LIC is the ComponentSource license technology used to adapt a full retail product into an
 evaluation. However, please note the current version does not support copy protection. C-LIC
 can be integrated into a majority of languages that support the creation of software components.
 Its method of working is similar to that used in application software. C-LIC was made available to
 enable component authors to create a fully or part functioning evaluation protected by a 'nag'
 screen reminding users that the component is unlicensed. The nag screen allows customers to
 browse to the relevant product page and purchase the license key used to unlock the product into
 the full retail component. The license key is provided by ComponentSource and is generated by
 our own proprietary encryption.

C-LIC can also protect different levels of functionality. For example if your standard version has
 10 functions and your professional version 20 functions then the purchase of a standard license
 will unlock 10 functions only - the other 10 functions will remain in evaluation mode. Please Note:

C-LIC V1.1 does not provide "copy protection".

Conclusion
Build components and enter the component market now!

Many different companies of various sizes from around the world are creating new EJB based components.

BEA Systems - eCommerce and eBusiness EJBs
Diamelle - eCommerce EJBs
Eon Technologies - Financial & Banking EJBs
Xenosys Corporation - Internet Investment, Billing and Banking EJBs

Customer demand for components is currently outstripping supply - as a result an opportunity exists for experts
 to create components and enter the "open market" for components.

If you have any feedback on this white paper or questions about creating commercial software components
 email us on: publishers@componentsource.com

Revision History:

First Published: June 5, 2000

Revised: November 1, 2000 (Updated Information specific to EJB 2.0 specification)

Revised: January 5, 2001 (Updated Information specific to Borland JBuilder)

Contributions:

John Cheesman, ComponentSource

Shobana Narasimhan, Borland

ComponentSource

Copyright © 1996-2003 ComponentSource™

mailto:publishers@componentsource.com

	Local Disk
	ejb.htm

