

The Pegasus Imaging Dot Net Philosophy

This document describes how Pegasus developed .NET managed components
using existing Win32 object code and thus maintained the performance of the
corresponding COM/ActiveX/VCL products while gaining nearly all the benefits of
the .NET environment.

Pegasus Imaging Corporation provides imaging software development tools to
application developers. The Pegasus product line is noted for its high-speed
operations with functionality ranging from image compression and viewing to
scanning, barcoding and ICR/OCR. Execution speed for each targeted delivery
platform is optimized through algorithmic level and coding techniques specific to
that platform. In the case of Wintel products, execution speed is optimized
through significant use of assembler code utilizing the advanced MMX and SSE
instructions. The significant speed advantage gained through the use of these
approaches is a major differentiator over competitive products.

Microsoft’s .NET initiative focuses on building, deploying and executing Web
Services and applications. All applications that are built for the Microsoft .NET
framework require the common language runtime (CLR) in order to run.
Applications that target this framework are compiled into Microsoft Intermediate
Language (MSIL) code. At runtime MSIL is just-in-time compiled into machine
code and run against the CLR. Code that is executed in this manner is referred to
as managed code.

Microsoft’s .NET Framework thus provides a highly productive multi-language
environment with the agility to solve the challenges of deployment and operation
of internet-scale applications. Unfortunately an adverse effect is that execution
speed of managed code running against the CLR significantly suffers when
compared with execution speed of hand-optimized assembler code utilizing MMX
and SSE extensions on the Wintel platform.

Pegasus customers (imaging application developers) will not be successful
marketing applications that have substandard imaging performance. Yet, they
need to deploy competitive .NET applications with imaging capabilities. Pegasus
has taken on and solved this technical issue with extremely innovative
techniques providing customers with the best of both worlds.

All of the Pegasus component-level products are available as .NET Windows
Form Controls. The Pegasus .NET components appear as .NET managed controls
in the Visual Studio IDE and support all .NET languages (tested in VB.NET, C#,

managed C++). They can be installed in the Global Assembly Cache or wherever
the application’s configuration file needs the code to be located. Current Pegasus
customers will appreciate the ease of transition to these controls, implemented
with a nearly identical interface. Most importantly, the Pegasus .NET components
maintain all the execution speed of the corresponding COM/ActiveX/VCL
components!

This begs the question: How did Pegasus create .NET imaging controls that can
be deployed as managed components and still maintain native code speed and
functionality? With the functionality and performance of the existing Pegasus
components as the minimum requirement for a .NET version, we quickly
understood that the existing code must be part of the solution. The existing code
was in the form of COM objects. We developed a managed component that
initializes the COM control and passes properties and methods between the
managed interface and the COM layer – without requiring COM registration on
the system. We then stored all code dependencies as compressed objects in the
.NET component’s resources and wrote a DLL loader that could access and
decompress these code resources and execute the code. This allows the
components to have a single file assembly for runtime deployment.

Of course, there were some trade-offs that had to be made in order to achieve
these hand-optimized performance results without developing a fully managed
and “safe” C# implementation of the components. The most notable from the
application developers’ point of view will be the means of handling exceptions
within the Pegasus components. Each of the components had previously used
similar methods of reporting errors that typically included an Error property
queried by the application developer after each operation to validate success of
that operation. In the .NET framework, exceptions are generated as typed
exceptions. This capability will be available in a future version of the Pegasus
components. The current version provides a PICException helper class to permit
a consistent .NET coding style. The PICException class is used to simplify error
handling.

.NET Remoting is allowed only for 100% managed code (with several other
restraints on the operations the code actually performs) at the default security
levels. Therefore remoting is possible using the PIC components only if the
application can set lower security levels.

For a .NET solution NOW that provides a full feature set and the very highest-
speed operation, download and test the fully featured trial version of the
Pegasus .NET components. Pegasus is proud of this .NET release and we know
that you will see the value and appreciate the performance of this approach.

Download our .NET components from our website at www.pegasusimaging.com.
For more information, please contact the Pegasus Imaging Corporation Support
Team at support@jpg.com.

http://www.pegasusimaging.com/
mailto:support@jpg.com

	The Pegasus Imaging Dot Net Philosophy

