
1 ImageGear Professional v18.1 - User Assistance Dashboard

Welcome

ImageGear Overview
What's New in ImageGear Professional
Release Notes

 Installing and Licensing ImageGear

Minimum Requirements
Installing ImageGear
Directory Structure
ImageGear Licensing
Software License Agreement
Copyrights and Trademarks

 Developer's Guide

User Guide
Getting Started (Tutorials)
ImageGear Samples
Using ImageGear
Creating Your Imaging Application
File Format Reference

API Reference Guide

 Additional Resources

Tech Specs
White papers & Case Studies
FAQs, ImageGear FAQs
Customer Support

Support Overview
Support Plans/Agreement

 Provide Feedback

Email us
Take our survey

ImageGear Professional v18 for Mac | 1

http://www.accusoft.com/documentation.htm
http://www.accusoft.com/ig-protechspecs.htm
http://www.accusoft.com/resourcecenter.htm
http://www.accusoft.com/faq.htm
http://www.accusoft.com/imagegearfaq.htm
http://www.accusoft.com/imaging-support.htm
http://www.accusoft.com/generalinfo.htm
http://www.accusoft.com/supportagree.htm
mailto:Support@accusoft.com
http://www.surveymonkey.com/s/V6BBS9G

1.1 Copyright Information

©1996-2014 Accusoft Corporation. All rights reserved.

Information in this document is subject to change without notice. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written
permission of Accusoft® Corporation.

This manual and the software described in it are both products of the USA.

Accusoft Corporation
4001 North Riverside Drive
Tampa, FL 33603
Sales: 813-875-7575
www.accusoft.com

Accusoft Trademarks

The following are trademarks (™) or registered marks (®) of Accusoft Corporation:

Accusoft®
Accusoft Logo™
Accusoft Pegasus Logo™
Adeptol®
AIMTools™
Barcode Xpress™
Accusoft® Barcode Scanner™
Barcode Xpress Mobile™
CapturePro™
Digital Mark Recognition® (DMR)
FolderBots™
FormAssist™
FormDirector™
FormFix™
FormSuite™
ImageGear® for .NET
ImageGear® for .NET Compact Framework
ImageGear® for Silverlight
ImageGear® for Java
ImageGear® Medical
ImageGear® Professional
ImageGear®
ImageTransport MD™
ImagXpress®
ISIS® Xpress™

ISIS is a registered trademark of EMC Corporation
ISIS Xpress is a trademark of Accusoft Corporation

MICR Xpress™
NetVue™
NotateXpress™
PDF Xpress™
Pegasus®
PICTools™
PICTools™ Document
PICTools™ Fingerprint
PICTools™ Medical
PICTools™ Photo
PICVideo™ M-JPEG Codec
PrintPRO™
Prizm®

ImageGear Professional v18 for Mac | 2

http://www.accusoft.com/

Prizm® Content Connect™
Prizm® Content Connect™ for SharePoint
Prizm® Content Connect™ for Documentum
Prizm® Document Converter™
Prizm® Viewer™
Prizm® ActiveX Viewer™
Prizm® Cloud™
Prizm® Share™
Prizm® Image™
Prizm® Capture™
ScanFix® Xpress™
SmartZone™
The JPEG Wizard™
ThinPic™
ThumbnailXpress™
TwainPRO™
USB Scanner™
USB Scanner SDK™

Accusoft and/or its agents use these marks and brand names in connection with its goods and/or services, in the
United States and other countries.

Microsoft, Internet Explorer, Microsoft.NET, Silverlight, Visual Basic, Visual Studio, and Visual Studio.NET are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Itanium is a registered trademark of Intel Corporation in the United States and other countries.

All other product and brand names are the property of their respective owners.

ImageGear Professional v18 for Mac | 3

1.2 User Guide

The ImageGear Professional for Mac User Guide provides the following information:

The Introduction provides information about ImageGear features, improvements, and component structure.
The Installing, Licensing, and Distributing chapter provides system requirements information as well as installation
instructions. It also describes the structure of installed ImageGear files and the ImageGear Licensing process.
The chapter describes how to incorporate ImageGear's imaging capabilities into your own applications by using the
sample source imaging programs provided with your toolkit.
The Using ImageGear chapter provides information about how to call an ImageGear function, including setting up the
variables and structures passed as arguments, and details which functions to use to perform a variety of imaging
tasks. It also explains how to work with some ImageGear component API.
The File Format Reference chapter provides detailed information for each file format supported by ImageGear, along
with the corresponding control parameters, supported features and compressions, plus "at-a-glance" tables that
describe the features supported by each format, providing guidelines on which formats may be most suitable when
speed, storage space, or similar considerations are important.
The Appendices/General Reference chapter provides general reference information.

Refer to the API Reference Guide for detailed information about the ImageGear API.

ImageGear Professional v18 for Mac | 4

1.2.1 Introduction

This Introduction provides information about the following:

What's New in ImageGear Professional
ImageGear Overview

High Speed Display
Image Loading and Saving
Printing
Image Processing
Pixel Access
ROI Processing
Format Conversion
Compression
Transitions
Native CMYK Support
Database
Supported Formats and Compressions
ImageGear Samples

About Customer Support

ImageGear Professional v18 for Mac | 5

1.2.1.1 What's New in ImageGear Professional

ImageGear Professional v18.1

ImageGear Professional v18.1 for Mac introduces the following new features:

Core, LZW, Medical and PDF components are now supported on the following Mac OS X platforms:
Mac OS X v10.7 Lion (64-bit)
OS X v10.8 Mountain Lion (64-bit)
OS X v10.9 Maverics (64-bit)

Improved licensing tools for managing evaluation, toolkit, and runtime deployment licenses to simplify user
experience
Updated PDF support
New Medical/DICOM support

ImageGear Professional v18 for Mac | 6

1.2.1.2 ImageGear Overview

ImageGear® Professional for Mac is the most advanced way to create, control, and deliver more secure, high-quality
imaging applications. ImageGear allows you to add powerful imaging capabilities to your applications. ImageGear
supports the most commonly used graphics file formats, providing complete compatibility when developing applications
across multiple platforms, or when developing for users who have a variety of target systems.

This section provides overview information about the following ImageGear features:

High Speed Display
Image Loading and Saving
Printing
Image Processing
Pixel Access
ROI Processing
Format Conversion
Compression
Transitions
Native CMYK Support
Database
Supported Formats and Compressions
ImageGear Samples

ImageGear Professional v18 for Mac | 7

1.2.1.2.1 High Speed Display

ImageGear Professional gives you complete control over how your application displays each of its images. Among the
attributes you can set on an image-by-image basis are:

Auto-color reduction for low color modes
High-quality display for all video modes
Contrast/Brightness
Display effects (wipes, blocks, etc.)
Color reduction (several types)
Transparency
Gamma correction
Dithering
Rotation
The portion of the image to display (the array of pixels within the DIB bitmap is called the Image Rectangle)
How to fit the Image Rectangle to the Device Rectangle
The background fill pattern and color to use (for any area of the Device Rectangle left vacant by the image)
Region within the display area the image is to be displayed (this area is called the Device Rectangle)
Center image in window
Fit to width, height, window
Precision scrolling
Sub-region display
Auto-aspect ratio
Preserve black and preserve white display for 1-bit images
Sub-second display rotation supported
Faster image display
Anti-alias display
Huge image display capability
Merge 2 images during display
4x faster scale-to-gray
Center, zoom, or scroll a displayed image from within your application
Use an image's LUTs (Look-Up Tables) to translate the palette to another set of colors

All of the above display attributes affect the display only. They do not alter either the image bitmap or the color
palette in the DIB.

See Also:

Loading Images

Saving Images

Displaying Images

Thread Safety

Understanding Display Options

Color Reduction

Color Promotion

Contrast Alteration

Inquiring Format Filters for Supported Features

Using Color Profile Manager

Global Control Parameters

Grayscale Look-Up Tables

Working with Multi-Page Documents

Stripped Images

Tiled Images

ImageGear Professional v18 for Mac | 8

Run Ends Image Storage Format

ImageGear Professional v18 for Mac | 9

1.2.1.2.2 Image Loading and Saving

ImageGear Professional supports over 200 raster file formats.

See Also:

Loading Images

Saving Images

Displaying Images

File Format Reference

ImageGear Professional v18 for Mac | 10

1.2.1.2.3 Printing

ImageGear Professional provides the following print capabilities:

Print to any printer with complete control.
Auto-color reduction for high-quality printing.
Single- or multi-page printing.
Automatic sizing to full-, half-, quarter-, eighth-, and sixteenth-page, with auto page centering, or specific placement.
Print multiple images to a single page.
Print images to specified location and at specified size.

See Also:

Printing Images

ImageGear Professional v18 for Mac | 11

1.2.1.2.4 Image Processing

ImageGear Professional provides the following image processing capabilities:

Region of interest (ROI) support for basic rectangles as well as ellipses, polygons, and other shapes.
Complete color space support, including color space conversions, color separation and combination, support for any
color space found in any of the 200 supported formats, and support for color spaces such as CMYK without conversion
to RGB.
Color reduction that maximizes quality and minimizes size.
Encryption and decryption of an entire image or any part of an image.
Matrix convolutions of any size with pre-defined or user-supplied matrix values.
Special effects.
Automatic image correction.
Intelligent re-sizing.

See Also:

Image Processing

Core Component API Function Reference

ImageGear Professional v18 for Mac | 12

1.2.1.2.5 Pixel Access

ImageGear Professional is equipped with several functions that will allow you to get and set the values of individual
pixels, rows or columns of pixels, and rectangular groups of pixels. This family of functions is referred to as the "pixel
access" functions. For each kind of pixel access, you can obtain the value(s) of a pixel or group of pixels, or set the
value(s) of a pixel or group of pixels.

See Also:

Pixel Access Operations

ImageGear Professional v18 for Mac | 13

1.2.1.2.6 ROI Processing

ImageGear Professional provides the following Region of Interest (ROI) functionality:

Specify rectangular ROI for nearly all image processing functions.
Specify arbitrary ROI for most image processing functions. Functions included to create certain shape types such as
ellipse, polygon, and freehand.
Create a 1-bit mask image for identifying which pixels to include/exclude from image processing algorithms.

See Also:

Image Processing

Core Component API Function Reference

ImageGear Professional v18 for Mac | 14

1.2.1.2.7 Format Conversion

ImageGear Professional supports over 200 raster file formats. To convert a file from one format to another, ImageGear
allows you to save the original file to a different format by setting the nFormatType parameter to the appropriate value
in the saving function. For more information on converting images, see the section Saving Images.

See Also:

File Format Reference

ImageGear Supported File Formats Reference

ImageGear Supported Bit Depths

ImageGear Professional v18 for Mac | 15

1.2.1.2.8 Compression

ImageGear Professional supports most of the industry-standard compression algorithms.

See Also:

ImageGear Supported Compressions Reference

ImageGear Supported File Formats Reference

ImageGear Professional v18 for Mac | 16

1.2.1.2.9 Transitions

ImageGear Professional provides the ability to specify the type of transition to use from one image to another. This is
useful for slide shows or in any other case where the image itself is the focus. For this type of product, ImageGear
provides a set of functions for migrating from one image to another.

The transition support in ImageGear includes 29 types of transitions with control over the granularity and speed.
Granularity refers to the size of the object used or the smoothness of the transition. The speed is the total time used to
transition from one image to another. In addition, all other display parameters are available for controlling the
transitions.

See Also:

Image Transformation

Image Analysis

Blending and Combining Images

Image Correction

Image Maintenance

ImageGear Professional v18 for Mac | 17

1.2.1.2.10 Native CMYK Support

ImageGear Professional Native CMYK support entails the following:

Images stored in CMYK format can be loaded into ImageGear without being converted to RGB to ensure the original
color information is maintained.
Images can be saved to formats that support CMYK color space.
The majority of image processing, image access, display, and other functions work with native CMYK image data.

ImageGear Professional v18 for Mac | 18

1.2.1.2.11 Database

ImageGear Professional provides the following database functionality:

Load images from memory in more than 200 formats.
Load images from file with any offset for images embedded in a database.
Decode images using various compression algorithms without specific format headers.
Import/export images from/to various types of memory formats.
Save images to files at specified offsets.

ImageGear Professional v18 for Mac | 19

1.2.1.2.12 Supported Formats and Compressions

ImageGear Professional supports the most commonly used graphics file formats with different compressions. The
ImageGear-supported file formats are described in detail in the File Format Reference chapter.

ImageGear Professional v18 for Mac | 20

1.2.1.2.13 ImageGear Samples

Your ImageGear Professional toolkit also contains a directory with sample imaging application programs and images. You
may copy and modify them as needed. You can also use them as templates for developing your own applications. The
sample images may also be used for any purpose, such as testing your applications as you develop them.

See ImageGear Samples for a complete list of the samples available, along with their descriptions, and installed location.

ImageGear Professional v18 for Mac | 21

1.2.1.3 About Customer Support

If you are unable to find an answer to your questions in the help, refer to the Release Notes, which provide release-
specific information, including changes made to the product since the last update. If you need additional assistance,
please read the procedures below:

Double check this User Guide. In particular, refer to the following chapters: and Using ImageGear. These chapters
contain a great deal of information on both programming your application and identifying image problems.
Take a look at the sample programs included with your product.
Visit the Support Page on the Accusoft web site or call Accusoft at 813-875-7575.
Accusoft.com provides extensive product information, including:

Product Information and Specifications
Product Downloads
Customer Support
Demonstrations and Tutorials
On-line Documentation

If you still need technical support assistance, please refer to the Software Support and Maintenance Policy on the
Accusoft web site.

ImageGear Professional v18 for Mac | 22

http://www.accusoft.com/imaging-support.htm
http://www.accusoft.com/
http://www.accusoft.com/supportagree.htm

1.2.2 Installing, Licensing, and Distributing ImageGear

This section provides information about how to install/uninstall ImageGear Professional for Mac in the following sections:

Minimum Requirements
Installing ImageGear
Directory Structure

Description of Installed Files
Uninstalling ImageGear
ImageGear Licensing

License Manager
Evaluation Licensing

Registering Evaluation Licenses
Command Line Mode
Evaluation Licensing Troubleshooting

Evaluation License Has Expired
Evaluation License Has Exceeded Installation Limit
Evaluation on a Device without an Internet Connection

Toolkit Licensing
Assigned Toolkit License
Product Editions
Registration

Registering When Connected to the Internet
Registering When Disconnected from the Internet

Developing Code
Runtime Licensing

Automatically Reported Runtime (Node-Locked)
Licensing API
License Pools
License Configuration Files
Server Licensing Utility (SLU)

Command Line Mode
Manually Reported Runtime (Non-Node-Locked)

Application Packaging
Licensing Glossary

ImageGear Professional v18 for Mac | 23

1.2.2.1 Minimum Requirements

Before installing ImageGear Professional for Mac, make sure that your computer system meets the minimum
requirements detailed in this section.

Supported Hardware:

x86-64 Apple Mac

Supported Operating Systems:

Mac OS X v10.7 Lion (64-bit)
OS X v10.8 Mountain Lion (64-bit)
OS X v10.9 Maverics (64-bit)

Java Requirement for Licensing Tools:

JDK: Oracle Java SE Development Kit 1.7 or later (to run License Manager and Server Licensing Utility)

Please make sure that correct version of Java is used. To check the installed Java version run the following
command in terminal:

java -version

ImageGear Professional v18 for Mac | 24

1.2.2.2 Installing ImageGear

To install ImageGear, download an electronic version from www.accusoft.com. Please contact Accusoft at 813-875-7575
for instructions on downloading your specific version of ImageGear Professional for Mac.

The name of the ImageGear installation package for Mac OS X is ImageGearPro18.1.1-Mac64.dmg (OS X 64-bit
platform)

Please see one of the following sections below for details on installing ImageGear:

Automated Installation
Manual Installation

Automated Installation

1. Install the latest Oracle Java SDK from www.java.com, which is required for the licensing tools.
2. Mount the installation file ImageGearPro18.1.1-Mac64.dmg as a volume within the Finder.
3. Start the installation process by double-clicking ImageGearPro18.1.1-Mac64.pkg.

The installation script will search for and modify the current user's profile files to add ImageGear's environment
variable and attempt to run the Accusoft License Manager at the end of the installation.

Manual Installation

1. Mount the installation file ImageGearPro18.1.1-Mac64.dmg as a volume within the Finder.
2. Start the installation process by double-clicking ImageGearPro18.1.1-Mac64.pkg.
3. In order for ImageGear to work, there must be a license file installed. The license key is kept in the file with the

name accusoft.<solution name>.<version specification>.imagegear . The ImageGear installation comes
with the predefined solution name 'Accusoft' and version specification '1-21-18' for Mac 64-bit platform.

If the installation script failed to modify the current user's profile files to add ImageGear's environment variable
or to run the Accusoft License Manager at the end of the installation, please proceed with the following manual
steps:

a. The variable IMAGE_GEAR_LICENSE_DIR has to be defined and should contain the path to the user’s
licensing location: $HOME/Accusoft/ImageGear18/Licensing. If the IMAGE_GEAR_LICENSE_DIR
variable is not defined, ImageGear will look for the license file in
/Library/Frameworks/ImageGear18.framework directory.

b. Install the latest Oracle Java SDK from www.java.com to be able to run the Accusoft License Manager
using the command line /Accusoft/ImageGear18/Licensing/LicenseManager/runLicenseManager
script. Alternatively, you can install the latest Oracle Java run-time component from www.java.com to run
the Accusoft License Manager using
/Accusoft/ImageGear18/Licensing/LicenseManager/LicenseManager.jar .

Please refer to ImageGear Licensing for additional details about how to acquire a license key.

ImageGear Professional v18 for Mac | 25

http://www.accusoft.com/
http://www.java.com/
http://www.java.com/
http://www.java.com/

1.2.2.3 Directory Structure

The ImageGear for Mac OS X installation will create the following directory structure, assuming that the home directory
is the install directory:

/Accusoft/

/Accusoft/ImageGear18/

/Accusoft/ImageGear18/Bin/

/Accusoft/ImageGear18/Documentation/

/Accusoft/ImageGear18/Documentation/HTML

/Accusoft/ImageGear18/Documentation/Release Notes

/Accusoft/ImageGear18/Licensing/

/Accusoft/ImageGear18/Licensing/Deployment

/Accusoft/ImageGear18/Licensing/LicenseManager

/Accusoft/ImageGear18/Samples

/Accusoft/ImageGear18/Samples/Xcode

/Accusoft/ImageGear18/Samples/Xcode/ImageGearDemo

/Library/Frameworks/ImageGear18.framework

$HOME/Accusoft/ImageGear18/Licensing/

ImageGear Professional v18 for Mac | 26

1.2.2.3.1 Description of Installed Files

All the files installed using the install procedure as described above will be installed in the directory structure shown
above. Depending on the version of the library you have purchased, the file names will change, as well as the file sizes
and usage requirements. Also included will be one or more sample programs installed in the sub-folder named
"Samples". These sample programs can be used as guides or examples of how to use the libraries in your applications.
You may cut and paste freely from these sample programs into your own applications.

The following is a list of those files that are installed in Accusoft/ImageGear18/

File Name Description

/Bin/DL*.framework

/Bin/DL*.ppi

PDF framework files to support PDF format

/Documentation/HTML/*.* The product documentation in HTML format

/Documentation/IG_MAC.pdf The product documentation in PDF format

/Documentation/ReleaseNotes/*.* Release Notes of the product

/Licensing/Deployment/*.* Server Licensing Utility for deployment purposes

/Licensing/LicenseManager/*.* The Accusoft License Manager for evaluation and development licensing

/Samples/Xcode/ImageGearDemo/*.* The Objective-C sample application demonstrating the use of the ImageGear
Professional for Mac

By default, the ImageGear installation sets the IMAGE_GEAR_LICENSE_DIR environment variable to
$HOME/Accusoft/ImageGear18/Licensing. So "accusoft.Accusoft.1-21-18.imagegear" file is placed there. However,
you can change the location of the license file by changing the value of IMAGE_GEAR_LICENSE_DIR environment
variable.

The ImageGear framework is installed to Library/Frameworks/ImageGear18.framework

ImageGear Professional v18 for Mac | 27

1.2.2.4 Uninstalling ImageGear

To uninstall ImageGear for Mac OS X, all ImageGear installed files should be deleted.

Delete the following directories:

/Accusoft

$HOME/Accusoft/ImageGear18

/Library/Frameworks/ImageGear18.framework

To delete the ImageGear files using the user interface, run the explorer and navigate to the file or directory to delete.
Call the context menu and select Move to Trash.

ImageGear Professional v18 for Mac | 28

1.2.2.5 ImageGear Licensing

Accusoft has introduced a new licensing structure, which provides the following benefits:

Toolkit Licensing (also known as Developer or SDK licensing) has been simplified, no longer requiring manual entry
of license registration codes.
Runtime Licensing (also known as Deployment licensing) has been made more flexible, enabling support for a
number of different deployment scenarios.

During evaluation of Accusoft products, Evaluation Toolkit licenses can be used to try out products. However, the
product will only function for a limited number of days since the activation of the Evaluation license.

Accusoft requires customers to purchase licenses for both development and deployment.

Development/Toolkit Licensing: When you determine the product is a good fit, you can purchase a Toolkit license
to eliminate the trial timeout while you develop your application.
Deployment/Runtime Licensing: Once you have an application that is ready for distribution, you have options for
deployment. Your own deployment scenario will dictate which option is the most appropriate. There are also cost
considerations for each licensing model; see the product's "pricing" page or speak with an Accusoft Sales
Representative (sales@accusoft.com) for more information.

Manually Reported Runtime (Non-Node-Locked) Licensing: In this model, you embed all of the licensing
information directly into your application. You must manually provide royalty reporting to Accusoft for the
actual licenses deployed. This model will be the best choice for you if you are not connected to the Internet at
runtime, as might be the case in a defense or financial application.
Automatically Reported Runtime (Node-Locked) Licensing using the Server Licensing Utility (SLU): In this
model, you run a small GUI tool one time on each deployment target to configure licensing. This model will be
the best choice for you if you handle the deployments yourself.

ImageGear Professional v18 for Mac | 29

mailto:sales@accusoft.com

See Also:

Application Packaging

Licensing Glossary

ImageGear Professional v18 for Mac | 30

1.2.2.5.1 License Manager

The License Manager is a GUI application that is used by a developer to register and activate Evaluation and
Development (Toolkit) licenses on their development system.

Please see Evaluation Licensing or Toolkit Licensing sections for detailed instructions on using the utility for registering
and activating different types of licenses.

ImageGear Professional v18 for Mac | 31

1.2.2.5.2 Evaluation Licensing

During evaluation of Accusoft products, Evaluation Toolkit licenses can be used to try out products. However, the product
will only function for a limited number of days since the activation of the Evaluation license.

No licensing calls are necessary to run the product in Evaluation mode.

Use the License Manager to obtain an Evaluation license for your computer. Starting with ImageGear Professional
v18.1, IG_lic_solution_name_set function should no longer be used to initialize Evaluation licensing.

When you determine the product is a good fit, you can purchase a Toolkit license to eliminate the trial timeout.

This section provides information about the following:

Registering Evaluation Licenses
Command Line Mode
Evaluation Licensing Troubleshooting

Evaluation License Has Expired
Evaluation License Has Exceeded Installation Limit
Evaluation on a Device without an Internet Connection

ImageGear Professional v18 for Mac | 32

1.2.2.5.2.1 Registering Evaluation Licenses

ImageGear License Manager is a GUI application that is used by a developer or end-user to register and activate
Evaluation and Development (Toolkit) licenses on their system.

When an Evaluation license is registered, the License Manager:

Communicates the developer credentials and the hardware information for the development system to the
licensing web service.
Installs the returned license key on that system.

Once running, the License Manager will provide options for obtaining both Evaluation and Development licensing.

1. For Evaluation licensing, click the Evaluation button, as shown below.

2. Enter the e-mail address you used during the Evaluation registration process, and then click Request
Evaluation.

ImageGear Professional v18 for Mac | 33

3. If your Evaluation License was acquired successfully, you should see the message below. Click Exit to quit the
License Manager and begin your product evaluation. However, if a problem occurred during the licensing
acquisition process, you may see an error. Please see Evaluation Licensing Troubleshooting for more
information on resolving these potential problems.

ImageGear Professional v18 for Mac | 34

ImageGear Professional v18 for Mac | 35

1.2.2.5.2.2 Command Line Mode

The License Manager can be used in command line mode for obtaining and installing evaluation licenses.

Obtaining and Installing a License from the Service

Usage:

eval get <e-mail> [requestextension requestinstallation outputurl]

Parameters:

Name Description

<e-mail> The e-mail address used to register for a trial. Required.

requestextension A flag initiating a request for an evaluation extension if the evaluation license expired.
Optional.

requestinstallation A flag initiating a request for an additional installation if the limit of installations has been
exceeded. Optional.

outputurl A flag to output the URL that can be used for licensing through the web portal if there is a
connectivity error. Optional.

Result Codes:

0 – Success
Non-zero – Failure

Examples:

The following example demonstrates obtaining and installing an evaluation license:

java –jar licensemanager.jar eval get johndoe@acmecorp.com

The following example demonstrates obtaining and installing an evaluation license with error handling to
automatically request evaluation extension, another installation, and the URL output to be used for licensing through
the web portal:

java –jar licensemanager.jar eval get johndoe@acmecorp.com requestextension
requestinstallation outputurl

Installing a License Generated through the Web Portal

Usage:

eval write <license key>

Parameters:

Name Description

<license key> License key generated through the web portal. Required.

Result Codes:

0 – Success
Non-zero – Failure

Example:

The following example demonstrates installing an evaluation license generated through the web portal:

ImageGear Professional v18 for Mac | 36

mailto:johndoe@acmecorp.com

java –jar licensemanager.jar eval write 2.0.YourEvaluationLicenseKey

ImageGear Professional v18 for Mac | 37

mailto:johndoe@acmecorp.com%3C/a%3E%20requestextension%20requestinstallation%20outputurl

1.2.2.5.2.3 Evaluation Licensing Troubleshooting

There are a few situations that may cause the request for an Evaluation License to fail. Use the table below to locate the
appropriate troubleshooting topic based on the error message presented by the License Manager.

Error Message Resolution Topic

Your license has expired Evaluation License Has Expired

You have exceeded the limit of evaluation installations Evaluation License Has Exceeded Installation Limit

Application could not reach licensing services Evaluation on a Device without an Internet Connection

ImageGear Professional v18 for Mac | 38

1.2.2.5.2.3.1 Evaluation License Has Expired

You may see this error returned from either the License Manager or the Evaluation Licensing website. It means that you
have previously obtained an Evaluation License for your machine, using your Evaluation e-mail address, which has since
expired.

To resolve this issue, you can do one of the following:

Request an Extension - Select this option to send a request to Accusoft Sales to extend the evaluation period of your
license. These requests are reviewed by Accusoft Sales staff, and are usually processed in approximately one business
day.
Purchase a Development (Toolkit) License - You may visit www.accusoft.com for pricing information and to get in contact
with Accusoft Sales about purchasing a Development License.

ImageGear Professional v18 for Mac | 39

http://www.accusoft.com/

1.2.2.5.2.3.2 Evaluation License has Exceeded Installation Limit

You may see this error returned from either the License Manager or the Evaluation Licensing website. It means that you
have obtained the maximum number of Evaluation Licenses for a specific product using your Evaluation e-mail address.

To resolve this issue, you can do one of the following:

Request an Additional Installation - Select this option to send a request to Accusoft Sales to add an additional
installation for your Evaluation License. This will allow you to obtain an Evaluation License for a new machine. These
requests are reviewed by Accusoft Sales staff, and are usually processed in approximately one business day.
Purchase a Development (Toolkit) License - You may visit www.accusoft.com for pricing information and to get in
contact with Accusoft Sales about purchasing a Development License.

ImageGear Professional v18 for Mac | 40

http://www.accusoft.com/

1.2.2.5.2.3.3 Evaluation on a Device without an Internet Connection

Evaluation licensing can still be used on a machine without an available connection to the Internet. However, the
process to acquire an Evaluation License in this situation requires a few additional steps, described below.

If you have not already done so, please complete the steps in Registering Evaluation Licenses before proceeding
with the steps below.

1. Begin the Manual Licensing Process.

The Manual Licensing Process may only be started once the License Manager detects that a connection to the
licensing services cannot be established. The connection is attempted when Request Evaluation is clicked on
the main Evaluation screen.

If the machine on which you are evaluating ImageGear Professional does not have an Internet connection, you
will see the screen below.

Click Retry if you are aware of an Internet connection issue that has been resolved. Otherwise, click License
Manually to begin the Manual Licensing Process.

2. Access the Evaluation Licensing Website.

Next, you will need to go to the Evaluation Licensing website to obtain your Evaluation license. The URL to this
website is provided by the License Manager. It is important that the entire URL is used. You have two options
for getting this URL:

License on this system via Web - Choosing this option will open the default web browser on your machine
and navigate directly to the Evaluation Licensing website. This option is recommended if, for example, your
organization allows access to the public Internet only within the web browser through the use of proxy
servers.
License on another system - Choosing this option will create an Internet Shortcut file (.URL). This is a
simple text file that contains the full URL to the Evaluation Licensing website. In Windows environments,
these files can be double-clicked to open the default web browser and navigate directly to the Evaluation
Licensing website. If this action does not work in your environment, simply open the file in a text editor,
copy the URL, and paste it into the address bar of your web browser. This option is recommended if the
evaluation device does not have any connection to the Internet.

ImageGear Professional v18 for Mac | 41

Click the button that is the best option in your situation to access the Evaluation Licensing website.

3. Verify Your E-mail Address and Continue.

Once at the Evaluation Licensing website, the e-mail address you entered into the License Manager will already
be pre-populated. If you notice an error in your e-mail address, you can correct it at this time by clicking the
Edit link.

Click the Continue button to obtain your Evaluation License.

4. Transfer the License to the License Manager.

If your Evaluation license was acquired successfully, you should see the message below. Otherwise, please see
Evaluation Licensing Troubleshooting for more information on these potential problems.

The string of alpha-numeric characters shown in the lower box is your Evaluation license. This information
must be transferred back to the License Manager running on your evaluation machine.

If you selected the option to License on this system via Web in step 3, you can simply copy the license
information to your clipboard to transfer it to the License Manager.

If you are accessing the Evaluation Licensing website from another machine, it is recommended that you
download the license information to a file, and transfer the file to the evaluation machine.

5. Enter the License into the License Manager.

Once back to the License Manager running on your evaluation machine, you can paste the license information
into the awaiting text area.

ImageGear Professional v18 for Mac | 42

If the License Manager was closed after you left it to go to the Evaluation Licensing site, you can restart the
application and perform all the previous steps again to return to this screen in the License Manager. You do
not need to repeat the steps on the Evaluation Licensing website.

Enter the license information and click Apply License to apply the Evaluation License on the current machine.

ImageGear Professional v18 for Mac | 43

1.2.2.5.3 Toolkit Licensing

Accusoft requires customers who are developing code that uses Accusoft components to have a Toolkit license for each
developer.

This section provides information about the following:

Assigned Toolkit License
Product Editions
Registration

Registering When Connected to the Internet
Registering When Disconnected from the Internet

Developing Code

ImageGear Professional v18 for Mac | 44

1.2.2.5.3.1 Assigned Toolkit License

When licenses are purchased for developers at an organization, a representative is designated to assign the licenses to
developers at the organization. Each developer must create an account on Accusoft’s website prior to the assignment of
licenses. The organization’s designated representative may request that licenses be reassigned as a result of personnel
changes.

ImageGear Professional v18 for Mac | 45

1.2.2.5.3.2 Product Editions

Accusoft products may have multiple editions, each of which supports different features.

Selecting an Edition (Activating a Toolkit License)

If a customer has purchased multiple editions of the same product, they may install both editions on a development
system, but only one edition may be active at a time. Once a license has been activated for a particular system, it may
be deactivated (replaced by activating another edition) or reactivated at any time. Similarly, customers who own a lower
featured edition may activate a full featured edition evaluation Toolkit license and then switch back to their paid, lower-
featured Toolkit edition license at any time.

ImageGear Professional v18 for Mac | 46

1.2.2.5.3.3 Registration

Registration is the process of creating a paid Toolkit License key for a particular system. Registration for Toolkit
Licenses is always done through the License Manager. This removes the evaluation timeout limitation, so the toolkit will
not stop functioning at the end of the evaluation period. Registration for each license is only required to be performed
once per development system. After a license has been registered on a system, you can use the license without further
interaction with the License Manager.

See one of the following sections for further instructions:

Registering When Connected to the Internet
Registering When Disconnected from the Internet

ImageGear Professional v18 for Mac | 47

1.2.2.5.3.3.1 Registering When Connected to the Internet

When the development system is connected to the Internet, registration is a fairly simple process.

1. Start the License Manager.
2. In the list of license types to be acquired, choose Development.
3. When prompted, enter your Accusoft login and password. The License Manager then displays the available

evaluation and purchased licenses assigned to you.
4. Select a toolkit and click the link to activate the license for that toolkit.

The License Manager then requests a new license key from the licensing web service and installs it; this completes the
registration process.

ImageGear Professional v18 for Mac | 48

1.2.2.5.3.3.2 Registering When Disconnected from the Internet

When the development system is not connected to the Internet during registration, as is the case in some defense or
financial institutions, registration is only slightly less simple.

1. Run the License Manager and attempt to log in.

The License Manager detects that the system is not registered and displays the following dialog:

2. Select the Install Offline option to begin the offline registration process.

ImageGear Professional v18 for Mac | 49

3. Copy the URL to removable media, such as a thumb drive.

4. Take the thumb drive to a system that is connected to the Internet.
5. From the connected system, paste the URL into a browser, which automatically displays the toolkits available.
6. Upon selecting a toolkit, a license is generated, which you then save to the removable media device.
7. Return to the offline system where the new license is to be installed.
8. Use the License Manager to browse to the file and install the Toolkit license.

ImageGear Professional v18 for Mac | 50

1.2.2.5.3.4 Developing Code

Once an evaluation or paid Toolkit license has been activated on the development system, no additional code is required
to use the Accusoft products on this system. If moving the resulting executable code to a new system, you will need to
install Toolkit licenses or incorporate Runtime licenses into your code.

ImageGear Professional v18 for Mac | 51

1.2.2.5.4 Runtime Licensing

When an application that uses one or more Accusoft products is deployed, it requires a Runtime License for each
installation. There are two main types of Runtime Licenses:

Automatically Reported Runtime (Node-Locked). Distribution of Automatically Reported Runtime licenses is handled
automatically through the use of licensing software components and web services.
Manually Reported Runtime (Non-Node-Locked). Manually Reported Runtime licensing requires you to provide the
number of licenses distributed on a contractually agreed upon basis.

These licensing types are each described in detail in the following sections:

Automatically Reported Runtime (Node-Locked)
Licensing API
License Pools
License Configuration Files
Server Licensing Utility (SLU)

Command Line Mode
Manually Reported Runtime (Non-Node-Locked)

ImageGear Professional v18 for Mac | 52

1.2.2.5.4.1 Automatically Reported Runtime (Node-Locked)

Automatically Reported Runtime licenses use a mechanism similar to Toolkit licensing to activate a license for a particular
system. In this case, each installation has a unique license that is pulled from the pool of licenses purchased by the
customer. When the license key is generated, it contains hardware information that identifies the system on which the
license is to be installed.

The Server Licensing Utility (SLU) is a stand-alone application that interacts with the licensing web service and installs
the newly generated license key to perform the registration.

This topic provides information about the following:

Licensing API
License Pools
License Configuration Files
Server Licensing Utility (SLU)

Command Line Mode

ImageGear Professional v18 for Mac | 53

1.2.2.5.4.1.1 Licensing API

The Licensing API is used in the developer’s code to specify Runtime Licensing deployment information. This is used to
unlock the Accusoft products and enable all licensed features at runtime. Both the "Solution Name" and "Solution Key"
values used in the API described below are provided by Accusoft, along with the License Configuration file, at the time of
purchase of a Runtime License.

Solution Name

The solution name is the name assigned by Accusoft to the licenses purchased for runtime deployment. It is a character
string that is set for a component prior to use in a deployment environment and is typically the name of the organization
that purchased the runtime licenses. It is set via the IG_lic_solution_name_set function. For example:

IG_lic_solution_name_set("ACMEImaging");

The Solution Name must be set in order to use runtime licensing.

Solution Key

The Solution Key is a set of four numbers assigned when the licenses are purchased for runtime deployment; the
Solution Key also identifies the organization that purchased the runtime licenses. The Solution Key is set via the
IG_lic_solution_key_set function. For example:

IG_lic_solution_name_set("ACMEImaging");
IG_lic_solution_key_set(0x1C3A023F, 0xA018F260, 0x37AF0E51, 0x557F2389);

The Solution Key must be set in order to use runtime licensing.

ImageGear Professional v18 for Mac | 54

1.2.2.5.4.1.2 License Pools

When Automatically Reported Runtime licenses are purchased, they are organized into pools of a specific version and
platform for a particular toolkit. For example, if a customer developed two applications using ImageGear, one using 32-
bit DLL and the other using .NET, they would purchase two pools of runtime licenses, one for the DLL platform and one
for the .NET platform. At installation, a new license would be pulled from the appropriate pool, depending upon which
platform the application is using.

ImageGear Professional v18 for Mac | 55

1.2.2.5.4.1.3 License Configuration Files

When an Automatically Reported Runtime license is purchased, a License Configuration file is created and distributed to
the customer along with their assigned Solution Name and Solution Key. The License Configuration file contains
information about the Runtime licenses for a particular platform and version of a toolkit. It is used by the Server
Licensing Utility to activate licenses when the customer’s application is installed on their users' systems.

ImageGear Professional v18 for Mac | 56

1.2.2.5.4.1.4 Server Licensing Utility (SLU)

The Server Licensing Utility (SLU) uses License Configuration Files to request a license key from the purchased Runtime
licenses. The SLU registers that Runtime license on the system where your application will be running. This utility can be
used by developers for testing, by your deployment team, or by your end users to register their Runtime license.

Use the following steps to register the license on your system:

1. Run the SLU using runSlu shell script.
2. Provide the location of the license configuration file (type in the corresponding text box or use the Browse button)

and the solution name.
3. Click Acquire License.

Automatic Registration (Connected to Internet)

Automatic registration works in much the same way as connected Toolkit registration and requires an Internet
connection on the system where your application software will be deployed. The license information along with
the system’s hardware information is sent over the Internet to the Accusoft licensing web service. If an unused
license is available, a new license key containing information for the system is generated, returned, and is then
automatically installed by the Server Licensing Utility.

Manual Registration (Disconnected from Internet)

In the situation where the SLU is not able to contact the Licensing services, a dialog will be displayed stating that
the "application could not reach the licensing services". You will have the option to retry the registration or to
"License Manually". Select the License Manually option to proceed.

a. The Manually License dialog will display a text box with your system Hardware Key. This key is used to
identify your system during the registration process. This key will need to be supplied to the Accusoft
Licensing Center in order to obtain a license to register the system. Using your mouse or keyboard select all
of the text within the text box and copy it to the clipboard.

ImageGear Professional v18 for Mac | 57

b. Next, you will need to go to the Accusoft Licensing Center to obtain your Evaluation license. The URL to this
website is provided by the SLU, https://licensing.accusoft.com/v1/WebDeployUser/WebDeployUser.aspx. You
have two options for getting this URL:

License on this system via Web - Choosing this option will open the default web browser on your machine
and navigate directly to the Accusoft Licensing Center. This option is recommended if, for example, your
organization allows access to the public Internet only within the web browser through the use of proxy
servers.
License on another system - Choosing this option will create an Internet Shortcut file (.URL). This is a
simple text file that contains the full URL to the Accusoft Licensing Center website. These files can be
double-clicked to open the default web browser and navigate directly to the Accusoft Licensing Center
website. If this action does not work in your environment, simply open the file in a text editor, copy the
URL, and paste it into the address bar of your web browser. This option is recommended if the System
being registered does not have any connection to the Internet.

c. Once you have navigated your web browser to the Accusoft Licensing Center, you will need to enter your
Hardware Key into the text box labeled Hardware Key.

d. Click the Download License button to have the Accusoft Licensing Center generate a license for your
system. The License will be created and sent to your system as a text file.

e. Enter the License into the Server Licensing Utility.

Once back to the SLU running on your system, you can paste the license information into the awaiting text area.

If the SLU was closed after you left it to go to the Accusoft Licensing Center, you can restart the application and
perform all the previous steps again to return to this screen in the Server Licensing Utility. You do not need to repeat
the steps on the Accusoft Licensing Center web site.

Enter the license information and click Apply License to apply the License on the current machine.

ImageGear Professional v18 for Mac | 58

https://licensing.accusoft.com/v1/WebDeployUser/WebDeployUser.aspx

1.2.2.5.4.1.4.1 Command Line Mode

The Server Licensing Utility can be used in command line mode for obtaining and installing Runtime Licenses.

Obtaining and Installing a License from the Service

Usage:

deploy get <configuration file><solution name> [<access key>outputurl]

Parameters:

Name Description

<configuration file> Path to the license configuration file. Required.

<solution name> Solution name for Runtime Licensing. Required.

<access key> Access key for annual Runtime Licensing. Optional.

outputurl A flag to output the URL and system Hardware Key that can be used for licensing through the
web portal if there is a connectivity error. Optional.

Result Codes:

0 – Success
Non-zero – Failure

Examples:

The following example demonstrates obtaining and installing Runtime License:

java –jar slu.jar deploy get "/Path to/YourSolutionName_Config.txt" "YourSolutionName"

The following example demonstrates obtaining and installing Runtime License for the provided access key:

java –jar slu.jar deploy get "/Path to/YourSolutionName_Config.txt" "YourSolutionName"
Your-Access-Key

The following example demonstrates obtaining and installing Runtime License with error handling to automatically
output URL and system Hardware Key to be used for licensing through the web portal:

java –jar slu.jar deploy get "/Path to/YourSolutionName_Config.txt" "YourSolutionName"
outputurl

Installing a License Generated through the Web Portal

Usage:

deploy write <solution name><license key>

Parameters:

Name Description

<solution name> Solution name for Runtime Licensing. Required.

<license key> License key generated through the web portal. Required.

Result Codes:

0 – Success
Non-zero – Failure

ImageGear Professional v18 for Mac | 59

Example:

The following example demonstrates installing a Runtime License generated through the web portal:

java –jar slu.jar deploy write "YourSolutionName"2.0.YourDeploymentLicenseKey

ImageGear Professional v18 for Mac | 60

1.2.2.5.4.2 Manually Reported Runtime (Non-Node-Locked)

Manually Reported Runtime licensing embeds all of the licensing information directly into your application. Installation
does not require any further licensing interaction. However, it is your responsibility to provide royalty reporting to
Accusoft for the actual licenses deployed.

This section provides information about the following:

Solution Name
Solution Key
OEM License Key

Solution Name

The solution name is

A name assigned by Accusoft to the licenses purchased for runtime deployment.
A character string that is set for a component prior to use in a deployment environment.
Typically the name of the organization that purchased the runtime licenses.
Set via the IG_lic_solution_name_set function. For example:

C++

IG_lic_solution_name_set("ACMEImaging");

The Solution Name must be set in order to use runtime licensing.

Solution Key

The Solution Key is

A set of four numbers assigned when the licenses are purchased for runtime deployment.
An identifier of the organization that purchased the runtime licenses.
Set via the IG_lic_solution_key_set function. For example:

C++
IG_lic_solution_name_set("ACMEImaging");
IG_lic_solution_key_set(0x1C3A023F, 0xA018F260, 0x37AF0E51, 0x557F2389);

The Solution Key must be set in order to use runtime licensing.

OEM License Key

The OEMLicense Key is

For use only by customers who choose to use Manually Reported Runtime licensing.
A unique identifier of the customer, product, version, edition, and platforms for which the license is valid.
When this key is set via the IG_lic_OEM_license_key_set function, the component is completely licensed and can be
distributed without any further licensing operations.

C++
IG_lic_solution_name_set("ACMEImaging");
IG_lic_solution_key_set(0x1C3A023F, 0xA018F260, 0x37AF0E51, 0x557F2389);
IG_lic_OEM_license_key_set("2.0.GQCC0EmUgONaI4QDZ32tpGWfpGW4gtbC0iIC...");

This method is not required for Automatically Reported Runtime licensing.

ImageGear Professional v18 for Mac | 61

1.2.2.5.5 Application Packaging

Regardless of your deployment model, the first step in deploying your application is to package the required ImageGear
runtime components.

The following content of the /Accusoft/ImageGear18/Bin/.. from your ImageGear Installation represents the APDFL
framework components for working with PDF files:

DL*.framework.
ICU*.framework.

These frameworks should be copied at the "Copy Files" build phase to Frameworks destination (see ImageGearDemo
sample for reference).

Also, ImageGear18.framework must be installed to /Library/Frameworks directory on the end-user machine.

If you are using Automatically Reported Runtime (Node-Locked) Licensing model:

If you are using the Server Licensing Utility (SLU) to register licenses on the end user's system, the "slu.jar" and
"ldk.jar" located in /Accusoft/ImageGear18/Licensing/Deployment/ have to be distributed.
Also please make sure your installation routine defines the IMAGE_GEAR_LICENSE_DIR environment variable that
contains a path to the "accusoft...imagegear" license file. The end user will obtain the license file and place it to the
directory indicated by IMAGE_GEAR_LICENSE_DIR environment variable.

Example of a script to set IMAGE_GEAR_LICENSE_DIR environment variable:

#!/bin/sh
mkdir -p $HOME/Accusoft/ImageGear18/Licensing
Set environment variable permanently
if ! -s "/etc/launchd.conf" ; then
 touch /etc/launchd.conf
fi
if ! grep -q 'IMAGE_GEAR_LICENSE_DIR' "/etc/launchd.conf" ; then
 echo "Editing /etc/launchd.conf to add IMAGE_GEAR_LICENSE_DIR"
 echo "setenv IMAGE_GEAR_LICENSE_DIR $HOME/Accusoft/ImageGear18/Licensing" >>
"/etc/launchd.conf"
fi
echo "Temporary set IMAGE_GEAR_LICENSE_DIR" for current session
launchctl setenv IMAGE_GEAR_LICENSE_DIR $HOME/Accusoft/ImageGear18/Licensing
export IMAGE_GEAR_LICENSE_DIR=$HOME/Accusoft/ImageGear18/Licensing

ImageGear Professional v18 for Mac | 62

1.2.2.5.6 Licensing Glossary

The following sections each describe a licensing term:

Access Key

All licenses are assigned a unique identifier known as an Access Key. Access Keys are associated with the organization
that purchased the license.

Accusoft Products

An Accusoft product may be licensed with either a Toolkit License or a Runtime License.

Activation

Activation is the process of selecting a previously registered Toolkit license. Licenses may be paid (Toolkit) or
evaluation, and may be for one of many product editions, for products with multiple editions.

Automatically Reported Runtime Licensing

Runtimes may be licensed in one of two ways: automatic reporting or manual reporting. With automatic reporting,
you do not need to worry about royalty reporting; it is handled by the licensing layer. See Automatically Reported
Runtime (Node-Locked).

Customers, Developers, and Users

Customers are simply any person who has purchased an Accusoft product. Developers are customers who possess a
Toolkit license. Users are typically the customers of Accusoft's customers who use applications built around Accusoft
components and are assigned a runtime license.

Edition

Some Accusoft products have multiple editions. Editions may offer multiple levels of product speed or product
features, allowing customers to find a price-performance mix that is appropriate for them. Products that support
multiple editions register multiple Toolkit licenses at installation time, one Toolkit license per edition. Developers must
select an edition to activate using the License Manager.

Evaluation License

An evaluation license is a Toolkit license that is unpaid. When an Accusoft Toolkit is installed, evaluation licenses for
all applicable product editions are installed and registered, and the edition with the most features is activated.
Evaluation Toolkit licenses can be used to try out products. However, the product behavior is limited by trial dialog
pop-ups. When you determine the product is a good fit, you can purchase a Toolkit license to eliminate trial dialog
pop-ups.

Hardware Key

When a license is activated for a product, the system information that identifies the installation hardware is contained
within an encrypted string and is used to generate the license key for the product. The string containing the
encrypted hardware information is known as the Hardware Key.

License Configuration File

When a Toolkit or an Automatically Reported Runtime (Node-Locked) license is purchased, a configuration file is
provided that contains information about the license that was purchased. This file is used by the licensing utilities
(License Manager and Server Licensing Utility (SLU)) to install a license on the system.

License Key

Each product license has a unique key associated with it that uniquely identifies the customer, product, version,
edition, and platforms, and, in some cases, the hardware for which the license is valid.

License Manager

The License Manager is a GUI application that is used by developers to register and activate Toolkit licenses on their
development systems.

ImageGear Professional v18 for Mac | 63

Manually Reported Runtime Licensing

Runtimes may be licensed in one of two ways: automatic reporting or manual reporting. With Manually Reported
Runtime (Non-Node-Locked), you embed all of the licensing information directly into your application. You must
manually provide royalty reporting to Accusoft for the actual licenses deployed. This model will be the best choice for
you if you are not connected to the Internet at runtime, as might be the case in an defense or financial application.

Node-Locked Licensing

Another name for Automatically Reported Runtime (Node-Locked).

Non-Node-Locked Licensing

Another name for Manually Reported Runtime (Non-Node-Locked).

Paid License

A paid license is a Toolkit license that you have purchased from Accusoft. It is ready to be used in production, with no
trial dialog pop-ups. If you wish to test other editions of the Accusoft product for which you have purchased a Paid
License, you may activate an Evaluation license for that edition; a complete set of Evaluation licenses for all editions
is registered at installation time.

Registration

Registration is the process of informing the License Manager about a new Toolkit license you have purchased. It uses
this information to create a license key on your system; this allows you to activate the product for development with
no restrictions, such as trial dialog pop-ups.

Runtime (Deployment) Licensing

When deploying an application, a Runtime License is also required for each user’s installation. You must purchase
runtime licenses, which are consumed as licenses are registered. There are two Runtime Licensing models:
Automatically Reported Runtime (Node-Locked); and Manually Reported Runtime (Non-Node-Locked).

Server Licensing Utility (SLU)

The Server Licensing Utility (SLU) is a small GUI application that allows you to request a license key from the Runtime
licenses you have purchased. The SLU is the mechanism for Automatically Reported Runtime (Node-Locked).

Toolkit Licensing

Each Toolkit is assigned to a specific developer who has a registered account with Accusoft. When the developer
installs the Toolkit, it is not fully functional until they have activated the license through the use of the License
Manager application. When the developer starts the License Manager, they are required to provide login credentials
that identify and allow them to activate their license on a development system. See Toolkit Licensing.

Web Services

When a license is registered, information that uniquely identifies the customer’s or user’s hardware is passed along
with the license information over the Internet to a web service. The web service validates the licensing request,
generates a key that includes the hardware information, and returns the new license key to the application that made
the licensing request. The license key is then stored on the requested system and used by the component when it is
executed. It is also possible to register systems that are not directly connected to the Internet through the use of
removable media and a different system that is connected to the Internet.

ImageGear Professional v18 for Mac | 64

1.2.3 Getting Started

The ImageGear toolkit contains a comprehensive sample application program, which you can load at the same time you
install ImageGear's program files. The sample is provided in source form. Accusoft permits you to use the source module
of the sample program whole or to cut and paste from it as you wish, to create and expand your own applications. The
sample included with this software has a variety of functions and is an especially good tool for seeing ImageGear's image
processing functions. It allows the user to load an image and manipulate it in several ways. For example the user could
rotate the image any number of degrees, apply image processing functions, or resize to any size.

This section provides information about the following:

ImageGear Samples
Developing an Application

Loading an Image
Displaying an Image
Changing Image Display Settings

Fit Mode
Align Mode
Image Orientation
Zooming an Image

Image Processing
Rotating an Image
Flipping an Image

Using the Sample Code For Your Application

ImageGear Professional v18 for Mac | 65

1.2.3.1 ImageGear Samples

Your ImageGear Professional toolkit contains ImageGearDemo Cocoa sample for Xcode IDE that is installed together with
ImageGear shared object libraries and related files. The sample is provided in source form. You can compile and execute
the application to see the actual effects of the ImageGear function calls within it, or examine the source file to find
examples of ImageGear API function calls and accompanying platform-specific calls. In addition, Accusoft permits you to
use the sample application's source code. You can use the sample code as is, or cut and paste from it as you wish, to
create, then expand, your own applications. The only restriction is that you may not distribute the original ImageGear
sample applications with your applications.

The sample lets you load, display, process, and save raster and PDF images. It also demonstrates clipboard
operations. By running this application and then examining its source code, you can see how the calls to ImageGear
functions such as IG_load_...(), IG_dspl_...(), IG_IP_...(), IG_clipboard_...() and IG_fltr_...() interact with the
requirements and procedures of Mac OS X programming. You can later use this program as a template for developing an
application of your own.

The sample is located in the directory to which you have installed ImageGear (see the sections Directory Structure and
Description of Installed Files). You can begin developing an application easily by choosing the sample to start with as a
template, making a backup copy to preserve it, and editing it - cutting and pasting whole sections from other samples, if
you wish. In this way, you will begin with a working program that displays images on your screen from the start, so you
can test and debug each new feature as you add it to your code.

ImageGear Professional v18 for Mac | 66

1.2.3.2 Developing an Application

Accusoft provides the ImageGearDemo sample; use it as a template, and make a backup copy to preserve it. You may
cut and paste whole sections from the original code. This way you begin with a working program that displays images on
your screen from the start. You can easily add, test, and debug each new feature as you add it to your code. This section
is set up as a tutorial that uses the sample application as a guide.

This tutorial walks you through several operations performed on a sample image:

Loading an Image
Displaying an Image
Changing Image Display Settings

Fit Mode
Align Mode
Image Orientation
Zooming an Image

Image Processing
Rotating an Image
Flipping an Image

In the process of following along with this tutorial you will be introduced to a few of ImageGear's many defined
constants, which provide flexibility to ImageGear's functions.

To work along with the tutorial, access the sample on your system: open your sample folder and double-click the sample
application.

ImageGear Professional v18 for Mac | 67

1.2.3.2.1 Loading an Image

1. Choose File > Open....

The key ImageGear call used is IG_load_file(). We use NSOpenPanel dialog to select an image file. All related
calls are encapsulated in the mnuFileOpen action in our Sample. Please see NSOpenPanel Class Reference for
details.

2. The image will be displayed.

Here is the segment of code that demonstrates this operation:

- (IBAction)mnuFileOpen:(id)sender {
 AT_ERRCOUNT errCount = 0;
 // Create the File Open Dialog class.
 NSOpenPanel* openDlg = [NSOpenPanel openPanel];

 // Enable the selection of files in the dialog.
 [openDlg setCanChooseFiles:YES];

 // Disable the selection of directories in the dialog.
 [openDlg setCanChooseDirectories:NO];

 // Display the dialog. If the OK button was pressed,
 // process the files.
 if ([openDlg runModal] == NSOKButton)
 {
 // Get file name as char*
 NSArray* URLs = [openDlg URLs];
 NSURL* URL = [URLs objectAtIndex:0];
 NSString* filePath = [URL path];
 const char* utf8FileName = [filePath UTF8String];
 // Delete an existing hIgear
 if(IG_image_is_valid(hIGear))
 IG_image_delete(hIGear);

 errCount = IG_load_file((LPSTR)utf8FileName, &hIGear);
 if(errCount != 0)
 printf("IG_load_file error:\n");

 // Update main view
 [mainScrollViewOutlet setNeedsDisplay:YES];
 }
}

ImageGear Professional v18 for Mac | 68

1.2.3.2.2 Displaying an Image

As soon an image is loaded it can be displayed on screen. The simplest way to do this is to
use the IG_dspl_image_draw() function. In our sample this function is called in drawRect method of main view class.

- (void)drawRect:(NSRect)dirtyRect
{
 if(IG_image_is_valid(hIGear))
 {
 // Get device context
 CGContextRef myContext = [[NSGraphicsContext currentContext]
graphicsPort];
 if([NSGraphicsContext currentContextDrawingToScreen])
 // Draw the image to the screen
 IG_dspl_image_draw(hIGear, 0, (__bridge HWND)self, (HDC)myContext,
NULL);
 else
 // Print the image
 IG_dspl_image_print(hIGear, 0, (HDC)myContext, FALSE);
 }
}

Here is the sample application with a 24-bit image loaded:

ImageGear Professional v18 for Mac | 69

1.2.3.2.3 Changing Image Display Settings

ImageGear provides API that specifies how an image is displayed on screen. It does not change the image itself; it only
affects the image appearance in the display.

The following sections demonstrate some of the image display settings available:

Fit Mode
Align Mode
Image Orientation
Zooming an Image

ImageGear Professional v18 for Mac | 70

1.2.3.2.3.1 Fit Mode

The sample contains a control for setting the Fit Mode. This method determines how the image is fitted in the window.

Choose Display > Layout > Fit to display the image in one of the following Fit Modes:
FIT_TO_WINDOW - view the entire image in the window. The constant IG_DSPL_FIT_TO_DEVICE, which is
defined in dspl.h file, is used as an argument in IG_dspl_layout_set() in order to fit the image to the window.
FIT_TO_WIDTH - view the image displayed as wide as the window. If the fit method is set to
IG_DSPL_FIT_TO_WIDTH, the image is displayed as wide as the window, but may extend beyond the window
vertically.
FIT_TO_HEIGHT - view the image displayed as high as the window. If the fit method is set to
IG_DSPL_FIT_TO_HEIGHT, the image fits the height of the window, but may extend beyond the width boundaries.
ACTUAL_SIZE – the image in its actual size. If the fit method is set to IG_DSPL_ACTUAL_SIZE, the image is
scaled 1:1.

Initially the fit method is set to IG_DSPL_FIT_TO_DEVICE, which means that the entire image are displayed without
scrolling in the window. If you do not change this setting and proceed to change an image, doing a rotate for example,
the image still retains the fit to window setting; you will still be able to see the entire image.

The following code example sets the fit mode to the FIT_TO_WIDTH value:

- (IBAction)mnuDisplayLayoutFitTO_WIDTH:(id)sender {
 if(IG_image_is_valid(hIGear))
 {
 // Reset zoom
 IG_dspl_zoom_set(hIGear, 0,
IG_DSPL_ZOOM_H_NOT_FIXED|IG_DSPL_ZOOM_V_NOT_FIXED, 1.0, 1.0);
 // Set fit mode to IG_DSPL_FIT_TO_WIDTH
 IG_dspl_layout_set(hIGear, 0, IG_DSPL_FIT_MODE, NULL, NULL, NULL,
 IG_DSPL_FIT_TO_WIDTH, 0, 0, 0.0);
 // Update main view
 [mainScrollViewOutlet setNeedsDisplay:YES];
 }
}

In the sample below the image is fit to the width of the screen:

The scroll bar automatically appears on the right side of the image because the image is now as wide as the screen
but is longer than the screen.

ImageGear Professional v18 for Mac | 71

1.2.3.2.3.2 Align Mode

Another display attribute is Align Mode. It determines where the image is displayed on the screen: in the center or
aligned to the one of borders.

Choose Display > Layout > Align to display the image in one of the following Align Modes:
Vertically, you can choose to align to the top, center, or bottom.
Horizontally, you can choose to align to the left, center, or right.

The mode can be specified with the IG_DSPL_ALIGN_ constants declared in dspl.h file.

The following code example specifies that the image will be displayed in the right-bottom corner of the screen:

- (IBAction)mnuDisplayLayoutAlignRIGHT_BOTTOM:(id)sender {
 if(IG_image_is_valid(hIGear))
 {
 // Set align mode to right-bottom
 IG_dspl_layout_set(hIGear, 0, IG_DSPL_ALIGN_MODE, NULL, NULL, NULL,
 0, IG_DSPL_ALIGN_X_RIGHT|IG_DSPL_ALIGN_Y_BOTTOM, 0,
0.0);
 // Update main view
 [mainScrollViewOutlet setNeedsDisplay:YES];
 }
}

In the sample below the image is aligned to right and bottom:

See Also

IG_dspl_layout_set()

ImageGear Professional v18 for Mac | 72

1.2.3.2.3.3 Image Orientation

Orientation parameters allow you to rotate and flip an image on screen without changing the image bitmap.

Choose Display > Layout > Orientation. Displayed image orientation can be specified by 2 parameters:
Where the image's top side is located (relative screen orientation).
Where the image's left side is located.

Normal image orientation is top on top and left on left (i.e., image top on screen top, and image left on screen left),
which can be specified with the IG_DSPL_ORIENT_TOP_LEFT constant.

IG_DSPL_ORIENT_RIGHT_TOP (i.e., top on right and left on top) constant effectively rotates the image by 90 degrees
clockwise. This can be done with the following code fragment:

- (IBAction)mnuDisplayOrientRIGHT_TOP:(id)sender {
 if(IG_image_is_valid(hIGear))
 {
 // Set display orientation to IG_DSPL_ORIENT_RIGHT_TOP
 IG_dspl_orientation_set(hIGear, 0, IG_DSPL_ORIENT_RIGHT_TOP);
 // Update main view
 [mainScrollViewOutlet setNeedsDisplay:YES];
 }
}

The sample below demonstrates the image oriented to right-and-top (IG_DSPL_ORIENT_RIGHT_TOP):

See Also

IG_dspl_orientation_set

ImageGear Professional v18 for Mac | 73

1.2.3.2.3.4 Zooming an Image

From the Display menu choose Zoom in to zoom an image in or Zoom out to zoom an image out.

The following code fragment demonstrates a Zoom in operation:

- (IBAction)mnuDisplayZoomIn:(id)sender {
 double dblHZoom, dblVZoom;

 // Get previous zoom factors
 IG_dspl_zoom_get(hIGear, 0, (__bridge HWND)mainScrollViewOutlet, NULL,
&dblHZoom, &dblVZoom);
 if(dblHZoom <= 10 && dblVZoom <= 10)
 {
 dblHZoom *= 1.25;
 dblVZoom *= 1.25;
 // Set new zoom factors
 IG_dspl_zoom_set(hIGear, 0, IG_DSPL_ZOOM_H_FIXED|IG_DSPL_ZOOM_V_FIXED,
dblHZoom, dblVZoom);
 }
 // Update main view
 [mainScrollViewOutlet setNeedsDisplay:YES];
}

IG_dspl_zoom_get() is used to obtain current image zoom settings. In the next line, the current settings were
increased by 25%, and the new zoom value was set using IG_dspl_zoom_set().

The example below is the original image zoomed in several times:

When using the Zoom command, scroll bars automatically appear on the bottom and on the right side because the
image no longer fits in the window.

Scrollbars do not automatically appear until you display them with IG_dspl_scroll_set() call. See also
InitScrollBars() function in the ImageGearDemo Sample.

ImageGear Professional v18 for Mac | 74

1.2.3.2.4 Image Processing

ImageGear provides many options for Image Processing transformations: rotating, flipping, cropping and resizing of
images, color reducing and promoting, etc. See Processing Images for more detailed information about Image Processing
functionality. This tutorial provides information about the following functionality:

Rotating an Image
Flipping an Image

ImageGear Professional v18 for Mac | 75

1.2.3.2.4.1 Rotating an Image

The Processing menu contains a group of Rotate 90 and Rotate Any items.

Using IG_IP_rotate_multiple_90(), you can rotate your image on 90, 180, or 270 degrees. The code sample below
demonstrates a 90 degree rotation. The required angle of rotation should be specified by one of IG_ROTATE_ constants.

- (IBAction)mnuProcessingRotate90:(id)sender {
 if(IG_image_is_valid(hIGear))
 {
 IG_IP_rotate_multiple_90(hIGear, IG_ROTATE_90);
 // Update main view
 [mainScrollViewOutlet setNeedsDisplay:YES];
 }
}

Although the visible result of this function call is similar to that of IG_dspl_orientation_set() described in Image
Orientation, the significant difference between them is that all functions of the ImageGear Image Processing group
(IG_IP_) do change image's contents, while the ImageGear Image Display functions (IG_dspl_) do not.

IG_IP_rotate_any_angle() allows you to rotate an image to any angle. In the sample below, the image will be rotated
123.5 degrees.

- (IBAction)mnuProcessingRotateAny:(id)sender {
 if(IG_image_is_valid(hIGear))
 {
 IG_IP_rotate_any_angle(hIGear, 123.5, IG_ROTATE_CLIP);
 // Update main view
 [mainScrollViewOutlet setNeedsDisplay:YES];
 }
}

Below you can see the image that is rotated on 123.5 degrees:

ImageGear Professional v18 for Mac | 76

1.2.3.2.4.2 Flipping an Image

The Processing menu contains a group of Flip Vertically and Flip Horizontally items.

The following code fragment demonstrates a vertical flip:

- (IBAction)mnuProcessingFlipV:(id)sender {
 if(IG_image_is_valid(hIGear))
 {
 IG_IP_flip(hIGear, IG_FLIP_VERTICAL);
 // Update main view
 [mainScrollViewOutlet setNeedsDisplay:YES];
 }
}

Similarly, using the IG_FLIP_HORIZONTAL constant for the last argument of IG_IP_flip() flips an image horizontally.

As in the case of Rotating an Image, this function physically rearranges the pixels of your source image.

This is an original image flipped vertically:

ImageGear Professional v18 for Mac | 77

1.2.3.3 Using the Sample Code For Your Application

If you want your applications to use any of the features available in the sample, you can cut and paste the source code
from the sample right into your application. ImageGearDemo sample contains all of the code for the sample application.
For more information on the functions referenced in this tutorial, see Using ImageGear and the Core Component API
Function Reference.

ImageGear Professional v18 for Mac | 78

1.2.4 Using ImageGear

This chapter describes how to use ImageGear's functions to fulfill your applications' imaging needs. Examples and
recommendations for using ImageGear functions can be found in the API Reference chapters as well as in the Chapter.

ImageGear Professional v18 for Mac | 79

1.2.4.1 General Aspects

This section provides information about the following:

ImageGear Architecture Overview
API Naming Conventions
Error Detection and Handling
ImageGear Components

ImageGear Component Descriptions
ImageGear Core Component
ImageGear GIF/TIFF-LZW Component
ImageGear Medical Component
ImageGear PDF Component

Component Manager API
Calling ImageGear Component API Functions
ImageGear Component Names

Thread Safety
Global Control Parameters
Callback Functions

Private Data Use in Callback Functions
Registering a Callback Function
Status Bar Callback

ImageGear Professional v18 for Mac | 80

1.2.4.1.1 ImageGear Architecture Overview

ImageGear API is a set of C functions, callback function declarations, structures, enumerations, and macros.

The central element in ImageGear API is the single page image handle: HIGEAR. It can contain raster or vector data for
a single image page. The majority of ImageGear API functions take HIGEAR as a parameter. See Single-Page Images for
more information.

ImageGear also allows working with multi-page documents. See Multi-Page Documents for more information.

The most common way to obtain a HIGEAR is to load a page from an image file, located on a disk, in a memory buffer,
or at an Internet location. You can also create a blank HIGEAR or paste an image from clipboard. See the
following sections for details:

Loading Images
Clipboard Operations

Once the image is in memory, you can process it in a variety of ways, for example: save to a disk file, a memory buffer,
or an internet location, display, print, apply image processing operations, convert the image to a different pixel format,
access image pixels directly, annotate the image, or recognize text in the image. See the following sections for details:

Saving Images
Displaying Images
Processing Images
Color Management
Accessing Image Pixels
Annotating Images

ImageGear also provides advanced metadata (non-image data) support, including support for TIFF, EXIF, XMP, IPTC,
Photoshop, and other types of metadata. Note, however, that ImageGear does not store metadata with a HIGEAR or
HMIGEAR handle, but instead provides callbacks to get or set (add) metadata during image loading and saving. It is the
application's responsibility to store the metadata between loading and saving an image. See Non-Image Data Processing
for details.

Several image file formats have features that are not used by other file formats. ImageGear provides specialized API for
these formats. Please see Advanced Image Formats for details.

See these additional topics for information on other important aspects of ImageGear API:

Error Detection and Handling
ImageGear Components
Thread Safety

ImageGear Professional v18 for Mac | 81

1.2.4.1.2 API Naming Conventions

ImageGear Core Component functions are named in accordance with their purpose within the Core Component API
Function Reference.

With the exception of callback functions, which always begin with the prefix "LPFNIG", the function names adhere to the
following conventions:

All function names begin with the prefix "IG_" (always in uppercase). This is to identify them as ImageGear functions,
and to avoid conflicts with your application's functions.
Following "IG_" is the name of the group to which the function belongs.

The table below displays ImageGear function groups' name and purpose:

Function Name Function Purpose

IG_clipboard_ ...() Clipboard

IG_ ... _CB_ ...() or LPFNIG_ ...()_CB_ Callback

IG_colorspace_conversion_ ...() Color space conversion

IG_comm_ ...() Component manager

IG_cpm_ ...() Color profile manager

IG_DIB_ ...() DIB Info Services

IG_display_ ...() Display

IG_dspl_ ...() Displaying and printing

IG_error_ ...(), IG_version_ ...(), IG_err_...() Library utility

IG_fltr_ ...() Format Filter processing

IG_FX_ ...() Special Effects

IG_image_ ...() or IG_palette_ ...() Image utility

IG_IP_ ...() Image processing

IG_gctrl_ ...() Global control parameters processing

IG_GUI_ ...() Graphical user interface

IG_load_ ...() Loading

IG_mult_ ...() Multimedia

IG_pixel_ ...() Pixel access

IG_save_ ...() Saving

IG_thread_ ...() Thread safety

IG_util_colorspace_ ...() Color space utility

IG_vector_...() Vector utility

ImageGear Professional v18 for Mac | 82

1.2.4.1.3 Error Detection and Handling

ImageGear functions handle all errors in a single, uniform way. Even low-level ImageGear functions that you cannot
call directly handle errors in this same way.

When an error condition is detected by an ImageGear function, the function places an error code indicating
specifically what happened, along with information about where the error occurred, in an internal memory area called
the ImageGear error stack. This error stack remains available to your application as it executes, so you can inspect
and treat the errors where (in your program code) needed. After placing the error or errors on the error stack, the
ImageGear function returns to its caller (returning the count of errors now on the stack, if the function's return type is
AT_ERRCOUNT).

More than one error may be placed on the error stack as a result of a single ImageGear function call. This is because
an ImageGear function that you call will often call lower-level ImageGear functions (not directly callable by your
application). Each such lower level function may itself place an error onto the error stack before returning to its caller.
Upon return to your application, there may be several errors on the stack. Note that in such a case, the lowest level
function's error was placed on the stack first, and the highest level function (the one that your application called
directly) placed its error on the stack last, just before returning to your application, because it could not proceed (due
to the error).

ImageGear provides the following general functions for accessing the error stack:

IG_err_stack_clear Deletes all records (errors and warnings) from the error stack.

IG_err_count_get Returns the total number of records (errors plus warnings) on the error stack.

IG_err_error_check Returns the number of records of the specified level (either errors or warnings) on the error
stack.

IG_err_error_get Retrieves information about a record on the specified level of the error stack. Use this
function if you are only interested in errors but not in warnings, or only warnings and not
errors.

IG_err_record_get Obtains information about a record on the error stack. Use this function if you are interested
in both errors and warnings.

IG_err_error_set Places a record onto the error stack.

The following additional functions are available:

IG_error_check Returns the number of errors currently on the error stack.

IG_error_clear Despite its name, clears both errors and warnings from the stack. Same as
IG_err_stack_clear.

IG_error_get Retrieves information about an error from the error stack.

IG_error_set Places an error record onto the error stack.

IG_warning_check Returns the number of warnings currently on the ImageGear error stack.

IG_warning_clear Clears all warnings from the error stack.

IG_warning_get Retrieves an ImageGear warning Code and associated information from the error stack.

IG_warning_set Places an ImageGear warning onto the error stack.

The following functions provide access to error callback functions and data:

IG_err_callback_get Obtains error stack callback data and functions that are called to signal error stack
changes for the current thread.

IG_err_callback_set Sets error stack callback data and functions that are called to signal error stack changes
for the current thread.

ImageGear Professional v18 for Mac | 83

IG_errmngr_callback_get Obtains error stack callback data and functions that are called to signal error stack
changes for all threads.

IG_errmngr_callback_set Sets error stack callback data and functions that are called to signal error stack changes
for all threads.

The example below shows how you may get information about all errors on the error stack using IG_err_error_get
function. Refer to a description of this function in the Core Component API Function Reference for thorough
explanations of its arguments.

HIGEAR hIGear = 0; // Will hold the handle returned by IG_load_file
AT_ERRCOUNT nErrCount; // Count of errors on the stack upon function return

// Load image file "picture_bad.bmp" from working directory
// and obtain the image's HIGEAR handle:
nErrCount = IG_load_file ("picture_bad.bmp" , &hIGear);
if(nErrCount != 0)
{
 // Get all errors and report them
 AT_INT i;
 CHAR szFileName[MAX_PATH]; // ImageGear source file name where the error occurred
 INT nLineNumber; // Line number where the error occurred
 AT_ERRCODE nErrCode; // Error code
 AT_INT nValue1; // First value associated with the error
 AT_INT nValue2; // Second value associated with the error
 CHAR szExtraText[1024]; // Text description of the error
 for(i = 0; i < nErrCount; i ++)
 {
 IG_err_error_get(0, (UINT)i, szFileName, (UINT)sizeof(szFileName),
 &lineNumber, &nErrCode, &nValue1, &nValue2, szExtraText,
(UINT)sizeof(szExtraText));
 // Process the error information
 //...
 }
}
else
{
 //...
 // Destroy the image
 if(IG_image_is_valid(hIGear))
 {
 IG_image_delete(hIGear);
 }
}

Each ImageGear function, excluding all IG_dspl_...() functions, clears the error stack upon entry. Therefore,
after an ImageGear function call you should check the stack prior to your next ImageGear function call.

ImageGear Professional v18 for Mac | 84

1.2.4.1.4 ImageGear Components

ImageGear uses a component structure that consists of the Core (main) ImageGear component and a number of
additional components.

A component is a module that can be connected to the main ImageGear module using a platform-independent API. To
initialize the component functionality, attach the component to the main ImageGear module using the ImageGear
component manager API. When the component is attached, it gets access to all core ImageGear functions, and the core
ImageGear functionality can use the component's structures, functions, and control parameters.

Usually, ImageGear components contain functionality such as additional format filters (for example, LZW or PDF) or
additional image processing functionality (such as ImageClean, ART).

Once you have attached the component, it cannot be detached prior to unloading of the ImageGear Core module. All
components are detached and unloaded automatically at the time of the ImageGear Core module unloading.

ImageGear identifies every component by its name, and during the attachment process, it calculates the physical name
of the file where the component is located. By default ImageGear assumes that all components are located in the same
directory where the main ImageGear module is located, however you can specify a different folder from which to load
the components.

This section provides information about the following:

ImageGear Component Descriptions
ImageGear Core Component
ImageGear GIF/TIFF-LZW Component
ImageGear Medical Component
ImageGear PDF Component

Component Manager API
Calling ImageGear Component API Functions
ImageGear Component Names

ImageGear Professional v18 for Mac | 85

1.2.4.1.4.1 ImageGear Component Descriptions

The following sections summarize the ImageGear Professional components that are currently available. For more
information on these components, see the documentation pertaining to each one.

ImageGear Core Component
ImageGear GIF/TIFF-LZW Component
ImageGear Medical Component
ImageGear PDF Component

ImageGear Professional v18 for Mac | 86

1.2.4.1.4.1.1 ImageGear Core Component

The ImageGear Core Component provides the ImageGear Core Component API.

ImageGear Professional v18 for Mac | 87

1.2.4.1.4.1.2 ImageGear GIF/TIFF-LZW Component

This component allows you to work with GIF/TIFF-LZW compression images.

See Also:

GIF Non-image Data Structure

GIF File Format

LZW (Lempel-Ziv-Welch) Compression

ImageGear Professional v18 for Mac | 88

1.2.4.1.4.1.3 ImageGear Medical Component

The ImageGear Medical (MD) component is a full-featured ImageGear component that supports the DICOM format,
contains a custom API, and includes expanded image processing capabilities beyond those of the baseline ImageGear
library.

The format support of the MD component includes loading and saving monochrome, palletized, and true color medical
images using the following file formats:

DICOM 3.0 Part 10-compliant images
DICOM 3.0 Raw Format (non-Part 10-compliant)

In addition, your application will continue to support all ImageGear-supported file formats, allowing you to convert an
image of a different format to a medical image format, and vice-versa.

See Also:

Advanced Image Formats > DICOM

MD Component API Reference

ImageGear Professional v18 for Mac | 89

1.2.4.1.4.1.4 ImageGear PDF Component

The ImageGear PDF Component allows you to load, save, and process Adobe PDF (Portable Document Format) file
format images using Core ImageGear and other ImageGear Component functionality.

In addition, this PDF Component provides the ability to extract text from loaded PDF image files.

PostScript format is not supported on MacOS X platform.

See Also:

Advanced Image Formats > Adobe PDF

PDF Component API Reference

ImageGear Professional v18 for Mac | 90

1.2.4.1.4.2 Component Manager API

ImageGear provides the component manager API for attaching, checking, function requesting, and retrieving information
of every ImageGear component.

To attach (load) the component to the core ImageGear you can use the function:

IG_comm_comp_attach(LPCHAR lpCompName)

This function attaches the component, determined by lpCompName (e.g., "PDF"), to the core ImageGear module. If a
component with the specified name is already attached, this function does nothing. See also the ImageGear Component
Names section.

To check if a component is already attached, use the function:

IG_comm_comp_check(LPCHAR lpCompName)

If the component is attached, this function returns TRUE; it returns FALSE otherwise.

The following two functions are used for calling component API functions. See more details on using these functions in
Calling ImageGear Component API Functions.

IG_comm_function_call(LPCHAR lpEntryName, ...);

IG_comm_entry_request(
 LPCHAR lpEntryName,
 LPAFT_ANY *lpFuncPtr,
 LPCHAR lpReason
);

The following function retrieves information about all attached components:

IG_comm_comp_list(
 LPUINT *lpnCount,
 UINT nIndex,
 LPCHAR lpComp,
 DWORD dwCompSize,
 LPUINT lpnRevMajor,
 LPUINT lpnRevMinor,
 LPUINT lpnRevUpdate,
 LPCHAR lpBuildDate,
 UINT nBDSize,
 LPCHAR lpInfoStr,
 UINT nISSize
);

It returns the number of attached components, and the complete information about the component specified by nIndex.

ImageGear Professional v18 for Mac | 91

1.2.4.1.4.3 Calling ImageGear Component API Functions

As mentioned in the previous section, some components only provide support for additional file formats, and don’t
expose any API functions, and some components provide additional API. If your application uses a component that
provides additional API functions, there are a few additional steps needed to use these API functions.

There are two ways that the application can call a function implemented by the component. The first method is calling a
component’s API functions via a component manager function:

IG_comm_function_call(LPCHAR lpEntryName, ...);

where lpEntryName is a name of the requested function in the form "<COMP_NAME>.<FUNC_NAME>", where
<COMP_NAME> is a name of the component that provides the function, and <FUNC_NAME> is the name of the function.

To simplify the calling of component functions, all components provide special macros for each of their public functions.
This macro is located in the header file i_<COMP_NAME>.h for each component. For instance, i_CLN.h for ImageClean
component:

#define IG_IC_clean_borders_ex(hIGear, nLeftBorderSize, nRightBorderSize,
nTopBorderSize, nBottomBorderSize, nMinLinesNum, nMinLineWidth)
 ((AT_ERRCOUNT (CACCUAPI *)(LPCHAR, HIGEAR, UINT, UINT, UINT, UINT, UINT, UINT))
IG_comm_function_call)("CLN.IG_IC_clean_borders_ex", hIGear, nLeftBorderSize,
nRightBorderSize, nTopBorderSize, nBottomBorderSize, nMinLinesNum,
nMinLineWidth)

With the use of this macro, a call to a component function looks exactly like a call to a regular C function:

#include "i_CLN.h"
…
IG_IC_clean_borders_ex(hIGear, nLeftBorderSize, nRightBorderSize,
nTopBorderSize, nBottomBorderSize, nMinLinesNum, nMinLineWidth);

Another method is to obtain a pointer to the component function and then call this function via its pointer. Use the
following function to obtain a component function pointer:

IG_comm_entry_request(
 LPCHAR lpEntryName,
 LPAFT_ANY *lpFuncPtr,
 LPCHAR lpReason
);

The first parameter is the name of the function in the format described above.
The second parameter is a pointer a variable of type LPAFT_ANY, which will be overwritten with the pointer to the
necessary function.
The third parameter is a text description reason to get access for this function (it is optional and can be NULL).

The component public header contains a type declaration for all its public functions. The correct way to call such a
function would be to declare the variable of the necessary function type defined in the component’s public header; use
IG_comm_entry_request() to initialize this variable with the correct value and then call it.

Calling component API functions by their pointers provides better performance, because it avoids the overhead of finding
a function pointer by its name. If your application does not call component functions repeatedly in time-critical routines,
you can use the simple method of calling component functions via their macros.

ImageGear Professional v18 for Mac | 92

1.2.4.1.4.4 ImageGear Component Names

Below is the list of ImageGear components and their short names that you should provide for IG_comm_comp_attach()
through the lpCompName argument:

ImageGear Core Component - "CORE"
ImageGear LZW Component - "LZW"
ImageGear Medical Component - "MED"
ImageGear PDF Component - "PDF"

ImageGear Professional v18 for Mac | 93

1.2.4.1.5 Thread Safety

ImageGear and its associated components are completely thread-safe. The implementation of thread safety in
ImageGear maximizes the performance of threaded applications on multi-CPU computers. Every ImageGear API function
can be executed within a thread.

Five thread safety APIs are explained in detail in the Core Component API Function Reference.

IG_thread_data_ID_associate() provides thread customized ImageGear settings.
IG_thread_data_ID_get() provides thread customized ImageGear settings.
IG_thread_local_data_cleanup() provides thread customized ImageGear settings.
IG_thread_image_lock() is required in the situation where several threads are accessing the same HIGEAR
concurrently AND at least one of these threads performs an operation that modifies/deletes HIGEAR.
IG_thread_image_unlock() is required in the situation where several threads are accessing the same HIGEAR
concurrently AND at least one of these threads performs an operation that modifies/deletes HIGEAR.

In most cases, no additional API calls are required to achieve thread safety.

Access to the same PDF document from multiple threads is not permitted, because multiple threads cannot share
Adobe PDF Library data types. PDF docs created/opened in the main thread can be only used from the main thread.

ImageGear Professional v18 for Mac | 94

1.2.4.1.6 Global Control Parameters

ImageGear provides a set of API functions that allow you to add new global control parameters to your ImageGear
application, set new values for existing global control parameters, and retrieve information about these parameters.

To add a new global parameter as well as to set new values for existing parameters, use the function
IG_gctrl_item_set:

IG_gctrl_item_set(
 LPCHAR ControlID,
 AT_MODE nValueType,
 LPVOID lpValue,
 DWORD dwValueSize,
 LPCHAR lpTextInfo
);

This function will search for the global parameter specified by the ControlIDname (syntax: "<GRPNAME>.<Param
name>"), and if it is found will set a new value for it. If it is not found, the function will add this new parameter to the
global control parameters list. Through the lpTextInfo argument, you can also set the text description of the specified
global parameter.

To retrieve information about the global control parameter, use the functions IG_gctrl_item_get and
IG_gctrl_item_by_index_get:

IG_gctrl_item_get(
 LPCHAR CtrlID,
 LPAT_MODE lpnValType,
 LPVOID lpValue,
 DWORD dwValSize,
 LPDWORD lpdwValSize,
 LPCHAR lpTextInfo,
 DWORD dwTextBufSize,
 LPDWORD lpdwTextInfoSize
);

IG_gctrl_item_by_index_get(
 UINT nIndex,
 LPCHAR CtrlID,
 DWORD dwIDSize,
 LPAT_MODE lpnValType,
 LPVOID lpValue,
 DWORD dwValSize,
 LPDWORD lpdwValSize,
 LPCHAR lpTextInfo,
 DWORD dwTextBufSize,
 LPDWORD lpdwTextInfoSize
);

The first function returns the value and the text description of the global control parameter specified by name. The
second function returns information about the control parameter specified by its index in the global parameters list.
Both functions return FALSE if the specified global parameter is not found.

If you want to know the general amount of global control parameters currently existing in the global parameters list,
call the function IG_gctrl_item_count_get:

IG_gctrl_item_count_get();

If you need to know an index of the global control parameter in the parameters array, use this function
IG_gctrl_item_id_get:

IG_gctrl_item_id_get (

ImageGear Professional v18 for Mac | 95

 UINT nIndex,
 LPCHAR lpCtrlID,
 UINT nBufSize
);

Please also see the list of all ImageGear Global Control Parameters.

ImageGear Professional v18 for Mac | 96

1.2.4.1.7 Callback Functions

ImageGear provides callback function support for load, save, print, and other operations to enable your application to
control these processes. Callback functions are functions for which you write the code, and whose names you provide
to ImageGear. ImageGear will call them at appropriate breakpoints in an operation (such as after each raster line has
been processed), at which time your function may modify image data, display status information, or perform other
auxiliary operations specified before returning control to ImageGear.

This section discusses how to declare, code, and invoke an ImageGear callback function; how to register an
ImageGear callback function; and how to work with the status bar and tag callback functions.

Callbacks are actually function types (or templates) where you can include your own code to carry out extra
operations during normal ImageGear file processing. Callbacks can be passed data, return data, or both. All callback
type names begin with the prefix "LPFNIG" which stands for "Long Pointer to a FuNction of ImageGear". Due to this
unusual prefix, their descriptions can easily be found in the section Core Component Callback Functions Reference in
the Core Component API Function Reference.

Some callback functions return a Boolean value to ImageGear, indicating whether you want ImageGear to continue
the operation, disregard the instructions in the callback, or abort an operation. Most callbacks are VOID, exchanging
their information through their arguments.

How a callback function is coded, declared to ImageGear, and invoked by ImageGear, is illustrated by the simple
examples below in which an application calls function IG_load_file_display() to load and then display an image.
IG_load_file_display() will automatically call your callback of type LPFNIG_LOAD_DISP.

The following example shows a call to register a display callback and the callback itself:

VOID ACCUAPI my_set_attributes_func
 (
 LPVOID lpPrivateData, /* Ptr to private data area */
 HIGEAR hIGear /* Handle of loaded image */
)
{
/* This callback function disables centering of the image: */
IG_dspl_layout_set(hIGear, IG_GRP_DEFAULT, IG_DSPL_ALIGN_MODE, NULL, NULL, >NULL,
0,
IG_DSPL_ALIGN_X_LEFT|IG_DSPL_ALIGN_Y_TOP, 0, 0.0);
return;
}

In response to the above call, ImageGear loads the image, creates a DIB and a HIGEAR data structure, and then calls
your callback function. When your callback function returns, ImageGear will display the image, and then return to the
statement following IG_load_file_display().

Note that your module containing the IG_load_file_display() should contain in its initial definitions a function
prototype or declaration for the callback function. There are two ways that the callback can be declared:

By prototype:

VOID ACCUAPI my_set_attributes_func (LPVOID lpPrivate, HIGEAR hIGear);

By declaration:

LPFNIG_LOAD_DISP my_set_attributes_func;

If you do not write code for a callback function type that is part of a normal API call, such as
IG_load_file_display(), you can just pass in a NULL for the callback parameter.

This section also provides information about the following:

Private Data Use in Callback Functions
Registering a Callback Function
Status Bar Callback
Using Filter Callback Functions to Process Non-Image Data

ImageGear Professional v18 for Mac | 97

1.2.4.1.7.1 Private Data Use in Callback Functions

If you look at the argument lists of the ImageGear callback function types you will notice that many of them have an
argument for holding private data. This can be used for anything you like. In some cases, the function which calls or
registers the callback will also contain a parameter for private data which will be directly passed to your callback.
IG_load_file_display() fits this description. In the following example, you will see how the fourth argument of this
function can be used to pass private data to the callback for additional flexibility:

LPFNIG_LOAD_DISP my_set_attributes_func;
HIGEAR hIGear;
HDC hDC;
DWORD dwGroupID
HWND hWnd
AT_ERRCOUNT nErrcount;
AT_MODE nAlignMode; /* align mode */
/* Instead of NULL, give the address where private data (&bCenter) begins:*/
nErrcount = IG_load_file_display ("picture.bmp", hDC, dwGroupID, hWnd,
 my_set_attributes_func, &nAlignMode, &hIGear);
/* And the corresponding callback function: */
VOID ACCUAPI my_set_attributes_func (LPVOID lpPrivateData, HIGEAR hIGear)
{
/* Instead of FALSE, give the BOOL value located at the start of the private data
area: */
IG_dspl_layout_set(hIGear, IG_GRP_DEFAULT, IG_DSPL_ALIGN_MODE, NULL, NULL, NULL, 0,
(AT_MODE) *lpPrivateData, 0, 0, 0);
>return;
}

You can pass any amount of private data that you would like. You can define a structure to hold your private data,
and can provide the address of the structure (instead of the address of a single variable as in the above example).

ImageGear Professional v18 for Mac | 98

1.2.4.1.7.2 Registering a Callback Function

You inform ImageGear of each callback function that you want it to call by specifying a pointer to that function as an
argument in a call to an IG_...() function. The ImageGear functions that include at least one callback are:

IG_load_file_display()
IG_file_IO_register()
IG_load_tag_CB_register()
IG_save_tag_CB_register()
IG_status_bar_CB_register()

Some callbacks are registered with special registration calls while others are passed in as arguments to normal API calls.
The reason for this is that some callbacks need to be called during more than one ImageGear process. Callbacks of this
nature will generally be registered with a special registering function (which includes the word "register") and called by
ImageGear behind the scenes.

Other callbacks whose function is limited to just one API call will be passed in as an argument .

These callbacks are often essential to the completion of their host function .

If you've registered a callback function using an IG_ ..._CB_register() function, you can un-register it by calling the
function again, and supplying a NULL in place of the pointer to the callback function.

In each case, the IG_...() function's description in Core Component API Function Reference chapter describes what type
the callback function must be. This refers to the argument sequence with which ImageGear is going to call that particular
callback function.

ImageGear Professional v18 for Mac | 99

1.2.4.1.7.3 Status Bar Callback

ImageGear function IG_status_bar_CB_register() registers a callback function that will thereafter automatically be called
by many ImageGear functions at the end of processing each raster line. The arguments let your callback function
compute the completed percentage, so you can maintain and update a status bar or a message box showing this
information.

Most of the following ImageGear functions will automatically call (not "register") a status bar callback function if you've
registered it:

IG_load_ ...()
IG_save_ ...()
IG_dspl_ ...()
IG_IP_ ...()
IG_FX_ ...()

To register your own status bar callback function (and the area you use if you want to pass your own data to it) make
the following call:

IG_status_bar_CB_register (my_status_bar_CB_func, &myPrivateData);

Your status bar callback function must be of type LPFNIG_STATUS_BAR. Whenever called by ImageGear, your status bar
callback function will be called with the following argument list:

BOOL ACCUAPI my_status_bar_CB_func (LPVOID lpPrivate, PIXPOS cYPos,
DIMENSION dwHeight);

Note the following:

The function returns an AT_BOOL value, TRUE or FALSE. Return TRUE to have ImageGear proceed normally, return
FALSE to tell ImageGear to put an IGE_INTERRUPTED_BY_USER error in the error stack and return from the IG_...()
call it is processing (that is, to abort the operation returning the above-named error).
The second argument indicates the raster line number just processed.
The third argument indicates the total number of raster lines in the image. However, since some functions do not
process the lines in order, the quantity (cYPos/dwHeight) in general will not tell you the fraction completed. Instead,
your callback function should count the number of times it has been called since the operation began, and divide this
count by dwHeight to obtain the fraction completed.

ImageGear Professional v18 for Mac | 100

1.2.4.2 Images and Documents

This section provides information about the following:

Single-Page Images
DIB Information
Image Orientation

Multi-Page Documents
Accessing Image Pixels

Pixel Access Modes
Allocating Space for ImageGear Pixel Access
Getting and Setting Individual Pixels
Getting and Setting Linear Groups of Pixels
Getting and Setting a Rectangular Area of Pixels
Filling DIB Area

Grayscale Look-Up Tables
Clipboard Operations

Copying/Cutting to the Clipboard
Checking the Contents of the Clipboard
Pasting an Image from the Clipboard

Run Ends Image Storage Format
Decompressing and Compressing the Entire Image
Run Ends Format Description
Accessing Run Ends Data
Sample Run Ends Code

Working with Image Utility Functions
Creating DIBs and DDBs
Deleting DIBs and DDBs
Reading and Writing Palettes
Getting Information about a HIGEAR Image

Working with Gigabyte-Sized Images
Quick Start
How to Configure
Accessing Pixels of a Gigabyte-Sized Image
Reading and Writing Gigabyte-Sized Image Files

ImageGear Professional v18 for Mac | 101

1.2.4.2.1 Single-Page Images

The central element in ImageGear API is the single-page image handle: HIGEAR. The majority of ImageGear API
functions take HIGEAR as a parameter. HIGEAR encapsulates the following data:

DIB information, such as dimensions, color space, and channel depths. See DIB Information for more details.
Image pixels (if HIGEAR contains a raster image). Usually, you do not need to access the image pixels directly. You
can load, display, process, save images, and do other operations using high-level API that accesses image pixels
internally. If you need to access image pixels directly, see Accessing Image Pixels for details.
Image display attributes. See Displaying Images for details.
Image orientation. See Image Orientation for details.
Color profile (optional). See Using Color Profile Manager for details.
Non-rectangular Area of Interest (optional). See Region of Interest Processing for details.
Format-specific information (for DICOM).

Usually you create a HIGEAR handle by loading an image from a disk file, or from memory. See Loading Images for
details. You can also create a new HIGEAR handle using IG_image_create, or import a Windows DIB into HIGEAR using
IG_image_DIB_import.

When HIGEAR is no longer used, you must delete it using IG_image_delete.

See Also

Multi-Page Documents

ImageGear Professional v18 for Mac | 102

1.2.4.2.1.1 DIB Information

ImageGear provides two ways to access image attributes: via the HIGEAR handle, and via the special object
HIGDIBINFO, which encapsulates the image attributes.

Image Attribute To Access via HIGEAR To Access via HIGDIBINFO

Width IG_image_dimensions_get IG_DIB_width_get

Height IG_image_dimensions_get IG_DIB_height_get

Color Space IG_image_colorspace_get IG_DIB_colorspace_get

Channel Depths IG_image_channel_count_get

IG_image_channel_depth_get

IG_image_channel_depths_get

IG_DIB_channel_count_get

IG_DIB_channel_depth_get

IG_DIB_channel_depths_get

Palette (for images that have Indexed colorspace) IG_palette_get

IG_palette_set

IG_DIB_palette_alloc

IG_DIB_palette_length_get

IG_DIB_palette_size_get

IG_DIB_palette_pointer_get

Resolution IG_image_resolution_get

IG_image_resolution_set

IG_DIB_resolution_get

IG_DIB_resolution_set

Signed attribute IG_image_is_signed_get

IG_image_is_signed_set

The HIGDIBINFO object only contains the attributes and does not contain the pixels.

Use IG_DIB_info_create to create a DIB info object. Use IG_DIB_info_copy to create a copy of an existing object. Use
IG_image_DIB_info_get to obtain DIB information from a HIGEAR handle.

When the HIGDIBINFO object is no longer in use, you must delete it using IG_DIB_info_delete.

You cannot edit the DIB information of a HIGEAR directly. Instead, use image processing functions to modify the
image: resize, convert to a different color space, change its resolution, etc.

ImageGear Professional v18 for Mac | 103

1.2.4.2.1.2 Image Orientation

ImageGear uses two different places to store an image's orientation information: Orientation attribute of HIGEAR, and
Orientation attribute of display settings.

When ImageGear loads an image, and the image’s file format supports storing the Orientation attribute (e.g., TIFF
format), ImageGear stores this attribute in HIGEAR. You can get or modify this attribute with IG_image_orientation_get
and IG_image_orientation_set, correspondingly.

If the application displays the image, ImageGear copies HIGEAR’s Orientation attribute to the image’s Display settings.
This allows ImageGear to display the image using the orientation specified in the source file. You can get or set display
orientation using IG_dspl_orientation_get and IG_dspl_orientation_set, correspondingly. Changing the display
orientation does not change the HIGEAR Orientation attribute. Changing the HIGEAR Orientation attribute does not
change the display orientation.

When saving an image to a format that supports orientation, ImageGear saves the HIGEAR’s Orientation attribute to the
file’s header, and does not take the display orientation into account. If you’d like to save an image using the current
display orientation, copy the orientation from the display settings to HIGEAR.

ImageGear Professional v18 for Mac | 104

1.2.4.2.2 Multi-Page Documents

Along with a single-page image handle (HIGEAR), ImageGear provides support for multi-page images. The HMIGEAR
handle represents an array of single-page images. You can use ImageGear to:

Create and delete an internal representation of a multi-page image (HMIGEAR handle)
Open and associate a multi-page image file with an external file
Access and manipulate pages within the multi-page image
Manipulate pages in the external image file, such as loading, saving, swapping, and deleting pages
Retrieve information about multi-page images and about associated external files

Please see Working with Multi-Page Documents for more information.

ImageGear Professional v18 for Mac | 105

1.2.4.2.3 Accessing Image Pixels

ImageGear is equipped with several functions that let you get and set the values of individual pixels, rows or columns of
pixels, and rectangular groups of pixels. This family of functions is referred to as the "pixel access" functions.

All functions include the acronym "DIB" in their names. Every pixel access function is part of a "_get()/_set()" pair of
functions. In other words, for each pixel access type, you can obtain the value(s) of a pixel or group of pixels, and set
the value(s) of a pixel or group of pixels.

To obtain descriptions of each pixel access function and view additional sample code, refer to the Core Component API
Function Reference.

This section provides information about the following:

Pixel Access Modes
Allocating Space for ImageGear Pixel Access
Getting and Setting Individual Pixels
Getting and Setting Linear Groups of Pixels
Getting and Setting a Rectangular Area of Pixels
Filling DIB Area

ImageGear Professional v18 for Mac | 106

1.2.4.2.3.1 Pixel Access Modes

Pixel access functions have two modes of operation: legacy (prior to ImageGear v14.5) and new (ImageGear v14.5 and
newer). The default mode is legacy, in which these functions behave the same way they did before v14.5. So if you have
existing code written for ImageGear v14.4 or earlier that uses pixel access functions, you shouldn't need to update it.

New pixel access mode provides more access to the new storage system. It lets you work directly with higher bit depths,
advanced color spaces, and alpha/extra channel data included with the main channel data.

If you are migrating from legacy mode to new mode, you must be aware of the following differences between these
modes:

For RGB images, color channel order is RGB (in legacy mode, it is BGR)
DIBs may use bit depths that were not supported by the Legacy mode (i.e., 36-bit, 48-bit RGB)
Additional color spaces are supported (i.e., LAB, YUV)
Alpha and extra channel data is included on a per-pixel basis. For example, if you have a 24-bit RGB image with an 8-
bit alpha channel, the pixel data will look like RGBA, RGBA, RGBA and so on, where R, G, B, and A are each one byte.
Pixel packing and raster padding are as follows:

Packing Mode Legacy New

IG_PIXEL_PACKED 1 bit pixels are packed 8 into a byte; 4 bit pixels are
packed 2 into a byte; other pixels are not packed. Rasters
are padded to DWORD boundary.

1 bit pixels are packed 8 into a
byte; other pixels are not
packed.

In 32-bit edition of
ImageGear, rasters are
padded to DWORD
boundary.
In 64-bit edition of
ImageGear, rasters are
padded to QWORD
boundary.

IG_PIXEL_UNPACKED Pixels are not packed; each 1-bit pixel occupies a byte.
Rasters are padded to BYTE boundary.

Pixels are not packed; each 1-
bit pixel occupies a byte.

In 32-bit edition of
ImageGear, rasters are
padded to DWORD
boundary;
In 64-bit edition of
ImageGear, rasters are
padded to QWORD
boundary.

Note that 1-bit pixels are the only pixels that are packed in the new mode - 8 pixels are stored in each byte. Pixels of
any other channel depths are stored using 1, 2, or 4 bytes per channel. If a pixel has more than one channel and use 1
bit per channel, each of its channels will be stored in a separate byte. A channel value with depth of 2-8 bits will be
stored in one byte, 9-16 bits in two bytes, and 17-32 bits in four bytes.

To use the new mode, you need to set the DIB.PIX_ACCESS_USE_LEGACY_MODE global control parameter to
IG_PIX_ACCESS_MODE_NEW, as shown in the example below.

AT_MODE pixAccessMode = IG_PIX_ACCESS_MODE_NEW;
IG_gctrl_item_set("DIB.PIX_ACCESS_USE_LEGACY_MODE", AM_TID_AT_MODE,
 &pixAccessMode, sizeof(pixAccessMode), NULL);

If pixel access mode is IG_PIX_ACCESS_MODE_LEGACY, and the image uses a pixel format not supported by the legacy
mode, pixel access “…_get” functions convert image pixels into the closest available legacy supported format.  

ImageGear Professional v18 for Mac | 107

1.2.4.2.3.2 Allocating Space for ImageGear Pixel Access

A common thread for all pixel access _get() functions is that you must provide an array with enough space to
accommodate the data that you will receive.

Use IG_DIB_raster_size_get() to get the size of the array for storing a complete raster of an image.
Use IG_DIB_pixel_array_size_get to get the size of the array for storing a specified number of pixels.
Use IG_DIB_pixel_array_size_get to get the size of the array for storing a specified number of pixels from a single
row, column, or line.
Use IG_DIB_area_size_get to get the size of the array for storing a rectangular area of pixels.

ImageGear Professional v18 for Mac | 108

1.2.4.2.3.3 Getting and Setting Individual Pixels

There are two pairs of ImageGear functions for getting and setting the value of an individual pixel.

IG_DIB_pix_get() and IG_DIB_pix_set() get and set a pixel value as a HIGPIXEL object handle.
IG_DIB_pixel_get() and IG_DIB_pixel_set() get and set a pixel value into / from a byte array. These two functions
take into account the current Pixel Access Mode. If pixel access mode is IG_PIX_ACCESS_MODE_LEGACY, and the
image uses a pixel format not supported by the legacy mode, the pixel is converted into the closest available legacy
supported format. See Pixel Access Modes for more information.

All pixel access functions consider the coordinates 0,0 as the upper left-hand corner of the bitmap data.

ImageGear Professional v18 for Mac | 109

1.2.4.2.3.4 Getting and Setting Linear Groups of Pixels

ImageGear lets you get and set the values of linear groups of pixels that run in a horizontal, vertical, or diagonal
direction.

IG_DIB_column_get() Gets the values of a variable-length (vertical) column of pixels.

The IG_DIB_column_get() function requires that you set the nX parameter to the
horizontal position of the column that you would like to get, and also the first and last row
from which you would like to get the pixel values. For this, you set the values of nY1 and
nY2. You also give it a pointer to and nLenBytes (size in bytes) of the buffer to which you
will store the pixel values. This function will return the actual number of pixel values
acquired: lpNumPixels. If the buffer size of nLenBytes is not large enough to accommodate
the number of pixels specified by nY1 and nY2, the line of pixels will be truncated, and you
will not receive all of the pixels that you specified.

IG_DIB_column_set() Sets the values of a column of pixels.

IG_DIB_column_set() does just the opposite as its _get() counterpart. It takes the pixel
values in the buffer and transfers a specified number of them to a HIGEAR image at row
nX, and columns nY1 through nY2. You also supply this function with the number of pixel
values that you will be setting, where:

max # of pixels to set = (nY2 - nY1) + 1

IG_DIB_line_get() Gets the values of a variable-length line of pixels.

Gives you access to the line of pixel values between any two sets of points in the image
(i.e., a diagonal line, a horizontal line, or a vertical line). For this reason, it requires that
you have set two x coordinates and two y coordinates. If you were to give equal values to
either the x pair of coordinates or the y pair of coordinates, you would specify a line that
was strictly horizontal or vertical, respectively. These get/set functions require that you
give the size in bytes of the buffer and its address.

IG_DIB_line_set() Sets the values of a line of pixels.

Gives you access to the line of pixel values between any two sets of points in the image
(i.e., a diagonal line, a horizontal line, or a vertical line). For this reason, it requires that
you set two x coordinates and two y coordinates. If you were to give equal values to either
the x pair of coordinates or the y pair of coordinates, you would specify a line that was
strictly horizontal or vertical, respectively. These get/set functions require that you give the
size in bytes of the buffer and its address.

IG_DIB_raster_get() Gets the values of a full raster line of pixels.

Works similarly to the IG_DIB_column_get() and IG_DIB_row_get() functions, except that
it will get the values of a full (horizontal) raster line of pixels. This function is quite a bit
easier to use than the above functions, however, because you do not need to supply the
beginning and ending position of the line. Also, while you must allocate sufficient memory
for the data, you do not need to tell ImageGear what number of bytes your buffer contains.

IG_DIB_raster_set() Sets the values of a full raster line of pixels.

Works similarly to the IG_DIB_column_set() and IG_DIB_row_set() functions, except that
it will set the values of a full (horizontal) raster line of pixels. This function is quite a bit
easier to use than the above functions, however, because you do not need to supply the
beginning and ending position of the line. Also, while you must allocate sufficient memory
for the data, you do not need to tell ImageGear what number of bytes your buffer contains.

IG_DIB_row_get() Gets the values of a variable-length (horizontal) row of pixels.

This function works exactly like IG_DIB_column_get(), except that it gets the values of a
horizontal row of pixels.

IG_DIB_row_set() Sets the values of a row of pixels.

This function works exactly like IG_DIB_column_set(), except that it sets the values of a
horizontal row of pixels.

ImageGear Professional v18 for Mac | 110

All pixel access functions consider the coordinates 0,0 as the upper left-hand corner of the bitmap data.

Raster and row access API allow packing more than one pixel per byte; to pack more than one pixel per byte, set the
nFormat argument to IG_PIXEL_PACKED. For more details, see Pixel Access Modes.

See Also

Allocating Space for ImageGear Pixel Access Functions

ImageGear Professional v18 for Mac | 111

1.2.4.2.3.5 Getting and Setting a Rectangular Area of Pixels

Use IG_DIB_area_get() and IG_DIB_area_set() functions for getting and setting the values of a rectangular area of an
image.

Use IG_DIB_area_size_get to get the size of the array for storing a rectangular area of pixels.

All pixel access functions consider the coordinates 0,0 as the upper left-hand corner of the bitmap data.

These functions take into account the current pixel access mode (new or legacy). See Pixel Access Modes for more
details.

ImageGear Professional v18 for Mac | 112

1.2.4.2.3.6 Filling DIB Area

The IG_DIB_flood_fill() function fills an area in the DIB which is surrounded by a border of the specified color.

ImageGear Professional v18 for Mac | 113

1.2.4.2.4 Grayscale Look-Up Tables

Grayscale Look Up Tables map a 8…16 bit image to 8 bit grayscale, allowing you to display a specific contrast range of
an image, or to apply a non-linear transform to the image pixels for display. Many image processing functions also take
the grayscale Look Up Tables into account, and apply processing on the contrast range specified by the grayscale LUT
rather on the whole contrast range.

ImageGear provides a set of functions for working with grayscale LUTs. A grayscale LUT object is represented as an
opaque handle: HIGLUT. Use the IG_LUT_... group of functions to create, destroy, and access features of grayscale
LUTs.

ImageGear allows you to attach grayscale LUTs to images and to image display settings.

An HIGLUT object can have various input and output depths. Both input and output can be signed or unsigned.

The ImageGear Medical component provides a set of API functions that allows you to build grayscale LUTs according to
various DICOM display settings.

Example:

HIGLUT GrayLUT;
AT_INT index;
// Create a LUT
IG_LUT_create(12, TRUE, 8, FALSE, &GrayLUT);
// Fill the LUT with a linear table, transforming 12-bit signed image to 8-bit
unsigned
for (index = -2048; index<2048; index++)
{
 value = (index + 2048) / 16;
 IG_LUT_item_set(GrayLUT, index, value);
}
IG_image_grayscale_LUT_update_from(hIGear, GrayLUT);

See Also:

Displaying Medical Grayscale Images

ImageGear Professional v18 for Mac | 114

1.2.4.2.5 Clipboard Operations

The "clipboard" functions provide the ability to cut, copy, and paste to and from the clipboard. With this function group,
you can cut or copy all or a portion of an image to the system clipboard, paste the contents of the clipboard into a new
HIGEAR image, or even "paste-merge" the contents of the system clipboard into a pre-existing image. You can also
check for the existence of data in the clipboard, and check the size of an image in the clipboard. For separate
descriptions of each clipboard function and additional sample code, please refer to the Core Component API Function
Reference.

This section provides information about the following:

Copying/Cutting to the Clipboard
Checking the Contents of the Clipboard
Pasting an Image from the Clipboard

ImageGear Professional v18 for Mac | 115

1.2.4.2.5.1 Copying/Cutting to the Clipboard

You may cut or copy the entire HIGEAR image, or just a specified rectangular portion of the image, to the clipboard. To
copy to the clipboard, call the function IG_clipboard_copy() with the image's HIGEAR handle, and the coordinates of the
AT_RECT rectangle that you would like to save to the clipboard. Pass NULL as the rectangle's value to if you want to
copy the entire image to the clipboard.

To cut to the clipboard, call IG_clipboard_cut(). The only difference in the prototype of these functions is that
IG_clipboard_cut() contains an extra argument for specifying what color pixel to use to replace the pixels that are "cut
away". This pixel color argument is usually set to black or white.

ImageGear Professional v18 for Mac | 116

1.2.4.2.5.2 Checking the Contents of the Clipboard

ImageGear provides two functions for examining the contents of the clipboard:

IG_clipboard_paste_available_ex() lets you know whether there is an image in the system clipboard. It is
recommended that you always call this function before pasting from the clipboard, and also before calling
IG_clipboard_dimensions(). This function returns an AT_BOOL value, where TRUE means that there is a paste-able
image in the clipboard.
IG_clipboard_dimensions() returns three values to you: the width of the image (in pixels), the height of the image (in
pixels), and the number of bits per pixel of the image on the clipboard. Using these values, you can determine
whether or not the image dimensions are appropriate for your purposes.

ImageGear Professional v18 for Mac | 117

1.2.4.2.5.3 Pasting an Image from the Clipboard

There are two ImageGear functions for pasting the image from the clipboard:

IG_clipboard_paste() creates a new HIGEAR image into which it pastes the contents of the clipboard.
IG_clipboard_paste_merge_ex() pastes the clipboard image into an existing HIGEAR image at the specified position.
If the clipboard image's width is greater than the image into which it is being pasted, it will automatically be cropped
to fit; the size of the original HIGEAR image will not change.

Before you call IG_clipboard_paste_merge_ex(), you can call the function IG_clipboard_paste_op_set() to specify the
kind of arithmetic operation you want to apply to the pixels of the two bitmaps that intersect during the paste-merge.
IG_clipboard_paste_op_set() takes an AT_MODE constant (defined in accucnst.h) that has a prefix of IG_ARITH_. The
full group of arithmetic constants is listed under the function description for IG_clipboard_paste_op_set(). ImageGear
also supplies a companion reading function IG_clipboard_paste_op_get() to read the current setting for the paste-merge
arithmetic operation. See Example code below:

AT_DIMENSION nWi, nHi;
UINT nBpp;
BOOL bPasteAvail;
AT_ERRCOUNT nErrcount;
HIGEAR hIGear, hIGear2;
AT_RECT rcClipRect;
nErrcount = IG_load_file("picture.bmp", &hIGear);
if (nErrcount == 0)
{
 nErrcount = IG_image_dimensions_get (hIGear, &nWid, &nHi, &nBpp);*/
 if (nErrcount == 0) /* If valid image dimensions */
 {/* send the bottom half of the image*/
 rcClipRect.top = nHi/2; /* to the clipboard */
 rcClipRect.left = 0;
 rcClipRect.right = nWi - 1;
 rcClipRect.bottom = nHi - 1;
 nErrcount = IG_clipboard_copy (hIGear, &rcClipRect);
 }
if (nErrcount == 0)
{
/*load a second image into which to merge the clipboard contents*/
 nErrcount = IG_load_file("picture2.bmp", &hIGear2);
}
if (nErrcount == 0)
{
 nErrcount = IG_clipboard_paste_available_ex(&bPasteAvail);
 if (bPasteAvail == TRUE)
 {
 /* set the paste-merge arithmetic operation to Img1^Img2 */
 nErrcount = IG_clipboard_paste_op_set(hIGear,
 IG_ARITH_XOR);
 /* merge clipboard's rectangular contents with upper left
 corner at position 0,0 */
 nErrcount = IG_clipboard_paste_merge_ex(hIGear2, 0 , 0);
 }
}

ImageGear Professional v18 for Mac | 118

1.2.4.2.6 Run Ends Image Storage Format

As of ImageGear v14.5, the Windows DIB format is no longer used for internal storage of images. So 1-bit images are
now always stored internally in run ends format (also called "run lengths" format). Previous versions of ImageGear had
IG_IP_convert_runs_to_DIB() and IG_IP_convert_DIB_to_runs() functions that converted the internally stored image
between run ends and DIB (uncompressed packed) format. These functions are no longer necessary because conversion
is performed automatically as needed.

When you read an image's pixel data using a pixel access function such as IG_DIB_raster_get(), ImageGear
decompresses the pixel data for that raster and stores it in your buffer. You can specify packed (8 pixels per byte) or
unpacked (1 pixel per byte) format. When you write pixel data using a pixel access function such as
IG_DIB_raster_set(), ImageGear will compress and store the pixel data in run ends format. It's important to realize that
this decompression and compression is the same work that was previously performed in IG_IP_convert_runs_to_DIB()
and IG_IP_convert_DIB_to_runs(). However, instead of being performed on the entire image before and after
processing, this work is performed on parts of the image during processing.

This section provides the following information:

Decompressing and Compressing the Entire Image
Run Ends Format Description
Accessing Run Ends Data
Sample Run Ends Code

ImageGear Professional v18 for Mac | 119

1.2.4.2.6.1 Decompressing and Compressing the Entire Image

If you want to work with an image directly and avoid using pixel access functions on a per-raster basis, you can
decompress the image to your own buffer using IG_DIB_area_get(). Here's an example scenario:

1. Call IG_DIB_area_size_get to get the size of the buffer.
2. Allocate the buffer (i.e., with new or malloc).
3. Call IG_DIB_area_get. ImageGear decompresses the image into your buffer.
4. Read/write uncompressed pixel data directly in your buffer.
5. Call IG_DIB_area_set if updating ImageGear's internal copy of the image is desired. ImageGear compresses the

image from your buffer.

ImageGear Professional v18 for Mac | 120

1.2.4.2.6.2 Run Ends Format Description

The run ends format is a specialized variant of run length encoding. Run length encoding relies on the fact that certain
types of images frequently contain parts where many adjacent pixels share the same color. A description of such an
occurrence is known as a run. Typically a run is described as 1) a color, and 2) the number of following pixels that are
that color. An image raster (or entire image) can be stored as a collection of runs. For example, an image of this page
could be described as "2000 white pixels, 5 black pixels, 15 white pixels, 5 black pixels, 15 white pixels, 5 black pixels,
30 white pixels" and so on.

Since the run ends format only works on 1-bit images, it can take advantage of the fact that there are only two possible
colors present in the raster: 0 and 1. Since there are only two possible colors, the color does not need to be stored for
each run. It is inferred from the previous run. Also, having only two colors makes it especially likely that long runs of
identically colored pixels will occur, as compared to images with more colors present.

The following points characterize the run ends format:

An image is stored as a collection of rasters encoded in run ends format. Each raster is independent - there is no
information shared between rasters. Therefore, consider only a single raster when thinking about the run ends
format.
A run ends raster is stored as an array of run ends. A run end is a value of type AT_RUN which marks the end of a
run by storing the horizontal position (X-coordinate) of where the next run begins.
Run ends are stored in order from left to right.
It is always assumed that the first run in a raster is white. If it is not, there will be a "null run" at the beginning of the
raster which ends at column 0. This is a means of getting the first real (non-zero-length) run to be black.
The last run end in the raster is always equal to the image width. This value is stored three times to mark the end of
the raster.

Here are some examples of rasters that are 8 pixels in width. Each raster is shown first in uncompressed format, then in
run ends format as it would be stored in memory on a 32-bit x86 platform. That is, the number 5 is stored in memory as
"05 00 00 00".

Example 1 Example 2

11001000
02 00 00 00 // white run until column 2
04 00 00 00 // black run until column 4
05 00 00 00 // white run until column 5
08 00 00 00 // done (remainder is black)
08 00 00 00
08 00 00 00

00000101
00 00 00 00 // *get first run to be black*
05 00 00 00 // black run until column 5
06 00 00 00 // white run until column 6
07 00 00 00 // black run until column 7
08 00 00 00 // done (remainder is white)
08 00 00 00
08 00 00 00

ImageGear Professional v18 for Mac | 121

1.2.4.2.6.3 Accessing Run Ends Data

There are two ways that you can access run ends data:

IG_runs_row_get()/IG_runs_row_set() allow you to read and write rows of run ends data.
IG_runs_row_get() retrieves a pointer to the run ends data.
IG_runs_row_set() updates a row with compressed data from a buffer you supply.

These functions are the recommended way of accessing run ends data. The format of the data is exactly as described
in the previous section.

IG_image_DIB_raster_pntr_get() is a general purpose function for getting a pointer to pixel data for a given raster. If
you use it on a 1bpp image, it will return a pointer to a run ends raster. You can access this raster directly, but be
aware of the following:

There is an additional AT_RUN value at the beginning of the raster. This value is equal to the total number of
AT_RUN values used to store the raster, including this value. For example, for the raster "11001000", this value
would be 7.
You cannot write data that exceeds the original length of a raster, because ImageGear allocates only enough space
to hold the runs for that raster. For this reason, it is safer to use IG_runs_row_set(), which can reallocate if
necessary.
Run ends rasters are not stored contiguously in memory. You must call IG_image_DIB_raster_pntr_get() for each
raster you want to process.

ImageGear Professional v18 for Mac | 122

1.2.4.2.6.4 Sample Run Ends Code

The following is a sample function that decompresses a run ends raster into uncompressed unpacked (1 byte per
pixel) format. It's designed to work with the data you would get from IG_runs_row_get().

// runsToUnpacked: Decompresses a run ends raster to unpacked format.
// nWidth - width of image in pixels
// lpRuns - pointer to input buffer containing run ends data
// lpPixels - pointer to output buffer to receive unpacked pixel data
void runsToUnpacked(AT_DIMENSION nWidth, LPAT_RUN lpRuns, LPAT_PIXEL lpPixels)
{
 // Starting color is white
 AT_PIXEL outputPixColor = 1;
 // Loop through runs
 AT_INT outputPixPos = 0;
 while (1)
 {
 // Find out when the current run ends
 AT_RUN runEnd = *lpRuns++;
 // Fill in pixels for this run
 while (outputPixPos < runEnd)
 lpPixels[outputPixPos++] = outputPixColor;
 // Have we reached the end?
 if (outputPixPos >= nWidth)
 break;
 // Switch colors for next run
 outputPixColor = !outputPixColor;
 }
}

The following is a more minimalist view of the same function:

void runsToUnpacked(AT_DIMENSION w, LPAT_RUN lpRuns, LPAT_PIXEL lpPixels)
{
 AT_PIXEL c = 1;
 AT_INT x = 0;
 while (1)
 {
 AT_RUN r = *lpRuns++;
 while (x < r)
 lpPixels[x++] = c;
 if (x >= w)
 break;
 c = !c;
 }
}

The following is a more complex function that creates a 90-degree rotated copy of an image. It operates entirely on
run ends data without ever decompressing the data. Note that this is only sample code. This does not represent how
ImageGear works internally. Also, error handling is omitted.

// Returns a 90-degree rotated copy of the source image
HIGEAR rotate90(HIGEAR hImageSrc)
{
 HIGEAR hImageDst = NULL;
 HIGDIBINFO hDIB;
 AT_INT d[1] = { 1 };
 AT_DIMENSION srcWidth, srcHeight, dstWidth, dstHeight;
 AT_PIXPOS x, y;
 // Get info about source image

ImageGear Professional v18 for Mac | 123

 IG_image_dimensions_get(hImageSrc, &srcWidth, &srcHeight, NULL);
 // Create destination image
 dstWidth = srcHeight;
 dstHeight = srcWidth;
 IG_DIB_info_create(&hDIB, dstWidth, dstHeight, IG_COLOR_SPACE_ID_I, 1, d);
 IG_DIB_palette_alloc(hDIB);
 IG_image_create(hDIB, &hImageDst);
IG_DIB_info_delete(hDIB);
 AT_RGB rgb = { 255, 255, 255 };
 IG_palette_entry_set(hImageDst, &rgb, 1);
 // Make a list of source raster pointers
 LPAT_RUN *lpSrcRasters = NULL;
 lpSrcRasters = (LPAT_RUN *) malloc(sizeof(LPAT_RUN) * srcHeight);
 // Make a list of current colors for source runs
 LPAT_BYTE lpSrcRunColors = NULL;
 lpSrcRunColors = (LPAT_BYTE) malloc(sizeof(AT_BYTE) * srcHeight);
 // Populate the lists
 for (y = 0; y < srcHeight; y++)
 {
 AT_RUN runCount;
 IG_runs_row_get(hImageSrc, y, &runCount, &lpSrcRasters[y]);
 if (*lpSrcRasters[y])
 lpSrcRunColors[y] = 1;
 else
 {
 lpSrcRunColors[y] = 0;
 lpSrcRasters[y]++;
 }
 }
 // Allocate a raster large enough to store worst-case input data
 LPAT_RUN lpDstRaster = (LPAT_RUN) malloc(sizeof(AT_RUN) * (dstWidth + 4));
 // Loop through output rasters
 for (y = 0; y < dstHeight; y++)
 {
 AT_INT nDstRuns = 0;
 AT_BYTE dstRunColor = 1;
 AT_INT srcRasterIndex = srcHeight - 1;
 // If the first source pixel is black,
// set us up to start with black in the output raster
 if (!lpSrcRunColors[srcRasterIndex])
 {
 dstRunColor = 0;
 lpDstRaster[nDstRuns++] = 0;
 }
 // Loop through columns in destination image
 for (x = 0; x < dstWidth; x++)
 {
 // Check the color of the run in the source raster that
 // corresponds to the current column in the destination raster.
 // Is it the same color as the run we're currently constructing?
 if (lpSrcRunColors[srcRasterIndex] != dstRunColor)
 {
 // If not, then we need to store the run we've been making
// in the destination raster.
 lpDstRaster[nDstRuns++] = x;
 // Alternate the current destination run color
 dstRunColor = !dstRunColor;
 }
 // See if it's time to move on to the next source run for
// this source raster
 if (*lpSrcRasters[srcRasterIndex] == y)
 {
 lpSrcRasters[srcRasterIndex]++;
 lpSrcRunColors[srcRasterIndex] =

ImageGear Professional v18 for Mac | 124

!lpSrcRunColors[srcRasterIndex];
 }
 // Move on to the next source raster (go *up* through the source
image)
 srcRasterIndex--;
 }
 // Add the three ending runs to the destination raster
 lpDstRaster[nDstRuns++] = dstWidth;
 lpDstRaster[nDstRuns++] = dstWidth;
 lpDstRaster[nDstRuns++] = dstWidth;
 // Store the destination raster!
 IG_runs_row_set(hImageDst, y, nDstRuns, lpDstRaster);
 }
 // Clean up
 free(lpSrcRasters);
 free(lpSrcRunColors);
 free(lpDstRaster);
 return hImageDst;
}

ImageGear Professional v18 for Mac | 125

1.2.4.2.7 Working with Image Utility Functions

ImageGear's image utility family of functions provides the capabilities to create, import, and export images in either DIB
or DDB format, and to obtain information about any image for which you have a HIGEAR handle. You can also obtain
information about image files stored on mass storage devices, such as the file format type, compression, width, height,
bits per pixel, or number of pages if a multi-page file.

A few special purpose image utility functions tell you whether a HIGEAR variable contains a valid image handle, and
whether an image is grayscale. In addition, there are six functions to help you read and write palettes, either whole or
one entry at a time, and save them to disk. There's also a function that lets you set special control options that alter the
operation of ImageGear's file format read-write filters during file operations.

One additional important image utility function sets an image's "image rectangle", which determines the portion of the
image to be displayed, printed, or saved during display, print, and save operations. Refer to Core Component API
Reference for detailed calling sequences and further notes on these functions.

This section provides the following information:

Creating DIBs and DDBs
Deleting DIBs and DDBs
Reading and Writing Palettes
Getting Information about a HIGEAR Image

ImageGear Professional v18 for Mac | 126

1.2.4.2.7.1 Creating DIBs and DDBs

This section provides information about how to create DIBs and DDBs.

To create a new HIGEAR with an empty DIB, use the following code (see IG_image_create_DIB_ex):

IG_image_create_DIB_ex (nWidth, nHeight, nBpp, lCompression, lpDIB = NULL, &hIGear
);

Later, you could use the IG_DIB_...() for direct pixel access functions, or an IG_IP_blend_ ...() function to create an
image bitmap. You can use the IG_palette_ ...() functions (described later in this section) to add a palette to the DIB.

To create a new HIGEAR with a DIB filled by copying an existing DIB, use the same function as demonstrated above,
but call it like this:

IG_image_create_DIB_ex (0, 0, 0, 0, lpDIB, &hIGear);

In this example, lpDIB is a pointer to the existing DIB to copy, and the first four arguments are ignored. Width,
height, bits per pixel, and "compression" will be copied from the existing DIB, along with its image bitmap and
palette.

To give a HIGEAR handle to an existing DIB, use the import function:

IG_image_DIB_import (lpDIB, &hIGear);

This call returns you to the HIGEAR handle assigned to your DIB.

To create a HIGEAR whose image is a copy of the image in an existing DDB, use IG_dspl_DDB_import:

IG_dspl_DDB_import (hBitmap, NULL, &hIGear);

In this call, you provide the DDB's HBITMAP handle that is actually an CGImageRef object. ImageGear creates a DIB
for you and returns the new DIB's HIGEAR handle.

To create a DDB whose image is a copy of the image in an existing HIGEAR, use IG_dspl_DDB_create:

IG_dspl_DDB_create(hIGear, IG_GRP_DEFAULT, hDC, nWidth, nHeight, TRUE, &hBitmap,
NULL);

Provide the HIGEAR handle and the width and height for your DDB as well as the addresses of an HBITMAP
(CGImageRef) variable to receive the DDB. Because this function belongs to the display group, there should be a
group identifier, nGripID, to specify where to get the options needed to complete this operation. Pixel format of DDB
being created is 32-bit RGB.

ImageGear Professional v18 for Mac | 127

1.2.4.2.7.2 Deleting DIBs and DDBs

This section provides information about how to delete DIBs and DDBs.

To delete the HIGEAR, but keep the DIB in existence (and obtain its address):

IG_image_DIB_export(hIGear, lpDIB, DIBSize, &Options);

The DIB's address is returned in your LPAT_DIB variable lpDIB.

To delete the HIGEAR and the DIB, but produce a copy of the image in DDB format, use IG_dspl_DDB_create:

IG_dspl_DDB_create(hIGear, IG_GRP_DEFAULT, hDC, nWidth, nHeight, TRUE, &hBitmap,
NULL)

Provide the HIGEAR handle of the image to delete, and provide the addresses of the HBITMAP (CGImageRef)
variables to receive the handle for the created DDB.

To delete a HIGEAR, including the DIB, when you are entirely done using it, use the following call to
IG_image_delete:

IG_image_delete (hIGear);

Note that in all the above cases, ImageGear will not release memory that it did not allocate. For example, assume your
application has allocated memory, created a DIB, and subsequently used an IG_image_DIB_import() call to give this DIB
a HIGEAR handle. In this case, a later call to IG_image_delete() will delete the HIGEAR structure but will not free the
DIB's memory. The owner of the DIB's memory (in this case, your application) would issue a free() call to free this
memory.

To delete a DDB being created with IG_dspl_DDB_create, use a CGImageRelease(hBitmap) call.

ImageGear Professional v18 for Mac | 128

1.2.4.2.7.3 Reading and Writing Palettes

There are six image utility functions that read and write palettes in memory, or load and save them between memory
and disk. To transfer a palette between your own memory area and a HIGEAR image's DIB (that is, to get or set the DIB
palette), use IG_palette_get and IG_palette_set:

AT_RGBQUAD palette[256];
IG_palette_get (hIGear, palette);
IG_palette_set (hIGear, palette);

In the above calls, lpPalette should point to the first of an array of AT_RGBQUAD structures, one structure per palette
entry.

If instead you want to move just one entry to or from the DIB palette, use IG_palette_entry_get and
IG_palette_entry_set:

AT_RGB rgbPaletteColor;
IG_palette_entry_get (hIGear, &rgbPaletteColor, nIndex);
IG_palette_entry_set (hIGear, &rgbPaletteColor, nIndex);

In the single entry calls, you supply a pointer to a single structure of type AT_RGB. The third argument has a value
between 0 and 255, specifying which palette entry to get or set. (Remember that an AT_RGBQUAD structure consists of
4 bytes ordered Blue-Green-Red-Unused(0), while an AT_RGB struct consists of 3 bytes ordered Blue-Green-Red.)

To load and save palettes between memory and disk, use the functions IG_palette_load and IG_palette_save:

IG_palette_load ("filename", palette, nEntries, bOrder, lpFileType);
IG_palette_save ("filename", palette, nEntries, lpFileType);

See the descriptions of the above functions in Core Component API Reference for details on specifying the arguments.

ImageGear Professional v18 for Mac | 129

1.2.4.2.7.4 Getting Information about a HIGEAR Image

This section provides instructions on getting information for a HIGEAR.

To find out if a HIGEAR variable currently holds a valid handle, call IG_image_is_valid:

if (IG_image_is_valid(hIGear)) { ... }

Similarly, to find out if it is a grayscale image, call IG_image_is_gray:

if (IG_image_is_gray(hIGear, &bItsGray)) { ... }

To obtain the width, height, and bits per pixel of an image, or the DIB compression type, use
IG_image_dimensions_get or IG_image_compression_type_get (respectively):

AT_DIMENSION nWidth, nHeight;
UINT nBpp;IG_image_dimensions_get (hIGear, &nWidth, &nHeight, &nBpp);
DWORD nCompression;IG_image_compression_type_get (hIGear, &nCompression);

Be careful to declare the types as AT_DIMENSION and DWORD where shown above (rather than INT or UINT).
On some development platforms, AT_DIMENSION and DWORD are not the same size as INT.

To get the position and size of an image's image rectangle, use IG_dspl_layout_get() API.

Here also be careful to use the correct type: AT_RECT, not Windows structure type RECT, whose fields may be a
different length.

To set the image rectangle, use the function IG_dspl_layout_set(). Examples are provided in the sections Displaying
Images and Saving Images.

If you need to access a DIB directly, refer to IG_image_DIB_palette_pntr_get().

ImageGear Professional v18 for Mac | 130

1.2.4.2.8 Working with Gigabyte-Sized Images

When you load an image into ImageGear image handle, or create one, its pixel data is stored in the computer’s random
access memory (RAM) by default. As the physical memory usage grows, the system swaps less used blocks of memory
from running applications to the system Page file. If an application tries to allocate a block of memory comparable with
the computer’s RAM size, the system has to push its own resources to the Page file. This makes the system extremely
unresponsive. If an application requests more memory than (size of the RAM + the page file size – amount of memory
used by the system), such request cannot be fulfilled, and the allocation fails.

ImageGear allows working with such large images by allocating memory for the DIB via a memory mapped file. On a 64-
bit operating system, this allows allocating images nearly as large as the amount of free disk space on the computer,
without overloading the RAM and affecting the system responsiveness. On a 32-bit OS, maximum total size of DIBs
allocated simultaneously in several processes cannot exceed 3…3.5 Gb, and the size of all DIBs allocated in one process
cannot be greater than 2 Gb; however, using memory mapped files still makes working with large images much more
convenient.

If the images are not big, or there is plenty of free RAM, keeping image pixels in the RAM provides better performance
than using the memory mapped files. However, when image size is comparable to RAM size, or is greater, memory
mapped file usage provides much better performance than storing the image in memory.

ImageGear does not use memory mapped files for 1-bit images. However, ImageGear uses Run Ends compression
for storing them, so they rarely occupy large amounts of memory.

This section provides the following information:

Quick Start
How to Configure
Accessing Pixels of a Gigabyte-Sized Image
Reading and Writing Gigabyte-Sized Image Files

ImageGear Professional v18 for Mac | 131

1.2.4.2.8.1 Quick Start

By default, parameters that improve processing of large images are disabled in ImageGear. Follow these steps to try
ImageGear’s enhanced support for large images:

1. Run the Image Processing sample.
2. Go to Main menu > Settings > Parameters…
3. Select “DIB.FILE_MAPPING.THRESHOLD” in the list of parameters and set its value to 500. This enables memory

mapping file storage for DIBs that have uncompressed size of 500 Mb and more.
4. Click Apply and close the dialog.

The sample is now ready to work with gigabyte-sized images.

If you try loading a gigabyte-sized image into ImageGear without the file mapping being enabled, the system may
become unresponsive because of excessive RAM usage by ImageGear.

For additional convenience you can also enable the progress bar. Note though that ImageGear display operations do not
trigger the progress bar.

Go to Main menu > Settings > Progress Bar.

If you are not particularly interested in fine display for large images, you can turn the display interpolation off (after the
image has been loaded). This will result in much faster image display.

Go to Main menu > View > Anti-aliasing, and uncheck the Color Antialiasing and Use Resampling check boxes.

ImageGear Professional v18 for Mac | 132

1.2.4.2.8.2 How to Configure

ImageGear handles all of the memory mapped file operations internally, except for a specific case discussed in the
next section. The application only needs to set a few parameters to enable the usage of memory mapped files and
adjust it to its needs.

The usage of memory mapped files is controlled by three global control parameters:

"DIB.FILE_MAPPING.THRESHOLD". Specifies minimum DIB size, in megabytes, for which the memory mapped
file shall be used. DIBs that are smaller than this threshold are allocated in physical memory. By default, this
parameter is set to 0, which means that the use of memory mapped files is disabled. 1-bit images are always
allocated in the physical memory and are not affected by this parameter.
"DIB.FILE_MAPPING.PATH". Specifies the path to a folder where memory mapped files will be stored. Memory
mapped files are temporary files that are created upon DIB creation and deleted upon its deletion. By default, this
parameter is set to an empty string, which means that ImageGear will use the system temporary folder for
memory mapped files. This parameter is only used when the "DIB.FILE_MAPPING.THRESHOLD" parameter value is
greater than zero. Does not affect 1-bit images.

For best performance, use a separate SSD drive or hard drive for storing memory mapped files, and make sure
that the operating system and other applications do not use this drive.

"DIB.FILE_MAPPING.FLUSH_SIZE". Specifies the maximum size of a memory block in a DIB that can be
processed without flushing the memory mapped file. The default value is 200 Mb, which shall be efficient on typical
systems that have 4 Gb of RAM. Greater values may improve performance on systems that have a larger amount
of RAM. However, making this value too big (comparable to RAM size) will impact the system responsiveness and
may lead to allocation failure for large DIBs. This parameter is only used when the
"DIB.FILE_MAPPING.THRESHOLD" parameter is greater than zero. Does not affect 1-bit images.

All three parameters DIB.FILE_MAPPING.THRESHOLD, DIB.FILE_MAPPING.PATH and DIB.FILE_MAPPING.FLUSH_SIZE
are taken into account at the time of the DIB creation. After the DIB has been created, changing these parameters
will not have an effect on the storage of this DIB, or flush frequency during its processing. However, if some operation
replaces the DIB in a HIGEAR (e.g., Resize, Rotate), a new DIB will be created according to the current
DIB.FILE_MAPPING.THRESHOLD and DIB.FILE_MAPPING.PATH values, and will then be processed according to the
DIB.FILE_MAPPING.FLUSH_SIZE value at the time of the DIB replacement.

The following example tells ImageGear to use memory mapped files for images whose pixel data size is equal to or
greater than 500 MB:

// Memory mapping will be used for DIBs with sizes equal to or greater than 500 Mb.
AT_INT fileMappingThreshold = 500;
IG_gctrl_item_set("DIB.FILE_MAPPING.THRESHOLD", AM_TID_INT, &fileMappingThreshold,
sizeof(fileMappingThreshold), "");

The following example obtains the current value of the DIB.FILE_MAPPING.THRESHOLD parameter:

// Get memory mapping threshold
AT_INT fileMappingThreshold;
IG_gctrl_item_get("DIB.FILE_MAPPING.THRESHOLD", NULL, (LPVOID)&fileMappingThreshold,
sizeof(fileMappingThreshold), NULL, NULL, 0, NULL);

The following example tells ImageGear to create temporary memory-mapped files in the current directory:

// Use current directory for the memory mapped files
char* szMemoryMappingPath = ".";
IG_gctrl_item_set("DIB.FILE_MAPPING.PATH", AM_TID_MAKELP(AM_TID_CHAR),
szMemoryMappingPath, (DWORD)strlen(szMemoryMappingPath) + 1, "");

The following example obtains the directory used for storing memory mapped files:

// Get path for memory mapped files
char szMemoryMappingPath[_MAX_PATH];
IG_gctrl_item_get("DIB.FILE_MAPPING.PATH", NULL, (LPVOID)&szMemoryMappingPath,

ImageGear Professional v18 for Mac | 133

sizeof(szMemoryMappingPath) - 1, NULL, NULL, 0, NULL);

The following example tells ImageGear to set the flush size to 100 Mb:

// Memory mapping flush size will be equal to 200 Mb.
AT_INT fileMappingFlushSize = 200;
IG_gctrl_item_set("DIB.FILE_MAPPING.FLUSH_SIZE", AM_TID_INT, &fileMappingFlushSize,
sizeof(fileMappingFlushSize), "");

The following example obtains the current flush size:

// Get memory mapping flush size
AT_INT fileMappingFlushSize;
IG_gctrl_item_get("DIB.FILE_MAPPING.FLUSH_SIZE", NULL, (LPVOID)&fileMappingFlushSize,
sizeof(fileMappingFlushSize), NULL, NULL, 0, NULL);

ImageGear Professional v18 for Mac | 134

1.2.4.2.8.3 Accessing Pixels of a Gigabyte-Sized Image

ImageGear manages the use of memory mapped files internally. In most cases, the application does not need any
additional code for working with memory mapped images, except for setting the global control parameters. However, if
an application accesses individual pixels or rasters of a large image, or accesses pixel data directly by the image or
raster pointer, ImageGear does not know when to flush the image’s memory mapped file. In this case the application
shall flush the memory mapped file explicitly, using IG_DIB_flush.

AT_DIMENSION nRasterSize;
AT_INT nRasterCountToFlush;
AT_INT i;
AT_PIXEL* nBuffer;
AT_DIMENSION nImageHeight;
AT_ERRCOUNT nErrCount;
HIGEAR hIGear;

// Load the image
nErrCount = IG_load_file("picture.tif", &hIGear);
if(nErrCount == 0)
{
 IG_image_dimensions_get(hIGear, NULL, &nImageHeight, NULL);
 IG_DIB_raster_size_get(hIGear, IG_PIXEL_UNPACKED, &nRasterSize);
 nRasterCountToFlush = 200 * 1024 * 1024 / nRasterSize;
 nBuffer = new AT_PIXEL[nRasterSize];

 for(i = 0; i < nImageHeight; i ++)
 {
 // Get image raster
 IG_DIB_raster_get(hIGear, i, nBuffer, IG_PIXEL_UNPACKED);

 // Process the raster
 // ...

 if((i + 1) % nRasterCountToFlush == 0)
 {
 // We have accessed about 200 MB of sequential memory.
 // Flush the memory-mapped file associated with the image.
 IG_DIB_flush(hIGear);
 }
 }
 // Flush the memory-mapped file at the end of pixel access.
 IG_DIB_flush(hIGear);

 delete[] nBuffer;
 IG_image_delete(hIGear);
}

A similar situation occurs when the application accesses image areas. Since areas can be small, even one automatic flush
per area access operation can be too much, and can significantly degrade performance. ImageGear does not use
automatic flushing in area access operations. Instead, the application shall flush the DIB after accessing one or several
areas. If an area to be accessed is very large (hundreds of megabytes or more), we recommend splitting it into smaller
areas and processing it sub-area by sub-area.

In order to minimize the amount of flushing, try to prefer row-wise order of processing, as opposed to column-wise. For
example, if you need to access an image area consisting of 10 sub-areas vertically and 10 sub-areas horizontally, do it
as follows:

1. Access the first row of sub-areas
2. Flush the image
3. Access the second row of sub-areas
4. Etc.

ImageGear Professional v18 for Mac | 135

1.2.4.2.8.4 Reading and Writing Gigabyte-Sized Image Files

The two most important factors in image file formats that affect their ability to support gigabyte-sized images are as
follows:

Maximum allowed image dimensions. This usually depends on the integer format used for storing image dimensions.
File size limitation. This usually depends on the integer format used for storing lengths or offsets to various data in
the file. If a file is stored compressed, image size after decompression may be greater than the maximum supported
file size.

Some file formats have limitations on blocks (chunks, strips) of pixel data, but allow multiple such blocks to exist
in a file, and thus avoid the limitation on the file size.

Although some file formats allow storing gigabyte-sized images, particular software may have difficulties with
reading or writing them.

The table below lists some of the popular file formats and their capabilities for storing gigabyte-sized images.

Image Format Max Available Image
Dimensions (width x
height, pixels)

Max Image Size, When Uncompressed,
Approximately (for a 24-bit RGB image)

File Size Limit,
Approximately

JPEG, EXIF JPEG 65535 x 65535

12 Gb None

TIFF, EXIF TIFF 2^32-1 x 2^32-1 3 * 2^24 Tb 4 Gb 1

JP2,JPX 2^32-1 x 2^32-1 3 * 2^24 Tb None

PSB 300 000 x 300 000 250Gb None

PSD 30 000 x 30 000 2,5Gb 4 Gb

BMP 2^31-1x 2^31-1 3 * 2^20Tb 4 Gb

PNG 2^32-1 x 2^32 - 1 3* 2^24Tb None

DICOM 65535 x 65535

12 Gb 2 Gb

PBM / PGM / PPM
/ PNM

None None None

TGA 65535 x 65535 12 Gb 4 Gb

1 TIFF format uses 32-bit unsigned integers to store data offsets and sizes. As a result, a strip of pixel data in a
TIFF image cannot be stored at an offset greater than 4 Gb, and its size formally cannot be greater than 4 Gb.
Thus, the size of the largest compliant TIFF image can be a bit less than 8 Gb. This assumes that two strips of
nearly 4 Gb size are used.

ImageGear supports the reading and writing of single-page, single-strip, single-tiled uncompressed TIFF images
where strip byte counts are greater than 4 Gb. If the size of a strip exceeds 4 Gb, ImageGear writes 0 to the
StripBytes tag. The reader can calculate strip size from image dimensions in such a case.
Note, though, that such files are formally incompliant and may not be supported by other readers.

When writing a gigabyte-sized TIFF image, make sure to keep the “IMAGE_BEFORE_IFD” TIFF control parameter
set to its default value of FALSE.

ImageGear Professional v18 for Mac | 136

1.2.4.3 Loading and Saving Images

This section provides information about the following:

Loading Images
Detecting Image File Format

Saving Images
Saving Images to a Disk File
Saving to a Disk File Using a File Descriptor Handle
Saving an Image to Memory
Converting Images from One File Format to Another
The Image Rectangle
Using Format Filters API for Image Saving

Format Filter Utility Functions
Getting Information about a File Format Filter
Inquiring Format Filters for Supported Features

Working with Multi-Page Documents
Creating and Deleting a Multi-Page Image Object
Opening and Closing an External Image File
Loading and Saving Pages
Using Other Functions that Work with Pages
Using the Multi-Page Image Callback Function

Format Filter Control Parameters
Non-Image Data Processing

Non-Image Data Format
Using Filter Callback Functions to Process Non-Image Data
Updating Non-Image Data without Loading and Saving the Image
Working with XMP Metadata

Stripped Images
Tiled Images

Padding
Automatic Tile Stitching
Saving a TIFF File Using Tiles

Internal Stream Bufferization

ImageGear Professional v18 for Mac | 137

1.2.4.3.1 Loading Images

The IG_load_...() functions provide the means to bring images from image files into ImageGear's sphere of influence.
The image files may be on a mass storage device such as a disk, or they may already be in memory.

When you load an image using an IG_load_...() function, ImageGear provides a handle of ImageGear type HIGEAR.
Having HIGEAR handles for your images allows your application to perform the entire range of ImageGear's imaging
operations.

Alternately, you can import images that exist as plain bitmaps, DIBs, or DDBs in your application. You can scan
images from elsewhere directly into ImageGear. You can locate and extract ASCII or graphics images from multi-page
(multi-image) files, using ImageGear's GUI browse and other capabilities.

IG_load_ ...() functions create a DIB in memory, and transfer the bitmap and other pertinent information (such as the
image's color palette, if one is associated with it; and header information such as width, height, and bits per pixel)
into this DIB. These functions do not display the image unless the word "display" is included in the function name,
such as in IG_load_file_display().

For information about loading CMYK images, see Color Management.

Here are a few examples that demonstrate how to call the functions in this group. Refer to "Core Component API
Function Reference" for more information on the IG_load_ ...() functions.

Example 1:

#include "gear.h"
HIGEAR hIGear; /* HIGEAR handle returned */
AT_ERRCOUNT nErrcount; /* Count of errors reported */
nErrcount = IG_load_file ("picture.bmp", &hIGear);

The example code above loads the file "picture.bmp" from the current directory, creating a DIB in memory, and
creates a unique ImageGear handle for it, returning this handle to you in hIGear.

Example 2:

HIGEAR hIGear; /* handle returned by ImageGear */
char * lpWhereFile; /* ptr to image file in mem */
DWORD dwWholeSize; /* size of image file in mem */
UINT nPageNum; /* will be 0 for this call */
AT_ERRCOUNT nErrcount; /* to test for errors */
nPageNum = 0; /* not a multi-page file */
lpWhereFile = ...; /* where mem image file begins */
dwWholeSize = ...; /* size of whole mem image */
nErrcount = IG_load_mem (lpWhereFile, dwWholeSize,nPageNum, 0, &hIGear);

IG_load_mem() is used to load an image from memory. The image in memory must be in the same format as if the
image were on disk. For example, the image must contain an appropriate header, the bitmap data, and if necessary,
a palette. This in-memory file must be of a format recognized by ImageGear (see "File Format Reference").

In the above call, dwWholeSize must be the size of the entire memory image, not just of the bitmap. lpWhereFile
must point to the first byte of this whole image. And nPageNum, if not zero, specifies the page number to load if
loading from a multi-page (multiple image) file. Please note that the first page of a multi-page file is page number 1,
not page number 0. The function IG_load_mem() creates a DIB and loads into it the image specified, and returns in
hIGear the new HIGEAR image handle by which you will refer to this image in subsequent calls to ImageGear
functions.

Example 3:

HIGEAR hIGear; /* handle ret'd by IG_load_FD */
INT fd; /* File Descriptor handle */
LONG lOffset; /* offset to image in file */
UINT nPageNum; /* will be 0 for this call */

ImageGear Professional v18 for Mac | 138

AT_ERRCOUNT nErrcount; /* to test for errors */
fd = _lopen ("picture.bmp", OF_READ); /* open file */
nPagenum = 0; /* not a multi-page file */
lOffset = 0; /* access file from start */
/* Load image, and obtain its ImageGear handle: */
nErrcount = IG_load_FD (fd, lOffset, nPageNum, 0, &hIGear);

Names of some IG_load_ ...() functions contain the letters "FD", for example IG_load_FD_CB(). These functions
access the file by its File Descriptor handle, which is an integer value returned to you when you open the file using
certain Windows functions. You may use these IG_load_FD...() functions to load an image from a file, if the file is
already open and your application has its File Descriptor handle.

The example above shows ImageGear IG_load_FD...() loading from a file that has been already opened by means of
the Windows function _lopen() or other file I/O function that returns a File Descriptor handle.

If nErrcount is zero, a DIB is created, the image is loaded, and your HIGEAR object, &hIGear, contains its HIGEAR
handle.

See Also:

Detecting Image File Format

ImageGear Professional v18 for Mac | 139

1.2.4.3.1.1 Detecting Image File Format

You can detect the format of an image file before and after loading it in the HIGEAR handle using functions
IG_fltr_detect_...():

IG_fltr_detect_FD(INT fd, LONG lOffset, LPATE_MODE lFileType) detects the format by scanning its File Descriptor fd
starting from the lOffset position in the file.
IG_fltr_detect_file(const LPSTR lpszFileName, LPATE_MODE lFileType) determines the format of the image located in
the specified file by given filename.
IG_fltr_detect_mem(void FAR lpImage, DWORD dwSize, LPATE_MODE lFileType) determines the format of image
located in memory buffer.

All three functions return the type of image format as IG_FORMAT_ constant, as delineated in the accucnst.h file.

The code fragment below allows you to sort image files by their formats and then choose how to use them:

AT_ERRCOUNT nErrCount = IGE_SUCCESS;/* will hold returned error count */
AT_MODE nFormatID;
...
nErrCount = IG_fltr_detect_file("image.tiff", &nFormatID);
if(nFormatID==IG_FORMAT_TIF)
{
...
}

For better performance or for some other purposes, use the special functions IG_fltr_load_file_format() and
IG_fltr_pagecount_file_format() if the image format is known. Those functions accept the first parameter as the format
ID and do not perform detect operations like IG_fltr_load_file() does, but immediately start to operate with the data,
assuming it from the specified format. If the data is invalid or the image format is different, then an error is placed in the
error stack.

ImageGear Professional v18 for Mac | 140

1.2.4.3.2 Saving Images

The IG_save_...() family of functions is complementary to the IG_load_...() functions. The IG_save_...() functions allow
you to save images to disk files or to memory, convert files from one file format to another, and to append or insert
images as pages to a multi-page file. All IG_save_...() functions have the lFormatType parameter in common. This
allows you to choose which ImageGear-supported file format and compression type (where applicable) to which to save.
Whereas some functions, such as IG_info_get_ex(), have separate parameters for the format and compression types,
the saving functions have one parameter that covers both.

This section provides information about the following:

The Image Rectangle
Saving Images to a Disk File
Saving to a Disk File Using a File Descriptor Handle
Saving an Image to Memory
Converting Images from One File Format to Another

ImageGear Professional v18 for Mac | 141

1.2.4.3.2.1 Saving Images to a Disk File

 IG_save_file(HIGEAR hIGear, lpszFileName, lFormatType)

IG_save_file is the function normally used to save a HIGEAR image to disk. The name of the file to which to save is
specified with the second argument, and the format type and compression type (if applicable) in which to save it is
specified in the third. If the file format being used supports more than one compression type, more than one constant
will be available. The BMP format, for example, is provided with two values for lformatType: IG_SAVE_BMP_UNCOMP and
IG_SAVE_BMP_RLE.

The file accucnst.h defines the constants to which lFormatType may be set. These constants are also listed at the end of
File Format Reference.

If the file already exists, and the format supports multiple pages, IG_save_file() will append the new image(s) to the file.
If the file already exists and it is a single image format type, the file will be overwritten.

The following code example demonstrates the use of IG_save_file():

HIGEAR hIGear; /* handle ret'd by IG_load_... */
AT_ERRCOUNT nErrcount; /* # of errors on stack */
AT_LMODE lFormatType; /* format type to save to */
/*set format and compression to an AT_LMODE constant */
lFormatType = IG_SAVE_TIF_UNCOMP;
nErrcount = IG_save_file(hIGear, "picture.tif", lFormatType);

If you do not know the file format, you may set lFormatType to IG_SAVE_UNKNOWN. ImageGear will check the file's
extension and save the image accordingly. If you set lFormatType to a value other than IG_SAVE_UNKNOWN,
ImageGear assumes that you are specifying the correct type and saves the image accordingly.

Before selecting a file format to which to save, you can reference the section entitled ImageGear Supported Bit Depths
to ensure that you save to a format that supports the same bit depth as the original image.

ImageGear Professional v18 for Mac | 142

1.2.4.3.2.2 Saving to a Disk File Using a File Descriptor Handle

You can use the IG_save_FD() function to save a HIGEAR image to a file that has already been opened and for which
you have a File Descriptor handle (for example, your application may have opened the file using the Windows function
_lopen()). IG_save_FD() will permit you to insert an image into a multi-page file (instead of merely appending it, as
IG_save_file() would do.)

IG_save_FD() is called with five arguments, of which the HIGEAR image handle and lFormatType have the same
meaning as in a call to IG_save_file(). The other parameters are the File Descriptor handle, fd obtained by the Windows
function call that opened the file, a reserved argument nReserved, which should always be set to 0, and nPageNum,
which allows you to specify the page in which to insert the image. If you want to append image(s) to a file, you can set
nPageNum to IG_APPEND_PAGE.

The following example shows IG_save_FD() being used to insert an image as page 3 into an existing a multi-page file:

HIGEAR hIGear; /* ImageGear handle */
INT d; /* File Descriptor handle */
UINT nPageNum, /* page # to insert image as */
 nReserved; /* for future expansion */
AT_ERRCOUNT nErrcount; /* # of errors on stack */
AT_LMODE lFormatType; /* type of format to save to */
/ *Windows call to open file with write privileges */
fd = _lopen("picture.tif", WRITE);
nPageNum = 3; /* save this image as page # */
nReserved = 0; * always set to 0 for now */
lFormatType = IG_SAVE_TIF_JPG; /* format is TIFF-JPEG */
/* save the HIGEAR image as page 3 of file whose descriptor is fd:*/
nErrcount = IG_save_FD(hIGear, fd, nPageNum, nReserved,lFormatType,);

If the file "picture.tif" has five pages, the new image will be inserted into the position of the third page, and what was
formerly page three will now be page four, and so on. Remember that ImageGear treats the first page of a multi-page
file as page 1, not 0. Setting the nPageNum parameter to 0 will append your image(s) to the file. If you set nFormatType
to a type that doesn't support multiple pages, then the file will be overwritten with a single image.

Inserting pages to a multi-page file does not physically rearrange the image in the file. Rather, the offset table is
adjusted to hold the new address(es) of the inserted page(s), and the new order of the image within the file.

lFormatType should be set to one of the IG_SAVE_ constants, which also include the compression type. Note that TIFF
has more than one compression type, and that there are different constants to represent TIFF with each type of
compression. If you call IG_save_FD() for a multiple-page file, you must supply the format type (from accucnst.h) for
the image to be appended to the file. If you do not know the format of the destination file, first call IG_info_get_FD_ex()
and use the format information returned to decide which format to use.

The following pseudo-code example demonstrates how to write a multi-page image using IG_save_FD():

lFormat = IG_SAVE_TIF_UNCOMP;
fd = _lopen (szFile,OF_READWRITE);
for (i = 1; i<=nPages; i++)
{
/*Seek to the beginning of the file before writing each page ImageGear will
automatically find the correct file position of the new page */
 seek(fd, 0, SEEK_SET);
 /*Write each next page */
 nErrcount = IG_save_FD(hIGear, fd, i, 0, lFormat);
}
close(fd);

When you call OS SEEK or an equivalent function to set the file pointer, the stream needs to be positioned at the FIRST
byte of a multi-page image. This is the only way in which a filter can recognize that the image is multi-page.

A file should be opened with both READ and WRITE access.

ImageGear Professional v18 for Mac | 143

1.2.4.3.2.3 Saving an Image to Memory

ImageGear allows you to save images to memory in the same way as you save images to a disk file. See Using Format
Filters API for Image Saving / Saving an Image to Memory section for details.

ImageGear Professional v18 for Mac | 144

1.2.4.3.2.4 Converting Images from One File Format to Another

Converting a file from one file format to another is simply a matter of loading a file from disk using IG_load_file() or
other load function, and then saving it with a new format type. Be sure, however, that the bit depth of the original file
can be supported by the new format type. To help you with this, we have provided you with a Format Bit Depths table in
the section entitled ImageGear Supported Bit Depths.

The following is an example in which a Windows Bitmap file (BMP) is converted to a TIFF file (.TIF):

HIGEAR hIGear; /* HIGEAR handle returned */
AT_ERRCOUNT nErrcount; /* # of errors on stack */
AT_LMODE lFormatType; /* format to save to */
/* Set name of BMP file to load and format to save to */
lFormatType = IG_SAVE_TIF_UNCOMP;
/* Load picture.bmp, obtaining ImageGear handle of image */
nErrcount = IG_load_file("picture.bmp", &hIGear);
if (nErrcount == 0) /* If successful: */
{
 /* save image as a TIFF file: */
 nErrcount = IG_save_file(hIGear, "picture.tif", lFormatType);
}

If the file named "picture.tif" already exists, the image will be appended to "picture.tif" because TIFF supports
multiple images in a single file.

For more information on the ImageGear IG_save_...() functions, see Core Component API Function Reference.

In order to save an image using ImageGear, it must have a HIGEAR handle. If your image is in DIB format, use:
IG_image_DIB_import() or IG_image_create_DIB_ex() to assign it a HIGEAR handle. If the image is a DDB, use
IG_dspl_DDB_import().

ImageGear Professional v18 for Mac | 145

1.2.4.3.2.5 The Image Rectangle

In ImageGear, an "image rectangle" defines the coordinates for the area of the bitmap that will be saved or displayed.
The image rectangle represents a rectangular array of pixels from the bitmap that can include the whole image or any
rectangular portion of the image.

You can leave the image rectangle set to its default, which includes the whole image, or you can specify a portion of the
image by setting the image rectangle with IG_dspl_layout_set(). A call to this function is included in the example code in
Saving an Image to Memory. You can also find a detailed description and example of this function's use in the Core
Component API Function Reference.

For a more detailed description of the Image Rectangle and other ImageGear display rectangles, see Geometric
Transformations.

ImageGear Professional v18 for Mac | 146

1.2.4.3.2.6 Using Format Filters API for Image Saving

The ImageGear filters API provides three saving functions that make your application much faster and more flexible
when working with image saving:

IG_fltr_save_file(HIGEAR hIGear, const LPSTR lpszFileName, AT_LMODE lFormatType, UINT nPageNumber,
AT_BOOL bOverwrite)
This function works similarly to the IG_save_file() function, but has additional arguments that provide additional
functionality when saving the image in a multi-page file. The nPageNumberargument allows you to specify the
number of the page in an already existing multi-page file where you want the saved page to be placed. The last
argument bOverwrite allows you to determine the mode of how to work with multi-page image files. The TRUE
value completely overwrites the file and places a single page there, but a FALSE value means that the existing file
will be expanded with one additional page specified by the nPageNumber parameter.

IG_fltr_compressionlist_get(LPAT_DIB lpDIB, AT_MODE nFormatID, LPAT_MODE lpComprList, UINT nCListSize,
LPUINT lpnCListCount)
This function allows you to get information about all compressions (as IG_COMPRESSION_constants returned in
lpComprListlist) that are available when saving the image to the file format specified by the nFormatID(as
IG_FORMAT_constant) parameters. The first parameter allows you to specify information about the image to be
saved. If this parameter is NULL, then the function returns all available compressions, otherwise it returns
compressions that are applicable to a given image. For example, G3/4 compressions are only applicable for bi-
tonal images, but JPEG compression is only applicable for color images with 8 bits or more per pixel.

IG_fltr_savelist_get(LPAT_DIB lpDIB, LPAT_MODE lpnFilterList, UINT nFListSize, LPAT_LMODE lpSaveList, UINT
nSListSize, LPUINT lpnSListCount)
This function allows you to prepare the list of applicable compressions, not for a single format but for a list of
formats. It provides the ability to quickly build a list of applicable parameters that can be used, for instance, for
the third (lFormatType) parameter of IG_fltr_save_file(). The main returned value lpSaveList contains a list of
combined values (nFormat | (nCompression<<16)) = (IG_FORMAT_ | IG_COMPRESSION_<<16) available for a
given image to save. You can get values of nFormat from lpnFilterList provided through the second parameter. For
instance, if you specified lpnFilterList as IG_FORMAT_TIF, then the returned lpSaveList will be looked at as a list of
(IG_FORMAT_TIF | IG_COMPRESSION_) values where IG_COMPRESSION_ is a list of all the compressions
available for the TIFF image with the current lpDIB. If lpnFilterList is NULL then this function uses all available
formats registered in ImageGear and returns the list with all currently available formats and compressions.

You can process the IG_fltr_compressionlist_get() and/or IG_fltr_savelist_get() functions before using
IG_fltr_save_file() to determine the file format and compression type you specified in the lFormatType argument (as
IG_SAVE_ constant, see accucnst.h file).

Saving Images to Memory
The function IG_fltr_save_mem() allows you to save a HIGEAR image to memory. The result is a file image in
memory that is identical to the file that would have resulted if you had used any other save function (such as
IG_fltr_save_file()). However, instead of using a filename to call IG_save_mem(), you specify the address and size of
the memory area to which to save. The allocation of memory is discussed further below.

If there already is a valid image file at the address you specify in an IG_fltr_save_mem() call, the effect is the same
as when using IG_fltr_save_file() to save to an existing file. Specifically, it allows appending or inserting pages into
an existing file stored in memory.

Before you call IG_fltr_save_mem(), you need to allocate a memory buffer, and you must supply the size of the
allocated buffer to the function. You can determine the appropriate buffer size by making a call to
IG_fltr_save_mem_size_calc(). The size returned by this function will include the size of the bitmap data, which can
be a portion of the image (the image rectangle) or the whole image, plus any other structures, such as the header or
palette. If you are going to add a page to an existing image in the memory buffer, pass the address of the buffer to
IG_fltr_save_mem_size_calc(). The function will calculate and return the size necessary for storing the image after
the addition of the page.

You can use these steps to save a multi-page file in a memory buffer:

1. Call IG_fltr_save_mem_size_calc(), specifying the HIGEAR for the first page, and passing NULL to lpImage
parameter. This will return the size of the first page, saved to the buffer.

2. Allocate a memory buffer using the calculated size.
3. Save first page to the memory buffer, using IG_fltr_save_mem().
4. Call IG_fltr_save_mem_size_calc(), specifying the HIGEAR for the second page, and passing the pointer to the

memory buffer you've allocated, to lpImage parameter. This will return the size of the first and second
pages saved to the buffer.

5. Reallocate memory buffer using the new size.
6. Save second page.

ImageGear Professional v18 for Mac | 147

7. Continue for the rest of pages.

This process can be optimized. For example, you can allocate (size of first saved page) * (number of pages) bytes in
the first place to reduce the number of reallocations.

IG_fltr_save_mem() will return the actual size that the file required when it was saved to memory.

See Also

Saving Images to a Disk File

Saving to a Disk File Using a File Descriptor Handle

Saving an Image to Memory

ImageGear Professional v18 for Mac | 148

1.2.4.3.3 Format Filter Utility Functions

ImageGear provides a set of API functions that simplify the handling of different file formats in the application. See these
topics for additional details:

Getting Information about a File Format Filter
Inquiring Format Filters for Supported Features

ImageGear Professional v18 for Mac | 149

1.2.4.3.3.1 Getting Information about a File Format Filter

To get information about an ImageGear format filter use the IG_fltr_info_get() function. It returns information about
the features supported by ImageGear for this file format (as IG_FLTR_ flags), the short and full names of the filter's
file format and the names of the default file's extension:

nErrCount = [lpfn]IG_fltr_info_get(nFormat, &dwFlags, szShortName,
sizeof(szShortName), szFullName, sizeof(szFullName), szDefExt, sizeof(szDefExt));

Together with this function, you can use the IG_fltr_formatlist_sort() function to sort file formats in alphabetic order
based on the short name returned by the IG_fltr_info_get() function through its third lpShortNameparameter.

If you want to determine the list of filters that support the IG_FLTR_ features you can use the function:

IG_fltr_formatlist_get(DWORD dwFlags, LPAT_MODE lpFormatList, UINT nFListSize,
LPUINT lpnFListCount)

Through the dwFlagsargument, you can specify any combination of features (for instance, IG_FLTR_DETECTSUPPORT
| IG_FLTR_PAGEREADSUPPORT | IG_FLTR_MPAGEREADPSUPPORT), and a list of filters that support those features
will be returned through the second parameter (lpFormatList). See the description of this function in the Core
Component API Function Reference for detailed information about the parameters. If you want to determine the value
of the nFListSizeargument, first set lpFormatListto NULL. You can also use this function together with
IG_fltr_formatlist_sort() to get the list of filters that support necessary features and sort them by filter name:

UINT nFilterSize;
UINT nFListSize;
LPAT_MODE FList = NULL;
LPCHAR lpFilter = NULL;
LPSTR str;
IG_fltr_formatlist_get(IG_FLTR_PAGEREADSUPPORT, NULL, 0, &nFListSize);
FList = malloc(nFListSize*sizeof(AT_MODE));
if(FList!=NULL)
{
IG_fltr_formatlist_get(IG_FLTR_PAGEREADSUPPORT, FList, nFListSize, NULL);
IG_fltr_formatlist_sort(FList, nFListSize);
...
}

You can get information about any page of a multi-page file without loading it into memory if you use the function
IG_fltr_pageinfo_get(). Return information consists of the name of the file format (as IG_FORMAT_ constant), the
type of image compression (as IG_COMPRESSION_ constant), and such info as bpp, width and height of the page-
image.

Another two IG_fltr_...() functions allow you to work with pages in a multi-page file without loading it in memory:

IG_fltr_pageswap_file (const LPSTR lpszFileName, AT_MODE nFormatType, UINT
Page1, UINT Page2)
IG_fltr_pagedelete_file (const LPSTR lpszFileName, AT_MODE nFormatType, UINT
nStartPage, UINT nRange)

Both functions accept the filename of the multi-page image, format filter ID, and two integer parameters as page
numbers (assuming numeration from 1). The first function swaps pages in a multi-page image specified by page
numbers, but the second function deletes pages from it.

Before using these functions you have to determine whether or not ImageGear supports the corresponding features
for the necessary file format. This can be done using the function IG_fltr_info_get() and inspecting flags returned
through the second parameter for the specified file formats. If this value contains the flag
IG_FLTR_PAGESWAPSUPPORT, then the format filter does support the IG_fltr_pageswap_file() operation. If it also
has the flag IG_FLTR_PAGEDELETESUPPORT, then it supports the IG_fltr_pagedelete_file() operation.

SWAP and DELETE operations may or may not physically reorder multi-page files. For example, the page delete
operation may not really reduce the size of the file - just update the file format structures and remove the

ImageGear Professional v18 for Mac | 150

specified pages from it.

ImageGear Professional v18 for Mac | 151

1.2.4.3.3.2 Inquiring Format Filters for Supported Features

Each format filter has its own list of supported features determined by IG_FLTR_ flags. The table below describes the
meaning of each of these flags:

IG_FLTR_DETECTSUPPORT Supports auto-detection.

IG_FLTR_PAGEREADSUPPORT Supports reading a single page file.

IG_FLTR_MPAGEREADPSUPPORT Supports reading a multi-page file.

IG_FLTR_PAGEINSERTSUPPORT Supports writing a single-page file.

IG_FLTR_MPAGEWRITEPSUPPORT Supports writing multi-page file.

IG_FLTR_PAGEDELETESUPPORT Supports deleting a page from a multi-page file.

IG_FLTR_PAGESWAPSUPPORT Supports page-swapping in multi-page files.

IG_FLTR_MPDATASUPPORT Supports faster multi-page access by storing private format data (used only with
IG_mpi_... and IG_mpf_... API).

ImageGear Professional v18 for Mac | 152

1.2.4.3.4 Working with Multi-Page Documents

Along with a single-page image handle (HIGEAR), ImageGear provides support for multi-page images. The HMIGEAR
handle represents an array of single-page images. You can use ImageGear to:

Create and delete an internal representation of a multi-page image (HMIGEAR handle)
Open and associate a multi-page image file with an external file
Access and manipulate pages within the multi-page image
Manipulate pages in the external image file, such as loading, saving, swapping, and deleting pages
Retrieve information about multi-page images and about associated external files

The list of functions are divided into two categories:

Those that work with external associated multi-page files. These functions appear as IG_mpf_... .
Those that deal with multi-page image arrays. These functions begin with IG_mpi_... .

For example, the function IG_mpf_page_swap() swaps pages in the external file.

This section provides information about the following:

Creating and Deleting a Multi-page Image
Opening and Closing an External Image File
Loading and Saving Pages
Using Other Functions that Work with Pages
Using the Multi-Page Image Callback Function

ImageGear Professional v18 for Mac | 153

1.2.4.3.4.1 Creating and Deleting a Multi-Page Image Object

An internal representation of a multi-page image is an object of the data type HMIGEAR. This data type encapsulates an
array of pages, whose objects are of type HIGEAR. All IG_mpi_*** functions are introduced to access and manage this
array.

The first step when working with a multi-page image is to allocate and initialize an object of type HMIGEAR. To do this,
call the function IG_mpi_create(). This function creates a new multi-page image and sets the page array size to the
given number of pages. Pages are numbered from 0 to nPageCount-1, where nPageCount is the current size of the page
array, and the default page value is NULL.

A multi-page image is an array of pages. It is not necessary that all elements of this array contain valid HIGEAR objects.
Some pages may have a NULL value, and the function IG_mpi_page_is_valid() can be used to quickly identify whether a
page with a given number contains a valid HIGEAR image. The function IG_mpi_page_get() retrieves the value, and the
IG_mpi_page_set() function replaces a page value with a given index in the page array of a multi-page image.

The function IG_mpi_page_count_get() returns the current size of a page array, and the function
IG_mpi_page_count_set() changes the size of the page array.

When a multi-page image is no longer needed, you should delete it using the IG_mpi_page_delete() function. This
function deletes all valid pages in the array and frees all memory allocated in the HMIGEAR handle.

See Also:

Getting Information about a File Format Filter

ImageGear Professional v18 for Mac | 154

1.2.4.3.4.2 Opening and Closing an External Image File

After a multi-page image is created, it can be associated with an external image. This allows you to set a relationship
between a page array of a given multi-page image and pages of a multi-page file. After making that association, but
before closing the file, ImageGear stores format-related information in memory. This allows you to perform page
manipulation operations, such as page loads, saves, swaps, or deletes quickly, without scanning all of the format
structure of the associated file image. This may be useful if the number of pages in the file is large. It also improves the
performance of these operations.

Use the function IG_mpi_file_open() to open or create an external multi-page file and associate it with the multi-page
image given by the HMIGEAR object. Use the fourth parameter of this function to specify two open modes. If
IG_MP_OPENMODE_READONLY is specified, then the file opened has read-only access. Only these operations are
allowed. They need not change the file (for example, page loading).

If IG_MP_OPENMODE_READWRITE is used, then the file is opened with read-write access, and all supported operations
are allowed. Not all format filters support such operations, such as page insert, delete, and swap. The function
IG_fltr_info_get() can be used to get information about all implemented features of some particular format.

The third parameter of this function provides the format identifier (one from defined IG_FORMAT_... constants in
accucnst.h) and is used only when the file image opens in IG_MP_OPENMODE_READWRITE mode. The file does not
exist, and it is ignored in other cases. This parameter is used to specify the format of the image to be created.

Example:

#include "accucnst.h"
 ...
HMIGEAR hMIGear; /* HMIGEAR handle returned */
AT_ERRCOUNT nErrCount; /* number of errors reported */
 ...
nErrCount = IG_mpi_create(&hMIGear, 0);
if (!nErrCount)
{
nErrCount = IG_mpi_file_open("picture.tif", hMIGear, IG_FORMAT_UNKNOWN,
IG_MP_OPENMODE_READONLY);
 ...
 nErrCount = IG_mpi_close(hMIGear);
}else
 /* error handling */
 ...

If this function is opened for read-only access, then the page array of multi-page images is set to the number of pages
that is equal to the number of pages in the external file. If the file is opened for read-write access, then the multi-page
image is not changed.

Use the function IG_mpi_close() to disassociate a multi-page image from an external file, close the file, and free all
correspondent resources.

ImageGear Professional v18 for Mac | 155

1.2.4.3.4.3 Loading and Saving Pages

After the multi-page image is associated with an external file, it is possible to perform operations such as page loads,
saves, swaps, and deletes. If open mode is read-only, then only the page load is allowed. All others will trigger an
error.

Use the function IG_mpf_page_load() to load pages from an external file into a multi-page image. The second
argument of the function is a zero-based index of the first page for loading. The third argument specifies the number
of pages to load starting from this index. The order and location of the loaded pages in the page array is the same as
in the external file. Therefore, if the file pages start from nFirstIndex, then it loads into the page array starting with
nFirstIndex. If necessary, the page arrays are expanded to fit all of the requested number of pages. If, while loading,
some elements of the page array contains a valid HIGEAR image, then it is not deleted. It is then assigned a new
value of the image loaded from the file.

Use the function IG_mpf_page_save() to save pages from a multi-page image into an external file. The second and
third arguments are the same and have the same meaning as the second and third arguments for the load function.
The fourth argument specifies the compression method (for example, IG_COMPRESSION_JPEG or
IG_COMPRESSION_LZW for a TIFF image) and applies to all pages from the given range. The last parameter of this
function specifies how to save the pages into a file. There are two modes are possible:

IG_MPF_SAVE_INSERT
IG_MPF_SAVE_REPLACE

The first mode inserts pages into the file at the location specified by the second parameter, which is demonstrated in
the following picture:

IG_MPF_SAVE_INSERT:

The second mode replaces pages starting from the index specified by the second parameter:

IG_MPF_SAVE_REPLACE:

ImageGear Professional v18 for Mac | 156

Example:

To load pages 2 through 5 from the file "image1.tif" and insert them into file "image2.tif," the program is:

/*...*/
HMIGEAR hMIGear;
AT_ERRCOUNT nErrCount;
UINT nStartPage;
UINT nCount;
nErrCount = IG_mpi_create(&hMIGear, 0);
if (!nErrCount)
{
nErrCount = IG_mpi_file_open("picture1.tif", hMIGear, IG_FORMAT_UNKNOWN,
IG_MP_OPEN_READ);
 nStartPage = 2;
 nCount = 4;
 nErrCount = IG_mpf_page_load(hMIGear, nStartPage, nCount);
}
if (!nErrCount)
{
 nErrCount = IG_mpi_close(hMIGear);
 if (!nErrCount)
 nErrCount = IG_mpi_file_open("picture2.tif", hMIGear, IG_FORMAT_UNKNOWN,
IG_MP_OPEN_READWRITE);
 if (!nErrCount)
 nErrCount = IG_mpf_page_save(hMIGear, nStartPage, nCount,
IG_COMPRESSION_JPEG, IG_MPF_SAVE_INSERT);
}
if (nErrCount)
{
 /* error handling */
#include "accucnst.h"
}

If a page from the pages to save is not a valid HIGEAR image, then this page is ignored during the save operation.

IG_MPF_SAVE_REPLACE mode is acceptable for filters that support the page deletion operation. This information can
be obtained using the function IG_fltr_info_get(), and it should return the IG_FLTR_PAGEDELETESUPPORT flag, which
is set in the dwInfoFlags parameters.

ImageGear Professional v18 for Mac | 157

1.2.4.3.4.4 Using Other Functions that Work with Pages

When an external file is opened in read-write mode, an operation such as page delete and page swap is possible. Not
all filters support it. It is necessary to check with the function IG_fltr_info_get() for flags
IG_FLTR_PAGEDELETESUPPORT and IG_FLTR_PAGESWAPSUPPORT in the lpdwInfoFlags parameter.

IG_mpf_page_swap() is used to reorder pages in the external file. The second and third arguments of this function
are zero-based indexes of the pages to be swapped.

The IG_mpf_page_delete() function deletes the specified pages from the external file. The index of the first deleted
page is passed through the second argument, and number of pages to be deleted is passed through the third
argument.

Example:

This example shows how to reorder pages in a multi-page file.

AT_ERRCODE mpfPageReorder(
 HMIGEAR hMIGear
)
{
 UINT nPageCount;
 AT_MODE nFormatID;
 AT_ERRCOUNT nErrCnt;
 DWORD dwInfoFlags;
 UINT i;
IG_mpf_info_get(hMIGear, &nFormatID);
 if(nFormatID==IG_FORMAT_UNKNOWN)
 return -1; /* file is not associated */
 IG_fltr_info_get(nFormatID, &dwInfoFlags, NULL, 0, NULL, 0, NULL, 0);
 if((dwInfoFlags&IG_FLTR_PAGESWAPSUPPORT)==0)
 return -1;/* format filter does not support the page swap operation */
 nErrCnt = IG_mpf_page_count_get(hMIGear, &nPageCount);
 for(i = 0; (i < nPageCount/2) && (nErrCnt==0); i++)
nErrCnt = IG_mpf_page_swap(hMIGear, i, nPageCount - i - 1);
 return -nErrCnt;
}

Example:

This example demonstrates how to perform this operation on a multi-page image located in memory:

AT_ERRCODE mpiPageReorder(
HMIGEAR hMIGear
{
HIGEAR hPage1, hPage2;
UINT i, nPageCount;
AT_ERRCOUNT nErrCnt = 0;
nErrCnt = IG_mpi_page_count_get(hMIGear, &nPageCount);
for(i = 0; (i<nPageCount/2) && (nErrCnt==0); i++)
 {
 nErrCnt = IG_mpi_page_get(hMIGear, i, &hPage1);
 nErrCnt += IG_mpi_page_get(hMIGear, nPageCount - i - 1, &hPage2);
 nErrCnt += IG_mpi_page_set(hMIGear, i, hPage2);
 nErrCnt += IG_mpi_page_set(hMIGear, nPageCount - i - 1, hPage1);
}
return -nErrCnt;}

See Also:

IG_fltr_pageswap_file()

IG_fltr_pagedelete_file()

ImageGear Professional v18 for Mac | 158

Getting Information about a File Format Filter

ImageGear Professional v18 for Mac | 159

1.2.4.3.4.5 Using the Multi-page Image Callback Function

Multi-page image operations, implemented by the above functions, support a notification mechanism that allows you
to track information about when and how the multi-page image or associated file was changed. This can be done
using the functions IG_mpi_CB_set(), IG_mpi_CB_get(), IG_mpi_CB_reset(), and IG_mpi_CB_reset_all().

Use the function IG_mpi_CB_set(hMIGear, lpPrivate, lpfnUpdate, lpdwCBID) to associate new callback data with the
given hMIGear handle. The second argument, lpPrivate, is any LPVOID pointer that the callback function lpfnUpdate
receives through the second parameter. lpfnUpdate is a pointer to the function that implements the following
interface:

typedef VOID (LPACCUAPI LPFNIG_MPCB_UPDATE)(
 DWORD dwCBID,
 LPVOID lpPrivate,
 AT_MODE nMode,
 UINT nPage,
 UINT nCount
);

The last argument of IG_mpi_CB_set(), lpdwCBID, is a pointer to the application that receives an unique DWORD
identifier for the associated callback data. This ID is used to delete callback data using the function
IG_mpi_CB_reset() and retrieves callback data using the function IG_mpi_CB_get(). After the IG_mpi_CB_set()
function is executed, ImageGear calls the lpfnUpdate function every time a multi-page image is changed. This allows
the application to react accordingly, and updates the related objects such as GUI windows. As soon as this callback
function is called from the context of the thread that performed the operation, its execution is blocked until the
callback function is complete. From one side, this can be used for synchronization; but from another side, it should be
used carefully so that it does not affect performance.

By calling the callback function, ImageGear passes the type of changes through the nMode argument. The sense of
nPage and nCount arguments depend upon nMode. The following table list all possible cases:

nMode nPage nCount Description

IG_MPCBMODE_MPI_DELETE Not used Not used Notifies the application that a multi-page
image is going to be deleted.

IG_MPCBMODE_MPI_ASSOCIATED Not used Not used Notifies the application that a multi-page
image is just associated with external file.

IG_MPCBMODE_MPI_CLOSE No used Not used Notifies the application that a multi-page
image is going to close the associated external
file.

IG_MPCBMODE_MPI_CB_SET Not used Not used Notifies the application that this callback data
is just set. This notification receives only the
callback function that just has been set.

IG_MPCBMODE_MPI_CB_RESET Not used Not used Notifies the application that this callback data
is to be reset.

IG_MPCBMODE_MPI_PAGEINSERTED Index of
where
new
pages
start

Number of new
pages inserted

Notifies the application that new pages are
inserted into the multi-page image.

IG_MPCBMODE_MPI_PAGEUPDATED Index of
the first
updated
page

Number of
updated pages
starting from
nPage

The application updated pages in the multi-
page image.

IG_MPCBMODE_MPI_PAGEDELETED First
deleted
page
index

Number of
deleted pages

The application deleted pages in the multi-
page image.

IG_MPCBMODE_MPF_PAGEINSERTED Index of
where
new
pages
start

Number of new
pages inserted

The application inserted new pages into the
external file image.

ImageGear Professional v18 for Mac | 160

IG_MPCBMODE_MPF_PAGEUPDATED Index of
the first
updated
page

Number of
updated pages
starting from
nPage

The application updated pages in the
associated external multi-page image file.

IG_MPCBMODE_MPF_PAGEDELETED Index of
the first
deleted
page

Number of
deleted pages

The application deleted pages in the associated
external multi-page image file.

When the application does not need to receive any more information from the callback data, it should call the function
IG_mpi_CB_reset(hMIGear, dwCBID), where dwCBID is a unique identifier of the association returned by
IG_mpi_CB_set().

The function IG_mpi_CB_reset_all() removes all callback data associated with all previously allocated identifiers.

See Also:

Using Filter Callback Functions to Process Non-Image Data

Working with ImageGear Callback Functions

ImageGear Professional v18 for Mac | 161

1.2.4.3.5 Format Filter Control Parameters

Almost every format filter in ImageGear has some attributes on which it depends while processing operations such as
READ, WRITE, etc. Those attributes may be attributes declared by the format filter specification or may be specific to
its implementation by ImageGear. ImageGear has a general public interface implemented and named as format filter
control parameters. Every such control parameter is identified by the format filter and string name and has an
associated type of acceptable value, the value itself, and the default value. Each control parameter is filter specific.
The ImageGear Supported File Formats Reference describes the filters, and also describes each control parameter for
each format filter.

The ImageGear Filters API has three functions that allow you to get/set info about every supported filter control
parameter:

IG_fltr_ctrl_list(DWORD dwFormatID, LPUINT lpnCount, LPDWORD lpArray, DWORD dwArraySizeInBytes)
This function allows the application to get the list of names of all control parameters supported by the format filter
identified by dwFormatID. The Application is responsible for allocating the buffer lpArray, but ImageGear sets the
elements of this array as pointers to strings with control parameter names. You can use the control parameter
names as input values for the second argument of the next two functions.

IG_fltr_ctrl_get(DWORD dwFormatID, const LPCHAR lpcsCtrlName, AT_BOOL bGetDefault, LPAT_MODE
lpnValueType, LPDWORD lpdwValueSize, LPVOID lpBuffer, DWORD dwBufferSize)
This function is used to get the value of a given control parameter of a given format filter, and it may return either
its current value or its default value - that is controlled by the bGetDefault argument. A TRUE value returns the
default value, but FALSE returns the current value. The value itself is copied into a buffer that the application
provides through the dwBufferSize argument. You can use the control parameter names from IG_fltr_ctrl_list as
input values for the lpcsCtrlName argument.
IG_fltr_ctrl_set(DWORD dwFormatID, const LPCHAR lpcsCtrlName, LPVOID lpValue, DWORD dwValueSize)
This function allows you to set a new value for the control parameter. You can use the control parameter names
from IG_fltr_ctrl_list as input values for the lpcsCtrlName argument. The last two arguments of this function
specify the data to be set, and ImageGear always treats this data as a type that can be gotten by the _get()
function. If the actual size of the new value is less than 4 bytes, then lpValue is treated as the value itself,
otherwise it is treated as a pointer to the value.

This example demonstrates how to get the names of all supported control parameters for the TIFF format filter:

/* getting the total number of parameters */
nErrCount = IG_fltr_ctrl_list(IG_FORMAT_TIF, &nCount, NULL, 0);
if(!nErrCount && nCount > 0)
{
/* allocate required buffer to keep all names */
lpOptList = malloc(nCount * sizeof(DWORD));
 if(lpArray)
 {
 nErrCount = IG_fltr_ctrl_list(IG_FORMAT_TIF, NULL, lpOptList, nCount *
sizeof(DWORD));

The filter control parameters you work with using IG_fltr_ctrl_...() functions are strings. Refer to the "Filter
Control Parameters" Tables for each file format in the ImageGear Supported File Formats Reference section.

This example demonstrates how to get and set the value of the TIFF control parameter named "BIG_ENDIAN":

char DocumentName[_MAX_PATH];
AT_BOOL bDefBigEndian, bOldBigEndian;
...
/* get current value of BIG_ENDIAN control parameter */
IG_fltr_ctrl_get(IG_FORMAT_TIF, "BIG_ENDIAN", FALSE, NULL, NULL,
(LPVOID)&bOldBigEndian, sizeof(hOldBigEndian));
/* get default value of BIG_ENDIAN control parameter */
IG_fltr_ctrl_get(IG_FORMAT_TIF, "BIG_ENDIAN", TRUE, NULL, NULL,
(LPVOID)&bDefBigEndian, sizeof(hDefBigEndian));
/* get current value of DOCUMENT_NAME control parameter */
IG_fltr_ctrl_get(IG_FORMAT_TIF, "DOCUMENT_NAME", FALSE, NULL, NULL, DocumentName,
sizeof(DocumentName));
/* set new value to BIG_ENDIAN control parameter */

ImageGear Professional v18 for Mac | 162

IG_fltr_ctrl_set(IG_FORMAT_TIF, "BIG_ENDIAN", (LPVOID)TRUE, sizeof(AT_BOOL));
/* set new value to DOCUMENT_NAME control parameter */
strcpy(DocumentName, "This is a test string for DocumentName");
IG_fltr_ctrl_set(IG_FORMAT_TIF, "DOCUMENT_NAME", (LPVOID)DocumentName,
sizeof(DocumentName));

For the TXT Filter, to set the LINES_PER_PAGE and CHAR_PER_LINE control parameters, set the POINT_SIZE
control parameter to zero; setting the PAGE_WIDTH, PAGE_HEIGHT, and POINT_SIZE parameters provides a
sufficient page description, and LINES_PER_PAGE and CHAR_PER_LINE options are ignored.

ImageGear Professional v18 for Mac | 163

1.2.4.3.6 Non-Image Data Processing

Some format filters, such as EXIF-JPEG, EXIF-TIFF, TIFF, JPEG, PNG and some others contain non-image data, generally
referred to as metadata. ImageGear provides a mechanism for reading the metadata during image loading and
modifying it during image saving. Non-image data itself can be of any possible complex type, depending on the nature of
the file format. ImageGear processes this complex data through a single interface and allows uniform processing that
does not depend on the actual data format, and starts from information fields of such simple formats as BMP and PCX,
up to the complex metadata support in the EXIF filter and the IPTC non-image data format in such filters as TIFF and
JPEG.

While EXIF-JPEG and EXIF-TIFF are separate image file formats using JPEG or TIFF image data compressions, IPTC is a
format used only for non-image data storage in such imaging format filters as JPEG and TIFF. For more detailed
information about these formats, see the EXIF-TIFF Non-Image Data Structure, EXIF-JPEG Non-image Data Structure,
and the IPTC Non-Image Data Structure sections in Non-Image Data Storage as well as the EXIF-JPEG and EXIF-TIFF
sections in the File Format Reference.

ImageGear is responsible for translating this format-dependent data into a standard uniform format. There are at least
two operations that include such data processing:

Image loading - during image loading, some additional data needs to be loaded and uncompressed into the set of
values of standard types for further processing.
Image saving - during image saving, there should be a way to change existing defined values and add new values.

This section provides the following information:

Non-Image Data Format
Using Filter Callback Functions to Process Non-Image Data
Updating Non-Image Data without Loading and Saving the Image
Working with XMP Metadata

ImageGear Professional v18 for Mac | 164

1.2.4.3.6.1 Non-Image Data Format

The key thing of non-image data processing in ImageGear is a uniform data format that is used to convert to and
from the format filter. As soon as the format filter decodes the data fields one after another during the loading
operation, and encodes it in the reverse direction during the saving operation, all data consists of the set of items
where each item is a minimal atom of information. The order of items is fixed, and the format filter processes item
after item in the given order. The same order is used when data is passed through the stream.

The low-level format of the data consists of the list of items where each item represents a minimal unit of
information. Each item also should have some unique name that allows you to connect it with the physical value
inside of the file format. The definition of the data item can be described by the following fields:

typedef struct tagAT_DATALIST_ITEM{
 AT_MODE FormatID
 LPCHAR Name;
 DWORD Id;
 AT_MODE Type;
 LPVOID Value;
 AT_MODE ValueType;
 DWORD Length;
 AT_MODE ValueAccessMode;
 }AT_DATALIST_ITEM;

Please see the descriptions of these fields below:

FormatID The ID of the filter that reads or writes a file (IG_FORMAT_... constant value).

Name The name of the item. Can be any string value.

Id Numerical ID of item. Can be any value of DWORD size.

Type Specifies the type of item and reflects the status of the given record. Possible values are:
IG_METAD_VALUE_ITEM - this value specifies that the current item is a value of the simplest
type, and the field Value contains the actual value of the item, and ValueType contains the
identifier of the type of this item. ReadOnly can be either TRUE (read-only) or FALSE (read/
write). Name and/or Id contains textual and numerical identification of the item.
IG_METAD_LEVEL_START - this value specifies that the current item opens the sublevel of
items and all the next items up to the corresponding item with the LEVEL_END value
belonging to this sublevel.
IG_METAD_LEVEL_END - this value closes the current sublevel and tells that next item
belongs to a higher level.

Value Contains the value of the item when Type = IG_METAD_VALUE_ITEM. Note that possible values
of this field are fixed and define the exact list of allowed data types. It also depends on the
ImageGear platform and FLTR.METADATA_FORMAT global control parameter. This global
parameter has two allowed values: "text" and "binary". See the section Metadata Structure
"ValueType" and "Value" for possible values.

ValueType Contains the type identifier of the item when Type = IG_METAD_VALUE_ITEM. Possible values of
this field are fixed and define the exact list of allowed data types. See the section Metadata
Structure "ValueType" and "Value" for possible values.

Length Identifies the number of values to be written.

For AM_TID_TXT_STRING it should indicate the number of characters in the string, excluding
last null character (basically the length of the string).
For AM_TID_RAW_DATA it should indicate the number of bytes that the raw data occupies.
For the rest of the types it should indicate the number of values of the type, which textual
representation is encoded into "Value".

ValueAccessMode Identifies whether data can be changed or not. "Read only" value means that its value is
information only and cannot be changed after setting the initial value. It also means that its
value will be ignored during a WRITE operation.

So, this data structure allows you to "linearize" hierarchical and complex data into an array of simplest data types.

You can transfer different non-image data using the general data structure described in this section. Please see Non-
Image Data Storage.

ImageGear Professional v18 for Mac | 165

1.2.4.3.6.2 Using Filter Callback Functions to Process Non-Image Data

There are two working scenarios of how ImageGear processes non-image data.

The first one is the LOAD operation:

1. Application registers special callback function of type LPAFT_IG_METAD_ITEM_GET_CB.
2. The application calls some of the filter loading functions (like IG_fltr_load_file()), and during the LOAD

operation, the format filter calls the registered callback function to pass data for each item decoded from the
image.

The reverse WRITE operation is more complex:

1. Application registers callback functions of types LPAFT_IG_METAD_ITEM_SET_CB and
LPAFT_IG_METAD_ITEM_ADD_CB.

2. Application calls some filter writing functions (like IG_fltr_save_file()).
3. While performing WRITE operation ImageGear uses callback functions to modify existing items or add

additional items to required dataset.

ImageGear provides special LPAFT_ callback functions for the non-image data processing described in
this section. It also preserves the "old" callback functionality (LPFNIG_ callback functions) required for
image processing control and perfection. Please see Working with ImageGear Callback Functions for
detailed information about the structure of the ImageGear callback functionality.

You can see from the declaration below that LPAFT_IG_METAD_ITEM_GET_CB accepts parameters that provide all
necessary information about one data item. All parameters except the first one are fields of the data structure
AT_DATALIST_ITEM described in Non-Image Data Format:

LPAFT_IG_METAD_ITEM_GET_CB(LPVOID lpPrivate, LPCHAR ItemName, DWORD ItemID, AT_MODE
ItemType, LPVOID ItemValue, AT_MODE ValueType, DWORD ValueLength, AT_BOOL
ReadOnlyValue)

By implementing and providing a callback function of this type, the application can receive every decoded item and
process it as needed.

Some items from the dataset are informational only and cannot be changed during the WRITE operation. So, if the
ReadOnlyValue field is set to TRUE, then the item will not be changed during the WRITE operation. Actually, during
this operation, the format filter prepares all necessary items and puts required values to them to make sure that the
file format itself is not violated. For example, if an item requires a particular number of strips in the image, then if the
value of this item is changed, the image cannot be loaded.

The format filter prepares a minimal set of items and default values for them, and before writing its values to the
output stream it calls the callback function of type LPAFT_IG_METAD_ITEM_SET_CB so that the application can
change its values. In addition, the format filter may call the function of type LPAFT_IG_METAD_ITEM_ADD_CB to get
additional items to append the dataset. The application should provide its implementation in such a way that it
returns TRUE until it is necessary to insert more items. If this function returns FALSE, all custom items have been
added, and the filter can proceed.

It may happen that the application provides an item with the name or ID of a different type than the format
filter is expecting. For example, the format filter may expect the item named SOFTWARE with text as a String,
but the application provides its value as an Integer. In this case the filter may ignore this item and trigger a
warning that this type of item is not expected. Also, the application may provide an item that the format filter is
not able to handle because it does not fit the format defined by the corresponding image file format. In this case
it may simply ignore the item and give a warning.

The exact specification of the callback function types can be found in Core Component API Function Reference, but
the following is a quick reference for better understanding:

LPAFT_IG_METAD_ITEM_SET_CB)(LPVOID lpPrivate, LPCHAR ItemName, DWORD ItemID, AT_MODE
ItemType, LPVOID ItemValue, AT_MODE ValueType, DWORD ValueLength, AT_BOOL
ReadOnlyValue, LPVOID *NewItemValue, LPAT_MODE *NewValueType, LPDWORD
*NewValueLength)

*NewItemValue, *NewValueType, *NewValueLength are arguments with a new value for a given item. If

ImageGear Professional v18 for Mac | 166

ReadOnlyValue is TRUE, the value of this item is unchangeable.

You can add a new non-image item during the filter WRITE operation using the callback function prototype:

LPAFT_IG_METAD_ITEM_ADD_CB(LPVOID lpPrivate, LPCHAR ItemName, DWORD ItemID, AT_MODE
ItemType, LPVOID ItemValue, AT_MODE ValueType, DWORD ValueLength, AT_BOOL
ReadOnlyValue)

All arguments in this function are parameters for the new item and its value.

To exchange the non-image tag information provided by these three callback functions between the application and
the internal ImageGear structure levels, you should use two functions:

IG_fltr_metad_callback_get(LPVOID *lpPrivate, LPAFT_IG_METAD_ITEM_SET_CB
*lplpfnSetCB, LPAFT_IG_METAD_ITEM_ADD_CB *lplpfnAddCB,
LPAFT_IG_METAD_ITEM_GET_CB *lplpfnGetCB)

IG_fltr_metad_callback_set(LPVOID *lpPrivate, LPAFT_IG_METAD_ITEM_SET_CB
*lplpfnSetCB, LPAFT_IG_METAD_ITEM_ADD_CB *lplpfnAddCB,
LPAFT_IG_METAD_ITEM_GET_CB *lplpfnGetCB)

The first function allows you to provide the current callback non-image tag data from the internal ImageGear
structure to an application level during load/save processes. If some callback information is not necessary, you can
set the respective argument of this function to NULL. For instance, if you do not need information about newly added
non-image items, set lplpfnAddCB = NULL.

The second _set() function provides the new non-image callback data from the application level to the internal
ImageGear level during the load/save processes. Again, if some callback information is not necessary, you can set the
respective argument of this function to NULL.

An example of how to use these callback functions is too complex to include in this manual. The GUI implementation
that is provided in the source form demonstrates all aspects of working with these callback functions.

ImageGear Professional v18 for Mac | 167

1.2.4.3.6.3 Updating Non-Image Data without Loading and Saving the Image

Callback functions can be used to get and set non-image data during normal load and save operations. It is also possible
to use callback functions with the IG_fltr_metad_update_file() function to operate on only the non-image data in a file.
This function creates a new file with an exact copy of the source file's pixel data and with new non-image data. Pixel data
is not decoded, but is copied directly from the source to the destination file. This function is currently supported with the
following file formats only:

TIFF (except TIFF-JPEG)
JPEG

IG_fltr_metad_update_file() obtains new non-image data from the following callback functions:

LPAFT_IG_METAD_ITEM_SET_CB
LPAFT_IG_METAD_ITEM_ADD_CB

IG_fltr_metad_update_file() function can be used as follows:

Load necessary page to get metadata.
Change metadata (add / delete / change metadata tags or metadata values).
Call IG_fltr_metad_update_file() function. nPageNumber and lFormatType parameter values should correspond to the
loaded page and source file format.

The destination file will be a copy of the source file with the new non-image data for the specified page.

The application may then delete the source file and rename the destination file with the name of the source file.

Usage of metadata update function is demonstrated in the Filter sample. Use the following steps to test this feature:

1. Open a TIF image using File/Open menu item.
2. Add or modify tag(s) using Image/Metadata/Data Structure dialog.
3. Create a file with updated metadata using File/Update metadata menu item. Source file name and page number

correspond to the last loaded page in the filter sample.

All changes made in the Metadata dialog will be lost if any function that returns metadata is called before calling
IG_fltr_metad_update_file() (i.e., loading a new file, getting file info, or preview).

ImageGear Professional v18 for Mac | 168

1.2.4.3.6.4 Working with XMP Metadata

Extensible Metadata Platform (XMP) is an XML-based standard for storage and interchange of metadata, developed by
Adobe Systems Inc. The standard defines the rules for storage and processing of the metadata, and provides a number
of schemas for storage of information that is typically associated with images and documents, such as Title, Author,
Creation date/time, Rating, etc. Applications can add their own schemas to store arbitrary information.

XMP metadata can be attached to files of various formats, such as TIFF, JPEG, PSD and PDF, or stored as a standalone
file.

ImageGear provides the following ways for working with XMP metadata:

Accessing XMP properties via the ImageGear Metadata API. In this mode, ImageGear decodes XMP properties and
sends them to the application via metadata callbacks.
Working with unprocessed XMP metadata. In this mode, ImageGear passes XMP to the application as a byte array,
treating it as a single tag of the containing metadata format.

By default, ImageGear parses the XMP stream into its metadata structure, and does not provide the Raw XMP stream. If
you don't want ImageGear to parse the XMP stream, and prefer to instead access the unprocessed XMP stream, set
global control parameter XMP.Parse to FALSE.

During saving, if XMP.Parse is TRUE, ImageGear expects a tree under the XMP tag, and serializes this tree into the
output file. If XMP.Parse is FALSE, ImageGear expects a byte array in the XMP tag, and saves it verbatim to the file.

Since the XMP standard identifies schema properties using string names, rather than numbers, ImageGear also uses
names to identify XMP properties. However, it uses numeric identifiers to differentiate between the kinds of entities, such
as Description (schema), Array, Property, Qualifier, etc. All properties have ID = ImGearXMPTagIDs.Property, but differ
by their names.

See XMP Non-Image Data Structure for a description of XMP metadata structure in ImageGear.

Example:

Representation of XMP metadata tree.

XMP
http://ns.adobe.com/xap/1.0/

About = ""
Namespace

Prefix = "xmp"
URI = "http://ns.adobe.com/xap/1.0/"

Properties
xap:Rating

Value = 4
xap:Identifier

Value = "1234.0345.34532.234231"
http://purl.org/dc/elements/1.1/
Namespace

Prefix = "dc"
URI = http://purl.org/dc/elements/1.1/

Properties
dc:subject

Bag
Item

Value = "Test subject 1"
Item

Value = "Test subject 2"
dc:title

Alt
Item

Lang = "x-default"
Value = "XMP Support Specification"

ImageGear Professional v18 for Mac | 169

1.2.4.3.7 Stripped Images

To expedite loading and displaying large images, ImageGear provides alternate storage schemes that allow a large
image to be loaded in segments. Such segments are loaded and pieced together in sequential order.

One of the storage schemes developed was stripped storage. A stripped image contains offsets to numerous groups of
pixel rows. Each strip is the full width of the image. The diagrams below show an image stored in strips (shown
separated), and the same image pieced together in memory:

In the actual DIB, there are no spaces between strips. The header simply contains the address of the leftmost pixel of
the first row of each strip. The spaces between the strips in the image on the left are just for illustrative purposes. On
the right, the image has been loaded and pieced together in memory.

The TIFF format, in which the use of stripped storage was once commonplace, rarely uses this scheme today. However,
there are many old images still in use that were created with this storage scheme, and ImageGear fully supports these
images.

The loading and saving of stripped images using ImageGear is no different than loading or saving a non-stripped image.
You can use IG_load_file() or any other ImageGear loading API, without making any special settings. When loading,
ImageGear will automatically detect the stripped storage and piece all of the strips together in the proper order.

Once in memory, a stripped image will be like any other image loaded into memory. It will be a DIB with a HIGEAR
handle. You can now save it to any ImageGear-supported format. If you would like to save it again using stripped
storage, you may do so using ImageGear Format Filter IG_fltr_ctrl_set()/IG_fltr_ctrl_get() functions. Of course, you
must choose a file format that supports stripped storage. You can save a TIFF image with stripped storage by setting the
number of strips to use. Here is the call you would make:

/* get current value of NUMBER_OF_STRIPS control parameter */
IG_fltr_ctrl_get(IG_FORMAT_TIF, "NUMBER_OF_STRIPS", FALSE, NULL, NULL,
(LPVOID)nNumberOfStrips, sizeof(nNumberOfStrips));
/* set new value to NUMBER_OF_STRIPS control parameter */
IG_fltr_ctrl_set(IG_FORMAT_TIF, "NUMBER_OF_STRIPS", (LPVOID)3,
sizeof(nNumberOfStrips));

In fact, there are a number of ways that a TIFF may be stored using IG_fltr_ctrl_set() with WRITE_CONFIG parameter.
See this control parameter and its range of settings in TIFF Control Parameters Table located in the ImageGear
Supported File Formats Reference.

TIFF filter control parameters that pertain to stripped storage include those shown in the following list:

NUMBER_OF_STRIPS
BUFFER_SIZE
WRITE_CONFIG

Please see the section TIFF in the File Format Reference for more detailed information about each parameters.

ImageGear Professional v18 for Mac | 170

1.2.4.3.8 Tiled Images

In a tiled image, pixel data is stored in blocks called "tiles", whose height and width are less than that of the height and
width of the full image. All tiles are the same size. However, it is rare that the tiles evenly cover the image. Therefore, in
most cases, the following statements will be TRUE:

(# of tiles per row) * (width of a tile) ... the width of the image
(# of tiles per column) * (height of a tile) ... the height of the image

This section provides information about the following:

Padding
Automatic Tile Stitching
Saving a TIFF File Using Tiles

ImageGear Professional v18 for Mac | 171

1.2.4.3.8.1 Padding

Those areas of tiles that are on the border of an image, but are not completely filled with image data, are filled with
padding. The image below illustrates a tiled image and shows padding to the right side and bottom of the image.
Padding to the right and bottom of the image is the most frequent tiled storage situation that you will encounter:

When ImageGear loads a tiled image (or any image) it reads the header or tag data to find out the width and height
of the actual image. This data will not include the padding. As ImageGear loads the file, it discards the padding. The
following ImageGear-supported file formats allow the use of tiled storage: TIFF, IBM IOCA, and IBM MO:DCA.
Currently, the highest level of control given to you for working with tiled images is for the TIFF format, which will be
mentioned frequently throughout this section.

If you were to call IG_load_file() to load a tiled image, it would load the first tile of the first page. If you want to load
more than one tile and stitch them together, you should call one of the IG_load_tiles_stitch ...() functions. In addition
to loading and stitching any number of tiles, ImageGear also allows you to query the tiles of an image before loading
it, tell ImageGear which tiles to "stitch together" when loading, and how to tile the image when you save it to disk.

If you wish to specify which tiles of a TIFF image to load and stitch, your first task will be to find out whether the
image actually has tiles or not. The function IG_tile_count_get() can be called to get this information. This function
returns the number of tiles per row, and the number of tiles per column. If this function returns zeros for the number
of tiles across the image (lpTileCols) and the number of tiles down the length of the image (lpTileRows), you will know
that the image is not tiled. There are two other versions of this function: if you have already opened a TIFF file and
have a File Descriptor handle for it, use the function IG_tile_count_get_FD(); if the file has already been loaded into
memory (using IG_load_mem()), use the function IG_tile_count_get_mem().

The following ImageGear functions can be used to load and stitch TIFF tiles:

AT_ERRCOUNT ACCUAPI IG_load_tiles_stitch(const LPSTR lpszFileName, UINT nPage,
LPAT_STITCH lpStitch, LPHIGEAR lphIGear);
AT_ERRCOUNT ACCUAPI IG_load_tiles_stitch_FD(INT fd, LONG lOffset, UINT nPage,
LPAT_STITCH lpStitch, LPHIGEAR lphIGear);
AT_ERRCOUNT ACCUAPI IG_load_tiles_stitch_mem(LPVOID lpImage, DWORD dwImageSize, UINT
nPage, LPAT_STITCH lpStitch, LPHIGEAR lphIGear);

Each function takes a page number that specifies which page of a multi-page file to load. Set this to 1 if it is not a
multi-page file. Each also takes a structure of type AT_STITCH that will tell ImageGear which tiles to stitch together
and load. Here is the definition of AT_STITCH:

typedef struct tagAT_STITCH
{
LONG uRefTile; /* Upper left-hand corner tile # */
LONG uTileRows; /* Number of tiles to stitch across*/
LONG uTileCols; /* Number of tiles to stitch down */
}AT_STITCH, FAR *LPAT_STITCH;

Set the structure member uRefTile to the number of the tile that you would like to be used as the upper left-most tile
in the image that will be loaded and stitched. Set uTileRows to the number of tiles across that you would like your

ImageGear Professional v18 for Mac | 172

stitched image to use. Set uTileCols to the number of columns of tiles that you would like your stitched image to use.
If you wish to stitch all tiles together, simply pass in a NULL for this structure.

Below are some examples of how a tiled image can be stitched together. Figure 1 shows a tiled TIFF image that
contains a total of 9 tiles. Note that for simplicity, the tiles are shown to evenly cover the exact height and width of
the image. This rarely happens.

The numbering scheme in Figure 1 reflects the way that ImageGear keeps track of the tiles. When you refer to
specific tiles, the upper-left-most tile will be 1. The tiles are then numbered sequentially from left to right, top to
bottom.

Figure 1: TIFF image with 9 tiles. The numbering scheme shown is the same one you should use when interfacing
with tiles using ImageGear.
Figure 2 shows all of the tiles stitched together, which would be the result if you set the AT_STITCH structure to
NULL.

Figure 2: All of the tiles are loaded and stitched together.
The following call achieves the results shown in Figure 2:

IG_load_tiles_stitch("KidsKatz.tif", 1, NULL, &hIGear)

ImageGear Professional v18 for Mac | 173

Figure 3: Tiles 5, 6, 8, and 9 are loaded and stitched together.

To achieve the results shown in Figure 3, make the following calls:

AT_STITCH stitchStruct;
HIGEAR hIGear;
stitchStruct.uRefTile = 5;
stitchStruct.uTileRows = 2;
stitchStruct.uTileCols = 2;IG_load_tiles_stitch("KidsKatz.tif", 1, &stitchStruct, &hIGear)

You may want to find out the width and height of the tiles in the image so that you can make an informed decision
about which tiles to load. First use the function IG_info_get_ex() which will return the width and height of the image.
Then divide the width of the image by the number of tiles per row, and the height of the image by the number of tiles
per column. To get the height and width of an image that is already opened and for which you have a File Descriptor
handle, call IG_info_get_FD_ex(); to get the height and width of an image that has been loaded into memory and for
which you have a HIGEAR handle, call IG_info_get_mem_ex().

ImageGear Professional v18 for Mac | 174

1.2.4.3.8.2 Automatic Tile Stitching

ImageGear allows you to automatically stitch all image tiles during loading. Set the "STITCH_TILES" filter control
parameter to TRUE to enable automatic tile stitching. In this mode:

Image loading functions load the whole image as if it were not tiled.
Tile counting functions report that the image is not tiled (has a single tile).
Header reading functions report full image dimensions rather than dimensions of a single tile.

Set the "STITCH_TILES" filter control parameter to FALSE to disable automatic tile stitching. In this mode:

Image loading functions load a single tile (by default - first image tile).
Tile counting functions report the actual number of tiles.
Header reading functions report the dimensions of a single tile.

Currently, the following ImageGear format filters support automatic tile stitching:

IBM AFP
IBM IOCA
IBM MO:DCA
JPEG 2000
JPX
TIFF

ImageGear Professional v18 for Mac | 175

1.2.4.3.8.3 Saving a TIFF File Using Tiles

When you save a TIFF image to disk, you can tell ImageGear to save the bitmap data as tiles, regardless of what
storage scheme was originally used. To choose tiled storage and to make modifications to the way ImageGear will
implement these storage schemes, use the IG_fltr_ctrl_set() and IG_fltr_ctrl_get() functions. For more information on
getting/setting filter control parameters see Using Format Filters API for Filter Control.

The following TIFF filter control parameters are related to tiles:

WRITE_CONFIG
TILE_H_COUNT
TILE_V_COUNT
TILE_WIDTH
TILE_HEIGHT
BUFFER_SIZE

Please see the section TIFF in the File Format Reference for detailed information about the parameters.

The following example call shows an example image loaded into memory with only tiles 5, 6, 8, and 9, and then being
saved as a tiled image with 20 tiles:

/* Declare a structure of type AT_STITCH */
AT_STITCH stitchStruct;
UINT nPage;
HIGEAR hIGear;
LONG lHorizTileCount, lVertTileCount;
/* Set uRefTile to the number of the tile that you would like to use as the upper-
left most tile in the stitched image */
stitchStruct.uRefTile = 5;
/* Set uTileRows to the number of tiles that you would like per row */
stitchStruct.uTileRows = 2;
/* Set uTileCols to the number of tiles that you would like per column */
stitchStruct.uTileCols = 2;
/* Set lHorizontalTileCount to the number of tiles per row that ImageGear should
make when an image is saved to disk as a tiled TIFF. */
lHorizTileCount = 5;
/* Set lVertTileCount to the number of rows that ImageGear should make when an image
is saved to disk as a tiled TIFF. */
lVertTileCount = 4;
/* Set nPage to the page number of a multi-page TIFF that you would like to load. If
the TIFF isn't multi-page, set to 1. */
nPage = 1;
/* This function loads the tiles specified by &stitchStruct, stitches them together
in a DIB and returns you a HIGEAR to the image in &lphIGear.*/
IG_load_tiles_stitch("KidsKatz.tif", nPage, &stitchStruct, &hIGear);
/* Use the Filter Control function to tell ImageGear how to configure TIFF files
when it saves them to disk. This call specifies that they should be saved as tiled
images and that you will be providing ImageGear will a fixed number of tiles to
create when saving the file. */
IG_fltr_ctrl_set(IG_FORMAT_TIF, "WRITE_CONFIG", (LPVOID)IG_TIF_TILED_FIXED_COUNT,
sizeof(lpWriteConfig));
/* Use the Filter Control function to tell ImageGear how many tiles per row you would
like to make in images saved to disk as TIFFs. */
IG_fltr_ctrl_set(IG_FORMAT_TIF, "TILE_H_COUNT", (LPVOID)lHorizTileCount,
sizeof(lHorizTileCount));
/* Use the Filter Control function to tell ImageGear how many rows of tiles you would
like to make in images saved to disk as TIFFs. */
IG_fltr_ctrl_set(IG_FORMAT_TIF, "TILE_V_COUNT", (LPVOID)lVertTileCount,
sizeof(lVertTileCount));
/* Call IG_fltr_save_file() to save the current HIGEAR image as an uncompressed
TIFF. */
IG_fltr_save_file(hIGear, "KidsKatz.tif", IG_SAVE_TIF_UNCOMP, 1, TRUE);

ImageGear Professional v18 for Mac | 176

If you do not specify the configuration to use for saving a TIFF image to disk, ImageGear will use the default
setting of IG_TIF_STRIP_FIXED_COUNT. If you do not specify a number of strips, the default of 1 is used.

TIFF Storage
The TIFF format filter supports four modes of storage for writing out to a TIFF file. All settings are made by supplying
"WRITE_CONFIG" control parameter for the function IG_fltr_ctrl_set(). Here are the possible settings:

IG_TIF_STRIP_FIXED_COUNT Write the image using a fixed number of strips. The number of strips to use can be
set via the NUMBER_OF_STRIPS control parameter.

IG_TIF_STRIP_FIXED_BUFFER Write the image using strips so that each strip is not greater than the specified size
in bytes. The size of the strip buffer can be set via the BUFFER_SIZE control
parameter. Please note that at least one raster will be included in the strip.

IG_TIF_TILED_FIXED_SIZE Save the image using tiles of fixed size. The size of the tiles can be set via the
TILE_WIDTH and TILE_HEIGHT control parameters.

IG_TIF_TILED_FIXED_COUNT Save the image using a fixed number of tiles. The number of tiles in both the
horizontal and vertical direction can be set via the control parameters
TILE_H_COUNT and TILE_V_COUNT.

ImageGear Professional v18 for Mac | 177

1.2.4.3.9 Internal Stream Bufferization

ImageGear uses internal bufferization for image reading and writing. This reduces the number of system IO operations
during reading and writing, and consequently improves image loading and saving performance, especially when the
image is located on a remote computer.

Use the IO.BUFFER_SIZE control parameter to control the size of the reading buffer. The default value is 262144 bytes
(256 KBytes). This size works well for most images, but you can use a smaller buffer for very small images or a larger
buffer for large images. Setting the buffer size to 0 cancels bufferization on reading.

Some format filters, such as TIFF and JPEG, set the buffer size for reading pixel data automatically, according to the
image raster size. However, they also use the common IO.BUFFER_SIZE setting for reading the image header.

Many formats set the buffer size automatically.

ImageGear Professional v18 for Mac | 178

1.2.4.4 Displaying Images

ImageGear's set of over 40 display-related functions allows you to control where and with what attributes your
application displays each of its images. Among the attributes you can set on an image-by-image basis are:

Contrast adjustment
Brightness adjustment
Gamma correction
Dithering
Anti-aliasing enhancement
Rotation
Region within the display area in which the image is to be displayed (this area is called the Device Rectangle)
The portion of the image to display (this array of pixels within the DIB bitmap is called the Image Rectangle)
How to fit the Image Rectangle to the Device Rectangle
The background fill pattern and color to use (for any area of the Device Rectangle left vacant by the image)

Also, by using the image's LUTs (Look-Up-Tables), you can translate the colors in the image's color palette to other
colors you select (and therefore you can, for example, display an 8-bit grayscale image in any 256 colors you choose).

All of the above display attributes take effect during display only. They do not alter either the image bitmap or the color
palette in the DIB.

In addition, any time your image is being displayed, you can center, zoom, or scroll it from within your application.

This section provides information about how to use the features described above, and how to use additional special
purpose IG_dspl_image_draw...() functions:

Concepts
Understanding Storage Options
Understanding Display Options

ImageGear Professional v18 for Mac | 179

1.2.4.4.1 Concepts

The key concepts of the new display functionality are display options, display option groups, and display operations.

A display option is a variable that is assigned a value (or a setting) from a predefined list. Every option has a default
value associated with it, and is therefore always defined.
A display option group is the complete set of all options' values.
A display operation is an action such as displaying or printing an image. Every operation requires an option group
whose identifier is passed as a parameter to the function that performs the operation. This group affects the result of
the operation and the way in which it is achieved.

ImageGear Professional v18 for Mac | 180

1.2.4.4.2 Understanding Storage Options

Every handle of an ImageGear image (HIGEAR) contains a set of option groups. ImageGear does not impose any
restrictions on the size of this set, i.e., on the number of option groups that are stored with any given HIGEAR. You do
not need to allocate or de-allocate the storage space for the groups. You can, however, reset all group options to their
default values.

Each option group has its own ID. This ID is a DWORD integer and is unique in the scope of a given HIGEAR; i.e., every
pair {HIGEAR, DWORD} uniquely identifies an option group. The reason for introducing option groups and associating
multiple groups with a single image handle is to provide a convenient means of drawing the same image on multiple
devices. In this case, a separate option group may be allocated for each of the devices, and later used whenever the
image is output to the corresponding device without the need to reassign options values.

ImageGear Professional v18 for Mac | 181

1.2.4.4.3 Understanding Display Options

In this section, all the options are divided into several categories according to the type of the functionality they affect:

Geometric Layout
Dithering, Anti-Aliasing, and Palette Handling
Transparency and Background
Look-Up Tables and Gamma Correction
Grayscale Look-Up Tables

ImageGear Professional v18 for Mac | 182

1.2.4.4.3.1 Geometric Layout

The Geometric Layout category includes options that determine the image layout on the destination device:

ImageRect
(AT_RECTANGLE)

A rectangle that defines the part of the image that is output to the device. It is
expressed in image coordinates. By default, this option is set to the entire image.

ClipRect
(AT_RECTANGLE)

A rectangle that identifies the destination device area that is affected by display
operations. Display operations never affect parts of the destination device outside of
the ClipRect. It is expressed by device coordinates and is initially assigned the entire
client area of the destination device.

DeviceRect
(AT_RECTANGLE)

A rectangle that identifies the area on the destination device upon which the image is
projected. Only the portion of the projection falling within the clip rectangle will be
seen. The rest of the clip rectangle may be painted with the background color
depending on BkMode. The image does not necessarily fit exactly into the device
rectangle. The position of the image inside the device rectangle is determined by other
options such as AspectMode, FitMode, and AlignMode (see their descriptions below).

DisplayedImageRect
(AT_RECTANGLE)

This is not a display option that you can set, however this is a very important concept
discussed below. This is the rectangular area that represents the image's size and
location on the device (and therefore, it is expressed in device coordinates). It is
important to understand that it is not related to ClipRect, which represents the visible
part of the image. The DisplayedImageRect's value can be calculated and used but
cannot be directly set.

AspectMode (AT_MODE)
and AspectValue
(DOUBLE)

These options determine an image's aspect ratio (its width-to-height ratio).
AspectMode can be assigned one of two possible values:

IG_DSPL_ASPECT_FIXED - this aspect ratio is the one contained in AspectValue.
IG_DSPL_ASPECT_NOT_FIXED - this aspect ratio is that of the device rectangle.

AspectValue may be any positive number with the following meaning: AspectValue =
(DisplayedImageRect.Width / DisplayedImageRect.Height) / (ImageRect.Width /
ImageRect.Height). The default values for these options are IG_DISPL_ASPECT_FIXED
and 1.0, respectively.

PPMCorrect (BOOL) This option allows you to take into account the image's resolution when calculating the
aspect ratio, such that physical width and height are actually used for calculation. If
this value is TRUE then ImageRect.Width and ImageRect.Height will be altered based
on the horizontal and vertical resolution, respectively. The default value is FALSE.

FitMode (AT_MODE) This value defines how an image fits to the device rectangle while preserving its aspect
ratio according to the AspectMode and AspectValue options. The possible values are:

IG_DSPL_FIT_TO_DEVICE - in this mode, the image is scaled to fit both the width
and height of the device rectangle.
IG_DSPL_FIT_TO_WIDTH - in this mode, the image is scaled to fit the width of the
device rectangle.
IG_DSPL_FIT_TO_HEIGHT - in this mode, the image is scaled to fit the height of the
device rectangle.
IG_DSPL_ACTUAL_SIZE - in this mode, the device rectangle is ignored, and the
image is scaled 1:1.

The default value is IG_DSPL_FIT_TO_DEVICE.

AlignMode (AT_MODE) This value defines how the displayed image is aligned relative to the device rectangle.
Possible values are bitwise ORs of any two values, such that one of them represents
the horizontal alignment and the other represents the vertical alignment.

The values representing the horizontal alignment are:

IG_DSPL_ALIGN_X_LEFT - the image is aligned to the left border of the device
rectangle.
IG_DSPL_ALIGN_X_CENTER - the image is centered horizontally.
IG_DSPL_ALIGN_X_RIGHT - the image is aligned to the right border of the device
rectangle.

The values representing the vertical alignment are:

IG_DSPL_ALIGN_Y_TOP - the image is aligned to the top border of the device

ImageGear Professional v18 for Mac | 183

rectangle.
IG_DSPL_ALIGN_Y_CENTER - the image is centered vertically.
IG_DSPL_ALIGN_Y_BOTTOM - the image is aligned to the bottom border of the
device rectangle.

The default value is IG_DSPL_ALIGN_X_CENTER | IG_DSPL_ALIGN_Y_CENTER.

ZoomMode (AT_MODE) The value that specifies how the image is zoomed in the horizontal and vertical
directions. Possible values for this option are bitwise ORs of any two flags such that one
of them represents a horizontal zoom value and the other represents a vertical zoom
value.

Flags representing the horizontal zoom values are:

IG_DSPL_ZOOM_H_NOT_FIXED - this mode allows any horizontal zoom value.
IG_DSPL_ZOOM_H_FIXED - in this mode, the horizontal zoom factor is taken from
ZoomValueH (see below for details).

Flags representing the vertical zoom values are:

IG_DSPL_ZOOM_V_NOT_FIXED - this mode allows any vertical zoom value.
IG_DSPL_ZOOM_V_FIXED - in this mode the vertical zoom factor is taken from
ZoomValueV (see below for details).

The default value for this option is IG_DSPL_ZOOM_H_NOT_FIXED |
IG_DSPL_ZOOM_V_NOT_FIXED. Please note that AspectMode takes precedence over
ZoomMode. In other words, the vertical zoom values are ignored if AspectMode is set
to IG_DSPL_ASPECT_FIXED.

ZoomValueH,
ZoomValueV (DOUBLE)

These options specify actual horizontal and vertical zoom values according to
ZoomMode. Their meaning may be expressed as follows: ZoomValueH =
DisplayedImageRect.width / ImageRect.width, ZoomValueV =
DisplayedImageRect.height / ImageRect.height. Please note that ZoomValueV is not
used if AspectMode is set to IG_DSPL_ASPECT_FIXED.

OrientMode (AT_MODE) This parameter identifies how the image is oriented before it is drawn on the output
device. Possible values are determined by the constants that have the form of
IG_DSPL_ORIENT_X_Y, where each of X and Y can be LEFT, TOP, RIGHT, or BOTTOM.
X stands for the position where the top-most row of the bitmap will be located after
applying the transformation, and Y stands for the position where the left-most column
of the bitmap will be located after applying the transformation. For example,
IG_DSPL_ORIENT_RIGHT_TOP means that the left-most column will become the
image's new top-most row, and the top-most row will become the image's new right-
most column. The image will be rotated 90 degrees.

The following constants are defined:

IG_DSPL_ORIENT_TOP_LEFT - the image is displayed unchanged.
IG_DSPL_ORIENT_LEFT_TOP - the image is rotated 270 degrees and then flipped
vertically.
IG_DSPL_ORIENT_RIGHT_TOP - the image is rotated 90 degrees.
IG_DSPL_ORIENT_TOP_RIGHT - the image is flipped horizontally.
IG_DSPL_ORIENT_BOTTOM_RIGHT - the image is rotated 180 degrees.
IG_DSPL_ORIENT_RIGHT_BOTTOM - the image is rotated 90 degrees and then
flipped vertically.
IG_DSPL_ORIENT_LEFT_BOTTOM - the image is rotated 270 degrees.
IG_DSPL_ORIENT_BOTTOM_LEFT - the image is flipped vertically.

The default value is IG_DSPL_ORIENT_TOP_LEFT. Note that when changing an image's
orientation, the image rectangle's orientation is also changed. The other rectangles and
options remain unchanged.

ScrollbarMode
(AT_MODE)

Scrolling is automatically supported in both horizontal and vertical directions. Scroll
parameters are automatically calculated by ImageGear. All scroll parameters are stored
apart from scrollbars, and therefore, the image can be scrolled in any possible way. If
you want to manage the scrollbars yourself, you may do so by using this option.
Possible values for this option include any combination of two flags, such that one of
them is a "horizontal" flag and the other is a "vertical" flag. Horizontal flags are:
IG_DSPL_HSCROLLBAR_AUTO - allows ImageGear to show and hide the horizontal
scrollbar depending on the scroll range. IG_DSPL_HSCROLLBAR_ENABLE - in this

ImageGear Professional v18 for Mac | 184

mode, ImageGear always shows the horizontal scrollbar even if the scroll range is 0.
IG_DSPL_HSCROLLBAR_DISABLE - in this mode, ImageGear ignores the horizontal
scrollbar and does not set any of its properties. IG_DSPL_VSCROLLBAR_AUTO - allows
ImageGear to show and hide the vertical scrollbar depending on the scroll range.
IG_DSPL_VSCROLLBAR_ENABLE - in this mode, ImageGear always shows the vertical
scrollbar even if the scroll range is 0. IG_DSPL_VSCROLLBAR_DISABLE - in this mode,
ImageGear ignores the vertical scrollbar and does not set any of its properties.

ScrollPosH,
ScrollPosV(LONG)

These options determine how DisplayedImageRect is moved in the horizontal and
vertical directions. These values should fall within the corresponding scroll range. Both
are set to 0 by default.

MapMode (DWORD),
Viewport
(AT_RECTANGLE),Window
(AT_RECTANGLE)

These options are device dependent and allow you to set logical coordinates. It is
assumed by ImageGear that all coordinates except ImageRect are logical. These
options are necessary to properly convert logical to device coordinates. For the
Windows platform the value of MapMode can be any value accepted by the GDI's
functions GetMapMode/SetMapMode. The Viewport and Window contain values that are
the same as GDI's SetViewportOrgEx/SetViewportExtEx and
SetWindowOrgEx/SetWindowExtEx. The default value is the same as current desktop
map mode.

This figure demonstrates the meaning of the rectangles listed above:

Some of the options listed above conflict unless priorities are defined. Consider the general algorithm of display
rendering. It consists of several steps, and on each step ImageGear processes some options to introduce
modifications to the resulting image.

ImageRect is oriented according to OrientMode. ClipRect and DeviceRect are calculated according to their
definitions above.
If FitMode is set to IG_DSPL_ACTUAL_SIZE then DisplayedImageRect.width and DisplayImageRect.height are set
to ImageRect.width and ImageRect.height respectively. Otherwise, DisplayedImageRect is computed using
DeviceRect.
According to ZoomMode, ZoomValueH and ZoomValueV, DisplayedImageRect.width and
DisplayedImageRect.height are modified as follows:

if((ZoomMode&IG_DSPL_ZOOM_H_FIXED) != 0)
 DisplayedImageRect.width = DisplayedImageRect.width*ZoomValueH,

and

if((ZoomMode&IG_DSPL_ZOOM_V_FIXED) != 0)
 DisplayedImageRect.height = DisplayedImageRect.height*ZoomValueV.

ImageGear Professional v18 for Mac | 185

If AspectMode is set to IG_DSPL_ASPECT_FIXED, then ZoomValueV is not used and the above procedure is changed
in the following way:

If((ZoomMode&IG_DSPL_ZOOM_H_FIXED) != 0)
{
DisplayedImageRect.width = DisplayedImageRect.width*ZoomValueH,
DisplayedImageRect.height = DisplayedImageRect.height*ZoomValueH.
}

DisplayedImageRect.x and DisplayedImageRect.y are computed so that DisplayedImageRect is aligned as specified
by AlignMode.
The scrolling range is calculated so that DisplayedImageRect can be viewed inside of ClipRect. Then
DisplayedImageRect.x and DisplayedImageRect.y are shifted according to the current scroll position.

ImageGear Professional v18 for Mac | 186

1.2.4.4.3.2 Dithering, Anti-Aliasing, and Palette Handling

ImageGear supports automatic dithering of source images. This functionality is affected by the following options:

DitherMode
(AT_MODE)

Can be assigned the following values:

IG_DSPL_DITHER_AUTO - Specifies that the destination device color resolution should be used for
dithering. In this mode, ImageGear automatically applies dithering only when it is necessary.
IG_DSPL_DITHER_TO_8BPP - This mode forces ImageGear to assume that the output device is 8
bits per pixel and perform the necessary dithering.
IG_DSPL_DITHER_TO_4BPP - This mode forces ImageGear to assume that the output device is 4
bits per pixel and perform the necessary dithering.
IG_DSPL_DITHER_TO_1BPP - This mode forces ImageGear to assume that the output device is 1
bit per pixel and perform the necessary dithering.
IG_DSPL_DITHER_NONE - Disables ImageGear's dithering. In this mode, dithering is performed by
the operating system or the device driver.

The following flags can be used with any of the above modes:

IG_DSPL_DITHER_FIXED_PALETTE If this flag is set, ImageGear will try to use the standard palette when
performing dithering. This may be useful if the output device contains
more than one image and by using this flag it is possible to draw images
with the same palette.

PALETTE This flag is applicable only if the output device is 8 bits per pixel. It tells
ImageGear to use the 216 entries Netscape palette. The default value for
DitherMode is IG_DSPL_DITHER_AUTO. Currently only ordered dithering
is implemented.

IG_DSPL_ANTIALIAS_MODE
(AT_MODE)

A bitmask used to isolate black and white anti-aliasing modes:
IG_DSPL_ANTIALIAS_NONE - Anti-aliasing is not used.
IG_DSPL_ANTIALIAS_SCALE_TO_GRAY - The scale to gray algorithm
is used, and the output image becomes 4 bits per pixel.
IG_DSPL_ANTIALIAS_PRESERVE_BLACK - ImageGear will try to
preserve black pixels while scaling.
IG_DSPL_ANTIALIAS_PRESERVE_WHITE - ImageGear will try to
preserve white pixels while scaling.

Together with these modes, the following flag can be used:
IG_DSPL_ANTIALIAS_SUBSAMPLE - ImageGear will use sub-sampling
during anti-alias scaling. The output is as good, while the speed is
greater.

IG_DSPL_ANTIALIAS_RESAMPLE_MODE A bitmask used to isolate re-sampling modes:
IG_DSPL_ANTIALIAS_RESAMPLE_BILINE - Resample with bilinear
interpolation.

IG_DSPL_ANTIALIAS_COLOR_MASK A bitmask used to isolate color anti-aliasing modes:
IG_DSPL_ANTIALIAS_COLOR - Color anti-aliasing.

AliasThreshold (UINT) Threshold integer value from 0 to 100. Its meaning depends on the
AliasMode value.

If AliasMode is set to IG_DSPL_ANTIALIAS_SCALE_TO_GRAY, then
AliasThreshold determines how many black and white pixels are
involved in the destination gray pixel value. A value of 100 causes
ImageGear to take 100% white pixels; a value of 0 causes ImageGear
to take 100% of black pixels; and the default value is 50, which
means 50% of white and 50% of black pixels.
If AliasMode is set to IG_DSPL_ANTIALIAS_PRESERVE_BLACK, then
AliasThreshold determines how many black pixels should be
preserved. A value of 100 means that 100% of black pixels are
preserved. The default value is 50.
If AliasMode is set to IG_DSPL_ANTIALIAS_PRESERVE_WHITE, then
AliasThreshold determines how many white pixels should be
preserved. A value of 100 means that 100% of white pixels are
preserved. The default value is 50.

ImageGear Professional v18 for Mac | 187

DevicePalette (HPALETTE) This option is a palette in OS-dependent format. This palette is
implemented before drawing pixels onto the output device. By default,
this option is NULL, which means that it is created every time; either
from the logical palette of the image, or from the logical palette used in
dithering. If this option is not NULL, then it should be a valid palette
handle. ImageGear does not perform logical processing of the specified
palette; it only implements it before drawing. Incorrect usage of this
option may distort the image on the destination device.

PaletteMode (AT_MODE) This option specifies how to use the DevicePalette option when the
destination device does support palette operations. Possible values are:

IG_DSPL_PALETTE_HIGH - ImageGear will use the palette in the high
priority mode. This means that the operating system palette manager
will try to best map colors of DevicePalette to the system palette.
IG_DSPL_PALETTE_LOW - ImageGear will use the palette in the low
priority mode. In this mode, the palette manager will try to best
preserve the current view of the destination while drawing the new
image on it.
IG_DSPL_PALETTE_DISABLE - ImageGear will not implement
DevicePalette in the destination device while drawing the image.

ImageGear Professional v18 for Mac | 188

1.2.4.4.3.3 Transparency and Background

The ImageGear display functionality supports transparency by color and by mask. The former means that it is
possible to draw images with the specified color being transparent. The latter allows using a specified 1-bit per pixel
image as the transparent mask. There are a few options related to transparency and background support:

TranspMode
(AT_MODE)

Option that contains transparency flags. If its value is IG_DSPL_TRANSPARENCY_NONE then
transparency is disabled. Each of the following flags enables some transparency-related
features:

IG_DSPL_TRANSPARENCY_COLOR - If this flag is set, then the transparent color is enabled,
and the color's value that is assigned to the TranspColor option is used as transparent while
drawing the image.
IG_DSPL_TRANSPARENCY_MASK - If this flag is set, then the transparency mask is enabled,
and the TranspMask option is used as the transparent bitmap.
IG_DSPL_TRANSPMASK_STRETCH_TO_IMAGE - This flag is used when the transparency
mask is enabled. If this flag is set, then the TranspMask image is resized and oriented along
with the image being displayed. In other words, if during the display operation the image is
scaled by factors DX and DY in the horizontal and vertical directions respectively, then the
TranspMask image is scaled by the same factors. If this flag is not set then the transparency
mask is not scaled. This flag is ignored unless the
IG_DSPL_TRANSPMASK_LOCATE_TO_IMAGE flag is set.

The next three flags are exclusive; only one of them can be set at a time:

IG_DSPL_TRANSPMASK_LOCATE_TO_IMAGE - This flag is applicable if the transparency
mask is enabled. If this flag is set, then the mask is calculated in the image-dependent
coordinate system. This means that the mask is oriented as the image is, and the
MaskLocation option is calculated from the original image's ImageRect. If this flag is not set,
then the IG_DSPL_TRANSPMASK_STRETCH_TO_IMAGE flag is ignored.
IG_DSPL_TRANSPMASK_LOCATE_TO_CLIPRECT - This flag locates the transparent mask
relative to the ClipRect, so that the MaskLocation is calculated from this rectangle's left top
point.
IG_DSPL_TRANSPMASK_LOCATE_ABSOLUTE - This flag locates the transparent mask on the
output device so that the mask's left top point has the coordinates specified in the
MaskLocation option.

The default value for TranspMode option is IG_DSPL_TRANSPARENCY_NONE, which means that
transparency is disabled.

TranspColor
(AT_RGB)

This (RGB) triple specifies the transparent color, and it is used if the
IG_DSPL_TRANSPARENCY_COLOR flag is set in TranspMode (see its description above). If the
transparent color is enabled, then all the pixels in the image that have values equal to
TranspColor are drawn as transparent.

TranspMask
(HIGEAR)

This option specifies the transparency mask, and it is used if the
IG_DSPL_TRANSPARENCY_MASK flag is set (see the TranspMode's description above). This is a
normal HIGEAR image, and its location on the screen depends on other flags described above
and the MaskLocation option. The application code is responsible for creating and deleting this
mask.

MaskRect
(AT_RECTANGLE)

This rectangle specifies which part of the TranspMask image should be used as the transparency
mask. It is an analog of the original image's ImageRect, but it applies to the TranspMask image.
By default, it is initialized with the empty rectangle, which means the complete TranspMask
image will be used.

MaskLocation
(AT_POINT)

This option specifies how the transparency mask is located relative to either the image or the
device, depending on the flags set in TranspMode.

BkMode
(AT_MODE)

This option specifies how ImageGear should fill the area of ClientRect that is not covered by the
image's pixels. If its value is IG_DSPL_BACKGROUND_NONE, then the background is disabled,
and ImageGear does not fill this area. Other possible values are as follows:

IG_DSPL_BACKGROUND_UNDER_IMAGE - If this flag is set, then the image's transparent
pixels are drawn with current BkColor and BkBrush (see their description below). The area
outside of DisplayedImageRect is not affected.
IG_DSPL_BACKGROUND_BEYOND_IMAGE - If this flag is set, then the transparent pixels
that are outside of DisplayedImageRect are drawn with current BkColor and BkBrush (see
their description below).

The default value for this option is IG_DSPL_BACKGROUND_UNDER_IMAGE|

ImageGear Professional v18 for Mac | 189

IG_DSPL_BACKGROUND_BEYOND_IMAGE.

BkColor
(AT_RGB)

This option is a (RGB) triple that specifies the background color. This color is used to fill the
area of ClipRect that is not covered by the image's pixels.

BkBrush
(HBITMAP)

This option is the handle of the bitmap that stores the brush to be used. The application code is
responsible for creating and deleting this brush.

ImageGear Professional v18 for Mac | 190

1.2.4.4.3.4 Look-Up Tables and Gamma Correction

ImageGear supports gamma correction preprocessing before the image is drawn onto the destination device. This
operation does not affect the image itself, but only changes its appearance.

There are three options that allow you to control the gamma correction:

RedLut (LPBYTE) - this is a 256-entry array of bytes that contains a new value for each of the possible 256 intensities
of the red color.
GreenLut (LPBYTE) - this is a 256-entry array of bytes that contains a new value for each of the possible 256
intensities of the green color.
BlueLut (LPBYTE)- this is a 256-entry array of bytes that contains a new values for each of the possible 256
intensities of the blue color.

The default value for each of the three options is the identity array.

If the source image is not in the RGB color space, then it is first converted to the RGB color space, and then all the
look-up tables are applied.

The following are high-level options that automatically create all necessary look-up tables:

Contrast, Brightness, Gamma (DOUBLE) - these three options are actually parameters that specify how to calculate
the look-up tables to get the necessary color effects.
Parameter Contrast - specifies the contrast level to produce. Values greater than 1.0 increase contrast; values less
than 1.0 decrease contrast. Values less than 0.0 will invert contrast (exchange dark and light).
Parameter Brightness - specifies the brightness adjustment. Possible values range from -255.0 to +255.0.
Parameter Gamma - controls the non-linear contrast adjustment. Values greater than 1.0 increase contrast; values
less than 1.0 decrease it. Usual range is from 1.8 to 2.2

The default values are:

Contrast = 0.0,
Brightness = 1.0,
Gamma = 1.0

ImageGear Professional v18 for Mac | 191

1.2.4.4.3.5 Grayscale Look-Up Tables

The ImageGear display API allows storing a grayscale (single-channel) look-up table (LUT) with an image's display
settings. The grayscale look-up table can be set for any image, but ImageGear only uses it with 8...16-bit grayscale
images, and ignores it with the other images. This look-up table specifies a transform from 16-bit image to 8-bit image,
which allows the display of a particular part of an 8...16-bit image's contrast range, or enhanced image's contrast.

A grayscale LUT can be stored with a 16g image as well. However, if both the image and its display contain LUTs, the
display LUT overrides the image's LUT. A LUT can be removed from an image and attached to a display, or vice versa.

Storing a grayscale LUT with display settings allows you to display the same image with different LUTs simultaneously in
different windows.

A grayscale LUT can be used in combination with a RGB LUT. The grayscale LUT is applied first, and then the RGB LUT is
applied.

Use IG_dspl_grayscale_LUT_update_from() to create or update a grayscale LUT with the specified LUT. LUT data will be
copied to the display settings. Set the lut parameter to NULL to remove the grayscale LUT from display settings.

Use IG_dspl_grayscale_LUT_exists() to check whether display settings contain a grayscale LUT.

Use IG_dspl_grayscale_LUT_copy_get() to obtain a copy of the display grayscale LUT.

The only allowed LUT configuration for display is: InputDepth = 16, OutputDepth = 8, Output is unsigned. Such LUTs can
be used with grayscale images whose depth is 8... 16 bits per pixel.

See Also:

Working with Grayscale Look-Up Tables

Displaying Medical Grayscale Images

ImageGear Professional v18 for Mac | 192

1.2.4.5 Printing Images

ImageGear provides a simple all-purpose printing function that will print any image to a graphics-capable printer. This
function is:

 IG_dspl_image_print (HIGEAR hIGear, DWORD dwGrpID, HDC hDC, BOOL bDirectToDriver);

This function prints a HIGEAR image to the current default printer according to the display parameter specified by
dwGrpID group. There is a special group IG_GRP_DEFAULT_PRINT that can be used to print an image with the default
print options.

When bDirectToDriver = TRUE, ImageGear sends the image's DIB directly to the printer's device driver. In this case,
the entire procedure is controlled by the printer's driver. If your printer has special capabilities such as color, and if
the driver supports these, then your image can be printed with these features.
When bDirectToDriver = FALSE, ImageGear handles the printing procedure as follows:

ImageGear first reduces the image to 1-bit, if necessary (such as by using a Bayer dithering algorithm).
It then sends each raster line to the printer driver individually.
If you've called IG_status_bar_CB_register() to declare a status bar callback function, ImageGear calls your
callback function after each raster line is sent. This type of callback permits you to display a status bar showing the
completed percentage, or a message box displaying the page number being sent. You can also detect a keystroke
or mouse selection indicating that the user wants to cancel the printing process.
The sample application program "print.c" demonstrates how to implement these and other features, including an
initial Print Dialog Box.

In general, bDirectToDriver = FALSE gives you greater control of the printing process, while bDirectToDriver = TRUE
gives you faster printing.

Note also that the functions IG_dspl_page_print(), IG_dspl_document_print(), and IG_dspl_document_print_custom()
allow you to specify how to print a single image on a page, and how to print a list of images on a page, specifying how to
place the images relative to the page's borders.

ImageGear Professional v18 for Mac | 193

1.2.4.6 Processing Images

ImageGear's comprehensive family of image processing functions permits you to perform both simple and complex
image-modifying operations using a single function call. Image alterations such as contrast enhancement, sharpness
adjustment, color reduction/promotion, image merging ("blending"), and "special effects" are performed using the
functions in this group.

Image processing functions are always named beginning with IG_IP_ ...() or IG_FX_ ...(). Be careful not to confuse
these functions with IG_dspl_image_draw ...() functions designed to perform similar operations while displaying
images. The IG_dspl_image_draw ...() functions affect only how the image will be displayed. The image processing
functions actually alter the pixel data in the DIB image bitmap, or the DIB palette, or both.

Many image processing functions permit you to specify a rectangular region within your image, limiting the function's
operation to that region. In such cases, the address of an AT_RECT structure is supplied as an argument (specify this
argument as NULL to operate on the entire image).

The "image rectangle" setting made by calls to function IG_dspl_layout_set() is not used by the image processing
functions.

In this section, ImageGear's image processing functions are grouped as shown below. You may want to refer to the
individual discussions of the groups as they become pertinent to your application's development needs.

Geometric Transformations
Contrast Alteration
Color Reduction
Color Promotion
Blending and Combining Images
Image Correction
Image Encryption
Image Analysis
Region of Interest Processing

If you encounter an occasional image processing term with which you are not familiar, be sure to refer to the Glossary.
Also, refer to the function entries in the Core Component API Function Reference for the detailed calling sequences and
additional information and examples. In a function's entry, be sure to check the "Bits Per Pixel" line. It specifies which bit
depths may be processed using that function. The descriptions of the different bit depths (1, 4, 8i, 8-bit gray level, 9-16-
bit gray level, 24, and 32) and how they are stored internally in the DIB image bitmap in memory, can be found in
Understanding Bitmap Images.

A number of image processing functions can process 8-bit gray level and 24-bit images, but cannot process 8i (8-bit
indexed color) images. This is because in 8i images the pixel value does not itself describe the pixel (its color or its
intensity), but is merely an index into the palette. If you want to call such a function for an 8i image, first promote the
image to 24-bit using function IG_IP_color_promote().

ImageGear Professional v18 for Mac | 194

1.2.4.6.1 Geometric Transformations

An image transformation function is one in which a mathematical algorithm is applied to transform each pixel to a new
location or value. Rotation is a good example of a simple image transformation. Image transformation differs from
contrast adjustment (which might also be carried out by applying an algorithm) in that the contrast adjustment is trying
to achieve some visual improvement or enhancement of the image. A transformation's object is simply to achieve the
transformation (e.g., rotate the image).

ImageGear provides the following image transformation functions. Refer to the description of each in Core Component
API Function Reference for detailed calling sequences as well as other related information:

IG_IP_convolve_matrix() Convolves the 8-bit gray level or 24-bit image using a user-defined convolution
kernel.

IG_IP_flip() Flips your image right-for-left or top-for-bottom. This is equivalent to rotating the
image around a vertical or horizontal axis (respectively) drawn through its center.

IG_IP_resize() Re-scales the image, changing the size of the image bitmap.

IG_IP_rotate_any_angle() Rotates your image through any angle you specify around its center.

IG_IP_rotate_multiple_90() Rotates your image 90, 180, or 270 degrees around its center.

IG_IP_rotate_multiple_90_opt() Rotates the image referenced by hIGear at an angle that is a multiple of 90 degrees,
using additional rotation options.

IG_IP_sharpen() Causes the dark side of a contrast boundary to become darker and the bright side to
become brighter. This makes the image appear sharper. You can control the degree
of sharpening applied.

IG_IP_smooth() Removes graininess in an image, tending to soften or smooth its appearance. You
control the degree of smoothing.

IG_IP_transform_with_LUT() Transforms an image by mapping each pixel value through a Look-Up Table that you
supply to obtain the pixel's new value.

ImageGear Professional v18 for Mac | 195

1.2.4.6.2 Contrast Alteration

ImageGear's contrast alteration functions operate by altering the range of pixel intensities that occur in your image, or
by redistributing the occurrence frequency of the pixel intensities. There are five IG_IP_contrast_...() functions, which
operate as follows:

IG_IP_contrast_adjust() Adjusts the contrast of the image by stretching or compressing the range of intensities
that occur. Also adjusts brightness by adding or subtracting the specified constant to each
intensity value.

IG_IP_contrast_stretch() Adjusts the contrast of the image by stretching the range of intensities that occur, such
that the least intense pixel becomes full black, and the most intense becomes full white.

IG_IP_contrast_equalize() Adjusts the contrast of the image by stretching or compressing sub-ranges of intensities
that occur, so that there are an approximately equal number of pixels in each sub-range.
This can bring out subtle changes in contrast when contrast is poor in the original, such as
in x-ray images.

IG_IP_contrast_gamma() Adjusts the contrast of the image non-linearly, using an algorithm that tends to correct for
the non-linear response of display monitor phosphors, video camera photoreceptors, and
photographic emulsions.

IG_IP_contrast_invert() Inverts each pixel intensity or color, resulting in an image that is a "negative" of the
original.

Each of the above functions can operate on any specified rectangular portion of your image. However, when operating on
an entire image, each function above can achieve its effect by altering the image's palette instead of by altering its pixel
values. An example of a call to an IG_IP_contrast_ ...() function is:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_RECT rcRect; /* rectangle to operate on */IG_IP_contrast_equalize (hIGear, &rcRect,
IG_CONTRAST_PIXEL);

If you specify IG_CONTRAST_PALETTE instead of IG_CONTRAST_PIXEL, note that your rectangle argument will be
ignored, and the operation will be performed on the entire image.

Several additional functions help you to highlight contrast boundaries:

IG_IP_edge_map() Produces an image that shows where there are contrast changes in the original
image. An area in which there are no contrast changes is black in the resultant
image; the stronger the contrast change, the brighter the result. The result tends
to have bright lines where there are sharp contrast changes.

IG_IP_pseudocolor_small_grads() Colors an 8-bit gray level image according to the local rate of pixel value change.
This can be set to expose even very small gradients in brightness.

IG_IP_pseudocolor_limits() Allows you to block out, to a single color, all pixels below (or above) a given pixel
value. This can be used to highlight the portion of an image that is relevant (then
IG_IP_contrast_stretch() might be called to enhance its contrast), or may be used
to see what portions of the image are saturated or unsaturated.

Refer to the descriptions of all of the above in Core Component API Function Reference.

ImageGear Professional v18 for Mac | 196

1.2.4.6.3 Color Reduction

Color reduction in general results in an image with fewer colors than the original, even if the bit depth is not changed.
There are a number of color reduction methods, and ImageGear provides several different functions from which you
can choose the one that is most suitable in a given case. Below you can see the color reduction methods that are
available, and the functions that perform them:

IG_IP_color_reduce_bayer() Reduces a 4, 8, or 24-bit image to a 1-bit or 4-bit image using a Bayer
dithering algorithm.

IG_IP_color_reduce_to_bitonal() Reduces a 4, 8, or 24-bit image to a 1-bit or "bi-tonal" image.

IG_IP_color_reduce_median_cut() Reduces a 24-bit image to an 8-bit image using the median cut algorithm.

IG_IP_color_reduce_diffuse() Reduces a 4, 8, or 24-bit image to a 1-bit or 4-bit image using a diffusion
algorithm.

IG_IP_color_reduce_popularity() Reduces a 24-bit image to an 8-bit image, while preserving its most prevalent
or popular colors.

IG_IP_color_reduce_octree() Reduces a 24-bit or 8-bit image to an 8-bit or 4-bit image. Uses an efficient
algorithm that gives a result as close to the original as possible, using the
number of colors you specify.

IG_IP_color_reduce_halftone() Reduces a 4, 8, or 24-bit image to a 1-bit image using a halftone pattern.

Refer to the function descriptions in the Core Component API Function Reference for the calling sequences and further
information on the above.

The additional function IG_IP_convert_to_gray() is also considered a color reduction function. It is called as follows:

IG_IP_convert_to_gray (hIGear);

It always converts the image to 8-bit gray level. The resulting DIB has a 256-entry palette, and each 8-bit pixel value
in the resulting image bitmap is a weighted average of the three color intensities of the pixel in the original image.

The following table lists supported input and output bit depths for color reduction functions:

Function Name Bpp
In

Use or create palette for output image BppOut

IG_IP_color_reduce_bayer() 24 use standard B/W palette 1

8 use standard B/W palette 1

4 use standard B/W palette 1

24 use given palette 4

8 use given palette 4

24 use standard palette 4

8 use standard palette 4

IG_IP_color_reduce_diffuse() 24 use standard B/W palette 1

8 use standard B/W palette 1

4 use standard B/W palette 1

24 use given palette 4

8 use given palette 4

24 use standard palette 4

8 use standard palette 4

IG_IP_color_reduce_halftone() 24 use standard B/W palette 1

8 use standard B/W palette 1

4 use standard B/W palette 1

IG_IP_color_reduce_median_cut() 24 create optimal palette 8

ImageGear Professional v18 for Mac | 197

IG_IP_color_reduce_octree() 24 use given palette (maxcolors > 16) 8

8 use given palette (maxcolors > 16) 8

24 create optimal palette (maxcolors > 16) 8

8 create optimal palette (maxcolors > 16) 8

24 use given palette (maxcolors <= 16) 4

8 use given palette (maxcolors <= 16) 4

24 create optimal palette (maxcolors <= 16) 4

8 create optimal palette (maxcolors <= 16) 4

IG_IP_color_reduce_popularity() 24 create optimal palette 8

IG_IP_color_reduce_to_bitonal() 24 use standard B/W palette 1

8 use standard B/W palette 1

4 use standard B/W palette 1

ImageGear Professional v18 for Mac | 198

1.2.4.6.4 Color Promotion

Color promotion is the process of increasing the bit depth, or number of bits per pixel, of an image. The color of each
pixel is retained. ImageGear provides one function that handles promotion to any bit depth. It is called as follows:

 IG_IP_color_promote (hIGear, IG_PROMOTE_TO_24);

The constant shown in the example above may instead be IG_PROMOTE_TO_4 or IG_PROMOTE_TO_8. Your image must
originally have fewer bits per pixel than the bit depth to which you are promoting it.

When promoting to 4 or 8 bits, the promotion is accomplished by simply increasing the number of bits per pixel for each
pixel (but without changing the pixel's value), and increasing the size of the DIB palette (the added palette entries are
each set to zero).

When promoting to 24 bits, the 24-bit color of the pixel (obtained from the image's original palette) becomes the 24-bit
pixel in the resulting promoted image. The DIB palette is deleted, since a 24-bit image does not have a DIB palette.

The function IG_IP_convert_to_gray(), though it could increase the number of bits per pixel in an image, is
considered a color reduction function, because it reduces the colors to shades of gray.

ImageGear Professional v18 for Mac | 199

1.2.4.6.5 Blending and Combining Images

A number of ImageGear's image processing functions combine data from two or more HIGEAR images, altering one with
the result that it is a "blend" or other combination of the original images. These functions invariably take at least two
HIGEAR handles as arguments. The functions in this group include:

IG_IP_blend_with_LUT() Performs weighted blend of image 2 into image 1, with the weighting factor determined
by looking up the pixel/color value in your LUT.

IG_FX_chroma_key() This Special Effects function replaces image 1 by image 2 only where the image 1 pixels
are within a specified hue range.

IG_IP_color_combine_ex() Combines the pixel values from separate 8-bit images to form a single 24-bit color image.

IG_IP_color_separate() The opposite of IG_IP_color_combine_ex(). Separates a 24-bit image's Red, Green, and
Blue color values, producing separate 8-bit grayscale images (each with their own
HIGEAR handle).

IG_IP_blend_percent() Blends together the pixel values (if grayscale) or color values (if 24-bit) of the two
images, according to a percent parameter that you specify. You can specify, for example,
to combine 80% of image 1's value, with 20% of image 2's value. For a 24-bit image, you
can specify that only one color channel (Red, Green, or Blue), or that all three color
channels, are to be blended.

When you use IG_IP_blend_with_LUT(), you provide the address of a 256-byte Look-Up Table (LUT). ImageGear looks
up image 1's pixel value or color value in your LUT to determine the percentages to blend for that pixel.

A different kind of blend is provided by Special Effects function IG_FX_chroma_key(). This function searches for pixels in
image 1 that are within a color hue range that you specify. Only pixels within that color hue range are replaced from
image 2. Arguments are provided for you to control the smoothness of the transition where replacement occurs, and a
threshold pixel darkness below which replacement will not occur. You might use this to remove a person's picture from a
plain background and to replace the original background with a new one. TV stations often use this technique to overlay
the weather reporter onto a background of a weather map.

IG_IP_color_combine_ex() and IG_IP_color_separate() let you, respectively, assemble a 24-bit image from separate 8-
bit gray level images, or disassemble a 24-bit image into separate 8-bit gray level images. In both cases, you can specify
whether the 24-bit combination is standard RGB, or whether or not the 24-bit value is to be interpreted in terms of a
different color space scheme. You may specify IG_COLOR_SPACE_RGB, or IG_COLOR_SPACE_IHS, or others. The
complete list of supported color space schemes is provided in the file accucnst.h.

ImageGear Professional v18 for Mac | 200

1.2.4.6.6 Image Correction

ImageGear provides several functions whose specific purpose is to correct an image's appearance. The functions in this
group include:

IG_IP_despeckle() Removes noise from a 1-bit image, using a 3x3 median filter on the image.

IG_IP_median() Uses a median filter to reduce noise in 8-bit gray level and 24-bit images.

IG_IP_deskew_auto() De-skews a 1-bit image that was created by reading a text file. You can specify a
threshold angle below which de-skewing should not be performed.

IG_IP_deskew_angle_find() Will analyze a 1-bit image and report to you the angle at which it is skewed.

In general, you would use the image correction functions with images that have been obtained by scanning text
documents or graphical images.

ImageGear Professional v18 for Mac | 201

1.2.4.6.7 Image Encryption

ImageGear provides a pair of image processing functions that perform image encryption/decryption operations. These
functions change the image bitmap, modifying the format of the pixel data stored within it.

IG_IP_encrypt() Encrypts the image bitmap using the specified password string. To successfully decrypt the image
bitmap, the specified password will be needed.

IG_IP_decrypt() Decrypts an image bitmap using the password string specified during encryption. If the password is
the same as used with IG_IP_encrypt(), then the decryption will be successful, and the original
image bitmap will be restored.

ImageGear Professional v18 for Mac | 202

1.2.4.6.8 Image Analysis

This section describes the following:

Histogram
Color Counting

Histogram
ImageGear provides a histogram-generating function (and a related function to clear histogram bins) to assist you in
image analysis. For an 8-bit image, whether 8i or 8-bit gray level, these functions can be called as follows:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD dwHistoBins[256]; /* Array of bins for counting */IG_IP_histo_clear(&dwHistoBins, 256
); /* Clear the bins */IG_IP_histo_tabulate (hIGear, &dwHistoBins, 256, NULL, 1, 0);
/* Tabulate: */

In the above call, 256 DWORD bins are provided (one for each possible pixel value that can occur). The function will
examine each pixel in the image bitmap, and will increment the bin corresponding to that value; that is, the bin
dwHistoBins[pixel value] will be incremented. Upon return, you will have a count of the number of occurrences of each
pixel value.

The fourth argument in the above call lets you specify the address of a rectangular region if you want to restrict the
tabulating to include only a portion of the image. When NULL, the whole image is included in the tabulation.

The fifth argument above can be set higher than 1 if you want to increase the speed of the tabulation for a large image.
1 means that every raster line of pixels will be included in the tabulation. A higher value would result in raster lines being
skipped.

The final argument in a call to IG_IP_histo_tabulate() is relevant for 24-bit images only. Its use is shown in the following
example:

HIGEAR hIGear; /* Handle of a 24-bit image */
DWORD dwHistoBins[256]; /* Array of bins for counting */
IG_IP_histo_clear (&dwHistoBins, 256);/* Clear the bins */
IG_IP_histo_tabulate (hIGear, &dwHistoBins, 256, NULL, 1,
IG_COLOR_COMP_R); /* Tabulate: */

For 24-bit images, only 1 color channel is tabulated by a given call. That is, only 1 byte of each 3-byte pixel is examined.
The final argument tells which byte (Blue, Green, or Red) should be tabulated.

You can also call IG_IP_histo_tabulate() for 1-bit and 4-bit images. In these cases, the number of DWORD histogram
bins you need would be 2 and 16, respectively. In any event, always remember to call IG_IP_histo_clear() before calling
IG_IP_histo_tabulate(), unless it is your intention to accumulate the count into the existing contents of your bins.

Color Counting
The IG_IP_color_count_get() function counts the number of different colors in the specified rectangle of an image.

ImageGear Professional v18 for Mac | 203

1.2.4.6.9 Region of Interest Processing

This group of functions allows you to apply image processing and special effects functions on an arbitrary region of
interest (ROI). You can specify a shape, such as ellipse, polygon, or freehand, or a 1-bit mask for identifying which pixels
to include/exclude from image processing algorithms.

To apply an image processing function on a non-rectangular ROI, create the ROI using
IG_IP_NR_ROI_to_HIGEAR_mask(), or use a 1-bit image, and associate it with the HIGEAR handle on which you are
going to apply the processing function, using IG_IP_NR_ROI_mask_associate(). Consequent calls to image processing
functions on this image will only affect the area specified by the ROI.

IG_IP_NR_ROI_control_get() Returns the current ROI control settings.

IG_IP_NR_ROI_control_set() Detects an area of pixels using a specified threshold.

IG_IP_NR_ROI_mask_associate() Associates a mask HIGEAR, as specified by the AT_NR_ROI_MASK structure, with
the image referenced by hIGear.

IG_IP_NR_ROI_mask_delete() Deletes the mask HIGEAR created by IG_IP_NR_ROI_to_HIGEAR_mask().

IG_IP_NR_ROI_mask_unassociate() Removes the non-rectangular ROI information from a HIGEAR image, but does
not delete the mask HIGEAR.

IG_IP_NR_ROI_to_HIGEAR_mask() Builds a non-rectangular ROI mask from a set of segment descriptors that you
pass in.

ImageGear Professional v18 for Mac | 204

1.2.4.7 Color Management

This section provides information about the following:

Using Color Profile Manager
Color Profile Basic Concepts
ImageGear Color Profile Groups
Color Profile Manager API

ImageGear Professional v18 for Mac | 205

1.2.4.7.1 Using Color Profile Manager

ImageGear supports color profiles and can perform color conversion operations. Detailed information about color
processing based on profiles can be found at www.color.org.

The following sections describe how color profiles can be used with ImageGear:

Color Profile Basic Concepts
ImageGear Color Profile Groups
Color Profile Manager API

ImageGear Professional v18 for Mac | 206

http://www.color.org/

1.2.4.7.1.1 Color Profile Basic Concepts

The first step in the color profile process is loading raster data from an external location (file, memory, or other) and
converting it from some graphical file format to an internal uniform format that is incorporated into the HIGEAR object.
After the image is loaded into memory, it is possible to perform different manipulations with it such as image processing
transforms, color conversions, displaying, printing, and, finally, an export operation that converts raster data from
internal representation into an external graphics file format.

All these steps may require color conversions. As the color profile is always associated with the appropriate device, there
are several virtual devices defined in ImageGear. These "virtual devices" are not real devices, but abstract things that
have associated color spaces and are used to convert color data from one color space to another. There are three virtual
devices defined in ImageGear:

Import devices - used for all import operations. Such import operations as loading a raster image using the format
filter assume that imported color data is dependent on the import device. In other words, any format filter that loads
color data in a device-dependent format from an external file format assumes that this data is dependent on this
specific device.
Export devices - the same as the import device, but used for export operations.
Working devices - associated with color data stored in a HIGEAR object.

So we can assume every color conversion is a transition from one device to another. For example, loading an image from
an external file using the file format filter (import device) to the internal HIGEAR representation (working device)
assumes that the color data has to be "copied" from the import to the working device, i.e., color data has to be
converted using color profiles associated with import and working devices.

ImageGear supports different color spaces such as RGB, CMYK, and grayscale. So each virtual device may be used with
different color spaces. For example, the format filter may load pixels from an external file format in CMYK color space,
and it will be necessary to convert color data from the CMYK color space associated with the import device to CMYK or
another color space associated with the working device. Each device may have associated color profiles for different color
spaces, and they are organized into groups - one group for each device.

You can find the exact definition of the term "color profile" in public specification ICC.1:1998-09 or newer. In general a
color profile consists of a set of objects and transforms the specified parameters of color conversion from a standard
device-independent color space (PCS) to a necessary device-dependent one. The ImageGear color management system
accepts a color profile in the format specified in the ICC.1:1998-09 specification and converts it into internal
representation for faster processing.

ImageGear Professional v18 for Mac | 207

1.2.4.7.1.2 ImageGear Color Profile Groups

ImageGear allows you to set and get the actual value of a color profile in every group. In spite of the fact that operations
with color profiles from different groups are very similar, at a low level there are some differences in how profiles from
different groups are processed.

ImageGear allocates 3 color profile groups:

ICP (Import Color Profile): This group of profiles is used during a filter load operation. In some cases a raster image
file contains device-dependent color data such as RGB or CMYK but does not have a color profile associated with it. So
this color data can be interpreted in a different manner depending on the color profile used. The ICP profile of
appropriate color space should be used in this case. However, if a raster image contains a color profile, this one is
used instead of the standard ICP profile.
ECP (Export Color Profile): This group of profiles is very similar to ICP but is used in the filter export operation. If the
raster image file to be exported does not allow you to store the color profile or if it needs to be stored in a specific
color space, ECP allows you to provide the profile, and the output image will be converted to that color space.
WCP (Working Color Profile): This group of color profiles provides information about the default color global
parameters used to represent the color data for HIGEAR objects. Those global parameters are used if the image does
not have a local color profile associated with it.

When color processing is performed on an image, either a local or global color profile is used. When an image is exported
or imported, its pixel data, converted from one color space to another, is described by the WCP associated with the
image and corresponding profile from the ECP or ICP group.

ImageGear Professional v18 for Mac | 208

1.2.4.7.1.3 Color Profile Manager API

There are public functions implemented in ImageGear that allow you to set and get actual values for each group of
color profiles.

To start working with the color profile manager, it is necessary to activate it. By default, the color profile manager is
disabled in ImageGear, and all color-related operations are exactly the same as in previous versions. There is a
Boolean global parameter named CPM.ENABLE_PROFILES used to control color profile management.

To activate color profile management, call the ImageGear global control function (see also Working with Global
Control Parameters):

AT_BOOL bEnable = TRUE;IG_gctrl_item_set("CPM.ENABLE_PROFILES", AM_TID_AT_BOOL,
&bEnable,
sizeof(AT_BOOL), NULL);

When using color management, additional files are necessary: color profile files to be used as default profiles. By
default those files should be located in the same folder as ImageGear and its components, and those files should be
named as "ig_rgb_profile.icm" and "ig_cmyk_profile.icm" for RGB and CMYK color spaces, respectively.
Correspondent global parameters CPM.RGB_PROFILE_PATH and CPM.CMYK_PROFILE_PATH exist to specify the full
path to default profiles. Their values can be changed using the function IG_gctrl_item_set(), like in the following
example:

CHAR profile[256];
strcpy(profile, "d:\\profile\\rgb_profile.icm");
IG_gctrl_item_set("CPM.RGB_PROFILE_PATH", AM_TID_MAKELP(AM_TID_CHAR), profile,
strlen(profile)+1, NULL);

After color profile management is activated, it is possible to use the next functions to set color profiles in global
parameters or to a specific image and to get information about currently used profiles.

The function:

IG_cpm_profile_set(AT_MODE nColorSpace, DWORD nProfileGroup, LPBYTE
lpRawData, DWORD dwRawSize, AT_BOOL bConvert);

allows you to set a new color profile value (lpRawData) to a group specified by the second argument and associate it
with the color space given by the first argument. lpRawData is a pointer to the memory buffer that contains the color
profiles in valid ICC format, and if it is NULL then the default color profile will be set. The last argument specifies how
to process the color data of the images associated with it. If it is TRUE then all images associated with the color
profile will be converted to a new color format.

The function:

IG_cpm_image_profile_set(HIGEAR hIGear, LPBYTE lpRawData, DWORD
dwRawSize, AT_BOOL bConvert);

is a special case of a working profile set operation that associates a given color profile with a single image. In this
case the image becomes associated not with a global working profile but with a locally given profile.

The function:

IG_cpm_profile_get(AT_MODE nColorSpace, DWORD nProfileGroup, LPCHAR
pStatusStr, UINT nStatusSize, LPUINT lpnStatusLen, LPDWORD
lpnProfileSize, LPBYTE lpProfileData, DWORD dwProfileDataSize);

can be used to get the current value of a color profile associated with the color space given by the first argument in
the profile group specified by the second argument. Other arguments return information about the profile along with
the profile itself.

To get the color profile information associated with a given image, the function:

ImageGear Professional v18 for Mac | 209

IG_cpm_image_profile_get(HIGEAR hIGear, LPAT_BOOL lpbIsLocal,
LPAT_MODE lpnColorSpace, LPCHAR lpStatusStr, UINT nStatusSize, LPUINT
lpnStatusLen, LPDWORD lpnProfileSize, LPBYTE lpProfileData, DWORD
dwProfileDataSize);

can be used. It returns information about the local profile if it is associated with an image, or a global profile
otherwise. The second argument returns TRUE if the local profile is associated or FALSE if it is not.

The function:

IG_cpm_profiles_reset(AT_BOOL bConvert)

is introduced to reset all global profiles to their default values. If bConvert is TRUE, then all images associated with
the old previous profiles will be converted to the new ones.

For a detailed description of the color profile functions, please see the Core Component API Function Reference.

ImageGear Professional v18 for Mac | 210

1.2.4.8 Annotating Images

ImageGear Annotation (ART) component is not available for Mac OS X platform. All related methods behave as if
ImageGear ART component is not initialized.

ImageGear Professional v18 for Mac | 211

1.2.4.9 Advanced Image Formats

This section provides information about the following:

Adobe PDF
About the PDF Component
About PDF Standards
Attaching the PDF Component to Core ImageGear
Single- and Multi-Threaded Applications
Working with PDF Layers
Distributing PDF and PS Fonts with Your Application

DICOM
Loading and Saving DICOM Images
Processing 9...16-bit Grayscale Images
Displaying Medical Grayscale Images
Working with DICOM Non-Image Data

Associating DICOM Data with an ImageGear Image
Reading Data from Data Elements
Writing Data to Data Elements
Working With DICOM Data Structures
Working with DICOM Data Dictionary

Working with Presentation State Objects

ImageGear Professional v18 for Mac | 212

1.2.4.9.1 Adobe PDF

This section tells how to use ImageGear PDF component.

About the PDF Component
About PDF Standards
Attaching the PDF Component to Core ImageGear
Single- and Multi-Threaded Applications
Working with PDF Layers
Distributing PDF and PS Fonts with Your Application

ImageGear Professional v18 for Mac | 213

1.2.4.9.1.1 About the PDF Component

This section provides information about the following:

PostScript Language (PS)
Adobe® Portable Document Format (PDF)
Content Editing
Document Fonts
Word Extraction
Document Metadata
Native Printing

PostScript Language (PS)
The PostScript Language (PS) is a simple interpretive programming language with powerful graphics capabilities. Its
primary application is to describe the appearance of text, graphical shapes, and sampled images on printed or
displayed pages, according to the Adobe® imaging model. A program in this language can communicate a description
of a document from a composition system to a printing system or control the appearance of text and graphics on a
display. The description is high-level and device-independent.

PostScript format is not supported on MacOS X platform.

Adobe® Portable Document Format (PDF)
The Adobe® Portable Document Format (PDF) is the native file format of the Adobe® Acrobat® family of products.
PDF relies on the same imaging model as the PostScript page description language to describe text and graphics in a
device-independent and resolution-independent manner. A document can be converted between PDF and the
PostScript language; the two representations produce the same output when printed. To improve performance for
interactive viewing, PDF defines a more structured format than that used by most PostScript language programs. PDF
also includes objects, such as annotations and hypertext links that are not part of the page itself but are useful for
interactive viewing and document interchange. However, PDF lacks the general-purpose programming language
framework of the PostScript language.

Using the ImageGear PDF API allows you to load, save, edit and process native PDF and PostScript documents. The
ImageGear PDF Component can also perform rasterization of PDF and PostScript documents, converting them to
bitmaps. The component also provides you with the ability to extract text from loaded PDF and PostScript documents

ImageGear PDF component provides full multi-page reading and writing support for the entire document as well as
specified set of pages. You can detect, read, write, append, insert, replace, swap and delete a specified page in the
PDF document.

Content Editing
Content editing provides an API for creating, accessing and editing PDF page content objects. With this API you can
work with a page's content as with a list of such objects like images, texts, forms. Retain, modify and save their data
and properties.

Document Fonts
Document font support includes:

Listing the fonts available in the host system and finding a system font that matches a PDF font
Creating a font from the system font and encoding as well as from the specified attributes
Changing font's information
Editing and embedding a font in the document
Both single and multiple bytes fonts are supported

Word Extraction
Text words extraction includes:

Extracting words from a PDF document or specified page
Enumerating and sorting the words

ImageGear Professional v18 for Mac | 214

Getting word layouts, styles and characters

Document Metadata
You can get and set PDF document metadata corresponding to a document's Info dictionary.

Native Printing
Native PDF document printing now renders the document content directly to the printer, so it is fast and requires less
memory.

PDF support is compatible with Adobe® PDF version 1.7 as defined in the Portable Document Format Reference
Manual Version 1.7, distributed by Adobe Systems Incorporated. It provides reading capability up to the PDF
version 1.7 and writing of the PDF 1.7 documents.

PostScript support is compatible with Adobe®PostScript® 3.0 language as defined in the PostScript Format
Reference Manual, distributed by Adobe Systems Incorporated. It provides reading capability up to the
PostScript 3.0 Language Level 3 and writing of the PostScript 3.0 files with the Language Level 1, 2 and 3. This
includes writing of the Enhanced PostScript (EPS) files with standard and extended preview as well as w/o
preview at all.

ImageGear Professional v18 for Mac | 215

1.2.4.9.1.2 PDF Standards

PDF/X and PDF/A standards are defined by the International Organization for Standardization (ISO).

PDF/X standards apply to graphic content exchange
The most widely used standards for a print publishing workflow are several PDF/X formats: PDF/X-1a, PDF/X-3, and
PDF/X-4.

PDF/A standards apply to long-term archiving of electronic documents
The most widely used standards for PDF archiving are PDF/A-1a and PDF/A-1b (for less stringent requirements).

For more information on PDF/X and PDF/A, see the ISO website.

PDF/A
PDF/A is a file format based on PDF. It provides a mechanism for representing electronic documents in a manner that
preserves their visual appearance over time, independent of the tools and systems used for creating, storing or
rendering the files.

PDF/A-1a
Level A conforming files shall adhere to all of the requirements of the ISO 19005-1:2005 specification.

A file meeting this conformance level is said to be a "conforming PDF/A -1a file."

PDF/A-1b
In recognition of the varying preservation needs of the diverse user communities making use of PDF files, the ISO
19005-1:2005 specification defines a Level B conformance level. Level B conforming files shall adhere to all of the
requirements of the spec except those applicable to Level A only.

A file meeting this conformance level is said to be a "conforming PDF/A-1b file."

The Level B conformance requirements are intended to be those minimally necessary to ensure that the rendered
visual appearance of a conforming file is preservable over the long term. However, Level B conforming files might
not have sufficiently rich internal information to allow for the preservation of the document's logical structure and
content text stream in natural reading order, which is provided by Level A conformance. The requirements for Level
A conformance place greater responsibilities on writers of conforming files and those preparing such files, but these
requirements allow for a higher level of document preservation service and confidence

PDF/X
PDF/X is a PDF based format for the exchange of object-based data where individual objects may be in either vector or
raster data structures. PDF/X defines a data format and its usage to permit the predictable dissemination of a compound
entity to one or more locations, as color-managed, CMYK, gray, RGB, and/or spot color data, in a form ready for final
print reproduction, by transfer of a single file. This file contains all the content information necessary to process and
render the document, as intended by the sender, coded inside a single PDF file. No other parts, neither external files nor
internally embedded files, are required or permitted. This exchange requires no prior knowledge of the sending and
receiving environments and is sometimes referred to as "blind" exchange. It is platform- and transport-independent.

PDF/X-3:2003
PDF/X-3:2003 conforming files shall adhere to all of the requirements of the ISO 15930-6:2003 specification defining
"Prepress digital data exchange using PDF -- Part 6: Complete exchange of printing data suitable for color-managed
workflows using PDF 1.4 (PDF/X-3)".

A file meeting this conformance level is said to be a "conforming PDF/X-3 file."

ImageGear Professional v18 for Mac | 216

1.2.4.9.1.3 Attaching the PDF Component to Core ImageGear

To use the ImageGear PDF Component, you have attach this component to core ImageGear using the function
IG_comm_comp_attach:

IG_comm_comp_attach("PDF")

To check if the Component is attached successfully, use the function IG_comm_comp_check:

IG_comm_comp_check("PDF")

This function (method) returns TRUE if the Component is attached.

Initializing the Component
To initialize the ImageGear PDF component, the "PDF" component needs to be attached to the ImageGear component
manager. Then, each thread that uses PDF functionality must call IG_PDF_initialize. Please see Single- and Multi-
Threaded Applications for additional information.

The following resource content is required by the ImageGear PDF component initialization routine.

Resource\PDF\CIDFont\ PDF CID fonts directory

Resource\PDF\CMap\ PDF font CMaps directory

Resource\PDF\Font\ PDF fonts directory

Resource\PDF\Unicode\ PDF unicode mappings directory

Retrieving Info About the Component

To retrieve information about the attached Component, call the following function:

 IG_comm_comp_list(LPUINT *lpnCount, UINT nIndex, LPCHAR lpComp, DWORD dwCompSize,
LPUINT lpnRevMajor, LPUINT lpnRevMinor, LPUINT lpnRevUpdate,
LPCHAR lpBuildDate, UINT nBDSize, LPCHAR lpInfoStr, UINT nISSize)

This function (methods) provides you with the full list of info about the component determined by nIndex index from the
list of currently attached components whose number are returned trough lpnCount argument.

For more detailed information about these functions usage see Using ImageGear Component Manager section

ImageGear Professional v18 for Mac | 217

1.2.4.9.1.4 Single- and Multi-Threaded Applications

In a single-threaded application, the initialization (IG_PDF_initialize()) and termination (IG_PDF_terminate()) functions
must be called only once during the life of the application. Attempting to initialize the Adobe PDF Library and DLI more
than once in the application may cause errors or unpredictable behavior, and is not supported. You are free to create
multiple documents and/or multiple files within the run, but the initialization and termination of the Adobe PDF Library
and DLI is limited to one iteration of each.

In a multi-threaded application, you must call IG_PDF_initialize() and IG_PDF_terminate() in the main thread and in
each thread that will use the ImageGear PDF Component. The reason is that the first initialization of the Library requires
some extra processing that later initializations do not, such as building of font resource lists. By keeping an initialized
Library instance open in the parent process, you can improve the initialization time for every child process. Otherwise, if
you have a point in the process where no child has the Library open, the next one to initialize will have to do a full
startup again.

Thus we strongly recommend, whenever possible, that you initialize the Adobe PDF Library in the main process thread
before initialization in any other threads, and terminate the Library in the main process thread after terminating in other
threads. This will provide enhanced performance when initializing the Library in a process' child threads.

Access to the same PDF document from multiple threads is not permitted because multiple threads cannot share
Adobe PDF Library data types. PDF documents created/opened in the main thread can be only used from the main
thread.

ImageGear Professional v18 for Mac | 218

1.2.4.9.1.5 Working with PDF Layers

This section explains how to work with PDF Layers, as follows:

Layer Objects and Visibility
Layers Diagram
Visibility Policy
Working with Containers, Dictionaries and Layers using ImageGear PDF sample

For more information, see Using ImageGear PDF Component and HIG_PDF_DICTIONARY and HIG_PDF_LAYER.

Layer Objects and Visibility
The following objects are related to PDF Layers and responsible for the visibility.

Layers
Each layer has a name and a visibility state for the containers connected to the layer through a Dictionary. The visibility
state can have one of two values - ON or OFF.

Dictionaries
Each dictionary contains the array of layers and a Boolean function, which takes all the layers' states as input and applies
the visibility policy function to the layers' state values producing the Boolean result whether or not to display all the objects
from the dictionary's container. The output can have one of two values - ON or OFF.

Containers
Each container is an arbitrary set of PDF elements or other containers. Each container is associated with a dictionary. The
container and all its elements (including the other containers) are displayed when its dictionary's visibility policy Boolean
function results with ON.

The following diagram shows the relationship between containers and the other PDF document objects:

ImageGear Professional v18 for Mac | 219

Layers Diagram
The following diagram shows interconnection between PDF objects and layers:

ImageGear Professional v18 for Mac | 220

Visibility Policy
Dictionary Boolean functions define the visibility policy. It can be one of the following:

AllOn - equivalent to "AND" function for all input parameters,
AnyOn - equivalent to "OR" function for all input parameters,
AnyOff - equivalent to "NOT-OR" function for all input parameters,
AllOff - equivalent to "NOT-AND" function for all input parameters,

In other words:

ImageGear Professional v18 for Mac | 221

AllOn All the containers from the dictionary will be displayed when all the input layers' states are `ON'

AnyOn All the containers from the dictionary will be displayed when at least one of the input layers state is `ON'

AnyOff All the containers from the dictionary will be displayed when at least one of the input layers state is `OFF'

AllOff All the containers from the dictionary will be displayed when all the input layers' states are `OFF'

Working with Containers, Dictionaries and Layers using ImageGear PDF sample
Before creating a container you need to create one or more layers using the View -> Layers menu. Make sure to create
some simple elements like text, paths or images as well.

In order to create container right click on the PDF page and select Create -> Container. You will be prompted to select all
the layers you want to associate with the containers dictionary, which will affect the container's visibility. You also need to
select the visibility policy and check all the elements you want to include into the new container. When container is created
a new dictionary is automatically created as well.

To show or hide the container's elements use View -> Layers menu to change the layer's state to ON or OFF.

In order to rearrange the container's elements you can right click to delete the existing container, which will free its
elements and create the new one.

ImageGear Professional v18 for Mac | 222

1.2.4.9.1.6 Distributing PDF and PS Fonts with Your Application

The ImageGear Professional toolkit comes with multiple PDF and PS fonts that can be used for developing an application
based on ImageGear.

These fonts are the property of Adobe® Systems and are fully licensed for distribution with your application.

If you need to distribute additional fonts, you need to get a license for the redistribution of those fonts. It's possible to
add other fonts to be used with ImageGear PDF/PS support. To do this, place your fonts to the PDF "Resource" directory
as follows:

CID fonts (if any) to ...\Resource\PDF\CIDFont
CMaps fonts to ...\Resource\PDF\CMap
PDF fonts to ...\Resource\PDF\Font
PostScript fonts to ...\Resource\PS\Fonts

Please also note that the fonts that are pre-licensed for distribution (i.e., AdobeSansMM, AdobeSerifMM, "Courier" and
"NotDefFont") provide the substitution capabilities for the other fonts, so they are likely to be enough for many cases.
The below paragraph provides more technical details regarding font substitution.

The multiple master font format is an extension of the Type 1 font format that allows the generation of a wide variety of
typeface styles from a single font program. This is accomplished through the presence of various design dimensions in
the font. Examples of design dimensions are weight (light to extra-bold) and width (condensed to expanded).
Coordinates along these design dimensions (such as the degree of boldness) are specified by numbers. A particular
choice of numbers selects an instance of the multiple master font. Adobe® Technical Note #5015, Type 1 Font Format
Supplement, describes multiple master fonts in detail.

ImageGear Professional v18 for Mac | 223

1.2.4.9.2 DICOM

The MD (Medical) component is a full-featured ImageGear component. It supports the DICOM format, contains a custom
API, and includes expanded image processing capabilities beyond those of the baseline ImageGear library.

This section provides information about the following:

Loading and Saving DICOM Images
Processing 9...16-bit Grayscale Images
Displaying Medical Grayscale Images
Working with DICOM Non-Image Data

Associating DICOM Data with an ImageGear Image
Reading Data from Data Elements
Writing Data to Data Elements
Working With DICOM Data Structures
Working with DICOM Data Dictionary

Working with Presentation State Objects

ImageGear Professional v18 for Mac | 224

1.2.4.9.2.1 Loading and Saving DICOM Images

With the MD component loaded, your application is ready to load and save DICOM image files in addition to the file
formats normally supported by ImageGear.

See DICOM in the File Formats chapter for detailed information about ImageGear support for the DICOM format.

Loading DICOM Images
Load DICOM images in the same way as you load images of all other formats, using one of the Formats Component
loading methods. You can use Page or Document loading modes, and all Image Sources that are supported by the
Formats Component. Use DICOM Filter Control Parameters to control loading of the DICOM images.

Saving DICOM Images
There are several ways to save DICOM images using ImageGear Medical. The functions included as part of the MD
component API have a number of DICOM specific parameters. The others are included in the baseline API. You may
need to pass the DICOM parameters to these functions via the Filter Control Parameters. You can also use the
ImageGear's Multi-page Image API to load and save multi-page (cine) DICOM images. The saving functions are listed
below.

Description DLL

DICOM-specific saving function MED_DCM_save_DICOM()

DICOM-specific saving function for a file that has already been opened and for which
you have a File Descriptor handle

MED_DCM_save_DICOM_FD()

One of the baseline ImageGear saving functions IG_save_file()

IG_save_FD()

IG_save_mem()

IG_fltr_save_file()

The important consideration in writing a DICOM image is whether the image being saved out was originally a DICOM
image. If the image was originally a DICOM image (and assuming that you have not altered its Data Set to contain
illegal values), the saving of such an image is quite a simple process. This chapter describes how to save an image
that has a valid Data Set, how to use the DICOM-specific saving functions, and what Image Control options can be
used to save the image when using the baseline functions.

This section provides information about the following:

Using the DICOM Specific Saving Function
Saving a DICOM Image Using a File Descriptor
Saving a DICOM Image Using Baseline ImageGear API Calls
Saving DICOM Images with JPEG Compression
Saving out a DICOM Image from a Non-DICOM Image
Saving a Multi-Frame DICOM Image
Saving DICOM Images Using ImageGear's Multi-Page Image API

Using the DICOM Specific Saving Function
MED_DCM_save_DICOM() saves the DICOM file using the name specified by the first argument. Here is a sample call:

 MED_DCM_save_DICOM("OmyBack.dcm", hIGear,
 MED_DCM_TS_JPEG_LOSSY_8, TRUE, TRUE,
 MED_DCM_PLANAR_PIXEL_BY_PIXEL, TRUE, 100, 0);

Notice that the setting for Transfer Syntax in the sample call indicates that JPEG compression should be used on the
file. For this reason the second-to-last argument nJPEGQuality is used. This is the quality setting for lossy JPEG
compression. The setting shown (100) results in the highest quality that is possible using this compression scheme. If
another Transfer Syntax had been specified, the setting of nJPEGQuality would have been meaningless.

Note that DICOM is a multi-page format. When you save an image into existing DICOM file, ImageGear tries to
append this image at the end of the file. If for some reason appending of the image is not possible, ImageGear

ImageGear Professional v18 for Mac | 225

returns an error. If you do not want to append a page, delete the existing file before saving to that filename, or use
IG_fltr_save_file() with the bOverwrite parameter set to TRUE.

Saving a DICOM Image Using a File Descriptor
If you are saving a DICOM image to a file for which you have a File Descriptor handle, call
MED_DCM_save_DICOM_FD(). Here is a sample call:

 MED_DCM_save_DICOM_FD(fd, hIGear, MED_DCM_TS_EXPLICIT_VR_LE, FALSE, TRUE,
MED_DCM_PLANAR_PIXEL_BY_PIXEL, TRUE, 0, 0);

Saving a DICOM Image Using Baseline ImageGear API Calls
ImageGear baseline API functions can also be used to save a DICOM image. However as these functions do not
contain any of the custom parameters for saving a DICOM image, you may need to make some Filter Control calls
first. You will find the list of available DICOM filter control parameters for saving in the section DICOM Filter Control
Parameters.

Here is an example of setting DICOM filter control parameters for saving and then calling the baseline saving function.
All of the parameters values used below are different from the component's default values:

/* get current value of SAVE_SYNTAX control parameter */
IG_fltr_ctrl_get(IG_FORMAT_DCM, "SAVE_SYNTAX", FALSE, NULL, NULL,
(LPVOID)nSaveSyntax, sizeof(nSaveSyntax));
/* set new value to SAVE_SYNTAX control parameter */
IG_fltr_ctrl_set(IG_FORMAT_DCM, "SAVE_SYNTAX", (LPVOID)MED_DCM_TS_EXPLICIT_VR_LE,
sizeof(nSaveSyntax));
/* get current value of SAVE_SMALLEST control parameter */
IG_fltr_ctrl_get(IG_FORMAT_DCM, "SAVE_SMALLEST", FALSE, NULL, NULL,
(LPVOID)bSaveSmallest, sizeof(bSaveSmallest));
/* set new value to SAVE_SMALLEST control parameter */
IG_fltr_ctrl_set(IG_FORMAT_DCM, "SAVE_SMALLEST", (LPVOID)TRUE,
sizeof(bSaveSmallest));nErrcount = IG_save_file(hIGear, "knee.dcm", IG_SAVE_DCM);

Saving DICOM Images with JPEG Compression
ImageGear supports the following modes for saving JPEG compressed DICOM images:

JPEG Lossy Baseline or Extended
This is the default mode for saving DICOM images with JPEG compression in ImageGear. In this mode, depending
on the channel depth of the source image, ImageGear saves it as either 8 bits per channel, using "JPEG Baseline
(Process 1)" transfer syntax, or as 9..12 bits per channel, using "JPEG Extended (Process 2 & 4)" transfer syntax.

Use one of these ways to save an image as DICOM JPEG Baseline or Extended:

Save the image using a general ImageGear saving function, such as IG_fltr_save_file, and passing
IG_FORMAT_DCM | IG_COMPRESSION_JPEG << 16 to the lFormatType parameter. JPEG control parameter
SAVE_TYPE should be set to IG_JPG_LOSSY. DICOM control parameter SAVE_SYNTAX is ignored.
Save the image as IG_FORMAT_DCM, using a general ImageGear saving function. Set DICOM control
parameter SAVE_SYNTAX to either MED_DCM_TS_JPEG_LOSSY or MED_DCM_TS_JPEG_EXTENDED_PR_2_4.
JPEG control parameter SAVE_TYPE is ignored.
Save the image using a DICOM-specific saving function. Set nSyntax parameter to either
MED_DCM_TS_JPEG_LOSSY or MED_DCM_TS_JPEG_EXTENDED_PR_2_4. JPEG control parameter SAVE_TYPE is
ignored.

JPEG Lossy Baseline Only
This mode provides compatibility with viewers that do not support JPEG Extended coding process (12-bit images).
In this mode ImageGear saves images as 8 bits per channel, using "JPEG Baseline (Process 1)" transfer syntax. If
the image has greater bit depth, ImageGear reduces it to 8 bits per channel for saving.

Use one of these ways to save an image as DICOM JPEG Baseline:

Save the image as IG_FORMAT_DCM, using a general ImageGear saving function. Set DICOM control
parameter SAVE_SYNTAX to MED_DCM_TS_JPEG_BASELINE_PR_1_ONLY. JPEG control parameter SAVE_TYPE
is ignored.
Save the image using a DICOM-specific saving function. Set nSyntax parameter to

ImageGear Professional v18 for Mac | 226

MED_DCM_TS_JPEG_BASELINE_PR_1_ONLY. JPEG control parameter SAVE_TYPE is ignored.
For compatibility with earlier versions of ImageGear, MED_DCM_TS_JPEG_BASELINE_PR_1 constant has the same
meaning as MED_DCM_TS_JPEG_LOSSY: the image is saved using either Baseline or Extended process. To save
with the Baseline process, make sure to use MED_DCM_TS_JPEG_BASELINE_PR_1_ONLY constant.

JPEG Lossless
In this mode, depending on the channel depth of the source image, ImageGear saves it as 8...16 bits per channel,
using "JPEG Lossless, Non-Hierarchical (Process 14)" transfer syntax.

Use one of these ways to save an image as DICOM JPEG Lossless:

Save the image using a general ImageGear saving function, such as IG_fltr_save_file, and passing
IG_FORMAT_DCM | IG_COMPRESSION_JPEG << 16 to the lFormatType parameter (DICOM control parameter
SAVE_SYNTAX is ignored). JPEG control parameter SAVE_TYPE should be set to IG_JPG_LOSSLESS.
Save the image as IG_FORMAT_DCM, using a general ImageGear saving function. Set DICOM control
parameter SAVE_SYNTAX to either MED_DCM_TS_JPEG_LOSSLESS, or
MED_DCM_TS_JPEG_LOSSLESS_FIRSTORDER. JPEG control parameter SAVE_TYPE is ignored.
Save the image using a DICOM-specific saving function. Set nSyntax control parameter to either
MED_DCM_TS_JPEG_LOSSLESS or MED_DCM_TS_JPEG_LOSSLESS_FIRSTORDER. JPEG control parameter
SAVE_TYPE is ignored.

Saving out a DICOM Image from a Non-DICOM Image
If you have created a Data Set for a loaded non-DICOM image and wish to save it, please remember that it is up to
you to add all the Mandatory Data Elements to make it a valid Part 3 DICOM file. When you create the Data Set, a
handful of basic Data Elements are added to it. These values were taken from the image. Note that they are not
sufficient to satisfy the requirements of Part 3 of the Standard.

Saving a Multi-Frame DICOM Image
ImageGear MD component allows you to save single-frame as well as multi-frame (multi-page) images. Saving a
multi-frame DICOM image is pretty straightforward. Use any standard image saving function from ImageGear
baseline API. Image saving functions from Medical API do not support saving of multi-frame images.

Use the following steps to create a multi-frame image:

Create or load first frame into HIGEAR.
Create the DataSet if it is not present.
Add the DCM_TAG_NumberOfFrames tag to the DataSet, if it is not present. Value of this tag is irrelevant but its
presence is necessary.
Save the image using any ImageGear baseline saving function.
* Create or load second frame into HIGEAR.
Create Data Set if it is not present.
Add the DCM_TAG_NumberOfFrames tag to the Data Set, if it is not present.
Save the image, specifying the same file name that you used for the first frame.

* Repeat for all consequent frames.
Several limitations that are imposed by the DICOM standard are listed below.

All frames of the image should have same dimensions, bit depth and photometric interpretation. All frames should use
the same Transfer Syntax (compression). ImageGear returns an error if these conditions are not met.

It is important to note that only a few DICOM modalities allow the presence of multiple frames in the image,
while the others do not. When you try to add a frame to an existing DICOM file, ImageGear checks the file for
presence of the NumberOfFrames (0028, 0008) Data Element. If it is present ImageGear tries to append the
frame, otherwise ImageGear considers the file as belonging to a single-frame modality and returns an error.

Another important fact about DICOM format is that it has a continuous structure which means all the Data Elements
as well as image frames go one after another. This results in the following limitations:

Inserting a frame in a file that contains multiple frames, would lead to rewriting all the consequent frames. The
same thing would happen when overwriting a frame in a file that uses some compression. Changed size of the
compressed frame would lead to rewriting the whole file. To prevent such unpredictable time-consuming
operations, ImageGear Medical only supports appending a frame at the end of the DICOM image, but not insertion
or overwriting of frames.
ImageGear Medical writes the DICOM DataSet only when writing the first frame, and does not modify it when
adding frames. The only exclusion is the "Number Of Frames" Data Element, which is always kept consistent with
the actual number of frames.

ImageGear Professional v18 for Mac | 227

The "Number of Frames" Data Element has a Value Representation of "Integer String", i.e., it is stored in the file
as a character string rather than an integer. This string can occupy up to 14 characters. Now imagine that you are
appending frame to a file that has 99 frames. The number 99 occupies two bytes in the file (because it is
composed of two digits). After a frame is added, the Number Of Frames DE becomes 100, needing 4 positions for
its storage (three digits plus padding). This results in the need of shifting the whole file by two bytes. To prevent
this, ImageGear Medical always leaves the maximum of 14 positions for storing the Number Of Frames DE.
Moreover, it does not append a frame to a file where Value Length of the Number of Frames Data Element is less
than 14 (for example, if the file has been created by some other vendor1).

If you need to insert or delete a frame, or modify DataSet in the DICOM image, create a new image with the modified
DataSet, copy necessary frames to it, and then delete the original image.

Saving DICOM Images Using ImageGear's Multi-Page Image API
You can use ImageGear's Multi-page Image API calls (IG_mpi_... and IG_mpf_...) for loading and saving multi-frame
DICOM images. Just note that ImageGear Medical only supports the appending of frames but not insertion, deletion or
overwriting of frames.

ImageGear Professional v18 for Mac | 228

1.2.4.9.2.2 Processing 9...16-bit Grayscale Images

Most of the baseline ImageGear processing functions support 9..16 bit images.

Medical Component presents a set of methods that were designed specifically for 9..16 bit and Medical images.

The Medical Image Processing API is described below:

MED_IP_high_bit_transform() Gives the high bit data element a new value and transforms the image
accordingly.

MED_IP_histo_clear() Clears the histogram created by MED_IP_histo_tabulate()

MED_IP_histo_tabulate() Tabulates a histogram for a specified region of an image (or the whole
image), and allows you to set the width of and number of bins that are
used. This function also indicates whether the image is signed or not.

MED_IP_min_max() Gets the minimum and maximum pixel values from a specified region of an
image (or the whole image), and also indicates whether the image is signed
or not.

MED_IP_normalize() Converts a signed image to an unsigned image. Takes an argument for a
minimum pixel value, converts the lowest pixel value in the image to the
new minimum, and maps all the rest of the pixels in the image such that the
original contrast is maintained.

MED_IP_promote_to_16_gray() Promotes an 8g or 8i image to a 16-bit grayscale image and gives you the
possibility to select the position of the high bit.

MED_IP_reduce_depth_with_downshift() Reduces a 9-16-bit image to an 8-bit image using downshifting, that allows
you to choose which 8 bits to use for the new image.

MED_IP_reduce_depth_with_LUT() Reduces a 9-16-bit image to an 8-bit image using your own LUT or the
current display16x8 LUT.

MED_IP_swap_bytes() Corrects a poorly constructed image in which the bytes of each 16-bit pixel
are in the wrong order.

MED_IP_contrast() Reduces a 9-16-bit image to an 8-bit image using Rescale Slope, Intercept,
Window Center, Width and Gamma. You would normally use Rescale and
Window settings from the Data Set, and your own setting for Gamma.

MED_IP_contrast_auto() Same as MED_IP_contrast() except that it automatically derives Window
Level and Window Center values for you by scanning the image for the
min/max pixel values.

Critical Data Elements
In this manual, we use the term "Critical Data Elements" for those DEs that are used to help load a DICOM image
correctly. It's important to note that when certain IP methods are called, the toolkit alters the Data Set. See the "Critical
Data Elements" section of Working With DICOM Data Structures for more details.

ImageGear Professional v18 for Mac | 229

1.2.4.9.2.3 Displaying Medical Grayscale Images

Many medical images use more than 8 bits per grayscale pixel. The main concern in displaying such images is that
commonly used monitors can display only 256 shades of gray, which corresponds to 8 bits per pixel. The 16-bit pixels
need to be mapped in some way to 8-bit pixels. ImageGear uses two approaches for this mapping.

If a 9..16 bit grayscale image has been loaded from a non-DICOM file, its pixels are mapped to 8g by left shifting the
pixels by (n-8), where n is the bit depth of the image. For example, if the image has 12 bits per pixel, its pixels will
be left shifted by 4 bits, so the 8 most significant bits of the 12-bit pixel will be used. This mapping is done only for
image display, and does not affect the image stored in memory.

When ImageGear loads a DICOM image, it creates a 16-bit to 8-bit, or 8-bit to 8-bit display Look-Up Table (16x8 LUT
or 8x8 LUT), and attaches it to the image. This LUT gives more flexibility in displaying medical images, allowing to
display a certain range of pixel intensities with best contrast.

DICOM image files may contain several Look-Up Tables that describe how the image shall be displayed. "Modality"
LUT specifies transform of image pixels into modality meaningful values, such as optical density or Hounsfield Units.
"Value of Interest" LUT (VOI LUT) specifies what range of pixel intensities should be shown on the screen. Most often,
both these LUTs are linear, and thus are presented by a pair of values that are similar to brightness and contrast. For
Modality LUT, these are Rescale Intercept (0028, 1053) and Rescale Slope (0028, 1053). For VOI LUT, these are
Window Center (0028, 1050) and Window Width (0028, 1051). The standard also allows the usage of non-linear
LUTs. These LUTs are represented as an array of values that map source image intensities to the output range.

If all of these values are found in the file, they are all used to build the 16x8 LUT. If Rescale values are not found,
default values (Intercept = 0.0, Slope=1.0) are substituted. If VOI LUT values are not found, the image is scanned for
min and max pixel intensities, and the LUT is built to display the min intensity as black and max intensity as white.
The values between min and max are linearly scaled between black and white.

You can adjust the values in the 16x8 LUT using MED_display_...() functions.

Grayscale LUTs can be attached to a HIGEAR or to a Display Group. In the latter case, if you are using multiple
Display Groups corresponding to the same HIGEAR, they can have different LUTs, allowing to display the same image
with different contrast settings simultaneously, in different windows. See the "Medical Component Grayscale Look-Up
Tables" section below for more details.

Grayscale LUTs (16x8, 8x8) only work with grayscale images. They do not work with bi-tonal, indexed (paletted)
or color images.

Pixel Padding Value
DICOM images sometimes contain a Data Element called "Pixel Padding Value" (PPV). The PPV is used mostly to fill in
the corners of round images. DICOM provides a Tag for PPV which is (0028,0120). This Data Element stores a 16-bit
grayscale value that is to be treated as the Pixel Padding Value. Any pixels in the image that have this value are not
to be treated as meaningful objects - but as background color.

When the ImageGear Medical loads a DICOM image that contains a PPV the value is captured and stored in the HDS,
which is attached to the new image. In fact, 3 values are stored to the HDS: the PPV from the PPV Data Element, a
flag indicating that a PPV was found in the file when it was loaded, and an 8-bit grayscale value used to display pixels
with this value.

Use MED_DCM_DS_PixPadVal_get() and MED_DCM_DS_PixPadVal_set() functions to get/set the Pixel Padding Value
that is to be used while displaying a 16-bit grayscale image.

Pseudocoloring Medical Images
Medical Display API contains methods for creating color LUTs that can be used to pseudocolor grayscale images.

MED_display_color_create() Chooses a pre-defined ImageGear pseudo color scheme and creates 3 LUTs for the
RGB components that are ready for use with display. You can call
MED_display_color_set() to associate these RGB LUTs with an image.

MED_display_color_limits() Displays over and under-saturated areas with pseudo color of your choice.

MED_display_color_set() Associates 3 LUTs with an image. Can be used to apply pseudo color to an image. You
can set to your own LUTs, to the LUTs created by MED_display_color_create(), or set
to NULL to use linear 0-255 grayscale LUTs.

Medical Component Grayscale Look-Up Tables
The ImageGear Medical component provides a set of functions that allow you to create grayscale look-up tables

ImageGear Professional v18 for Mac | 230

according to DICOM display attributes, such as VOI LUT, Modality LUT, Presentation LUT, etc.

Use the IG_LUT_create() function to create a grayscale LUT, then use MED_display_grayscale_LUT_build() function to
fill this LUT with values corresponding to DICOM display settings. This function supports both linear and non-linear
Modality and VOI LUTs, as well as presentation state related LUTs.

Once you have built the LUT, you can copy it to either the image, or to the image display settings, by using
IG_image_grayscale_LUT_update_from() or IG_dspl_grayscale_LUT_update_from().

IG_image_grayscale_LUT_... API internally uses the same LUT as the one that can be set by
IG_display_option_get/set functions.

When ImageGear loads a grayscale DICOM image, it builds a grayscale LUT and attaches it to the image. This LUT
can be obtained with the IG_image_grayscale_LUT_copy_get() function.

Example:

AT_MED_DCM_DISPLAY_SETTINGS DICOMDisplaySettings;
HIGLUT GrayLUT = (HIGLUT)NULL;
memset(&DICOMDisplaySettings, 0, sizeof(DICOMDisplaySettings));
if (MED_DCM_DS_LUT_exists(g_hIGear, g_hIGearPresState,
DCM_TAG_ModalityLUTSequence))
{
 MED_DCM_DS_LUT_copy_get(g_hIGear, g_hIGearPresState,
DCM_TAG_ModalityLUTSequence, &DICOMDisplaySettings.ModalityLUT);
}
else
{
 DICOMDisplaySettings.ModalityRescale.Slope = 1.0;
 DICOMDisplaySettings.ModalityRescale.Intercept = 0.0;
}
DICOMDisplaySettings.VOIWindow.Center = 1024;
DICOMDisplaySettings.VOIWindow.Width = 2048;
DICOMDisplaySettings.Gamma = 1.0;
IG_LUT_create(12, /* Input depth of images to use this LUT for. */
 FALSE, /* Apply to unsigned images. */
 8, /* Display bit depth to use this LUT for. 8-bits is common for
most PC
monitors. */
 FALSE, /* Apply to unsigned displays. */
 &GrayLUT);
/* Build a grayscale LUT based on display settings */
MED_display_grayscale_LUT_build(&DICOMDisplaySettings, GrayLUT);
/* Copy LUT to the image. */
IG_image_grayscale_LUT_update_from(g_hIGear, GrayLUT);
IG_LUT_destroy(GrayLUT);

See Also:

Working with Grayscale Look-Up Tables

Grayscale Look-Up Tables

ImageGear Professional v18 for Mac | 231

1.2.4.9.2.4 Working with DICOM Non-Image Data

This section provides information about the following:

Associating DICOM Data with an ImageGear Image
Reading Data from Data Elements
Writing Data to Data Elements
Working With DICOM Data Structures
Working with DICOM Data Dictionary

ImageGear Professional v18 for Mac | 232

1.2.4.9.2.4.1 Associating DICOM Data with an ImageGear Image

As a DICOM file is being loaded, the ImageGear Medical associates some additional structures with it. DICOM Data
Elements are stored into two separate chunks: a table of Data Elements, which holds those Data Elements that make up
the core of the image file, and a Part 10 Template, which holds the Data Elements from the Part 10 Header. The Part 10
Header is kept separate due to some of its special characteristics.

The table of Data Elements is internal and is only accessible via the API functions provided by this component. You can
remove it (and free its memory), or create a new table if it does not exist. The names of the API functions that allow you
to access the data in the internal Data Set table all start with MED_DCM_DS_ .

We refer to the Part 10 Header area as a "template" because it should be created for every loaded DICOM image, even if
the image's Data Set is empty. This template always contains the same set of storage fields for Data Elements-even if
the Part 10 Header of the loaded image has no value for them. Further on in this section you will find information on how
to get and set Part 10 Header values.

The Part 10 Template cannot be removed. However, as you are saving the image you can choose not to save it as "Part
10-compliant" and the image will be saved without this header.

ImageGear Professional v18 for Mac | 233

1.2.4.9.2.4.2 Reading Data from Data Elements

The functions that return you the data for a DE's Data Field include:

MED_DCM_DS_curr_data_get() Returns the data and size of the data

MED_DCM_DS_curr_data_get_string() Returns the data as a string and returns the size of the string.

Both of these functions return you the contents of the Data Field of the Current Data Element.

To interpret the returned data call MED_DCM_DS_curr_info_get(). This function returns, among other things, the VR, the
VL, and the Item Count.

If the data is binary, i.e. defined as an INT, WORD, etc., you can use the VL and Item Count to determine the length of
each item in the Data Field. Binary items aren't delimited; they are stored end-to-end. Since all binary items must be of
the same length, you can calculate the length of each item this way:

lengthOfEachItem = VL/Item_count

Using Item_count as a loop delimiter, you can now parse through the data by jumping lengthOfEachItem bytes for as
many items as it's returned by Item_count:

for (item = 0; item < Item_count; item++)
 {
 int_array[item] = ((int *)value_field)[item];
 }

Character data items can be of either fixed length or variable length. In either case, you can forgo the calculation shown
above for binary data because character data must be delimited by backslashes.

ImageGear Professional v18 for Mac | 234

1.2.4.9.2.4.3 Writing Data to Data Elements

The following API functions allow you to write or overwrite the data of a Data field, respectively:

MED_DCM_DS_DE_insert() Inserts a new DE to the Data Set. Its placement are determined automatically
according to its Tag value. Your only power of placement is in specifying what level
in the hierarchy of the Data Set to place the new DE.

MED_DCM_DS_curr_data_set() Overwrites the Data Field of an existing Data Element.

Whether you are inserting a new DE or overwriting the Data Field of an existing DE, you may need to query the VR
and VM by calling MED_DCM_util_tag_info_get(). With the VR in hand, you can call
MED_DCM_util_VR_info_mode()which tells you the length that each item can have, and whether the items are of
fixed or variable length. See the previous section "Reading Data From Data Elements" for how to interpret the value
returned to you in VM.

This section provides information about the following:

The Components of the Data Set
The Internal Data Set vs. the Original Data Set
Critical Data Elements
The Hierarchy of the Data Set
Data Set Levels
Part 10 Header Access

The Components of the Data Set
A Data Set is composed entirely of Data Elements. In DICOM, all stored data, including the images themselves, is
stored in fundamental DICOM building blocks calledData Elements.

Access to the Data Set is achieved by moving an internal Data Element index called the "Current Data Element" from
Data Element to Data Element. There is a set of API functions, which just move the Current Data Element about the
Data Set. Another group of API functions will allow you to retrieve or set the Value Field of the Current Data Element.

The Internal Data Set vs. the Original Data Set
The internal Data Set is similar to but not exactly like the Data Set found in the DICOM file. The DICOM standard has
many options and various methods of storing its data. As the internal Data Set is being filled, the vital information is
stored in an abstract form. The new form of this information makes it easier for you to work with. Most of this internal
storage is completely transparent for you and your application, but there are a few items you should be aware of.

First of all, as you move to see the internal Data Set and inspect its contents you may notice that some items that
were in the original Data Set are missing. One example of this are the "Group Lengths" (all of which have Element
Numbers of 0000). Group Lengths which are optional in the DICOM specification, are placed in the Data Set to aid to
quickly find certain Data Elements by allowing the parser to skip over large blocks of Data Elements that do not
contain the Data Element being searched for. They serve no other purpose and are therefore removed. If you are
going to save the Data Set back out to disk you may request that Group Lengths should be included in the new disk
file. If you do so, ImageGear recalculates the Group Lengths in case any Data Elements have been added, removed or
altered.

Also missing from the data is the Data Field for Pixel Data (7FE0,0010). It is the Data Element that holds the image.
This Data Element is actually present but his Data Field is empty. This is because the image has been read and loaded
into an ImageGear DIB.

Another difference from the internal Data Set and the original file version is that regardless of what the original
encoding scheme was, the internal Data Set always are "Explicit VR." That is, the Value Representations (VRs) of each
Tag are looked up in the Data Dictionary and recorded along with the other information. If you later write the Data
Set to disk you may choose whether the Data Set should be Explicit or Implicit VR.

Critical Data Elements
"Critical Data Elements" are those DEs whose values are taken from the image not regarding to whether the Data Set
has values for these DEs or not. Two examples of such DEs are the height (Rows) and width (Columns) of the image.
Note that the Critical Data Elements in the internal Data Set are always kept consistent with the HIGEAR. For
example, if you have resized the image, the DCM_TAG_Columns and DCM_TAG_Rows Data Elements are set to the
new Width and Height of the image. When an image processing function, such as Resize or Rotate, is applied to the
DICOM image, the values for Rows and Columns will be updated from the HIGEAR.

ImageGear Professional v18 for Mac | 235

The Hierarchy of the Data Set
A certain type of Data Element can be hierarchical meaning that it can have other groups of Data Elements "under" it
similarly to the way files are stored under the directory structure. This special type of Data Element has a Value
Representation of Sequence Delimiter (SQ). This Data Element l marks a set of Data Elements called "Items." This set
can contain 0 or more embedded Data Elements. The hierarchical structure can make it difficult to keep track of
where you are as you move through the Data Set. This is the reason of using the Current Data Element - to keep
track of index you are positioned at in the array of Data Elements.

Data Set Levels
You may notice that many of the Data Set Navigation API contain a parameter of level_op. This argument tells
whether the Data Set index should remain in the current level or can be moved to another level. The possible values
for this argument are:

MED_DCM_MOVE_LEVEL_FIXED
MED_DCM_MOVE_LEVEL_FLOAT

Part 10 Header Access
When a DICOM image file is loaded it may or may not begin with a Part 10 Header. The Part 10 Header consists of 2
parts: a free-form block of 128 bytes called a Preamble, and a fixed list of 9 Data Elements, all of which have a Group
Number of 0002. Both of these parts are stored in the Part 10 Template mentioned earlier. The use of the Preamble is
up to the application and can be used to store anything you like, as long as it is 128 bytes or less. A blank or empty
Preamble is indicated by 128 bytes of 0x00.

If the original image has a Part 10 header, the data from it is extracted and placed in the internal template mentioned
earlier. If there is no header, the template is empty except for 2 fields: the File Meta Information Version (0002,0001)
and the Transfer Syntax UID (0002,0010). Default values are assigned to these fields - File Meta Information Version
is set to 0x0001, and Transfer Syntax UID is set to the Transfer Syntax detected by ImageGear when the image was
loaded. The Version number is called for the DICOM specification and it value never need to be altered.

Access to the values in the Part 10 Template is done using a small set of methods or functions, which include either
"Part10" or "preamble" in their names.

MED_DCM_DS_preamble_get() get Part 10 Header Preamble

MED_DCM_DS_preamble_set() set Part 10 Header Preamble

MED_DCM_DS_part10_get() get Part 10 Header Data Elements, except Preamble

MED_DCM_DS_part10_set() set Part 10 Header Data Elements, except Preamble

ImageGear Professional v18 for Mac | 236

1.2.4.9.2.4.4 Working With DICOM Data Structures

When a DICOM image is loaded into ImageGear, it is loaded into a DIB just like any other supported image. In
addition to the actual image, the following DICOM-specific data structures are also loaded: File Meta Information
Header (if present) and the Data Set. This section explains how to read and/or manipulate the data in the Data Set or
File Meta Information Header, or how to create your own Data Set or File Meta Information Header.

This section provides information about the following:

Getting and Setting Data Set and Part10 Header Data
Inserting a New Data Element
Deleting a Data Element
Getting and Setting Data of the Current Data Element
Creating a Data Set
Deleting a Data Set
Creating a Part 10 Header
Updating DICOM DataSet without Updating Pixel Data
Critical Data Elements

Getting and Setting Data Set and Part10 Header Data
With the exception of the first function listed below, these functions can be used for getting or setting various parts of
the Part 10 Header data. These functions are useful when you are creating a new DICOM file.

The first function listed below simply returns some information about the Data Set attached to the HIGEAR. This
returns the number of Data Elements in the Data Set.

The second function warrants a bit of explanation. When a DICOM image is loaded into ImageGear, the original
Transfer Syntax is stored in the HIGEAR. This value is called the Original Transfer Syntax and cannot be changed. You
can to read this information using MED_DCM_DS_orig_TS_get(). Even though you can alter the Transfer Syntax Data
Element in the Part 10 Header template, the Transfer Syntax of the original image file is kept in case you ever need
to know what it was. It does not affect the saving of a DICOM file. To set the Transfer Syntax for an image that you
are saving use either the Image Control setting or fill in the TS parameter of MED_DCM_save_DICOM().

MED_DCM_DS_info_get() Returns the number of DEs in the Data Set

MED_DCM_DS_orig_TS_get() Returns the Transfer Syntax used to create the image. It is returned as a
MED_DCM_TS_ constant.

MED_DCM_DS_part10_get() Returns the data from a Part 10 item. You specify the item you would like to read.
You must supply the item as DCM_PART10_ITEM_ constant.

MED_DCM_DS_part10_set() Sets the data of an item from the Part 10 meta-info header. You specify which
item and supply it with new data to be stored to that item. You must supply a
DCM_PART10_ITEM_ constant.

MED_DCM_DS_preamble_get() Gets the Preamble from the Part 10 header. Your receiving buffer must be at least
128 bytes. You could also use MED_DCM_DS_part10_set() with the appropriate
constant to get this value.

MED_DCM_DS_preamble_set() Sets the Preamble of the Part 10 header. You must supply it with the address of
the Preamble and the length of the data you are saving to it. You could also use
MED_DCM_DS_part10_get() with the appropriate constant to get this value.

Inserting a New Data Element
ImageGear Medical allows you to insert any number of Data Elements to an existing Data Set, or to a new Data Set
that you have created by calling MED_DCM_DS_create(). (See the section "Creating a Data Set" below.)

DICOM Data Sets are sorted numerically by Tag number. Therefore, the Current Data Element does not affect the
index position where your new Data Element is inserted. ImageGear takes your Tag number and automatically sorts
the new DE into the correct position in the array. The Current Data Element does, however, determine the level at
which the new DE is stored. For example, if the Current Data Element is in level 0 and has a Tag value of (0028,
0010) and your new DE has a Tag value of (0028, 0015), the new DE will be inserted into level 0 and positioned
somewhere below the Current DE so that its unique Element Number fits numerically in ascending order.

If a DE with specified Tag number already exists in the Data Set, it will be overwritten.

If there are no DEs in the Data Set, the level for the new DE will be 0 or the "top level".

ImageGear Professional v18 for Mac | 237

You have complete flexibility in what kind of DEs you can add to the Data Set. For each new DE, you have to supply
ImageGear with a Tag structure, a VR, and the data. You can add it to any Group, to any position, with any VR, and
with any data that you desire.

An example of using MED_DCM_DS_DE_insert():

HIGEAR hIGear;
AT_DCM_TAG tag = 0x00111111;
AT_DCM_VR vr = MED_DCM_VR_CS;
char data[256] = "Data for test element";
DWORD dwSizeOfData = strlen(data);
MED_DCM_DS_DE_insert(hIGear, tag, vr, data, dwSizeOfData);

This function requires you to supply the following values: a Tag, a VR, a Data Field, and the size of the data for the
Data Field. Below are brief descriptions of what you would need to know in order to set these arguments.

This section provides information about the following:

Setting the Tag Value
Setting the VR
Setting the Data for a VR of CS
Setting the Data Field
Setting the Length of a Data Field
Inserting a Sequence of Data Elements

Setting the Tag Value
All standard Tag values for a DICOM file are assigned constants in enumIGMedTag enumeration. You can also add
your own user-defined Tag using MED_DCM_util_tag_info_add().

Setting the VR
The DICOM specification assigns specific VRs for each defined public Tag. In other words, for a particular Tag, you
must always use the specified VR. There are a few rare exceptions to this rule, and it is for this reason that you
should tell MED_DCM_DS_DE_insert() what VR the data has.

If you don't know the VR for a particular Tag that you are adding, you can find out easily by calling the function
MED_DCM_util_tag_info_get(), which returns you its VR as a constant.

Setting the Data for a VR of CS
There are no constants in ImageGear defined for those Data Elements which have a VR of CS. Refer to Part 3 of the
DICOM specification for the valid Code Strings which you can enter for data of type CS.

Here is a sample call to insert a Data Element with a Tag of DCM_TAG_PhotometricInterpretation, which has a VR of
CS (Code String). You must use one of the defined values from Part 3 of the DICOM specification. The allowed values
are: "MONOCHROME1", "MONOCHROME2", "PALETTE COLOR", "RGB", "HSV", "ARGB", "CMYK", "YBR_FULL",
"YBR_FULL_422", and "YBR_PARTIAL_422".

MED_DCM_DS_DE_insert(hIGear, DCM_TAG_PhotometricInterpretation, MED_DCM_VR_CS,
"MONOCHROME2", 11);

Setting the Data Field
What kind of data can be stored to the Data Field depends on the Tag type, the VR, the restriction flags and the Value
Multiplicity (VM) defined for the Tag. It is very helpful to call MED_DCM_util_VR_info_mode()or
MED_DCM_util_VR_info_string()so that you can find out what kind of restrictions are placed on the kind of data that
you would like to enter. Some types of Data Fields are tricky to work with. VRs of Person Name and Code String place
a number of restrictions on what can go into the Data Field, and how it is to be formatted. For these VR types, you
must consult Part 5 of the DICOM specification.

The lpData parameter is a binary buffer, which can contain a character string, a BYTE or WORD array, or one or
several of numbers, such as Integers or Floats. Below there is an example how to set a value of VR=FD (double):

ImageGear Professional v18 for Mac | 238

DOUBLE dblRefPixelValueX = 1.234;
MED_DCM_DS_DE_insert(hIGear, DCM_TAG_ReferencePixelPhysicalValueX, MED_DCM_VR_FD,
&dblRefPixelValueX, sizeof(DOUBLE));

Setting the Length of a Data Field
Because some VRs allow a range of values, the length of all Data Fields cannot be assumed. For this reason, you must
supply ImageGear with the length of your data.

Inserting a Sequence of Data Elements
Use the following steps to create and fill a sequence (SQ) of Data Elements:

1. Insert the Data Element of VR = SQ. This positions you one level lower in the DataSet hierarchy. At this level
you can only add items to the sequence, not the Data Elements.

2. Insert the DCM_TAG_ItemItem Data Element to denote the beginning of a new item in the sequence. This
positions you one level lower in the DataSet hierarchy. Now you can add Data Elements to the embedded Data
Set.

3. Insert the data elements you would like to insert to this item.
4. Insert the DCM_TAG_ItemDeliminationItem Data Element to denote end of the item. This positions you one

level higher. Repeat steps 2-4 for every item you would like to add.
5. Insert the DCM_TAG_SequenceDeliminationItem Data Element to denote the end of the sequence. This moves

you one level higher - to the same level where you added the SQ Data Element.

Examples on creating a Data Element Sequence are below. Note that it is completely valid to add same Data Elements
to different Items within a Sequence.

AT_DCM_TAG tag;
char data_str[64];
tag = DCM_TAG_ReferencedStudySequence;
MED_DCM_DS_DE_insert(hIGear, tag, MED_DCM_VR_SQ, NULL, 0);
tag = DCM_TAG_ItemItem;
MED_DCM_DS_DE_insert(hIGear, tag, MED_DCM_VR_xx, NULL, 0);
tag = DCM_TAG_ReferencedSOPClassUID;
strcpy(data_str, "1.23.456.7.8.90.1234567890.2");
MED_DCM_DS_DE_insert(hIGear, tag, MED_DCM_VR_UI, data_str, strlen(data_str));
tag = DCM_TAG_ReferencedSOPInstanceUID;
strcpy(data_str, "1.23.456.7.8.90.1234567890.2.1");
MED_DCM_DS_DE_insert(hIGear, tag, MED_DCM_VR_UI, data_str, strlen(data_str));
tag = DCM_TAG_ItemDelimitationItem;
MED_DCM_DS_DE_insert(hIGear, tag, MED_DCM_VR_xx, NULL, 0);
tag = DCM_TAG_ItemItem;
MED_DCM_DS_DE_insert(hIGear, tag, MED_DCM_VR_xx, NULL, 0);
tag = DCM_TAG_ReferencedSOPClassUID;
strcpy(data_str, "1.23.456.7.8.90.1234567890.3");
MED_DCM_DS_DE_insert(hIGear, tag, MED_DCM_VR_UI, data_str, strlen(data_str));
tag = DCM_TAG_ReferencedSOPInstanceUID;
strcpy(data_str, "1.23.456.7.8.90.1234567890.3.1");
MED_DCM_DS_DE_insert(hIGear, tag, MED_DCM_VR_UI, data_str, strlen(data_str));
tag = DCM_TAG_ItemDelimitationItem;
MED_DCM_DS_DE_insert(hIGear, tag, MED_DCM_VR_xx, NULL, 0);
tag = DCM_TAG_SequenceDelimitationItem;
MED_DCM_DS_DE_insert(hIGear, tag, MED_DCM_VR_xx, NULL, 0);

Deleting a Data Element
Data Elements can be deleted by calling MED_DCM_DS_curr_remove(). This function removes the DE designated by
the Current Data Element. Therefore, you can use one of the MED_DCM_DS_move_...() functions to position the
Current Data Element to the DE you want to remove.

If you've used MED_DCM_DS_move_find() or MED_DCM_DS_move_find_first() to position the Current Data
Element, be sure to check the value of the Boolean argument to see whether you successfully found the Tag or
Group Number that you were looking for. Otherwise, you might unintentionally delete the wrong DE.

ImageGear Professional v18 for Mac | 239

Some calls to MED_DCM_DS_curr_remove() result in deletion of more than one Data Element:

If you are going to delete a DE with a VR of SQ, all the items and consequently DEs below it will be deleted also.
If you are going to delete a DE of type Item (FFFE, EOOO), all DEs below it will also be deleted.

The following types of DEs may not be deleted:

Sequence Delimitation Item (SQD) - (FFFE, EODD)
Item Delimitation Item (ID) - (FFFE, EOOD)

Trying to delete DEs of these types will have no affect on the Data Set. These type of DEs will be automatically
deleted by ImageGear when their accompanying set of DEs are deleted.

Getting and Setting Data of the Current Data Element
Notice that all functions in this group include "curr" as part of their names. Below is a description of these functions..

MED_DCM_DS_curr_data_get() Returns the data and size of data from the CDE. The data is returned in its
native format. Use MED_DCM_DS_curr_info_get() to get the VR in order to
know how to handle the data.

MED_DCM_DS_curr_data_get_string() Same as MED_DCM_DS_curr_data_get() except that the data is always
returned as a string.

MED_DCM_DS_curr_data_set() Sets/overwrites the Value Field (data) of the CDE. Check the VR required.
You cannot change the VR of an existing DE.

MED_DCM_DS_curr_index_get() Returns the index of the CDE. Lets you know where you are in the Data
Set.

MED_DCM_DS_curr_info_get() Returns the following pieces of information about the CDE: Tag, VR, VL,
Item Count. This is a very important method. Use it as a precautionary call
before modifying info in the CDE or inserting/deleting.

Creating a Data Set
If you have a HIGEAR image to which you would like to attach a Data Set, call MED_DCM_DS_create(). This file might
have been loaded from a non-DICOM format or may be a DICOM file in which you've destroyed the Data Set (see the
section above).

This function creates an empty Data Set and attaches it to the ImageGear's image. The function creates a Data Set
structure (outlined above) and fills it with a few Data Elements whose values can be derived from the image. This
function also requires you to supply a Transfer Syntax that is saved in the Part 10 Header template as the original
Transfer Syntax (as if it was loaded from a DICOM file). If you then save the image and specify a different Transfer
Syntax, you overwrite the TS value specified at the time of Data Set creation.

Deleting a Data Set
If you have loaded a DICOM image file and do not need to keep the Data Set around you can free up the memory
used to store all the Data Elements by calling MED_DCM_DS_destroy(). Once this function is called the remaining
image is no different than any other ImageGear image that was created from any other non-DICOM format. The
removed Data Set is discarded and cannot be recovered.

Creating a Part 10 Header
When a DICOM image is loaded with the ImageGear Medical, a Part 10 Header Template is initialized automatically. If
you save the image as a Part 10-compliant image (which is the default option), the values from this template are
used to fill the header saved with the file.

For those wishing to modify or read the values stored in the Part 10 Header Template, the component supplies 11
constants. All except the last one correlate directly to the fields found in a Part 10 Header. The last constant can be
used by ImageGear to store the length of the Private Info field, and is for informational purposes.

Below is the list of Part 10 constants. Each one is followed by its size in bytes. A check appears next to each field that
is considered "Mandatory" by the specification. ("Mandatory" is one of three possible "Types" for a DICOM DE. The
other Types are "Optional", and "Mandatory Depending on some Condition".)

Mandatory MD Component Constant Size of Data Field

Yes DCM_PART10_ITEM_PREAMBLE 128 bytes

Yes DCM_PART10_ITEM_VERSION 2 bytes

ImageGear Professional v18 for Mac | 240

Yes DCM_PART10_ITEM_MSSOPCLASSUID Max 64 bytes

Yes DCM_PART10_ITEM_MSSOPINSTUID Max 64 bytes

Yes DCM_PART10_ITEM_TRANSSYNTAXUID Max 64 bytes

Yes DCM_PART10_ITEM_IMPLCLASSUID Max 64 bytes

DCM_PART10_ITEM_IMPLVERNAME Max 16 bytes

DCM_PART10_ITEM_SRCAETILE Max 16 bytes

DCM_PART10_ITEM_PRIVINFOCRUID Max 64 bytes

DCM_PART10_ITEM_PRIVINFO any length

DCM_PART10_ITEM_PRIVINFO_SIZE DWORD - length of Priv Info - read only

Please note the following about the above constants:

You can set DCM_PART10_ITEM_PREAMBLE to anything you want as long as it doesn't exceed 128 bytes
DCM_PART10_ITEM_VERSION is set by the toolkit to a default value of 1. You should not change this.
DCM_PART10_ITEM_TRANSSYNTAXUID - we set the value of this DE when the image is loaded. You can read this
value; you can even set this value. But when the image is saved your setting are ignored.

If you enter data in DCM_PART10_ITEM_PRIVINFO, it is stored with the new Part 10 Header. Also, ImageGear
calculates its size and saves this information internally. This read-only size information is not made part of the
template but is kept in case you need to know how much memory to allocate when getting the information from
DCM_PART10_ITEM_PRIVINFO. DCM_PART10_ITEM_PRIVINFO_SIZE isn't stored to the new Part 10 header.

Here is an example of a Part 10 field being populated:

char szPreamble[] = "This DICOM File is MINE!";
DWORD size_of_data;
size_of_data = sizeof(&szPreamble[0]);
MED_DCM_DS_part10_set(hIGear, DCM_PART10_ITEM_PREAMBLE, &szPreamble[0],
&size_of_data);

Updating DICOM DataSet without Updating Pixel Data
There are cases when an application needs to update DataSet of a DICOM file, while leaving PixelData unchanged. For
example, if the image is compressed using a Lossy compression scheme, this will avoid degradation of image quality.

Use MED_DCM_DS_update_file() function to update DataSet in a DICOM file, without changing its pixel data.

Critical Data Elements
In this manual, we use the term "Critical Data Elements" for those DEs that are used to help load a DICOM image
correctly. It's important to note that when certain IP methods are called, the toolkit alters the Data Set. For example,
when an aspect of the image has been altered (for instance, by image processing) so, that the Critical DEs no longer
correctly describe the image, the Data Set have to be altered. When the image is actually saved, ImageGear also
analyzes the DIB and set its own values for the Critical Data Elements of the file being saved. The original values are
ignored.

The Critical Data Elements are:

(0028,0010) Rows

(0028,0011) Columns

(0028,0100) Bits Allocated

(0028,0101) Bits Stored

(0028,0102) High Bit

(0028,0004) Photometric Interpretation

(0028,0103) Pixel Representation

(0028,0002) Samples per pixel

(0028,0006) Planar Configuration

(7FE0,0010) Pixel Data

PixelData DE does not contain any actual data, it is always empty. The actual pixel data is stored in ImageGear's

ImageGear Professional v18 for Mac | 241

DIB, to which the DataSet is attached. Value Representation and Value Length of the Pixel Data tag correspond
to VR and VL of PixelData tag, if the DIB is saved to an uncompressed image.

ImageGear Professional v18 for Mac | 242

1.2.4.9.2.4.5 Working with DICOM Data Dictionary

The MD component encapsulates the DICOM Data Dictionary (Part 6) in a static and internal table, which the component
uses to look up Tags as they are being decoded. It can be used also by your application to provide the DICOM given
name or other information about a given Tag. To retrieve this information use the MED_DCM_util_tag_info_get()
function. Tag IDs are listed in the enumIGMedTag enumeration.

The Data Dictionary is also used to check the VR of Data Elements as they are being decoded. If a file is Explicit VR then
as each Data Element is read, the VR found in the file is matched against the VR in the Data Dictionary. If it is
determined that the VR is not appropriate for the Tag type, an error condition may occur.

You can add your own user-defined Tags to the Data Dictionary, or add new Tags that have been added to the DICOM
specification so that you keep your application current. The Tags that you add, whether they are user-defined, or new to
the DICOM specification, will be stored in a separate table in memory. The enumIGMedTag enumeration is reserved for
public DICOM Tags. However, when your application is running, ImageGear Medical will treat the two tables as one, and
will be able to process any valid Tag number that you reference. To add a Tag, use MED_DCM_util_tag_info_add().

Since the internal Data Dictionary tables are statically defined, any Tags you wish to add should be added to your
initialization code since the table need to be updated each time the toolkit is started up.

The internal Data Dictionary holds several pieces of information for each Tag: it holds the VR, the VM, the version in
which the Tag is last used, and the character string name of the Tag as it appears in the DICOM Standard.

The version information is stored because there are many Tags in the DICOM 3 Standard Data Dictionary that are now
obsolete or "Retired" as DICOM calls them. If a Tag has been Retired in DICOM 3, then the version is stored as 2. If the
Tag has not been retired then it is stored as 3 (for DICOM version 3). Retired Tags also include the string "(RET)" at the
end of their name string.

ImageGear Professional v18 for Mac | 243

1.2.4.9.2.5 Working with Presentation State Objects

Presentation State (PS) objects serve for the following purposes: consistent display of images on various devices and
media, storage of specific settings for display (contrast transformations, geometric transformations), and storage of
annotations. They also allow for special display of multi-frame images.

Presentation State object files do not include actual images, but reference one or more images.

Presentation State object files, in addition to LUTs, display parameters and annotations, contain other tags, such as
Patient/Study/Series info, Referenced Image UIDs, etc. ImageGear provides read/write access to these tags.

This section provides information about the following:

Consistent Display of Images
Grayscale Contrast Transformations
Geometric Transformations
Working with Presentation State Objects

Consistent Display of Images
DICOM standard introduces the Standardized Display System. A Standardized Display System may be a printer, a
monitor or some other display device which has been calibrated according to the Grayscale Standard Display Function
(GSDF). The main feature of such display system is that throughout its display range, equal differences in digital input
values correspond to visually equal differences in luminosity. Two Standardized Display Systems will always show the
same detail in an image, even if their physical characteristics are different.

The values that can be used as input to a Standardized Display System are called "Presentation Values" ("P-Values").
To map image pixel intensities into P-Values, Presentation Look-Up Table ("P-LUT") is used. It is applied after
Modality and VOI LUTs.

Presentation LUT is stored in a Presentation State DataSet.

If a display device is not physically calibrated to comply with GSDF, but its characteristic curve (a table that lists
luminosities for each digital input value) is known, it can be calibrated at the software level. In that case, P-Values
shall be used as input to a GSDF LUT, which will map them to the device's input values according to GSDF. Thus, a
non-standardized device together with its GSDF LUT can be considered as Standardized Display System.

ImageGear Medical component allows you to build a GSDF LUT from a device's Characteristic Curve.

ImageGear uses all available LUTs (Modality LUT, VOI LUT, Presentation LUT and GSDF LUT), to build the general
16x8 or 8x8 LUT that maps image pixel values into display input values.

Grayscale Contrast Transformations
Presentation State DataSet may include VOI and Modality LUTs. Their usage is the same as in normal DICOM images.
If either of these LUTs is present, it overrides the LUT found in the image.

Geometric Transformations
Presentation State DataSet may include Rectangle of Interest, scale mode (True size, Scale to Fit, Magnify), and
orientation (Rotate, Flip).

Working with Presentation State Objects
You can load Presentation State files in the same way as you load normal DICOM images. However, since PS files do
not contain an image, HIGEAR will be set to an empty image (DIB.biCompression |= IG_BI_EMPTY). Data Set of such
image is accessible through Medical API. Such images can also be saved in the same way as normal DICOM images.

A HIGEAR containing a Presentation State DataSet can be "applied" to another HIGEAR that contains an image. This
operation applies display and annotation settings from Presentation state onto the target image. In the opposite way,
display settings and annotations can be exported from an image into another HIGEAR.

When you apply Presentation State to an image, ImageGear updates its 16x8 or 8x8 LUT using the Presentation LUT.
However, it does not store Presentation LUT with that image. If you would like to work with Presentation LUT, you
should allocate memory for it in your application. Pass Presentation LUT as a parameter to medical display functions.
You can also save Presentation LUT to a Presentation State data set.

If a Characteristic Curve is available for a display, you can build a GSDF LUT from it, and use it in calls to medical
Presentation State and Display functions. Otherwise, pass a NULL to GSDF LUT parameter.

ImageGear Professional v18 for Mac | 244

ImageGear Professional v18 for Mac | 245

1.2.4.10 Library Utility Functions

ImageGear's small group of functions, called "library utility" functions, are provided so that you can conveniently obtain
the ImageGear version and function status. The functions in this group have names beginning with IG_version_ ...() ,
IG_error_ ...(), IG_err_ ...().

For instructions on how to use these functions, see the section entitled Detecting and Handling Errors. For information on
checking the ImageGear Version, see Checking the ImageGear Version. Detailed information on these functions is
provided in Core Component API Reference.

ImageGear Professional v18 for Mac | 246

1.2.4.10.1 Checking the ImageGear Version

ImageGear provides two IG_version_ ...() functions:

IG_version_numbers gives you update information:

INT nVersionMajor;
INT nVersionMinor;
INT nVersionUpdate;IG_version_numbers (&nVersionMajor, &nVersionMinor,
&nVersionUpdate);

IG_version_compile_date allows you to obtain the compilation date of the ImageGear that you are using:

LPSTR lpszCompileDate;
lpszCompileDate = IG_version_compile_date (void);

Upon return from the above, lpszCompileDate will contain a pointer to a string of the form "Mmm dd yyyy," such as
"May 09 2011."

ImageGear Professional v18 for Mac | 247

1.2.5 Creating Your Imaging Application

This section shows you how to compile and link your program and discusses the final steps in preparing your application
for the end user. Because all of the imaging functionality you incorporate for your end user is contained in a single
library, this is actually quite easy.

This section provides information about the following:

Compiling and Linking
Creating the Project
Project Settings
Adding Project Files

Preparing Your Application for the End User

Refer to the Getting Started chapter to learn the first basic steps of creating your application.

Also, the Using ImageGear chapter provides information about how to define and reference ImageGear's data types,
structures, and constants, how to call ImageGear functions, and how to detect and handle errors in order to debug your
application.

ImageGear Professional v18 for Mac | 248

1.2.5.1 Compiling and Linking

Mac-based applications that call ImageGear functions may be built and compiled using Xcode integrated development
environment (IDE) of version 4 and later.

This section provides a step by step description of how a simple sample project can be built. There are many ways to
build a project, therefore please use this instruction as a guide but not as the only way for creating an application.

The following Xcode project settings will be required for all applications using the ImageGear Library.

Creating the Project
Project Settings
Adding Project Files

ImageGear Professional v18 for Mac | 249

1.2.5.1.1 Creating the Project

1. Start up the Xcode IDE environment.
2. Choose File > New > Project. This will bring up the project templates window.
3. From the list of available templates, choose the Cocoa Application item and click Next.
4. When prompted for the name and other properties of the project that is to be created, supply this

information and click Next.
5. Choose the destination location of the project.
6. For this example we have chosen the Samples/Xcode folder created during the installation of ImageGear

software as our destination folder for the new project with a name of AccuTest. Once you have saved, a project
window with the name of your project will be created.

ImageGear Professional v18 for Mac | 250

1.2.5.1.2 Project Settings

Although you have many options when creating a new project, in our example we select only a few.

1. Click the Targets tab and then click your target, AccuTest.
2. The Target Editor is opened, and you can choose the options of selected project.

Below you can see the list of options and their settings, which will help the sample application to work correctly under
Mac OS X:

Build Settings Tab, Framework Search Paths

/Library/Frameworks
"$(SRCROOT)/../../../Bin"

Build Settings Tab, Preprocessor Macros

macintosh
_MAC64
IG_PLATFORM_MAC_OS_X

ImageGear Professional v18 for Mac | 251

1.2.5.1.3 Adding Project Files

Once the project settings have been chosen, you can add the files to our project. Please remember that we are trying to build the sample application
project, so our project is being built from the Samples/Xcode sub-folder created during the installation process.

For an extended tutorial of Mac OS X development, please refer to Apple documentation, for example,
https://developer.apple.com/library/mac/referencelibrary/GettingStarted/RoadMapOSX/books/RM_YourFirstApp_Mac/Articles/GettingStarted.html

The project that Project Assistant creates is a complete Mac OS X application that contains all necessary files organized into several groups. In order
to add ImageGear functionality to the sample, you can update existing ImageGearDemo sample code (using copy/paste operations) or just create
the necessary files in your project and copy the content of the corresponding files from the ImageGearDemo sample. You also need to
include Library/Frameworks/ImageGear18.framework to your project.

If you need PDF support in your application, do the following:

1. Open the "Build Phases" tab in Target settings.
2. Add "Copy Files" build phase.
3. Set destination to "Frameworks".
4. Move all DL*.framework and ICU*.framework files from /Accusoft/ImageGear18/Bin installation directory there.

ImageGear Professional v18 for Mac | 252

https://developer.apple.com/library/mac/referencelibrary/GettingStarted/RoadMapOSX/books/RM_YourFirstApp_Mac/Articles/GettingStarted.html

1.2.5.2 Preparing Your Application for the End User

Removing Your Debugging Error Messages

The section Error Detection and Handling shows you how to produce reports of ImageGear errors to the debug console of
Xcode debugger to facilitate the debugging of your application. However once your application is debugged and you are
in the final stage of preparing your application for the end user, you would normally remove the error reporting that has
been intended for your application debugging. In the final version of your application ready for distribution, all error
reports that can appear should be meaningful for the intended end-user.

Excluding Files Licensed Only for Your Own Use

Please remember that in distributing an application using ImageGear functions, you are authorized to distribute only
Library/Frameworks/ImageGear18.framework and files that are located in Accusoft/ImageGear18/Bin
directories installed on your computer. You have to remove any other Accusoft ImageGear files that may have been
included in your application project while developing it from the final programs or kit that you distribute.

You are permitted to include in your application source code from the sample source programs provided for you in
directory Accusoft/ImageGear18/Samples and its subdirectories, but you are not permitted to distribute the sample
programs themselves.

Providing the Finalized Application's Link to the Shared Library

If you are going to distribute your application created using ImageGear18 framework, you must install
ImageGear18.framework in /Library/Frameworks/ directory where it will be found by the application. You also
have to distribute the deployment version of accusoft.<solution name>.imagegear license file with it. If you don't
have an Accusoft ImageGear deployment license, please contact Accusoft to purchase it.

ImageGear Professional v18 for Mac | 253

1.2.6 File Format Reference

This chapter provides information about the image formats that ImageGear supports. Before you begin, please refer to
the "Encoding vs. Compressing" section below to familiarize yourself with the terms used in this Chapter.

Then you can read the Format Suitability at a Glance section, which briefly delineates which formats best support various
types of images. This section provides you with a starting point for deciding which file formats to use in your application.

The section ImageGear Support for Graphics File Formats describes the types of imaging file formats supported by
ImageGear and provides useful information about support for some specific formats:

Support for Adobe PDF/PS Formats
Support for DICOM File Format
Support for Metafile Formats
Support for Multi-Page File Formats

ImageGear Supported Bit Depths section describes the bit depths, and the read/write capabilities of the supported
formats. Using this table you can easily find out whether an image can be converted to a particular format.

Detailed information about every ImageGear supported imaging file format or compression can be found in the following
sections:

ImageGear Supported Compressions Reference- here you will find information for every ImageGear supported
imaging compression.
ImageGear Supported File Formats Reference- provides you with the detailed information about every ImageGear
supported format, its ID, versions, encoding type, multi-page and alpha channel support, supported compressions,
color spaces and bit depths for read and write, as well as information about ImageGear supported features and filter
control parameters.

If you are going to use the ImageGear alpha channels or transparency support, please review the section ImageGear
Alpha Channel Support or ImageGear Transparency Support.

The section ImageGear Supported Non-Image Data provides detailed information about ImageGear supported metadata.

Encoding vs. Compressing
These two words are often used interchangeably in discussions of graphics file formats. Encoding is actually a broad term
under which compression falls. For the sake of clarity, use these terms separately with the following intended meanings:

Encoding - The manner that data is stored when uncompressed (binary, ASCII, etc.), how it is packed (e.g., 4-bit
pixels may be packed at a rate of two pixels per byte), and the unique set of symbols used to represent the range of
data items.
Compressing - A "physical" rewriting of the graphics data so that it is represented by a smaller set of data.

ImageGear Professional v18 for Mac | 254

1.2.6.1 Format Suitability at a Glance

The following table contains the formats that are considered most practical for the listed type of data, and can be
used as a starting point. You can use a format with the appropriate character depth and one that provides either the
most efficient use of space, or the fastest loading and saving capabilities.

Bear in mind that the following table provides recommendations only. To make an informed choice, read about each
format in more detail in the section ImageGear Supported File Formats Reference.

Image Type Recommended

Colors JPEG
TIFF
PNG

Grayscale/many shades TGA
TIFF
JPEG
DICOM

Monochrome / high resolution TIFF (CCITT Group 3 compression)
TIFF (CCITT Group 4 compression)

Banking data IBM IOCA

Noisy Color:

PNG
TIFF
JPEG

Bi-tonal:

Group 3
Group 4

Lossless GIF
TIFF
PNG
Group 3
Group 4
JPEG (Lossless JPEG compression)

Lossy TIFF (JPEG compression)
JPEG

Extra data to store TIFF
EXIF-JPEG
EXIF-TIFF

Iconic images ICO

Facsimiles Group 3
Group 4

Multimedia PNG
GIF
JPEG
AVI
QuickTime

Photographic images Adobe PSD

ImageGear Professional v18 for Mac | 255

Adobe PSB
PCD
JPEG

Internet images GIF
JPEG
PNG
WBMP

Mac paint programs MAC
MAC PICT

PC paint programs and/or graphics arts PCX
GEM
WMF
TIFF
EPS
MAC PICT
BMP

X Windows XBM
XPM
XWD

Medical data DICOM

CAD/Vector EPS
WMF

Document processing TIFF
Adobe PDF
TXT (ASCII Text)

Gigabyte-sized images Adobe PSB
TIFF

ImageGear Professional v18 for Mac | 256

1.2.6.2 ImageGear Support for Graphics File Formats

Every application that deals with images has specific kinds of data to store and interchange, from icons to photographs.
The various hardware devices used to record and store the graphics data, and the hardware intended to display or print
the data also affect the design of the format. This leads to a diversity of file formats. To add to this diversity, different
groups of people have different ideas about how to structure and access an image, and what kind of additional
information should be stored with an image. Even formats designed to store the same kind of data can differ. Other
factors that affect the outcome of the design include memory considerations, storage size, accuracy, and portability.

National and international standardization organizations, such as the American National Standards Institute (ANSI) and
the International Standards Organization (ISO), seek to create standards of storage for graphics data. One example is
the Joint Photographic Experts Group's (JPEG) creation of the JPEG file format. Some of its intended goals were good
image quality, user-chosen compression ratio, and cross-platform flexibility. When an image is called a JPEG, it is
assumed to precisely follow the standardized JPEG format.

Formats known as "de facto standards" are those that begin as proprietary formats, but by the forces of the market and
sometimes by good quality, become widely supported. Some examples of de facto standards are BMP, GIF, and PCD.

A third group of file formats falls somewhere between officially recognized standards and the strictly proprietary formats.
These formats are created by groups of individuals with a common interest who come together to form a more unofficial
standards organization. These formats are usually intended to provide an end-all industry standard so that data with the
same or similar origins can be shared across different applications or platforms. One example is the TIFF format. TIFF
was designed by eight computer technology companies (headed by Aldus Corporation) with the common goal of
providing a standard format for storing scanned images.

ImageGear supports graphics file formats from all of these genres, providing you with a complete range of imaging
capabilities, including the capture and processing of scanned images.

In addition, ImageGear functionality enable you to exchange data easily from one format to another, and to make
improvements in images using powerful image-processing API.

ImageGear list of supported formats includes all of the popular formats, including recognized standards that best utilize
the latest imaging technologies.

This section provides information about the following:

Support for Adobe PDF/PS Formats
Support for DICOM File Format
Support for Metafile Formats
Support for Multi-Page File Formats

See Also:

ImageGear Supported Compressions Reference

ImageGear Supported File Formats Reference

ImageGear Professional v18 for Mac | 257

1.2.6.2.1 Support for Adobe PDF/PS Formats

ImageGear provides comprehensive support for Adobe PDF format using its ImageGear PDF Component.

To use support for PDF format as well as manipulate and transform PDF images, the ImageGear PDF Component should
be attached to Core ImageGear.

PostScript format is not supported on MacOS X platform.

See Also:

Using ImageGear PDF Component

PDF Component API Function Reference

ImageGear Professional v18 for Mac | 258

1.2.6.2.2 Support for DICOM File Format

ImageGear provides comprehensive support for DICOM formats using its ImageGear Medical Component.

To use the support for DICOM format as well as manipulate, transform and process DICOM images ImageGear Medical
Component should be attached to Core ImageGear.

See Also:

Using ImageGear MD Component

MD Component API Function Reference

ImageGear Professional v18 for Mac | 259

1.2.6.2.3 Support for Metafile Formats

Metafiles contain vector (or geometric) specifications and bitmap pixel data. Vectors, in the realm of computer graphics,
define shapes and location of shapes in terms of their relative location within the page.

ImageGear supports the following formats that contain vector data:

WMF
WPG
EPS
MAC PICT

For all formats, except WMF, the vector data is ignored; only the bitmap data is read and/or written.

When ImageGear loads a Windows Metafile (WMF), it automatically converts each vector specification to bitmap
data. The shapes and lines declared by the vector specifications appear in the image, but the original vector
instructions are not saved.

ImageGear Professional v18 for Mac | 260

1.2.6.2.4 Support for Multi-Page File Formats

ImageGear provides multi-page support for the following file formats:

Adobe PDF
AVI
BMP (OS/2 BMP only)
CUR
DCX
GIF
IBM AFP
IBM IOCA
IBM MO:DCA
ICO
IFF
PCD
TIFF
TXT (ASCII Text)

Please see the section Working with Multi-Page Documents to learn how to use ImageGear multi-page functionality.

To create multi-page files, simply save to an existing Adobe PDF, DCX, DICOM, GIF, IBM AFP, orTIFF file. If the file
exists, the new page is appended to the file.

It is important to note that ImageGear treats the first page of a multi-page file as page number 1 (not 0).

ImageGear Professional v18 for Mac | 261

1.2.6.3 ImageGear Supported Bit Depths

You may want to convert a file from one format to another. You can do this by saving the original file to its desired
format by setting the nFormatType parameter to the appropriate value in the saving function. For more information
on converting issues, see the sections Loading Images and Saving Images.

When saving a file to another format, remember to ensure that the desired file format is supported for that image.
For example, you cannot convert an 8-bit DCX file to an 8-bit CAL file, because the CAL format does not support 8-bit
files.

In the tables on the following pages, the columns underneath the numbers indicated size in bits that can actually be
saved (written). The columns underneath the letters "R" and "W" indicate that the ImageGear reads and writes,
respectively, the corresponding file format.

Format R W 1 4 8 9-16G 24 32 36 48 64

Adobe DNG + + +

Adobe PDF + + + + + + +

Adobe PSB 1 + + + + + + + + + +

Adobe PSD 2 + + + + + + + + + +

AFX + +

AVI + + + + +

BMP + + + + + + + +3

BTR + + +

CAL + + +

CLP + + + + + +

CUR 4 + + + + + +

CUT + + +

DCX + + + + + +

DICOM + + + + + + + +

EPS 7 + + + + + +

EXIF-JPEG + + + + + + +

EXIF-TIFF + + + + + + + + + + +

GEM + + + +

GIF + + + + +

Group 3 + + +

Group 3 2D + + +

Group 4 + + +

IBM AFP + + + + +

IBM IOCA + +8 + + + +

IBM MO:DCA + +9 + + + +

ICO + + + + + +

IFF + + + + + +

IMG + + +

IMR + +

IMT + + +

JPEG + + +10 + + + + +

KFX + +

ImageGear Professional v18 for Mac | 262

LV + +

MAC + +

MAC PICT + + + + + +

MSP + +

NCR + + + +11

PBM + + + + + + +

PCD + +

PCX + + + + + +

PGM 12 + + + +

PNG 13 + + + + + + + + + +

PNM 14 + + + + + + +

PPM + + + +

QuickTime + +

RAS + + + +15 + +

RAW + + + + + + +

Scitex CT 16 + + +

SGI + + + + + +

TGA + + + + + + +

TIFF 17 + + + + + + + + + + +

TXT (ASCII Text) 18 +

WBMP + + +

WMF + + + + + +

WPG + + + +

XBM + + +

XPM + + + + + +19

XWD + + + + + +

1 48- and 64-bit images support is Read only.

2 48- and 64-bit images support is Read only.

3 Read only support.

4 Supports Extra ((1, 3, 4, 8)*2)-bit images also.

7 Screen Preview image only, when reading.

8 Write support for 1-bit images only.

9 Write support for 1-bit images only.

10 8-bit grayscale.

11 Read only support.

12 Supports 16-bit grayscale images also.

13 Supports 48(RGB)- and 64(RGB+alpha)-bit images.

14 Supports 16-bit grayscale and 48-bit color images also.

15 Read only support.

16 The native format is CMYK. With full CMYK support enabled, you can use 32-bit images.

ImageGear Professional v18 for Mac | 263

17 Read only supports also 3- and 6 bpp for RGB and LAB color spaces for Deflate, LZW (Lempel-Ziv-Welch), Packbits compressions and
uncompressed.

18 Converts to raster image when loaded.

19 24-bit has Read only support.

ImageGear Professional v18 for Mac | 264

1.2.6.4 ImageGear Alpha Channel Support

Alpha channel is an additional image channel that specifies transparency (or opacity) of each pixel in the image.
ImageGear provides alpha channel support for the following file format filters:

Format Support

Adobe
PSB

Supports single Alpha channel for Read only. Supports additional Alpha channels as ImageGear Extra
channels for Read only.

Adobe
PSD

Supports single Alpha channel for Read only. Supports additional Alpha channels as ImageGear Extra
channels for Read only.

CUR Supports single 8-bit alpha channel for read/write. Supports single 1-bit alpha channel for read only.

EXIF-
JPEG

Supports single Alpha channel for Read/write.

EXIF-
TIFF

Supports single Alpha channel for read only. Supports additional Alpha channels as ImageGear Extra
channels for read only.The following compressions are supported with alpha channel:

Uncompressed
Packed Bits
LZW
Deflate

ICO Supports single 8-bit alpha channel for read/write. Supports single 1-bit alpha channel for read only.

JPEG Supports single Alpha channel for Read/write.

MAC
PICT

Supports single alpha channel for read only. Alpha channel have to be 8-bit image.

PNG Supports single Alpha channel for read/write.

RAW Supports single Alpha channel in uncompressed images for read only.

SGI Supports single alpha channel for read and write.

TGA Supports single alpha channel for read and write.

TIFF Supports single Alpha channel for read and write. Supports additional Alpha channels as ImageGear Extra
channels for read and write.The following compressions are supported with alpha channel:

Uncompressed
Packed Bits
LZW
Deflate

ImageGear Professional v18 for Mac | 265

1.2.6.5 ImageGear Transparency Support

Transparency allows you to specify a palette index or a color to be transparent. When the image is displayed, all pixels
having this index (color) show background rather than the pixel's color.

Transparency requires very little storage space in the file - only a few bytes. However, the pixels can't be semi-
transparent; also, transparent color occupies a palette entry or a color, which reduces the possible range of colors for the
image. Alpha channel requires significantly more storage space in the file, but it does not have the limitations listed
above.

ImageGear provides transparency support for the following file format filters:

Format Support

GIF Supports transparency for Read and Write.

PNG Supports transparency for Read and Write.

XPM Supports transparency for Read and Write.

ImageGear Professional v18 for Mac | 266

1.2.6.6 ImageGear Supported Compressions Reference

All imaging files compressions can be divided on three basic types:

One-dimensional compression - the raster data is treated as one continuous data stream. Each byte read is compared
to the previous byte. This compression method is not concerned with delineating lines of data.
2D compression can be thought of as "Differencing Compression", where the data stored is a representation of the
differences in data values from previous data values. In 2-D compression, the encoding of one line is determined by
the contents of the previous line. This method of compression is best used for black-and-white images where the
black pixels tend to fall into groups.
3D compression is a new branch of data compression aimed at the 3D models and other geometric datasets used in
computer graphics, virtual reality, video games, CAD/CAM, and many scientific, engineering, and medical
applications.

Existing 3D compression algorithms use both techniques adapted from the 1D and 2D cases (like wavelets, entropy
coding, and predictive coding), and completely different approaches that take advantage of the properties of 3D surfaces
(like Edgebreaker, Subdivision Surfaces, and triangle strips).

ImageGear supports the following compressions:

ASCII
CCITT Group 3
CCITT Group 3 2D
CCITT Group 4
Deflate
Huffman
IBM MMR
JPEG
Lossless JPEG
LZW (Lempel-Ziv-Welch)
Packbits
Progressive JPEG
RAW
RLE

ImageGear Professional v18 for Mac | 267

1.2.6.6.1 ASCII

Full Name American Standard Code for Information Interchange (ASCII)

Compression ID IG_COMPRESSION_ASCII = 23

ImageGear Component Core

Bit Depth Gray level: 1, 8, 16 bpp; RGB 24, 48 bpp

File Formats PBM, PGM, PNM, PPM

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

Comments:

Acronym for the American Standard Code for Information Interchange. ASCII is a code for representing English
characters as numbers, with each letter assigned a number from 0 to 127. For example, the ASCII code for uppercase M
is 77. Most computers use ASCII codes to represent text, which makes it possible to transfer data from one computer to
another.

Text files stored in ASCII format are sometimes called ASCII files. Text editors and word processors are usually capable
of storing data in ASCII format, although ASCII format is not always the default storage format. Most data files,
particularly if they contain numeric data, are not stored in ASCII format. Executable programs are never stored in ASCII
format.

ImageGear Professional v18 for Mac | 268

1.2.6.6.2 CCITT Group 3

Full Name CCITT Group 3

Compression ID IG_COMPRESSION_CCITT_G3 = 3

ImageGear Component Core

Bit Depth 1

File Formats BTR, EPS, Group 3, IBM IOCA, IBM MO:DCA, IMT, LV, NCR, Adobe PDF, TIFF, RAW

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

Comments:

This is a 1-D version of the CCITT Group 3 compression scheme. It uses a static table of values to assign codes to run
lengths. Frequently occurring run lengths are given smaller codes. (The most frequent are usually black runs of 2 or 4
pixels).

ImageGear Professional v18 for Mac | 269

1.2.6.6.3 CCITT Group 3 2D

Full Name CCITT Group 3 2D

Compression ID IG_COMPRESSION_CCITT_G32D = 5

ImageGear Component Core

Bit Depth 1

File Formats BTR, EPS, Group 3 2D, IBM IOCA, IBM MO:DCA, Adobe PDF, TIFF, RAW

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

Comments:

This is a 2-D version of the CCITT Group 3 compression scheme. It includes an error recovery algorithm for error
transmissions; an error in one line does not translate to garbage output for the rest of the file. All modern fax machines
support this format.

ImageGear Professional v18 for Mac | 270

1.2.6.6.4 CCITT Group 4

Full Name CCITT Group 4

Compression ID IG_COMPRESSION_CCITT_G4 = 4

ImageGear Component Core

Bit Depth 1

File Formats CAL, EPS, Group 4, IBM IOCA, IBM MO:DCA, IMR, IMT, KFX, LV, NCR, Adobe PDF, TIFF,
RAW

ImageGear Platforms
Support

WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

Comments:

The G4 compression is two-dimensional by default. It is very similar to the G3 2D compression, but it can produce
compressed images that are half the size of a G3-compressed file.

It is slower, however, and does not have the same error recovery built in that the G3 format has. The decrease in speed
occurs because G4 was designed specifically for encoding disk data. For this reason, it may be advisable to use the G3-
Fax compression scheme if final compression size is not crucial, but speed is.

ImageGear Professional v18 for Mac | 271

1.2.6.6.5 Deflate

Full Name Deflate compression

Compression ID IG_COMPRESSION_DEFLATE = 14

ImageGear Component Core

Bit Depth 1, 2, 4, 8, 16 bpc

File Formats Adobe PDF, PNG, TIFF

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

Comments:

"Zip-in-TIFF" compression. Deflate compression, sometime known as "zip" compression, uses another variant of the LZW
compression method and so gives similar results, but is not restricted by any licenses.

ImageGear Professional v18 for Mac | 272

1.2.6.6.6 Huffman

Full Name Huffman encoding

Compression ID IG_COMPRESSION_HUFFMAN = 2

ImageGear Component Core

Bit Depth 1, 24

File Formats NCR, PCD, TIFF

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

Comments:

Developed in 1952 by David Huffman, this is one of the older compression methods. The encoding and decoding
processes are complex relative to today's standards, but the compression ratio can be high if the image contains many
repeat data values. It is best used for images with little or no pixel noise, e.g. cartoons or drawings with large areas of
the same color and intensity (like a monotone sky). This compression scheme is often used by other compression
algorithms for extra compression.

The Huffman method uses a conversion table to assign codes for each value, based on frequency of occurrence. The file
is scanned for all of its values, with the values and their frequency of occurrence tallied. Using a binary tree, values are
paired off by frequency of occurrence, beginning with the least frequent values. As the tree progresses upward, the least
occurring values at the bottom of the tree continue to be incremented a bit at a time, with one bit added for each new
branch added to the tree. In the end, the values that occur the most (at the top of the tree) have the shortest codes.

A potential problem with this compression method is decoding; the file's variable-length codes can cause the dropping or
adding of a bit to the end of a line, thereby throwing off subsequent lines of data.

ImageGear Professional v18 for Mac | 273

1.2.6.6.7 IBM MMR

Full Name IBM Modified Modified Read

Compression ID IG_COMPRESSION_IBM_MMR = 15

ImageGear Component Core

Bit Depth 1

File Formats IBM IOCA, IBM MO:DCA

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

Comments:

Compression for black and white documents, similar to CCITT Group 4.

ImageGear Professional v18 for Mac | 274

1.2.6.6.8 JPEG

Full Name JPEG compression

Compression ID IG_COMPRESSION_JPEG = 6

ImageGear Component Core

Bit Depth Gray level: 8, 16 bpp; RGB: 24, 36 bpp; CMYK: 32 bpp; RGB+Alpha: 32 bpp

File Formats AFX, AVI, JPEG, DICOM, Adobe DNG, EPS, EXIF-JPEG, MAC PICT, Adobe PDF, TIFF

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

Comments:

This file compression method obtains a high compression ratio when used with detailed photographic images (its
intended use). It is not a good compression choice for images with a small number of colors and high contrast edges, or
for color-mapped data. Part of JPEGs success in high compression is due to the fact that it is a "lossy" compression
method, meaning that the compression results in the loss of some data that is determined to be unimportant or
unnecessary. This does not necessarily result in a visible reduction of image quality.

JPEG is highly flexible - it allows you to make a "quality" setting that determines the amount of loss that occurs and
affects the size of the resulting compressed file.

The JPEG algorithm takes into account that the human eye is more sensitive to changes in brightness than to number of
colors. Rather than saving the color data from each pixel in an image, it saves information on the rate of change of color,
or "frequency information." More loss is allowed in the color data than in the brightness data. Some of the compression
of the color is achieved by converting the RGB values to YCbCr color scheme. ImageGear supports two other JPEG
compression modes--Lossless JPEG and Progressive JPEG.

See Also:

Lossless JPEG, Progressive JPEG

ImageGear Professional v18 for Mac | 275

1.2.6.6.9 Lossless JPEG

Full Name Lossless JPEG compression

Compression ID IG_COMPRESSION_JPEG = 6

ImageGear Component Core

Bit Depth Gray level: 8, 16 bpp; RGB: 24, 48 bpp

File Formats DICOM, JPEG, TIFF

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

Comments:

Lossless JPEG is an extension to the normal JPEG standard. One of the main algorithmic differences between the two is
that the lossless JPEG does not apply a Discrete Cosine Transform. Rather, it uses a Predictive scheme. For each pixel,
the values of one or several neighboring pixels are added to the value of the original pixel and then subtracted from the
value of the original pixel. This method yields smaller values that require fewer bits per pixel to store.

ImageGear allows you to set the number of neighboring pixels to use in calculating the "predictor value".

ImageGear Professional v18 for Mac | 276

1.2.6.6.10 LZW (Lempel-Ziv-Welch)

Full Name Lempel-Zif-Welch (LZW) compression

Compression ID IG_COMPRESSION_LZW = 8

ImageGear Component GIF/TIFF-LZW

Bit Depth 1, 4, 8, 16 bpc

File Formats GIF, Adobe PDF, TIFF

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

Comments:

LZW compression works by finding patterns of data and assigning codes. It works best on highly-patterned images.
Images with irregular patterning, or "noise," are not good candidates for this type of compression.

This compression scheme is "dictionary-based". This refers to the array of codes that identify each data pattern found in
the image. The "dictionary" begins with a table that contains a code for each possible value in the image. If LZW
compression is used on 8-bit images, a LZW "dictionary" is initialized with codes for 256 (28) values. As the file data is
read, new values are added to the table for each unique pattern of data found. In the interest of saving space, the
dictionary is not saved with the compressed file. The same dictionary is actually rebuilt when the data is decoded.

ImageGear Professional v18 for Mac | 277

1.2.6.6.11 Packbits

Full Name Packed bits compression

Compression ID IG_COMPRESSION_PACKED_BITS = 1

ImageGear Component Core

Bit Depth 1, 4, 8, 16 bpc

File Formats Adobe PSD, TIFF

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

Comments:

Packbits compression seeks repeated data values. Packbits is considered an RLE (run-length encoding) compression
scheme because it looks for "runs" or repeated values, and tallies their number, or "length". While its name implies that
runs of bits are "packed" together, it is actually runs of bytes. It is very similar to the Macintosh Packbits compression
used by Macpaint, except that the Packbits compression used for a TIFF allows the dimensions of the image to vary.

Packbits works by reducing repeated strings of the same characters into two components: the "run count" and the "run
value". The count and value are stored in one byte each. Each two-byte grouping is referred to as an RLE packet. It is
not a good compression scheme for images with large color ranges, as these do not tend to have many runs of the same
color.

The terms "RLE" and "Packbits" are often used synonymously.

ImageGear Professional v18 for Mac | 278

1.2.6.6.12 Progressive JPEG

Full Name Progressive JPEG compression

Compression ID IG_COMPRESSION_PROGRESSIVE = 17

ImageGear Component Core

Bit Depth Gray level: 8, 16 bpp; RGB: 24, 36 bpp; CMYK: 32 bpp; RGB+Alpha: 32 bpp

File Formats JPEG

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

Comments:

Progressive JPEG is considered an extension to the JPEG standard. It produces the same kind of lossy compression as
normal JPEG compression (see above), except that it saves multiple copies of the same image using different levels of
quality. There is no hard limit on the number of "scans" that may be stored.

When a Progressive JPEG-compressed image is decompressed, the filter decompresses the lowest quality image first.
This can be helpful for quickly displaying a version of the image that you are loading. The benefit of this compression is
the fast display of an image that is recognizable. The downside is that a JPEG decompression is performed more than
once.

ImageGear Professional v18 for Mac | 279

1.2.6.6.13 RAW

Full Name RAW compression (Uncompressed binary compression)

Compression ID IG_COMPRESSION_RAW = 24

ImageGear Component Core

Bit Depth Gray level: 1, 8, 16 bpp; RGB 24, 48 bpp

File Formats PBM, PGM, PNM, PPM

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

Comments:

Uncompressed binary compression. PBM/PGM/PNM/PPM formats use the term "RAW" for uncompressed binary
compression, as opposed to ASCII compression.

ImageGear Professional v18 for Mac | 280

1.2.6.6.14 RLE

Full Name Run length encoding compression

Compression ID IG_COMPRESSION_RLE = 7

ImageGear Component Core

Bit Depth 1, 4, 8, 16 bpc

File Formats BMP, CLP, CUT, DCX, DICOM, GEM, IFF, MAC, MSP, PCX, Adobe PDF, RAS, SGI, TGA,
WMF, WPG

ImageGear Platforms
Support

WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

Comments:

RLE (Run Length Encoding) is normally a 1-dimensional compression scheme. Working sequentially from left to right and
top to bottom, it compares the value of each byte with the value of the previous byte. Each data value is recorded into a
"packet" of two bytes where the first byte contains the number of times the value is repeated, and the second packet
contains the actual value. The bytes in the pocket are called the "run count" and the "run value". When an image
contains many repeat values, the compression ratio is very high (for example, if every byte in a 100 byte image were
the same, its size could be reduced to 2 bytes giving a 50:1 ratio). A very noisy image, or a plain ASCII text file typically
does not compress well, and in fact could become larger for example, if all bytes in image are different from the ones
next to them, the image doubles, because 2 bytes are used to store each byte in the image.

The terms "RLE" and "Packbits" are often used synonymously.

ImageGear Professional v18 for Mac | 281

1.2.6.7 ImageGear Supported File Formats Reference

This section represents the reference for every imaging file format supported by ImageGear.

The following are the characteristic features for file format description:

Full Name - Full name of the File Format
Format ID - ImageGear constant that determines the File Format ID used for loading this file in ImageGear-based
application. See the section Working with Format Filters.
File Extension(s) - The used extensions of the File Format
Data Type - The type of the File Format (raster, vector, metafile)
Data Encoding - The type of data encoding. Please see the section Encoding vs. Compressing.
ImageGear Multi-Page Support - Shows if ImageGear supports the File Format as multi-page or single-page.
Please see also the section Support for Multi-Page File Formats.
ImageGear Alpha Channel Support - Shows if ImageGear supports the alpha channel for the File Format or not.
Please see also the section ImageGear Alpha Channel Support.
ImageGear Platforms Support - Shows ImageGear platform versions that support the File Format.
ImageGear Supported Versions - Shows the versions of the File Format supported by ImageGear.
ImageGear Supported Features - Shows the ImageGear Format Filter features supported by ImageGear for this
format. Please see the section Working with Format Filters.
ImageGear Read Support - Provides all compressions, color spaces, channels and bit depths supported by
ImageGear for the file format reading.
ImageGear Write Support - Provides all compressions, color spaces, channels and bit depths supported by
ImageGear for the file format writing.
ImageGear Filter Control Parameters - Provides all filter control parameters supported by ImageGear for this
format filter. Please see also Working with Format Filters.
Comments - Some general information about format encoding and compression structure.
References Used - References to the information sources for the File Format.

Currently ImageGear supports the following File Formats:

Adobe DNG
Adobe PDF
Adobe PSB
Adobe PSD
AFX
AVI
BMP
BTR
CAL
CLP
CUR
CUT
DCX
DICOM
EPS
EXIF-JPEG
EXIF-TIFF
GEM
GIF
Group 3
Group 3 2D
Group 4
IBM AFP
IBM IOCA
IBM MO:DCA
ICO
IFF
IMG
IMR

ImageGear Professional v18 for Mac | 282

IMT
JPEG
KFX
LV
MAC
MAC PICT
MSP
NCR
PBM
PCD
PCX
PGM
PNG
PNM
PPM
QuickTime
RAS
RAW
Scitex CT
SGI
TGA
TIFF
TXT (ASCII Text)
WBMP
WMF
WPG
XBM
XPM
XWD

ImageGear Professional v18 for Mac | 283

1.2.6.7.1 Adobe DNG

Full Name Digital Negative file format

Format ID IG_FORMAT_DNG = 108

File Extension(s) *.dng

Data Type Raster image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, MAC

ImageGear Supported Versions:

Version 1.0.0.0
Version 1.1.0.0 - fixed incompatibility in JPEG Lossless compression, added new tags

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading

ImageGear Read Support:

IG_COMPRESSION_NONE:
Grayscale: 9..16 bpp
RGB: 24, 48 bpp *

IG_COMPRESSION_JPEG:
Grayscale: 16 bpp
RGB: 24, 48 bpp *

* 8bpc DNG loading has been enabled via promoting the image to 16bpc before loading.

ImageGear Write Support:

None

ImageGear Filter Control Parameters:

Filter Control Parameter Type Default
Value

Available
Values

Description

APPLY_COLORSPACE_CONVERSION AT_BOOL TRUE TRUE,
FALSE

Set to TRUE to convert raw image to linear
sRGB color space during loading. Has effect
only if RECONSTRUCT_COLORS is TRUE.

APPLY_TONE_CORRECTION AT_BOOL TRUE TRUE,
FALSE

Set to TRUE to automatically adjust image
tone and apply sRGB gamma correction
during loading. Has effect only if
bothRECONSTRUCT_COLORS and
APPLY_COLORSPACE_CONVERSION are
TRUE.

RECONSTRUCT_COLORS AT_BOOL TRUE TRUE,
FALSE

ImageGear attempts to reconstruct full
color image from the camera raw image.
Otherwise, ImageGear loads raw pixel data
without any processing.

Comments

This file format was developed by Adobe as a non-proprietary format for unified storage of "raw" images from digital
cameras. DNG image stores unprocessed pixel data obtained from camera's sensor, and keeps information about

ImageGear Professional v18 for Mac | 284

color, contrast and brightness adjustments, sharpening, as well as many other parameters, in its tags. This provides
greater possibilities for image correction and enhancement, compared to commonly used formats such as JPEG, EXIF
or TIFF.

The fact that the format is non-proprietary allows software vendors to provide support for DNG in their applications,
with complete control over the image reconstruction process.

DNG extends TIFF/EP format. It adds a set of new tags for parameters that control reconstruction of full color image
from the raw data.

References Used

ADOBE SYSTEMS INCORPORATED. Digital Negative (DNG) specification.

ImageGear Professional v18 for Mac | 285

1.2.6.7.2 Adobe PDF

Full Name Adobe PDF (Adobe Portable Document Format)

Format ID IG_FORMAT_PDF = 56

File Extension(s) *.pdf

Data Type Vector Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support Yes

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, MAC, .NET

To enable the support of the PDF format, attach the ImageGear PDF Component to Core ImageGear.

ImageGear Supported Versions:

Adobe® PDF version 1.7
Adobe® PDF version 1.6
Adobe® PDF version 1.5

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_MPAGEREADPSUPPORT - multi-page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing
IG_FLTR_MPAGEWRITEPSUPPORT - multi-page file writing
IG_FLTR_PAGEDELETESUPPORT - page deleting from multi-page file
IG_FLTR_PAGESWAPSUPPORT - page swapping in multi-page files

ImageGear Read Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
Grayscale: 8 bpp;
RGB: 24 bpp;
CMYK: 32 bpp.

IG_COMPRESSION_DEFLATE:
Indexed RGB: 1, 4, 8 bpp;
Grayscale: 8 bpp;
RGB: 24 bpp;
CMYK: 32 bpp.

IG_COMPRESSION_RLE:
Indexed RGB: 1, 4, 8 bpp;
Grayscale: 8 bpp;
RGB: 24 bpp;
CMYK: 32 bpp.

IG_COMPRESSION_CCITT_G3:
Indexed RGB: 1 bpp

IG_COMPRESSION_CCITT_G4:
Indexed RGB: 1 bpp.

IG_COMPRESSION_CCITT_G32D:
Indexed RGB: 1 bpp.

IG_COMPRESSION_JPEG:
Indexed RGB: 8 bpp;
Grayscale: 8 bpp;
RGB: 24 bpp;
CMYK: 32 bpp.

IG_COMPRESSION_JPEG2K:

ImageGear Professional v18 for Mac | 286

Indexed RGB: 1, 4, 8 bpp;
Grayscale: 8 bpp;
RGB: 24 bpp;
CMYK: 32 bpp.

IG_COMPRESSION_LZW:
Indexed RGB: 1, 4, 8 bpp;
Grayscale: 8 bpp.

ImageGear Write Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
Grayscale: 8 bpp;
RGB: 24 bpp;
CMYK: 32 bpp.

IG_COMPRESSION_DEFLATE:
Indexed RGB: 1, 4, 8 bpp;
Grayscale: 8 bpp;
RGB: 24 bpp;
CMYK: 32 bpp.

IG_COMPRESSION_RLE:
Indexed RGB: 1, 4, 8 bpp;
Grayscale: 8 bpp;
RGB: 24 bpp;
CMYK: 32 bpp.

IG_COMPRESSION_CCITT_G3:
Indexed RGB: 1 bpp.

IG_COMPRESSION_CCITT_G4:
Indexed RGB: 1 bpp.

IG_COMPRESSION_CCITT_G32D:
Indexed RGB: 1 bpp.

IG_COMPRESSION_JPEG:
Indexed RGB: 8 bpp;
Grayscale: 8 bpp;
RGB: 24 bpp;
CMYK: 32 bpp

IG_COMPRESSION_JPEG2K:
Indexed RGB: 1, 4, 8 bpp;
Grayscale: 8 bpp;
RGB: 24 bpp;
CMYK: 32 bpp.

IG_COMPRESSION_LZW:
Indexed RGB: 1, 4, 8 bpp;
Grayscale: 8 bpp.

ImageGear Filter Control Parameters:

Filter Control
Parameter

Type Default Value Available Values Description

ALLOW_XFA AT_BOOL FALSE TRUE, FALSE Specifies whether
to allow opening
PDF documents
with XFA content
embedded.

TRUE - PDF
documents
with XFA
content will
open without
any error, but
XFA content
will not be
available or
visible.

ImageGear Professional v18 for Mac | 287

FALSE -
(default) PDF
documents
with XFA
content will
not open, and
an ImageGear
error will
appear.

DEPTH UINT 24 1, 8, 24 Specifies bit
depth in bits per
pixels during the
PDF document
conversion into
the raster image.
A higher value
indicates a higher
quality raster
image and a
larger amount of
memory required
for rasterization.
The DIB of the
output raster
image has this
value as a bit
count.

DRAW_MODE UINT 1 1, 2 Specifies the
default PDF
rendering method
used by the
ImageGear PDF
component to
draw PDF page
content.

1 - Draws
entire page
content into
the cache. This
function is
optimized for
fast scrolling.
2 - Draws
visible page
content area.
This function is
optimized for
fast rendering,
but would re-
render the
content each
time it is
scrolled.

INC_REND AT_BOOL FALSE TRUE, FALSE Specifies whether
incremental
rendering or
rendering at once
should be
performed.

INDEPENDENT_PAGESIZE AT_BOOL FALSE TRUE, FALSE (Used with PDF
write only.)

If this
parameter is
FALSE, when
saving a raster
image into the
PDF
document, the
width and
height of the

ImageGear Professional v18 for Mac | 288

newly created
page is set to
the width and
height of the
previous page
in the PDF
document. If
the previous
page does not
exist, the
width and
height are
calculated
from the
image
resolution and
size as
follows:

Width
=
<width
of the
raster
image>
* 72 /
<X DPI
of the
raster
image>
Height
=
<height
of the
raster
image>
* 72 /
<Y DPI
of the
raster
image>

If the image
resolution is
not defined,
the width and
height are set
to the width
and height of
the A4 page,
which is
612x792.

If this
parameter is
TRUE, use the
PAGE_HEIGHT
and
PAGE_WIDTH
parameters to
set the page
size.

PAGE_HEIGHT UINT 0 Any non-negative value (Used with PDF
write only.) This
parameter sets
the height of the
page (in 1/72
inches). If this
option is 0, the
height is
calculated from
the image
resolution and
size as follows:

ImageGear Professional v18 for Mac | 289

Height =
<height of
the raster
image> *
72 / <Y
DPI of the
raster
image>

If the image
resolution is not
defined, the
height is set to
the height of an
A4 page, which is
792.

This option is not
used if
RESOLUTION_X is
FALSE.

PAGE_WIDTH UINT 0 Any non-negative value (Used with PDF
write only.) This
parameter sets
the width of the
page (in 1/72
inches). If this
option is 0, the
width is
calculated from
the image
resolution and
size as follows:

Width =
<width of
the raster
image> *
72 / <X
DPI of the
raster
image>

If the image
resolution is not
defined, the width
is set to the width
of the A4 page,
which is 612.

This option is not
used if
RESOLUTION_X is
FALSE.

PASSWORD LPCHAR "" Any Specifies the
password string
for the password
of the protected
PDF documents.

PRINT_DEPTH UINT 8 1, 8, 24 Specifies bit
depth in bits per
pixels during the
PDF document
printing. A
higher value
indicates a higher
quality raster
image and a
larger amount of
memory required
for printing.

PRINT_RESOLUTION_X UINT 300 Any positive value, inclusively between 1
and 2147483647

Specifies the
horizontal

ImageGear Professional v18 for Mac | 290

resolution in dots
per inch during
PDF document
printing. A
higher value
indicates a higher
quality image to
be printed.

PRINT_RESOLUTION_Y UINT 300 Any positive value, inclusively between 1
and 2147483647

Specifies the
vertical resolution
in dots per inch
during the PDF
document
printing. A
higher value
indicates a higher
quality image to
be printed.

RESOLUTION_3D UINT 72 Any except 0 Specifies the
resolution in dots
per inch used for
generating a pre-
rendered bitmap
of the default
view of the 3D
artwork.
Producers should
provide bitmaps
of appropriate
resolution for all
intended uses of
the document,
i.e., a high-
resolution bitmap
for high-quality
printing and a
default screen-
resolution bitmap
for on-screen
viewing.

RESOLUTION_X UINT 72 Any Specifies the
horizontal
resolution in dots
per inch during
the PDF/PS
document
conversion into a
raster image. The
higher this value,
the higher-quality
raster image you
get after
rasterization. The
DIB of the output
raster image has
this value as an X
resolution.

RESOLUTION_Y UINT 72 Any Specifies the
vertical resolution
in dots per inch
during the
PDF/PS document
conversion into a
raster image. The
higher this value,
the higher-quality
raster image you
get after
rasterization. The
DIB of the output
raster image has
this value as an Y
resolution.

ImageGear Professional v18 for Mac | 291

SAVE_FLAGS UINT IG_PDF_OPTIMIZED A bit composition of an OR of the following
values:

IG_PDF_OPTIMIZED = 32 - perform
garbage collection on unreferenced
objects.
IG_PDF_LINEARIZED = 4 - write the file
linearized for page serving over remote
connections.
IG_PDF_DONT_SAVE_FILE_ATTRIBUTES
= 65536 - prevent the file attributes
and security settings of a PDF document
opened from an existing PDF file from
being copied over when saved to a new
PDF file.
IG_PDF_OPTIMIZE_XOBJECTS =
4194304 - merge identical forms and
images, as determined by an MD5 hash
of their contents.

(Used with PDF
write only.)
Specifies an
option for saving
a PDF file that
allows you to
remove
unreferenced
objects, often
reducing file size,
as well as to write
a linearized file
for page-served
remote (network)
access.

SAVE_MAJOR UINT 0 0, 1 Specifies major
PDF version
number of the
document for
saving. If major
equals 0, both
major and minor
are ignored and
the document is
saved to the
library's default
version. Make
sure that the
document
conforms to the
version number
you are setting.

SAVE_MINOR UINT 0 6, 5, 4, etc. Specifies minor
PDF version
number of the
document for
saving. Make sure
that the
document
conforms to the
version number
you are setting.

SMOOTH_FLAGS UINT 13 A bit composition of an OR of the following
values:

1 - Draw smooth text
2 - Draw smooth line art
4 - Draw smooth image
8 - Enhance thin lines

Specifies smooth
settings for PDF
rasterization.

TEXT_ENCODING UINT IG_PDF_TEXTENC_NONE IG_PDF_TEXTENC_NONE = 1 - no
encoding used
IG_PDF_TEXTENC_ASCII_85 = 2 -
ASCII 85 encoding used
IG_PDF_TEXTENC_ASCII_HEX = 3 -
ASCII HEX encoding used

(Used with PDF
write only.)
Specifies which
encoding scheme
should be used to
convert binary
image data to the
text format when
saving raster
image into a PDF
document.

USE_CROP_BOX AT_BOOL TRUE TRUE, FALSE Specifies whether
to use PDF crop
box rectangle for
page layout.

TRUE - use

ImageGear Professional v18 for Mac | 292

PDF crop box
rectangle for
page layout
FALSE - use
PDF media
rectangle for
page layout

Comments:

Please see the section Using ImageGear PDF Component.

ImageGear Professional v18 for Mac | 293

1.2.6.7.3 Adobe PSB

Full Name PSB (Adobe Photoshop Big)

Format ID IG_FORMAT_PSB = 112

File Extension(s) *.psb

Data Type Raster Image

Data Encoding Binary

Color Profile Support Read, Write

ImageGear Multipage Support No

ImageGear Alpha Channel Support Yes (see Comments for more information).

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

Version 2.0
Version 2.5
Version 3.0
Version 8.0

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_DEFLATE:
Indexed RGB: 1, 8 bpp;
Grayscale: 8, 16 bpp;
Grayscale + Alpha: 8, 16 bpp;
Grayscale + Alpha + Extra: 8, 16 bpp;
RGB: 24, 48 bpp;
RGB + Alpha: 32, 64 bpp;
RGB + Alpha + Extra 8, 16 bpc;
CMYK: 32, 64 bpp;
CMYK + Extra: 8, 16 bpc;
Lab: 24, 48 bpp;
Lab + Extra: 8, 16 bpc;
HSL: 24, 48 bpp;
HSL + Extra: 8, 16 bpc

IG_COMPRESSION_NONE:
Indexed RGB: 1, 8 bpp;
Grayscale: 8, 16 bpp;
Grayscale + Alpha: 8, 16 bpp;
Grayscale + Alpha + Extra: 8, 16 bpp;
RGB: 24, 48 bpp;
RGB + Alpha: 32, 64 bpp;
RGB + Alpha + Extra 8, 16 bpc;
CMYK: 32, 64 bpp;
CMYK + Extra: 8, 16 bpc;
Lab: 24, 48 bpp;
Lab + Extra: 8, 16 bpc;
HSL: 24, 48bpp;
HSL + Extra: 8, 16 bpc

ImageGear Professional v18 for Mac | 294

IG_COMPRESSION_RLE:
Indexed RGB: 1, 8 bpp;
Grayscale: 8, 16 bpp;
Grayscale + Alpha: 8, 16 bpp;
Grayscale + Alpha + Extra: 8, 16 bpp;
RGB: 24, 48 bpp;
RGB + Alpha: 32, 64 bpp;
RGB + Alpha + Extra 8, 16 bpc;
CMYK: 32, 64 bpp;
CMYK + Extra: 8, 16 bpc;
Lab: 24, 48 bpp;
Lab + Extra: 8, 16 bpc;
HSL: 24, 48 bpp;
HSL + Extra: 8, 16 bpc

ImageGear Write Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 8 bpp;
Grayscale: 8 bpp;
Grayscale + Alpha: 16 bpp;
Grayscale + Alpha + Extra: 8 bpc;
RGB: 24 bpp;
RGB + Alpha: 32 bpp;
RGB + Alpha + Extra: 8 bpc;
CMYK: 32 bpp;
CMYK + Extra: 8 bpc;
Lab: 24 bpp;
Lab + Extra: 8 bpc

IG_COMPRESSION_PACKED_BITS:
Indexed RGB: 1, 8 bpp;
Grayscale: 8 bpp;
Grayscale + Alpha: 16 bpp;
Grayscale + Alpha + Extra: 8 bpc;
RGB: 24 bpp;
RGB + Alpha: 32 bpp;
RGB + Alpha + Extra: 8 bpc;
CMYK: 32 bpp;
CMYK + Extra: 8 bpc;
Lab: 24 bpp;
Lab + Extra: 8 bpc

ImageGear Filter Control Parameters:

Filter Control Parameter Type Default
Value

Available
Values

Description

LOAD_FIRST_EXTRA_CHANNEL_AS_ALPHA AT_BOOL FALSE TRUE,
FALSE

This parameter specifies how
ImageGear should load the first
extra channel of a PSB image. If
FALSE, ImageGear loads all extra
channels according to their
descriptors in the file header. If the
channel contains transparency
information, ImageGear loads it as
Alpha channel. Otherwise
ImageGear loads it as Extra
channel. If TRUE, ImageGear loads
first extra channel as Alpha
channel. This mode provides
backward compatibility with

ImageGear Professional v18 for Mac | 295

previous versions of ImageGear.

READ_LAYER_INDEX INT -1 Any
integer,
but no
more
than
number
of layers

When > -1 specifies a zero based
index of layer mask image to load,
otherwise reads the composition
image.

READ_LAYER_MASK AT_BOOL FALSE FALSE,
TRUE

When TRUE PSB layer mask images
are loaded as usual pages of multi-
page file, otherwise layer masks are
ignored.

SAVE_THUMBNAIL AT_BOOL FALSE FALSE,
TRUE

Gets/Sets thumbnail flag. If TRUE
then thumbnail will be added to
image.

THUMBNAIL_ENABLE AT_BOOL FALSE FALSE,
TRUE

When TRUE thumbnail reading
function loads thumbnail image
provided by PSB format.

THUMBNAIL_HEIGHT UINT 64 Any
positive
value

Gets/Sets thumbnail height.

THUMBNAIL_WIDTH UINT 64 Any
positive
value

Gets/Sets thumbnail width.

Comments:

PSB is a newer version of PSD designed for files over 2 gigabytes, supporting up to 300,000 pixels in any dimension.
The PSB format is identical to the Photoshop native format (PSD) in many ways.

The PSD file is considered by many in the computer graphics arts community as an industry standard.

The PSD/PSB is organized into 5 major segments of data: the header, 3 informational blocks, and the bitmap data.
The short header always contains a "signature" of 8PPS, as well as these fields: width, height, and bit depth of the
bitmap.

The first block of informational data is called the "Color Mode Data Block". It begins with a value for the length of the
block. If the image has a palette, it is located here.

The next block is called the "Image Resources Block". Like the previous block, it first gives the length of the block. An
ID field is filled with one of many possible values that indicate the structure where the data is stored. It may contain
such parameters as resolution.

The last informational block is called the "Layer and Mask Instruction Block". After a value for the length of the block,
it tells how many "layer records" follow. There is a record for each layer in the image. Each record begins with a
channel ID and the length of the data in the record. After the records, a "Layer Mask" section may be stored, if
applicable.

The bitmap data represents the last segment of a PSD/PSB file.

For historic reasons, ImageGear uses the IG_COMPRESSION_PACKED_BITS constant for saving Packed Bits
compressed PSD/PSB images, and uses the IG_COMPRESSION_RLE constant to report Packed Bits compression
when reading PSD/PSB images. For the PSD/PSB format, the terms "Packed Bits" and "RLE" are used
synonymously.

References Used

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats, 2d ed. Sebastopol, CA: O'Reilly &
Associates, Inc., 1996.

ImageGear Professional v18 for Mac | 296

1.2.6.7.4 Adobe PSD

Full Name PSD (Adobe Photoshop)

Format ID IG_FORMAT_PSD = 36

File Extension(s) *.psd

Data Type Raster Image

Data Encoding Binary

Color Profile Support Read, Write

ImageGear Multipage Support No

ImageGear Alpha Channel Support Yes (see Comments for more information).

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

Version 2.0
Version 2.5
Version 3.0
Version 8.0

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_DEFLATE:
Indexed RGB: 1, 8 bpp;
Grayscale: 8, 16 bpp;
Grayscale + Alpha: 8, 16 bpp;
Grayscale + Alpha + Extra: 8, 16 bpp;
RGB: 24, 48 bpp;
RGB + Alpha: 32, 64 bpp;
RGB + Alpha + Extra 8, 16 bpc;
CMYK: 32, 64 bpp;
CMYK + Extra: 8, 16 bpc;
Lab: 24, 48 bpp;
Lab + Extra: 8, 16 bpc;
HSL: 24, 48 bpp;
HSL + Extra: 8, 16 bpc

IG_COMPRESSION_NONE:
Indexed RGB: 1, 8 bpp;
Grayscale: 8, 16 bpp;
Grayscale + Alpha: 8, 16 bpp;
Grayscale + Alpha + Extra: 8, 16 bpp;
RGB: 24, 48 bpp;
RGB + Alpha: 32, 64 bpp;
RGB + Alpha + Extra 8, 16 bpc;
CMYK: 32, 64 bpp;
CMYK + Extra: 8, 16 bpc;
Lab: 24, 48 bpp;
Lab + Extra: 8, 16 bpc;
HSL: 24, 48bpp;
HSL + Extra: 8, 16 bpc

ImageGear Professional v18 for Mac | 297

IG_COMPRESSION_RLE:
Indexed RGB: 1, 8 bpp;
Grayscale: 8, 16 bpp;
Grayscale + Alpha: 8, 16 bpp;
Grayscale + Alpha + Extra: 8, 16 bpp;
RGB: 24, 48 bpp;
RGB + Alpha: 32, 64 bpp;
RGB + Alpha + Extra 8, 16 bpc;
CMYK: 32, 64 bpp;
CMYK + Extra: 8, 16 bpc;
Lab: 24, 48 bpp;
Lab + Extra: 8, 16 bpc;
HSL: 24, 48 bpp;
HSL + Extra: 8, 16 bpc

ImageGear Write Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 8 bpp;
Grayscale: 8 bpp;
Grayscale + Alpha: 16 bpp;
Grayscale + Alpha + Extra: 8 bpc;
RGB: 24 bpp;
RGB + Alpha: 32 bpp;
RGB + Alpha + Extra: 8 bpc;
CMYK: 32 bpp;
CMYK + Extra: 8 bpc;
Lab: 24 bpp;
Lab + Extra: 8 bpc

IG_COMPRESSION_PACKED_BITS:
Indexed RGB: 1, 8 bpp;
Grayscale: 8 bpp;
Grayscale + Alpha: 16 bpp;
Grayscale + Alpha + Extra: 8 bpc;
RGB: 24 bpp;
RGB + Alpha: 32 bpp;
RGB + Alpha + Extra: 8 bpc;
CMYK: 32 bpp;
CMYK + Extra: 8 bpc;
Lab: 24 bpp;
Lab + Extra: 8 bpc

ImageGear Filter Control Parameters:

Filter Control Parameter Type Default
Value

Available
Values

Description

LOAD_FIRST_EXTRA_CHANNEL_AS_ALPHA AT_BOOL FALSE TRUE,
FALSE

This parameter specifies how
ImageGear should load the first
extra channel of a PSD image. If
FALSE, ImageGear loads all extra
channels according to their
descriptors in the file header. If the
channel contains transparency
information, ImageGear loads it as
Alpha channel. Otherwise
ImageGear loads it as Extra
channel. If TRUE, ImageGear loads
first extra channel as Alpha
channel. This mode provides
backward compatibility with

ImageGear Professional v18 for Mac | 298

previous versions of ImageGear.

READ_LAYER_INDEX INT -1 Any
integer,
but no
more
than
number
of layers

When > -1 specifies a zero based
index of layer mask image to load,
otherwise reads the composition
image.

READ_LAYER_MASK AT_BOOL FALSE FALSE,
TRUE

When TRUE PSD layer mask images
are loaded as usual pages of multi-
page file, otherwise layer masks are
ignored.

SAVE_THUMBNAIL AT_BOOL FALSE FALSE,
TRUE

Gets/Sets thumbnail flag. If TRUE
then thumbnail will be added to
image.

THUMBNAIL_ENABLE AT_BOOL FALSE FALSE,
TRUE

When TRUE thumbnail reading
function loads thumbnail image
provided by PSD format.

THUMBNAIL_HEIGHT UINT 64 Any
positive
value

Gets/Sets thumbnail height.

THUMBNAIL_WIDTH UINT 64 Any
positive
value

Gets/Sets thumbnail width.

Comments:

The PSD file is considered by many in the computer graphics arts community as an industry standard.

The PSD is organized into 5 major segments of data: the header, 3 informational blocks, and the bitmap data. The
short header always contains a "signature" of 8PPS, as well as these fields: width, height, and bit depth of the
bitmap.

The first block of informational data is called the "Color Mode Data Block". It begins with a value for the length of the
block. If the image has a palette, it is located here.

The next block is called the "Image Resources Block". Like the previous block, it first gives the length of the block. An
ID field is filled with one of many possible values that indicate the structure where the data is stored. It may contain
such parameters as resolution.

The last informational block is called the "Layer and Mask Instruction Block". After a value for the length of the block,
it tells how many "layer records" follow. There is a record for each layer in the image. Each record begins with a
channel ID and the length of the data in the record. After the records, a "Layer Mask" section may be stored, if
applicable.

The bitmap data represents the last segment of a PSD file.

For historic reasons, ImageGear uses the IG_COMPRESSION_PACKED_BITS constant for saving Packed Bits
compressed PSD images, and uses the IG_COMPRESSION_RLE constant to report Packed Bits compression when
reading PSD images. For the PSD format, the terms "Packed Bits" and "RLE" are used synonymously.

References Used

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats, 2d ed. Sebastopol, CA: O'Reilly &
Associates, Inc., 1996.

ImageGear Professional v18 for Mac | 299

1.2.6.7.5 AFX

Full Name Auto FX Photographic Edges

Format ID IG_FORMAT_AFX = 49

File Extension(s) *.afx

Data Type Raster Image

Data Encoding JPEG Lossy

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, MAC, .NET

ImageGear Supported Versions:

N/A

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading

ImageGear Read Support:

IG_COMPRESSION_JPEG - RGB: 24 bpp

ImageGear Write Support:

None

ImageGear Filter Control Parameters:

None

Comments:

The Auto-FX file contains a small header followed by a JPEG datastream.

ImageGear Professional v18 for Mac | 300

1.2.6.7.6 AVI

Full Name MS Video for Windows video clip

Format ID IG_FORMAT_AVI = 52

File Extension(s) *.avi

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support Yes

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, MAC

ImageGear Supported Versions:

N/A

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_MPAGEREADPSUPPORT - multi-page file reading

ImageGear Read Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp

IG_COMPRESSION_RLE:
Indexed RGB: 4, 8 bpp

ImageGear Write Support:

No

ImageGear Filter Control Parameters:

Filter Control
Parameter

Type Default
Value

Available
Values

Description

FILE_NAME String "" any string Obsolete. Not currently used.

IMAGE_IS_KEY_FRAME AT_BOOL TRUE TRUE,
FALSE

The filter will set this to TRUE or FALSE when reading an
image depending on whether or not the image is marked
as a key frame in the AVI file.

Comments:

AVI files are a special case of RIFF files. RIFF is the Resource Interchange File Format. This is a general purpose format
for exchanging multimedia data types that was defined by Microsoft and IBM. An AVI file ("audio/video interleave")
typically contains video and optionally audio which is synchronized to the video.

ImageGear can read video frame images from uncompressed and RLE compressed AVI files using this AVI format filter.

ImageGear Professional v18 for Mac | 301

1.2.6.7.7 BMP

Full Name Microsoft Windows Bitmap

Format ID IG_FORMAT_BMP = 2

File Extension(s) *.bmp, *dib

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support Only for OS/2 BMP

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, MAC, .NET, .NET64, Java

ImageGear Supported Versions:

Windows Bitmap version 5 (created for Windows 98, Windows 2000)
Windows Bitmap version 4 (created for Windows 95, Windows NT 4.0)
Windows Bitmap version 3 (created for Windows 3.x)
Windows Bitmap version 2 (created for Windows 2.x)
OS/2 Bitmap version 2
OS/2 Bitmap version 1

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 15, 16, 24 bpp;
RGB + Alpha: 32 bpp.

IG_COMPRESSION_RLE:
Indexed RGB: 4, 8 bpp

ImageGear Write Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 15, 24 bpp

IG_COMPRESSION_RLE:
Indexed RGB: 4, 8 bpp

ImageGear Filter Control Parameters:

Filter Control
Parameter

Type Default Value Available Values Description

UPSIDE_DOWN AT_BOOL FALSE FALSE, TRUE If TRUE then the images will
be saved upside-down

TYPE UINT BMP_TYPE_BMI BMP_TYPE_BMC,
BMP_TYPE_BMI,
BMP_TYPE_BMI2

Type of BMP, see
BMP_TYPE_... constants

COMPRESSION DWORD BMP_COMP_RGB BMP_COMP_RLE4,
BMP_COMP_RLE8,
BMP_COMP_RGB

BMP compression, see
BMP_COMP_... constants

ImageGear Professional v18 for Mac | 302

B16_GRAY_SCANNER AT_BOOL FALSE FALSE, TRUE Vidar 12-bit scanner options

B16_GRAY_SCANTYPE UINT 0 Vidar 12-bit scanner options

Comments:

The BMP format for versions 2.x - 4.x contains two headers. All Windows bitmap files begin with the same first
header. They proceed with a data structure containing image information (the Bitmap Information Header), and end
with the actual image data. If there is a palette (1, 4, 8-bit images), it is located between the bitmap information and
the bitmap image data.

The first header identifies the format as BMP, and stores the file size and the address of the image. Two additional
fields, Reserved1 and Reserved2, are not used and are set to 0.

The second header, known as the "bitmap information header", varies across the versions of Windows bitmaps. The
second header for all bitmaps from version 2.x to 5.x have in common the following basic set of information: size of
the secondary header in bytes, height and width of the image in pixels, the number of bit planes, the number of bits
per pixel, compression scheme (0 = uncompressed, 1 = 4-bit RLE compression, 2 = 8-bit RLE compression, 3 =
bitfields encoding was used), size of image in bytes, horizontal and vertical resolution in pixels per meter, the number
of colors in the image, and the minimum number of important colors.

If the image is 16 or 32-bits per pixel in resolution, the compression field equals 3, and following the header are
values for RedMask, GreenMask and BlueMask, rather than a palette. If the file is 4.x, there are values for an alpha
component, color space type, x and y coordinates of red, green or blue endpoints, and gamma values for red, green,
and blue coordinate scale values. The "ColorsImportant" field accommodates hardware that supports fewer colors
than are contained by the image palette. The most significant colors are determined by counting their frequency of
appearance. A value of zero means that all the colors in the image are significant.

The palette, or color table, varies in size depending on the number of colors in the image. This value is stored in the
"ColorsUsed" field of the Bitmap Information Header. In the BMP format v. 3, the palette's structure is in "RGBQUAD"
format. See the section entitled "Palettes" in for more information. 24-bit images do not use a palette, but rather
store the color information directly in the image data.

References Used

Brown, C. Wayne, and Barry J. Shepherd. Graphics File Formats: Reference and Guide. Greenwich, CT.: Manning
Publications, 1992.

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats. Sebastopol, CA: O'Reilly &
Associates, Inc., 1996.

ImageGear Professional v18 for Mac | 303

1.2.6.7.8 BTR

Full Name Brooktrout

Format ID IG_FORMAT_BRK = 3

File Extension(s) *.brk, *.301,

Data Type Raster image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, MAC, .NET, .NET64

ImageGear Supported Versions:

Version 1

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetect
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_CCITT_G3 - Indexed RGB: 1 bpp
IG_COMPRESSION_CCITT_G32D - Indexed RGB: 1 bpp

ImageGear Write Support:

IG_COMPRESSION_CCITT_G3 - Indexed RGB: 1 bpp
IG_COMPRESSION_CCITT_G32D - Indexed RGB: 1 bpp

When saving an image, the image must have horizontal resolution of 200 DPI and vertical resolution of 100 or 200
DPI.

ImageGear Filter Control Parameters:

Filter Control Parameter Type Default Value Available Values Description

COMPRESSION WORD BTR_COMP_G3 BTR_COMP_G3BTR_COMP_G3_2D Compression for saving.

Comments:

A Brooktrout file consists of a CCITT Group 3 (G3) compressed file with a 128-byte header designed by Brooktrout
Technology. The header fields include a constant that identifies the file as Brooktrout, a version number, the horizontal
and vertical resolutions of the image in dots/mm, the number of bits per pixel, and the number of pixels per line.

ImageGear Professional v18 for Mac | 304

1.2.6.7.9 CAL

Full Name CALS Raster

Format ID IG_FORMAT_CAL = 4

File Extension(s) *.cal, *.ras, *.cals

Data Type Raster image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, MAC, .NET, .NET64, Java

ImageGear Supported Versions:

Type II (Tiles made possible)
Type I

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_CCITT_G4 - Indexed RGB : 1 bpp

ImageGear Write Support:

IG_COMPRESSION_CCITT_G4 - Indexed RGB : 1 bpp

ImageGear Filter Control Parameters:

None

Comments:

The CALS file format was created as a graphics format specification by The Department of Defense to standardize the
data exchange of logistics support operations across the military branches and military contractors. It is mandatory
for most military document-handling applications. It is no longer used solely by the military and its contractors; other
government agencies and commercial businesses have also adopted this format, including the aerospace, commercial
computer, and medical industries.

There are two types of CALS files: Type I, and a newer, significantly more complicated Type II. Type II supports the
use of tiles. Sometimes it acts a repository for a group of Type I files. Whether or not a Type II contains Type I
images determines what kind of compression scheme is used. Type I is supported by ImageGear.

Type I and Type II files begin with a header that has the same format and size. It includes information about the
source and destination documents, as well as image characteristics data. The data storage units under the header are
each 128 bytes in length, and are referred to as records. These are written with 7-bit ASCII characters, making it
more "human-readable" than most file format headers.

The image data follows the header. In a Type II file, if the data is a series of Type I images, the images are encoded
with CCITT Group 4 compression. If they are Type II files, the data may either be uncompressed or encoded with
CCITT Group 4. In addition, Type II data may be stored in tiles, wherein some, all, or none of the tiles may be
compressed.

The Type II file contains several more substructures than Type I. Between the header and the image data are three
groups of document formatting data. Other data preceding each image (or images), are "layout information" and a
"Tile Index", that contains the address of each tile stored for the image.

References Used

ImageGear Professional v18 for Mac | 305

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats. Sebastopol, CA: O'Reilly &
Associates, Inc., 1994.

ImageGear Professional v18 for Mac | 306

1.2.6.7.10 CLP

Full Name Windows Clipboard

Format ID IG_FORMAT_CLP = 5

File Extension(s) *.clp

Data Type Raster image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, MAC, .NET, .NET64

ImageGear Supported Versions:

N/A

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp

IG_COMPRESSION_RLE:
Indexed RGB: 4, 8 bpp

ImageGear Write Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp

IG_COMPRESSION_RLE:
Indexed RGB: 4, 8 bpp

ImageGear Filter Control Parameters:

None

Comments:

The CLP file format represents a subset of a file format called Pictor PC Paint. The use for PC Paint format is to display
images created by the PC Paint application to IBM display hardware (CGA, EGA, VGA, etc.).

The header of a CLP file is fairly short and simple, containing the file size (in bytes), and the height, width, and address
of the image. The image data may be compressed or uncompressed. If it is compressed, the header contains two
additional fields to give the number of bits per pixel of the packed data, and the address of the beginning of the packed
run.

References Used

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats. Sebastopol, CA: O'Reilly & Associates,
Inc., 1994.

ImageGear Professional v18 for Mac | 307

1.2.6.7.11 CUR

Full Name Windows cursor

Format ID IG_FORMAT_CUR = 96

File Extension(s) *.cur

Data Type Raster image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support Yes

ImageGear Alpha Channel Support Single alpha channel for read/write (see Comments).

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

Windows 3.x

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_MPAGEREADSUPPORT - multi-page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_NONE:
Indexed + Extra: 1+1, 4+1, 8+1 bpp;
RGB + Alpha: 32 bpp

IG_COMPRESSION_RLE:
Indexed + Extra: 4+1, 8+1 bpp

ImageGear Write Support:

IG_COMPRESSION_NONE:
Indexed + Extra: 1+1, 4+1, 8+1 bpp;
RGB + Alpha: 32 bpp

ImageGear Filter Control Parameters:

Filter Control
Parameter

Type Default
Value

Available
Values

Description

READ_AS_RGBA AT_BOOL FALSE TRUE,
FALSE

If TRUE, ImageGear reads CUR format as RGBA (RGB with
alpha channel). See Comments for more detail.

Comments:

Cursor files consist of a file header (that is repeated several times), info headers, and cursor data. Cursor data
contains an XOR mask bitmap and a monochrome AND mask bitmap. Whenever Windows draws a cursor, the AND
bitmap is applied to whatever is on the screen. After that, the XOR bitmap is applied.

READ_AS_RGBA control parameter determines how ImageGear reads the 1-bit AND masks. If READ_AS_RGBA is
FALSE, ImageGear reads AND mask into "Extra" channel. This mode preserves unchanged pixel values from the file.
However, in this mode ImageGear displays only the XOR mask and ignores AND mask (Extra channel) during display,
i.e. display is not transparent. If READ_AS_RGBA is TRUE, ImageGear reads CUR files as 32 bpp RGB + Alpha. This
allows transparent display.

Files must be 255x255 pixels or less.

References Used:

ImageGear Professional v18 for Mac | 308

A Jorn Daub EDV-Beratung - Glashutter Weg 105 - D-22889 Tangstedt

fileformats@daubnet.com

ImageGear Professional v18 for Mac | 309

1.2.6.7.12 CUT

Full Name Dr. Halo

Format ID IG_FORMAT_CUT = 7

File Extension(s) *.cut, *.pal (for the separately stored palette)

Data Type Raster image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, .NET, .NET64, Unix, Unix64, MAC

ImageGear Supported Versions:

N/A

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_RLE - Indexed RGB: 8 bpp

ImageGear Write Support:

IG_COMPRESSION_RLE - Indexed RGB: 8 bpp

ImageGear Filter Control Parameters:

None

Comments:

The Dr. Halo file format is associated with the HALO Image File Format Library, the Dr. Halo III paint program, and other
applications created by Media Cybernetics.

This format consists of two separate files, one with an extension of .CUT and the other with an extension of .PAL. The
.CUT file contains the image data and the .PAL file contains the color palette.

The .CUT file begins with a simple header of just three data fields: width and height of the image data (pixels by scan
lines), and a reserved field intended for use with any future expansions of the header. The image data is always RLE-
encoded and follows the header.

The palette file (.PAL) contains a header, with information about the type of palette used, and the size and maximum
values of the Red, Green, and Blue components. The palette can be hardware-specific, in which case it contains
additional data.

When a CUT image is loaded into ImageGear, the palette is initialized to a grayscale ramp. In order to achieve the
original colors of the palette (PAL file), it must be loaded separately into the HIGEAR image.

When saving an image into the Dr. Halo format, ImageGear creates a .CUT file. In order to save the palette (PAL file), it
must be saved separately.

See the section RLE for more information.

References Used

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats. Sebastopol, CA: O'Reilly & Associates,
Inc., 1994.

ImageGear Professional v18 for Mac | 310

1.2.6.7.13 DCX

Full Name Paintbrush (Intel multi-page FAX format)

Format ID IG_FORMAT_DCX = 8

File Extension(s) *.dcx

Data Type Raster image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support Yes

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

N/A

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_MPAGEREADPSUPPORT - multi-page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing
IG_FLTR_MPAGEWRITEPSUPPORT - multi-page file writing

ImageGear Read Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp

IG_COMPRESSION_RLE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp

ImageGear Write Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp

IG_COMPRESSION_RLE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp

ImageGear Filter Control Parameters:

Filter Control
Parameter

Type Default
Value

Available
Values

Description

SAVE_COMPRESSED AT_BOOL TRUE FALSE,
TRUE

This parameters specify either compress output image or
not. TRUE value cause to RLE compress image. FALSE
cause to write image uncompressed.

ADD_IMAGE AT_BOOL TRUE FALSE,
TRUE

If this parameter is TRUE then image is added as
additional page of multi-page image. If FALSE then the
new image with single page is written

Comments:

This file format was designed to allow multiple PCX files to be stored in one file. This is especially desirable for multi-
page faxes (for which the PCX format is often used). Up to 1024 PCX images can be stored in one DCX file.

ImageGear Professional v18 for Mac | 311

The DCX construct begins with a simple header, then the PCX files are simply stored end-to-end, complete with their
individual headers and palettes. An array in the header called "Pagetable" contains offsets to each PCX. The one piece
of vital information not stored with the PCX files under a DCX is their original filenames. See the PCX section of this
manual for more about PCX files.

References Used

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats. Sebastopol, CA: O'Reilly &
Associates, Inc., 1994.

ImageGear Professional v18 for Mac | 312

1.2.6.7.14 DICOM

Full Name DICOM (Digital Imaging & Communication in Medicine)

Format ID IG_FORMAT_DCM = 48

File Extension(s) *.dicm, *.dcm

Data Type Raster or vector image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support Yes

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix (Linux), Mac, .NET, .NET64

To support the DICOM format, attach the ImageGear Medical Component to Core ImageGear.

ImageGear Supported Versions:

DICOM 3.0, 1991 - 2006

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing
IG_FLTR_PAGEDELETESUPPORT - page deleting from multi-page file (only deletion of last page is supported)
IG_FLTR_MPAGEWRITEPSUPPORT - multi-page file writing

ImageGear Read Support:

IG_COMPRESSION_NONE:
Grayscale: 1, 8, 9-16, 32 bpp;
Indexed RGB: 8 bpp, 16 bpp (converted to 24-bit RGB during loading);
RGB: 24 bpp
Vector/waveform data

IG_COMPRESSION_JPEG (lossy):
Grayscale: 8, 9-12 bpp;
RGB: 24 bpp

IG_COMPRESSION_JPEG (lossless):
Grayscale: 8, 9-16 bpp;
RGB: 24 bpp

IG_COMPRESSION_JPEG2K:
Grayscale: 8, 9-16 bpp;
RGB: 24 bpp

IG_COMPRESSION_RLE:
Grayscale: 8, 9-16 bpp;
Indexed RGB: 8 bpp, 16 bpp (converted to 24-bit RGB during loading);
RGB: 24 bpp

ImageGear also supports reading of Adobe PDF documents, encapsulated in DICOM files. See Adobe PDF format description for information on supported Adobe PDF features.

ImageGear Write Support:

IG_COMPRESSION_NONE:
Grayscale: 8, 9-16, 32 bpp;
Indexed RGB: 8 bpp;
RGB: 24 bpp

IG_COMPRESSION_JPEG (lossy - baseline / process 1):
Grayscale: 8, 9-12 bpp;
RGB: 24 bpp

IG_COMPRESSION_JPEG (lossy - extended / process 2&4):
Grayscale: 8, 9-12 bpp;
RGB: 24 bpp

IG_COMPRESSION_JPEG (lossless):
Grayscale: 8, 9-16 bpp;
Indexed RGB: 8 bpp;
RGB: 24 bpp

IG_COMPRESSION_JPEG2K:
Grayscale: 8, 9-16 bpp;
RGB: 24 bpp

IG_COMPRESSION_RLE:
Grayscale: 8, 9-16 bpp;
Indexed RGB: 8 bpp;
RGB: 24 bpp

To be able to load encapsulated Adobe PDF documents, attach the ImageGear PDF Component.

ImageGear Filter Control Parameters:

Filter Control Parameter Type Default Value Available Values Description

DETECT_CONTINUOUS_RLE AT_BOOL TRUE TRUE, FALSE This parameter specifies what to do with RLE

ImageGear Professional v18 for Mac | 313

compressed images where RLE runs across
row boundaries. If it is set to TRUE,
ImageGear tries to detect and load images
where RLE runs across row boundaries.
Otherwise, ImageGear truncates any row
overruns and decodes each row separately.
This parameter does not affect the loading of
properly encoded images, where each row is
encoded separately.

LOAD_APPLY_LUT_FOR_32G AT_BOOL TRUE TRUE, FALSE Set to TRUE to apply LUT to pixel data for
17-32 bit grayscale images. Set to FALSE to
leave pixel data intact.

By default ImageGear applies LUT to pixel
data for 17-32 bit per pixel grayscale
images. If it is not necessary, set this control
parameter to FALSE.

LOAD_CONCAT_REPEATED_DE AT_BOOL FALSE TRUE, FALSE TRUE to concatenate repeated data elements
into one data element during loading.
Parameter LOAD_CONCAT_REPEATED_DE
allows you to load incompliant DICOM
images where some data elements are cut
into several repeated data elements. Instead
of one data element containing an array of
values, the data set contains several data
elements, with the same group/element
numbers pair, containing portions of the
array. Specifically, there are images with
look-up tables and palettes stored in this
way. Set LOAD_CONCAT_REPEATED_DE
parameter to TRUE to concatenate repeated
data elements into one data element during
loading. Otherwise (default), ImageGear
loads all of the repeated elements in the
same way as they are located in the file.
Note that ImageGear does not allow saving
of repeated data elements. If a data set
contains repeated data elements, ImageGear
will only write first repeated element to the
file.

LOAD_CONVERTTO8G AT_BOOL FALSE TRUE, FALSE This control parameter has been deprecated
and will be removed from the public API in a
future release.

Use IG_image_channel_depths_change after
image loading to change its channel depths.
Convert 9-16 bit gray to 8 on load.

LOAD_DETECTSKIPDIMSE AT_BOOL FALSE TRUE, FALSE This option controls loading process if a
DICOM image contains DIMSE commands.
DIMSE commands are a type of Data
Element, with a group number of "0000" that
are almost always removed by the DICOM
network protocol before a transmitted image
is saved to a disk file. However, sometimes
they are found in the file and in such case
ImageGear doesn't automatically recognize
the file as a DICOM image. This is done
because the DIMSE Tags are very hard to
differentiate from other file formats that
ImageGear supports. However, if
DCM_CONTROL_LOAD_DETECT_SKIP_DIMSE
is set to TRUE then the auto format
detection skips over the DIMSE Tags when it
attempts to decide if the file is DICOM or
not.

LOAD_MASKALPHACHANNEL AT_BOOL TRUE TRUE, FALSE This option controls what would have done if
an Alpha Channel image has been stuffed
into the upper unused bits of a 16-bit image
(Bits Stored < 16). These extra bits can be
masked off or loaded along with the actual
pixel value. If they are not masked off, you
may need to alter the 16x8 LUT in order to
display the image appropriately. If set to
TRUE, the extra bits (the Alpha Channel) are
masked off; if set to FALSE, the extra bits
will be loaded into the DIB with the rest of
the pixel.

LOAD_PAGENUMBER UINT 1 Any positive integer value This control parameter has been deprecated
and will be removed from the public API in a
future release.

Use IG_fltr_load_file to load specific page of
an image. Page number to load.

LOAD_SAVE_PIXDATA_TAG AT_BOOL FALSE TRUE, FALSE Set to TRUE to allow loading/saving pixel
data to/from DataSet rather than to/from
ImageGear DIB. When
LOAD_SAVE_PIXDATA_TAG is TRUE,
ImageGear does not read pixel data into a
DIB, but rather creates an empty DIB, so the
image cannot be displayed. When reading
compressed image, ImageGear Medical

ImageGear Professional v18 for Mac | 314

treats PixelData tag as a Sequence, and
places actual binary data into Item tags. This
corresponds to the structure of compressed
PixelData in DICOM files. When using this
parameter for writing, make sure that
Transfer Syntax matches actual Transfer
Syntax of the PixelData element.

LOAD_SYNTAX INT MED_DCM_TS_AUTODETECT enumIGMedTS values This parameter controls the types of DICOM
files ImageGear attempts to detect. If the
file that is being loaded does not fall into the
category specified by this control parameter
it will be ignored and a
IGE_CANT_DETECT_FORMAT error will be
returned.

MED_DCM_TS_AUTODETECT = 9998 -
ImageGear makes its best to determine
the format of the DICOM file.
MED_DCM_TS_PART_10 = 9997 - only
files with Part 10 Header will be detected.
The Transfer Syntax of the file will be
determined from the header and used to
load the remainder of the image file.

If you specify any standard DICOM Transfer
Syntax, such as
MED_DCM_TS_IMPLICIT_VR_LE or
MED_DCM_TS_JPEG_LOSSY, the Medical
Component will only load files having this
Transfer Syntax.

LOAD_USE_8x8_LUT AT_BOOL TRUE TRUE, FALSE Set to TRUE to use 8x8 display LUT.
Otherwise, use image's palette (the
mechanism that was used in ImageGear
v15.0 and earlier). Parameter
LOAD_USE_8x8_LUT specifies the
mechanism for display contrast adjustments
of 8-bit grayscale images. Set to TRUE
(default) to use 8x8 display LUT. Otherwise,
use image's palette (the mechanism that
was used in ImageGear v15.0 and earlier).

LOAD_USE_AUTO_WL_FOR_8G AT_BOOL TRUE TRUE, FALSE Set to TRUE to use auto window/level for 8g
images, if VOI LUT is not present. Parameter
LOAD_USE_AUTO_WL_FOR_8G affects
loading of 8-bit grayscale images that do not
have a VOI LUT (either a LUT sequence or
window center/width values). Set to TRUE to
use auto window/level for these images. Set
to FALSE to apply no window/levelling (set
contrast range to 0...255).

SAVE_ASPART10 AT_BOOL TRUE TRUE, FALSE This parameter controls whether Meta
Information Header is saved with the file or
not. TRUE will cause the Header to be saved.

SAVE_GROUPLENGTHS AT_BOOL TRUE TRUE, FALSE This parameter controls the usage of Group
Length values in a DICOM file. ImageGear
treats these Data Elements as either on or
off. That is they either are all included in
each Group of Data Elements through the
saving process or they are all absent. The
internal Data Set that is attached to the
HIGEAR does not contain Group Length Data
Elements. When a DICOM file is to be written
to disk they are computed and inserted if
this parameter is set to TRUE. A value of
TRUE indicates that Group Length values will
be saved; FALSE indicates that they will not
be saved.

SAVE_JPGQUALITY UINT 70 1 - 100 This control parameter has been deprecated
and will be removed from the public API in a
future release. Please use QUALITY control
parameter of JPEG filter instead.

JPEG Quality setting 1-100

SAVE_LARGEST AT_BOOL FALSE TRUE, FALSE Controls whether Largest Image Pixel Value
(0028,0107) is updated by ImageGear.

If the original image Data Set did not contain
a Data Element for Largest Image Pixel
Value (0028,0107) and you set
SAVE_LARGEST = TRUE, ImageGear scans
the image and determines a value for this
DE. Largest Image Pixel Value is included in
the Data Set of the DICOM image being
saved and contains the ImageGear-
determined value. The value of the DE from
the original Data Set (if any) is ignored.

If you set SAVE_LARGEST = FALSE,
ImageGear does not determine this value for
you, and the Data Set of the image being
saved does not include the Largest Image
Pixel Value Data Element. However, if the
original Data Set did contain this DE,
ImageGear preserves and includes it in the

ImageGear Professional v18 for Mac | 315

Data Set being saved

SAVE_PLANARCONFIG INT MED_DCM_PLANAR_PIXEL_BY_PIXEL MED_DCM_PLANAR_PIXEL_BY_PIXEL
MED_DCM_PLANAR_PLANE_BY_PLANE

This parameter controls how the pixels are
saved:

MED_DCM_PLANAR_PIXEL_BY_PIXEL: in
normal RGB order ("pixel by pixel"
configuration).
MED_DCM_PLANAR_PLANE_BY_PLANE: in
a planar configuration, meaning that all
Red, Blue, and Green pixels are saved in
separate planes.

SAVE_SMALLEST AT_BOOL FALSE TRUE, FALSE This parameter controls whether ImageGear
updates the Smallest Image Pixel Value
(0028,0106).

If the original image Data Set did not contain
a Data Element for Smallest Image Pixel
Value (0028,0106) and you set
SAVE_SMALLEST = TRUE ImageGear scans
the image and determines a value for this
DE. Smallest Image Pixel Value are included
in the Data Set of the DICOM image being
saved, and contains the ImageGear-
determined value. The value of the DE from
the original Data Set (if any) are ignored.

If you set SAVE_SMALLEST = FALSE
ImageGear does not determine this value for
you, and the Data Set of the image being
saved does not include the Smallest Image
Pixel Value Data Element. However, if the
original Data Set did contain this DE,
ImageGear preserves and includes it in the
Data Set being saved.

SAVE_SYNTAX INT MED_DCM_TS_DEFAULT enumIGMedTS values This parameter controls how a DICOM file is
to be formatted when it is written to disk. It
does not control the file being Part 10 or
Raw (see bSaveAsPart10), but controls how
the non-Group 2 Data Elements are
formatted. It also specifies the compression
that will be used for Pixel Data.

Comments:

DICOM is a public standard created to provide a flexible and expandable means for storing, sharing, and transporting digital medical images. Today DICOM is the standard for
medical imaging throughout the world.

DICOM image (alternately called Data Set) contains an ordered collection of attributes referred to as "Data Elements" that are related to one or more images. Each Data
Element (DE) describes a single attribute of the image, patient, or study. The images themselves are also stored in DEs.

Each DICOM Data Set is transported through the Network, and consequently, stored in a file, using one of the defined Transfer Syntaxes. The Transfer Syntax of the DICOM
file indicates whether the file uses Big Endian or Little Endian byte order, whether the image data is compressed or uncompressed, and if the DICOM Data Set uses Explicit or
Implicit Value Representation (VR).

The Data Element (DE) is made up of the following parts:

Tag
Value Representation (optional)
Value Length
Value

Tag field identifies the type of information that is contained in the Value field (where the actual data is stored). The DICOM Data Dictionary (Part 6 of the specification)
defines all possible public Data Element Tags that may be used. DICOM also allows applications to define and use private Tags and thus define their own Data Elements. Value
Representation (VR) specifies the format of the Data Element Value, such as UL (unsigned long), ST (Short Text) or PN (Person Name). If Implicit Transfer Syntax is used,
the VR field is omitted. It can be obtained from the standard or private Data Dictionary. Value Length is the length (in bytes) of the Data field.

DICOM also allows embedding (nesting) Data Sets within Data Sets. Nested Data Sets are implemented using a "Sequence of Items" (SQ), which is a special type of Data
Element.

A special group of tags at the beginning of the file allows application to recognize the file as a DICOM image file, and includes information needed to decode the file (Transfer
Syntax), and serial numbers to help locate and keep track of each field. This header is referred to as "File Meta Information Header", or "Part 10 Header" (since it is defined in
Part 10 of the DICOM standard). While the standard clearly states that all DICOM image files must include a Part 10 Header, in reality one finds that many do not. Instead,
the average DICOM image file is a simple data stream capture of the data into a file. This is called a "Raw Data" DICOM image file. In order to read a Raw DICOM the Transfer
Syntax must be guessed at using a Transfer Syntax detection algorithm.

The actual pixel data for a DICOM image is stored in a Data Element, just like any other DICOM information. Image parameters, such as dimensions, bit depth, photometric
interpretation etc., are also stored in Data Elements. The Tag for Pixel Data is called "Pixel Data" and has the Tag Number 7FE0, 0010. The Data Field in this Data Element
contains all pixels for the image. Depending on the image's Transfer Syntax, the Pixel Data can be compressed or uncompressed.

References Used

Digital Imaging and Communication in Medicine (DICOM). Published by: National Electrical Manufacturers Association: http://medical.nema.org/dicom.html.

ImageGear Professional v18 for Mac | 316

http://medical.nema.org/dicom.html

1.2.6.7.15 EPS

Full Name Encapsulated PostScript File

Format ID IG_FORMAT_EPS = 10

File Extension(s) *.eps (may or may not contain preview image), *.epi (contains preview image), *epsf

Data Type Raster image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel
Support

No

ImageGear Platforms Support WIN32, WIN64, Unix (full support with ImageGear PDF component only), Unix64,
MAC, .NET

ImageGear Supported Versions:

Version 3.0
Version 2.0
Version 1.0

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

Images with uncompressed TIFF preview.

ImageGear Write Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
Grayscale: 8 bpp;
RGB: 24 bpp

IG_COMPRESSION_CCITT_G3:
Indexed RGB: 1 bpp

IG_COMPRESSION_CCITT_G4:
Indexed RGB: 1 bpp

IG_COMPRESSION_JPEG:
Grayscale: 8 bpp;
RGB: 24 bpp

ImageGear Filter Control Parameters:

Filter Control
Parameter

Type Default Value Available Values Description

SAVE_PREVIEW AT_BOOL FALSE TRUE, FALSE If TRUE then EPS
preview will be
saved

START DWORD 0 Position of start.

FITTING_METHOD UINT IG_EPS_FIT_ACTUAL IG_EPS_FIT_PAGE,
IG_EPS_FIT_ACTUAL,
IG_EPS_FIT_SET

Fitting method,
see
IG_EPS_FIT_...
constants

PIXEL_TO_PIXEL AT_BOOL FALSE TRUE, FALSE

ImageGear Professional v18 for Mac | 317

PAGE_WIDTH AT_DIMENSION 8500 Page width
(100ths of an inch)

PAGE_HEIGHT AT_DIMENSION 11000 Page height
(100ths of an inch)

MARGINS AT_RECT {250, 250, 250, 250} Margins (100ths of
an inch)

X_DPI UINT 300 X resolution

Y_DPI UINT 300 Y resolution

TEXT_ENCODING UINT IG_PDF_TEXTENC_ASCII_HEX IG_PDF_TEXTENC_NONE,
IG_PDF_TEXTENC_ASCII_85,
IG_PDF_TEXTENC_ASCII_HEX

Text encoding
method, see
IG_PDF_TEXTENC_
constants

Comments:

"PostScript" refers to a widely-supported general-purpose computer language that encodes text and graphics files for
sharing with the many different hardware devices that support it. The full name for this language is "PostScript Page
Description Language" (PDL).

An Encapsulated PostScript file stores (encapsulates) graphical or photographic images from a larger PostScript file.
ImageGear currently supports the reading of EPS image of any bit depth as long as the preview image is TIF,
uncompressed. ImageGear currently supports the writing of monochrome (1-bit), grayscale (8-bit gray level), and color
RGB (24-bit) EPS images only.

The EPS file format begins with a PostScript language header. The data herein identifies the format as EPS, and gives the
image title, creator, creation date, size and position of the image. Each line begins with a percent sign (%), which is
normally interpreted in the PostScript language as the beginning of a comment line. Within the context of the EPS header,
it takes on a different meaning.

Following the header is a block of PostScript code, which accomplishes the actual creation of the image.

The format proceeds with the bitmap data, or "graphics screen representation".

The EPI version of the EPS format, the version supported by ImageGear, contains an abridged interpretation of the image
that is appended to the end of the file. It is usually smaller, and contains a lower resolution. One of the benefits of a
preview image is that an application does not need to be able to interpret PostScript in order to display the image. Preview
images are created with one of four file format types: TIFF, WMF, and EPS.

References Used

Brown, C. Wayne, and Barry J. Shepherd. Graphics File Formats: Reference and Guide. Greenwich, CT.: Manning
Publications, 1992.

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats. Sebastopol, CA: O'Reilly & Associates,
Inc., 1994.

ImageGear Professional v18 for Mac | 318

1.2.6.7.16 EXIF-JPEG

Full Name Exchangeable image file format (EXIF-JPEG)

Format ID IG_FORMAT_EXIF_JPEG = 71

File Extension(s) *.jpg, *.xif

Data Type Raster image

Data Encoding Binary

Color Profile Support Read, Write

ImageGear Multipage Support No

ImageGear Alpha Channel Support Read/write

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, MAC, .NET, .NET64

ImageGear Supported Versions:

Version 1.0 (1996)
Version 1.1 (1997)
Version 2.0 (1998)
Version 2.1 (1998)
Version 2.2 (2002)

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_JPEG (lossy, progressive):
Grayscale: 8, 12 bpp;
RGB: 24, 36 bpp;
RGB + Alpha: 32 bpp;
CMYK: 32 bpp

IG_COMPRESSION_JPEG (lossless):
Grayscale: 8, 16 bpp;
RGB: 24 bpp;
RGB + Alpha: 32 bpp;
CMYK: 32 bpp

ImageGear Write Support:

IG_COMPRESSION_JPEG (lossy):
Grayscale: 8, 12 bpp;
RGB: 24, 36 bpp;
RGB + Alpha: 32 bpp1
CMYK: 32 bpp2

IG_COMPRESSION_JPEG (lossless):
Grayscale: 8, 16 bpp;
RGB: 24 bpp

IG_COMPRESSION_JPEG (progressive):
Grayscale: 8, 12 bpp;
RGB: 24 bpp;

1) RGBA saving is disabled by default. Set JPEG-JFIF control parameter SAVE_ALLOW_RGBA to TRUE to enable it.

2) CMYK saving is enabled by default. You can disable it by setting JPEG-JFIF control parameter SAVE_ALLOW_CMYK
to FALSE.

ImageGear Professional v18 for Mac | 319

ImageGear Filter Control Parameters:

Filter Control Parameter Type Default
Value

Available
Values

Description

FLASHPIX_READY AT_BOOL FALSE TRUE,
FALSE

If TRUE the image will be saved with 64
interoperability, allowing lossless conversion to
FlashPix format.

SAVE_JFIF_SEGMENT AT_BOOL FALSE TRUE,
FALSE

If TRUE the JFIF segment will be saved with image

SAVE_THUMBNAIL AT_BOOL TRUE TRUE,
FALSE

If TRUE the thumbnail will be saved with image

THUMBNAIL_WIDTH UINT 160 Any
positive
value

Gets/Sets thumbnail width. Actual dimensions of
the saved thumbnail will be adjusted to fit into
rectangle specified by the THUMBNAIL_WIDTH and
THUMBNAIL_HEIGHT parameters, preserving the
ratio of image width and height.

THUMBNAIL_HEIGHT UINT 120 Any
positive
value

Gets/Sets thumbnail height. Actual dimensions of
the saved thumbnail will be adjusted to fit into
rectangle specified by the THUMBNAIL_WIDTH and
THUMBNAIL_HEIGHT parameters, preserving the
ratio of image width and height.

THUMBNAIL_COMPRESSED AT_BOOL TRUE TRUE,
FALSE

For JPEG compressed EXIF. If TRUE the thumbnail
will be JPEG compressed

LOAD_SCALE_DENOM UINT 1 1, 2, 4, 8 If this parameter is set to any other than default
value, ImageGear loads reduced version of the
image, width and height of which are scaled by
1/load_scale_denom. This mode can be used for
image preview, especially for those images that do
not have embedded thumbnails, or where
embedded thumbnails are smaller than desired.
This mode allows you to make loading process 2-4
times faster.*
* LOAD_SCALE_DENOM parameter affects the
following formats: JFIF-JPEG, EXIF-JPEG. It does
not affect TIFF-JPEG and other formats containing
JPEG stream. Only Lossy and Progressive
compressed images are supported. It affects all
image loading functions and all image info
functions.

The following control parameters of JFIF-JPEG format filter also affect EXIF-JPEG:

SAVE_ALLOW_CMYK
SAVE_ALLOW_RGBA

Comments:

The EXIF file format is based on existing formats. There are two kinds of EXIF format: compressed and
uncompressed. Compressed EXIF is recorded in JPEG format with EXIF header saved in APP1 and APP2 marker
segments. The APP2 segment is used when recording FlashPix extensions.

Uncompressed EXIF is recorded in TIFF Rev. 6.0 formats with two pages - the first is the main image, the second is a
thumbnail (if it present). The EXIF header data is stored in TIFF 6.0 format for both compressed and uncompressed
EXIF and include EXIF information (that is necessary) and GPS information (that is optional). Information specific to
the camera system and not defined in TIFF is stored in private tags registered for EXIF. ImageGear EXIF support
allows you to retrieve this information and send it to an application level and vice versa.

The EXIF image file specification also specifies the method for recording thumbnails. The reason for using the TIFF
Rev. 6.0 tag format in the compressed file APP1 segment is to facilitate exchange of attribute data between EXIF
compressed and uncompressed files.

Although the standard only allows uncompressed and JPEG-compressed EXIF images, and RGB color space, there are
EXIF images that use other compressions and color spaces. In a sense, these images can be considered as JPEGs or
TIFFs with additional EXIF metadata. ImageGear supports reading of such non-standard images, as well as writing of
EXIF images with some non-standard compressions and color spaces.

ImageGear Professional v18 for Mac | 320

References Used

Digital Still Camera Image File Format Standard (Exif) Version 2.0, Nov 1997, Japan Electronic Industry Development
Association.

Digital Still Camera Image File Format Standard (Exif) Version 2.1, June 1998, Japan Electronic Industry Development
Association.

ImageGear Professional v18 for Mac | 321

1.2.6.7.17 EXIF-TIFF

Full Name Exchangeable image file format (EXIF-TIFF)

Format ID IG_FORMAT_EXIF_TIFF = 74

File Extension(s) *.tif, *.xif

Data Type Raster image

Data Encoding Binary

Color Profile Support Read, Write

ImageGear Multipage Support No

ImageGear Alpha Channel Support Read only

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, MAC, .NET, .NET64

ImageGear Supported Versions:

Version 1.0 (1996)
Version 1.1 (1997)
Version 2.0 (1998)
Version 2.1 (1998)
Version 2.2 (2002)

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
Grayscale: 1, 4, 8, 12, 16, 32 bpp;
RGB: 24, 36, 48 bpp;
Lab: 24, 36, 48 bpp;
CMYK: 32, 48, 64 bpp;
RGB + Alpha: 8, 12, 16 bpc;
RGB + Alpha + Extra: 8, 12, 16 bpc;
Lab + Extra: 8, 12, 16 bpc;
CMYK + Extra: 8, 12, 16 bpc.

IG_COMPRESSION_PACKED_BITS:
Indexed RGB: 1, 4, 8 bpp;
Grayscale: 1, 4, 8, 12, 16, 32 bpp;
RGB: 24, 36, 48 bpp;
Lab: 24, 36, 48 bpp;
CMYK: 32, 48, 64 bpp;
RGB + Alpha: 8, 12, 16 bpc;
RGB + Alpha + Extra: 8, 12, 16 bpc;
Lab + Extra: 8, 12, 16 bpc;
CMYK + Extra: 8, 12, 16 bpc.

IG_COMPRESSION_LZW:
Indexed RGB: 1, 4, 8 bpp;
Grayscale: 1, 4, 8, 12, 16, 32 bpp;
RGB: 24, 36, 48 bpp;
Lab: 24, 36, 48 bpp;
CMYK: 32, 48, 64 bpp;
RGB + Alpha: 8, 12, 16 bpc;

ImageGear Professional v18 for Mac | 322

RGB + Alpha + Extra: 8, 12, 16 bpc;
Lab + Extra: 8, 12, 16 bpc;
CMYK + Extra: 8, 12, 16 bpc.

IG_COMPRESSION_DEFLATE:
Indexed RGB: 1, 4, 8 bpp;
Grayscale: 1, 4, 8, 12, 16, 32 bpp;
RGB: 24, 36, 48 bpp;
Lab: 24, 36, 48 bpp;
CMYK: 32, 48, 64 bpp;
RGB + Alpha: 8, 12, 16 bpc;
RGB + Alpha + Extra: 8, 12, 16 bpc;
Lab + Extra: 8, 12, 16 bpc;
CMYK + Extra: 8, 12, 16 bpc.

IG_COMPRESSION_HUFFMAN:
Indexed RGB: 1 bpp;
Grayscale: 1 bpp;

IG_COMPRESSION_CCITT_G3:
Indexed RGB: 1 bpp;
Grayscale: 1 bpp;

IG_COMPRESSION_CCITT_G4:
Indexed RGB: 1 bpp;
Grayscale: 1 bpp;

IG_COMPRESSION_CCITT_G32D:
Indexed RGB: 1 bpp;
Grayscale: 1 bpp;

IG_COMPRESSION_JPEG (Lossy):
Grayscale: 8, 12 bpp;
RGB: 24, 36 bpp;

IG_COMPRESSION_JPEG (Lossless):
Grayscale: 8, 16 bpp;
RGB: 24 bpp;

ImageGear Write Support:

IG_COMPRESSION_NONE:
Grayscale: 8, 12, 16 bpp;
RGB: 24, 36, 48 bpp;
Lab: 24, 36, 48 bpp;
CMYK: 32, 48, 64 bpp.

IG_COMPRESSION_PACKED_BITS:
Grayscale: 8, 12, 16 bpp;
RGB: 24, 36, 48 bpp;
Lab: 24, 36, 48 bpp;
CMYK: 32, 48, 64 bpp.

IG_COMPRESSION_LZW:
Grayscale: 8, 12, 16 bpp;
RGB: 24, 36, 48 bpp;
Lab: 24, 36, 48 bpp;
CMYK: 32, 48, 64 bpp.

IG_COMPRESSION_DEFLATE:
Grayscale: 8, 12, 16 bpp;
RGB: 24, 36, 48 bpp;
Lab: 24, 36, 48 bpp;
CMYK: 32, 48, 64 bpp.

IG_COMPRESSION_JPEG (Lossy):
Grayscale: 8, 12 bpp;

ImageGear Professional v18 for Mac | 323

RGB: 24, 36 bpp;
IG_COMPRESSION_JPEG (Lossless):

Grayscale: 8, 16 bpp;
RGB: 24 bpp;

ImageGear Filter Control Parameters:

Filter Control
Parameter

Type Default
Value

Available
Values

Description

SAVE_THUMBNAIL AT_BOOL TRUE TRUE,
FALSE

If TRUE the thumbnail will be saved with image.

THUMBNAIL_WIDTH UINT 160 Any
positive
value

Gets/Sets thumbnail width. Actual dimensions of the
saved thumbnail will be adjusted to fit into rectangle
specified by the THUMBNAIL_WIDTH and
THUMBNAIL_HEIGHT parameters, preserving the ratio of
image width and height.

THUMBNAIL_HEIGHT UINT 120 Any
positive
value

Gets/Sets thumbnail height. Actual dimensions of the
saved thumbnail will be adjusted to fit into rectangle
specified by the THUMBNAIL_WIDTH and
THUMBNAIL_HEIGHT parameters, preserving the ratio of
image width and height.

Comments

The EXIF file format is based on existing formats. There are two kind of EXIF format: compressed and uncompressed.
Compressed EXIF is recorded in JPEG format with EXIF header saved in APP1 and APP2 marker segments. The APP2
segment is used when recording FlashPix extensions.

Uncompressed EXIF is recorded in TIFF Rev. 6.0 formats with two pages - the first is the main image, the second is a
thumbnail (if it present). The EXIF header data is stored in TIFF 6.0 format for both compressed and uncompressed
EXIF and include EXIF information (that is necessary) and GPS information (that is optional). Information specific to
the camera system and not defined in TIFF is stored in private tags registered for EXIF. ImageGear EXIF support
allows you to retrieve this information and send it to an application level and vice versa.

The EXIF image file specification also specifies the method for recording thumbnails. The reason for using the TIFF
Rev. 6.0 tag format in the compressed file APP1 segment is to facilitate exchange of attribute data between EXIF
compressed and uncompressed files.

Although the standard only allows uncompressed and JPEG-compressed EXIF images, and RGB color space, there are
EXIF images that use other compressions and color spaces. In a sense, these images can be considered as JPEGs or
TIFFs with additional EXIF metadata. ImageGear supports reading of such non-standard images, as well as writing of
EXIF images with some non-standard compressions and color spaces.

According to specification, EXIF-TIFF is a single-page format. However, some applications produce "multipage
EXIF-TIFF" files, which are actually multipage TIFF files with EXIF metadata attached to each page. If you need
to read such files, consider disabling auto-detection of EXIF-TIFF format, using IG_fltr_detect_set. ImageGear
will then read such files as TIFF, ignoring EXIF metadata.

References Used

Digital Still Camera Image File Format Standard (Exif) Version 2.0, Nov 1997, Japan Electronic Industry Development
Association.

Digital Still Camera Image File Format Standard (Exif) Version 2.1, June 1998, Japan Electronic Industry Development
Association.

ImageGear Professional v18 for Mac | 324

1.2.6.7.18 GEM

Full Name GEM Raster

Format ID IG_FORMAT_GEM = 13

File Extension(s) *.gem

Data Type Raster image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

N/A

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading

ImageGear Read Support:

IG_COMPRESSION_RLE - 1, 4, 8 bpp

ImageGear Write Support:

None

ImageGear Filter Control Parameters:

None

Comments:

A deal with the creators of Ventura Publisher made this a significant format in the desktop publishing arena. It was also
distributed by PC systems manufacturers and was the native bitmap format of the Atari ST system.

The structure of a GEM Raster image file begins with a fixed-length header and is followed by the bitmap data.

The data fields of the header include the version number (always 1), image width (in pixels), and image height (in scan
lines). A field named "Headerlength" contains a value of either 8 or 9, where 9 indicates that an optional field appears at
the end, called "BitImageFlag". This field is directly tied with a "NumberOfPlanes" field. If "NumberOfPlanes" is greater
than 1, the BitImageFlag indicates whether the image is color or grayscale. (BitImageFlag = 0 = color, BitImageFlag = 1
= grayscale).

Two fields in the header that are a little unusual among bitmap formats are the width and height of the pixels (in
microns), and a field called "PatternLength". PatternLength is the length of any pattern that will be decoded. It is used
by the RLE compression scheme, which assigns one of four different kind of codes to store each of the four different
types of repeat data in the image. The "pattern code" indicates that a pattern is available. The pattern and repeat count
are decoded while reading the file.

For more on RLE compression, see the ImageGear Supported Compressions Reference section.

References Used

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats. Sebastopol, CA: O'Reilly & Associates,
Inc., 1994.

ImageGear Professional v18 for Mac | 325

1.2.6.7.19 GIF

Full Name CompuServe Graphics Interchange Format (GIF)

Format ID IG_FORMAT_GIF = 14

File Extension(s) *.gif

Data Type Raster image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support Yes

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

To support the GIF format, attach the ImageGear LZW Component to Core ImageGear.

ImageGear Supported Versions:

Version 89a, 1989: added ability to store both text and graphics in same file.
Version 87a, 1987: first version; still read by major applications supporting GIF.

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing
IG_FLTR_MPAGEREADPSUPPORT - multi-page file reading
IG_FLTR_MPAGEWRITEPSUPPORT - multi-page file writing

ImageGear Read Support:

IG_COMPRESSION_LZW - Indexed RGB: 1, 4, 8 bpp

ImageGear Write Support:

IG_COMPRESSION_LZW - Indexed RGB: 1, 4, 8 bpp

ImageGear Filter Control Parameters:

Filter Control
Parameter

Type Default
Value

Available
Values

Description

VERSION INT 89 87; 89 Sets version of GIF file to be saved.

INTERLACE AT_BOOL FALSE TRUE, FALSE Sets GIF interlace mode to be used on
saving.

Comments

This is a very popular format for storing graphics images on Web pages. It is also supported by most applications that
handle graphical image data.

Unisys, the owner of the LZW compression used on all GIF files, declared at the end of 1995 that it will charge a
royalty fee to all developers wishing to use this compression scheme. (This drove many developers to search for a
replacement file format. A new file format called PNG ("Ping") was created. The PNG format is supported by
ImageGear; see the PNG section for more information.) However, worldwide GIF-related patents expired in 2004 and
the format is once again free to use without the need to pay royalties to Unisys.

While the GIF format is designed to store multiple images, few GIF format viewers support this. For this reason, it is
not advisable to store more than one image in a GIF file.

The GIF layout is fairly complex; it can include several categories of "blocks" under which subcategories of blocks may
occur.

For both the 89a and 87a versions, the first three blocks are the header, the Logical Source Descriptor, and the

ImageGear Professional v18 for Mac | 326

Global Color Table. The header simply identifies the file as a GIF and gives the version number. The Logical Source
Descriptor is very similar to a header, and is sometimes stored within the header. It contains information about the
display screen and color table.

GIFs contain two kinds of color tables: a "Global Color Table" and "Local Color Table." The Global Color Table is used
as a table for the pixel values of all images contained within the GIF file. Optionally, the Local Color Table block that is
provided for each image can contain data specific to an individual image.

In addition to a local color table, each image is associated with another block of data, the Local Image Descriptor,
provides the size and location of the image, and data about its color table.

GIF89a is equipped with four new types of blocks called "Control Extensions". The most significant group of these are
the "Graphics Control Extension Blocks" that enable the simultaneous storing and displaying of textual and graphical
data, including multiple images, resulting in a "multimedia presentation". The functions provided by these blocks
include setting the transparency or opacity of the images, restoring or deleting images, and overlaying captions (that
are not part of the actual bitmap) on images.

GIF image data is always stored in LZW-compressed form. The data may also be interlaced. Interlacing helps the
appearance of an image as it displays while being decompressed, so that it "fades in". In a non-interlaced file, the
presentation of the image data begins with row 1 and works downward to the last row of data. This method of display
does not allow a quick preview of the whole image. When the data is interlaced, the lines are saved and displayed out
of sequence. Every fourth row is displayed first and then filled in with every remaining fourth row, until all of the lines
are displayed. This allows the eye to perceive the basic subject of the whole image before it is completely displayed.

See Also:

GIF Non-image Data Structure

References Used

Brown, C. Wayne, and Barry J. Shepherd. Graphics File Formats: Reference and Guide. Greenwich, CT.: Manning
Publications, 1992.

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats. Sebastopol, CA: O'Reilly &
Associates, Inc., 1994.

ImageGear Professional v18 for Mac | 327

1.2.6.7.20 Group 3

Full Name Group 3 (G3)

Format ID IG_FORMAT_G3 = 11

File Extension(s) *.raw

Data Type Raw image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support Win32, Win64, Unix, Java, Unix64

ImageGear Supported Versions:

N/A

ImageGear Supported Features:

IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_CCITT_G3 - Indexed RGB: 1 bpp

ImageGear Write Support:

IG_COMPRESSION_CCITT_G3 - Indexed RGB: 1 bpp

ImageGear Filter Control Parameters:

Filter Control
Parameter

Type Default
Value

Available
Values

Description

WIDTH DIMENSION 0 Any positive
value

Image width

HEIGHT DIMENSION 0 Any positive
value

Image height

FILL_ORDER UINT 1 FillOrder = 2, for inverse bit order in byte

PACKED AT_BOOL FALSE TRUE, FALSE Currently not in use. Reserved for the
future.

K_FACTOR UINT 2 K - factor for 2D coding

Comments:

ImageGear does not try to automatically detect raw Group3 data. Use one of the raw file loading functions, or specify
format explicitly. Please see the sections Loading Images and Saving Images.

ImageGear Professional v18 for Mac | 328

1.2.6.7.21 Group 3 2D

Full Name Group 3 2D

Format ID IG_FORMAT_G32D = 53

File Extension(s) *.raw

Data Type Raw image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support Win32, Win64, Unix, Java, Unix64

ImageGear Supported Versions:

N/A

ImageGear Supported Features:

IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_CCITT_G32D - Indexed RGB: 1 bpp

ImageGear Write Support:

IG_COMPRESSION_CCITT_G32D - Indexed RGB: 1 bpp

ImageGear Filter Control Parameters:

Filter Control
Parameter

Type Default
Value

Available
Values

Description

WIDTH DIMENSION 0 Any positive
value

Image width

HEIGHT DIMENSION 0 Any positive
value

Image height

FILL_ORDER UINT 1 FillOrder = 2, for inverse bit order in byte

PACKED AT_BOOL FALSE TRUE, FALSE Currently not in use. Reserved for the
future.

K_FACTOR UINT 2 K - factor for 2D coding

Comments:

ImageGear does not try to automatically detect raw Group3 data. Use one of the raw file loading functions, or specify
format explicitly. Please see the sections Loading Images and Saving Images.

ImageGear Professional v18 for Mac | 329

1.2.6.7.22 Group 4

Full Name Group 4

Format ID IG_FORMAT_G4 = 12

File Extension(s) *.raw

Data Type Raw image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support Win32, Win64, Unix, Java, Unix64

ImageGear Supported Versions:

N/A

ImageGear Supported Features:

IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_CCITT_G4 - Indexed RGB: 1 bpp

ImageGear Write Support:

IG_COMPRESSION_CCITT_G4 - Indexed RGB: 1 bpp

ImageGear Filter Control Parameters:

Filter Control
Parameter

Type Default
Value

Available
Values

Description

WIDTH DIMENSION 0 Any positive
value

Image width

HEIGHT DIMENSION 0 Any positive
value

Image height

FILL_ORDER UINT 1 FillOrder = 2, for inverse bit order in byte

PACKED AT_BOOL FALSE TRUE, FALSE Currently not in use. Reserved for the
future.

K_FACTOR UINT 2 K - factor for 2D coding

Comments

ImageGear does not try to automatically detect raw Group3 data. Use one of the raw file loading functions, or specify
format explicitly. Please see the sections Loading Images and Saving Images.

ImageGear Professional v18 for Mac | 330

1.2.6.7.23 IBM AFP

Full Name IBM AFP

Format ID IG_FORMAT_AFP = 106

File Extension(s) *.afp

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support Yes

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, MAC

ImageGear Supported Versions:

N/A

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_MPAGEREADPSUPPORT - multi-page file reading
IG_FLTR_PAGEREADSUPPORT - single page file reading

ImageGear Read Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp

IG_COMPRESSION_CCITT_G3:
Indexed RGB: 1 bpp

IG_COMPRESSION_CCITT_G4:
Indexed RGB: 1 bpp

IG_COMPRESSION_IBM_MMR:
Indexed RGB: 1 bpp

IG_COMPRESSION_ABIC_BW:
Indexed RGB: 1 bpp

IG_COMPRESSION_ABIC_GRAY:
Indexed RGB: 4 bpp

IG_COMPRESSION_JPEG:
Grayscale: 8 bpp;
RGB: 24 bpp

ImageGear Write Support:

None

ImageGear Filter Control Parameters:

Filter Control
Parameter

Type Default
Value

Available
Values

Description

STITCH_TILES AT_BOOL FALSE TRUE,
FALSE

Set to TRUE to enable automatic tile stitching during
image loading.

Comments:

The AFP Document File is the file, coded in IBM's MO:DCA format (Mixed Object Document Content Architecture). All
MO:DCA objects contained in the AFP Document File include the following:

ImageGear Professional v18 for Mac | 331

Document Structure Objects
Resource Objects

Font Objects
Overlay Objects
Page Segment Objects

Graphics Objects
IM Image Objects
Image Objects (IOCA)
Graphics Objects (GOCA)

Text Objects
Bar Code Objects
Object Containers

"IM" raster image objects are not supported by ImageGear. "IM" objects are legacy objects from an older
version of AFP/MO:DCA specification. They have been superseded with IOCA objects.

ImageGear Professional v18 for Mac | 332

1.2.6.7.24 IBM IOCA

Full Name IBM IOCA (Image Object Content Architecture)

Format ID IG_FORMAT_ICA =16

File Extension(s) *.ica, *.mod

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support Yes

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

N/A

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_MPAGEREADPSUPPORT - multi-page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing
IG_FLTR_PAGEREADSUPPORT - single page file reading

ImageGear Read Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp

IG_COMPRESSION_CCITT_G3:
Indexed RGB: 1 bpp

IG_COMPRESSION_CCITT_G4:
Indexed RGB: 1 bpp

IG_COMPRESSION_IBM_MMR:
Indexed RGB: 1 bpp

IG_COMPRESSION_ABIC_BW:
Indexed RGB: 1 bpp

IG_COMPRESSION_ABIC_GRAY:
Indexed RGB: 4bpp

IG_COMPRESSION_JPEG:
Grayscale: 8 bpp;
RGB: 24 bpp

ImageGear Write Support:

IG_COMPRESSION_CCITT_G3:
Indexed RGB: 1 bpp

IG_COMPRESSION_CCITT_G4:
Indexed RGB: 1 bpp

IG_COMPRESSION_IBM_MMR:
Indexed RGB: 1 bpp

ImageGear Filter Control Parameters:

Filter Control
Parameter

Type Default
Value

Available
Values

Description

STITCH_TILES AT_BOOL FALSE TRUE, FALSE Set to TRUE to enable automatic tile stitching

ImageGear Professional v18 for Mac | 333

during image loading.

Comments:

IOCA files are most often used for document storage. They are not so unusual from most file formats, except for their
naming conventions, which tend to be IBM-specific.

The general structure of an IOCA image file includes a "beginning segment", an "end segment", a header component
called "Image Data Parameters", a palette, and the actual image data. Most IOCA images (less than 24-bit) contain a
palette. The elements of the bitmap image are referred to as Image Data Elements (IDEs), that are called pixels by
most other formats. The "Object Content" refers to the combination of the header and the image data.

IBM uses fields in the header called "self-defining fields". They each contain a type code, the length of the parameter,
and then the actual parameter data. They include information as resolution, size, encoding scheme, and bit depth.

There are many optional parameters. Subsets of IOCA parameters are referred to as "function sets" and define
different flavors of the IOCA, one being the MO:DCA, also supported by ImageGear. Examples of optional parameters
include a tiling parameter, if the image is tiled, and a Band Image parameter, which signifies that the image is saved
in "bands" ("bit planes" in other formats).

References Used

Image Object Content Architecture Reference, 2d ed., copyright International Business Machines Corporation, August
1991.

ImageGear Professional v18 for Mac | 334

1.2.6.7.25 IBM MO:DCA

Full Name IBM MO:DCA (Mixed Object Document Content Architecture)

Format ID IG_FORMAT_MOD = 26

File Extension(s) *.mod, *.ica

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support Yes

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, MAC, .NET, .NET64

ImageGear Supported Versions:

N/A

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_MPAGEREADPSUPPORT - multi-page file reading
IG_FLTR_MPAGEWRITEPSUPPORT - multi-page file writing
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing
IG_FLTR_PAGEREADSUPPORT - single page file reading

ImageGear Read Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp

IG_COMPRESSION_CCITT_G3:
Indexed RGB: 1 bpp

IG_COMPRESSION_CCITT_G4:
Indexed RGB: 1 bpp

IG_COMPRESSION_IBM_MMR:
Indexed RGB: 1 bpp

IG_COMPRESSION_ABIC_BW:
Indexed RGB: 1 bpp

IG_COMPRESSION_ABIC_GRAY:
Indexed RGB: 4bpp

IG_COMPRESSION_JPEG:
Grayscale: 8 bpp;
RGB: 24 bpp

ImageGear Write Support:

IG_COMPRESSION_CCITT_G3:
Indexed RGB: 1 bpp

IG_COMPRESSION_CCITT_G4:
Indexed RGB: 1 bpp

IG_COMPRESSION_IBM_MMR:
Indexed RGB: 1 bpp

ImageGear Filter Control Parameters:

Filter Control
Parameter

Type Default
Value

Available
Values

Description

ImageGear Professional v18 for Mac | 335

STITCH_TILES AT_BOOL FALSE TRUE, FALSE Set to TRUE to enable automatic tile stitching
during image loading.

Comments:

The MO:DCA header allows the storage of multiple IOCA images in one file. The MO:DCA format is an IOCA
"wrapper". It is considered by IBM to be a "data stream controlling environment" for a group of IOCA images.

There are many optional parameters. Subsets of IOCA parameters are referred to as "function sets" and define
different flavors of the IOCA, for example, the MO:DCA. The MO:DCA incorporates function sets "10" and "11".

Please see the description of IBM IOCA for further description.

References Used

Image Object Content Architecture Reference, 2d ed., copyright International Business Machines Corporation, August
1991.

ImageGear Professional v18 for Mac | 336

1.2.6.7.26 ICO

Full Name ICO (Windows icon)

Format ID IG_FORMAT_ICO = 17

File Extension(s) *.ico

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support Yes

ImageGear Alpha Channel Support Single alpha channel for read/write (see Comments).

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

Windows 3.1
Windows NT/95

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_MPAGEREADPSUPPORT - multi-page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing
IG_FLTR_PAGEREADSUPPORT - single page file reading

ImageGear Read Support:

IG_COMPRESSION_NONE:
Indexed + Extra: 1+1, 4+1, 8+1 bpp;
RGB + Alpha: 32 bpp

IG_COMPRESSION_RLE:
Indexed + Extra: 4+1, 8+1 bpp

ImageGear Write Support:

IG_COMPRESSION_NONE:
Indexed + Extra: 1+1, 4+1, 8+1 bpp;
RGB + Alpha: 32 bpp

ImageGear Filter Control Parameters:

Filter Control
Parameter

Type Default
Value

Available
Values

Description

READ_AS_RGBA AT_BOOL FALSE TRUE, FALSE If TRUE, ImageGear reads CUR format as RGBA (RGB
with alpha channel).

Comments:

More than one representation of the icon bitmap is stored in order to offer a choice of icons; the version most
compatible to the output device is used. Support for read-write transparency masks has been added to the ICO filter.
Transparency masks are placed into an alpha channel when the image is created. These masks can subsequently be
set and applied to the main image.

The structure of an ICO file consists of four data sections: the header, the Resource Descriptor, and two
representations of the image data per each icon (the color bitmap and the 1-bit masking bitmap).

The header identifies the file as an ICO and stores the number of icon images that are stored in the file.

The Resource Descriptor stores the image width and height, the number of colors used, and the offset from the
beginning of the file to the image data.

ImageGear Professional v18 for Mac | 337

The 1-bit masking bitmap defines the transparent portion of the bitmap.

READ_AS_RGBA control parameter determines how ImageGear reads the 1-bit AND masks. If READ_AS_RGBA is
FALSE, ImageGear reads AND mask into "Extra" channel. This mode preserves unchanged pixel values from the file.
However, in this mode ImageGear displays only the XOR mask and ignores AND mask (Extra channel) during display,
i.e. display is not transparent. If READ_AS_RGBA is TRUE, ImageGear reads CUR files as 32 bpp RGB + Alpha. This
allows transparent display.

References Used

Brown, C. Wayne, and Barry J. Shepherd. Graphics File Formats: Reference and Guide. Greenwich, CT.: Manning
Publications, 1992.

ImageGear Professional v18 for Mac | 338

1.2.6.7.27 IFF

Full Name Interchange File Format

Format ID IG_FORMAT_IFF = 18

File Extension(s) *.iff

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support Yes

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

Version 1, 1985

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_MPAGEREADPSUPPORT - multi-page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing
IG_FLTR_PAGEREADSUPPORT - single page file reading

ImageGear Read Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp

IG_COMPRESSION_RLE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp

ImageGear Write Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp

IG_COMPRESSION_RLE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp

ImageGear Filter Control Parameters:

None

Comments:

This type of file format is referred to as a "wrapper" because it can include any type of data that is encoded in any
manner.

The basic organization of the IFF file format utilizes storage structures known as "chunks". A chunk is a block of data
that contains its own header (that identifies the chunk size and type). This makes it easy for an IFF viewer to identify
chunks and to skip over the ones that are not necessary.

The Header Chunk contains 17 fields, including the size of the header chunk, the identification of the chunk as a
header, the size and origin of the image, data encoding (yes or no), and aspect ratio.

A "CMG Chunk" may follow, containing data specific to Amiga display hardware.

A "CMAP Chunk" contains the RGB palette for the image.

ImageGear Professional v18 for Mac | 339

The "Body Chunk" (also called the ILBM or "interleaved bitmap"), is the image data itself. It is stored in an
"interleaved" format, by bit plane. Interleaving allows for data with different resolutions to be neatly stored together.
The data may be uncompressed or compressed using an RLE scheme. See RLE section for more information.

References Used

Brown, C. Wayne, and Barry J. Shepherd. Graphics File Formats: Reference and Guide. Greenwich, CT.: Manning
Publications, 1992.

Kay, David C. and John R. Levine. Graphics File Formats. Windcrest Books, 1992.

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats. Sebastopol, CA: O'Reilly &
Associates, Inc., 1994.

ImageGear Professional v18 for Mac | 340

1.2.6.7.28 IMG

Full Name Xerox 9700 graphic image (IMG)

Format ID IG_FORMAT_XRX = 46

File Extension(s) *.img

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

Version 1.0

Version 2.0

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading

ImageGear Read Support:

IG_COMPRESSION_NONE - Indexed RGB: 1, 8 bpp

ImageGear Write Support:

None

ImageGear Filter Control Parameters:

None

Comments:

The IMG header contains the width, height and resolution of the image. Following the header is compressed data. The
sample values of a binary image are compressed and then encoded into a sequence of bits. Compression is achieved by
predicting a pixel value based on pixel values that have already been computed. For example, the predicted value of a
pixel may be that of the corresponding pixel on the previous scan line. Up to fifteen different compression techniques are
used, each designed to remove redundancy from a certain kind of image - text characters, line art, and halftones of
various screen frequencies. The algorithm adapts to the properties of the image by selecting the technique that will
perform the best.

References Used

Xerox System Integration Standard. Raster Encoding Standard. Xerox, XNSS 178506, June 1990.

ImageGear Professional v18 for Mac | 341

1.2.6.7.29 IMR

Full Name IMRS-Raster image

Format ID IG_FORMAT_IMR = 59

File Extension(s) *.ima

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

N/A

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading

ImageGear Read Support:

IG_COMPRESSION_CCITT_G4 - Indexed RGB: 1 bpp

ImageGear Write Support:

None

ImageGear Filter Control Parameters:

None

ImageGear Professional v18 for Mac | 342

1.2.6.7.30 IMT

Full Name IMNET (Medical Image Format)

Format ID IG_FORMAT_IMT = 20

File Extension(s) *.imt

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

N/A

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_CCITT_G3 - Indexed RGB: 1 bpp
IG_COMPRESSION_CCITT_G4 - Indexed RGB: 1 bpp

ImageGear Write Support:

IG_COMPRESSION_CCITT_G4 - Indexed RGB: 1 bpp

The width of an image being saved must be a multiple of 8.

ImageGear Filter Control Parameters:

None

ImageGear Professional v18 for Mac | 343

1.2.6.7.31 JPEG

Full Name JPEG File Interchange Format

Format ID IG_FORMAT_JPG = 21

File Extension(s) *.ipg, *jpeg

Data Type Raster Image

Data Encoding Binary

Color Profile Support Read, Write

ImageGear Multipage Support No

ImageGear Alpha Channel Support Read/write

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC, Java

ImageGear Supported Versions:

Version 1.01 - 1991
Version 1.02 - Added ability for thumbnails to be color-mapped and JPEG compressed.

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_JPEG (Lossy):
Grayscale: 8, 12 bpp;
RGB: 24, 36 bpp;
CMYK: 32 bpp;
RGB + Alpha: 32 bpp

IG_COMPRESSION_JPEG (Lossless):
Grayscale: 8, 16 bpp;
RGB: 24, 48 bpp;
CMYK: 32 bpp;
RGB + Alpha: 32 bpp

IG_COMPRESSION_JPEG (Progressive JPEG):
Grayscale: 8, 12 bpp;
RGB: 24 bpp;
CMYK: 32 bpp;
RGB + Alpha: 32 bpp

ImageGear Write Support:

IG_COMPRESSION_JPEG (Lossy):
Grayscale: 8, 12 bpp;
RGB: 24, 36 bpp;
RGB + Alpha: 32 bpp1
CMYK: 32 bpp2

IG_COMPRESSION_JPEG (Lossless):
Grayscale: 8, 16 bpp;
RGB: 24 bpp;

IG_COMPRESSION_JPEG (Progressive JPEG):
Grayscale: 8, 12 bpp;
RGB: 24, 36 bpp

1. RGBA saving is disabled by default. Set SAVE_ALLOW_RGBA control parameter to TRUE to enable it.
2. CMYK saving is enabled by default. You can disable it by setting SAVE_ALLOW_CMYK control parameter to FALSE.

ImageGear Filter Control Parameters:

Filter Control Parameter Type Default Value Available Values Description

CALLER_ID Long 21 Internal parameter.
It will be removed
from public API in a

ImageGear Professional v18 for Mac | 344

future release.

DECIMATION_TYPE WORD IG_JPG_DCM_2x2_1x1_1x1 See the "JPEG
Decimation" section
below.

Get/Set decimation
value. For all
available values see
the "JPEG
Decimation" section
below.

ENTROPY_OPTIMIZE AT_BOOL FALSE TRUE, FALSE Get/Set entropy
optimization flag.
See the "JPEG
Entropy
Optimization" section
below.

KEEP_ALPHA AT_BOOL FALSE TRUE, FALSE This parameter
gets/sets alpha
channel flag. If TRUE
then alpha channel
will be saved with
original image (if it is
present).

LOAD_SAVE_DCT AT_BOOL FALSE TRUE, FALSE Internal parameter.
It will be removed
from public API in a
future release.

LOAD_SCALE_DENOM UINT 1 1, 2, 4, 8 If this parameter is
set to any other than
default value,
ImageGear loads
reduced version of
the image, width and
height of which are
scaled by
1/load_scale_denom.
This mode can be
used for image
preview, especially
for those images that
do not have
embedded
thumbnails, or where
embedded
thumbnails are
smaller than desired.
This mode allows
you to make loading
process 2-4 times
faster.*

LOAD_SCANS UINT 0 Gets/Sets number of
scans to load from
Progressive JPEG
image. See the
"Progressive JPEG
Scans" section below
 for details.

OLD_LOSSLESS_READ AT_BOOL FALSE TRUE, FALSE

PREDICTOR AT_MODE 1 Gets/Sets predictor
for lossless JPEG.
See the "Lossless
JPEG Predictor
Settings" section
below for details.

QUALITY INT 70 Possible value in range
[1,100]

Gets/Sets quality
value for Lossy and
Progressive JPEG
compression. See
the "JPEG Quality"
section below for
details.

SAVE_ALLOW_CMYK AT_BOOL TRUE TRUE, FALSE Set to TRUE (default)
to allow saving JPEG
CMYK images. Set to
FALSE to save CMYK

ImageGear Professional v18 for Mac | 345

images to JPEG as
RGB.

SAVE_ALLOW_LOSSY12BPCSAVING AT_BOOL TRUE TRUE, FALSE Controls the saving
to Lossy JPEG
format. If TRUE,
saving of 12 bits per
channel Lossy JPEG
is allowed. This is the
maximum channel
depth supported by
Lossy JPEG format. If
source image's depth
is more than 8 bits
per channel, it will
be saved to a 12 bpc
JPEG. For example,
48-bit RGB image
will be saved to 36-
bit JPEG. Note that
many viewers do not
support 12 bpc JPEG.
If FALSE, all images
are saved to 8 bpc
JPEG, regardless of
their channel depth.

SAVE_ALLOW_RGBA AT_BOOL FALSE TRUE, FALSE Set this parameter to
TRUE to enable
RGBA JPEG saving.
Note, that there is
no official standard
for RGBA JPEG. This
format is recognized
as CMYK rather than
RGBA by most third-
party software.

SAVE_JFIF_IN_EXIF AT_BOOL FALSE TRUE, FALSE Internal parameter.
It will be removed
from public API in a
future release.

SAVE_THUMBNAIL AT_BOOL FALSE FALSE, TRUE Gets/Sets thumbnail
flag. If TRUE then
thumbnail will be
added to image. See
the "JPEG
Decimation" section
below for details.

SAVE_TYPE AT_MODE IG_JPG_LOSSY IG_JPG_LOSSY,
IG_JPG_LOSSLESS,
IG_JPG_PROGRESSIVE

Get/Set type for
output JPEG format.
See the "Loading and
Saving JPEG-
Compressed Images"
section below for
details.

SCAN_INFO VOID|LP { { 0, 0, 7, 1, 0 }, { 1, 5, 7, 1, 1 }, {
1, 5, 7, 1, 2 }, { 1, 5, 7, 1, 3 }, { 0,
0, 0, 0, 0 }, { 6, 63,7, 1, 1 }, { 6,
63,7, 1, 2 }, { 6, 63,7, 1, 3 }, { 1,
63,0, 0, 1 }, { 1, 63,0, 0, 2 }, { 1,
63,0, 0, 3 },};

Gets/Sets scan
configuration for
Progressive JPEG
format. See the
"Progressive JPEG
Scans" section
below for details.

SCAN_INFO_COUNT UINT sizeof(scan_info)/sizeof(scan_info[0]); Gets/Sets length of
array for previous
parameter. See the
"Progressive JPEG
Scans" section
below for details.

THUMBNAIL_COMPRESSED AT_BOOL FALSE FALSE, TRUE If TRUE then
thumbnail will be
compressed.

THUMBNAIL_HEIGHT UINT 16 Gets/Sets thumbnail
height.

THUMBNAIL_WIDTH UINT 16 Gets/Sets thumbnail

ImageGear Professional v18 for Mac | 346

width.

Comments:

JPEG is normally associated with the JPEG compression scheme, but it is also implemented into the JFIF file format. This format was
developed to store JPEG-encoded data, and to exchange it between applications or operating systems that are normally incompatible.

The JPEG compression scheme was developed by the Joint Photographic Experts Group (created by the joining of a subgroup of
the International Standards Organizations, called PEG (Photographic Experts Group) and a subgroup of the CCITT). Their
common goal was to produce a standard for the transmission of graphics image data over networks and through color facsimile
systems.

The header of the JFIF contains the version number, the image dots per inch (DPI), or dots per centimeter, and an optional thumbnail
(miniature) RGB representation of the main image. Version 1.02 handles thumbnails differently by storing them separately, rather than
in the identification marker of the header.

The raw JPEG data is surrounded by two markers, an "SOI" (start of image) marker, and an "EOI" (end of image) marker. See the
section entitled Compression Schemes for more about JPEG compression.

JFIF is considered a non-proprietary file format. Many proprietary file formats contain JPEG data, incorporating their own application-
specific data structures. Other non-proprietary formats that use JPEG-encoded data: TIFF file format, version 6.0.

Loading and Saving JPEG-Compressed Images

ImageGear supports the reading and writing of three types of JPEG compression: baseline JPEG (Lossy), Progressive JPEG, and
Lossless JPEG. When you load a JPEG-compressed file, ImageGear detects the type of JPEG compression and decompress the image
automatically. But if you want to save an image with a JPEG compression scheme other than baseline JPEG, you must use the
"SAVE_TYPE" parameter to specify the type of JPEG compression.

Use these constants for "SAVE_TYPE" control parameter:

IG_JPG_LOSSY- Lossy JPEG compression.
IG_JPG_LOSSLESS - Lossless JPEG compression
IG_JPG_PROGRESSIVE - Progressive JPEG compression.

JPEG Decimation

This table lists all possible decimation values:

IG_JPG_DCM_1x1_1x1_1x1 IG_JPG_DCM_2x1_1x1_1x1

IG_JPG_DCM_1x2_1x1_1x1 IG_JPG_DCM_2x2_1x1_1x1

IG_JPG_DCM_2x2_2x1_2x1 IG_JPG_DCM_4x2_1x1_1x1

IG_JPG_DCM_2x4_1x1_1x1 IG_JPG_DCM_4x1_1x1_1x1

IG_JPG_DCM_1x4_1x1_1x1 IG_JPG_DCM_4x1_2x1_2x1

IG_JPG_DCM_1x4_1x2_1x2 IG_JPG_DCM_4x4_2x2_2x2

The format of these ImageGear decimation constants is:

IG_JPG_DCM_<H1>x<V1>_<H2>x<V2>_<H3>x<V3>,

where Hi, Vi = horizontal and vertical decimation values for the i-channel.

The following is a simple example of decimation. For a more detailed definition, please see the JPEG Specification.

A decimation setting of IG_JPG_DCM_4x2_1x1_1x1 would yield the following results:

As shown, 8 Y components in the source image have yielded one Cb and one Cr component. In general, this setting will reduce the
quality of the compression, unless the image has many continuous tone areas.

Maximum quality can be reached using a value of IG_JPG_DCM_1x1_1x1_1x1.
Maximum compression ratio can be reached with a value of IG_JPG_DCM_4x4_2x2_2x2.
The ImageGear default decimation value is: IG_JPG_DCM_2x2_1x1_1x1.

ImageGear Professional v18 for Mac | 347

JPEG Thumbnails

The JPEG format can store thumbnails, which are small representations of the original image. These images are stored in
uncompressed form and can significantly decrease your overall compression ratio. (Uncompressed thumbnails sometimes occupy more
space than the original JPEG image when compressed). Use this option carefully.

NOTE: The JPEG format does not allow the storage of "large" thumbnails. This is due to the marker segment length, which cannot be
greater than 65,536 bytes. The maximum size of a color thumbnail is about 100x200 or 200x100 pixels, and the maximum size of a
grayscale thumbnail is about 300x200 or 200x300 pixels.

Lossless JPEG Predictor Settings

The Lossless JPEG scheme is "predictive" in nature-it uses the values of surrounding pixels in addition to the value of the original pixel
to calculate a predictor value, which it then subtracts from the value of the original pixel. The resulting pixel value will be reduced such
that it can be compressed more than the original value. The higher the number of neighboring pixels used, the higher the compression
will be.

Regardless of the predictor value setting, the quality of the image will remain the same. The difference is that if you choose to optimize
for space by setting a high predictor value, you will have to give up some speed, as the decompression will take longer to perform.

ImageGear lets you set the predictor value using "PREDICTOR" control parameter. The ImageGear default for this setting is 1. The
allowed range is 1-7. The graphic below shows a predictor (x) and three reconstructed samples (a,b,c) immediately to the left,
immediately above, and diagonally to the left of the current sample

Lossless JPEG does not apply DCT for an image as per the Lossy JPEG compression. Instead, it uses a DPCM difference coding, which
can be carried out with any one of seven different prediction modes. Correspondingly, the IG_CONTROL_JPG_PREDICTOR control
parameter can be set to a value between 0 and 7. In Table 4, you will see what algorithm your setting of 1-7 will use, where Pr Px is
the predictor, and Ra, Rb, and Rc are the reconstructed samples:

Value JPEG DIS Prediction

0 no prediction

1 Px = Ra

2 Px = Rb

3 Px = Rc

4 Px = Ra + Rb - Rc

5 Px = Ra + ((Rb-Rc)/2)

6 Px = Rb + ((Ra-Rc)/2)

7 Px = (Ra + Rb)/2

JPEG Quality

The baseline JPEG specification calls for a quality setting. The lower the setting, the greater the number of original pixels lost, and
therefore the smaller the resulting compressed file will be. ImageGear lets you set the quality of compression with values of type INT
between 1-100, where 100 provides the highest retention of original pixel values. A setting of 100 does not mean that the image
includes 100% of all original pixel values. With Lossy JPEG, there is no such thing as "no loss". Control parameter for setting Lossy
JPEG quality is "QUALITY".

JPEG Entropy Optimization

Entropy optimization is relevant only to standard Lossy JPEG compression. If you set the parameter to TRUE, the default Huffman
tables are not used. Instead, optimal Huffman tables are created for each component. This can bring a higher compression ratio but it
takes more time for the compression.

Progressive JPEG Scans

A Progressive JPEG file stores more than just a copy of an image but rather several scans, each of which progressively adds a higher
level of quality. Each scan contains a portion of the original image data. The purpose of this is to allow a very quick display of an
image, beginning with a low-quality rendering and then increasing in quality as the remaining scans are added to it.

A Progressive JPEG image is stored as sequence of Huffman compressed blocks or "scans". Each scan contains the sequence of DCT
coefficients in the given range. However, the coefficients are not complete. Only some of their bits will be stored in each scan.

ImageGear defines the following structure for holding the necessary configuration to write a JPEG image:

ImageGear Professional v18 for Mac | 348

typedef struct tag AT_PJPEG_SCANINFO{
 LONG Ss;
 LONG Se;
 LONG HBit;
 LONG LBit;
 LONG ChannelID;
} AT_PJPEG_SCANINFO;
typedef AT_PJPEG_SCANINFO FAR* LPAT_PJPEG_SCANINFO;

The Ss and Se members of the AT_PJPEG_SCANINFO structure are used for spectral selection control coefficients:

LONG Ss;
LONG Se; - after applying DCT of 8x8 pixels we get 64

In Progressive coding, these coefficients are separated into different scans. Values Ss and Se specify the first and last number of the
DCT coefficients that must be included in a given scan. The possible values are Ss = Se = 0 or 1<= Ss<=Se<=63. Please note
following restrictions:

The first coefficient (DC) cannot be encoded with the other coefficient (AC) in the single scan. In other words, the DC and AC
coefficients cannot be in the same scan.
Only scans that code DC coefficients may include interleaved blocks from more than one component. All other scans shall have only
one component. For each component, a first DC scan shall precede any AC scans.

The HBit and LBit members of the AT_PJPEG_SCANINFO structure are used for successive approximation control:

 LONG HBit;
 LONG LBit;

If successive approximation is used, the DCT coefficients are reduced in precision by the point transform defined in the scan header.
This is equivalent to taking some binary digits from each coefficient. HBit and LBit specify the high and low range of bits to take. For
example, if HBit = 7 and LBit = 2, the scan will have the following original bits of the original DCT coefficient: 7,6,5,4,3,2.

The ChannelID member of the AT_PJPEG_SCANINFO structure is used to specify the number of components that will be encoded:

LONG ChannelID;

It can be set to one of the following values:

interleaved scan which will only have DC coefficients of all components. This setting can only be used if Ss=Se=0.
takes coefficients of first component.
takes coefficients of second component.
takes coefficients of third component.

There are two control parameters that operate with the AT_PJPEG_SCANINFO structure:

SCAN_INFO Points to array of AT_PJPEG_SCANINFO elements.

SCAN_INFO_COUNT Specifies the number of elements in this array. The nth entry of the SCAN_INFO array defines the
configuration for the nth scan of the Progressive image.

The LOAD_SCANS control parameter specifies how many scans should be loaded. For example, if it is set to 1, the JPEG filter will load
only the first scan of the image.

The following text blocks represent the different AT_PJPEG_SCANINFO structures that would be generated when loading a JPEG file
using the ImageGear default settings for Progressive scans:

scan_config[0].Ss = 0; scan_config[1].Ss = 1;

scan_config[0].Se = 0; scan_config[1].Se = 5;

scan_config[0].HBit = 7; scan_config[1].HBit = 7;

scan_config[0].LBit = 2; scan_config[1].LBit = 2;

scan_config[0].ChannelID = 0; scan_config[1].ChannelID = 1;

scan_config[2].Ss = 1; scan_config[3].Ss = 1;

scan_config[2].Se = 5; scan_config[3].Se = 5;

scan_config[2].HBit = 7; scan_config[3].HBit = 7;

scan_config[2].LBit = 2; scan_config[3].LBit = 2;

scan_config[2].ChannelID = 2; scan_config[3].ChannelID = 3;

scan_config[4].Ss = 0; scan_config[5].Ss = 1;

ImageGear Professional v18 for Mac | 349

scan_config[4].Se = 0; scan_config[5].Se = 5;

scan_config[4].HBit = 1; scan_config[5].HBit = 1;

scan_config[4].LBit = 1; scan_config[5].LBit = 1;

scan_config[4].ChannelID = 0; scan_config[5].ChannelID = 1;

scan_config[6].Ss = 1; scan_config[7].Ss = 1;

scan_config[6].Se = 5; scan_config[7].Se = 5;

scan_config[6].HBit = 1; scan_config[7].HBit = 1;

scan_config[6].LBit = 1; scan_config[7].LBit = 1;

scan_config[6].ChannelID = 2; scan_config[7].ChannelID = 3;

scan_config[8].Ss = 6; scan_config[9].Ss = 6;

scan_config[8].Se = 63; scan_config[9].Se = 63;

scan_config[8].HBit = 7; scan_config[9].HBit = 7;

scan_config[8].LBit = 1; scan_config[9].LBit = 1;

scan_config[8].ChannelID = 1; scan_config[9].ChannelID = 2;

scan_config[10].Ss = 6; scan_config[11].Ss = 0;

scan_config[10].Se = 63; scan_config[11].Se = 0;

scan_config[10].HBit = 7; scan_config[11].HBit = 0;

scan_config[10].LBit = 1; scan_config[11].LBit = 0;

scan_config[10].ChannelID = 3; scan_config[11].ChannelID = 0;

scan_config[12].Ss = 1; scan_config[13].Ss = 1;

scan_config[12].Se = 63; scan_config[13].Se = 63;

scan_config[12].HBit = 0; scan_config[13].HBit = 0;

scan_config[12].LBit = 0; scan_config[13].LBit = 0;

scan_config[12].ChannelID = 1; scan_config[13].ChannelID = 2;

scan_config[14].Ss = 1;

scan_config[14].Se = 63;

scan_config[14].HBit = 0;

scan_config[14].LBit = 0;

scan_config[14].ChannelID = 3;

References Used:

Brown, C. Wayne, and Barry J. Shepherd. Graphics File Formats: Reference and Guide. Greenwich, CT.: Manning Publications, 1992.

Kay, David C. and John R. Levine. Graphics File Formats. Windcrest Books, 1992.

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats. Sebastopol, CA: O'Reilly & Associates, Inc., 1994.

ImageGear Professional v18 for Mac | 350

1.2.6.7.32 KFX

Full Name KFX (Kofax Group4 image)

Format ID IG_FORMAT_KFX = 22

File Extension(s) *.kfx

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

Version 3

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading

ImageGear Read Support:

IG_COMPRESSION_CCITT_G4 - 1bpp

ImageGear Write Support:

None

ImageGear Filter Control Parameters:

None

ImageGear Professional v18 for Mac | 351

1.2.6.7.33 LV

Full Name LV (Lazer View format)

Format ID IG_FORMAT_LV = 23

File Extension(s) *.lv

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

N/A

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading

ImageGear Read Support:

IG_COMPRESSION_CCITT_G3 - 1bpp
IG_COMPRESSION_CCITT_G4 - 1bpp

ImageGear Write Support:

None

ImageGear Filter Control Parameters:

None

ImageGear Professional v18 for Mac | 352

1.2.6.7.34 MAC

Full Name MAC (Macintosh Paint)

Format ID IG_FORMAT_MAC = 24

File Extension(s) *.mac

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, MAC, UNIX

ImageGear Supported Versions:

Version 2.0 1989

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading

ImageGear Read Support:

IG_COMPRESSION_RLE - 1 bpp

ImageGear Write Support:

None

ImageGear Filter Control Parameters:

None

Comments:

Originally developed to store MacPaint graphics files, this format is now supported by many Macintosh applications. It
is also exportable to the PC platform. It is always monochrome, and always has a fixed size of 576 pixels by 720
lines. The data, when uncompressed, is always 51,840 bytes in size.

Because this is a Macintosh format, it is organized as "forked" data. Each file consists of two forks, a "resource fork"
and a "data fork". There is no code associated with this graphics format. The resource fork is always empty, and is
easily merged together with the data fork when the file is exported to a PC platform.

The MacPaint data begins with a version number. If set to a value of 2, it indicates that paint patterns appear as the
next structure. There are 38 possible patterns. These are generally not used, unless the file is being exported from
one paint program to another.

The bitmap data begins at an offset of 512 bytes from the beginning of the file. The data is always compressed using
the "PackBits" RLE compression scheme. The compressed data is stored in variable-length strips. See the description
of RLE compression in the ImageGear Supported Compressions Reference section.

It the MacPaint file has been exported to a PC platform it contains a structure called the MacBinary header. This helps
in reconstructing the resource fork if the file is returned to the Macintosh environment. A field in the MacBinary
header holds the size of the fork. Other information includes the position of the file in the window, the version of the
MacBinary header (I or II), the time and data of creation, and a SecondHeadLength field intended for future
expansion of the MacPaint format should it require a secondary header.

References Used

Kay, David C. and John R. Levine. Graphics File Formats. Windcrest Books, 1992.

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats. Sebastopol, CA: O'Reilly &
Associates, Inc., 1994.

ImageGear Professional v18 for Mac | 353

1.2.6.7.35 MAC PICT

Full Name Mac PICT

Format ID IG_FORMAT_PCT = 30

File Extension(s) *.pct, *.pict

Data Type Metafile (2D raster, 2D geometry)

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel
Support

Supports single alpha channel for read only. Alpha channel have to be 8-bit
image.

ImageGear Platforms Support WIN32, WIN64, MAC, UNIX

ImageGear Supported Versions:

PICT 2 (for Color QuickDraw version 2). Added color and support for additional QuickDraw functions.
PICT 1 (for Color QuickDraw version 1). Monochrome only.

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp and 24+8 bit alpha

IG_COMPRESSION_RLE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp and 24+8 bit alpha

IG_COMPRESSION_JPEG:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp and 24+8 bit alpha

ImageGear Write Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp (for 1, 4, 8 bpp, the files are ONLY saved as uncompressed if the image is 64x64
pixels or smaller. Otherwise, the image is saved as RLE compressed).
RGB: 24 bpp (Always saved as uncompressed)

ImageGear Filter Control Parameters:

Filter Control
Parameter

Type Default
Value

Available
Values

Description

FORCE_VERSION AT_BOOL FALSE TRUE, FALSE TRUE means saving of PCT in version
1.

Comments:

The PICT is one of the most widely-supported graphics file formats for the Macintosh.

PICT files begin with a fixed length header containing application-specific data, followed by fields that store the image
size and location. If it is a PICT2 file, an additional header follows that contains the original resolution data of the
image.

The bitmap data in the PICT2 format is referred as a Pixmap, from older terminology where Pixmap meant a bitmap

ImageGear Professional v18 for Mac | 354

with color.

The PICT file uses "opcodes". These are similar to the fields found in most file formats, and are associated with data
that describes different shapes, lines, fill patterns, etc.

The lengthy list of opcodes is followed by the bitmap or "pixmap" data that describes the image data's address and
resolution. The color table follows the opcodes. Next, source and destination rectangles are defined by their top left
and lower right coordinates.

The pixel data, stored in the "PixData" field, is the last data to appear in the file. Each value is an index to the color
table. This data is represented by 1, 2, or 4 bits.

References Used

Brown, C. Wayne, and Barry J. Shepherd. Graphics File Formats: Reference and Guide. Greenwich, CT.: Manning
Publications, 1992.

Kay, David C. and John R. Levine. Graphics File Formats. Windcrest Books, 1992.

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats. Sebastopol, CA: O'Reilly &
Associates, Inc., 1994.

ImageGear Professional v18 for Mac | 355

1.2.6.7.36 MSP

Full Name MSP (MS Paint)

Format ID IG_FORMAT_MSP = 25

File Extension(s) *.msp

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

Version 2.0
Version 1.0

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading

ImageGear Read Support:

IG_COMPRESSION_NONE: Indexed RGB: 1 bpp
IG_COMPRESSION_RLE: Indexed RGB: 1 bpp

ImageGear Write Support:

None

ImageGear Filter Control Parameters:

None

Comments:

This was a popular format for storing line drawing and clip art images created with Windows applications, but has
recently begun to be replaced by the Windows bitmap format (also supported by ImageGear see BMP).

For versions earlier than 2.0, the format begins with a 32-byte header and immediately proceeds with the bitmap data.
The header information includes: the version of the file, the size and aspect ratio of the bitmap, and the width and height
and aspect ratio (in pixels) of the output device used to render the bitmapped image. The bitmap data is uncompressed.

Files made with Version 2.0 and later always use RLE compression. In these files a "scan-line map" follows the header
and precedes the data. It gives offsets to each scan line for instances when a particular scan line needs to be examined.
All previous lines can remain compressed, while the needed line is located.

See RLE Compression under the ImageGear Supported Compressions Reference section for more information.

References Used

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats. Sebastopol, CA: O'Reilly & Associates,
Inc., 1994.

ImageGear Professional v18 for Mac | 356

1.2.6.7.37 NCR

Full Name NCR

Format ID IG_FORMAT_NCR = 27

File Extension(s) *.ncr

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

N/A

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_CCITT_G4 - Indexed RGB: 1 bpp
IG_COMPRESSION_NONE - Indexed RGB: 1, 4 bpp

ImageGear Write Support:

IG_COMPRESSION_CCITT_G4 - Indexed RGB: 1 bpp

ImageGear Filter Control Parameters:

Filter Control Parameter Type Default Value Available Values Description

COMRESSION WORD 0 0, NCR_CCITT_G4 This parameter has been retired.

Comments:

NCR is the black and white image compression format.

ImageGear Professional v18 for Mac | 357

1.2.6.7.38 PBM

Full Name PBM (Portable Bitmap File Format)

Format ID IG_FORMAT_PBM = 28

File Extension(s) *.pbm

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

October 1991 - last release

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_RAW:
Indexed RGB: 1 bpp;
Grayscale: 8, 16 bpp;
RGB: 24, 48 bpp

IG_COMPRESSION_ASCII:
Indexed RGB: 1 bpp;
Grayscale: 8, 16 bpp;
RGB: 24, 48 bpp

ImageGear Write Support:

IG_COMPRESSION_RAW:
Indexed RGB: 1 bpp;
Grayscale: 8, 16 bpp;
RGB: 24, 48 bpp

IG_COMPRESSION_ASCII:
Indexed RGB: 1 bpp;
Grayscale: 8, 16 bpp;
RGB: 24, 48 bpp

ImageGear Filter Control Parameters:

None

Comments:

This is useful for quick and easy transfer of monochrome bitmap images, although the encoding scheme is not
efficient in terms of storage space. This format, as well as the PGM, PNM, and PPM formats, are at the core of a set of
utility programs also written by Jef Poskanzer. Among other things, these formats serve as intermediary storage
methods for the conversion of other file formats.

The Portable Bitmap File Format structure is very simple. It begins with a short ASCII header that contains the file
type identifier (magic number), the width and height of the image, and perhaps a comment line identifying the
filename. Following white space (usually a carriage return) is the bitmap data. The number of bits is equal to the
width * height. A pixel value of 0 indicates white, and a value of 1 indicates black.

ImageGear Professional v18 for Mac | 358

The magic number of the header can have one of two values: either P1 or P4. P1 indicates that the bitmap data are to
be read as ASCII decimal values. P4 indicates that the bitmap data are stored as plain bytes. Because 8 pixel values
(1 bit each) are stored in one byte, the file is 8 times smaller than in the ASCII decimal format. White spaces are
permitted in the P1 format but not permitted in the P4 format.

NOTE: Note: ImageGear uses IG_FORMAT_PBM filter to handle the whole family of formats: PBM (1-bit), PGM
(grayscale), PPM (truecolor) and PNM (collective name for all of above). When saving image as IG_FORMAT_PBM
format, ImageGear chooses particular format (PBM, PGM, PNM or PPM) depending on image bit depth.

See Also:

PGM, PPM, PNM

References Used

Kay, David C. and John R. Levine. Graphics File Formats, 2nd ed. Windcrest /McGraw-Hill, 1995.

PBM Specification by Jef Poskanzer, copyright © 1989, 1991.

ImageGear Professional v18 for Mac | 359

1.2.6.7.39 PCD

Full Name PCD (Kodak Photo CD)

Format ID IG_FORMAT_PCD = 29

File Extension(s) *.pcd

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support Yes

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

All valid PCD files in 5 different resolutions:

Page 1: 768x512
Page 2: 384x256
Page 3: 192x128
Page 4: 1536x1024
Page 5: 3072x2048

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_MPAGEREADPSUPPORT - multi-page file reading

ImageGear Read Support:

IG_COMPRESSION_NONE - RGB: 24 bpp
IG_COMPRESSION_HUFFMAN - RGB: 24 bpp

ImageGear Write Support:

None

ImageGear Filter Control Parameters:

None

Comments:

"Photo CD" is the informally adopted name for files created using the Photo CD-ROM-based storage and retrieval system
created by Kodak. The images are digitized versions of photographic images. Using a Photo CD player, images can be
viewed on television. Although intended for photographic images, the data source does not necessarily have to be film.
Due to the large storage capacity of the CD medium, this format supports very large and/or intricate images.

Images and their associated information are stored in groups called "sessions". Originally, they were stored at the rate of
one session per CD, but later versions allowed multiple sessions per disc.

For each stored image, there are up to 5 bitmaps, each representing the image at a different resolution. The bitmaps at
the lowest resolution are intended for such purposes as displaying thumbnails and previewing an image.

References Used

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats. Sebastopol, CA: O'Reilly & Associates,
Inc., 1994.

ImageGear Professional v18 for Mac | 360

1.2.6.7.40 PCX

Full Name PCX (PC Paintbrush File Format)

Format ID IG_FORMAT_PCX = 31

File Extension(s) *.pcx

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

Version 5.0 1991, Supports 24-bit RGB
Version 3.0
Version 2.8 Included color palette
Version 2.5

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp

IG_COMPRESSION_RLE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp

ImageGear Write Support:

IG_COMPRESSION_RLE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp

ImageGear Filter Control Parameters:

Filter Control
Parameter

Type Default
Value

Available
Values

Description

SAVE_COMPRESSED AT_BOOL TRUE FALSE, TRUE If TRUE - image is saved with RLE
Compression

Comments:

PCX is one of the oldest PC-based bitmap formats. It became well-known when Microsoft used it for their Paintbrush
for Windows application and distributed it with every copy of Windows. This format is popular for fax documents
because it allows them to be viewed within many popular paint and image display programs. If multiple images are
desired in a PCX format, the format known as DCX, designed for this purpose, (and supported by ImageGear), may
be used. Please see DCX file format for more information.

The main components of the PCX file format are the fixed length header, the image data, and if it is written for VGA
display technology, the palette for the image (this appears as the last structure in the file). The header includes fields
including the PCX version, the image size, resolution and position, and an encoding field that always has a value of 1;
PCX data is always RLE. (For complex images, this may actually cause the bitmap data to increase in size).

ImageGear Professional v18 for Mac | 361

The size and location of the palette associated with the image depends on the version of the PCX. When it was first
developed, the limitations of the EGA card led to a palette that contained just 16 colors. PCX also supported CGA, so
that the palette contained only 4 colors. Both of these palettes were stored in the palette array structure of the
header. When the PCX was modified to display VGA, there was not enough room to store the palette in the header;
subsequently, it was located at the end of the file.

References Used

Brown, C. Wayne, and Barry J. Shepherd. Graphics File Formats: Reference and Guide. Greenwich, CT.: Manning
Publications, 1992.

Kay, David C. and John R. Levine. Graphics File Formats. Windcrest Books, 1992.

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats. Sebastopol, CA: O'Reilly &
Associates, Inc., 1994.

ImageGear Professional v18 for Mac | 362

1.2.6.7.41 PGM

Full Name PGM (Portable Graymap File Format)

Format ID IG_FORMAT_PBM = 28 (see the Note below)

File Extension(s) *.pgm

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear supports PGM file format via its IG_FORMAT_PBM format filter. Use IG_FORMAT_PBM to save
grayscale images to PGM format.

ImageGear Supported Versions:

October 1991 - last release

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_RAW - Grayscale: 8, 16 bpp
IG_COMPRESSION_ASCII - Grayscale: 8, 16 bpp

ImageGear Write Support:

IG_COMPRESSION_RAW - Grayscale: 8, 16 bpp
IG_COMPRESSION_ASCII - Grayscale: 8, 16 bpp

ImageGear Filter Control Parameters:

None

Comments:

This format quickly and easily transfers grayscale bitmap images. This format, as well as PBM, PNM, and PPM, are at
the core of a set of utility programs also written by Jef Poskanzer. These formats serve as an intermediary storage
methods for the conversion of other file formats.

The Portable Graymap File Format structure is very simple. It begins with a short ASCII header that contains the file
type identifier (magic number), the width and height of the image, a "maximum gray value", and perhaps a comment
line identifying the filename. The bitmap data follows white space (usually a carriage return). The number of pixels is
equal to width * height. A pixel value of 0 indicates black, and a "maximum gray value" is equivalent to white.

The magic number of the header can have one of two values: either P2 or P5. P2 indicates that the bitmap data is
read as ASCII decimal values. P5 indicates that the bitmap data is stored as plain bytes. This makes for a smaller and
faster-to-read file.

If the maximum gray value does not exceed 255 (28 = 256 gray values from 0 to 255), each pixel is represented by
a 8-bit sample. ImageGear loads such images as 8-bit grayscale. Otherwise, each pixel is represented by a 16-bit
sample. ImageGear loads these images as 16-bit grayscale.

See Also:

PPM, PBM, PNM

ImageGear Professional v18 for Mac | 363

References Used

Kay, David C. and John R. Levine. Graphics File Formats, 2nd ed. Windcrest /McGraw-Hill, 1995.

PGM Specification by Jef Poskanzer, copyright © 1989, 1991.

ImageGear Professional v18 for Mac | 364

1.2.6.7.42 PNG

Full Name PNG (Portable Network Graphics)

Format ID IG_FORMAT_PNG = 33

File Extension(s) *.png

Data Type Raster Image

Data Encoding Binary

Color Profile Support Read, Write

ImageGear Multipage Support No

ImageGear Alpha Channel Support Supports single alpha channel for read/write.

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

10th draft (future drafts will be backward-compatible)
PNG v2

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_DEFLATE:
Indexed RGB: 1, 2, 4, 8 bpp;
Grayscale: 1, 2, 4, 8, 16 bpp;
Grayscale + Alpha: 8, 16 bpp;
RGB: 24, 48 bpp;
RGB + Alpha: 32, 64 bpp

ImageGear Write Support:

IG_COMPRESSION_DEFLATE:
Indexed RGB: 1, 4, 8 bpp;
Grayscale: 8, 16 bpp;
Grayscale + Alpha: 16, 32 bpp;
RGB: 24, 48 bpp;
RGB + Alpha: 32, 64 bpp

ImageGear Filter Control Parameters:

Filter Control Parameter Type Default Value Available Values Description

BUFFER_SIZE DWORD 0 Size of the buffer for strip if
STRIP_CONFIG is
IG_PNG_STRIP_FIXED_BUFFER

COMP_LEVEL UINT IG_PNG_DEFAULT_COMPRESSION IG_PNG_DEFAULT_COMPRESSION,
IG_PNG_MIN_COMPRESSION, IG_PNG_MAX_COMPRESSION

Compression level. It must be
between
IG_PNG_MIN_COMPRESSION
and
IG_PNG_MAX_COMPRESSION.
Better compression takes more
time for compression.

KEEP_ALPHA AT_BOOL TRUE TRUE, FALSE When loading: if this
parameter is TRUE, then alpha
channel is loaded into Alpha
DIB. Otherwise, the image is
transformed into RGB, by
compositing over the
background supplied in the
bKGD chunk, if it is present, or
over the default background.
When saving: if this parameter
is TRUE, and alpha DIB is
present, it will be written to
the file.

SAVE_INDEXED_GRAY_AS_GRAY AT_BOOL FALSE FALSE, TRUE Affects saving of images that
have grayscale palette. If TRUE
then ImageGear saves the
image as Grayscale (type 0).
Otherwise, ImageGear saves
the image as Paletted (type 3).

STRIP_CONFIG INT IG_PNG_STRIP_FIXED_COUNT =
0

IG_PNG_STRIP_FIXED_COUNT,IG_PNG_STRIP_FIXED_BUFFER Format of PNG strip, see
IG_PNG_STRIP_... constants

STRIP_COUNT INT 0 Number of lines in one strip if
STRIP_CONFIG is
IG_PNG_STRIP_FIXED_COUNT

Comments:

The PNG (pronounced "Ping") format was created out of reaction to Unisys's announcement that it would begin requiring royalty fees for use of its LZW compression scheme. This
was the compression scheme for the widely-used GIF format (found in Web pages and online library images).

Thomas Boutell and a host of other programmers began working to devise a new file format to eliminate the need for payment of royalty fees. The result was a file format that
offers better compression than GIF, and adds features GIF doesn't offer, including truecolor, and full alpha channel and gamma correction.

ImageGear Professional v18 for Mac | 365

The basic organization of the PNG file format utilizes storage structures known as "chunks". A chunk is a block of data that contains its own header (identifying the chunk size and
type). This makes it easy for a PNG viewer to identify chunks and to skip over the ones that are not necessary.

The first entry in a PNG file is the "PNG signature" that identifies the format as PNG. The file then proceeds with a series of chunks.

The IHDR Image Header, or IHDR Chunk, contains a number of fields including the height, width, depth, color type, and compression type of the image. The only valid compression
value is 0, which indicates the PNG's custom compression scheme, a deflate/inflate compression with a 32k sliding window. This is a derivative of ZZ77, the precursor to LZW. ZZ77
is the compression scheme used by pkzip software.

The "PLTE Palette Chunk" contains 1 to 256 palette entries. This is present if the type field of the header chunk is set to 3. The number of colors cannot exceed the range provided
by the bit depth.

The image data is stored in "IDAT Image Data Chunks". These are subdivided into chunks whose size is usually determined by the size of the encoder's buffer. The data may be
stored in "interlaced order" allowing the image to be "faded in". The data may also be interlaced. Interlacing helps the appearance of an image as it displays while being
decompressed, so that it "fades in". In a non-interlaced file, the presentation of the image data begins with row 1 and works downward to the last row of data. This method of
display does not allow a quick preview of the whole image. When the data is interlaced, the lines are saved and displayed out of sequence. Every fourth row is displayed first and
then filled in with every remaining fourth row, until all of the lines are displayed. This allows the eye to perceive the basic subject of the whole image before it is completely
displayed.

"Ancillary Chunks" are optional. They must appear before the first IDAT and after the PLTE. One chunk is the "bKGD chunk" that sets the default background color for the image.
Two of the other ancillary chunks are the "hHist Chunk" or histogram chunk, and the "tEXt" chunk. The histogram chunk appears if there is a palette. It stores the frequency of
each color of the palette as it occurs in the image data. If the application doesn't support all of the colors in the palette, the histogram can be used to choose a subset of colors.
There may be any number of text chunks. They can vary in length from 0 to the maximum chunk size. They include the image author, copyright information, and any desired
comments.

Questions about PNG can be e-mailed to: png-info@uunet.uu.net

References Used:

Murray, James D. "Graphic Image Format FAQ 3-4". James D. Murray, 1994-1996.

PNG (Portable Network Graphics), tenth draft. Page 5, copyright Thomas Boutell, May 1995.

Wegner, Tim. "Coding for PNG Graphics", "PC Techniques", Feb/Mar 1996, pp 32-38.

ImageGear Professional v18 for Mac | 366

1.2.6.7.43 PNM

Full Name PNM (Portable Any-Map File Format)

Format ID IG_FORMAT_PBM = 28 (See the Note below)

File Extension(s) *.pnm

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear supports PNM file format via its IG_FORMAT_PBM format filter. Use IG_FORMAT_PBM to save images
to PNM format.

ImageGear Supported Versions:

October 1991 - last release

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_RAW:
Indexed RGB: 1 bpp;
Grayscale: 8, 16 bpp;
RGB: 24, 48 bpp

IG_COMPRESSION_ASCII:
Indexed RGB: 1 bpp;
Grayscale: 8, 16 bpp;
RGB: 24, 48 bpp

ImageGear Write Support:

IG_COMPRESSION_RAW:
Indexed RGB: 1 bpp;
Grayscale: 8, 16 bpp;
RGB: 24, 48 bpp

IG_COMPRESSION_ASCII:
Indexed RGB: 1 bpp;
Grayscale: 8, 16 bpp;
RGB: 24, 48 bpp

ImageGear Filter Control Parameters:

None

Comments:

The PNM format is useful for quick and easy transfer of uncomplicated monochrome, grayscale, or color bitmap
images. This format, as well as the PBM, PGM, and PPM formats, are at the core of a set of utility programs also
written by Jef Poskanzer. These formats serve as intermediary storage methods for the conversion of other file
formats. For example, a function called gifftoppm translates a GIF file to a PPM, from where it can be then translated
to a TIFF using the pnmtotiff.

ImageGear Professional v18 for Mac | 367

The Portable Anymap File Format structure is very simple. The "Anymap" portion of its name refers to the fact that it
can be one of three types of UNIX bitmap file formats: the Portable Bitmap File Format (PBM), the Portable Graymap
File Format (PGM), or the Portable Pixelmap File Format (PPM). A PNM begins with a short ASCII header that contains
the file type identifier (magic number), the width and height of the image, a "maximum color-component value" if it is
a PPM, a "maximum gray value" if it is a PGM, and perhaps a comment line identifying the filename. Following white
space (usually a carriage return) is the bitmap data. For PGM and PPM files, the number of pixels is equal to width *
height (whereas, in a PBM file, this calculation gives you the number of bits).

The magic number of the header can have one of six values depending on whether the bitmap is in PBM, PGM, or PPM
format. Each format can have one of two magic numbers depending on whether the pixel data is stored in ASCII
decimal or plain bytes. See the descriptions for the individual formats (these are all supported by ImageGear) for
more details.

References Used

Kay, David C. and John R. Levine. Graphics File Formats, 2nd ed. Windcrest /McGraw-Hill, 1995.

PBM, PGM, PPM, PNM Specifications by Jef Poskanzer, copyright 1989, 1991.

ImageGear Professional v18 for Mac | 368

1.2.6.7.44 PPM

Full Name PPM (Portable Pixmap File Format)

Format ID IG_FORMAT_PBM = 28 (See the Note below)

File Extension(s) *.ppm

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear supports PPM file format via its IG_FORMAT_PBM format filter. Use IG_FORMAT_PBM to save
truecolor images to PPM format.

ImageGear Supported Versions:

October 1991 - last release

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_RAW - RGB: 24, 48 bpp
IG_COMPRESSION_ASCII - RGB: 24, 48 bpp

ImageGear Write Support:

IG_COMPRESSION_RAW - RGB: 24, 48 bpp
IG_COMPRESSION_ASCII - RGB: 24, 48 bpp

ImageGear Filter Control Parameters:

None

Comments:

The PPM format is useful for quick and easy transfer of color bitmap images. This format, as well as the PBM, PGM,
and PNM formats, are at the core of a set of utility programs also written by Jef Poskanzer. These formats serve as
intermediary storage methods for the conversion of other file formats. For example, a function called gifftoppm
translates a GIF file to a PPM, where it can translate to a TIFF using the pnmtotiff.

The Portable Pixmap File Format structure is very simple. It begins with a short ASCII header that contains the file
type identifier (magic number), the width and height of the image, a "maximum color-component value", and perhaps
a comment line identifying the filename. Following white space (usually a carriage return) is the bitmap data. The
number of pixels is equal to width * height, with each pixel being represented by three bytes: one each for Red,
Green, and Blue color components, respectively.

The magic number of the header can have one of two values: either P3 or P6. P3 indicates that the bitmap data is
read as ASCII decimal values. P6 indicates that the bitmap data is stored as plain bytes. This makes for a smaller and
faster-to-read file.

If the maximum gray value exceeds 255 (28 = 256 gray values from 0 to 255), each pixel is represented by three 16-
bit RGB samples, making a total of 48 bits per pixel. ImageGear loads such images to 24-bit RGB.

See Also:

PGM, PBM, PNM

ImageGear Professional v18 for Mac | 369

References Used:

Kay, David C. and John R. Levine. Graphics File Formats, 2nd ed. Windcrest /McGraw-Hill, 1995.

PPM Specification by Jef Poskanzer, copyright © 1989, 1991.

ImageGear Professional v18 for Mac | 370

1.2.6.7.45 QuickTime

Full Name QT (Quick Time movie)

Format ID IG_FORMAT_QUICKTIMEJPEG = 76

File Extension(s) *.jpg, *.mov, *.qt

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, MAC

ImageGear Supported Versions:

N/A

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading

ImageGear Read Support:

IG_COMPRESSION_JPEG - RGB: 24 bpp

ImageGear Write Support:

No

ImageGear Filter Control Parameters:

None

Comments:

QuickTime format has been developed by Apple, inc. as a container for various media such as video and audio clips and
still images.

ImageGear Core component supports loading of the first frame from JPEG- and Motion JPEG compressed QuickTime files.

ImageGear Professional v18 for Mac | 371

1.2.6.7.46 RAS

Full Name RAS (Sun Raster Data Format)

Format ID IG_FORMAT_RAS = 37

File Extension(s) *.ras

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

N/A

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp

IG_COMPRESSION_RLE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp

ImageGear Write Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 8 bpp;
RGB: 24 bpp

IG_COMPRESSION_RLE:
Indexed RGB: 1, 8 bpp;
RGB: 24 bpp

ImageGear Filter Control Parameters:

Filter Control
Parameter

Type Default
Value

Available
Values

Description

SAVE_COMPRESSED INT 0 (FALSE) TRUE, FALSE Compression flag. If TRUE the saving image will be
RLE compressed.

Comments:

Bitmap images used under the SunOS system and UNIX imaging applications are usually stored in Sun Raster form.

The Sun Raster header contains image data (size and type), and the type and size of the colormap, if present. It also
contains a Sun Raster identifying tag called "MagicNumber," which always contains the same value. A type field
identifies the version of Sun Raster, the most common are called "Old" and "Standard". These are actually the same
format and indicate that the image is not compressed. Other possible versions of Sun Raster files include TIFF and
IFF, meaning that the image data was converted from one of these formats.

Following the header is a colormap, if applicable. Most 24 or 32-bit raster images do not use a colormap, but rather
store the color values directly with the image data. This is known as "truecolor".

ImageGear Professional v18 for Mac | 372

The last element of the Sun Raster file is the image data itself. It is usually in 2D raster format.

References Used:

Brown, C. Wayne, and Barry J. Shepherd. Graphics File Formats: Reference and Guide. Greenwich, CT.: Manning
Publications, 1992.

Kay, David C. and John R. Levine. Graphics File Formats. Windcrest Books, 1992.

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats. Sebastopol, CA: O'Reilly &
Associates, Inc., 1994.

ImageGear Professional v18 for Mac | 373

1.2.6.7.47 RAW

Full Name RAW (Raw image)

Format ID IG_FORMAT_RAW = 58

File Extension(s) *.raw

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support Yes

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, MAC

ImageGear Supported Versions:

N/A

ImageGear Supported Features:

IG_FLTR_PAGEREADSUPPORT - single page file reading

ImageGear Read Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
Grayscale: 9-16 bpp;
RGB: 24 bpp;
RGB + Alpha: 32 bpp

IG_COMPRESSION_LZW:
Indexed RGB: 1, 4, 8 bpp;
Grayscale: 9-16 bbp;
RGB: 24 bpp;

IG_COMPRESSION_CCITT_G3:
Indexed RGB: 1 bpp

IG_COMPRESSION_CCITT_G4:
Indexed RGB: 1 bpp

IG_COMPRESSION_CCITT_G32D:
Indexed RGB: 1 bpp

IG_COMPRESSION_ABIC:
Indexed RGB: 1 bpp

ImageGear Write Support:

None

ImageGear Filter Control Parameters:

Filter Control
Parameter

Type Default
Value

Available
Values

Description

ALIGNMENT UINT 0 0, 1, 2, 4 Row alignment.

0: DWORD alignment
1: BYTE alignment
2: WORD alignment
4: DWORD alignment

BITS_PER_PIXEL UINT 0 Used internally

ImageGear Professional v18 for Mac | 374

COMPRESSION AT_MODE 0 Used internally

FILL_ORDER INT 0 Used internally

HEIGHT AT_DIMENSION 0 Used internally

UNCOMPRESSED_PACKED AT_BOOL FALSE FALSE,
TRUE

Set to TRUE to read uncompressed packed
RAW format, where pixels are not padded to a
byte boundary. Set to FALSE to read unpacked
format. For example, two 12-bit pixels occupy
3 bytes in the packed format, and 4 bytes in
the unpacked format.

WIDTH AT_DIMENSION 0 Used internally

Comments:

A raw image file contains no header or identifying information. Also, ImageGear can load images of proprietary or
unsupported formats as Raw data. Since ImageGear cannot obtain parameters, such as width, height or bits per pixel
from the file, the application should specify them. For uncompressed images, ImageGear assumes BMP row order
(bottom line goes first). If the RAW image uses the other row order, use IG_IP_flip function to flip it vertically after
loading.

ImageGear Professional v18 for Mac | 375

1.2.6.7.48 Scitex CT

Full Name SciTex (Scitex CT)

Format ID IG_FORMAT_SCI_CT = 91

File Extension(s) *.sct

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

N/A

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_NONE - CMYK: 32 bpp

ImageGear Write Support:

IG_COMPRESSION_NONE - CMYK: 32 bpp

ImageGear Filter Control Parameters:

Filter Control
Parameter

Type Default
Value

Available
Values

Description

HEIGHT_IN_UNITS DOUBLE Height of the picture, in measurement units.

WIDTH_IN_UNITS DOUBLE Width of the picture, in measurement units.

FILE_TYPE WORD "CT" "CT" Scitex file type. The only "CT" - Continuous Tone Picture
is currently supported.

UNITS_MEASUREMENT BYTE 0 1 Units of measurement (0 mm, 1 inches)

SCAN_DIRECTION BYTE ScanDirection is a bitmap indicating the position of the
image source on the scanner. The bitfields are defined as
follows: Bit 0 0 = Top to bottom, 1 = Bottom to top Bit 1
0 = Left to right, 1 = Right to left Bit 2 0 = No rotation, 1
= 90 degree counter-clockwise rotation Bits 3:7
Undefined (always 0)

Comments:

ImageGear has read and write support for Scitex HandShake Continuous Tone Picture files. This is the native format
used by Scitex scanners and printers for high-end image processing and color separation.

Scitex CT files store uncompressed, CMYK true-color raster data. They contain a Control Block, a Parameters Block,
and the image data. Scitex CT images are typically four-color separation, CMYK, line-interleaved raster data. The
separations are always stored by scan line and in the order C-M-Y-K (cyan-magenta-yellow-black). A color pixel value
have up to 16 separations (128 bits) in size. Separations 1 through 4 are defined in order (C-M-Y-K). Separations 5
through 16 are reserved for future expansion of the format, as shown below.

Each row or Scitex CT image data is stored in separated color. The first separation's row data is followed by the
second, and so forth, up to the number of separations specified by NumColorSeparations. Only the data for the

ImageGear Professional v18 for Mac | 376

separations defined by the SeparationsBitMask field is actually stored in the CT file. Each pixel can contain up to 16
separation components and each component is one byte in size. A CMYK pixel contains four components and is of a
32-bit size. Remember that the data is not stored by pixel, but by separation. If rows contain odd numbers of bytes,
the zero padding byte will be added to the end of each separation to preserve word alignment.

You can set ImageGear CMYK Support level to IG_CONVERT_TO_RGB to convert CMYK images to 24-bit RGB
during loading. However, use of this mode has been deprecated and will be removed from the public API in a
future release. We recommend to load the image in its native format, and then convert to desired color space if
needed.

References Used

Copyright 1994, 1996, O'Reilly & Associates, Inc.

ImageGear Professional v18 for Mac | 377

1.2.6.7.49 SGI

Full Name SGI (Silicon Graphics Image)

Format ID IG_FORMAT_SGI = 38

File Extension(s) *.sgi, *.bw, *.rgb, *.rgba

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support Supports single alpha channel for read and write.

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

N/A

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_NONE:
Grayscale: 8 bpp;
RGB: 24 bpp;
Grayscale + Alpha: 16 bpp;
RGB + Alpha: 32 bpp

IG_COMPRESSION_RLE:
Grayscale: 8 bpp;
RGB: 24 bpp;
Grayscale + Alpha: 16 bpp;
RGB + Alpha: 32 bpp

ImageGear Write Support:

IG_COMPRESSION_NONE:
Grayscale: 8 bpp;
RGB: 24 bpp;
Grayscale + Alpha: 16 bpp;
RGB + Alpha: 32 bpp

IG_COMPRESSION_RLE:
Grayscale: 8 bbp;
RGB: 24 bpp;
Grayscale + Alpha: 16 bpp;
RGB + Alpha: 32 bpp;

ImageGear Filter Control Parameters:

None

Comments:

This format was developed for use with the SGI image library included on most Silicon Graphics computers. Most SGI
images are black and white.

The major components of an SGI file are the 512-byte header, a "scan-line offset table", and the bitmap header. SGI

ImageGear Professional v18 for Mac | 378

is one of the few formats to use a scan-line offset table.

The fields of the header structure include a compression flag (1 = compressed), the height and width (in pixels) of the
image, the number of bit planes, the highest pixel value and the lowest pixel value, the name of the image, and pixel
format. Pixel format can indicate the number of color channels, whether the image is dithered to a single channel, and
whether the bitmap image is actually a color map for other images.

The bitmap data is stored up-side-down-the first scan line is at the bottom of the bitmap. If the data is RLE, a scan-
line offset table is present, following the header and preceding the bitmap. This increases compression further by
allowing repeated offsets to the same scan line, if several scan lines have the same value. A grayscale image may
even refer to the same scan line from three different bit fields. For this reason, and because SGI data that is
compressed can be stored in any scan-line order, the offset table must not be ignored.

References Used

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats, 2d ed. Sebastopol, CA: O'Reilly &
Associates, Inc., 1996.

ImageGear Professional v18 for Mac | 379

1.2.6.7.50 TGA

Full Name TGA (Truevision Targa)

Format ID IG_FORMAT_TGA = 39

File Extension(s) *.tga, *.tpic

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support Single alpha channel for read/write

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

Version 2.0, 1991
Version 1.0, 1984

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_NONE:
Grayscale: 1 bpp;
Indexed RGB: 8 bpp;
RGB: 15, 24 bpp;
RGB 15 bpp + Alpha 1 bpp;
RGB 24 bpp + Alpha 8 bpp;
RGB 15 bpp + Premultiplied Alpha 1 bpp;
RGB 24 bpp + Premultiplied Alpha 8 bpp;
RGB 15 bpp + Extra 1 bpp;
RGB 24 bpp + Extra 8 bpp;

IG_COMPRESSION_RLE:
Grayscale: 1 bpp;
Indexed RGB: 8 bpp;
RGB: 15, 24 bpp;
RGB 15 bpp + Alpha 1 bpp;
RGB 24 bpp + Alpha 8 bpp;
RGB 15 bpp + Premultiplied Alpha 1 bpp;
RGB 24 bpp + Premultiplied Alpha 8 bpp;
RGB 15 bpp + Extra 1 bpp;
RGB 24 bpp + Extra 8 bpp;

ImageGear Write Support:

IG_COMPRESSION_NONE:
Indexed RGB: 8 bpp;
RGB: 15, 24 bpp;
RGB 15 bpp + Alpha 1 bpp;
RGB 24 bpp + Alpha 8 bpp;
RGB 15 bpp + Extra 1 bpp;
RGB 24 bpp + Extra 8 bpp;

IG_COMPRESSION_RLE:

ImageGear Professional v18 for Mac | 380

Indexed RGB: 8 bpp;
RGB: 15, 24 bpp;
RGB 15 bpp + Alpha 1 bpp;
RGB 24 bpp + Alpha 8 bpp;
RGB 15 bpp + Extra 1 bpp;
RGB 24 bpp + Extra 8 bpp;

ImageGear Filter Control Parameters:

Filter Control
Parameter

Type Default
Value

Available
Values

Description

AUTHOR_COMMENT STRING " " Author's comments.

AUTHOR_NAME STRING " " Name of author.

IMAGE_ID STRING " " Image ID.

SOFTWARE_ID STRING " " Software ID.

STAMP_DAY WORD 0 Day stamp.

STAMP_HOUR WORD 0 Hour stamp.

STAMP_MINUTE WORD 0 Minute stamp.

STAMP_MONTH WORD 0 Month stamp.

STAMP_SECOND WORD 0 Second stamp.

STAMP_YEAR WORD 0 Year stamp.

KEEP_ALPHA BOOL FALSE TRUE,
FALSE

FALSE means to ignore Alpha bits. Non-zero (TRUE) means
to pass alpha bits back through callback.

PROMOTE16 BOOL FALSE TRUE,
FALSE

FALSE means to create 16 bit DIB without promoting to 24
bits. Non-zero (TRUE) means promoting.

HEADER_TYPE INT 0 1 or 2 1 or 2 for revision level of header.

STORES_TAMP BOOL FALSE TRUE,
FALSE

FALSE for no stamp, TRUE to save a stamp with image.
HEADER_TYPE must be 2.

STAMP_WIDTH UINT 0 0-64 Stamps width must not be larger than 64 pixels.

STAMP_HEIGHT UINT 0 0-64 Stamps height must not be larger than 64 pixels.

PALETTE BOOL FALSE TRUE,
FALSE

TRUE indicates that color map should be created.

CONV_TO_16 BOOL FALSE TRUE,
FALSE

If TRUE, convert to 16 bpp when saving.

THUMB_FLAG UINT 0 TRUE,
FALSE

TRUE if save should include a thumbnail.

THUMB_WIDTH UINT 0 Width of thumbnail.

THUMB_HEIGHT UINT 0 Height of thumbnail - Thumbnails are 24 bit.

Comments:

This file format was originally developed by AT&T for use with its image capture boards. The format was taken over
by Truevision when it acquired the product line from AT&T. It is now commonly used for digitized images and also for
high-quality images produced by ray tracers and other graphics applications.

It became a popular file format mainly because it was the first 24-bit truecolor format to come to the PC market.
There are several varieties of Targa files; the most commonly used are the Targa 16, Targa 24, and Targa 32. The
names are derived from the type of hardware used to create them.

The fixed-sized header information of the Targa format includes: the existence (or not) and colormap, location, size,
pixel depth, image location, colormap (if it exists), and finally the image data itself.

Version 2.0 introduced a file footer that identifies it as the newest version and contains pointers to additional fields in
two main structures: the "extension area" and the "developer directory". The extension area contains the addresses
of many optional fields, one of the most popular being the "postage stamp image" (miniature of the main image).

ImageGear Professional v18 for Mac | 381

The developer directory can be used to store proprietary information. Developers can register their own private fields
with Truevision. A null-terminated ASCII string containing "TRUEVISION-XFILE.", and positioned at the end of the file,
indicates that the footer is valid.

Targa defines 3 color methods: pseudo color, direct color, and truecolor. Pseudo color uses an index to a color
palette. Direct color is like pseudo color except that the RGB components are looked up separately. In truecolor files,
the color information is stored directly in the image data. The palettes used by Targa files are variable in size; they do
not necessarily correlate to the bit depth of the image. The presence of a palette does not always mean that it is used
to display the image.

Alpha channel handling

KEEP_ALPHA control parameter must be set to TRUE to enable loading and saving of Alpha/Extra channels from TGA
images.

If bits 0..3 of Image Descriptor field are set to non-zero (additional channel is present), ImageGear treats additional
bits as follows, depending on the Attributes Type field:

Attributes
Type value

Attributes type
value meaning

Additional bits are loaded as:

0 No Alpha Data
included

Non-premultiplied Alpha (for incompliant images where Image Descriptor tells
there is an additional channel but Attributes Type field is not set.)

1 Undefined data,
can be ignored

Extra channel

2 Undefined data,
should be retained

Extra channel

3 Non-premultiplied
Alpha

Non-premultiplied Alpha

4 Premultiplied
Alpha

Premultiplied Alpha

Other Reserved or
unassigned

Non-premultiplied Alpha

If bits 0..3 of Image Descriptor field are set to zero (no additional channel is present), ImageGear treats additional
bits as Extra channel. This allows reading additional channel from images that have incorrect Image Descriptor field,
but does not spoil image display if there is no meaningful data in the additional channel.

References Used

Brown, C. Wayne, and Barry J. Shepherd. Graphics File Formats: Reference and Guide. Greenwich, CT.: Manning
Publications, 1992.

Kay, David C. and John R. Levine. Graphics File Formats. Windcrest Books, 1992.

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats. Sebastopol, CA: O'Reilly &
Associates, Inc., 1994.

ImageGear Professional v18 for Mac | 382

1.2.6.7.51 TIFF

Full Name TIFF (Tagged Image File Format)

Format ID IG_FORMAT_TIF = 40

File Extension(s) *.tif, *.tiff

Data Type Raster Image

Data Encoding Binary

Color Profile Support Read, Write

ImageGear Multipage Support Yes

ImageGear Alpha Channel Support Yes

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

Version 6.0 - Added support for CMYK and YCbCr color images, and JPEG compression. Ability to store pixels in "tiles"
Version 5.0 - Added ability to store palette color images and support for LZW compression. This version featured TIFF "classes."
Version 4.0 - Added support for uncompressed RGB color images.
Version 3.0 - First public release.

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_MPAGEREADPSUPPORT - multi-page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing
IG_FLTR_MPAGEWRITEPSUPPORT - multi-page file writing
IG_FLTR_PAGEDELETESUPPORT - page deleting from multi-page file
IG_FLTR_PAGESWAPSUPPORT - page swapping in multi-page files
IG_FLTR_MPDATASUPPORT - faster multi-page access by storing private format data (used only with IG_mpi_... and IG_mpf_... API)

ImageGear Read Support:

IG_COMPRESSION_NONE:
Indexed RGB - 1, 2, 4, 8 bpp;
Grayscale - 1, 2, 4, 8, 12, 16, 32 bpp;
RGB: 3, 6, 12, 24, 36, 48 bpp;
Lab: 3, 6, 12, 24, 36, 48 bpp;
CMYK: 4, 8, 16, 32, 48, 64 bpp;
Grayscale + Premultiplied Alpha: 2, 4, 8, 12, 16, 32 bpp;
RGB + Premultiplied Alpha: 4, 8, 16, 32, 48, 64 bpp;
Indexed RGB + Extra: 1, 2, 4, 8 bpc;
Lab + Extra: 1, 2, 4, 8, 12, 16 bpc;
CMYK + Extra: 1, 2, 4, 8, 12, 16 bpc;
Grayscale + Premultiplied Alpha + Extra: 1, 2, 4, 8, 12, 16 bpc;
RGB + Premultiplied Alpha + Extra: 1, 2, 4, 8, 12, 16 bpc.

IG_COMPRESSION_PACKED_BITS:
Indexed RGB - 1, 2, 4, 8 bpp;
Grayscale - 1, 2, 4, 8, 12, 16, 32 bpp;
RGB: 3, 6, 12, 24, 36, 48 bpp;
Lab: 3, 6, 12, 24, 36, 48 bpp;
CMYK: 4, 8, 16, 32, 48, 64 bpp;
Grayscale + Premultiplied Alpha: 2, 4, 8, 12, 16, 32 bpp;
RGB + Premultiplied Alpha: 4, 8, 16, 32, 48, 64 bpp;
Indexed RGB + Extra: 1, 2, 4, 8 bpc;
Lab + Extra: 1, 2, 4, 8, 12, 16 bpc;
CMYK + Extra: 1, 2, 4, 8, 12, 16 bpc;
Grayscale + Premultiplied Alpha + Extra: 1, 2, 4, 8, 12, 16 bpc;
RGB + Premultiplied Alpha + Extra: 1, 2, 4, 8, 12, 16 bpc.

IG_COMPRESSION_HUFFMAN:
Indexed RGB: 1 bpp;
Grayscale: 1 bpp;

IG_COMPRESSION_CCITT_G3:
Indexed RGB: 1 bpp;
Grayscale: 1 bpp;

IG_COMPRESSION_CCITT_G4:
Indexed RGB: 1 bpp;
Grayscale: 1 bpp;

IG_COMPRESSION_CCITT_G32D:
Indexed RGB: 1 bpp;
Grayscale: 1 bpp;

IG_COMPRESSION_JPEG:
Grayscale: 8 bpp;
RGB: 24 bpp

IG_COMPRESSION_DEFLATE:
Indexed RGB - 1, 2, 4, 8 bpp;
Grayscale - 1, 2, 4, 8, 12, 16, 32 bpp;
RGB: 3, 6, 12, 24, 36, 48 bpp;
Lab: 3, 6, 12, 24, 36, 48 bpp;
CMYK: 4, 8, 16, 32, 48, 64 bpp;
Grayscale + Premultiplied Alpha: 2, 4, 8, 12, 16, 32 bpp;
RGB + Premultiplied Alpha: 4, 8, 16, 32, 48, 64 bpp;
Indexed RGB + Extra: 1, 2, 4, 8 bpc;
Lab + Extra: 1, 2, 4, 8, 12, 16 bpc;
CMYK + Extra: 1, 2, 4, 8, 12, 16 bpc;
Grayscale + Premultiplied Alpha + Extra: 1, 2, 4, 8, 12, 16 bpc;
RGB + Premultiplied Alpha + Extra: 1, 2, 4, 8, 12, 16 bpc.

IG_COMPRESSION_LZW:
Indexed RGB - 1, 2, 4, 8 bpp;
Grayscale - 1, 2, 4, 8, 12, 16, 32 bpp;
RGB: 3, 6, 12, 24, 36, 48 bpp;
Lab: 3, 6, 12, 24, 36, 48 bpp;
CMYK: 4, 8, 16, 32, 48, 64 bpp;
Grayscale + Premultiplied Alpha: 2, 4, 8, 12, 16, 32 bpp;

ImageGear Professional v18 for Mac | 383

RGB + Premultiplied Alpha: 4, 8, 16, 32, 48, 64 bpp;
Indexed RGB + Extra: 1, 2, 4, 8 bpc;
Lab + Extra: 1, 2, 4, 8, 12, 16 bpc;
CMYK + Extra: 1, 2, 4, 8, 12, 16 bpc;
Grayscale + Premultiplied Alpha + Extra: 1, 2, 4, 8, 12, 16 bpc;
RGB + Premultiplied Alpha + Extra: 1, 2, 4, 8, 12, 16 bpc.

To use the LZW (Lempel-Ziv-Welch) compression scheme, attach the ImageGear LZW Component.

ImageGear Write Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
Grayscale: 8, 12, 16, 32 bpp;
RGB: 24, 36, 48 bpp;
Lab: 24, 36, 48 bpp;
CMYK: 4, 32, 48, 64 bpp;
Grayscale + Premultiplied Alpha: 16, 24, 32, 64 bpp;
RGB + Premultiplied Alpha: 32, 48, 64 bpp;
Lab + Extra: 8, 12, 16 bpc;
CMYK + Extra: 8, 12, 16 bpc;
Grayscale + Premultiplied Alpha + Extra: 8, 12, 16 bpc;
RGB + Premultiplied Alpha + Extra: 8, 12, 16 bpc;

IG_COMPRESSION_PACKED_BITS:
Indexed RGB: 1, 4, 8 bpp;
Grayscale: 8, 12, 16, 32 bpp;
RGB: 24, 36, 48 bpp;
Lab: 24, 36, 48 bpp;
CMYK: 4, 32, 48, 64 bpp;
Grayscale + Premultiplied Alpha: 16, 24, 32, 64 bpp;
RGB + Premultiplied Alpha: 32, 48, 64 bpp;
Lab + Extra: 8, 12, 16 bpc;
CMYK + Extra: 8, 12, 16 bpc;
Grayscale + Premultiplied Alpha + Extra: 8, 12, 16 bpc;
RGB + Premultiplied Alpha + Extra: 8, 12, 16 bpc;

IG_COMPRESSION_HUFFMAN:
Indexed RGB: 1 bpp;

IG_COMPRESSION_CCITT_G3:
Indexed RGB: 1 bpp;

IG_COMPRESSION_CCITT_G4:
Indexed RGB: 1 bpp;

IG_COMPRESSION_CCITT_G32D:
Indexed RGB: 1 bpp;

IG_COMPRESSION_JPEG (Lossy, Progressive):
Grayscale: 8, 12 bpp;
RGB: 24, 36 bpp;

IG_COMPRESSION_JPEG (Lossless):
Grayscale: 8, 16 bpp;
RGB: 24 bpp;

IG_COMPRESSION_DEFLATE:
Indexed RGB: 1, 4, 8 bpp;
Grayscale: 8, 12, 16, 32 bpp;
RGB: 24, 36, 48 bpp;
Lab: 24, 36, 48 bpp;
CMYK: 4, 32, 48, 64 bpp;
Grayscale + Premultiplied Alpha: 16, 24, 32, 64 bpp;
RGB + Premultiplied Alpha: 32, 48, 64 bpp;
Lab + Extra: 8, 12, 16 bpc;
CMYK + Extra: 8, 12, 16 bpc;
Grayscale + Premultiplied Alpha + Extra: 8, 12, 16 bpc;
RGB + Premultiplied Alpha + Extra: 8, 12, 16 bpc;

IG_COMPRESSION_LZW:
Indexed RGB: 1, 4, 8 bpp;
Grayscale: 8, 12, 16, 32 bpp;
RGB: 24, 36, 48 bpp;
Lab: 24, 36, 48 bpp;
CMYK: 4, 32, 48, 64 bpp;
Grayscale + Premultiplied Alpha: 16, 24, 32, 64 bpp;
RGB + Premultiplied Alpha: 32, 48, 64 bpp;
Lab + Extra: 8, 12, 16 bpc;
CMYK + Extra: 8, 12, 16 bpc;
Grayscale + Premultiplied Alpha + Extra: 8, 12, 16 bpc;
RGB + Premultiplied Alpha + Extra: 8, 12, 16 bpc;

To use the LZW (Lempel-Ziv-Welch) compression scheme, attach the ImageGear LZW Component.

ImageGear Filter Control Parameters:

Filter Control Parameter Type Default Value Available Values Description

BIG_ENDIAN AT_BOOL FALSE FALSE, TRUE If TRUE, big endian order is used for write
operation ("MM"), in other case little endian is
used("II").

BITONAL_PALETTE_MODE enumTIFFBitonalPaletteMode IG_TIF_BITONAL_PALETTE_MODE_LEGACY An enumTIFFBitonalPaletteMode
value

Specifies whether ImageGear shall fix strange
looking palettes when reading bi-tonal TIFF
images.

BUFFER_SIZE DWORD 32768 Any DWORD>0 This parameter specifies the buffer size for each
strip for write operation if WRITE_CONFIG=
=IG_TIF_STRIP_FIXED_BUFFER

DATETIME LPCHAR "" Specifies value for DateTime (tag 306) to write
into image.

DO_NOT_WRITE_PALETTE AT_BOOL FALSE FALSE,TRUE Set to TRUE to skip the palette when writing a
TIFF.

DOCUMENT_NAME LPCHAR "" Any string Specifies value for DocumentName (tag 269) to
write into image.

FAST_PAGE_COUNT AT_BOOL FALSE FALSE, TRUE Affects page counting. When FALSE, ImageGear
counts only those IFDs that contain images.

ImageGear Professional v18 for Mac | 384

When TRUE, ImageGear counts all IFDs, without
checking for presence of images in them. The
latter mode requires significantly less reading
operations and thus works faster, especially if
the image is accessed through a network.

FILL_ORDER MODE IG_FILL_MSB IG_FILL_MSBIG_FILL_LSB Specifies fill order (tag 266) for tiff file to be
written.

IMAGE_BEFORE_IFD AT_BOOL FALSE FALSE, TRUE This flag specifies physical location of raster data
inside TIFF file relatively to IFD record. If this
value is TRUE then image data is to be written
before IFD record.

IMAGE_HEIGHT DWORD 0 Any positive value Was used internally in previous versions of
ImageGear.

IMAGE_WIDTH DWORD 0 Any positive value Was used internally in previous versions of
ImageGear.

INCLUDE_PAGE_NUMBER AT_BOOL TRUE FALSE, TRUE If this parameter is TRUE then include tag 297
into TIFF image with real value of page number.

LOAD_FIRST_UNKNOWN_CHANNEL_AS_PALPHA AT_BOOL TRUE TRUE, FALSE This parameter specifies how to load first extra
channel if ExtraSamples tag is missing. If TRUE,
ImageGear loads first extra channel as
Premultiplied Alpha channel. This mode provides
support for RGBPA TIFF images written by
earlier versions of ImageGear. If
LoadFirstUnknownChannelAsPAlpha is FALSE,
ImageGear loads all extra channels as extra
channels.

MISSING_COMPRESSION AT_MODE 0 Missing compression.

NEW_SUBFILE_TYPE UINT 0xFF This parameter specifies value for tag 254. If
value of this control parameter 0xFF then
default value is used according to TIFF 6.0
format specification.

NUMBER_OF_STRIPS UINT 1 Any value >0 If WRITE_CONFIG=
=IG_TIF_STRIP_FIXED_COUNT then this value
is used as the number of strips to be written.

PHOTOMETRIC UINT IG_TIF_PHOTO_WHITEZERO IG_TIF_PHOTO_WHITEZERO,
IG_TIF_PHOTO_BLACKZERO,
IG_TIF_PHOTO_RGB,
IG_TIF_PHOTO_CMYK,
IG_TIF_PHOTO_PALETTE,
IG_TIF_PHOTO_TRANSPARENCY,
IG_TIF_PHOTO_YCBCR,
IG_TIF_PHOTO_CIELAB

Specifies photometric interpretation (tag 262)
for write operation.

PLANAR AT_BOOL FALSE FALSE, TRUE Specifies tag value 284 for output image.

READ_JPEG_AS_YCBCR AT_BOOL FALSE TRUE, FALSE For internal use.

SAVE_DIFF_PREDICTOR AT_BOOL FALSE FALSE, TRUE If this parameter is TRUE, then output TIFF-LZW
image will be produced using the horizontal
differencing predictor.

SAVE_INDEXED_GRAY_AS_GRAY AT_BOOL TRUE FALSE, TRUE Affects saving of images that have grayscale or
inverted grayscale palette. If TRUE then
ImageGear saves the image with BlackZero or
WhiteZero photometric interpretation.
Otherwise, ImageGear saves the image as
Paletted.

SAVE_IPTC_NAA AT_BOOL FALSE TRUE, FALSE Affects TIFF and EXIF-TIFF image saving. Set to
TRUE to enable the saving of IPTC_NAA tag
(33723) to the TIFF IFD, if IPTC metadata is
provided by the metadata callbacks. If IPTC
metadata is also provided as part of the
PhotoshopResources metadata, then ImageGear
overwrites it with a copy of metadata from
IPTC_NAA tag. Set to TRUE to skip the writing of
IPTC_NAA tag (for backward compatibility with
ImageGear 17.1).

STITCH_TILES AT_BOOL FALSE TRUE, FALSE Set to TRUE to enable automatic tile stitching
during image loading.

SUBIFD_PATH LPCHAR Empty string Number of the SubIFD from which to load the
image. If set to empty string (default), load
image from root IFD. See "Camera Raw Image
support" section for more detail.

TILE_H_COUNT DWORD 10 If
WRITE_CONFIG==IG_TIF_TILED_FIXED_COUNT
then this value is used as number of tiles in
horizontal dimension.

TILE_HEIGHT DWORD If WRITE_CONFIG==IG_TIF_TILED_FIXED_SIZE
then this value is used to specify vertical
dimension of each tile.

TILE_V_COUNT DWORD 10 If
WRITE_CONFIG==IG_TIF_TILED_FIXED_COUNT
then this value is used as number of tiles in
vertical dimension.

TILE_WIDTH DWORD 64 If WRITE_CONFIG==IG_TIF_TILED_FIXED_SIZE
then this value is used to specify horizontal
dimension of each tile.

UPDATE_LUT16 AT_BOOL TRUE TRUE, FALSE

UPDATE_PAGE_NUMBERS AT_BOOL TRUE TRUE, FALSE

WRITE_CLASS_F AT_BOOL FALSE FALSE, TRUE If this value is TRUE then image to be written in
TIFF format compatible with class F
requirements.

WRITE_CONFIG MODE IG_TIF_STRIP_FIXED_COUNT IG_TIF_STRIP_FIXED_COUNT,
IG_TIF_STRIP_FIXED_BUFFER,
IG_TIF_TILED_FIXED_SIZE,
IG_TIF_TILED_FIXED_COUNT

Specifies configuration of TIFF file to be written:

IG_TIF_STRIP_FIXED_COUNT - writes fixed
number of strips.
IG_TIF_STRIP_FIXED_BUFFER - writes strips
of size no more then given size.
IG_TIF_TILED_FIXED_SIZE - writes image in
tiles of specified size.
IG_TIF_TILED_FIXED_COUNT - divides image
into specified number of tiles vertically and
horizontally.

WRITE70 AT_BOOL TRUE FALSE, TRUE If this value is TRUE then output TIFF-JPEG

ImageGear Professional v18 for Mac | 385

image will be produced in TIFF 7.0 compatible
format but in other case it will be compatible
with TIFF 6.0.

Comments:

TIFF was developed for use in storing black-and-white images from scanners and desktop publishing applications. Now, in its fourth release (version 6.0), it is one of the most detailed and versatile bitmap
formats in use. It is supported by most art, imaging, and word-processing applications. It supports several compression schemes. Aside from saving image data in bitmap form, it can also contain vector or text-
based images.

Containing just three fields, the TIFF header is simple and one of the shortest of all the graphics file format headers. But, the structure of a TIFF is complicated, with variable length fields, variable number of
fields, and the ability to store information (other than the header) in any order desired.

The other two major components of the TIFF format are "Image File Directories" (IFDs) and the image or images themselves. There is one IFD per image stored. The combination of an IFD and an image is
referred to as a "subfile". The header contains an offset pointer to the first IFD. If there are multiple IFDs, each contains an offset to the next. The last IFD contains a value that signifies the end of the file.

IFDs closely resemble a header structure, and the information stored in them is often referred to as "TIFF Header Information". Unlike a header, however, they contain a variable number of "tags" (pointers or
fields). In addition, each tag can point to data with a variable length. TIFFs are notorious for the number of tags that they can contain, up to a maximum of 65,535 tags of nearly 100 different types (version 6.0).
Tags are listed in order by code number so that a TIFF reader can easily determine what fields are present. While ImageGear reads and stores all TIFF tags, it utilizes a subset of all of the possible tags. See note
on previous page.

In version 5.0, the presence of certain subgroups of tags determined the "class" to which the TIFF belonged. The classes are: TIFF-B-monochrome, TIFF-F-facsimile, TIFF-G-grayscale, TIFF-P-palette based, TIFF-
R-RGB color, TIFF-X-any class, TIFF-Y-can use JPEG compression. Version 6.0 uses tags to divide the TIFF type into different file configurations, leaving behind the class concept. Version 6.0 configurations are:
Bilevel, palette color, RGB, grayscale, YCbCr, and Class F (facsimile).

TIFF bitmap data can be stored in one of two configurations: strips or tiles. Strips are groups of adjoining rows of bitmap data, and can be found in version 5.0 and 6.0 files. Tiles were new to TIFF version 6.0.
They are rectangular or square sections of bitmap data. The method of storage is determined in part by what kind of compression (if any) is used. JPEG compression can handle tiled images. Due to the need for
padding with tile storage, tiling is not usually efficient for small images.

ImageGear supports the following compression schemes for TIFF:

Uncompressed
CCITT Group 3
CCITT Group 3 2D
CCITT Group 4
Huffman
JPEG
Lossless JPEG
LZW (Lempel-Ziv-Welch)
Packbits
Progressive JPEG
Deflate

See the ImageGear Supported Compressions Reference for descriptions of these compression types. The compression tag of the IFD tells whether the image is compressed, and by what method. (Not all TIFF files
can use JPEG compression. It is supported by version 6.0, but in version 5.0, only a "Y" class TIFF can use JPEG).

TIFF/EP

TIFF/EP format was designed to provide a means for storing "raw" (unprocessed) image from digital camera's sensor.

TIFF/EP allows you to store several versions of the same image in one file. Typically, TIFF/EP image includes a small preview and a raw image. It can also include a larger or full-size preview, or some other
variations of the image.

TIFF/EP uses IFD trees for storing different versions of image. This is different from IFD chains that are used in baseline TIFF to store multiple pages.

ImageGear does not detect TIFF/EP as a separate file format. One of well known extensions to TIFF/EP is Adobe DNG format. ImageGear detects it as a separate file format.

Most of digital cameras store pixels in "mosaic" format. At a given pixel location either a Red, Green, Blue, Cyan, or some other color sample value is recorded. Such images are referred to as "Color Filter Array"
type. TIFF/EP format uses a two-dimensional matrix called "Color Filter Array pattern" to describe positions of pixels of particular color in the mosaic image. In order to recreate the full color values in each pixel, it
is necessary to interpolate intensities of neighboring pixels.

To enable loading images from TIFF SubIFDs, a new control parameter is added to TIFF filter: "SUBIFD_PATH". This parameter has the type of String, and its default value is "" (empty string). By default,
ImageGear loads the image in the root IFD (thumbnail). If "SUBIFD_PATH" string begins with a number, then ImageGear loads the image from the corresponding SubIFD of the root IFD. For example, if
SUBIFD_PATH is set to "3", ImageGear will load the image from the 3rd SubIFD.

SUBIFD_PATH parameter also affects metadata reading. Metadata is loaded starting from the IFD specified by SUBIFD_PATH.

ImageGear does not support color reconstruction of TIFF/EP images, unless they are detected to be a Adobe DNG image supported by ImageGear.

References Used:

Brown, C. Wayne, and Barry J. Shepherd. Graphics File Formats: Reference and Guide. Greenwich, CT.: Manning Publications, 1992.

Kay, David C. and John R. Levine. Graphics File Formats. Windcrest Books, 1992.

Murray, James D. "Graphic Image Format FAQ 3-4". James D. Murray, 1994-1996.

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats. Sebastopol, CA: O'Reilly & Associates, Inc., 1994.

ImageGear Professional v18 for Mac | 386

1.2.6.7.52 TXT (ASCII Text)

Full Name TXT (ASCII Text)

Format ID IG_FORMAT_TXT = 41

File Extension(s) *.txt

Data Type Raster Image

Data Encoding ASCII

Color Profile Support No

ImageGear Multipage Support Yes

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, MAC

ImageGear Supported Versions:

N/A

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_MPAGEREADPSUPPORT - multi-page file reading

ImageGear Read Support:

IG_COMPRESSION_ASCII - Indexed RGB: 1 bpp

ImageGear Write Support:

No

ImageGear Filter Control Parameters:

Filter Control
Parameter

Type Default
Value

Available
Values

Description

XDPI UINT 200 Horizontal resolution of image.

YDPI UINT 200 Vertical resolution of image.

MARGINS_LEFT LONG 1000 Left text margin on page, expressed as
thousandths of an inch.

MARGINS_TOP LONG 1000 (750 -
for Unix)

Top text margin on page, expressed as
thousandths of an inch.

MARGINS_RIGHT LONG 1000 Right text margin on page, expressed as
thousandths of an inch.

MARGINS_BOTTOM LONG 1000 (750 -
for Unix)

Bottom text margin on page, expressed as
thousandths of an inch.

PAGE_WIDTH DIMENSION 8500 Width of resulting page, expressed as
thousandths of an inch.

PAGE_HEIGHT DIMENSION 11000 Height of resulting page, expressed as
thousandths of an inch.

POINT_SIZE INT 10 (-1 - for
Unix)

Font metric: If 0 then lines per page and
character per line is used, else - specify font
size.

WEIGHT UINT FALSE (0) TRUE,
FALSE

Font metric: if TRUE use bold font.

ITALIC AT_BOOL FALSE TRUE,
FALSE

Font metric: if TRUE use italic font.

ImageGear Professional v18 for Mac | 387

TAB_STOP UINT 3 (4 - for
Unix)

The number of characters per tab.

TYPE_FACE LP | CHAR "\x00"
("courier" -
for Unix)

Font metric:typeface name of the font, If empty
string then default font used "Courier new".

LINES_PER_PAGE UINT 0 (60 - for
Unix)

Number of line per page.

CHAR_PER_LINE UINT 0 (80 - for
Unix)

Number of characters per line.

COMPATIBILITY_MODE AT_BOOL FALSE (TRUE
- for Unix)

TRUE,
FALSE

If TRUE use old algorithm, otherwise use
ImageGear Algorithm.

Comments:

This is a widely used format for storing plain text files. ASCII data can also be used to give vector data instructions,
but this is not supported by ImageGear.

The current, commonly used version of ASCII uses a 7-bit format and is known as "Full" or "Extended ASCII". The
128 (27) different data values include printable and non-printable values. The non-printable values are represented
by the first 32 (0-31) values of ASCII, and are called "control values". They are used to communicate with screens or
printers for placement of the characters. These control values represent tabs, line feeds, spaces, etc. Combinations of
these values create "escape sequences" whose values are device-dependent upon implementation. To keep an ASCII
file completely device-independent, a file usually does not contain any control values other than tab, line feed, and
carriage return.

What makes a TXT file different from many bitmap formats is the byte order. A file is written in the natural order that
it appears when output. There is no division into bit planes, or reverse order of bits and bytes. The eighth bit of each
byte is normally set to zero. In older versions of TXT files, this was often used as a parity bit.

References Used

Brown, C. Wayne, and Barry J. Shepherd. Graphics File Formats: Reference and Guide. Greenwich, CT.: Manning
Publications, 1992.

Kay, David C. and John R. Levine. Graphics File Formats, 2nd ed. Windcrest /McGraw-Hill, 1995.

ImageGear Professional v18 for Mac | 388

1.2.6.7.53 WBMP

Full Name WBMP (Wireless Bit-Map)

Format ID IG_FORMAT_WBMP = 66

File Extension(s) *.wbmp,

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

Version 1.1

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_NONE - Indexed RGB: 1 bpp

ImageGear Write Support:

IG_COMPRESSION_NONE - Indexed RGB: 1 bpp

ImageGear Filter Control Parameters:

None

Comments:

The WBMP (Wireless Bit-Map) read/write format is optimized to support mobile computing devices that use the Wireless
Application Protocol (WAP).

File contains small header with image parameters and array or pixels in uncompressed form.

References Used:

WAP WAE Specification Version, 24 May 1999.

ImageGear Professional v18 for Mac | 389

1.2.6.7.54 WMF

Full Name WMF (Windows Metafile Format)

Format ID IG_FORMAT_WMF = 44

File Extension(s) *.wmf,

Data Type Metafile Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix (read raster portion only). MAC (read raster portion only)

ImageGear Supported Versions:

Version 1 Metafiles prior to Windows 3.0
Version 2 Metafiles for Windows 3.0 and later

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp

IG_COMPRESSION_RLE:
Indexed RGB: 4, 8 bpp

ImageGear Write Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp

IG_COMPRESSION_RLE:
Indexed RGB: 4, 8 bpp

ImageGear Filter Control Parameters:

Filter Control
Parameter

Type Default
Value

Available Values Description

UPSIDE_DOWN BOOL TRUE, FALSE If TRUE then images will be saved upside-down.

TYPE UINT BMP_TYPE_BMC,
BMP_TYPE_BMI,
BMP_TYPE_BMI2

Type of the BMP file to be saved as part of WMF.

COMPRESSION DWORD BMP_COMP_RLE4,
BMP_COMP_RLE8,
BMP_COMP_RGB

Type of compression of BMP file.

TRUE_METAFILE BOOL TRUE (for
Windows);
FALSE
(otherwise)

TRUE, FALSE TRUE means executing of metafile commands
(playing of metafile). Can be TRUE only for
Windows.

If the TRUE_METAFILE parameter is set to TRUE, the
image will be opened as an RGB DIB for use with the
GDI functions, which produce the image output. This

ImageGear Professional v18 for Mac | 390

causes the image to look like it is 24-bit per pixel,
and 1024x1024 in dimensions.

If the TRUE_METAFILE parameter is set to FALSE,
then ImageGear will open the image according to its
correct bit depth and dimensions.

RESOLUTION_X DWORD NULL X resolution. 0 for actual resolution.

RESOLUTION_Y DWORD NULL Y resolution. 0 for actual resolution.

DEPTH DWORD NULL Bit Depth. 0 for actual depth.

Comments:

A Microsoft Windows Metafile holds vector and bitmap graphics data in memory or on disk. Although it was developed
for use with Windows applications, it is now used by many non-Windows-based applications, allowing data to be
transferred to and from Windows applications. Due to the great success of the Microsoft Windows interface, the
Windows Metafile format is found in nearly all graphical applications. Metafiles use much less space and are more
device-independent than bitmaps.

See also the section Support for Metafile Formats.

The Windows metafile begins with a short header and is followed by one or more records of data. The header
describes the record data. A "placement" header can also be added before the file header; it contains information
needed to move the metafile between applications. Each record corresponds to a binary-encoded Windows graphics
device interface (GDI) call, and contains the size of the record, the unique function number for the GDI and an array
of parameters. The GDI is used by Windows to perform all image output. When the metafile is "played", (this
Microsoft term is a companion term to the Windows function named "PlayMetaFile"), each record makes a call to the
appropriate function call for displaying each object in the image. The last record in the file contains a function number
of zero to indicate that the end of the record data has been reached.

References Used:

Brown, C. Wayne, and Barry J. Shepherd. Graphics File Formats: Reference and Guide. Greenwich, CT.: Manning
Publications, 1992.

Kay, David C. and John R. Levine. Graphics File Formats. Windcrest Books, 1992.

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats. Sebastopol, CA: O'Reilly &
Associates, Inc., 1994.

Petzold, Charles. Programming Windows: The Microsoft Guide to writing applications for Windows 3. Redmond, WA:
Microsoft Press, 1990.

ImageGear Professional v18 for Mac | 391

1.2.6.7.55 WPG

Full Name WPG (WordPerfect Graphics Metafile)

Format ID IG_FORMAT_WPG = 42

File Extension(s) *.wpg

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

WPG for WP 5.1 and up can store bitmap and vector graphics in the same file.
WPG for WP 5.0 and prior can store only bitmap or vector graphic, but not both in same file.

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading

ImageGear Read Support:

IG_COMPRESSION_RLE - Indexed RGB: 1, 4, 8 bpp

ImageGear Write Support:

None

ImageGear Filter Control Parameters:

None

Comments:

This format was created specifically for use with WordPerfect software products. WPG files for WordPerfect versions 5.1
and up can store both bitmap and vector image data in the same file.

The WordPerfect Graphics Metafile contains a short header or "prefix" (as WordPerfect Corporation referred to it). The
header is followed by a record area, that is a sequence of objects and their attributes. The first record is called the "Start
WPG Data" record and contains information on the size of the images and the version number of the .WPG file. The next
record is usually a color map, unless the image is black and white. The next record is a bitmap record. If there are
multiple images, there is a bitmap record for each image. The last record in a .WPG file contains a NULL body to signify
the end of the file. These files may also contain Encapsulated PostScript (EPS) data.

References Used

Murray, James D. "Graphic Image Format FAQ 3-4". James D. Murray, 1994-1996.

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats. Sebastopol, CA: O'Reilly & Associates,
Inc., 1994.

ImageGear Professional v18 for Mac | 392

1.2.6.7.56 XBM

Full Name XBM (X BitMap)

Format ID IG_FORMAT_XBM = 43

File Extension(s) *.xbm

Data Type Raster Image

Data Encoding ASCII

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

Version 11, data stored as 1-byte character, 1986
Version 10, data stored as 2-byte "short" integers

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_ASCII - Indexed RGB: 1 bpp

ImageGear Write Support:

IG_COMPRESSION_ASCII - Indexed RGB: 1 bpp

ImageGear Filter Control Parameters:

None

Comments:

The XBM format is intended as a convenient storage method for small monochrome images, for example, cursor and icon
bitmaps. It can, however, support images of any size, but since it supports no native compression scheme, an exterior
compression program is used when compacting is desired. The bitmap data is stored as ASCII data with C language
syntax, making the file easy to insert into C program code. XBM data can be stored as a standalone graphics file, or
within a C program header file. See also XPM, XWD.

XBM files begin with two to four #define statements in substitution of a header. These identify the image width and
height, and optionally, the coordinates of a Hotspot, if one exists.

The image data follows and is more free-form than the other bitmap data formats described in this chapter. It consists of
one variable-length static array of pixel values. Each value (in version 11) consists of one byte of data, and therefore
represents 8 1-bit pixels. The first pixel (0,0) is represented by the high bit of the first byte in the array. Due to this one-
array format, there is nothing in the data that explicitly marks the rows of the bitmap.

References Used

Brown, C. Wayne, and Barry J. Shepherd. Graphics File Formats: Reference and Guide. Greenwich, CT.: Manning
Publications, 1992.

Kay, David C. and John R. Levine. Graphics File Formats. Windcrest Books, 1992.

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats. Sebastopol, CA: O'Reilly & Associates,
Inc., 1994.

ImageGear Professional v18 for Mac | 393

1.2.6.7.57 XPM

Full Name XPM (X PixMap)

Format ID IG_FORMAT_XPM = 45

File Extension(s) *.xpm

Data Type Raster Image

Data Encoding ASCII (in C language syntax)

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

Version 3.2g, April 1993

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp

ImageGear Write Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp

ImageGear Filter Control Parameters:

None

Comments:

The XPM format was created as an extended version of the XBM file format. It is the informal standard for storing X
Window pixmap data, including Hotspot information for cursor bitmaps. The image data is stored in ASCII text
characters that are formatted as a standard C array of character strings. It is intended to be human-readable, is
readily inserted into C/C++ program code, and can contain any number of comment lines. It therefore does not
support a native compression scheme. If compacting is desired, an external compression program may be used. See
also XBM, XWD.

All XPM files begin with a C language comment line containing "XPM". Following this are three sections of data:
values, colors, and pixels, and an optional fourth section: extensions. The "values" section is the equivalent of the
header structure typically found in a graphics file. It gives the size of the pixmap, as well as its number of colors,
characters per pixel, the location of the Hotspot (if any), and an indicator of whether the file contains an extension
section. Each section is set off with a comment-line title.

The colors section contains codes for the pixmap data characters. All pixels that make up the pixmap are assigned to
one or more ASCII characters and one or more colors. (e.g. the character "X" may be assigned to the color red).
There are several different conventions for identifying a color. If the string "None" appears as the color to be applied
to a specific character, the character(s) symbolizes a transparent pixel.

The "pixels" section contains the bitmap data that appear as an array of character strings, where one row of bitmap
data is represented by one array element. Each row is a group of characters set off by quotation marks. Each
character is defined in the previous "colors" section.

If indicated by the values section, an extension section appears. It can contain one or more subsections that conform
to one of two syntactical formats. An "XPMENDEXT" marker is always used to mark the end of the extension section.

ImageGear Professional v18 for Mac | 394

References Used

Brown, C. Wayne, and Barry J. Shepherd. Graphics File Formats: Reference and Guide. Greenwich, CT.: Manning
Publications, 1992.

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats. Sebastopol, CA: O'Reilly &
Associates, Inc., 1994.

ImageGear Professional v18 for Mac | 395

1.2.6.7.58 XWD

Full Name XWD (X Window Dump)

Format ID IG_FORMAT_XWD = 47

File Extension(s) *.xwd, *.wd (for Unix)

Data Type Raster Image

Data Encoding Binary

Color Profile Support No

ImageGear Multipage Support No

ImageGear Alpha Channel Support No

ImageGear Platforms Support WIN32, WIN64, Unix, Unix64, .NET, .NET64, MAC

ImageGear Supported Versions:

Version 7 for X11, June 1987 (X10 grayscale and palette only)

ImageGear Supported Features:

IG_FLTR_DETECTSUPPORT - autodetection
IG_FLTR_PAGEREADSUPPORT - single page file reading
IG_FLTR_PAGEINSERTSUPPORT - single-page file writing

ImageGear Read Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp

ImageGear Write Support:

IG_COMPRESSION_NONE:
Indexed RGB: 1, 4, 8 bpp;
RGB: 24 bpp

ImageGear Filter Control Parameters:

None

Comments

An XWD file can contain a representation of the window, the background, or the entire screen display. It has been
designed to be a very versatile, device-independent format. See also XBM, XPM.

The general structure of the XWD graphics format begins with a long header, that is sometimes followed by a palette
and contains the bitmap data. The header contains integer data and stores the header size, the XWD version, the size
and location of the bitmap, the window size, location, and border width. A ByteOrder field indicates whether the bytes
are stored in big-endian or little-endian order.

In the interest of making this format device-independent, the XWD supports six "visual classes" and three image
formats. The visual class code is stored in the visual_class field of the header, and represents the following
categories:

Static Gray, for most monochrome screens and using a fixed device-dependent color map;
GrayScale, for monochrome screens and using a software-supplied palette;
StaticColor, which uses a fixed device-dependent palette;
Pseudocolor, which uses a software-supplied palette and is intended for VGA screens;
TrueColor, with fixed device-dependent mapping of RGB values to screen colors;
DirectColor, with software-supplied mapping of RGB values to screen values.

The image-format categories, whose codes are stored in the pixmap_format field of the header, are called XYBitmap
(1-bit), XYPixmap (single plane), and ZPixmap (two or more planes).

ImageGear Professional v18 for Mac | 396

Where the value of pixmap_format indicates GrayScale, PseudoColor or DirectColor, a palette follows the header.

The image data is the last structure in the file. The bytes are stored in rows with groupings called "units", whose
lengths are determined by the bitmap_unit field of the header.

If the pixmap_format field is 1, indicating an XYPixmap, there are multiple representations of the bitmap data, one for
each color plane, where the first bitmap represents the highest bit of the data; the second bitmap represents the
second-highest bit, and so on. An image with a bit depth of 4 yields a file with four bitmaps.

References Used

Brown, C. Wayne, and Barry J. Shepherd. Graphics File Formats: Reference and Guide. Greenwich, CT.: Manning
Publications, 1992.

Kay, David C. and John R. Levine. Graphics File Formats. Windcrest Books, 1992.

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats. Sebastopol, CA: O'Reilly &
Associates, Inc., 1994.

ImageGear Professional v18 for Mac | 397

1.2.6.8 ImageGear Supported Non-Image Data Storage

This section provides detailed information about the following:

Metadata Structure "ValueType" and "Value"
Non-Image Data Structure

ImageGear Professional v18 for Mac | 398

1.2.6.8.1 Metadata Structure "ValueType" and "Value"

Here are possible combinations of ValueType and Value elements of AT_DATALIST_ITEM ImageGear metadata
structure:

ValueType Value

AM_TID_META_INT8 The "FLTR.METADATA_FORMAT" global parameter value is "text" :

Value is pointer to NUL-terminated ASCII string - textual representation of
"Length" 8-bit signed integers separated by comma. Example: "-
128;0;+45;56"

The "FLTR.METADATA_FORMAT" global parameter value is "binary" :

Value is pointer to array of 8-bit signed integers of size "Length"

AM_TID_META_UINT8 The "FLTR.METADATA_FORMAT" global parameter value is "text" :

Value is pointer to NUL-terminated ASCII string - textual representation of
"Length" 8-bit unsigned integers separated by comma. The hexadecimal values
are allowed. Example: "0;+18;255;0xFA"

The "FLTR.METADATA_FORMAT" global parameter value is "binary" (DLL
only):

Value is pointer to array of 8-bit signed integers of size "Length"

AM_TID_META_INT16 The "FLTR.METADATA_FORMAT" global parameter value is "text":

Value is pointer to NUL-terminated ASCII string - textual representation of
"Length" 16-bit signed integers separated by comma. Example: "0;+1800;-
255;32355"

The "FLTR.METADATA_FORMAT" global parameter value is "binary" (DLL
only):

Value is pointer to array of 16-bit signed integers of size "Length"

AM_TID_META_UINT16 The "FLTR.METADATA_FORMAT" global parameter value is "text":

Value is pointer to NUL-terminated ASCII string - textual representation of
"Length" 16-bit unsigned integers separated by comma. The hexadecimal
values are allowed. Example: "0;+543;2550;0x12FF"

The "FLTR.METADATA_FORMAT" global parameter value is "binary" (DLL
only):

Value is pointer to array of 16-bit signed integers of size "Length"

AM_TID_META_INT32 The "FLTR.METADATA_FORMAT" global parameter value is "text":

Value is pointer to NUL-terminated ASCII string - textual representation of
"Length" 32-bit signed integers separated by comma. Example: "0;+67;-
235987;32355"

The "FLTR.METADATA_FORMAT" global parameter value is "binary" (DLL
only):

Value is pointer to array of 32-bit signed integers of size "Length"

AM_TID_META_UINT32 The "FLTR.METADATA_FORMAT" global parameter value is "text":

Value is pointer to NUL-terminated ASCII string - textual representation of
"Length" 32-bit unsigned integers separated by comma. The hexadecimal
values are allowed. Example: "0;+543;12362550;0x56FDE345"

The "FLTR.METADATA_FORMAT" global parameter value is "binary" (DLL
only):

Value is pointer to array of 32-bit signed integers of size "Length"

AM_TID_META_INT64 The "FLTR.METADATA_FORMAT" global parameter value is "text":

Value is pointer to NUL-terminated string - textual representation of "Length"
64-bit signed integers separated by comma.

The "FLTR.METADATA_FORMAT" global parameter value is "binary" (DLL
only):

Value is pointer to array of 32-bit signed integers of size "Length"

AM_TID_META_UINT64 The "FLTR.METADATA_FORMAT" global parameter value is "text":

ImageGear Professional v18 for Mac | 399

Value is pointer to NUL-terminated ASCII string - textual representation of
"Length" 64-bit unsigned integers separated by comma. The hexadecimal
values are allowed.

The "FLTR.METADATA_FORMAT" global parameter value is "binary" (DLL
only):

Value is pointer to array of 32-bit signed integers of size "Length"

AM_TID_META_BOOL The "FLTR.METADATA_FORMAT" global parameter value is "text":

Value is pointer to NULL-terminated string - textual representation of "Length"
Boolean values separated by comma. Example: "TRUE;FALSE;false;true"

The "FLTR.METADATA_FORMAT" global parameter value is "binary" (DLL
only):

Value is pointer to array of 32-bit unsigned integers of size "Length" The value
1 represents boolean TRUE and the value 0 represents boolean FALSE.

AM_TID_META_RATIONAL_INT32 The "FLTR.METADATA_FORMAT" global parameter value is "text":

Value is pointer to NUL-terminated ASCII string - textual representation of
"Length" rational values separated by comma. Each rational value is fraction
where both numerator and denominator are 32-bit signed integers separated
by slash. Zero is allowed. Example: "+324/-567;0/0;-68/45668"

The "FLTR.METADATA_FORMAT" global parameter value is "binary" (DLL
only):

Value is pointer to array of 32-bit signed integers of size 2 * "Length" Each two
elements represent pair (numerator, denominator) that represents rational
number numerator/denominator.

AM_TID_META_RATIONAL_UNT32 The "FLTR.METADATA_FORMAT" global parameter value is "text":

Value is pointer to NUL-terminated ASCII string - textual representation of
"Length" rational values separated by comma. Each rational value is fraction
where both numerator and denominator are 32-bit unsigned integers separated
by slash. Zero is allowed. Example: "+324/567;0/0"

The "FLTR.METADATA_FORMAT" global parameter value is "binary" (DLL
only):

Value is pointer to array of 32-bit unsigned integers of size 2 * "Length" Each
two elements represent pair (numerator, denominator) that represents rational
number numerator/denominator.

AM_TID_META_FLOAT The "FLTR.METADATA_FORMAT" global parameter value is "text":

Value is pointer to NUL-terminated ASCII string - textual representation of
"Length" 4-byte float-point values separated by comma. Example: "-
298.98676;3568732;6.9876E-10;0"

The "FLTR.METADATA_FORMAT" global parameter value is "binary" (DLL
only):

Value is pointer to array of 4-byte float-point values of size "Length"

AM_TID_META_DOUBLE The "FLTR.METADATA_FORMAT" global parameter value is "text":

Value is pointer to NUL-terminated ASCII string - textual representation of
"Length" 8-byte (double precision) float-point values separated by comma.
Example: "-29842.9867698098;356873245345;6.98766575489E+50;0"

The "FLTR.METADATA_FORMAT" global parameter value is "binary" (DLL
only):

Value is pointer to array of 8-byte (double precision) float-point values of size
"Length"

AM_TID_META_STRING It does not depend on "FLTR.METADATA_FORMAT" global parameter value

Value is pointer to NUL-terminated ASCII string, "Length" - length of the string
(NULL is not counted). Example: "Simple string"

AM_TID_RAW_DATA It does not depend on "FLTR.METADATA_FORMAT" global parameter value

Value is pointer to byte array that represent binary data, "Length" - size of the
array in bytes.

ImageGear Professional v18 for Mac | 400

1.2.6.8.2 Non-Image Data Structure

In this section, the metadata items (and sequence of metadata items) are written in table form where metadata type
constants are in the shorted form. For example, the LEVEL_START should be treated as IG_METAD_LEVEL_START,
UINT32 - as AM_TID_META_UINT32, RAW_DAT - as AM_TID_RAW_DATA, etc.

EXIF-JPEG Non-image Data Structure
EXIF-TIFF Non-Image Data Structure
GIF Non-image Data Structure
IPTC Non-Image Data Structure
JPEG Non-Image Data Structure
PNG Non-Image Data Structure
TIFF Non-Image Data Structure
XMP Non-Image Data Structure

ImageGear Professional v18 for Mac | 401

1.2.6.8.2.1 EXIF-JPEG Non-image Data Structure

The EXIF-JPEG metadata structure is similar to JPEG one. But EXIF-JPEG sends the Exif APP1 marker segment data in parsed form and Jfif APP0
marker segment data is not parsed and sent as raw data.

Brief information on EXIF-JPEG metadata levels is provided in the set of tables below:

EXIF-JPEG Level
EXIF Makernote
Exif APP2 Marker Segment (Flashpix Extensions) Levels

EXIF-JPEG Level
All items between items with Name "EXIF" and Id IG_FORMAT_EXIF_JPEG (Type LEVEL_START and LEVEL_END) are interpreted as EXIF data.
If during sending data from application level to filter level the first item is omitted the data will not be interpreted and saved.

For JPEG marker segment levels see JPEG Non-Image Data Structure.

Name Id Type Value Type Value Value Length Read Only

"EXIF-JPEG" IG_FORMAT_EXIF_JPEG LEVEL_START 0 NULL 0 TRUE

Exif APP1 marker segment level

JPEG marker segment levels mixed in any way (if present)

"EXIF-JPEG" IG_FORMAT_EXIF_JPEG LEVEL_END 0 NULL 0 TRUE

Exif APP1 Marker Segment Level
Name Id Type Value Type Value Value Length Read Only

"APP1" 65505 LEVEL_START 0 NULL 0 TRUE

"APP1_DATASIZE" 60225 VALUE_ITEM UINT16 <Data> 1 TRUE

"EXIF_HEADER" 59935 VALUE_ITEM STRING "EXIF" 5 TRUE

"TIF_HEADER" 59936 VALUE_ITEM UINT16 0x4949 or 0x4D4D 1 TRUE

IFD 0 level (if present)

Thumbnail IFD level (if present)

"APP1" 0xFFE1 LEVEL_END 0 NULL 0 TRUE

The "APP1_DATASIZE" item can be omitted during saving.

For more detailed Exif information see EXIF-TIFF Non-Image Data Structure.

EXIF Makernote
Makernote is a standard EXIF tag of UNDEFINED (byte) type. This tag usually is used as a "hidden" IFD. Makernote can not be read in and
written out as a BLOB, because IFD offsets become invalid. Therefore, to preserve this tag while writing an image it's necessary to decode it
during reading and re-encode it during writing, despite the fact that formally makernote is just a binary tag.

See enumIGEXIFMakerNoteType for descriptions of the various makernote types.

To present Makernote info in a convenient way ImageGear introduces a special structure as an addition to the standard EXIF Metadata:
"Makernote*s* Wrapper IFD". Instead of a single binary Makernote*s* tag (37500), we are adding a virtual IFD, containing all the information
about Makernote*s*.

'Makernote Wrapper IFD' has the following format depending on the 'type' tag:

1. Type IG_MAKERNOTE_TYPE_UNKNOWN:

'MakerNote wrapper IFD'
-------->'type' = IG_MAKERNOTE_TYPE_UNKNOWN
-------->'binary MakerNote'

Type IG_MAKERNOTE_TYPE_IFD:
'MakerNote wrapper IFD'
-------->'type' = IG_MAKERNOTE_TYPE_IFD
-------->'MakerNote IFD'
----------------> 'individual MakerNote tag 1'
----------------> 'individual MakerNote tag 2'
...
----------------> 'individual MakerNote tag N'
-------->'binary MakerNote'

Type IG_MAKERNOTE_TYPE_IFD_PREFIXED:
'MakerNote wrapper IFD'

ImageGear Professional v18 for Mac | 402

-------->'type' = IG_MAKERNOTE_TYPE_IFD_PREFIXED
-------->'MakerNote IFD prefix'
-------->'MakerNote IFD'
----------------> 'individual MakerNote tag 1'
----------------> 'individual MakerNote tag 2'
...
----------------> 'individual MakerNote tag N'
-------->'binary MakerNote'

Type IG_MAKERNOTE_TYPE_TIF_HEADER_PREFIXED:
'MakerNote wrapper IFD'
-------->'type' = IG_MAKERNOTE_TYPE_TIF_HEADER_PREFIXED
<The rest of the structure is identical to IG_MAKERNOTE_TYPE_IFD_PREFIXED>

Type IG_MAKERNOTE_TYPE_IFD_PREFIXED_OFFSET_II:
'MakerNote wrapper IFD'
-------->'type' = IG_MAKERNOTE_TYPE_IFD_PREFIXED_OFFSET_II
<The rest of the structure is identical to IG_MAKERNOTE_TYPE_IFD_PREFIXED>

If 'Makernote' EXIF tag is present in the file then ImageGear will always provide it in its original binary form via meta-data callback ('binary
Makernote' tag) on the read side, and will also optionally provide it as a decoded sub-IFD (w/ or w/o prefix depending on how it is stored in the
original file) if it can be decoded.

ImageGear will ignore 'binary Makernote' tag on the write side for the 'Makernote wrapper IFDs' that have 'type' other than
IG_MAKERNOTE_TYPE_UNKNOWN - and construct 'Makernote' EXIF tag based on the 'Makernote IFD'.

ImageGear will store 'binary Makernote' to file 'as is' for the 'Makernote wrapper IFDs' that have 'type' set to
IG_MAKERNOTE_TYPE_UNKNOWN.

If 'Makernote wrapper IFD' is not provided to ImageGear during saving operation then 'Makernote' EXIF tag will not be saved into the output
file.

Makernote IFD tags are listed below:

Name Id Type Value
Type

Value Value
Length

Read
Only

"IFD" IGMDTAG_ID_EXIF_MAKERNOTE LEVEL_START 0 NULL 0 FALSE

"MakerNoteType" IGMDTAG_ID_EXIF_MAKERNOTE_TYPE VALUE_ITEM UINT16 enumIGEXIFMakerNoteType 1 FALSE

"MakerNotePrefix" IGMDTAG_ID_EXIF_MAKERNOTE_PREFIX VALUE_ITEM RAW_DATA FALSE

"MakerNoteBinary" IGMDTAG_ID_EXIF_MAKERNOTE_BINARY VALUE_ITEM RAW_DATA FALSE

"IFD" IGMDTAG_ID_EXIF_MAKERNOTE_DATA_IFD LEVEL_START 0 NULL 0 FALSE

"UNDEFINED" VALUE_ITEM RAW_DATA FALSE

...

"IFD" IGMDTAG_ID_EXIF_MAKERNOTE_DATA_IFD LEVEL_END 0 NULL 0 FALSE

"IFD" IGMDTAG_ID_EXIF_MAKERNOTE LEVEL_END 0 NULL 0 FALSE

Custom Makernote Tags and IFDs
The following custom tags and IFDs are introduced for Makernote support:

Makernote Wrapper IFD: tag = 37500 (same as standard Makernote tag). This IFD is located in the "Exif IFD" (34665).

For information about new tags, which belong to the Makernote Wrapper IFD, see enumIGEXIFMakerNoteTagIDs.

Vendors and Models Currently Supported
Make Model

Canon Canon DIGITAL IXUS

Canon Canon EOS D30

Canon Canon PowerShot G2

Canon Canon PowerShot S50

FUJIFILM FinePix4900Z

LEICA digilux 4.3

Minolta Co., Ltd. DiMAGE 7i

Nikon E5000 (TIF)

NIKON E5700

NIKON E950

OLYMPUS OPTICAL CO., LTD C2040Z

ImageGear Professional v18 for Mac | 403

OLYMPUS OPTICAL CO., LTD C960Z,D460Z

Panasonic DMC-LC5

RICOH Caplio RR1

SANYO Electric Co., Ltd. SR6

SANYO Electric Co., Ltd. SX113

SANYO Electric Co., Ltd. SX212

SEIKO EPSON CORP. PhotoPC 850Z

Exif APP2 Marker Segment (Flashpix Extensions) Levels
EXIF file format allows you to store Flashpix extensions in APP2 marker segments.

FPXR Contents List APP2 Marker Segment
Name Id Type Value Type Value Value Length Read Only

"APP2" 0xFFE2 LEVEL_START 0 NULL 0 TRUE

"APP2_DATASIZE" 60226 VALUE_ITEM UINT16 1 TRUE

"FPXR_HEADER" 61221 VALUE_ITEM STRING "FPXR" 4 FALSE

"FPXRVersion" 61222 VALUE_ITEM UINT8 1 FALSE

"FPXRExtensionID" 61223 VALUE_ITEM UINT8 "1" 1 FALSE

"FPXRInteroperabilityCount" 61224 VALUE_ITEM UINT16 <n> 1 FALSE

Interoperability Entity level 0

...

Interoperability Entity level <n> - 1

"APP2" 0xFFE2 LEVEL_END 0 NULL 0 TRUE

Interoperability Entity Level
Name Id Type Value

Type
Value Value

Length
Read
Only

"InteroperabilityEntity" <Ind.> LEVEL_START 0 NULL 0 TRUE

"EntitySize" <Ind.> VALUE_ITEM UINT32 0xFFFFFFFF for Storage or <Variable> for
Stream

1 FALSE

"DefaultValue" <Ind.> VALUE_ITEM UINT8 "FPXR" 4 FALSE

"Storage/StreamName" <Ind.> VALUE_ITEM RAW_DATA <Unicode name> <Variable> FALSE

The next item is present only if "EntitySize" item value is equal 0xFFFFFFFF (Storage)

"EntityClassID" <Ind.> VALUE_ITEM RAW_DATA 16 FALSE

"InteroperabilityEntity" <Ind.> LEVEL_END 0 NULL 0 TRUE

FPXR Data Stream APP2 Marker Segment
Name Id Type Value Type Value Value Length Read Only

"APP2" 0xFFE2 LEVEL_START 0 NULL 0 TRUE

"APP2_DATASIZE" 60226 VALUE_ITEM UINT16 1 TRUE

"FPXR_HEADER" 61221 VALUE_ITEM STRING "FPXR" 4 FALSE

"FPXRVersion" 61222 VALUE_ITEM UINT8 1 FALSE

"FPXRExtensionID" 61223 VALUE_ITEM UINT8 "2" 1 FALSE

"FPXRIndexToContentsList" 61225 VALUE_ITEM UINT16 <Ind.>* 1 FALSE

"FPXROffsetToStream" 61226 VALUE_ITEM UINT32 1 FALSE

"FPXRStreamData" 61227 VALUE_ITEM RAW_DATA <Variable> FALSE

"APP2" 0xFFE2 LEVEL_END 0 NULL 0 TRUE

*<Ind.> is pointer to appropriate "InteroperabilityEntity" of FPXR Contents List APP2 marker segment. <Ind.> value is between 0 and <n> -
1(<n> is the "FPXRInteroperabilityCount" item value of FPXR Contents List APP2 marker segment).

The Other FPXR APP2 Marker Segment

ImageGear Professional v18 for Mac | 404

Name Id Type Value Type Value Value Length Read Only

"APP2" 0xFFE2 LEVEL_START 0 NULL 0 TRUE

"APP2_DATASIZE" 60226 VALUE_ITEM UINT16 1 TRUE

"FPXR_HEADER" 61221 VALUE_ITEM STRING "FPXR" 4 FALSE

"FPXRVersion" 61222 VALUE_ITEM UINT8 1 FALSE

"FPXRExtensionID" 61223 VALUE_ITEM UINT8 More than "2" 1 FALSE

"FPXRData" 61228 VALUE_ITEM RAW_DATA <Variable> FALSE

"APP2" 0xFFE2 LEVEL_END 0 NULL 0 TRUE

ImageGear Professional v18 for Mac | 405

1.2.6.8.2.2 EXIF-TIFF Non-Image Data Structure

Brief information on EXIF-TIFF metadata levels is provided in the set of tables below:

EXIF-TIFF Level
IFD0 Level
Tag Levels
Description of Tags Used in EXIF
Callback Required for Writing EXIF Metadata Items

EXIF-TIFF Level
The EXIF-TIFF metadata structure is similar to the TIFF metadata structure. However, EXIF-TIFF allows Exif subIFD
tags, GPS subIFD tags and thumbnail IFD tags to be parsed and passed together with main IFD.

Name Id Type Value
Type

Value Value
Length

Read
Only

"EXIF" IG_FORMAT_EXIF_TIFF LEVEL_START 0 NULL 0 TRUE

"TIF_HEADER" 59936 VALUE_ITEM UINT16 0x4949 or
0x4D4D

1 TRUE

IFD 0 level (if present)

Thumbnail IFD level (if present)

"EXIF" IG_FORMAT_EXIF_TIFF LEVEL_END 0 NULL 0 TRUE

All items between items with Name "EXIF" and Id IG_FORMAT_EXIF_TIFF (Type LEVEL_START and LEVEL_END) are
interpreted as EXIF data. If during sending data from application level to filter level the first item is omitted the data
will not be interpreted and saved.

See Exif subIFD tags below for the list of Exif subIFD tag names and Ids.

IFD0 Level
Name Id Type Value Type Value Value Length Read Only

"IFD" 0 LEVEL_START 0 NULL 0 TRUE

Exif subIFD, GPS info subIFD and tags levels mixed in any way

"IFD" 0 LEVEL_END 0 NULL 0 TRUE

Exif subIFD Level
Name Id Type Value Type Value Value Length Read Only

"IFD" 34665 LEVEL_START 0 NULL 0 TRUE

Interoperability info subIFD and tags levels mixed in any way

"IFD" 34665 LEVEL_END 0 NULL 0 TRUE

The number 34665 is the Exif subIFD pointer tag (see below)

IFD1 (Thumbnail IFD), GPS Info subIFD and Interoperability Info subIFD Levels
Name Id Type Value Type Value Value Length Read Only

"IFD" <IFDId> LEVEL_START 0 NULL 0 TRUE

Tag 1

...

Tag n

"IFD" <IFDId> LEVEL_END 0 NULL 0 TRUE

ImageGear Professional v18 for Mac | 406

The value of <IFDId> is 1 for IFD1 or the subIFD pointer tag identifier for GPS (34853)(see GPS subIFD tags) or
Interoperability (40965) subIFD (see Interoperability subIFD tags, below).

Tag Levels
For tag metadata structure see TIFF Non-Image Data Structure.

Description of Tags Used in EXIF
There are the following types of EXIF tags described in this section:

Exif subIFD tags
GPS subIFD tags
Interoperability subIFD tags

For IFD0 and Thumbnail IFD tags see TIFF Non-Image Data Structure.

Exif subIFD Tags
The following table lists the most frequently used Exif tags. See enumIGEXIFTagIDs for a complete list of tags. For
tags not listed in this table, to find out whether a tag is read only or not, see Non-Image Data Processing.

Item Name Item Id Read Only

"ExposureTime" 33434 FALSE

"Fnumber" 33437 FALSE

"ExposureProgram" 34850 FALSE

"SpectralSensitivity" 34852 FALSE

"ISOSpeedRatings" 34855 FALSE

"OECF" 34856 FALSE

"ExifVersion" 36864 FALSE

"DateTimeOriginal" 36867 FALSE

"DateTimeDigitized" 36868 FALSE

"ComponentsConfiguration" 37121 FALSE

"CompressedBitsPerPixel" 37122 FALSE

"ShutterSpeedValue" 37377 FALSE

"ApertureValue" 37378 FALSE

"BrightnessValue" 37379 FALSE

"ExposureBiasValue" 37380 FALSE

"MaxApertureValue" 37381 FALSE

"SubjectDistance" 37382 FALSE

"MeteringMode" 37383 FALSE

"LightSource" 37384 FALSE

"Flash" 37385 FALSE

"FocalLength" 37386 FALSE

"SubjectArea" 37396 FALSE

"MakerNote" 37500 FALSE

"UserComment" 37510 FALSE

"SubSecTime" 37520 FALSE

"SubSecTimeOriginal" 37521 FALSE

"SubSecTimeDigitized" 37522 FALSE

"FlashPixVersion" 40960 FALSE

ImageGear Professional v18 for Mac | 407

"ColorSpace" 40961 FALSE

"PixelXDimension" 40962 TRUE

"PixelYDimension" 40963 TRUE

"RelatedSoundFile" 40964 FALSE

"InteroperabilityIFDPointer" 40965 TRUE

"FlashEnergy" 41483 FALSE

"SpatialFrequencyResponse" 41484 FALSE

"FocalPlaneXResolution" 41486 FALSE

"FocalPlaneYResolution" 41487 FALSE

"FocalPlaneResolutionUnit" 41488 FALSE

"SubjectLocation" 41492 FALSE

"ExposureIndex" 41493 FALSE

"SensingMethod" 41495 FALSE

"FileSource" 41728 FALSE

"SceneType" 41729 FALSE

"CFAPattern" 41730 FALSE

"CustomRendered" 41985 FALSE

"ExposureMode" 41986 FALSE

"WhiteBalance" 41987 FALSE

"DigitalZoomRatio" 41988 FALSE

"FocalLengthIn35mmFilm" 41989 FALSE

"SceneCaptureType" 41990 FALSE

"GainControl" 41991 FALSE

"Contrast" 41992 FALSE

"Saturation" 41993 FALSE

"Sharpness" 41994 FALSE

"DeviceSettingDescription" 41995 FALSE

"SubjectDistanceRange" 41996 FALSE

"ImageUniqueID" 42016 FALSE

GPS subIFD Tags
See enumIGEXIFGPSTagIDs for the complete list of EXIF GPS tags. All of EXIF GPS tags are writable.

Interoperability subIFD Tags
See enumIGEXIFInterOperTagIDs for the complete list of EXIF Interoperability tags. All of EXIF Interoperability tags
are writable.

Callback Required for Writing EXIF Metadata Items
Value of these tags can be changed using LPAFT_IG_METAD_ITEM_SET_CB callback only.

Item Name Item Id

"TIF_HEADER" 59936

IFD0 tags

"PlanarConfiguration" 284

"YCbCrSubSampling" 530

ImageGear Professional v18 for Mac | 408

"RowsPerStrip" 278

"YCbCrPositioning" 531

"XResolution" 282

"YResolution" 283

"ResolutionUnit" 296

Exif subIFD

"ExifVersion" 36864

"FlashPixVersion" 40960

"ColorSpace" 40961

Thumbnail IFD

"ImageWidth" 256

"ImageLength" 257

"PlanarConfiguration" 284

"YCbCrSubSampling" 530

"RowsPerStrip" 278

"YCbCrPositioning" 531

"XResolution" 282

"YResolution" 283

"ResolutionUnit" 296

The rest of metadata item values can be written using LPAFT_IG_METAD_ITEM_ADD_CB callback only.

ImageGear Professional v18 for Mac | 409

1.2.6.8.2.3 GIF Non-image Data Structure

The GIF file format is complex and has different non-image data that can be stored before and after an image data.
The GIF metadata design allows you to read/write any GIF non-image data and prevents misunderstanding with GIF
extensions storing order.

The following metadata are always saved before an image data:

GIF Logical Screen Descriptor Level
GIF Image Descriptor Level
GIF Global Color Table Level
GIF Local Color Table Level

The metadata of GIF extensions that are inside GIF Extensions After Image Level (between items with Name
"AfterImageExtensions" and Id 0xFFF (Type LEVEL_START and LEVEL_END)) are saved after an image data.

All other GIF Extensions Metadata are saved before an image data.

You can work with GIF metadata only when the ImageGear LZW Component is attached to the core ImageGear
module.

Brief information on GIF metadata levels is provided in the set of tables below:

GIF Metadata Level
GIF Header Level
GIF Logical Screen Descriptor Level
GIF Global Color Table Level
GIF Image Descriptor Level
GIF Local Color Table Level
GIF Extensions Metadata
GIF Extensions After Image Level
Callback Required for Writing GIF Metadata Items
GIF Metadata Item ID Constants

GIF Metadata Level
Name Id Type Value Type Value Value Length Read Only

"GIF" IG_FORMAT_GIF LEVEL_START 0 NULL 0 TRUE

GIF header level

GIF Logical Screen Descriptor level

GIF Image Descriptor level

optional Global and/or Local Color Tables and optional GIF Extensions levels (extensions before image)

"GIF" IG_FORMAT_GIF LEVEL_END 0 NULL 0 TRUE

All items between items with Name "GIF" and Id IG_FORMAT_GIF (Type LEVEL_START and LEVEL_END) are
interpreted as GIF data. If during sending data from application level to filter level the first item is omitted the data
will not be interpreted and saved.

GIF Header Level
Name Id Type Value Type Value Value Length Read Only

"GIFHeader" 0x10 LEVEL_START 0 NULL 0 TRUE

"Signature" 0x101 VALUE_ITEM STRING "GIF" 3 TRUE

"Version" 0x102 VALUE_ITEM STRING 3 TRUE

"GIFHeader" 0x10 LEVEL_END 0 NULL 0 TRUE

GIF Logical Screen Descriptor Level

ImageGear Professional v18 for Mac | 410

Name Id Type Value Type Value Value Length Read Only

"LogicalScreenDescriptor" 0x20 LEVEL_START 0 NULL 0 TRUE

"LogicalScreenWidth" 0x201 VALUE_ITEM UINT16 1 FALSE

"LogicalScreenHeight" 0x202 VALUE_ITEM UINT16 1 FALSE

"Fields" 0x205 LEVEL_START 0 NULL 0 TRUE

"GlobalColorTableFlag" 0x206 VALUE_ITEM BOOL 1 FALSE

"ColorResolution" 0x207 VALUE_ITEM UINT8 1 FALSE

"SortFlag" 0x208 VALUE_ITEM BOOL 1 FALSE

"GlobalColorTableSize" 0x209 VALUE_ITEM UINT8 1 FALSE

"Fields" 0x205 LEVEL_END 0 NULL 0 TRUE

"BackgroundColorIndex" 0x203 VALUE_ITEM UINT8 FALSE

"PixelAspectRatio" 0x204 VALUE_ITEM UINT8 FALSE

"LogicalScreenDescriptor" 0x20 LEVEL_END 0 NULL 0 TRUE

GIF Global Color Table Level
Name Id Type Value Type Value Value Length Read Only

"GlobalColorTable" 0x30 VALUE_ITEM RAW_DATA Variable TRUE

GIF Image Descriptor Level
Name Id Type Value Type Value Value Length Read Only

"ImageDescriptor" 0x2C LEVEL_START 0 NULL 0 TRUE

"ImageLeftPosi tion" 0x2C1 VALUE_ITEM UINT16 1 FALSE

"ImageTopPosition" 0x2C2 VALUE_ITEM UINT16 1 FALSE

"ImageWidth" 0x2C3 VALUE_ITEM 1 FALSE

"ImageHeight" 0x2C4 VALUE_ITEM 1 FALSE

"Fields" 0x2C5 LEVEL_START 0 NULL 0 TRUE

"LocalColorTableFlag" 0x2C6 VALUE_ITEM BOOL 1 FALSE

"InterlaceFlag" 0x2C7 VALUE_ITEM BOOL 1 FALSE

"SortFlag" 0x2C8 VALUE_ITEM BOOL 1 FALSE

"LocalColorTableSize" 0x2C9 VALUE_ITEM UINT8 1 FALSE

"Fields" 0x2C5 LEVEL_END 0 NULL 0 TRUE

"ImageDescriptor" 0x2C LEVEL_END 0 NULL 0 TRUE

GIF Local Color Table Level
Name Id Type Value Type Value Value Length Read Only

"LocalColorTable" 0x40 VALUE_ITEM RAW_DATA Variable TRUE

GIF Extensions Metadata

ImageGear Professional v18 for Mac | 411

GIF Graphic Control Extension Level
Name Id Type Value Type Value Value Length Read Only

"GraphicControlExtension" 0xF9 LEVEL_START 0 NULL 0 TRUE

"Fields" 0xF91 LEVEL_START 0 NULL 0 TRUE

"DisposalMethod" 0xF92 VALUE_ITEM UINT8 1 FALSE

"UserInputFlag" 0xF93 VALUE_ITEM BOOL 1 FALSE

"TransparentColorFlag" 0xF94 VALUE_ITEM BOOL 1 FALSE

"Fields" 0xF91 LEVEL_END 0 NULL 0 TRUE

"DelayTime" 0xF95 VALUE_ITEM UINT16 1 FALSE

"TransparentColorIndex" 0xF96 VALUE_ITEM UINT8 1 FALSE

"GraphicControlExtension" 0xF9 LEVEL_END 0 NULL 0 TRUE

GIF Comment Extension Level
Name Id Type Value Type Value Value Length Read Only

"CommentExtension" 0xFE VALUE_ITEM STRING Variable TRUE

GIF Application Extension Level
Name Id Type Value Type Value Value Length Read Only

"ApplicationExtension" 0xFF LEVEL_START 0 NULL 0 TRUE

"ApplicationIdentifier" 0xFF1 VALUE_ITEM STRING 8 FALSE

"Appl.AuthenticationCode" 0xFF2 VALUE_ITEM UINT8 4 FALSE

"ApplicationData" 0xFF3 VALUE_ITEM RAW_DATA Variable FALSE

"ApplicationExtension" 0xFF LEVEL_END 0 NULL 0 TRUE

GIF Plain Text Extension Level
Name Id Type Value Type Value Value Length Read Only

"PlainTextExtension" 0x01 LEVEL_START 0 NULL 0 TRUE

"TextGridLeftPosition" 0x11 VALUE_ITEM UINT16 1 FALSE

"TextGridTopPosition" 0x12 VALUE_ITEM UINT16 1 FALSE

"TextGridWidth" 0x13 VALUE_ITEM UINT16 1 FALSE

"TextGridHeight" 0x14 VALUE_ITEM UINT16 1 FALSE

"CharacterCellWidth" 0x15 VALUE_ITEM UINT8 1 FALSE

"CharacterCellHeight" 0x16 VALUE_ITEM UINT8 1 FALSE

"TextForegroundColorIndex" 0x17 VALUE_ITEM UINT8 1 FALSE

"TextBackgroundColorIndex" 0x18 VALUE_ITEM UINT8 1 FALSE

"PlainTextData" 0x19 VALUE_ITEM STRING Variable FALSE

GIF Extensions After Image Level
Name Id Type Value Type Value Value Length Read Only

"AfterImageExtensions" 0xFFF LEVEL_START 0 NULL 0 TRUE

ImageGear Professional v18 for Mac | 412

One or more GIF extension levels

"AfterImageExtensions" 0xFFF LEVEL_END 0 NULL 0 TRUE

Callback Required for Writing GIF Metadata Items
The GIF Logical Screen Descriptor Level and GIF Image Descriptor Level metadata items can be written using
LPAFT_IG_METAD_ITEM_SET_CB callback function.

Other GIF metadata can be written using LPAFT_IG_METAD_ITEM_ADD_CB callback function.

GIF Metadata Item ID Constants
Please see file enumIGGIFTagIDs for the complete list of GIF Metadata Item Id constants.

ImageGear Professional v18 for Mac | 413

1.2.6.8.2.4 IPTC Non-Image Data Structure

IPTC, International Press and Telecommunications Council Standards, was created for exchanging different types
of information associated with images.

IPTC is not a file format. In TIFF and EXIF_TIFF files, the IPTC data can be stored in a separate TIFF tag IPTC_NAA (id
= 33723), or within Adobe Photoshop Resources (id = 34377). In JPEG and EXIF-JPEG files, the IPTC data is stored in
Adobe Photoshop APP13 marker segment.

See TIFF Non-Image Data Structure, JPEG Non-Image Data Structure, and Photoshop Image Resource metadata
structure.

Use TIFF control parameter SAVE_IPTC_NAA to control the saving of IPTC_NAA tag to TIFF and EXIF_TIFF
formats.

Brief information on IPTC metadata levels is provided in the set of tables below:

IPTC Level
Record Level
Dataset Value Item
Dataset Value Items Description for IPTC Envelope Record (Record #1)
Dataset Value Items Description for IPTC Application Record (Record #2)
Dataset Value Items Description for IPTC Digital News Photo Parameter Record (Record #3)
Dataset Value Items Description for IPTC Pre-Object Descriptor Record (Record #7)
Dataset Value Items Description for IPTC Object Record (Record #8)
Dataset Value Items Description for IPTC Post-Object Descriptor Record (Record #9)
Callback Required for Writing IPTC Metadata Items

IPTC Level
Name Id Type ValueType Value Value Length Read Only

"IPTC" 0x1C00 LEVEL_START UNDEFINED NULL 0 TRUE

Record level 1

...

Record level n

"IPTC" 0x1C00 LEVEL_END UNDEFINED NULL 0 TRUE

All items between items with Name "IPTC" and Id 0x1C00 (Type LEVEL_START and LEVEL_END) are interpreted as
IPTC data. If during sending data from application level to filter level the first item is omitted the data will not be
interpreted and saved.

Record Level
Name Id Type ValueType Value Value Length Read Only

"IPTC_RECORD" <Record#> LEVEL_START UNDEFINED NULL 0 TRUE

Dataset value item

...

Dataset value item

"IPTC_RECORD" <Record#> LEVEL_END UNDEFINED NULL 0 TRUE

The<Record#> is identifier of IPTC record. Its value is the number of appropriate IPTC record described in IPTC - NAA
IIM4 specification. Record levels must follow in numerical order within IPTC level.

Dataset Value Item
Name Id Type ValueType Value Value Length Read Only

<Dataset name> <Dataset Id> VALUE_ITEM <Value Type> <Data> <Value Length> FALSE

ImageGear Professional v18 for Mac | 414

The available <Dataset name>, <Dataset Id>, <Value Length> and <Value Type> values are described below for
each IPTC record according to IPTC-NAA IIM4 specification. Dataset value item can follow in any order within
appropriate record level.

Dataset Value Items Description for IPTC Envelope Record (Record #1)
Item
Identifier

Item Name Value Type Max. Value Length (for String last NULL is not
counted)

0 "ModelVersion" AT_TID_WORD 1

5 "Destination" AT_TID_STRING 1024

20 "FileFormat" AT_TID_WORD 1

22 "FileFormatVersion" AT_TID_WORD 1

30 "ServiceIdentifier" AT_TID_STRING 10

40 "EnvelopeNumber" AT_TID_STRING 8

50 "ProductID" AT_TID_STRING 32

60 "EnvelopePriority" AT_TID_STRING 1

70 "DateSent" AT_TID_STRING 8

80 "TimeSent" AT_TID_STRING 11

90 "CodedCharacterSet" AT_TID_STRING 32

100 "UNO" AT_TID_STRING 80

120 "ARMIdentifier" AT_TID_WORD 1

122 "ARMVersion" AT_TID_WORD 1

See also enumIGIPTCRecord1DatasetTags.

Dataset Value Items Description for IPTC Application Record (Record #2)
Item
Identifier

Item Name Value Type Max. Value Length (for String last NULL is
not counted)

0 "RecordVersion" AT_TID_WORD 1

3 "ObjectTypeReference" AT_TID_STRING 67

4 "ObjectAttributeReference" AT_TID_STRING 68

5 "ObjectName" AT_TID_STRING 64

7 "EditStatus" AT_TID_STRING 64

8 "EditorialUpdate" AT_TID_STRING 2

10 "Urgency" AT_TID_STRING 1

12 "SubjectReference" AT_TID_STRING 236

15 "Category" AT_TID_STRING 3

20 "SupplementalCategory" AT_TID_STRING 32

22 "FixtureIdentifier" AT_TID_STRING 32

25 "Keywords" AT_TID_STRING 64

26 "ContentLocationCode" AT_TID_STRING 3

27 "ContentLocationName" AT_TID_STRING 64

30 "ReleaseDate" AT_TID_STRING 8

35 "ReleaseTime" AT_TID_STRING 11

37 "ExpirationDate" AT_TID_STRING 8

38 "ExpirationTime" AT_TID_STRING 11

40 "SpecialInstructions" AT_TID_STRING 256

ImageGear Professional v18 for Mac | 415

42 "ActionAdvised" AT_TID_STRING 2

45 "ReferenceService" AT_TID_STRING 10

47 "ReferenceDate" AT_TID_STRING 8

50 "ReferenceNumber" AT_TID_STRING 8

55 "DateCreated" AT_TID_STRING 8

60 "TimeCreated" AT_TID_STRING 11

62 "DigitalCreationDate" AT_TID_STRING 8

63 "DigitalCreationTime" AT_TID_STRING 11

65 "OriginatingProgram" AT_TID_STRING 32

70 "ProgramVersion" AT_TID_STRING 10

75 "ObjectCycle" AT_TID_STRING 1

80 "By-line" AT_TID_STRING 32

85 "By-lineTitle" AT_TID_STRING 32

90 "City" AT_TID_STRING 32

92 "Sublocation" AT_TID_STRING 32

95 "Province/State" AT_TID_STRING 32

100 "Country/
PrimaryLocationCode"

AT_TID_STRING 3

101 "Country/
PrimaryLocationName"

AT_TID_STRING 64

103 "OriginalTransmission
Reference"

AT_TID_STRING 32

105 "Headline" AT_TID_STRING 256

110 "Credit" AT_TID_STRING 32

115 "Source" AT_TID_STRING 32

116 "CopyrightNotice" AT_TID_STRING 128

118 "Contact" AT_TID_STRING 128

120 "Caption/Abstract" AT_TID_STRING 2000

122 "Writer/Editor" AT_TID_STRING 32

125 "RasterizedCaption" AT_TID_BYTE 7360

130 "ImageType" AT_TID_STRING 2

131 "ImageOrientation" AT_TID_STRING 1

135 "LanguageIdentifier" AT_TID_STRING 3

150 "AudioType" AT_TID_STRING 2

151 "AudioSamplingRate" AT_TID_STRING 6

152 "AudioSamplingResolution" AT_TID_STRING 2

153 "AudioDuration" AT_TID_STRING 6

154 "AudioOutcue" AT_TID_STRING 64

200 "ObjectDataPreview FileFormat" AT_TID_WORD 1

201 "ObjectDataPreview
FileFormatVersion"

AT_TID_WORD 1

202 "ObjectDataPreviewData" AT_TID_BYTE Undefined

See also enumIGIPTCRecord2DatasetTags.

Dataset Value Items Description for IPTC Digital News Photo Parameter Record

ImageGear Professional v18 for Mac | 416

(Record #3)
Item
Identifier

Item Name Value Type Max. Value Length (for String last
NULL is not counted)

0 "RecordVersion" AM_TID_TXT_UINT16 1

10 "PictureNumber" AM_TID_RAW_DATA 16

20 "PixelsPerLine" AM_TID_TXT_UINT16 1

30 "NumberOfLine" AM_TID_TXT_UINT16 1

40 "PixelSizeInScanningDirection" AM_TID_TXT_UINT16 1

50 "PixelSizePerpendicularTo
ScanningDirection"

AM_TID_TXT_UINT16 1

55 "SupplementType" AM_TID_TXT_UINT8 1

60 "ColourRepresentation" AM_TID_TXT_UINT8 2

64 "InterchangeColourSpace" AM_TID_TXT_UINT8 1

65 "ColourSequence" AM_TID_TXT_UINT8 4

66 "ICCInputColourProfile" AM_TID_RAW_DATA Undefined

70 "ColourCalibrationMatrixTable" AM_TID_RAW_DATA Undefined

80 "LookupTable" AM_TID_RAW_DATA 131072

84 "NumberOfIndexEntries" AM_TID_TXT_UINT16 1

85 "ColourPalette" AM_TID_RAW_DATA Undefined

86 "NumberOfBitsPerSample" AM_TID_TXT_UINT8 1

90 "SamplingStructure" AM_TID_TXT_UINT8 1

100 "ScanningDirection" AM_TID_TXT_UINT8 1

102 "ImageRotation" AM_TID_TXT_UINT8 1

110 "DataCompressionMethod" AM_TID_RAW_DATA 4

120 "QuantisationMethod" AM_TID_TXT_UINT8 1

125 "EndPoints" AM_TID_TXT_UINT8 Undefined

130 "ExcursionTolerance" AM_TID_TXT_UINT8 1

135 "BitsPerComponent" AM_TID_TXT_UINT8 Undefined

140 "MaximumDensityRange" AM_TID_TXT_UINT16 1

145 "GammaCompensatedValue" AM_TID_TXT_UINT16 1

See also enumIGIPTCRecord3DatasetTags.

Dataset Value Items Description for IPTC Pre-Object Descriptor Record (Record
#7)
Item
Identifier

Item Name Value Type Max. Value Length (for String
last NULL is not counted)

10 "SizeMode" AM_TID_TXT_UINT8 1

20 "MaxSubfileSize" AM_TID_TXT_UINT8 or
AM_TID_TXT_UINT16 or
AM_TID_TXT_UINT32

1

90 "ObjectDataSizeAnnounced" AM_TID_TXT_UINT8 or
AM_TID_TXT_UINT16 or
AM_TID_TXT_UINT32

1

95 "MaximumObjectDataSize" AM_TID_TXT_UINT8 or
AM_TID_TXT_UINT16 or
AM_TID_TXT_UINT32

1

ImageGear Professional v18 for Mac | 417

See also enumIGIPTCRecord7DatasetTags.

Dataset Value Items Description for IPTC Object Record (Record #8)
Item
Identifier

Item
Name

Value Type Max. Value Length (for String last NULL is not
counted)

10 "Subfile" AM_TID_RAW_DATA Undefined

See also enumIGIPTCRecord8DatasetTags.

Dataset Value Items Description for IPTC Post-Object Descriptor Record (Record
#9)
Item
Identifier

Item Name Value Type Max. Value Length (for String
last NULL is not counted)

10 "ConfirmedObjectDataSize" AM_TID_TXT_UINT8 or
AM_TID_TXT_UINT16 or
AM_TID_TXT_UINT32

1

See also enumIGIPTCRecord9DatasetTags.

Callback Required for Writing IPTC Metadata Items
All IPTC metadata items can be written using LPAFT_IG_METAD_ITEM_ADD_CB callback only.

ImageGear Professional v18 for Mac | 418

1.2.6.8.2.5 JPEG Non-Image Data Structure

Brief information on JPEG metadata levels is provided in the set of tables below:

JPEG Level
JPEG Marker Segment Levels
Frame Component Level
Scan Component Level
Define-Huffman-Tables Marker Segment Level
JFIF APP0 Segment
JFIF Extension (JFXX) APP0 Segment
Photoshop Image Resource APP13 Marker Segment
Callback Required for Writing JPEG Metadata Items
JPEG Metadata Item Name and ID Constants

JPEG Level
Name Id Type Value Type Value Value Length Read Only

"JPEG-JFIF" IG_FORMAT_JPG LEVEL_START 0 NULL 0 TRUE

JPEG marker segment levels

"JPEG-JFIF" IG_FORMAT_JPG LEVEL_END 0 NULL 0 TRUE

All items between items with Name "JPEG-JFIF" and Id IG_FORMAT_JPG (Type LEVEL_START and LEVEL_END) are
interpreted as JPEG metadata. If during sending data from application level to filter level the first item is omitted the
data will not be parsed and saved.

JPEG Marker Segment Levels
The following JPEG marker segments metadata are supported:

Frame marker segment level - SOF0, SOF1, SOF2 and SOF3 (read only),
Scan marker segment level - SOS (read only),
Define-quantization-table marker segment level - DQT (read only),
Define-Huffman-tables marker segment level - DHT (read only),
Comment marker segment level - COM (read/write),
Application marker segment level - APP0-APP15 (read/write).

Frame Marker Segment Level
Name Id Type Value

Type
Value Value

Length
Read
Only

<Frame marker name> <Frame marker Id> LEVEL_START 0 NULL 0 TRUE

<Frame marker size tag
name>

<Frame marker size tag
Id>

VALUE_ITEM UINT16 1 TRUE

"Precision" 212 VALUE_ITEM UINT8 1 TRUE

"Lines" 213 VALUE_ITEM UINT16 1 TRUE

"SamplesPerLine" 214 VALUE_ITEM UINT16 1 TRUE

"ComponentNumber" 215 VALUE_ITEM UINT8 <n> 1 TRUE

Frame component level 1

Frame component level <n>

<Frame marker name> <Frame marker Id> LEVEL_END 0 NULL 0 TRUE

<Frame marker Id>, <Frame marker name>, <Frame marker size tag name> and <Frame marker size tag Id> are
described in the table below:

ImageGear Professional v18 for Mac | 419

Frame
Marker

<Frame marker
name>

<Frame marker
Id>

<Frame marker size tag
name>

<Frame marker size tag
Id>

SOF0 "SOF0" 0xFFC0 "SOF0_DATASIZE" 60192

SOF1 "SOF1" 0xFFC1 "SOF1_DATASIZE" 60193

SOF2 "SOF2" 0xFFC2 "SOF2_DATASIZE" 60194

SOF3 "SOF3" 0xFFC3 "SOF3_DATASIZE" 60195

Frame Component Level

Name Id Type Value Type Value Value Length Read Only

"Component" <Component No.> LEVEL_START 0 NULL 0 TRUE

"Id" <Component No.> VALUE_ITEM UINT 1 TRUE

"MCU_HV" <Component No.> VALUE_ITEM UINT 1 TRUE

"QuantizationNumber" <Component No.> VALUE_ITEM UINT 1 TRUE

"Component" <Component No.> LEVEL_END 0 NULL 0 TRUE

<Component No.> is frame component identifier of appropriate component.

Scan Marker Segment Level
Name Id Type Value Type Value Value Length Read Only

"SOS" 0xFFDA LEVEL_START 0 NULL 0 TRUE

"SOS_DATASIZE" 60218 VALUE_ITEM UINT16 1 TRUE

"ComponentNumber" 228 VALUE_ITEM UINT8 <n> 1 TRUE

Scan component level 1

Scan component level <n>

"SpectralStart" 235 VALUE_ITEM UINT8 1 TRUE

"SpectralEnd" 236 VALUE_ITEM UINT8 TRUE

"AH_AL" 237 VALUE_ITEM UINT8 TRUE

"SOS" 0xFFDA LEVEL_START 0 NULL 0 TRUE

Scan Component Level

Name Id Type Value Type Value Value Length Read Only

"Component" <Component No.> LEVEL_START 0 NULL 0 TRUE

"Selector" <Component No.> VALUE_ITEM UINT8 1 TRUE

"DC_AC" <Component No.> VALUE_ITEM UINT8 1 TRUE

"Component" <Component No.> LEVEL_END 0 NULL 0 TRUE

<Component No.> is scan component selector of appropriate component.

Define-Quantization-Table Marker Segment Level
Name Id Type Value Type Value Value Length Read Only

"DQT" 0xFFDB LEVEL_START 0 NULL 0 TRUE

"DQT_DATASIZE" 60219 VALUE_ITEM UINT16 1 TRUE

"QuantizationTable" <table 1 Id> VALUE_ITEM UINT8 or UINT16 64 TRUE

ImageGear Professional v18 for Mac | 420

"QuantizationTable" <table 1 Id> VALUE_ITEM UINT8 or UINT16 64 TRUE

"DQT" 0xFFDB LEVEL_END 0 NULL 0 TRUE

<table Id> is the appropriate quantization table identifier.

Define-Huffman-Tables Marker Segment Level

Name Id Type Value Type Value Value Length Read Only

"DHT" 0xFFC4 LEVEL_START 0 NULL 0 TRUE

"DHT_DATASIZE" 60196 VALUE_ITEM UINT16 1 TRUE

"DATA" 0xFFC4 VALUE_ITEM RAW_DATA <ValueSize> TRUE

"DHT" 0xFFC4 LEVEL_END 0 NULL 0 TRUE

Comment Marker Segment Level
Name Id Type Value Type Value Value Length Read Only

"COM" 0xFFFE LEVEL_START 0 NULL 0 TRUE

"COM_DATASIZE" 60254 VALUE_ITEM UINT16 1 TRUE

"Comment" 0xFFFE VALUE_ITEM STRING <ValueSize> TRUE

"COM" 0xFFFE LEVEL_END 0 NULL 0 TRUE

Application Marker Segment Level
There are several application marker segments, which data structure is well known. These segments are parsed and
their data are passed in special format.

These marker segments are:

JFIF APP0 segment
JFIF extension (JFXX) APP0 segment (read only)
EXIF APP1 segment
Photoshop Image Resource APP13 marker segment (it includes some IPTC data and another Photoshop Image
Resource metadata structure)
Other application marker segment levels

JFIF APP0 Segment

Name Id Type Value Type Value Value Length Read Only

"APP0" 0xFFE0 LEVEL_START 0 NULL 0 TRUE

"APP0_DATASIZE" 60224 VALUE_ITEM UINT16 1 FALSE

"JFIF_HEADER" 200 VALUE_ITEM STRING JFIF 5 TRUE

"Version" 201 VALUE_ITEM UINT16 1 FALSE

"ResolutionUnits" 202 VALUE_ITEM UINT8 1 FALSE

"ResolutionX" 203 VALUE_ITEM UINT16 1 FALSE

"ResolutionY" 204 VALUE_ITEM UINT16 1 FALSE

"ThumbnailWidth"1 205 VALUE_ITEM UINT8 1 TRUE

"ThumbnailHeight"2 206 VALUE_ITEM UINT8 1 TRUE

"APP0" 0xFFE0 LEVEL_END 0 NULL 0 TRUE

1The thumbnail width tags are present only if the thumbnail is stored to JFIF segment.

2The thumbnail height tags are present only if the thumbnail is stored to JFIF segment.

ImageGear Professional v18 for Mac | 421

JFIF Extension (JFXX) APP0 Segment

Name Id Type Value Type Value Value Length Read Only

"APP0" 0xFFE0 LEVEL_START 0 NULL 0 TRUE

"APP0_DATASIZE" 60224 VALUE_ITEM UINT16 1 TRUE

"JFIF_EX_HEADER" 209 VALUE_ITEM STRING "JFXX" 5 TRUE

"ExtensionCode" 210 VALUE_ITEM UINT8 1 TRUE

"APP0" 0xFFE0 LEVEL_END 0 NULL 0 TRUE

Photoshop Image Resource APP13 Marker Segment

Name Id Type Value Type Value Value Length Read Only

"APP13" 0xFFED LEVEL_START 0 NULL 0 TRUE

"APP13_DATASIZE" 60237 VALUE_ITEM UINT16 1 FALSE

"PHOTOSHOP_HEADER" 59915 VALUE_ITEM STRING "Photoshop 3.0" 14 FALSE

Photoshop Image Resource level 1

...

Photoshop Image Resource level n

"APP13" 0xFFED LEVEL_END 0 NULL 0 TRUE

For "Photoshop Image Resource" metadata structure see in TIFF non-image data the Photoshop Image Resource
metadata structure table.

Other Application Marker Segment Levels
Name Id Type Value

Type
Value Value

Length
Read Only

<Marker name> <Marker Id> LEVEL_START 0 NULL 0 TRUE

<Marker size tag
name>

<Marker size tag
Id>

VALUE_ITEM UINT16 1 FALSE

"DATA" <Marker Id> VALUE_ITEM RAW_DATA <ValueSize> FALSE

<Marker name> <Marker Id> LEVEL_END 0 NULL 0 TRUE

<Marker Id>, <Marker name>, <Marker size tag name> and <Marker size tag Id> are in table below:

Marker <Marker name> <Marker Id> <Marker size tag name> <Marker size tag Id>

APP0 "APP0" 0xFFE0 "APP0_DATASIZE" 60224

APP1 "APP1" 0xFFE1 "APP1_DATASIZE" 60225

APP2 "APP2" 0xFFE2 "APP2_DATASIZE" 60226

APP3 "APP3" 0xFFE3 "APP3_DATASIZE" 60227

APP4 "APP4" 0xFFE4 "APP4_DATASIZE" 60228

APP5 "APP5" 0xFFE5 "APP5_DATASIZE" 60229

APP6 "APP6" 0xFFE6 "APP6_DATASIZE" 60230

APP7 "APP7" 0xFFE7 "APP7_DATASIZE" 60231

APP8 "APP8" 0xFFE8 "APP8_DATASIZE" 60232

APP9 "APP9" 0xFFE9 "APP9_DATASIZE" 60233

APP10 "APP10" 0xFFEA "APP10_DATASIZE" 60234

APP11 "APP11" 0xFFEB "APP11_DATASIZE" 60235

APP12 "APP12" 0xFFEC "APP12_DATASIZE" 60236

ImageGear Professional v18 for Mac | 422

APP13 "APP13" 0xFFED "APP13_DATASIZE" 60237

APP14 "APP14" 0xFFEE "APP14_DATASIZE" 60238

APP15 "APP15" 0xFFEF "APP15_DATASIZE" 60239

Callback Required for Writing JPEG Metadata Items
All JPEG metadata items can be written using LPAFT_IG_METAD_ITEM_ADD_CB callback only.

JPEG Metadata Item Name and ID Constants
Please see enumIGJPGTagIDs for a complete list of JPEG Metadata Id constants.

ImageGear Professional v18 for Mac | 423

1.2.6.8.2.6 PNG Non-Image Data Structure

Brief information on PNG metadata levels is provided in the set of tables below:

PNG Metadata Level
PNG Chunks Levels
Callback Required for Writing PNG Metadata Items
PNG Metadata ID Constants

PNG Metadata Level
All items between items with Name "PNG" and Id IG_FORMAT_PNG (Type LEVEL_START and LEVEL_END) are
interpreted as PNG data. If during sending data from application level to filter level the first item is omitted the data
will not be interpreted and saved.

Name Id Type Value Type Value Value Length Read Only

"PNG" IG_FORMAT_PNG LEVEL_START 0 NULL 0 TRUE

PNG chunks levels

"PNG" IG_FORMAT_PNG LEVEL_END 0 NULL 0 TRUE

PNG Chunks Levels
The following PNG non-image chunk levels are supported by ImageGear:

PNG Header Chunk Metadata
Physical Dimension Chunk Metadata
Transparency Chunk Metadata
Gamma Chunk Metadata
Primary Chromaticities Chunk Metadata
sRGB Chunk Metadata
ICC profile Chunk Metadata
Background Chunk Metadata
Significant Bits Chunk Metadata
Suggested Palette Chunk Metadata
Palette Histogram Chunk Metadata
Modified Time Chunk Metadata
Text Chunk Metadata
Compressed Textual Data Chunk Metadata
International Textual Data Chunk Metadata
Calibration of Pixel Values Chunk Metadata
Physical Scale Chunk Metadata
GIF Application Extension Chunk Metadata
GIF Graphic Control Extension Chunk Metadata
Image Offset Chunk Metadata
The Rest Chunk Metadata

PNG Header Chunk Metadata
Name Id Type Value Type Value Value Length Read Only

"IHDR" 0x49484452 LEVEL_START 0 NULL 0 TRUE

"Width" 0x49484452 VALUE_ITEM UINT32 1 TRUE

"Height" 0x49484452 VALUE_ITEM UINT32 1 TRUE

"BitDepth" 0x49484452 VALUE_ITEM UINT8 1 TRUE

"ColorType" 0x49484452 VALUE_ITEM UINT8 1 TRUE

"CompressionType" 0x49484452 VALUE_ITEM UINT8 1 TRUE

ImageGear Professional v18 for Mac | 424

"FilterType" 0x49484452 VALUE_ITEM UINT8 1 TRUE

"InterlaceType" 0x49484452 VALUE_ITEM UINT8 1 TRUE

"IHDR" 0x49484452 LEVEL_END 0 NULL 0 TRUE

Physical Dimension Chunk Metadata
Name Id Type Value Type Value Value Length Read Only

"pHYs" 0x70485973 LEVEL_START 0 NULL 0 TRUE

"XAxis" 0x70485973 VALUE_ITEM UINT32 1 FALSE

"YAxis" 0x70485973 VALUE_ITEM UINT32 1 FALSE

"UnitSpecifier" 0x70485973 VALUE_ITEM UINT8 1 FALSE

"pHYs" 0x70485973 LEVEL_END 0 NULL 0 TRUE

Transparency Chunk Metadata
Name Id Type Value Type Value Value Length Read Only

"tRNS" 0x74524e53 VALUE_ITEM UINT8 or UINT16 Variable FALSE

Gamma Chunk Metadata
Name Id Type Value Type Value Value Length Read Only

"gAMA" 0x67414d41 VALUE_ITEM UINT32 1 FALSE

Primary Chromaticities Chunk Metadata
Name Id Type Value Type Value Value Length Read Only

"cHRM" 0x6348524d LEVEL_START 0 NULL 0 TRUE

"WhitePoint" 0x6348524d LEVEL_START 0 NULL 0 TRUE

"x" 0x6348524d VALUE_ITEM UINT32 1 FALSE

"y" 0x6348524d VALUE_ITEM UINT32 1 FALSE

"WhitePoint" 0x6348524d LEVEL_END 0 NULL 0 TRUE

"Red" 0x6348524d LEVEL_START 0 NULL 0 TRUE

"x" 0x6348524d VALUE_ITEM UINT32 1 FALSE

"y" 0x6348524d VALUE_ITEM UINT32 1 FALSE

"Red" 0x6348524d LEVEL_END 0 NULL 0 TRUE

"Green" 0x6348524d LEVEL_START 0 NULL 0 TRUE

"x" 0x6348524d VALUE_ITEM UINT32 1 FALSE

"y" 0x6348524d VALUE_ITEM UINT32 1 FALSE

"Green" 0x6348524d LEVEL_END 0 NULL 0 TRUE

"Blue" 0x6348524d LEVEL_START 0 NULL 0 TRUE

"x" 0x6348524d VALUE_ITEM UINT32 1 FALSE

"y" 0x6348524d VALUE_ITEM UINT32 1 FALSE

"Blue" 0x6348524d LEVEL_END 0 NULL 0 TRUE

"cHRM" 0x6348524d LEVEL_END 0 NULL 0 TRUE

sRGB Chunk Metadata

ImageGear Professional v18 for Mac | 425

Name Id Type Value Type Value Value Length Read Only

"sRGB" 0x73524742 VALUE_ITEM UINT32 1 FALSE

ICC profile Chunk Metadata
Name Id Type Value Type Value Value Length Read Only

"iCCP" 0x70485973 LEVEL_START 0 NULL 0 TRUE

"ProfileName" 0x70485973 VALUE_ITEM STRING Variable FALSE

"ProfileData" 0x70485973 VALUE_ITEM RAW_DATA Variable FALSE

"iCCP" 0x70485973 LEVEL_END 0 NULL 0 TRUE

Background Chunk Metadata
Name Id Type Value Type Value Value Length Read Only

"bKGD" 0x624b4744 VALUE_ITEM UINT8 or UINT16 Variable FALSE

Significant Bits Chunk Metadata
Name Id Type Value Type Value Value Length Read Only

"sBIT" 0x73424954 VALUE_ITEM UINT8 Variable FALSE

Suggested Palette Chunk Metadata
Name Id Type Value Type Value Value Length Read Only

"sPLT" 0x73504c54 LEVEL_START 0 NULL 0 TRUE

"PaletteName" 0x73504c54 VALUE_ITEM STRING Variable TRUE

"SampleDepth" 0x73504c54 VALUE_ITEM UINT8 1 FALSE

"PaletteEntryCount" 0x73504c54 VALUE_ITEM UINT16 <N> 1 FALSE

Palette entry level 0

...

Palette entry level n

"sPLT" 0x70485973 LEVEL_END 0 NULL 1 FALSE

Palette Entry Level

Name Id Type Value Type Value Value Length Read Only

"PaletteEntry" <Entry No.> LEVEL_START 0 NULL 0 TRUE

"Red" <Entry No.> VALUE_ITEM UINT8 or UINT16 1 FALSE

"Green" <Entry No.> VALUE_ITEM UINT8 or UINT16 1 FALSE

"Blue" <Entry No.> VALUE_ITEM UINT8 or UINT16 1 FALSE

"Alpha" <Entry No.> VALUE_ITEM UINT8 or UINT16 1 FALSE

"Frequency" <Entry No.> VALUE_ITEM UINT16 1 FALSE

"PaletteEntry" <Entry No.> LEVEL_END 0 NULL 0 TRUE

Palette Histogram Chunk Metadata
Name Id Type Value Type Value Value Length Read Only

"hIST" 0x68495354 VALUE_ITEM UINT16 Variable FALSE

ImageGear Professional v18 for Mac | 426

Modified Time Chunk Metadata
Name Id Type Value Type Value Value Length Read Only

"tIME" 0x74494d45 LEVEL_START 0 NULL 0 TRUE

"Year" 0x74494d45 VALUE_ITEM UINT16 1 FALSE

"Month" 0x74494d45 VALUE_ITEM UINT8 1 FALSE

"Day" 0x74494d45 VALUE_ITEM UINT8 1 FALSE

"Hour" 0x74494d45 VALUE_ITEM UINT8 1 FALSE

"Minute" 0x74494d45 VALUE_ITEM UINT8 1 FALSE

"Second" 0x74494d45 VALUE_ITEM UINT8 1 FALSE

"tIME" 0x74494d45 LEVEL_END 0 NULL 0 TRUE

Text Chunk Metadata
Name Id Type Value Type Value Value Length Read Only

"tEXt" 0x74455874 LEVEL_START 0 NULL 0 TRUE

"Keyword" 0x74455874 VALUE_ITEM STRING Variable FALSE

"Text" 0x74455874 VALUE_ITEM STRING Variable FALSE

"tEXt" 0x74455874 LEVEL_END 0 NULL 0 TRUE

Compressed Textual Data Chunk Metadata
Name Id Type Value Type Value Value Length Read Only

"zTXt" 0x7a545874 LEVEL_START 0 NULL 0 TRUE

"Keyword" 0x7a545874 VALUE_ITEM STRING Variable FALSE

"CompressionMethod" 0x7a545874 VALUE_ITEM UINT8 1 FALSE

"Text" 0x7a545874 VALUE_ITEM STRING Variable FALSE

"zTXt" 0x7a545874 LEVEL_END 0 NULL 0 TRUE

International Textual Data Chunk Metadata
Name Id Type Value Type Value Value Length Read Only

"zTXt" 0x69545874 LEVEL_START 0 NULL 0 TRUE

"Keyword" 0x69545874 VALUE_ITEM STRING Variable FALSE

"CompressionFlag" 0x69545874 VALUE_ITEM BOOL

"CompressionMethod" 0x69545874 VALUE_ITEM UINT8 1 FALSE

"LanguageTag" 0x69545874 VALUE_ITEM STRING

"TranslatedKeyword" 0x69545874 VALUE_ITEM RAW_DATA

"Text" 0x69545874 VALUE_ITEM RAW_DATA Variable FALSE

"zTXt" 0x69545874 LEVEL_END 0 NULL 0 TRUE

Calibration of Pixel Values Chunk Metadata
Name Id Type Value Type Value Value Length Read Only

"pCAL" 0x7043414c LEVEL_START 0 NULL 0 TRUE

"CalibrationName" 0x7043414c VALUE_ITEM STRING Variable FALSE

"OriginalZero(x0)" 0x7043414c VALUE_ITEM INT32 1 FALSE

ImageGear Professional v18 for Mac | 427

"OriginalMax(x1)" 0x7043414c VALUE_ITEM INT32 1 FALSE

"EquationType" 0x7043414c VALUE_ITEM UINT8 1 FALSE

"NumberOfParameters" 0x7043414c VALUE_ITEM UINT8 <N> Variable FALSE

"UnitName" 0x7043414c VALUE_ITEM STRING Variable FALSE

"CalibrationParameter" 0 VALUE_ITEM STRING Variable FALSE

...

"CalibrationParameter" <N> - 1 VALUE_ITEM STRING Variable FALSE

"pCAL" 0x7043414c LEVEL_END 0 NULL 0 TRUE

Physical Scale Chunk Metadata
Name Id Type Value Type Value Value Length Read Only

"sCAL" 0x7343414c LEVEL_START 0 NULL 0 TRUE

"UnitSpecifier" 0x7343414c VALUE_ITEM UINT8 1 FALSE

"PixelWidth" 0x7343414c VALUE_ITEM STRING Variable FALSE

"PixelHeigt" 0x7343414c VALUE_ITEM STRING Variable FALSE

"sCAL" 0x7343414c LEVEL_END 0 NULL 0 TRUE

GIF Application Extension Chunk Metadata
Name Id Type Value Type Value Value Length Read Only

"gIFx" 0x67494678 LEVEL_START 0 NULL 0 TRUE

"ApplicationIdentifier" 0x67494678 VALUE_ITEM STRING Variable FALSE

"AuthenticationCode" 0x67494678 VALUE_ITEM UINT8 1 FALSE

"ApplicationData" 0x67494678 VALUE_ITEM RAW_DATA Variable FALSE

"gIFx" 0x67494678 LEVEL_END 0 NULL 0 TRUE

GIF Graphic Control Extension Chunk Metadata
Name Id Type Value Type Value Value Length Read Only

"gIFg" 0x67494674 LEVEL_START 0 NULL 0 TRUE

"DisposalMethod" 0x67494674 VALUE_ITEM UINT8 1 FALSE

"UserInputFlag" 0x67494674 VALUE_ITEM UINT8 1 FALSE

"DelayTime" 0x67494674 VALUE_ITEM UINT16 1 FALSE

"gIFg" 0x67494674 LEVEL_END 0 NULL 0 TRUE

Image Offset Chunk Metadata
Name Id Type Value Type Value Value Length Read Only

"oFFs" 0x6f464673 LEVEL_START 0 NULL 0 TRUE

"XPosition" 0x6f464673 VALUE_ITEM UINT32 1 FALSE

"YPosition" 0x6f464673 VALUE_ITEM UINT32 1 FALSE

"UnitSpecifier" 0x6f464673 VALUE_ITEM UINT8 1 FALSE

"oFFs" 0x6f464673 LEVEL_END 0 NULL 0 TRUE

The Rest Chunk Metadata
The rest chunk data are passed as raw data

ImageGear Professional v18 for Mac | 428

Name Id Type Value Type Value Value Length Read Only

<Chunk Name> <Chunk ID> VALUE_ITEM RAW_DATA Variable FALSE

<Chunk Name> is a string representation of the chunk type value.

<Chunk ID> is a binary representation of the chunk type value.

Callback Required for Writing PNG Metadata Items
Value of these metadata items can be changed using LPAFT_IG_METAD_ITEM_SET_CB callback only:

Item Name Item Id

Physical dimension chunk metadata

"XAxis" 0x70485973

"YAxis" 0x70485973

"UnitSpecifier" 0x70485973

The rest of the PNG metadata items can be written using LPAFT_IG_METAD_ITEM_ADD_CB callback only.

PNG Metadata ID Constants
Please see enumIGPNGTagIDs for the complete list of PNG Metadata Item Id constants.

ImageGear Professional v18 for Mac | 429

1.2.6.8.2.7 TIFF Non-Image Data Structure

Brief information on TIFF metadata levels is provided in the set of tables below:

TIFF Level
IFD Level
Tags
Callback Required for Writing TIFF Metadata Items

TIFF Level
Name Id Type Value Type Value Value Length Read Only

"TIFF" IG_FORMAT_TIF LEVEL_START 0 NULL 0 TRUE

"TIF_ HEADER" 59936 VALUE_ITEM UINT16 0x4949 or 0x4D4D 1 TRUE

Main IFD level

"TIFF" IG_FORMAT_TIF LEVEL_END 0 NULL 0 TRUE

All items between items with Name "TIFF" and IdIG_FORMAT_TIF (Type LEVEL_START and LEVEL_END) are
interpreted as TIFF data. If during sending data from application level to filter level the first item is omitted the data
will not be parsed and saved.

The subIFDs is not parsed and passed.

IFD Level
Name Id Type Value Type Value Value Length Read Only

"IFD" 0 LEVEL_START 0 NULL 0 TRUE

One or more tag items

"IFD" 0 LEVEL_END 0 NULL 0 TRUE

Tags
Most of TIFF tags are passed through metadata callback as

Name Id Type Value Type Value Value Length Read Only

<TagName> <TagId> VALUE_ITEM <ValueType> <TagValue> <TagCount> <R.o.>

The valid values of <TagName>, <TagId> and "Read Only" attributes are available in Description of TIFF tags Table.

See Also:TIFF Complex Data Tags

It is possible to use tag identifier and value of nonstandard tag (user defined tag).

The <TagCount> is real tag count value that is read/written in file.

The < ValueType > value is the metadata type constant that matches TIFF tag type as described in the table below:

TIFF Tag Type Metadata Type

BYTE AM_TID_META_UINT8

SBYTE AM_TID_META_INT8

SHORT AM_TID_META_UINT16

SSHORT AM_TID_META_INT16

LONG AM_TID_META_UINT32

SLONG AM_TID_META_INT32

RATIONAL AM_TID_META_RATIONAL_UINT32

SRATIONAL AM_TID_META_RATIONAL_INT32

ImageGear Professional v18 for Mac | 430

FLOAT AM_TID_META_FLOAT

DOUBLE AM_TID_META_DOUBLE

ASCII AM_TID_META_STRING

UNDEFINED AM_TID_RAW_DATA

Description of TIFF Tags
The following table lists the most frequently used TIFF tags. See enumIGTIFFTagIDs for a complete list of TIFF tags.
For tags not listed in this table, see Non-Image Data Processing for information about how to find out whether a tag is
read only or not.

Item Name Item Id Read only

"NewSubfileType" 254 TRUE

"SubfileType" 255 TRUE

"ImageWidth" 256 TRUE

"ImageLength" 257 TRUE

"BitsPerSample" 258 TRUE

"Compression" 259 TRUE

"PhotometricInterpretation" 262 TRUE

"Threshholding" 263 FALSE

"CellWidth" 264 TRUE

"CellLength" 265 TRUE

"FillOrder" 266 FALSE

"DocumentName" 269 FALSE

"ImageDescription" 270 FALSE

"Make" 271 FALSE

"Model" 272 FALSE

"StripOffsets" 273 TRUE

"Orientation" 274 FALSE1

"SamplesPerPixel" 277 TRUE

"RowsPerStrip" 278 TRUE

"StripByteCounts" 279 TRUE

"MinSampleValue" 280 FALSE

"MaxSampleValue" 281 FALSE

"XResolution" 282 FALSE

"YResolution" 283 FALSE

"PlanarConfiguration" 284 TRUE

"PageName" 285 FALSE

"XPosition" 286 FALSE

"YPosition" 287 FALSE

"FreeOffsets" 288 TRUE

"FreeByteCounts" 289 TRUE

"GrayResponseUnit" 290 FALSE

"GrayResponseCurve" 291 FALSE

"T4Options" 292 TRUE

"T6Options" 293 TRUE

ImageGear Professional v18 for Mac | 431

"ResolutionUnit" 296 FALSE

"PageNumber" 297 TRUE

"TransferFunction" 301 FALSE

"Software" 305 FALSE

"DateTime" 306 FALSE

"Artist" 315 FALSE

"HostComputer" 316 FALSE

"Predictor" 317 TRUE

"WhitePoint" 318 FALSE

"PrimaryChromaticities" 319 FALSE

"ColorMap" 320 TRUE

"HalftoneHints" 321 FALSE

"TileWidth" 322 TRUE

"TileLength" 323 TRUE

"TileOffsets" 324 TRUE

"TileByteCounts" 325 TRUE

"InkSet" 332 FALSE

"InkNames" 333 FALSE

"NumberOfInks" 334 FALSE

"DotRange" 336 FALSE

"TargetPrinter" 337 FALSE

"ExtraSamples" 338 TRUE

"SampleFormat" 339 FALSE

"SMinSampleValue" 340 FALSE

"SMaxSampleValue" 341 FALSE

"TransferRange" 342 FALSE

"JPEGTables" 347 TRUE

"JPEGProc" 512 TRUE

"JPEGInterchangeFormat" 513 TRUE

"JPEGInterchangeFormatLngth" 514 TRUE

"JPEGRestartInterval" 515 TRUE

"JPEGLosslessPredictors" 517 TRUE

"JPEGPointTransforms" 518 TRUE

"JPEGQTables" 519 TRUE

"JPEGDCTables" 520 TRUE

"JPEGACTables" 521 TRUE

"YCbCrCoefficients" 529 FALSE

"YCbCrSubSampling" 530 TRUE

"YCbCrPositioning" 531 FALSE

"ReferenceBlackWhite" 532 FALSE

"Copyright" 33432 FALSE

"IPTC/NAA" 33723 TRUE

"PhotoshopResources" 34377 FALSE

ImageGear Professional v18 for Mac | 432

"ExifIFDPointer" 34665 TRUE

"GPSInfoIFDPointer" 34675 TRUE

1The tag is writable only with the IG_fltr_metad_update_file function.

TIFF Complex Data Tags
Some tags, which value is a complex data, can be passed in parsed form as following:

Name Id Type Value Type Value Value Length Read Only

<TagName> <TagId> LEVEL_START 0 NULL 0 TRUE

"TagType" <TagId> VALUE_ITEM UINT16 <TagType> 1 FALSE

"TagCount" <TagId> VALUE_ITEM UINT32 <TagCount> 1 FALSE

<Tag Value Block>: one or more metadata items that identify the tag value

<TagName> <TagId> LEVEL_END 0 NULL 0 TRUE

The <TagName> and <TagId> values are the tag name and identifier (available values see in the Table Photoshop
Image Resource metadata structure, below). It is possible to use the tag identifier and value of nonstandard tag (user
defined tag).

The <TagType> value is the standard TIFF tag type constant described in TIFF 6.0 specification.

Currently only TIFF tag with ID 34377, where Adobe Photoshop and some other TIFF writers save image recourses
(IPTC data, resolution, some LUT etc.), is passed in this form. The <Tag Value Block> of these TIFF tag has structure
described in the Table Photoshop Image Resource metadata structure below.

Photoshop Image Resource Metadata Structure

Name Id Type Value Type Value Value Length Read Only

"PhotoshopImageResource" <Res. Id> LEVEL_START 0 NULL 0 TRUE

"PhotoshopImageResourceSize" <Res. Id> VALUE_ITEM UINT16 1 TRUE

Resource data

"DATA" <Res. Id> VALUE_ITEM RAW_DATA Variable FALSE

Or in case the data are parsed (currently it is happen only if the resource is IPTC data)

"IPTC" 0x1C00 LEVEL_START 0 NULL 0 TRUE

...

"IPTC" 0x1C00 LEVEL_END 0 NULL 0 TRUE

"PhotoshopImageResource" <Res. Id> LEVEL_END 0 NULL 0 TRUE

Where the <Res. Id> is the Adobe Photoshop image resource identifier (see Adobe Photoshop SDK).

IPTC PhotoshopImageResource identifier is 0x0404.

Callback Required for Writing TIFF Metadata Items
The value of TIFF metadata tags that are listed in the table below can be changed using
LPAFT_IG_METAD_ITEM_SET_CB callback only:

Item Name Item Id

"XResolution" 282

"YResolution" 283

"ResolutionUnit" 296

"PageNumber" 297

"Software" 305

ImageGear Professional v18 for Mac | 433

"DateTime" 306

"Artist" 315

"FillOrder" 266

"DocumentName" 269

All the rest of the TIFF metadata tags values can be written using LPAFT_IG_METAD_ITEM_ADD_CB callback only.

ImageGear Professional v18 for Mac | 434

1.2.6.8.2.8 XMP Non-Image Data Structure

ImageGear support XMP metadata in the following image file formats:

TIFF: Read, Write
EXIF-TIFF: Read, Write
JFIF-JPEG: Read, Write
EXIF-JPEG: Read, Write
PSD: Read

In TIFF and EXIF-TIFF formats, XMP metadata is located in the main IFD.

In JFIF-JPEG and EXIF-JPEG formats, XMP metadata is located in one of the App1 segments. Note that EXIF metadata
is also located in an App1 segment.

In PSD format, XMP metadata is located in the Photoshop Resources tree. If XMP.Parse global control parameter is
TRUE, it is represented as XMP subtree. If XMP.Parse is FALSE, unparsed XMP metadata is located under
PhotoshopImageResources subtree that has ID = 1060.

Brief information on XMP metadata levels is provided in the set of tables below:

XMP Root Level
XMP Schema Level
XMP Namespace Level
XMP Property Collection Level
XMP Simple Property Level
XMP Array Level
XMP Array Items Level
XMP Language Alternative Property Level
XMP Structure Level
XMP Structure Items Level

XMP Root Level
Name Id Type Level Type Value Type

<Schema namespace URI 1> IGMDTAG_ID_XMP_DESCRIPTION Tree XMP Schema N/A

<Schema namespace URI 2> IGMDTAG_ID_XMP_DESCRIPTION Tree XMP Schema N/A

...

XMP Schema Level
Name Id Type Level Type Value Type

About IGMDTAG_ID_XMP_ABOUT Leaf N/A String

Namespace IGMDTAG_ID_XMP_NAMESPACE Tree XMP Namespace N/A

Properties IGMDTAG_ID_XMP_NAMESPACE Tree XMP Property Collection N/A

XMP Namespace Level
Name Id Type Level Type Value Type

Prefix IGMDTAG_ID_XMP_PREFIX Leaf N/A String

URI IGMDTAG_ID_XMP_URI Leaf N/A String

XMP Property Collection Level
Name Id Type Level Type Value

Type

<Property 1 IGMDTAG_ID_XMP_PROPERTY Tree XMP Simple Property / XMP Array / XMP N/A

ImageGear Professional v18 for Mac | 435

name> Structure

<Property 2
name>

IGMDTAG_ID_XMP_PROPERTY Tree XMP Simple Property, XMP Array/Structure
property

N/A

...

XMP Simple Property Level
Name Id Type Level Type Value Type

Value IGMDTAG_ID_XMP_PROPERTY_VALUE Leaf N/A <Value type>

Qualifiers IGMDTAG_ID_XMP_PROPERTY_QUALIFIERS Tree XMP Qualifiers collection N/A

XMP Array Level
Name Id Type Level Type Value

Type

Bag /
Seq / Alt

IGMDTAG_ID_XMP_PROPERTY_BAG /
IGMDTAG_ID_XMP_PROPERTY_SEQ / IGMDTAG_ID_XMP_PROPERTY_ALT

Tree XMP Array
items level

N/A

XMP Array Items Level
Name Id Type Level Type Value

Type

Item IGMDTAG_ID_XMP_PROPERTY Tree XMP Simple Property / XMP Language Alternative
Property / XMP Structure

<N/A>

Item IGMDTAG_ID_XMP_PROPERTY Tree XMP Simple Property / XMP Language Alternative
Property / XMP Structure

<N/A>

...

XMP Language Alternative Property Level
Name Id Type Level Type Value Type

Value IGMDTAG_ID_XMP_PROPERTY_VALUE Leaf N/A <Value type>

Lang IGMDTAG_ID_XMP_PROPERTY_LANG Leaf N/A String

XMP Structure Level
Name Id Type Level Type Value Type

Struct IGMDTAG_ID_XMP_PROPERTY_STRUCT Tree XMP Structure items level N/A

XMP Structure Items Level
Name Id Type Level Type Value Type

<Field 1 name> IGMDTAG_ID_XMP_PROPERTY Tree XMP Simple Property <N/A>

<Field 2 name> IGMDTAG_ID_XMP_PROPERTY Tree XMP Simple Property <N/A>

...

ImageGear Professional v18 for Mac | 436

1.2.7 Appendices/General Reference

This section provides referential information about ImageGear Professional.

ImageGear Professional v18 for Mac | 437

1.2.7.1 Software License Agreement

PLEASE READ THE FOLLOWING SOFTWARE LICENSE AGREEMENT WHICH GOVERNS YOUR RIGHT TO USE OF THE
TOOLKIT. YOU MUST ACCEPT THESE TERMS BEFORE YOU ARE ALLOWED TO INSTALL THE TOOLKIT. YOU
EXPRESSLY AGREE THAT YOU HAVE THE AUTHORITY TO CONTRACTUALLY BIND THE ORGANIZATION AGREEING TO
THESE TERMS.

BY CLICKING "I ACCEPT," OR INSTALLING TOOLKIT, OR PLACING TOOLKIT IN-USE, LICENSEE IS AGREEING TO BE
BOUND BY THIS AGREEMENT.

1. GRANT OF AGREEMENT

This Accusoft Corporation, ("ACCUSOFT") Software License Agreement ("AGREEMENT") grants the organization
contracting under this agreement as licensee ("LICENSEE") a limited, nontransferable, nonexclusive and non-
assignable license to use the trial mode version of this ACCUSOFT Development Toolkit ("TOOLKIT") on a single
computer for evaluation of fitness only and not for any commercial purpose; or to use a properly purchased and
registered TOOLKIT, for development purposes only on a single computer, provided the TOOLKIT is IN-USE on only
one computer at any time. (However additional TOOLKIT licenses may be purchased.) TOOLKIT is "IN-USE" on a
computer when it becomes loaded by any means for any purpose into temporary memory (that is, including but not
limited to RAM) or when it becomes copied or installed to less temporary storage by any means for any purpose (that
is, including but not limited to hard disk, CD-ROM or other removable disk or tape, USB or other flash memory drive
or card, or other local, networked, or cloud storage device) when it is accessible to that computer. The TOOLKIT is
explicitly not to be used on a site-wide basis, via a server or other networked connection.

2. REDISTRIBUTION OF TOOLKIT RUNTIMES

ACCUSOFT does not grant LICENSEE any rights to deploy, license, sell, reproduce, copy, install, lease, timeshare,
rent, or otherwise distribute or transfer TOOLKIT or any portion of TOOLKIT ("PORTION") except as provided in
Section 1. GRANT OF AGREEMENT. For licensing information about any other distribution of TOOLKIT or PORTION,
please visit our web site (www.accusoft.com/licensing.htm), or contact our sales staff. LICENSEE agrees to notify
ACCUSOFT immediately of any violations or changes in status regarding LICENSEE's compliance with any term of this
AGREEMENT.

In the event that ACCUSOFT grants LICENSEE in a written separate runtime license agreement ("RUNTIME
AGREEMENT") a right to deploy, license, sell, reproduce, copy, install, lease, timeshare, rent, or otherwise distribute
or transfer PORTIONS, the RUNTIME AGREEMENT will specify what PORTIONS may be distributed ("RUNTIME").
LICENSEE agrees to acknowledge and uphold the terms and conditions of this AGREEMENT as well as the terms of the
RUNTIME AGREEMENT itself, which will be provided only in writing. In such event, LICENSEE may distribute
RUNTIMES as part of the LICENSEE's software application or derivative works ("PRODUCT") upon additionally
agreeing to the following:

a) LICENSEE understands and acknowledges that in order to receive any discounted pricing for RUNTIME distribution
licensing fees based on the type of installation, it must either: 1) prepay for a number of RUNTIME licenses that is
sufficient to qualify for ACCUSOFT's then-current published quantity discount, or 2) it must pay for the licenses in
accordance with a written contract between LICENSEE and ACCUSOFT.

b) LICENSEE's PRODUCT shall not compete to any degree with the TOOLKIT. Such competitive PRODUCTS are
defined as software development toolkits that include similar functionality as TOOLKIT and that are intended for use
by software developers and/or system integrators.

c) LICENSEE's PRODUCT must be substantially greater in scope with greater functionality and features than those of
the TOOLKIT.

d) LICENSEE will not use ACCUSOFT's name, logo, or trademarks to market PRODUCT without prior written approval
of ACCUSOFT except LICENSEE will include a statement substantially similar to the following within PRODUCT
documentation and about box: "Portions of this product contain imaging and other technology owned by Accusoft
Corporation, Tampa, FL, (www.accusoft.com). ALL RIGHTS RESERVED." See Section 20. THIRD PARTY NOTICES for
additional requirements.

e) LICENSEE agrees to only distribute the RUNTIMES. No license or other rights are granted to LICENSEE for any
distribution of the TOOLKIT or PORTIONS including, but not limited to, documentation, source code, or the RUNTIME
distribution unlock codes.

g) LICENSEE will only distribute the RUNTIMES on the hardware and operating system(s) for which the RUNTIMES are
intended to be used according to the RUNTIME AGREEMENT.

If ANY of the terms of this AGREEMENT are not applicable to LICENSEE'S situation, or if any of the terms of this
AGREEMENT cannot be complied with, or if LICENSEE needs modifications to this AGREEMENT or the license granted
for any reason, LICENSEE must contact ACCUSOFT about obtaining an expanded license from ACCUSOFT (available
by phone at: 813-875-7575, x321, by e-mail at: Sales@accusoft.com or by fax at: 813-875-7705).

This AGREEMENT grants rights to LICENSEE only for the TOOLKIT and does not convey any other rights of use or
distribution to ACCUSOFT technology.

ImageGear Professional v18 for Mac | 438

http://www.accusoft.com/licensing.htm
http://www.accusoft.com/
mailto:Sales@accusoft.com

3. OWNERSHIP

LICENSEE acknowledges and agrees that ACCUSOFT owns all rights, title and interest in the TOOLKIT, in all forms,
including without limitation any and all worldwide proprietary rights therein, including but not limited to trademarks,
copyrights, patent rights, patent continuations, trade secrets and confidential information.

LICENSEE may not remove or alter the copyright notice from any copy of the TOOLKIT or any copy of the written
materials, accompanying the TOOLKIT.

LICENSEE waives its right to contest any of ACCUSOFT's patents, trademarks, service marks, trade names,
copyrights, and other intellectual property and proprietary rights in and to the TOOLKIT.

LICENSEE shall not use such trademarks, service marks, and trade names except where and as permitted under this
AGREEMENT without receiving ACCUSOFT's prior written approval of such use. If such approval is granted,
LICENSEE’s right to use such trademarks, service marks, and trade names shall end upon the termination of this
AGREEMENT.

4. RESTRICTIONS AND RESERVATIONS

All rights and licenses not expressly granted to LICENSEE are reserved to ACCUSOFT. LICENSEE is strictly prohibited
from reproducing, copying, marketing, selling, distributing, licensing, sublicensing, leasing, timesharing or renting the
TOOLKIT or PORTION, and LICENSEE is strictly prohibited from any use of the TOOLKIT or PORTION except as
permitted by this AGREEMENT, and such actions are expressly prohibited. LICENSEE is strictly prohibited from
incorporating or including the TOOLKIT or PORTION into or as part of any PRODUCT or service of LICENSEE except as
provided by this AGREEMENT, regardless of the functionality of TOOLKIT (or lack thereof) within or as part of such
PRODUCT or service of LICENSEE. LICENSEE shall not for any reason disassemble, decompile, decrypt or reverse
engineer the TOOLKIT or PORTION or in any manner attempt to discover or reproduce the source code or any other
copyrightable, proprietary, or trade secret aspect of the TOOLKIT or PORTION. Nor shall LICENSEE use the TOOLKIT
or PORTION, directly or indirectly, in developing LICENSEE's own PRODUCT with, or including, similar functionality.
LICENSEE shall not make any copies of the TOOLKIT or PORTION for any purpose whatsoever except as permitted by
this AGREEMENT. Source code that is provided with TOOLKIT for sample or demonstration purposes may be used
directly or indirectly in developing PRODUCT, however it may not be distributed in source form in whole or in part
with or as part of PRODUCT.

5. WARRANTY DISCLAIMER

LICENSEE ACKNOWLEDGES AND AGREES THAT THE TOOLKIT IS PROVIDED "AS IS." ACCUSOFT DISCLAIMS ANY AND
ALL REPRESENTATIONS AND WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND AGAINST
INFRINGEMENT.

6. LIMITATION OF LIABILITY

ACCUSOFT SHALL HAVE NO LIABILITY TO LICENSEE, LICENSEE AFFILIATES, SUBSIDIARIES, SHAREHOLDERS,
OFFICERS, DIRECTORS, EMPLOYEES, REPRESENTATIVES OR ANY THIRD PARTY, WHETHER IN CONTRACT, TORT,
NEGLIGENCE OR PRODUCTS LIABILITY, FOR ANY CLAIM, LOSS OR DAMAGE, INCLUDING BUT NOT LIMITED TO, LOST
PROFITS, LOSS OF USE, BUSINESS INTERRUPTION, LOST DATA, LOST FILES, OR FOR ANY DIRECT, INDIRECT,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVER ARISING OUT OF OR
IN CONNECTION WITH USE OF OR INABILITY TO USE THE TOOLKIT, OR THE PERFORMANCE OR OPERATION OF THE
TOOLKIT, EVEN IF ACCUSOFT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. INDEMNIFICATION BY LICENSEE

LICENSEE SHALL INDEMNIFY, HOLD HARMLESS AND DEFEND ACCUSOFT FOR ANY LOSS, CLAIM, ACTION OR
PROCEEDING THAT ARISES OR RESULTS FROM ANY ACTIONS OR OMISSIONS OF LICENSEE PERTAINING TO THE
PRODUCT OR THE TOOLKIT AND FROM ANY ACTIONS OF LICENSEE THAT ARE IN VIOLATION OF THIS AGREEMENT.

8. TERM AND TERMINATION

Unless otherwise agreed to by the parties, this AGREEMENT shall become effective upon the earlier of LICENSEE's
clicking of "I Accept" or LICENSEE'S installing or placing TOOLKIT IN_USE ("Effective Date") and shall continue in full
force and effect until terminated in accordance with the terms set forth in this AGREEMENT.

Any material breach of this AGREEMENT shall automatically and immediately terminate this AGREEMENT. In the
event that LICENSEE ceases to do business or is adjudged bankrupt or insolvent, ACCUSOFT may, at its sole option,
terminate this AGREEMENT, by giving ten (10) Business Days written notice of such termination, which notice shall
identify and describe the basis for such termination.

In the event of any termination of this AGREEMENT, any RUNTIME AGREEMENT is simultaneously terminated and
LICENSEE shall stop using the TOOLKIT and PORTION, shall cease manufacturing the PRODUCT containing TOOLKIT
or PORTION, and shall cease distributing PRODUCT containing TOOLKIT or PORTION. LICENSEE shall also require its
resellers, OEMs, and other distribution channels (if any) to likewise stop manufacturing and distributing the PRODUCT
containing TOOLKIT or PORTION. Within ten (10) Business Days thereafter, LICENSEE shall return or, at ACCUSOFT's
option, destroy, the TOOLKIT and all PORTIONS, whether or not incorporated in or with the PRODUCT, that are within
LICENSEE’s possession, custody and control, and shall certify to ACCUSOFT in writing within ten (10) Business Days

ImageGear Professional v18 for Mac | 439

after that return or destruction that it has complied with the foregoing obligation.

All Sections except Section 1. GRANT OF LICENSE shall continue in full force and effect, notwithstanding any
termination of this AGREEMENT.

9. LIQUIDATED DAMAGES

In the event LICENSEE (a) copies the TOOLKIT or PORTION except as permitted by this AGREEMENT, (b) uses the
TOOLKIT or PORTION for any reason other than as permitted by this AGREEMENT, (c) installs or uses the TOOLKIT or
PORTION on more than a single computer, or (d) otherwise violates or breaches this Agreement, LICENSEE agrees
that ACCUSOFT is entitled to obtain as liquidated damages and not as a penalty the greater of the amount of (v) the
published quantity one distribution price based upon the type of distribution, or (w) $99 per each user of each
PRODUCT or service of LICENSEE in which the TOOLKIT or PORTION is included, copied, incorporated, embedded or
accessible; (x) $100 per copy of TOOLKIT or PORTION; (y) $100 per copy of any PRODUCT in which TOOLKIT or
PORTION is included, copied, incorporated, embedded or accessible; or (z) 3% of all revenues realized by LICENSEE
pertaining to any PRODUCTS or services of LICENSEE in which TOOLKIT or PORTION is included, copied, incorporated,
embedded or accessible. THE LICENSEE EXPRESSLY AGREES THAT THE FOREGOING LIQUIDATED DAMAGES ARE NOT
A PENALTY.

10. CONFIDENTIALITY

LICENSEE acknowledges that the TOOLKIT contains ACCUSOFT know-how, confidential and trade secret information
("PROPRIETARY INFORMATION"). LICENSEE agrees: (a) to hold the PROPRIETARY INFORMATION in the strictest
confidence, (b) not to, directly or indirectly, copy, reproduce, distribute, manufacture, duplicate, reveal, report,
publish, disclose, cause to be disclosed, or otherwise transfer the PROPRIETARY INFORMATION to any third party, (c)
not to make use of the PROPRIETARY INFORMATION other than as permitted by this AGREEMENT, and (d) to disclose
the PROPRIETARY INFORMATION only to LICENSEE's representatives requiring such material for effective
performance of this AGREEMENT and who have undertaken an obligation of confidentiality and limitation of use
consistent with this AGREEMENT. This obligation shall continue as long as allowed under applicable law.

11. INJUNCTIVE RELIEF

LICENSEE agrees that any violation or threat of violation of this AGREEMENT will result in irreparable harm to
ACCUSOFT for which damages would be an inadequate remedy. Therefore, in addition to its rights and remedies
available at law (including but not limited to the recovery of damages for breach of this AGREEMENT), ACCUSOFT
shall be entitled to immediate injunctive relief to prevent any violation of ACCUSOFT's copyright, trademark, trade
secret rights regarding the TOOLKIT, or to prevent any violation of this AGREEMENT, including, but not limited to,
unauthorized use, copying, distribution or disclosure of or regarding the TOOLKIT or PORTION, as well as any other
equitable relief as the court may deem proper under the circumstances.

12. NO REDUCED PRICING

In any determination of ACCUSOFT's damages (whether liquidated damages or actual damages), or any
determination of any licensing fees or royalties due ACCUSOFT under this AGREEMENT due to a breach by LICENSEE
hereunder, LICENSEE shall not be entitled to any discounts (volume or otherwise) or reduced licensing fees or
royalties. The foregoing sentence shall be applicable unless LICENSEE has negotiated and entered into a written,
signed agreement with ACCUSOFT for such reduced or discounted licensing fees or royalties and paid ACCUSOFT such
fees or royalties in advance of any: (a) distribution of the TOOLKIT or PORTION, (b) copying of the TOOLKIT or
PORTION, or (c) incorporation or use of the TOOLKIT or PORTION in or pertaining to any PRODUCT or service of
LICENSEE. Further, LICENSEE agrees that it shall not be entitled to reduced licensing fees or royalties when
determining ACCUSOFT's damages due to any undertaking or activity by LICENSEE regarding the TOOLKIT or
PORTION outside of or exceeding the scope of permission or other terms of this AGREEMENT, or LICENSEE's actions
otherwise in violation of this AGREEMENT.

13. ATTORNEYS' FEES AND COSTS

In the event of any lawsuit or other proceeding brought as a result of any actual or alleged breach of this
AGREEMENT, to enforce any provisions of this AGREEMENT, or to enforce any intellectual property or other rights in
or pertaining to the TOOLKIT or PORTION, the prevailing party shall be entitled to an award of its reasonable
attorneys’ fees and costs, including the costs of any expert witnesses, incurred at all levels of proceedings.

14. GOVERNING LAW

This AGREEMENT shall be construed, governed and enforced in accordance with the laws of the State of Florida,
without regard to any conflicts of laws rules. Any action related to or arising out of this AGREEMENT will be filed only
in the Florida courts and LICENSEE consents to the exclusive jurisdiction and venue of the state and federal courts
located in Tampa, Florida.

15. SEVERABILITY

If any provision of this AGREEMENT is determined to be invalid by any court of final jurisdiction, then it shall be
omitted and the remainder of the AGREEMENT shall continue to be binding and enforceable. In addition, the Court is
hereby authorized to enforce any provision of the AGREEMENT that the Court otherwise deems unenforceable, to
whatever lesser extent the Court deems reasonable and appropriate, rather than invalidating the entire provision.
Without limiting the generality of the foregoing, LICENSEE expressly agrees that should LICENSEE be found to have

ImageGear Professional v18 for Mac | 440

breached the AGREEMENT, under no circumstances shall LICENSEE be entitled to any volume or other discount, or
reduced licensing fee or royalty in the determination of ACCUSOFT's damages, or otherwise in the determination of
any licensing fee or royalty owed to ACCUSOFT.

16. GOVERNMENT RIGHTS

The TOOLKIT and accompanying documentation have been developed at private expense and are sold commercially.
They are provided under any U.S. government contracts or subcontracts with the most restricted and the most limited
rights permitted by law and regulation. Whenever so permitted, the government and any intermediaries will obtain
only those rights specified in ACCUSOFT's standard commercial license. Thus, the TOOLKIT referenced herein, and
the documentation provided by Accusoft hereunder, which are provided to any agency of the U.S. Government or
U.S. Government contractor or subcontractor at any tier shall be subject to the maximum restrictions on use as
permitted by FAR 52.227-19 (June 1987) or DFARS 227.7202-3(a) (Jan. 1, 2000) or successor regulations.
Manufacturer is Accusoft Corporation, 4001 N. Riverside Drive Tampa, FL 33603.

17. ENTIRE AGREEMENT

This AGREEMENT represents the entire understanding of the parties concerning the subject matter hereof and
supersedes all prior communications and agreements, whether oral or written, relating to the subject matter of this
AGREEMENT. Only a writing signed by the parties may modify this AGREEMENT. In the event of any modification in
writing, of this AGREEMENT, including an expanded license agreement, all sections of this Agreement survive except
Section 2. Limited License.

18. CONTACT US

Should you have any questions concerning this AGREEMENT, or if you desire to contact ACCUSOFT for any reason,
please contact ACCUSOFT at 1-813-875-7575.

19. OTHER RESTRICTIONS

a) This AGREEMENT shall not be amended, altered, changed or modified in any way, unless agreed to in writing by
both ACCUSOFT and LICENSEE. Such writing must be executed by a duly authorized representative of ACCUSOFT
and a duly authorized representative of LICENSEE.

b) This AGREEMENT is not transferable or assignable by LICENSEE under any circumstances, without the prior written
consent of ACCUSOFT. ACCUSOFT will not unreasonably withhold such consent. This AGREEMENT shall be binding
upon, and is made for the benefit of, each party, its successors, and permitted assignees (if any). For the purposes
of this AGREEMENT, any change in control of LICENSEE shall constitute an assignment or transfer of this AGREEMENT
requiring prior written consent of ACCUSOFT. As used in this section, a change in control is defined as (i) any change
in ownership of more than fifty percent (50%) of the voting interest in LICENSEE, whether by merger, purchase,
foreclosure of a security interest or other transaction, or (ii) a sale of all or substantially all of the assets of LICENSEE.

c) The relationship established by this AGREEMENT between LICENSEE and ACCUSOFT shall be that of Licensee and
Licensor. Nothing contained in this AGREEMENT shall be construed as creating a relationship of agency, joint venture
or partnership between LICENSEE and ACCUSOFT. Neither party shall have any right whatsoever to incur any
liabilities or obligations on behalf of the other party.

d) ACCUSOFT's failure to perform any term or condition of this AGREEMENT as a result of conditions beyond its
control such as, but not limited to, war, strikes, fires, floods, acts of God, governmental restrictions, power failures,
or damage or destruction of any network facilities or servers, shall not be deemed a breach of this AGREEMENT.

e) The headings provided in this AGREEMENT are for convenience and reference purposes only. In the event of a
conflict between the terms and conditions listed in this AGREEMENT, and any attached Schedules or Appendices, the
terms and conditions of this AGREEMENT shall govern.

f) A waiver of a breach, violation, or default under this AGREEMENT shall not be a waiver of any subsequent breach,
violation or default. Failure of either party to enforce compliance with any term or condition of this AGREEMENT shall
not constitute a waiver by the party of such term or condition.

g) All notices and communications shall be in writing and shall be deemed to have been duly given the earlier of when
delivered or three (3) Business Days after mailing by certified mail, return receipt requested, postage prepaid, or by
international delivery service, addressed to the parties at their respective addresses set forth on the Order Form or at
such other addresses as the parties may designate by written notice in accordance with this section.

20. THIRD PARTY NOTICES

a) CAPTIVA ISIS TECHNOLOGY

ISIS functionality in the TOOLKIT is licensed to ACCUSOFT from Captiva Software, a division of EMC, Inc. The term
"TOOLKIT" as defined in the Agreement includes technology from Captiva and related documentation, and any
upgrades, modified versions, updates, additions, and copies thereof.

LIMITED WARRANTY

THE TERMS OF THIS AGREEMENT STATE THE SOLE AND EXCLUSIVE REMEDIES FOR ACCUSOFT'S BREACH OF
WARRANTY. EXCEPT FOR THE FOREGOING LIMITED WARRANTY, CAPTIVA AND ITS SUPPLIERS MAKE NO
WARRANTY, EXPRESS OR IMPLIED, AS TO MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR NON-

ImageGear Professional v18 for Mac | 441

INFRINGEMENT. IN NO EVENT WILL CAPTIVA OR ITS SUPPLIERS BE LIABLE TO LICENSEE FOR ANY CONSEQUENTIAL,
INCIDENTAL OR SPECIAL DAMAGES, INCLUDING ANY LOST PROFITS OR LOST SAVINGS, EVEN IF A CAPTIVA
REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY THIRD
PARTY. Some states or jurisdictions do not allow the exclusion or limitation of incidental, consequential or special
damages, or the exclusion of implied warranties, or limitations on how long an implied warranty may last, so the
above limitations may not apply to LICENSEE. In such states/countries and to the extent permissible, any implied
warranties are limited to thirty (30) days.

INTELLECTUAL PROPERTY

All ISIS technology is the intellectual property of Captiva and is protected under trademarks, registered trademarks,
copyrights, and/or patents in the United States and/or other countries. ALL RIGHTS RESERVED.

b) ADOBE PDF TECHNOLOGY

 Portions of the PDF functionality in the TOOLKIT include Adobe Technology ("Adobe") licensed to ACCUSOFT. The
term "TOOLKIT" as defined in the Agreement includes technology from Adobe and related documentation, and any
upgrades, modified versions, updates, additions, and copies thereof.

FONT LICENSE: If the TOOLKIT includes font software, LICENSEE may embed the font software, or outlines of the
font software, into its Application to the extent that the font vendor copyright owner allows for such embedding. The
fonts contained in this package may contain both Adobe and non-Adobe owned fonts. LICENSEE may fully embed any
font owned by Adobe.

LIMITED WARRANTY

THE TERMS OF THIS AGREEMENT STATE THE SOLE AND EXCLUSIVE REMEDIES FOR ACCUSOFT’S BREACH OF
WARRANTY. EXCEPT FOR THE FOREGOING LIMITED WARRANTY, ADOBE AND ITS SUPPLIERS MAKE NO WARRANTY,
EXPRESS OR IMPLIED, AS TO MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. IN NO EVENT WILL ADOBE OR ITS SUPPLIERS BE LIABLE TO LICENSEE FOR ANY CONSEQUENTIAL,
INCIDENTAL OR SPECIAL DAMAGES, INCLUDING ANY LOST PROFITS OR LOST SAVINGS, EVEN IF AN ADOBE
REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY THIRD
PARTY. Some states or jurisdictions do not allow the exclusion or limitation of incidental, consequential or special
damages, or the exclusion of implied warranties, or limitations on how long an implied warranty may last, so the
above limitations may not apply to LICENSEE. In such states/countries and to the extent permissible, any implied
warranties are limited to thirty (30) days.

INTELLECTUAL PROPERTY

The Adobe technology is the intellectual property of Adobe and is protected under trademarks, registered trademarks,
copyrights, and/or patents in the United States and/or other countries. ALL RIGHTS RESERVED.

Rev. 20120723

ImageGear Professional v18 for Mac | 442

1.2.7.2 Pixel Formats Supported by ImageGear Professional

ImageGear supports the following pixel formats for raster images:

Color Space Channel Depths (Bits per Channel)

Indexed RGB: 1…8 bits per pixel 1…8

RGB 1…32

Grayscale 1…32

IHS 1…32

HLS 1…32

LAB 1…32

YIQ 1…32

CMY 1…32

CMYK 1…32

YCbCr 1…32

YUV 1…32

Extra 1…32

RGB + Alpha 1…32

Grayscale + Alpha 1…32

RGB + Pre-multiplied Alpha 1…32

Grayscale + Pre-multiplied Alpha 1…32

Indexed RGB + Extra 1…8

RGB + Extra 1…32

Grayscale + Extra 1…32

IHS + Extra 1…32

HLS + Extra 1…32

LAB + Extra 1…32

YIQ + Extra 1…32

CMY + Extra 1…32

CMYK + Extra 1…32

YCbCr + Extra 1…32

YUV + Extra 1…32

RGB + Alpha + Extra 1…32

ImageGear Professional v18 for Mac | 443

Grayscale + Alpha + Extra 1…32

RGB + Pre-multiplied Alpha + Extra 1…32

Grayscale + Pre-multiplied Alpha + Extra 1…32

Note that the "Channel Depths" column lists bits per channel rather than bits per pixel. For example, for an RGB
image, 1…32 bits per channel corresponds to 3…96 bits per pixel.

ImageGear allows image channels to have different depths. For example, these channel depths are allowed: RGB (5,
6, 5); CMYK + Extra (8, 8, 8, 16).

Not all of ImageGear functions support all pixel formats. Please see the API Reference for information on supported
raster image formats for specific functions.

Please see the ImageGear Supported File Formats Reference for information on which pixel formats are supported for
reading and writing for each image file format and compression method.

See Also

Understanding Bitmap Images

ImageGear Professional v18 for Mac | 444

1.2.7.3 Understanding Bitmap Images

This chapter provides an introduction to the workings of the bitmap in the following sections:

Pixels
Channels
Color Spaces
24-bit RGB Images
1-bit Images
4-bit and 8-bit Images
Grayscale Images
Color Values Used During Display
Device-Independent/Device-Dependent Bitmaps

Device-Independent Bitmaps (DIB)
Device-Dependent Bitmaps (DDBs)
Vector Images

ImageGear Architecture Diagram

ImageGear Professional v18 for Mac | 445

1.2.7.3.1 Pixels

The pixel (or "picture element") is the basic building block of all images displayed by ImageGear. On a display screen,
each pixel is a dot. In memory, the pixel is stored as a sequence of bits that determine what color the displayed pixel is.
There can also be other data associated with the pixel.

ImageGear Professional v18 for Mac | 446

1.2.7.3.2 Channels

An image is made up of one or more channels. For each pixel in the image, there are channel values for all of the
image's channels. ImageGear supports the following channel types:

Color channel - channel value describes a pixel's color. The number of color channels in an image is determined by
the image's color space. For example, an RGB image has three color channels, one for each color component: red,
green, and blue. CMYK has four color channels, and grayscale has only one.
Alpha channel - channel value describes how much a pixel should be blended with another pixel during an alpha
blending operation. In ImageGear, an image can have only one alpha channel, which can contain either non-
premultiplied (as in PNG) or premultiplied (as in TIFF) alpha values. Also, only images with RGB or grayscale color
channels can have alpha channels.
Extra channel - extra data associated with the image on a per-pixel basis. For example, if an image being loaded
contains multiple alpha channels, the first alpha channel will be loaded as the image's alpha channel, and the others
will be loaded as extra channels. Extra channels are maintained in the image but do not contribute to display or alpha
blending operations.

Each channel has a bit depth associated with it. This is the number of bits used to represent a value for the channel. This
bit depth can be up to 32 bits on 32-bit platforms and up to 64 bits on 64-bit platforms. It is possible to have an image
with multiple channels that differ in bit depth. For example, you could have an RGB image with 8 bits per color channel
and a 1-bit alpha channel. Or you could have a 5-6-5 RGB image with 5 bits for red and blue channels and 6 bits for the
green channel.

Previous versions of ImageGear stored alpha channels as separate, associated images. ImageGear now stores all
channel values together for each pixel in an image.

ImageGear Professional v18 for Mac | 447

1.2.7.3.3 Color Spaces

A color space in ImageGear describes the channels present in an image. The most important part of this description is
the color channel configuration. This includes how many color channels there are and how these channels are used to
describe colors, which is the usual informal concept of a color space. For example, in the RGB color space there are three
channels (red, green, blue) whose values are combined to form colors. In the indexed color space there is one channel
which consists of index values into an associated color palette.

In ImageGear, the concept of a color space is extended to also include information about other types of channels besides
color, such as alpha and extra channels. An ImageGear color space ID is a bit field which can combine values from the
enumIGColorSpaceIDs enumeration defined in accucnst.h.

For example,

A simple RGB image would be:

IG_COLOR_SPACE_ID_RGB

A grayscale image with an alpha channel and no extra channels would be:

IG_COLOR_SPACE_ID_Gy | IG_COLOR_SPACE_A

An RGB image with a premultiplied alpha channel and three extra channels would be:

IG_COLOR_SPACE_ID_RGB | IG_COLOR_SPACE_ID_P | IG_COLOR_SPACE_ID_Ex

ImageGear Professional v18 for Mac | 448

1.2.7.3.4 24-bit RGB Images

24-bit RGB images are images in which each pixel is represented by three 8-bit quantities (thus, 24 bits total) specifying
the intensities of red, green, and blue that form the color for the pixel. For example, a pixel that is to be displayed as
brightest magenta-magenta being a color formed of equal intensities of red and blue, and no green-would be
represented by three bytes having the respective values of 255, 0, 255 for the red, green, and blue intensities. In RGB
representation the brightest white would be (255, 255, 255) and black would be (0, 0, 0).

ImageGear Professional v18 for Mac | 449

1.2.7.3.5 1-bit Images

Images that contain only one bit per pixel can contain only two colors, since only two pixel values are possible: 0 and 1.
The two colors for a 1-bit image are usually black and white, but if the image is to be displayed on an RGB device, the
colors are determined by a table called a color palette. A color palette defines the color to be displayed for each possible
pixel value. The following table demonstrates the color palette for a 1-bit image, which specifies black for pixel value 0
and white for pixel value 1:

BLUE GREEN RED Not Used

color 0 0 0 0 0

color 1 255 255 255 255

Each entry in a color palette is a 4-byte structure of type AT_RGBQUAD, in which the first three bytes are used to specify
the intensities of blue, green, and red respectively, forming the color. The 4th byte is not used. (Note that the ordering
in this structure is blue, green, red-not red, green, blue.) AT_RGBQUAD and all other structure types mentioned in this
chapter are described in detail in the sections Core Component Data Types Reference and Core Component Structures
Reference.

If instead you wanted to have pixel value 0 displayed as a medium yellow, and pixel value 1 as brightest red, you might
use the following color palette (yellow is constructed of equal intensities of red and green, with no blue):

BLUE GREEN RED Not Used

color 0 0 128 128 0

color 1 0 0 255 0

ImageGear Professional v18 for Mac | 450

1.2.7.3.6 4-bit and 8-bit Images

A 4-bit image is simply one in which each pixel is represented by 4 bits. Therefore, a 4-bit image can contain 16 (24)
colors, each pixel having a numerical value between 0 and 15. The color palette for a 4-bit image will therefore normally
have 16 entries (0 - 15.) As a 1-bit image might be called a 2-color image, a 4-bit image is also called a 16-color image.

In an 8-bit image each pixel occupies exactly one byte. This means each pixel has 256 (28) possible numerical values,
from 0 to 255. Therefore, the color palette for an 8-bit image normally contains 256 entries, defining color 0 through
color 255. 8-bit or 256-color images are very common because the availability of 256 unique colors provides adequate or
even excellent color resolution for most purposes. Also, when operating upon an image in memory, such as when
performing image analysis, transformations, or other image processing, operating on an 8-bit image is much faster than
performing the same operations on a 24-bit image. And, of course, an 8-bit image uses only about one-third the
memory or file storage space as a 24-bit image.

Because each pixel value of a 1, 4, or 8-bit color image is used as an index into a color palette, these images are
sometimes called "indexed color" images. In this manual, 8-bit color images are sometimes referred to as "8i" images, to
distinguish them from 8-bit gray level images, which are described below.

ImageGear Professional v18 for Mac | 451

1.2.7.3.7 Grayscale Images

In RGB color representation, (255, 255, 255) results in the brightest white, and (0, 0, 0) results in black. Any time the
three intensities are equal, no color is emphasized and the result is a shade of gray. For example (128, 128, 128) would
be a medium gray, (240, 240, 240) would be a bright gray approaching white, and (16, 16, 16) would be a dark gray
not far from black.

A grayscale image is one in which the color palette contains only grays, evenly graduated from black (0, 0, 0) for pixel
value 0, to white (255,255,255) for the highest possible pixel value. This means that in an 8-bit gray level image, the
blue, green, and red intensities for each palette entry are equal to the pixel value. The color palette for an 8-bit gray
level image is illustrated below:

BLUE GREEN RED Not Used

color 0 0 0 0 0

color 1 1 1 1 0

color 2 2 2 2 0

color 3 3 3 3 0

...

color 254 254 254 254 0

color 255 255 255 255 0

Some ImageGear image processing operations cannot be performed on 8i (8-bit color) images, because some colors that
occur as a result of the processing may not be present in the image's color palette. For such operations, if the image is
8-bit, it must be 8-bit gray level.

ImageGear Professional v18 for Mac | 452

1.2.7.3.8 Color Values Used During Display

Although an image's color palette (or in the case of a 24-bit image, each pixel's 24-bit RGB value) normally determines
the color to display at each pixel location, there are cases when this is not so. ImageGear maintains a set of Red, Green,
and Blue "Look-Up Tables" (LUTs), which are used to determine whether the colors to actually display are different from
those in the image's palette. The LUTs are modified, for example, if you instruct ImageGear to alter the brightness or
contrast of an image. The LUTs can also be set directly by your application (meaning you can display an 8-bit grayscale
image in any 256 colors of your choosing). See the Displaying Images, for further explanation of ImageGear's LUTs,
including examples showing how to modify and use them.

The colors displayed for an image may also be modified due to constraints imposed by the display monitor being used.
Some display monitors use a single 256-color hardware palette. ImageGear can reload this hardware palette each time
an image is to be displayed, but since all images on the screen are being displayed using this one hardware palette, all
other images on the screen at the same time will change to reflect the colors of this new palette. For such cases, you can
instruct ImageGear as to which image or images are to have precedence in establishing the device's hardware palette. In
addition, ImageGear can also inform you when the colors of an image may have changed due to the loading of another
image's palette. This is discussed in more detail in the section Displaying Images.

ImageGear Professional v18 for Mac | 453

1.2.7.3.9 Device-Independent/Device-Dependent Bitmaps

A bitmap image, also called a raster image, is an image held in the form of successive rows (called rasters) of pixel data.
As already stated, ImageGear's bitmap images use 1, 4, 8, or 24 bits to represent each pixel. But besides these pixel
bits, additional information is necessary to describe an image. For example, the width (number of pixels per row) and
height (number of rows in the image), are required. For some images, a color palette may be required. Depending upon
how the bitmap is to be used, additional information may be required or useful.

To hold bitmap images in memory, ImageGear uses two types of bitmaps, both widely used by many other software
products and supported by development platforms such as Microsoft Windows. These are the Device-Independent
Bitmap (DIB) and the Device-Dependent Bitmap (DDB). The DIB is by far the more widely used for in-memory
operations. It has become the common denominator format because it is so simple: it describes just the image, without
reference to characteristics of the device(s) upon which it may later be displayed. While ImageGear provides convenient
ways to convert between DIBs and DDBs and to display DDBs, nearly all ImageGear operations are performed on DIBs
exclusively.

ImageGear Professional v18 for Mac | 454

1.2.7.3.9.1 Device-Independent Bitmaps (DIB)

A DIB consists of a header structure called a BITMAPINFOHEADER followed by the color palette, if one is present,
followed by the bitmap (pixel) data:

BITMAPINFOHEADER

COLOR PALETTE (if any)

BITMAP DATA

The BITMAPINFOHEADER structure contains such information as the number of bits per pixel, number of pixels per row,
and total number of rows in the image, as well as whether the bitmap data has been compressed for more efficient
storage. Its form is shown below. Its fields are described in detail in the sections Core Component Data Types Reference
and Core Component Structures Reference.

BITMAPINFOHEADER: DWORD biSize

 LONG biWidth

 LONG biHeight

 WORD biPlanes

 WORD biBitCount

 DWORD biCompression

 DWORD biSizeImage

 LONG biXPelsPerMeter

 LONG biYPelsPerMeter

 DWORD biClrUsed

 DWORD biClrImportant

A color palette is present in the DIB if the image is 1-bit, 4-bit, or 8-bit. The format of the color palette was described at
the beginning of this chapter.

The format of the bitmap data is:

For 1-bit images, the first (leftmost) pixel of a row is held in the Most Significant Bit (MSB) of the first byte of the
row. Subsequent bits hold subsequent pixels, at a rate of 8 pixels per byte. The row is padded with zeroes as
necessary to assure a multiple of 4 bytes length for each row.
For 4-bit images, the first pixel of each row is in the 4 Most Significant Bits of the first byte of the row, and each
succeeding 4 bits hold each succeeding pixel. As above, the row is zero-padded to a multiple of 4 bytes length.
For 8-bit and 24-bit images, each pixel of a row occupies exactly 1 or 3 bytes respectively, and again each row is
padded with zeroes to a multiple of 4 bytes length. Note that the colors in a 24-bit pixel in a standard DIB are ordered
Blue-Green-Red (not Red-Green-Blue).

It should be noted that in a DIB, the first row of the bitmap data is the row to be displayed at the bottom of the image.
For historical reasons, many file formats store their bitmap data top row first (this is because most devices to which
bitmap data is sent display the rows top-to-bottom. Such devices, which include most CRT display monitors, are often
called raster-scan devices.).

Whenever ImageGear loads a file of a format having top-to-bottom row ordering, it automatically reverses the order of
the rows, assuring bottom-to-top row ordering for all DIBs, regardless of where the image originated. Keep in mind the
ordering of a DIB is therefore "upside down" relative to the convention used in much display software that the top row of
a display is row 0 and row numbers increase downward. However, it is important to note, ImageGear's pixel access
functions (such as IG_DIB_pixel_set()) consider the coordinates 0,0 to refer to the upper left-hand corner of the bitmap
data. As with an image shown on the screen, the x values will increase toward the right, and the y values will increase
toward the bottom.

See Also:

ImageGear Architecture Diagram

ImageGear Professional v18 for Mac | 455

1.2.7.3.9.2 Device-Dependent Bitmaps (DDBs)

Device-Dependent Bitmaps are bitmaps whose pixel data is organized for convenient dispatch to a particular device or
group of devices, such as to a particular type of display monitor or printer. Normally you will not need to concern
yourself with DDBs. ImageGear is designed to hold in-memory images in DIBs by default, and to process the image data
of DIBs efficiently. But when the speed with which images are displayed is an important factor in your application,
keeping large or often-displayed images in memory in DDB format may improve performance. For such cases,
ImageGear provides several ways to create or import DDBs, and to display DDBs. Please refer to Using ImageGear.

If your application is intensive in the use of in-memory DDB's, we suggest you refer to Microsoft Windows documentation
of Device-Dependent Bitmaps and Device Contexts.

ImageGear Professional v18 for Mac | 456

1.2.7.3.9.3 Vector Images

Bitmap images, sometimes also called raster images, have their data organized in horizontal rows of pixels for
convenient dispatch to raster-scan devices. Devices and display software also exist that can directly display any line, if
given an exact specification of the line. An example is a straight line defined by its two endpoints. Such a line is
sometimes called a vector, and an image file whose data is specified exclusively in terms of vectors is called a vector
image file.

ImageGear reads most popular formats that contains vector data. While doing so it performs so called "rasterization",
i.e. conversion of vector data into raster representation. For some vector formats such conversion can only be possible
for the certain platforms (WMF/EMF vector data can only be rasterized in Windows version of the product, and PICT
vector data can only be rasterized in Mac version of the product). For some vector formats (DWF, DWG, DXF,
HPGL,HPGL/2, DGN) ImageGear also allows you to control the projection of 3D vector data into 2D raster bitmap.

ImageGear Professional v18 for Mac | 457

1.2.7.3.10 ImageGear Architecture Diagram

The diagram in figure 1 gives a conceptual view of the important role played by DIBs in ImageGear. The center image
represents a DIB that results when an image is obtained from disk, memory, or a scanned file. Image processing and
clipboard functions can be used to alter or merge the actual DIB bitmap data. To the right of the DIB are various routes
an image may take after being manipulated by ImageGear: it may be saved to disk or to memory, it may be displayed,
or it may be printed.

ImageGear Professional v18 for Mac | 458

1.2.7.4 Function Error Return Codes

This Appendix delineates ImageGear error code names, numbers, and descriptions. All error and warning codes are
listed in descending numerical order and divided into the groups specific to ImageGear functionality.

General Error Codes
TIFF Filter Specific Errors
Format Filter Warning Codes
Sync Error Codes
Image Processing Error Codes
Disk File Access Error Codes
Batch Conversion CB Error Codes
Auto Detect Error Codes
Component Related Error Codes
General Warning Codes
Display Error Codes
AVI Warning Codes
PS Warning Codes
PDF Read Function Error Codes
PS2 TEXT Function Error Codes
Multipage Error Codes
Multipage Warning Codes
PDF/PostScript Component Error Codes
GUI Function Error Codes
VBX/OCX Level Error Codes
OS2 Error Codes
NRA Error Codes
XMP Metadata Error Codes
Last Error and Warning Codes

General Error Codes

IGE_SUCCESS 0 No errors - Success.

IGE_FAILURE -1 General error - Failure.

IGE_NOT_LICENSED -2 License error.

IGE_NOT_DONE_YET -100 For internal reference of areas to which to return.

IGE_NOT_IMPLEMENTED -200 For internal reference of areas to which to return.

IGE_NOT_SUPPORTED_BY_PLATFORM -350 The last function used is not supported by this platform.

IGE_ERROR_COMPRESSION -400 Compression error.

IGE_PARAMETER_HAS_INVALID_VALUE -401 Incoming parameter is invalid.

IGE_INVALID_TYPE -402 Incoming parameter's type is invalid.

IGE_OLD_CORE_CALL -403 Internal failure. Contact Accusoft Technical Support.

IGE_BUFFER_HAS_INSUFFICIENT_SIZE -404 Incoming buffer has insufficient size.

IGE_EXTENSION_NOT_LOADED -500 The ImageGear extension was not present or couldn't
be loaded.

IGE_FILTER_NOT_LOADED -510 Requested format filter is not present.

IGE_INVALID_FILTER_OPERATION -511 Requested operation is not supported by format filter.

ImageGear Professional v18 for Mac | 459

IGE_FILTER_CTRL_INVALID_NAME -512 The name of control parameter is invalid or not
supported.

IGE_INVALID_FUNCTION_NAME -550 The name of the component's function is invalid.

IGE_INVALID_FUNCTION_POINTER -551 Invalid pointer to the component's function.

IGE_INVALID_COMPONENT_MODULE -552 The module is not component or has wrong interface.

IGE_COMPONENT_ATTACH_FAILURE -553 Failure to attach component.

IGE_INVALID_CONTROL_OPTION -600 Invalid image control option ID.

IGE_INVALID_EXTENSION_MODULE -700 The specified ImageGear extension file was not a valid
extension file.

IGE_EXTENSION_INITIALIZATION_FAILED -800 The specified ImageGear extension was unable to
initialize.

IGE_FUNCTIONALITY_NOT_SUPPORTED -900 The ImageGear functionality is not supported under this
platform.

IGE_OUT_OF_MEMORY -
1000

No more global memory is available for allocation,
reduced used resources.

IGE_EVAL_DLL_TIMEOUT_HAS_EXPIRED -
1003

The DLL is an Evaluation copy and as timed out -
contact Accusoft to purchase a release copy.

IGE_INVALID_STANDARD_KERNEL -
1004

The kernel expected one of the predefined ones; yours
could not be found.

IGE_INTERNAL_ERROR -
1005

An internal error has occurred, contact Accusoft
technical support.

IGE_INVALID_RECTANGLE -
1007

Occurs when a rectangle's left >= right or top >=
bottom.

IGE_NO_CLIPBOARD_IMAGE_AVAILABLE -
1008

No image is available for a clipboard paste.

IGE_CLIPBOARD_OPEN_FAILED -
1009

Could not open the clipboard.

IGE_SETCLIPBOARDDATA_FAILED -
1010

Could not put data into the clipboard.

IGE_COULD_NOT_GET_DDB_DIMENSIONS -
1011

GetObject() failed. Couldn't get the DDB's dimensions.

IGE_COULD_NOT_GET_DDB_BITS -
1012

GetDIBits() failed. Couldn't get the DDB's image data.

IGE_CREATE_BITMAP_FAILED -
1013

CreateBitmap() failed. Couldn't create a DDB.

IGE_COULD_DISPLAY_DDB -
1014

BitBlt() failed. Couldn't display the DDB.

IGE_INVALID_PATTERN_BITMAP -
1015

The DDB was > 1 bit per pixel or the width was > 8 or
the height was > 8.

IGE_PASSWORD_INVALID -
1016

The Password is not recognized.

ImageGear Professional v18 for Mac | 460

IGE_THUMBNAIL_NOT_PRESENT -
2000

Thumbnails are supported but none can be found in this
image file.

IGE_THUMBNAIL_READ_ERROR -
2001

A read error occurred while reading a thumbnail.

IGE_THUMBNAIL_NOT_SUPPORTED -
2002

Thumbnails are not supported by this format.

IGE_PAGE_NOT_PRESENT -
2005

The requested image page does not exist in the file.

IGE_PAGE_INVALID -
2006

The page number provided is outside of the range of
valid pages for this file.

IGE_PAGE_COULD_NOT_BE_READ -
2007

The page number could not be determined.

IGE_CANT_DETECT_FORMAT -
2010

The format of the file can not be determined.

IGE_FILE_CANT_BE_OPENED -
2030

An attempt to open a file failed; it may not exist in the
provided path.

IGE_FILE_CANT_BE_CREATED -
2031

An attempt to create a file failed; it may already exist in
the provided path.

IGE_FILE_CANT_BE_CLOSED -
2032

An attempt to close a file failed.

IGE_FILE_TO_SMALL_TO_BE_BMFH -
2033

The file is too small to be a valid BMFH.

IGE_FILE_IS_NOT_BMP -
2034

The BMFH Magic number is invalid.

IGE_FILE_TO_SMALL_TO_BE_BMIH -
2035

The file is too small to be a valid BMIH.

IGE_BMP_IS_COMPRESSED -
2040

The BMP file is in compressed (RLE) format.

IGE_FILE_SIZE_WRITE_ERROR -
2041

Could not write file size field to BMP.

IGE_CANT_READ_PALETTE -
2050

Can't read palette.

IGE_CANT_READ_PIXELS -
2051

Can't read pixel data.

IGE_CANT_READ_HEADER -
2052

Can't read header.

IGE_INVALID_FILE_TYPE -
2060

Invalid file type.

IGE_INVALID_HEADER -
2061

Invalid file header.

IGE_CANT_WRITE_PALETTE -
2070

Can't write palette.

IGE_CANT_WRITE_PIXELS - Can't write pixel data.

ImageGear Professional v18 for Mac | 461

2071

IGE_CANT_WRITE_HEADER -
2072

Can't write header.

IGE_FORMAT_NOT_DETECTABLE -
2073

Save format cannot be detected from file extension
used.

IGE_INVALID_COMPRESSION -
2080

Invalid compression.

IGE_INSTANCE_FAILURE -
2090

Instance failure.

IGE_INSTANCE_CLEANUP_ERROR -
2091

Instance cleanup error.

IGE_CANT_SETUP_DIB_HEADER -
2095

Can't set up DIB header.

IGE_CANT_READ_FILE -
2100

Can't read file.

IGE_INVALID_IMAGE_FORMAT -
2110

The image file is invalid as the expected format.

IGE_FILE_FORMAT_IS_READONLY -
2111

The image file is read only and cannot be written to.

IGE_INVALID_BITCOUNT_FOR_FORMAT -
2112

The bitcount found is not supported by this format.

IGE_INTERRUPTED_BY_USER -
2113

Status bar callback returned FALSE.

IGE_NO_BITMAP_REGION -
2390

No bitmap region.

IGE_BAD_FILE_FORMAT -
2391

Format is not correct.

IGE_EPS_NO_PREVIEW -
2392

EPS file has no screen preview image to load.

IGE_CANT_WRITE_FILE -
2393

File can't be saved in the specified format.

IGE_NO_BITMAP_FOUND -
2394

WPG, WMF, etc. No raster image exists in file.

IGE_PALETTE_FILE_TYPE_INVALID -
2395

IG_PALETTE_ value is not known.

IGE_PALETTE_FILE_WRITE_ERROR -
2396

Error writing to a palette file.

IGE_PALETTE_FILE_READ_ERROR -
2397

Error reading from a palette file.

IGE_PALETTE_FILE_NOT_DETECTED -
2398

The file is not a valid palette file.

IGE_PALETTE_FILE_INVALID_HALO_PAL -
2399

Detected Dr. Halo Palette file is invalid.

ImageGear Professional v18 for Mac | 462

IGE_G4_PREMATURE_EOF_AT_SCAN_LINE -
2400

Group 4 premature EOF.

IGE_G4_PREMATURE_EOL_AT_SCAN_LINE -
2401

Group 4 premature EOL.

IGE_G4_BAD_2D_CODE_AT_SCAN_LINE -
2402

Group 4 invalid 2D code.

IGE_G4_BAD_DECODING_STATE_AT_SCAN_LINE -
2403

Group 4 bad decoding state.

IGE_G3_PREMATURE_EOF_AT_SCAN_LINE -
2410

Group 3 premature EOF.

IGE_G3_BAD_1D_CODE_AT_SCAN_LINE -
2411

Group 3 bad 1D code.

IGE_G3_PREMATURE_EOL_AT_SCAN_LINE -
2412

Group 3 premature EOL.

IGE_BITDEPTH_NOTSUPPORTED -
2413

This Bit-Depth is not supported for this write format.

IGE_DIRECTORY_CREATE_ERROR -
2414

Unable to create Destination Directory.

IGE_LOG_FILE_CREATE_ERROR -
2417

Unable to create Batch Log File.

IGE_NAME_CONV_NOT_SUPPORTED -
2416

Batch Naming configuration not supported.

IGE_IMNET_INVALID_WIDTH -
2418

Invalid width for IMNET.

IGE_PJPEG_INVALID_SCAN_CONFIGURATION -
2420

Invalid configuration of scans for progressive JPEG
write.

IGE_PJPEG_INVALID_SCAN_COUNT -
2421

Invalid number of scans for progressive JPEG write.

IGE_JPG_UNRECOGNIZED -
2422

Unrecognized JPEG marker encountered.

IGE_JPG_INVALID_QTABLE_ID -
2423

Invalid quantization table descriptor.

IGE_JPG_INVALID_QTABLE_PRECISION -
2424

Invalid quantization table precision.

IGE_JPG_INVALID_HUFFMAN_ID -
2425

Invalid Huffman table descriptor.

IGE_JPG_INVALID_HUFFMAN_TABLE -
2426

Invalid Huffman table.

IGE_PJPEG_NOT_SUPPORTED -
2427

Progressive JPEG feature is not supported.

IGE_OPERATION_IS_NOT_ALLOWED -
2432

This operation is not allowed.

IGE_PROC_INVAL_FOR_RUNS_DIB - This function can not be used on DIBs in the Runs

ImageGear Professional v18 for Mac | 463

2433 format - convert first IG_IP_convert_runs_to_DIB.

IGE_CAN_NOT_OPEN_TEMP_FILE -
2434

The temporary file need for this function could not be
opened/created.

IGE_ALLOC_SELECTOR_FAILED -
2435

AllocSelector() failed, couldn't get an entry into the
Global Descriptor able.

IGE_LOAD_FUNCTION_GET_FAILED -
2436

Was not able to initialize the filer load function.

IGE_PNG_CHUNK_WRITE_FAILED -
2438

Failed to write the correct number of bytes for png
chunk.

IGE_PNG_WRITE_FAILED -
2439

Failed to write png data.

IGE_PNG_CHUNK_READ_FAILED -
2440

Failed to READ the correct number of bytes for png
chunk.

IGE_PNG_READ_FAILED -
2441

Failed to READ png data.

IGE_PNG_NO_IDAT_CHUNK -
2442

Failed to READ a mandatory IDAT Chunk.

IGE_NOT_SUPPORTED_COMP -
2443

Compression is not supported at this time.

IGE_UNDEFNIED_COLOR_SPACE_ID -
2444

Color space ID is not defined.

IGE_DIB_RES_UNITS_NOT_SUPPORTED -
2445

DIB resolution units are not supported.

IGE_FILTER_CANT_GET_INFOFUNC -
2446

Failed to get filter's info function.

IGE_FILTER_UNKNOWN_FORMAT -
2447

Unknown file format.

IGE_X_NULL_DISPLAY -
2448

X display specified is NULL. ASCII filter is unable to
draw text.

TIFF Filter Specific Errors

IGE_INVALID_TAG -
2450

Tag Read did not contain correct number of bytes.

IGE_INVALID_IFD -
2451

IFD Read did not contain correct number of bytes.

IGE_IFD_PROC_FAILURE -
2452

Invalid IFD information was detected.

IGE_SEEK_FAILURE -
2453

IOS position seek failed.

IGE_INVALID_BYTE_ORDER -
2454

Byte order flag was not Intel or Motorola.

IGE_CANT_READ_TAG_DATA -
2455

Was unable to read all TAG information.

ImageGear Professional v18 for Mac | 464

IGE_INVALID_BITS_PER_SAMPLE -
2456

Bits per sample tag was invalid.

IGE_INVALID_COLOR_MAP -
2457

Color Map was found to be invalid.

IGE_INVALID_PHOTOMETRIC -
2458

Photometric tag value was found to be invalid.

IGE_INVALID_REQ_INFO -
2459

Required information was not supplied.

IGE_COMP_NOT_SUPPORTED -
2460

Compression is not supported at this time.

IGE_RASTER_FEED_ERROR -
2461

Error feeding raster data to the DIB.

IGE_IMAGE_DATA_READ_ERROR -
2462

Was unable to read all image data requested.

IGE_HEADER_WRITE_FAILED -
2463

Header write failed.

IGE_DIB_GET_FAILURE -
2464

Was unable to retrieve the DIB information.

IGE_CANT_REALLOC_MEM -
2465

Was not able to reallocate memory.

IGE_IFD_WRITE_ERROR -
2466

Was not able to write IFD info to the IOS.

IGE_TAG_WRITE_ERROR -
2467

Was not able to write TAG info to the IOS.

IGE_IMAGE_DATA_WRITE_ERROR -
2468

Was not able to write IMAGE data to the IOS.

IGE_PLANAR_CONFIG_ERROR -
2469

Planar Config detected is unsupported.

IGE_RASTER_TO_LONG -
2470

One raster lines exceeds the max number of bytes.

IGE_LZW_ERROR -
2471

Error occurred in LZW decode.

IGE_INVALID_IMG_DEM -
2472

Image Dimension was invalid.

IGE_BAD_DATA_TYPE -
2473

Data type detected is not valid.

IGE_PAGE_COUNT_FAILURE -
2474

Count not count the number of pages in the file.

IGE_CORRUPTED_FILE -
2475

Data in file was not what was expected and could not be
interpreted.

IGE_INVALID_STRIP_BYTE_CNT -
2476

Strip byte count was zero and could not be estimated.

IGE_INVALID_COMP_BIT_DEPTH - Bit depth is invalid for this compression scheme.

ImageGear Professional v18 for Mac | 465

2477

IGE_REPAGE_FAILED -
2478

Unable to write new page numbers while re-paging file.

IGE_PRIV_TAG_TYPE_INVALID -
2479

Private user tag had an invalid type.

IGE_LZW_EXTENSION_NOT_LOADED -
2480

LZW Extension has not been loaded.

IGE_TILE_NOT_PRESENT -
2481

Tile is not present.

IGE_RASTER_WRITE_FAILURE -
2482

Unable to write Raster to Output Device (Full Device).

IGE_IMBEDDED_IMAGE_FAILURE -
2483

Failure occurred while reading a file format imbedded in
another.

IGE_ABIC_EXTENSION_NOT_LOADED -
2484

ABIC Extension has not been loaded.

IGE_JBIG_EXTENSION_NOT_LOADED -
2485

JBIG Extension has not been loaded.

IGE_JBG_IMG_CNTRL_NOT_FOUND -
2486

JBIG Extension Image Control not found for save.

IGE_CLP_INVALID_FORMAT_ID -
2500

Windows clipboard file contains an unsupported Format ID at
this page.

IGE_ICA_COMP_NOT_SUPPORTED -
2510

MO:DCAIOCA Compression is not supported at this time.

IGE_ICA_IBM_MMR_COMP_ERROR -
2520

Error in IBM MMR IOCAMO:DCA compression.

IGE_TIF_INVALID_CLASS_F_IMAGE -
2530

Error writing TIF class F format.

IGE_JBIG_STREAM_OPEN_FAILURE -
2540

JBIG support library returned an error in return code.

IGE_CANNT_OPEN_FTP_FILE -
2550

Can't open FTP file.

IGE_CANNT_OPEN_HTTP_FILE -
2560

Can't open HTTP file.

IGE_CANNT_OPEN_GOPHER_FILE -
2570

Can't open Gopher file.

IGE_CANNT_OPEN_TEMPORARY_FILE -
2580

Can't open temporary file.

IGE_CANNT_OPEN_INTERNET_CONNECTION -
2590

Can't open internet connection.

IGE_CANNT_OPEN_INTERNET_SESSION -
2600

Can't open internet session.

IGE_END_OF_IMAGE -
2610

End of image.

ImageGear Professional v18 for Mac | 466

Format Filter Warning Codes

IGW_FILTER_DECODING_FAILURE -
2650

Failed to decode rasters.

IGW_INVALID_COMPRESSION_NONCRITICAL -
2651

Invalid compression of non-critical data, e.g. text.

Sync Error Codes

IGE_IMAGE_IS_LOCKED -
2900

Image is locked.

IGE_CANT_LOCK_IMAGE -
2901

Can't lock image.

IGE_CANT_UNLOCK_IMAGE -
2902

Can't unlock image.

IGE_CANT_LOCK_DATA -
2903

Can't lock data.

IGE_CANT_UNLOCK_DATA -
2904

Can't unlock data.

Image Processing Error Codes

IGE_WRONG_DIB_BIT_COUNT -
3000

The DIB has bit with the wrong bit count for
this routine.

IGE_LOCK_FAILED -
3010

Memory required for this routine could not be
locked; most likely running out of memory
resources.

IGE_ALLOC_FAILED -
3020

Memory required for this routine could not be
allocated; free up some resources and try
again.

IGE_FREE_FAILED -
3030

An internal memory free has failed, usually a
bad handle, or corrupted system.

IGE_BAD_KERN_TYPE -
3040

Bad kernel type.

IGE_AI_HANDLES_USED_UP -
3050

The maximum number of Accusoft handles has
been used - no more left. Free up some and
try again.

IGE_AI_HANDLE_INVALID -
3060

This routine requires an Accusoft handle. The
handle passed in was not allocated by
Accusoft.

IGE_DIBS_ARE_INCOMPATIBLE -
3070

The images are not compatible for this
function, either dimension, bit count, or both.

IGE_INVALID_SIGMA -
3080

Invalid sigma.

IGE_DIB_DIMENSIONS_NOT_EQUAL -
3090

The images must be the same dimensions.

IGE_DIB_BIT_COUNTS_NOT_EQUAL -
3100

The images must have the same bit count.

ImageGear Professional v18 for Mac | 467

IGE_DIB_HAS_NO_PALETTE -
3101

The image passed in does not have a palette
and this routine requires one.

IGE_ROI_WRONG_TYPE -
3110

Region of interest is wrong type.

IGE_REQUIRES_CONVEX_ROI -
3120

This function requires a convex ROI. The one
passed in must be convex.

IGE_INVALID_RAMP_DIRECTION -
3130

The contrast ramps direction is not supported.

IGE_INVALID_LUT_ARITH_FUNC -
3140

The LUT_ARITH_FUNC is not a valid function
number; check the constant.

IGE_INVALID_KERN_MOTION_EXTENT -
3150

Invalid kernel motion extent.

IGE_INVALID_NOISE_TYPE -
3160

Invalid noise type.

IGE_INVALID_KERN_NORMALIZER -
3170

Invalid kernel normalizer.

IGE_INVALID_SIGMA -
3180

Invalid sigma.

IGE_INVALID_SKEW_POINTS -
3190

A valid line could not be drawn through the
two point provided. Y1==Y2.

IGE_TILE_IS_LARGER_THAN_IMAGE -
3200

The tile image must be the same size or
smaller in both dimensions than the original
source.

IGE_COLOR_SPACE_INVALID -
3210

Invalid type of color space.

IGE_DIB_POINTER_IS_NULL -
3220

The DIB pointer about to be used is NULL
(invalid).

IGE_PROC_INVAL_FOR_BIT_COUNT -
3300

This function can not be used on images with
this one's bit count.

IGE_PROC_INVAL_FOR_PALETTE_IMG -
3310

This function can not be used on 8-bit color
images - try to promote to 24-bit.

IGE_PARAMETER_OUT_OF_LIMITS -
3320

A parameter is out of its legal range.

IGE_INVALID_POINTER -
3330

A pointer was detected to be NULL.

IGE_INVALID_ENCRYPT_MODE -
3340

The selected Encryption Method is invalid.

IGE_PASSWORD_LENGTH_INVALID -
3350

Password must be at least 1-byte long (should
be at least 5 bytes).

IGE_PROC_REQUIRE_8BIT_GRAYSCALE -
3360

This function can be used on 8-bit grayscale
images only.

IGE_PROC_REQUIRE_8BIT_GRAYSCALE_1CHANNEL -
3361

This function can only be used on 8-bit
grayscale images with one channel.

IGE_PROC_REQUIRE_8_16_32BIT_GRAYSCALE_1CHANNEL - This function can only be used on 8, 16, or 32-

ImageGear Professional v18 for Mac | 468

3362 bit grayscale images with one channel.

IGE_INVALID_RESOLUTION_UNIT -
3370

The units of the image resolution are not
supported.

IGE_POINTER_IS_NULL -
3380

Pointer passed to an IP function is NULL, but it
would point at object.

IGE_INVALID_BIT_MASK -
3390

The red, green and blue components of the bit
mask overlap.

IGE_DIB_DIMENSIONS_ARE_INVALID -
3400

Either height or width of the DIB is wrong.

IGE_PROC_INVAL_FOR_8BIT_INDEXED -
3410

Proc does not work on the 8i images.

IGE_RASTER_LINE_INVALID -
3420

The given raster line is invalid, it should be
between 0 and the height of the image -1.

IGE_INVALID_CLIPING_RECT -
3421

Invalid clipping rect.

IGE_INVALID_ALPHA_CHANNEL -
3422

It is possible that width or height not equal to
original image.

IGE_INVALID_RESOLUTION_VALUE -
3423

Resolution value is incorrect.

IGE_INVALID_RANK_TYPE -
3424

Specified type of rank in the rank filter is
invalid.

IGE_RASTER_DIB_REQUIRED -
3425

Raster IG page required for this operation.

Disk File Access Error Codes

IGE_FILE_CANT_OPEN -
3440

Cannot open file.

IGE_FILE_CANT_SAVE -
3441

Cannot save file.

IGE_FILE_CANT_DELETE -
3442

Cannot delete file.

IGE_FILE_INVALID_FILENAME -
3443

Invalid file name.

IGE_FILE_INVALID_PATH -
3450

Invalid path.

Batch Conversion CB Error Codes

IGE_BATCH_WRONG_CB_TYPE -
3500

Wrong CB type passed to IG_batch_CB_register.

Auto Detect Error Codes

IGE_FILE_IS_SYSTEM_FILE -
3600

The image file passed in is really one of the following system files
and not an image.

ImageGear Professional v18 for Mac | 469

IGE_FILE_IS_EXE -
3601

File is a EXE, DLL, DRV, FNT, OCX, or 386.

IGE_FILE_IS_ZIP -
3602

File is a PKZIP file.

IGE_FILE_IS_DOC -
3603

File is a Microsoft DOC file.

IGE_FILE_IS_HLP -
3604

File is a Microsoft system Help file.

IGE_FILE_IS_UNSUPPORTED_FILE -
3605

File format is not supported.

Component Related Error Codes

IGE_CANT_ATTACH_COMP -
3700

The specified component can't be attached.

IGE_COMPONENT_NOT_ATTACHED -
3701

The component isn't attached.

IGE_FUNCTION_DOESNT_EXIST -
3702

The function doesn't exist in the specified component.

General Warning Codes

IGW_GENERAL_WARNING -
4750

See detailed description in text field of warning.

IGW_LAST_ITEM_REACHED -
4751

Iterator has reached the final item.

Display Error Codes

IGE_CANT_OPEN_PARAMETER_MUTEX -
4800

Cannot start critical session.

IGE_CANT_OPEN_FORMAT_STORAGE_MUTEX -
4801

Cannot start critical session.

IGE_FAIL_TO_ALLOC_PAMETER_GROUP -
4805

Cannot allocate parameter group.

IGE_THREAD_ALREADY_ASSOCIATED -
4810

Thread is already associated.

IGE_INVALID_OBJECT -
4811

Invalid object.

IGE_GROUP_IS_NOT_EXIST -
4817

Group does not exist.

IGE_FAIL_TO_ALLOC_MUTEX -
4820

Cannot allocate critical session data.

IGE_INVALID_FORMAT_METHOD_ID -
4825

Invalid format method ID.

IGE_INVALID_FORMAT_HEADER - Invalid format header.

ImageGear Professional v18 for Mac | 470

4830

IGE_INVALID_FORMAT_BIT_COUNT -
4835

Invalid format bit count.

IGE_FORMAT_OPERATION_IS_NOT_SUPPORTED -
4840

Format operation is not supported.

IGE_INVALID_DISPLAY_PARAMETER -
4850

Invalid display parameter.

IGE_INVALID_DEVICE_CONTEXT -
4860

Invalid device context.

IGE_INVALID_IMAGE_HANDLE -
4870

Invalid image handle.

IGE_INVALID_PARAMETER -
4880

Invalid parameter.

IGE_INVALID_PRM_OPERATION -
4890

Invalid operation.

IGE_FAIL_TO_DRAW_IMAGE -
4910

Cannot draw image.

AVI Warning Codes

IGW_AVI_PARTIAL_BAD_FRAMES -
4900

Partial bad frames warning.

PS Warning Codes

IGW_PS_UNKNOWN_PAGES_NUMBER -
4950

Unknown page number warning.

PDF Read Function Error Codes

IGE_PDFREAD_PSERROR -
5300

PostScript error.

IGE_PDFREAD_GENERAL -
5301

General error.

PS2 TEXT Function Error Codes

IGE_PS2TEXT_ERROR -
5350

PS2TEXT error.

Multipage Error Codes

IGE_MP_INVALID_HANDLE -
5400

Invalid multi-page image handle.

IGE_MP_IMVALID_PAGE_NUMBER -
5401

Invalid page number.

IGE_MP_CANT_OPEN_MUTEX -
5402

Synchronization error.

ImageGear Professional v18 for Mac | 471

IGE_MP_ASSOCIATE_FAILURE -
5403

Multipage image open failure.

IGE_MP_IMAGE_NOT_ASSOCIATED -
5404

Multipage image is not opened.

Multipage Warning Codes

IGW_MP_INVALID_PAGE_NUMBER -
5420

Invalid page number.

PDF/PostScript Component Error Codes

PostScript General

IGE_PS_FAILURE -
5501

General PostScript job error.

IGE_PS_NOT_INITIALIZED -
5502

PostScript engine is not initialized.

IGE_PS_EMPTY_JOB -
5503

Empty PostScript job.

IGE_PS_POSTSCRIPT_ERROR -
5504

The file contains a PostScript error.

PDF General

IGE_PDF_FAILURE -
5531

General PDF error.

IGE_PDF_NOT_INITIALIZED -
5532

PDF engine is not initialized.

IGE_PDF_CANT_READ_DATA -
5533

Cannot read PDF stream.

IGE_PDF_CANT_WRITE_DATA -
5534

Cannot write PDF stream.

IGE_PDF_CANT_CONVERT_DATA -
5535

Rasterization failed.

IGE_PDF_INVALID_PARAMETER -
5536

Invalid parameter.

IGE_PDF_INVALID_COMPRESSION -
5537

Invalid compression.

IGE_PDF_INVALID_BITCOUNT -
5538

Invalid bit count.

IGE_PDF_CANT_EXTRACT_TEXT -
5539

Cannot extract text.

IGE_PDF_CANT_CREATE_OBJECT -
5540

Cannot create object.

IGE_PDF_PRINTING_FAILED -
5541

Printing failed.

PDF Document

ImageGear Professional v18 for Mac | 472

IGE_PDF_DOC_INVALID -
5601

Invalid document object.

IGE_PDF_DOC_CANT_CREATE -
5602

Cannot create document.

IGE_PDF_DOC_CANT_OPEN -
5603

Cannot open document.

IGE_PDF_DOC_CANT_SAVE -
5604

Cannot save document.

IGE_PDF_DOC_NOT_AUTHORIZED -
5605

This operation is not permitted.

PDF Page

IGE_PDF_PAGE_INVALID -
5701

Invalid page object.

IGE_PDF_PAGE_CANT_CREATE -
5702

Cannot create page.

IGE_PDF_PAGE_CANT_OPEN -
5703

Cannot open page.

IGE_PDF_PAGE_CANT_SAVE -
5704

Cannot save page.

IGE_PDF_PAGE_CANT_INSERT -
5705

Cannot insert page.

IGE_PDF_PAGE_CANT_DELETE -
5706

Cannot delete page.

PDF Objects

IGE_PDF_OBJECT_INVALID -
5801

Invalid PDF object.

IGE_PDF_CONTENT_INVALID -
5802

Invalid content object.

IGE_PDF_CONTENT_CANT_SET -
5803

Cannot set content.

IGE_PDF_ELEMENT_INVALID -
5804

Invalid element.

IGE_PDF_COLORSPACE_INVALID -
5805

Invalid color space object.

IGE_PDE_OBJECT_INVALID -
5806

Invalid PDE object.

IGE_PDF_STREAM_INVALID -
5807

Invalid stream object.

GUI Function Error Codes

IGE_REGISTER_CLASS_FAILED -
6000

Microsoft Windows function: RegisterClass() failed.

ImageGear Professional v18 for Mac | 473

IGE_CREATE_WINDOW_FAILED -
6010

Microsoft Windows function: CreateWindow() failed.

IGE_WINDOW_NOT_ASSOCATED -
6020

An attempt was made to disassociate a window that was
never associated.

IGE_INVALID_WINDOW -
6030

An invalid window handle was passed as one of the
parameters to the function.

IGE_UNREGISTER_CLASS_FAILED -
6040

Microsoft Windows function: UnregisterClass() failed.

IGE_GUI_NO_FORMATS_CTL -
6500

The control is not associated with a valid IGFormatsCtl
control.

IGE_GUI_NO_DISPLAY_CTL -
6501

The control is not associated with a valid IGDisplayCtl
control.

IGE_GUI_NO_PROCESSING_CTL -
6502

The control is not associated with a valid IGProcessingCtl
control.

IGE_GUI_NO_PAGE_DISPLAY -
6503

Invalid IGPageDisplay object.

IGE_GUI_NO_PAGE -
6504

Invalid IGPage object.

IGE_GUI_PAGE_DISPLAY_CREATE_OBJ_FAILED -
6505

The CreatePageDIsplay() call failed.

IGE_GUI_PAGE_DISPLAY_SET_OBJ_FAILED -
6506

Could not set the PageDisplay object for this image's
PageView Control.

IGE_GUI_LAYOUT_GET_OBJ_FAILED -
6507

Could not retrieve the DIsplay Layout object for this
image display.

IGE_GUI_LAYOUT_CHANGE_FAILED -
6508

Could not modify the properties of the Display Layout
object for this image display.

IGE_GUI_DISPLAY_ZOOM_GET_OBJ_FAILED -
6509

Could not retrieve the Display Zoom object for this image
display.

IGE_GUI_DISPLAY_ZOOM_SET_OBJ_FAILED -
6510

Could not set the Display Zoom object for this image
display.

IGE_GUI_DISPLAY_ZOOM_CHANGE_FAILED -
6511

Could not modify the properties of the Display Zoom
object for this image display.

IGE_GUI_PAGE_VIEW_ENABLE_FAILED -
6512

Could not enable the PageView Control.

IGE_GUI_PAGE_VIEW_UPDATE_FAILED -
6513

Could not update the PageView Control.

IGE_GUI_GET_DLG_CTL_FAILED -
6514

Could not retrieve the dialog control object.

IGE_GUI_GET_HWND -
6515

Could not retrieve the underlying HWND for this object.

IGE_GUI_UNKNOWN_FILE_FORMAT -
6516

Unknown file format.

IGE_GUI_INTERNAL_ERROR - Internal GUI error.

ImageGear Professional v18 for Mac | 474

6517

IGE_GUI_SLIDER_SETUP_FAILED -
6518

Failed to setup magnifier's on-source sliding area.

IGE_GUI_WINDOWING_FAILED -
6519

Failed to attach to the source view control window.

IGE_GUI_SOURCE_VIEW_UNAVAILABLE -
6520

SourceView property must be setup before starting mouse
tracking.

IGE_GUI_DESTINATION_VIEW_UNAVAILABLE -
6521

DestinationView property must be setup in stationary
mode before starting mouse tracking.

IGE_GUI_GET_DEVICE_RECT_FAILED -
6522

Failed to retrieve device rectangle from SourceView's page
display.

VBX/OCX Level Error Codes

IGE_VBX_INVALID_FUNCTION_NUM -
7000

Invalid VBX function number.

IGE_ROTATE_ENUMERATED_VALUES_NOT_USED -
7010

The enumerated values for rotate were not used.

IGE_GUIWINDOW_TYPE_INVALID -
7020

GUIWindow type invalid.

OS2 Error Codes

IGE_UNREGISTERED_HAB -
8000

HAB is not registered.

NRA Error Codes

IGE_INVALID_REGION_DATA -
9000

Invalid region.

IGE_INVALID_PARAMETER_FOR_PROCESSING_WITH_REGION -
9001

Operation cannot be done using region.

XMP Metadata Error Codes

IGE_XMP_METADATA_ERROR -
9780

An XMP metadata error has occurred.

Last Error and Warning Codes

IGE_LAST_ERROR_NUMBER -
9999

Last error code number. Application defined error codes must be
negative and less than this number. Note that it may change in a
major release, so make sure to use a constant rather than a hard-
coded number.

IGW_LAST_WARNING_NUMBER -
9999

Last warning code number. Application defined error and warning
codes must be negative and less than this number. Note that it
may change in a major release, so make sure to use a constant
rather than a hard-coded number.

ImageGear Professional v18 for Mac | 475

1.2.7.5 ImageGear Global Control Parameters

The following table provides information about ImageGear Professional Global Control Parameters:

Global Control Parameter Type Default Value Available Values Description

COMM.PATH AM_TID_LP |
AM_TID_CHAR

<Path to the folder where
ImageGear Core module is
located>

Any string Specifies the path to the folder
containing ImageGear component
modules. See
IG_comm_comp_attach.

CPM.CMYK_PROFILE_PATH AM_TID_LP |
AM_TID_CHAR

<Path to the default CMYK
profile; located in the same
directory as ImageGear Core
module.>

Any string Specifies the path to the default
CMYK color profile. See Using
Color Profile Manager.

CPM.ENABLE_PROFILES AM_TID_AT_BOOL FALSE FALSE, TRUE Enables or disables the color
profile manager. See Using Color
Profile Manager.

CPM.ENABLE_RENDERING_INTENTS AM_TID_AT_BOOL FALSE FALSE, TRUE Enables or disables the usage of
rendering intents in color profiles.
By default, ImageGear uses
Relative Colorimetric rendering
intent. See Using Color Profile
Manager.

CPM.RGB_PROFILE_PATH AM_TID_LP |
AM_TID_CHAR

<Path to the default RGB
profile; located in the same
directory as ImageGear Core
module.>

Any string Specifies the path to the default
RGB color profile. See Using Color
Profile Manager.

DIB.FILE_MAPPING.FLUSH_SIZE AM_TID_INT 200 Any non-negative integer Specifies the maximum size of a
memory block in a DIB that can be
processed without flushing the
memory mapped file, in
megabytes. Only used when
"DIB.FILE_MAPPING.THRESHOLD"
is greater than zero. Does not
affect 1-bit images. See Working
with Gigabyte-Sized Images.

DIB.FILE_MAPPING.PATH AM_TID_LP |
AM_TID_CHAR

<Empty string. ImageGear uses
the system temporary folder for
memory mapped files.>

Any string Specifies the path to a folder
where memory mapped files will
be stored. Only used when
"DIB.FILE_MAPPING.THRESHOLD"
is greater than zero. Does not
affect 1-bit images. See Working
with Gigabyte-Sized Images.

DIB.FILE_MAPPING.THRESHOLD AM_TID_INT 0 Any non-negative integer Specifies minimum DIB size, in
megabytes, for which the memory
mapped file shall be used. Zero
means that the use of memory
mapped files is disabled. Does not
affect 1-bit images. See Working
with Gigabyte-Sized Images.

DIB.PIX_ACCESS_USE_LEGACY_MODE AM_TID_AT_LMODE IG_PIX_ACCESS_MODE_LEGACY IG_PIX_ACCESS_MODE_LEGACY
= 0,
IG_PIX_ACCESS_MODE_NEW =
1

Switches between “legacy” (14.4
and earlier) and “new” pixel
access modes. See Pixel Access
Modes.

FLTR.METADATA_FORMAT AM_TID_LP |
AM_TID_CHAR

“binary” “binary”, “text” Switches between binary and text
representations for accessing
metadata values. See Non-Image
Data Format.

IO.BUFFER_SIZE AM_TID_DWORD 262144 Any non-negative integer Specifies the size of the internal
buffer used for image reading. Set
to 0 to disable bufferization. See
Internal Stream Bufferization.

PDF.HOST_FONT_PATH AM_TID_LP |
AM_TID_CHAR

<Parameter is not set.
ImageGear uses the system
fonts directory.>

Any string Specifies path to the system font
directory. See IG_PDF_initialize.

PDF.PDF_RESOURCE_PATH AM_TID_LP |
AM_TID_CHAR

<Parameter is not set.
ImageGear looks for PDF
resources in <COMM.PATH>\
Resources\PDF>

Any string Specifies the path to the PDF
resources directory. See
IG_PDF_initialize.

PDF.PS_RESOURCE_PATH AM_TID_LP |
AM_TID_CHAR

<Parameter is not set.
ImageGear looks for PDF
resources in <COMM.PATH>\
Resources\PS>

Any string Specifies the path to the
PostScript resources directory.
See IG_PDF_initialize.

PDF.TMP_PATH AM_TID_LP |
AM_TID_CHAR

<Parameter is not set.
ImageGear selects PDF/PS

Any string Specifies the path to the
temporary directory for PDF

ImageGear Professional v18 for Mac | 476

temporary directory according
to system settings.>

component. See IG_PDF_initialize.

This parameter specifies the
location where temp objects
such as scratch PDF files, scratch
PS files, and PS font cache are
created. This parameter should be
set before the PDF component is
initialized with IG_PDF_initialize.

PRINT.RESOLUTION AM_TID_INT 300 Positive integer Specifies both vertical and
horizontal resolution in dots per
inch during image printing. A
higher value indicates a higher
quality image to be printed.

XMP.Parse AM_TID_AT_BOOL TRUE FALSE, TRUE Enables or disables the parsing of
XMP stream when reading and
writing metadata from/to image
files. See Working with XMP
Metadata.

ImageGear Professional v18 for Mac | 477

1.2.7.6 Glossary

This glossary contains terminology used by Accusoft in both its software products and its documentation. Since these
terms come from many different disciplines and because many of the terms have different meanings in each
discipline, each glossary entry is followed by the name of the field from which the definition is taken.

For a detailed description, refer to the references listed in the Bibliography. For definitions of ImageGear licensing
terminology, refer to ImageGear Licensing and Deployment Kit Terminology.

To find terms which start with a numeral (0-9), look under its spelling, for example, the term "8-bit gray level"
can be found as "eight bit gray level."

absolute coordinates (imaging)

Absolute coordinates refer to a common origin, for example, the upper left corner of a display screen. This is the
opposite of relative coordinates.

ACCUAPI (Accusoft)

Accusoft Application Program Interface. See API (software).

additive primary colors (imaging)

Red, Green, Blue - the 3 colors used to create all other colors when direct, or transmitted light is used (as in a video
monitor). They are called additive primaries, because when these three colors are superimposed they produce white.

anti-aliasing (imaging)

A method of filling in data that is missing due to under-sampling. In imaging, this usually involves the process of
removing jagged edges by interpolating values in-between pixels of contrast. These methods are most often used to
remove or reduce the stair-stepping artifact found in digital high contrast images.

AOI (Image Processing)

Area Of Interest. An area of interest is a rectangle within an image defined as two points within the image. An AOI
can be written as (x1,y1)-(x2,y2). All AOIs are parallel with the image's axes. See ROI (Accusoft image processing).

API (software)

Application Programmer's Interface. The set of routines that make up a library or toolkit. Some times called a binding.

aspect ratio (imaging)

The proportion of an image's size given in terms of the horizontal length verses the vertical height. An aspect ratio of
4:3 indicates that the image is 4/3 times as wide as it is high.

Bezier curve (graphics)

A curve created from endpoints and two or more control points that serve as positions for the shape of the curve.
Originated by P. Bezier (~1962) for the use in car body descriptions.

bit block transfer

A raster operation that moves a block of bits representing a portion of an image or scene from one location in the
frame buffer to another. Usually written as "bit blt".

bin (image processing)

See histogram (imaging).

Bit Block Transfer (Windows)

An optimized movement of a large block of computer memory from one location to another. Used for moving images
or sub-images to and from areas of computer memory.

bit blt

ImageGear Professional v18 for Mac | 478

bit_block_transfer.

bitmap (imaging)

An image is a bitmap if it contains a value for each of its pixels. This is the opposite of vector images where a small
set of values generate an object.

bit plane (imaging)

A hypothetical 2-D plane containing a single bit of memory for each pixel in a image. If each 8-bit pixel is thought of
as a stack of 8 coins, and an image as many rows and columns of these stacked coins then the 3rd bit plane would be
the plane consisting of the 3rd coin from each stack.

bounding rectangle (geometry)

The smallest rectangle that fits around a given object. In imaging, the rectangle is usually rotationally restricted to be
parallel to both image axes.

.BMP (file format extension)

Format originator: Microsoft Corporation

16011 NE 36th Way, Box 97917

Redmond, WA 98073

Call-back function (software)

A function that is passed to another function as a parameter. The function receiving the call-back function can call this
function. This is used to change the behavior of a given routine without knowing beforehand what it is expected to do.

Cartesian coordinates (imaging)

A 2-dimensional equally spaced grid iron that uniquely assigns every point in the plane, (one and only one), co-
ordinate pair; (x, y). In imaging, each point is usually referred to as a pixel and the x and y values take on integer
values. Most images use the top-left as the (0,0), or origin. See coordinates.

Chroma-key (image processing)

An image blending function that replaces pixels of a specified hue range with pixels from a second image. This is often
referred to the weatherman effect because most weather forecasters use a solid blue or green background to make it
look as if they are standing in front of a huge weather map. It is important to remember that it is the hue that is used
in the blending function and not the intensity or saturation.

C.I.E (color imaging)

Commission Internationale de l'Eclairage. (International Commission of Illumination). A standards organization which
provides specifications for the description of device independent color.

clipboard (Windows)

The clipboard is a windows data structure used to exchanged data between applications. It is a common area where
applications place data and others can access it. These operations are usually referred to as Cut (place data in) and
Paste (take data out).

closing (image processing)

See MPEG (image compression).

CMY & CMYK

Cyan, Magenta, Yellow, (K) black. Computer monitors are additive, but color printers are subtractive. Instead of
combining light from monitor phosphors, printers coat paper with colored pigment that removes specific colors from
the illumination light.

CMY is the subtractive color model that corresponds to the additive RGB model. Cyan, magenta, and yellow are the
color complements of red, green, and blue. Due to the difficulties of manufacturing pigments that produce black when
mixed together, a separate black ink is often used and is referred to as K (`B' is already used for blue).

color map (imaging)

ImageGear Professional v18 for Mac | 479

See Look-Up-Table (computer hardware).

color model (imaging)

See color space (imaging).

color space (imaging)

A mathematical coordinate system (space) for assigning numerical values to colors. There are many ways to define
such spaces, each with its own benefits and problems.

See Also:

CMY & CMYK
HIS (color imaging)
HLS (color imaging)
HSV (color imaging)
RGB (imaging)
YIQ (color imaging)

compression (imaging)

An image processing method for saving valuable disk and memory space by reducing the amount of space required to
save a digital image. The graphics data is rewritten allowing it to be represented by a smaller set of data. Do not
confuse this with encoding. See lossless (image compression) and lossy (image compression).

compression ratio (imaging)

The ratio of a file's uncompressed size over its compressed size.

concave (geometry)

A 2-dimensional blob, for example, a region of interest (ROI), where at least one tangent is drawn that touches the
blob at two different locations, and there is a point on the tangent between the two contacts that does not touch the
blob.

In simpler words, if a rubber band could be snugly wrapped around a concave blob there would be places where the
rubber band lifts off and does not touch the blob. Concave is the opposite of convex.

convex (geometry)

A 2-dimensional blob, for example, a region of interest (ROI), where every tangent that can be drawn touches the
blob at a continuous stretch of the blob's surface with no gaps.

In simpler words, if a rubber band could be snugly wrapped around a convex blob there would be no places where the
rubber band lifts off and is not touching the blob. Convex is the opposite of concave.

convolution (image processing)

An image processing operation that is used to spatially filter an image. A convolution is defined by a kernel that is a
small matrix of fixed numbers. The size of the kernel, the numbers within it, and a single normalizer value define the
operation that is applied to the image. The kernel is applied to the image by placing the kernel over the image to be
convolved and sliding it around to center it over every pixel in the original image.

At each placement the numbers (pixel values) from the original image are multiplied by the kernel number that is
currently aligned above it. The sum of all these products is tabulated and divided by the kernel's normalizer. This
result is placed into the new image at the position of the kernel's center. The kernel is translated to the next pixel
position and the process repeats until all image pixels have been processed.

As an example, a 3x3 kernel holding all `1's with a normalizer of 1/9 performs a neighborhood averaging operation.
Each pixel in the new image is the average of its 9 neighbors from the original.

coordinates

A pair of numbers that represent a specific location in a two-dimensional plane, for example, an image or on a map.

See Also:

absolute coordinates (imaging)

ImageGear Professional v18 for Mac | 480

device coordinates (imaging)
Cartesian coordinates (imaging)
polar coordinates (imaging)
relative coordinates
screen coordinates (imaging)
world coordinates

crop (Imaging)

An image processing method for removing the region near the edge of the image, but keeping the central area.

.DCX (file format extension)

Format originator: Intel

DDB (Windows)

Device-Dependent Bitmap. A Window image specification that depends on the capabilities of a specific graphics
display controller. Since a DDB is matched to the current graphics controller, it is fast and easy to display since large
blocks of memory need only be copied to the controller.

See Also:

DIB (Windows).

decompression (imaging)

When an image or other digital data set is compressed and stored, it is not usable until it is decompressed into it
original form.

device coordinates (imaging)

The co-ordinates of the coordinate system that describe the physical units that defines the computer screen.

device dependent (software)

Software written to work on a specific set of hardware platforms. Since these routines make use of physical device
attributes, they may behave differently on other devices, although they will most often not work on other devices.

See Also:

device independent (software)
DIB (Windows)

device driver (software)

A set of low-level software routines that work with and control a specific hardware device. The names and functions
are often standardized across many similar devices. This allows higher level software to use the hardware as a
generic device. This frees the higher-level software from dealing with the particulars of specific devices and allows
devices to be interchanged.

device independent (software)

Software or data structures that are designed to work with or on a wide set of hardware platforms.

See Also:

device independent (software)
DIB (Windows)

DIB (Windows)

Device-Independent Bitmap is a Windows-defined image format specification. It is called device-independent because
of its straightforward, common-denominator, format. It has all the information that a basic digital image needs and is
laid out in a simple specification. Its simplicity makes it an ideal format for holding images that need to be shared by
several programs.

ImageGear Professional v18 for Mac | 481

See Also:

DDB (Windows)
The book Programming Windows by Charles Petzold

dilation (image processing)

See MPEG (image compression)

dithering (imaging)

The method of using neighborhoods of display pixels to represent one image intensity or color. This method allows
low-intensity resolution display devices to simulate higher resolution images. For example, a binary laser printer can
use block patterns to display grayscale images.

See Also:

halftone (imaging)

DLL (Microsoft Windows)

Dynamic Linked Library. A compiled and linked collection of computer functions that are not directly bound to an
executable. These libraries are linked at run-time by Windows. Since Windows is in charge of managing (loading,
linking, and removing) the DLLs, they are available to all executables currently running. Each executable links to a
shared DLL saving memory by avoiding redundant functions from co-existing. DLLs allow a new level of modularity by
providing a means to modify and update executables without re-linking. Just copy a new version of the DLL to the
correct disk directory.

DPI (printing)

Dots Per Inch. The number of printer dots that can be printed in one inch. The printer's resolution is defined by the
number of dots per inch: lower resolution = less dots per inch, higher resolution = more dots per inch.

edge (image processing)

In an image, an edge is a region of contrast or color change. Edges are useful in machine vision since optical edges
often mark the boundary of physical objects.

edge detection (image processing)

A method that isolates and locates an optical edge in a digital image.

edge map (image processing)

An edge map is the output of an image-processing filter that transforms an image into an image where intensity
represents a change in the contrast (optical edge) of the original image.

(eight) 8-bit image (digital imaging)

An image where each pixel has 8-bits of information. An 8-bit pixel contains one of 256 possible values. There are two
common types of 8-bit images: grayscale and indexed color.

In a grayscale image, each pixel takes one of 256 shades of gray and the shades are linearly distributed from 0
(black) to 256 (white). An 8-bit grayscale image does not require a palette but may have one.

An indexed color image is always a palette image. Each pixel is used as an index to the palette. These images can
have up to 256 different colors. This includes hues as well as shades. Indexed 8-bit images are good for low color
resolution images that do not need processing. They are 3 times smaller than full-color RGB images, but because the
pixel values are not linear, many image-processing algorithms cannot work with them. They must be promoted to 24-
bit for image processing.

8-bit gray level (Accusoft term)

This indicates 8-bit grayscale. 8-bit gray level is used to distinguish between 8-bit indexed color (8i) and 8 bit
grayscale. An 8-bit gray level DIB image is one where each pixel in the bitmap is unchanged by its palette when
displayed. Each palette entry is the same as its index.

8i (Accusoft term)

This indicates 8-bit indexed color. 8i is used throughout this manual to distinguish between 8-bit grayscale (8-bit gray

ImageGear Professional v18 for Mac | 482

level) and 8-bit indexed color. An 8-bit indexed color DIB is one where each 8-bit pixel value in the bitmap is used as
an index to the palette.

The palette dictates which RGB color the pixel displays. These images are compact ways of storing color images.
However they are difficult to process because the bytes that make up the pixel can no longer be ordered with any
certainty.

Encoding

The format for storing uncompressed data (binary, ASCII, etc.), how it is packed (e.g. 4-bit pixels may be packed at a
rate of two pixels per byte), and the unique set of symbols used to represent the range of data items.

.EPS (file format extension)

Format originator: Adobe Systems, Inc.

1585 Charleston Road

Mountain View, CA 94039

equalize (image processing)

An image-processing algorithm that redistributes the frequency of image pixel values allowing equal representation
for any given continuous range of values. In an ideal world, an equalized image has the same number of pixels in the
range from 10-20 as it does from 200-210. However, since digital images have quantized intensity values, the range
totals are rarely identical but usually close.

erosion (image processing)

See MPEG (image compression)

file format (software)

A specification for holding computer data in a disk file. The format dictates what information is present in the file and
how it is organized.

filter (image processing)

An image-processing filter is a transform that removes a specified quantity from an image. For instance a spatial filter
removes high, medium or low spatial frequencies from an image.

(four) 4 bit image (digital imaging)

An image file format that allows 4-bits per pixel. This image can contain up to 16 (24) different colors or levels of
gray.

frame (imaging)

A single picture, usually taken from a collection of images for example, a movie or video stream.

frame buffer (imaging hardware)

A computer peripheral that stores and sometimes manipulates digital images.

frame processes (image processing)

Image-processing algorithms that operate on a single image.

fx (imaging)

See special effects (image processing)

gain & level (imaging)

Gain and level are image-processing terms that correspond to the brightness and contrast control on a television. The
gain is the "contrast", and the level is the "brightness." By changing the level, the entire range of pixel values are
linearly shifted brighter or darker. Gain on the other hand linearly stretches or shrinks the intensity range, altering
the contrast.

gamma correction (imaging)

ImageGear Professional v18 for Mac | 483

A non-linear function that is used to correct the inherent non-linearities of cameras and monitors. The intensity of the
luminescent phosphor on the raster display is non-linear. Gamma correction is an adjustment to the pixel intensity
values that make up for this inherent non-linearity.

geometric transform (image processing)

A class of image processing transforms that alter the location of pixels. This class includes rotates and warps.

.GIF (file format extension)

Name: Graphics Interchange File Format

Format originator: CompuServe Inc.

500 Arlington Center Blvd.

Columbus, OH 43220

This format uses the LZW compression created by Unisys. It is the same as the LZW compression used in the TIFF file
format, except that the bytes are reversed and the string table is upside-down.

All GIF files have a palette. Some GIF files can be interlaced - the raster lines can appear as every 4 lines, then every
8 lines, then every other line. This is due to GIF files usually being received from a modem.

GUI

Graphical User Interface. A computer-user interface that uses graphical objects and a mouse for user interaction, for
example Microsoft Windows.

graphics library (software)

A collection of software routines that work on digital images. These collections usually contain routines for drawing
various graphical objects, for example, lines, circles, and rectangles.

gray level (imaging)

A shade of gray assigned to a pixel. The shades are usually positive integer values taken from the grayscale. In an 8-
bit image a gray level can have a value from 0 to 255.

grayscale (imaging)

A range of gray levels. Zero is usually black and higher numbers indicate brighter pixels.

group III Fax (Imaging compression)

A CCITT standard for transmission of facsimile data. It compresses black and white images using a combination of
differential, run length and Huffman coding.

halftone (imaging)

The reproduction of a continuous-tone image on a device that does not directly support continuous output. This is
done by displaying or printing a pattern of small dots that simulate the desired output color or intensity. These
methods are used extensively in magazines and newspapers.

handle (software)

A handle references a data object. A handle is a type of pointer but it usually contains, internally, more information
about the referenced object.

histogram (imaging)

A tabulation of pixel value populations displayed as a bar chart where the x-axis represents all the possible pixel
values and the y-axis is the total image count of each given pixel value. A histogram counts how many pixels in the
image have a given intensity value or range of values.

Each histogram intensity value or range of values is called a bin. Each bin contains a positive number that represents
the number of pixels in the image that fall within the bin's range. A typical 8-bit grayscale histogram contains 256
bins. Each bin has a range of a single intensity value. Bin 0 contains the number of pixels in the image that have a
grayscale value of 0 or black; bin 255 contains the number of white (255) pixels. When the collection of bins are
sorted (0-255) and charted, the graph displays the intensity distributions of all the images pixels.

ImageGear Professional v18 for Mac | 484

HLS (color imaging)

Hue Saturation, and Lightness. A method that describes any color as a triplet of real values. The hue represents the
color or wavelength of the color. It is sometimes called tone and is commonly known as color. The hue is taken from
the standard color wheel and is calibrated in degrees.

Saturation is the depth of the color. It states how gray the color is. It is a real valued parameter from 0.0 to 1.0 with
0.0 indicating full gray and 1.0 representing pure hue.

Lightness determines how black or white a color is. It ranges from 0.0 to 1.0 but with 0.0 representing black and 1.0
white. A lightness of 0.5 is a pure hue.

HSV (color imaging)

Hue, Saturation, and Value.

Huffman coding (image compression)

A method of encoding symbols that varies the length of the code in proportion to its information content. Groups of
pixels that appear frequently in a image are coded with fewer bits than those of lower occurrence.

HIS (color imaging)

Intensity,Hue, and Saturation.

image format (image storage)

There are many digital image formats. Some of these are: TIFF, DIB, GIF, and JPEG. The image format specification
dictates which image information is present and how it is organized in memory. Many formats support various sub-
formats or `flavors'.

image processing

The general term "image processing" refers to a computer discipline wherein digital images are the main data object.
This type of processing can be broken down into several sub-categories: compression, image enhancement, image
filtering, image distortion, image display and coloring, and image editing.

See Also:

machine vision

indexed color image (imaging)

An image where each pixel value is used as an index to a palette for interpretation before the pixel is displayed.
These images contain a palette that is initialized specifically for a given image. The pixel values are usually 8-bit and
the palette 24-bit (8-red, 8-green, and 8-blue).

See Also:

(eight) 8-bit image (digital imaging)

invert intensity (image processing)

An image processing operation where each pixel is subtracted from the maximum pixel value allowed. This produces a
photographic negative of the original. For an 8-bit image the inverse function is:

invert(pix) = 255-pix;

For an 8-bit RGB image the function is:

invert(Rpix) = 255-Rpix;

invert(Gpix) = 255-Gpix;

invert(Bpix) = 255-Bpix;

"jaggies" (imaging)

A term used to describe the visual appearance of lines and shapes in raster pictures that results from a grid of
insufficient spatial resolution.

JPEG JFIF (image compression)

ImageGear Professional v18 for Mac | 485

Joint Photographic Experts Group. A collaborative specification of the CCITT and the ISO for image compression. The
standard JPEG compression algorithm, which is used by ImageGear, is a lossy compression scheme - it loses data.

.JPG (file format extension)

Format originator: Joint Photographics Experts Group

kernel (image processing)

A small matrix of pixels, usually no bigger that 9x9, that is used as an operator during image convolution. The kernel
is set prior to the convolution in a fashion that emphasizes a particular feature of the image. Kernels are often used
as spatial filters, each one tuned to a specific spatial frequency that the convolution is intended to highlight.

See Also:

convolution (image processing).

Lempel Ziff Welch (data compression)

A dictionary-based image compression method with lossless performance that results in fair compression ratios. Most
files are compressed at 2:1.

level (imaging)

See gain & level (imaging).

library (software)

A collection of software functions that can be called upon by a higher level program. Most libraries are collections of
similar routines, for example, those used for graphical or image processing.

See Also:

DLL (Microsoft Windows)

Look-Up-Table (computer hardware)

A look-up-table or LUT is a continuous block of computer memory that computes the values of a function for one
variable. The LUT is set up for the function's variable to be used as an address or offset into the memory block. The
value that resides at this memory location becomes the function's output. Because the LUT values need only be
initialized once, LUTs are very useful for image processing due to their inherent high speed.

LUT[pixel_value] = f(pixel_value)

LUTs come in various widths, usually in units of bits. An nxm bit LUT has 2n addresses or 256 stored values. Each
value is 2m bits wide.

If the second dimension is left off it can be assumed to be equal to the first. In grayscale image processing, LUTs are
commonly 8x8, and the bit widths are usually assumed.

A linear LUT, sometimes called a NOP LUT or pass through, is a LUT that is initialized to output the same values as
the input. NOP_LUT[pixel_value] = pixel_value.

See palette (digital imaging).

lossless (image compression)

A method of image compression where there is no loss in quality when the image is uncompressed. The
uncompressed image is mathematically identical to its original. Lossless compression is usually lower in compression
ratio than lossy compression.

lossy (image compression)

A method of image compression where some image quality is sacrificed in exchange for higher compression ratios.
The amount of quality degradation depends on the compression algorithm used and by a user-selected quality
variable.

LUT (computer)

Look-Up-Table. See Look-Up-Table (computer hardware).

ImageGear Professional v18 for Mac | 486

LUT transform (image processing)

A LUT transform is an image processing method that takes an image and passes each pixel, one at a time, through a
pre-set LUT. Each new pixel is a function of one and only one pixel from the original image and is arranged in the
same location.

Any image-processing algorithm that transforms a single pixel into another single pixel, both from the same location,
can be performed quickly using a LUT.

Square_root_LUT[pixel_value] = sqrt(pixel_value)

See Also:

Look-Up-Table (computer hardware)

LZW (data compression)

Lempel Ziff Welch. See Lempel Ziff Welch (data compression).

machine vision

A sub-discipline of artificial intelligence that uses video cameras or scanners to obtain information about a given
environment. Machine vision processes extract information from digital images about objects in the image. This is the
opposite of computer graphics that takes various data describing objects in and produces an output image. Machine
vision takes an image in and outputs some level of description about the objects in it, (i.e. color, size, brightness).

See Also:

image processing.

matrix operation (image processing)

See neighborhood process (image processing).

median filter (image processing)

An image spatial filtering operation based on an input pixel and its 8 neighbors. The resulting value is the median (5th
from the sorted values). A median filter is often used to reduce spike or speckling noise from a grayscale image. It
has the advantage over convolution smoothing - it better preserves edges.

morphing (image processing)

An imaging process where one image is gradually transformed into a second image, where both images previously
existed. The result is a sequence of in-between images when played sequentially, as in a film loop show, give the
appearance of the starting image being transformed to the second image.

Morphing is made up of a collection of image processing algorithms. The two major groups are: warps and blends. Do
not confuse this with morphology.

MPEG (image compression)

Motion Pictures Experts Group. An ISO specification for the compression of digital-broadcast quality full-motion video
and sound.

neighborhood process (image processing)

A class of image-processing routines that works on neighborhoods of pixels. Each pixel in the new image is computed
as a function of the neighborhood of the pixel from the original pixel. The neighborhood ID is defined by a kernel that
is set once for each image to be processed.

See Also:

point process (image processing)

(one) 1-bit image (digital imaging)

An image comprised of pixels that contain only a single bit of information. Each pixel is either on or off. Normally,
"on" is white and "off" is black.

opening (image processing)

ImageGear Professional v18 for Mac | 487

See MPEG (image compression).

overlay (imaging)

An image or sub-image that can be placed over a given image. The pixels from the original image are not altered but
the overlay can be viewed as if they had been. Usually used to place temporary text and annotation marks, for
example, arrows on a image.

packed bits (imaging)

A binary image is usually stored in computer memory (8 pixels per byte). In this case each byte is referred to as
being filled with packed bits. This saves space but makes reading and writing any individual pixel harder since most
computers cannot directly access memory in chunks smaller than a byte.

palette (digital imaging)

A digital image palette is a collection of 3 look-up-tables, or LUTs, that are used to define a given pixel's display color.
One LUT is for red, one for green and one for blue. The number of entries in the LUTs depend on the width (in bits) of
the image's pixels.

A palette image requires its palette in order to be displayed in a fashion that makes sense to the viewer. This is often
the case for color 8-bit images. Without a palette describing what color each pixel needs for display, this type of
image would most likely be displayed as randomly selected noise.

A grayscale palette is one where each of the 3 LUTs are linear. The output is whatever is input to them. Since each
color component (R, G, B) is an equal value, any pixels input to them are displayed in a varying shade of gray.

See Also:

Look-Up-Table (computer hardware)

pattern recognition (imaging)

A sub-discipline of machine vision where images are searched for specific patterns. Optical character recognition or
"OCR" is one type of pattern recognition, where images are searched for the letters of the alphabet.

.PCX (file format extension)

Format originator: ZSoft Corp.

450 Franklin Road Suite 100

Marietta, GA 30067

pixel (imaging)

An abbreviated version of the term PIcture (X) ELement. This is the most fundamental element of a digital image. A
digital image is made up of rows and columns of points of light. Each indivisible point of light is a pixel. Each pixel in
an image is addressed by its column (x) and its row (y) usually written as the coordinate pair (x, y). An 8-bit pixel
can take on one of 256 values. A 24-bit pixel has 3, 8-bit components for each of the primary colors, red, green, and
blue.

point process (image processing)

A class of image processing transforms where every pixel is taken, one at a time from an image, and mathematically
transformed into a new value with no input from any other pixel in the image. A point process is a degenerative
neighborhood process where the kernel is a matrix of pixels that is 1x1 or in other words a single pixel.

polar coordinates (imaging)

An alternative to the usual Cartesian method of addressing image pixels. Polar coordinates use the coordinate pair,
angle and radius from an origin instead of column and row.

posterize (imaging)

A special effect that decreases the number of colors or grayscale colors in an image. The default image pixel contains
256 levels of gray or 256 levels of red, green, and blue. Using this effect reduces these numbers.

pseudocolor (image processing)

A method of assigning color to ranges of a grayscale image's pixel values. Most often used to highlight subtle contrast

ImageGear Professional v18 for Mac | 488

gradients or for visually quantifying pixel values. The applied color usually has no correspondence to the original
scene. The colors are used only as a guide or highlight.

raster (imaging)

A term that describes a single row of a digital image. A raster image is made up of rows of pixels. This is opposed to
vector images, where an image is made up of a list of polygon nodes. A raster is sometimes called a scan-line.

relative coordinates

Relative coordinates refer to position, as identified as the distance from a local origin.

render (imaging)

The process of displaying an image. The final and actual displayed image is said to be rendered.

resolution (imaging)

There are two types of resolution in digital images; spatial and intensity. Spatial resolution is the number of pixels per
unit of length along the x and y axis. Intensity resolution is the number of quantized levels that a pixel can have.

RGB (imaging)

Red, Green, Blue. A triplet of numeric values that describe a color.

RGBQUAD

Red, Green, Blue, Quad. A set of four numbers used to describe a color. The forth number is always set to zero. This
creates an efficient color LUT or palette. It is more efficient because most computers find multiplying by 4 easier then
by 3, as is the case in an RGB triplet.

ROI (Accusoft image processing)

Region Of Interest. A region of interest or ROI is a specification and date structure that allows for the definition of
arbitrarily shaped regions within a given image, often called sub-images. A ROI can be thought of as a place holder
which remembers a location within an image. ROIs are of several types, each defined in a manor that makes sense
for its type.

ROIs are either a rectangle (also called an AOI), square, circle, or a segment list. A rectangle is defined by any two
points in the image. From these two points one and only one rectangle can be drawn. A square is defined by a single
point and a single length. A circle is defined by its center and radius. A segment list is an arbitrary list of triplets (x, y,
xlen); a single point and a length to the right.

Every point in an image is either inside or outside of a given ROI.

Most image processing functions in this package work only within a given ROI. The ROI can encompass the entire
image.

See Also:

AOI (Image Processing)

scan line (imaging)

See raster (imaging)

screen coordinates (imaging)

Screen coordinates are those of the actual graphics display controller. The origin is almost always at the upper left-
hand corner of the display.

See Also:

coordinates

segment (imaging)

A contiguous section of a raster line. It is defined in physical coordinates by the triplet of its left most point and length
(x, y, length).

ImageGear Professional v18 for Mac | 489

shear (image processing)

A skew is image distortion that often occurs when a scanner is sampling an image and the image slides to either side
before the scan is complete. This has the effect of transforming squares into rhombuses.

special effects (image processing)

Any image processing transform that is applied mostly for its artistic value. Special effects include, wipes, transitions,
barn doors, etc.

stretch intensity (image processing)

An image processing method that takes a given image and assures that the intensity distribution fills the entire range
of possible values. An 8-bit image that is stretched always has at least one pixel with a value of zero and one of 255.
The term comes from the before and after histogram of the given image. A stretch operation linearly stretches a
histogram so that is ranges from the minimum pixel value to the maximum pixel value.

.TGA (file format extension)

Format originator: Truevision, Inc.

7340 Shadeland Station

Indianapolis, IN 46255

TIFF (file format)

Tagged Image File Format.

.TIF (file format extension)

Format originator: Aldus Corp

411 First Ave South

Seattle, WA 98104, and

Microsoft Corp

16011 NE 36th Way

Redmond, WA 98073

thumbnail (imaging)

A small copy of an image. Thumbnails are used to display many images on the screen at once.

transform (image processing)

An algorithm that takes an image, alters it, and outputs a new image. Sometimes written as `xform'.

See Also:

geometric transform (image processing)
neighborhood process (image processing)
point process (image processing)

triplet (digital imaging)

Three numbers used together to represent a single quantity or location, for example, RGB or (x, y, z).

(twenty-four) 24 bit image (digital imaging)

A 24-bit image contains pixels made from RGB triplets.

video stream (video)

A sequence of still images that are transmitted and displayed in synchronous order that give the appearance of live
motion.

warp (image processing)

ImageGear Professional v18 for Mac | 490

A geometric image processing routine that distorts an image by spatially compressing and stretching regions.

.WMF (file format extension)

Format originator: Microsoft Corp

16011 NE 36th Way

Redmond, WA 98073

world coordinates

The real valued coordinates that make sense for the object, treating it as if it really exists. The world coordinates of a
house on a map would be in miles or longitude and latitude. This is the opposite of screen, device or model
coordinates.

.WPG (file format extension)

Format originator: WordPerfect Corp

(x, y)

A mathematical method for referring to a pixel from a digital image. Since most digital images are maintained as a
Cartesian matrix of pixels, each pixel has a unique address that can be described as an x or horizontal displacement
from the origin and a y or vertical displacement from the origin.

See Also:

coordinates

xform

Shorthand for transform.

YIQ (color imaging)

(Y) luminance, (I), (Q). YIQ is the color model used for U.S. commercial television. It was designed to be backwards
compatible with the old black and white television sets. "Y" or luminance is a weighted average of the red, green, and
blue that gives more weight to red and green than to blue. The I and Q contain the color components. Together they
are called chromaticity.

(Z)

A mathematical method that refers to a pixel's intensity from a digital image. An image can be written as: I(x,y)=z

ImageGear Professional v18 for Mac | 491

1.2.7.6.1 ImageGear Licensing and Deployment Kit Terminology

Access Key

The key provided to the end user for licensing the application. Uniquely identifies each license issued by Accusoft. You
can only generate as many different access keys as the total number of deployment licenses purchased. One an
access key needs to be associated with each end user's machine, you can choose to either: distribute access keys to
end users explicitly, or use the Licensing Component to acquire access keys automatically behind the scenes.

Concurrent

Licenses that are co-used by a specific number of users and that are counted as 1 license.

Deployment Kit

A set of wizards and tools that help you license your applications.

Deployment Licensing Service

The Web service at Accusoft that handles all licensing requests.

Deployment Packaging Wizard

The tool included in the Deployment Kit that helps you package the appropriate ImageGear runtime components.

Deployment Pool

Each solution can have several deployment pools associated with it. A Pool is a set of licenses of the same type. When
a pool is set up, the product features, the deployment model, and other information are associated with it. All the
licenses from the same pool have the same attributes, except for hardware parameters (if bound to hardware
parameters).

Deployment Proxy Service

The Web service running at your site for "proxying" between the Deployment Licensing Service and the Licensing
Component running on the end user's system.

End User

The customer using your application.

End User Licensing Utility

The Web application you use to generate license keys based on hardware keys.

Hardware Key

The key dynamically constructed on the end user's machine by combining the access key and hardware parameters of
the machine. Obtained on the end user's machine by combining the access key and the hardware parameters of the
end user system. This typically happens during an installation process using the Licensing Component.

ImageGear Runtime Components

The ImageGear runtime components that are licensed for deployment with your application.

License Key

The key containing information about ImageGear licensed features and hardware parameters of the target machine (if
bound to hardware parameters). Generated by the Deployment Licensing Service in exchange for the hardware key,
and stored in the End User's system registry.

Licensing Component

A component that obtains an ImageGear license for the end user's machine.

Licensing Component Wrapper

A VBScript wrapper around the Licensing Component with methods for handling error result codes, etc. This wrapper

ImageGear Professional v18 for Mac | 492

serves as a template that can be modified as needed.

LPK

An LPK file is a file that licenses ImageGear ActiveX controls when running on a Microsoft Internet Explorer Web
Browser. This file must be created for all ActiveX components that require licensing, regardless of manufacturer.

Named

Licenses that are counted as they are deployed to individual users.

Server License

Bound to hardware parameters. Therefore an individual node-locked License Key has to be generated for each system
where the ImageGear-based solution is used. With this model, the Licensing Component running on the end user's
machine can communicate directly to the Deployment Licensing Service but you also have the choice of setting up a
Deployment Proxy Service at your site - in this case Licensing Component would communicate through this proxy
service.

Server Licensing Utility

A standalone program that can be used to generate a license key given a configuration file.

Solution Key

A combination of 4 32-bit integers that are unique for each solution using Accusoft's technology. This key is generated
and assigned to your solution by Accusoft.

Solution Name

The name of your ImageGear-based application.

User License

Not bound to hardware parameters. Therefore only one license key is required per ImageGear-based application.

Vendor

The Accusoft customer who is developing an ImageGear-based application (you).

Vendor Licensing Utility

The Web application you use to view deployment pools and obtain access keys.

ImageGear Professional v18 for Mac | 493

1.2.7.7 Bibliography

Bibliography
Books

Brown, Wayne C., and Barry J. Shepherd. Graphics File Formats Reference and Guide. Greenwich, CT: Manning
Publications, 1992.

Kay, David C. and John R. Levine. Graphics File Formats. Windcrest Books, 1992.

Kay, David C. and John R. Levine. Graphics File Formats. 2d ed. Windcrest/McGraw-Hill, 1995.

Murray, James D., and William vanRyper. Encyclopedia of Graphics File Formats. Sebastapol, CA: O'Reilly & Associates,
Inc., 1994.

Murray, James D. and William vanRyper. Encyclopedia of Graphics File Formats, 2d ed. Sebastopol, CA: O'Reilly &
Associates, Inc., 1996.

Petzold, Charles. Programming Windows: The Microsoft Guide to Writing Applications for Windows 3. Redmond, WA:
Microsoft Press, 1990.

Articles

Wegner, Tim. "Coding for PNG Graphics", PC Techniques (Feb/Mar 1996): 32-38.

Other

"Graphic Image Format FAQ 3-4." James D. Murray, 1994-1996.

PBM, PGM, PPM, PNM Specifications by Jef Poskanzer, copyright " 1989, 1991.

PNG (Portable Network Graphics), tenth draft. Page 5, copyright Thomas Boutell, May 1995.

ImageGear Professional v18 for Mac | 494

1.3 API Reference Guide

The ImageGear Professional API Reference Guide provides detailed information about each function or control parameter
of the ImageGear Components. This information includes each function's calling sequence, arguments, use, possible
return values, and supported raster image formats as well as other useful information.

ImageGear Professional v18 for Mac | 495

1.3.1 Core Component API Reference

This section provides detailed information about the ImageGear Core component API in the following sections:

Core Component Data Types Reference
Core Component Functions Reference
Core Component Callback Functions Reference
Core Component Structures Reference
Core Component Enumerations Reference

ImageGear Professional v18 for Mac | 496

1.3.1.1 Core Component Data Types Reference

The following are data types that may appear in an ImageGear IG_ ...() function call.

AT_BOOL
AT_CHAR
AT_DIMENSION
AT_ERRCOUNT
AT_LMODE
AT_MODE
AT_PIXEL
AT_PIXPOS
AT_WCHAR
HIGEAR

ImageGear Professional v18 for Mac | 497

1.3.1.1.1 AT_BOOL

An integer that is interpreted as FALSE if 0 and TRUE if non-0.

ImageGear Professional v18 for Mac | 498

1.3.1.1.2 AT_CHAR

Unsigned 8-bit integer. It is often used to represent an ANSI character.

ImageGear Professional v18 for Mac | 499

1.3.1.1.3 AT_DIMENSION

Type usually used for the width in pixels or height in rows of an image in memory or of a display area on a display
device.

ImageGear Professional v18 for Mac | 500

1.3.1.1.4 AT_ERRCOUNT

Type of value returned by most ImageGear functions. It is an integer equal to the number of errors placed on the
ImageGear error stack during execution of the function and any lower level functions called.

ImageGear Professional v18 for Mac | 501

1.3.1.1.5 AT_LMODE

Type of a 32-bit constant (such as IG_SAVE_BMP_RLE), or of a variable containing such a value, used to declare what
mode of operation a function should use. Most variables have constants defined for them in accucnst.h. Occasionally, a
variable of this type will be a Windows constant.

ImageGear Professional v18 for Mac | 502

1.3.1.1.6 AT_MODE

Type normally used for a constant that is used to specify an option in a call to an ImageGear function. Examples are
IG_CONTRAST_PIXEL or IG_ASPECT_DEFAULT. This type is used when the constant's value can never require more than
16 bits.

ImageGear Professional v18 for Mac | 503

1.3.1.1.7 AT_PIXEL

A BYTE, usually a byte in an image bitmap.

ImageGear Professional v18 for Mac | 504

1.3.1.1.8 AT_PIXPOS

A 64-bit integer value specifying a pixel x or y coordinate.

ImageGear Professional v18 for Mac | 505

1.3.1.1.9 AT_WCHAR

Unsigned 16-bit integer. It is used to represent a wide character (UTF-16 encoded).

ImageGear Professional v18 for Mac | 506

1.3.1.1.10 HIGEAR

Handle of a comprehensive ImageGear data structure that defines an image along with its display attributes, Look-Up
Tables, DIB, and other data necessary for maintaining the image and providing access to its pertinent data for your
application program.

ImageGear Professional v18 for Mac | 507

1.3.1.2 Core Component Functions Reference

This section describes each function supported by ImageGear Core component, arranged in alphabetical order within
functional groups.

ImageGear Professional v18 for Mac | 508

1.3.1.2.1 ASCII Functions

This section provides information about the ASCII group of functions.

IG_ascii_import
IG_ascii_page_width_get

ImageGear Professional v18 for Mac | 509

1.3.1.2.1.1 IG_ascii_import

This function loads an ASCII (.TXT) file into ImageGear.

Declaration:

AT_ERRCOUNT ACCUAPI IG_ascii_import (
 const LPSTR lpszFileName,
 UINT nPageNumber,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

lpszFileName const LPSTR Set to the path/filename of the text file to load.

nPageNumber UINT Set to the number of the page to load; if not a multi-page file, set to 1.

lphIGear LPHIGEAR A far pointer that returns a HIGEAR handle for your newly loaded image.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Specify the path/filename of the file and which page of the file (if it is a multi-page file) you would like to load.
ImageGear then returns a HIGEAR handle to the newly loaded image.

To set the control parameters of the loaded file, use IG_fltr_ctrl_set(). The TXT filter control parameters are listed in the
section TXT (ASCII Text).

You may also use IG_load_file() to load an ASCII file.

ImageGear Professional v18 for Mac | 510

1.3.1.2.1.2 IG_ascii_page_width_get

This function returns the width of an ASCII file that has not been loaded yet.

Declaration:

AT_ERRCOUNT ACCUAPI IG_ascii_page_width_get (
 const LPSTR lpszFileName,
 LPUINT lpPageWidth
);

Arguments:

Name Type Description

lpszFileName const
LPSTR

Set to the name of the ASCII file from which to get the width.

lpPageWidth LPUINT A far pointer that returns a value of type UINT indicating the width of the file in
thousands of an inch.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_ERRCOUNT nErrcount; /* total # of ImageGear errors on the stack*/
UINT pageWidth; /* returns the width of the ASCII file */
UINTpointSize; /* to get and possibly set the point size of the font */
AT_REAL reduction; /* percentage of reduction possibly needed on the point size before
the image is loaded with a width of 8.5 inches */
nErrcount = IG_ascii_page_width_get("Hamlet.txt", &pageWidth);
if (pageWidth > 8500)
/* if the width of the unloaded page is greater than 8.5 inches, we will resize it to 8.5
inches before loading it. However, to avoid cropping any words, we will first reduce the
point size by the percentage needed to make each line fit on an 8.5 inch page */
{
 reduction = 8500/pageWidth;
 pointSize = (UINT)(pointSize * reduction + 0.5);
 nErrcount =
 IG_fltr_ctrl_set(IG_FORMAT_TXT, "POINT_SIZE",
 (LPVOID)pointSize, sizeof(pointSize));
 nErrcount =
 IG_fltr_ctrl_set(IG_FORMAT_TXT, "PAGE_WIDTH",
 (LPVOID)8500, sizeof(nPageWidth));
}
nErrcount = IG_ascii_import("Hamlet.txt", 1, &hIGear);

Remarks:

Specify the path/filename of an ASCII file, and this function will return the width in thousands of an inch. For
example, if the file has a width of 8.5 inches, this function returns the value 8500.

The width of the page (as well as many other attributes) can be set before the page is loaded. See the description for
IG_ascii_import()for the full list of attributes that can be determined prior to loading.

ImageGear Professional v18 for Mac | 511

As an alternative to this function, you can use IG_fltr_ctrl_get() with the control parameter argument
"PAGE_WIDTH".

ImageGear Professional v18 for Mac | 512

1.3.1.2.2 Callback Register Functions

This section provides information about the Callback Register group of functions.

IG_batch_CB_register
IG_file_IO_register
IG_mem_CB_register
IG_status_bar_CB_register

ImageGear Professional v18 for Mac | 513

1.3.1.2.2.1 IG_batch_CB_register

This function registers one of two available batch callback functions.

Declaration:

AT_ERRCOUNT ACCUAPI IG_batch_CB_register(
 LPVOID lpfnBatchCB,
 AT_MODE nCBType,
 LPVOID lpPrivate
);

Arguments:

Name Type Description

lpfnBatchCB LPVOID A far pointer to the scan callback function you would like to register.

nCBType AT_MODE Set to the type of callback being registered. Use one of the following ImageGear-defined
constants:

IG_BATCHCB_BEFORE_OPEN
IG_BATCHCB_BEFORE_SAVE

lpPrivate LPVOID Optional pointer to from which to pass and receive data. Set this to NULL if this is not
required.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

See example the code for the LPFNIG_BATCH_BEFORE_SAVE and LPFNIG_BATCH_BEFORE_OPEN functions.

Remarks:

This function registers one of two available batch callback functions.

LPFNIG_BATCH_BEFORE_OPEN is called before a file is opened, allowing you to get the file name and correct some
settings. For example, some multimedia formats and PDF files require you to get the file name before converting a
page.
LPFNIG_BATCH_BEFORE_SAVE is called before an image file is saved, allowing you to correct an image before saving
it. For example, you might want to rotate an image before saving it.

ImageGear Professional v18 for Mac | 514

1.3.1.2.2.2 IG_file_IO_register

This function registers your own functions to be called to do Reads, Writes, and Seeks during image file transfers.

Declaration:

AT_ERRCOUNT ACCUAPI IG_file_IO_register (
 LPFNIG_READ lpfnReadFunc,
 LPFNIG_WRITE lpfnWriteFunc,
 LPFNIG_SEEK lpfnSeekFunc
);

Arguments:

Name Type Description

lpfnReadFunc LPFNIG_READ Far pointer to your function to be called for READs.

lpfnWriteFunc LPFNIG_WRITE Far pointer to your function to be called for WRITEs.

lpfnSeekFunc LPFNIG_SEEK Far pointer to your function to be called for SEEKs.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

LPFNIG_READ MyReadFunc; /* To be called for file READs */
{
HIGEAR hIGear; /* Will hold HIGEAR handle of image */
 ...
IG_file_IO_register (MyReadFunc, NULL, NULL);/* Register it */
 ...
IG_load_file ("picture.bmp", &hIGear);
 ...
}
/* This will be called for each read during the above Load: */
LONG ACCUAPI MyReadFunc (LONG fd, LPBYTE lpBuffer,
 LONG lNumToRead)
{
LONG nNumActuallyRead;
 ... /* May transfer bytes to buffer in any way */
return nNumActuallyRead; /* Return count, or -1 for error */
}

Remarks:

An argument should be NULL if you want ImageGear to perform that operation. See also the descriptions for typedefs
LPFNIG_READ, LPFNIG_WRITE, and LPFNIG_SEEK.

ImageGear Professional v18 for Mac | 515

1.3.1.2.2.3 IG_mem_CB_register

This function registers your own callback functions to be called to do large memory allocations, memory reallocations,
and memory freeing.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mem_CB_register(
 LPFNIG_MEM_ALLOC lpfnAllocFunc,
 LPFNIG_MEM_REALLOC lpfnReAllocFunc,
 LPFNIG_MEM_FREE lpfnFreeFunc
);

Arguments:

Name Type Description

lpfnAllocFunc LPFNIG_MEM_ALLOC Far pointer to your function to be called for memory allocations.

lpfnReAllocFunc LPFNIG_MEM_REALLOC Far pointer to your function to be called for memory reallocations.

lpfnFreeFunc LPFNIG_MEM_FREE Far pointer to your function to be called to free memory free.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

/* Memory Alloc callback function definition */
LPBYTE ACCUAPI MyMemAlloc(DWORD dwSize)/* number of bytes to alloc */
{
 /* Put your own memory allocation code here */
 return(buffer);
};
/* Memory ReAlloc callback function definition */
LPBYTE ACCUAPI MyMemReAlloc(LPBYTE lpBuffer, DWORD
 dwSize)
{
 /* Put your own memory reallocation code here */
 return(lpBuffer);
};
/* Memory Free callback function definition */
LPBYTE ACCUAPI MyMemFree(LPBYTE lpBuffer)
{
 /*Put your free-the-memory code here */
 return NULL;
};
/* Registration Example */
/* Example one */
/* Register your own callback functions for all memory routines */
nErrcount = IG_mem_CB_register(MyMemAlloc, MyMemReAlloc, MyMemFree);
/* Example two */
/* Supply callbacks for memory alloc only */
nErrcount = IG_mem_CB_register(MyMemAlloc, NULL, NULL);

ImageGear Professional v18 for Mac | 516

Remarks:

As shown in the prototype, your memory callback functions must be of types LPFNIG_MEM_ALLOC,
LPFNIG_MEM_REALLOC and LPFNIG_MEM_FREE.

Your memory allocation functions will only be used when large allocations (allocations greater than 1024) are
performed.

Set any of the three arguments to NULL if you want ImageGear to use its own definition for these functions.

ImageGear Professional v18 for Mac | 517

1.3.1.2.2.4 IG_status_bar_CB_register

This function establishes a status bar callback function to be called by ImageGear during load, save, and print
operations.

Declaration:

AT_ERRCOUNT ACCUAPI IG_status_bar_CB_register (
 LPFNIG_STATUS_BAR lpfnStatusBar,
 LPVOID lpPrivate
);

Arguments:

Name Type Description

lpfnStatusBar LPFNIG_STATUS_BAR Far pointer to a function to be established as your status bar callback function.
ImageGear will call this function once for each raster (pixel row) processed
during load, save, print, and image processing operations. The argument list
and return value of this function must be as shown in the definition of function
type LPFNIG_STATUS_BAR.

lpPrivate LPVOID Far pointer to private data of your own choosing.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

LPFNIG_STATUS_BAR MyStatusBarCallback; /* Declare type of function */
{
static DWORD dwPrivateFlags;
 ...
IG_status_bar_CB_register (MyStatusBarCallback, (LPVOID) &dwPrivateFlags);

Remarks:

ImageGear will call the named function once for each raster (row) processed, transmitting the Y position of that raster,
the total number of rasters involved in the transfer, and the value of lpPrivate (pointer to your private data area). Your
callback function can use this data to display a status bar showing percent completion, or for any other purpose.

To change to a different status bar function, or to change to a different private data area, call
IG_status_bar_CB_register() again with your new callback function name and/or private data area address.

To disable status bar callbacks, call IG_status_bar_CB_register() with argument lpfnStatusBar = NULL.

See also the description for function type LPFNIG_STATUS_BAR.

ImageGear Professional v18 for Mac | 518

1.3.1.2.3 Clipboard Functions

This section provides information about the Clipboard group of functions.

IG_clipboard_copy
IG_clipboard_cut
IG_clipboard_dimensions
IG_clipboard_paste
IG_clipboard_paste_available
IG_clipboard_paste_available_ex
IG_clipboard_paste_merge
IG_clipboard_paste_merge_ex
IG_clipboard_paste_op_get
IG_clipboard_paste_op_set

ImageGear Professional v18 for Mac | 519

1.3.1.2.3.1 IG_clipboard_copy

This function copies the specified portion of the image to the system clipboard.

Declaration:

AT_ERRCOUNT ACCUAPI IG_clipboard_copy (
 HIGEAR hIGear,
 const LPAT_RECT lprcRectToCopy
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of the current image.

rcRectToCopy const
LPAT_RECT

Far pointer to an AT_RECT struct specifying the rectangular portion of the image that is
to be copied to the clipboard.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

The copied pixels will be converted to 1-, 4-, 8-bit indexed or 24-bit RGB format for copying to the clipboard.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_RECT rcRectToCopy; /* Rectangle of image to copy to clipboard */
AT_DIMENSION nImageWidth; /* Width of image */
AT_DIMENSION nImageHeight; /* Height of image */
/* Copy bottom half of image to system clipboard: */
rcRectToCopy.left = 0;
rcRectToCopy.top = nImageHeight / 2;
rcRectToCopy.right = nImageWidth - 1;
rcRectToCopy.bottom = nImageHeight - 1;
IG_clipboard_copy (hIGear, &rcRectToCopy);

Remarks:

If rcRectToCopy = NULL, the entire image will be copied.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask() functions
for more details.

ImageGear Professional v18 for Mac | 520

1.3.1.2.3.2 IG_clipboard_cut

This function "cuts away" a portion of an image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_clipboard_cut (
 HIGEAR hIGear,
 const LPAT_RECT lprcRegion,
 const LPAT_PIXEL lpPixel
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of current image.

lprcRegion const
LPAT_RECT

A long pointer to a rectangular region of the image, which should be copied to the
clipboard and removed from the image.

lpPixel const
LPAT_PIXEL

A long pointer to a pixel value you would like to be used to fill in the area out of which
the region has been cut.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

The copied pixels will be converted to 1-, 4-, 8-bit indexed or 24-bit RGB format for copying to the clipboard.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_ERRCOUNT nErrcount; /* # of IG errors on the stack */
AT_RECT rcRegion; /* Rectangular region to cut from image */
AT_PIXEL pixel /* Pixel value used when filling cut regions */
pixel = 0;
/* For a currently loaded 1-bit image where black = 0, set the cut area to black*/
nErrcount = IG_clipboard_cut (hIGear, &rcRegion, &pixel);

Remarks:

The cut portion is copied to the clipboard with its original pixel values, while in the displayed image, that rectangle is
replaced by a pixel value as specified by lpPixel. The color used is usually black or white. You can restore the image to
its original composition by calling IG_clipboard_paste_merge_ex(). You then set the x and y positions of the upper
left-hand corner arguments to PIXPOS left and PIXPOS right of the image rectangle defined by lprcRegion. If you save
the image after a call to this function, it will be saved with the cut.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE (i.e. an NRA mask is active), and a valid pointer to a
mask image has been assigned, ImageGear will override the settings passed to the AT_RECT structure and use the
non-rectangular ROIdefined by the mask HIGEAR. To create a non-rectangular region of interest, call
IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask()

ImageGear Professional v18 for Mac | 521

functions for more details.

For 24-bit images, lpPixel must point to 3 bytes where the first byte is red, the second - green and the third - blue.
For all other bit depths, lpPixel must point to a single byte.

ImageGear Professional v18 for Mac | 522

1.3.1.2.3.3 IG_clipboard_dimensions

This function obtains the dimensions of the image currently in the system clipboard.

Declaration:

AT_ERRCOUNT ACCUAPI IG_clipboard_dimensions (
 LPAT_DIMENSION lpWidth,
 LPAT_DIMENSION lpHeight,
 LPUINT lpBitsPerPixel
);

Arguments:

Name Type Description

lpWidth LPAT_DIMENSION Far pointer to a variable of type AT_DIMENSION to receive the width in pixels of
the image currently in the system clipboard.

lpHeight LPAT_DIMENSION Far pointer to a variable of type AT_DIMENSION to receive the height in rows of
the image currently on the system clipboard.

lpBitsPerPixel LPUINT Far pointer to a variable of type UINT to receive the bit depth, in bits per pixel, of
the image currently on the system clipboard.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_DIMENSION nWidth, nHeight; /* holds the images's width and height */
UINT nBpp; /* holds the bits per pixel */
AT_ERRCOUNT nErrcount; /* holds athe returned error count */
BOOL bPasteAvail; /* TRUE if a pasteable image is on the clipboard */
 /* If a pasteable image is on the clipboard, get its dimensions: */
IG_clipboard_paste_available (&bPasteAvail);
if (bPasteAvail)
 {
nErrcount = IG_clipboard_dimensions (&nWidth, &nHeight, &nBpp);
 }

Remarks:

Prior to calling this function you should call IG_clipboard_paste_available_ex(), to verify that there is an image that can
be pasted in the system clipboard.

ImageGear Professional v18 for Mac | 523

1.3.1.2.3.4 IG_clipboard_paste

This function creates a HIGEAR image by pasting the image on the system clipboard.

Declaration:

AT_ERRCOUNT ACCUAPI IG_clipboard_paste (
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

lphIGear LPHIGEAR Far pointer to a variable of type HIGEAR, to receive the HIGEAR handle of the image created
by this operation.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

Indexed RGB – 1, 4, 8 bpp;
RGB – 24 bpp.

Example:

HIGEAR hIGear; /* Receives the HIGEAR handle the image created */
BOOL bPasteAvail; /* TRUE if a pasteable image is present */
AT_ERRCOUNT nErrcount; /* Holds the returned error count*/
IG_clipboard_paste_available (&bPasteAvail);
if (bPasteAvail)
/* Create HIGEAR image from contents of system clipboard:*/
 { nErrcount = IG_clipboard_paste (&hIGear);
 if (nErrcount) { ... } /* Process any errors ...*/ }

Remarks:

Prior to calling this function, call IG_clipboard_paste_available_ex() to verify that there is a paste-able image in the
clipboard.

ImageGear Professional v18 for Mac | 524

1.3.1.2.3.5 IG_clipboard_paste_available

This function retrieves whether there is compatible data available in the clipboard.

Declaration:

AT_ERRCOUNT ACCUAPI IG_clipboard_paste_available(
 LPAT_BOOL lpPasteStatus
);

Arguments:

Name Type Description

lpPasteStatus LPAT_BOOL Pointer indicating where to return the boolean value that indicates whether clipboard
data is available.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The compatible data types supported on Windows systems are: CF_DIB, CF_BITMAP, CF_ENHMETAFILE, and
CF_METAFILEPICT.

To determine the number of errors currently on the error stack use IG_error_check. After fetching all error
information you need using IG_error_get, use IG_error_clear to clear the stack.

See Also:

IG_clipboard_paste_available_ex

ImageGear Professional v18 for Mac | 525

1.3.1.2.3.6 IG_clipboard_paste_available_ex

This function tells you whether the clipboard contains a valid image or region of interest (ROI) that can be pasted into an
image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_clipboard_paste_available_ex (
 LPBOOL lpPasteStatus,
 LPAT_MODE lpRegionType
);

Arguments:

Name Type Description

lpPasteStatus LPBOOL A far pointer that returns TRUE if the clipboard contains a region of interest that can be
pasted into an image.

lpRegionType LPAT_MODE A far pointer that returns the type of region stored in the clipboard. Currently the valid
values are IG_REGION_IS_RECT, IG_REGION_IS_NON_RECT,
IG_REGION_IS_NOT_AVAIL.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount;
HIGEAR hIGear;
BOOL bNRpasteAvail; /* TRUE if a pasteable image is on clipboard */
AT_MODE nRegionType; /* type of region on the clipboard */
nErrcount = IG_clipboard_paste_available_ex(&bNRpasteAvail, &nRegionType);
if (bNRpasteAvail)
 (...)

Remarks:

It also returns the type of region contained in the clipboard: rectangular, non-rectangular, or not available. If the
clipboard does contain a valid ROI, lpPasteStatus returns TRUE; if lpPasteStatus returns FALSE, the region type returned
is IG_REGION_IS_NOT_AVAIL.

A return value of FALSE does not necessarily mean that the clipboard is empty. It could mean that the clipboard contains
non-valued ROI data or text, or that it contains multimedia data.

To paste a rectangular or non-rectangular ROI into the current image, call IG_clipboard_paste_merge_ex().

ImageGear Professional v18 for Mac | 526

1.3.1.2.3.7 IG_clipboard_paste_merge

This function retrieves compatible media from the clipboard, if available, and "places" or merges the clipboard media into
the specified image at the specified coordinates.

Declaration:

AT_ERRCOUNT ACCUAPI IG_clipboard_paste_merge(
 HIGEAR hIGear,
 AT_PIXPOS nLeftPos,
 AT_PIXPOS nTopPos
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of the image into which the clipboard media will be merged.

nLeftPos AT_PIXPOS X-coordinate of the hIGear to which the clipboard media will be merged.

nTopPos AT_PIXPOS Y-coordinate of the hIGear to which the clipboard media will be merged.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The compatible data types supported on Windows systems are: CF_DIB, CF_BITMAP, CF_ENHMETAFILE, and
CF_METAFILEPICT. Compatible data must be available on the clipboard for this API to be successful.

To determine the number of errors currently on the error stack use IG_error_check. After fetching all error
information you need using IG_error_get, use IG_error_clear to clear the stack.

See Also:

IG_clipboard_paste_merge_ex

ImageGear Professional v18 for Mac | 527

1.3.1.2.3.8 IG_clipboard_paste_merge_ex

This function pastes a rectangular or non-rectangular clipboard image into the HIGEAR image that you specify.

Declaration:

AT_ERRCOUNT ACCUAPI IG_clipboard_paste_merge_ex(
 HIGEAR hIGear,
 AT_PIXPOS nLeftPos,
 AT_PIXPOS nTopPos
);

Arguments:

Name Type Description

hIGear HIGEAR Set to the HIGEAR handle of the image in which to merge the clipboard contents.

nLeftPos AT_PIXPOS X position in HIGEAR image at which to place the upper left corner of the clipboard image
when merging.

nTopPos AT_PIXPOS Y position in HIGEAR image at which to place the upper left corner of the clipboard image
when merging.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

Indexed RGB – 1, 4, 8 bpp;
RGB – 24 bpp.

Example:

AT_ERRCOUNT nErrcount;
HIGEAR hIGear;
BOOL bNRpasteAvail;
AT_PIXPOS xpos, ypos;
AT_MODE nRegionType;
nErrcount = IG_clipboard_paste_available_ex(&bNRpasteAvail, &nRegionType);
nErrcount = IG_clipboard_paste_merge_ex(hIGear, xpos, ypos);

Remarks:

To check if there is a paste-able image on the clipboard, call IG_clipboard_paste_available_ex().

nLeftPos and nTopPos set the (x,y) coordinates of the upper-left corner of the bounding rectangle of the original
image. See image below. The image has an (x,y) location within it at which the upper left-corner of the bounding
rectangle will be placed. The white circle enclosed within a gray rectangle represents the non-rectangular ROI image
stored in the clipboard, where the shaded area represents the transparent area between the bounding rectangle and
the non-rectangular ROI. When the clipboard image is merged, only the circle will appear on the image.

ImageGear Professional v18 for Mac | 528

Use IG_clipboard_paste_op_set() to tell ImageGear what kind of merge operation to perform.

This function will automatically call IG_clipboard_paste_available_ex() to confirm that there is data available.
Therefore, it is not mandatory to call IG_clipboard_paste_available_ex() before making this call, unless you are
interested in knowing the type of region contained in the clipboard.

ImageGear Professional v18 for Mac | 529

1.3.1.2.3.9 IG_clipboard_paste_op_get

This function returns the current paste-merge operation that will be used when an image from the clipboard is merged
into the currently loaded image using IG_clipboard_paste_merge_ex().

Declaration:

AT_ERRCOUNT ACCUAPI IG_clipboard_paste_op_get (
 HIGEAR hIGear,
 LPAT_MODE lpOperation
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpOperation LPAT_MODE A long pointer to an integer constant of type AT_MODE. This will return the current setting
for the kind of paste merge operation that will be performed.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_MODE nOperation; /* current setting for paste-merge operation */
AT_ERRCOUNT nErrcount /* # of IG errors currently on the stack */
nErrcount = IG_clipboard_paste_op_get (hIGear, &nOperation);

Remarks:

See the description of IG_clipboard_paste_op_set() for the list of possible settings.

ImageGear Professional v18 for Mac | 530

1.3.1.2.3.10 IG_clipboard_paste_op_set

This function sets the kind of operation to use for future calls to IG_clipboard_paste_merge_ex().

Declaration:

AT_ERRCOUNT ACCUAPI IG_clipboard_paste_op_set (
 HIGEAR hIGear,
 AT_MODE nOperation
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of the image that is in the system.

nOperation AT_MODE An integer constant of type AT_MODE, which will be used in future calls to
IG_clipboard_paste_merge_ex().

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_ERRCOUNT nErrcount /* # of IG errors on the stack */
nErrcount = IG_clipboard_paste_op_set(hIGear, IG_ARITH_AND);

Remarks:

nOperation is an integer constant of type AT_MODE that is defined in accucnst.h. Here are the possible settings and what
kind of operation each one will perform on the values of the merging pixels:

IG_ARITH_ADD Img1 = Img1 + Img2

IG_ARITH_SUB Img1 = Img1 - Img2

IG_ARITH_MULTI Img1 = Img1 * Img2

IG_ARITH_DIVIDE Img1 = Img1 / Img2

IG_ARITH_AND Img1 = Img1 & Img2

IG_ARITH_OR Img1 = Img1 | Img2

IG_ARITH_XOR Img1 = Img1 ^ Img2

IG_ARITH_ADD_SIGN_CENTERED Img1 = Img1 + SC_Img2

IG_ARITH_NOT Img1 = ~Img1

IG_ARITH_OVER Img1 = Img2

You can also set nOperation to 0, which is the default. This will cause the image in the clipboard to just be copied over
the currently loaded image - no merging of intersecting pixel values will occur.

ImageGear Professional v18 for Mac | 531

1.3.1.2.4 Color Space Options Functions

This section provides information about the Color Space Options group of functions.

IG_color_space_level_get
IG_color_space_level_set

ImageGear Professional v18 for Mac | 532

1.3.1.2.4.1 IG_color_space_level_get

This function has been deprecated and will be removed from the public API in a future release. Please use
IG_image_colorspace_convert instead.

Declaration:

AT_ERRCOUNT ACCUAPI IG_color_space_level_get(
 AT_MODE nColorSpaceID,
 LPAT_MODE lpnSupportLevel
);

Arguments:

Name Type Description

nColorSpaceID AT_MODE Set this to an AT_MODE constant for the type of color space of which you would like
to get the support level setting. The names of the appropriate constants begin with
IG_COLOR_SPACE_ prefix.

lpnSupportLevel LPAT_MODE A far pointer that returns the current setting level for the color space specified in the
first argument. See IG_color_space_level_set().

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount;
HIGEAR hIGear;
AT_MODE nSupportLevel;
nErrcount = IG_color_space_level_get(IG_COLOR_SPACE_CMYK, &nSupporLevel);

Remarks:

This function queries the current option level setting for the color space that you specify.

You must supply nColorSpaceID with a constant of type AT_MODE from accucnst.h that specifies the color space you
wish to query. The second argument will return an ImageGear constant that tells you the current option level setting for
the color space.

ImageGear fully supports the loading and saving of TIFF-CMYK images. A CMYK image will only be converted to
RGB for the purpose of display. CMYK is a color scheme designed for printing and cannot be used for screen
display.

For more details see the description for IG_color_space_level_set().

ImageGear Professional v18 for Mac | 533

1.3.1.2.4.2 IG_color_space_level_set

This function has been deprecated and will be removed from the public API in a future release. Please use
IG_image_colorspace_convert instead.

Declaration:

AT_ERRCOUNT ACCUAPI IG_color_space_level_set(
 AT_MODE nColorSpaceID,
 AT_MODE nSupportLevel
);

Arguments:

Name Type Description

nColorSpaceID AT_MODE Set this to an AT_MODE constant for the type of color space you would like to set the
support level setting for. For example: IG_COLOR_SPACE_CMYK.

nSupportLevel AT_MODE Set this to an AT_MODE constant for level of support for the color space specified in the
first argument. For CMYK support, the possible settings are IG_CONVERT_TO_RGB or
IG_FULL_SUPPORT.

ImageGear fully supports the loading and saving of CMYK images. A CMYK image will only be converted to RGB for
the purpose of display. CMYK is a color scheme designed for printing and cannot be used for screen display.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount;
HIGEAR hIGear;
nErrcount= IG_color_space_level_set(IG_COLOR_SPACE_CMYK, IG_COLOR_FULL_SUPPORT);

Remarks:

This function allows you to set the option level setting for the color space that you specify.

You must supply nColorSpaceID with a constant of type AT_MODE from accucnst.h that specifies the color space you
wish to query, and nSupportLevel with a constant of type AT_MODE that specifies the level of support you would like
your application to provide.

The CMYK color space is supported using the following settings:

IG_CONVERT_TO_RGB Loads a CMYK image and converts it to RGB.

IG_FULL_SUPPORT Full support for loading and saving CMYK images.

ImageGear Professional v18 for Mac | 534

1.3.1.2.5 Component Manager Functions

This section provides information about the Component Manager group of functions.

IG_comm_comp_attach
IG_comm_comp_check
IG_comm_comp_list
IG_comm_entry_request
IG_comm_function_call

ImageGear Professional v18 for Mac | 535

1.3.1.2.5.1 IG_comm_comp_attach

This function allows you to attach ImageGear component defined by lpCompName to the main ImageGear module.

Declaration:

AT_ERRCODE LACCUAPI IG_comm_comp_attach (
 LPCHAR lpCompName
);

Arguments:

Name Type Description

lpCompName LPCHAR The Name of ImageGear Component to be linked with main ImageGear module.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

...
#include "i_ART.h"
...
/* Initialize ART component */
IG_comm_comp_attach("ART");
...

Remarks:

By default, ImageGear searches for components in the same directory where main ImageGear module is located. You
can specify a different path to the folder containing component modules using global parameters API function
IG_gctrl_item_set() and "COMM.PATH" global parameter.

See Also:

ImageGear Components

Global Control Parameters

ImageGear Professional v18 for Mac | 536

1.3.1.2.5.2 IG_comm_comp_check

This function allows you to check if the ImageGear component defined by lpCompName argument is currently attached
or not.

Declaration:

AT_BOOL ACCUAPI IG_comm_comp_check(
 LPCHAR lpCompName
);

Arguments:

Name Type Description

lpCompName LPCHAR The Name of ImageGear Component attached to the main ImageGear module.

Return Value:

TRUE - if component is attached successfully. FALSE - if not.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

bFoundLZW = IG_comm_comp_check("LZW");
if(bFoundLZW)
{
EnableMenuItem(GetMenu(hWnd), ID_FILE_SAVE_INTERLIVED, MF_ENABLED|MF_BYCOMMAND);
EnableMenuItem(GetMenu(hWnd), ID_FILE_SAVE_NONINTERLIVED, MF_ENABLED|MF_BYCOMMAND);
IG_fltr_ctrl_get(IG_FORMAT_GIF, "INTERLACE", FALSE, NULL, NULL, (LPVOID)&bInterlaced,
sizeof(&bInterlaced));
CheckMenuItem(GetMenu(hWnd), ID_FILE_SAVE_INTERLIVED, MF_BYCOMMAND |
bInterlaced?MF_CHECKED:MF_UNCHECKED);
CheckMenuItem(GetMenu(hWnd), ID_FILE_SAVE_NONINTERLIVED, MF_BYCOMMAND |
bInterlaced?MF_UNCHECKED:MF_CHECKED);
}else
{
EnableMenuItem(GetMenu(hWnd), ID_FILE_SAVE_INTERLIVED, MF_GRAYED|MF_BYCOMMAND);
EnableMenuItem(GetMenu(hWnd), ID_FILE_SAVE_NONINTERLIVED, MF_GRAYED|MF_BYCOMMAND);
}

Remarks:

If component is attached it returns TRUE, if not - FALSE.

See also the section ImageGear Components.

ImageGear Professional v18 for Mac | 537

1.3.1.2.5.3 IG_comm_comp_list

This function allows you to obtain information about currently loaded components.

Declaration:

AT_ERRCODE ACCUAPI IG_comm_comp_list(
 LPUINT* lpnCount,
 UINT nIndex,
 LPCHAR lpComp,
 DWORD dwCompSize,
 LPUINT lpnRevMajor,
 LPUINT lpnRevMinor,
 LPUINT lpnRevUpdate,
 LPCHAR lpBuildDate,
 UINT nBDSize,
 LPCHAR lpInfoStr,
 UINT nISSize
);

Arguments:

Name Type Description

lpnCount LPUINT* OUT: The number of attached components.

nIndex UINT IN: The index of component from the list.

lpComp LPCHAR OUT: The buffer where to return the name of component specified by nIndex index.

dwCompSize DWORD IN: The size of lpBuffer in bytes.

lpnRevMajor LPUINT Far pointer to an INT variable in which will be stored the Major version number of the
version of the Component specified by nIndex.

lpnRevMinor LPUINT Far pointer to an INT variable in which will be stored the Minor version number of the
version of the Component specified by nIndex.

lpnRevUpdate LPUINT Far pointer to an INT variable in which will be stored the Update (bug fix) number,
reflecting any updates you have received and installed in this version of the Component
specified by nIndex.

lpBuildDate LPCHAR The buffer where to return the build date of the current version of the Component specified
by nIndex. The return value is a string in the format "Mmm dd yyyy", such as "Jul 04
2010."

nBDSize UINT The size of buffer where lpBuildDate is returned.

lpInfoStr LPCHAR The buffer where to return the info string about the Component specified by nIndex.

nISSize UINT The size of buffer where lpInfoStr is returned.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

First argument returns actual number of attached components. nIndex specifies the index of the component in the
components list which name is copied into lpBuffer. The rest of parameters return information about component specified
by nIndex.

ImageGear Professional v18 for Mac | 538

1.3.1.2.5.4 IG_comm_entry_request

This function is used to get pointer to the function from component with given name.

Declaration:

AT_ERRCODE ACCUAPI IG_comm_entry_request(
 LPCHAR lpEntryName,
 LPAFT_ANY* lpFuncPtr,
 LPCHAR lpReason
);

Arguments:

Name Type Description

lpEntryName LPCHAR The full name of entry "<Comp_name>.<Func_name>", where <Comp_name> is a
component name where function is exported, and <Func_name> is a name of function.

lpFuncPtr LPAFT_ANY* Pointer where to return pointer to requested function.

lpReason LPCHAR Optional parameter to specify string description of the reason for this request.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Usually this function is used with component public header i_<COMP_NAME>.h, where actual type of function is
declared.

See also the section ImageGear Components.

ImageGear Professional v18 for Mac | 539

1.3.1.2.5.5 IG_comm_function_call

This function is used to call function from a component.

Declaration:

LONG CACCUAPI IG_comm_function_call(
 LPCHAR lpEntryName,
 ...
);

Arguments:

Name Type Description

lpEntryName LPCHAR The name of entry in GFT to call.

... Additional parameters.

Supported Raster Image Formats:

This function does not process image pixels.

Return Value:

Returns a LONG indicating the requested component function.

Example:

See the example in Component Manager API section of the Using ImageGear chapter.

Remarks:

Usually this function is not used directly, but it is used in macro declarations defined in component public headers
i_<COMP_NAME>.h.

See also the section ImageGear Components.

ImageGear Professional v18 for Mac | 540

1.3.1.2.6 Color Profile Management Functions

This section provides information about the Color Profile Management group of functions.

IG_cpm_image_embedded_profile_check
IG_cpm_image_profile_get
IG_cpm_image_profile_set
IG_cpm_profile_get
IG_cpm_profile_set
IG_cpm_profiles_reset

ImageGear Professional v18 for Mac | 541

1.3.1.2.6.1 IG_cpm_image_embedded_profile_check

This function checks to see whether the image has embedded color profile.

Declaration:

AT_ERRCODE ACCUAPI IG_cpm_image_embedded_profile_check(
 HIGEAR hIGear,
 LPAT_BOOL lpbEmbedded
);

Arguments:

Name Type Description

hIGear HIGEAR (in) A handle of the image to check.

lpbEmbedded LPAT_BOOL (out) Return TRUE if profile embedded, otherwise, FALSE.

Return Value:

Return value is a code of last error or NULL if success.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* Handle of the image to check*/
AT_BOOL bEmbeddedProfile = FALSE; /* Flag to return whether profile embedded or not */
/* Load an image into hIGear */
......
/* Check whether the image has embedded profile. */
if (IGE_SUCCESS == IG_cpm_image_embedded_profile_check(hIGear, &bEmbeddedProfile))
{
......
}

ImageGear Professional v18 for Mac | 542

1.3.1.2.6.2 IG_cpm_image_profile_get

This function returns information about color profile associated with given image.

Declaration:

AT_ERRCODE LACCUAPI IG_cpm_image_profile_get(
 HIGEAR hIGear,
 LPAT_BOOL lpbIsLocal,
 LPAT_MODE lpnColorSpace,
 LPCHAR lpStatusStr,
 UINT nStatusSize
 LPUINT lpnStatusLen,
 LPDWORD lpnProfileSize
 LPBYTE lpProfileData,
 DWORD dwProfileDataSize
);

Arguments:

Name Type Description

hIGear HIGEAR IN: handle of image where to set profile.

lpbIsLocal LPAT_BOOL OUT: return TRUE if local profile associated with given image and FALSE in other
case. If NULL then argument ignored.

lpnColorSpace LPAT_MODE OUT: color space id of returned profile. Possible returned values:
IG_COLOR_SPACE_RGBIG_COLOR_SPACE_CMYK. If NULL then parameter ignored.

lpStatusStr LPCHAR OUT: pointer where to copy textual information about local profile. If NULL then
parameter ignored.

nStatusSize UINT IN: size of lpStatusStr buffer.

lpnStatusLen LPUINT OUT: Return length of actual status message. If NULL then parameter ignored.

lpnProfileSize LPDWORD OUT: If not NULL then returns actual profile size in ICC format.

lpProfileData LPBYTE OUT: Pointer where to put profile data. Profile will be written according to
ICC.1:1998-09 specification.

dwProfileDataSize DWORD IN: the size of lpProfileData buffer.

Return Value:

Return value is the code of the last error, or NULL if success.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Remarks:

The second parameter is used to get information either this image has embedded local profile or use global profile.

The rest of parameters are used to provide text description of profile and profile data itself. The profile returned through
lpProfileData will be written according to ICC specification.

Depending from parameters it either return information about profile or profile data itself. For example, if lpnProfileSize
is not NULL then the size of profile is calculated and returned. If lpProfileData is not NULL then profile is encoded into
standard ICC format and returned through this parameter.

Please note that color profile management is disabled by default. See Working with ImageGear Color Profile Manager for
a description of how to activate it.

ImageGear Professional v18 for Mac | 543

1.3.1.2.6.3 IG_cpm_image_profile_set

This function provides color profile management for given particular image.

Declaration:

AT_ERRCODE LACCUAPI IG_cpm_image_profile_set(
 HIGEAR hIGear,
 LPAT_BYTE lpRawData,
 DWORD dwRawSize,
 AT_BOOL bConvert
);

Arguments:

Name Type Description

hIGear HIGEAR IN: handle of image where to set profile.

lpRawData LPAT_BYTE IN: raw data of new profile. Can be either NULL or pointer to memory buffer that contains
valid color profile in format specified by ICC.1:1998-09.

dwRawSize DWORD IN: length of data stored in lpRawData.

bConvert AT_BOOL IN: if TRUE then convert all images associated with old profile to new profile, but if FALSE
then simple replace profile without any conversion.

Return Value:

Return value is a code of last error, or NULL if success.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Remarks:

There can be two ways that an image is associated with a color profile:

First way: image itself does not store color profile data but use profile from global parameters (WCP).
Second way: image stores color profile locally and does not depend on global settings.

If lpRawData is NULL during this function call, then previous local profile (if it existed) is deleted and image become
dependent on global profile correspondent to color space used by its pixel data. If lpRawData is valid ICC profile then
previous local profile (if it existed) is deleted and image becomes associated with new local profile.

The last parameter specifies how pixel data should be changed during profile change operation. If bConvert is TRUE,
then pixel is converted from one format to another but in other case pixel data is unchanged.

Please note, that color profile management is disabled by default. See Working with ImageGear Color Profile Manager for
information about how to activate it.

If some error happens such as invalid or unsupported profile or color space mismatch in image and color profile, then
function returns appropriate error code.

ImageGear Professional v18 for Mac | 544

1.3.1.2.6.4 IG_cpm_profile_get

This function returns information about global profile for given color space of given group.

Declaration:

AT_ERRCODE LACCUAPI IG_cpm_profile_get(
 AT_MODE nColorSpace,
 DWORD nProfileGroup,
 LPCHAR lpStatusStr,
 UINT nStatusSize
 LPUINT lpnStatusLen,
 LPDWORD lpnProfileSize,
 LPBYTE lpProfileData,
 DWORD dwProfileDataSize
);

Arguments:

Name Type Description

nColorSpace AT_MODE IN: color space ID which profile status to get. Possible value:
IG_COLOR_SPACE_RGBIG_COLOR_SPACE_CMYK.

nProfileGroup DWORD IN: color profile group where profiles to get. Possible value:
IG_CP_GRP_DISPLAYIG_CP_GRP_WORKINGIG_CP_GRP_EXPORTIG_CP_GRP_IMPORT.

lpStatusStr LPCHAR OUT: pointer where to copy textual information about local profile. If NULL then
parameter is ignored.

nStatusSize UINT IN: size of lpStatusStr buffer.

lpnStatusLen LPUINT OUT: return length of actual status message. If NULL then parameter ignored.

lpnProfileSize LPDWORD OUT: If this parameter is not NULL then actual size of color profile in ICC format is
returned.

lpProfileData LPBYTE OUT: Pointer where to put profile data or ignored if parameter is NULL. Profile will be
written according to ICC.1:1998-09 specification.

dwProfileDataSize DWORD IN: the size of lpProfileData.

Return Value:

Return value is a code of last error or 0 if success.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Depending from parameters it either returns information about profile or profile data itself. For example, if lpnProfileSize
is not NULL, then size of profile is calculated and returned. If lpProfileData is not NULL, then profile is encoded into
standard ICC format and returned through this parameter.

Please note that color profile management is disabled by default. See section Working with ImageGear Color Profile
Manager for information about how to activate it.

ImageGear Professional v18 for Mac | 545

1.3.1.2.6.5 IG_cpm_profile_set

This function sets new value of color profile associated with color space given by nColorSpace parameter to profile group
given by nProfileGroup parameter.

Declaration:

AT_ERRCODE LACCUAPI IG_cpm_profile_set(
 AT_MODE nColorSpace,
 DWORD nProfileGroup
 LPAT_BYTE lpRawData,
 DWORD dwRawSize,
 AT_BOOL bConvert
);

Arguments:

Name Type Description

nColorSpace AT_MODE IN: color space ID which profile to replace. Current supported values:
IG_COLOR_SPACE_RGBIG_COLOR_SPACE_CMYK.

nProfileGroup DWORD IN: color profile group where to set profile. Possible values:
IG_CP_GRP_WORKINGIG_CP_GRP_IMPORTIG_CP_GRP_EXPORTIG_CP_GRP_DISPLAY.

lpRawData LPAT_BYTE IN: raw data of new profile. Can be either NULL or pointer to memory buffer that
contains valid color profile in format specified by ICC.1:1998-09.

dwRawSize DWORD IN: length of data stored in lpRawData.

bConvert AT_BOOL IN: if TRUE then this function converts all images associated with old profile to new
profile, but if FALSE it simply replaces profile without any conversion.

Return Value:

Return value is a code of last error or 0 if success.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

If the last parameter is set to TRUE, then all associated images with previous format are converted to new color profile.
In the case that nColorSpace does not match the same color space that is used in color profile or color profile is in invalid
or unsupported format, then error is returned.

Please note that color profile management is disabled by default. See Working with ImageGear Color Profile Manager for
information about how to activate it.

ImageGear Professional v18 for Mac | 546

1.3.1.2.6.6 IG_cpm_profiles_reset

This function resets all default color profiles to default values taken from global parameters.

Declaration:

AT_ERRCODE LACCUAPI IG_cpm_profiles_reset(
 AT_BOOL bConvert
);

Arguments:

Name Type Description

bConvert AT_BOOL IN: specify how this operation should affect associated image.

Return Value:

Return value is a code of last error or 0 if success.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Remarks:

If value of parameter is TRUE then it converts all images associated with all global profiles to default profiles, but if
FALSE then all global profiles are reset to default values but images are not changed.

Please note that color profile management is disabled by default. See Using Color Profile Manager for information about
how to activate it.

ImageGear Professional v18 for Mac | 547

1.3.1.2.7 DIB Functions

This section provides information about the DIB group of functions.

IG_DIB_area_get
IG_DIB_area_set
IG_DIB_area_size_get
IG_DIB_bit_depth_get
IG_DIB_channel_count_get
IG_DIB_channel_depth_get
IG_DIB_channel_depths_get
IG_DIB_colorspace_get
IG_DIB_column_get
IG_DIB_column_set
IG_DIB_flood_fill
IG_DIB_flush
IG_DIB_height_get
IG_DIB_info_copy
IG_DIB_info_create
IG_DIB_info_delete
IG_DIB_info_raster_size_get
IG_DIB_legacy_bit_depth_get
IG_DIB_line_get
IG_DIB_line_set
IG_DIB_palette_alloc
IG_DIB_palette_length_get
IG_DIB_palette_pointer_get
IG_DIB_palette_size_get
IG_DIB_pixel_array_size_get
IG_DIB_pixel_get
IG_DIB_pixel_set
IG_DIB_pix_get
IG_DIB_pix_set
IG_DIB_raster_get
IG_DIB_raster_set
IG_DIB_raster_size_get
IG_DIB_resolution_get
IG_DIB_resolution_set
IG_DIB_resolution_units_get
IG_DIB_resolution_units_set
IG_DIB_row_get
IG_DIB_row_set
IG_DIB_width_get

ImageGear Professional v18 for Mac | 548

1.3.1.2.7.1 IG_DIB_area_get

This function obtains all the pixels contained within the rectangular portion of image hIGear specified by lpRect.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_area_get (
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 LPAT_PIXEL lpPixel,
 AT_MODE nPixelFormat
);

Arguments:

Name Type Description

hIGear HIGEAR The hIGear handle of an image.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT struct specifying the rectangular portion of the image
bitmap to get.

lpPixel LPAT_PIXEL Far pointer to first in an array of bytes large enough to receive all pixels in the area.

nPixelFormat AT_MODE A constant such as IG_DIB_AREA_UNPACKED, specifying in what form you want the
pixels stored in your array. The list of IG_DIB_AREA_ constants available is in file
accucnst.h.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_RECT rcBlock; /* The rectangular block to get */
AT_PIXEL cPixArray[400];/* Will receive returned pixels */
AT_DIMENSION nWid, nHi; /* Will receive width, height of image */
UINT nBpp; /* Bits per pixel */
AT_ERRCOUNT nErrcount; /* Will receive returned error counts */
/* Will fetch upper left 20 x 20 pixels, to cPixArray[]: */
rcBlock.top = rcBlock.left = 0;
rcBlock.bottom = rcBlock.right = 20; /* 20x20 area, 400 pixels */
nErrcount = IG_image_dimensions_get (hIGear, &nWid, &nHi, &nBpp); */
if (nErrcount == 0) /* If valid image, dimensions obtained' */
 {
 if ((nBpp <= 8) && (nWid >= 20) && (nHi >= 20))
 {/* (Array is too small for 24-bit) */
 nErrcount = IG_DIB_area_get (hIGear, &rcBlock,
 &cPixelArray[0], IG_DIB_AREA_UNPACKED);
 }
 }

Remarks:

Use the lpPixel argument to tell ImageGear where to store the pixels.

ImageGear's pixel access functions consider the coordinates (0,0) to refer to the upper left-hand corner of the

ImageGear Professional v18 for Mac | 549

bitmap data. They do not follow the DIB's orientation, which considers (0,0) to refer to the lower left-hand
corner of the bitmap.

Use nPixelFormat = IG_DIB_AREA_DIB if you want the data in standard uncompressed DIB format, and with each
row returned to you padded to a multiple of 4 bytes length. 1-bit pixels are returned 8 to the byte, most significant
bit first. 4-bit pixels are returned 2 to the byte, similarly left justified. 24-bit pixels are returned 3 bytes per pixel,
ordered Blue-Green-Red.

Use nPixelFormat = IG_DIB_AREA_UNPACKED if you want the pixels returned 1 per byte (but still 3 bytes for a 24-bit
pixel, ordered Blue-Green-Red). Each 1-bit or 4-bit pixel will be returned right justified in a single byte, padded with
zeroes in the most significant bits of the byte.

In either case, be sure your area pointed to by lpPixel is large enough to receive all the pixel data including padding.

See also function IG_DIB_area_set().

ImageGear Professional v18 for Mac | 550

1.3.1.2.7.2 IG_DIB_area_set

This function transfers pixels from the location pointed to by lpPixel into the rectangular portion of the image specified
by rectangle lpRect.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_area_set (
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 const LPAT_PIXEL lpPixel,
 AT_MODE nPixelFormat
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear HIGEAR handle of image

lpRect const
LPAT_RECT

Far pointer to an AT_RECT struct specifying the rectangular portion of the image
bitmap to set

lpPixel LPAT_PIXEL Far pointer to first byte of your pixel data

nPixelFormat AT_MODE A constant such as IG_DIB_AREA_UNPACKED specifying in what form you are
providing the pixels. The IG_DIB_AREA_... constants are listed in file accucnst.h.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_RECT rcBlock; /* The rectangular block to set */
AT_PIXEL cPixelArray[400]; /* The pixels to set */
AT_DIMENSION nWid, nHi; /* Receives the width & height of an image */
UINT nBpp; /* Bits per pixel */
AT_ERRCOUNT nErrcount; /* Receives the returned error counts */
/* Sets the upper left 20 x 20 pixels, to cPixArray[]: */
rcBlock.top = rcBlock.left = 0;
rcBlock.bottom = rcBlock.right = 20; /* 20x20 area, 400 pixels */
nErrcount = IG_image_dimensions_get (hIGear, &nWid, &nHi, &nBpp); */
if (nErrcount == 0) /* If valid image, dimensions obtained: */
 {
 if ((nBpp <= 8) && (nWid >= 20) && (nHi >= 20))
{
/*Array is too small for 24-bit) */
 INT row, col; pix; /* For the loops below */
 AT_PIXEL nPixval; /* pixel value to set */
 if (nBpp == 8) nPixval = 128; /* Value to set if 8-bit */
 if (nBpp == 4) nPixval = 8; /* Value to set if 4-bit */
 if (nBpp == 1) nPixval = 1; /* Pixel ON if 1-bit */
 for (pix=0,row=0; row<20; row++) /* For all pixels in */
 for (col=0; col<20; col++)/* the 20 x 20 array: */
 cPixelArray[pix++] = nPixval;
 /* Set unpacked in byte */

ImageGear Professional v18 for Mac | 551

 nErrcount = IG_DIB_area_set (hIGear, &rcBlock, &cPixelArray[0],
IG_DIB_AREA_UNPACKED);
}
 }

Remarks:

ImageGear's pixel access functions consider the coordinates (0,0) to refer to the upper left-hand corner of the bitmap
data. They do not follow the DIB's orientation, which considers (0,0) to refer to the lower left-hand corner of the
bitmap.

Use nPixelFormat = IG_DIB_AREA_DIB if you are providing the pixels in standard uncompressed DIB format. This
means 1-bit or 4-bit pixels will be packed 8 to the byte or 2 to the byte respectively, left justified (first pixel uses
most significant bit). 24-bit pixels are in 3 bytes, ordered Blue-Green-Red.
Use nPixelFormat = IG_DIB_AREA_UNPACKED if you are providing the pixels 1 pixel per byte (however, 3 bytes
for a 24-bit pixel, ordered Blue-Green-Red). In this case, you provide 1-bit and 4-bit pixels one to a byte, right
justified in the byte.

See also function IG_DIB_area_get().

ImageGear Professional v18 for Mac | 552

1.3.1.2.7.3 IG_DIB_area_size_get

This function calculates and returns the number of bytes required to hold a rectangular region selected from an image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_area_size_get(
 HIGEAR hIGear,
 LPAT_RECT lpRect,
 AT_MODE nFormat,
 LPAT_DIMENSION lpSize
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRect LPAT_RECT A far pointer to a rectangular array of pixels from the image. Setting this to NULL
selects the whole image.

nFormat AT_MODE A variable of type AT_MODE, such as IG_DIB_AREA_DIB, that defines how the data
should be stored: packed or unpacked. (They are defined in accucnst.h)

lpSize LPAT_DIMENSION A far pointer to a variable that returns the size in bytes of the array of pixels.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Remarks:

You can use this function to determine the size of the block of memory to allocate to hold the pixel values from the
rectangular region. This will help you to avoid data overflow. The value returned by lpSize includes the allocation of
space for raster buffering at the end of each raster line. (See the section Device-Independent Bitmaps
(DIB)Understanding Bitmap Images.)

ImageGear's pixel access functions consider the coordinates (0,0) to refer to the upper left-hand corner of the
bitmap data. They do not follow the DIB's orientation, which considers (0,0) to refer to the lower left-hand corner
of the bitmap.

Use the format parameter to indicate the form in which you want to store the pixels:

Use: To:

IG_DIB_AREA_DIB Pad rows to long boundaries (the way they are stored in a DIB).

IG_DIB_AREA_UNPACKED Store pixels 1 per byte for 1, 4, 8-bit images, 1 per 3 bytes for a 24-bit image.

ImageGear Professional v18 for Mac | 553

1.3.1.2.7.4 IG_DIB_bit_depth_get

This function returns the bit depth of an image, which is the sum of the channel bit depths.

Declaration:

AT_INT ACCUAPI IG_DIB_bit_depth_get(
 HIGDIBINFO hDIB
);

Arguments:

Name Type Description

hDIB HIGDIBINFO DIB info handle.

Return Value:

Returns image bit depth.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGDIBINFO hDIBInfo; /* DIB info handle */
HIGEAR hImage; /* HIGEAR handle of image */
AT_INT imageDepth; /* Returned bit depth of image */
nErrcount = IG_image_DIB_info_get(hImage, &hDIBInfo);
imageDepth = IG_DIB_bit_depth_get(hDIBInfo);

Remarks:

For example, if the image is a simple 24-bit RGB image, this function will return 24. If it's a 24-bit RGB image with an 8-
bit alpha channel, this function will return 32.

ImageGear Professional v18 for Mac | 554

1.3.1.2.7.5 IG_DIB_channel_count_get

This function returns the number of channels in the image.

Declaration:

AT_INT ACCUAPI IG_DIB_channel_count_get(
 HIGDIBINFO hDIB
);

Arguments:

Name Type Description

hDIB HIGDIBINFO DIB info handle.

Return Value:

Returns the number of channels in the image.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGDIBINFO hDIBInfo; /* DIB info handle */
HIGEAR hImage; /* HIGEAR handle of image */
AT_INT nChannels; /* Returned number of channels */
nErrcount = IG_image_DIB_info_get(hImage, &hDIBInfo);
nChannels = IG_DIB_channel_count_get(hDIBInfo);

Remarks:

For example, a typical 24-bit RGB image has three 8-bit channels (red, green, blue) so this function will return 3. For a
24-bit RGB image with a single alpha channel, this function would return 4.

ImageGear Professional v18 for Mac | 555

1.3.1.2.7.6 IG_DIB_channel_depth_get

This function returns the bit depth of the channel specified by the Index parameter.

Declaration:

AT_INT ACCUAPI IG_DIB_channel_depth_get(
 HIGDIBINFO hDIB,
 AT_INT Index
);

Arguments:

Name Type Description

hDIB HIGDIBINFO DIB info handle.

Index AT_INT Index of channel of which to return bit depth.

Return Value:

Returns specified channel's bit depth.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGDIBINFO hDIBInfo; /* DIB info handle */
HIGEAR hImage; /* HIGEAR handle of image */
AT_INT depth; /* Returned depth of first channel */
nErrcount = IG_image_DIB_info_get(hImage, &hDIBInfo);
depth = IG_DIB_channel_depth_get(hDIBInfo, 0);

Remarks:

For example, if you had a typical 24-bit RGB image with three 8-bit channels, you could specify 0, 1, or 2 for the index
and the return value would be 8.

ImageGear Professional v18 for Mac | 556

1.3.1.2.7.7 IG_DIB_channel_depths_get

This function copies channel bit depths to an array.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_channel_depths_get(
 HIGDIBINFO hDIB,
 AT_INT ChannelCount,
 AT_INT* lpChannelDepths
);

Arguments:

Name Type Description

hDIB HIGDIBINFO DIB info handle.

ChannelCount AT_INT Number of channels for which to return depths.

lpChannelDepths AT_INT* Array to which to copy channel depths.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGDIBINFO hDIBInfo; /* DIB info handle */
HIGEAR hImage; /* HIGEAR handle of image */
AT_INT nChannels; /* Number of channels in image */
LPAT_INT depths; /* Array of channel depths */
nErrcount = IG_image_DIB_info_get(hImage, &hDIBInfo);
nChannels = IG_DIB_channel_count_get(hDIBInfo);
depths = (LPAT_INT) malloc(nChannels * sizeof(AT_INT));
nErrcount = IG_DIB_channel_depths_get(hDIBInfo, nChannels, depths);

Remarks:

You can use this function to find out the bit depths of each individual channel.

ImageGear Professional v18 for Mac | 557

1.3.1.2.7.8 IG_DIB_colorspace_get

This function returns the image's color space.

Declaration:

enumIGColorSpaceIDs ACCUAPI IG_DIB_colorspace_get(
 HIGDIBINFO hDIB
);

Arguments:

Name Type Description

hDIB HIGDIBINFO DIB info handle.

Return Value:

Returns a combination of values from enumIGColorSpaceIDs.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGDIBINFO hDIBInfo; /* DIB info handle */
HIGEAR hImage; /* HIGEAR handle of image */
enumIGColorSpaceIDs colorspace; /* Color space of image */
AT_BOOL bIndexed; /* Is color space of image indexed? */
AT_BOOL bHasAlpha; /* Does image have an alpha channel? */
/* Find out if an image is indexed, and if it has alpha */
nErrcount = IG_image_DIB_info_get(hImage, &hDIBInfo);
colorspace = IG_DIB_colorspace_get(hDIBInfo);
bIndexed = (colorspace & IG_COLOR_SPACE_ID_ColorMask) == IG_COLOR_SPACE_ID_I;
bHasAlpha = colorspace & IG_COLOR_SPACE_ID_A;

Remarks:

This is a bitmask that indicates the color space as well as the presence of alpha, pre-multiplied alpha, and extra
channels.

See the IG_util_colorspace_...() functions for more functions that retrieve information about color spaces, alpha, and
extra channels.

Use caution when extracting information from this bitmask. For example, if you want to look at only the color
space, you must use the mask IG_COLOR_SPACE_ID_ColorMask as in the example.

ImageGear Professional v18 for Mac | 558

1.3.1.2.7.9 IG_DIB_column_get

This function obtains a column of pixels from the DIB image bitmap of image hIGear, and stores the pixels in your
data area pointed to by lpPixel.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_column_get (
 HIGEAR hIGear,
 AT_PIXPOS nX,
 AT_PIXPOS nY1,
 AT_PIXPOS nY2,
 LPAT_PIXEL lpPixel,
 AT_DIMENSION nLenBytes,
 LPAT_DIMENSION lpNumPixels
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

nX AT_PIXPOS X offset (X coord) of the vertical pixel column to get.

nY1 AT_PIXPOS Raster line number at which the vertical column starts.

nY2 AT_PIXPOS Raster line number at which the vertical column ends.

lpPixel LPAT_PIXEL Far pointer to your data area to which the pixels should be returned.

nLenBytes AT_DIMENSION Size of the data area, in bytes.

lpNumPixels LPAT_DIMENSION Far pointer to a AT_DIMENSION variable in which will be returned the number of
pixels (not bytes) transferred.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image
*/
AT_PIXEL cPixArray[400]; /* Receives the returned pixels */
AT_PIXPOS nCol, nYtop, nYbot; /* Column and which rows to get */
AT_DIMENSION nFetched; /* Holds count of pixels retrieved */
AT_ERRCOUNT nErrcount; /* Receives returned error counts */
nCol = 0; /* Fetch left boundary of image */
nYtop = 10; nYbot = 59; /* 50 pixels, from lines 10 thru 59 */
nErrcount = IG_DIB_column_get (hIGear, nCol, nYtop, nYbot, &cPixArray[0], 400, &nFetched
);

Remarks:

The offset of the column to retrieve is indicated by nX. The beginning and ending raster lines of the column are nY1
and nY2, respectively (top to bottom).

ImageGear's pixel access functions consider the coordinates (0,0) to refer to the upper left-hand corner of the

ImageGear Professional v18 for Mac | 559

bitmap data. They do not follow the DIB's orientation, which considers (0,0) to refer to the lower left-hand
corner of the bitmap.

If the pixels will not fit in nLenBytes, only nLenBytes of data will be transferred. The actual number of pixels
transferred is returned in the variable pointed to by lpNumPixels.

If the image is 1-bit or 4-bit, the pixels will be returned one to a byte, right justified in the byte. If the image is 24-
bit, each pixel will occupy 3 bytes, in Blue-Green-Red order.

ImageGear Professional v18 for Mac | 560

1.3.1.2.7.10 IG_DIB_column_set

This function sets the pixel data you supply into the DIB image bitmap column specified by nX.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_column_set (
 HIGEAR hIGear,
 AT_PIXPOS nX,
 AT_PIXPOS nY1,
 AT_PIXPOS nY2,
 const LPAT_PIXEL lpPixel,
 AT_DIMENSION nNumPixels
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

nX AT_PIXPOS X offset (X coord) of the vertical pixel column to be set.

nY1 AT_PIXPOS Raster line number at which the vertical column starts.

nY2 AT_PIXPOS Raster line number at which the column ends.

lpPixel const LPAT_PIXEL Far pointer to first byte of your pixel data.

nNumPixels AT_DIMENSION Number of pixels (not bytes) to transfer.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_PIXEL cPixArray[400]; /* Receives the returned pixels */
AT_PIXPOS nCol, nYtop, nYbot; /* Column and rows to get */
AT_DIMENSION nFetched; /* Holds the count of pixels retrieved*/
AT_ERRCOUNT nErrcount; /* Receives the returned error counts */
/* Restore the pixels saved by the call in example IG_DIB_column_get: */
nCol = 0; /* Restores to image's left boundary */
nYtop = 10; nYbot = 59; /* 50 pixels, from lines 10 thru 59*/
nFetched = nYbot - Top + 1;
nErrcount = IG_DIB_column_set (hIGear, nCol, nYtop, nYbot, &cPixArray[0],nFetched);

Remarks:

The pixel at nX is set in pixel rows nY1 through nY2 inclusive. nNumPixels is the number of pixels to set, and should
equal (nY2-nY1+1).

ImageGear's pixel access functions consider the coordinates (0,0) to refer to the upper left-hand corner of the
bitmap data. They do not follow the DIB's orientation, which considers (0,0) to refer to the lower left-hand
corner of the bitmap.

If the image is 1-bit or 4-bit, your pixels should be one to a byte and right justified, beginning at lpPixel. If the image
is 24-bit, each pixel should occupy 3 bytes, in Blue-Green-Red order.

ImageGear Professional v18 for Mac | 561

If the image you are modifying is 1-bit, you will probably need to convert the image from run-end encoded to a
standard DIB before you can set pixel values. Please see the section Accessing Image Pixels for details.

ImageGear Professional v18 for Mac | 562

1.3.1.2.7.11 IG_DIB_flood_fill

This function fills an area with a color, starting at the specified point.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_flood_fill(
 HIGEAR hIGear,
 AT_INT xPos,
 AT_INT yPos,
 LPAT_PIXEL lpFillPixel,
 LPAT_PIXEL lpBorderPixel
);

Arguments:

Name Type Description

hIGear HIGEAR Image to process.

xPos AT_INT X coordinate of a point inside the area to be filled.

yPos AT_INT X coordinate of a point inside the area to be filled.

lpFillPixel LPAT_PIXEL Fill color.

lpBorderPixel LPAT_PIXEL Color of the border surrounding the area.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional, except:
Indexed RGB – 1 bpp;
Grayscale – 1 bpp.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Remarks:

There are two ways to specify the area:

If BorderColor is NULL, the area is defined by the color of the specified point.
Otherwise, the area is defined by the border color.

ImageGear Professional v18 for Mac | 563

1.3.1.2.7.12 IG_DIB_flush

This function flushes the DIB if it uses a memory mapped file for storing pixels.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_flush(HIGEAR hIGear);

Arguments:

Name Type Description

hIGear HIGEAR Handle of the image whose pixel data should be flushed.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional, except:

Indexed RGB - 1 bpp;
Grayscale - 1 bpp.

Remarks:

Call this function periodically to flush the DIB if the application accesses individual pixels or rasters of an image, or
accesses pixel data directly by the image or raster pointer, and the DIB uses a memory mapped file for storing pixels.
Usually, it is sufficient to flush the DIB after accessing of 100 - 200 Mb of pixel data.

If memory mapping is not used for the DIB, the function does nothing.

See Also:

Accessing Pixels of a Gigabyte-Sized Image

ImageGear Professional v18 for Mac | 564

1.3.1.2.7.13 IG_DIB_height_get

This function returns the height of the image.

Declaration:

AT_DIMENSION ACCUAPI IG_DIB_height_get(
 HIGDIBINFO hDIB
);

Arguments:

Name Type Description

hDIB HIGDIBINFO DIB info handle.

Return Value:

Returns image height.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGDIBINFO hDIBInfo; /* DIB info handle */
HIGEAR hImage; /* HIGEAR handle of image */
AT_DIMENSION height; /* Returned height of image */
nErrcount = IG_image_DIB_info_get(hImage, &hDIBInfo);
height = IG_DIB_height_get(hDIBInfo);

ImageGear Professional v18 for Mac | 565

1.3.1.2.7.14 IG_DIB_info_copy

This function makes a copy of a DIB info object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_info_copy(
 HIGDIBINFO hDIBSrc,
 HIGDIBINFO* lphDIBDst
);

Arguments:

Name Type Description

hDIBSrc HIGDIBINFO DIB info handle from which to copy.

lphDIBDst HIGDIBINFO* Pointer to where copied DIB info handle will be stored.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGDIBINFO hDIBInfo; /* Handle of DIB info to be copied */
HIGDIBINFO hDIBInfoCopy; /* Handle of DIB info copy */
HIGEAR hImage; /* HIGEAR handle of image */
nErrcount = IG_image_DIB_info_get(hImage, &hDIBInfo);
nErrcount = IG_DIB_info_copy(hDIBInfo, &hDIBInfoCopy);

Remarks:

This function does not copy pixel data.

ImageGear Professional v18 for Mac | 566

1.3.1.2.7.15 IG_DIB_info_create

This function creates a new DIB info object and initializes it to the given values.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_info_create(
 HIGDIBINFO* lphDIB,
 AT_DIMENSION width,
 AT_DIMENSION height,
 enumIGColorSpaceIDs colorspace,
 AT_INT channelCount,
 AT_INT* channelDepths
);

Arguments:

Name Type Description

lphDIB HIGDIBINFO* Pointer to where created DIB info's handle will be stored.

width AT_DIMENSION Width of image in pixels.

height AT_DIMENSION Height of image in pixels.

colorspace enumIGColorSpaceIDs Color space of image.

channelCount AT_INT Number of channels in image.

channelDepths AT_INT* Array of channel depths.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

/* Create a DIB info object describing a 48-bit RGB image */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGDIBINFO hDIBInfo; /* DIB info handle */
AT_INT depths[3] = {16, 16, 16}; /* Array of channel depths */
nErrcount = IG_DIB_info_create(&hDIBInfo, 320, 240, IG_COLOR_SPACE_ID_RGB, 3, depths);
/* ... */
nErrcount = IG_DIB_info_delete(hDIBInfo);

Remarks:

The DIB info object must be deleted with IG_DIB_info_delete when it is finished being used.

This function does not allocate pixel data storage.

ImageGear Professional v18 for Mac | 567

1.3.1.2.7.16 IG_DIB_info_delete

This function deletes a DIB info object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_info_delete(
 HIGDIBINFO hDIB
);

Arguments:

Name Type Description

hDIB HIGDIBINFO DIB info handle.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

/* Create a DIB info object describing a 24-bit RGB image */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGDIBINFO hDIBInfo; /* DIB info handle */
AT_INT depths[3] = {8, 8, 8}; /* Array of channel depths */
nErrcount = IG_DIB_info_create(&hDIBInfo, 320, 240, IG_COLOR_SPACE_ID_RGB, 3, depths);
/* ... */
nErrcount = IG_DIB_info_delete(hDIBInfo);

ImageGear Professional v18 for Mac | 568

1.3.1.2.7.17 IG_DIB_info_raster_size_get

This function returns the number of bytes per raster in the DIB.

Declaration:

AT_INT ACCUAPI IG_DIB_info_raster_size_get(
 HIGDIBINFO hDIB
);

Arguments:

Name Type Description

hDIB HIGDIBINFO DIB info handle.

Return Value:

Returns DIB raster size.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGDIBINFO hDIBInfo; /* DIB info handle */
AT_INT rasterSize; /* Returned raster size */
rasterSize = IG_DIB_info_raster_size_get(hDIBInfo);

Remarks:

For all images except 1-bit images, the returned number is precise.

For 1-bit images, the function returns the raster size assuming that 8 pixels are packed per byte. In reality, ImageGear
internally stores 1-bit images using run ends scheme. The size of the raster stored in memory depends on the content of
the raster, but usually the raster occupies much less space than the number returned by IG_DIB_info_raster_size_get.

ImageGear Professional v18 for Mac | 569

1.3.1.2.7.18 IG_DIB_legacy_bit_depth_get

This function returns the bit depth that earlier ImageGear versions used to store this image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_legacy_bit_depth_get(
 HIGEAR hIGear,
 LPAT_INT lpBitsPerPixel
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpBitsPerPixel LPAT_INT Returned legacy bit depth of the image.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGEAR hImage; /* Handle of image */
AT_INT bpp; /* Image bit depth */
nErrcount = IG_DIB_legacy_bit_depth_get(hImage, &bpp);
/* bpp could be 1, 4, 8, 9-16, 24, or 32 */

Remarks:

This function can be used for working with pixel access functions in the legacy mode.

ImageGear Professional v18 for Mac | 570

1.3.1.2.7.19 IG_DIB_line_get

This function obtains an arbitrary line of pixels from the DIB image bitmap of the image referenced by hIGear.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_line_get (
 HIGEAR hIGear,
 AT_PIXPOS nX1,
 AT_PIXPOS nY1,
 AT_PIXPOS nX2,
 AT_PIXPOS nY2,
 LPAT_PIXEL lpPixel,
 const AT_DIMENSION nlenOfArray,
 LPAT_DIMENSION lpNumPixels
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

nX1 AT_PIXPOS X coordinate of the first endpoint of line to get.

nY1 AT_PIXPOS Y coordinate of the first endpoint.

nX2 AT_PIXPOS X coordinate of the second endpoint of line.

nY2 AT_PIXPOS Y coordinate of the second endpoint.

lpPixel LPAT_PIXEL Far pointer to your data area to which the pixels should be returned.

nLenOfArray const
AT_DIMENSION

Length, in bytes, of lpPixel block.

lpNumPixels LPAT_DIMENSION Far pointer to an AT_DIMENSION variable in which the number of pixels (not
bytes) transferred is returned.

Return Value:

Returns the number of ImageGear errors that occurred during the function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

See the example for function IG_DIB_line_set().

Remarks:

The line of pixels does not have to be horizontal or vertical. nX1,nY1 are the coordinates of one endpoint of the line
and nX2,nY2 are of the other.

If the pixel data would overflow your area (nLenOfArray), the transfer will be truncated; your data area will not be
overflowed. The actual number of pixels returned will be stored in your variable pointed to by lpNumPixels.

ImageGear's pixel access functions consider the coordinates (0,0) to refer to the upper left-hand corner of the
bitmap data. They do not follow the DIB's orientation, which considers (0,0) to refer to the lower left-hand
corner of the bitmap.

To determine the number of pixels that your line will be comprised of, use the following formula:
max((1+abs(x2-x1)), (1+abs(y2-y1)))
1-bit and 4-bit pixels are returned one to a byte, right justified. 24-bit pixels are returned 3 bytes per pixel, in
Blue-Green-Red order.

ImageGear Professional v18 for Mac | 571

ImageGear Professional v18 for Mac | 572

1.3.1.2.7.20 IG_DIB_line_set

This function stores an arbitrary line of pixels in the DIB image bitmap of the image referenced by HIGEAR.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_line_set (
 HIGEAR hIGear,
 AT_PIXPOS nX1,
 AT_PIXPOS nY1,
 AT_PIXPOS nX2,
 AT_PIXPOS nY2,
 const LPAT_PIXEL lpPixel,
 AT_DIMENSION nNumPixels
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to which to transfer pixels.

nX1 AT_PIXPOS X coordinate of the first endpoint of line to store.

nY1 AT_PIXPOS Y coordinate of the first endpoint.

nX2 AT_PIXPOS X coordinate of the second endpoint of line to store.

nY2 AT_PIXPOS Y coordinate of the second endpoint.

lpPixel const LPAT_PIXEL Far pointer to your data area containing the pixels to be stored.

nNumPixels AT_DIMENSION Number of pixels (not bytes) to be transferred.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_PIXEL cPixArray[400]; /* Receives the returned pixels */
AT_PIXPOS nXleft, nYtop, /* Coordinates of upper-left end of line*/
 nXright, nYbot; /* Coordinates of the lower-right end */
AT_DIMENSION nFetched; /* Holds the count of pixels retrieved */
AT_ERRCOUNT nErrcount; /* Receives the returned error counts */
/* Fetch a diagonal line, from Coordinates (0,0) to (100,100):
*/
nXleft = 0; nYtop = 0; /* Diagonal line from
upper left corner */
nXright = 100; nYbot = 100;
nErrcount = IG_DIB_line_get (hIGear, nXleft, nYtop, nXright, nYbot, &cPixArray[0], 400,
&nFetched);
 ...
/* Now restore the line: */
nErrcount = IG_DIB_line_set (hIGear, nXleft, nYtop, nXright, nYbot, &cPixArray[0],
nFetched);

ImageGear Professional v18 for Mac | 573

Remarks:

The line does not have to be horizontal or vertical. (nX1,nY1) are the coordinates of one endpoint of the line and
(nX2,nY2) are of the other.

ImageGear's pixel access functions consider the coordinates (0,0) to refer to the upper left-hand corner of the
bitmap data. They do not follow the DIB's orientation, which considers (0,0) to refer to the lower left-hand
corner of the bitmap.

If the image you are modifying is 1-bit, you must convert the image from run-end encoded to a standard DIB before
you can set pixel values. Please see the section Accessing Image Pixels for details.

1-bit and 4-bit pixels should be provided one to a byte, right justified (that is, in the least significant bits of the byte).
24 bit pixels should be 3 bytes per pixel, in Blue-Green-Red order.

To calculate the number of pixels that your line will consist of, use the following formula:
max((1+abs(x2-x1)), (1+abs(y2-y1)))

ImageGear Professional v18 for Mac | 574

1.3.1.2.7.21 IG_DIB_palette_alloc

This function allocates a palette for the given DIB.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_palette_alloc(
 HIGDIBINFO hDIB
);

Arguments:

Name Type Description

hDIB HIGDIBINFO DIB info handle.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

Indexed RGB: 1…8 bpp

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGDIBINFO hDIB; /* DIB info handle */
AT_INT nEntries; /* Number of palette entries */
LPAT_RGBQUAD lpPalette; /* Pointer to palette data */
AT_INT i; /* Index for palette loop */
/* Make a palette in which every color is GREEN */
nErrcount = IG_DIB_palette_alloc(hDIB);
nEntries = IG_DIB_palette_length_get(hDIB);
lpPalette = IG_DIB_palette_pointer_get(hDIB);
for (i = 0; i < nEntries; i++)
{
 lpPalette[i].rgbRed = lpPalette[i].rgbBlue = 0;
 lpPalette[i].rgbGreen = 255;
}

ImageGear Professional v18 for Mac | 575

1.3.1.2.7.22 IG_DIB_palette_length_get

This function returns the number of entries in the DIB's palette.

Declaration:

AT_INT ACCUAPI IG_DIB_palette_length_get(
 HIGDIBINFO hDIB
);

Arguments:

Name Type Description

hDIB HIGDIBINFO DIB info handle.

Return Value:

Returns the number of palette entries.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGDIBINFO hDIB; /* DIB info handle */
AT_INT nEntries; /* Number of palette entries */
LPAT_RGBQUAD lpPalette; /* Pointer to palette data */
AT_INT i; /* Index for palette loop */
/* Make a palette in which every color is GREEN */
nErrcount = IG_DIB_palette_alloc(hDIB);
nEntries = IG_DIB_palette_length_get(hDIB);
lpPalette = IG_DIB_palette_pointer_get(hDIB);
for (i = 0; i < nEntries; i++)
{
 lpPalette[i].rgbRed = lpPalette[i].rgbBlue = 0;
 lpPalette[i].rgbGreen = 255;
}

ImageGear Professional v18 for Mac | 576

1.3.1.2.7.23 IG_DIB_palette_pointer_get

This function returns a pointer to the DIB's palette, if it is present; otherwise it returns NULL.

Declaration:

LPAT_RGBQUAD ACCUAPI IG_DIB_palette_pointer_get(
 HIGDIBINFO hDIB
);

Arguments:

Name Type Description

hDIB HIGDIBINFO DIB info handle.

Return Value:

Pointer to the DIB palette, if it is present; NULL - otherwise.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGDIBINFO hDIB; /* DIB info handle */
AT_INT nEntries; /* Number of palette entries */
LPAT_RGBQUAD lpPalette; /* Pointer to palette data */
AT_INT i; /* Index for palette loop */
/* Make a palette in which every color is GREEN */
nErrcount = IG_DIB_palette_alloc(hDIB);
nEntries = IG_DIB_palette_length_get(hDIB);
lpPalette = IG_DIB_palette_pointer_get(hDIB);
for (i = 0; i < nEntries; i++)
{
 lpPalette[i].rgbRed = lpPalette[i].rgbBlue = 0;
 lpPalette[i].rgbGreen = 255;
}

Remarks:

You can use this to get and set palette entries or the palette as a whole.

ImageGear Professional v18 for Mac | 577

1.3.1.2.7.24 IG_DIB_palette_size_get

This function returns the size of the DIB's palette, in bytes.

Declaration:

AT_INT ACCUAPI IG_DIB_palette_size_get(
 HIGDIBINFO hDIB
);

Arguments:

Name Type Description

hDIB HIGDIBINFO DIB info handle.

Return Value:

DIB palette size, in bytes.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGDIBINFO hDIB; /* DIB info handle */
AT_INT paletteSize; /* Returned size of palette */
paletteSize = IG_DIB_palette_size_get(hDIB);

ImageGear Professional v18 for Mac | 578

1.3.1.2.7.25 IG_DIB_pixel_array_size_get

This function returns the number of bytes needed to store an array of pixels.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_pixel_array_size_get(
 HIGEAR hIGear,
 AT_DIMENSION length,
 AT_MODE format,
 LPAT_DIMENSION lpSize
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image containing pixel data.

length AT_DIMENSION Number of pixels for which to calculate array size.

format AT_MODE IG_PIXEL_UNPACKED - All bit depths are unpacked (at least one byte per pixel).
IG_PIXEL_PACKED - In legacy mode: 1 and 4 bit images are packed (8 or 2 pixels per
byte). In new mode: Only 1 bit images are packed (8 pixels per byte).

lpSize LPAT_DIMENSION Returned array size in bytes.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

/* Get # of bytes needed to store half a row */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGEAR hImage; /* Handle of image */
AT_DIMENSION w, h; /* Width and height of image */
AT_DIMENSION nBytes; /* Size of pixel array in bytes */
nErrcount = IG_image_dimensions_get(hImage, &w, &h, NULL);
nErrcount = IG_DIB_pixel_array_size_get(hImage, w / 2,
 IG_PIXEL_UNPACKED, &nBytes);

Remarks:

This can be used to allocate storage for use with pixel access functions. This function is similar to
IG_DIB_raster_size_get(), but it lets you specify the number of pixels instead of using the number of pixels in an entire
raster.

ImageGear Professional v18 for Mac | 579

1.3.1.2.7.26 IG_DIB_pixel_get

This function obtains the pixel at coordinates (nXpos, nYpos), storing it right justified (that is, in the least significant bits)
at the location pointed to by lpPixel.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_pixel_get (
 HIGEAR hIGear,
 AT_PIXPOS nXpos,
 AT_PIXPOS nYpos,
 LPAT_PIXEL lpPixel
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

nXpos AT_PIXPOS X offset (in pixels) from beginning of raster line. First pixel on line is pixel number 0.

nYpos AT_PIXPOS Raster line number. 0 is top line.

lpPixel LPAT_PIXEL Far pointer to byte at which to store pixel (or to a 3-byte area if a 24-bit pixel).

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Pixel Access, FlashPix

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_PIXEL cPixelValue[3];/* 3 bytes in case 24-bit image
*/
 /* Get value of the upper-leftmost pixel in image:
*/
IG_DIB_pixel_get (hIGear, 0, 0, &cPixelValue[0]);

Remarks:

If the pixel is 1-bit or 4-bit, the remaining bits of the byte will be set to zeroes.

If the pixel is 24-bit, 3 bytes are returned. These will be in the order Blue-Green-Red (unless you have changed the
order of the image bitmap bytes such as by calling function IG_IP_swap_red_blue()).

ImageGear's pixel access functions consider the coordinates (0,0) to refer to the upper left-hand corner of the
bitmap data. They do not follow the DIB's orientation, which considers (0,0) to refer to the lower left-hand corner
of the bitmap.

ImageGear Professional v18 for Mac | 580

1.3.1.2.7.27 IG_DIB_pixel_set

This function sets the pixel, at the location pointed to by lpPixel, into the image bitmap of image hIGear at coordinates
(nXpos, nYpos).

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_pixel_set (
 HIGEAR hIGear,
 AT_PIXPOS nXpos,
 AT_PIXPOS nYpos,
 const LPAT_PIXEL lpPixel
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of an image.

nXpos AT_PIXPOS X offset (in pixels) from beginning of raster line. First pixel on line is pixel number 0.

nYpos AT_PIXPOS Raster line number. 0 is top line.

pPixel const LPAT_PIXEL Far pointer to byte containing pixel, or to a 3-byte area if a 24-bit pixel.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear;/* HIGEAR handle of image */
AT_PIXEL cPixelValue[3];/* 3 bytes in case 24-bit image
*/
/* Set upper-leftmost pixel in image, to max pixel value:
*/
cPixelValue[0] = cPixelValue[1] = cPixelValue[2] = 255;
IG_DIB_pixel_set (hIGear, 0, 0, &cPixelValue[0]);

Remarks:

The pixel is assumed to have the same number of Bits Per Pixel as the image, and if it is 1 or 4 bits, it is assumed to be
right justified (that is, in the least significant bits) at location lpPixel. If the image is 24-bit, 3 bytes are transferred.
Normally, these bytes will be in the order of Blue-Green-Red (unless the order of the image bitmap bytes has been
changed by a call such as IG_IP_swap_red_blue()).

ImageGear's pixel access functions consider the coordinates (0,0) to refer to the upper left-hand corner of the
bitmap data. They do not follow the DIB's orientation, which considers (0,0) to refer to the lower left-hand corner
of the bitmap.

If the image you are modifying is 1-bit, you must convert the image from run-end encoded to a standard DIB,
before you can set pixel values. Please see the section Accessing Image Pixels for details.

ImageGear Professional v18 for Mac | 581

1.3.1.2.7.28 IG_DIB_pix_get

This function gets a pixel from the specified location in the image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_pix_get(
 HIGEAR hIGear,
 AT_PIXPOS xpos,
 AT_PIXPOS ypos,
 HIGPIXEL* lphPixel
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image from which to get pixel.

xpos AT_PIXPOS X coordinate (0 to width-1).

ypos AT_PIXPOS Y coordinate (0 to height-1).

lphPixel HIGPIXEL* Returns object containing pixel data.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGEAR hImage; /* Handle of image */
HIGPIXEL hPix; /* Handle of pixel */
AT_DIMENSION w, h; /* Width and height of image */
AT_INT nChannels; /* Number of channels in image */
AT_DIMENSION x, y; /* Used to loop over image */
AT_INT c; /* Used to loop over channels */
AT_INT nDepth; /* Channel depth */
AT_UINT inverted; /* Inverted channel value */
/* Invert colors in upper-left quadrant of image */
nErrcount = IG_load_file("test.jpg", &hImage);
nErrcount = IG_image_channel_count_get(hImage, &nChannels);
nErrcount = IG_image_dimensions_get(hImage, &w, &h, NULL);
for (y = 0; y < h / 2; y++)
 for (x = 0; x < w / 2; x++)
 {
 nErrcount = IG_DIB_pix_get(hImage, x, y, &hPix);
 for (c = 0; c < nChannels; c++)
 {
 IG_image_channel_depth_get(hImage, c, &nDepth);
 nDepth = (1 << nDepth) - 1;
 inverted = nDepth - IG_pixel_value_get(hPix, c);
 IG_pixel_value_set(hPix, c, inverted);
 }
 nErrcount = IG_DIB_pix_set(hImage, x, y, hPix);
 IG_pixel_delete(hPix);
 }

ImageGear Professional v18 for Mac | 582

nErrcount = IG_save_file(hImage, "test.bmp",
 IG_SAVE_BMP_UNCOMP);
IG_image_delete(hImage);

Remarks:

The pixel data is contained by a pixel object with handle of type HIGPIXEL. This pixel object stores values for each
channel in the image.

ImageGear Professional v18 for Mac | 583

1.3.1.2.7.29 IG_DIB_pix_set

This function sets a pixel at the specified location in the image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_pix_set(
 HIGEAR hIGear,
 AT_PIXPOS xpos,
 AT_PIXPOS ypos,
 const HIGPIXEL hPixel
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image into which to set pixel.

xpos AT_PIXPOS X coordinate (0 to width-1).

ypos AT_PIXPOS Y coordinate (0 to height-1).

hPixel const HIGPIXEL Pixel data to write.

Remarks:

The pixel data is contained by a pixel object with handle of type HIGPIXEL. This pixel object stores values for each
channel in the image.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGEAR hImage; /* Handle of image */
HIGPIXEL hPix; /* Handle of pixel */
AT_DIMENSION w, h; /* Width and height of image */
AT_INT nChannels; /* Number of channels in image */
AT_DIMENSION x, y; /* Used to loop over image */
AT_INT c; /* Used to loop over channels */
AT_INT nDepth; /* Channel depth */
AT_UINT inverted; /* Inverted channel value */
/* Invert colors in upper-left quadrant of image */
nErrcount = IG_load_file("test.jpg", &hImage);
nErrcount = IG_image_channel_count_get(hImage, &nChannels);
nErrcount = IG_image_dimensions_get(hImage, &w, &h, NULL);
for (y = 0; y < h / 2; y++)
 for (x = 0; x < w / 2; x++)
 {
 nErrcount = IG_DIB_pix_get(hImage, x, y, &hPix);
 for (c = 0; c < nChannels; c++)
 {
 IG_image_channel_depth_get(hImage, c, &nDepth);
 nDepth = (1 << nDepth) - 1;
 inverted = nDepth - IG_pixel_value_get(hPix, c);

ImageGear Professional v18 for Mac | 584

 IG_pixel_value_set(hPix, c, inverted);
 }
 nErrcount = IG_DIB_pix_set(hImage, x, y, hPix);
 IG_pixel_delete(hPix);
 }
nErrcount = IG_save_file(hImage, "test.bmp",
 IG_SAVE_BMP_UNCOMP);
IG_image_delete(hImage);

ImageGear Professional v18 for Mac | 585

1.3.1.2.7.30 IG_DIB_raster_get

This function obtains an entire horizontal raster line of pixels from the DIB image bitmap.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_raster_get (
 HIGEAR hIGear,
 AT_PIXPOS nYpos,
 LPAT_PIXEL lpPixel,
 AT_MODE nFormat
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

nYpos AT_PIXPOS Raster line number (0 is top line).

lpPixel LPAT_PIXEL Far pointer to first byte of area to receive the raster row of pixel values.

nFormat AT_MODE A variable of type AT_MODE (see accucnst.h) that tells whether the data being read in
packed, unpacked, or RLE-compressed.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image
*/
AT_PIXEL cPixelValue[64]; /* Needed to hold 500 1-
bit pixels */
AT_PIXPOS nRaster; /* Index for the loop below
*/
AT_ERRCOUNT nErrcount; /* Hold the returned error count
*/
AT_MODE nFormat;
/* Obtain the top raster of a 1-bit image that's 500 pixels wide: */
/* The pixels occupy 500/8 = 62.5 bytes. */
nErrcount = IG_DIB_raster_get (hIGear, 0, &cPixelValue[0], IG_PIXEL_PACKED);
/* Make the next 9 rows identical to the top row: */
for (nRaster = 1; nRaster < 10; nRaster++)
 nErrcount = IG_DIB_raster_set (hIGear, nRaster, &cPixelValue[0], IG_PIXEL_PACKED
);

Remarks:

You may first make a call to IG_DIB_raster_size_get() in order to determine the size of buffer that you will need to
hold the raster data. The format in which the data is returned, nFormat, tells ImageGear whether the data is packed,
unpacked, or RLE-compressed. The values that nFormat may be set to are: IG_PIXEL_PACKED,
IG_PIXEL_UNPACKED, and IG_PIXEL_RLE. IG_PIXEL_PACKED gives the storage format of a standard uncompressed
DIB, which includes padding to a multiple of 4 bytes length. (If 1-bit or 4-bit, the pixels are packed 8 or 2 to a byte
respectively, stored most-significant-bit-first.) 24-bit pixels are returned 3 bytes each, ordered Blue-Green-Red, with
the row padded to a multiple of 4 bytes length.

ImageGear Professional v18 for Mac | 586

ImageGear's pixel access functions consider the coordinates (0,0) to refer to the upper left-hand corner of the
bitmap data. They do not follow the DIB's orientation, which considers (0,0) to refer to the lower left-hand
corner of the bitmap.

ImageGear Professional v18 for Mac | 587

1.3.1.2.7.31 IG_DIB_raster_set

This function sets a horizontal raster line of pixels into the DIB image bitmap.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_raster_set (
 HIGEAR hIGear,
 AT_PIXPOS nYpos,
 const LPAT_PIXEL lpPixel,
 AT_MODE nFormat
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of an image.

nYpos AT_PIXPOS Raster line number (0 is top line).

lpPixel const
LPAT_PIXEL

Far pointer to first byte of the pixel data to set.

nFormat AT_MODE A variable of type AT_MODE which indicates in which manner the raster data should be
stored: IG_PIXEL_PACKED, IG_PIXEL_UNPACKED, or IG_PIXEL_RLE.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

See the example for function IG_DIB_raster_get().

Remarks:

nFormat should be set to the same format in which the rest of the data in the DIB is stored. If you choose
IG_PIXEL_PACKED, your array of bytes should be padded with zeroes on the right, just as it is in the standard DIB
format, such that its length is a multiple of 4.

ImageGear's pixel access functions consider the coordinates (0,0) to refer to the upper left-hand corner of the
bitmap data. They do not follow the DIB's orientation, which considers (0,0) to refer to the lower left-hand corner
of the bitmap.

If the image you are modifying is 1-bit, you must convert the image from run-end encoded to a standard DIB,
before you can set pixel values. Please see the section Accessing Image Pixels for details.

ImageGear Professional v18 for Mac | 588

1.3.1.2.7.32 IG_DIB_raster_size_get

This function calculates and returns the number of bytes required to hold a line (raster) from the image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_raster_size_get(
 HIGEAR hIGear,
 AT_MODE nFormat,
 LPAT_DIMENSION lpSize
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of the image.

nFormat AT_MODE Format in which the raster data is stored: IG_PIXEL_PACKED, IG_PIXEL_UNPACKED,
IG_PIXEL_RLE.

lpSize LPAT_DIMENSION A far pointer to a variable in which the size of the raster line (in bytes) is returned.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Remarks:

You can use this function to determine the size of a block of memory to allocate before using IG_DIB_raster_get(), to
avoid data overflow. The returned size will include allocation for buffering at the end of the rasters. (See the section
Device-Independent Bitmaps (DIB) for more information on buffering in DIBs.) The nFormat variable determines in what
form you would like to store the pixels in. The size will vary according to the storage method.

ImageGear Professional v18 for Mac | 589

1.3.1.2.7.33 IG_DIB_resolution_get

This function copies resolution from DIB to lpResolution.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_resolution_get(
 HIGDIBINFO hDIB,
 AT_RESOLUTION* lpResolution
);

Arguments:

Name Type Description

hDIB HIGDIBINFO DIB info handle.

lpResolution AT_RESOLUTION* Pointer to struct to which to copy DIB resolution.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGDIBINFO hDIB; /* DIB info handle */
AT_RESOLUTION res; /* Returned image resolution */
nErrcount = IG_DIB_resolution_get(hDIB, &res);

ImageGear Professional v18 for Mac | 590

1.3.1.2.7.34 IG_DIB_resolution_set

This function copies resolution from lpResolution to DIB.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_resolution_set(
 HIGDIBINFO hDIB,
 const AT_RESOLUTION* lpResolution
);

Arguments:

Name Type Description

hDIB HIGDIBINFO DIB info handle.

lpResolution const AT_RESOLUTION* Pointer to struct to copy to DIB.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGDIBINFO hDIB; /* DIB info handle */
AT_RESOLUTION res; /* Image resolution to be set */
/* Set resolution to 300 DPI */
res.units = IG_RESOLUTION_INCHES;
res.xResNumerator = res.yResNumerator = 300;
res.xResDenominator = res.yResDenominator = 1;
nErrcount = IG_DIB_resolution_set(hDIB, &res);

ImageGear Professional v18 for Mac | 591

1.3.1.2.7.35 IG_DIB_resolution_units_get

This function has been deprecated and will be removed from the public API in a future release. Please use
IG_DIB_resolution_get or IG_image_resolution_get instead.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_resolution_units_get(
 LPAT_MODE lpnResUnits
);

Arguments:

Name Type Description

lpnResUnits LPAT_MODE Pointer to AT_MODE where to return current identifier of resolution units.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_MODE nResUnits;
. . .IG_DIB_resolution_units_get(&nResUnits);. . .

Remarks:

ImageGear allows you to store the DIB resolution - biXPelsPerMeter and biYPelsPerMeter fields of AT_DIB structure - in
different units depending on a global parameter; this function allows you to get the current value of this parameter. Valid
values are IG_RESOLUTION_INCHES and IG_RESOLUTION_METERS. The default value is IG_RESOLUTION_METERS.

ImageGear Professional v18 for Mac | 592

1.3.1.2.7.36 IG_DIB_resolution_units_set

This function has been deprecated and will be removed from the public API in a future release. Please use
IG_DIB_resolution_set or IG_image_resolution_set instead.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_resolution_units_set(
 AT_MODE nDIBResUnits
);

Arguments:

Name Type Description

nDIBResUnits AT_MODE Value of type AT_MODE. Can be either IG_RESOLUTION_INCHES or
IG_RESOLUTION_METERS.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_MODE nDIBResUnits
nDIBResUnits = IG_RESOLUTION_INCHES
...IG_DIB_resolution_units_set(nDIBResUnits);. . .

Remarks:

ImageGear allows you to store the DIB resolution (biXPelsPerMeter and biYPelsPerMeter fields of AT_DIB structure) in
different units depending on a global parameter; this function allows you to set the current value of this parameter.

Valid values are IG_RESOLUTION_INCHES and IG_RESOLUTION_METERS. The default value is
IG_RESOLUTION_METERS.

ImageGear Professional v18 for Mac | 593

1.3.1.2.7.37 IG_DIB_row_get

This function obtains a consecutive row of nLength pixels beginning at coordinates (nXpos, xYpos) in the image
bitmap.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_row_get (
 HIGEAR hIGear,
 AT_PIXPOS nXpos,
 AT_PIXPOS nYpos,
 AT_DIMENSION nLength,
 LPVOID lpPixel,
 AT_MODE nFormat
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

nXpos AT_PIXPOS X offset (in pixels) from beginning of the raster line. First pixel on line is pixel number
0. Specify as -1 to obtain the entire raster line of pixels.

nYpos AT_PIXPOS Raster line number (0 is top line).

nLength AT_DIMENSION Number of consecutive pixels to obtain (entire raster line if nXpos = -1).

lpPixel LPVOID Far pointer to first byte of your area, at which the pixels obtained are to be stored.

nFormat AT_MODE Format in which the raster data is read: IG_PIXEL_PACKED, IG_PIXEL_UNPACKED,
IG_PIXEL_RLE.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image
*/
AT_PIXEL cPixelValue[300]; /* To hold 100 pixels, in
case 24-bit*/
AT_PIXPOS nRow; /* Index for the loop below
*/
AT_DIMENSION nRowLen; /* How much of row to copy
*/
AT_ERRCOUNT nErrcount; /* Holds the returned error count
*/
/* Obtain leftmost 100 pixels of top raster of image:
*/
nRowLen = 100;
nErrcount = IG_DIB_row_get (hIGear, 0, 0, nRowLen, &cPixelValue[0], IG_PIXEL_UNPACKED);
/* Make leftmost 100 pixels of next 9 rows identical: */
for (nRow = 1; nRow < 10; nRow++)
 nErrcount = IG_DIB_row_set (hIGear, 0, nRow,
 nRowLen, cPixelValue, IG_PIXEL_UNPACKED);

ImageGear Professional v18 for Mac | 594

Remarks:

If nFormat is set to IG_PIXEL_UNPACKED, and the image is 1 or 4-bit, the pixels obtained are stored right justified,
one to a byte, beginning at your byte pointed to by lpPixel. The unused bits of the bytes are set to zero. If the pixels
are 24-bit, 3 bytes per pixel are returned, ordered Blue-Green-Red. A total of nLength pixels is transferred. (See the
section Device-Independent Bitmaps (DIB)Understanding Bitmap Images for more details on pixel storage in DIBs.)

ImageGear's pixel access functions consider the coordinates (0,0) to refer to the upper left-hand corner of the
bitmap data. They do not follow the DIB's orientation, which considers (0,0) to refer to the lower left-hand
corner of the bitmap.

ImageGear Professional v18 for Mac | 595

1.3.1.2.7.38 IG_DIB_row_set

This function writes a consecutive row of nLength pixels that begin at lpPixel, into image hIGear`s DIB image bitmap.

Declaration:

AT_ERRCOUNT ACCUAPI IG_DIB_row_set (
 HIGEAR hIGear,
 AT_PIXPOS nXpos,
 AT_PIXPOS nYpos,
 AT_DIMENSION nLength,
 const LPVOID lpPixel,
 AT_MODE nFormat
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

nXpos AT_PIXPOS X offset (in pixels) from beginning of raster line. First pixel on line is pixel number 0.

nYpos AT_PIXPOS Raster line number. 0 is top line.

nLength AT_DIMENSION Number of consecutive pixels to transfer.

lpPixel const LPVOID Far pointer to byte at which the pixels to transfer begin.

nFormat AT_MODE Format in which the raster data is stored: IG_PIXEL_PACKED, IG_PIXEL_UNPACKED,
IG_PIXEL_RLE.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

See the example for function IG_DIB_row_get().

Remarks:

The row is written into raster line nYpos, beginning at pixel offset nXpos. If nFormat is set to IG_PIXEL_UNPACKED, and
the image is 1-bit or 4-bit, your pixels to be transferred should be one to a byte, right justified (that is, in the least
significant bits). If a 24-bit image, each pixel should occupy 3 bytes, ordered Blue-Green-Red. (See the section Device-
Independent Bitmaps (DIB) for more details on pixel storage in DIBs.)

(If (nXpos + nLength) is greater than the width of the image as indicated in the DIB header, an error will result.

ImageGear's pixel access functions consider the coordinates (0,0) to refer to the upper left-hand corner of the
bitmap data. They do not follow the DIB's orientation, which considers (0,0) to refer to the lower left-hand corner
of the bitmap.

If the image you are modifying is 1-bit, you will probably need to convert the image from run-end encoded to a
standard DIB, before you can set pixel values. Please see the section Accessing Image Pixels for details.

ImageGear Professional v18 for Mac | 596

1.3.1.2.7.39 IG_DIB_width_get

This function returns the width of the image.

Declaration:

AT_DIMENSION ACCUAPI IG_DIB_width_get(
 HIGDIBINFO hDIB
);

Arguments:

Name Type Description

hDIB HIGDIBINFO DIB info handle.

Return Value:

Width of the image.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGDIBINFO hDIBInfo; /* DIB info handle */
HIGEAR hImage; /* HIGEAR handle of image */
AT_DIMENSION width; /* Returned height of image */
nErrcount = IG_image_DIB_info_get(hImage, &hDIBInfo);
width = IG_DIB_width_get(hDIBInfo);

ImageGear Professional v18 for Mac | 597

1.3.1.2.8 Display Functions

This section provides information about the Display group of functions.

IG_display_animation_delay_get
IG_display_animation_delay_set
IG_display_option_get
IG_display_option_set
IG_display_transparent_get
IG_display_transparent_set
IG_dspl_antialias_get
IG_dspl_antialias_get_ex
IG_dspl_antialias_set
IG_dspl_antialias_set_ex
IG_dspl_background_get
IG_dspl_background_set
IG_dspl_DDB_create
IG_dspl_DDB_draw
IG_dspl_DDB_import
IG_dspl_device_to_image
IG_dspl_device_to_image_d
IG_dspl_dithering_get
IG_dspl_dithering_set
IG_dspl_document_print
IG_dspl_document_print_custom
IG_dspl_foreground_get
IG_dspl_foreground_set
IG_dspl_free_grp_id_get
IG_dspl_gamma_correction_LUT_build
IG_dspl_gamma_correction_set
IG_dspl_grayscale_LUT_copy_get
IG_dspl_grayscale_LUT_exists
IG_dspl_grayscale_LUT_update_from
IG_dspl_grp_reset
IG_dspl_image_calc
IG_dspl_image_draw
IG_dspl_image_print
IG_dspl_image_to_device
IG_dspl_image_to_device_d
IG_dspl_image_wipe
IG_dspl_layout_get
IG_dspl_layout_set
IG_dspl_LUT_get
IG_dspl_LUT_set
IG_dspl_mapmode_get
IG_dspl_mapmode_set
IG_dspl_orientation_get
IG_dspl_orientation_set
IG_dspl_page_print
IG_dspl_palette_create
IG_dspl_palette_handle
IG_dspl_palette_get
IG_dspl_palette_set
IG_dspl_PPM_correct_get
IG_dspl_PPM_correct_set
IG_dspl_resize_handle

ImageGear Professional v18 for Mac | 598

IG_dspl_ROP_get
IG_dspl_ROP_set
IG_dspl_scroll_get
IG_dspl_scroll_handle
IG_dspl_scroll_set
IG_dspl_scroll_to
IG_dspl_scroll_to_ex
IG_dspl_transparency_get
IG_dspl_transparency_set
IG_dspl_zoom_get
IG_dspl_zoom_set
IG_dspl_zoom_to_rect

ImageGear Professional v18 for Mac | 599

1.3.1.2.8.1 IG_display_animation_delay_get

This function obtains the animation delay setting for image hIGear, as set by IG_display_animation_delay_set().

Declaration:

AT_ERRCOUNT ACCUAPI IG_display_animation_delay_get (
 HIGEAR hIGear,
 LPUINT lpDelay
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpDelay LPUINT Far pointer to a UINT variable to receive current animation delay setting for this image.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

HIGEAR hIGear; /* HIGEAR handle of image
*/
UINT nDelay; /* Will hold returned Delay setting
*/
IG_display_animation_delay_get (hIGear, &nDelay);

Remarks:

ImageGear does not provide functions for creating animation. This function is for getting this value from the HIGEAR.
You will need to write your own code to display the images in succession (animate).

ImageGear Professional v18 for Mac | 600

1.3.1.2.8.2 IG_display_animation_delay_set

This function sets the animation delay for image hIGear (currently, this quantity is meaningful only with GIF format
files).

Declaration:

AT_ERRCOUNT ACCUAPI IG_display_animation_delay_set (
 HIGEAR hIGear,
 UINT nDelay
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

nDelay UINT Animation delay, in milliseconds. A setting of 100 would mean 10 frames per second.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

HIGEAR hIGear; /* HIGEAR handle of image
*/
/* Set for 5 frames per second: */
IG_display_animation_delay_set (hIGear, 200);

Remarks:

ImageGear does not provide functions for creating animation. This function is for setting this value in the HIGEAR. You
will need to write your own code to display the images in succession (animate).

ImageGear Professional v18 for Mac | 601

1.3.1.2.8.3 IG_display_option_get

This function allows you to get the current display option settings for either a specific HIGEAR image or to get the
settings that will be inherited by each new HIGEAR image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_display_option_get (
 HIGEAR hIGear,
 AT_MODE nOption,
 LPVOID lpOption,
 LPVOID lpReserved
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image, or NULL.

nOption AT_MODE A integer of type AT_MODE that tells ImageGear what type of display option for which to
return a value. The options are defined in accucnst.h and their names begin with
IG_DISPLAY_OPTION_.

lpOption LPVOID A long pointer to VOID data returned as display option data.

lpReserved LPVOID This argument is reserved for future use. Please set to NULL for now.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The value that you set for hIGear determines whether the option settings will be retrieved from a specific image or a
global setting for all new HIGEAR images. If you set hIGear to a specific image, the settings for that image will be
returned. If you set hIGear to NULL, global settings for all new HIGEAR images will be returned.

See the description under IG_display_option_set() for more details about the display settings.

ImageGear Professional v18 for Mac | 602

1.3.1.2.8.4 IG_display_option_set

This function allows you to set the current display option settings for either a specific HIGEAR image or to set the
settings that will be inherited by each new HIGEAR image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_display_option_set (
 HIGEAR hIGear,
 AT_MODE nOption,
 const LPVOID lpOption,
 LPVOID lpReserved
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image or NULL.

nOption AT_MODE A integer of type AT_MODE that tells ImageGear which display option to set. The options
are defined in accucnst.h and their names begin with IG_DISPLAY_OPTION_.

lpOption const
LPVOID

A long pointer to VOID display option data. See details below.

lpReserved LPVOID This argument is reserved for future use. Please set to NULL for now.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
IG_display_option_set(hIGear, IG_DISPLAY_OPTION_DOWNSHIFT, (LPVOID)0, NULL);

Remarks:

You may set these options for a specific HIGEAR or for all newly created HIGEAR images. To set the options for a
particular HIGEAR image, set hIGear to the appropriate handle. To set the options for all newly created HIGEAR
images, set hIGear to NULL.

nOption must be set to one of the IG_DISPLAY_OPTION_ constants defined in accucnst.h. lpOption should be set to
the value of the option. This will vary depending on what option you are setting. See the list below.

Currently, this function is useful for 16-bit grayscale images only. However, constants will be added to support
all bit depths. See accucnst.h for new constants beginning with IG_DISPLAY_OPTION_.

Currently available options include:

IG_DISPLAY_OPTION_DOWNSHIFT: This option is for 16-bit grayscale DIBs only. It has no effect on any other
image bit depth. The value passed in to nOption must be in the range of 0 to 16 (the value is cast to a LPVOID -
the address of this value is not passed in). This value specifies how far each 16-bit pixel should be downshifted
before the least significant word is taken for display. All remaining bits in the high word are discarded. Setting this
option turns off the IG_DISPLAY_OPTION_LUT option.
IG_DISPLAY_OPTION_LUT: This option is for 16-bit grayscale DIBs only. It has no effect on any other image bit
depth. The value passed in to nOption must be a pointer to a 16x8 LUT (64K of memory). This table should be
filled with values that allow ImageGear to display 16-bit grayscale pixels on a 8-bit display. Setting this option

ImageGear Professional v18 for Mac | 603

turns off the IG_DISPLAY_OPTION_DOWNSHIFT option.

Additional options include:

IG_DISPLAY_OPTION_OFFSCREEN_DRAW: If this parameter is TRUE then the display code optimizes the drawing
when the ART component is used to prevent flashing. This a bit slower, but the visual quality is better. Otherwise,
each redraw operation is directly displayed, with flashing possible.
IG_DISPLAY_OPTION_DDB_OPTIMIZE: If this parameter is TRUE then monochrome DDB is created from 1bpp
HIGEAR image. Otherwise, a compatible bitmap to the current display is created.
IG_DISPLAY_OPTION_OFFSCREEN_WIDTH/IG_DISPLAY_OPTION_OFFSCREEN_HEIGHT: Default values (0, 0)
means that GetDeviceCaps(hDC,HORZRES) / GetDeviceCaps(hDC,VERTRES) will be used, respectively. These
options specify the size of offscreen drawing surface. Set it to the size of a single monitor. In case of a dual
monitor system you need to set IG_DISPLAY_OPTION_OFFSCREEN_WIDTH /
IG_DISPLAY_OPTION_OFFSCREEN_HEIGHT to the total size of your dual monitor screen.

ImageGear Professional v18 for Mac | 604

1.3.1.2.8.5 IG_display_transparent_get

Use this function to get image transparent color.

Declaration:

AT_ERRCOUNT EXPORT ACCUAPI IG_display_transparent_get(
 HIGEAR hIGear,
 LPAT_RGB lpRGB,
 LPAT_BOOL lpEnabled
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRGB LPAT_RGB Returns the RGB color values through which transparency is currently set.

lpEnabled LPAT_BOOL Returns current condition of transparency: TRUE - transparency enabled; FALSE -
transparency disabled.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 605

1.3.1.2.8.6 IG_display_transparent_set

Use this function to set image transparent color.

Declaration:

AT_ERRCOUNT EXPORT ACCUAPI IG_display_transparent_set(
 HIGEAR hIGear,
 LPAT_RGB lpRGB,
 LPAT_BOOL lpEnabled
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRGB LPAT_RGB Provide the RGB color values through which transparency have to be set.

lpEnabled LPAT_BOOL Enables or disables image transparency: TRUE - transparency enabled; FALSE -
transparency disabled.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

You have to use this API to write out a file with a transparency color set. For example when save image transparency
information to a GIF file format.

ImageGear Professional v18 for Mac | 606

1.3.1.2.8.7 IG_dspl_antialias_get

This function returns the current anti-alias settings.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_antialias_get(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [OUT] LPAT_MODE lpnAliasFlags,
 [OUT] LPUINT lpnThreshold
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group from which to get option.

lpnAliasFlags LPAT_MODE Pointer to where AliasMode is to be received. If NULL, then this parameter is ignored.

lpnThreshold LPUINT Pointer to where ThresholdValue is to be received. If NULL, then this parameter is
ignored.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
AT_MODE nAliasFlags; /* alias flags */
UINT nThreshold; /* alias threshold */
 ...
IG_dspl_antialias_get(hIGear, nGrpID, &nAliasFlags, &nThreshold);
 ...

Remarks:

Possible values are listed in the description of the IG_dspl_antialias_set() function.

ImageGear Professional v18 for Mac | 607

1.3.1.2.8.8 IG_dspl_antialias_get_ex

This function returns the current anti-alias settings.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_antialias_get_ex(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [OUT] LPAT_MODE lpnAliasFlags,
 [OUT] LPUINT lpnThreshold
 [OUT] LPUINT lpnQuality
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group from which to get option.

lpnAliasFlags LPAT_MODE Pointer to where AliasMode is to be received. If NULL, then this parameter is ignored.

lpnThreshold LPUINT Pointer to where ThresholdValue is to be received. If NULL, then this parameter is
ignored.

lpnQuality LPUINT Pointer to where color anti-aliasing quality value is to be received. If NULL, then this
parameter is ignored.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
AT_MODE nAliasFlags; /* alias flags */
UINT nThreshold; /* alias threshold */
UINT nQuality /*alias quality */
 ...
IG_dspl_antialias_get_ex(hIGear, nGrpID, &nAliasFlags, &nThreshold, &nQuality);
 ...

Remarks:

Possible values are listed in the description of the IG_dspl_antialias_set_ex() function.

ImageGear Professional v18 for Mac | 608

1.3.1.2.8.9 IG_dspl_antialias_set

This function sets new anti-alias settings.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_antialias_set(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] AT_MODE nAliasFlags,
 [IN] INT nThreshold
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group in which to set option.

nAliasFlags AT_MODE New value of AliasMode to set. Possible value is one of the following:

IG_DSPL_ANTIALIAS_NONE
IG_DSPL_ANTIALIAS_SCALE_TO_GRAY
IG_DSPL_ANTIALIAS_PRESERVE_BLACK
IG_DSPL_ANTIALIAS_PRESERVE_WHITE

with OR combination of one additional flag:

IG_DSPL_ANTIALIAS_SUBSAMPLE

nThreshold INT Specifies display aliasing threshold level (AliasThreshold). Please see Dithering, Anti-Aliasing,
and Palette Handling.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
 ...
/* sets scale to gray algorithm with subsampling */
IG_dspl_antialias_set(hIGear, nGrpID, IG_DSPL_ANTIALIAS_SCALE_TO_GRAY|
IG_DSPL_ANTIALIAS_SUBSAMPLE, 50);
 ...

ImageGear Professional v18 for Mac | 609

1.3.1.2.8.10 IG_dspl_antialias_set_ex

This function sets new anti-alias settings.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_antialias_set_ex(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] AT_MODE nAliasFlags,
 [IN] INT Threshold,
 [IN] INT nColorQuality
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group in which to set option.

nAliasFlags AT_MODE New value of AliasMode to set. It is an OR combination of following elements:
Scale-Up interpolation (re-sampling)
Scale-Down interpolation (anti-aliasing)

For 1 bit images anti-aliasing element is a one of constants:
IG_DSPL_ANTIALIAS_NONE
IG_DSPL_ANTIALIAS_SCALE_TO_GRAY
IG_DSPL_ANTIALIAS_PRESERVE_BLACK
IG_DSPL_ANTIALIAS_PRESERVE_WHITE

with OR combination of one additional flag IG_DSPL_ANTIALIAS_SUBSAMPLE

Anti-aliasing for all non-1 bit color spaces is activated with the
IG_DSPL_ANTIALIAS_COLOR flag. Scale-Up interpolation for all non-1 bit color spaces
is specified by the IG_DSPL_ANTIALIAS_RESAMPLE_BILINE flag.

nThreshold INT It indicates the threshold value of the amount of selected color to include for
IG_DSPL_ANTIALIAS_PRESERVE_XXXX scale-down interpolations. Please see Dithering,
Anti-Aliasing, and Palette Handling.

nColorQuality INT Specifies quality of color scale-down interpolation (anti-aliasing). Valid values are from
0 to 100 and specify the percent of image pixels taken into account to produce one
display pixel. Zero value means automatic quality choice according with image
resolution and display settings.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
 ...
/* sets scale to gray algorithm with subsampling */
IG_dspl_antialias_set_ex(hIGear, nGrpID, IG_DSPL_ANTIALIAS_SCALE_TO_GRAY|
IG_DSPL_ANTIALIAS_SUBSAMPLE, 50, 80);
 ...

ImageGear Professional v18 for Mac | 610

ImageGear Professional v18 for Mac | 611

1.3.1.2.8.11 IG_dspl_background_get

This function returns the background settings' current values.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_background_get(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [OUT] LPAT_MODE lpnBkMode,
 [OUT] LPAT_RGB lpBkColor,
 [OUT] HBITMAP FAR* lphBrush
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of the group to use.

lpnBkMode LPAT_MODE Pointer to where BkMode options are returned. If NULL, then this parameter is ignored.

lpBkColor LPAT_RGB Pointer to where BkColor option is returned. If NULL, then this parameter is ignored.

lphBrush HBITMAP FAR* Pointer to where BkBrush option is returned. If NULL, then this parameter is ignored.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
AT_MODE nBkMode; /* backgound mode */
AT_RGB BkColor; /* background color */
HBITMAP hBrush; /* background mask */
 ...
IG_dspl_background_get(hIGear, nGrpID, &nBkMode, &BkColor, &hBrush);
 ...

Remarks:

Possible values are listed in the description of function IG_dspl_background_set().

ImageGear Professional v18 for Mac | 612

1.3.1.2.8.12 IG_dspl_background_set

This function sets the background settings.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_background_set(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] AT_MODE nBkMode,
 [IN] const LPAT_RGB lpBkColor,
 [IN] HBITMAP hBrush
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of the group in which to set options.

nBkMode AT_MODE IG_DSPL_BACKGROUND_NONE or a combination of the following flags:

IG_DSPL_BACKGROUND_UNDER_IMAGE
IG_DSPL_BACKGROUND_BEYOND_IMAGE

lpBkColor const
LPAT_RGB

New value of BkColor to set. If NULL, then this parameter is ignored.

hBrush HBITMAP New value of BkBrush option to set. Please note that the old bitmap is not deleted, and the
application code is responsible for removing the old value of this option.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
 ...
/* disable background under image and beyond image */
IG_dspl_background_set(hIGear, nGrpID, IG_DSPL_BACKGROUND_NONE, NULL, NULL);
 ...

ImageGear Professional v18 for Mac | 613

1.3.1.2.8.13 IG_dspl_DDB_create

This function creates a DDB of the image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_DDB_create(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] HDC hDC,
 [IN] AT_DIMENSION nWidth,
 [IN] AT_DIMENSION nHeight,
 [IN] BOOL bExport,
 [OUT] HBITMAP FAR* lphBitmap,
 [OUT] HPALETTE FAR* lphPalette
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group in which the options are stored.

hDC HDC Handle of device context with which the DDB should be compatible. If NULL, then the
DDB will be compatible with the desktop's device context.

nWidth AT_DIMENSION Width of DDB that is to be created.

nHeight AT_DIMENSION Height of DDB that is to be created.

bExport BOOL Boolean parameter which specifies whether to delete the source image or not. If
TRUE then the hIGear image will be deleted after the DDB is created, but if FALSE
then the image is left unchanged.

lphBitmap HBITMAP FAR* Pointer to where to return the DDB. For Mac OS X, DDB is CGImageRef object.

lphPalette HPALETTE
FAR*

Pointer to where to return the palette handle for this DDB. For Mac OS X, this
parameter should be NULL.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
HBITMAP hBitmap; /* handle of bitmap */
- (IBAction)mnuFileConvertToDDB:(id)sender {
 if(IG_image_is_valid(hIGear))
 {
 if(hBitmap != 0)
 {
 CGImageRelease(hBitmap);
 hBitmap = 0;
 }
 AT_DIMENSION width, height;
 IG_image_dimensions_get(hIGear, &width, &height, NULL);
 IG_dspl_DDB_create(hIGear, 0, NULL, width, height, TRUE, &hBitmap, NULL);

ImageGear Professional v18 for Mac | 614

 hIGear = 0;
 // Update main view
 [mainScrollViewOutlet setNeedsDisplay:YES];
 }
}

Remarks:

This function always uses all the display options specified by dwGrpIDgroup and assumes that the output device has a
32bpp RGB color format, but the client area of the output device is a rectangle of nWidth x nHeight size.

ImageGear Professional v18 for Mac | 615

1.3.1.2.8.14 IG_dspl_DDB_draw

This function displays the specified bitmap at the specified coordinates in the specified device context.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_DDB_draw(
 HWND hWnd,
 HDC hDC,
 HBITMAP hBitmap,
 HPALETTE hPalette,
 AT_PIXPOS x,
 AT_PIXPOS y
);

Arguments:

Name Type Description

hWnd HWND This reference is unused.

hDC HDC HDC to which to display the specified hBitmap. For Mac OS X, HDC is CGContextRef object.

hBitmap HBITMAP HBITMAP to display on the specified hDC. For Mac OS X, HBITMAP is CGImageRef object.

hPalette HPALETTE HPALETTE of the specified hBitmap. For Mac OS X, this parameter should be NULL.

x AT_PIXPOS The x coordinate of the destination hDC to display the hBitmap.

Y AT_PIXPOS The y coordinate of the destination hDC to display the hBitmap.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

To determine the number of errors currently on the error stack use IG_error_check. After fetching all error
information you need using IG_error_get, use IG_error_clear to clear the stack.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 616

1.3.1.2.8.15 IG_dspl_DDB_import

This function imports a HBITMAP into a HIGEAR instance.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_DDB_import(
 HDC hDC,
 HBITMAP hBitmap,
 HPALETTE hPalette,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

hDC HDC HDC to use when processing the hBitmap. For Mac OS X, it is not used.

hBitmap HBITMAP HBITMAP to import to the HIGEAR instance. For Mac OS X, HBITMAP is CGImageRef object.

hPalette HPALETTE HPALETTE of the specified hBitmap. For Mac OS X, this parameter should be NULL.

lphIGear LPHIGEAR HIGEAR instance to which the hBitmap will be imported.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

To determine the number of errors currently on the error stack use IG_error_check. After fetching all error
information you need using IG_error_get, use IG_error_clear to clear the stack.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 617

1.3.1.2.8.16 IG_dspl_device_to_image

This function translates an array of points from device coordinates to image coordinates.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_device_to_image(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] HWND hWnd,
 [IN] HDC hDC,
 [IN/OUT] LPAT_POINT lpPoint,
 [IN] UINT nCount
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of the group from which to get the display options.

hWnd HWND Pointer to NSView or NSScrollView object where image is drawn. Pointer must be casted to
non-retainable HWND type with (__bridge HWND) operator.

hDC HDC Handle of the device context used for drawing. This can be NULL, but if a calculation is
necessary for a printer device context, then you should provide the real value.

lpPoint LPAT_POINT Pointer to an array of points that should be translated.

nCount UINT Number of elements in the lpPoint array.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

 NSView* nsView = self;
 HIGEAR hIGear; /* HIGEAR handle of image */
 DWORD nGrpID = 0; /* display group identifier */
 AT_POINT p[2]; /* array of point to translate */
 NSRect rc = [nsView frame];

 /* calculate coordinates in image coordinate space of current client rectangle of the
 window */
 p[0].x = rc.origin.x;;
 p[0].y = rc.origin.y;
 p[1].x = rc.origin.x + rc.size.width - 1;
 p[1].y = rc.origin.y + rc.size.height - 1;

 IG_dspl_device_to_image(hIGear, nGrpID, (__bridge HWND)nsView, NULL, p, 2);

Remarks:

This function takes into account all display parameters including orientation and current scrolling position.

ImageGear Professional v18 for Mac | 618

1.3.1.2.8.17 IG_dspl_device_to_image_d

This function translates an array of points in DOUBLE float-points format from the device coordinates to the image
coordinates.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_device_to_image_d(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] HWND hWnd,
 [IN] HDC hDC,
 [IN/OUT] LPAT_DPOINT lpPoint,
 [IN] UINT nCount
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of the group from which to get display options.

hWnd HWND Pointer to NSView or NSScrollView object where image is drawn. Pointer must be casted to
non-retainable HWND type with (__bridge HWND) operator.

hDC HDC Handle of the device context used for drawing. This can be NULL, but if a calculation is
necessary for printer device context, then you should provide the real value.

lpPoint LPAT_DPOINT Pointer to an array of points in DOUBLE float-point format that should be translated.

nCount UINT Number of elements in the lpPoint array.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Remarks:

This function takes into account all display parameters, including the orientation and current scrolling position.

See also the function IG_dspl_image_to_device().

ImageGear Professional v18 for Mac | 619

1.3.1.2.8.18 IG_dspl_dithering_get

This function returns the current dithering flags.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_dithering_get(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [OUT] LPAT_MODE lpnDitherFlags
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group from which to get option.

lpnDitherFlags LPAT_MODE Pointer where DitherMode is to be received.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
AT_MODE nDitherFlags; /* dither flags */
 ...
IG_dspl_dithering_get(hIGear, nGrpID, &nDitherFlags);
 ...

Remarks:

All possible values are listed in the description of function IG_dspl_dithering_set().

ImageGear Professional v18 for Mac | 620

1.3.1.2.8.19 IG_dspl_dithering_set

This function sets new dithering options.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_dithering_set(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] AT_MODE nDitherFlags
);

Arguments:

hIGear ImageGear handle of image.

dwGrpID Identifier of group from which to set dithering.

nDitherFlags New value of DitherMode to set. Possible values include:

IG_DSPL_DITHER_AUTO
IG_DSPL_DITHER_TO_8BPP
IG_DSPL_DITHER_TO_4BPP
IG_DSPL_DITHER_TO_1BPP
IG_DSPL_DITHER_NONE

with OR combination from two flags:

IG_DSPL_DITHER_FIXED_PALETTE
IG_DSPL_DITHER_NETSCAPE_PALETTE

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
 ...
/* if device is palette based then dither to fixed palette */
IG_dspl_dithering_set(hIGear, nGrpID, IG_DSPL_DITHER_AUTO| IG_DSPL_DITHER_FIXED_PALETTE
);
 ...

ImageGear Professional v18 for Mac | 621

1.3.1.2.8.20 IG_dspl_document_print

This function allows you to print an array of images and specify the number of images per width (row) and per height
(column) of the page.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_document_print(
 [IN] const LPHIGEAR lphIGear,
 [IN] UINT nImageCount,
 [IN] DWORD dwGrpID,
 [IN] HDC hDC,
 [IN] UINT nImagesPerWidth,
 [IN] UINT nImagesPerHeight,
 [IN] DOUBLE dblXSpace,
 [IN] DOUBLE dblYSpace,
 [IN] BOOL bDirectToDriver,
 [IN] LPFNIG_IMAGESPOOLED lpfnImageSpooled,
 [IN] LPVOID lpPrivateData
);

Arguments:

Name Type Description

lphIGear const LPHIGEAR Array of ImageGear image handles to print.

nImageCount UINT Number of elements in lphIGear array.

dwGrpID DWORD Identifier of group from which to get options for printing for each
image.

hDC HDC Handle of printer device context on which to draw images.

nImagesPerWidth UINT Number of images that should be placed in row.

nImagesPerHeight UINT Number of images that should be placed in column.

dblXSpace DOUBLE Horizontal destination between images in row in page's width
relative coordinates. This means the actual destination in device
coordinates is calculated as: xSpace = PageWidth*dblXSpace.

dblYSpace DOUBLE Vertical destination between images in column in page's height
relative coordinates. This means the actual destination in device
coordinates is calculated as: ySpace = PageHeight*dblYSpace.

bDirectToDriver BOOL If TRUE, then ImageGear does not perform image scaling, but uses
the operating system's and driver's capabilities for this. If FALSE
then ImageGear performs the scaling.

lpfnImageSpooled LPFNIG_IMAGESPOOLED Callback function that will be called after each image is printed.

lpPrivateData LPVOID Private data that will be passed to lpfnImageSpooled callback
function in first parameter.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR lphIGear[10]; /* array of HIGEAR handles of images */
DWORD nGrpID; /* display group identifier */

ImageGear Professional v18 for Mac | 622

BOOL bDirect; /* direct to driver flag */
PRINTDLG pd; /* print dialog structure */
INT nPrivateInfo;
 ...
case ID_FILE_PRINT:
 ...
 if(PrintDlg(&pd))
 {
 ...
IG_dspl_document_print(lphIGear, 10, nGrpID, pd.hDC, 2, 3, 0.05, 0.05, bDirect,
ImageSpooled, &nPrivateInfo);
 ...
 }
 ...
 break;
 ...
BOOL ACCUAPI ImageSpooled(
 LPVOID lpPrivate, /* Private data passed in */
 UINT nImageNumber, /* Current image being spooled (1 based) */
 UINT nPageNumber /* Current page number being spooled */
)
{
 ...
 return TRUE; /* return false to cancel printing */
}
 ...

Remarks:

lpfnImageSpooled function will be called after each image is printed and can use the lpPrivateDataparameter as
private data storage. bDirectToDriver parameter allows you to perform image scaling inside of ImageGear or leave
this task to the printer driver and operating system. Usually, direct to driver printing (bDirectToDriver=TRUE) results
in smaller output size and it works faster but not using it produces better quality and allows you to use such
ImageGear capabilities as anti-aliasing during printing.

Special predefined option group IG_GRP_DEFAULT_PRINT can be used to print an image with the most common
parameters.

ImageGear Professional v18 for Mac | 623

1.3.1.2.8.21 IG_dspl_document_print_custom

This function allows you to print an array of images and customize each image's layout on the page.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_document_print_custom(
 [IN] const LPHIGEAR lphIGear,
 [IN] UINT nImageCount,
 [IN] DWORD dwGrpID,
 [IN] HDC hDC,
 [IN] UINT nImagesPerPage,
 [IN] const LPAT_DRECTANGLE lpImagesLayout,
 [IN] BOOL bDirectToDriver,
 [IN] LPFNIG_IMAGESPOOLED lpfnImageSpooled,
 [IN] LPVOID lpPrivateData
);

Arguments:

Name Type Description

lphIGear const LPHIGEAR Array of ImageGear image handles to print.

nImageCount UINT Number of elements in lphIGear array.

dwGrpID DWORD Identifier of group from which to get the options for printing for
each image.

hDC HDC Handle of printer device context on which to draw the images.

nImagesPerPage UINT Number of images that should be placed in a single page.

lpImagesLayout const
LPAT_DRECTANGLE

Array of length nImagesPerPage of rectangles where an i-th
rectangle specifies how the i-th image of this page is located on that
page. Each rectangle is calculated in page-relative units, and as the
actual page resolutions are obtained, it translates the rectangles
into real coordinates and assigns values to ClipRect according to the
following rules: ClipRect.x = lpLayout[i].x*nPageWidth ClipRect.y =
lpLayout[i].y*nPageHeight ClipRect.width =
lpLayout[i].width*nPageWidth ClipRect.height =
lpLayout[i].height*nPageHeight

bDirectToDriver BOOL If TRUE, then ImageGear does not perform image scaling but uses
the operating system's and driver's capabilities for this. If FALSE
then ImageGear performs the scaling.

lpfnImageSpooled LPFNIG_IMAGESPOOLED Callback function that will be called after each image is printed.

lpPrivateData LPVOID Private data that will be passed to the lpfnImageSpooled callback
function in the first parameter.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR lphIGear[10]; /* array of HIGEAR handles of images */
DWORD nGrpID; /* display group identifier */
BOOL bDirect; /* direct to driver flag */
AT_DRECTANGLE

ImageGear Professional v18 for Mac | 624

 Layout[2]; /* array describes image layout on single page */
PRINTDLG pd; /* print dialog structure */
INT nPrivateInfo;
 ...
case ID_FILE_PRINT:
 ...
 if(PrintDlg(&pd))
 {
 ...
/* place one page at the left top of the page */
Layout[0].x = 0.01; Layout[0].y = 0.01;
Layout[0].width = 0.48; Layout[0].height = 0.48;
/* and second page at the right bottom */
Layout[1].x = 0.51; Layout[1].y = 0.51;
Layout[1].width = 0.48; Layout[1].height = 0.48;
IG_dspl_document_print_custom(lphIGear, 10, nGrpID, pd.hDC, 2, Layout, bDirect,
ImageSpooled, &nPrivateInfo);
 } ...
 break; ...
BOOL ACCUAPI ImageSpooled(
 LPVOID lpPrivate, /* Private data passed in */
 UINT nImageNumber, /* Current image being spooled (1 based) */
 UINT nPageNumber /* Current page number being spooled */
)
{ ...
 return TRUE; /* return FALSE to cancel printing */
}

Remarks:

lpfnImageSpooled function will be called after each image is printed and you can use the lpPrivateData parameter as
private data storage. bDirectToDriver parameter allows you to perform image scaling inside of ImageGear or leave
this task to the printer driver and operating system. Usually, direct to driver printing (bDirectToDriver=TRUE) results
in smaller output size and it works faster, but not using it produces better quality and allows you to use such
ImageGear capabilities as anti-aliasing during printing.

Special predefined option group IG_GRP_DEFAULT_PRINT can be used to print an image with the most common
parameters.

ImageGear Professional v18 for Mac | 625

1.3.1.2.8.22 IG_dspl_foreground_get

This function returns the foreground color.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_foreground_get(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [OUT] LPAT_RGB lpFrColor
);

Arguments:

Name Type Description

hIGear HIGEAR The ImageGear handle of an image.

dwGrpID DWORD Identifier of the group to use.

lpFrColor LPAT_RGB Pointer to where the FrColor option is returned. If NULL, then this parameter is ignored.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
AT_RGB FrColor; /* foreground color */
 ...
IG_dspl_foreground_get(hIGear, nGrpID, &FrColor);
 ...

ImageGear Professional v18 for Mac | 626

1.3.1.2.8.23 IG_dspl_foreground_set

This function sets the foreground color.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_foreground_set(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] const LPAT_RGB lpFrColor
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of an image.

dwGrpID DWORD Identifier of the group in which to set options.

lpFrColor const LPAT_RGB The new value of FrColor to set. If NULL, then this parameter is ignored.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
AT_RGB FrColor;
 ...
FrColor.r = FrColor.g = FrColor.b;
IG_dspl_foreground_set(hIGear, nGrpID, &FrColor);
...

ImageGear Professional v18 for Mac | 627

1.3.1.2.8.24 IG_dspl_free_grp_id_get

This function searches and returns the first free unused group identifier.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_free_grp_id_get(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwMin,
 [OUT] LPDWORD lpdwFreeGrpId
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwMin DWORD Minimum value from which ImageGear should start to search.

lpdwFreeGrpId LPDWORD Pointer to where to return free group identifier.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
 ...
IG_dspl_free_grp_id_get(hIGear, 0, &nGrpID);
 ...

Remarks:

This function also sets a flag so the returned group is marked as used and the next call to this function with the same
parameters returns another group id. To mark a group as unused and reset it to the default values, call function
IG_dspl_grp_reset().

ImageGear Professional v18 for Mac | 628

1.3.1.2.8.25 IG_dspl_gamma_correction_LUT_build

This function builds look-up tables from given contrast, brightness and gamma values.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_gamma_correction_LUT_build(
 [IN] DOUBLE dblContrast,
 [IN] DOUBLE dblBrightness,
 [IN] DOUBLE dblGamma,
 [OUT] LPBYTE lpLUT
);

Arguments:

Name Type Description

dblContrast DOUBLE Contrast value to use in calculations. You can use any value.

dblBrightness DOUBLE Brightness value to use in calculations. Must be within the -255.0 to +255.0 range.

dblGamma DOUBLE Gamma value to use in calculations. Must be greater than 0.0, however the most useful
values are in the range from 1.8 to 2.2.

lpLUT LPBYTE Pointer to 256 byte array in which to calculate the look-up table.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

BYTE lut[256]; /* lookup array */
 ...
IG_dspl_gamma_correction_LUT_build(2.0, 120.0, 2.0, lut);

ImageGear Professional v18 for Mac | 629

1.3.1.2.8.26 IG_dspl_gamma_correction_set

This function takes contrast (dblContrast), brightness (dblBrightness) and gamma (dblGamma) parameters and
calculates look-up tables accordingly and sets them into the corresponding options.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_gamma_correction_set(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] AT_MODE nFlags,
 [IN] DOUBLE dblContrast,
 [IN] DOUBLE dblBrightness,
 [IN] DOUBLE dblGamma
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group in which to set look-up tables.

nFlags AT_MODE Specify which look-up tables to set. Possible values are 0 or a combination of these
flags:

IG_DSPL_R_CHANNEL - if this flag is set then the RedLut option is to be set.
IG_DSPL_G_CHANNEL - if this flag is set then the GreenLut option is to be set.
IG_DSPL_B_CHANNEL - if this flag is set then the BlueLut option is to be set.
The constant IG_DSPL_ALL_CHANNELS is defined for convenience and can be used
to set all three options.

#define IG_DSPL_ALL_CHANNELS
(IG_DSPL_R_CHANNEL|IG_DSPL_G_CHANNEL|I
G_DSPL_B_CHANNEL)

dblContrast DOUBLE Contrast value to use in calculations. You can use any value.

dblBrightness DOUBLE Brightness value to use in calculations. Must be in the range from -255.0 to +255.0.

dblGamma DOUBLE Gamma value to use in calculations. Must be greater than 0.0; however the most useful
values are in the range from 1.8 to 2.2.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
 ...
IG_dspl_gamma_correction_set(hIGear, nGrpID, IG_DSPL_ALL_CHANNELS, 2.0, 120.0, 2.0);
 ...

Remarks:

ImageGear Professional v18 for Mac | 630

All look-up tables specified in the nFlagsparameter are initialized with the same value based on the dblContrast,
dblBrightness, and dblGamma values.

ImageGear Professional v18 for Mac | 631

1.3.1.2.8.27 IG_dspl_grayscale_LUT_copy_get

This function returns a copy of display grayscale LUT, if it exists in the specified display settings group.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_grayscale_LUT_copy_get(
 HIGEAR hIGear,
 DWORD dwGrpID,
 HIGLUT* lpLUT
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle.

dwGrpID DWORD Display group ID.

lpLUT HIGLUT* New LUT handle.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

ImageGear Professional v18 for Mac | 632

1.3.1.2.8.28 IG_dspl_grayscale_LUT_exists

This function checks whether the display settings group has a grayscale LUT attached.

Declaration:

AT_BOOL ACCUAPI IG_dspl_grayscale_LUT_exists(
 HIGEAR hIGear,
 DWORD dwGrpID
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle.

dwGrpID DWORD Display group ID.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

ImageGear Professional v18 for Mac | 633

1.3.1.2.8.29 IG_dspl_grayscale_LUT_update_from

This function updates (creates if not present) a grayscale LUT for the image display.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_grayscale_LUT_update_from(
 HIGEAR hIGear,
 DWORD dwGrpID,
 HIGLUT lut
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle.

dwGrpID DWORD Display group ID.

lut HIGLUT LUT handle.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

ImageGear Professional v18 for Mac | 634

1.3.1.2.8.30 IG_dspl_grp_reset

This function resets all the options of the specified group to its default values.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_grp_reset(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group to reset.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

 HIGEAR hIGear; /* HIGEAR handle of image */ DWORD nGrpID; /* display group identifier */
...
 IG_dspl_grp_reset(hIGear, nGrpID); ...

Remarks:

Please note the application code is responsible for freeing memory allocated for options such as TranspMaskandBkBrush.
This function does not free it.

This function also removes the flag that marks this group as "used." It may be set again by any display function that
specifies using this group identifier.

ImageGear Professional v18 for Mac | 635

1.3.1.2.8.31 IG_dspl_image_calc

This function calculates DisplayedImageRect, which is the exact rectangle in which the image is to be scaled.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_image_calc(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] HWND hWnd,
 [IN] HDC hDC,
 [OUT] LPAT_RECTANGLE lpActualDeviceRect
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle from which to get options and pixel data.

dwGrpID DWORD Identifier of group from which to get display options.

hWnd HWND Handle of window where image is to be displayed. Can be NULL, but in this
case some display options may be calculated incorrectly if they are not set
explicitly.

hDC HDC Handle of the device context where image is to be drawn.

lpActualDeviceRect LPAT_RECTANGLE Pointer to the rectangle in which to copy DisplayedImageRect. This rectangle
is calculated no matter whether hDC=NULL or not. If NULL, then this
parameter is ignored.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image
*/
DWORD nGrpID; /* Display group identifier
*/
AT_RECTANGLE DisplayedRect;
...
case WM_PAINT:
 BeginPaint(hWnd, &ps);
 if (IG_image_is_valid(hIGear))
 IG_dspl_image_calc(hIGear, nGrpID, hWnd, ps.hdc, &DisplayedRect);
 EndPaint(hWnd, &ps);
 break;

Remarks:

All options for drawing the image are taken from the dwGrpID group. This function does not perform any drawing,
whether hDC is NULL or not.

ImageGear Professional v18 for Mac | 636

1.3.1.2.8.32 IG_dspl_image_draw

This function draws an image onto a destination device context.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_image_draw(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] HWND hWnd,
 [IN] HDC hDC,
 [OUT] LPAT_RECTANGLE lpActualDeviceRect
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle from which to get options and pixel data.

dwGrpID DWORD Identifier of group from which to get display options.

hWnd HWND Pointer to NSView or NSScrollView object where image is to be displayed.
Pointer must be casted to non-retainable HWND type with (__bridge
HWND) operator.

hDC HDC Handle of the device context on which to draw the image. Can be NULL,
and in this case no actual drawing is performed but all parameters are
calculated and updated. This may be useful in calculating
DisplayedImageRect in the next parameter of this function.

lpActualDeviceRect LPAT_RECTANGLE Pointer to the rectangle in which to copy DisplayedImageRect. This
rectangle is calculated no matter whether hDC=NULL or not. If the value
is NULL, then this parameter is ignored.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image
*/
DWORD nGrpID = 0; /* Display group identifier
*/
...
- (void)drawRect:(NSRect)dirtyRect
{
 if(IG_image_is_valid(hIGear))
 {
 CGContextRef myContext = [[NSGraphicsContext currentContext] graphicsPort];
 if([NSGraphicsContext currentContextDrawingToScreen])
 IG_dspl_image_draw(hIGear, 0, (__bridge HWND)self, (HDC)myContext, NULL);
 else
 IG_dspl_image_draw(hIGear, 0, NULL, (HDC)myContext, NULL);
 }
}

Remarks:

ImageGear Professional v18 for Mac | 637

All options regarding how to draw the image are taken from the dwGrpID group. This function can also be used for
the actual device rectangle calculation. If hDC=NULL then all parameters are calculated and updated but no actual
drawing is performed.

ImageGear Professional v18 for Mac | 638

1.3.1.2.8.33 IG_dspl_image_print

This function draws an image onto the printer device context.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_image_print(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] HDC hDC,
 [IN] BOOL bDirectToDriver
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

DwGrpID DWORD Identifier of group from which to get image options.

hDC HDC Handle of device context on which to draw the image.

bDirectToDriver BOOL If TRUE then ImageGear does not perform image scaling but use the operating
system's and driver's capabilities for this. If FALSE then ImageGear performs the
scaling.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image
*/
DWORD nGrpID; /* display group identifier
*/
BOOL bDirect ; /* direct to driver flag
*/
- (void)drawRect:(NSRect)dirtyRect
{

 if(IG_image_is_valid(hIGear))
 {
 // Get device context
 CGContextRef myContext = [[NSGraphicsContext currentContext] graphicsPort];
 if([NSGraphicsContext currentContextDrawingToScreen])
 // Draw the image to the screen
 IG_dspl_image_draw(hIGear, 0, (__bridge HWND)self, (HDC)myContext, NULL);
 else
 {
 // Set printing resolution
 AT_INT printRes = 200;
 IG_gctrl_item_set("PRINT.RESOLUTION", AM_TID_INT, &printRes, sizeof(AT_INT),
NULL);
 // Print the image
 IG_dspl_image_print(hIGear, 0, (HDC)myContext, bDirect);
 }
 }

ImageGear Professional v18 for Mac | 639

}

Remarks:

Print resolution is controlled with “PRINT.RESOLUTION” Global Control Parameter. bDirectToDriver parameter allows
you to either perform image scaling inside of ImageGear or leave this task to the printer driver and operating system.
Usually, direct to driver printing (bDirectToDriver=TRUE) results in smaller output size and works faster, but not using
it produces better quality and allows you to use ImageGear capabilities such as anti-aliasing during printing.

Special predefined option group IG_GRP_DEFAULT_PRINT can be used to print an image with the most common
parameters.

ImageGear Professional v18 for Mac | 640

1.3.1.2.8.34 IG_dspl_image_to_device

This function translates an array of pointers from image coordinates into device coordinates.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_image_to_device(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] HWND hWnd,
 [IN] HDC hDC,
 [IN/OUT] LPAT_POINT lpPoint,
 [IN] UINT nCount
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group from which to get display options.

hWnd HWND Pointer to NSView or NSScrollView object where image is drawn. Pointer must be casted
to non-retainable HWND type with (__bridge HWND) operator.

hDC HDC Handle of the device context used for drawing. Can be NULL, but if it is necessary to
perform a calculation for the printer device context, then a real value should be provided.

lpPoint LPAT_POINT Pointer to an array of points that should be translated.

nCount UINT Number of elements in lpPoint array.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

NSView* nsView = self;

HIGEAR hIGear; /* HIGEAR handle of image
*/
DWORD nGrpID = 0; /* display group identifier
*/
AT_POINT p[2]; /* array of point to translate
*/
AT_RECTANGLE ImageRect; /* image rectangle
*/
...
/* calculates device coordinates of current image rectangle */
IG_dspl_layout_get(hIGear, nGrpID, &ImageRect, NULL, NULL, NULL, NULL, NULL, NULL);
p[0].x = ImageRect.x;
p[0].y = ImageRect.y;
p[1].x = ImageRect.x + ImageRect.width - 1;
p[1].y = ImageRect.y + ImageRect.height - 1;
IG_dspl_image_to_device(hIGear, nGrpID, (__bridge HWND)nsView, NULL, p, 2);
...

ImageGear Professional v18 for Mac | 641

Remarks:

This function takes into account all display parameters including orientation and current scrolling position.

ImageGear Professional v18 for Mac | 642

1.3.1.2.8.35 IG_dspl_image_to_device_d

This function translates an array of points in DOUBLE float-point format from the image coordinates into device
coordinates.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_image_to_device_d(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] HWND hWnd,
 [IN] HDC hDC,
 [IN/OUT] LPAT_DPOINT lpPoint,
 [IN] UINT nCount
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of an image.

dwGrpID DWORD Identifier of the group from which to get display options.

hWnd HWND Pointer to NSView or NSScrollView object where image is drawn. Pointer must be casted to
non-retainable HWND type with (__bridge HWND) operator.

hDC HDC Handle of the device context used for drawing. Can be NULL, but if it is necessary to
perform a calculation for the printer device context, then a real value should be provided.

lpPoint LPAT_DPOINT Pointer to an array of points in DOUBLE float-point format that should be translated.

nCount UINT Number of elements in the lpPoint array.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Remarks:

This function takes into account all display parameters, including orientation and current scrolling position.

See also the function IG_dspl_device_to_image().

ImageGear Professional v18 for Mac | 643

1.3.1.2.8.36 IG_dspl_image_wipe

This function changes the image in window hWnd from the hIGearBefore image to the hIGearAfter image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_image_wipe(
 [IN] HIGEAR hIGearBefore,
 [IN] DWORD dwGrpBefore,
 [IN] HIGEAR hIGearAfter,
 [IN] DWORD dwGrpAfter,
 [IN] HWND hWnd,
 [IN] AT_MODE nWipeStyle,
 [IN] LONG nGranularity,
 [IN] LONG lTime
);

Arguments:

Name Type Description

hIGearBefore HIGEAR HIGEAR handle of an image in the window before the wipe.

dwGrpBefore DWORD Display group identifier used for hIGearBefore.

hIGearAfter HIGEAR HIGEAR handle of an image to be in window after the wipe.

dwGrpAfter DWORD Display group identifier used for hIGearAfter.

hWnd HWND Pointer to NSView or NSScrollView object where image is drawn. Pointer must be casted
to non-retainable HWND type with (__bridge HWND) operator.

nWipeStyle AT_MODE Transition style, such as IG_WIPE_LEFTTORIGHT. See below. (Check updates to
accucnst.h for new wipe styles.)

nGranularity LONG Size of each square region, in pixels. A typical value is 5.

lTime LONG The time, in milliseconds, between wipes.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGearBefore; /* Handle of image already being displayed */
HIGEAR hIGearAfter; /* Handle of image to replace it */
NSView* nsView; /* Pointer to NSView object */
AT_ERRCOUNT nErrcount; /* Returned count of errors */
/* Perform a "sparkle" wipe, changing 16 x 16 pixel areas in each step:*/
nErrcount = IG_dspl_image_wipe (hIGearBefore, IG_GRP_DEFAULT, hIGearAfter,
IG_GRP_DEFAULT, (__bridge HWND)nsView, IG_WIPE_SPARKLE, 16, 5);
/* See sample application WIPES for a complete example */

Remarks:

The transition is accomplished according to the nWipeStyle style. Before you call this function, the first image should
already be in the window. This function will set the wipe style, and then generate a WM_PAINT message. The
IG_dspl_image_draw() call while processing this WM_PAINT message will perform the transition to the new image.
nWipeStyle Constants include:

ImageGear Professional v18 for Mac | 644

IG_WIPE_LEFTTORIGHT Left-to-Right wipe.

IG_WIPE_RIGHTTOLEFT Right-to-Left wipe.

IG_WIPE_UP_TO_DOWN Up-to-Down wipe.

IG_WIPE_DOWN_TO_UP Down-to-Up wipe.

IG_WIPE_SPARKLE Sparkle Transition.

IG_WIPE_ULTOLRDIAG Upper Left to Lower Right wipe.

IG_WIPE_LRTOULDIAG Lower Right to Upper Left wipe.

IG_WIPE_URTOLLDIAG Upper Right to Lower Left wipe.

IG_WIPE_LLTOURDIAG Lower Left to Upper Right wipe.

IG_WIPE_CLOCK Clockwise wipe.

IG_WIPE_SPARKLE_CLOCK Clockwise wipe with sparkles.

IG_WIPE_DOUBLE_CLOCK Two simultaneous clockwise wipes, 180 degrees apart.

IG_WIPE_SLIDE_RIGHT New image slides in from the left.

IG_WIPE_SLIDE_LEFT New image slides in from the right.

IG_WIPE_SLIDE_UP New image slides in from the bottom.

IG_WIPE_SLIDE_DOWN New image slides in from the top.

IG_WIPE_RANDOM_BARS_DOWN Vertical bars of old image fall to reveal new image.

IG_WIPE_RAIN Vertical lines of new image cover over old, like paint running down the side of
a bucket.

IG_WIPE_BOOK Book wipe.

IG_WIPE_ROLL Old image rolls in from right to left.

IG_WIPE_UNROLL New image rolls out from left to right.

IG_WIPE_EXPAND_PROPORTIONAL New image expands from the center of old image in diagonal directions.

IG_WIPE_EXPAND_HORIZONTAL New image expands from the center of old image in horizontal directions.

IG_WIPE_EXPAND_VERTICAL New image expands from the center of old image in vertical directions.

IG_WIPE_STRIPS_HORIZONTAL New image appears as expanding horizontal strips.

IG_WIPE_STRIPS_VERTICAL New image appears as expanding vertical strips.

IG_WIPE_CELLS New image appears as expanding square cells.

IG_WIPE_BALL New image appears as tracks of spirally moving balls.

IG_WIPE_GEARS New image appears as tracks of moving ImageGear's icons.

ImageGear Professional v18 for Mac | 645

1.3.1.2.8.37 IG_dspl_layout_get

This function returns the current values of layout parameters.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_layout_get(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [OUT] LPAT_RECTANGLE lpImageRect,
 [OUT] LPAT_RECTANGLE lpDeviceRect,
 [OUT] LPAT_RECTANGLE lpClipRect,
 [OUT] LPAT_MODE lpnFitMode,
 [OUT] LPAT_MODE lpnAlignMode,
 [OUT] LPAT_MODE lpnAspectMode,
 [OUT] LPDOUBLE lpdAspectValue
);

Arguments:

Name Type Description

hIGear HIGEAR Image handle from which to search the option group.

dwGrpID DWORD Identifier of group which to get layout options.

lpImageRect LPAT_RECTANGLE Pointer to the rectangle in which to copy the value of ImageRect option. If
NULL then it is ignored. If ImageRect is not set then an empty rectangle is
returned.

lpDeviceRect LPAT_RECTANGLE Pointer to the rectangle in which to copy DeviceRect. If NULL, then the
parameter is ignored. If an empty rectangle is returned then it is not set and
it will be calculated every time from the destination device.

lpClipRect LPAT_RECTANGLE Pointer to the rectangle in which to copy ClipRect. If NULL, then the
parameter is ignored. If an empty rectangle returned then it is not set and it
will be calculated every time from the destination device.

lpnFitMode LPAT_MODE Assigns the current FitMode. If NULL then the parameter is ignored.

lpnAlignMode LPAT_MODE Assigns the current AlignMode. If NULL then the parameter is ignored.

lpnAspectMode LPAT_MODE Assigns the current AspectMode. If NULL then the parameter is ignored.

lpdAspectValue LPDOUBLE Assigns the current AspectValue. If NULL then the parameter is ignored.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
AT_RECTANGLE ImageRect; /* Image rectangle */
AT_RECTANGLE DeviceRect; /* Device rectangle */
AT_RECTANGLE ClipRect; /* Clip rectangle */
AT_MODE nFitMode; /* Fit mode */
AT_MODE nAlignMode; /* Align mode */
AT_MODE nAspectMode; /* Aspect mode */
DOUBLE dAspectValue; /* Aspect value */

ImageGear Professional v18 for Mac | 646

 ...
/* get all layout parameters */
IG_dspl_layout_get(hIGear, nGrpID, &ImageRect, &DeviceRect, &ClipRect, &nFitMode,
&nAlignMode, &nAspectMode, &dAspectValue);
 ...
/* get only device rectangle and fit mode */
IG_dspl_layout_get(hIGear, nGrpID, NULL, &DeviceRect, NULL, &nFitMode, NULL, NULL, NULL
);
 ...

Remarks:

If a parameter is a rectangle then all empty rectangle is returned if it is not set. For a list of possible values see
function IG_dspl_layout_set().

ImageGear Professional v18 for Mac | 647

1.3.1.2.8.38 IG_dspl_layout_set

This function sets layout parameters.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_layout_set(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] DWORD nFlags,
 [IN] const LPAT_RECTANGLE lpImageRect,
 [IN] const LPAT_RECTANGLE lpDeviceRect,
 [IN] const LPAT_RECTANGLE lpClipRect,
 [IN] AT_MODE nFitMode,
 [IN] AT_MODE nAlignMode,
 [IN] AT_MODE nAspectMode,
 [IN] DOUBLE dblAspectValue
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group in which to set layout options.

nFlags DWORD Combination of flags where each one specifies if the appropriate parameter is
to be used or ignored: IG_DSPL_IMAGE_RECT - if
(nFlags&IG_DSPL_IMAGE_RECT)!=0 then the lpImageRect parameter of this
function is not ignored IG_DSPL_DEVICE_RECT - if
(nFlags&IG_DSPL_DEVICE_RECT)!=0 then the lpDeviceRect parameter of this
function is not ignored IG_DSPL_CLIP_RECT - if
(nFlags&IG_DSPL_CLIP_RECT)!=0 then the lpClipRect parameter of this
function is not ignored IG_DSPL_FIT_MODE - if
(nFlags&IG_DSPL_FIT_MODE)!=0 then the nFitMode parameter of this
function is not ignored IG_DSPL_ALIGN_MODE - if
(nFlags&IG_DSPL_ALIGN_MODE)!=0 then the nAlignMode parameter of this
function is not ignored IG_DSPL_ASPECT_MODE - if
(nFlags&IG_DSPL_ASPECT_MODE)!=0 then the nAspectMode parameter of
this function is not ignored IG_DSPL_ASPECT_VALUE - if
(nFlags&IG_DSPL_ASPECT_VALUE)!=0 then the dblAspectValue parameter of
this function is not ignored

lpImageRect const
LPAT_RECTANGLE

A new value of ImageRect option to set. If NULL then it is reset with the
default value which means the whole image will be used.

lpDeviceRect const
LPAT_RECTANGLE

A new value of DeviceRect option to set. If NULL, then it is reset with the
default value (an empty rectangle). This means it is calculated every time
from the destination output device.

lpClipRect const
LPAT_RECTANGLE

A new value of ClipRect option to set. If NULL, then it is reset with the default
value (an empty rectangle). This means it is calculated every time and
assigned to the whole client area of the destination output device.

nFitMode AT_MODE New value of FitMode option to set. Possible values are:
IG_DSPL_FIT_TO_DEVICE
IG_DSPL_FIT_TO_WIDTH
IG_DSPL_FIT_TO_HEIGHT
IG_DSPL_ACTUAL_SIZE

nAlignMode AT_MODE New value of AlignMode option to set. Possible value is OR combination of
one constant that sets the horizontal alignment:

IG_DSPL_ALIGN_X_LEFT
IG_DSPL_ALIGN_X_CENTER
IG_DSPL_ALIGN_X_RIGHT

ImageGear Professional v18 for Mac | 648

and one that sets the vertical alignment:
IG_DSPL_ALIGN_Y_TOP
IG_DSPL_ALIGN_Y_CENTER
IG_DSPL_ALIGN_Y_BOTTOM

nAspectMode AT_MODE New value of AspectMode option to set. Possible values are:
IG_DSPL_ASPECT_FIXED
IG_DSPL_ASPECT_NOT_FIXED

dblAspectValue DOUBLE Sets new value to AspectValue option. Possible value may be any positive
double.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
AT_RECTANGLE ImageRect; /* Image rectangle */
AT_RECTANGLE DeviceRect; /* Device rectangle */
AT_RECTANGLE ClipRect; /* Clip rectangle */
AT_MODE nFitMode; /* Fit mode */
AT_MODE nAlignMode; /* Align mode */
AT_MODE nAspectMode; /* Aspect mode */
DOUBLE dAspectValue; /* Aspect value */
AT_MODE nFlags; /* flags which specify what to set */
/* set all layout parameters */
nFlags =
IG_DSPL_IMAGE_RECT|IG_DSPL_DEVICE_RECT|IG_DSPL_CLIP_RECT|IG_DSPL_FIT_MODE|IG_DSPL_ALIGN_M
ODE|IG_DSPL_ASPECT_MODE|IG_DSPL_ASPECT_VALUE;
IG_dspl_layout_get(hIGear, nGrpID, &ImageRect, &DeviceRect, &ClipRect, nFitMode,
nAlignMode, nAspectMode, dAspectValue);

/* reset image, device and clip rectangles to its default values */
nFlags = IG_DSPL_IMAGE_RECT|IG_DSPL_DEVICE_RECT|IG_DSPL_CLIP_RECT;
IG_dspl_layout_set(hIGear, nGrpID, nFlags, NULL, NULL, NULL, 0, 0, 0, 0.0);
 ...
/* set new fit mode */
IG_dspl_layout_set(hIGear, nGrpID, IG_DSPL_FIT_MODE, NULL, NULL, NULL,
IG_DSPL_FIT_TO_WIDTH, 0, 0, 0.0);
 ...
/* set align mode so that the image located at right bottom of device rectangle */
IG_dspl_layout_set(hIGear, nGrpID, IG_DSPL_ALIGN_MODE, NULL, NULL, NULL, 0,
IG_DSPL_ALIGN_X_RIGHT| IG_DSPL_ALIGN_Y_BOTTOM, 0, 0.0);
 ...

Remarks:

If some of the values are out of range, then it does not change, and an error is returned.

ImageGear Professional v18 for Mac | 649

1.3.1.2.8.39 IG_dspl_LUT_get

This function returns the current red, green and blue look-up tables lpRLUT, lpGLUT, or lpBLUT (should be either NULL or
valid pointers to a 256 byte array).

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_LUT_get(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [OUT] LPBYTE lpRLUT,
 [OUT] LPBYTE lpGLUT,
 [OUT] LPBYTE lpBLUT
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group from which to get options.

lpRLUT LPBYTE Pointer to where the current red look-up table (RedLut value) is to be copied. If NULL, then this
parameter is ignored.

lpGLUT LPBYTE Pointer where the current green look-up table (GreenLut value) is to be copied. If NULL, then this
parameter is ignored.

lpBLUT LPBYTE Pointer where the current blue look-up table (BlueLut value) is to be copied. If NULL, then this
parameter is ignored.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
BYTE r_lut[256]; /* red lookup array */
BYTE g_lut[256]; /* green lookup array */
 ...
IG_dspl_LUT_get(hIGear, nGrpID, r_lut, g_lut, NULL);
 . .

ImageGear Professional v18 for Mac | 650

1.3.1.2.8.40 IG_dspl_LUT_set

This function assigns new values to red, green, and blue look-up tables.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_LUT_set(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] AT_MODE nFlags,
 [IN] const LPBYTE lpRLUT,
 [IN] const LPBYTE lpGLUT,
 [IN] const LPBYTE lpBLUT
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group in which to set LUT options.

nFlags AT_MODE Specify which look-up tables to set. Possible value is 0 or a combination of flags
IG_DSPL_R_CHANNEL - if this flag is set then the lpRLUT parameter of this function is not
ignored IG_DSPL_G_CHANNEL - if this flag is set then the lpGLUT parameter of this function
is not ignored IG_DSPL_B_CHANNEL - if this flag is set then the lpBLUT parameter of this
function is not ignored The constant IG_DSPL_ALL_CHANNELS is defined for convenience
and can be used to set all three channels.

#define IG_DSPL_ALL_CHANNELS
(IG_DSPL_R_CHANNEL|IG_DSPL_G_CHANNEL|IG_
DSPL_B_CHANNEL)

lpRLUT const
LPBYTE

Pointer to a 256 element array of a red look-up table to set. If NULL, then identity the array
is assigned to RedLut option.

lpGLUT const
LPBYTE

Pointer to a 256 element array of a green look-up table to set. If NULL, then identity the
array is assigned to GreenLut option.

lpBLUT const
LPBYTE

Pointer to a 256 element array of a blue look-up table to set. If NULL, then identity the
array is assigned to BlueLut option.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
BYTE lut[256]; /* lookup array */
INT i;
 ...
/* set inverted look-up table */
for(i = 0; i<256; i++)
 lut[i] = 255 - i;
IG_dspl_LUT_set(hIGear, nGrpID, IG_DSPL_ALL_CHANNELS, lut, lut, lut);

ImageGear Professional v18 for Mac | 651

Remarks:

ImageGear always makes a copy of lpRLUT, lpGLUT and lpBLUT in case they are needed, but does not assign
pointers directly so that the application should cleanup the memory allocated for them.

ImageGear Professional v18 for Mac | 652

1.3.1.2.8.41 IG_dspl_mapmode_get

This function returns the current map mode and logical coordinate system where parameters such as ClipRect,
DeviceRect and most others (except ImageRect) are stored.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_mapmode_get(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [OUT] LPDWORD lpdwMapMode,
 [OUT] LPAT_RECTANGLE lpViewport,
 [OUT] LPAT_RECTANGLE lpWindow
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of Image.

dwGrpID DWORD Identifier of group from which to get map mode options.

lpdwMapMode LPDWORD Pointer to the current value of option MapMode.

lpViewport LPAT_RECTANGLE Pointer to the current value of rectangle Viewport.

lpWindow LPAT_RECTANGLE Pointer to the current value of rectangle Window.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
DWORD dwMapMode; /* map mode */
AT_RECTANGLE Viewport; /* view port values */
AT_RECTANGLE Window; /* window values */
 ...
IG_dspl_mapmode_get(hIGear, nGrpID, &dwMapMode, &Viewport, &Window);
SetMapMode(dwMapMode);
SetWindowOrgEx(hDC, Window.x, Window.y, NULL);
SetWindowExtEx(hDC, Window.width, Window.height, NULL);
SetViewportOrgEx(hDC, Viewport.x, Viewport.y, NULL);
SetViewportExtEx(hDC, Viewport.width, Viewport.height, NULL);
 ...

ImageGear Professional v18 for Mac | 653

1.3.1.2.8.42 IG_dspl_mapmode_set

This function sets the current map mode and logical coordinate system.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_mapmode_set(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] DWORD dwMapMode,
 [IN] const LPAT_RECTANGLE lpViewport,
 [IN] const LPAT_RECTANGLE lpWindow
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group in which to set map mode options.

dwMapMode DWORD New value of option MapMode to assign.

LpViewport const LPAT_RECTANGLE New value of Viewport option to assign.

LpWindow const LPAT_RECTANGLE New value of Window option to assign.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
DWORD dwMapMode; /* map mode */
AT_RECTANGLE Viewport; /* view port values */
AT_RECTANGLE Window; /* window values */
POINT p;
SIZE s;
 ...
/* get current mapping parameters */
dwMapMode = GetMapMode(hDC);
GetViewportOrgEx(hDC, &p);
Viewport.x = p.x;
Viewport.y = p.y;
GetViewportExtEx(hDC, &s);
Viewport.width = s.cx;
Viewport.height = s.cy;
GetWindowOrgEx(hDC, &p);
Window.x = p.x;
Window.y = p.y;
GetWindowExtEx(hDC, &s);
Window.width = s.cx;
Window.height = s.cy;
IG_dspl_mapmode_set(hIGear, nGrpID, dwMapMode, &Viewport, &Window);
 ...

ImageGear Professional v18 for Mac | 654

Remarks:

ImageGear will perform all calculations with the assumption that the specified logical system is used for the device
coordinates.

ImageGear Professional v18 for Mac | 655

1.3.1.2.8.43 IG_dspl_orientation_get

This function returns the current orientation mode.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_orientation_get(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [OUT] LPAT_MODE lpnOrientMode
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group from which to retrieve the orientation mode.

lpnOrientMode LPAT_MODE Where to copy OrientMode value. If NULL then this parameter ignored.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
AT_MODE nOrientMode; /* Orientation mode */
 ...
IG_dspl_orientation_get(hIGear, nGrpID, &nOrientMode);
 ...

Remarks:

Possible values are listed in the IG_dspl_orientation_set() function.

ImageGear Professional v18 for Mac | 656

1.3.1.2.8.44 IG_dspl_orientation_set

This function sets the new orientation mode.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_orientation_set(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] AT_MODE nOrientMode
);

Arguments:

Name Type Description

hIGear HIGEAR Image handle where to set orientation mode.

dwGrpID DWORD Identifier of the group in which to set the orientation.

nOrientMode AT_MODE New OrientMode value to set. Possible values are:

IG_DSPL_ORIENT_TOP_LEFT
IG_DSPL_ORIENT_LEFT_TOP
IG_DSPL_ORIENT_RIGHT_TOP
IG_DSPL_ORIENT_TOP_RIGHT
IG_DSPL_ORIENT_BOTTOM_RIGHT
IG_DSPL_ORIENT_RIGHT_BOTTOM
IG_DSPL_ORIENT_LEFT_BOTTOM
IG_DSPL_ORIENT_BOTTOM_LEFT

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
 ...
/* rotate image orientation by 90 degree */
IG_dspl_orientation_set(hIGear, nGrpID, IG_DSPL_ORIENT_TOP_RIGHT);
 ...

ImageGear Professional v18 for Mac | 657

1.3.1.2.8.45 IG_dspl_page_print

This function draws an image onto the printer device context within the specified rectangle.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_page_print(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] HDC hDC,
 [IN] const LPAT_DRECTANGLE lpLayout,
 [IN] BOOL bDirectToDriver
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group from which to get printing options.

hDC HDC Handle of printer device context on which to draw the image.

lpLayout const
LPAT_DRECTANGLE

Rectangle which specifies how the image is located on the page. This
rectangle is calculated in page-relative units, and as actual page resolutions
are obtained it translates the rectangle into real coordinates and assigns
ClipRect according to the following rules:

ClipRect.x = lpLayout->x*nPageWidth ClipRect.y = lpLayout-
>y*nPageHeight ClipRect.width = lpLayout->width*nPageWidth
ClipRect.height = lpLayout->height*nPageHeight

bDirectToDriver BOOL If TRUE then ImageGear does not perform image scaling but uses the
operating system's and driver's capabilities for this. If FALSE then
ImageGear performs the scaling.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
BOOL bDirect; /* direct to driver flag */
AT_DRECTANGLE
 Layout;
PRINTDLG pd; /* print dialog structure */
 ...
case ID_FILE_PRINT:
 ...
 if(PrintDlg(&pd))
 {
 ...
/* print image in the middle of the page and at 0.5 of width and height of the page */
Layout.x = 0.25; Layout.y = 0.25;
Layout.width = 0.5; Layout.height = 0.5;
IG_dspl_page_print(hIGear, nGrpID, pd.hDC, &Layout, bDirect);

ImageGear Professional v18 for Mac | 658

 ...
 }
 ...
 break;
 ...

Remarks:

Printing resolution depends on the current printer setting. The bDirectToDriver parameter allows you to perform
image scaling inside of ImageGear or leave this task to the printer driver and operating system. Usually, direct to
driver printing (bDirectToDriver=TRUE) results in smaller output size and it works faster, but not using it produces
better quality and allows you to use ImageGear capabilities such as anti-aliasing during printing.

Special predefined option group IG_GRP_DEFAULT_PRINT can be used to print an image with the most common
parameters.

ImageGear Professional v18 for Mac | 659

1.3.1.2.8.46 IG_dspl_palette_create

This function calculates all the display parameters, the way IG_dspl_image_draw() does, and produces the same palette
that IG_dspl_image_draw realizes before drawing onto hDC; it returns DevicePalette if it is not set with a custom value.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_palette_create(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] HWND hWnd,
 [IN] HDC hDC,
 [OUT] HPALETTE FAR* lphPalette
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

DwGrpID DWORD Identifier of group containing the palette options to use.

HWnd HWND Handle of window where the image is drawn.

HDC HDC Handle of device context on which to draw.

LphPalette HPALETTE FAR* Pointer to where the palette handle should be returned.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
HPALETTE hPalette; /* handle of palette */
 ...
IG_dspl_palette_create(hIGear, nGrpID, hWnd, hDC, &hPalette);
 ...

ImageGear Professional v18 for Mac | 660

1.3.1.2.8.47 IG_dspl_palette_handle

This function is designed to be used to handle palette messages from the operating system.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_palette_handle(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] HWND hWnd,
 [IN] HDC hDC,
 [IN] AT_MODE nPalMode,
 [OUT] LPBOOL lpbRealized
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group that should be used.

hWnd HWND Valid handle of window where image is drawn and from which palette message is to be
handled.

hDC HDC Handle of device context where image is to be drawn. If NULL, then it will automatically
be retrieved from hWnd.

nPalMode AT_MODE New value of PaletteMode to set. Possible value is either IG_DSPL_PALETTE_HIGH or
IG_DSPL_PALETTE_LOW. Please note that this new value is assigned only if the current
value of PaletteMode is not IG_DSPL_PALETTE_DISABLE. If the current value is
IG_DSPL_PALETTE_DISABLE then the function does not perform any action (to change
this, use IG_dspl_palette_set() function).

lpbRealized LPBOOL Pointer to the BOOL parameter where TRUE will be assigned if new palette has been
realized and FALSE if otherwise. If NULL, then this parameter is ignored.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
 ...
case WM_QUERYNEWPALETTE:
 /* let Image Gear handle palette management */
IG_dspl_palette_handle(hIGear, nGrpID, hWnd, NULL, IG_DSPL_PALETTE_HIGH, &bRealized);
 return bRealized;
case WM_PALETTECHANGED:
 /* let Image Gear handle palette management */
IG_dspl_palette_handle(hIGear, nGrpID, hWnd, NULL, IG_DSPL_PALETTE_LOW, NULL);
 break;
 ...

h2>Remarks:
For the Windows platform, this function should be called when WM_QUERYNEWPALETTE and WM_PALETTECHANGED
messages are processed (see the sample below). Handling of those messages is extremely important for palette

ImageGear Professional v18 for Mac | 661

based devices.

ImageGear Professional v18 for Mac | 662

1.3.1.2.8.48 IG_dspl_palette_get

This function returns the current palette settings.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_palette_get(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [OUT] LPAT_MODE lpnPalMode,
 [OUT] HPALETTE FAR* lphPalette
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group from which to get palette options.

lpnPalMode LPAT_MODE Pointer to where PaletteMode is to be received. If NULL, then this parameter is ignored.

lphPalette HPALETTE
FAR*

Pointer to where DevicePalette is to be received. If NULL, then this parameter is
ignored.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
AT_MODE nPalMode; /* palette mode */
HPALETTE hPalette; /* palette handle */
 ...
IG_dspl_palette_get(hIGear, nGrpID, &nPalMode, &hPalette);
 ...

ImageGear Professional v18 for Mac | 663

1.3.1.2.8.49 IG_dspl_palette_set

This function sets the new palette options.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_palette_set(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] AT_MODE nPalMode,
 [IN] HPALETTE hPalette
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group in which to set palette options.

nPalMode AT_MODE New value of PaletteMode to set. Possible values are:
IG_DSPL_PALETTE_HIGH
IG_DSPL_PALETTE_LOW
IG_DSPL_PALETTE_DISABLE

hPalette HPALETTE New value of DevicePalette option. Possible value is NULL or valid OS-dependent palette
handle. Please note that the application code is responsible for removing all the resources
allocated for DevicePalette if it is not NULL.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
 ...
/* disable palette realization */
IG_dspl_palette_set(hIGear, nGrpID, IG_DSPL_PALETTE_DISABLE, NULL);
 ...

ImageGear Professional v18 for Mac | 664

1.3.1.2.8.50 IG_dspl_PPM_correct_get

This function returns the current value of options which specify either to use the image resolution or the image
dimension to calculate the aspect ratio.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_PPM_correct_get(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [OUT] LPBOOL lpbEnable
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group in from which to get options.

LpbEnable LPBOOL Pointer to where to get the current value of option PPMCorrect.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
BOOL bPPMEnable; /* PPM corect flag value */
 ...
IG_dspl_PPM_correct_get (hIGear, nGrpID, &bPPMEnable);
 ...

ImageGear Professional v18 for Mac | 665

1.3.1.2.8.51 IG_dspl_PPM_correct_set

This function sets the new value of the PPMCorrect option.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_PPM_correct_set(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] BOOL bEnable
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group for which to set options.

bEnable BOOL New value for PPMCorrect option. If TRUE then the resolution will be used to calculate the aspect
ratio, but if FALSE then the image dimension will be used.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
 ...
IG_dspl_PPM_correct_set (hIGear, nGrpID, TRUE);
 ...

ImageGear Professional v18 for Mac | 666

1.3.1.2.8.52 IG_dspl_resize_handle

This function is to be called during WM_SIZE message handling and it recalculates all the parameters according to the
new window width and height.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_resize_handle(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] HWND hWnd
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group which is used to display the image on the hWnd.

hWnd HWND Handle of window where the image is displayed.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
 ...
case WM_SIZE:
 /* handle window resizing */
 IG_dspl_resize_handle(hIGear, nGrpID, hWnd);
 break;
 ...

ImageGear Professional v18 for Mac | 667

1.3.1.2.8.53 IG_dspl_ROP_get

This function gets the ROP (raster-operation) code used to display images on Windows platforms.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_ROP_get(
 HIGEAR hIGear,
 DWORD dwGrpID,
 LPDWORD lpdwROP
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

dwGrpID DWORD Identifier of display group from which to get ROP code.

lpdwROP LPDWORD Returned ROP code.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
DWORD dwROP; /* retrieved ROP code */
 ...
/* get ROP code */
IG_dspl_ROP_get(hIGear, nGrpID, &dwROP);
 ...

Remarks:

This code determines how the source image pixels are combined with the destination area pixels. The default ROP is
SRCCOPY, which overwrites the destination area with the source image. Other codes are described in the documentation
for the Windows GDI function BitBlt.

ImageGear Professional v18 for Mac | 668

1.3.1.2.8.54 IG_dspl_ROP_set

This function sets the ROP (raster-operation) code to use when displaying images on Windows platforms.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_ROP_set(
 HIGEAR hIGear,
 DWORD dwGrpID,
 DWORD dwROP
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group in which to set ROP code.

dwROP DWORD ROP code to set.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
 ...
/* image will be XOR'd with destination contents */
IG_dspl_ROP_set(hIGear, nGrpID, SRCINVERT);
 ...

Remarks:

This code determines how the source image pixels are combined with the destination area pixels. The default ROP is
SRCCOPY, which overwrites the destination area with the source image. Other codes are described in the documentation
for the Windows GDI function BitBlt.

ImageGear Professional v18 for Mac | 669

1.3.1.2.8.55 IG_dspl_scroll_get

This function calculates and returns the current scroll parameters.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_scroll_get(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] HWND hWnd,
 [OUT] LPAT_MODE lpnScrollMode,
 [OUT] LPAT_SCROLL_INFO lpScrollInfo
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group from which to retrieve scroll parameters.

hWnd HWND Pointer to NSView or NSScrollView object where image is drawn. Pointer must
be casted to non-retainable HWND type with (__bridge HWND) operator.

lpnScrollMode LPAT_MODE Where ScrollbarMode is to be received. If NULL, then this parameter is ignored.

lpScrollInfo LPAT_SCROLL_INFO Where to copy the current scroll parameters. If NULL, then this parameter is
ignored.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

NSView* nsView = self;

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
AT_MODE nScrollMode; /* scroll mode */
AT_SCROLL_INFO ScrollInfo; /* scroll info */
...
IG_dspl_scroll_get(hIGear, nGrpID, (__bridge HWND)nsView, &nScrollMode, &ScrollInfo);
...

ImageGear Professional v18 for Mac | 670

1.3.1.2.8.56 IG_dspl_scroll_handle

This function is designed to handle scrollbar messages from an hWnd window.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_scroll_handle(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] HWND hWnd,
 [IN] AT_MODE nScrlType,
 [IN] AT_MODE nScrlMode,
 [IN] LONG lScrlValue,
 [OUT] LPAT_SCROLL_INFO lpScrollInfo
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group that will be used to perform operation.

hWnd HWND Pointer to NSView or NSScrollView object where image is displayed and where
scrolling is performed. Pointer must be casted to non-retainable HWND type
type with (__bridge HWND) operator.

nScrlType AT_MODE Scroll command. Its value is platform dependent.

For Mac platforms, valid values are:

IG_DSPL_SCROLL_HORIZONTAL
IG_DSPL_SCROLL_VERTICAL
IG_DSPL_SCROLL_HORIZONTAL | IG_DSPL_SCROLL_VERTICAL

nScrlMode AT_MODE Scroll command. Its value is platform dependent.

For Mac platforms it should be 0.

nScrlValue LONG Scroll value. It is also platform dependent and its value may have a different
meaning from nScrlType. Under the Mac platform, it is not used because the
scroll position is obtained directly from the scrollbars.

lpScrollInfo LPAT_SCROLL_INFO Receive updated scroll parameters (not scrollbar). If NULL then it is ignored.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

// MainScrollView.h
#import <Cocoa/Cocoa.h>

@interface MainScrollView : NSScrollView
@end

// MainScrollView.m
#import "MainScrollView.h"

ImageGear Professional v18 for Mac | 671

#import <ImageGear18/gear.h>
…
// Register scrolling notification
- (void)awakeFromNib
{
 [[self contentView] setPostsBoundsChangedNotifications: YES];
 NSNotificationCenter *center = [NSNotificationCenter defaultCenter] ;
 [center addObserver: self
 selector: @selector(boundsDidChangeNotification:)
 name: NSViewBoundsDidChangeNotification
 object: [self contentView]];
}
// Handle scrolling notification
- (void) boundsDidChangeNotification: (NSNotification *) notification
{
 IG_dspl_scroll_handle(hIGear, 0, (__bridge HWND)self, IG_DSPL_SCROLL_HORIZONTAL |
IG_DSPL_SCROLL_VERTICAL, 0, 0, NULL);
 [self setNeedsDisplay: YES];
 }

Remarks:

This function should not be used to set the absolute scroll position; function IG_dspl_scroll_to() should be used
instead.

ImageGear Professional v18 for Mac | 672

1.3.1.2.8.57 IG_dspl_scroll_set

This function sets the scroll parameters (not scroll position) and allows you to enable and disable the vertical and
horizontal scrollbars associated with a given window.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_scroll_set(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] HWND hWnd,
 [IN] AT_MODE nScrollMode,
 [IN] INT nXPage,
 [IN] INT nYPage,
 [OUT] LPAT_SCROLL_INFO lpScrollInfo
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group in which to set scroll options.

hWnd HWND Pointer to NSView or NSScrollView object where image is drawn. Pointer must
be casted to non-retainable HWND type with (__bridge HWND) operator.

nScrollMode AT_MODE New value of ScrollbarMode to set. Possible value is a combination of the
horizontal scrollbar flag:

IG_DSPL_HSCROLLBAR_AUTO
IG_DSPL_HSCROLLBAR_ENABLE
IG_DSPL_HSCROLLBAR_DISABLE

and the vertical:
IG_DSPL_VSCROLLBAR_AUTO
IG_DSPL_VSCROLLBAR_ENABLE
IG_DSPL_VSCROLLBAR_DISABLE

nXPage INT New value of scrolling page width. If 0 then it will be calculated from ClipRect.

nYPage INT New value of scrolling page height. If 0 then it will be calculated from ClipRect.

lpScrollInfo LPAT_SCROLL_INFO Where to copy new scroll parameters. If NULL then the parameter is ignored.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

NSView* nsView = self;HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
AT_SCROLL_INFO ScrollInfo; /* scroll info */
...
/* always hide both scrollbars */
IG_dspl_scroll_set(hIGear, nGrpID, (__bridge HWND)nsView,
IG_DSPL_HSCROLLBAR_DISABLE|IG_DSPL_VSCROLLBAR_DISABLE, 0, 0, &ScrollInfo);
...

ImageGear Professional v18 for Mac | 673

ImageGear Professional v18 for Mac | 674

1.3.1.2.8.58 IG_dspl_scroll_to

This function scrolls the image to a specified position and updates the window's scroll bars accordingly.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_scroll_to(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] HWND hWnd,
 [IN] INT nXPos,
 [IN] INT nYPos,
 [OUT] LPAT_SCROLL_INFO lpScrollInfo
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group where to work.

hWnd HWND Pointer to NSView or NSScrollView object where image is drawn and scrolled.
Pointer must be casted to non-retainable HWND type with (__bridge HWND)
operator.

nXPos INT New horizontal scroll position. Should be in a valid range that can be retrieved
using the IG_dspl_scroll_get() function.

nYPos INT New vertical scroll position. Should be in a valid range that can be retrieved using
the IG_dspl_scroll_get() function.

lpScrollInfo LPAT_SCROLL_INFO Where to copy the new scroll parameters. If NULL then the parameter is ignored.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

NSView* nsView = self;
HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
AT_SCROLL_INFO ScrollInfo; /* scroll info */
...
/* scroll down and right from current position */
IG_dspl_scroll_get(hIGear, nGrpID, (__bridge HWND)nsView, NULL, &ScrollInfo);
If((ScrollInfo.h_cur_pos<ScrollInfo.h_max) && (ScrollInfo.v_cur_pos<ScrollInfo.v_max))
IG_dspl_scroll_to(hIGear, nGrpID, (__bridge HWND)nsView, ScrollInfo.h_cur_pos+1,
ScrollInfo.v_cur_pos+1, NULL);

Remarks:

This function can be used even if a window's scroll bars are disabled. Both scroll positions should be in valid scroll range
but if not, then the nearest valid value will be assigned.

ImageGear Professional v18 for Mac | 675

1.3.1.2.8.59 IG_dspl_scroll_to_ex

This function scrolls the image to a specified position and updates the window's scroll bars accordingly.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_scroll_to_ex(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] HWND hWnd,
 [IN] INT nXPos,
 [IN] INT nYPos,
 [OUT] LPAT_SCROLL_INFO lpScrollInfo
 [IN] BOOL bRepaint
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group where to work.

hWnd HWND Pointer to NSView or NSScrollView object where image is drawn and scrolled.
Pointer must be casted to non-retainable HWND type with (__bridge HWND)
operator.

nXPos INT New horizontal scroll position. Should be in a valid range that can be retrieved
using the IG_dspl_scroll_get() function.

nYPos INT New vertical scroll position. Should be in a valid range that can be retrieved using
the IG_dspl_scroll_get() function.

lpScrollInfo LPAT_SCROLL_INFO Where to copy the new scroll parameters. If NULL then the parameter is ignored.

bRepaint BOOL This parameter determines if the function repaints scrolling content (TRUE) or not
(FALSE).

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Remarks:

It can be used even if a window's scroll bars are disabled. Both scroll positions should be in valid scroll range but if not,
then the nearest valid value will be assigned.

This function is the same as IG_dspl_scroll_to() function, but has bRepaint parameter that when FALSE allows do not
repaint the scrolling content.

ImageGear Professional v18 for Mac | 676

1.3.1.2.8.60 IG_dspl_transparency_get

This function returns the transparency parameters.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_transparency_get(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [OUT] LPAT_MODE lpnTranspMode,
 [OUT] LPAT_RGB lpTranspColor,
 [OUT] LPHIGEAR lphIMask,
 [OUT] LPAT_RECTANGLE lpMaskRect,
 [OUT] LPAT_POINT lpMaskLocation
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group to use.

lpnTranspMode LPAT_MODE Pointer where TranspMode options are returned. If NULL, then this parameter
is ignored.

lpTranspColor LPAT_RGB Pointer where TranspColor option is returned. If NULL, then this parameter is
ignored.

hphIMask LPHIGEAR Pointer where TranspMask option is returned. If NULL, then this parameter is
ignored. Please note that this function does not change or delete the value of
TranspMask, but only makes its copy.

lpMaskRect LPAT_RECTANGLE Pointer to where to return the value of the MaskRect option. If NULL, then
this parameter is ignored. If an empty rectangle is returned then it is
initialized with a rectangle equal to the entire mask image.

lpMaskLocation LPAT_POINT Pointer to where to return the value of MaskLocation option. If NULL, then
this parameter is ignored.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
AT_MODE nTranspMode; /* transparency mode */
AT_RGB TranspColor; /* transparency color */
HIGEAR hIMask; /* transparent mask */
AT_RECTANGLE MaskRect; /* mask rectangle */
AT_POINT MaskLocation; /* mask location */
 ...
IG_dspl_transparency_get(hIGear, nGrpID, &nTranspMode, &TranspColor, &hIMask, &MaskRect,
&MaskLocation);
if(IG_image_is_valid(hIMask))
 IG_image_delete(hIMask);
 ...

ImageGear Professional v18 for Mac | 677

ImageGear Professional v18 for Mac | 678

1.3.1.2.8.61 IG_dspl_transparency_set

This function sets the transparency options.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_transparency_set(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] AT_MODE nTranspMode,
 [IN] const LPAT_RGB lpTranspColor,
 [IN] HIGEAR hIMask,
 [IN] const LPAT_RECTANGLE lpMaskRect,
 [IN] const LPAT_POINT lpMaskLocation
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of the group in which to set transparency options.

nTranspMode AT_MODE New value of TranspMode to set. Possible value may be:
IG_DSPL_TRANSPARENCY_NONE,

or a combination of one of the following flags:
IG_DSPL_TRANSPARENCY_COLOR
IG_DSPL_TRANSPARENCY_MASK
IG_DSPL_TRANSPMASK_STRETCH_TO_IMAGE

and one of these flags:
IG_DSPL_TRANSPMASK_LOCATE_TO_IMAGE
IG_DSPL_TRANSPMASK_LOCATE_TO_CLIPRECT
IG_DSPL_TRANSPMASK_LOCATE_ABSOLUTE

lpTranspColor const LPAT_RGB New value of TranspColor to set. If NULL, then this parameter is ignored.

hIMask HIGEAR New value of TranspMask option to set. Please note that the image is not
deleted and the application code is responsible for removing the old value of
this option.

lpMaskRect const
LPAT_RECTANGLE

New value of MaskRect option to set. If NULL, then this parameter is ignored.
An empty rectangle is possible.

lpMaskLocation const
LPAT_POINT

New value of MaskLocation option to set. If NULL, then this parameter is
ignored.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
AT_MODE nTranspMode; /* transparency mode */
AT_RGB TranspColor; /* transparency color */
HIGEAR hIMask; /* transparent mask */

ImageGear Professional v18 for Mac | 679

 ...
/* enable transparent color and mask with default mask rectangle and location oriented and
scaled with main image */
nTranspMode =
IG_DSPL_TRANSPARENCY_COLOR|IG_DSPL_TRANSPARENCY_MASK|IG_DSPL_TRANSPMASK_STRETCH_TO_IMAGE|
IG_DSPL_TRANSPMASK_LOCATE_TO_IMAGE;
/* set transparent color to white */
TranspColor.r = TranspColor.g = TranspColor.b = 255;
IG_dspl_transparency_set(hIGear, nGrpID, nTranspMode, &TranspColor, hIMask, NULL, NULL);
 ...

Remarks:

This function sets the transparency only for image displaying. For saving image with transparency mask use
function IG_display_transparent_set().

ImageGear Professional v18 for Mac | 680

1.3.1.2.8.62 IG_dspl_zoom_get

This function returns the current zoom values.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_zoom_get(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] HWND hWnd,
 [OUT] LPAT_MODE lpnZoomMode,
 [OUT] LPDOUBLE lpdblHZoom,
 [OUT] LPDOUBLE lpdblVZoom
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of the group from which to obtain zoom parameters.

hWnd HWND Pointer to NSView or NSScrollView object where image is drawn. Pointer must be casted
to non-retainable HWND type with (__bridge HWND) operator.

lpnZoomMode LPAT_MODE Pointer to where ZoomMode is to be received. If NULL, then this parameter is ignored.

lpdblHZoom LPDOUBLE Where to return the calculated horizontal zoom value. This value is always calculated
whether or not the horizontal zoom is fixed.

lpdblVZoom LPDOUBLE Where to return the calculated vertical zoom value. This value is always calculated
whether or not the vertical zoom is fixed.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

NSView* nsView = self;
HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
AT_MODE nZoomMode; /* zoom mode */
DOUBLE dHZoom; /* horizontal zoom value */
DOUBLE dVZoom; /* vertical zoom value */
...
IG_dspl_zoom_get(hIGear, nGrpID, (__bridge HWND)nsView, &nZoomMode, &dHZoom, &dVZoom);
...

ImageGear Professional v18 for Mac | 681

1.3.1.2.8.63 IG_dspl_zoom_set

This function sets the new zoom values.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_zoom_set(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] AT_MODE nZoomMode,
 [IN] DOUBLE dHZoom,
 [IN] DOUBLE dVZoom
);

Arguments:

Name Type Description

hIGear HIGEAR Image handle to where set zoom options.

dwGrpID DWORD Identifier of group in which to set zoom options.

nZoomlMode AT_MODE New value of ZoomMode to set. Possible value is combination from one of the horizontal
zoom flags:

IG_DSPL_ZOOM_H_NOT_FIXED
IG_DSPL_ZOOM_H_FIXED

and one of the vertical flags:
IG_DSPL_ZOOM_V_NOT_FIXED
IG_DSPL_ZOOM_V_FIXED

dHZoom DOUBLE New value of ZoomValueH to set. Any positive number is accepted. Value 1.0 means that
the image is zoomed by 100% or displayed in its actual size.

dVZoom DOUBLE New value of ZoomValueV to set. Any positive number is accepted. Value 1.0 means that
the image is zoomed by 100% or displayed in its actual size.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
 ...
/* set aspect ratio as not fixed and zoom image by 150% and 200% for horizontal and
vertical directions respectively */
IG_dspl_layout_set(hIGear, nGrpID, IG_ASPECT_MODE, NULL, NULL, NULL, 0, 0,
IG_DSPL_ASPECT_NOT_FIXED, 0.0);
IG_dspl_zoom_set(hIGear, nGrpID, IG_DSPL_ZOOM_H_FIXED| IG_DSPL_ZOOM_V_FIXED, 1.5, 2.0);
 ...
/* the same as before but only for horizontal direction; vertical direction is zoomed
according to current fit method and device rectangle */
IG_dspl_zoom_set(hIGear, nGrpID, IG_DSPL_ZOOM_H_FIXED| IG_DSPL_ZOOM_V_NOT_FIXED, 1.5, 2.0
);
 ...

ImageGear Professional v18 for Mac | 682

1.3.1.2.8.64 IG_dspl_zoom_to_rect

This function calculates the zoom and scroll values, so that the specified rectangle is fitted to ClipRect.

Declaration:

AT_ERRCOUNT ACCUAPI IG_dspl_zoom_to_rect(
 [IN] HIGEAR hIGear,
 [IN] DWORD dwGrpID,
 [IN] HWND hWnd,
 [IN] const LPAT_RECTANGLE lpZoomRect,
 [OUT] LPDOUBLE lpdblHZoom,
 [OUT] LPDOUBLE lpdblVZoom
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

dwGrpID DWORD Identifier of group in which to set zoom_to_rect options.

hWnd HWND Handle of window where image is drawn.

lpZoomRect const
LPAT_RECTANGLE

Pointer to the rectangle in device coordinates that should be fitted into ClipRect.

lpdblHZoom LPDOUBLE Pointer to where to return the newly calculated ZoomValueH value. If NULL, then
this parameter is ignored.

lpdblVZoom LPDOUBLE Pointer to where to return the newly calculated ZoomValueV value. If NULL, then
this parameter is ignored.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD nGrpID; /* display group identifier */
AT_RECTANGLE ZoomRect; /* rectangle where to zoom */
RECT rc;
 ...
GetClientRect(hWnd, &rc);
ZoomRect.x = rc.left;
ZoomRect.y = rc.top;
ZoomRect.width = (rc.right - rc.left + 1)/2;
ZoomRect.height = (rc.bottom - rc.top + 1)/2;
IG_dspl_zoom_to_rect(hIGear, nGrpID, hWnd, &ZoomRect, NULL, NULL);
 ...

Remarks:

It assigns ZoomMode=IG_DSPL_ZOOM_H_FIXED| IG_DSPL_ZOOM_V_FIXED, calculates and modifies ZoomValueH,
ZoomValueV, and the horizontal and vertical scroll positions. It does not change the value of rectangles DeviceRect,
ImageRect and ClipRect.

ImageGear Professional v18 for Mac | 683

1.3.1.2.9 Error Functions

This section provides information about the Error group of functions.

IG_err_callback_get
IG_err_callback_set
IG_err_count_get
IG_err_error_check
IG_err_error_get
IG_err_error_set
IG_err_record_get
IG_err_stack_clear
IG_errmngr_callback_get
IG_errmngr_callback_set
IG_error_check
IG_error_clear
IG_error_get
IG_error_set

ImageGear Professional v18 for Mac | 684

1.3.1.2.9.1 IG_err_callback_get

This function obtains error stack callback data and functions that are called to signal error stack changes for the current
thread.

Declaration:

AT_ERRCODE ACCUAPI IG_err_callback_get(
 LPVOID FAR* lplpPrivate,
 LPFNIG_ERRSTACK_ADD FAR* lplpfnAddCB,
 LPFNIG_ERRSTACK_CLEAR FAR* lplpfnClearCB
);

Arguments:

Name Type Description

lplpPrivate LPVOID FAR* Pointer to LPVOID variable to retrieve the private data that is passed to
*lplpfnAddCB and *lplpfnClearCB callbacks. NULL is acceptable.

lplpfnAddCB LPFNIG_ERRSTACK_ADD
FAR*

Pointer to LPFNIG_ERRSTACK_ADD variable to retrieve the callback
function that is called after the record is added to the error stack. NULL is
acceptable.

lplpfnClearCB LPFNIG_ERRSTACK_CLEAR
FAR*

Pointer to LPFNIG_ERRSTACK_CLEAR variable to retrieve the callback
function that is called after the error stack is cleared. NULL is acceptable.

Return Value:

Returns the code of the ImageGear error that occurred during this function call. A value of zero means no errors have
occurred. Errors that occurred during this function call are not appended onto the error stack.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

LPVOID lpPrivate;
LPFNIG_ERRSTACK_ADD lpfnAdd;
LPFNIG_ERRSTACK_CLEAR lpfnClear;
AT_ERRCODE iErrCode;
iErrCode = IG_err_callback_get(&lpPrivate, &lpfnAdd, &lpfnClear);

Remarks:

Callback data and functions can be set using the IG_err_callback_set function.

Each thread has its own independent error stack. There are two types of callbacks - local to thread and global. This API
allows you to get the thread specific callbacks. Use IG_errmngr_callback_get to get the global data and callbacks.

See Also

IG_err_callback_set

ImageGear Professional v18 for Mac | 685

1.3.1.2.9.2 IG_err_callback_set

This function sets error stack callback data and functions that are called to signal error stack changes for the current
thread.

Declaration:

AT_ERRCODE ACCUAPI IG_err_callback_set(
 LPVOID lpPrivate,
 LPFNIG_ERRSTACK_ADD lpfnAddCB,
 LPFNIG_ERRSTACK_CLEAR lpfnClearCB
);

Arguments:

Name Type Description

lpPrivate LPVOID Any private data that will be passed to lpfnAddCB and lpfnClearCB
callbacks. NULL is acceptable.

lpfnAddCB LPFNIG_ERRSTACK_ADD Pointer to the callback function that will be called after the record is
added to the error stack. See LPFNIG_ERRSTACK_ADD for the
declaration.

lpfnClearCB LPFNIG_ERRSTACK_CLEAR Pointer to the callback function that will be called after the error stack is
cleared. See LPFNIG_ERRSTACK_CLEAR for the declaration.

Return Value:

Returns the code of the ImageGear error that occurred during this function call. A value of zero means no errors have
occurred. Errors that occurred during this function call are not appended onto the error stack.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

VOID ACCUAPI ErrAdd(
 LPVOID lpPrivate,
 UINT nRecord,
 INT iLineNumber,
 AT_ERRCODE iCode,
 UINT nLevel,
 AT_INT lValue1,
 AT_INT lValue2,
 LPCHAR lpFileName,
 LPCHAR lpExtratext)
{
 HWND hWnd = (HWND)lpPrivate;
 // update error window with new records
 // ...
}

VOID ACCUAPI ErrClear(
 LPVOID lpPrivate,
 UINT nRecords)
{
 HWND hWnd = (HWND)lpPrivate;
 // remove records from error window
 // ...
}

ImageGear Professional v18 for Mac | 686

VOID Example_IG_err_callback_set()
{
 HWND hWnd = 0; // This assuming to be a real window
 AT_ERRCODE iErrCode;
 iErrCode = IG_err_callback_set((LPVOID)hWnd, ErrAdd, ErrClear);
}

Remarks:

Callback data and functions can be obtained using IG_err_callback_get function.

Each thread has its own independent error stack. There are two types of callbacks - local to thread and global. This
API allows you to set the thread specific callbacks. Use IG_errmngr_callback_set to set the global data and callbacks.

See Also

IG_err_callback_get

ImageGear Professional v18 for Mac | 687

1.3.1.2.9.3 IG_err_count_get

This function returns the total number of records (errors plus warnings) on the error stack.

Declaration:

AT_ERRCOUNT ACCUAPI IG_err_count_get();

Arguments:

None

Return Value:

Returns the total number of errors and warnings on the error stack. If errors occur during this function call, the function
returns (AT_ERRCOUNT)-1, but these errors are not appended onto the error stack.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT errCount;
errCount = IG_err_count_get();

See Also

IG_err_callback_get

ImageGear Professional v18 for Mac | 688

1.3.1.2.9.4 IG_err_error_check

This function returns the number of records of the specified level on the error stack.

Declaration:

AT_ERRCOUNT ACCUAPI IG_err_error_check(
 UINT nLevel
);

Arguments:

Name Type Description

nLevel UINT Level of errors to return. 0 means critical errors (function failure), greater levels denote warnings.

Return Value:

Returns the number of records of the specified level on the error stack. If errors occur during this function call, the
function returns (AT_ERRCOUNT)-1, but these errors are not appended onto the error stack.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT errCount;
// get number of records of level 0
errCount = IG_err_error_check(0);

See Also

IG_err_callback_get

ImageGear Professional v18 for Mac | 689

1.3.1.2.9.5 IG_err_error_get

This function retrieves information about the record from error stack with the given index.

Declaration:

AT_BOOL ACCUAPI IG_err_error_get(
 UINT nLevel,
 UINT nIndex,
 LPCHAR lpszFileName,
 UINT nFNameSize,
 LPINT lpnLineNumber,
 LPAT_ERRCODE lpnCode,
 LPAT_INT lplValue1,
 LPAT_INT lplValue2,
 LPCHAR lpExtraText,
 UINT nETextSize
);

Arguments:

Name Type Description

nLevel UINT Level of errors to index. 0 means critical errors (function failure); greater levels
denote warnings.

nIndex UINT Zero-based record index of the given level.

lpszFileName LPCHAR Pointer indicating where to return the source's file name where the error
occurred.

nFNameSize UINT Size of the memory buffer lpszFileName.

lpnLineNumber LPINT Pointer indicating where to return the line number where the error occurred.

lpnCode LPAT_ERRCODE Pointer indicating where to return the error code.

lplValue1 LPAT_INT Pointer indicating where to return the first associated long value.

lplValue2 LPAT_INT Pointer indicating where to return the second associated long value.

lpExtraText LPCHAR Pointer indicating where to return the additional text description.

nETextSize UINT Size of the memory buffer lpExtraText.

Return Value:

Returns TRUE if the error information has been successfully retrieved; returns FALSE otherwise. Errors that occurred
during this function call are not appended onto the error stack.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT errCount;
errCount = IG_err_count_get();

Remarks:

The difference between this function and IG_err_record_get is that this index exists for records with the specified
level, nLevel; not for all records on the stack.

See Also

ImageGear Professional v18 for Mac | 690

IG_err_callback_get

ImageGear Professional v18 for Mac | 691

1.3.1.2.9.6 IG_err_error_set

This function places an error record onto the error stack.

Declaration:

AT_ERRCOUNT ACCUAPI IG_err_error_set(
 const LPCHAR lpFileName,
 INT iLineNumber,
 AT_ERRCODE nCode,
 UINT nLevel,
 AT_INT lplValue1,
 AT_INT lplValue2,
 const LPCHAR lpExtraText
);

Arguments:

Name Type Description

lpFileName const
LPCHAR

Pointer to a string that supplies the name of the module from which the error was
generated. It is recommended that you use the _FILE_ constant in this field.

iLineNumber INT An integer number indicating the line from which the error was set. It is
recommended that you use the _LINE_ constant in this field.

nCode AT_ERRCODE An integer value of type AT_ERRCODE. Set this to the code number of the error that
you wish to place on the error stack.

nLevel UINT The level of error. 0 means critical error (function failure); greater levels denote
warnings.

lplValue1 AT_INT Two LONG arguments are available so that you may supply any supporting
information about the error. Your application might use these values to decide what
to do after setting a particular kind of error. This is the first one.

lplValue2 AT_INT The second argument for the supporting information about the error. See lplValue1.

lpExtraText const
LPCHAR

Additional text description of the error. It can be NULL if it is not available.

Return Value:

Returns the code of the ImageGear error that occurred during this function call. A value of zero means no errors have
occurred. Errors that occurred during this function call are not appended onto the error stack.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCODE iErrCode;
static const AT_ERRCODE MYERR_BAD_RASTER = (IGE_LAST_ERROR_NUMBER - 1);

// set application specific waining
iErrCode = IG_err_error_set(__FILE__, __LINE__, MYERR_BAD_RASTER, 2, 0, 0, "Some
explanation");

Remarks:

If you are setting an error code that you have defined yourself, you must make sure that it has a value less than
ImageGear's IGE_LAST_ERROR_NUMBER. As the defined value of IGE_LAST_ERROR_NUMBER may change in the
future, you should define your error codes relatively to IGE_LAST_ERROR_NUMBER, as demonstrated in the example,

ImageGear Professional v18 for Mac | 692

rather than use literal values.

ImageGear Professional v18 for Mac | 693

1.3.1.2.9.7 IG_err_record_get

This function obtains information about the record with the given index from the error stack.

Declaration:

AT_BOOL ACCUAPI IG_err_record_get(
 UINT nIndex,
 LPCHAR lpszFileName,
 UINT nFNameSize,
 LPINT lpnLineNumber,
 LPAT_ERRCODE lpnCode,
 LPUINT lpnLevel,
 LPAT_INT lplValue1,
 LPAT_INT lplValue2,
 LPCHAR lpExtraText,
 UINT nETextSize
);

Arguments:

Name Type Description

nIndex UINT Zero based index of the record.

lpszFileName LPCHAR Pointer indicating where to return the source's file name where the error
occurred.

nFNameSize UINT The buffer memory size of lpszFileName.

lpnLineNumber LPINT Pointer indicating where to return the line number where the error occurred.

lpnCode LPAT_ERRCODE Pointer indicating where to return the error code.

lpnLevel LPUINT Pointer indicating where to return the error level.

lplValue1 LPAT_INT Pointer indicating where to return the first associated long value.

lplValue2 LPAT_INT Pointer indicating where to return the second associated long value.

lpExtraText LPCHAR Pointer indicating where to return additional text description.

nETextSize UINT Size of the memory buffer lpExtraText.

Return Value:

Returns TRUE if the record information has been successfully retrieved; returns FALSE otherwise. Errors that occurred
during this function call are not appended onto the error stack.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT iErrCount, i;
CHAR FileName[_MAX_PATH];
INT nLineNumber;
AT_ERRCODE nCode;
UINT nLevel;
// get all records from error stack.
iErrCount = IG_err_count_get();
for(i = 0; i<iErrCount; i++)
{
 IG_err_record_get(i, FileName, sizeof(FileName), &nLineNumber, &nCode, &nLevel, NULL,
NULL, NULL, 0);

ImageGear Professional v18 for Mac | 694

 //...
}

Remarks:

This index is the general index of all records on the stack. The difference between this function and IG_err_error_get
is that this function enumerates all records rather than only records of a given level.

See Also

IG_err_callback_get

ImageGear Professional v18 for Mac | 695

1.3.1.2.9.8 IG_err_stack_clear

This function removes all records from the error stack.

Declaration:

AT_ERRCODE ACCUAPI IG_err_stack_clear();

Arguments:

None

Return Value:

Returns TRUE if the error stack has been successfully cleared; returns FALSE otherwise. Errors that occurred during this
function call are not appended onto the error stack.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

IG_err_stack_clear();

See Also

IG_err_callback_get

ImageGear Professional v18 for Mac | 696

1.3.1.2.9.9 IG_errmngr_callback_get

This function obtains error stack callback data and functions that are called to signal error stack changes for all threads.

Declaration:

AT_ERRCODE ACCUAPI IG_errmngr_callback_get(
 LPVOID FAR* lplpPrivate,
 LPFNIG_ERRMNGR_ADD FAR* lplpfnAddCB,
 LPFNIG_ERRMNGR_CLEAR FAR* lplpfnClearCB
);

Arguments:

Name Type Description

lplpPrivate LPVOID FAR* Pointer to LPVOID variable to retrieve the private data that is passed to
*lplpfnAddCB and *lplpfnClearCB callbacks. NULL is acceptable.

lplpfnAddCB LPFNIG_ERRMNGR_ADD
FAR*

Pointer to LPFNIG_ERRMNGR_ADD variable to retrieve the callback
function that is called after the record is added to the error stack. NULL is
acceptable.

lplpfnClearCB LPFNIG_ERRMNGR_CLEAR
FAR*

Pointer to LPFNIG_ERRMNGR_CLEAR variable to retrieve the callback
function that is called after the error stack is cleared. NULL is acceptable.

Return Value:

Returns the code of the ImageGear error that occurred during this function call. A value of zero means no errors have
occurred. Errors that occurred during this function call are not appended onto the error stack.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

LPVOID Private;
LPFNIG_ERRMNGR_ADD lpfnAdd;
LPFNIG_ERRMNGR_CLEAR lpfnClear;
AT_ERRCODE iErrCode;

iErrCode = IG_errmngr_callback_get(&Private, &lpfnAdd, &lpfnClear);

Remarks:

Global private data and callback functions can be set using IG_errmngr_callback_set function.

Each thread has its own independent error stack. There are two types of callbacks - local to thread and global. This API
allows you to get the global (thread independent) callbacks. Use IG_err_callback_get to get the thread specific data and
callbacks.

See Also

IG_errmngr_callback_set

ImageGear Professional v18 for Mac | 697

1.3.1.2.9.10 IG_errmngr_callback_set

This function sets error stack callback data and functions that are called to signal error stack changes for all threads.

Declaration:

AT_ERRCODE ACCUAPI IG_errmngr_callback_set(
 LPVOID lpPrivate,
 LPFNIG_ERRMNGR_ADD lpfnAddCB,
 LPFNIG_ERRMNGR_CLEAR lpfnClearCB
);

Arguments:

Name Type Description

lpPrivate LPVOID Any Private data that will be passed to lpfnAddCB and lpfnClearCB
callbacks. NULL is acceptable.

lpfnAddCB LPFNIG_ERRMNGR_ADD Callback function that will be called after the record is added to the error
stack. See LPFNIG_ERRMNGR_ADD for a declaration.

lpfnClearCB LPFNIG_ERRMNGR_CLEAR Callback function that will be called after the error stack is cleared. See
LPFNIG_ERRMNGR_CLEAR for a declaration.

Return Value:

Returns the code of the ImageGear error that occurred during this function call. A value of zero means no errors have
occurred. Errors that occurred during this function call are not appended onto the error stack.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

VOID ACCUAPI ErrMgrRecordAdd(
 LPVOID lpPrivate,
 DWORD dwThreadID,
 UINT nRecord,
 INT iLineNumber,
 AT_ERRCODE iCode,
 UINT nLevel,
 AT_INT lValue1,
 AT_INT lValue2,
 LPCHAR lpFileName,
 LPCHAR lpExtratext
)
{
 HWND hWnd = (HWND)lpPrivate;
 // update error window with new records
 // ...
}

VOID ACCUAPI ErrMgrClear(
 LPVOID lpPrivate,
 DWORD dwThreadID,
 UINT nRecords)
{
 HWND hWnd = (HWND)lpPrivate;
 // remove records from error window
 // ...

ImageGear Professional v18 for Mac | 698

}

void Example_IG_errmngr_callback_set()
{
 HWND hWnd = 0; // This assuming to be a real window
 AT_ERRCODE iErrCode;

 iErrCode = IG_errmngr_callback_set((LPVOID)hWnd, ErrMgrRecordAdd, ErrMgrClear);
}

Remarks:

Global private data and callback functions can be obtained using IG_errmngr_callback_get function.

Each thread has its own independent error stack. There are two types of callbacks - local to thread and global. This
API allows you to get the global (thread independent) callbacks. Use IG_err_callback_set to set the thread specific
data and callbacks.

ImageGear Professional v18 for Mac | 699

1.3.1.2.9.11 IG_error_check

This function returns the number of errors currently on the ImageGear error stack.

Declaration:

AT_ERRCOUNT ACCUAPI IG_error_check();

Arguments:

None

Return Value:

Returns the number of errors on the error stack. If errors occur during this function call, the function returns
(AT_ERRCOUNT)-1, but these errors are not appended onto the error stack. A value of zero means no ImageGear errors
have occurred during your last IG_ function call.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

A call to this function has the same effect as a call to IG_err_error_check with nLevel equal to 0.

See Also

IG_error_get

IG_error_set

IG_error_clear

ImageGear Professional v18 for Mac | 700

1.3.1.2.9.12 IG_error_clear

This function clears all errors from the error stack.

Declaration:

VOID ACCUAPI IG_error_clear();

Arguments:

None

Return Value:

None

Supported Raster Image Formats:

This function does not process image pixels.

Example:

BYTE szModuleName[30];
INT iNameSize;
INT iLineNumber;
AT_ERRCODE iCode;
AT_ERRCOUNT nErrcount;
INT n;
iNameSize = 30;
nErrcount = IG_error_check();
for (n = 0; n < nErrcount; n++)
{
 IG_error_get(n, (LPSTR)szModuleName, iNameSize,
 &iLineNumber, &iCode, NULL, NULL);
}
IG_error_clear();

Remarks:

After calling this function, IG_error_check will return zero.

ImageGear Professional v18 for Mac | 701

1.3.1.2.9.13 IG_error_get

This function retrieves an ImageGear Error Code and associated information from the error stack.

Declaration:

VOID ACCUAPI IG_error_get(
 INT iErrorIndex,
 LPSTR szFileName,
 INT cbFileNameSize,
 LPINT lpiLineNumber,
 LPAT_ERRCODE lpiCode,
 LPAT_INT lplValue1,
 LPAT_INT lplValue2
);

Arguments:

Name Type Description

iErrorIndex INT Tells which error to fetch from stack. A value of 0 means fetch the first error
placed on the stack.

szFileName LPSTR Pointer indicating where to return the module name in which this error
occurred. If this pointer is NULL, the module name is not returned.

cbFileNameSize INT Number of bytes available in byte array pointed to by szFileName.

lpiLineNumber LPINT Pointer indicating where to return the line number at which the error occurred.
If NULL, the line number is not returned.

lpiCode LPAT_ERRCODE Pointer indicating where to return the Error Code. If NULL, the Error Code is not
returned.

lplValue1 LPAT_INT Pointer indicating where to return a value stored as lValue1 when the error
occurred. If NULL, this value is not returned. See Remarks below for
explanation of lValue1 and lValue2.

lplValue2 LPAT_INT Pointer indicating where to return a value stored as lValue2 when the error
occurred. If NULL, this value is not returned. See Remarks below for
explanation of lValue1 and lValue2.

Return Value:

None

Supported Raster Image Formats:

This function does not process image pixels.

Example:

INT i; // Will hold Loop Index and Error Index
INT iLineNumber; // Will hold returned Line Number
BYTE szFileName[30]; // Will hold ret'd module name, up to 29 chars
INT cbFileNameSize; // Will hold size of szFileName array
AT_INT lValue1, lValue2;// Will hold returned lValue1, lValue2
AT_ERRCODE iCode; // Will hold returned ImageGear Error Code
AT_ERRCOUNT nErrcount; // Will hold count of errors on error stack
TCHAR szBuf[60]; // Will hold zero-terminated string returned by wsprintf()
below
cbFileNameSize = 30; // Size of module-name array
nErrcount = IG_error_check(); // Get number of errors on stack
for (i = 0; i < nErrcount; i++)
{

ImageGear Professional v18 for Mac | 702

 // Get Module Name, Line Number, Error Code, and lValue1, lValue2:
 IG_error_get (i, (LPSTR) &szFileName,
 cbFileNameSize, &iLineNumber, (LPAT_ERRCODE)&iCode,
 (LPAT_INT) &lValue1, (LPAT_INT) &lValue2);
 // Format error message in szBuf:
 wsprintf (szBuf, _T("Error %d in Module %s at Line %d"), iCode, szFileName,
iLineNumber);
 // Display error message in a Message Box, with heading "Error" :
 MessageBox (NULL, szBuf, _T("Error"), MB_OK);
}
IG_error_clear(); // Done getting errors, clear the error stack

Remarks:

Set iErrorIndex to indicate which error to get. iErrorIndex = 0 means the error added to the stack first. The other
arguments (except cbFileNameSize) are pointers telling this function where to return the retrieved information to you.
This information consists of the Error Code, the module name and line number at which the error occurred, and two
additional values (lValue1 and lValue2) which may provide additional information about the error. See for a list of all
ImageGear Error Codes and the significance of lValue1, lValue2 where applicable.

To determine the number of errors currently on the error stack use IG_error_check. After fetching all error
information you need using IG_error_get, use IG_error_clear to clear the stack.

A call to this function has the same effect as a call to IG_err_error_get with nLevel equal to 0 and lpExtraText equal
to NULL.

ImageGear Professional v18 for Mac | 703

1.3.1.2.9.14 IG_error_set

This function places an ImageGear error onto the error stack.

Declaration:

AT_ERRCOUNT ACCUAPI IG_error_set(
 const LPSTR szFileName,
 INT iLineNumber,
 AT_ERRCODE iCode,
 AT_INT lValue1,
 AT_INT lValue2
);

Arguments:

Name Type Description

szFileName const LPSTR Pointer to a string that supplies the name of the module from which the error was
generated. It is recommended that you use the _FILE_ constant in this field.

iLineNumber INT An integer telling ImageGear from which line the error was set. It is recommended
that you use the _LINE_ constant in this field.

iCode AT_ERRCODE An integer value of type AT_ERRCODE. Set this to the code number of the error that
you wish to place on the error stack.

lValue1 AT_INT The first argument that supplies any supporting information about the error. Your
application might use this value to decide what to do after setting a particular kind of
error.

lValue2 AT_INT The second argument that supplies any supporting information about the error. Your
application might use this value to decide what to do after setting a particular kind of
error.

Return Value:

None

Supported Raster Image Formats:

This function does not process image pixels.

Example:

static const AT_ERRCODE MYERR_BAD_RASTER = (IGE_LAST_ERROR_NUMBER - 1);
AT_ERRCOUNT nErrcount = IG_error_set(__FILE__, __LINE__, MYERR_BAD_RASTER, 0, 0);

Remarks:

One use for this function is with the callback functions. It allows you to write the loading and saving of DIBs and
individual raster lines (IG_load_FD_CB, IG_save_FD_CB_ex) to the handle. Each of these functions call your callback
functions in order to supply data, such as width, height, and Bits Per Pixel, to ImageGear. Your callback functions
(which must be of type LPFNIG_DIB_GET, LPFNIG_RASTER_GET, LPFNIG_DIB_CREATE, and LPFNIG_RASTER_SET),
must return an error count to IG_load_FD_CB and IG_save_FD_CB. You would do this by calling IG_error_check after
each raster is loaded or saved. If you wanted to terminate the load or save, you could use IG_error_set to place the
ImageGear error of your choice upon the stack.

If you are setting an error code that you have defined yourself, you must make sure that it has a value less than
ImageGear's IGE_LAST_ERROR_NUMBER. As the defined value of IGE_LAST_ERROR_NUMBER may change in
the future, you should define your error codes relatively to IGE_LAST_ERROR_NUMBER, as demonstrated in the
example, rather than use literal values.

ImageGear Professional v18 for Mac | 704

1.3.1.2.10 Filter Functions

This section provides information about the Filter group of functions.

IG_fltr_compressionlist_get
IG_fltr_compressionlist_get_ex
IG_fltr_ctrl_get
IG_fltr_ctrl_list
IG_fltr_ctrl_set
IG_fltr_detect_FD
IG_fltr_detect_file
IG_fltr_detect_get
IG_fltr_detect_mem
IG_fltr_detect_set
IG_fltr_formatlist_get
IG_fltr_formatlist_sort
IG_fltr_ICC_callback_get
IG_fltr_ICC_callback_set
IG_fltr_info_get
IG_fltr_load_FD_format
IG_fltr_load_file
IG_fltr_load_file_format
IG_fltr_metad_callback_get
IG_fltr_metad_callback_set
IG_fltr_metad_update_file
IG_fltr_pagecount_FD_format
IG_fltr_pagecount_file_format
IG_fltr_pagedelete_file
IG_fltr_pageinfo_get
IG_fltr_pageinfo_get_ex
IG_fltr_pageswap_file
IG_fltr_raster_plane_callback_get
IG_fltr_raster_plane_callback_set
IG_fltr_save_FD_size_calc
IG_fltr_save_file
IG_fltr_save_file_size_calc
IG_fltr_save_mem
IG_fltr_save_mem_size_calc
IG_fltr_savelist_get
IG_fltr_savelist_get_ex

ImageGear Professional v18 for Mac | 705

1.3.1.2.10.1 IG_fltr_compressionlist_get

This function returns the list of compressions available for saving the specified image to a particular file format. This is
an obsolete function, see remarks.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_compressionlist_get(
 LPAT_DIB lpDIB,
 AT_MODE nFormatID,
 LPAT_MODE lpComprList,
 UINT nCListSize,
 LPUINT lpnCListCount
);

Arguments:

Name Type Description

lpDIB LPAT_DIB Pointer to the AT_DIB structure that contains image parameters. If NULL, then this
function returns all possible compressions.

nFormatID AT_MODE File format identifier. See enumIGFormats for possible values.

lpComprList LPAT_MODE Pointer to the array to return the list of compression constants to. See
enumIGCompressions for possible values. Set to NULL if you only need to obtain the
number of available compressions.

nCListSize UINT Size of the lpCompList array.

lpnCListCount LPUINT Pointer to a variable which will receive the actual number of compression constants.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Indexed RGB - 1, 4, 8 bpp;
Grayscale - 9...16 bpp;
RGB - 24 bpp;
CMYK - 32 bpp.

Example:

AT_ERRCOUNT nErrCount; // Number of errors on stack
HIGEAR hIGear; // Handle of image
UINT nCount, nActual; // Number of compressions
LPAT_MODE lpCompList; // List of compressions

// Load the image
nErrCount = IG_load_file("picture.tif", &hIGear);
if(nErrCount == 0)
{
 AT_DIB atDib;
 AT_DIMENSION nWidth, nHeight;
 UINT nBitsPerPixel;
 // Get image info
 nErrCount = IG_image_dimensions_get(hIGear, &nWidth, &nHeight, &nBitsPerPixel);
 // Fill in AT_DIB structure
 memset(&atDib, 0, sizeof(AT_DIB));
 atDib.biSize = sizeof(AT_DIB);
 atDib.biWidth = nWidth;

ImageGear Professional v18 for Mac | 706

 atDib.biHeight = nHeight;
 atDib.biPlanes = 1;
 atDib.biBitCount = nBitsPerPixel;

 // Get compression count
 nErrCount = IG_fltr_compressionlist_get(&atDib,
 IG_FORMAT_TIF, NULL, 0, &nCount);
 // Allocate memory for compressions
 lpCompList = (LPAT_MODE) malloc(nCount * sizeof(AT_MODE));
 // Get list of compressions that can be used when
 // saving the given image into TIFF format
 nErrCount = IG_fltr_compressionlist_get(&atDib,
 IG_FORMAT_TIF, lpCompList, nCount, &nActual);

 // ...

 // Delete memory
 free(lpCompList);
 // Delete the image
 IG_image_delete(hIGear);
}

Remarks:

This function is only kept for backward compatibility reasons. Please use IG_fltr_compressionlist_get_ex instead.

See also the section Using Format Filters API for Image Saving.

ImageGear Professional v18 for Mac | 707

1.3.1.2.10.2 IG_fltr_compressionlist_get_ex

This function returns the list of compressions available for saving the specified image to a particular file format.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_compressionlist_get_ex(
 const HIGDIBINFO hDIB,
 AT_MODE nFormatID,
 LPAT_MODE lpComprList,
 UINT nCListSize,
 LPUINT lpnCListCount
);

Arguments:

Name Type Description

hDIB const
HIGDIBINFO

Handle of DIB info object that contains image parameters. If NULL, then this
function returns all possible compressions.

nFormatID AT_MODE File format identifier. See enumIGFormats for possible values.

lpComprList LPAT_MODE Pointer to the array to return the list of compression constants to. See
enumIGCompressions for possible values. Set to NULL if you only need to obtain the
number of available compressions.

nCListSize UINT Size of the lpCompList array.

lpnCListCount LPUINT Pointer to a variable which will receive the actual number of compression constants.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGearProfessional.

Example:

AT_ERRCOUNT nErrCount; // Number of errors on stack
HIGEAR hIGear; // Handle of image
HIGDIBINFO hDIB; // DIB info handle of image
UINT nCount, nActual; // Number of compressions
LPAT_MODE lpCompList; // List of compressions

// Load the image
nErrCount = IG_load_file("picture.tif", &hIGear);
if(nErrCount==0)
{
 nErrCount = IG_image_DIB_info_get(hIGear, &hDIB);
 // Get compression count
 nErrCount = IG_fltr_compressionlist_get_ex(hDIB,
 IG_FORMAT_TIF, NULL, 0, &nCount);
 // Allocate memory for compressions
 lpCompList = (LPAT_MODE) malloc(nCount * sizeof(AT_MODE));
 // Get list of compressions that can be used when
 // saving the given image into TIFF format
 nErrCount = IG_fltr_compressionlist_get_ex(hDIB,
 IG_FORMAT_TIF, lpCompList, nCount, &nActual);

 // ...

ImageGear Professional v18 for Mac | 708

 // Delete memory
 free(lpCompList);
 // Delete DIB info
 IG_DIB_info_delete(hDIB);
 // Delete the image
 IG_image_delete(hIGear);
}

Remarks:

See also the section Using Format Filters API for Image Saving.

ImageGear Professional v18 for Mac | 709

1.3.1.2.10.3 IG_fltr_ctrl_get

This function allows you to get full information about a control parameter supported by an ImageGear filter. It also
returns the current or default value of the parameter.

Declaration:

AT_ERRCODE ACCUAPI IG_fltr_ctrl_get(
 DWORD dwFormatID,
 const LPCHAR lpcsCtrlName,
 AT_BOOL bGetDefault,
 LPAT_MODE lpnValueType,
 LPDWORD lpdwValueSize,
 LPVOID lpBuffer,
 DWORD dwBufferSize
);

Arguments:

Name Type Description

dwFormatID DWORD A constant indicating the format filter for which the information should be retrived.
See enumIGFormats for possible values.

lpcsCtrlName const
LPCHAR

Specifies the name of the control parameter you want to get the info about. Use
IG_fltr_ctrl_list to obtain the names of control parameters supported for a format
filter.

bGetDefault AT_BOOL Set to TRUE to obtain the default value of the control parameter. Set to FALSE to
obtain the current value of the control parameter.

lpnValueType LPAT_MODE Returns the value type of control parameter.

lpdwValueSize LPDWORD Returns the size in bytes of the memory buffer that should be allocated for lpBuffer
to completely fit the returned value. If NULL then this parameter is ignored.

lpBuffer LPVOID Pointer to a memory buffer which will be overwritten with the control parameter
value.

dwBufferSize DWORD The size of memory allocated for lpBuffer pointer. If it is less than the value
returned through lpdwValueSize then only dwBufferSize bytes will be written to the
lpBuffer, and no error will be returned.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount; // Count of returned errors on stack
AT_MODE valueType;
DWORD valueSize;
DWORD bufferSize;
// Get a type and a size of the control parameter
nErrcount = IG_fltr_ctrl_get(IG_FORMAT_TIF, "BUFFER_SIZE", FALSE, &valueType, &valueSize,
NULL, 0);
if(nErrcount == 0)
{
 // Get the control parameter
 if(valueType == AM_TID_DWORD && valueSize == sizeof(DWORD))
 {

ImageGear Professional v18 for Mac | 710

 nErrcount = IG_fltr_ctrl_get(IG_FORMAT_TIF, "BUFFER_SIZE", FALSE, NULL, NULL,
&bufferSize, sizeof(bufferSize));

 // ...
 }
}

Remarks:

The application is responsible for allocating memory for lpBuffer and freeing it when it is no longer in use.

Use function IG_fltr_ctrl_set to change the value of a control parameter .

See also the section Using Format Filters API for Filter Control.

ImageGear Professional v18 for Mac | 711

1.3.1.2.10.4 IG_fltr_ctrl_list

This function allows you to get the list of control parameters for each ImageGear filter you specify using FormatID
argument.

Declaration:

AT_ERRCODE ACCUAPI IG_fltr_ctrl_list(
 DWORD dwFormatID,
 LPUINT lpnCount,
 LPVOID lpArray,
 DWORD dwArraySizeInBytes
);

Arguments:

Name Type Description

dwFormatID DWORD A constant indicating the format filter for which the information should be retrived.
See enumIGFormats for possible values.

lpnCount LPUINT Returns the number of supported control parameters for the requested filter.

lpArray LPVOID Returns the array of control parameters for the requested filter. Application is
responsible to allocate memory for lpArray buffer but IG fills each element of this
array with pointer to static string. Application is not allowed to change memory
referenced by any of those string pointers.

dwArraySizeInBytes DWORD Provides the size (in bytes) of memory allocated for lpArray pointer.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount; // Count of returned errors on stack
UINT listLength;
LPSTR* lpList;
// Get a length of the control parameter list
nErrcount = IG_fltr_ctrl_list(IG_FORMAT_TIF, &listLength, NULL, 0);
if(nErrcount == 0)
{
 // Allocate memory for the list
 lpList = (LPSTR*)malloc(listLength * sizeof(LPSTR));
 // Get the control parameter list
 nErrcount = IG_fltr_ctrl_list(IG_FORMAT_TIF, &listLength, lpList, listLength *
sizeof(LPSTR));

 // ...

 free(lpList);
}

Remarks:

See also the section Using Format Filters API for Filter Control.

ImageGear Professional v18 for Mac | 712

1.3.1.2.10.5 IG_fltr_ctrl_set

This function allows you to set a control parameter value for the specified format filter.

Declaration:

AT_ERRCODE ACCUAPI IG_fltr_ctrl_set(
 DWORD dwFormatID,
 const LPCHAR lpcsCtrlName,
 LPVOID lpValue,
 DWORD dwValueSize
);

Arguments:

Name Type Description

dwFormatID DWORD A constant indicating the format filter for which the control parameter should be set. See
enumIGFormats for possible values.

lpcsCtrlName const
LPCHAR

Specifies the name of control parameter you want to set. The list of names of supported
control parameters can be obtained using IG_fltr_ctrl_list.

lpValue LPVOID Specifies the new value for the control parameter. See Remarks.

dwValueSize DWORD Specifies the size (in bytes) of the control parameter value.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount; // Count of returned errors on stack
DWORD bufferSize = 32767;
// Get a type and a size of the control parameter
nErrcount = IG_fltr_ctrl_set(IG_FORMAT_TIF, "BUFFER_SIZE", (LPVOID)(AT_UINT)bufferSize,
sizeof(bufferSize));

Remarks:

See ImageGear Supported File Formats Reference section for description of all control parameters supported by
ImageGear file format filters.

Use IG_fltr_ctrl_list to get the list of supported control parameters for a specific format. Use IG_fltr_ctrl_get to get the
information about a specific control parameter, as well as its current value.

The rules for passing values to this function are as follows:

For platform-dependent integers AT_INT and AT_UINT, as well as types derived from them, such as AT_DIMENSION,
lpValue should contain the actual value.
For other types, if the value size is less than or equal to sizeof(DWORD), then lpValue should contain the actual
value; otherwise it should contain a pointer to the value.

See also the section Using Format Filters API for Filter Control.

ImageGear Professional v18 for Mac | 713

1.3.1.2.10.6 IG_fltr_detect_FD

This function detects the format of the image file specified by a file descriptor.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_detect_FD(
 AT_INT fd,
 LONG lOffset,
 LPAT_MODE lpFileType
);

Arguments:

Name Type Description

fd AT_INT Handle of the open file containing the image. This handle can be obtained from Microsoft
Windows functions such as CreateFile(), and cast to AT_INT for passing to the function
parameter. FILE pointers returned by functions such as fopen(), and file handles returned
by functions such as _sopen_s() are not supported.

lOffset LONG Offset into the file, in bytes, to where the image begins. This is the offset to the beginning
of the header, not to the beginning of the bitmap. lOffset is usually 0.

lpFileType LPAT_MODE Pointer to an AT_MODE variable in which the file type will be returned. See enumIGFormats
for possible values. If the file format can not be detected, this parameter will return
IG_FORMAT_UNKNOWN.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrCount; // will hold returned error count
AT_MODE nFormatID;
HANDLE fd; //File Descriptor

fd = CreateFile(_T("picture.tif"), GENERIC_READ,
 0, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
if(fd != INVALID_HANDLE_VALUE)
{
 nErrCount = IG_fltr_detect_FD((AT_INT)fd, 0, &nFormatID);
 if(nFormatID == IG_FORMAT_TIF)
 {
 // ...
 }
 CloseHandle(fd);
}

Remarks:

See also the section Detecting Image File Format.

ImageGear Professional v18 for Mac | 714

1.3.1.2.10.7 IG_fltr_detect_file

This function detects the format of the image file specified by a filename.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_detect_file(
 const LPSTR lpszFileName,
 LPAT_MODE lpFileType
);

Arguments:

Name Type Description

lpszFileName const
LPSTR

File name of the image which format you wish to detect.

lpFileType LPAT_MODE Pointer to an AT_MODE variable in which the file type will be returned. See
enumIGFormats for possible values. If the file format can not be detected, this
parameter will return IG_FORMAT_UNKNOWN.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrCount; // will hold returned error count
AT_MODE nFormatID;

nErrCount = IG_fltr_detect_file("picture.tif", &nFormatID);
if(nFormatID == IG_FORMAT_TIF)
{
 // ...
}

Remarks:

See also the section Detecting Image File Format.

ImageGear Professional v18 for Mac | 715

1.3.1.2.10.8 IG_fltr_detect_get

This function checks whether the detection is enabled for the specified format and returns the format's detection priority.

Declaration:

AT_ERRCODE ACCUAPI IG_fltr_detect_get(
 DWORD dwFormatID,
 LPAT_BOOL lpDetectEnable,
 LPLONG lpDetectPriority
);

Arguments:

Name Type Description

dwFormatID DWORD Specifies the format filter ID for which the detection flag and detection priority is
retrieved. See enumIGFormats for possible values.

lpDetectEnable LPAT_BOOL Pointer to a variable that receives the flag specifying whether or not the detection is
enabled for the given format.

lpDetectPriority LPLONG Pointer to a variable that receives the filter detection priority. The greater this value
the higher the priority.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount; // Count of returned errors on stack
AT_BOOL bDetectEnable;
LONG nDetectPriority;
nErrcount = IG_fltr_detect_get(IG_FORMAT_TIF, &bDetectEnable, &nDetectPriority);

ImageGear Professional v18 for Mac | 716

1.3.1.2.10.9 IG_fltr_detect_mem

This function detects the format of an image located in the memory.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_detect_mem(
 LPVOID lpImage,
 AT_UINT nSize,
 LPAT_MODE lpFileType
);

Arguments:

Name Type Description

lpImage LPVOID Pointer to a memory buffer containing the image.

nSize AT_UINT Size of image in memory.

lpFileType LPAT_MODE Pointer to an AT_MODE variable in which the file type will be returned. See
enumIGFormats for possible values. If the file format can not be detected, this
parameter will return IG_FORMAT_UNKNOWN.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrCount; // will hold returned error count
AT_MODE nFormatID;
AT_BYTE* lpImage = NULL;

// Read an image into the memory
FILE* fp;
fopen_s(&fp, "picture.tif", "rb");
if(fp != NULL)
{
 long fileSize;
 fseek(fp, 0, SEEK_END);
 fileSize = ftell(fp);
 fseek(fp, 0, SEEK_SET);
 // Allocate memory buffer
 lpImage = (AT_BYTE*)malloc(fileSize);
 if(lpImage != NULL)
 {
 // Read file into the memory
 fread(lpImage, 1, fileSize, fp);
 // Detect file format in the memory
 nErrCount = IG_fltr_detect_mem(lpImage, fileSize, &nFormatID);
 if(nFormatID == IG_FORMAT_TIF)
 {
 // ...
 }
 // Delete memory
 free(lpImage);
 }

ImageGear Professional v18 for Mac | 717

 fclose(fp);
}

Remarks:

See also the section Detecting Image File Format.

ImageGear Professional v18 for Mac | 718

1.3.1.2.10.10 IG_fltr_detect_set

This function turns on or off the format detection procedure for the specified file format. It also sets the format detection
priority.

Declaration:

AT_ERRCODE ACCUAPI IG_fltr_detect_set(
 DWORD dwFormatID,
 AT_BOOL bDetectEnable,
 LONG nDetectPriority
);

Arguments:

Name Type Description

dwFormatID DWORD Specifies the format filter ID for which the detection flag and detection priority is set. See
enumIGFormats for possible values.

bDetectEnable AT_BOOL TRUE turns the detection on, FALSE turns it off.

nDetectPriority LONG Detection priority to be used during the format detection procedure. Greater values
correspond to higher priority.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount; // Count of returned errors on stack
nErrcount = IG_fltr_detect_set(IG_FORMAT_TIF, TRUE, 100);

ImageGear Professional v18 for Mac | 719

1.3.1.2.10.11 IG_fltr_formatlist_get

This function searches and returns the list of ImageGear supported format filters which provide the specified features.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_formatlist_get(
 DWORD dwFlags,
 LPAT_MODE lpFormatList,
 UINT nFListSize,
 LPUINT lpnFListCount
);

Arguments:

Name Type Description

dwFlags DWORD Specifies format filter features. Can be any combination of constants from
enumIGFltrFormatFlags enumeration.

lpFormatList LPAT_MODE Pointer to an array of AT_MODE where the file format constants will be returned. See
enumIGFormats for possible values. Set to NULL if you only need to obtain the
number of format filters returned by the search.

nFListSize UINT Size of lpFormatList array if it is not NULL.

lpnFListCount LPUINT If lpFormatList is not NULL, then the number of copied format identifiers are
returned. Otherwise, the total number of formats is returned.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrCount; // Count of errs on stack upon ret from func
UINT nCount; // Count of supported formats
LPAT_MODE lpFormatList; // list of formats
// Get list of filters that support detect and saving:
// Get total count
nErrCount = IG_fltr_formatlist_get(IG_FLTR_DETECTSUPPORT|IG_FLTR_PAGEINSERTSUPPORT, NULL,
 0, &nCount);
if(nErrCount==0)
{
 // Allocate memory
 lpFormatList = (LPAT_MODE)malloc(nCount*sizeof(AT_MODE));
 if(lpFormatList!=NULL)
 {
 // Get supported formats
 IG_fltr_formatlist_get(IG_FLTR_DETECTSUPPORT|IG_FLTR_PAGEINSERTSUPPORT,
 lpFormatList, nCount, NULL);

 // ...

 // Release memory
 free(lpFormatList);
 }
}

ImageGear Professional v18 for Mac | 720

Remarks:

This function searches for filters that support ALL requested features (rather than some of them).

Typically, you will call this function twice to obtain the list of functions. The first time you will obtain the number of
values to allocate the lpFormatList array of the necessary size, and the second time you will receive the actual values.

See also the section Getting Information and Sorting Images.

ImageGear Professional v18 for Mac | 721

1.3.1.2.10.12 IG_fltr_formatlist_sort

This function sorts the array of file format constants in alphabetic order based on the short format names.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_formatlist_sort(
 LPAT_MODE lpFormatList,
 UINT nFListSize
);

Arguments:

Name Type Description

lpFormatList LPAT_MODE Array of file format constants. See enumIGFormats for possible values.

nFListSize UINT Size of lpFormatList array.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrCount; // Count of errs on stack upon ret from func
UINT nCount; // Count of supported formats
LPAT_MODE lpFormatList; // list of formats
// Get list filters that support detect and saving:
// Get total count
nErrCount = IG_fltr_formatlist_get(IG_FLTR_DETECTSUPPORT|IG_FLTR_PAGEINSERTSUPPORT, NULL,
 0, &nCount);
if(nErrCount==0)
{
 // Allocate memory
 lpFormatList = (LPAT_MODE)malloc(nCount*sizeof(AT_MODE));
 if(lpFormatList!=NULL)
 {
 // Get supported formats
 IG_fltr_formatlist_get(IG_FLTR_DETECTSUPPORT|IG_FLTR_PAGEINSERTSUPPORT,
 lpFormatList, nCount, NULL);
 // Sort formats in alphabetic order */
 IG_fltr_formatlist_sort(lpFormatList, nCount);

 // ...

 // Delete memory
 free(lpFormatList);
 }
}

Remarks:

You can use this function to sort the list of formats obtained from IG_fltr_formatlist_get. Short file format names used
for sorting correspond to short names returned by IG_fltr_info_get function.

See also the section Getting Information and Sorting Images.

ImageGear Professional v18 for Mac | 722

ImageGear Professional v18 for Mac | 723

1.3.1.2.10.13 IG_fltr_ICC_callback_get

This function returns the current settings for callbacks that are used for reading and writing ICC profiles.

Declaration:

AT_ERRCODE ACCUAPI IG_fltr_ICC_callback_get(
 LPVOID* lplpPrivate,
 LPAFT_IG_ICC_GET_CB* lplpfnGetCB,
 LPAFT_IG_ICC_SET_CB* lplpfnSetCB,
 LPAFT_ANY* lplpfnReserved
);

Arguments:

Name Type Description

lplpPrivate LPVOID* Private callback data.

lplpfnGetCB LPAFT_IG_ICC_GET_CB* GET callback function.

lplpfnSetCB LPAFT_IG_ICC_SET_CB* SET callback function.

lplpfnReserved LPAFT_ANY* Reserved.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount; // Count of returned errors on stack
LPVOID lpPrivate; // Private callback data
LPAFT_IG_ICC_GET_CB lpfnGetCB; // GET callback function
LPAFT_IG_ICC_SET_CB lpfnSetCB; // SET callback function

// Get ICC callback functions
nErrcount = IG_fltr_ICC_callback_get(&lpPrivate, &lpfnGetCB, &lpfnSetCB, NULL);

Remarks:

See IG_fltr_ICC_callback_set for reading and writing ICC profiles.

ImageGear Professional v18 for Mac | 724

1.3.1.2.10.14 IG_fltr_ICC_callback_set

This function allows you to register your ICC callback functions.

Declaration:

AT_ERRCODE ACCUAPI IG_fltr_ICC_callback_set(
 LPVOID lpPrivate,
 LPAFT_IG_ICC_GET_CB lpfnGetCB,
 LPAFT_IG_ICC_SET_CB lpfnSetCB,
 LPAFT_ANY lpfnReserved
);

Arguments:

Name Type Description

lpPrivate LPVOID Private callback data.

lpfnGetCB LPAFT_IG_ICC_GET_CB GET callback function.

lpfnSetCB LPAFT_IG_ICC_SET_CB SET callback function.

lpfnReserved LPAFT_ANY Reserved.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

VOID ACCUAPI ICCGet(
 AT_VOID *lpPrivate, // Private callback data.
 AT_BYTE *lpICCData, // ICC profile data, allocated by the toolkit
 AT_INT DataLength // Length of ICC profile data, in bytes
)
{
 // ...
}

VOID ACCUAPI ICCSet(
 AT_VOID *lpPrivate, // Private callback data.
 AT_BYTE **lplpICCData, // ICC profile data, allocated by the application
 AT_INT *lpDataLength // Length of ICC profile data, in bytes
)
{
 // ...
}

void Example_IG_fltr_ICC_callback_set()
{
 AT_ERRCOUNT nErrcount; // Count of returned errors on stack
 // Set ICC callback functions
 nErrcount = IG_fltr_ICC_callback_set(NULL, ICCGet, ICCSet, NULL);
}

Remarks:

ImageGear Professional v18 for Mac | 725

This function registers callbacks for reading and writing ICC profiles during loading and saving of image files.

ICC profile reading. Use any image loading function to load an image. As soon as the format filter encounters an
ICC profile, it calls the callback function. The ICC profile is provided in the standard ICC format, as a byte array.
The toolkit owns the buffer, so the application shall not delete it. If the application needs to use the ICC profile
after exiting the callback, it shall copy it to its own buffer.
ICC profile writing. Use any image saving function to save an image. If the format filter supports ICC profile
writing, it calls the callback function before writing the profile. If the HIGEAR being saved has an ICC profile
attached to it, format filter ignores this profile and writes the profile obtained from the callback. The ICC profile
shall be provided in the standard ICC format, as a byte array. The application owns the buffer, and is responsible
for deleting it.

ImageGear Professional v18 for Mac | 726

1.3.1.2.10.15 IG_fltr_info_get

This function returns information about the format filter and its supported features.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_info_get(
 AT_MODE nFormatID,
 LPDWORD lpdwInfoFlags,
 LPCHAR lpShortName,
 DWORD dwSNameSize,
 LPCHAR lpFullName,
 DWORD dwFNameSize,
 LPCHAR lpDefExt,
 DWORD dwDefExtSize
);

Arguments:

Name Type Description

nFormatID AT_MODE File format identifier. See enumIGFormats for possible values.

lpdwInfoFlags LPDWORD Pointer to a variable which will receive the format flags. Any combination of
enumIGFltrFormatFlags values can be returned.

lpShortName LPCHAR Pointer to a byte array which will receive the zero-terminated string with the short file
format name. Set to NULL if you do not need to obtain this information.

dwSNameSize DWORD Size of the lpShortName array in bytes.

lpFullName LPCHAR Pointer to a byte array which will receive the zero-terminated string with the full file
format name. Set to NULL if you do not need to obtain this information.

dwFNameSize DWORD Size of the lpFullName array in bytes.

lpDefExt LPCHAR Pointer to a byte array which will receive the zero-terminated string with file masks
such as *.tif separated by a semicolon (;). Set to NULL if you do not need to obtain
this information.

dwDefExtSize DWORD Size of lpDefExt array in bytes.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_CHAR shortName[_MAX_PATH];
AT_CHAR fullName[_MAX_PATH];
AT_CHAR defExt[_MAX_PATH];
DWORD dwFlags;

AT_ERRCOUNT nErrCount;
nErrCount = IG_fltr_info_get(IG_FORMAT_TIF, &dwFlags, shortName, sizeof(shortName),
 fullName, sizeof(fullName), defExt, sizeof(defExt));

// Output the filter info
if(dwFlags & IG_FLTR_DETECTSUPPORT)
 printf("IG_FLTR_DETECTSUPPORT\n");
if(dwFlags & IG_FLTR_PAGEREADSUPPORT)

ImageGear Professional v18 for Mac | 727

 printf("IG_FLTR_PAGEREADSUPPORT\n");
if(dwFlags & IG_FLTR_MPAGEREADPSUPPORT)
 printf("IG_FLTR_MPAGEREADPSUPPORT\n");
if(dwFlags & IG_FLTR_MPAGEWRITEPSUPPORT)
 printf("IG_FLTR_MPAGEWRITEPSUPPORT\n");
if(dwFlags & IG_FLTR_PAGEINSERTSUPPORT)
 printf("IG_FLTR_PAGEINSERTSUPPORT\n");
if(dwFlags & IG_FLTR_PAGEDELETESUPPORT)
 printf("IG_FLTR_PAGEDELETESUPPORT\n");
if(dwFlags & IG_FLTR_PAGESWAPSUPPORT)
 printf("IG_FLTR_PAGESWAPSUPPORT\n");
if(dwFlags & IG_FLTR_MPDATASUPPORT)
 printf("IG_FLTR_MPDATASUPPORT\n");

printf("Short name: %s\nFullName: %s\nDefault Extension: %s\n", shortName, fullName,
defExt);

Remarks:

This function returns a short format name - usually 3-4 chars (e.g., "TIFF"), full format name (e.g., "Tagged Image
File Format"), and default file extensions separated by ";" (e.g., "*.tif;*.tiff").

See also the section Getting Information and Sorting Images.

ImageGear Professional v18 for Mac | 728

1.3.1.2.10.16 IG_fltr_load_FD_format

This function loads an image from an open file into memory and creates a HIGEAR handle for the image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_load_FD_format(
 AT_MODE nFormat,
 AT_INT fd,
 LONG lOffset,
 UINT nPage,
 UINT nTile,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

nFormat AT_MODE A constant indicating the file format of the input file. See enumIGFormats for possible
values. Set to IG_FORMAT_UNKNOWN to let ImageGear detect the file format.

fd AT_INT Handle of the open file containing the image. This handle can be obtained from Microsoft
Windows functions such as CreateFile(), and cast to AT_INT for passing to the function
parameter. FILE pointers returned by functions such as fopen(), and file handles returned
by functions such as _sopen_s() are not supported.

lOffset LONG Offset to image in the file.

nPage UINT Page number to load if this is a multi-page file. Note that page numbers begin at 1, not 0.
Set nPage to 1 if this is not a multi-page file.

nTile UINT Tile number to load, set to 1 for non-tiled image.

lphIGear LPHIGEAR ImageGear handle returned.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; // Will hold handle returned by IG_fltr_load_file
AT_ERRCOUNT nErrCount; // Count of errs on stack upon ret from func*/
HANDLE fd; //File Descriptor
fd = CreateFile(_T("picture.tif"), GENERIC_READ,
 0, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
if(fd != INVALID_HANDLE_VALUE)
{
 // Load the selected image
 nErrCount = IG_fltr_load_FD_format(IG_FORMAT_TIF, (AT_INT)fd, 0, 1, 0, &hIGear);
 CloseHandle(fd);
 if(nErrCount == 0)
 {
 // ...

 // Delete the image
 IG_image_delete(hIGear);
 }
}

ImageGear Professional v18 for Mac | 729

Remarks:

If nFormat = IG_FORMAT_UNKNOWN then ImageGear attempts to detect the file format automatically, and then
loads the image. Otherwise, ImageGear skips the file format detection and loads the file with the specified format
filter.

See also the section Getting Information about a File Format Filter.

ImageGear Professional v18 for Mac | 730

1.3.1.2.10.17 IG_fltr_load_file

This function loads an image from the specified file into memory and creates a HIGEAR handle for this image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_load_file(
 const LPSTR lpszFileName,
 UINT nPage,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

lpszFileName const
LPSTR

Path and name of the file to load. The path can be absolute or relative.

nPage UINT Page number to load if this is a multi-page file. Note that page numbers begin at 1, not 0.
Set nPage to 1 if this is not a multi-page file.

lphIGear LPHIGEAR Pointer to the HIGEAR object in which to return the ImageGear handle of the image.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Remarks:

The handle that ImageGear assigns for this image is returned in the hIGear argument. The file named by szFileName
may be in any format recognized by ImageGear. The function will determine the format by inspecting the file's header
section.

Example:

HIGEAR hIGear; // Will hold handle returned by IG_fltr_load_file
AT_ERRCOUNT nErrCount; // Count of errs on stack upon ret from func*/
// Load the selected image
nErrCount = IG_fltr_load_file("picture.tif", 1, &hIGear);
if(nErrCount == 0)
{
 // ...

 // Delete the image
 IG_image_delete(hIGear);
}

Some file formats, such as TXT (ASCII Text), JPEG, and others, may be loaded with additional control, using
IG_fltr_ctrl_get and IG_fltr_ctrl_set. See the description of these functions also in Using Format Filters API for
Filter Control section.
Note that simply loading the file does not cause it to be displayed. Refer to IG_dspl_image_draw and related
routines, for how to display an image once it is in memory. See also IG_load_file_display.

See also the section Loading Images.

ImageGear Professional v18 for Mac | 731

1.3.1.2.10.18 IG_fltr_load_file_format

This function loads an image from the specified file into memory and creates a HIGEAR handle for this image. The
function allows to skip the automatic detection of the file format and instead use the specified format ID.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_load_file_format(
 AT_MODE nFormat,
 const LPSTR lpszFileName,
 UINT nPage,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

nFormat AT_MODE A constant indicating the file format of the input file. See enumIGFormats for possible
values. Set to IG_FORMAT_UNKNOWN to let ImageGear detect the file format.

lpszFileName const
LPSTR

Path and name of the file to load. The path can be absolute or relative.

nPage UINT Page number to load if this is a multi-page file. Note that page numbers begin at 1, not 0.
Set nPage to 1 if this is not a multi-page file.

lphIGear LPHIGEAR Pointer to the HIGEAR object in which to return the ImageGear handle of the image.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; // Will hold handle returned by IG_fltr_load_file
AT_ERRCOUNT nErrCount; // Count of errs on stack upon ret from func*/
// Load the selected image
nErrCount = IG_fltr_load_file_format(IG_FORMAT_TIF, "picture.tif", 1, &hIGear);
if(nErrCount == 0)
{
 // ...

 // Delete the image
 IG_image_delete(hIGear);
}

Remarks:

If nFormat = IG_FORMAT_UNKNOWN then ImageGear attempts to detect the file format automatically, and then loads
the image. Otherwise, ImageGear skips the file format detection and loads the file with the specified format filter.

See also the section Getting Information about a File Format Filter.

ImageGear Professional v18 for Mac | 732

1.3.1.2.10.19 IG_fltr_metad_callback_get

This function returns the callback functions that ImageGear uses to pass or receive metadata during save and load
operations.

Declaration:

AT_ERRCODE ACCUAPI IG_fltr_metad_callback_get(
 LPVOID* lpPrivate,
 LPAFT_IG_METAD_ITEM_SET_CB* lplpfnSetCB,
 LPAFT_IG_METAD_ITEM_ADD_CB* lplpfnAddCB,
 LPAFT_IG_METAD_ITEM_GET_CB* lplpfnGetCB
);

Arguments:

Name Type Description

lpPrivate LPVOID* Returns private data associated with metadata callback functions.

lplpfnSetCB LPAFT_IG_METAD_ITEM_SET_CB* Returns pointer to callback function of type
LPAFT_IG_METAD_ITEM_SET_CB that is used for Set metadata
operation.

lplpfnAddCB LPAFT_IG_METAD_ITEM_ADD_CB* Returns pointer to callback function of type
LPAFT_IG_METAD_ITEM_ADD_CB that is used for Add metadata
operation.

lplpfnGetCB LPAFT_IG_METAD_ITEM_GET_CB* Returns pointer to callback function of type
LPAFT_IG_METAD_ITEM_GET_CB that is used for Get metadata
operation.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount; // Count of returned errors on stack
LPVOID lpPrivate;
LPAFT_IG_METAD_ITEM_SET_CB lpfnSetCB;
LPAFT_IG_METAD_ITEM_ADD_CB lpfnAddCB;
LPAFT_IG_METAD_ITEM_GET_CB lpfnGetCB;

// Get metadata callback functions
nErrcount = IG_fltr_metad_callback_get(&lpPrivate, &lpfnSetCB, &lpfnAddCB, &lpfnGetCB);

Remarks:

A NULL value is valid for any parameter, if the corresponding information is not necessary to the application.

See also IG_fltr_metad_callback_set, LPAFT_IG_METAD_ITEM_ADD_CB, LPAFT_IG_METAD_ITEM_GET_CB,
LPAFT_IG_METAD_ITEM_SET_CB functions and the section Processing of non-image data through filter callback
functions.

ImageGear Professional v18 for Mac | 733

1.3.1.2.10.20 IG_fltr_metad_callback_set

This function sets the callback functions that ImageGear uses to pass or receive metadata during save and load
operations.

Declaration:

AT_ERRCODE ACCUAPI IG_fltr_metad_callback_set(
 LPVOID lpPrivate,
 LPAFT_IG_METAD_ITEM_SET_CB lpfnSetCB,
 LPAFT_IG_METAD_ITEM_ADD_CB lpfnAddCB,
 LPAFT_IG_METAD_ITEM_GET_CB lpfnGetCB
);

Arguments:

Name Type Description

lpPrivate LPVOID New value for private data to be associated with callback
functions.

lpfnSetCB LPAFT_IG_METAD_ITEM_SET_CB New value of callback function of type
LPAFT_IG_METAD_ITEM_SET_CB that is to be used for Set
metadata operation.

lpfnAddCB LPAFT_IG_METAD_ITEM_ADD_CB New value of callback function of type
LPAFT_IG_METAD_ITEM_ADD_CB that is to be used for Add
metadata operation.

lpfnGetCB LPAFT_IG_METAD_ITEM_GET_CB New value of callback function of type
LPAFT_IG_METAD_ITEM_GET_CB that is to be used for Get
metadata operation.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

VOID ACCUAPI MetaDataGet(
 LPVOID lpPrivate, // Private callback data.
 AT_MODE FilterID,
 LPCHAR ItemName, // Name of data item
 DWORD ItemID, // ID of data item
 AT_MODE ItemType, // Type of item
 LPVOID ItemValue, // value of item
 AT_MODE ValueType, // type of value
 DWORD ValueLength, // length of value
 AT_BOOL ReadOnlyValue // inform about is value is changeable or not
)
{
 // ...
}
BOOL ACCUAPI MetaDataSet(
 LPVOID lpPrivate, // Private callback data.
 AT_MODE FilterID,
 LPCHAR ItemName, // Name of data item
 DWORD ItemID, // ID of data item
 AT_MODE ItemType, // Type of item

ImageGear Professional v18 for Mac | 734

 LPVOID ItemValue, // value of item
 AT_MODE ValueType, // type of value
 DWORD ValueLength, // length of value
 AT_BOOL ReadOnlyValue, // inform about is value is changeable or not
 LPVOID *NewItemValue,
 LPAT_MODE NewValueType,
 LPDWORD NewValueLength
)
{
 // ...
 return TRUE;
}
BOOL ACCUAPI MetaDataAdd(
 LPVOID lpPrivate, // Private callback data.
 AT_MODE FilterID,
 LPCHAR *ItemName, // Name of data item
 DWORD *ItemID, // ID of data item
 AT_MODE *ItemType, // Type of item
 LPVOID *ItemValue, // value of item
 AT_MODE *ValueType, // type of value
 DWORD *ValueLength, // length of value
 AT_BOOL *ReadOnlyValue // inform about is value is changeable or not
)
{
 // ...
 return TRUE;
}

void Example_IG_fltr_metad_callback_set()
{
 AT_ERRCOUNT nErrcount; // Count of returned errors on stack
 // Set metadata callback functions
 nErrcount = IG_fltr_metad_callback_set(NULL, MetaDataSet, MetaDataAdd, MetaDataGet);
}

Remarks:

See also the section Using Format Filters API for Filter Control.

ImageGear Professional v18 for Mac | 735

1.3.1.2.10.21 IG_fltr_metad_update_file

This function creates a new file with an exact copy of the source file's pixel data and with new metadata.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_metad_update_file(
 const LPSTR lpszFileNameSrc,
 const LPSTR lpszFileNameDest,
 AT_LMODE lFormatType,
 UINT nPageNumber
);

Arguments:

Name Type Description

lpszFileNameSrc const
LPSTR

Path and name of the source file. The path can be absolute or relative.

lpszFileNameDest const
LPSTR

Path and name of the destination file. The path can be absolute or relative. Source
and destination file names must be different.

lFormatType AT_LMODE Specifies the format of the source file. See enumIGFormats for possible values and
also see Remarks.

nPageNumber UINT Page number for metadata updating.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

The function supports the following image file formats:

TIFF (except TIFF-JPEG)
JPEG

Example:

AT_ERRCOUNT nErrcount; // Count of returned errors on stack

nErrcount = IG_fltr_metad_update_file("picture.tif", "picture_new.tif", IG_FORMAT_TIF, 1);

Remarks:

Pixel data is not decoded but copied directly from source to destination file.

The function creates a new file that contains copy of source file data with the new metadata for required page.
lFormatType parameter value should be the same as the source file format type. In a multipage file, the rest of pages
are copied verbatim from source to destination file. The function obtains new metadata from metadata callback
functions LPAFT_IG_METAD_ITEM_SET_CB and LPAFT_IG_METAD_ITEM_ADD_CB.

IG_fltr_metad_update_file() function can be used as follows:

Use IG_fltr_pageinfo_get to get metadata for the page into your application's storage.
Change metadata (add / delete / change metadata tags or metadata values).
Call IG_fltr_metad_update_file() function, supplying the metadata tags to LPAFT_IG_METAD_ITEM_SET_CB and
LPAFT_IG_METAD_ITEM_ADD_CB callbacks. nPageNumber and lFormatType parameter values should correspond
to the loaded page and source file format.

Destination file will receive the copy of the source file, with new metadata for the specified page.

ImageGear Professional v18 for Mac | 736

See Also:

Updating Non-Image Data without Loading and Saving the Image

ImageGear Professional v18 for Mac | 737

1.3.1.2.10.22 IG_fltr_pagecount_FD_format

This function obtains the number of pages in the open multi-page file.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_pagecount_FD_format(
 AT_MODE nFormat,
 AT_INT fd,
 LONG lOffset,
 LPUINT lpPageCount
);

Arguments:

Name Type Description

nFormat AT_MODE A constant indicating the file format of the input file. See enumIGFormats for possible
values. Set to IG_FORMAT_UNKNOWN to let ImageGear detect the file format.

fd AT_INT Handle of the open file containing the image. This handle can be obtained from Microsoft
Windows functions such as CreateFile(), and cast to AT_INT for passing to the function
parameter. FILE pointers returned by functions such as fopen(), and file handles returned
by functions such as _sopen_s() are not supported.

lOffset LONG Offset to the image in the file.

lpPageCount LPUINT Return: Number of pages in an image.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

UINT nPageCount;
AT_ERRCOUNT nErrCount;

HANDLE fd; //File Descriptor
fd = CreateFile(_T("picture.tif"), GENERIC_READ,
 0, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
if(fd != INVALID_HANDLE_VALUE)
{
 nErrCount = IG_fltr_pagecount_FD_format(IG_FORMAT_TIF, (AT_INT)fd, 0, &nPageCount);
 CloseHandle(fd);
}

Remarks:

This function is similar to the IG_page_count_get_FD function, but has an additional parameter, nFormat, which specifies
the file format of the input file.

If nFormat = IG_FORMAT_UNKNOWN then ImageGear attempts to detect the file format automatically, and then loads
the image. Otherwise, ImageGear skips the file format detection and gets the page count using the specified format
filter.

ImageGear Professional v18 for Mac | 738

1.3.1.2.10.23 IG_fltr_pagecount_file_format

This function obtains the number of pages in a multi-page file.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_pagecount_file_format(
 AT_MODE nFormat,
 const LPSTR lpszFileName,
 LPUINT lpPageCount
);

Arguments:

Name Type Description

nFormat AT_MODE A constant indicating the file format of the input file. See enumIGFormats for possible
values. Set to IG_FORMAT_UNKNOWN to let ImageGear detect the file format.

lpszFileName const
LPSTR

Path and name of the file to get the page count for. The path can be absolute or relative.

lpPageCount LPUINT Number of pages returned by this function.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

UINT nPageCount;
AT_ERRCOUNT nErrCount = IG_fltr_pagecount_file_format(IG_FORMAT_TIF, "picture.tif",
&nPageCount);

Remarks:

If nFormat = IG_FORMAT_UNKNOWN then ImageGear attempts to detect the file format automatically, and then detects
the page count. Otherwise, ImageGear skips the file format detection and counts image page using the specified format
filter.

ImageGear Professional v18 for Mac | 739

1.3.1.2.10.24 IG_fltr_pagedelete_file

This function deletes pages from a multipage file, if such operation is supported by the format filter.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_pagedelete_file(
 const LPSTR lpszFileName,
 AT_MODE nFormatType,
 UINT nStartPage,
 UINT nRange
);

Arguments:

Name Type Description

lpszFileName const
LPSTR

Path and name of the multipage file to delete pages from. The path can be absolute or
relative.

nFormatType AT_MODE A constant indicating the file format of the input file. See enumIGFormats for possible
values. Set to IG_FORMAT_UNKNOWN to let ImageGear detect the file format.

nStartPage UINT Determines the first page to delete from the szFileName file.

nRange UINT Determines the number of pages to delete, starting from nStartPage.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; // Count of returned errors on stack
nErrcount = IG_fltr_pagedelete_file("picture_multipage.tif", IG_FORMAT_TIF, 1, 1);

Remarks:

Use IG_fltr_info_get function to determine whether the format filter supports page deletion. If the flags returned by this
function contain IG_FLTR_PAGEDELETESUPPORT, then the format filter supports the deleting procedure.

See also the section Getting Information and Sorting Images.

ImageGear Professional v18 for Mac | 740

1.3.1.2.10.25 IG_fltr_pageinfo_get

This function obtains information about a page of a multipage file, without loading its pixel data. This is an obsolete
function, see remarks.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_pageinfo_get(
 const LPSTR lpszFileName,
 UINT nPage,
 LPAT_MODE lpFileType,
 LPAT_MODE lpCompression,
 LPAT_DIB lpDIB
);

Arguments:

Name Type Description

lpszFileName const
LPSTR

Path and name of the file. The path can be absolute or relative.

nPage UINT Number of the page in a multi-page file for which the information should be obtained.

lpFileType LPAT_MODE Pointer to an AT_MODE variable in which the file type will be returned. See
enumIGFormats for possible values.

lpCompression LPAT_MODE Pointer to an AT_MODE variable in which compression type will be returned. See
enumIGCompressions for possible values.

lpDIB LPAT_DIB Pointer to an AT_DIB structure to which other file information, such as width, height,
and Bits Per Pixel will be returned.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Indexed RGB - 1, 4, 8 bpp;
Grayscale - 9...16 bpp;
RGB - 24 bpp;
CMYK - 32 bpp.

Example:

AT_ERRCOUNT nErrCount;
AT_MODE fileType;
AT_MODE compression;
AT_DIB atDib;

nErrCount = IG_fltr_pageinfo_get("picture.tif", 1,
 &fileType, &compression, &atDib);

Remarks:

This function is only kept for backward compatibility reasons. Please use IG_fltr_pageinfo_get_ex instead.

See also the section Getting Information and Sorting Images.

ImageGear Professional v18 for Mac | 741

1.3.1.2.10.26 IG_fltr_pageinfo_get_ex

This function obtains information about the page specified by the nPage parameter from a named multipage file
without actually loading it.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_pageinfo_get_ex(
 const LPSTR lpszFileName,
 UINT nPage,
 LPAT_MODE lpFileType,
 LPAT_MODE lpCompression,
 HIGDIBINFO* lphDIB
);

Arguments:

Name Type Description

lpszFileName const LPSTR Path and name of the file to get the information about. The path can be absolute
or relative.

nPage UINT Number of the page in a multi-page file for which to get information.

lpFileType LPAT_MODE Pointer to an AT_MODE variable in which the file type will be returned. See
enumIGFormats for possible values.

lpCompression LPAT_MODE Pointer to an AT_MODE variable in which compression type will be returned. See
enumIGCompressions for possible values.

lphDIB HIGDIBINFO* Pointer to HIGDIBINFO object to which other file information, such as width,
height, Bits Per Pixel etc. will be returned.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrCount;
AT_MODE fileType;
AT_MODE compression;
HIGDIBINFO hDIB;

nErrCount = IG_fltr_pageinfo_get_ex("picture.tif", 1,
 &fileType, &compression, &hDIB);
if(nErrCount == 0)
{
 // ...
 // Delete DIB info
 IG_DIB_info_delete(hDIB);
}

Remarks:

Any of the output parameters such as lpFileType, lpCompression or lphDIB can be NULL, if the corresponding info is
not required.

See also the section Getting Information and Sorting Images.

ImageGear Professional v18 for Mac | 742

This function is identical to IG_info_get_ex.

ImageGear Professional v18 for Mac | 743

1.3.1.2.10.27 IG_fltr_pageswap_file

This function swaps two pages in a multipage file.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_pageswap_file(
 const LPSTR lpszFileName,
 AT_MODE nFormatType,
 UINT nPage1,
 UINT nPage2
);

Arguments:

Name Type Description

lpszFileName const
LPSTR

Path and name of the file to swap the pages in. The path can be absolute or relative.

nFormatType AT_MODE A constant indicating the file format of the input file. See enumIGFormats for possible
values. Set to IG_FORMAT_UNKNOWN to let ImageGear detect the file format.

nPage1 UINT Number of page 1 to swap with page 2.

nPage2 UINT Number of page 2 to swap with page 1.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; // Count of returned errors on stack
nErrcount = IG_fltr_pageswap_file("picture_multipage.tif", IG_FORMAT_TIF, 1, 2);

Remarks:

Use IG_fltr_info_get function to determine whether the format filter supports page swapping. If the flags returned by
this function contain IG_FLTR_PAGESWAPSUPPORT, then the format filter supports the swapping procedure.

See also the section Getting Information and Sorting Images.

ImageGear Professional v18 for Mac | 744

1.3.1.2.10.28 IG_fltr_raster_plane_callback_get

This function allows you to retrieve the settings of raster plane callback LPFNIG_RASTER_PLANE_SET function.

Declaration:

AT_ERRCOUNT LACCUAPI IG_fltr_raster_plane_callback_get(
 LPFNIG_RASTER_PLANE_SET* lplpfnRasterPlaneSetCB,
 AT_VOID** lpReserved
);

Arguments:

Name Type Description

lplpfnRasterPlaneSetCB LPFNIG_RASTER_PLANE_SET* SET callback function.

lpReserved AT_VOID** Reserved for Get function.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.///

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount; // Count of returned errors on stack
LPFNIG_RASTER_PLANE_SET lpfnRasterPlaneCB; // Raster Plane callback function

// Get ICC callback functions
nErrcount = IG_fltr_raster_plane_callback_get(&lpfnRasterPlaneCB, NULL);

Remarks:

ImageGear calls lpfnRasterPlaneSetCB callback function to pass raster plane data that has been read from a file to the
application. The callback is invoked when reading images where pixel data is stored in planar format. As of this writing,
only TIF and DICOM format filters support this callback.

ImageGear Professional v18 for Mac | 745

1.3.1.2.10.29 IG_fltr_raster_plane_callback_set

This function allows you to register your raster plane callback LPFNIG_RASTER_PLANE_SET function.

Declaration:

AT_ERRCOUNT LACCUAPI IG_fltr_raster_plane_callback_set(
 LPFNIG_RASTER_PLANE_SET lpfnRasterPlaneSetCB,
 AT_VOID* Reserved
);

Arguments:

Name Type Description

lpfnRasterPlaneSetCB LPFNIG_RASTER_PLANE_SET Specifies the callback function which will receive raster planes
of pixels.

Reserved AT_VOID* Reserved, should be NULL.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

// Handles merging of planes into a raster line
AT_ERRCOUNT ACCUAPI RasterPlaneSet(
 AT_VOID *lpPrivate, // Private data passed in
 const AT_VOID* lpRast, // Raster line to set
 AT_PIXPOS cyPos, // Y position in the image
 AT_INT cRasterSize, // Size of the raster line
 AT_INT nBitPlane // Bit plane to merge in
)
{
 // ...
 return 0;
}

void Example_IG_fltr_raster_plane_callback_set()
{
 AT_ERRCOUNT nErrcount; // Count of returned errors on stack
 // Set raster plane callback functions
 nErrcount = IG_fltr_raster_plane_callback_set(RasterPlaneSet, NULL);
}

Remarks:

ImageGear calls lpfnRasterPlaneSetCB callback function to pass raster plane data that has been read from a file to the
application. The callback is invoked when reading images where pixel data is stored in planar format. As of this writing,
only TIF and DICOM format filters support this callback.

ImageGear Professional v18 for Mac | 746

1.3.1.2.10.30 IG_fltr_save_FD_size_calc

This function is used to determine the size that is required for saving an image to a file in the specified format.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_save_FD_size_calc(
 HIGEAR hIGear,
 AT_INT reserved_fd,
 AT_LMODE lFormatType,
 AT_UINT reserved_page,
 AT_BOOL reserved_overwrite,
 LPAT_UINT lpFileSize
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of the image on which to calculate the size.

reserved_fd AT_INT Reserved for future use. Set to 0.

lFormatType AT_LMODE Specifies the format to use for saving, and also the compression scheme if
applicable. See enumIGSaveFormats for possible values.

reserved_page AT_UINT Reserved for future use. Set to 0.

reserved_overwrite AT_BOOL Reserved for future use. Set to FALSE.

lpFileSize LPAT_UINT Returns the maximum possible size of the saved file.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrCount;

HIGEAR hIGear = 0;
AT_UINT nFileSize; // File size returned;
nErrCount = IG_load_file("picture.tif", &hIGear);
if(nErrCount == 0)
{
 nErrCount = IG_fltr_save_FD_size_calc(hIGear, 0, IG_SAVE_TIF_UNCOMP, 1, TRUE,
&nFileSize);
 IG_image_delete(hIGear);
}

Remarks:

This call may be used prior to calling IG_save_FD to determine the size of result file.

As of this writing, the function can only calculate the size of a single-page file. To calculate the size of a multipage file
after addition of a page, load the original file into a memory buffer, and then use IG_fltr_save_mem_size_calc.

See also the section Using Format Filters API for Image Saving.

ImageGear Professional v18 for Mac | 747

1.3.1.2.10.31 IG_fltr_save_file

This function stores the image referenced by hIGear to a file.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_save_file(
 HIGEAR hIGear,
 const LPSTR lpszFileName,
 AT_LMODE lFormatType,
 UINT nPageNumber,
 AT_BOOL bOverwrite
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of the image to save.

lpszFileName const
LPSTR

Path and name of the file to save the image to. The path can be absolute or relative.

lFormatType AT_LMODE Specifies the format to use for saving, and also the compression scheme if applicable.
See enumIGSaveFormats for possible values.

nPageNumber UINT Specifies the page number of the page inserted into a multi-page file. Note that page
numbers begin at 1, not 0. Set to 0 to append the page after the last page of the
source file. Set to 1 if the file format does not support multipage, or if saving to a new
file.

bOverwrite AT_BOOL Set to TRUE to overwrite existing file during the saving. Set to FALSE to insert or
append the page to the file, if the format supports multipage saving.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; // Count of returned errors on stack
HIGEAR hIGear; //ImageGear handle
nErrcount = IG_load_file("picture.tif", &hIGear);
if(nErrcount == 0)
{
 // Save image to file "picture.bmp" in BMP format without compression:
 nErrcount = IG_fltr_save_file(hIGear, "picture_new.tif", IG_SAVE_TIF_UNCOMP, 1, TRUE);
 IG_image_delete(hIGear);
}

Remarks:

lFormatType is used to set the format and compression (if applicable) of the output file. If you want to have
ImageGear use the file extension provided in your filename string (lpszFilename) to determine the file format in which
to save the file, set lFormatType = IG_SAVE_UNKNOWN.

See also the section Using Format Filters API for Image Saving.

ImageGear Professional v18 for Mac | 748

1.3.1.2.10.32 IG_fltr_save_file_size_calc

This function is used to determine the size that is required for saving the image to the file in the given format.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_save_file_size_calc(
 HIGEAR hIGear,
 const LPSTR reserved_filename,
 AT_LMODE lFormatType,
 AT_UINT reserved_page,
 AT_BOOL reserved_overwrite,
 LPAT_UINT lpFileSize
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of the image for which to calculate the size.

reserved_filename const
LPSTR

Reserved for future use. Set to NULL.

lFormatType AT_LMODE Specifies the format to use for saving, and also the compression scheme if
applicable. See enumIGSaveFormats for possible values.

reserved_page AT_UINT Reserved for future use. Set to 0.

reserved_overwrite AT_BOOL Reserved for future use. Set to FALSE.

lpFileSize LPAT_UINT Returns the maximum possible size of the file.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrCount;

HIGEAR hIGear = 0;
AT_UINT nFileSize; // File size returned;
nErrCount = IG_load_file("picture.tif", &hIGear);
if(nErrCount == 0)
{
 nErrCount = IG_fltr_save_file_size_calc(hIGear, 0, IG_SAVE_TIF_UNCOMP, 1, TRUE,
&nFileSize);
 IG_image_delete(hIGear);
}

Remarks:

This call may be used prior to calling IG_fltr_save_file to determine the size of result file.

As of this writing, the function can only calculate the size of a single-page file. To calculate the size of a multipage file
after addition of a page, load the original file into a memory buffer, and then use IG_fltr_save_mem_size_calc.

See also the section Using Format Filters API for Image Saving.

ImageGear Professional v18 for Mac | 749

1.3.1.2.10.33 IG_fltr_save_mem

This function stores the image referenced by hIGear to the specified memory buffer.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_save_mem(
 HIGEAR hIGear,
 LPVOID lpImage,
 AT_UINT nImageSize,
 AT_UINT nBufferSize,
 AT_LMODE lFormatType,
 AT_UINT nPageNumber,
 AT_BOOL bOverwrite,
 LPAT_UINT lpActualSize
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of the image to save.

lpImage LPVOID Pointer to first byte of memory area in which to save.

nImageSize AT_UINT Size of image (if exists).

nBufferSize AT_UINT Size of memory block.

lFormatType AT_LMODE Specifies the format to use for saving, and also the compression scheme if applicable.
See enumIGSaveFormats for possible values.

nPageNumber AT_UINT Specifies the page number of the page inserted into a multi-page file. Note that page
numbers begin at 1, not 0. Set to 0 to append the page after the last page of the
source file. Set to 1 if the file format does not support multipage, or if saving to a new
file.

bOverwrite AT_BOOL Set to TRUE to overwrite existing file during the saving. Set to FALSE to insert or
append the page to the file, if the format supports multipage saving.

lpActualSize LPAT_UINT Size of new or updated file in memory.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrCount;

HIGEAR hIGear = 0;
AT_UINT nFileSize; // File size returned;
nErrCount = IG_load_file("picture.tif", &hIGear);
if(nErrCount == 0)
{
 // Get required memory size
 nErrCount = IG_fltr_save_mem_size_calc(hIGear, NULL, 0, IG_SAVE_TIF_UNCOMP, 1, TRUE,
&nFileSize);
 if(nErrCount == 0)
 {
 // Allocate memory

ImageGear Professional v18 for Mac | 750

 LPAT_BYTE memBuffer = (LPAT_BYTE)malloc(nFileSize);
 nErrCount = IG_fltr_save_mem(hIGear, memBuffer, 0, nFileSize, IG_SAVE_TIF_UNCOMP,
1, TRUE, &nFileSize);

 //...

 free(memBuffer);
 }
 IG_image_delete(hIGear);
}

Remarks:

lFormatType is used to set the format and compression (if applicable) of the output file. If you want to have
ImageGear use the file extension provided in your filename string (lpszFilename) to determine the file format in which
to save the file, set lFormatType = IG_SAVE_UNKNOWN.

Before using this function, the application must allocate a memory buffer, sufficient for storing the saved image. Use
IG_fltr_save_mem_size_calc to determine the necessary buffer size.

This function is similar to the IG_save_mem function, but it allows you to insert a new page in multi-page file as
either the end page or the page with a given nPageNumber number.

See also the section Using Format Filters API for Image Saving.

ImageGear Professional v18 for Mac | 751

1.3.1.2.10.34 IG_fltr_save_mem_size_calc

This function is used to determine the size that is required for saving the image to the file or memory buffer in the
given format.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_save_mem_size_calc(
 HIGEAR hIGear,
 LPVOID lpImage,
 AT_UINT nImageSize,
 AT_LMODE lFormatType,
 AT_UINT nPageNumber,
 AT_BOOL reserved_overwrite,
 LPAT_UINT lpFileSize
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of the image on which to calculate the size.

lpImage LPVOID If the buffer exists and already contains an image file to which a page will be
appended, this parameter specifies a pointer to first byte of the existing file in
the memory buffer.

nImageSize AT_UINT If the buffer exists and already contains an image file to which a page will be
appended, this parameter specifies the size of existing image.

lFormatType AT_LMODE Specifies the format to use for saving, and also the compression scheme if
applicable. See enumIGSaveFormats for possible values.

nPageNumber AT_UINT Specifies the page number of the page inserted into a multi-page file. Note that
page numbers begin at 1, not 0. Set to 0 to append the page after the last page
of the source file. Set to 1 if the file format does not support multipage, or if
saving to a new file.

reserved_overwrite AT_BOOL Reserved for future use. Set to FALSE.

lpFileSize LPAT_UINT Returns the maximum possible size of the file.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrCount;

HIGEAR hIGear = 0;
AT_UINT nFileSize; // File size returned;
nErrCount = IG_load_file("picture.tif", &hIGear);
if(nErrCount == 0)
{
 nErrCount = IG_fltr_save_mem_size_calc(hIGear, NULL, 0, IG_SAVE_TIF_UNCOMP, 1, TRUE,
&nFileSize);
 IG_image_delete(hIGear);
}

ImageGear Professional v18 for Mac | 752

Remarks:

This function can be used prior to calling IG_fltr_save_mem to determine the amount of memory that needs to be
allocated.

This function supports the calculation of a multipage image file size after addition of a page. If a file exists in the
memory buffer before calling this function, and the file format supports appending pages, the function calculates the
size of the file after appending the page.

See also the section Using Format Filters API for Image Saving.

ImageGear Professional v18 for Mac | 753

1.3.1.2.10.35 IG_fltr_savelist_get

This function prepares the list of constants corresponding to format and compression combinations available for
saving of the specified image. This is an obsolete function, see remarks.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_savelist_get(
 LPAT_DIB lpDIB,
 LPAT_MODE lpnFilterList,
 UINT nFListSize,
 LPAT_LMODE lpSaveList,
 UINT nSListSize,
 LPUINT lpnSListCount
);

Arguments:

Name Type Description

lpDIB LPAT_DIB Pointer to the AT_DIB structure that contains the image parameters. If the value is
not NULL, this function returns the list of enumIGSaveFormats values corresponding
to saving formats (format and compression combinations) available for saving of
the specified image. If the value is NULL, then the function returns the list of all
currently supported saving formats for file formats specified by lpnFilterList. If both
the lpDIB and lpnFilterList are null, the function returns the list of all currently
supported saving formats.

lpnFilterList LPAT_MODE Pointer to the list of format identifiers, which will be used in the save list. See
enumIGFormats for possible values. If this parameter is NULL, then all currently
supported formats will be used.

nFListSize UINT Array containing the number of elements if lpnFilterList is not NULL.

lpSaveList LPAT_LMODE Array containing the returned saving format constants. You can set this value to
NULL if you only need to obtain the total number of found saving formats.

nSListSize UINT Size of the lpSaveList array.

lpnSListCount LPUINT If the lpSaveList array is not NULL, this parameter returns the number of copied
enumIGSaveFormats values. If lpSaveList is NULL, this parameter returns the total
number of records.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Indexed RGB - 1, 4, 8 bpp;
Grayscale - 9...16 bpp;
RGB - 24 bpp;
CMYK - 32 bpp.

Example:

AT_ERRCOUNT nErrCount; // Number of errors on stack
HIGEAR hIGear; // Handle of image
UINT nCount; // Number of save formats
LPAT_LMODE lpSaveList;

// Load the image
nErrCount = IG_load_file("picture.tif", &hIGear);
if(nErrCount == 0)

ImageGear Professional v18 for Mac | 754

{
 AT_DIB atDib;
 AT_DIMENSION nWidth, nHeight;
 UINT nBitsPerPixel;
 // Get image info
 nErrCount = IG_image_dimensions_get(hIGear, &nWidth, &nHeight, &nBitsPerPixel);
 // Fill in AT_DIB structure
 memset(&atDib, 0, sizeof(AT_DIB));
 atDib.biSize = sizeof(AT_DIB);
 atDib.biWidth = nWidth;
 atDib.biHeight = nHeight;
 atDib.biPlanes = 1;
 atDib.biBitCount = nBitsPerPixel;

 // Get save formats count
 nErrCount = IG_fltr_savelist_get(&atDib, NULL, 0, NULL, 0, &nCount);
 // Allocate memory
 lpSaveList = (LPAT_LMODE)malloc(nCount*sizeof(AT_LMODE));
 if(lpSaveList!=NULL)
 {
 // Get save list
 nErrCount = IG_fltr_savelist_get(&atDib, NULL, 0, lpSaveList, nCount, NULL);

 //...

 // Delete memory
 free(lpSaveList);
 }
 // Delete the image
 IG_image_delete(hIGear);
}

Remarks:

This function is only kept for backward compatibility reasons. Please use IG_fltr_savelist_get_ex instead.

Records returned by the function are sorted alphabetically by their short names. Short names correspond to those
returned by IG_fltr_info_get function.

This function works similarly to IG_fltr_compressionlist_get, but it works with all formats supported by ImageGear
rather than with a particular format. Values returned in the lpSaveList can be passed directly to ImageGear saving
functions such as IG_fltr_save_file.

See also the section Using Format Filters API for Image Saving.

ImageGear Professional v18 for Mac | 755

1.3.1.2.10.36 IG_fltr_savelist_get_ex

This function prepares the list of constants corresponding to format and compression combinations available for
saving of the specified image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_fltr_savelist_get_ex(
 const HIGDIBINFO hDIB,
 LPAT_MODE lpnFilterList,
 UINT nFListSize,
 LPAT_LMODE lpSaveList,
 UINT nSListSize,
 LPUINT lpnSListCount
);

Arguments:

Name Type Description

hDIB const
HIGDIBINFO

Handle of DIB info object that contains image parameters. If the value is not NULL,
this function returns the list of enumIGSaveFormats values corresponding to saving
formats (format and compression combinations) available for saving of the specified
image. If the value is NULL, then the function returns the list of all currently
supported saving formats for file formats specified by lpnFilterList. If both the hDIB
and lpnFilterList are null, the function returns the list of all currently supported
saving formats.

lpnFilterList LPAT_MODE Pointer to the list of format identifiers, which will be used in the save list. See
enumIGFormats for possible values. If this parameter is NULL, then all currently
supported formats will be used.

nFListSize UINT Array containing the number of elements if lpnFilterList is not NULL.

lpSaveList LPAT_LMODE Array containing the returned saving format constants. You can set this value to
NULL if you only need to obtain the total number of found saving formats.

nSListSize UINT Size of the lpSaveList array.

lpnSListCount LPUINT If the lpSaveList array is not NULL, this parameter returns the number of copied
enumIGSaveFormats values. If lpSaveList is NULL, this parameter returns the total
number of records.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrCount; // Number of errors on stack
HIGEAR hIGear; // Handle of image
UINT nCount; // Number of save formats
HIGDIBINFO hDIB; // DIB info handle of image
LPAT_LMODE lpSaveList;

// Load the image
nErrCount = IG_load_file("picture.tif", &hIGear);
if(nErrCount == 0)
{
 // Get DIB info

ImageGear Professional v18 for Mac | 756

 nErrCount = IG_image_DIB_info_get(hIGear, &hDIB);
 // Get save formats count
 nErrCount = IG_fltr_savelist_get_ex(hDIB, NULL, 0, NULL, 0, &nCount);
 // Allocate memory
 lpSaveList = (LPAT_LMODE)malloc(nCount*sizeof(AT_LMODE));
 if(lpSaveList!=NULL)
 {
 // Get save list
 nErrCount = IG_fltr_savelist_get_ex(hDIB, NULL, 0, lpSaveList, nCount, NULL);

 //...

 // Delete memory
 free(lpSaveList);
 // Delete DIB info
 IG_DIB_info_delete(hDIB);
 }
 // Delete the image
 IG_image_delete(hIGear);
}

Remarks:

Records returned by the function are sorted alphabetically by their short names. Short names correspond to those
returned by IG_fltr_info_get function.

This function works similarly to IG_fltr_compressionlist_get_ex, but it works with all formats supported by ImageGear
rather than with a particular format. Values returned in the lpSaveList can be passed directly to ImageGear saving
functions such as IG_fltr_save_file.

See also the section Using Format Filters API for Image Saving.

ImageGear Professional v18 for Mac | 757

1.3.1.2.11 FX Functions

This section provides information about the FX group of functions.

IG_FX_blur
IG_FX_chroma_key
IG_FX_diffuse
IG_FX_emboss
IG_FX_motion
IG_FX_noise
IG_FX_pixelate
IG_FX_posterize
IG_FX_spotlight
IG_FX_stitch
IG_FX_texture
IG_FX_twist
IG_FX_watermark

ImageGear Professional v18 for Mac | 758

1.3.1.2.11.1 IG_FX_blur

This function blurs an image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_FX_blur (
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 const AT_MODE nBlurMode
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT struct specifying the rectangular portion of the image to be
processed. Set = NULL for whole image. Before ImageGear performs this operation, it will
check to see if an internal flag has been set to TRUE to make a mask active for this HIGEAR
image. If a mask is active, and a valid pointer to a mask can be found, ImageGear will
override the settings passed to this structure in favor of the non-rectangular ROI defined by
the mask.

nBlurMode const
AT_MODE

A constant such as IG_BLUR_3 specifying the kernel size to use to perform the blurring. See
file accucnst.h for the IG_BLUR_ constants available.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional, except:
Indexed RGB with non-grayscale palette

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_RECT rcImageRect; /* Image's current image rectangle */
/* Blur only the image rect portion, using a 5 x 5 kernel: */
IG_FX_blur (hIGear, &rcImageRect, IG_BLUR_5);

Remarks:

nBlurMode controls the degree of blurring.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask() for more
details.

ImageGear Professional v18 for Mac | 759

1.3.1.2.11.2 IG_FX_chroma_key

This function blends two images, inserting the pixel values from hIGearBkGrnd wherever the pixel in hIGearFrGrnd is
in the specified hue range.

Declaration:

AT_ERRCOUNT ACCUAPI IG_FX_chroma_key (
 HIGEAR hIGearFrGrnd,
 LPAT_RECT lpRect,
 HIGEAR hIGearBkGrnd,
 const DOUBLE dblHueCenter,
 const DOUBLE dblHueRange,
 const UINT nSmooth,
 const UINT nThreshold
);

Arguments:

Name Type Description

hIGearFrGrnd HIGEAR HIGEAR handle of image to modify where the specified hue is found.

lpRect LPAT_RECT Far pointer to an AT_RECT structure specifying the rectangular portion of the image
to be processed. Use NULL for the whole image. Before ImageGear performs this
operation, it will check to see if an internal flag has been set to TRUE to make a
mask active for this HIGEAR image. If a mask is active, and a valid pointer to a mask
can be found, ImageGear will override the settings passed to this structure in favor
of the non-rectangular ROI defined by the mask.

hIGearBkGrnd HIGEAR HIGEAR handle of an image to insert from on hue match.

dblHueCenter const
DOUBLE

The angle in degrees (in the standard Color Wheel) of the hue to match. 0.0 - 360.0
(360 == 0).

dblHueRange const
DOUBLE

The range on which to allow (in degrees) either side. 0.0 - 360.0.

nSmooth const UINT An integer from 0 to 25 specifying how much to smooth the transition. 0 gives the
sharpest edge.

nThreshold const UINT Intensity below which to ignore the hue, and fail the match (0 - 255).

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional, except:
Indexed RGB – 1 bpp
Grayscale – 1 bpp

Example:

HIGEAR hiGear, /* HIGEAR handle of image to blend into */
hIGear Bkgrnd; /* HIGEAR handle of image to blend in */
AT_PIXEL pixelvalue[3]; /* 3 bytes for return of an RGB pixel value */
DOUBLE Hue; /* Hue angle that will be returned */
/* Retrieve the RGB value of the pixel at (10,20) in the HIGEAR image */
nErrcount = IG_DIB_pixel_get (hIGear, 10, 20, &pixelvalue[0]);
/* Pass the RGB pixel value to IG_IP_RGB_to_hue to convert to hue angle */
nErrcount = IG_IP_RGB_to_hue (&pixelvalue[0], &Hue);
/* Pass newly calculated hue angle to chroma_key to combine images */
IG_FX_chroma_key (hIGear, NULL, hIGearBkgrnd, Hue, 10.0, 0, 20);

ImageGear Professional v18 for Mac | 760

Remarks:

You can control the smoothness of the transitions using argument nSmooth, and you can prevent the hue of dark
pixels from being considered, using nThreshold. To determine the proper hue center and hue range, you may want to
use the IG_DIB_pixel_get() and IG_IP_RGB_to_hue() functions.

See also IG_IP_blend_with_LUT(), IG_DIB_pixel_get() and IG_IP_RGB_to_hue() functions.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

See the descriptions of IG_IP_NR_ROI_mask_associate and IG_IP_NR_ROI_to_HIGEAR_mask for more
details. The "background image" must have the same height, width, and bit depth as the "foreground image."

The hue is not an 8-bit HSI. HSI is the name of the color space.

ImageGear Professional v18 for Mac | 761

1.3.1.2.11.3 IG_FX_diffuse

This function diffuses an image by shuffling the positions of pixels.

Declaration:

AT_ERRCOUNT ACCUAPI IG_FX_diffuse (
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 const UINT nStrength
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT struct specifying the rectangular portion of the image to be
processed. Set = NULL for whole image. Before ImageGear performs this operation, it will
check to see if an internal flag has been set to TRUE to make a mask active for this HIGEAR
image. If a mask is active, and a valid pointer to a mask can be found, ImageGear will
override the settings passed to this structure in favor of the non-rectangular ROI defined by
the mask.

nStrength const UINT An integer from 1 to 16 specifying the amount of diffusion.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional, except:
Indexed RGB with non-grayscale palette

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
/* Diffuse the image slightly: */
IG_FX_diffuse (hIGear, NULL, 3);

Remarks:

The greater the value of nStrength, the greater the diffusion.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask() for more
details.

ImageGear Professional v18 for Mac | 762

1.3.1.2.11.4 IG_FX_emboss

This function produces an embossed or 3-D like chiseled-in-stone look to the image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_FX_emboss (
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 const DOUBLE dblStrength,
 const AT_MODE nCompassDir
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT struct specifying the rectangular portion of the image to be
processed. Set = NULL for whole image. Before ImageGear performs this operation, it
will check to see if an internal flag has been set to TRUE to make a mask active for
this HIGEAR image. If a mask is active, and a valid pointer to a mask can be found,
ImageGear will override the settings passed to this structure in favor of the non-
rectangular ROI defined by the mask.

dblStrength const
DOUBLE

The embossing strength. The valid range is from 1.0 to 5.0.

ncompassDir const
AT_MODE

An AT_MODE Compass direction constants (see accucnst.h file):

IG_COMPASS_N - North direction
IG_COMPASS_NE - North-East direction
IG_COMPASS_E - East direction
IG_COMPASS_SE - South-East direction
IG_COMPASS_S - South direction
IG_COMPASS_SW - South-West direction
IG_COMPASS_W - West direction
IG_COMPASS_NW - North-West direction

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional, except:
Indexed RGB with non-grayscale palette;
Images that have a Grayscale LUT attached to them.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_RECT rcImageRect; /* Image's current image rectangle */
/* Emboss only the image rect portion: */
IG_FX_emboss (hIGear, &rcImageRect, 3.0, IG_COMPASS_NE);

Remarks:

The result looks similar to the engraved face of a coin. The greater the value of dblStrength, the greater the effect will
be (higher ridges and lower depressions). The direction in which the image will appear elevated is selected by
nCompassDir.

ImageGear Professional v18 for Mac | 763

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask() for
more details.

ImageGear Professional v18 for Mac | 764

1.3.1.2.11.5 IG_FX_motion

This function makes the image look as though it was moving when the image was captured.

Declaration:

AT_ERRCOUNT ACCUAPI IG_FX_motion (
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 const UINT nExtent,
 const AT_MODE nDirection
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT struct specifying the rectangular portion of the image to be
processed. Set = NULL for the whole image to be processed. Before ImageGear performs
this operation, it will check to see if an internal flag has been set to TRUE to make a
mask active for this HIGEAR image. If a mask is active, and a valid pointer to a mask can
be found, ImageGear will override the settings passed to this structure in favor of the
non-rectangular ROI defined by the mask.

nExtent const UINT Set to a UINT for the amount of motion you would like applied. If nDirection will be set to
"S, W, E, N", the correct range for this variable is 2 - 15. If nDirection will be set to "SE,
NE, NW, SW", the correct range for this variable is 3 - 22. This variable determines the
extent to which the pixels will be "moved" or "smeared", or literally how many pixel
lengths each pixel will "move over."

nDirection const
AT_MODE

An AT_MODE Compass direction constant. Please see accucnst.h file or the description of
IG_FX_emboss() function for full list of these constants.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional, except:
Indexed RGB with non-grayscale palette.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
/* Blur whole image to imply fast motion to the south-east: */
IG_FX_motion (hIGear, NULL, 6, IG_COMPASS_SE);

Remarks:

The amount of motion depends on the nAmount parameter. A larger nAmount makes the motion appear faster. Use
nDirection to select which direction the image appears to be moving toward. lpRect specifies what portion of the
image is to be affected.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask() for

ImageGear Professional v18 for Mac | 765

more details.

ImageGear Professional v18 for Mac | 766

1.3.1.2.11.6 IG_FX_noise

This function is used to create noise in an image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_FX_noise (
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 const WORD nType,
 const DOUBLE dblStrength,
 const INT nHitRate,
 const DOUBLE dblSigma,
 const AT_MODE nColorChannel
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT struct specifying the rectangular portion of the image to
be processed. NULL for whole image. Before ImageGear performs this operation, it
will check to see if an internal flag has been set to TRUE to make a mask active for
this HIGEAR image. If a mask is active, and a valid pointer to a mask can be found,
ImageGear will override the settings passed to this structure in favor of the non-
rectangular ROI defined by the mask.

nType const
WORD

An IG_NOISE constant such as IG_NOISE_LINEAR, IG_NOISE_GAUSSIAN.

dblStrength const
DOUBLE

From 0.0 to 127.0, specifying the degree of noise alteration to introduce into
affected pixels.

nHitRate const INT Set = 1 to add noise to all pixels, > 1 to skip pixels, only adding noise to some.
Larger values cause fewer pixels to be affected. Valid range: 1 to 500.

dblSigma const
DOUBLE

Used with IG_NOISE_GAUSSIAN, range: 0.1-25.0.

nColorChannel const
AT_MODE

An IG_COLOR_COMP_ constant. See file accucnst.h for the full list of these
constants.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
/* Add moderate noise to about 5 percent of the pixels: */
IG_FX_noise (hIGear, NULL, IG_NOISE_LINEAR, 30.0, 20, 1.0, IG_COLOR_COMP_RGB);

Remarks:

This effect can make an image look older. nHitRate selects how many pixels may have noise introduced into them.
dblStrength determines how strongly a pixel's value is to be altered when it is selected to be altered. nType
determines the algorithm used to determine the noise alteration.

nHitRate = 1 indicates that almost every pixel should be affected. A value of 100 would indicate that every 100th

ImageGear Professional v18 for Mac | 767

pixel should be affected. dblStrength = 1.0 indicates that a value of about +1 to -1 should be added to those pixels
selected while dblStrength = 50.0 would increase the noise result by adding values in the range of -50 to +50.

Which pixels are altered and the amount of noise to apply are selected randomly.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask() for
more details.

ImageGear Professional v18 for Mac | 768

1.3.1.2.11.7 IG_FX_pixelate

This function redraws an image using what appear to be very large pixels.

Declaration:

AT_ERRCOUNT ACCUAPI IG_FX_pixelate (
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 const AT_DIMENSION nXRes,
 const AT_DIMENSION nYRes,
 const AT_MODE nResampleIn,
 const AT_MODE nResampleOut,
 const WORD radius,
 const LPAT_RGB lprgbBkColor
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT struct specifying the rectangular portion of the image
to be processed. NULL for whole image. Before ImageGear performs this
operation, it will check to see if an internal flag has been set to TRUE to make a
mask active for this HIGEAR image. If a mask is active, and a valid pointer to a
mask can be found, ImageGear will override the settings passed to this structure
in favor of the non-rectangular ROI defined by the mask.

nXRes const
AT_DIMENSION

The distance between the new pixels in the horizontal direction.

nYRes const
AT_DIMENSION

The distance between the new pixels in the vertical direction.

nResampleIn const AT_MODE An IG_RESAMPLE_IN_ constant. These are listed in accucnst.h

nResampleOut const AT_MODE IG_RESAMPLE_OUT_SQUARE or _CIRCLE, the type of result to produce.

nRadius const WORD Radius of new "pixels", in pixels. Only applicable
nResampleOut=IG_RESAMPLE_OUT_CIRCLE.

LprgbBkColor const
LPAT_RGB

If circle, a far pointer to an AT_RGB struct specifying the background color
surrounding the output circles.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional, except:
Indexed RGB with non-grayscale palette.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_ERRCOUNT nErrcount;
nErrcount = IG_FX_pixelate (hIGear, NULL, 10, 10,
IG_RESAMPLE_IN_AVE,IG_RESAMPLE_OUT_SQUARE, 0, NULL);

Remarks:

Use nXRes and nYResto specify how many "apparent pixels" you want in the result.

ImageGear Professional v18 for Mac | 769

nResampleIn tells ImageGear what to do with the block of pixels it reads in. It lets you have each output "apparent
pixel" computed on the basis of the average, minimum, maximum, or central pixel in the block. Setting this to
IG_RESAMPLE_IN_AV will set the value of all pixels in the block to the average all of the pixel values in the block.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask() for
more details.

ImageGear Professional v18 for Mac | 770

1.3.1.2.11.8 IG_FX_posterize

Posterize reduces the number of actual colors in the image by creating a "stair case" in the palette.

Declaration:

AT_ERRCOUNT ACCUAPI IG_FX_posterize (
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 const WORD nLevels,
 const AT_MODE nColorChannel
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT struct specifying a rectangular portion of the image to be
processed. NULL for whole image. Before ImageGear performs this operation, it will
check to see if an internal flag has been set to TRUE to make a mask active for this
HIGEAR image. If a mask is active, and a valid pointer to a mask can be found,
ImageGear will override the settings passed to this structure in favor of the non-
rectangular ROI defined by the mask.

nLevels const
WORD

Number of unique colors or levels wanted in the resulting image. Valid range: 1-255.

nColorChannel const
AT_MODE

IG_COLOR_COMP_RGB, or use IG_COLOR_COMP_R, _B, or _G to affect only one
color channel.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional, except:
Indexed RGB with non-grayscale palette.
Images that have a Grayscale LUT attached to them.

The function does not have any effect on 1 bpp images.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
/* Use only 50 colors, regardless of how many unique pixel values: */
IG_FX_posterize (hIGear, NULL, 50, IG_COLOR_COMP_RGB);

Remarks:

The number of steps wanted is specified by nLevels, in the range 1 to 255. nLevels = 255 would cause no effect while
nLevels = 20 would cause 20 equally spaced steps to be created.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask() for

ImageGear Professional v18 for Mac | 771

more details.

ImageGear Professional v18 for Mac | 772

1.3.1.2.11.9 IG_FX_spotlight

This function produces a "spotlight" effect within the circle specified by nRadius and (nCenterX, nCenterY).

Declaration:

AT_ERRCOUNT ACCUAPI IG_FX_spotlight (
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 const AT_PIXPOS nCenterX,
 const AT_PIXPOS nCenterY,
 const AT_DIMENSION nRadius,
 const UINT nDarkenBy,
 const AT_PIXEL nSmoothing
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of an image into which to place the spotlight effect.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT struct specifying a rectangular portion of the image to
be processed. NULL for whole image. Before ImageGear performs this operation, it
will check to see if an internal flag has been set to TRUE to make a mask active for
this HIGEAR image. If a mask is active, and a valid pointer to a mask can be found,
ImageGear will override the settings passed to this structure in favor of the non-
rectangular ROI defined by the mask.

nCenterX const
AT_PIXPOS

X coordinate of the center of the circle to receive a spotlight effect; 0 to Width - 1.

nCenterY const
AT_PIXPOS

Y coordinate of the center of the circle; 0 to Height - 1.

nRadius const
AT_DIMENSION

Radius of the circle, in pixels; 2 to Height - 2.

nDarkenBy const UINT How much to darken the remainder of the image.

nSmoothing const AT_PIXEL 0 to 255, specifying how much smoothing to apply at the edges; 0 = sharp edges,
> 0 = smoother edges.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional, except:
Indexed RGB with non-grayscale palette;
Images that have a Grayscale LUT attached to them.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_PIXPOS nXc, nYc; /* Coords of center of spotlight area */
AT_DIMENSION nWid, nHi; /* Will receive width and height of image */
UINT nBpp; /* Bits per pixel, not used */
AT_DIMENSION nRadius; /* Radius of spotlight */
IG_image_dimensions_get (hIGear, &nWid, &nHi, &nBpp); /* Get Wid,Hi */
nXc = nWid / 2; nYc = nHi / 2; /* Coords of center */
/* Diameter will be half of smallest dimension: */
nRadius = (nWid < nHi) ? nWid / 4 : nHi / 4;
/* Darken outside the circle by 40, with some smoothing of transition: */

ImageGear Professional v18 for Mac | 773

IG_FX_spotlight (hIGear, NULL, nXc, nYc, nRadius, 40, 10);

Remarks:

This function leaves the pixels within the circle unchanged while darkening the surrounding pixels by reducing their
intensity. Use nDarkenBy to specify the reduction in intensity of the surrounding pixels.

Use nSmoothing to specify the amount of smoothing at the perimeter of the circle. nSmoothing = 0 will leave the
sharpest edge.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. (See above.) However, before ImageGear
performs the operation specified by this function, it will check to see if an internal flag has been set to TRUE,
indicating that a mask HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a
mask image has been assigned, ImageGear will override the settings passed to the AT_RECT structure and use the
non-rectangular ROI defined by the mask HIGEAR. To create a non-rectangular region of interest, call
IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask() for
more details.

ImageGear Professional v18 for Mac | 774

1.3.1.2.11.10 IG_FX_stitch

This function produces an effect similar to IG_FX_emboss(), except that the output more closely resembles a quilted
stitch pattern.

Declaration:

AT_ERRCOUNT ACCUAPI IG_FX_stitch (
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 AT_MODE nCompassDir,
 const DOUBLE dblStrength,
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT struct specifying a rectangular portion of the image to be
processed. NULL for the whole image. Before ImageGear performs this operation, it
will check to see if an internal flag has been set to TRUE to make a mask active for
this HIGEAR image. If a mask is active, and a valid pointer to a mask can be found,
ImageGear will override the settings passed to this structure in favor of the non-
rectangular ROI defined by the mask.

nCompassDir AT_MODE An AT_MODE Compass direction constant. Please see accucnst.h file or the description
of IG_FX_emboss() function for full list of these constants.

dblStrength const
DOUBLE

0.0 to 5.0 (A very low value will produce a gray screen with no detail.)

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional, except:
Indexed RGB – 1 bpp;
Grayscale – 1 bpp.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_RECT rcImageRect; /* Image's current image rectangle */
/* Emboss only the image rect portion: */
IG_FX_stitch (hIGear, &rcImageRect, IG_COMPASS_NE, 3.0);

Remarks:

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. (See above.) However, before ImageGear
performs the operation specified by this function, it will check to see if an internal flag has been set to TRUE,
indicating that a mask HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a
mask image has been assigned, ImageGear will override the settings passed to the AT_RECT structure and use the
non-rectangular ROI defined by the mask HIGEAR. To create a non-rectangular region of interest, call
IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask() for
more details.

ImageGear Professional v18 for Mac | 775

1.3.1.2.11.11 IG_FX_texture

This function applies a texture to an image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_FX_texture (
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 const HIGEAR hTextureImage
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to which to apply texture.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT struct specifying the rectangular portion of the image to be
processed. Set = NULL for whole image. Before ImageGear performs this operation, it
will check to see if an internal flag has been set to TRUE to make a mask active for this
HIGEAR image. If a mask is active, and a valid pointer to a mask can be found,
ImageGear will override the settings passed to this structure in favor of the non
rectangular ROI defined by the mask.

hTextureImage const
HIGEAR

HIGEAR handle of the 8 bit image to be applied to image hIGear to produce textured
effect.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* Handle of image to be textured */
HIGEAR hTextureImage; /* Handle of 8 x 8 pixel 8-bit gray level texturing image */
/* Apply texture to the whole image: */
IG_FX_texture (hIGear, NULL, hTextureImage);

Remarks:

The texturing image is a small 8-bit grayscale image that is treated as a sign centered image. Pixels in the texture image
that are 127 have no effect on the original image, and the farther a texture image pixel is from 127, the greater its
effect. The texture image is tiled over the entire original image starting in the top left corner. Any left over is clipped.

Sign centered images can be created using the emboss function.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

See the descriptions of IG_IP_NR_ROI_mask_associate and IG_IP_NR_ROI_to_HIGEAR_mask for more details.

ImageGear Professional v18 for Mac | 776

1.3.1.2.11.12 IG_FX_twist

This function applies a special effect that makes the image look as if it is being viewed through a shower curtain.

Declaration:

AT_ERRCOUNT ACCUAPI IG_FX_twist (
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 const AT_MODE nTwistType,
 const UINT nSquareSize
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT structure specifying the rectangular portion of the image to be
processed. Use NULL for whole image. Before ImageGear performs this operation, it
determines if an internal flag has been set to TRUE to make a mask active for this
HIGEAR image. If a mask is active, and a valid pointer to a mask can be found,
ImageGear overrides the settings passed to this structure in favor of the non-rectangular
ROI defined by the mask.

nTwistType const
AT_MODE

One of the IG_TWIST_ constants:
IG_TWIST_90IG_TWIST_180IG_TWIST_270IG_TWIST_RANDOM.

nSquareSize const UINT Size in pixels of the regions to which to apply twisting (valid range: 2 to 50).

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* Handle of image to apply twisting to */
/* Apply random twisting to 16 x 16 pixel squares of image: */
IG_FX_twist (hIGear, NULL, IG_TWIST_RANDOM, 16);

Remarks:

The image can still be seen but it is chopped up so that detail is lost.

Each square of pixels of size nSquareSize in the image is rotated according to nTwistType. If IG_TWIST_RANDOM is
chosen then each block is rotated one of the directions selected randomly.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

See IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask() for more details.

ImageGear Professional v18 for Mac | 777

1.3.1.2.11.13 IG_FX_watermark

This function is used to produce a watermark like effect.

Declaration:

AT_ERRCOUNT ACCUAPI IG_FX_watermark (
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 const HIGEAR hWatermark
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to watermark.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT struct specifying the rectangular portion of the image to be
processed. Set = NULL for whole image. Before ImageGear performs this operation, it will
check to see if an internal flag has been set to TRUE to make a mask active for this
HIGEAR image. If a mask is active, and a valid pointer to a mask can be found,
ImageGear will override the settings passed to this structure in favor of the non-
rectangular ROI defined by the mask.

hWatermark const
HIGEAR

8-bit sign centered image to use for watermarking.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional, except:
Indexed RGB with non-grayscale palette;
Images that have a Grayscale LUT attached to them.

Example:

HIGEAR hIGear; /* Handle of image to apply watermark to */
HIGEAR hWMarkImage; /* Handle of watermark image */
IG_FX_watermark (hIGear, NULL, hWMarkImage);

Remarks:

8-bit sign centered image hWatermark is scaled to match image hIGear and is added to it.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask() for more
details.

ImageGear Professional v18 for Mac | 778

1.3.1.2.12 General Image Functions

This section provides information about the General Image group of functions.

IG_image_batch_convert
IG_image_bits_per_channel_get
IG_image_compression_type_get
IG_image_control_get
IG_image_control_set
IG_image_convert
IG_image_create
IG_image_create_alpha
IG_image_create_DIB
IG_image_create_DIB_ex
IG_image_create_empty
IG_image_delete
IG_image_dimensions_get
IG_image_duplicate
IG_image_grayscale_LUT_copy_get
IG_image_grayscale_LUT_exists
IG_image_grayscale_LUT_update_from
IG_image_is_gray
IG_image_is_PDF
IG_image_is_signed_get
IG_image_is_signed_set
IG_image_is_valid
IG_image_orientation_get
IG_image_orientation_set
IG_image_resolution_get
IG_image_resolution_set
IG_image_savelist_get

ImageGear Professional v18 for Mac | 779

1.3.1.2.12.1 IG_image_batch_convert

This function is designed to convert a specified set of files from one ImageGear-supported image format type to
another.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_batch_convert(
 LPAT_SRCINFO lpSrcInfo,
 LPAT_DSTINFO lpDstInfo,
 const LPSTR lpcszLogFileName
);

Arguments:

Name Type Description

lpSrcInfo LPAT_SRCINFO A long pointer to a structure of type AT_SRCINFO through which you supply
ImageGear with the source directory and format type of the files to be
converted. See details below.

lpDstInfo LPAT_DSTINFO A long pointer to a structure of type AT_DSTINFO in which you supply
ImageGear with the destination directory, format type, and naming
convention for the newly converted files. See details below.

lpcszLogFileName const LPSTR Set this string to a filename for a log file to be generated. The log file will
contain a list of files successfully converted, and any images that caused
errors. If you do not need a log file, set this to NULL.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount;
LPAT_DSTINFO DstInfo;
LPAT_SRCINFO SrcInfo;
SrcInfo.lpcszSrcDir = "c:\public\source\images";
SrcInfo.lpcszSrcFilter = "*.bmp;*.tif";
DstInfo.lpcszDstDir = "c:\public\richard\joe\rich";
DstInfo.DstNamingConv = IG_BATCH_USE_SRC_NAME;
DstInfo.DstSaveType = IG_SAVE_TIF_UNCOMP;
/* convert all .bmp and .tif files from c:\public\source\images to TIFF uncompressed
images and store the coverted images to the destination directory
c:\public\richard\joe\rich, using the TIFF uncompressed file format*/
nErrcount = IG_image_batch_convert(&SrcInfo, &DstInfo," c:\\public\\log.txt");

Remarks:

The function takes three parameters: the source information (a structure of type AT_SRCINFO), the destination
information (a structure of type AT_DSTINFO), and a const LPSTR to which you specify the path\filename of the log
file to create.

AT_SRCINFO is a structure that contains the source file information:

typedef struct tag AT_SRCINFO

ImageGear Professional v18 for Mac | 780

{
 LPSTR lpcszSrcDir; /* source dir from which files will be gathered */
 LPSTR lpcszSrcFilter;/* source filter for files contained on the
 source dir*/
}AT_SRCINFO, FAR *LPAT_SRCINFO;

The source information structure must be completed entirely; no fields may be left out. The lpcszSrcDir should be a
NULL-terminated string of characters representing the source directory, or where the images that are to be converted
will be read from (ex. "c:\public\source\images"). The lpcszSrcFilter should be a NULL-terminated string of characters
that represents what type of images should be converted. You may specify more than one type of image to be
converted, e.g."*.bmp;*.tif". Each individual filter should be separated by a semicolon.

The LPAT_DSTINFO is a structure that contains the file destination information.

typedef struct tag AT_DSTINFO
{
LPSTR lpcszDstDir; /*destination directory */
AT_LMODE DstOptions; /*destination naming convention*/
AT_LMODE DstSaveType; /*destination save type */
} AT_DSTINFO, FAR *LPAT_DSTINFO;

The destination information structure must be completed entirely; no fields may be left out. The lpcszDstDir argument
should be a NULL-terminated string of characters that represents where the images that are to be converted will be
stored after they are converted. This directory may or may not exist at the time this function is called. If the directory
does not exist this function will create it (ex. "c:\public\destination\images"). If the source image is a multi-page
image and the destination format type supports multiple pages, a new multi-page file will be created. If the source
image is a multi-page image and the destination save type does not support multiple pages, the resulting destination
image file or files will be determined by the naming convention that you supply to the AT_DSTINFO structure. If the
naming convention IG_BATCH_USE_SRC_NAME is used, there will be one destination file which is continually
overwritten by each subsequent page, and will ultimately contain only the last page of the original source file.

The DstNamingConv should contain one of the predefined constants from accucnst.h, in the section under "*Batch
Naming Conventions*". Currently, the following naming conventions are available:

IG_BATCH_USE_SRC_NAME: This naming convention will use the source file name, remove the extension and replace
it with the new save type default extension for naming each of the converted images. The DstSaveType should be one
of the save types defined in the accucnst.h file (ex.IG_SAVE_TIF_UNCOMP).

You must enter a valid path and filename when you set lpczLogFileName.where the path that you specify already
exists. If lpcszLogFileName is set to a valid filename, any pre-existing file will be overwritten with the new conversion
information. If there is no such file, it will be created. The format of the log file, lpcszLogFileName, if the user has
chosen to generate one, will be as follows for image files that are successfully converted:

Image:<Src file name> <src format, src comp> Converted: <Dst file name> <dst format, dst
comp>
Image:<Src file name> <src format, src comp> Converted: <Dst file name> <dst format, dst
comp>
Image:<Src file name> <src format, src comp> Converted: <Dst file name> <dst format, dst
comp>
Image:<Src file name> <src format, src comp> Converted: <Dst file name> <dst format, dst
comp>
...

If any image files cause errors during the convert, the format of the log file will be as follows:

Image:<Src file name> <src format, src comp> <error type> <error code number> >
Image:<Src file name> <src format, src comp> <error type> <error code number> >
Image:<Src file name> <src format, src comp> <error type> <error code number> >

ImageGear Professional v18 for Mac | 781

1.3.1.2.12.2 IG_image_bits_per_channel_get

This function gets the number of bits allocated for each pixel channel in an image: 8, 16, or 32.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_bits_per_channel_get(
 HIGEAR hIGear,
 AT_INT* lpBitsPerChannel
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpBitsPerChannel AT_INT* Returned number of allocated bits for each pixel channel.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGEAR hImage; /* Handle of image */
AT_INT nBits; /* Number of bits per channel */
nErrcount = IG_image_bits_per_channel_get(hImage, &nBits);

Remarks:

This is not the same as the bit depth of a channel. The number of bits used for a pixel channel may be less than the
number of bits allocated.

ImageGear Professional v18 for Mac | 782

1.3.1.2.12.3 IG_image_compression_type_get

This function returns the compression type used for storing the image indicated by hIGear.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_compression_type_get(
 HIGEAR hIGear,
 LPDWORD lpCompression
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpCompression LPDWORD Pointer to a variable which will receive the compression type. See enumIGBiCompression
for possible values.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Remarks:

ImageGear currently uses only two types of image storage (compression): "Run Ends" and "Standard". ImageGear
always uses "Run Ends" compression for 1-bit images, and "Standard" (uncompressed) format for all other types of
images. If the function returns any value other than IG_BI_RLE and IG_BI_EMPTY, this means that the DIB uses
Standard storage format. This behavior is preserved for compatibility with previous versions of ImageGear.

ImageGear Professional v18 for Mac | 783

1.3.1.2.12.4 IG_image_control_get

This function has been deprecated and will be removed from the public API in a future release. Please use
IG_fltr_ctrl_get instead.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_control_get(
 AT_MODE nOption,
 LPVOID lpData
);

Arguments:

Name Type Description

nOption AT_MODE Image option ID.

lpData LPVOID Reference to option data associated with the option ID.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This function has been deprecated and will be removed from the public API in a future release. Please use
IG_fltr_ctrl_get instead.

This function retrieves the properties associated with the specified option ID.

See enumControlOpt for further information on image option IDs.

To determine the number of errors currently on the error stack use IG_error_check. After fetching all error
information you need using IG_error_get, use IG_error_clear to clear the stack.

ImageGear Professional v18 for Mac | 784

1.3.1.2.12.5 IG_image_control_set

This function has been deprecated and will be removed from the public API in a future release. Please use
IG_fltr_ctrl_set instead.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_control_set(
 AT_MODE nOption,
 LPVOID lpData
);

Arguments:

Name Type Description

nOption AT_MODE Image option ID.

lpData LPVOID Reference to option data to associate with the option ID.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This function has been deprecated and will be removed from the public API in a future release. Please use
IG_fltr_ctrl_set instead.

This function sets the properties associated with the specified option ID.

See enumControlOpt for further information on image option IDs.

To determine the number of errors currently on the error stack use IG_error_check. After fetching all error
information you need using IG_error_get, use IG_error_clear to clear the stack.

ImageGear Professional v18 for Mac | 785

1.3.1.2.12.6 IG_image_convert

This function allows you to transform image file without decoding it completely and avoiding the need to load it into a
memory.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_convert(
 char* lpszSrcFileName,
 char* lpszDstFileName,
 AT_LMODE lFormatType,
 AT_LMODE lCommand,
 AT_LMODE lOptions
);

Arguments:

Name Type Description

lpszSrcFileName char* The filename of the source file.

lpszDstFileName char* The filename of the destination file.

lFormatType AT_LMODE The format type of output image to save.

lCommand AT_LMODE The type of operation to perform (IG_CONVERT_ type constant).

lOptions AT_LMODE Conversion options (bit mask).

Return Value:

Number of errors occurred during the function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Remarks:

The following types of transformations are currently supported:

Lossless conversion of JPEG compressed image files
Conversion between PDF and PostScript formats

PostScript format is not supported on MacOS X platform.

This function does not process image's metadata. This is responsibility of the user. See filter sample for an example of
working with metadata.

Lossless Conversion of JPEG Compressed Image Files

This function allows you to apply certain operations on JPEG compressed image files, such as rotation, flipping, etc,
without degradation of image quality. It can be used also for lossless conversion between JFIF JPEG and EXIF JPEG
file formats, and for adding a thumbnail to a JFIF or EXIF file.

Transformation is done on the DCT coefficients rather than on decompressed pixels, so the lossy
decompression/compression stages are not involved.

In contrast, the usual way (to load, rotate and save image) results in significant image degradation, especially when a
high compression rate is used.

This function can be useful for converting photographic images between portrait and landscape layouts.

The following lossless operations (lCommand argument) are supported:

IG_CONVERT_NONE No conversion.

IG_CONVERT_ROTATE_90 Rotate 90 degrees.

ImageGear Professional v18 for Mac | 786

IG_CONVERT_ROTATE_180 Rotate 180 degrees.

IG_CONVERT_ROTATE_270 Rotate 270 degrees.

IG_CONVERT_FLIP_HORIZONTAL Flip horizontal.

IG_CONVERT_FLIP_VERTICAL Flip vertical.

IG_CONVERT_TRANSPOSE Flip about upper left - lower right diagonal.

IG_CONVERT_TRANSVERSE Flip about upper right - lower left diagonal.

IG_CONVERT_NONE mode can be used for converting between JFIF JPEG and EXIF JPEG format, or for adding a
thumbnail to the image.

lOption parameter is a bit mask. Only one bit flag is supported:

IG_CONVERT_OPTION_TRIM = 1

An inherent limitation of such conversions is that the source image dimensions must be multiples of the DCT matrix
size (typically 8 or 16) to preserve the entire image. If they are not, the remaining pixels at the right and/or bottom
are undefined after transform. The function fills them with a mirror projection of the preceding pixels. This may work
well enough for many photographic pictures. If you prefer not to keep the mirrored edge, set lOption parameter to
IG_CONVERT_OPTION_TRIM. With this option set, the function will trim result image dimensions to a multiple of DCT
size. In particular:

IG_CONVERT_NONE Resulting image dimensions will not be modified.

IG_CONVERT_ROTATE_90 Resulting image width can be trimmed.

IG_CONVERT_ROTATE_180 Resulting image width and height can be trimmed.

IG_CONVERT_ROTATE_270 Resulting image height can be trimmed.

IG_CONVERT_FLIP_HORIZONTAL Resulting image width can be trimmed.

IG_CONVERT_FLIP_VERTICAL Resulting image height can be trimmed.

IG_CONVERT_TRANSPOSE Resulting image dimensions will not be modified.

IG_CONVERT_TRANSVERSE Resulting image width and height can be trimmed.

The following formats are supported as both source and destination: JFIF-JPEG, EXIF-JPEG. Only Lossy and
Progressive compressions are supported. If any other format is used for either source or destination, the function will
return an error.

If lFormatType == IG_FORMAT_UNKNOWN, the function will recognize source file format and use it for the
destination file to save.

This function also converts the image's thumbnail, if it is present. If the thumbnail is JPEG compressed, it will be
converted without degradation of quality. If the source image does not contain a thumbnail, and destination filter's
"SAVE_THUMBNAIL" control parameter is set to TRUE, the function will create a thumbnail from the source image.

Conversion between PDF and PostScript Formats

This function can also be used for conversion of the entire document from PDF to PostScript or back. The function's
arguments should be set as follows:

lpszSrcFileName Name of the input PDF or PS document to convert.

lpszDstFileName Name of the output PDF or PS document.

lFormatType Save format, either IG_FORMAT_PDF or IG_FORMAT_POSTSCRIPT.

lCommand IG_CONVERT_NONE.

lOptions Not used, set to 0.

ImageGear Professional v18 for Mac | 787

1.3.1.2.12.7 IG_image_create

This function creates a new image according to DIB information stored in a DIB info object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_create(
 HIGDIBINFO hDIB,
 HIGEAR* lphIGear
);

Arguments:

Name Type Description

hDIB HIGDIBINFO DIB info object with parameters used to create image.

lphIGear HIGEAR* Returned HIGEAR handle of created image.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

 // Create a new image with the same parameters as an existing image
 AT_ERRCOUNT nErrcount; // Number of errors on stack
 HIGEAR hIGear; // Handle of image
 HIGDIBINFO hDIB; // DIB info handle of image
 HIGEAR hIGearCreated; // Handle of created image

 // Load image file "picture.bmp" from working directory
 nErrcount = IG_load_file("picture.bmp", &hIGear);
 if(nErrcount == 0)
 {
 // Get DIB info of the existion image
 // DIB info can be also created and filled in manually
 nErrcount = IG_image_DIB_info_get(hIGear, &hDIB);
 if(nErrcount == 0)
 {
 nErrcount = IG_image_create(hDIB, &hIGearCreated);
 // Destroy DIB info
 IG_DIB_info_delete(hDIB);
 // ...
 // Destroy the image
 IG_image_delete(hIGearCreated);
 }
 // Destroy the source image
 IG_image_delete(hIGear);
 }

Remarks:

Pixel data is allocated and initialized to black.

ImageGear Professional v18 for Mac | 788

1.3.1.2.12.8 IG_image_create_alpha

This function has been deprecated and will be removed from the public API in a future release. Please use
IG_image_create, IG_image_channel_add, and IG_image_colorspace_convert instead.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_create_alpha (
 HIGEAR hIGear,
 HIGEAR hIBackgrnd,
 AT_MODE nCreateMode
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

hIBackgrnd HIGEAR HIGEAR handle to a background image.

nCreateMode AT_MODE An integer value of type AT_MODE that tells ImageGear what bit depth the alpha channel
should have. The possible settings for this variable, which are defined in accucnst.h are:
IG_ALPHA_CREATE_1 and IG_ALPHA_CREATE_8.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear, /* HIGEAR handles of images */
HIGEAR hIBackgrnd;
AT_ERRCOUNT nErrcount; /* Tally of ImageGear errors on the stack*/
nErrcount = IG_load_file ("Picture1.tga", &hIGear);
nErrcount = IG_load_file("Picture2".bmp", &hIBackgrnd);
nErrcount = IG_image_create_alpha(hIGear, hIBackgrnd, IG_ALPHA_CREATE_8);

Remarks:

This function creates an alpha channel in the image hIGear, based on the data found in hIBackgrnd.

The height and width of hIBackgrnd must not be less than the height and width of hIGear. If there is already an alpha
channel in the image, it will be replaced. Here is the formula by which the alpha channel data is calculated (where I2
stands for second image):

A = (I2 - Back) / (abs(I2 - back) - back);

If hIBackgrnd is a 1-bit image, you should set nCreateMode to IG_ALPHA_CREATE_1. When hIGear is displayed, this
data will act as overlay data, where the 2 possible values for each bit of overlay data will determine whether the pixel is
displayed or is made transparent, so that whatever is in the background will show through.

If hIBackgrnd is an 8-bit image, you should set nCreateMode to IG_ALPHA_CREATE_8. This will add 8 bits (with 256
possible values) of alpha data for each pixel of hIGear.

The image must support the storage of alpha data. Targa (*.tga) is an example of one that does. In a 24-bit Targa
image, each pixel is stored to 32 bits, where the extra 8 bits may be used for alpha data.

ImageGear Professional v18 for Mac | 789

1.3.1.2.12.9 IG_image_create_DIB

Please use the new upgraded function IG_image_create_DIB_ex().

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_create_DIB(
 AT_DIMENSION nWidth,
 AT_DIMENSION nHeight,
 UINT nBitsPerPixel,
 LPAT_DIB lpDIB,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

nWidth AT_DIMENSION Set to the width that the image will be, in pixels. If the DIB already exists (lpDIB
<> NULL), this value will be ignored.

nHeight AT_DIMENSION Set to the height that the image will be (number of rows). If the DIB already
exists (lpDIB <> NULL), this value will be ignored.

nBitsPerPixel UINT Set to the bit depth of the new DIB. If the DIB already exists (lpDIB <> NULL),
this value will be ignored .

lpDIB LPAT_DIB Far pointer to a DIB to copy, or NULL if creating an empty DIB. See the tip below.
If this parameter is not NULL, it must be a valid pointer to the uncompressed
bitmap. For example, the biCompression field of lpDIB can be either: IG_BI_RGB
= 0 or IG_BI_GRAYSCALE = 503.

LphIGear LPHIGEAR A far pointer that returns a HIGEAR handle for the DIB just created.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

Indexed RGB – 1, 4, 8 bpp;
Grayscale – 9…16 bpp;
RGB – 24 bpp;
CMYK – 32 bpp.

This function is only kept for backward compatibility reasons. Please use IG_image_DIB_import or
IG_image_create instead.

Example:

(See also the example for function IG_dspl_DDB_import).
HIGEAR hIGearNew; /* Will be handle of new empty DIB */
AT_DIMENSION nWid, nHi; /* Dimensions for empty DIB */
UINT Bpp; /* Bits per pixel for empty DIB */
AT_ERRCOUNT nErrCount; /* Count of errors put on stack */
HIGEAR hIGearCopy; /* Will be handle of new copied DIB */
char FAR *lpExistingDIB; /* Holds address of an existing DIB */
/* Create an empty 500 x 300 x 16 bits per pixel DIB: */
nWid = 500; nHi = 300; /* Create a 500 pixel x 300 row DIB
*/
nBpp = 16; /* 16 Supported Raster Image Formats: */
nErrCount = IG_image_create_DIB (nWid, nHi, nBpp, NULL,

ImageGear Professional v18 for Mac | 790

&hIGearNew);
if (nErrs) { ...} /* Process any errors */
 ...
/* Copy DIB at *lpExistingDIB, creating HIGEAR image hIGearCopy:
*/
nErrCount = IG_image_create_DIB (0, 0, 0, (LPAT_DIB)
lpExistingDIB, &hIGearCopy);
if (nErrs) { ...} /* Process any errors */

Remarks:

The functionality of this API call has been upgraded and supported by the new function
IG_image_create_DIB_ex(). The reason that this new function has been created is that the old function cannot
support 16-bit DIBs. In the interest of backward compatibility, we have left the old function in its original form
and have retained support for it. If you have already used the old function in your code, it is not mandatory that
you modify your code, but it is recommended.

This function creates a new DIB and returns you its HIGEAR handle. If the FAR pointer lpDIB = NULL, an empty DIB is
created using arguments nWidth, nHeight, and nBitsPerPixel. If lpDIB is not NULL, it should be a FAR pointer to an
existing DIB which is to be copied. The DIB to be copied need not have a HIGEAR handle associated with it. The
width, height, and Bits Per Pixel will be copied from the existing DIB; arguments nWidth, nHeight, and nBitsPerPixel
will be ignored.

If you have an existing DIB which you simply want to give a HIGEAR handle to, use function IG_image_DIB_import(),
which does not make a copy of the DIB.

If the lpDIB parameter is not NULL, then it must be a valid pointer to the uncompressed bitmap, that is the
biCompression field of the lpDIB structure can be either IG_BI_RGB = 0 or IG_BI_GRAYSCALE = 503.

If you set lpDIB to NULL in order to create an empty DIB, the DIB palette will not be initialized. You will have to
initialize it yourself. If you do not, the image will be displayed as all black.
Each raster in the DIB data must be padded to 32 bits. ImageGear does not support a top-down DIB (where
biHeight is negative).

ImageGear Professional v18 for Mac | 791

1.3.1.2.12.10 IG_image_create_DIB_ex

This function creates a new DIB and returns you its HIGEAR handle.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_create_DIB_ex(
 AT_DIMENSION nWidth,
 AT_DIMENSION nHeight,
 UINT nBitsPerPixel,
 AT_LMODE lCompression,
 LPAT_DIB lpDIB,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

nWidth AT_DIMENSION Set to the width that the image will be, in pixels. If the DIB already exists (lpDIB
<> NULL), this value will be ignored.

nHeight AT_DIMENSION Set to the height that the image will be (number of rows). If the DIB already
exists (lpDIB <> NULL), this value will be ignored.

nBitsPerPixel UINT Set to the bit depth of the new DIB. If the DIB already exists (lpDIB <> NULL),
this value will be ignored.

lCompression AT_LMODE Set to the type of pixel storage format you would like used in the new DIB.
Currently, there are three options:

IG_BI_RGB - for standard Windows DIB pixel storage.
IG_BI_GRAYSCALE - for 16-bitgrayscale DIB pixel storage.
IG_BI_CMYK - for 32-bit CMYK DIB pixel storage.

**This variable is named lCompression because it is used to set up the
biCompression field of the DIB header.

lpDIB LPAT_DIB Far pointer to a DIB to copy, or NULL if creating an empty DIB. See the tip below.
If this parameter is not NULL, it must be a valid pointer to the uncompressed
bitmap. For example, the biCompression field of lpDIB can be either: IG_BI_RGB
= 0 or IG_BI_GRAYSCALE = 503.

LphIGear LPHIGEAR A far pointer that returns a HIGEAR handle for the DIB just created.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

Indexed RGB – 1, 4, 8 bpp;
Grayscale – 9…16 bpp;
RGB – 24 bpp;
CMYK – 32 bpp.

This function is only kept for backward compatibility reasons. Please use IG_image_DIB_import or
IG_image_create instead.

Example:

HIGEAR hIGearNew = NULL; // Will be handle of new empty DIB
AT_DIMENSION nWidth=0, nHight=0; // Dimensions for empty DIB

ImageGear Professional v18 for Mac | 792

UINT nBpp = 0; // Bits per pixel for empty DIB
AT_LMODE nCompression = IG_COMPRESSION_NONE;
AT_ERRCOUNT nErrCount = 0; // Count of errors put on stack
HIGEAR hIGearCopy = NULL; // Will be handle of new copied DIB
char FAR *lpExistingDIB = NULL; // Holds address of an existing DIB
// Create an empty 500 x 300 x 16 bits per pixel DIB
nWidth = 500; nHight = 300; nBpp = 16;
nErrCount = IG_image_create_DIB_ex (nWidth, nHight, nBpp, nCompression, NULL, &hIGearNew);
if(nErrCount) //Process any errors
// Copy DIB at *lpExistingDIB, creating HIGEAR image hIGearCopy
nErrCount = IG_image_create_DIB_ex (0, 0, 0, 0, (LPAT_DIB) lpExistingDIB, &hIGearCopy);
if(nErrCount) //Process any errors

Remarks:

If the FAR pointer lpDIB = NULL, an empty DIB is created using arguments nWidth, nHeight, and nBitsPerPixel. If
lpDIB is not NULL, it should be a FAR pointer to an existing DIB which is to be copied. The DIB to be copied need not
have a HIGEAR handle associated with it. The width, height, and Bits Per Pixel will be copied from the existing DIB;
arguments nWidth, nHeight, and nBitsPerPixel will be ignored.

If the lpDIB parameter is not NULL, then it must be a valid pointer to the uncompressed bitmap, that is the
biCompression field of the lpDIB structure can be either IG_BI_RGB= 0 or IG_BI_GRAYSCALE= 503.

If you set lpDIB to NULL in order to create an empty DIB, the DIB palette will not be initialized. You will have to
initialize it yourself. If you do not, the image will be displayed as all black.

Each raster in the DIB data must be padded to 32 bits. ImageGear does not support a top-down DIB (where biHeight
is negative).

ImageGear Professional v18 for Mac | 793

1.3.1.2.12.11 IG_image_create_empty

This function creates a new empty image that does not have pixel data allocated.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_create_empty(
 HIGDIBINFO hDIB,
 HIGEAR* lphIGear
);

Arguments:

Name Type Description

hDIB HIGDIBINFO DIB info object with parameters used to create image.

lphIGear HIGEAR* Returned HIGEAR handle of created image.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

 // Create a new image with the same parameters as an existing image,
 // but with no pixel data allocated
 AT_ERRCOUNT nErrcount; // Number of errors on stack
 HIGEAR hIGear; // Handle of image
 HIGDIBINFO hDIB; // DIB info handle of image
 HIGEAR hIGearCreated; // Handle of created image

 // Load image file "picture.bmp" from working directory
 nErrcount = IG_load_file("picture.bmp", &hIGear);
 if(nErrcount == 0)
 {
 // Get DIB info of the existion image
 // DIB info can be also created and filled in manually
 nErrcount = IG_image_DIB_info_get(hIGear, &hDIB);
 if(nErrcount == 0)
 {
 nErrcount = IG_image_create_empty(hDIB, &hIGearCreated);
 // Destroy DIB info
 IG_DIB_info_delete(hDIB);
 // ...
 // Destroy the image
 IG_image_delete(hIGearCreated);
 }
 // Destroy the source image
 IG_image_delete(hIGear);
 }

ImageGear Professional v18 for Mac | 794

1.3.1.2.12.12 IG_image_delete

This function deletes the HIGEAR handle and all memory associated with it.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_delete(
 HIGEAR hIGear
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to delete.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

 // Create a new image with the same parameters as an existing image,
 // but with no pixel data allocated
 AT_ERRCOUNT nErrcount; // Number of errors on stack
 HIGEAR hIGear; // Handle of image

 // Load image file "picture.bmp" from working directory
 nErrcount = IG_load_file("picture.bmp", &hIGear);
 if(nErrcount == 0)
 {
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
 }

This function also frees the memory associated with the image's DIB, if ImageGear allocated the DIB memory. If
ImageGear did not allocate the DIB memory, the DIB continues to exist, and it is the responsibility of your
application to free this memory when done with it.

ImageGear Professional v18 for Mac | 795

1.3.1.2.12.13 IG_image_dimensions_get

This function returns the width, height, and number of Bits Per Pixel, from the DIB of the image indicated by handle
hIGear.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_dimensions_get(
 HIGEAR hIGear,
 LPAT_DIMENSION lpWidth,
 LPAT_DIMENSION lpHeight,
 LPUINT lpBitsPerPixel
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle of image.

lpWidth LPAT_DIMENSION Pointer to a variable which will receive image width (number of pixels per row).

lpHeight LPAT_DIMENSION Pointer to a variable which will receive image height (number of rows).

lpBitsPerPixel LPUINT Pointer to a variable which will receive image bit depth (number of Bits Per Pixel).

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; // Number of errors on stack
HIGEAR hIGear; // Handle of image
AT_DIMENSION nWidth, nHeight; // Will hold returned width and height
UINT nBpp; // Will hold returned bits per pixel

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 nErrcount = IG_image_dimensions_get(hIGear, &nWidth, &nHeight, &nBpp);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

"Bits per Pixel" parameter does not uniquely identify the image pixel format. For example, a 8-bits per channel
CMYK image and a 8-bits per channel RGBA image will have the same "Bits per Pixel" value of 32. Please use
IG_image_channel_count_get, IG_image_channel_depth_get, IG_image_channel_depths_get,
IG_image_colorspace_get or IG_image_DIB_info_get to obtain more specific information.

ImageGear Professional v18 for Mac | 796

1.3.1.2.12.14 IG_image_duplicate

This function creates an exact duplicate of the current HIGEAR image, and returns the handle to the new image to you in
lphIGear.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_duplicate (
 HIGEAR hIGear,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle to the current image to be duplicated.

lphIGear LPHIGEAR A far pointer in which the handle of the new, duplicate image is returned.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

 All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear;/* HIGEAR handle of image */
HIGEAR lphIGear; /* HIGEAR handle to new duplicate image */
IG_image_duplicate(hIGear, &lphIGear);

ImageGear Professional v18 for Mac | 797

1.3.1.2.12.15 IG_image_grayscale_LUT_copy_get

This function returns a copy of image grayscale LUT, if it exists.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_grayscale_LUT_copy_get(
 HIGEAR hIGear,
 HIGLUT* lpLUT
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear handle.

lpLUT HIGLUT* New LUT handle.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Currently, grayscale LUT is only taken into account for 2…16 bpp Grayscale images.

ImageGear Professional v18 for Mac | 798

1.3.1.2.12.16 IG_image_grayscale_LUT_exists

This function checks whether HIGEAR has a grayscale LUT attached.

Declaration:

AT_BOOL ACCUAPI IG_image_grayscale_LUT_exists(
 HIGEAR hIGear
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Currently, grayscale LUT is only taken into account for 2…16 bpp Grayscale images.

ImageGear Professional v18 for Mac | 799

1.3.1.2.12.17 IG_image_grayscale_LUT_update_from

This function updates (creates if not present) a grayscale LUT for the image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_grayscale_LUT_update_from(
 HIGEAR hIGear,
 HIGLUT lut
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle.

lut HIGLUT LUT handle.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Currently, grayscale LUT is only taken into account for 2…16 bpp Grayscale images.

ImageGear Professional v18 for Mac | 800

1.3.1.2.12.18 IG_image_is_gray

This function is called to determine if an image is a grayscale image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_is_gray(
 HIGEAR hIGear,
 LPAT_BOOL lpIsImageGray
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpIsImageGray LPAT_BOOL Pointer to a variable which will be overwritten with TRUE if the image is grayscale, and
with FALSE if it is not grayscale.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; // Number of errors on stack
HIGEAR hIGear; // Handle of image
AT_BOOL bItsGray; // Will be set = TRUE if grayscale

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 nErrcount = IG_image_is_gray(hIGear, &bItsGray);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

The function considers the image to be grayscale, if either of the following is true:

Image has IG_COLOR_SPACE_ID_Gy (grayscale) colorspace.
Image has IG_COLOR_SPACE_ID_I (indexed) colorspace, has more than 1 bit per pixel, all of its palette entries are
grayscale (R[i] = G[i] = B[i]), and the palette is either non-decreasing (R[i] >= R[i-1] for all i>0) or non-increasing
(R[i] <= R[i-1] for all i>0).
Image has IG_COLOR_SPACE_ID_RGB colorspace, and all image pixels are grayscale: R = G = B.
Color channels of the image satisfy one of the requirements listed above, and the image also has Alpha, Premultiplied
Alpha or Extra channels.

FALSE is returned for all 1-bit indexed images, even if the palette contains two shades of gray.

ImageGear Professional v18 for Mac | 801

1.3.1.2.12.19 IG_image_is_PDF

This function returns TRUE if the image is PDF.

Declaration:

AT_BOOL ACCUAPI IG_image_is_PDF(HIGEAR hIGear);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

Return Value:

Returns TRUE if the image is PDF; FALSE - otherwise.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

ImageGear Professional v18 for Mac | 802

1.3.1.2.12.20 IG_image_is_signed_get

This function returns a boolean value indicating whether the image pixel data is signed or unsigned.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_is_signed_get(
 HIGEAR hIGear,
 LPAT_BOOL lpbSigned
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpbSigned AT_BOOL Indicates whether or not a grayscale image should be treated as signed.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; // Number of errors on stack
HIGEAR hIGear; // Handle of image
AT_BOOL bItsSigned; // Will be set = TRUE if signed

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 nErrcount = IG_image_is_signed_get(hIGear, &bItsSigned);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

Although ImageGear allows getting and setting the Signed flag from/to images of any colorspaces, except for 1-bit per
pixel images, it only takes this flag into account for images that have IG_COLOR_SPACE_ID_Gy colorspace.

Several image file formats, such as DICOM and JPEG2K, allow specifying image pixels as signed or unsigned. If the file
format does not specify whether the pixels are signed or unsigned, ImageGear assumes they are unsigned.

If HIGEAR image is signed, and an attempt is made to save it to a file format that does not support Signed images, the
Signed flag is ignored.

ImageGear Professional v18 for Mac | 803

1.3.1.2.12.21 IG_image_is_signed_set

This function sets a boolean value that specifies whether the image pixel data is signed or unsigned.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_is_signed_set(
 HIGEAR hIGear,
 AT_BOOL bSigned
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

bSigned AT_BOOL Indicates whether the image should be treated as signed or unsigned.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional, except:

Indexed RGB - 1 bpp;
Grayscale - 1 bpp.

Example:

AT_ERRCOUNT nErrcount; // Number of errors on stack
HIGEAR hIGear; // Handle of image

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 nErrcount = IG_image_is_signed_set(hIGear, TRUE);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

The Signed flag affects the image display. If an image is unsigned, and does not have any display LUTs attached,
pixel intensity value of 0 is the minimal intensity, so it is displayed as black. If the image is signed, 0 is the middle
intensity, so it is displayed as 50% gray.

Although ImageGear allows getting and setting the Signed flag from/to images of any colorspaces, except for 1-bit
per pixel images, it only takes this flag into account for images that have IG_COLOR_SPACE_ID_Gy colorspace.

Several image file formats, such as DICOM and JPEG2K, allow specifying image pixels as signed or unsigned. If the
file format does not specify whether the pixels are signed or unsigned, ImageGear assumes they are unsigned.

If HIGEAR image is signed, and an attempt is made to save it to a file format that does not support Signed images,
the Signed flag is ignored.

This function does not modify the image pixel values. It only changes a flag attached to the image. Also, this
function does not cause the image to be redrawn. Refer to IG_dspl_image_draw for how to display an image.

ImageGear Professional v18 for Mac | 804

ImageGear Professional v18 for Mac | 805

1.3.1.2.12.22 IG_image_is_valid

This function is called to determine if the HIGEAR variable hIGear contains a handle of a valid ImageGear image.

Declaration:

BOOL ACCUAPI IG_image_is_valid (HIGEAR hIGear);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

Return Value:

This function returns TRUE if a hIGear contains a valid handle; FALSE otherwise.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* Contains HIGEAR handle of image */
if (IG_image_is_valid (hIGear))
 { IG_save_file (hIGear, "picture.bmp", IG_SAVE_BMP_UNCOMP); }

Remarks:

Note that the return-type of the function is BOOL, not AT_ERRCOUNT. TRUE is returned if the handle is valid and may be
used as the HIGEAR argument in calls to other ImageGear functions.

ImageGear Professional v18 for Mac | 806

1.3.1.2.12.23 IG_image_orientation_get

This function tells you the orientation of the image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_orientation_get(
 HIGEAR hIGear,
 LPAT_MODE lpOrientation
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpOrientation LPAT_MODE A constant of type AT_MODE that will return the current orientation of the HIGEAR
image. See enumOrientation for possible values.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; // Number of errors on stack
HIGEAR hIGear; // Handle of image
AT_MODE nOrientation; // Image orientation

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 nErrcount = IG_image_orientation_get(hIGear, &nOrientation);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

The two most frequently used orientations are "Portrait" and "Landscape." However, in order to provide complete
support for the TIFF file format, which defines eight image orientations, ImageGear interprets eight orientations. For
an image with a "Portrait" orientation, this value would normally be IG_ORIENT_TOP_LEFT. For an image with
"Landscape" orientation, this value would be either IG_ORIENT_RIGHT_TOP or IG_ORIENT_LEFT_BOTTOM. See
enumOrientation for descriptions of all orientation modes.

Notice that the IG_ORIENT constants contain indicators of two directions. For IG_ORIENT_TOP_LEFT, the first
direction is "TOP." This specifies the placement of row 0 of the image. The second direction is "LEFT", and this
specifies the placement of column 0. Thus, IG_ORIENT_TOP_LEFT specifies that row 0 of the image stored in the file
should be displayed at the top and column 0 should be displayed at the left. This is the normal orientation of most
images. On the other hand, IG_ORIENT_LEFT_BOTTOM specifies that row 0 should be displayed at the left and
column 0 at the bottom. For this to be true the image would have to be rotated 90 degrees counterclockwise.

The orientation setting is stored in the header structure of those file formats that support the storage of
orientation information. The orientation setting tells how the image was intended to be displayed. In the
example above, the bitmap image is not necessarily stored "sideways." When you find that it is intended to be
displayed sideways, you could call IG_dspl_orientation_get to display it in its intended orientation, or call

ImageGear Professional v18 for Mac | 807

IG_IP_rotate_multiple_90 to rearrange the actual bitmap data so that the image is actually stored sideways.

ImageGear Professional v18 for Mac | 808

1.3.1.2.12.24 IG_image_orientation_set

This function sets the orientation of the image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_orientation_set(
 HIGEAR hIGear,
 AT_MODE nOrientation
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

nOrientation AT_MODE A constant of type AT_MODE that sets the orientation of the HIGEAR image. See
enumOrientation for possible values.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; // Number of errors on stack
HIGEAR hIGear; // Handle of image

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 nErrcount = IG_image_orientation_set(hIGear, IG_ORIENT_LEFT_BOTTOM);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

The two most frequently used orientations are "Portrait" and "Landscape." However, in order to provide complete
support for the TIFF file format, which defines eight image orientations, ImageGear interprets eight orientations. For
an image with a "Portrait" orientation, this value would normally be IG_ORIENT_TOP_LEFT. For an image with
"Landscape" orientation, this value would be either IG_ORIENT_RIGHT_TOP or IG_ORIENT_LEFT_BOTTOM. See
enumOrientation for descriptions of all orientation modes.

Notice that the IG_ORIENT constants contain indicators of two directions. For IG_ORIENT_TOP_LEFT, the first
direction is "TOP." This specifies the placement of row 0 of the image. The second direction is "LEFT", and this
specifies the placement of column 0. Thus, IG_ORIENT_TOP_LEFT specifies that row 0 of the image stored in the file
should be displayed at the top and column 0 should be displayed at the left. This is the normal orientation of most
images. On the other hand, IG_ORIENT_LEFT_BOTTOM specifies that row 0 should be displayed at the left and
column 0 at the bottom. For this to be true the image would have to be rotated 90 degrees counterclockwise.

The orientation setting is stored in the header structure of those file formats that support the storage of
orientation information. The orientation setting tells how the image was intended to be displayed. In the last
example above, the bitmap image is not necessarily stored "sideways." When you find that it is intended to be
displayed sideways, you could call IG_dspl_orientation_get to display it in its intended orientation, or call
IG_IP_rotate_multiple_90 to rearrange the actual bitmap data so that the image is actually stored sideways.

ImageGear Professional v18 for Mac | 809

ImageGear Professional v18 for Mac | 810

1.3.1.2.12.25 IG_image_resolution_get

This function retrieves the current resolution settings of the HIGEAR image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_resolution_get(
 HIGEAR hIGear,
 LPLONG lpXResNumerator,
 LPLONG lpXResDenominator,
 LPLONG lpYResNumerator,
 LPLONG lpYResDenominator,
 LPAT_MODE lpnUnits
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle to the image.

lpXResNumerator LPLONG Pointer to a LONG variable that receives the x resolution numerator.

lpXResDenominator LPLONG Pointer to a LONG variable that receives the x resolution denominator.

lpYResNumerator LPLONG Pointer to a LONG variable that receives the y resolution numerator.

lpYResDenominator LPLONG Pointer to a LONG variable that receives the y resolution denominator.

lpnUnits LPAT_MODE Pointer to an AT_MODE variable that receives the resolution units. See
enumIGResolutionUnits for possible values.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear;
AT_RESOLUTION res;
AT_ERRCOUNT nErrCount;

// Load the image
nErrCount = IG_load_file("picture.tif", &hIGear);

if (nErrCount == 0)
{
 // Obtain the image's resolution
 nErrCount = IG_image_resolution_get(hIGear, &res.xResNumerator,
&res.xResDenominator,
 &res.yResNumerator, &res.yResDenominator, &res.nUnits);

 // Change the current resolution setting to INCHES
 if (nErrCount == 0)
 nErrCount = IG_util_resolution_units_convert(&res, IG_RESOLUTION_INCHES);

 // Set the modified resolution
 if (nErrCount == 0)
 nErrCount = IG_image_resolution_set(hIGear, res.xResNumerator,
res.xResDenominator,

ImageGear Professional v18 for Mac | 811

 res.yResNumerator, res.yResDenominator, res.nUnits);

 // ...

 // Delete the image
 IG_image_delete(hIGear);
}

Remarks:

This function returns the resolution values and units of the HIGEAR image.

ImageGear stores resolution as a pair or rational numbers and a unit specification. This is the method used by several
image file formats, which allows storing precise resolution values, rather than their double or float approximations. To
set the X resolution of the image to 300 DPI, the numerator can be 300 and the denominator 1 (900 and 3 would also
work).

Use IG_image_resolution_set to set image resolution.

Use IG_util_resolution_units_convert to convert resolution to different units.

An alternative way to obtain the image resolution is to get its DIB information using IG_image_DIB_info_get, and
then get the resolution using IG_DIB_resolution_get.

ImageGear Professional v18 for Mac | 812

1.3.1.2.12.26 IG_image_resolution_set

This function sets the resolution of the image referenced by hIGear.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_resolution_set(
 HIGEAR hIGear,
 LONG xResNumerator,
 LONG xResDenominator,
 LONG yResNumerator,
 LONG yResDenominator,
 AT_MODE nUnits
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle to the image.

XResNumerator LONG Sets the x resolution numerator.

XResDenominator LONG Sets the x resolution denominator.

YResNumerator LONG Sets the y resolution numerator.

YResDenominator LONG Sets the y resolution denominator.

nUnits AT_MODE Sets the resolution units for the image. See enumIGResolutionUnits for possible
values.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

See the example under the IG_image_resolution_get() function.

Remarks:

ImageGear stores resolution as a pair or rational numbers and a unit specification. This is the method used by several
image file formats, which allows storing precise resolution values, rather than their double or float approximations. To
set the X resolution of the image to 300 DPI, the numerator can be 300 and the denominator 1 (900 and 3 would also
work).

When an image is saved to a file, resolution will be converted when necessary to match the units supported by the file
format.

ImageGear uses resolution information when printing the image. The ratio of image resolutions (X and Y) can also be
used by ImageGear when displaying the image. Use IG_dspl_PPM_correct_set to specify whether ImageGear should use
the ratio of image resolutions when displaying and printing the image.

Changing these values does not alter the number of pixels or colors in the actual image in any way. Use IG_IP_resize()
and IG_IP_crop() to resize or crop an image.

Use IG_image_resolution_get to obtain the image resolution information.

Use IG_util_resolution_units_convert to convert resolution to different units.

ImageGear Professional v18 for Mac | 813

1.3.1.2.12.27 IG_image_savelist_get

This function prepares the list of constants corresponding to format and compression combinations available for
saving of the specified image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_savelist_get(
 HIGEAR hIGear,
 LPAT_MODE lpnFilterList,
 UINT nFListSize,
 LPAT_LMODE lpSaveList,
 UINT nSListSize,
 LPUINT lpnSListCount
);

Arguments:

Name Type Description

hIGear HIGEAR Handle of the image to check the compression list against. If the value is not NULL,
this function returns the list of enumIGSaveFormats values corresponding to saving
formats (format and compression combinations) available for saving of the specified
image. If the value is NULL, then the function returns the list of all currently
supported saving formats for file formats specified by lpnFilterList. If both the hIGear
and lpnFilterList are null, the function returns the list of all currently supported
saving formats.

lpnFilterList LPAT_MODE Pointer to the list of format identifiers, which will be used in the save list. See
enumIGFormats for possible values. If this parameter is NULL, then all currently
supported formats will be used.

nFListSize UINT Array containing the number of elements if lpnFilterList is not NULL.

lpSaveList LPAT_MODE Array containing the returned saving format constants. You can set this value to
NULL if you only need to obtain the total number of found saving formats.

nSListSize UINT Size of the lpSaveList array.

lpnSListCount LPUINT If the lpSaveList array is not NULL, this parameter returns the number of copied
enumIGSaveFormats values. If lpSaveList is NULL, this parameter returns the total
number of records.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrCount; // Number of errors on stack
HIGEAR hIGear; // Handle of image
UINT nCount; // Number of save formats
LPAT_LMODE lpSaveList;

// Load the image
nErrCount = IG_load_file("picture.tif", &hIGear);
if(nErrCount == 0)
{
 // Get save formats count
 nErrCount = IG_image_savelist_get(hIGear, NULL, 0, NULL, 0, &nCount);

ImageGear Professional v18 for Mac | 814

 // Allocate memory
 lpSaveList = (LPAT_LMODE)malloc(nCount*sizeof(AT_LMODE));
 if(lpSaveList!=NULL)
 {
 // Get save list
 nErrCount = IG_image_savelist_get(hIGear, NULL, 0, lpSaveList, nCount, NULL);

 //...

 // Delete memory
 free(lpSaveList);
 }
 // Delete the image
 IG_image_delete(hIGear);
}

Remarks:

Records returned by the function are sorted alphabetically by their short names. Short names correspond to those
returned by IG_fltr_info_get function.

This function works similarly to IG_fltr_compressionlist_get_ex, but it works with all formats supported by ImageGear
rather than with a particular format. Values returned in the lpSaveList can be passed directly to ImageGear saving
functions such as IG_fltr_save_file.

See also the section Using Format Filters API for Image Saving.

ImageGear Professional v18 for Mac | 815

1.3.1.2.13 Global Control Parameter Functions

This section provides information about the Global Control Parameter group of functions.

IG_gctrl_item_by_index_get
IG_gctrl_item_count_get
IG_gctrl_item_get
IG_gctrl_item_id_get
IG_gctrl_item_set

ImageGear Professional v18 for Mac | 816

1.3.1.2.13.1 IG_gctrl_item_by_index_get

This function is like IG_gctrl_item_get(), but returns information about parameter determined by given index in array.

Declaration:

AT_BOOL ACCUAPI IG_gctrl_item_by_index_get(
 UINT nIndex,
 LPCHAR CtrlID,
 DWORD dwIDSize,
 LPAT_MODE lpnValType,
 LPVOID lpValue,
 DWORD dwValSize,
 LPDWORD lpdwValSize,
 LPCHAR lpTextInfo,
 DWORD dwTextBufSize,
 LPDWORD lpdwTextInfoSize
);

Arguments:

Name Type Description

nIndex UINT IN: Index of global control parameter in the array.

CtrlID LPCHAR OUT: The name of global control parameter.

dwIDSize DWORD IN: Size of CtrlID in bytes.

lpnValType LPAT_MODE OUT: The type of global control parameter value.

lpValue LPVOID OUT: Buffer where to copy control parameter value.

dwValSize DWORD IN: Size of lpValue buffer in bytes.

lpdwValSize LPDWORD OUT: Actual size of parameter value in bytes.

lpTextInfo LPCHAR OUT: Buffer where to copy text description of global control parameter.

dwTextBufSize DWORD IN: Size of lpTextInfo buffer in bytes.

lpdwTextInfoSize LPDWORD OUT: Actual size of the text description of parameter.

Return Value:

TRUE if global parameter with given name is found; FALSE if it does not exist.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

See also the section Working with Global Control Parameters.

ImageGear Professional v18 for Mac | 817

1.3.1.2.13.2 IG_gctrl_item_count_get

This function returns total amount of global parameters in the list.

Declaration:

UINT ACCUAPI IG_gctrl_item_count_get();

Arguments:

None

Return Value:

Integer value - amount of global parameters in the list.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

See also the section Working with Global Control Parameters.

ImageGear Professional v18 for Mac | 818

1.3.1.2.13.3 IG_gctrl_item_get

This function returns all information about global control parameter identified by name CtrlID.

Declaration:

AT_BOOL ACCUAPI IG_gctrl_item_get(
 LPCHAR CtrlID,
 LPAT_MODE lpnValType,
 LPVOID lpValue,
 DWORD dwValSize,
 LPDWORD lpdwValSize,
 LPCHAR lpTextInfo,
 DWORD dwTextBufSize,
 LPDWORD lpdwTextInfoSize
);

Arguments:

Name Type Description

CtrlID LPCHAR IN: The name of global control parameter.

lpnValType LPAT_MODE OUT: The type of global control parameter value.

lpValue LPVOID OUT: Buffer where to copy control parameter value.

dwValSize DWORD IN: Size of lpValue buffer in bytes.

lpdwValSize LPDWORD OUT: Actual size of parameter value in bytes.

lpTextInfo LPCHAR OUT: Buffer where to copy text description of global control parameter.

dwTextBufSize DWORD IN: Size of lpTextInfo buffer in bytes.

lpdwTextInfoSize LPDWORD OUT: Actual size of the text description of parameter.

Return Value:

TRUE if global parameter with given name is found; FALSE if it does not exist.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Returns TRUE if parameter with given name is found, and FALSE if parameter with given name does not exist.

See also the section Working with Global Control Parameters.

ImageGear Professional v18 for Mac | 819

1.3.1.2.13.4 IG_gctrl_item_id_get

This function returns index of the global control parameter with given name in array.

Declaration:

AT_BOOL ACCUAPI IG_gctrl_item_id_get(
 UINT nIndex
 LPCHAR lpCtrlID,
 UINT nBufSize
);

Arguments:

Name Type Description

nIndex UINT OUT: An index of lpCtrlID global control parameter in the parameters array.

lpCtrlID LPCHAR IN: The name of global control parameter.

nBufSize UINT IN: Size of lpCtrlID buffer in bytes.

Return Value:

TRUE if global parameter with given name is found; FALSE if it does not exist.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

See also the section Working with Global Control Parameters.

ImageGear Professional v18 for Mac | 820

1.3.1.2.13.5 IG_gctrl_item_set

This function sets the value to global control parameter.

Declaration:

AT_ERRCODE ACCUAPI IG_gctrl_item_set(
 LPCHAR CtrlID,
 AT_MODE nValueType,
 LPVOID lpValue,
 DWORD dwValueSize,
 LPCHAR lpTextInfo
);

Arguments:

Name Type Description

CtrlID LPCHAR IN: The name of global control parameter in form "<GRPNAME>.<Param name>".

nValueType AT_MODE IN: The type of global control parameter value. Constant of kind AM_TID_...

lpValue LPVOID IN: Pointer to global control parameter value data.

dwValueSize DWORD IN: Size of global control parameter value data (size of buffer lpValue)

lpTextInfo LPCHAR IN: Text description of global control parameter value.

Return Value:

Return value is a code of last error or NULL if success.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

If parameter with given name ControlID does not exist, then it is added. If control parameter with given value exists and
callback function for it is not NULL then callback is called exactly after value is changed by this function. If lpTextInfo is
not NULL, then previous value of this field is changed to new value, but if NULL then it is not changed.

See also the section Working with Global Control Parameters.

ImageGear Professional v18 for Mac | 821

1.3.1.2.14 Image Blending Functions

This section provides information about the Image Blending group of functions.

IG_image_blend_with_alpha

ImageGear Professional v18 for Mac | 822

1.3.1.2.14.1 IG_image_blend_with_alpha

This function blends two images together using their alpha channels.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_blend_with_alpha(
 HIGEAR hSource,
 HIGEAR hAlpha,
 LPAT_RECT blendingArea
);

Arguments:

Name Type Description

hSource HIGEAR First image for blending. It may or may not contain an alpha channel.

hAlpha HIGEAR Second image for blending. It must contain an alpha channel.

blendingArea LPAT_RECT Rectange area of the first image for blending. NULL means the entire image.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

hSource:

Grayscale - 2..16 bpp;
RGB - 6..48 bpp;
GyA - 4..32 bpp;
GyPA - 4..32 bpp;
RGBA - 8..64 bpp;
RGBPA - 8..64 bpc.

hAlpha:

GyA - 4..32 bpp;
GyPA - 4..32 bpp;
RGBA - 8..64 bpp;
RGBPA - 8..64 bpc.

Remarks:

hAlpha is blended over hSource, and the result is stored in hSource. hAlpha should contain an Alpha channel,
otherwise, an error is returned. Color channels (all channels except Extra and Alpha/Premultiplied Alpha) of both
images must have the same color space and the same bit depths.

If hSource does not contain an Alpha channel, hAlpha is composited over it using hSource as the background. The
resulting image does not contain an Alpha channel. The following formulas are used:

If Page2 is not pre-multiplied,
I1 = I2 * A2 + I1 (1-A2)
If Page2 is pre-multiplied,
I1 = I2 + I1 (1-A2)

If hSource contains an Alpha channel, hSource and hAlpha are blended together. The resulting image contains an
alpha channel. Blending two images, both of which contain an Alpha channel, can be interpreted as placing one semi-
transparent film over another semi-transparent film. The result of applying such combined images to some
background is the same as applying one image over background and then applying another image to the result. The
code

IG_image_blend_with_alpha(hImage1, hImage2, NULL);
IG_image_blend_with_alpha(hBackground, hImage1, NULL);

ImageGear Professional v18 for Mac | 823

will produce the same result as
IG_image_blend_with_alpha(hBackground, hImage1, NULL);
IG_image_blend_with_alpha(hBackground, hImage2, NULL);

The following pseudocode demonstrates the formulas used by the function:
if (A1=A2=0)
I1 = 0; A1 = 0;
else
If both Page1 and Page2 are not pre-multiplied,
I1 = (I2*A2 + I1*A1*(1-A2)) / (A1 + A2 - A1*A2)
A1 = A1 + A2 - A1*A2
//Result is not pre-multiplied
If Page1 is not pre-multiplied, and Page2 is pre-multiplied:
I1 = (I2 + I1*A1*(1-A2)) / (A1 + A2 - A1*A2)
A1 = A1 + A2 - A1*A2
//Result is not pre-multiplied
If Page1 is pre-multiplied, and Page2 is not:
I1 = I2*A2 + I1*(1-A2)
A1 = A1 + A2 - A1*A2
//Result is pre-multiplied
If both Page1 and Page2 are pre-multiplied:
I1 = I2 + I1*(1-A2)
A1 = A1 + A2 - A1*A2
//Result is pre-multiplied

Alpha values are mapped to a float value between 0.0 and 1.0, where 0.0 means full transparency and 1.0 means full
opaquity. Alpha value of 0 corresponds to float value of 0.0 and alpha value of 2^n-1 (where n is alpha channel's bit
depth) corresponds to float value of 1.0.

This function does not process Extra Channels.

ImageGear Professional v18 for Mac | 824

1.3.1.2.15 Image Channel Functions

This section provides information about the Image Channel group of functions.

IG_image_channel_add
IG_image_channel_copy_create
IG_image_channel_count_get
IG_image_channel_depth_get
IG_image_channel_depths_get
IG_image_channel_depths_change
IG_image_channel_remove
IG_image_channel_update
IG_image_channels_combine
IG_image_channels_separate

ImageGear Professional v18 for Mac | 825

1.3.1.2.15.1 IG_image_channel_add

This function adds a new channel to an image at the specified position, populating the channel's image data from
another channel.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_channel_add(
 HIGEAR hIGear,
 AT_UINT position,
 LPCAT_CHANNEL_REF channel
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to which to add channel.

position AT_UINT Index of where channel should be added.

channel LPCAT_CHANNEL_REF Location of channel to add.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

/* Add an "extra" channel to an image */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGEAR hImage; /* Handle of destination image */
HIGEAR hExtra; /* Handle of image to use as extra */
AT_CHANNEL_REF channel; /* Channel to add */
AT_INT nChannels; /* Number of channels in dest. image */
channel.hImage = hExtra;
channel.uNumber = 0;
nErrcount = IG_image_channel_count_get(hImage, &nChannels);
nErrcount = IG_image_channel_add(hImage, nChannels, &channel);
nErrcount = IG_image_colorspace_get(hImage, &cs);

Remarks:

The position is an index into the number of channels starting at 0. channel specifies the location of the channel to add,
which consists of the HIGEAR handle of the image containing the channel and the index of the channel within that image.

ImageGear Professional v18 for Mac | 826

1.3.1.2.15.2 IG_image_channel_copy_create

This function creates a new image by copying a single channel from an existing image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_channel_copy_create(
 LPCAT_CHANNEL_REF source,
 LPAT_CHANNEL_REF copy
);

Arguments:

Name Type Description

source LPCAT_CHANNEL_REF Location of source channel to copy.

copy LPAT_CHANNEL_REF Location of new image with copied channel.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

/* Extract the first alpha channel if one exists */
/* Otherwise, extract the first color channel */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGEAR hImage; /* Handle of source image */
AT_CHANNEL_REF srcChan; /* Channel to copy */
AT_CHANNEL_REF dstChan; /* New image with copied channel */
enumIGColorSpaceIDs cs; /* Source image's color space */
AT_INT nColorChannels; /* Number of color channels */
nErrcount = IG_load_file("alpha.tif", &hImage);
nErrcount = IG_image_colorspace_get(hImage, &cs);
nColorChannels = IG_util_colorspace_color_count_get(cs);
srcChan.hImage = hImage;
if (IG_util_colorspace_contains_alpha(cs))
 srcChan.uNumber = nColorChannels; /* First alpha channel */
else
 srcChan.uNumber = 0; /* First color channel */
nErrcount = IG_image_channel_copy_create(&srcChan, &dstChan);
hCopy = dstChan.hImage;
nErrcount = IG_save_file(dstChan.hImage, "alpha.bmp",
 IG_SAVE_BMP_UNCOMP);
nErrcount = IG_image_delete(hImage);

Remarks:

Specify in source the image and channel index to copy. If the copy is successful, copy will contain the HIGEAR handle of
a newly allocated image containing the copied channel. The channel index in copy will always be set to 0. You are
responsible for freeing the new image with IG_image_delete.

ImageGear Professional v18 for Mac | 827

1.3.1.2.15.3 IG_image_channel_count_get

This function counts the image channels.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_channel_count_get(
 HIGEAR hIGear,
 AT_INT* lpChannelCount
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpChannelCount AT_INT* Channel count of the image.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

ImageGear Professional v18 for Mac | 828

1.3.1.2.15.4 IG_image_channel_depth_get

This function returns the channel bit depth.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_channel_depth_get(
 HIGEAR hIGear,
 AT_INT Index,
 AT_INT* lpChannelDepth
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

Index AT_INT Channel index on which to get info.

lpChannelDepth AT_INT* Bit depth of the channel.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

ImageGear Professional v18 for Mac | 829

1.3.1.2.15.5 IG_image_channel_depths_get

This function returns an array of the channel bit depths.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_channel_depths_get(
 HIGEAR hIGear,
 AT_INT ChannelCount,
 AT_INT* lpChannelDepths
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

ChannelCount AT_INT Length of the channel depths array to be filled.

lpChannelDepths AT_INT* Array of the channel depths to be filled.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

ImageGear Professional v18 for Mac | 830

1.3.1.2.15.6 IG_image_channel_depths_change

This function changes the bit depths of the image channels to the specified depths.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_channel_depths_change(
 HIGEAR hIGear,
 const AT_INT* newDepths,
 AT_MODE scaleMode
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

newDepths const
AT_INT*

New channel depths to set.

scaleMode AT_MODE Mode to use for scaling channel depths - must be one of the following:
IG_DEPTH_CHANGE_SCALE or IG_DEPTH_CHANGE_NO_SCALE.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

/* Alter a 24-bit RGB image to have full 8-bit precision
 for green, but only 1-bit precision for red and blue */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGEAR hImage; /* HIGEAR handle of image */
AT_INT depths[] = { 1, 8, 1 }; /* New channel depths */
nErrcount = IG_load_file("test.jpg", &hImage);
nErrcount = IG_image_channel_depths_change(hImage, depths,
 IG_DEPTH_CHANGE_SCALE);
nErrcount = IG_save_file(hImage, "test.bmp",
 IG_SAVE_BMP_UNCOMP);
nErrcount = IG_image_delete(hImage);

Remarks:

If scaling is used, pixel data is scaled to match the new bit depths. Otherwise, pixel data will remain unchanged and will
be interpreted as conforming to the new depths.

ImageGear Professional v18 for Mac | 831

1.3.1.2.15.7 IG_image_channel_remove

This function removes the specified channel from the source image and shifts the remaining channels without
transforming pixel data.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_channel_remove(
 HIGEAR hIGear,
 AT_UINT position
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

position AT_UINT Index of channel to remove.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional, except:

Images with 1 channel.

Example:

/* Alter a 24-bit RGB image to use the red channel data
 for both red and blue channels */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGEAR hImage; /* Handle of source image */
AT_CHANNEL_REF channel; /* Channel to add */
nErrcount = IG_load_file("test.jpg", &hImage);
channel.hImage = hImage;
channel.uNumber = 0;
nErrcount = IG_image_channel_add(hImage, 3, &channel);
nErrcount = IG_image_channel_remove(hImage, 2);
nErrcount = IG_save_file(hImage, "test.bmp",
 IG_SAVE_BMP_UNCOMP);
IG_image_delete(hImage);

ImageGear Professional v18 for Mac | 832

1.3.1.2.15.8 IG_image_channel_update

This function copies pixel data from one channel to another channel.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_channel_update(
 LPCAT_CHANNEL_REF channelToUpdateWith,
 LPCAT_CHANNEL_REF channelToBeUpdated
);

Arguments:

Name Type Description

channelToUpdateWith LPCAT_CHANNEL_REF Channel to use as source channel.

channelToBeUpdated LPCAT_CHANNEL_REF Channel to be replaced by source channel.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

/* Alter a 24-bit RGB image to use the red channel data
for both red and blue channels */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGEAR hImage; /* Handle of source image */
AT_CHANNEL_REF chanSrc; /* Channel to update from */
AT_CHANNEL_REF chanDst; /* Channel to update */
nErrcount = IG_load_file("test.jpg", &hImage);
chanSrc.hImage = hImage;
chanSrc.uNumber = 0;
chanDst.hImage = hImage;
chanDst.uNumber = 2;
nErrcount = IG_image_channel_update(&chanSrc, &chanDst);
nErrcount = IG_save_file(hImage, "test.bmp",
 IG_SAVE_BMP_UNCOMP);
IG_image_delete(hImage);

Remarks:

Each channel is specified by a HIGEAR image handle and the channel's index within that image. The source and
destination channels can reside in different images or the same image.

ImageGear Professional v18 for Mac | 833

1.3.1.2.15.9 IG_image_channels_combine

This function creates a new image with the color space specified by colorSpace.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_channels_combine(
 LPCAT_CHANNEL_REF channels,
 AT_UINT channelsQty,
 enumIGColorSpaceIDs colorSpace,
 LPHIGEAR hIGear
);

Arguments:

Name Type Description

channels LPCAT_CHANNEL_REF Array of channel descriptors for channels to combine.

channelsQty AT_UINT Number of channels to combine.

colorSpace enumIGColorSpaceIDs Color space of new image.

hIGear LPHIGEAR Pointer to HIGEAR handle where new image is returned.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

/* Make a copy of a 24-bit RGB image in which the
 red and blue channels are swapped */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGEAR hImage; /* Handle of source image */
HIGEAR hImageCombined; /* Handle of combined image */
AT_CHANNEL_REF chan[3]; /* Channels to combine */
nErrcount = IG_load_file("test.jpg", &hImage);
chan[0].hImage = hImage;
chan[0].uNumber = 2;
chan[1].hImage = hImage;
chan[1].uNumber = 1;
chan[2].hImage = hImage;
chan[2].uNumber = 0;
nErrcount = IG_image_channels_combine(chan, 3,
 IG_COLOR_SPACE_ID_RGB, &hImageCombined);
nErrcount = IG_save_file(hImageCombined, "test.bmp",
 IG_SAVE_BMP_UNCOMP);
IG_image_delete(hImage);
IG_image_delete(hImageCombined);

Remarks:

The channels in the new image are copied from the channels specified by channels.

This function does not do any color space or pixel conversions, it merely merges the pixel data from different
channels together.

ImageGear Professional v18 for Mac | 834

ImageGear Professional v18 for Mac | 835

1.3.1.2.15.10 IG_image_channels_separate

This function separates channels in an image by creating a new image for each channel.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_channels_separate(
 HIGEAR hIGear,
 LPAT_CHANNEL_REF channels,
 AT_UINT channelsQty
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image in which to store separated channels.

channels LPAT_CHANNEL_REF Array of channel descriptors for channels to separate.

channelsQty AT_UINT Number of channels to separate.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

/* Load an image and save all of its channels as
 separate pages in a multi-page TIFF file */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGEAR hImage; /* Handle of source image */
AT_CHANNEL_REF *chan; /* Channels to combine */
AT_INT nChannels; /* Number of channels in image */
AT_INT i;
nErrcount = IG_load_file("test.jpg", &hImage);
nErrcount = IG_image_channel_count_get(hImage, &nChannels);
chan = (AT_CHANNEL_REF *) malloc(nChannels * sizeof(AT_CHANNEL_REF));
for (i = 0; i < nChannels; i++)
{
 chan[i].hImage = hImage;
 chan[i].uNumber = i;
}
nErrcount = IG_image_channels_separate(hImage, chan, nChannels);
for (i = 0; i < nChannels; i++)
{
 nErrcount = IG_fltr_save_file(chan[i].hImage, "test.tif",
 IG_SAVE_TIF_UNCOMP, i, !i);
 IG_image_delete(chan[i].hImage);
}
IG_image_delete(hImage);
free(chan);

Remarks:

Each new image contains one channel with creates a new image for each channels array of pages, where each page
contains one channel with color space set to grayscale. This function does not do any color space or pixel conversions.

ImageGear Professional v18 for Mac | 836

ImageGear Professional v18 for Mac | 837

1.3.1.2.16 Image DIB Functions

This section provides information about the Image DIB group of functions.

IG_image_DIB_export
IG_image_DIB_export_size_calc
IG_image_DIB_import
IG_image_DIB_info_get
IG_image_DIB_palette_pntr_get
IG_image_DIB_raster_pntr_get

ImageGear Professional v18 for Mac | 838

1.3.1.2.16.1 IG_image_DIB_export

This function exports the contents of hIGear into a buffer, provided by the application, using Windows DIB or
ImageGear AT_DIB format.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_DIB_export(
 const HIGEAR hIGear,
 AT_VOID* lpBuffer,
 AT_INT BufferSize,
 const AT_DIB_EXPORT_OPTIONS* lpOptions
);

Arguments:

Name Type Description

hIGear const HIGEAR HIGEAR handle of image from which to export DIB.

lpBuffer AT_VOID* Memory buffer where DIB will be exported.

BufferSize AT_INT Size of memory buffer - use IG_image_DIB_export_size_calc to
determine what to use for this.

lpOptions const
AT_DIB_EXPORT_OPTIONS*

Export options.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Indexed RGB - 1...8 bpp;
Grayscale - 8...16 bpp;
RGB - 24 bpp;
CMYK - 32 bpp.

Example:

AT_ERRCOUNT nErrcount; // Number of errors on stack
HIGEAR hIGear; // Handle of image
AT_INT nDibSize; // Exported DIB size
AT_DIB_EXPORT_OPTIONS Options; // Options for DIB export
LPAT_DIB lpDIBBuffer; // Buffer to export DIB

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 // Get exported DIB size, allocate memory buffer and export DIB
 memset(&Options, 0, sizeof(AT_DIB_EXPORT_OPTIONS));
 Options.Format = IG_DIB_EXPORT_FORMAT_IG_LEGACY;
 Options.UseAlpha = FALSE;
 IG_image_DIB_export_size_calc(hIGear, &nDibSize, &Options);
 lpDIBBuffer = (LPAT_DIB)malloc(nDibSize);
 nErrcount = IG_image_DIB_export(hIGear, lpDIBBuffer, nDibSize, &Options);
 // ...
 // Delete memory
 free(lpDIBBuffer);
 // Destroy the image

ImageGear Professional v18 for Mac | 839

 IG_image_delete(hIGear);
}

Remarks:

hIGear remains valid after calling this function.

ImageGear Professional v18 for Mac | 840

1.3.1.2.16.2 IG_image_DIB_export_size_calc

This function calculates the size of the exported DIB for an image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_DIB_export_size_calc(
 const HIGEAR hIGear,
 AT_INT* lpDIBSize,
 const AT_DIB_EXPORT_OPTIONS* lpOptions
);

Arguments:

Name Type Description

hIGear const HIGEAR HIGEAR handle of image for which to calculate exported DIB size.

lpDIBSize AT_INT* Pointer to where exported DIB size will be stored.

lpOptions const AT_DIB_EXPORT_OPTIONS* Export options. See IG_image_DIB_export for details.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

If lpOptions->Format is IG_DIB_EXPORT_FORMAT_WINDOWS:

Indexed RGB - 1, 4, 8 bpp
Grayscale - 8 bpp
RGB - 24 bpp

If lpOptions->Format is IG_DIB_EXPORT_FORMAT_IG_LEGACY:
Indexed RGB - 1, 4, 8 bpp
Grayscale - 8...16 bpp
RGB - 24 bpp
CMYK - 32 bpp

Example:

AT_ERRCOUNT nErrcount; // Number of errors on stack
HIGEAR hIGear; // Handle of image
AT_INT nDibSize; // Exported DIB size
AT_DIB_EXPORT_OPTIONS Options; // Options for DIB export

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 // Get exported DIB size, allocate memory buffer and export DIB
 memset(&Options, 0, sizeof(AT_DIB_EXPORT_OPTIONS));
 Options.Format = IG_DIB_EXPORT_FORMAT_IG_LEGACY;
 Options.UseAlpha = FALSE;
 IG_image_DIB_export_size_calc(hIGear, &nDibSize, &Options);
 // ...
}
// Destroy the image
IG_image_delete(hIGear);

Remarks:

ImageGear Professional v18 for Mac | 841

Use this function to calculate the minimal buffer size required to export a DIB with IG_image_DIB_export.

ImageGear Professional v18 for Mac | 842

1.3.1.2.16.3 IG_image_DIB_import

This function creates a new HIGEAR image from a Windows DIB stored in memory.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_DIB_import(
 const AT_DIB* lpDIB,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

lpDIB const AT_DIB* DIB to be imported.

lphIGear LPHIGEAR HIGEAR handle of image created from imported DIB.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Indexed RGB - 1, 4, 8 bpp
Grayscale - 8...16 bpp
RGB - 24 bpp
CMYK - 32 bpp

Example:

AT_ERRCOUNT nErrcount; // Number of errors on stack
HIGEAR hIGear; // Handle of image
HIGEAR hIGearImported; // Handle of the imported image
AT_INT nDibSize; // Exported DIB size
AT_DIB_EXPORT_OPTIONS Options; // Options for DIB export
LPAT_DIB lpDIBBuffer; // Buffer to export DIB

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);

if(nErrcount == 0)
{
 // Get exported DIB size, allocate memory buffer and export DIB
 memset(&Options, 0, sizeof(AT_DIB_EXPORT_OPTIONS));
 Options.Format = IG_DIB_EXPORT_FORMAT_WINDOWS;
 Options.UseAlpha = FALSE;
 IG_image_DIB_export_size_calc(hIGear, &nDibSize, &Options);
 lpDIBBuffer = (LPAT_DIB)malloc(nDibSize);
 nErrcount = IG_image_DIB_export(hIGear, lpDIBBuffer, nDibSize, &Options);
 if(nErrcount == 0)
 {
 // Import the DIB into the new image
 nErrcount = IG_image_DIB_import(lpDIBBuffer, &hIGearImported);
 //...
 // Destroy the image
 IG_image_delete(hIGearImported);
 }
 // Delete memory
 free(lpDIBBuffer);

ImageGear Professional v18 for Mac | 843

 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

This function copies pixels to the new HIGEAR. Application continues to own lpDIB after calling this function.

ImageGear Professional v18 for Mac | 844

1.3.1.2.16.4 IG_image_DIB_info_get

This function returns the handle of a new DIB info object containing information about the given image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_DIB_info_get(
 HIGEAR hIGear,
 HIGDIBINFO* lphDIB
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image from which to create DIB info object.

lphDIB HIGDIBINFO* Returned DIB info object handle.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; // Number of errors on stack
HIGEAR hIGear; // Handle of image
HIGDIBINFO hDIBInfo; // DIB info handle

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 nErrcount = IG_image_DIB_info_get(hIGear, &hDIBInfo);
 // ...
 // Delete DIBInfo object
 IG_DIB_info_delete(hDIBInfo);
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

The application must delete the HIGDIBINFO object after it is done using it by calling IG_DIB_info_delete.

ImageGear Professional v18 for Mac | 845

1.3.1.2.16.5 IG_image_DIB_palette_pntr_get

This function returns the address of the image's DIB palette.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_DIB_palette_pntr_get(
 HIGEAR hIGear,
 LPAT_RGBQUAD FAR* lpRGBQ,
 LPUINT lpEntries
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRGBQ LPAT_RGBQUAD
FAR*

Pointer to a variable of type LPAT_RGBQUAD, in which this function will store the address
of the start of the image's DIB palette.

lpEntries LPUINT Pointer to a variable in which will be returned the number of entries in the palette.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; // Number of errors on stack
HIGEAR hIGear; // Handle of image
LPAT_RGBQUAD palette = NULL; // Palette pointer
UINT entries = 0; // Number of entries in the palette

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 nErrcount = IG_image_DIB_palette_pntr_get(hIGear, &palette, &entries);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

HIGEAR DIB palette is stored as an array of AT_RGBQUAD structs. This function returns the address of the first
AT_RGBQUAD struct in this array.

If the image doesn't have a palette, the function returns NULL in lpRGBQ.

When referencing a DIB palette, remember that each DIB palette entry contains 4 bytes, not 3, and that the order of the
bytes is: Blue, Green, Red, Unused (not Red, Green, Blue).

ImageGear Professional v18 for Mac | 846

1.3.1.2.16.6 IG_image_DIB_raster_pntr_get

This function gets a pointer to the beginning of pixel data for a raster in the given image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_DIB_raster_pntr_get(
 HIGEAR hIGear,
 AT_PIXPOS row,
 AT_VOID** lplpRaster
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

row AT_PIXPOS Row in image for which to retrieve raster pointer.

lplpRaster AT_VOID** Returned pointer to the 1st pixel in the raster.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; // Number of errors on stack
HIGEAR hIGear; // Handle of image
LPAT_VOID lpRst; // Pointer to a raster

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 nErrcount = IG_image_DIB_raster_pntr_get(hIGear, 0, &lpRst);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

Rasters are stored from top to bottom, are DWORD-padded on 32-bit platforms (QWORD-padded on 64-bit
platforms), use 8, 16, or 32 bits to store channel values, and have alpha/extra channels included in-line with the color
channels. For example, an RGB image with an alpha channel would be stored as: RGBA RGBA RGBA ...

If the image is 1bpp b/w, it is stored in a compressed run ends format. See IG_runs_row_get/IG_runs_row_set for a
description of this format. It is recommended to use these functions to access run ends data, but you can use
IG_image_DIB_raster_pntr_get() with the following restrictions:

You can only read data. It is not safe to write data.
You can only access the raster to which you've retrieved a pointer.

Note:

Although ImageGear currently stores uncompressed (non-run ends) rasters continously, we do not recommend
that you rely on this, as the internal storage format may change in the future. Use
IG_image_DIB_raster_pntr_get to access each raster separately.

ImageGear Professional v18 for Mac | 847

ImageGear Professional v18 for Mac | 848

1.3.1.2.17 Image Colorspace Functions

This section provides information about the Image Colorspace group of functions.

IG_image_colorspace_convert
IG_image_colorspace_get

ImageGear Professional v18 for Mac | 849

1.3.1.2.17.1 IG_image_colorspace_convert

This function converts an image to the specified color space.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_colorspace_convert(
 HIGEAR hIGear,
 enumIGColorSpaceIDs newColorSpace,
 LPCAT_COLORSPACE_CONVERSION_OPTIONS options
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

newColorSpace enumIGColorSpaceIDs Color space to which to convert.

options LPCAT_COLORSPACE_CONVERSION_OPTIONS Conversion options (or NULL).

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGEAR hImage; /* HIGEAR handle of image */
IG_image_colorspace_convert(hImage, IG_COLOR_SPACE_ID_RGB, NULL);

Remarks:

Specify the new color space using a value from enumIGColorSpaceIDs. Argument options control the conversion flow.
You may pass NULL for options if you don't want to specify any options.

ImageGear Professional v18 for Mac | 850

1.3.1.2.17.2 IG_image_colorspace_get

This function gets an image's color space ID.

Declaration:

AT_ERRCOUNT ACCUAPI IG_image_colorspace_get(
 HIGEAR hIGear,
 enumIGColorSpaceIDs* lpColorspace
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpColorspace enumIGColorSpaceIDs* Returned color space of the image.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGEAR hImage; /* Handle of image */
enumIGColorSpaceIDs cs; /* Color space ID */
AT_BOOL bIndexed; /* Is the image indexed? */
nErrcount = IG_image_colorspace_get(hImage, &cs);
if ((cs & IG_COLOR_SPACE_ID_ColorMask) == IG_COLOR_SPACE_ID_I)
 bIndexed = TRUE;
else
 bIndexed = FALSE;

Remarks:

An ImageGear color space ID is actually a combination of values. It contains information about 1) color channels,
2) an alpha channel, and 3) extra channels. Examine the definition of enumIGColorSpaceIDs carefully (in
accucnst.h) and use bitmasks such as IG_COLOR_SPACE_ID_ColorMask to isolate the information you want.

ImageGear Professional v18 for Mac | 851

1.3.1.2.18 Image Processing Functions

This section provides information about the Image Processing group of functions.

IG_IP_add_tilt
IG_IP_alpha_create
IG_IP_area_info_get
IG_IP_arithmetic
IG_IP_arithmetic_rect
IG_IP_blend_percent
IG_IP_blend_with_LUT
IG_IP_color_combine_ex
IG_IP_color_convert
IG_IP_color_count_get
IG_IP_color_promote
IG_IP_color_reduce_bayer
IG_IP_color_reduce_diffuse
IG_IP_color_reduce_halftone
IG_IP_color_reduce_median_cut
IG_IP_color_reduce_octree
IG_IP_color_reduce_popularity
IG_IP_color_reduce_to_bitonal
IG_IP_color_separate
IG_IP_contrast_adjust
IG_IP_contrast_adjust_ex
IG_IP_contrast_equalize
IG_IP_contrast_gamma
IG_IP_contrast_invert
IG_IP_contrast_stretch
IG_IP_convert_to_gray
IG_IP_convolve_matrix
IG_IP_crop
IG_IP_decrypt
IG_IP_deskew_angle_find
IG_IP_deskew_auto
IG_IP_despeckle
IG_IP_draw_frame
IG_IP_drop_shadow
IG_IP_edge_detection
IG_IP_edge_map
IG_IP_encrypt
IG_IP_enhance_local
IG_IP_find_tilt
IG_IP_flip
IG_IP_gaussian_blur
IG_IP_geom_despeckle
IG_IP_histo_clear
IG_IP_histo_tabulate
IG_IP_maximum
IG_IP_median
IG_IP_merge
IG_IP_minimum
IG_IP_NR_ROI_control_get
IG_IP_NR_ROI_control_set
IG_IP_NR_ROI_mask_associate
IG_IP_NR_ROI_mask_delete

ImageGear Professional v18 for Mac | 852

IG_IP_NR_ROI_mask_unassociate
IG_IP_NR_ROI_to_HIGEAR_mask
IG_IP_pseudocolor_limits
IG_IP_pseudocolor_small_grads
IG_IP_remove_tilt
IG_IP_resize
IG_IP_resize_bkgrnd
IG_IP_resize_bkgrnd_ex
IG_IP_resize_canvas
IG_IP_resize_ex
IG_IP_RGB_to_hue
IG_IP_rotate_any_angle
IG_IP_rotate_any_angle_bkgrnd
IG_IP_rotate_any_angle_ex
IG_IP_rotate_compute_size
IG_IP_rotate_multiple_90
IG_IP_rotate_multiple_90_opt
IG_IP_sharpen
IG_IP_smooth
IG_IP_swap_red_blue
IG_IP_thumbnail_create
IG_IP_thumbnail_create_ex
IG_IP_transform_with_LUT
IG_IP_transform_with_LUT_ex
IG_IP_unsharp_mask

ImageGear Professional v18 for Mac | 853

1.3.1.2.18.1 IG_IP_add_tilt

This function adds a specified plane to the input image to correct for a tilt in the image luminance.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_add_tilt(
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 AT_DOUBLE dSlopeX,
 AT_DOUBLE dSlopeY
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to be processed.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT structure specifying the rectangular portion of the image on which
to operate. If NULL, this operation will be performed on the entire image. Before ImageGear
performs this operation it will check to see if an internal flag has been set to TRUE to make a
mask active for this HIGEAR image. If a mask is active, and a valid pointer to a mask can be
found, ImageGear will override the settings passed to this structure in favor of the non-
rectangular ROI defined by the mask.

dSlopeX AT_DOUBLE Specify the slope of the plane in X direction, and must be given in units per pixel.

dSlopeY AT_DOUBLE Specify the slope of the plane in X direction, and must be given in units per pixel.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Grayscale - 8, 16, 32 bpp.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_RECT lpRect; /* rectangle to process */
AT_DOUBLE dSlopeX, dSlopeY;
...
IG_IP_add_tilt(hIGear, lpRect, dSlopeX, dSlopeY);
...

Remarks:

The plane has X and Y zero crossing at the center of the input image with dSlopeX and dSlopeY as specified in the
arguments.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask() functions
for more details.

ImageGear Professional v18 for Mac | 854

1.3.1.2.18.2 IG_IP_alpha_create

This function has been deprecated and will be removed from the public API in a future release. Please use
IG_image_create instead.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_alpha_create(
 HIGEAR hIGear,
 HIGEAR hIBackgrnd,
 AT_MODE nCreateMode,
 LPHIGEAR lphAlpha
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

hIBackgrnd HIGEAR HIGEAR handle to a background image.

nCreateMode AT_MODE An integer value of type AT_MODE that tells ImageGear what bit depth the alpha channel
should have. The possible settings for this variable, which are defined in accucnst.h are:
IG_ALPHA_CREATE_1 and IG_ALPHA_CREATE_8.

lphAlpha LPHIGEAR Far pointer to the newly created alpha channel.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Remarks:

This function creates an alpha channel.

The difference from function IG_image_create_alpha() is that newly created alpha channel is not associated with any
HIGEAR - it's only created and returned via last parameter lphAlpha. Other parameters have the same meaning as those
of IG_image_create_alpha().

See also the section ImageGear Alpha Channel Support.

ImageGear Professional v18 for Mac | 855

1.3.1.2.18.3 IG_IP_area_info_get

This function provides information about a rectangular area of the image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_area_info_get(
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 HIGPIXEL lpPixel,
 AT_MODE nChannel,
 AT_MODE nInfo
);

Arguments:

Name Type Description

hIGear HIGEAR Handle of the image for which to obtain the information.

lpRect const
LPAT_RECT

Rectangle to get the information from (pass NULL for getting information on the whole
image).

lpPixel HIGPIXEL Receives the calculated value. Depending on the "DIB.PIX_ACCESS_USE_LEGACY_MODE"
global control parameter - either a HIGPIXEL object handle, or a pointer to an array of
AT_PIXEL. See Remarks.

nChannel AT_MODE Specifies a channel or a channel range to get the info about. See enumIGColorChannels
for possible values.

nInfo AT_MODE Specifies the kind of information to be obtained. See enumDIBAreaInfo for possible
values.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; // HIGEAR handle of image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func
AT_INT channelCount; // Count of channels in the image
AT_INT bitsPerChannel; // Channel depth
HIGPIXEL hPixel;

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 // Set IG_PIX_ACCESS_MODE_NEW access mode
 AT_LMODE AccessMode = IG_PIX_ACCESS_MODE_NEW;
 IG_gctrl_item_set("DIB.PIX_ACCESS_USE_LEGACY_MODE", AM_TID_AT_LMODE, &AccessMode,
sizeof(AT_LMODE), NULL);

 IG_image_channel_count_get(hIGear, &channelCount);
 IG_image_channel_depth_get(hIGear, 0, &bitsPerChannel);

 hPixel = IG_pixel_create(channelCount, bitsPerChannel);
 if(hPixel != NULL)

ImageGear Professional v18 for Mac | 856

 {
 // Get average pixel value
 nErrcount = IG_IP_area_info_get(hIGear, NULL, hPixel, IG_COLOR_COMP_ALL,
IG_DIB_AREA_INFO_AVE);
 // ...
 // Delete pixel
 IG_pixel_delete(hPixel);
 }
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

Behavior of this function depends on the "DIB.PIX_ACCESS_USE_LEGACY_MODE" global control parameter.

If "DIB.PIX_ACCESS_USE_LEGACY_MODE" is set to IG_PIX_ACCESS_MODE_NEW, the function expects that lpPixel is
set to an HIGPIXEL object handle. The calculated value will be returned in this object. Use IG_pixel_create to create
an HIGPIXEL object, specifying the correct number of channels and number of bits per channel. Use IG_pixel_delete
to delete it when it is no longer in use.

If the global parameter is set to IG_PIX_ACCESS_MODE_LEGACY, the function expects that lpPixel is a pointer to an
array of AT_PIXEL. Length of the array must correspond to the number of image channels. The area info will be
scaled to the AT_PIXEL range (BYTE). For example, if the image has 16 bits per channel, and the area info
corresponds to 32767, the return value will be (32767 / 256) = 128.

See Pixel Access Modes section for more information on pixel access modes.

Default value of "DIB.PIX_ACCESS_USE_LEGACY_MODE" global control parameter is
IG_PIX_ACCESS_MODE_LEGACY.

ImageGear Professional v18 for Mac | 857

1.3.1.2.18.4 IG_IP_arithmetic

This function performs an arithmetic or logical operation on two images.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_arithmetic(
 HIGEAR hIGear1,
 HIGEAR hIGear2,
 AT_MODE nOperation
);

Arguments:

Name Type Description

hIGear1 HIGEAR HIGEAR handle of image 1, also the destination of the operation.

hIGear2 HIGEAR HIGEAR handle of image 2.

nOperation AT_MODE Specifies the kind of arithmetic operation to perform on the images. See enumIGMergeModes
for possible values.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear1; // HIGEAR handle of the first image
HIGEAR hIGear2; // HIGEAR handle of the second image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear1);
if(nErrcount == 0)
{
 nErrcount = IG_load_file("picture.tif", &hIGear2);
 if(nErrcount == 0)
 {
 nErrcount = IG_IP_arithmetic(hIGear1, hIGear2, IG_ARITH_ADD);
 // ...
 // Destroy the second image
 IG_image_delete(hIGear2);
 }
 // Destroy the first image
 IG_image_delete(hIGear1);
}

Remarks:

IG_IP_arithmetic_rect is an extended version of IG_IP_arithmetic that allows specifying a rectangular area on the first
image to be used for processing.

IG_IP_merge is an extended version of IG_IP_arithmetic that allows specifying a rectangular area on the first image to
be used for processing, as well as the coordinates in the first image where to place the upper-left corner of the specified
rectangle of the second image.

ImageGear Professional v18 for Mac | 858

1.3.1.2.18.5 IG_IP_arithmetic_rect

This function performs an arithmetic or logical operation on two images, allowing you to specify a rectangular region
of the first image on which to perform the operation.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_arithmetic_rect(
 HIGEAR hIGear1,
 HIGEAR hIGear2,
 LPAT_RECT lpImageRect2,
 AT_MODE nOperation
);

Arguments:

Name Type Description

hIGear1 HIGEAR HIGEAR handle of image 1, which is also the destination image.

hIGear2 HIGEAR HIGEAR handle of image 2.

lpImageRect2 LPAT_RECT Specifies a rectangle in hIGear2, which will be used for processing. Set to NULL for
the whole image.

nOperation AT_MODE Specifies the kind of arithmetic operation to perform on the images. See
enumIGMergeModes for possible values.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear1; // HIGEAR handle of the first image
HIGEAR hIGear2; // HIGEAR handle of the second image
AT_DIMENSION nWidth, nHeight; // Dimensions of the first image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func
AT_RECT rcRect; // Region to merge

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear1);
if(nErrcount == 0)
{
 nErrcount = IG_load_file("picture.tif", &hIGear2);
 if(nErrcount == 0)
 {
 // Get dimensions of the first image and initialize merging region
 IG_image_dimensions_get(hIGear1, &nWidth, &nHeight, NULL);
 rcRect.left = 0;
 rcRect.top = 0;
 rcRect.right = nWidth / 2;
 rcRect.bottom = nHeight / 2;

 nErrcount = IG_IP_arithmetic_rect(hIGear1, hIGear2, &rcRect, IG_ARITH_ADD);
 // ...
 // Destroy the second image
 IG_image_delete(hIGear2);
 }

ImageGear Professional v18 for Mac | 859

 // Destroy the first image
 IG_image_delete(hIGear1);
}

Remarks:

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can merge a rectangular sub-region of hIGear2 into hIGear1. However, before ImageGear
performs the operation specified by this function, it will check to see if an internal NRA flag has been set to TRUE,
indicating that a mask HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a
mask image has been assigned, ImageGear will override the settings passed to the AT_RECT structure and use the
non-rectangular ROI defined by the mask HIGEAR. To create a non-rectangular region of interest, call
IG_IP_NR_ROI_to_HIGEAR_mask.

IG_IP_merge is an extended version of IG_IP_arithmetic_rect that allows specifying a rectangular area on the first
image to be used for processing, as well as the coordinates in the first image where to place the upper-left corner of
the specified rectangle of the second image.

ImageGear Professional v18 for Mac | 860

1.3.1.2.18.6 IG_IP_blend_percent

This function blends the second image into the first.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_blend_percent (
 HIGEAR hIGearDest,
 const HIGEAR hIGear2,
 const DOUBLE dblPctOfImage2,
 const AT_MODE nColorChannel,
 const LPAT_RECT lpRect
);

Arguments:

Name Type Description

hIGearDest HIGEAR HIGEAR handle of the image into which to be blended.

hIGear2 const
HIGEAR

HIGEAR handle of image to blend in, must be same size and bit depth.

dblPctOfImage2 const
DOUBLE

Percent of image 2 to be in the blend (the percent of image 1 will be 100.0 minus
this). 0 means all of image 1; 50 means half and half, and 100 means all of image
2. The range of values is 0.0 to 100.0.

nColorChannel const
AT_MODE

A constant such as IG_COLOR_COMP_R, _G, _B, or _RGB, specifying which color(s)
to blend.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT struct specifying the rectangular portion of the image to
operate on. lpRect = NULL means the entire image. Before ImageGear performs
this operation, it will check to see if an internal flag has been set to TRUE to make
a mask active for this HIGEAR image. If a mask is active, and a valid pointer to a
mask can be found, ImageGear will override the settings passed to this structure in
favor of the non- rectangular ROI defined by the mask.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear1; /* Handle of image1 that will change */
HIGEAR hIGear2; /* Handle of image2 */
AT_ERRCOUNT nErrcount; /* Returned count of errors */
AT_DIMENSION nWidth, nHeight; /* Width & Height of Image1 */
UINT nBpp; /* Bits per pixel */
AT_RECT rcRectOf1; /* selected rectangle from image1 */
/* Get dimensions of hIGear1, so can use width and height values below */
nErrcount = IG_image_dimensions_get(hIGear1, &nWidth, &nHeight, &nBpp);
/*Use the bottom ? of Image1 */
rcRectOf1.left = 0;
rcRectOf1.top = nHeight/2;
rcRectOf1.right = nWidth - 1;
rcRectOf1.bottom = nHeight - 1;
/* If 24-bit image, blend all color channels (else blend pixels) */
nErrcount = IG_IP_blend_percent (hIGear1, hIGear2, 20.0,IG_COLOR_COMP_RGB, &rcRectOf1);

ImageGear Professional v18 for Mac | 861

Remarks:

Use lprect to set a rectangular portion of the first image to be processed. dblPctOfImage2 specifies the percent of
each image to be used in the result. The image in hIGearDest is destroyed and is replaced with the resulting blend.
The percentage ranges from 0 to 100. A zero results in 0% hIGearDest and 100% hIGear2. A value of 50% results in
an image which is created ? of each image. A value of 100% creates an image that is 100% hIGear2 and 0%
hIGearDest. The images must be the same width, height, and bit depth. nColorChannel lets you specify that only one
color of a 24-bit image is to be blended in.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask() for
more details.

ImageGear Professional v18 for Mac | 862

1.3.1.2.18.7 IG_IP_blend_with_LUT

This function blends two images using Look-Up Tables (LUTs) to determine the strength of each pixel's contribution.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_blend_with_LUT (
 HIGEAR hIGearDest,
 HIGEAR hIGear2,
 const LPAT_LUT lpLUT_red,
 const LPAT_LUT lpLUT_green,
 LPAT_LUT lpLUT_blue,
 const LPAT_RECT lpRect
);

Arguments:

Name Type Description

hIGearDest HIGEAR HIGEAR handle of the image into which to be blended.

hIGear2 HIGEAR HIGEAR handle of image to blend; must be same size and bit depth.

lpLUT_red const
LPAT_LUT

Far pointer to Red channel of LUT for RGB images; also used as a single pointer to LUT
for grayscale images.

lpLUT_green const
LPAT_LUT

Far pointer to Green channel of LUT for RGB image; not used for grayscale images.

lpLUT_blue LPAT_LUT Far pointer to Blue channel of LUT of RGB image; not used for grayscale images.

lpRect const
LPAT_RECT

Rectangular portion of the image to process. Set to NULL for the whole image. Before
ImageGear performs this operation, it will check to see if an internal flag has been set
to TRUE to make a mask active for this HIGEAR image. If a mask is active, and a valid
pointer to a mask can be found, ImageGear will override the settings passed to this
structure in favor of the non-rectangular ROI defined by the mask.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGearDest /* HIGEAR handle of image 1, destination */
 hIGear2; /* HIGEAR handle of image 2 */
AT_LUT LUT_blend[256]; /* The LUT for blend values */
INT pix; /* Loop index, = pixel value */
AT_ERRCOUNT nErrcount; /* Returned count of errors */
for (pix = 0; pix < 256; pix++)
 { LUTblend[pix] = 25; } /* set Look-Up Table */
for (pix = 10; pix < 100; pix++)
 { LUTblend[pix] = 75; }
nErrcount = IG_IP_blend_with_LUT (hIGearDest, hIGear2, (LPAT_LUT)&LUT_blend,
 (LPAT_LUT)&LUT_blend, (LPAT_LUT)&LUT_blend, NULL);

Remarks:

The pixel values from hIGearDest are used as the indexes into the LUTs. Both hIGear2 and hIGearDest must be the
same bit depth and dimensions. The image in hIGearDest is destroyed and is replaced with the resulting blend.

ImageGear Professional v18 for Mac | 863

For RGB images, each channel (R, G, or B) of the hIGearDest image is processed through its own LUT.

For indexed and grayscale images, the lpLUT_red is used and the other two are ignored (you can pass in NULL for
these).

Images that have other colorspaces, such as CMYK or LAB, are converted into RGB for processing internally, and then
converted back to their original colorspace. The function works on these images as if they had RGB colorspace.

The function does not process Alpha and Extra channels, if they are present in the image.

Each LUT that is to be used must point to a LUT that has at least enough entries to process the images being passed
in. For images having up to 8 bits per channel, LUTs must contain 256 bytes. For images having up to 16 bits per
channel, LUT must contain 65536 bytes.

Each entry into the LUT determines the percentage of the blend on a pixel-by-pixel basis. Pixel values of the
hIGearDest image are used as indexes into the array. The LUTs should be initialized with values from 0 to 100,
where:

0 = 0 % hIGearDest, 100% hIGear2
50 = 50% of hIGearDest and 50% of hIGear2
100 = 100% hIGearDest and 0 % hIGear2

For grayscale images, the value of each pixel in hIGearDest is used as the index into the LUT. For RGB images, it is
the intensity, calculated as (R+G+B)/3 that is used. For other colorspaces, pixels are converted to RGB and then
intensity is calculated.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. (See above.) However, before ImageGear
performs the operation specified by this function, it will check to see if an internal flag has been set to TRUE,
indicating that a mask HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a
mask image has been assigned, ImageGear will override the settings passed to the AT_RECT structure and use the
non-rectangular ROI defined by the mask HIGEAR. To create a non-rectangular region of interest, call
IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask()
functions for more details.

ImageGear Professional v18 for Mac | 864

1.3.1.2.18.8 IG_IP_color_combine_ex

This function is an upgrade to IG_IP_color_combine().

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_color_combine_ex (
 LPHIGEAR lphIGear_result,
 HIGEAR hIGear1,
 HIGEAR hIGear2,
 HIGEAR hIGear3,
 HIGEAR hIGear4,
 AT_MODE color_space,
 AT_MODE dst_color_space
);

Arguments:

Name Type Description

lphIGear_result LPHIGEAR Far pointer to an object of type HIGEAR, to receive the HIGEAR handle of the created
24- bit image.

hIGear1 HIGEAR HIGEAR handle of input image to be treated as channel 1.

hIGear2 HIGEAR HIGEAR handle of input image to be treated as channel 2.

hIGear3 HIGEAR HIGEAR handle of input image to be treated as channel 3.

hIGear4 HIGEAR HIGEAR handle of input image to be treated as channel 4.

nColorSpace AT_MODE A constant such as IG_COLOR_SPACE_RGB describing how the channels are to be
merged.

dst_color_space AT_MODE tells what color space output HIGEAR should have. There are 2 possible values now:
RGB and CMYK.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Remarks:

While support for IG_IP_color_combine() is being maintained, it is recommended that you use this newer function. The
additional benefit of this function is that it allows you to choose a color space for the destination image. For example,
you can choose to store your destination image using the CMYK color scheme. Currently, the dst_color_space parameter
can take one of the following constants as its setting: IG_COLOR_SPACE_RGBand IG_COLOR_SPACE_CMYK. In order to
set it to CMYK, you must be sure that you first call IG_color_space_level_set() function with settings of
IG_COLOR_SPACE_CMYK and IG_FULL_SUPPORT.

ImageGear Professional v18 for Mac | 865

1.3.1.2.18.9 IG_IP_color_convert

This function has been deprecated and will be removed from the public API in a future release. Please use
IG_image_colorspace_convert instead.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_color_convert(
 [IN] HIGEAR hIGear,
 [IN] AT_MODE nColorSpace
);

Arguments:

Name Type Description

hIGear HIGEAR The ImageGear handle of an image.

nColorSpace AT_MODE The identifier of destination color space where to convert.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
. . .
IG_IP_color_convert(hIGear, IG_COLOR_SPACE_CMYK);
. . .

Remarks:

This function converts an image from one internal format to another depending on the parameter, nColorSpace.

The nColorSpace parameter must be a color space listed in enumIGColorSpaces, which is defined in accucnst.h.

Commonly used values for nColorSpace are:

IG_COLOR_SPACE_CMYK
IG_COLOR_SPACE_RGB

ImageGear Professional v18 for Mac | 866

1.3.1.2.18.10 IG_IP_color_count_get

This function counts the number of unique colors in the specified rectangular area of the image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_color_count_get(
 HIGEAR hIGear,
 LPAT_RECT lpRect,
 LPAT_INT lpCount
);

Arguments:

Name Type Description

hIGear HIGEAR Image whose count colors are to be counted.

lpRect LPAT_RECT Rectangle in which to count colors (NULL for the whole image).

lpCount LPAT_INT Pointer to AT_INT to receive number of colors.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

ImageGear Professional v18 for Mac | 867

1.3.1.2.18.11 IG_IP_color_promote

This function promotes an image to the common pixel formats of 4-bit Indexed, 8-bit Indexed, 24-bit RGB, or 32-bit
CMYK.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_color_promote(
 HIGEAR hIGear,
 AT_MODE nPromoteTo
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

nPromoteTo AT_MODE Specifies the depth to which to promote. See enumIGPromotionModes for possible values.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

For Indexed images, bit depth should be no less than the depth specified by the nPromoteTo parameter.

Example:

HIGEAR hIGear; // HIGEAR handle of the image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func

// Load image file "picture.tif", 1 bpp, from working directory
nErrcount = IG_load_file("picture.tif", &hIGear);
if(nErrcount == 0)
{
 // Promote to RGB 24
 nErrcount = IG_IP_color_promote(hIGear, IG_PROMOTE_TO_24);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

This function is only kept for backward compatibility reasons. Please use IG_image_colorspace_convert and
IG_image_channel_depths_change instead.

ImageGear Professional v18 for Mac | 868

1.3.1.2.18.12 IG_IP_color_reduce_bayer

This function reduces the image to a fewer number of Bits Per Pixel, using a Bayer dithering algorithm.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_color_reduce_bayer (
 HIGEAR hIGear,
 UINT nToBits,
 LPAT_RGBQUAD lpPalette
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image of which to reduce bit depth.

nToBits UINT Number of bits per pixel after reduction (4 or 1).

lpPalette LPAT_RGBQUAD This argument is currently not used.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Indexed RGB – 4, 8 bpp;
Grayscale – 4, 8 bpp;
RGB – 24 bpp.

Example:

HIGEAR hIGear; /* HIGEAR handle of 4, 8, or 24 bit image */
/* Reduce image to 1-bit black-and-white: */
IG_IP_color_reduce_bayer (hIGear, 1, NULL);

Remarks:

The target bit depth is specified by argument nToBits. In general, a color image will be reduced to a fewer number of
colors, and a grayscale image will be reduced to a fewer number of shades of gray. Note that setting nToBits = 1 will
reduce the image to monochrome or black-and-white.

The input number of Bits Per Pixel must be greater than nToBits, or an error will result.

See also the section in entitled Color Reduction.

ImageGear Professional v18 for Mac | 869

1.3.1.2.18.13 IG_IP_color_reduce_diffuse

This function reduces the image to a fewer number of Bits Per Pixel.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_color_reduce_diffuse (
 HIGEAR hIGear,
 UINT nToBits,
 INT level,
 LPAT_RGBQUAD lpPalette
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image of which to reduce bit depth.

nToBits UINT Number of bits per pixel after reduction, 1 or 4.

Level INT Threshold value for dithering, 0 to 255. Has effect only if nToBits = 1.

lpPalette LPAT_RGBQUAD This argument is currently not used.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Indexed RGB – 4, 8 bpp;
Grayscale – 4, 8 bpp;
RGB – 24 bpp.

Example:

HIGEAR hIGear; /* HIGEAR handle of 4, 8, or 24 bit image */
/* Reduce image to 1-bit black-and-white: */
IG_IP_color_reduce_diffuse (hIGear, 1, 128, NULL);

Remarks:

The target bit depth is specified by argument nToBits. In general, a color image will be reduced to a fewer number of
colors, and a grayscale image will be reduced to a fewer number of shades of gray. Note that setting nToBits = 1 will
reduce the image to monochrome or black-and-white.

When reducing the image to monochrome (black-and-white), the level parameter sets a threshold value for the target
image:

level = 128 means that black and white in the target image will be in equal proportion.
level greater than 128 would mean more bright than dark.
level less than 128 would mean more dark than bright.

The input number of Bits Per Pixel must be greater than nToBits, or an error will result.

See also section in entitled Color Reduction.

ImageGear Professional v18 for Mac | 870

1.3.1.2.18.14 IG_IP_color_reduce_halftone

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_color_reduce_halftone (
 HIGEAR hIGear,
 AT_MODE nOption
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

nOption AT_MODE Halftoning pattern - 0 for now (squares).

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Indexed RGB – 4, 8 bpp;
Grayscale – 4, 8 bpp;
RGB – 24 bpp.

Example:

HIGEAR hIGear; /* HIGEAR handle of 4, 8, or 24 bit image */
/* Reduce to a 1-bit halftone image: */
IG_IP_color_reduce_halftone (hIGear, 0);

Remarks:

This function reduces a color or grayscale image to a 1 bit per pixel image suitable for use in half-toning. The resulting
image will consist of small squares of varying sizes that will give the appearance of varying shades of gray.

See also the section in entitled Color Reduction.

ImageGear Professional v18 for Mac | 871

1.3.1.2.18.15 IG_IP_color_reduce_median_cut

This function reduces an image by dividing it into nMaxColors equal-sized squares.

Declaration:

AT_ERRCOUNT ACCUAPIIG_IP_color_reduce_median_cut (
 HIGEAR hIGear,
 BOOL bFastRemap,
 UINT nMaxColors
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

bFastRemap BOOL Set = TRUE for reduction algorithm optimized for speed. Set = FALSE for algorithm optimized
for quality.

nMaxColors UINT The maximum number of colors (that is, maximum number of unique pixel values) you want
in the resulting image. Must be 16 to 256.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

RGB – 24 bpp.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
/* Reduce to 64 colors using median cut algorithm */
IG_IP_color_reduce_median_cut (hIGear, FALSE, 64);

Remarks:

The colors of the pixels in each square will be averaged to produce a resulting color. The resulting image will contain only
these colors.

See also section in entitled Color Reduction.

ImageGear Professional v18 for Mac | 872

1.3.1.2.18.16 IG_IP_color_reduce_octree

This function reduces a 24-bit or 8-bit image to an 8-bit or 4-bit image, having the number of colors specified by
nMaxColors.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_color_reduce_octree (
 HIGEAR hIGear,
 BOOL bFastRemap,
 UINT nMaxColors,
 const UINT nPaletteSize,
 const LPAT_RGB lpPalette
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

bFastRemap BOOL Set = TRUE for reduction algorithm optimized for speed. Set = FALSE for algorithm
optimized for quality.

nMaxColors UINT The maximum number of colors (that is, maximum number of unique pixel values) you
want in the resulting image. If you set this to > 16, the resulting image will be an 8-bit.
Valid values are 8 - 256. If you pass in a value out of this range, ImageGear will set the
value to either 8 or 256. See description below for details.

nPaletteSize const
UINT

Number of entries in palette lpPalette that will be used by ImageGear during reduction.
This should be >= nMaxColors. Setting this to 0, and setting lpPalette to NULL will have
ImageGear make an optimized palette for you.

lpPalette const
LPAT_RGB

LONG pointer to an array of palette entries, where the number of entries = nPaletteSize.
Set to NULL if you want ImageGear to make an optimized palette for you.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Indexed RGB – 8 bpp;
Grayscale – 8 bpp;
RGB – 24 bpp.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_RGB rgbPalette[64]; /* Pointer to image's palette */
AT_ERRCOUNT nErrcount; /* Tally of ImageGear errors on stack*/
/* Reduce image to 64 colors using given palette */
nErrcount = IG_IP_color_reduce_octree (hIGear, FALSE, 64, 64, rgbPalette);
/* Reduce image to 64 colors, having ImageGear build optimal palette */
nErrcount = IG_IP_color_reduce_octree (hIGear, FALSE, 64, 0, NULL);

Remarks:

If you set nPaletteSize > 0 and supply an address to lpPalette, ImageGear will use your palette. If you set either
nPaletteSize = 0 or lpPalette to NULL, ImageGear will build an optimized palette for you. If you set nMaxColors > 16,
then an 8-bit image will always result. Setting nMaxColors <=16 will result in a 4-bit image. You may not specify less
than 8 colors.

nPaletteSize should be set to >= nMaxColors. If nPaletteSize is set to 0, ImageGear will build an optimal palette and

ImageGear Professional v18 for Mac | 873

lpPalette will be unused. The table below demonstrates some sample cases of 8 and 24-bit images being reduced,
using the setting of nMaxColors (middle column). The right-most column shows the number of Bits Per Pixel that the
resulting image will have.

Octree Bit Depths In and Out

Bpp of orig. HIGEAR # of resulting colors Bpp reduced image

24 17-256 8

24 8-16 4

24 1-7 *

8 17-256 8

8 8-16 4

8 1-7 *

*Not possible, nMaxColors will be changed to 8

See also the section in entitled Color Reduction.

ImageGear Professional v18 for Mac | 874

1.3.1.2.18.17 IG_IP_color_reduce_popularity

This function reduces a 24-bit image to an 8-bit image while retaining its most popular, or prevalent, colors.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_color_reduce_popularity (
 HIGEAR hIGear,
 BOOL bFastRemap,
 UINT nMaxColors
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

bFastRemap BOOL Set = TRUE for reduction algorithm optimized for speed. Set = FALSE for algorithm optimized
for quality.

nMaxColors UINT Number of colors to which to reduce.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

RGB – 24 bpp.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
/* Reduce to 64 colors using octree algorithm */
IG_IP_color_reduce_popularity (hIGear, FALSE, 64);

Remarks:

Use nMaxColors to specify the maximum number of colors wanted in the result.

See also the section in entitled Color Reduction.

ImageGear Professional v18 for Mac | 875

1.3.1.2.18.18 IG_IP_color_reduce_to_bitonal

This function reduces the hIGear image from 24, 8, or 4 bpp to 1 bpp.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_color_reduce_to_bitonal(
 HIGEAR hIGear,
 const AT_MODE nOption,
 const UINT nThreshold,
 UINT nWeight1,
 UINT nWeight2,
 UINT nWeight3
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

nOption const
AT_MODE

A constant of type AT_MODE, such as IG_REDUCE_BITONAL_AVE, that specifies what
type of reduction to perform. See accucnst.h for the complete list.

nThreshold const
UINT

An integer value that specifies which pixel values will be changed to black, and which pixel
values will be changed to white. Pixels with values greater than nThreshold will be
changed to white, and pixels that have values less than nThreshold will be changed to
black.

nWeight1 UINT These values are only used if nOption is set to IG_REDUCE_BITONAL_WEIGHTED. The
range of values is 0 - 255. The default values are 255.

nWeight2 UINT The range of values is 0 - 255. The default values are 255.

nWeight3 UINT The range of values is 0 - 255. The default values are 255.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Indexed RGB – 4, 8 bpp;
Grayscale – 4, 8 bpp;
RGB – 24 bpp.

Example:

HIGEAR hIGear, /* HIGEAR handle of input image */
AT_ERRCOUNT nErrcount; /* Returned count of errors */
nErrcount = IG_IP_color_reduce_to_bitonal (hIGear, IG_REDUCE_BITONAL_AVE, 100, 0, 0, 0);

Remarks:

Set nOption to specify how to get the threshold value. If you set nOption to IG_REDUCE_BITONAL_WEIGHTED, you
may also set the values of nWeight1, nWeight2, and nWeight3. These "weights" are used to determine how much
influence the values of the red, green, or blue pixels will have on the reduction. For example, if nWeight1 (red)= 255,
nWeight2 (green) = 0, nWeight3 (blue) = 0, the whole reduction will depend on the value of the red pixels. The green
and blue pixel values will have "no weight."

IG_REDUCE_BITONAL_GRAYSCALE gives the most weight to the value of green. This optimizes for the perception of
the human eye, in which blue is the hardest color to see, and therefore requires the least weight.

IG_REDUCE_BITONAL_AVE gives equal weight to all three pixel values.

Here are the formulas used by the three different reduction methods:

ImageGear Professional v18 for Mac | 876

IG_REDUCE_BITONAL_GRAYSCALE: value = (red*77 + green*151 + blue*28)/256;
IG_REDUCE_BITONAL_AVE: value = (red + green + blue)/3;
IG_REDUCE_BITONAL_WEIGHTED: value = (red*w1 + green*w2 + blue*w3)/(w1 + w2 + w3);

Use the nThreshold argument to set the threshold value for converting pixels to black or white. If the value, as
calculated by one of the above reduction methods, is less than nThreshold, the pixels will be set to black; if it is
greater or equal to nThreshold, the pixels will be set to white.

See also the section in entitled Color Reduction.

ImageGear Professional v18 for Mac | 877

1.3.1.2.18.19 IG_IP_color_separate

This function is the reverse of IG_IP_color_combine_ex().

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_color_separate (
 HIGEAR hIGearOrig,
 LPHIGEAR lphIGear1,
 LPHIGEAR lphIGear2,
 LPHIGEAR lphIGear3,
 LPHIGEAR lphIGear4,
 AT_MODE nColorSpace
);

Arguments:

Name Type Description

hIGearOrig HIGEAR HIGEAR handle of the original image to be separated.

lphIGear1 LPHIGEAR Far pointer to an object of type HIGEAR to receive the handle of the separated channel 1
image.

lphIGear2 LPHIGEAR Far pointer to receive handle of channel 2 image.

lphIGear3 LPHIGEAR Far pointer to receive handle of channel 3 image.

lphIGear4 LPHIGEAR Far pointer to receive handle of channel 4 image.

nColorSpace AT_MODE A constant such as IG_COLOR_SPACE_RGB or IG_COLOR_SPACE_CMYK describing how the
individual channels are to be separated or extracted.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear, /* HIGEAR handle of input image */
 hIGearRed, /* Handle of Red output image, */
 hIGearGreen, hIGearBlue, /* Green, Blue output images */
 hIGearNULL; /* (Not used when IG_COLOR_SPACE_RGB) */
AT_ERRCOUNT nErrcount; /* Returned count of errors */
nErrcount = IG_IP_color_separate (hIGear, &hIGearRed, &hIGearGreen, &hIGearBlue,
&hIGearNull, IG_COLOR_SPACE_RGB);

Remarks:

This function is the reverse of IG_IP_color_combine_ex(). See the description of that function. Each of the output images
created by this function (lphIGear1, etc.) will be grayscale. That is, each will have a grayscale palette. The pixel values
will be those obtained from the input image.

ImageGear Professional v18 for Mac | 878

1.3.1.2.18.20 IG_IP_contrast_adjust

This function adjusts the brightness and contrast of the image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_contrast_adjust(
 HIGEAR hIGear,
 LPAT_RECT lpRect,
 AT_MODE nMethodMode,
 DOUBLE dblContrast,
 DOUBLE dblBrightness
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRect LPAT_RECT Specifies a rectangle within the image to operate on. NULL means the entire image.
See Remarks below.

nMethodMode AT_MODE Specifies whether to alter the pixels or the palette. See enumIGContrastModes.

dblContrast DOUBLE Specifies the contrast value. The useful range is from -(2^bpc) to (2^bpc), where
bpc is the image bits per channel.

dblBrightness DOUBLE Specifies the brightness value. The useful range is from -(2^bpc)+1 to (2^bpc)-1,
where bpc is the image bits per channel.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; // HIGEAR handle of the image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 nErrcount = IG_IP_contrast_adjust(hIGear, NULL, IG_CONTRAST_PIXEL, 2.0, -10.0);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

Brightness and contrast are linear controls that affect the intensity of the image pixels. These controls are similar to
the Brightness and Contrast controls on a typical television set.

Contrast is a multiplier, and Brightness is an additive value. The contrast is applied about the middle value of the
pixel intensity range. A Contrast of 2.0 will cause each pixel to become twice farther from the middle intensity value,
while 0.5 makes each twice closer to it. A Brightness value of 20.0 will cause each pixel's intensity to be increased by
20, and a -20 will decrease or darken each by 20. Pixel values are clipped to the pixel intensity range supported by
the image channel depths. Once clipped, the data is lost and cannot be regenerated. A Brightness of 0.0 and a

ImageGear Professional v18 for Mac | 879

Contrast of 1.0 will cause no change to the image. A -1.0 Contrast with a Brightness of 0.0 can be used to invert the
intensity range.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal NRA flag has been set to TRUE, indicating that a
mask HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask.

When IG_CONTRAST_PALETTE is used, the lpRect rectangle is ignored, since the whole image is affected when the
palette is changed.

Although the function allows using IG_CONTRAST_PIXEL for indexed images, in most cases such operation will
not invert the image, but rather will change image colors in a random looking way, depending on image palette.
Only if the palette is linear will adjusting the pixels adjust the display in the desired way. An example of a linear
palette is the grayscale palette: R[i] = G[i] = B[i] = i.

IG_IP_contrast_adjust_ex is an extended version of this function that allows adjusting contrast on specific image
channels.

ImageGear Professional v18 for Mac | 880

1.3.1.2.18.21 IG_IP_contrast_adjust_ex

This function adjusts the brightness and contrast of the specified image channels.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_contrast_adjust_ex(
 HIGEAR hIGear,
 LPAT_RECT lpRect,
 AT_MODE nMethodMode,
 DOUBLE dblContrast,
 DOUBLE dblBrightness,
 AT_MODE nColorChannel
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRect LPAT_RECT Specifies a rectangle within the image on which to operate. NULL means the entire
image. See Remarks below.

nMethodMode AT_MODE Specifies whether to alter the pixels or the palette. See enumIGContrastModes.

dblContrast DOUBLE Specifies the contrast value. The useful range is from -(2^bpc) to (2^bpc), where
bpc is the image bits per channel.

dblBrightness DOUBLE Specifies the brightness value. The useful range is from -(2^bpc)+1 to (2^bpc)-1,
where bpc is the image bits per channel.

nColorChannel AT_MODE Specifies a channel or a channel range to adjust. See enumIGColorChannels for
possible values.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; // HIGEAR handle of the image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 nErrcount = IG_IP_contrast_adjust_ex(hIGear, NULL, IG_CONTRAST_PIXEL, 2.0, -10.0,
IG_COLOR_COMP_R);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

Brightness and contrast are linear controls that affect the intensity of the image pixels. These controls are similar to
the Brightness and Contrast controls on a typical television set.

ImageGear Professional v18 for Mac | 881

Contrast is a multiplier and Brightness is an additive value. The contrast is applied about the middle value of the pixel
intensity range. A Contrast of 2.0 will cause each pixel to become twice farther from the middle intensity value, while
0.5 makes each twice closer to it. A Brightness value of 20.0 will cause each pixel's intensity to be increased by 20,
and a -20 will decrease or darken each by 20. Pixel values are clipped to the 0 to 255 range. Once clipped, the data is
lost and cannot be regenerated. A Brightness of 0.0 and a Contrast of 1.0 will cause no change to the image. A -1.0
Contrast with a Brightness of 0.0 can be used to invert the intensity range.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal NRA flag has been set to TRUE, indicating that a
mask HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask.

When IG_CONTRAST_PALETTE is used the lpRect rectangle is ignored, since the whole image is affected when the
palette is changed.

Although the function allows using IG_CONTRAST_PIXEL for indexed images, in most cases such operation will
not invert the image, but rather will change image colors in a random looking way, depending on image palette.
Only if the palette is linear will adjusting the pixels adjust the display in the desired way. An example of a linear
palette is the grayscale palette: R[i] = G[i] = B[i] = i.

ImageGear Professional v18 for Mac | 882

1.3.1.2.18.22 IG_IP_contrast_equalize

This function automatically adjusts the contrast of the image so that each range of possible intensities has about the
same number of pixels in it.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_contrast_equalize(
 HIGEAR hIGear,
 LPAT_RECT lpRect,
 AT_MODE nMethodMode
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRect LPAT_RECT Far pointer to an AT_RECT struct defining the rectangle within the image that this
function is to operate on. If NULL, the entire image will be operated on. Before
ImageGear performs this operation, it will check to see if an internal flag has been set to
TRUE to make a mask active for this HIGEAR image. If a mask is active, and a valid
pointer to a mask can be found, ImageGear will override the settings passed to this
structure in favor of the non-rectangular ROI defined by the mask.

nMethodMode AT_MODE IG_CONTRAST_PIXEL or IG_CONTRAST_PALETTE, telling whether to alter the pixels
themselves (the image bitmap) or the palette.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
IG_IP_contrast_equalize (hIGear, NULL, IG_CONTRAST_PIXEL);

Remarks:

Just like IG_IP_contrast_stretch(), this will expand the intensity range of the image to fill the entire 0 to 255 range.
However, unlike that function this one is non-linear.

This function is often used in x-ray images and in others where the contrast can be very small in the original.
IG_IP_contrast_equalize() will bring out subtle changes in the contrast.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask() functions
for more details.

ImageGear Professional v18 for Mac | 883

1.3.1.2.18.23 IG_IP_contrast_gamma

This function adjusts the contrast of the image using a non-linear gamma method.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_contrast_gamma(
 HIGEAR hIGear,
 LPAT_RECT lpRect,
 AT_MODE nMethodMode,
 DOUBLE dblGamma
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRect LPAT_RECT Specifies a rectangle within the image on which to operate. NULL means the entire
image. See Remarks below.

nMethodMode AT_MODE Specifies whether to alter the pixels or the palette. See enumIGContrastModes.

dblGamma DOUBLE Greater than 0.0. Usual range: 0.75 to 3.0.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; // HIGEAR handle of the image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 nErrcount = IG_IP_contrast_gamma(hIGear, NULL, IG_CONTRAST_PIXEL, 2.0);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

Gamma is a non-linear method to adjust the contrast of a image. In this method, the amount a pixel's intensity
changes depends on its original intensity. This can be used to make dark regions brighter without over saturating
(clipping) the bright regions. Or, conversely, to make light regions darker without under saturating the dark regions.
Gamma was originally introduced to compensate for the non-linear nature of the phosphors used in monitors and in
the original tube cameras that created images.

While the gamma can be any non-zero positive value, the usual range is 0.75 to 3.0. A gamma value of 1.0 does not
alter the image. For typical monitors, a range of 1.8 to 2.2 is usual. Values less than 1.0 cause dark pixels to become
brighter. Values greater than 1.0 cause bright regions to become darker.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal NRA flag has been set to TRUE, indicating that a

ImageGear Professional v18 for Mac | 884

mask HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask.

ImageGear Professional v18 for Mac | 885

1.3.1.2.18.24 IG_IP_contrast_invert

This function inverts every color to its complement within the rectangular portion of the image selected by lpRect.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_contrast_invert(
 HIGEAR hIGear,
 LPAT_RECT lpRect,
 AT_MODE nMethodMode
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image of which to invert contrast.

lpRect LPAT_RECT Specifies a rectangle within the image on which to operate. NULL means the entire
image. See remarks below.

nMethodMode AT_MODE Specifies whether to alter the pixels or the palette. See enumIGContrastModes.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; // HIGEAR handle of the image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 // Invert the image
 nErrcount = IG_IP_contrast_invert(hIGear, NULL, IG_CONTRAST_PIXEL);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

For black-and-white images, black will become white, and white will become black. For grayscale and color images,
every red, green, and blue color intensity value will be complemented: 0 will become 255 (and vice versa), 1 will
become 254, and so on. Therefore, in a grayscale image, the darkest grays will become the lightest grays, and vice
versa; and in a color image, colors near green will complement to colors near magenta (the complement of green),
and so on.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal NRA flag has been set to TRUE, indicating that a
mask HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask.

If nMethodMode = IG_CONTRAST_PIXEL, the inversion is accomplished by inverting all bits of all pixels within lpRect:

ImageGear Professional v18 for Mac | 886

bits that are 1 become 0, and bits that are 0 become 1. If nMethodMode = IG_CONTRAST_PALETTE, the inversion is
accomplished by inverting the bits in the image's palette (the pixels are left unchanged).

Specifying IG_CONTRAST_PALETTE inverts the entire image, ignoring any rectangle specified.

Although the function allows using IG_CONTRAST_PIXEL for indexed images, in most cases such operation will
not invert the image, but rather will change image colors in a random looking way, depending on image palette.
Only if the palette is symmetric (R[i] = ^R[^i], G[i] = ^G[^i], G[i] = ^G[^i]) will inverting the pixels actually
result in an inverted display. An example of a symmetric palette is the grayscale palette: R[i] = G[i] = B[i] = i.

If the image is not paletted, nMethodMode is ignored.

ImageGear Professional v18 for Mac | 887

1.3.1.2.18.25 IG_IP_contrast_stretch

This function automatically adjusts the contrast of the image so that at least one pixel is completely black and one pixel
is completely white.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_contrast_stretch (
 HIGEAR hIGear,
 LPAT_RECT lpRect,
 AT_MODE nMethodMode
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRect LPAT_RECT Far pointer to an AT_RECT struct defining the rectangle within the image that this
function is to operate on. If NULL, the entire image will be operated on. Before
ImageGear performs this operation, it will check to see if an internal flag has been set to
TRUE to make a mask active for this HIGEAR image. If a mask is active, and a valid
pointer to a mask can be found, ImageGear will override the settings passed to this
structure in favor of the non-rectangular ROI defined by the mask.

nMethodMode AT_MODE IG_CONTRAST_PIXEL or IG_CONTRAST_PALETTE, telling whether to alter the pixels
themselves (the image bitmap) or the palette.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */ IG_IP_contrast_stretch (hIGear,
NULL,IG_CONTRAST_PIXEL);

Remarks:

This fills the entire range of the pixel intensities. The original pixel intensities are adjusted linearly between the 2
extremes. (If the image already fills the entire range then the image is not altered.)

Images that use the entire range often appear richer and the colors display more vivid.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. (See above.) However, before ImageGear
performs the operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating
that a mask HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has
been assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask() functions
for more details.

ImageGear Professional v18 for Mac | 888

1.3.1.2.18.26 IG_IP_convert_to_gray

This function converts the image referenced by hIGear to a grayscale image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_convert_to_gray(HIGEAR hIGear);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; // HIGEAR handle of the image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 nErrcount = IG_IP_convert_to_gray(hIGear);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

The function changes image color space to IG_COLOR_SPACE_ID_Gy. The bit depth of the resulting image will be equal
to the maximal channel depth of the source image. If the original image has an Alpha or Pre-multiplied Alpha channel,
the image will be blended over a black background to produce the resulting image. If the original image has Extra
channels, they will be removed.

ImageGear Professional v18 for Mac | 889

1.3.1.2.18.27 IG_IP_convolve_matrix

This function convolves the image using a user-defined convolution kernel.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_convolve_matrix(
 HIGEAR hIGear,
 LPAT_RECT lpRect,
 LPAT_INT lpMatrix,
 UINT nMatrixWidth,
 UINT nMatrixHeight,
 DOUBLE dblNormalizer,
 AT_MODE nColorChannel,
 AT_MODE nResultForm,
 AT_BOOL bAddToOrigin
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to be processed.

lpRect LPAT_RECT Rectangle of image to process; setting to NULL will process the whole image.

lpMatrix LPAT_INT Pointer to the array of convolution kernel elements.

nMatrixWidth UINT Width of the convolution kernel.

nMatrixHeight UINT Height of the convolution kernel.

dblNormalizer DOUBLE Normalizer of the convolution kernel.

nColorChannel AT_MODE Specifies the color channel or group of channels to be processed. See
enumIGColorChannels for possible values.

nResultForm AT_MODE Specifies how the result value should be stored. See enumIGConvolutionResults for
possible values.

bAddToOrigin AT_BOOL Tells whether to add the result of the convolution to the pixel values.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; // HIGEAR handle of the image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func

AT_INT mxConv[5 * 3] = // Convolution kernel
{
 1,1,1,1,1,
 -2,-2,-2,-2,-2,
 1,1,1,1,1
};

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)

ImageGear Professional v18 for Mac | 890

{
 nErrcount = IG_IP_convolve_matrix(hIGear, NULL, mxConv, 5, 3, 1.0,
 IG_COLOR_COMP_RGB, IG_CONV_RESULT_RAW, FALSE);

 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

The result of the convolution is multiplied by the normalizer, dblNormalizer. For kernels that sum to zero, the
normalizer is usually set to 1.0. When the sum is not zero, the normalizer's value will depend on the goal of
convolution. In a non-weighted averaging convolution the kernel elements are often all ones. In this case the
normalizer would be equal to 1/(sum of kernel). Remember that the normalizer is multiplied by the sum of the
convolution and not divided into it.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. (See above.) However, before ImageGear
performs the operation specified by this function, it will check to see if an internal NRA flag has been set to TRUE,
indicating that a mask HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a
mask image has been assigned, ImageGear will override the settings passed to the AT_RECT structure and use the
non-rectangular ROI defined by the mask HIGEAR. To create a non-rectangular region of interest, call
IG_IP_NR_ROI_to_HIGEAR_mask.

ImageGear Professional v18 for Mac | 891

1.3.1.2.18.28 IG_IP_crop

This function crops the image to the specified rectangle.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_crop(
 HIGEAR hIGear,
 LPAT_RECT lpCropRect
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpCropRect LPAT_RECT Pointer to an AT_RECT struct specifying the rectangular portion of the image to keep. The
remainder of the image is removed and discarded.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; // HIGEAR handle of the image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func
AT_DIMENSION nWidth, nHeight; // Dimensions of the image
AT_RECT rcRect; // Crop rectangle

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 // Get dimensions of the image and initialize the crop rectangle
 IG_image_dimensions_get(hIGear, &nWidth, &nHeight, NULL);
 rcRect.left = 0;
 rcRect.top = 0;
 rcRect.right = nWidth / 2;
 rcRect.bottom = nHeight / 2;

 nErrcount = IG_IP_crop(hIGear, &rcRect);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

Only pixels that fall on or inside the lpCropRect rectangle will be kept in the resulting image. The dimensions of the
resulting image are then same as that of the lpCropRect. The removed parts of the image are discarded.

If right or bottom bound of the rectangle falls beyond the image dimensions, the rectangle is clipped to the image
bounds. The resulting image dimensions cannot be larger than the dimensions of the source image. Use
IG_IP_resize_canvas to extend the image bounds without scaling the image.

ImageGear Professional v18 for Mac | 892

1.3.1.2.18.29 IG_IP_decrypt

This function decodes an image, or a rectangular portion thereof, that was encrypted using IG_IP_encrypt().

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_decrypt (
 HIGEAR hIGear,
 LPAT_RECT lpRect,
 AT_MODE nEncryptType,
 LPSTR lpszPassword
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to be decoded.

lpRect LPAT_RECT Far pointer to an AT_RECT struct specifying the rectangular portion of the image to
decode. Set = NULL for the whole image.

nEncrptyType AT_MODE An IG_ENCRYPT_METHOD_ constant specifying how the image was encoded.

lpszPassword LPSTR Far pointer to your zero-terminated password string.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear;
/* Decrypt the whole hIGear image by method A & with "Top Secret" password */
IG_IP_decrypt (hIGear, NULL, IG_ENCRYPT_METHOD_A, "Top Secret");

Remarks:

This function works on a DIB, not on a file. You must supply both the encryption method and the password that were
used in the call to IG_IP_encrypt().

ImageGear Professional v18 for Mac | 893

1.3.1.2.18.30 IG_IP_deskew_angle_find

This function determines the skew angle of a 1-bit document image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_deskew_angle_find (
 HIGEAR hIGear,
 LPDOUBLE lpAngle
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpAngle LPDOUBLE Far pointer to a DOUBLE variable that will receive the skew angle.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Indexed RGB – 1 bpp;
Grayscale – 1 bpp.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DOUBLE dblDeskewAngle; /* Amount of skew in lpRect returned */
AT_ERRCOUNT nErrcount; /* will tally any IG errors */
nErrcount = IG_IP_deskew_angle_find (hIGear, &dblDeskewAngle);

Remarks:

The angle is returned via the pointer lpAngle. You may then use the value of lpAngle with IG_IP_rotate_any_angle()
function in order to straighten the image.

ImageGear Professional v18 for Mac | 894

1.3.1.2.18.31 IG_IP_deskew_auto

This function automatically detects the angle of the 1-bit document referenced by hIGear, and rotates it so that it is
straight (i.e., de-skews it).

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_deskew_auto (
 HIGEAR hIGear,
 DOUBLE dblAngleThresh,
 AT_MODE nExpand_clip_option
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to be decoded.

dblAngleThresh DOUBLE Do not de-skew if the skew angle is less than this parameter.

nExpand_clip_option AT_MODE An AT_MODE type variable, either: IG_ROTATE_CLIP or IG_ROTATE_EXPAND.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Indexed RGB – 1 bpp;
Grayscale – 1 bpp.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DOUBLE angle_thresh;/* max angle above which should not perform skew */
AT_MODE nExpand_clip_option;/* expand image or clip doc */
AT_ERRCOUNT nErrcount; /* will tally returned IG errors */
nErrcount = IG_IP_deskew_auto (hIGear, 3.0, IG_ROTATE_CLIP);

Remarks:

If the skew angle is less than dblAngleThresh, then the image is not de-skewed. If nExpand_clip_option is set to
IG_ROTATE_EXPAND, the size of image width or height will be enlarged as necessary to accommodate the document
when it has been rotated. Otherwise, any areas of the document that now fall outside the borders of the original width
and height of the image, will be cropped.

If you want to first detect the angle and then decide whether to rotate it, you can make separate calls to
IG_IP_deskew_angle_find() and IG_IP_rotate_any_angle() functions.

ImageGear Professional v18 for Mac | 895

1.3.1.2.18.32 IG_IP_despeckle

Despeckle is used to help reduce the amount of noise in the image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_despeckle (
 HIGEAR hIGear,
 const LPAT_RECT lpRect
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT struct specifying the rectangular portion of the image to operate on.
If NULL, the operation will be performed on the entire image. Before ImageGear performs this
operation, it will check to see if an internal flag has been set to TRUE to make a mask active for
this HIGEAR image. If a mask is active, and a valid pointer to a mask can be found, ImageGear
will override the settings passed to this structure in favor of the non-rectangular ROI defined by
the mask.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional, except:
Indexed images with non-grayscale palette.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
nErrCount = IG_IP_despeckle (hIGear, NULL);

Remarks:

Single pixels and pixel spurs on letters and graphics are removed while leaving the solid areas alone. It is typically used
on 1-bit document images.

The despeckle operation performs a 3x3 median filter on the image. For each 3x3 neighborhood of pixels in the original
image, a single pixel is produced in the output image. In this case the output is the median of the 9 values in the 3x3
neighborhood.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask() functions
for more details.

ImageGear Professional v18 for Mac | 896

1.3.1.2.18.33 IG_IP_draw_frame

This function adds a frame (block of solid color on all four sides) to the image referenced by hIGear.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_draw_frame (
 HIGEAR hIGear,
 AT_DIMENSION width,
 AT_MODE nMethod,
 LPAT_PIXEL lpColor
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

width AT_DIMENSION A variable that holds the width of the frame, in pixels.

nMethod AT_MODE A variable of type AT_MODE that tells ImageGear which IG_DRAW_FRAME_ setting to
use. See Remarks.

lpColor LPAT_PIXEL A far pointer to the RGB value that specifies the frame's color.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_ERRCOUNT nErrcount; /* holds tally of IG errors */
AT_DIMENSION width; /* width, in pixels, of frame */
AT_MODE nMethod; /* expand or overwrite image */
AT_PIXEL lpColor[256]; /* color of frame; RGB value */
nErrcount = IG_IP_draw_frame (hIGear, 5, IG_DRAW_FRAME_EXPAND, &lpColor[9]);

Remarks:

If nMethod is set to IG_DRAW_FRAME_EXPAND, the width and the height of the image will be expanded by 2 times the
width of the frame. If nMethod is set to IG_DRAW_FRAME_OVERWRITE, all four sides of the image will be overwritten by
the frame, so that the resulting image has the same width and height as the original image, but the edges of the image
are "covered" by the frame.

ImageGear Professional v18 for Mac | 897

1.3.1.2.18.34 IG_IP_drop_shadow

This function adds a drop shadow to an image, which is enlarged to contain a background and shadowed area.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_drop_shadow(
 HIGEAR hIGear,
 AT_INT width,
 AT_INT distance,
 AT_INT angle,
 HIGPIXEL hInsideColor,
 HIGPIXEL hOutsideColor
);

Arguments:

Name Type Description

hIGear HIGEAR Image to which to apply drop shadow effect.

width AT_INT Width of background and shadow area to add to the image.

distance AT_INT Distance to move image from shadow area.

angle AT_INT Angle (direction) of movement of image from shadow area.

hInsideColor HIGPIXEL Color of shadow area. It should have the same color space and channel depths as the
image to which the effect is applied.

hOutsideColor HIGPIXEL Color of background. It should have the same color space and channel depths as the
image to which the effect is applied.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional, except:
Indexed RGB – 1 bpp;
Indexed RGB with non-grayscale palette;
Grayscale – 1 bpp;
Images that have a Grayscale LUT attached to them.

ImageGear Professional v18 for Mac | 898

1.3.1.2.18.35 IG_IP_edge_detection

This function performs the edge detection operation specified by the edge_detection_type argument.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_edge_detection(
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 const AT_MODE edge_detection_type
);

Arguments:

Name Type Description

hIGear HIGEAR Handle of the input image.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT structure specifying the rectangular portion of the
image on which to operate. If NULL, this operation will be performed on the
entire image. Before ImageGear performs this operation it will check to see if an
internal flag has been set to TRUE to make a mask active for this HIGEAR image.
If a mask is active, and a valid pointer to a mask can be found, ImageGear will
override the settings passed to this structure in favor of the non-rectangular ROI
defined by the mask.

edge_detection_type const
AT_MODE

Type of edge detection method to perform. Constants IG_EDGE_DETECTION_*
are listed in file accucnst.h.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Grayscale – 8 bpp.

Example:

HIGEAR hIGear; /* Handle of the image */
AT_RECT lpRect; /* Rectangle to process */
...
IG_IP_edge_detection(hIGear, lpRect, IG_EDGE_DETECTION_MAXGRADIENT);
...

Remarks:

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask() functions
for more details.

ImageGear Professional v18 for Mac | 899

1.3.1.2.18.36 IG_IP_edge_map

This function performs the image processing operation specified by the nEdgeMapTypeargument.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_edge_map (
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 const AT_MODE nEdgeMapType
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of an image.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT structure specifying the rectangular portion of the image on
which to operate. If NULL, this operation will be performed on the entire image. Before
ImageGear performs this operation it will check to see if an internal flag has been set
to TRUE to make a mask active for this HIGEAR image. If a mask is active, and a valid
pointer to a mask can be found, ImageGear will override the settings passed to this
structure in favor of the non-rectangular ROI defined by the mask.

nEdgeMapType const
AT_MODE

Type of edge map operation to perform, such as IG_EDGE_OP_LAPLACIAN,
IG_EDGE_OP_ROBERTS, etc. The list of available types is in the accucnst.h.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of an image *?
IG_IP_edge_map (hIGear, NULL, IG_EDGE_OF_ALPLACIAN):

Remarks:

The operation is performed upon the rectangular portion of the image specified by lpRect.

An edge map is an image that shows where there are changes in contrast in the original image. Where there are no
changes, the resulting image is black. The stronger the contract change, the brighter the resultant image. The different
types of edge maps are slight variations of the algorithm used, and produce slightly different results.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image.If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask ().

See the descriptions of IG_IP_NR_ROI_mask_associate() and IP_IP_NR_ROI_to_HIGEAR_mask () functions for
more details.

ImageGear Professional v18 for Mac | 900

1.3.1.2.18.37 IG_IP_encrypt

This function scrambles an image bitmap, or a rectangular portion thereof.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_encrypt (
 HIGEAR hIGear,
 LPAT_RECT lpRect,
 AT_MODE nEncryptType,
 const LPSTR lpszPassword
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to be encoded.

lpRect LPAT_RECT Far pointer to an AT_RECT struct specifying the rectangular portion of the image to
encode. Set = NULL for the whole image.

nEncrptyType AT_MODE An IG_ENCRYPT_METHOD_ constant specifying the method to be used. See file
accucnst.h for IG_ENCRYPT_METHOD_ constants available.

lpszPassword const
LPSTR

Far pointer to your zero-terminated password string.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear;
/* Encrypt the whole hIGear image by method A & with "Top Secret" password */
IG_IP_encrypt (hIGear, NULL, IG_ENCRYPT_METHOD_A, "Top Secret");

Remarks:

Your password is also stored. To later decode the image using IG_IP_decrypt(), you will need to know both the
encryption method and the password used in this call.

This function cannot take a non-rectangular ROI for its AT_RECT parameter.

ImageGear Professional v18 for Mac | 901

1.3.1.2.18.38 IG_IP_enhance_local

This function enhances an image using the local standard deviation and mean.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_enhance_local(
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 const AT_DIMENSION nWinWidth,
 const AT_DIMENSION nWinHeight,
 const AT_DOUBLE dScaleFactor,
 const AT_DOUBLE dMinStdDev
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to be processed.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT structure specifying the rectangular portion of the
image on which to operate. If NULL, this operation will be performed on the entire
image. Before ImageGear performs this operation it will check to see if an internal
flag has been set to TRUE to make a mask active for this HIGEAR image. If a mask
is active, and a valid pointer to a mask can be found, ImageGear will override the
settings passed to this structure in favor of the non-rectangular ROI defined by
the mask.

nWinWidth const
AT_DIMENSION

Width of the local window.

nWinHeight const
AT_DIMENSION

Height of the local window.

dScaleFactor const
AT_DOUBLE

Scaling factor.

dMinStdDev const
AT_DOUBLE

Minimum allowed standard deviation.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Grayscale – 8 bpp.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_RECT lpRect; /* rectangle to process */
AT_DIMENSION nWinWidth; /* Window width */
AT_DIMENSION nWinHeight; /* Window height */
AT_DOUBLE dScaleFactor; /* Tuning factor */
AT_DOUBLE dMinStdDev; /* Minimum allowed standard deviation */
...
IG_IP_enhance_local(hIGear, lpRect, nWinWidth, nWinHeight, dScaleFactor, dMinStdDev);
...

Remarks:

This function transforms the input image f(x, y) to a new image g(x, y) based on the following formula,

ImageGear Professional v18 for Mac | 902

g(x, y) = A(x, y) * [f(x, y) - m(x, y)] + m(x, y)

where,

A(x, y) = k * M / sigma(x, y), with k being a scaling factor within the range [0, 1], m(x, y) and sigma(x, y) being the
local mean and local standard deviation, and M being the global mean of the input image.

To avoid the problem of spikes caused by too small local standard deviation, a check against the minimum allowed
standard deviation is performed. If the local standard deviation is too small, the minimum allowed will instead be used
in the calculation.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask()
functions for more details.

ImageGear Professional v18 for Mac | 903

1.3.1.2.18.39 IG_IP_find_tilt

This function computes the least-squares best fit plane for an image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_find_tilt(
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 LPAT_DOUBLE lpSlopeX,
 LPAT_DOUBLE lpSlopeY,
 LPAT_DOUBLE lpPiston
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to be processed.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT structure specifying the rectangular portion of the image on
which to operate. If NULL, this operation will be performed on the entire image. Before
ImageGear performs this operation it will check to see if an internal flag has been set to
TRUE to make a mask active for this HIGEAR image. If a mask is active, and a valid
pointer to a mask can be found, ImageGear will override the settings passed to this
structure in favor of the non-rectangular ROI defined by the mask.

lpSlopeX LPAT_DOUBLE Returns the slope in the X direction of the tilt plane.

lpSlopeY LPAT_DOUBLE Returns the slope in the Y direction of the tilt plane.

lpPiston LPAT_DOUBLE Returns the piston of the tilt plane.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Grayscale - 8, 16, 32 bpp.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_RECT lpRect; /* rectangle to process */
LPAT_DOUBLE lpSlopeX, lpSlopeY, lpPiston;
...
IG_IP_find_tilt(hIGear, lpRect, lpSlopeX, lpSlopeY, lpPiston);
...

Remarks:

The plane will be given by formula f(x, y) = SlopeX * x + SlopeY * y + Piston.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask()
functions for more details.

ImageGear Professional v18 for Mac | 904

ImageGear Professional v18 for Mac | 905

1.3.1.2.18.40 IG_IP_flip

Flips the image referenced by hIGear either horizontally or vertically.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_flip(
 HIGEAR hIGear,
 AT_MODE nDirection
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to flip.

nDirection AT_MODE IG_FLIP_HORIZONTAL or IG_FLIP_VERTICAL, indicating whether to flip horizontally or
vertically.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; // HIGEAR handle of the image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 nErrcount = IG_IP_flip(hIGear, IG_FLIP_VERTICAL);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

Flipping horizontally exchanges the right-most pixel column of the image bitmap with the left-most. Flipping vertically
exchanges the topmost pixel row (raster) of the image bitmap with the bottom-most. The dimensions of the image do
not change.

If you want to turn the image upside-down (not the same as a vertical flip), use function IG_IP_rotate_multiple_90,
with rotation mode set to IG_ROTATE_180.

ImageGear Professional v18 for Mac | 906

1.3.1.2.18.41 IG_IP_gaussian_blur

This function smoothes the images using Gaussian transform.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_gaussian_blur (
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 const double dblRadius
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRect const
LPAT_RECT

Far pointer to AT_RECT struct specifying a portion of the image to be affected. NULL means
entire image. Before ImageGear performs this operation, it will check to see if an internal
flag has been set to TRUE to make a mask active for this HIGEAR image. If a mask is active,
and a valid pointer to a mask can be found, ImageGear will override the settings passed to
this structure in favor of the non-rectangular ROI defined by the mask.

dblRadius const
double

Defines the neighborhood to be considered for each pixel.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional, except:
Indexed RGB with non-grayscale palette.

Example:

HIGEAR hIGear;
/* Blur whole image, radius = 2.0 */
nErrCount =IG_IP_gaussian_blur (hIGear, NULL, 2.0);

Remarks:

This function makes images look softer and slightly out of focus. A specific feature of Gaussian Blur is that it removes the
high-frequency component from the image, which is not the case for the IG_IP_smooth().

Parameter dblRadius corresponds to the Standard Deviation (Sigma) in Gaussian transform. It can range from 0.1 to
500. Typical values for high-resolution images range from 1.0 to 2.0. Larger values will cause greater softening. On the
other hand, smaller values are faster. The width of the area considered for each pixel is approximately 6 * dblRadius.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

ImageGear Professional v18 for Mac | 907

1.3.1.2.18.42 IG_IP_geom_despeckle

This function is used to reduce speckle noise from an image by using the Crimmins algorithm.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_geom_despeckle(
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 const AT_INT nIterations
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to be processed.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT structure specifying the rectangular portion of the image on
which to operate. If NULL, this operation will be performed on the entire image. Before
ImageGear performs this operation it will check to see if an internal flag has been set to
TRUE to make a mask active for this HIGEAR image. If a mask is active, and a valid pointer
to a mask can be found, ImageGear will override the settings passed to this structure in
favor of the non-rectangular ROI defined by the mask.

nIterations const
AT_INT

Number of iterations to apply the despeckle filter.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Grayscale – 8 bpp.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_RECT lpRect; /* rectangle to process */
AT_INT nIterations; /* Number of iterations */
...
IG_IP_geom_despeckle(hIGear, lpRect, nIterations);
...

Remarks:

This function reduces the speckle index of an image by sending the image through a geometric filter, which uses the
complementary hulling technique. The method has the effect of reducing the undesired speckle noise while preserving
the edges of the original image.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask() functions
for more details.

ImageGear Professional v18 for Mac | 908

1.3.1.2.18.43 IG_IP_histo_clear

This function will clear an array of histogram bins.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_histo_clear (
 LPDWORD lpHisto,
 UINT nNumberOfBins
);

Arguments:

Name Type Description

lpHisto LPDWORD Far pointer to an array of bins (each a DWORD) to be cleared.

nNumberOfBins UINT Number of bins to clear.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

See the example under the IG_IP_histo_tabulate() function.

Remarks:

Call this function prior to calling IG_IP_histo_tabulate(), unless you mean to accumulate onto existing contents of the
bins.

ImageGear Professional v18 for Mac | 909

1.3.1.2.18.44 IG_IP_histo_tabulate

This function produces a histogram of the pixel values occurring in image hIGear, or in the rectangular portion
specified if lpRect is not NULL.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_histo_tabulate (
 HIGEAR hIGear,
 LPDWORD lpHisto,
 UINT nNumberOfBins,
 LPAT_RECT lpRect,
 UINT nYIncr,
 const AT_MODE nColorChannel
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpHisto LPDWORD Far pointer to an array of bins (each a DWORD) in which to tabulate.

nNumberOfBins UINT Number of bins.

lpRect LPAT_RECT Far pointer to an AT_RECT struct specifying rectangular portion of the image to
tabulate for, or NULL for whole image. an internal flag has been set to TRUE to
make a mask active for this HIGEAR image. If a mask is active, and a valid pointer
to a mask can be found, ImageGear will override the settings passed to this
structure in favor of the non-rectangular ROI defined by the mask.

nYIncr UINT Set = 1 to sample every pixel. Values larger than 1 will skip rasters of the image
bitmap.

nColorChannel const
AT_MODE

For 24 bit images selects which channel: IG_COLOR_COMP_R, _G, or _B
(IG_COLOR_COMP_RGB not allowed).

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
DWORD dwHistoBins[256]; /* Array of bins for counting */
IG_IP_histo_clear (&dwHistoBins, 256); /* Clear the bins */
/* Tabulate. If a 24-bit image, only the red will be tabulated: */
IG_IP_histo_tabulate (hIGear, &dwHistoBins, 256, NULL, 1, IG_COLOR_COMP_R);

Remarks:

If nYIncr = 1, each pixel in the image is examined. The bin corresponding to that pixel value increments. The number
of bins must be large enough to hold the entire histogram. If an 8 or 24-bit image, the number of bins must be 256.
If a 4-bit or 1-bit image, the number of bins must be 16 or 2 respectively. Note that for a 24-bit image, only a single
color channel can be a histogram at one time. Use argument nColorChannel to select the channel.

If nYIncr is greater than 1, then rasters of the image are skipped. This can be used to speed up the tabulation when
the image is large.

You should call IG_IP_histo_clear() before calling this function, unless you intentionally mean to accumulate the count

ImageGear Professional v18 for Mac | 910

onto the existing contents of the bins.

ImageGear Professional v18 for Mac | 911

1.3.1.2.18.45 IG_IP_maximum

This function performs a maximum filter on an image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_maximum (
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 AT_DIMENSION nNeighborWidth,
 AT_DIMENSION nNeighborHeight
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT struct specifying the rectangular portion of the
image to operate upon. If NULL, the entire image will be operated upon.
Before ImageGear performs this operation, it will check to see if an internal
flag has been set to TRUE to make a mask active for this HIGEAR image. If a
mask is active, and a valid pointer to a mask can be found, ImageGear will
override the settings passed to this structure in favor of the non-rectangular
ROI defined by the mask.

nNeighborWidth AT_DIMENSION Width of the neighborhood to include in computing each new pixel's value.
Must be positive.

nNeighborHeight AT_DIMENSION Height of the neighborhood to include in computing each new pixel's value.
Must be positive.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional, except:
Indexed RGB with non-grayscale palette.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
nErrCount = IG_IP_maximum (hIGear, NULL, 5, 5);

Remarks:

A maximum filter makes the lighter pixels larger and shrinks the darker ones. The width and height determine the
size of each original pixel's neighborhood to use to compute the maximum output pixels. Most applications will find
that 3x3 or 5x5 works best.

Only the lpRect of the image is processed. Set lpRect = NULL to process the entire image.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask()
functions for more details.

ImageGear Professional v18 for Mac | 912

ImageGear Professional v18 for Mac | 913

1.3.1.2.18.46 IG_IP_median

This function performs a median filter on an image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_median (
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 AT_DIMENSION nNeighborWidth,
 AT_DIMENSION nNeighborHeight
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT struct specifying the rectangular portion of the
image to operate upon. If NULL, the entire image will be operated upon.
Before ImageGear performs this operation, it will check to see if an internal
flag has been set to TRUE to make a mask active for this HIGEAR image. If a
mask is active, and a valid pointer to a mask can be found, ImageGear will
override the settings passed to this structure in favor of the non-rectangular
ROI defined by the mask.

nNeighborWidth AT_DIMENSION Width of the neighborhood to include in computing each new pixel's value.
Must be positive.

nNeighborHeight AT_DIMENSION Height of the neighborhood to include in computing each new pixel's value.
Must be positive.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional, except:
Indexed RGB with non-grayscale palette.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
nErrCount = IG_IP_median (hIGear, NULL, 5, 5);

Remarks:

A median filter is useful for reducing spike or snow-like noise from an image. The width and height determine the size
of each original pixel's neighborhood to use to compute the median output pixels. Most applications will find that 3x3
or 5x5 works best.

Only the lpRect of the image is processed. Set lpRect = NULL to process the entire image.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask()
functions for more details.

ImageGear Professional v18 for Mac | 914

ImageGear Professional v18 for Mac | 915

1.3.1.2.18.47 IG_IP_merge

This function is used to "place" or merge one image into another.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_merge (
 HIGEAR hImage1,
 HIGEAR hImage2,
 LPAT_RECT lpImageRect2,
 AT_PIXPOS nDstX,
 AT_PIXPOS nDstY,
 AT_MODE nPix_op
);

Arguments:

Name Type Description

hImage1 HIGEAR HIGEAR handle of image.

hImage2 HIGEAR HIGEAR image to be merged into hImage1; must have same bit depth as hImage1.

lpImageRect2 LPAT_RECT Far pointer to an AT_RECT structure specifying the rectangular portion of hImage2 to
merge into hImage1. upon. Set to NULL if you want to merge the entire image of
hImage2. Before ImageGear performs this operation, it will check to see if an internal
flag has been set to TRUE to make a mask active for this HIGEAR image. If a mask is
active, and a valid pointer to a mask can be found, ImageGear will override the
settings passed to this structure in favor of the non - rectangular ROI defined by the
mask.

nDstX AT_PIXPOS The x coordinate within hImage1 at which to place the upper - left corner of
hImage2.

nDstY AT_PIXPOS The y coordinate within hImage1 at which to place the upper-left corner of hImage2.

nPix_op AT_MODE A variable of constant type AT_MODE that specifies what type of arithmetic operation
(merge method) to perform on all pixels of hImage1 that have been intersected with
pixels from hImage2. Examples are IG_ARITH_ADD, which adds the pixel values of
both images, and IG_ARITH_SUB, which subtracts the pixel values of hImage2 from
the corresponding pixel values of hImage1. For the full list of available constants, see
accucnst.h or see the description for IG_clipboard_paste_op_set() which also uses
these constants for full list.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear1, /* HIGEAR handle of destination image */
 hIGear2; /* HIGEAR handle of image to be merged in */
AT_ERRCOUNT nErrcount; /* # of ImageGear errors on stack */
nErrcount = IG_IP_merge (hIGear1, hIGear2, NULL, 0, 0, IG_ARITH_OVER);

Remarks:

The images do not have to be the same size but do have to be the same bit depth. hImage2 is drawn into hImage1.
The top left corner of hImage2 will be placed at nDstX, nDstY of hImage1. Any over-hanging pixels of hImage2 will be
clipped automatically. The nPix_op, which is defined in accucnst.h, determines how the pixels are combined.

ImageGear Professional v18 for Mac | 916

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can merge a rectangular sub-region of HIGEAR2 into HIGEAR1. However, before ImageGear
performs the operation specified by this function, it will check to see if an internal flag has been set to TRUE,
indicating that a mask HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a
mask image has been assigned, ImageGear will override the settings passed to the AT_RECT structure and use the
non-rectangular ROI defined by the mask HIGEAR. To create a non-rectangular region of interest, call
IG_IP_NR_ROI_to_HIGEAR_mask().

if lpImageRect2 is not NULL, or hIGear2 has a mask attached to it, and you want to place the top left corner of
lpImageRect2 or the mask at nDstX, nDstY of hImage1, subtract the coordinates of the left top corner of
lpImageRect2 or mask from the destination coordinates.

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask()
functions for more details.

ImageGear Professional v18 for Mac | 917

1.3.1.2.18.48 IG_IP_minimum

This function performs a minimum filter on an image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_minimum (
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 AT_DIMENSION nNeighborWidth,
 AT_DIMENSION nNeighborHeight
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT structure specifying the rectangular portion of the
image to operate upon. If NULL, the entire image will be operated upon.
Before ImageGear performs this operation, it will check to see if an internal
flag has been set to TRUE to make a mask active for this HIGEAR image. If a
mask is active, and a valid pointer to a mask can be found, ImageGear will
override the settings passed to this structure in favor of the non-rectangular
ROI defined by the mask.

nNeighborWidth AT_DIMENSION Width of the neighborhood to include in computing each new pixel's value.
Must be positive.

nNeighborHeight AT_DIMENSION Height of the neighborhood to include in computing each new pixel's value.
Must be positive.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional, except:
Indexed RGB with non-grayscale palette.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
nErrCount = IG_IP_minimum (hIGear, NULL, 5, 5);

Remarks:

A minimum filter makes the lighter pixels smaller and the darker ones larger. The width and height determine the size
of each original pixel's neighborhood to use to compute the minimum output pixels. Most applications will find that
3x3 or 5x5 works best.

Only the lpRect of the image is processed. Set lpRect = NULL to process the entire image.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear overrides the settings passed to the AT_RECT structure and uses the non-rectangular ROI
defined by the HIGEAR mask. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask()
functions for more details.

ImageGear Professional v18 for Mac | 918

ImageGear Professional v18 for Mac | 919

1.3.1.2.18.49 IG_IP_NR_ROI_control_get

This function will return to you the current setting of any of the non-rectangular ROI control settings.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_NR_ROI_control_get(
 HIGEAR hIGear,
 AT_MODE nAttributeID,
 VOID FAR32* lpData
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image for which you would like to query ROI settings.

nAttributeID AT_MODE Set to an AT_MODE constant for the type of attribute you wish to query. See Remarks.

lpData VOID FAR32* This returns the current setting of nAttributeID.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount;
HIGEAR hIGear;
BOOL bUseNonRect;
AT_POINT ptReferencePoint;
/* Find out whether the image rectangle for hIGear is set to be overridden by a non-
rectangular ROI */
nErrcount = IG_IP_NR_ROI_control_get (hIGear, IG_CONTROL_NR_ROI_STATE, &bUseNonRect);
/* Find out what the reference point for a mask HIGEAR is in the hIGear */
nErrcount = IG_IP_NR_ROI_control_get (hIGear, IG_CONTROL_NR_ROI_REFERENCE_POINT,
&ptReferencePoint);

Remarks:

Supply ImageGear with the HIGEAR handle of the image you are querying and the attribute (nAttributeID) whose setting
you would like to query. The ROI settings currently available are:

IG_CONTROL_NR_ROI_DIB: Returns the DIB which is currently set to be used as the mask HIGEAR.
IG_CONTROL_NR_ROI_REFERENCE_POINT: Returns the reference point of the mask.
IG_CONTROL_NR_ROI_REFERENCE_POINT_LEFT: Returns left point of the mask.
IG_CONTROL_NR_ROI_REFERENCE_POINT_TOP: Returns top point of the mask.
IG_CONTROL_NR_ROI_CONDITION: Queries the "condition" of the mask HIGEAR: whether it is set to be active or not
active for the next IP or Clipboard operation.
IG_CONTROL_NR_ROI_VALIDATE: Returns TRUE if the current ROI mask is valid.

To change these settings and for details on how these controls can be used, see the description for
IG_IP_NR_ROI_control_set().

ImageGear Professional v18 for Mac | 920

1.3.1.2.18.50 IG_IP_NR_ROI_control_set

This function allows you to set the non-rectangular ROI attributes associated with any HIGEAR that has an associated
non-rectangular ROI mask.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_NR_ROI_control_set(
 HIGEAR hIGear,
 AT_MODE nAttributeID,
 const LPVOID lpData
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of the image to which you wish make the non-rectangular ROI setting
changes.

nAttributeID AT_MODE Set to an AT_MODE constant for the non-rectangular ROI attribute you would like to
set.

lpData const
LPVOID

Set to the desired attribute setting.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount;
HIGEAR hIGear;
BOOL bCondition;
HIGEAR hIGearMask;]
/* Find out whether the image rectangle for hIGear is set to be overridden by a non-
rectangular ROI */
nErrcount = IG_IP_NR_ROI_control_set (hIGear, IG_CONTROL_NR_ROI_DIB, (LPVOID) hIGearMask);
/* Find out what the reference point for a mask HIGEAR is in the hIGear */
nErrcount = IG_IP_NR_ROI_control_set (hIGear, IG_CONTROL_NR_ROI_CONDITION, (LPVOID)
bCondition);

Remarks:

These attributes are only applicable for non-rectangular ROIs. Use IG_IP_NR_ROI_to_HIGEAR_mask() to create the
mask image.

All ROI control settings have defined constants in accucnst.h which have a prefix of IG_CONTROL_NR_ROI_. The
following is a list of each setting available at the time of this writing, and a description of what each does.

IG_CONTROL_NR_ROI_DIB: Sets the DIB to be used as the mask HIGEAR for the currently loaded HIGEAR image.
IG_CONTROL_NR_ROI_REFERENCE_POINT: Sets the position within the HIGEAR image at which the upper-left
corner of the masking HIGEAR should be placed.
IG_CONTROL_NR_ROI_REFERENCE_POINT_LEFT: Sets the left point of the mask.
IG_CONTROL_NR_ROI_REFERENCE_POINT_TOP: Sets the top point of the mask.
IG_CONTROL_NR_ROI_CONDITION: Sets whether or not ImageGear should override the AT_RECT argument
passed to its API. Set to TRUE if you would like ImageGear to use the non-rectangular ROI defined by the mask

ImageGear Professional v18 for Mac | 921

HIGEAR. Set to FALSE for ImageGear to use the rectangular ROI defined by the current image rectangle.

IG_CONTROL_NR_ROI_CONDITION can also be set using IG_IP_NR_ROI_mask_associate() function.

ImageGear Professional v18 for Mac | 922

1.3.1.2.18.51 IG_IP_NR_ROI_mask_associate

This function will associate a mask HIGEAR, as specified by the AT_NR_ROI_MASK structure, with the image
referenced by hIGear.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_NR_ROI_mask_associate(
 HIGEAR hIGear,
 LPAT_NR_ROI_MASK lpMask,
 BOOL bState
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of the image to associate with a non-rectangular ROI mask.

lpMask LPAT_NR_ROI_MASK Pass ImageGear a long pointer to a structure of type AT_NR_ROI_MASK that gives
the HIGEAR handle of the mask HIGEAR.

bState BOOL Set to TRUE if you want to make the mask "active", meaning that affected IP or
clipboard operations will operate on the non-rectangular region only; set to FALSE
if you want affected IP or clipboard operations to apply the image rectangle
specified by the AT_RECT argument.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount;
HIGEAR hIGear;
AT_NR_ROI_MASK lpMask;
BOOL bState;
nErrcount = IG_IP_NR_ROI_mask_associate(hIGear, &lpMask, TRUE);

Remarks:

The bState argument determines whether or not the ROI defined by AT_NR_ROI_MASK should be made active. If you
set bState to TRUE, ImageGear will override the AT_RECT argument passed to certain Image Processing and
Clipboard API functions in favor of using the non-rectangular ROI. For example, the function IG_IP_contrast_adjust()
takes an AT_RECT as an argument, so that you can adjust the contrast in a rectangular sub-region of an image, or
adjust the contrast of the whole image (if you set the AT_RECT parameter to NULL). If you set bState to TRUE, when
you next call IG_IP_contrast_adjust(), its AT_RECT argument will be ignored, or "overridden", and ImageGear will
instead use the ROI described by the mask HIGEAR.

If you provide an invalid mask HIGEAR, you will receive the error IGE_INVALID_MASK_ASSOCIATED.

No change will take place in the image until you perform an Image Processing or Clipboard operation. When using
image processing functions the changes made are permanent if you save the image. For this reason, you may want to
keep a copy of the original image so that the user can "undo" an operation.

The setting for bState, which ImageGear stores with the image can also be set using IG_IP_NR_ROI_control_set()
with the constant IG_CONTROL_NR_ROI_CONDITION.
To reset the reference point in HIGEAR, call IG_IP_NR_ROI_control_set() with the constant

ImageGear Professional v18 for Mac | 923

IG_CONTROL_NR_ROI_REFERENCE_POINT.
Call IG_IP_NR_ROI_mask_unassociate() to clear the mask HIGEAR from its association with HIGEAR.

To create a non-rectangular region of interest call IG_IP_NR_ROI_to_HIGEAR_mask() function.

ImageGear Professional v18 for Mac | 924

1.3.1.2.18.52 IG_IP_NR_ROI_mask_delete

This function deletes the mask HIGEAR created by IG_IP_NR_ROI_to_HIGEAR_mask().

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_NR_ROI_mask_delete (
 LPAT_NR_ROI_MASK lpMask
);

Arguments:

Name Type Description

lpMask LPAT_NR_ROI_MASK A far pointer to the mask structure to delete.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Example:

AT_ERRCOUNT nErrcount;
HIGEAR hIGear;
AT_NR_ROI_MASK Mask
nErrcount = IG_IP_NR_ROI_mask_delete(&Mask);

When you are done using this mask, and have called the function IG_IP_NR_ROI_mask_unassociate(), you should call
IG_IP_NR_ROI_mask_delete() to delete the mask and free up the memory allocated to it.

See also IG_IP_NR_ROI_to_HIGEAR_mask(), IG_IP_NR_ROI_mask_associate(), and
IG_IP_NR_ROI_mask_unassociate() functions.

ImageGear Professional v18 for Mac | 925

1.3.1.2.18.53 IG_IP_NR_ROI_mask_unassociate

This function clears the non-rectangular ROI information from a HIGEAR image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_NR_ROI_mask_unassociate(HIGEAR hIGear);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle to the image for which you would like to remove the association to the mask
HIGEAR.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount;
HIGEAR hIGear;
nErrcount = IG_IP_NR_ROI_mask_unassociate(hIGear);

Remarks:

This function does not delete the mask HIGEAR, it only removes the reference to it from this HIGEAR. To delete the
mask HIGEAR, call IG_IP_NR_ROI_mask_delete().

See the description for IG_IP_NR_ROI_mask_associate() function for more information.

To delete the mask HIGEAR, use IG_image_delete() function.

ImageGear Professional v18 for Mac | 926

1.3.1.2.18.54 IG_IP_NR_ROI_to_HIGEAR_mask

This function is a non-rectangular ROI (region on interest) support function whose purpose is to build a non-
rectangular ROI mask from a set of segment descriptors that you pass in, and to return a pointer to a non-rectangular
ROI mask data structure.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_NR_ROI_to_HIGEAR_mask(
 AT_MODE nSimpleAreaTypeID,
 LPVOID lpAreaSegmentDesc,
 LPAT_NR_ROI_MASK lpNR_ROI
);

Arguments:

Name Type Description

nSimpleAreaTypeID AT_MODE Set to an AT_MODE constant that describes what kind of non-
rectangular region of interest (ROI) you will be passing in. See
supported AT_MODE constants below.

lpAreaSegmentDesc LPVOID Pass in an array of segment descriptors which will be used to
reproduce/render the non-rectangular ROI as a mask. These segment
descriptors can be points in the case of polygons, points and angles in
the case of ellipses and so on. The segment descriptors use image
coordinates to describe the mask.

lpNR_ROI LPAT_NR_ROI_MASK ImageGear returns you a structure of type AT_NR_ROI_MASK which
contains the HIGEAR handle of the new mask HIGEAR and the
"reference point" for its placement within HIGEAR.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount;
HIGEAR hIGear;
AT_NR_ROI_MASK region;
AT_POINT ROI[];
nErrcount =
 IG_IP_NR_ROI_to_HIGEAR_mask(IG_ROI_IS_POLYGON, &ROI[0], ®ion);

Remarks:

This non-rectangular ROI mask data structure (of type AT_NR_ROI_MASK) is then used in conjunction with other API
functions to create, associate, modify, and apply the non-rectangular ROI to the source image.

The AT_NR_ROI_MASK structure, shown below, contains two important pieces of information. ptMaskOffset describes
the coordinates for reference point for the mask HIGEAR. ptMaskOffset is the (x,y) position in the original HIGEAR at
which the upper left corner of the mask HIGEAR should be placed. The mask HIGEAR is actually a rectangle which is
calculated by determining the smallest rectangular area that can encompass the entire non-rectangular ROI. We refer
to this area as the "bounding rectangle". Within the mask, which represents the bounding rectangle, a pixel value of 1
indicates that the pixel is within the non-rectangular ROI; a pixel value of 0 indicates that the pixel is outside the non-
rectangular ROI.

ImageGear Professional v18 for Mac | 927

typedef struct tag AT_NR_ROI_MASK
{
 AT_POINT ptMaskOffet;
 HIGEAR hMask;
} AT_NR_ROI_MASK, FAR* LPAT_NR_ROI_MASK;

The second member of the mask structure is a HIGEAR handle to the actual mask image. The mask HIGEAR is a run
length-encoded binary image.

You must also pass this function an argument that specifies whether the region of interest is elliptical, polygonal, or
rectangular (the default), using one of the following constants:

IG_ROI_IS_RECTANGLE
IG_ROI_IS_ELLIPSE
IG_ROI_IS_POLYGON

The default ROI type, which is IG_ROI_IS_RECTANGLE means that when this mask is associated with and activated
for an image, all affected API should use the AT_RECT argument that is part of their argument list. If
nSimpleAreaTypeID is set to IG_ROI_IS_ELLIPSE or IG_ROI_IS_POLYGON, all affected API will override their
AT_RECT arguments and instead look for an associated AT_NR_ROI_MASK.

The lpNR_ROI parameter will store the mask HIGEAR information structure when the function return value is
IGE_SUCCESS.

Use IG_IP_NR_ROI_mask_associate() function to associate the mask HIGEAR with a HIGEAR image.

ImageGear Professional v18 for Mac | 928

1.3.1.2.18.55 IG_IP_pseudocolor_limits

This function colors all pixels in an 8-bit gray level image whose values are outside the range nLow to nHigh.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_pseudocolor_limits (
 HIGEAR hIGear,
 LPAT_RGB lpRGB_Low,
 LPAT_RGB lpRGB_High,
 AT_PIXEL nLow,
 AT_PIXEL nHigh
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of 8-bit grayscale image to be colored.

lpRGB_Low LPAT_RGB Far pointer to an AT_RGB struct (note: B-G-R) specifying the color to apply to all pixels
below the nLow value.

lpRGB_High LPAT_RGB Far pointer to an AT_RGB struct (note: B-G-R) specifying the color to apply to all pixels
above the nHigh value.

nLow AT_PIXEL All pixels below this value are colored.

nHigh AT_PIXEL All pixels above this value are colored.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Grayscale – 8-16 bpp.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_RGB cLowColor, cHighColor; /* The colors to apply */
AT_PIXEL nLow, nHigh; /* Where to apply them */
cLowColor.b = cLowColor.g = 0; cLowColor.r = 255; /* bright red */
cHighColor.b = cHighColor.r = 0; cHighColor.g = 255; /* bright green*/
 /* Retain image colors for pixel values 25 through 225: */
nLow = 25; nHigh = 225;
IG_IP_pseudocolor_limits (hIGear, &cLowColor, &cHighColor, nLow, nHigh);

Remarks:

Those values above the range receive the color pointed to by lpRGB_High, and those below the range receive the color
pointed to by lpRGB_Low. This function can be used to see how much of the image is saturated or unsaturated.

Remember that the order in the RGB structure is B-G-R. See the section Device-Independent Bitmaps (DIB) for
more information.

ImageGear Professional v18 for Mac | 929

1.3.1.2.18.56 IG_IP_pseudocolor_small_grads

This function colors an 8-bit gray level image such that small gradients are exposed.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_pseudocolor_small_grads (
 HIGEAR hIGear,
 UINT nSlope
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of 8-bit grayscale image to be colored.

nSlope UINT An integer from 1 to 255. Higher values increase colors faster.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Grayscale – 8-16 bpp.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Example:

HIGEAR hIGear;
if (IG_image_is_valid(hIGear))
 if (IG_image_is_gray(hIGear))
 IG_IP_pseudocolor_small_grads (hIGear, 10);

Remarks:

The greater the value of nSlope, the faster the color will change for a given rate of change of the pixel value.

ImageGear Professional v18 for Mac | 930

1.3.1.2.18.57 IG_IP_remove_tilt

This function computes the best-fit plane for an image, and then subtracts that plane from the image to produce the
output.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_remove_tilt(
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 AT_BOOL bRemoveMean
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to be processed.

lpRect const
LPAT_RECT

Far pointer to an AT_RECT structure specifying the rectangular portion of the image on
which to operate. If NULL, this operation will be performed on the entire image. Before
ImageGear performs this operation it will check to see if an internal flag has been set to
TRUE to make a mask active for this HIGEAR image. If a mask is active, and a valid
pointer to a mask can be found, ImageGear will override the settings passed to this
structure in favor of the non-rectangular ROI defined by the mask.

bRemoveMean AT_BOOL Remove the mean from the de-tilted image, giving it zero-mean statistics.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Grayscale - 8, 16, 32 bpp.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_BOOL bRemoveMean; /* TRUE = remove mean */
AT_RECT lpRect; /* rectangle to process */
...
IG_IP_remove_tilt(hIGear, lpRect, bRemoveMean);
...

Remarks:

This function is very handy for correcting illumination gradients in a poorly digitized image.

If bRemoveMean argument is set to TRUE, then remove mean from image.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask() functions
for more details.

ImageGear Professional v18 for Mac | 931

1.3.1.2.18.58 IG_IP_resize

This function resizes the image referenced by hIGear.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_resize(
 HIGEAR hIGear,
 AT_DIMENSION nNewWidth,
 AT_DIMENSION nNewHeight,
 AT_MODE nInterpMethod
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to resize.

nNewWidth AT_DIMENSION Width that the image is to be after resizing.

nNewHeight AT_DIMENSION Height that the image is to be after resizing.

nInterpMethod AT_MODE Specifies interpolation method to use for image resizing. See
enumIGInterpolations for possible values.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

If nInterpMethod is IG_INTERPOLATION_GRAYSCALE, IG_INTERPOLATION_PRESERVE_WHITE, or
IG_INTERPOLATION_PRESERVE_BLACK:

Indexed RGB - 1 bpp;
Grayscale - 1 bpp.

If nInterpMethod is IG_INTERPOLATION_AVERAGE or IG_INTERPOLATION_BILINEAR:

All pixel formats supported by ImageGear Professional, except:

Indexed RGB with non-grayscale palette.

If nInterpMethod is IG_INTERPOLATION_BICUBIC:

All pixel formats supported by ImageGear Professional, except:

Indexed RGB with non-grayscale palette.
Grayscale - 1 bpp.

Otherwise, all pixel formats supported by ImageGear Professional.

This function does not support PDF images.

Example:

HIGEAR hIGear; // HIGEAR handle of the image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func
AT_DIMENSION nWidth, nHeight; // Dimensions of the image

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 // Get dimensions of the image

ImageGear Professional v18 for Mac | 932

 IG_image_dimensions_get(hIGear, &nWidth, &nHeight, NULL);

 nErrcount = IG_IP_resize(hIGear, nWidth / 2, nHeight / 2, IG_INTERPOLATION_NONE);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

The image data in the bitmap will be stretched, compressed, or padded as necessary to fit the new dimensions.

During resizing, new pixel values that previously did not exist in the image may be introduced due to interpolation. If
you want to prevent this, such as to preserve the original number of palette entries used, then specify
IG_INTERPOLATION_NONE. In this case, only pixel values that occur in the original image will result in the resized
image.

The functionality of this API call has been upgraded and supported by the new function IG_IP_resize_bkgrnd_ex.
This new function allows you to change the background color around the image being resized, if the interpolation
is either IG_INTERPOLATION_PADDING or IG_INTERPOLATION_CANVAS. In the interest of backward
compatibility, we have left the old function in its original form and have retained support for it. If you have
already used the old function in your code, it is not mandatory that you modify your code, but it is
recommended.

ImageGear Professional v18 for Mac | 933

1.3.1.2.18.59 IG_IP_resize_bkgrnd

This function resizes the image referenced by hIGear.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_resize_bkgrnd(
 HIGEAR hIGear,
 AT_DIMENSION nNewWidth,
 AT_DIMENSION nNewHeight,
 AT_MODE nInterpMethod,
 LPAT_PIXEL lpBkgColor
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to resize.

nNewWidth AT_DIMENSION Width that the image is to be after resizing.

nNewHeight AT_DIMENSION Height that the image is to be after resizing.

nInterpMethod AT_MODE Specifies interpolation method to use for image resizing. See
enumIGInterpolations for possible values.

lpBkgColor LPAT_PIXEL Pointer to the RGB or pixel value that specifies the background color to be used
in the displaced areas after the image has been resized when using the resize
with padding or canvas method.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

If nInterpMethod is IG_INTERPOLATION_GRAYSCALE, IG_INTERPOLATION_PRESERVE_WHITE, or
IG_INTERPOLATION_PRESERVE_BLACK:

Indexed RGB - 1 bpp;
Grayscale - 1 bpp.

If nInterpMethod is IG_INTERPOLATION_AVERAGE or IG_INTERPOLATION_BILINEAR:

All pixel formats supported by ImageGear Professional, except:

Indexed RGB with non-grayscale palette.

If nInterpMethod is IG_INTERPOLATION_BICUBIC:

All pixel formats supported by ImageGear Professional, except:

Indexed RGB with non-grayscale palette.
Grayscale - 1 bpp.

Otherwise, all pixel formats supported by ImageGear Professional.

This function does not support PDF images.

Example:

HIGEAR hIGear; // HIGEAR handle of the image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func
AT_DIMENSION nWidth, nHeight; // Dimensions of the image
AT_INT channelCount; // Count of channels in the image
AT_PIXEL lpBackground[256]; // Buffer for background color

ImageGear Professional v18 for Mac | 934

AT_INT i;

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 // Get dimensions of the image
 IG_image_dimensions_get(hIGear, &nWidth, &nHeight, NULL);
 // Get channel count
 IG_image_channel_count_get(hIGear, &channelCount);
 // Initialize background color with '255'
 for(i = 0; i < channelCount; i ++)
 {
 lpBackground[i] = (AT_PIXEL)255;
 }

 nErrcount = IG_IP_resize_bkgrnd(hIGear, nWidth / 2, nHeight / 2,
IG_INTERPOLATION_BILINEAR, lpBackground);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

The image data in the bitmap will be stretched, compressed, or padded as necessary to fit the new dimensions.

During resizing, new pixel values that previously did not exist in the image may be introduced due to interpolation. If
you want to prevent this, such as to preserve the original number of palette entries used, then specify
IG_INTERPOLATION_NONE. In this case only pixel values that occur in the original image will result in the resized
image.

Setting the IG_INTERPOLATION_PADDING means that if you increase the size of the image, it is padded to the
new boundaries. Pixels added to the right and bottom of the original image will be filled with lpBkgColor. If you
decrease the size of the image with IG_INTERPOLATION_PADDING, the image is cropped.

ImageGear Professional v18 for Mac | 935

1.3.1.2.18.60 IG_IP_resize_bkgrnd_ex

This function resizes the image referenced by hIGear.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_resize_bkgrnd_ex(
 HIGEAR hIGear,
 AT_DIMENSION nNewWidth,
 AT_DIMENSION nNewHeight,
 AT_MODE nInterpMethod,
 LPAT_PIXEL lpBkgColor,
 DWORD dwFlags,
 INT nValue
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to resize.

nNewWidth AT_DIMENSION The width of the resized image.

nNewHeight AT_DIMENSION The height of the resized image.

nInterpMethod AT_MODE Specifies interpolation method to use for image resizing. See
enumIGInterpolations for possible values.

lpBkgColor LPAT_PIXEL Pointer to the RGB or pixel value that specifies the background color to be used
in the displaced areas after the image is resized using padding method.

dwFlags DWORD Reserved for future use.

nValue INT The contents of this parameter depends upon the value of nInterpMethod:
IG_INTERPOLATION_GRAYSCALE - nValue can be from 0 to 100. It takes the
proportion of pixels from entry 1 to entry 0 (white/black).
IG_INTERPOLATION_PRESERVE_WHITE - nValue can be from 0 to 100. It
indicates the threshold value of the amount of white color to include.
IG_INTERPOLATION_PRESERVE_BLACK - nValue can be from 0 to 100. It
indicates the threshold value of the amount of black color to include.
Any other values - nValue is ignored.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

If nInterpMethod is IG_INTERPOLATION_GRAYSCALE, IG_INTERPOLATION_PRESERVE_WHITE, or
IG_INTERPOLATION_PRESERVE_BLACK:

Indexed RGB - 1 bpp;
Grayscale - 1 bpp.

If nInterpMethod is IG_INTERPOLATION_AVERAGE or IG_INTERPOLATION_BILINEAR:

All pixel formats supported by ImageGear Professional, except:

Indexed RGB with non-grayscale palette.

If nInterpMethod is IG_INTERPOLATION_BICUBIC:

All pixel formats supported by ImageGear Professional, except:

Indexed RGB with non-grayscale palette.
Grayscale - 1 bpp.

ImageGear Professional v18 for Mac | 936

Otherwise, all pixel formats supported by ImageGear Professional.

This function does not support PDF images.

Example:

HIGEAR hIGear; // HIGEAR handle of the image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func
AT_DIMENSION nWidth, nHeight; // Dimensions of the image
AT_INT channelCount; // Count of channels in the image
AT_PIXEL lpBackground[256]; // Buffer for background color
AT_INT i;

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 // Get dimensions of the image
 IG_image_dimensions_get(hIGear, &nWidth, &nHeight, NULL);
 // Get channel count
 IG_image_channel_count_get(hIGear, &channelCount);
 // Initialize background color with '255'
 for(i = 0; i < channelCount; i ++)
 {
 lpBackground[i] = (AT_PIXEL)255;
 }

 nErrcount = IG_IP_resize_bkgrnd_ex(hIGear, nWidth / 2, nHeight / 2,
IG_INTERPOLATION_BILINEAR, lpBackground,
 0, 0);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

The image data in the bitmap will be stretched, compressed, or padded as necessary to fit the new dimensions.

During resizing, new pixel values that previously did not exist in the image may be introduced due to interpolation. If
you want to prevent this, (to preserve the original number of palette entries used, for example) specify
IG_INTERPOLATION_NONE. In this case only pixel values that occur in the original image will result in the resized
image.

Setting the IG_INTERPOLATION_PADDING means that if you increase the size of the image, it is padded to the
new boundaries. Pixels added to the right and bottom of the original image will be filled with lpBkgColor. If you
decrease the size of the image with IG_INTERPOLATION_PADDING, the image is cropped.

ImageGear Professional v18 for Mac | 937

1.3.1.2.18.61 IG_IP_resize_canvas

This function resizes the image referenced by hIGear without scaling it.

Declaration:

AT_ERRCOUNT LACCUAPI IG_IP_resize_canvas(
 HIGEAR hIGear,
 AT_DIMENSION new_width,
 AT_DIMENSION new_height,
 AT_PIXPOS nXPos,
 AT_PIXPOS nYPos,
 LPAT_PIXEL lpBkgColor
);

Arguments:

Name Type Description

hIGear HIGEAR Image to process.

new_width AT_DIMENSION Width of the image after resizing.

new_height AT_DIMENSION Height of the image after resizing.

nXPos AT_PIXPOS X offset at which to put left top corner of the image after resizing.

nYPos AT_PIXPOS Y offset at which to put left top corner of the image after resizing.

lpBkgColor LPAT_PIXEL Color to fill the empty area. Ignored for vector images.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Remarks:

The image data in the bitmap is not stretched or compressed, but copied to the specified offset in the new image.

ImageGear Professional v18 for Mac | 938

1.3.1.2.18.62 IG_IP_resize_ex

This function resizes the image referenced by hIGear.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_resize_ex(
 HIGEAR hIGear,
 AT_DIMENSION nNewWidth,
 AT_DIMENSION nNewHeight,
 AT_MODE nInterpMethod,
 DWORD dwFlags,
 INT nValue
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to resize.

nNewWidth AT_DIMENSION Width to which the image is to be resized.

nNewHeight AT_DIMENSION Height to which the image is to be resized.

nInterpMethod AT_MODE Specifies interpolation method to use for image resizing. See
enumIGInterpolations for possible values.

dwFlags DWORD Reserved for future use.

nValue INT The contents of this parameter depends upon the value of nInterpMethod:
IG_INTERPOLATION_GRAYSCALE - nValue can be from 0 to 100. It takes the
proportion of pixels from entry 1 to entry 0 (white/black).
IG_INTERPOLATION_PRESERVE_WHITE - nValue can be from 0 to 100. It
indicates the threshold value of the amount of white color to include.
IG_INTERPOLATION_PRESERVE_BLACK - nValue can be from 0 to 100. It
indicates the threshold value of the amount of black color to include.
Any other values - nValue is ignored.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

If nInterpMethod is IG_INTERPOLATION_GRAYSCALE, IG_INTERPOLATION_PRESERVE_WHITE, or
IG_INTERPOLATION_PRESERVE_BLACK:

Indexed RGB - 1 bpp;
Grayscale - 1 bpp;

If nInterpMethod is IG_INTERPOLATION_AVERAGE or IG_INTERPOLATION_BILINEAR:

All pixel formats supported by ImageGear Professional, except:

Indexed RGB with non-grayscale palette.

If nInterpMethod is IG_INTERPOLATION_BICUBIC:

All pixel formats supported by ImageGear Professional, except:

Indexed RGB with non-grayscale palette.
Grayscale - 1 bpp.

Otherwise, all pixel formats supported by ImageGear Professional.

This function does not support PDF images.

ImageGear Professional v18 for Mac | 939

Example:

HIGEAR hIGear; // HIGEAR handle of the image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func
AT_DIMENSION nWidth, nHeight; // Dimensions of the image

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 // Get dimensions of the image
 IG_image_dimensions_get(hIGear, &nWidth, &nHeight, NULL);

 nErrcount = IG_IP_resize_ex(hIGear, nWidth / 2, nHeight / 2,
IG_INTERPOLATION_BILINEAR, 0, 0);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

The image data in the bitmap will be stretched, compressed, or padded as necessary to fit the new dimensions.

During resizing, new pixel values that previously did not exist in the image may be introduced due to interpolation. If
you want to prevent this, such as to preserve the original number of palette entries used, then specify
IG_INTERPOLATION_NONE. In this case, only pixel values that occur in the original image will result in the resized
image.

The functionality of this API call has been upgraded and supported by the new function IG_IP_resize_bkgrnd_ex.
The reason that this new function has been created is that the old function does not allow you to change the
background color around the image being resized, if the interpolation is either IG_INTERPOLATION_PADDING or
IG_INTERPOLATION_CANVAS. In the interest of backward compatibility, we have left the old function in its
original form and have retained support for it. If you have already used the old function in your code, it is not
mandatory that you modify your code, but it is recommended.

ImageGear Professional v18 for Mac | 940

1.3.1.2.18.63 IG_IP_RGB_to_hue

This function will convert a 24-bit RGB value to a hue value.

Declaration:

AT_ERRCOUNT ACCUAPIIG_IP_RGB_to_hue (
 const LPAT_RGB lpRGB,
 LPDOUBLE lpHue
);

Arguments:

Name Type Description

lpRGB const
LPAT_RGB

A long pointer to a structure of type AT_RGB containing three bytes of color information.

lpHue LPDOUBLE A long pointer to a double containing the hue value that corresponds to the color specified
by lpRGB.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

RGB – 24 bpp.

Example:

See the example for IG_FX_chroma_key() function.

Remarks:

You pass it a pointer to the AT_RGB structure of your choice, and it returns the hue angle (0.0 to 360) to you. This is
useful before calling IG_FX_chroma_key() which requires a hue angle as one of its arguments. (ImageGear's pixel access
functions only read and write RGB values.) You can use them to read the RGB value of a "background" pixel in the image
which you wish to make transparent.

ImageGear Professional v18 for Mac | 941

1.3.1.2.18.64 IG_IP_rotate_any_angle

This function rotates the image by the specified angle.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_rotate_any_angle(
 HIGEAR hIGear,
 DOUBLE angle,
 AT_MODE rotate_mode
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

angle DOUBLE Angle by which to rotate the image, in degrees. Positive values result in clockwise
rotation; negative values result in counter-clockwise rotation.

rotate_mode AT_MODE Rotation mode. Specifies whether the image should be clipped or expanded. See
enumIGRotationModes for possible values.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; // HIGEAR handle of the image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 nErrcount = IG_IP_rotate_any_angle(hIGear, 45., IG_ROTATE_CLIP);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

The function rotates the image about its center point.

You can use IG_IP_rotate_compute_size to calculate the new dimensions of the bitmap that the image will have after
rotation in IG_ROTATE_EXPAND mode.

The functionality of this API call has been upgraded and supported by the new function
IG_IP_rotate_any_angle_ex. This new function allows you to specify the interpolation method for rotation and
background color around the image being rotated. In the interest of backward compatibility, we have left the old
function in its original form and have retained support for it. If you have already used the old function in your
code, it is not mandatory that you modify your code, but it is recommended.

Rotating the image multiple times at angles that are not multiple of 90 degrees may degrade the quality of the
image.

ImageGear Professional v18 for Mac | 942

You can only rotate PDF/PS images in 90 degree increments.

ImageGear Professional v18 for Mac | 943

1.3.1.2.18.65 IG_IP_rotate_any_angle_bkgrnd

This function rotates the image by the specified angle.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_rotate_any_angle_bkgrnd(
 HIGEAR hIGear,
 DOUBLE angle,
 AT_MODE rotate_mode,
 LPAT_PIXEL lpBkgrndColor
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

angle DOUBLE Angle by which to rotate the image, in degrees. Positive values result in clockwise
rotation; negative values result in counter-clockwise rotation.

rotate_mode AT_MODE Rotation mode. Specifies whether the image should be clipped or expanded. See
enumIGRotationModes for possible values.

lpBkgrndColor LPAT_PIXEL A far pointer to the RGB or pixel value that specifies the background color to be used
in the displaced areas after the image has been rotated.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; // HIGEAR handle of the image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func
AT_INT channelCount; // Count of channels in the image
AT_PIXEL lpBackground[256]; // Buffer for background color
AT_INT i;

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 // Get channel count
 IG_image_channel_count_get(hIGear, &channelCount);
 // Initialize background color with '255'
 for(i = 0; i < channelCount; i ++)
 {
 lpBackground[i] = (AT_PIXEL)255;
 }
 nErrcount = IG_IP_rotate_any_angle_bkgrnd(hIGear, 45., IG_ROTATE_CLIP, lpBackground);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

ImageGear Professional v18 for Mac | 944

The function rotates the image about its center point.

You can use IG_IP_rotate_compute_size to calculate the new dimensions of the bitmap that the image will have after
rotation in IG_ROTATE_EXPAND mode.

The functionality of this API call has been upgraded and supported by the new function
IG_IP_rotate_any_angle_ex. This new function allows you to specify the interpolation method for rotation. In
the interest of backward compatibility, we have left the old function in its original form and have retained
support for it. If you have already used the old function in your code, it is not mandatory that you modify your
code, but it is recommended.

Rotating the image multiple times at angles that are not multiple of 90 degrees may degrade the quality of the
image.

You can only rotate PDF/PS images in 90 degree increments.

ImageGear Professional v18 for Mac | 945

1.3.1.2.18.66 IG_IP_rotate_any_angle_ex

This function rotates the image by the specified angle.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_rotate_any_angle_ex(
 HIGEAR hIGear,
 DOUBLE angle,
 AT_MODE rotate_mode,
 LPAT_PIXEL lpBkgrndColor,
 AT_MODE interpolation
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

angle DOUBLE Angle by which to rotate the image, in degrees. Positive values result in clockwise
rotation; negative values result in counter-clockwise rotation.

rotate_mode AT_MODE Rotation mode. Specifies whether the image should be clipped or expanded. See
enumIGRotationModes for possible values.

lpBkgrndColor LPAT_PIXEL A far pointer to the RGB or pixel value that specifies the background color to be used
in the displaced areas after the image has been rotated.

interpolation AT_MODE Interpolation to use for rotation. Supported modes are IG_INTERPOLATION_NONE,
IG_INTERPOLATION_BILINEAR, IG_INTERPOLATION_BICUBIC. Ignored for 1-bit
images.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

If interpolation is IG_INTERPOLATION_BILINEAR or IG_INTERPOLATION_BICUBIC:

All pixel formats supported by ImageGear Professional, except:

Indexed RGB with non-grayscale palette.
Images that have a Grayscale LUT attached to them.

Otherwise, all pixel formats supported by ImageGear Professional.

Interpolation mode is ignored for 1-bit images.

Example:

HIGEAR hIGear; // HIGEAR handle of the image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func
AT_INT channelCount; // Count of channels in the image
AT_PIXEL lpBackground[256]; // Buffer for background color
AT_INT i;

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 // Get channel count
 IG_image_channel_count_get(hIGear, &channelCount);

ImageGear Professional v18 for Mac | 946

 // Initialize background color with '255'
 for(i = 0; i < channelCount; i ++)
 {
 lpBackground[i] = (AT_PIXEL)255;
 }
 nErrcount = IG_IP_rotate_any_angle_ex(hIGear, 45., IG_ROTATE_CLIP, lpBackground,
IG_INTERPOLATION_BILINEAR);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

The function rotates the image about its center point.

You can use IG_IP_rotate_compute_size to calculate the new dimensions of the bitmap that the image will have after
rotation in IG_ROTATE_EXPAND mode.

For the highest quality, bilinear interpolation is recommended, especially if the rotation angle is small (less than 5
degrees) and/or the image will be rotated multiple times. Bi-cubic interpolation can be used to achieve a slightly
sharper appearance.

Rotating the image multiple times at angles that are not multiple of 90 degrees may degrade the quality of the
image.

You can only rotate PDF/PS images in 90 degree increments.

ImageGear Professional v18 for Mac | 947

1.3.1.2.18.67 IG_IP_rotate_compute_size

This function computes the new width and height of the image after it has been rotated using IG_IP_rotate_any_angle,
IG_IP_rotate_any_angle_bkgrnd, or IG_IP_rotate_any_angle_ex functions.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_rotate_compute_size(
 HIGEAR hIGear,
 DOUBLE angle,
 AT_MODE rotate_mode,
 LPAT_DIMENSION lpWidth,
 LPAT_DIMENSION lpHeight
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image of which to compute size.

angle DOUBLE Angle by which to rotate the image, in degrees. Positive values result in clockwise
rotation; negative values result in counter-clockwise rotation.

rotate_mode AT_MODE Rotation mode. Specifies whether the image should be clipped or expanded. See
enumIGRotationModes for possible values.

lpWidth LPAT_DIMENSION Pointer in which is returned the new width of the bitmap after rotation.

lpHeight LPAT_DIMENSION Pointer in which is returned the new height of the bitmap after rotation.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; // HIGEAR handle of the image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func
AT_DIMENSION nWidth, nHeight; // New height and width of image

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 nErrcount = IG_IP_rotate_compute_size(hIGear, 45., IG_ROTATE_EXPAND, &nWidth, &nHeight);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

You may use this function before rotation in IG_ROTATE_EXPAND mode to determine the dimensions of the new rotated
image. This way, you can estimate the amount of memory that will be needed to hold the new image.

ImageGear Professional v18 for Mac | 948

1.3.1.2.18.68 IG_IP_rotate_multiple_90

This function will rotate the image referenced by hIGear at an angle that is a multiple of 90 degrees.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_rotate_multiple_90(
 HIGEAR hIGear,
 AT_MODE nMult_90_Mode
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to rotate.

nMult_90_Mode AT_MODE A constant that specifies rotation angle. See enumIGRotationValues

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; // HIGEAR handle of the image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 nErrcount = IG_IP_rotate_multiple_90(hIGear, IG_ROTATE_90);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

The function rotates the image about its center point.

If the rotation is either 90 or 270 degrees, the previous width of the image becomes the new height, and the previous
height of the image becomes the new width. IG_ROTATE_0 does nothing and is included for completeness only.

To rotate by an arbitrary angle that may not be a multiple of 90 degrees, use IG_IP_rotate_any_angle_ex.

The function does not swap vertical and horizontal DIB resolutions. If vertical and horizontal resolutions are different,
rotation by 90 or 270 degrees will cause the image to display out of original proportions. Use
IG_IP_rotate_multiple_90_opt function with SwapResolutions field of lpRotateOptions parameter set to TRUE to swap the
resolutions during rotation and preserve the proportions.

ImageGear Professional v18 for Mac | 949

1.3.1.2.18.69 IG_IP_rotate_multiple_90_opt

This function will rotate the image referenced by hIGear at an angle that is a multiple of 90 degrees, using additional
rotation options.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_rotate_multiple_90_opt(
 HIGEAR hIGear,
 AT_MODE nMult_90_Mode,
 LPAT_ROTATE_MULTIPLE_90_OPTIONS lpRotateOptions
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to rotate.

nMult_90_Mode AT_MODE A constant that specifies rotation angle. See
enumIGRotationValues.

lpRotateOptions LPAT_ROTATE_MULTIPLE_90_OPTIONS Pointer to AT_ROTATE_MULTIPLE_90_OPTIONS structure,
which contains additional rotation options. NULL means
the same behavior as IG_IP_rotate_multiple_90.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; // HIGEAR handle of the image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func
AT_ROTATE_MULTIPLE_90_OPTIONS rotateOptions = {TRUE}; // Rotation options

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 nErrcount = IG_IP_rotate_multiple_90_opt(hIGear, IG_ROTATE_90, &rotateOptions);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

The function rotates the image about its center point, using additional options.

If the rotation is either 90 or 270 degrees, the previous width of the image becomes the new height, and the previous
height of the image becomes the new width. IG_ROTATE_0 does nothing and is included for completeness only.

To rotate by an arbitrary angle that may not be a multiple of 90 degrees, use IG_IP_rotate_any_angle_ex.

ImageGear Professional v18 for Mac | 950

1.3.1.2.18.70 IG_IP_sharpen

This function sharpens the image by making the dark side of a contrast edge become darker and the light side lighter.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_sharpen(
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 const INT nSharpFactor
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRect const
LPAT_RECT

Pointer to an AT_RECT struct specifying a portion of the image to be affected. NULL
means entire image.

nSharpFactor const INT Factor indicating the degree for increasing image sharpness. Valid range is 1 to 5. The
higher the value, the more sharpening will be applied.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; // HIGEAR handle of the image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 nErrcount = IG_IP_sharpen(hIGear, NULL, 2);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

Flat areas (areas that are filled by the same pixel value) are not altered by this function.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal NRA flag has been set to TRUE, indicating that a
mask HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask.

See Also

IG_IP_unsharp_mask

IG_IP_smooth

ImageGear Professional v18 for Mac | 951

IG_IP_convolve_matrix

ImageGear Professional v18 for Mac | 952

1.3.1.2.18.71 IG_IP_smooth

This function makes images look softer and slightly out of focus.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_smooth(
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 const INT nSmoothFactor
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRect const
LPAT_RECT

Pointer to an AT_RECT struct specifying a portion of the image to be affected. NULL
means entire image.

nSmoothFactor const INT Factor indicating the degree of smoothness wanted. Valid range is 1 to 4. Larger
values cause greater softening.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; // HIGEAR handle of the image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 nErrcount = IG_IP_smooth(hIGear, NULL, 2);
 // ...
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

This function can be used to reduce the graininess of an image.

The pixel neighborhood considered by this function is 3x3, 5x5, 7x7, or 9x9 for nSmoothFactor = 1, 2, 3, or 4
respectively. Therefore, smaller values result in faster processing, while larger values result in more smoothing.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal NRA flag has been set to TRUE, indicating that a
mask HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask.

See Also

IG_IP_gaussian_blur

ImageGear Professional v18 for Mac | 953

IG_FX_blur

IG_IP_sharpen

IG_IP_convolve_matrix

ImageGear Professional v18 for Mac | 954

1.3.1.2.18.72 IG_IP_swap_red_blue

This function reverses the color sequence in the pixels of image hIGear's image bitmap.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_swap_red_blue (HIGEAR hIGear);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Non-RGB images are converted to RGB for processing, and then back to original color space.

Example:

HIGEAR hIGear; /* HIGEAR handle of 24-bit image */
IG_IP_swap_red_blue (hIGear);

Remarks:

If the sequence is Blue-Green-Red (the standard sequence for a DIB), it is reversed to Red-Green-Blue. If Red-Green-
Blue, each pixel is reversed to Blue-Green-Red. This function is typically used on 24-bit RGB images, but it can operate
on other image types as well.

ImageGear Professional v18 for Mac | 955

1.3.1.2.18.73 IG_IP_thumbnail_create

This function creates a resized copy of the image. It can be used for creating a thumbnail (small preview version of
the image).

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_thumbnail_create(
 HIGEAR hOriginalImage,
 LPHIGEAR lphNewThumbnail,
 AT_DIMENSION nNewWidth,
 AT_DIMENSION nNewHeight,
 AT_MODE nInterpMethod
);

Arguments:

Name Type Description

hOriginalImage HIGEAR HIGEAR handle of image of which to create thumbnail image.

lphNewThumbnail LPHIGEAR Pointer to a variable of type HIGEAR to receive the HIGEAR handle of the
created thumbnail image.

nNewWidth AT_DIMENSION Specifies width wanted for the new image.

nNewHeight AT_DIMENSION Specifies height wanted for the new image.

nInterpMethod AT_MODE Specifies interpolation method to use for image resizing. See
enumIGInterpolations for possible values.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

If nInterpMethod is IG_INTERPOLATION_GRAYSCALE, IG_INTERPOLATION_PRESERVE_WHITE, or
IG_INTERPOLATION_PRESERVE_BLACK:

Indexed RGB - 1 bpp;
Grayscale - 1 bpp.

If nInterpMethod is IG_INTERPOLATION_AVERAGE or IG_INTERPOLATION_BILINEAR:

All pixel formats supported by ImageGear Professional, except:

Indexed RGB with non-grayscale palette.

If nInterpMethod is IG_INTERPOLATION_BICUBIC:

All pixel formats supported by ImageGear Professional, except:

Indexed RGB with non-grayscale palette.
Grayscale - 1 bpp.

Otherwise, all pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; // HIGEAR handle of the image
HIGEAR hIGearThumb; // HIGEAR handle of the thumbnail image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func

// Load image file "picture.bmp" from working directory
nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)

ImageGear Professional v18 for Mac | 956

{
 nErrcount = IG_IP_thumbnail_create(hIGear, &hIGearThumb, 64, 64,
IG_INTERPOLATION_BILINEAR);
 if(nErrcount == 0)
 {
 // ...
 // Destroy the thumbnail image
 IG_image_delete(hIGearThumb);
 }
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

This function works in the same way as IG_IP_resize except that it returns a resized copy of the original image,
instead of changing the original image. See IG_IP_resize for additional details.

The functionality of this API call has been upgraded and supported by the new function
IG_IP_thumbnail_create_ex. This new function allows you to pass additional parameters that affect
interpolation.

ImageGear Professional v18 for Mac | 957

1.3.1.2.18.74 IG_IP_thumbnail_create_ex

This function creates a resized copy of the image. It can be used for creating a thumbnail (small preview version of
the image).

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_thumbnail_create_ex(
 HIGEAR hOriginalImage,
 LPHIGEAR lphNewThumbnail,
 AT_DIMENSION nNewWidth,
 AT_DIMENSION nNewHeight,
 AT_MODE nInterpMethod,
 DWORD dwFlags,
 INT nValue
);

Arguments:

Name Type Description

hOriginalImage HIGEAR HIGEAR handle of image of which to create thumbnail image.

lphNewThumbnail LPHIGEAR Pointer to a variable of type HIGEAR to receive the HIGEAR handle of the
created thumbnail image.

nNewWidth AT_DIMENSION Specifies width wanted for the new image.

nNewHeight AT_DIMENSION Specifies height wanted for the new image.

nInterpMethod AT_MODE Specifies interpolation method to use for image resizing. See
enumIGInterpolations for possible values.

dwFlags DWORD The contents of this parameter depends upon the value of nInterpMethod.
This is currently not used.

nValue INT The contents of this parameter depends upon the value of nInterpMethod:
IG_INTERPOLATION_GRAYSCALE - nValue can be from 0 to 100. It takes
the proportion of pixels from entry 1 to entry 0 (white/black).
IG_INTERPOLATION_PRESERVE_WHITE - nValue can be from 0 to 100. It
indicates the threshold value of the amount of white color to include.
IG_INTERPOLATION_PRESERVE_BLACK - nValue can be from 0 to 100. It
indicates the threshold value of the amount of black color to include.
Any other values - nValue is ignored.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

If nInterpMethod is IG_INTERPOLATION_GRAYSCALE, IG_INTERPOLATION_PRESERVE_WHITE, or
IG_INTERPOLATION_PRESERVE_BLACK:

Indexed RGB - 1 bpp;
Grayscale - 1 bpp.

If nInterpMethod is IG_INTERPOLATION_AVERAGE or IG_INTERPOLATION_BILINEAR:

All pixel formats supported by ImageGear Professional, except:

Indexed RGB with non-grayscale palette.

If nInterpMethod is IG_INTERPOLATION_BICUBIC:

All pixel formats supported by ImageGear Professional, except:

Indexed RGB with non-grayscale palette.

ImageGear Professional v18 for Mac | 958

Grayscale - 1 bpp.

Otherwise, all pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; // HIGEAR handle of the image
HIGEAR hIGearThumb; // HIGEAR handle of the thumbnail image
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func

// Load image file "picture.tif", 1 bpp, from working directory
nErrcount = IG_load_file("picture.tif", &hIGear);
if(nErrcount == 0)
{
 nErrcount = IG_IP_thumbnail_create_ex(hIGear, &hIGearThumb, 64, 64,
IG_INTERPOLATION_GRAYSCALE, 0, 50);
 if(nErrcount == 0)
 {
 // ...
 // Destroy the thumbnail image
 IG_image_delete(hIGearThumb);
 }
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

This function works in the same way as IG_IP_resize_ex with the only difference that it returns a resized copy of the
original image, instead of changing the original image. See IG_IP_resize_ex for additional details.

ImageGear Professional v18 for Mac | 959

1.3.1.2.18.75 IG_IP_transform_with_LUT

This function transforms the pixel values of the image referenced by hIGear, using a LUT.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_transform_with_LUT (
 HIGEAR hIGear,
 LPAT_RECT lpRect,
 LPAT_PIXEL lpLUTr,
 LPAT_PIXEL lpLUTg,
 LPAT_PIXEL lpLUTb,
 AT_MODE nColorMode
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to transform.

lpRect LPAT_RECT Rectangular portion of the image to process; set to NULL for entire image. Before
ImageGear performs this operation, it will check to see if an internal flag has been set
to TRUE to make a mask active for this HIGEAR image. If a mask is active, and a valid
pointer to a mask can be found, ImageGear will override the settings passed to this
structure in favor of the non-rectangular ROI defined by the mask.

lpLUTr LPAT_PIXEL Far pointer to a user-supplied Look-Up Table for transforming the red component, or
for transforming the pixel value if the image is less than 24-bit.

lpLUTg LPAT_PIXEL Far pointer to a user-supplied Look-Up Table for transforming the green component, or
for transforming the pixel value if the image is 24-bit.

lpLUTb LPAT_PIXEL Far pointer to a user-supplied Look-Up Table for transforming the blue component, or
for transforming the pixel value if the image is 24-bit.

nColorMode AT_MODE A variable of type AT_MODE (IG_COLOR_COMP_) that tells which color channel to use,
or to use all three.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional, with the following restrictions:
Bits per channel must be less than or equal to 8.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_PIXEL LUTred[256]; /* Look up pixels, or red if 24-bit, here */
AT_PIXEL LUTgreen[256];/* Look up green if 24-bit, here */
AT_PIXEL LUTblue[256]; /* Look up blue if 24-bit, here */
IG_IP_transform_with_LUT (hIGear, (LPAT_PIXEL)&LUTred,(LPAT_PIXEL)&LUTgreen,
(LPAT_PIXEL)&LUTblue, IG_COLOR_COMP_RGB);

Remarks:

The pixels from hIGear are used as indices into the LUT. The entry in the LUT at this position is placed into the new
image. For 24-bit images, the three channels each have their own LUT. You can point all three LUT parameters to the
same LUT. This will process all three channels the same. For 8-bit gray level images, only the lpLUTr LUT parameter is
used and the pixel value replaced from the LUT is as follows and the other two are ignored.

ImageGear Professional v18 for Mac | 960

new pixel value = RedLUT[old pixel value].

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. (See above.) However, before ImageGear
performs the operation specified by this function, it will check to see if an internal flag has been set to TRUE,
indicating that a mask HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a
mask image has been assigned, ImageGear will override the settings passed to the AT_RECT structure and use the
non-rectangular ROI defined by the mask HIGEAR. To create a non-rectangular region of interest, call
IG_IP_NR_ROI_to_HIGEAR_mask().

Please see the descriptions of IG_IP_NR_ROI_mask_associate() and IG_IP_NR_ROI_to_HIGEAR_mask()
functions for more details.

ImageGear Professional v18 for Mac | 961

1.3.1.2.18.76 IG_IP_transform_with_LUT_ex

This function transforms the pixel values of the image referenced by hIGear, using a LUT.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_transform_with_LUT_ex(
 HIGEAR hImage,
 LPAT_RECT lpRect,
 LPAT_VOID* lpLUTs,
 AT_INT nLUTNumber,
 LPAT_INT lpLUTSize,
 AT_MODE nChannels
);

Arguments:

Name Type Description

hImage HIGEAR Image to transform.

lpRect LPAT_RECT Rectangular portion of the image to process; set to NULL for entire image. Before
ImageGear performs this operation, it will check to see if an internal flag has been set to
TRUE to make a mask active for this HIGEAR image. If a mask is active, and a valid
pointer to a mask can be found, ImageGear will override the settings passed to this
structure in favor of the non-rectangular ROI defined by the mask.

lpLUTs LPAT_VOID* Far pointer to a user-supplied Look-Up Table.

nLUTNumber AT_INT Number of LUTs in lpLUTs.

lpLUTSize LPAT_INT Size of every LUT.

nChannels AT_MODE A variable of type AT_MODE (IG_COLOR_COMP_) that tells which color channel to use.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional, with the following restrictions:
Bits per channel must be less than or equal to 16.

Remarks:

The pixels from hIGear are used as indices into the LUT. The entry in the LUT at this position is placed into the new
image. The function supports images having any number of channels and arbitrary channel depths.

This function, like other ImageGear Image Processing and Clipboard API calls, takes an AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

ImageGear Professional v18 for Mac | 962

1.3.1.2.18.77 IG_IP_unsharp_mask

Unsharp masking filter is used for image sharpening and edge enhancement.

Declaration:

AT_ERRCOUNT ACCUAPI IG_IP_unsharp_mask (
 HIGEAR hIGear,
 const LPAT_RECT lpRect,
 const double dblRadius,
 const UINT nAmount,
 const UINT nThreshold,
 const AT_MODE nColorChannel);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRect const
LPAT_RECT

Far pointer to AT_RECT struct specifying a portion of the image to be affected. NULL
means entire image. Before ImageGear performs this operation, it will check to see if
internal flag has been set to TRUE to make a mask active for this HIGEAR image. If a
mask is active, and a valid pointer to a mask can be found, ImageGear will override
the settings passed to this structure in favor of the non-rectangular ROI defined by
the mask.

dblRadius const
double

Defines the neighborhood to be considered for each pixel.

nAmount const UINT Amount of sharpening, in percents.

nThreshold const UINT Minimal difference between a pixel and its neighbors at which the pixel will be
modified.

nColorChannel const
AT_MODE

Color channel to which the transform shall be applied.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional, except:
Indexed RGB with non-grayscale palette.

Example:

HIGEAR hIGear;
/* Sharpen whole image, radius = 2.0, amount = 150, threshold = 10 */
nErrCount =IG_IP_unsharp_mask (hIGear, NULL, 2.0, 150, 10, IG_COLOR_CHANNEL_ALL);

Remarks:

The algorithm works by subtracting a smoothed version of the image ("unsharp") from the original image.

Parameter dblRadius can range from 0.1 to 500. Typical values for high-resolution images range from 1.0 to 2.0. Use
larger values of dblRadius for thicker edges. The smaller dblRadius value is, the faster is this processing .

Parameter nAmount can range from 1 to 500. Typical values for photographic images range from 100 to 200. Use
bigger values for greater edge contrast.

Parameter nThreshold can range from 1 to 500. Typical values for photographic images are between 0 and 20. Use
nThreshold to apply sharpening only to those areas where contrast changes significantly. Flat areas will remain
unchanged. A proper selection of nThreshold allows you to enhance edges on the image while leaving insufficient

ImageGear Professional v18 for Mac | 963

details, such as noise or grain of the photographic film, unchanged.

Parameter nColorChannel specifies the channel to which the transform shall be applied. The default value is
IG_COLOR_COMP_ALL: apply transform to all color channels of the image. To run UnsharpMask process on the
Intensity channel of the image, convert the image to YUV colorspace, run UnsharpMask filter with nColorChannel =
IG_COLOR_COMP_YUV_Y, and convert back to original colorspace.

This function, like other ImageGear Image Processing and Clipboard API calls, takes AT_RECT structure as an
argument, so that you can process a rectangular sub-region of an image. However, before ImageGear performs the
operation specified by this function, it will check to see if an internal flag has been set to TRUE, indicating that a mask
HIGEAR should be used with the image. If the flag is set to TRUE, and a valid pointer to a mask image has been
assigned, ImageGear will override the settings passed to the AT_RECT structure and use the non-rectangular ROI
defined by the mask HIGEAR. To create a non-rectangular region of interest, call IG_IP_NR_ROI_to_HIGEAR_mask().

ImageGear Professional v18 for Mac | 964

1.3.1.2.19 Info Functions

This section provides information about the Info group of functions.

IG_info_get
IG_info_get_ex
IG_info_get_FD
IG_info_get_FD_ex
IG_info_get_mem
IG_info_get_mem_ex
IG_page_count_get
IG_page_count_get_FD
IG_page_count_get_mem
IG_tile_count_get
IG_tile_count_get_FD
IG_tile_count_get_mem

ImageGear Professional v18 for Mac | 965

1.3.1.2.19.1 IG_info_get

This function obtains information about the specified file without loading the pixel data. This is an obsolete function, see
remarks.

Declaration:

AT_ERRCOUNT ACCUAPI IG_info_get(
 const LPSTR lpszFileName,
 LPAT_MODE lpFileType,
 LPAT_MODE lpCompression,
 LPAT_DIB lpDIB
);

Arguments:

Name Type Description

lpszFileName const
LPSTR

Name of file about which to get information.

lpFileType LPAT_MODE Pointer to an AT_MODE variable in which the file type will be returned. See
enumIGFormats for possible values.

lpCompression LPAT_MODE Pointer to an AT_MODE variable in which compression type will be returned. See
enumIGCompressions for possible values.

lpDIB LPAT_DIB Pointer to an AT_DIB structure to which additional file information such as width,
height, and Bits Per Pixel will be returned.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

If lpDIB is not NULL, then

Indexed RGB - 1, 4, 8 bpp;
Grayscale - 9...16 bpp;
RGB - 24 bpp;
CMYK - 32 bpp.

otherwise, all pixel formats supported by ImageGear Professional.

Example:

AT_MODE nFileType; // Will receive an IG_FORMAT_ constant
AT_MODE nCompression; // Will receive an IG_COMPRESSION_ constant
AT_DIB dibInfoDIB; // Will receive copy of the BITMAPINFOHEADER
AT_ERRCOUNT nErrcount; // Returned count of errors
nErrcount = IG_info_get("picture.bmp", &nFileType, &nCompression, &dibInfoDIB);

Remarks:

This function is only kept for backward compatibility reasons. Please use IG_info_get_ex instead.

Any of the output parameters such as lpFileType, lpCompression or lpDIB can be NULL, if the corresponding info is not
required.

ImageGear Professional v18 for Mac | 966

1.3.1.2.19.2 IG_info_get_ex

This function obtains information about the specified file page, without loading the pixel data.

Declaration:

AT_ERRCOUNT ACCUAPI IG_info_get_ex(
 const LPSTR lpszFileName,
 UINT nPageNumber,
 LPAT_MODE lpFileType,
 LPAT_MODE lpCompression,
 HIGDIBINFO* lphDIB
);

Arguments:

Name Type Description

lpszFileName const LPSTR Path and name of the file to get the information about. The path can be absolute or
relative.

nPageNumber UINT Page number to get info about if this is a multi-page (multi-image) file. Note that
page numbers begin at 1, not 0. Set nPageNumber to 1, if this is not a multi-page
file.

lpFileType LPAT_MODE Pointer to an AT_MODE variable in which the file type will be returned. See
enumIGFormats for possible values.

lpCompression LPAT_MODE Pointer to an AT_MODE variable in which compression type will be returned. See
enumIGCompressions for possible values.

lphDIB HIGDIBINFO* Pointer to an HIGDIBINFO structure to which additional file information such as
width, height, and Bits Per Pixel, will be returned.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_MODE nFileType; // Will receive an IG_FORMAT_ constant
AT_MODE nCompression; // Will receive an IG_COMPRESSION_ constant
HIGDIBINFO hDIB;
AT_ERRCOUNT nErrcount; // Returned count of errors
nErrcount = IG_info_get_ex("picture.bmp", 1, &nFileType, &nCompression, &hDIB);

// ...
// Delete DIB info
IG_DIB_info_delete(hDIB);

Remarks:

Any of the output parameters such as lpFileType, lpCompression or lphDIB can be NULL, if the corresponding info is not
required.

See also the section Getting Information and Sorting Images.

This function is identical to IG_fltr_pageinfo_get_ex.

ImageGear Professional v18 for Mac | 967

1.3.1.2.19.3 IG_info_get_FD

This function obtains information about the file specified by the file handle, without loading the pixel data. This is an
obsolete function, see remarks.

Declaration:

AT_ERRCOUNT ACCUAPI IG_info_get_FD(
 AT_INT fd,
 LONG lOffset,
 UINT nPage,
 LPAT_MODE lpFileType,
 LPAT_MODE lpCompression,
 LPAT_DIB lpDIB
);

Arguments:

Name Type Description

fd AT_INT Handle of the open file. This handle can be obtained from Microsoft Windows
function such as CreateFile(), and cast to AT_INT for passing to the function
parameter. FILE pointers returned by functions such as fopen(), and file handles
returned by functions such as _sopen_s() are not supported.

lOffset LONG Offset into the file, in bytes, to where the image begins. This is the offset to the
beginning of the header, not to the beginning of the bitmap. lOffset is usually 0.

nPage UINT Page number for which the info is obtained. Note that page numbers begin at 1, not
0. Set nPage to 1 if this is not a multi-page file.

lpFileType LPAT_MODE Pointer to an AT_MODE variable in which the file type will be returned. See
enumIGFormats for possible values.

lpCompression LPAT_MODE Pointer to an AT_MODE variable in which compression type will be returned. See
enumIGCompressions for possible values.

lpDIB LPAT_DIB Pointer to an AT_DIB structure to which other file information such as width, height,
and Bits Per Pixel will be returned.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

If lpDIB is not NULL, then

Indexed RGB - 1, 4, 8 bpp;
Grayscale - 9...16 bpp;
RGB - 24 bpp;
CMYK - 32 bpp.

else - all pixel formats supported by ImageGear Professional.

Example:

HANDLE fd; // File Descriptor
AT_MODE nFileType; // Will receive an IG_FORMAT_ constant
AT_MODE nCompression; // Will receive an IG_COMPRESSION_ constant
AT_DIB atDIB;
AT_ERRCOUNT nErrcount; // Returned count of errors

fd = CreateFile(_T("picture.bmp"), GENERIC_READ,
 0, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

ImageGear Professional v18 for Mac | 968

if(fd != INVALID_HANDLE_VALUE)
{
 nErrcount = IG_info_get_FD((AT_INT)fd, 0, 1, &nFileType, &nCompression, &atDIB);
 CloseHandle(fd);

 // ...
}

Remarks:

This function is only kept for backward compatibility reasons. Please use IG_info_get_FD_ex instead.

Any of the output parameters such as lpFileType, lpCompression or lpDIB can be NULL, if the corresponding info is not
required.

ImageGear Professional v18 for Mac | 969

1.3.1.2.19.4 IG_info_get_FD_ex

This function obtains information about the file specified by the file handle, without loading its pixel data.

Declaration:

AT_ERRCOUNT ACCUAPI IG_info_get_FD_ex(
 AT_INT fd,
 LONG lOffset,
 UINT nPage,
 LPAT_MODE lpFileType,
 LPAT_MODE lpCompression,
 HIGDIBINFO* lphDIB
);

Arguments:

Name Type Description

fd AT_INT Handle of the open file. This handle can be obtained from Microsoft Windows
function such as CreateFile(), and cast to AT_INT for passing to the function
parameter. FILE pointers returned by functions such as fopen(), and file handles
returned by functions such as _sopen_s() are not supported.

lOffset LONG Offset into the file, in bytes, to where the image begins. This is the offset to the
beginning of the header, not to the beginning of the bitmap. lOffset is usually 0.

nPage UINT Page number about which to get information, if a multi-page file set to 1 or
greater; for a non-multi-page file set to 1.

lpFileType LPAT_MODE Pointer to an AT_MODE variable in which the file type will be returned. See
enumIGFormats for possible values.

lpCompression LPAT_MODE Pointer to an AT_MODE variable in which compression type will be returned. See
enumIGCompressions for possible values.

lphDIB HIGDIBINFO* Pointer to an HIGDIBINFO structure to which other file information such as width,
height, and Bits Per Pixel, will be returned.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HANDLE fd; // File Descriptor
AT_MODE nFileType; // Will receive an IG_FORMAT_ constant
AT_MODE nCompression; // Will receive an IG_COMPRESSION_ constant
HIGDIBINFO hDIB;
AT_ERRCOUNT nErrcount; // Returned count of errors

fd = CreateFile(_T("picture.bmp"), GENERIC_READ,
 0, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
if(fd != INVALID_HANDLE_VALUE)
{
 nErrcount = IG_info_get_FD_ex((AT_INT)fd, 0, 1, &nFileType, &nCompression, &hDIB);
 CloseHandle(fd);

 // ...
 // Delete DIB info

ImageGear Professional v18 for Mac | 970

 IG_DIB_info_delete(hDIB);
}

See Also

IG_info_get_ex

ImageGear Professional v18 for Mac | 971

1.3.1.2.19.5 IG_info_get_mem

This function obtains information about the image located in a memory buffer. This is an obsolete function, see
remarks.

Declaration:

AT_ERRCOUNT ACCUAPI IG_info_get_mem(
 LPVOID lpImage,
 AT_UINT nImageSize,
 UINT nPage,
 LPAT_MODE lpFileType,
 LPAT_MODE lpCompression,
 LPAT_DIB lpDIB
);

Arguments:

Name Type Description

lpImage LPVOID Pointer to memory location of an image file that is currently in memory.

nImageSize AT_UINT Size of image in memory.

nPage UINT Page number for which the info is obtained. Note that page numbers begin at 1, not
0. Set nPage to 1 if this is not a multi-page memory file.

lpFileType LPAT_MODE Pointer to an AT_MODE variable in which the file type will be returned. See
enumIGFormats for possible values.

lpCompression LPAT_MODE Pointer to an AT_MODE variable in which compression type will be returned. See
enumIGCompressions for possible values.

lpDIB LPAT_DIB Pointer to an AT_DIB structure to which other file information such as width, height,
and Bits Per Pixel will be returned.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

If lpDIB is not NULL, then

Indexed RGB - 1, 4, 8 bpp;
Grayscale - 9...16 bpp;
RGB - 24 bpp;
CMYK - 32 bpp.

otherwise, all pixel formats supported by ImageGear Professional.

Example:

char* lpBuffer; // Memory buffer with the image
AT_UINT nBufferSize; // Size of the memory buffer
AT_MODE nFileType; // Will receive an IG_FORMAT_ constant
AT_MODE nCompression; // Will receive an IG_COMPRESSION_ constant
AT_DIB atDIB;
AT_ERRCOUNT nErrcount; // Returned count of errors

// Open a file and get its size
FILE* fp = NULL;
fopen_s(&fp, "picture.bmp", "rb");
if(fp != NULL)

ImageGear Professional v18 for Mac | 972

{
 fseek(fp, 0, SEEK_END);
 nBufferSize = (AT_UINT)ftell(fp);
 fseek(fp, 0, SEEK_SET);
 // Allocate memory and read the image into the memory buffer
 lpBuffer = (char*)malloc(nBufferSize);
 fread(lpBuffer, 1, nBufferSize, fp);
 // File is no longer needed - close it
 fclose(fp);
 // Get image info
 nErrcount = IG_info_get_mem(lpBuffer, nBufferSize, 1, &nFileType, &nCompression,
&atDIB);
 fclose(fp);

 // ...
 // Delete memory buffer
 free(lpBuffer);
}

Remarks:

This function is only kept for backward compatibility reasons. Please use IG_info_get_mem_ex instead.

Any of the output parameters such as lpFileType, lpCompression or lpDIB can be NULL, if the corresponding info is not
required.

ImageGear Professional v18 for Mac | 973

1.3.1.2.19.6 IG_info_get_mem_ex

This function obtains information about the image located in the memory buffer.

Declaration:

AT_ERRCOUNT ACCUAPI IG_info_get_mem_ex(
 VOID FAR32* lpImage32,
 AT_UINT dwSize,
 UINT nPage,
 LPAT_MODE lpFileType,
 LPAT_MODE lpCompression,
 HIGDIBINFO* lphDIB
);

Arguments:

Name Type Description

lpImage32 VOID FAR32* Pointer to start of file image in memory.

dwSize AT_UINT Size of image in memory.

nPage UINT Page number about which to get information, if a multi page file set to 1 or
greater; for a non multi page file set to 1.

lpFileType LPAT_MODE Pointer to an AT_MODE variable in which the file type will be returned. See
enumIGFormats for possible values.

lpCompression LPAT_MODE Pointer to an AT_MODE variable in which the compression type will be returned.
See enumIGCompressions for possible values.

lphDIB HIGDIBINFO* Pointer to an HIGDIBINFO structure to which other file information such as width,
height, and Bits Per Pixel, will be returned.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

char* lpBuffer; // Memory buffer with the image
AT_UINT nBufferSize; // Size of the memory buffer
AT_MODE nFileType; // Will receive an IG_FORMAT_ constant
AT_MODE nCompression; // Will receive an IG_COMPRESSION_ constant
HIGDIBINFO hDIB;
AT_ERRCOUNT nErrcount; // Returned count of errors

// Open a file and get its size
FILE* fp = NULL;
fopen_s(&fp, "picture.bmp", "rb");
if(fp != NULL)
{
 fseek(fp, 0, SEEK_END);
 nBufferSize = (AT_UINT)ftell(fp);
 fseek(fp, 0, SEEK_SET);
 // Allocate memory and read the image into the memory buffer
 lpBuffer = (char*)malloc(nBufferSize);
 fread(lpBuffer, 1, nBufferSize, fp);
 // File is no longer needed - close it

ImageGear Professional v18 for Mac | 974

 fclose(fp);
 // Get image info
 nErrcount = IG_info_get_mem_ex(lpBuffer, nBufferSize, 1, &nFileType, &nCompression,
&hDIB);
 fclose(fp);

 // ...
 // Delete memory buffer
 free(lpBuffer);
 // Delete DIB info
 IG_DIB_info_delete(hDIB);
}

Remarks:

See also IG_info_get_FD_ex and IG_info_get_ex functions.

ImageGear Professional v18 for Mac | 975

1.3.1.2.19.7 IG_page_count_get

This function obtains the number of pages in the image file.

Declaration:

AT_ERRCOUNT ACCUAPI IG_page_count_get(
 const LPSTR lpszFileName,
 LPUINT lpPageCount
);

Arguments:

Name Type Description

lpszFileName const
LPSTR

Path and name of the file for which to get the page count. The path can be absolute or
relative.

lpPageCount LPUINT Pointer to a UINT variable to receive page count.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

UINT nPages; // Will receive number of pages
AT_ERRCOUNT nErrcount; // Count of returned errors
nErrcount = IG_page_count_get ("picture.bmp", &nPages);

See Also

IG_fltr_pagecount_file_format

ImageGear Professional v18 for Mac | 976

1.3.1.2.19.8 IG_page_count_get_FD

This function obtains the number of pages in the image file specified by its file handle.

Declaration:

AT_ERRCOUNT ACCUAPI IG_page_count_get_FD(
 AT_INT fd,
 LONG lOffset,
 LPUINT lpPageCount
);

Arguments:

Name Type Description

fd AT_INT Handle of the open file. This handle can be obtained from Microsoft Windows function such as
CreateFile(), and cast to AT_INT for passing to the function parameter. FILE pointers returned
by functions such as fopen(), and file handles returned by functions such as _sopen_s() are
not supported.

lOffset LONG Offset into the file, in bytes, to where the image begins. This is the offset to the beginning of
the header, not to the beginning of the bitmap. lOffset is usually 0.

lpPageCount LPUINT Pointer to a UINT variable to receive page count .

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HANDLE fd; // File Descriptor
UINT nPages; // Will receive number of pages
AT_ERRCOUNT nErrcount; // Count of returned errors

fd = CreateFile(_T("picture.bmp"), GENERIC_READ,
 0, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
if(fd != INVALID_HANDLE_VALUE)
{
 nErrcount = IG_page_count_get_FD((AT_INT)fd, 0, &nPages);
 CloseHandle(fd);
}

Remarks:

Call this function when the file is already opened and you have its File Descriptor handle (fd).

See Also

IG_fltr_pagecount_FD_format

ImageGear Professional v18 for Mac | 977

1.3.1.2.19.9 IG_page_count_get_mem

This function obtains the number of pages in the memory image file.

Declaration:

AT_ERRCOUNT ACCUAPI IG_page_count_get_mem(
 LPVOID lpImage,
 AT_UINT nImageSize,
 LPUINT lpPageCount
);

Arguments:

Name Type Description

lpImage LPVOID Pointer to start of file image in memory.

nImageSize AT_UINT Size of image in memory.

lpPageCount LPUINT Pointer to a UINT variable to receive page count.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

char* lpBuffer; // Memory buffer with the image
AT_UINT nBufferSize; // Size of the memory buffer
UINT nPageCount; // Will receive number of pages
AT_ERRCOUNT nErrcount; // Returned count of errors

// Open a file and get its size
FILE* fp = NULL;
fopen_s(&fp, "picture.bmp", "rb");
if(fp != NULL)
{
 fseek(fp, 0, SEEK_END);
 nBufferSize = (AT_UINT)ftell(fp);
 fseek(fp, 0, SEEK_SET);
 // Allocate memory and read the image into the memory buffer
 lpBuffer = (char*)malloc(nBufferSize);
 fread(lpBuffer, 1, nBufferSize, fp);
 // File is no longer needed - close it
 fclose(fp);
 // Get image info
 nErrcount = IG_page_count_get_mem(lpBuffer, nBufferSize, &nPageCount);
 fclose(fp);

 // ...
 // Delete memory buffer
 free(lpBuffer);
}

Remarks:

See also functions IG_page_count_get_FD and IG_page_count_get.

ImageGear Professional v18 for Mac | 978

ImageGear Professional v18 for Mac | 979

1.3.1.2.19.10 IG_tile_count_get

This function gets the number of tiles constituting a page for file formats that support tiled pages.

Declaration:

AT_ERRCOUNT ACCUAPI IG_tile_count_get(
 const LPSTR lpszFileName,
 UINT nPageNum,
 LPUINT lpTileCountH,
 LPUINT lpTileCountV
);

Arguments:

Name Type Description

lpszFileName const
LPSTR

Path and name of the file for which to get the tile count. The path can be absolute or
relative.

nPageNum UINT Page number for which to get the count of tiles.

lpTileCountH LPUINT Pointer to a UINT variable to receive the number of tiles horizontally (number of tiles in a
row).

lpTileCountV LPUINT Pointer to a UINT variable to receive the number of tiles vertically (number of tiles in a
column).

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

UINT nTileRows; // Will receive number of tile rows
UINT nTileCols; // Will receive number of tile cols
AT_ERRCOUNT nErrcount; // Returned count of errors
// Get number of tiles, first page of file:
nErrcount = IG_tile_count_get("picture_tiled.tif", 1, &nTileRows, &nTileCols);

Remarks:

The function returns 0 for both lpTileCountH and lpTileCountV if the image file format does not support tiled images.

ImageGear Professional v18 for Mac | 980

1.3.1.2.19.11 IG_tile_count_get_FD

This function gets the number of tiles constituting a page for file formats that support tiled pages in the image file
specified by its file handle.

Declaration:

AT_ERRCOUNT ACCUAPI IG_tile_count_get_FD(
 AT_INT fd,
 LONG lOffset,
 UINT nPageNum,
 LPUINT lpTileCountH,
 LPUINT lpTileCountV
);

Arguments:

Name Type Description

fd AT_INT Handle of the open file. This handle can be obtained from Microsoft Windows function such
as CreateFile(), and cast to AT_INT for passing to the function parameter. FILE pointers
returned by functions such as fopen(), and file handles returned by functions such as
_sopen_s() are not supported.

lOffset LONG Offset into the file, in bytes, to where the image begins. This is the offset to the beginning
of the header, not to the beginning of the bitmap. lOffset is usually 0.

nPageNum UINT Page number for which to get count of tiles.

lpTileCountH LPUINT Pointer to a UINT variable to receive the number of tiles horizontally (number of tiles in a
row).

lpTileCountV LPUINT Pointer to a UINT variable to receive the number of tiles vertically (number of tiles in a
column).

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HANDLE fd; // File Descriptor
UINT nTileRows; // Will receive number of tile rows
UINT nTileCols; // Will receive number of tile cols
AT_ERRCOUNT nErrcount; // Count of returned errors

fd = CreateFile(_T("picture_tiled.tif"), GENERIC_READ,
 0, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
if(fd != INVALID_HANDLE_VALUE)
{
 nErrcount = IG_tile_count_get_FD((AT_INT)fd, 0, 1, &nTileRows, &nTileCols);
 CloseHandle(fd);
}

Remarks:

Use this function when the file is open and you have its file handle.

The function returns 0 for both lpTileCountH and lpTileCountV if the image file format does not support tiled images.

ImageGear Professional v18 for Mac | 981

ImageGear Professional v18 for Mac | 982

1.3.1.2.19.12 IG_tile_count_get_mem

This function gets the number of tiles constituting a page for file formats that support tiled pages for the image files
located in the memory buffer.

Declaration:

AT_ERRCOUNT ACCUAPI IG_tile_count_get_mem(
 LPVOID lpImage,
 AT_UINT nImageSize,
 UINT nPageNum,
 LPUINT lpTileCountH,
 LPUINT lpTileCountV
);

Arguments:

Name Type Description

lpImage LPVOID Pointer to the start of the image file in memory.

nImageSize AT_UINT Size of image file in memory.

nPageNum UINT Page number for which to get the count of tiles.

lpTileCountH LPUINT Pointer to a UINT variable to receive the number of tiles horizontally (number of tiles in a
row).

lpTileCountV LPUINT Pointer to a UINT variable to receive the number of tiles vertically (number of tiles in a
column).

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

char* lpBuffer; // Memory buffer with the image
AT_UINT nBufferSize; // Size of the memory buffer
UINT nTileRows; // Will receive number of tile rows
UINT nTileCols; // Will receive number of tile cols
AT_ERRCOUNT nErrcount; // Returned count of errors

// Open a file and get its size
FILE* fp = NULL;
fopen_s(&fp, "picture_tiled.tif", "rb");
if(fp != NULL)
{
 fseek(fp, 0, SEEK_END);
 nBufferSize = (AT_UINT)ftell(fp);
 fseek(fp, 0, SEEK_SET);
 // Allocate memory and read the image into the memory buffer
 lpBuffer = (char*)malloc(nBufferSize);
 fread(lpBuffer, 1, nBufferSize, fp);
 // File is no longer needed - close it
 fclose(fp);
 // Get image info
 nErrcount = IG_tile_count_get_mem(lpBuffer, nBufferSize, 1, &nTileRows, &nTileCols);
 fclose(fp);

ImageGear Professional v18 for Mac | 983

 // ...
 // Delete memory buffer
 free(lpBuffer);
}

Remarks:

Use this function when the file image is in memory.

The function returns 0 for both lpTileCountH and lpTileCountV if the image file format does not support tiled images.

ImageGear Professional v18 for Mac | 984

1.3.1.2.20 Licensing Functions

This section provides information about the Licensing group of functions.

IG_lic_OEM_license_key_set
IG_lic_solution_key_set
IG_lic_solution_name_set

ImageGear Professional v18 for Mac | 985

1.3.1.2.20.1 IG_lic_OEM_license_key_set

This function specifies the License Key to ImageGear for the deployment licensing model.

Declaration:

AT_ERRCODE ACCUAPI IG_lic_OEM_license_key_set(LPCHAR lpLicenseKey);

Arguments:

Name Type Description

lpLicenseKey LPCHAR The ImageGear license key string.

Return Value:

Returns the result code of this function call.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 986

1.3.1.2.20.2 IG_lic_solution_key_set

This function specifies your deployment Solution Key for the deployment licensing models.

Declaration:

VOID ACCUAPI IG_lic_solution_key_set (
 DWORD dwKey1,
 DWORD dwKey2,
 DWORD dwKey3,
 DWORD dwKey4
);

Arguments:

Name Type Description

dwKey1 DWORD Key1 component of the solution key.

dwKey2 DWORD Key2 component of the solution key.

dwKey3 DWORD Key3 component of the solution key.

dwKey4 DWORD Key4 component of the solution key.

Return Value:

None

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 987

1.3.1.2.20.3 IG_lic_solution_name_set

This function provides solution name for your ImageGear license for the deployment licensing models.

Declaration:

AT_ERRCODE ACCUAPI IG_lic_solution_name_set (LPCHAR lpSolutionName);

Arguments:

Name Type Description

lpSolutionName LPCHAR The license solution name.

Return Value:

Returns the result code of this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Please see the section .

ImageGear Professional v18 for Mac | 988

1.3.1.2.21 Load Functions

This section provides information about the Load group of functions.

IG_load_alpha_mode_get
IG_load_alpha_mode_set
IG_load_auto_detect_get
IG_load_auto_detect_set
IG_load_CCITT_FD
IG_load_CCITT_mem
IG_load_color_reduction_get
IG_load_color_reduction_set
IG_load_extra_mode_get
IG_load_extra_mode_set
IG_load_FD
IG_load_FD_CB
IG_load_FD_CB_ex
IG_load_file
IG_load_file_display
IG_load_mem
IG_load_mem_CB
IG_load_mem_CB_ex
IG_load_raw_FD
IG_load_raw_file
IG_load_raw_mem
IG_load_rect_get
IG_load_rect_set
IG_load_size_get
IG_load_size_set
IG_load_tag_CB_register
IG_load_thumbnail
IG_load_thumbnail_FD
IG_load_thumbnail_mem
IG_load_tiles_stitch
IG_load_tiles_stitch_FD
IG_load_tiles_stitch_mem

ImageGear Professional v18 for Mac | 989

1.3.1.2.21.1 IG_load_alpha_mode_get

This function retrieves the last setting made by calling function IG_load_alpha_mode_set().

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_alpha_mode_get(enumIGAlphaMode* lpMode);

Arguments:

Name Type Description

lpMode enumIGAlphaMode* Pointer to an enumIGAlphaMode variable to receive the current Alpha channel loading
mode setting.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

enumIGAlphaMode AlphaMode;
IG_load_alpha_mode_get (&AlphaMode);

ImageGear Professional v18 for Mac | 990

1.3.1.2.21.2 IG_load_alpha_mode_set

This function instructs ImageGear to load or ignore alpha channel when loading an image that contains one.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_alpha_mode_set(enumIGAlphaMode Mode);

Arguments:

Name Type Description

Mode enumIGAlphaMode Alpha loading mode to be set. IG_ALPHA_MODE_KEEP (default) forces Alpha channel if it
is present; IG_ALPHA_MODE_IGNORE ignores Alpha channel.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

/* Ignore Alpha channel when loading: */
IG_load_alpha_mode_set (IG_ALPHA_MODE_IGNORE);

Remarks:

See also IG_load_alpha_mode_get function.

ImageGear Professional v18 for Mac | 991

1.3.1.2.21.3 IG_load_auto_detect_get

This function obtains the current state of the format filter indicated by nFormatType.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_auto_detect_get(
 AT_MODE nFormatType,
 LPAT_BOOL lpToggle
);

Arguments:

Name Type Description

nFormatType AT_MODE A constant indicating the format filter for which the detection setting should be obtained.
See enumIGFormats for possible values.

lpToggle LPAT_BOOL Pointer to a variable of type AT_BOOL in which will be returned the current state of the
filter: enabled (TRUE), or disabled (FALSE).

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

BOOL bEnabled; /* Will be TRUE if this file format can be accessed */
AT_ERRCOUNT nErrCount = IG_load_auto_detect_get (IG_FORMAT_TIF , &bEnabled);

Remarks:

By default, detection is enabled for all ImageGear file format filters, except TXT (ASCII).

See also function IG_load_auto_detect_set.

ImageGear Professional v18 for Mac | 992

1.3.1.2.21.4 IG_load_auto_detect_set

This function enables or disables a format filter.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_auto_detect_set(
 AT_MODE nFormatType,
 AT_BOOL bToggle
);

Arguments:

Name Type Description

nFormatType AT_MODE A constant indicating the format filter for which the detection setting should be modified.
See enumIGFormats for possible values.

bToggle AT_BOOL Set to TRUE to enable detection; set to FALSE to disable detection. The default value is
TRUE for most ImageGear format filters.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

BOOL bEnabled = FALSE; /* If FALSE this file format will be disabled */
AT_ERRCOUNT nErrCount = IG_load_auto_detect_set (IG_FORMAT_TIF , bEnabled);

Remarks:

If detection of a specific file format is disabled, that file format type cannot be accessed by the image info getting and
loading functions, such as IG_info_get_ex or IG_fltr_load_file.

By default, detection is enabled for all ImageGear file format filters, except TXT (ASCII) .

See also function IG_load_auto_detect_get.

ImageGear Professional v18 for Mac | 993

1.3.1.2.21.5 IG_load_CCITT_FD

This function has been deprecated and will be removed from the public API in a future release. Please use
IG_load_raw_FD instead.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_CCITT_FD(
 AT_INT fd,
 AT_DIMENSION nWidth,
 AT_DIMENSION nHeight,
 AT_MODE nType,
 AT_MODE nFillOrder,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

fd AT_INT Handle of the open file containing the image to be loaded. This handle can be
obtained from Microsoft Windows functions such as CreateFile(), and cast to AT_INT
for passing to the function parameter. FILE pointers returned by functions such as
fopen(), and file handles returned by functions such as _sopen_s() are not supported.

nWidth AT_DIMENSION Number of pixels in each row of data to be read.

nHeight AT_DIMENSION Number of rows of data.

nType AT_MODE Specifies the type of compression: IG_COMPRESSION_CCITT_G3,
IG_COMPRESSION_CCITT_G4 or IG_COMPRESSION_G32D. There is no default for
this property.

nFillOrder AT_MODE IG_FILL_MSB or IG_FILL_LSB, specifying whether the most-significant-bit-first or
least-significant-bit-first. There is no default for this property.

lphIGear LPHIGEAR Pointer to HIGEAR variable to return a newly created image.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Indexed RGB - 1 bpp.

Example:

HIGEAR hIGear = 0; // Will receive HIGEAR image handle
HANDLE fd; // File Descriptor handle

// Open a dile to read
fd = CreateFile(_T("Group4.raw"), GENERIC_READ,
 0, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

if(fd != INVALID_HANDLE_VALUE)
{
 AT_ERRCOUNT nErrcount; /* Returned count of errors */
 nErrcount = IG_load_CCITT_FD((AT_INT)fd, 2320, 3408, IG_COMPRESSION_CCITT_G4,
IG_FILL_MSB, &hIGear);

 //...

 // Destroy the image

ImageGear Professional v18 for Mac | 994

 if(IG_image_is_valid(hIGear))
 {
 IG_image_delete(hIGear);
 }
 CloseHandle(fd);
}

Remarks:

This function creates an ImageGear image from a raw CCITT Compressed data file.

File pointer must be positioned at the start of the data. (For example, your application should read or seek past any
header that is present.) You must specify the type, G3 or G4, by means of argument nType, and you must specify the
fill order, most-significant-bit-first or least-significant-bit-first, by argument nFillOrder. The most common fill order is
most-significant-bit-first or IG_FILL_MSB.

The width and height of the image are specified by nWidth and nHeight. The handle of the resulting new ImageGear
image is returned in the HIGEAR variable pointed to by lphIGear. The resulting image is always 1-bit.

This function is used when you have a non-standard or proprietary G3 or G4 compressed image file and you know the
details of the header. There are literally hundreds of different types of image files that fall into this category. In order
to be able to successfully read an image of this type you must know enough about the header to find where the
height and width are stored. You can usually look at the header with a hex dump utility and see where these values
are stored. Once you are able to read past the header plus get the dimensions of the image, you can then use this
function. You can experiment with the other settings until the image is read correctly. See also function
IG_load_auto_detect_set.

The functionality of this API call has been upgraded and supported by the new function IG_load_raw_FD. The
reason that this new function has been created to expand the number of raw image types you can load into
ImageGear.

In the interest of backward compatibility, we have left the old function in its original form and have retained
support for it. If you have already used the old function in your code, it is not mandatory that you modify your
code, but it is recommended. Consider using IG_load_raw_FD instead.

G3 compressed images are always 1728 pixels wide. Since G3 files usually have a special code at the end of the
image that ImageGear will detect, you can set the height to a value greater than the expected height of the
image and it will be corrected once the end of image marker is detected. For G4 files the height and width must
be known and in all cases the file pointer must be at the start of the compressed image when this function is
called.

ImageGear Professional v18 for Mac | 995

1.3.1.2.21.6 IG_load_CCITT_mem

This function has been deprecated and will be removed from the public API in a future release. Please use
IG_load_raw_mem instead.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_CCITT_mem(
 LPVOID lpImage,
 AT_UINT nSize,
 AT_DIMENSION nWidth,
 AT_DIMENSION nHeight,
 AT_MODE nType,
 AT_MODE nFillOrder,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

lpImage LPVOID Memory buffer containing raw Fax data to be loaded.

nSize AT_UINT Size of the memory buffer lpImage.

nWidth AT_DIMENSION Number of pixels in each row of data to be read.

nHeight AT_DIMENSION Number of rows of data.

nType AT_MODE Specifies the type of compression: IG_COMPRESSION_CCITT_G3,
IG_COMPRESSION_CCITT_G4 or IG_COMPRESSION_G32D. There is no default for
this property.

nFillOrder AT_MODE IG_FILL_MSB or IG_FILL_LSB, specifying whether the most-significant-bit-first or
least-significant-bit-first. There is no default for this property.

lphIGear LPHIGEAR Pointer to HIGEAR variable to return a newly created image.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear = 0; // Will receive HIGEAR image handle
AT_BYTE* lpImage; // Memory buffer to keep an image
AT_INT fileSize; // Size of the memory buffer
FILE* fd = NULL; // File Descriptor
AT_ERRCOUNT nErrcount; // Returned count of errors */

// Open a file and get its size
fopen_s(&fd, "Group4.raw", "rb");
if(fd != NULL)
{
 fseek(fd, 0, SEEK_END);
 fileSize = (AT_UINT)ftell(fd);
 fseek(fd, 0, SEEK_SET);
 // Allocate memory and read the image into the memory buffer
 lpImage = (AT_BYTE*)malloc(fileSize);
 fread(lpImage, 1, fileSize, fd);

ImageGear Professional v18 for Mac | 996

 // File is no longer needed - close it
 fclose(fd);

 // Load image from the memory
 nErrcount = IG_load_CCITT_mem(lpImage, fileSize, 2320, 3408,
 IG_COMPRESSION_CCITT_G4, IG_FILL_MSB, &hIGear);
 // Delete memory buffer
 free(lpImage);

 //...

 // Destroy the image
 if(IG_image_is_valid(hIGear))
 {
 IG_image_delete(hIGear);
 }
}

Remarks:

This function creates an ImageGear image from raw CCITT Compressed data located in memory.

This function operates similarly to function IG_load_CCITT_FD. Note that lpImage must point to the start of the actual
data (not to the start of any header information that may be present).

The functionality of this API call has been upgraded and supported by the new function IG_load_raw_mem. The
reason that this new function has been created is that the old function restricted you to loading raw images that
are stored with CCITT formatting.

In the interest of backward compatibility, we have left the old function in its original form and have retained
support for it. If you have already used the old function in your code, it is not mandatory that you modify your
code, but it is recommended. Consider using IG_load_raw_mem instead.

ImageGear Professional v18 for Mac | 997

1.3.1.2.21.7 IG_load_color_reduction_get

This function retrieves the last setting made by calling function IG_load_color_reduction_set().

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_color_reduction_get(
 LPUINT lpColorReduceMode
);

Arguments:

Name Type Description

lpColorReduceMode LPUINT Pointer to an AT_MODE variable to receive the current IG_LOAD_COLOR setting.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

UINT nLoadReduceMode; /* Will receive the IG_LOAD_COLOR_ constant */
AT_ERRCOUNT nErrCount = IG_load_color_reduction_get (&nLoadReduceMode);

Remarks:

If no color reduction is in effect, IG_LOAD_COLOR_DEFAULT is returned.

ImageGear Professional v18 for Mac | 998

1.3.1.2.21.8 IG_load_color_reduction_set

This function instructs ImageGear to perform color reduction to reduce the number of Bits Per Pixel whenever loading an
image whose bit depth is greater than that specified by nColorReduceMode.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_color_reduction_set(
 UINT nColorReduceMode
);

Arguments:

Name Type Description

nColorReduceMode UINT One of enumLoadColor enumeration values. IG_LOAD_COLOR_DEFAULT means that no
color reduction is wanted.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

/* Reduce 24-bit images to 8-bit when loading: */
AT_ERRCOUNT nErrCount = IG_load_color_reduction_set (IG_LOAD_COLOR_8);

Remarks:

The bit depth is reduced to 8, 4, or 1 as specified. Call with nColorReduceMode = IG_LOAD_COLOR_DEFAULT to disable
color reduction.

 See also IG_load_color_reduction_get() function.

ImageGear Professional v18 for Mac | 999

1.3.1.2.21.9 IG_load_extra_mode_get

This function retrieves the last setting made by calling function IG_load_extra_mode_set().

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_extra_mode_get(
 enumIGExtraMode* lpMode
);

Arguments:

Name Type Description

lpMode enumIGExtraMode* Pointer to an enumIGExtraMode variable to receive the current Extra channel loading
mode setting.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

enumIGExtraMode ExtraMode;
AT_ERRCOUNT nErrCount = IG_load_extra_mode_get (&ExtraMode);

ImageGear Professional v18 for Mac | 1000

1.3.1.2.21.10 IG_load_extra_mode_set

This function instructs ImageGear to load or ignore extra channels when loading an image that contains any extra
channels.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_extra_mode_set(
 enumIGExtraMode Mode
);

Arguments:

Name Type Description

Mode enumIGExtraMode IG_EXTRA_MODE_KEEP (default) to load Extra channel if it is present;
IG_EXTRA_MODE_IGNORE to ignore Extra channel. See enumIGExtraMode.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount = IG_load_extra_mode_set(IG_EXTRA_MODE_KEEP);

Remarks:

See also IG_load_extra_mode_get() function.

ImageGear Professional v18 for Mac | 1001

1.3.1.2.21.11 IG_load_FD

This function loads an image from a file into memory and creates a HIGEAR handle for the image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_FD(
 AT_INT fd,
 LONG lOffset,
 UINT nPage,
 UINT nTile,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

fd AT_INT Handle of the open file containing the image to be loaded. This handle can be obtained from
Microsoft Windows functions such as CreateFile(), and cast to AT_INT for passing to the
function parameter. FILE pointers returned by functions such as fopen(), and file handles
returned by functions such as _sopen_s() are not supported.

lOffset LONG Offset into the file, in bytes, to where the image begins. This is the offset to the beginning
of the header, not to the beginning of the bitmap. lOffset is usually 0.

nPage UINT Page number to load if this is a multi-page file. Note that page numbers begin at 1, not 0.
Set nPage to 1 if this is not a multi-page file.

nTile UINT If loading an image that is tiled, you can set the number of a specific tile to load. Tile
numbers begin at 1, not 0. Set to 1 for a non-tiled image.

lphIGear LPHIGEAR Pointer to HIGEAR object to which this function will return the HIGEAR handle of the image
loaded.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear = 0; /* handle ret'd by IG_load_FD */
HANDLE fd; /* File Descriptor */
LONG lOffset; /* offset to image in file */
UINT nPageNum; /* will be 0 for this call */
AT_ERRCOUNT nErrcount; /* to test for errors */

fd = CreateFile(_T("picture.bmp"), GENERIC_READ,
 0, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

if(fd != INVALID_HANDLE_VALUE)
{
 nPageNum = 1; /* not a multi-page file */
 lOffset = 0; /* access file from start */
 /* Load image, and obtain its HIGEAR handle: */
 nErrcount = IG_load_FD((AT_INT)fd, lOffset, nPageNum, 0, &hIGear);
 CloseHandle(fd);
}
//...

ImageGear Professional v18 for Mac | 1002

// Destroy the image
if(IG_image_is_valid(hIGear))
{
 IG_image_delete(hIGear);
}

Remarks:

Unlike IG_load_file, this function is used when the file is already open and you have its File handle (fd). The HIGEAR
handle, which ImageGear assigns for the loaded image, is returned to you via argument lphIGear. The file indicated
by fd may be in any format recognized by ImageGear. IG_load_FD() will determine the format by inspecting the file's
header section. See ImageGear Supported File Formats Reference.

Simply loading the file does not cause it to be displayed. Refer to IG_dspl_image_draw and related routines for
information about how to display an image once it is in memory. See also IG_load_file_display.

lOffset represents the number of bytes, positive or negative, from the position in the file currently pointed to by fd.
The fd may have been moved around a few times so that it is no longer pointing to the beginning of the file. Be sure
to keep this in mind as you set the value of lOffset.

The nPage argument is set to 1 or greater if you are loading from a multi-page file to indicate which page (image) you
want to load. Set nPage to 1 for a non-multi-page file.

If you set nPage to < 1, ImageGear will default the value to 1; if you set nPage to greater than the number of
pages in the document, ImageGear will default the value to the last page number. This same default procedure
applies to the nTile parameter as well.

If you wish to make a subsequent call to IG_info_get_FD_ex, you must first move the file pointer (of loaded
image) to the beginning of the file, or you will receive an error. This happens because after an image is loaded,
the file pointer is positioned at the end of the image in the file. To avoid the error:

Call IG_load_FD().
Call the appropriate C or Windows function that will set the pointer back to the beginning of the image's
header information.
Call IG_info_get_FD_ex().

See Also

IG_fltr_load_FD_format

ImageGear Professional v18 for Mac | 1003

1.3.1.2.21.12 IG_load_FD_CB

This function loads an image from a file using user-defined callback functions.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_FD_CB(
 AT_INT fd,
 LONG lOffset,
 UINT nPage,
 UINT nTile,
 LPFNIG_RASTER_SET lpfnRasterSet,
 LPFNIG_DIB_CREATE lpfnDIBCreate,
 LPVOID lpPrivateData
);

Arguments:

Name Type Description

fd AT_INT Handle of the open file containing the image to be loaded. This handle can
be obtained from Microsoft Windows functions such as CreateFile(), and
cast to AT_INT for passing to the function parameter. FILE pointers
returned by functions such as fopen(), and file handles returned by
functions such as _sopen_s() are not supported.

lOffset LONG Offset into the file, in bytes, to where the image begins. This is the offset to
the beginning of the header, not to the beginning of the bitmap. lOffset is
usually 0.

nPage UINT Page number to load if this is a multi-page (multi-image) file. Note that
page numbers begin at 1, not 0. Set nPage to 1 if this is not a multi-page
file.

nTile UINT If loading an image that is tiled, you can set the number of a specific tile to
load. Tile numbers begin at 1, not 0. Set to 1 for a non-tiled image.

lpfnRasterSet LPFNIG_RASTER_SET Pointer to callback function to be called after each raster line is read.

lpfnDIBCreate LPFNIG_DIB_CREATE Pointer to callback function to be called after the file header has been read.

lpPrivateData LPVOID Pointer to a private data area. This pointer will be passed to the callback
functions.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Indexed RGB - 1, 4, 8 bpp;
Grayscale - 9...16 bpp;
RGB - 24 bpp;
CMYK - 32 bpp.

Actual set of pixel formats supported by this function can be narrower, depending on the implementation of the
user-defined callback functions.

Remarks:

This function is only kept for backward compatibility reasons. Please use IG_load_FD_CB_ex instead.

It is the responsibility of your two callback functions, lpfnDIBCreate and lpfnRasterSet, to create the DIB or other
structure you want. Your lpfnDIBCreate callback function is called after the file's header has been read. Then your

ImageGear Professional v18 for Mac | 1004

lpfnRasterSet callback function is called for each raster line read. See the descriptions under function types
LPFNIG_DIB_CREATE and LPFNIG_RASTER_SET for how these callback functions are called.

If you want a HIGEAR handle for the DIB your callback functions have created, you can obtain one (after the load is
complete) by calling function IG_image_DIB_import.

ImageGear Professional v18 for Mac | 1005

1.3.1.2.21.13 IG_load_FD_CB_ex

This function loads an image from a file using user-defined callback functions.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_FD_CB_ex(
 AT_INT fd,
 LONG lOffset,
 UINT nPage,
 UINT nTile,
 LPFNIG_RASTER_SET lpfnRasterSet,
 LPFNIG_DIB_CREATE_EX lpfnDIBCreateEx,
 LPVOID lpPrivateData
);

Arguments:

Name Type Description

fd AT_INT Handle of the open file containing the image to be loaded. This
handle can be obtained from Microsoft Windows functions such as
CreateFile(), and cast to AT_INT for passing to the function
parameter. FILE pointers returned by functions such as fopen(), and
file handles returned by functions such as _sopen_s() are not
supported.

lOffset LONG Offset into the file, in bytes, to where the image begins. This is the
offset to the beginning of the header, not to the beginning of the
bitmap. lOffset is usually 0.

nPage UINT Page number to load if this is a multi-page (multi-image) file. Note
that page numbers begin at 1, not 0. Set nPage to 1 if this is not a
multi-page file.

nTile UINT If loading an image that is tiled, you can set the number of a specific
tile to load. Tile numbers begin at 1, not 0. Set to 1 for a non-tiled
image.

lpfnRasterSet LPFNIG_RASTER_SET Pointer to callback function to be called after each raster line is read.

lpfnDIBCreateEx LPFNIG_DIB_CREATE_EX Pointer to callback function to be called after the file header has been
read.

lpPrivateData LPVOID Pointer to a private data area. This pointer will be passed to the
callback functions.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Actual set of pixel formats supported by this function can be narrower, depending on the implementation of the
user-defined callback functions.

Example:

AT_ERRCOUNT ACCUAPI MyDIBCreateEx(
 LPVOID lpPrivate, /* Private data passed in */
 const HIGDIBINFO hDIB /* DIB info object for DIB */
)

ImageGear Professional v18 for Mac | 1006

{
 /* Get info about image and allocate storage here */
 return 0;
}
AT_ERRCOUNT ACCUAPI MyRasterSet(
 LPVOID lpPrivate, /* Private data passed in */
 const LPAT_PIXEL lpRaster, /* Raster line to set */
 AT_PIXPOS row, /* Y position in the image */
 DWORD rasterSize /* Size of the raster line */
)
{
 /* Do something with incoming raster data here */
 return 0;
}

void Example_IG_load_FD_CB_ex()
{
 AT_ERRCOUNT nErrcount; /* Number of errors on stack */
 HANDLE fd; /* File descriptor */
 DWORD dwPrivate[10]; /* Some private data */
 fd = CreateFile(_T("picture.bmp"), GENERIC_READ,
 0, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

 if (fd != INVALID_HANDLE_VALUE)
 {
 nErrcount = IG_load_FD_CB_ex(
 (AT_INT)fd, /* File descriptor */
 0L, /* Offset to image */
 1, /* Page number to load */
 1, /* Reserved. Always set to 1 */
 MyRasterSet, /* Called for each raster line */
 MyDIBCreateEx, /* Called after header is read */
 dwPrivate); /* Callback data */
 CloseHandle(fd);
 }
}

Remarks:

It is the responsibility of your two callback functions, lpfnDIBCreateEx and lpfnRasterSet, to create the image storage
you want. Your lpfnDIBCreateEx callback function is called after the file's header has been read. Then your
lpfnRasterSet callback function is called for each raster line read. See the descriptions under function types
LPFNIG_DIB_CREATE_EX and LPFNIG_RASTER_SET for how these callback functions are called.

If you want a HIGEAR handle for the DIB your callback functions have created, you can obtain one (after the load is
complete) by calling function IG_image_DIB_import.

ImageGear Professional v18 for Mac | 1007

1.3.1.2.21.14 IG_load_file

This function loads an image from the specified file into memory and creates a HIGEAR handle for the image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_file(
 const LPSTR lpszFileName,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

lpszFileName const LPSTR Name of image file (you may include path with filename) to load into memory.

lphIGear LPHIGEAR Pointer to HIGEAR object in which to return the ImageGear handle of the image.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear = 0; /* Will hold handle returned by IG_load_file*/
AT_ERRCOUNT nErrcount; /* Count of errs on stack upon ret from func*/
/* Load image file "picture.bmp" from working directory, creating DIB */
/* and obtaining the image's ImageGear handle: */
nErrcount = IG_load_file ("picture.bmp" , &hIGear);

//...

// Destroy the image
if(IG_image_is_valid(hIGear))
{
 IG_image_delete(hIGear);
}

Remarks:

The handle which ImageGear assigns for this image is returned to you in argument lphIGear. The file named by filename
may be in any format recognized by ImageGear. IG_load_file() will determine the format by inspecting the file's header
section. See ImageGear Supported File Formats Reference for information on image file formats supported by
ImageGear.

Note that simply loading the file does not cause it to be displayed. Refer to IG_dspl_image_draw and related
routines, for how to display an image once it is in memory. See also IG_load_file_display.

Some file formats, such as TXT, JPEG, and others, may be loaded with additional control, using IG_fltr_ctrl_get and
IG_fltr_ctrl_set. See the description of these functions also in Using Format Filters API for Filter Control.

If the file pointed to by lpszFileName has multiple pages (images), the function will load the first page. To load
pages of multi-page images, use IG_fltr_load_file, IG_load_FD or IG_load_mem.

ImageGear Professional v18 for Mac | 1008

1.3.1.2.21.15 IG_load_file_display

This function loads an image from the specified file into memory, creates HIGEAR handle for the image and
simultaneously displays it.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_file_display(
 const LPSTR lpszFileName,
 DWORD dwGrpID,
 HWND hWnd,
 HDC hDC,
 LPFNIG_LOAD_DISP lpfnLoadDisp,
 LPVOID lpPrivateData,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

lpszFileName const LPSTR Pointer to filename (including path if desired) of file to load and display.

dwGrpID DWORD Display group identifier that should be used for display operations.

hWnd HWND Handle of window where to draw image.

hDC HDC Windows Device Context of device or window in which to display image.

lpfnLoadDisp LPFNIG_LOAD_DISP Pointer to a callback function (or name of callback function) to call when image
has been loaded, but before it is displayed.

lpPrivateData LPVOID Pointer to a private data area. This pointer will be passed to the callback
function when it is called.

lphIGear LPHIGEAR pointer to a variable of type HIGEAR to hold the returned ImageGear HIGEAR
handle of the newly loaded image.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Remarks:

Since you may want to set display attributes prior to displaying, ImageGear first loads the image's header, creating its
HIGEAR handle, then calls your callback function (with the image's HIGEAR handle and your lpPrivate pointer) so you can
set display attributes, device rectangle, image rectangle, or perform other operations. When your callback function
returns, ImageGear then displays the image, one raster line at a time, as the image is loaded.

See the description for callback type LPFNIG_LOAD_DISP, and see also the section Displaying Images for a discussion of
display attributes and how to set them.

ImageGear Professional v18 for Mac | 1009

1.3.1.2.21.16 IG_load_mem

This function loads an image from memory and creates HIGEAR handle for the image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_mem(
 LPVOID lpImage,
 AT_UINT nSize,
 UINT nPage,
 UINT nTile,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

lpImage LPVOID Pointer to memory location of an image file that is currently in memory.

nSize AT_UINT Size of image in memory.

nPage UINT Page number to load if this is a multi-page file. Note that page numbers begin at 1, not 0.
Set nPage to 1 if this is not a multi-page file.

nTile UINT If loading an image that is tiled, you can set the number of a specific tile to load. Set to 1
for a non-tiled image.

lphIGear LPHIGEAR Pointer to HIGEAR object in which to return ImageGear handle of the newly loaded image.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear = 0; /* handle ret'd by ImageGear */
char* lpWhereFile; /* ptr to image file in mem */
AT_UINT nWholeSize; /* Size of image in memory */
AT_ERRCOUNT nErrcount; /* to test for errors */

// Open a file and get its size
FILE* fd = NULL;
fopen_s(&fd, "picture.bmp", "rb");
if(fd != NULL)
{
 fseek(fd, 0, SEEK_END);
 nWholeSize = (AT_UINT)ftell(fd);
 fseek(fd, 0, SEEK_SET);
 // Allocate memory and read the image into the memory buffer
 lpWhereFile = (char*)malloc(nWholeSize);
 fread(lpWhereFile, 1, nWholeSize, fd);
 // File is no longer needed - close it
 fclose(fd);
 // Load image from the memory
 nErrcount = IG_load_mem(lpWhereFile, nWholeSize, 1, 0, &hIGear);
 // delete memory
 free(lpWhereFile);
}

ImageGear Professional v18 for Mac | 1010

//...

// Destroy the image
if(IG_image_is_valid(hIGear))
{
 IG_image_delete(hIGear);
}

Remarks:

The entire image file (even if a multi-page file) including header, is in memory. The format must be one of the file
formats recognized by ImageGear. See ImageGear Supported File Formats Reference.

Argument lpImage is a pointer to the start of the image file in memory. dwSize is the size of the entire file (even if a
multi-page file). For a multi-page file, nPage is the page number to load. Note that page numbers in multi-page files
begin at 1, not 0. Set nPage = 1 if the file is a non-multi-page file.

This function creates a DIB for the image and loads the image into it. The handle which ImageGear assigns for this
image is returned to you via argument lphIGear.

Note that simply loading the file does not cause it to be displayed. Refer to function IG_dspl_image_draw for
how to display an image once it is in memory.

If you set nPage to < 1, ImageGear will default the value to 1; if you set nPage to greater than the number of
pages in the document, ImageGear will default the value to the last page number. This same default procedure
applies to the nTile parameter as well.

This function is very similar in operation to IG_load_file, except that the file to load from is located in memory rather
than on a mass storage device.

ImageGear Professional v18 for Mac | 1011

1.3.1.2.21.17 IG_load_mem_CB

This function loads an image from a memory buffer using user-defined callback functions.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_mem_CB(
 LPVOID lpImage,
 AT_UINT nSize,
 UINT nPage,
 UINT nTile,
 LPFNIG_RASTER_SET lpfnRasterSet,
 LPFNIG_DIB_CREATE lpfnDIBCreate,
 LPVOID lpPrivateData
);

Arguments:

Name Type Description

lpImage LPVOID Pointer to a memory buffer containing the image.

nSize AT_UINT Size of image in memory.

nPage UINT Page number to load if this is a multi-page file. Note that page numbers begin
at 1, not 0. Set nPage to 1 if this is not a multi-page file.

nTile UINT If loading an image that is tiled, you can set the number of a specific tile to
load. Set to 1 for a non-tiled image.

lpfnRasterSet LPFNIG_RASTER_SET Pointer to callback function to be called after each raster line is read.

lpfnDIBCreate LPFNIG_DIB_CREATE Pointer to callback function to be called after the file header has been read.

lpPrivateData LPVOID Pointer to a private data area. This pointer will be passed to the callback
functions.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Indexed RGB - 1, 4, 8 bpp;
Grayscale - 9...16 bpp;
RGB - 24 bpp;
CMYK - 32 bpp.

Actual set of pixel formats supported by this function can be narrower, depending on the implementation of the
user-defined callback functions.

Remarks:

This function is only kept for backward compatibility reasons. Please use IG_load_mem_CB_ex instead.

See the description under function IG_load_FD_CB. See also function IG_load_mem.

If you set nPage to < 1, ImageGear will default the value to 1; if you set nPage to greater than the number of
pages in the document, ImageGear will default the value to the last page number. This same default procedure
applies to the nTile parameter as well.

ImageGear Professional v18 for Mac | 1012

1.3.1.2.21.18 IG_load_mem_CB_ex

This function loads an image from a file using user-defined callback functions.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_mem_CB_ex(
 LPVOID lpImage,
 AT_UINT nSize,
 UINT nPage,
 UINT nTile,
 LPFNIG_RASTER_SET lpfnRasterSet,
 LPFNIG_DIB_CREATE_EX lpfnDIBCreateEx,
 LPVOID lpPrivateData
);

Arguments:

Name Type Description

lpImage LPVOID Pointer to a memory buffer containing the image.

nSize AT_UINT Size of image in memory.

nPage UINT Page number to load if this is a multi-page file. Note that page
numbers begin at 1, not 0. Set nPage to 1 if this is not a multi-page
file.

nTile UINT If loading an image that is tiled, you can set the number of a specific
tile to load. Tile numbers begin at 1, not 0. Set to 1 for a non-tiled
image.

lpfnRasterSet LPFNIG_RASTER_SET Pointer to callback function to be called after each raster line is read.

lpfnDIBCreateEx LPFNIG_DIB_CREATE_EX Pointer to callback function to be called after the file header has been
read.

lpPrivateData LPVOID Pointer to a private data area. This pointer will be passed to the
callback functions.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Actual set of pixel formats supported by this function can be narrower, depending on the implementation of the
user-defined callback function.

Example:

AT_ERRCOUNT ACCUAPI MyDIBCreateEx(
 LPVOID lpPrivate, /* Private data passed in */
 const HIGDIBINFO hDIB /* DIB info object for DIB */
)
{
 /* Get info about image and allocate storage here */
 return 0;
}
AT_ERRCOUNT ACCUAPI MyRasterSet(
 LPVOID lpPrivate, /* Private data passed in */
 const LPAT_PIXEL lpRaster, /* Raster line to set */

ImageGear Professional v18 for Mac | 1013

 AT_PIXPOS row, /* Y position in the image */
 DWORD rasterSize /* Size of the raster line */
)
{
 /* Do something with incoming raster data here */
 return 0;
}

void Example_IG_load_FD_CB_ex()
{
 AT_ERRCOUNT nErrcount; /* Number of errors on stack */
 HANDLE fd; /* File descriptor */
 DWORD dwPrivate[10]; /* Some private data */
 fd = CreateFile(_T("picture.bmp"), GENERIC_READ,
 0, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

 if (fd != INVALID_HANDLE_VALUE)
 {
 nErrcount = IG_load_FD_CB_ex(
 (AT_INT)fd, /* File descriptor */
 0L, /* Offset to image */
 1, /* Page number to load */
 1, /* Tile number to load */
 MyRasterSet, /* Called for each raster line */
 MyDIBCreateEx, /* Called after header is read */
 dwPrivate); /* Callback data */
 CloseHandle(fd);
 }
}

If you set nPage to < 1, ImageGear will default the value to 1; if you set nPage to greater than the number of
pages in the document, ImageGear will default the value to the last page number. This same default procedure
applies to the nTileNum parameter as well.

See Also

IG_load_FD_CB

IG_load_mem

ImageGear Professional v18 for Mac | 1014

1.3.1.2.21.19 IG_load_raw_FD

This function creates an ImageGear image from the raw image data of the file whose File handle is fd.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_raw_FD(
 AT_INT fd,
 AT_DIMENSION nWidth,
 AT_DIMENSION nHeight,
 UINT nBitsPerPixel,
 AT_MODE nFillOrder,
 AT_MODE nCompression,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

fd AT_INT Handle of the open file containing the image to be loaded. This handle can be
obtained from Microsoft Windows functions such as CreateFile(), and cast to
AT_INT for passing to the function parameter. FILE pointers returned by
functions such as fopen(), and file handles returned by functions such as
_sopen_s() are not supported.

nWidth AT_DIMENSION The width, in pixels, of the image.

nHeight AT_DIMENSION The height, in pixels, of the image.

nBitsPerPixel UINT The Bits Per Pixel of the raw data to load.

nFillOrder AT_MODE Set to the fill order used in the image: Least Significant Bit first (LSB) or Most
Significant Bit first (MSB). Use one of the ImageGear - defined constants:
IG_FILL_LSB or IG_FILL_MSB.

For G3/G4 compressed data, this parameter specifies the Least/Most
significant bit.
For 16 bit grayscale uncompressed images, this parameter specifies the
Least/Most significant byte.
For any other bit depths and compressions, this parameter is ignored.

nCompression AT_MODE Compression used by the RAW image data. Set to one of enumIGCompressions
constants.

lphIGear LPHIGEAR Returns a HIGEAR handle to the raw image data just loaded.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Indexed RGB - 1, 4, 8 bpp
Grayscale - 12, 16 bpp
RGB - 24 bpp
CMYK - 32 bpp

Example:

HIGEAR hIGear = 0; // Will receive HIGEAR image handle
HANDLE fd; // File Descriptor handle

// Open a dile to read

ImageGear Professional v18 for Mac | 1015

fd = CreateFile(_T("Group4.raw"), GENERIC_READ,
 0, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

if(fd != INVALID_HANDLE_VALUE)
{
 AT_ERRCOUNT nErrcount; // Returned count of errors
 nErrcount = IG_load_raw_FD((AT_INT)fd, 2320, 3408, 1, IG_FILL_MSB,
IG_COMPRESSION_CCITT_G4, &hIGear);

 //...

 // Destroy the image
 if(IG_image_is_valid(hIGear))
 {
 IG_image_delete(hIGear);
 }
 CloseHandle(fd);
}

Remarks:

A raw image file contains no header or identifying information. You must supply this function with all of the
information needed to correctly parse the image data, including the compression, byte fill order, width, height, and bit
depth. Currently, this function can be used to read raw image data from the following types of files: ABIC, CCITT -
Group 3, Group 3 2D, Group 4, LZW, and raw uncompressed data.

The ABIC and LZW compression types are available as separate components to ImageGear. See ImageGear
Components for details on working with ImageGear components.

The pointer must be positioned at the start of the data. (For example, your application should read or seek past any
header that is present.)

Additionally, you can specify row and pixel alignment for the loading of uncompressed images using ALIGNMENT and
UNCOMPRESSED_PACKED image control parameters, respectively. See RAW format reference for more information.

For uncompressed images only, ImageGear's Load Raw functions consider the coordinates (0,0) to refer to the
lower-left corner of the bitmap.

ImageGear Professional v18 for Mac | 1016

1.3.1.2.21.20 IG_load_raw_file

This function loads a raw (no header) image data file from disk.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_raw_file(
 const LPSTR lpszFileName,
 LONG lOffset,
 AT_DIMENSION nWidth,
 AT_DIMENSION nHeight,
 UINT nBitsPerPixel,
 AT_MODE nFillOrder,
 AT_MODE nCompression,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

lpszFileName const LPSTR Name of the file.

lOffset LONG Offset in the file from where the raw image data starts.

nWidth AT_DIMENSION The width, in pixels, of the image.

nHeight AT_DIMENSION The height, in pixels, of the image.

nBitsPerPixel UINT The Bits Per Pixel of the raw data to load.

nFillOrder AT_MODE Set to the fill order used in the image: Least Significant Bit first (LSB) or Most
Significant Bit first (MSB). Use one of the ImageGear - defined constants:
IG_FILL_LSB or IG_FILL_MSB.

For G3/G4 compressed data, this parameter specifies the Least/Most
significant bit.
For 16 bit grayscale uncompressed images, this parameter specifies the
Least/Most significant byte.
For any other bit depths and compressions, this parameter is ignored.

nCompression AT_MODE Compression used by the RAW image data. Set to one of enumIGCompressions
constants.

lphIGear LPHIGEAR Returns a HIGEAR handle to the raw image data just loaded.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Indexed RGB - 1, 4, 8 bpp
Grayscale - 12, 16 bpp
RGB - 24 bpp
CMYK - 32 bpp

Example:

HIGEAR hIGear = 0; // Will receive HIGEAR image handle

AT_ERRCOUNT nErrcount; /* Returned count of errors */
nErrcount = IG_load_raw_file("Group4.raw", 0, 2320, 3408, 1, IG_FILL_MSB,
IG_COMPRESSION_CCITT_G4, &hIGear);

ImageGear Professional v18 for Mac | 1017

//...

// Destroy the image
if(IG_image_is_valid(hIGear))
{
 IG_image_delete(hIGear);
}

Remarks:

A raw image file contains no header or identifying information. You must supply this function with all of the
information needed to correctly parse the image data, including the offset to the start of the pixel data, compression,
byte fill order, width, height, and bit depth. Currently, this function can be used to read raw image data from the
following types of files: ABIC, CCITT - Group 3, Group 3 2D, Group 4, LZW, and raw uncompressed data.

The ABIC and LZW compression types are available as separate components to ImageGear. See ImageGear
Components for details on working with ImageGear components.

Additionally, you can specify row and pixel alignment for the loading of uncompressed images using ALIGNMENT and
UNCOMPRESSED_PACKED image control parameters, respectively. See RAW format reference for more information.

For uncompressed images only, ImageGear's Load Raw functions consider the coordinates (0,0) to refer to the
lower-left corner of the bitmap.

ImageGear Professional v18 for Mac | 1018

1.3.1.2.21.21 IG_load_raw_mem

This function loads an image from the raw image data located in the memory buffer.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_raw_mem(
 LPVOID lpImage,
 AT_UINT nSize,
 AT_DIMENSION nWidth,
 AT_DIMENSION nHeight,
 UINT nBitsPerPixel,
 AT_MODE nFillOrder,
 AT_MODE nCompression,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

lpImage LPVOID Pointer to memory area from which to load.

nSize AT_UINT Size of image in memory.

nWidth AT_DIMENSION The width, in pixels, of the image.

nHeight AT_DIMENSION The height, in pixels, of the image.

nBitsPerPixel UINT The Bits Per Pixel of the raw data to load.

nFillOrder AT_MODE Set to the fill order used in the image: Least Significant Bit first (LSB) or Most
Significant Bit first (MSB). Use one of the ImageGear - defined constants:
IG_FILL_LSB or IG_FILL_MSB.

For G3/G4 compressed data, this parameter specifies the Least/Most
significant bit.
For 16 bit grayscale uncompressed images, this parameter specifies the
Least/Most significant byte.
For any other bit depths and compressions, this parameter is ignored.

nCompression AT_MODE Compression used by the RAW image data. Set to one of enumIGCompressions
constants.

lphIGear LPHIGEAR Returns you a HIGEAR handle to the raw image data just loaded.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Indexed RGB - 1, 4, 8 bpp
Grayscale - 12, 16 bpp
RGB - 24 bpp
CMYK - 32 bpp

Example:

HIGEAR hIGear = 0; // Will receive HIGEAR image handle
char* buffer = "ï¿½AAAAAAA"; // Buffer with image data
AT_DIMENSION nWidth = 2; // Pixels per row of data to read
AT_DIMENSION nHeight = 2; // Rows to read
AT_MODE nCompression = IG_COMPRESSION_NONE; // Compression
AT_MODE nFillOrder = IG_FILL_MSB; // Fill order

ImageGear Professional v18 for Mac | 1019

UINT nBitsPerPixel = 16; // Bit depth

AT_ERRCOUNT nErrcount; /* Returned count of errors */
nErrcount = IG_load_raw_mem (buffer, (AT_UINT)strlen(buffer), nWidth, nHeight,
nBitsPerPixel, nFillOrder, nCompression,
 &hIGear);

//...

// Destroy the image
if(IG_image_is_valid(hIGear))
{
 IG_image_delete(hIGear);
}

Remarks:

A raw image file contains no header or identifying information. You must supply this function with all of the
information needed to correctly parse the image data, including the compression, byte fill order, width, height, and bit
depth. Currently, this function can be used to read raw image data from the following types of files: ABIC, CCITT -
Group 3, Group 3 2D, Group 4, LZW, and raw uncompressed data.

The ABIC and LZW compression types are available as separate components to ImageGear. See ImageGear
Components for details on working with ImageGear components.

Note that lpImage must point to the start of the actual data (not to the start of any header information that may be
present).

Additionally, you can specify row and pixel alignment for the loading of uncompressed images using ALIGNMENT and
UNCOMPRESSED_PACKED image control parameters, respectively. See RAW format reference for more information.

For uncompressed images only, ImageGear's Load Raw functions consider the coordinates (0,0) to refer to the
lower- left corner of the bitmap.

ImageGear Professional v18 for Mac | 1020

1.3.1.2.21.22 IG_load_rect_get

This function obtains the current load rectangle, as set in the last call to IG_load_rect_set.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_rect_get(
 LPAT_PIXPOS lpX,
 LPAT_PIXPOS lpY,
 LPAT_DIMENSION lpWidth,
 LPAT_DIMENSION lpHeight
);

Arguments:

Name Type Description

lpX LPAT_PIXPOS Pointer to variable of type AT_PIXPOS to receive X coordinate of load rectangle.

lpY LPAT_PIXPOS Pointer to AT_PIXPOS variable to receive Y coordinate of load rectangle.

lpWidth LPAT_DIMENSION Pointer to variable of type AT_DIMENSION to receive width of load rectangle.

lpHeight LPAT_DIMENSION Pointer to variable of type AT_DIMENSION to receive height of load rectangle.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_PIXPOS nXLoadCrop, /* X coordinate of load crop rectangle */
nYLoadCrop; /* Y coordinate */
AT_DIMENSION
 nWidCrop, /* Width of load crop rectangle */
 nHiCrop; /* Height */
AT_ERRCOUNT nErrcount; /* Returned count of errors */
nErrcount = IG_load_rect_get (&nXLoadCrop, &nYLoadCrop, &nWidCrop, &nHiCrop);

ImageGear Professional v18 for Mac | 1021

1.3.1.2.21.23 IG_load_rect_set

This function sets the load rectangle.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_rect_set(
 AT_PIXPOS nX,
 AT_PIXPOS nY,
 AT_DIMENSION nWidth,
 AT_DIMENSION nHeight
);

Arguments:

Name Type Description

nX AT_PIXPOS X coordinate of load rectangle.

nY AT_PIXPOS Y coordinate of load rectangle.

nWidth AT_DIMENSION Width of load rectangle.

nHeight AT_DIMENSION Height of load rectangle.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

/* Set to only load the upper left 1000 x 500 of the image: */
IG_load_rect_set (0, 0, 1000, 500);

Remarks:

This function will cause an image loaded to be cropped. Portions of the image falling outside the coordinates of this
rectangle will be discarded, and will not appear in the image bitmap of the DIB created by the load.

To reset ImageGear to its default behavior of loading the whole image, set all parameters to 0. See also
IG_load_rect_get function.

ImageGear Professional v18 for Mac | 1022

1.3.1.2.21.24 IG_load_size_get

This function obtains the load size dimensions.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_size_get(
 LPAT_DIMENSION lpWidth,
 LPAT_DIMENSION lpHeight
);

Arguments:

Name Type Description

lpWidth LPAT_DIMENSION Pointer to variable of type AT_DIMENSION to receive the load size width.

lpHeight LPAT_DIMENSION Pointer to variable of type AT_DIMENSION to receive the load size height.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_DIMENSION nWid, nHi; /* Will receive current load size settings */
AT_ERRCOUNT nErrCount = IG_load_size_get (&nWid, &nHi);

Remarks:

To reset ImageGear so that it will default to normal resolution, set both parameters to 0 using IG_load_size_set.

ImageGear Professional v18 for Mac | 1023

1.3.1.2.21.25 IG_load_size_set

This function instructs ImageGear to resize images to specified dimensions during the loading.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_size_set(
 AT_DIMENSION nWidth,
 AT_DIMENSION nHeight
);

Arguments:

Name Type Description

nWidth AT_DIMENSION Specifies the width the images should have after loading.

nHeight AT_DIMENSION Specifies the height the images should have after loading.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

/* On loading, map the image into a 512 x 256 image bitmap: */
IG_load_size_set (512, 256);

Remarks:

ImageGear will resize the images according to the specified dimensions, regardless of the dimensions in the source
image file. The effect is similar to loading and then resizing the image. To reset ImageGear so that it will default to
loading the entire image, set both parameters to 0. See also IG_load_size_get.

ImageGear does not apply interpolation for image resizing during the loading.

ImageGear Professional v18 for Mac | 1024

1.3.1.2.21.26 IG_load_tag_CB_register

This function has been deprecated and will be removed from the public API in a future release. Please use
IG_fltr_metad_callback_get instead.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_tag_CB_register(
 LPFNIG_TAG_SET lpfnTagSet,
 LPVOID lpPrivateData
);

Arguments:

Name Type Description

lpfnTagSet LPFNIG_TAG_SET Pointer to callback function to be called with each Tag encountered while loading.

lpPrivateData LPVOID Pointer to private data (passed to callback function).

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

IG_load_tag_CB_register(NULL, NULL);

Remarks:

This function registers a callback function of type LPFNIG_TAG_GET, LPFNIG_TAG_SET, or LPFNIG_TAG_USER_GET.

See the Core Component Callback Functions Reference section. These callback function types are defined by ImageGear
to take a certain set of parameters and to return data to you. Your callback function must supply ImageGear with the
type of data required by the callback that you choose.

Once you have written a callback function in one of the types listed above, this function should be called to register it.
Once registered, your function will be called once for each Tag encountered while loading a file. A "tag" may also be
known as an element in the image's header, or as non-image data. The TIFF format popularized the use of the word
"tag".

Different file formats have different sets of tags.

ImageGear Professional v18 for Mac | 1025

1.3.1.2.21.27 IG_load_thumbnail

This function loads a thumbnail (if one exists in the file) from file lpszFileName, and returns the HIGEAR handle of the
resulting image to the HIGEAR object pointed to by argument lphIGear.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_thumbnail(
 const LPSTR szFileName,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

szFileName const LPSTR Name of file.

lphIGear LPHIGEAR Pointer to HIGEAR variable to receive handle.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

ImageGear Professional v18 for Mac | 1026

1.3.1.2.21.28 IG_load_thumbnail_FD

This function loads a thumbnail from the file specified by a file handle.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_thumbnail_FD(
 AT_INT fd,
 LONG lOffset,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

fd AT_INT Handle of the open file containing the image from which to load the thumbnail. This handle
can be obtained from Microsoft Windows functions such as CreateFile(), and cast to AT_INT
for passing to the function parameter. FILE pointers returned by functions such as fopen(),
and file handles returned by functions such as _sopen_s() are not supported.

lOffset LONG Offset in file at which file image begins.

lphIGear LPHIGEAR Pointer to a HIGEAR variable to receive the handle.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear1 = 0; /* handle ret'd by IG_load_FD */
HIGEAR hIGear2 = 0; /* handle for thumbnail */
HANDLE fd; /* DOS File Descriptor */
LONG lOffset; /* offset to image in file */
UINT nPageNum; /* will be 0 for this call */
AT_ERRCOUNT nErrcount; /* to test for errors */

fd = CreateFile(_T("picture.bmp"), GENERIC_READ,
 0, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

if(fd != INVALID_HANDLE_VALUE)
{
 nPageNum = 0; /* not a multi-page file */
 lOffset = 0; /* access file from start */
 /* Load image, and obtain its HIGEAR handle: */
 nErrcount = IG_load_FD((AT_INT)fd, lOffset, nPageNum, 0, &hIGear1);
 CloseHandle(fd);
 if(nErrcount == 0)
 {
 nErrcount = IG_load_thumbnail_FD((AT_INT)fd, lOffset, &hIGear2);
 }

 //...

 // Destroy images
 if(IG_image_is_valid(hIGear1))
 {

ImageGear Professional v18 for Mac | 1027

 IG_image_delete(hIGear1);
 }
 if(IG_image_is_valid(hIGear2))
 {
 IG_image_delete(hIGear2);
 }
}

Remarks:

The handle of the resulting image is returned to the HIGEAR variable pointed to by argument lphIGear. See also
functions IG_load_thumbnail, and IG_save_thumbnail_set.

ImageGear Professional v18 for Mac | 1028

1.3.1.2.21.29 IG_load_thumbnail_mem

This function loads a thumbnail from the image located in a memory buffer.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_thumbnail_mem(
 LPVOID lpImage,
 AT_UINT nSize,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

lpImage LPVOID Pointer to start of the image in memory.

nSize AT_UINT Size of image in memory.

lphIGear LPHIGEAR Pointer to HIGEAR variable to receive handle.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear1 = 0; /* handle ret'd by IG_load_mem */
HIGEAR hIGear2 = 0; /* ret'd by IG_load_thumbnail_mem */
char far * lpWhereFile = NULL; /* ptr to image file in mem */
AT_UINT nImageSize; /* Size of image in memory */
AT_ERRCOUNT nErrcount;/* to test for errors */

// Open a file and get its size
FILE* fd;
fopen_s(&fd, "picture.bmp", "rb");
if(fd != NULL)
{
 fseek(fd, 0, SEEK_END);
 nImageSize = (AT_UINT)ftell(fd);
 fseek(fd, 0, SEEK_SET);
 // Allocate memory and read the image into the memory buffer
 lpWhereFile = (char*)malloc(nImageSize);
 fread(lpWhereFile, 1, nImageSize, fd);
 // File is no longer needed - close it
 fclose(fd);
}
// Load image from the memory
nErrcount = IG_load_mem(lpWhereFile, nImageSize, 1, 0, &hIGear1);
if (nErrcount == 0)
{
 nErrcount = IG_load_thumbnail_mem(lpWhereFile, nImageSize, &hIGear2);
}
// delete memory
if(lpWhereFile)
{
 free(lpWhereFile);

ImageGear Professional v18 for Mac | 1029

}

//...

// Destroy images
if(IG_image_is_valid(hIGear1))
{
 IG_image_delete(hIGear1);
}
if(IG_image_is_valid(hIGear2))
{
 IG_image_delete(hIGear2);
}

Remarks:

The handle of the resulting image is returned to the HIGEAR variable pointed to by argument lphIGear. See also
functions IG_load_thumbnail, and IG_save_thumbnail_set.

ImageGear Professional v18 for Mac | 1030

1.3.1.2.21.30 IG_load_tiles_stitch

This function loads and stitches together a tiled image, returning a HIGEAR handle to the image in memory.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_tiles_stitch(
 const LPSTR lpszFileName,
 UINT nPage,
 LPAT_STITCH lpStitch,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

lpszFileName const LPSTR Set to the filename of the image to load and stitch.

nPage UINT Page number to load and stitch if this is a multi-page file. Note that page numbers
begin at 1, not 0. Set nPage to 1 if this is not a multi-page file.

lpStitch LPAT_STITCH Set to a structure of type AT_STITCH, which defines the reference tile number, and
the number of row and columns of tiles.

lphIGear LPHIGEAR ImageGear returns a HIGEAR handle to the newly stitched image in memory.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrCount;
HIGEAR hIGear = 0;
AT_STITCH stitch = {1, 1, 1};
CHAR* szFile = "picture.tif";
nErrCount = IG_load_tiles_stitch(szFile, 1, &stitch, &hIGear);

//...

// Destroy the image
if(IG_image_is_valid(hIGear))
{
 IG_image_delete(hIGear);
}

Remarks:

The AT_STITCH structure allows you to supply ImageGear with information on which tiles to use as the upper-left
corner in the new stitched image, and how many tile rows and columns should be stitched together. For a graphical
representation of how this works, see Working with Tiled Images.

The nPage argument is set to 1 or greater if you are loading from a multi-page file, to indicate which page (image)
you want to load. Set nPage to 1 for a non-multi-page file.

If you set nPage to < 1, ImageGear will default the value to 1; if you set nPage to greater than the number of pages
in the document, ImageGear will default the value to the last page number.

See also IG_load_tiles_stitch_FD, IG_load_tiles_stitch_mem, IG_tile_count_get functions.

ImageGear Professional v18 for Mac | 1031

For a complete discussion of working with tiled images see Working with Tiled Images.

ImageGear Professional v18 for Mac | 1032

1.3.1.2.21.31 IG_load_tiles_stitch_FD

This function loads and stitches together a tiled image from the file specified by the file handle, returning you a
HIGEAR handle to the image in memory.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_tiles_stitch_FD(
 AT_INT fd,
 LONG lOffset,
 UINT nPage,
 LPAT_STITCH lpStitch,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

fd AT_INT Handle of the open file containing the image to be loaded. This handle can be obtained
from Microsoft Windows functions such as CreateFile(), and cast to AT_INT for passing to
the function parameter. FILE pointers returned by functions such as fopen(), and file
handles returned by functions such as _sopen_s() are not supported.

lOffset LONG Offset into the file, in bytes, to where the image begins. This is the offset to the
beginning of the header, not to the beginning of the bitmap. lOffset is usually 0.

nPage UINT Page number to load if this is a multi-page file. Note that page numbers begin at 1, not
0. Set nPage to 1 if this is not a multi-page file.

lpStitch LPAT_STITCH Set to a structure of type AT_STITCH, which defines the reference tile number, and the
number of rows and columns of tiles.

lphIGear LPHIGEAR Returns a HIGEAR handle to the newly stitched-together image.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear = 0; /* handle ret'd by IG_load_FD */
HANDLE fd; /* File Descriptor */
AT_ERRCOUNT nErrcount; /* to test for errors */
AT_STITCH stitchStruct = {1, 1, 1};

fd = CreateFile(_T("picture.tif"), GENERIC_READ,
 0, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
if(fd != INVALID_HANDLE_VALUE)
{
 /* Load tiles, stitch together and return HIGEAR handle: */
 nErrcount = IG_load_tiles_stitch_FD((AT_INT)fd, 0, 1, &stitchStruct, &hIGear);
 CloseHandle(fd);

 //...

 // Destroy the image
 if(IG_image_is_valid(hIGear))
 {

ImageGear Professional v18 for Mac | 1033

 IG_image_delete(hIGear);
 }
}

Remarks:

Unlike IG_load_tiles_stitch, this function is used when the file is already open and you have its File handle.

The AT_STITCH structure allows you to tell ImageGear which tile to use as the upper-left corner in the new stitched
image, and how many tile rows and columns should be stitched together. For a graphical representation of how this
works, see Working with Tiled Images.

The nPage argument is set to 1 or greater if you are loading from a multi-page file, to indicate which page (image)
you want to load. Set nPage to 1 for a non multi-page file.

If you set nPage to < 1, ImageGear will default the value to 1; if you set nPage to greater than the number of pages
in the document, ImageGear will default the value to the last page number.

See also IG_load_tiles_stitch, IG_load_tiles_stitch_mem, and IG_tile_count_get_FD functions.

For a complete discussion of working with tiled images, see Working with Tiled Images.

ImageGear Professional v18 for Mac | 1034

1.3.1.2.21.32 IG_load_tiles_stitch_mem

This function loads and stitches together a tiled image that has already been loaded into memory, returning you a
HIGEAR handle to the image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_load_tiles_stitch_mem(
 LPVOID lpImage,
 AT_UINT nSize,
 UINT nPage,
 LPAT_STITCH lpStitch,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

lpImage LPVOID Pointer to a memory buffer containing the image.

nSize AT_UINT Size of image in memory.

nPage UINT Page number to load if this is a multi-page file. Note that page numbers begin at 1, not
0. Set nPage to 1 if this is not a multi-page file.

lpStitch LPAT_STITCH Set to a structure of type AT_STITCH, which defines the reference tile number, and the
number of rows and columns of tiles.

lphIGear LPHIGEAR Returns a HIGEAR handle to the newly stitched-together image.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount;
HIGEAR hIGear;
char far * lpWhereFile;
AT_UINT nWholeSize;
AT_STITCH stitchStruct = {1, 1, 1};
// Open a file and get its size
FILE* fd;
fopen_s(&fd, "picture.tif", "rb");
if(fd != NULL)
{
 fseek(fd, 0, SEEK_END);
 nWholeSize = (AT_UINT)ftell(fd);
 fseek(fd, 0, SEEK_SET);
 // Allocate memory and read the image into the memory buffer
 lpWhereFile = (char*)malloc(nWholeSize);
 fread(lpWhereFile, 1, nWholeSize, fd);
 // File is no longer needed - close it
 fclose(fd);
}

if(lpWhereFile != NULL)
{

ImageGear Professional v18 for Mac | 1035

 nErrcount = IG_load_tiles_stitch_mem(lpWhereFile, nWholeSize, 1, &stitchStruct,
&hIGear);
 // delete memory
 free(lpWhereFile);
}

//...

// Destroy the image
if(IG_image_is_valid(hIGear))
{
 IG_image_delete(hIGear);
}

Remarks:

The AT_STITCH structure allows you to tell ImageGear which tile to use as the upper-left corner in the new stitched
image, and how many tile rows and columns should be stitched together. For a graphical representation of how this
works, see Working with Tiled Images.

Simply loading and stitching the file does not cause it to be displayed. Refer to IG_dspl_image_draw and related
routines, for how to display an image once it is in memory. See also IG_load_file_display function.

The nPage argument is set to 1 or greater if you are loading from a multi-page file, to indicate which page (image)
you want to load. Set nPage to 1 for a non multi-page file.

If you set nPage to < 1, ImageGear will default the value to 1; if you set nPage to greater than the number of pages
in the document, ImageGear will default the value to the last page number.

See also IG_load_tiles_stitch, IG_load_tiles_stitch_FD, IG_tile_count_get_memfunctions.

For a complete discussion of working with tiled images, see Working with Tiled Images.

ImageGear Professional v18 for Mac | 1036

1.3.1.2.22 LUT Functions

This section provides information about the LUT group of functions.

IG_LUT_copy
IG_LUT_copy_to_byte_array
IG_LUT_copy_to_word_array
IG_LUT_create
IG_LUT_destroy
IG_LUT_input_depth_get
IG_LUT_input_is_signed_get
IG_LUT_is_valid
IG_LUT_item_get
IG_LUT_item_set
IG_LUT_length_get
IG_LUT_output_depth_get
IG_LUT_output_is_signed_get
IG_LUT_size_get
IG_LUT_update_from_byte_array
IG_LUT_update_from_word_array

ImageGear Professional v18 for Mac | 1037

1.3.1.2.22.1 IG_LUT_copy

This function copies the LUT to a new HIGLUT object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_LUT_copy(
 HIGLUT SrcLUT,
 HIGLUT* lpDstLUT
);

Arguments:

Name Type Description

SrcLUT HIGLUT Source LUT handle.

lpDstLUT HIGLUT* New LUT handle.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1038

1.3.1.2.22.2 IG_LUT_copy_to_byte_array

This function copies a LUT to a byte array.

Declaration:

AT_ERRCOUNT ACCUAPI IG_LUT_copy_to_byte_array(
 HIGLUT SrcLUT,
 AT_INT ArrayLength,
 AT_BYTE* lpArray
);

Arguments:

Name Type Description

SrcLUT HIGLUT LUT to be copied.

ArrayLength AT_INT Array length.

lpArray AT_BYTE* Byte array.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Array length must be equal to 2^InputDepth, where InputDepth is the input depth of the LUT.

ImageGear Professional v18 for Mac | 1039

1.3.1.2.22.3 IG_LUT_copy_to_word_array

This function copies LUT a to word array.

Declaration:

AT_ERRCOUNT ACCUAPI IG_LUT_copy_to_word_array(
 HIGLUT SrcLUT,
 AT_INT ArrayLength,
 AT_WORD* lpArray
);

Arguments:

Name Type Description

SrcLUT HIGLUT LUT to be copied.

ArrayLength AT_INT Array length.

lpArray AT_WORD* Word array.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Array length must be equal to 2^InputDepth, where InputDepth is the input depth of the LUT.

ImageGear Professional v18 for Mac | 1040

1.3.1.2.22.4 IG_LUT_create

This function creates a LUT object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_LUT_create(
 AT_INT InputDepth,
 AT_BOOL InputIsSigned,
 AT_INT OutputDepth,
 AT_BOOL OutputIsSigned,
 HIGLUT* lpLUT
);

Arguments:

Name Type Description

InputDepth AT_INT Input bit count of the LUT.

InputIsSigned AT_BOOL Shows whether input of the LUT is signed.

OutputDepth AT_INT Output bit count of the LUT.

OutputIsSigned AT_BOOL Shows whether output of the LUT is signed.

lpLUT HIGLUT* Handle of the created LUT object.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1041

1.3.1.2.22.5 IG_LUT_destroy

This function destroys a LUT object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_LUT_destroy(
 HIGLUT lut
);

Arguments:

Name Type Description

lut HIGLUT Handle of the LUT to be destroyed.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1042

1.3.1.2.22.6 IG_LUT_input_depth_get

This function returns input bit count of the LUT.

Declaration:

AT_INT ACCUAPI IG_LUT_input_depth_get(HIGLUT lut);

Arguments:

Name Type Description

lut HIGLUT LUT handle.

Return Value:

Input bit count of the LUT.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Input depth defines the length (number of entries) of the lut, as follows:

LUTLength = 2^InputDepth.

ImageGear Professional v18 for Mac | 1043

1.3.1.2.22.7 IG_LUT_input_is_signed_get

This function tells whether input of the LUT is signed.

Declaration:

AT_BOOL ACCUAPI IG_LUT_input_is_signed_get(HIGLUT lut);

Arguments:

Name Type Description

lut HIGLUT LUT handle.

Return Value:

TRUE if the input is signed; FALSE - otherwise.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1044

1.3.1.2.22.8 IG_LUT_is_valid

This function checks whether HIGLUT is valid.

Declaration:

AT_BOOL ACCUAPI IG_LUT_is_valid(HIGLUT lut);

Arguments:

Name Type Description

lut HIGLUT LUT handle.

Return Value:

TRUE if HIGLUT is valid; FALSE - otherwise.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1045

1.3.1.2.22.9 IG_LUT_item_get

This function returns LUT item.

Declaration:

AT_INT ACCUAPI IG_LUT_item_get(
 HIGLUT lut,
 AT_INT32 index
);

Arguments:

Name Type Description

lut HIGLUT Handle of the LUT.

index AT_INT32 Index of the item to be returned.

Return Value:

LUT item.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

If LUT input is unsigned, valid values for index are in range [0, 2^InputDepth-1].

If LUT input is signed, valid values for index are in range [-2^(InputDepth-1), 2^(InputDepth-1)-1].

ImageGear Professional v18 for Mac | 1046

1.3.1.2.22.10 IG_LUT_item_set

This function sets the LUT item.

Declaration:

AT_VOID ACCUAPI IG_LUT_item_set(
 HIGLUT lut,
 AT_INT32 index,
 AT_INT value
);

Arguments:

Name Type Description

lut HIGLUT LUT handle.

index AT_INT32 Index of the item.

value AT_INT Value of the item.

Return Value:

None

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

If LUT input is unsigned, valid values for index are in range [0, 2^InputDepth-1].

If LUT input is signed, valid values for index are in range [-2^(InputDepth-1), 2^(InputDepth-1)-1].

ImageGear Professional v18 for Mac | 1047

1.3.1.2.22.11 IG_LUT_length_get

This function returns the number of entries in the LUT.

Declaration:

AT_INT ACCUAPI IG_LUT_length_get(HIGLUT hlut);

Arguments:

Name Type Description

hlut HIGLUT LUT handle.

Return Value:

Returns the number of entries in the LUT.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1048

1.3.1.2.22.12 IG_LUT_output_depth_get

This function returns output bit count of the LUT.

Declaration:

AT_INT ACCUAPI IG_LUT_output_depth_get(HIGLUT lut);

Arguments:

Name Type Description

lut HIGLUT LUT handle.

Return Value:

Returns output bit count of the LUT.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Output depth defines the size of each entry of the LUT.

ImageGear Professional v18 for Mac | 1049

1.3.1.2.22.13 IG_LUT_output_is_signed_get

This function tells whether output of the LUT is signed.

Declaration:

AT_BOOL ACCUAPI IG_LUT_output_is_signed_get(HIGLUT lut);

Arguments:

Name Type Description

lut HIGLUT LUT handle.

Return Value:

TRUE - output of the LUT is signed; FALSE - otherwise.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1050

1.3.1.2.22.14 IG_LUT_size_get

This function returns the size, in bytes, of the LUT data.

Declaration:

AT_INT ACCUAPI IG_LUT_size_get(HIGLUT hlut);

Arguments:

Name Type Description

hlut HIGLUT Handle of the LUT.

Return Value:

Returns the size, in bytes, of the LUT data.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1051

1.3.1.2.22.15 IG_LUT_update_from_byte_array

This function updates LUT from a byte array.

Declaration:

AT_ERRCOUNT ACCUAPI IG_LUT_update_from_byte_array(
 HIGLUT lut,
 AT_INT ArrayLength,
 const AT_BYTE* lpArray
);

Arguments:

Name Type Description

lut HIGLUT LUT handle.

ArrayLength AT_INT Array length.

lpArray const AT_BYTE* Byte array.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Array length must be equal to 2^InputDepth, where InputDepth is the input depth of the lut.

ImageGear Professional v18 for Mac | 1052

1.3.1.2.22.16 IG_LUT_update_from_word_array

This function updates LUT from a word array.

Declaration:

AT_ERRCOUNT ACCUAPI IG_LUT_update_from_word_array(
 HIGLUT lut,
 AT_INT ArrayLength
 const AT_WORD* lpArray
);

Arguments:

Name Type Description

lut HIGLUT LUT handle.

ArrayLength AT_INT Number of WORDs in the array.

lpArray const AT_WORD* Word array.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Array length must be equal to 2^InputDepth, where InputDepth is the input depth of the LUT.

ImageGear Professional v18 for Mac | 1053

1.3.1.2.23 Mac Initialize and Close Functions

This section provides information about the Mac Initialize and Close group of functions.

IG_initialize
IG_close

ImageGear Professional v18 for Mac | 1054

1.3.1.2.23.1 IG_initialize

This function must be called before any other ImageGear function is used. This function initializes the ImageGear library.
The lpData parameter is not used in current version and must be set to NULL.

Declaration:

AT_ERRCODE IG_initialize (LPVOID lpData);

Arguments:

Name Type Description

lpData LPVOID This argument currently isn't used, but is reserved for future use. Must be set to NULL for now.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

/* Initialize ImageGear */
nErrCount = IG_initialize(NULL);

Sample:

ImageGearDemo

See Also:

IG_close()

ImageGear Professional v18 for Mac | 1055

1.3.1.2.23.2 IG_close

When your application no longer needs the use of ImageGear functions, you should close ImageGear using this function.
This function frees resources and memory that ImageGear allocated while it was in use. This function should be called
before the application program exits.

lpData must be the same value as one passed to preceding call of IG_initialize().

Declaration:

AT_ERRCOUNT IG_close (LPVOID lpData);

Arguments:

Name Type Description

lpData LPVOID This argument currently isn’t used, and is reserved for future use. Must be set to NULL for now.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Sample:

ImageGearDemo

Example:

/* Close ImageGear */
nErrCount = IG_close (lpData);

See Also:

IG_initialize()

ImageGear Professional v18 for Mac | 1056

1.3.1.2.24 Multi Page Image File Functions

This section provides information about the Multi Page Image File group of functions.

IG_mpf_info_get
IG_mpf_page_count_get
IG_mpf_page_delete
IG_mpf_page_get
IG_mpf_page_info_get
IG_mpf_page_info_get_ex
IG_mpf_page_load
IG_mpf_page_save
IG_mpf_page_swap
IG_mpf_page_unload
IG_mpf_tile_count_get

ImageGear Professional v18 for Mac | 1057

1.3.1.2.24.1 IG_mpf_info_get

If a multi-page image hMIGear is associated with the external file image, then this function returns the file format type
of the external image through a second parameter, lpFileType.

Declaration:

AT_ERRCOUNT IG_mpf_info_get(
 [IN] HMIGEAR hMIGear,
 [OUT] LPAT_MODE lpFileType,
);

Arguments:

Name Type Description

hMIGear HMIGEAR Handle to allocated a multi-page image.

lpFileType LPAT_MODE Far pointer indicating where to receive file types such as IG_FORMAT_TIF, or
IG_FORMAT_MODCA. For a complete list of format types, see the accucnst.h file.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
AT_MODE nFileType;
 ...
/* initialize multi-page image and assign it with external file */
 iErrCnt = IG_mpf_info_get(hMIGear, &nFileType);
 if (!iErrCnt)
 printf("File type:%i\n", (INT)nFileType);

Remarks:

This constant is from the format constant list, which is defined in the accucnst.h include file. If it is not associated with
the file, then this function returns an error.

ImageGear Professional v18 for Mac | 1058

1.3.1.2.24.2 IG_mpf_page_count_get

Uses the IG_mpi_file_open() function to get the number of pages in the external file if it is associated with multi-page
image.

Declaration:

AT_ERRCOUNT IG_mpf_page_count_get(
 [IN] HMIGEAR hMIGear,
 [OUT] LPUINT lpnPageCount
);

Arguments:

Name Type Description

hMIGear HMIGEAR Handle of the allocated multi-page image.

lpnPageCount LPUINT Pointer indicating where to return number of pages of the associated file.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
UINT nPageCountI = 0; /* number of pages that should get from multi-page image */
UINT nPageCountF = 0; /* number of pages that should get from external source */
HIGEAR hIGear; /* handle of an image */
 ...
/* initialize multi-page image and assign it with external file */
nErrCount = IG_mpi_page_count_get(hMIGear, &nPageCountI);
nErrCount = IG_mpf_page_count_get(hMIGear, &nPageCountF);
printf("Number of pages of multi-page image is:%i\n", nPageCountI);
printf("Number of pages of external source is:%i", nPageCountF);

Remarks:

If the file is not associated with a multi-page image file, the value is 0.

ImageGear Professional v18 for Mac | 1059

1.3.1.2.24.3 IG_mpf_page_delete

This function deletes the nCount number of pages starting with the nStartPage.

Declaration:

AT_ERRCOUNT IG_mpf_page_delete(
 [IN] HMIGEAR hMIGear,
 [IN] UINT nStartPage,
 [IN] UINT nCount
);

Arguments:

Name Type Description

hMIGear HMIGEAR Handle to the allocated multi-page image.

nStartPage UINT The first page to be deleted.

nCount UINT Number of pages to delete.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
UINT nPageCount = 0; /* number of pages that should get from multi-page image */
UINT i;
HIGEAR hIGear; /* handle of an image */
 ...
/* initialize multi-page image and assign it with external file */
nErrCount = IG_mpf_page_count_get(hMIGear, &nPageCount);
for (i = 0; i < nPageCount; i++)
 if (!nErrCount)
 if (!IG_mpi_page_is_valid(hMIGear, i) && (!nErrCount))
 nErrCount = IG_mpf_page_delete(hMIGear, i, 1);

Remarks:

This function then shifts pages with higher numbers to fill the space in the external file associated with the multi-page
image using function IG_mpi_file_open(). The multi-page image itself is not changed. Either the multi-page image, or in
the external file pages are numbered starting with 0.

Not all format filters are supported by this operation. Use the IG_fltr_info_get() function to obtain all information
about the supported features for a particular format filter.

ImageGear Professional v18 for Mac | 1060

1.3.1.2.24.4 IG_mpf_page_get

If a multi-page image is associated with the external file, it loads a page of the specified index from an external file and
returns it using the parameter lphIGear.

Declaration:

AT_ERRCOUNT IG_mpf_page_get(
 [IN] HMIGEAR hMIGear,
 [IN] UINT nPage,
 [OUT] LPHIGEAR lphIGear
);

Arguments:

Name Type Description

hMIGear HMIGEAR Handle to the allocated multi-page image.

nPage UINT The index page to load.

lphIGear LPHIGEAR Indicates where to return the image handle.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

 AT_ERRCOUNT nErrCount; // Returned count of errors
 HMIGEAR hMPDoc; // Handle of multipage image
 HIGEAR hIGear; // Handle of the page image
 nErrCount = IG_mpi_create(&hMPDoc, 0);
 if(nErrCount == 0)
 {
 nErrCount = IG_mpi_file_open("multipage.tif", hMPDoc, 0, IG_MP_OPENMODE_READONLY);
 if(nErrCount == 0)
 {
 nErrCount = IG_mpf_page_get(hMPDoc, 0, &hIGear);
 if(nErrCount == 0)
 {
 //...
 // Destroy the image
 IG_image_delete(hIGear);
 }
 }
 // Destroy multipage document
 IG_mpi_delete(hMPDoc);
 }

Remarks:

If a multi-page image is not associated with the external file, or a failure to load a page occurs, then an error is set. This
function does not change the multi-page image.

ImageGear Professional v18 for Mac | 1061

1.3.1.2.24.5 IG_mpf_page_info_get

If multi-page image hMIGear is associated with an external file, then this function returns information about the page
with an nPage index from the external file.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mpf_info_get(
 [IN] HMIGEAR hMIGear,
 [IN] UINT nPage,
 [OUT] LPAT_MODE lpCompression,
 [OUT] LPAT_DIB lpDib
);

Arguments:

Name Type Description

hMIGear HMIGEAR The handle to allocated the multi-page image.

nPage UINT Index of the page, starting with 0.

lpCompression LPAT_MODE Far pointer indicating where to receive the compression method of the given image.
It is used for constants such as IG_COMPRESSION_NONE, or
IG_COMPRESSION_JPEG. A complete list of compression methods can be found in
the accucnst.h file.

lpDib LPAT_DIB The far pointer indicating where to return a DIB associated with the page.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

Indexed RGB – 1, 4, 8 bpp;
Grayscale – 9…16 bpp;
RGB – 24 bpp;
CMYK – 32 bpp.

This function is only kept for backward compatibility reasons. Please use IG_mpf_page_info_get_ex instead.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
UINT nPageCount = 0;
UINT i;
AT_MODE nCompression;
AT_DIB Dib;
char str[80];
 ...
/* initialize multi-page image and assign it with external file */
 nErrCount = IG_mpf_page_count_get(hMIGear, &nPageCount);
 for(i = 0; i < nPageCount; i++)
 if (!nErrCnt)
 {
 nErrCnt = IG_mpf_page_info_get(hMIGear, i, &nCompression, &Dib);
 if (!nErrCnt)
 {
 IG_guidlg_compression_name_get(nCompression, str, sizeof(str));

ImageGear Professional v18 for Mac | 1062

 printf("Page %i\n Compression method: %s\n", i, str);
 }
}

Remarks:

Pages are numbered starting with 0. If the image is not associated with an external file, then this functions returns an
error.

ImageGear Professional v18 for Mac | 1063

1.3.1.2.24.6 IG_mpf_page_info_get_ex

If multi-page image hMIGear is associated with an external file, then this function returns information about the page
with an nPage index from the external file.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mpf_page_info_get_ex(
 HMIGEAR hMIGear,
 UINT nPage,
 LPAT_MODE lpCompression,
 HIGDIBINFO* lpDIB
);

Arguments:

Name Type Description

hMIGear HMIGEAR Handle to allocated multi-page image.

nPage UINT Index of the page, starting with 0.

lpCompression AT_MODE Pointer indicating where to receive the compression method of the given image. It
is used for constants such as IG_COMPRESSION_NONE, or
IG_COMPRESSION_JPEG. A complete list of compression methods can be found in
the accucnst.h file.

lpDIB HIGDIBINFO* Pointer indicating where to return a DIB info handle associated with the page.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount; /* will hold returned error count */
UINT nPageCount = 0;
UINT i;
AT_MODE nCompression;
HIGDIBINFO hDIB;
char str[80];
...
/* initialize multi-page image, assign it with external file */
nErrCount = IG_mpf_page_count_get(hMIGear, &nPageCount);
for(i = 0; i < nPageCount; i++)
if (!nErrCnt)
{
 nErrCnt = IG_mpf_page_info_get_ex(hMIGear, i, &nCompression, &hDIB);
 if (!nErrCnt)
 {
 IG_guidlg_compression_name_get(nCompression, str, sizeof(str));
 printf("Page %i\n Compression method: %s\n", i, str);
 }
}

Remarks:

ImageGear Professional v18 for Mac | 1064

Pages are numbered starting with 0. If the image is not associated with an external file, then this function returns an
error.

ImageGear Professional v18 for Mac | 1065

1.3.1.2.24.7 IG_mpf_page_load

If a multi-page image is associated with an external file, it loads and stores the specified number of pages from the
external file into a multi-page image.

Declaration:

AT_ERRCOUNT IG_mpf_page_load(
 [IN] HMIGEAR hMIGear,
 [IN] UINT nStartPage,
 [IN] UINT nCount
);

Arguments:

Name Type Description

hMIGear HMIGEAR The handle of the allocated multi-page image.

nStartPage UINT The first page to be loaded.

nCount UINT The total number of pages to be loaded.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
UINT nPageCount = 0; /* number of pages that should get from multi-page image */
UINT i;
HIGEAR hIGear; /* handle of an image */
 ...
/* initialize multi-page image and assign it with external file */
nErrCount = IG_mpf_page_count_get(hMIGear, &nPageCount);
for (i = 0; i < nPageCount; i++)
 if (!nErrCount)
 if (!IG_mpi_page_is_valid(hMIGear, i) && (!nErrCount))
 nErrCount = IG_mpf_page_load(hMIGear, i, 1);

Remarks:

To access the loaded pages, use the IG_mpi_page_get() function.

If the multi-page image is not associated with an external file, or a failure to load a page occurs, then an error is set.
This function loads each Nth page from a file into the correspondent Nth page into the multi-page image. Previous page
values are not deleted with function IG_image_delete(). If necessary, the number of pages is expanded to fit all loaded
pages.

The access to the same PDF document from multiple threads is not permitted because the multiple threads cannot share
Adobe PDF Library data types. PDF docs created/opened in the main thread can be only used from the main thread.

ImageGear Professional v18 for Mac | 1066

1.3.1.2.24.8 IG_mpf_page_save

If the multi-page image is associated with an external file then this function saves the specified pages from multi-
page image to the external file.

Declaration:

AT_ERRCOUNT IG_mpf_page_save(
 [IN] HMIGEAR hMIGear,
 [IN] UINT nStartPage,
 [IN] UINT nCount,
 [IN] AT_MODE nCompression,
 [IN] AT_MODE nSaveMode
);

Arguments:

Name Type Description

hMIGear HMIGEAR The handle of the multi-page image.

nStartPage UINT First page to save.

nCount UINT Total number of pages to save.

nCompression AT_MODE Compression method to be used when saving the pages.

nSaveMode AT_MODE The methods for saving the pages can be:
IG_MPF_SAVE_INSERT
IG_MPF_SAVE_REPLACE

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
UINT nPageCount = 0; /* number of pages that should get from multi-page image */
UINT i;
HIGEAR hIGear; /* handle of an image */
 ...
/* initialize multi-page image and assign it with external file */
nErrCount = IG_mpf_page_count_get(hMIGear, &nPageCount);
if (!nErrCount && (nPageCount > 0))
IG_mpf_page_save(hMIGear, 0, 1, IG_COMPRESSION_NONE, IG_MPF_SAVE_INSERT);

Remarks:

If nSaveMode is IG_MPF_SAVE_INSERT, then the specified nCount number of pages are inserted, starting with
nStartPage index, and all previous pages are shifted to a higher page number. If nSaveMode is
IG_MPF_SAVE_REPLACE, then the function replaces the specified nCount number of pages, starting with the
nStartPage index. If a page is NULL in the multi-page image, it is skipped and not saved.

This function takes each specified Nth page from a multi-page image and saves it as the Nth page into an external
file. If the image is not associated with an external file, then it returns an error.

ImageGear Professional v18 for Mac | 1067

Not all format filters support IG_MPF_SAVE_REPLACE mode. Use the IG_fltr_info_get() function to obtain
information about the supported features for specific format filters.

ImageGear Professional v18 for Mac | 1068

1.3.1.2.24.9 IG_mpf_page_swap

If the multi-page image is associated with an external file, then this function swaps pages with the given page numbers
in the external file.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mpf_page_swap(
 [IN] HMIGEAR hMIGear,
 [IN] UINT nPage1,
 [IN] UINT nPage2
);

Arguments:

Name Type Description

hMIGear HMIGEAR The handle of the multi-page image.

nPage1 UINT The number of first page to swap.

nPage2 UINT The number of second page to swap.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
UINT nPageCount = 0; /* number of pages that should get from multi-page image */
 ...
/* initialize multi-page image and assign it with external file */
nErrCount = IG_mpf_page_count_get(hMIGear, &nPageCount);
/* Swap first page and last pages */
if (!nErrCount && nPageCount > 1)
 nErrCount += IG_mpf_page_swap(hMIGear, 0, nPageCount - 1);

Remarks:

If the multi-page image is not associated with an external file, an error is returned. Pages are numerated starting with 0.
The multi-page image is not changed.

Not all format filters support IG_mpf_page_swap() mode. Use the IG_fltr_info_get() function to obtain information
about the supported features for specific format filters.

ImageGear Professional v18 for Mac | 1069

1.3.1.2.24.10 IG_mpf_page_unload

This function calls IG_image_delete() for the nCount number of pages in the multi-page image, starting with the
nStartPage position.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mpf_page_unload(
 [IN] HMIGEAR hMIGear,
 [IN] UINT nStartPage,
 [IN] UINT nCount
);

Arguments:

Name Type Description

hMIGear HMIGEAR The handle to the valid multi-page image.

nStartPage UINT The number of the first page to unload.

nCount UINT The total number of pages to unload.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
UINT nPageCount = 0; /* number of pages that should get from multi-page image */
UINT i;
HIGEAR hIGear; /* handle of an image */
 ...
/* initialize multi-page image and assign it with external file */
nErrCount = IG_mpf_page_count_get(hMIGear, &nPageCount);
for (i = 0; i < nPageCount; i++)
 if (IG_mpi_page_is_valid(hMIGear, i) && (!nErrCount))
 nErrCount = IG_mpf_page_unload(hMIGear, i, 1);

Remarks:

The number of pages in the multi-page image is not changed, but the specified positions are removed and set to a
default value of NULL. The pages are numbered starting with 0.

ImageGear Professional v18 for Mac | 1070

1.3.1.2.24.11 IG_mpf_tile_count_get

If the multi-page image is associated with an external file, then this function returns the tile information for the specified
page number.

Declaration:

AT_ERRCOUNT IG_mpf_tile_count_get(
 [IN] HMIGEAR hMIGear,
 [IN] UINT nPage,
 [OUT] LPUINT lpTileRows,
 [OUT] LPUINT lpTileCols
);

Arguments:

Name Type Description

hMIGear HMIGEAR The handle of the multi-page image.

nPage UINT The page number from which to get the tile count.

LpTileRows LPUINT Pointer to a UINT variable to receive the number of tiles horizontally (number of tiles in a
row).

LpTileCols LPUINT Pointer to a UINT variable to receive the number of tiles vertically (number of tiles in a
column).

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
UINT nPageCount = 0; /* number of pages that should get from multi-page image */
UINT nTileRows;
UINT nTileCols;
 ...
/* initialize multi-page image and assign it with external file */
nErrCount = IG_mpf_page_count_get(hMIGear, &nPageCount);
/* Count number of tiles in the first page */
if (!nErrCount && nPageCount > 0)
 nErrCount += IG_mpf_tile_count_get(hMIGear, 0, &nTileRows, &nTileCols);
if (!nErrCount)
{
 printf("Number of tiles in a row:%i\n", nTileRows);
 printf("Number of tiles in a colomns:&i\n", nTileCols);
}

Remarks:

An error is returned if the image is not associated with an external file. Pages are numbered starting with 0.

ImageGear Professional v18 for Mac | 1071

1.3.1.2.25 Multi Page Image Functions

This section provides information about the Multi Page Image group of functions.

IG_mpi_CB_get
IG_mpi_CB_reset
IG_mpi_CB_reset_all
IG_mpi_CB_set
IG_mpi_close
IG_mpi_create
IG_mpi_delete
IG_mpi_file_open
IG_mpi_file_save
IG_mpi_info_get
IG_mpi_is_valid
IG_mpi_page_count_get
IG_mpi_page_count_set
IG_mpi_page_delete
IG_mpi_page_get
IG_mpi_page_is_valid
IG_mpi_page_set

ImageGear Professional v18 for Mac | 1072

1.3.1.2.25.1 IG_mpi_CB_get

This function returns information about the associated private data pointer and update function using the dwCBID
identifier.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mpi_CB_get(
 [IN] HMIGEAR hMIGear,
 [IN] DWORD dwCBID,
 [OUT] LPVOID FAR* lplpPrivate,
 [OUT] LPFNIG_MPCB_UPDATE FAR* lplpfnUpdate
);

Arguments:

Name Type Description

hMIGear HMIGEAR The handle of the allocated multi-page image.

dwCBID DWORD A unique identifier of the private data and function.

lplpPrivate LPVOID FAR* A pointer indicating where to receive the private data.

lplpfnUpdate LPFNIG_MPCB_UPDATE FAR* A pointer indicating where to receive the update function.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
LPVOID lpData;
LPFNIG_MPCB_UPDATE lpUpdateFunc;
DWORD dwCBID;
 ...
nErrCount = IG_mpi_CB_set(hMIGear, (LPVOID)hMIGear, _MPWndUpdate, &dwCBID);
 ...
nErrCount = IG_mpi_CB_get(hMIGear, dwCBID, &lpData, &lpUpdateFunc);
 ...
VOID ACCUAPI _MPWndUpdate(
 DWORD dwCBID,
 LPVOID lpPrivate, /* Private data passed in */
 AT_MODE nMode,
 UINT nPage,
 UINT nCount
)
{
 switch(nMode)
 {
 case IG_MPCBMODE_MPI_DELETE:
 ...
 break;
 case IG_MPCBMODE_MPI_ASSOCIATED:
 ...
 break;

ImageGear Professional v18 for Mac | 1073

 case IG_MPCBMODE_MPI_CLOSE:
 ...
 break;
 ...
 }
}

Remarks:

See the IG_mpi_CB_set() documentation for a description of how notification works with multi-page images.

If there is no association with an external file, then NULL values are assigned to both pointers.

ImageGear Professional v18 for Mac | 1074

1.3.1.2.25.2 IG_mpi_CB_reset

This function removes previously associated callback data from the multi-page image using the dwCBID identifier.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mpi_CB_reset(
 [IN] HMIGEAR hMIGear,
 [IN] DWORD dwCBID
);

Arguments:

Name Type Description

hMIGear HMIGEAR Handle to allocated multi-page image.

dwCBID DWORD Unique identifier of private data and function.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
LPVOID lpData;
LPFNIG_MPCB_UPDATE lpUpdateFunc;
DWORD dwCBID;
 ...
nErrCount = IG_mpi_CB_set(hMIGear, (LPVOID)hMIGear, _MPWndUpdate, &dwCBID);
 ...
nErrCount = IG_mpi_CB_reset(hMIGear, dwCBID);
 ...
}
VOID ACCUAPI _MPWndUpdate(
 DWORD dwCBID,
 LPVOID lpPrivate, /* Private data passed in */
 AT_MODE nMode,
 UINT nPage,
 UINT nCount
)
{
 switch(nMode)
 {
 case IG_MPCBMODE_MPI_DELETE:
 ...
 break;
 case IG_MPCBMODE_MPI_ASSOCIATED:
 ...
 break;
 case IG_MPCBMODE_MPI_CLOSE:
 ...
 break;
 ...
 }

ImageGear Professional v18 for Mac | 1075

}

Remarks:

See the IG_mpi_CB_set()documentation for a description of how notification works with multi-page images. After
calling this function, the appropriate callback function receives notifications and removes the data from the active list.

ImageGear Professional v18 for Mac | 1076

1.3.1.2.25.3 IG_mpi_CB_reset_all

This function works the same way as the IG_mpi_CB_reset() function, but removes all callback data and functions
from the multi-page image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mpi_CB_reset_all(
 [IN] HMIGEAR hMIGear
);

Arguments:

Name Type Description

hMIGear HMIGEAR The handle to the allocated multi-page image.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
DWORD dwCBID1, dwCBID2;
 ...
nErrCount = IG_mpi_CB_set(hMIGear, (LPVOID)hMIGear, _MPWndUpdate, &dwCBID1);
nErrCount = IG_mpi_CB_set(hMIGear, (LPVOID)hMIGear, _MPWndUpdate, &dwCBID2);
 ...
nErrCount = IG_mpi_CB_reset_all(hMIGear);
 ...
}
VOID ACCUAPI _MPWndUpdate(
 DWORD dwCBID,
 LPVOID lpPrivate, /* Private data passed in */
 AT_MODE nMode,
 UINT nPage,
 UINT nCount
)
{
 switch(nMode)
 {
 case IG_MPCBMODE_MPI_DELETE:
 ...
 break;
 case IG_MPCBMODE_MPI_ASSOCIATED:
 ...
 break;
 case IG_MPCBMODE_MPI_CLOSE:
 ...
 break;
 ...
 }
}

ImageGear Professional v18 for Mac | 1077

ImageGear Professional v18 for Mac | 1078

1.3.1.2.25.4 IG_mpi_CB_set

Use this function to call code that associates the given multi-page image hMIGear with any lpPrivate data, and
updates the defined function.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mpi_CB_set(
 [IN] HMIGEAR hMIGear,
 [IN] LPVOID lpPrivate,
 [IN] LPFNIG_MPCB_UPDATE lpfnUpdate,
 [OUT] LPDWORD lpdwCBID,
);

Arguments:

Name Type Description

hMIGear HMIGEAR The handle to the allocated multi-page image.

lpPrivate LPVOID Any private data.

lpfnUpdate LPFNIG_MPCB_UPDATE The pointer to the update function.

lpdwCBID LPDWORD Indicates where to return the ID of the associated callback data.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
LPVOID lpData;
LPFNIG_MPCB_UPDATE lpUpdateFunc;
DWORD dwCBID;
 ...
nErrCount = IG_mpi_CB_set(hMIGear, (LPVOID)hMIGear, _MPWndUpdate, &dwCBID);
 ...
nErrCount = IG_mpi_CB_get(hMIGear, dwCBID, &lpData, &lpUpdateFunc);
 ...
}
VOID ACCUAPI _MPWndUpdate(
 DWORD dwCBID,
 LPVOID lpPrivate, /* Private data passed in */
 AT_MODE nMode,
 UINT nPage,
 UINT nCount
)
{
 switch(nMode)
 {
 case IG_MPCBMODE_MPI_DELETE:
 ...
 break;
 case IG_MPCBMODE_MPI_ASSOCIATED:
 ...

ImageGear Professional v18 for Mac | 1079

 break;
 case IG_MPCBMODE_MPI_CLOSE:
 ...
 break;
 ...
 }
}

Remarks:

Multi-page images allow you to notify the application about status changes. Use this function to call code that
associates the given multi-page image hMIGear with any lpPrivate data, and updates the defined function. See
LPFNIG_MPCB_UPDATE.

ImageGear Professional v18 for Mac | 1080

1.3.1.2.25.5 IG_mpi_close

If the multi-page image hMIGear was previously associated with an external image file using the function
IG_mpi_file_open(), then this function closes the file and frees all corresponding resources; if the multi-page image is
not associated with an external file, then this function does nothing.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mpi_close(HMIGEAR hMIGear);

Arguments:

Name Type Description

hMIGear HMIGEAR The handle to the allocated multi-page image.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
nErrCount = IG_mpi_create(&hMIGear, 0);
 ...
/* any operations with hMIGear */
nErrCount = IG_mpi_close(hMIGear);

ImageGear Professional v18 for Mac | 1081

1.3.1.2.25.6 IG_mpi_create

This function allocates and initializes a new multi-page image and returns its handle.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mpi_create(
 LPHMIGEAR lphMIGear,
 UINT nPages
);

Arguments:

Name Type Description

lpHMIGear LPHMIGEAR A pointer indicating where to return the handle of the allocated and initialized multi-page
image.

nPage UINT The number of multi-page image pages that should be created.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
nErrCount = IG_mpi_create(&hMIGear, 0);
 ...
/* any operations with hMIGear */
nErrCount = IG_mpi_delete(hMIGear);

Remarks:

This new image is set with nPages. Each image is initialized with the default value NULL. If there is a failure, then the
returned handle is NULL and an error is set.

The multi-page image is array of pages where each page is a HIGEAR object. All pages are numbered beginning with a 0
index, so that 0 - is the first page, 1 - is the second page, etc. If the image contains nCount number of pages, then its
pages can be accessed through indexes 0 - nCount-1. The value of each page can be either NULL (default value) or value
HIGEAR image.

ImageGear Professional v18 for Mac | 1082

1.3.1.2.25.7 IG_mpi_delete

This function calls IG_image_delete() for all valid pages of a multi-page image and frees all resources allocated with
multi-page image handle.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mpi_delete(HMIGEAR hMIGear);

Arguments:

Name Type Description

hMIGear HMIGEAR Handle to allocated multi-page image.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
nErrCount = IG_mpi_create(&hMIGear, 0);
 ...
/* any operations with hMIGear */
nErrCount = IG_mpi_delete(hMIGear);

Remarks:

If it is associated with external file then it is closed with IG_mpi_close() before deletion.

ImageGear Professional v18 for Mac | 1083

1.3.1.2.25.8 IG_mpi_file_open

This function allows you to associate a multi-page image with an external image file.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mpi_file_open(
 [IN] const LPCHAR lpFileName,
 [IN] HMIGEAR hMIGear,
 [IN] AT_MODE nFormat,
 [IN] AT_MODE nOpenMode
);

Arguments:

Name Type Description

lpFileName const
LPCHAR

The far pointer to the filename (you may include the path with the filename) of the image
file to be associated with a given multi-page image.

hMIGear HMIGEAR The handle to the allocated multi-page image.

nFormat AT_MODE The format of the file, such as IG_FORMAT_UNKNOWN or IG_FORMAT_TIF. See the
accucnst.h file for a list of all available IG_FORMAT_... constants.

nOpenMode AT_MODE An AT_MODE constant, such as IG_MP_OPENMODE_READONLY or
IG_MP_OPENMODE_READWRITE.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
nErrCount = IG_mpi_create(&hMIGear, 0);
if (!nErrCount)
nErrCount = IG_mpi_file_open("picture1.tif", hMIGear, 0, IG_MP_OPEN_READ);
...
nErrCount = IG_mpi_delete(hMIGear);

Remarks:

After the association is made, you can then use different page manipulation functions, such as page load, save,
delete, and swap. With this association operation, ImageGear allows you to store internal data, allowing you to make
page operations faster than if using IG_fltr_... functions. This file can be opened with two modes -
IG_MP_OPENMODE_READONLY and IG_MP_OPENMODE_READWRITE.

The first mode, read-only access, it is used only when page loading is necessary. It does not allow you to change the
external file. When the image is opened with read only access, it sets the number of pages in the multi-page image
equal to the number of pages in the external file using IG_mpi_page_count_set() function.

The second mode opens file for read-write access and allows all possible page operations with the external file. The
multi-page image is not changed.

Not all filters support all page manipulation operations. Use the function IG_fltr_info_get(), which returns the
information about all supported features of a particular filter.

IG_MP_OPENMODE_NONE is also accepted as a value for nOpenMode and, in this case, this call is equivalent to the

ImageGear Professional v18 for Mac | 1084

IG_mpi_close() call.

The nFormat parameter is used only if a new image file is to be created and nOpenMode=
IG_MP_OPENMODE_READWRITE. In this case, the file of the specified format is created. In all other cases this
parameter is ignored.

ImageGear Professional v18 for Mac | 1085

1.3.1.2.25.9 IG_mpi_file_save

Use this function to save a multi-page vector document to a file.

Declaration:

AT_ERRCOUNT LACCUAPI IG_mpi_file_save(
 [IN] const LPCHAR lpFileName,
 [IN] HMIGEAR hMIGear,
 [IN] UINT nStartPageFile,
 [IN] UINT nStartIndexDoc,
 [IN] UINT nPageCount,
 [IN] AT_MODE nFormat,
 [IN] AT_MODE nSaveMode
);

Arguments:

Name Type Description

lpFileName const
LPCHAR

Output file name.

hMIGear HMIGEAR Multi-page vector document.

nStartPageFile UINT When nSaveMode is IG_MPI_SAVE_APPEND, specifies the page number in the output
file after which pages from hMIGear are inserted. The first page is 0. Set
nStartPageFile to -1 to append pages after the last page of the existing document.

nStartIndexDoc UINT The page number of the first page in hMIGear to save. The first page is 0.

nPageCount UINT Total number of pages to save.

nFormat AT_MODE IG_FORMAT_PDF or IG_FORMAT_POSTSCRIPT.

nSaveMode AT_MODE IG_MPI_SAVE_OVERWRITE or IG_MPI_SAVE_APPEND.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
UINT pageCount;
nErrCount = IG_mpi_create(&hMIGear, 0);

if (!nErrCount)
nErrCount = IG_mpi_file_open("input.pdf", hMIGear, 0, IG_MP_OPENMODE_READWRITE);

nErrCount = IG_mpi_page_count_get(hMIGear, &pageCount);

if (!nErrCount)
nErrCount = IG_mpi_file_save("output.pdf", hMIGear, -1, 0, pageCount, IG_FORMAT_PDF,
IG_MPI_SAVE_OVERWRITE);

nErrCount = IG_mpi_delete(hMIGear);

ImageGear Professional v18 for Mac | 1086

Remarks:

This function is only used for multi-page vector documents. The following formats are currently supported by
this API: PDF, PostScript.

Two saving modes are currently supported: IG_MPI_SAVE_OVERWRITE and IG_MPI_SAVE_APPEND. These modes
define how to process pages if lpFileName points to an existing file of the same type. If no file exists with a given file
name, then nStartPageFile and nSaveMode are ignored, and the function saves pages to a new file.

IG_MPI_SAVE_OVERWRITE means that all pages in existing file should be removed, and pages from hMIGear should
be placed instead. In this mode nStartPageFile parameter is ignored, because no original pages are left in the file.

IG_MPI_SAVE_APPEND means that pages from hMIGear should be either appended or inserted into the document,
depending on nStartPageFile parameter.

In both save modes, if nStartIndexDoc is out of hMIGear pages range, or nStartIndexDoc + nPageCount is out of
hMIGear pages range, a "Bad Parameter" error is thrown.

ImageGear Professional v18 for Mac | 1087

1.3.1.2.25.10 IG_mpi_info_get

This function returns status information for the multi-page image, such as the association type, open mode, as well as
others.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mpi_info_get(
 [IN] HMIGEAR hMIGear,
 [IN] AT_MODE nMode,
 [IN/OUT] LPVOID lpData,
 [IN] DWORD dwSize
);

Arguments:

Name Type Description

hMIGear HMIGEAR The handle to the allocated multi-page image.

nMode AT_MODE This argument is used to determine the type of information being retrieved.

lpData LPVOID The far pointer to the buffer indicating where to return the allocated data.

dwSize DWORD The size of the buffer.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
HIGEAR hIGear; /* handle of an image */
AT_MODE nAType;
CHAR FileName[_MAX_PATH];
 ...
/* initialize of multi-page image and assign it with external file */
nErrCount = IG_mpi_info_get(hMIGear, IG_MP_ASSOCIATION_TYPE , &nAType, sizeof(nAType));
if(nAType== IG_MP_ASSOCIATE_FILE)
{
 IG_mpi_info_get(hMIGear, IG_MP_FILE_NAME, FileName, sizeof(FileName));
}

Remarks:

The value of the parameters depends on nMode. The following table lists the possible combinations:

AT_MODE Constants Type of
Third
Argument

dwSize Description

IG_MP_ASSOCIATION_TYPE LPAT_MODE Sizeof (AT_MODE) Returns the association type of the given
multi-page image, which can be:

IG_MP_ASSOCIATE_NONE
IG_MP_ASSOCIATE_FILE
IG_MP_ASSOCIATE_MEMORY [not

ImageGear Professional v18 for Mac | 1088

currently implemented]

IG_MP_OPENMODE LPAT_MODE Sizeof(AT_MODE) Returns the open mode of the associated
file, which can be:

IG_MP_OPENMODE_NONE
IG_MP_OPENMODE_READONLY
IG_MP_OPENMODE_READWRITE

IG_MP_FILE_NAME LPCHAR Length of the buffer
including last 0 byte

Returns the name of the associated file.

[*]IG_MP_MEM_BUFFER_PTR LPBYTE 4 Returns a pointer to the memory
associated with the multi-page image.

[*]IG_MP_MEM_BUFFER_SIZE LPDWORD 4 Returns the size of the associated
memory.

IG_MP_FORMAT File format of the multi-page document.
One of the enumIGFormats values.

IG_MP_DOCUMENT Native document associated with the
multi-page document.

ImageGear Professional v18 for Mac | 1089

1.3.1.2.25.11 IG_mpi_is_valid

This function is used for checking whether the hMIGear value is a valid multi-page image handle.

Declaration:

AT_BOOL ACCUAPI IG_mpi_is_valid(HMIGEAR hMIGear);

Arguments:

Name Type Description

hMIGear HMIGEAR Handle to allocated multi-page image.

Return Value:

Returns TRUE if the given multi-page image is valid.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
nErrCount = IG_mpi_create(&hMIGear, 0);
if (IG_mpi_is_valid(hMIGear))
 printf("The multi-page image is valid!");
else
 printf("It's not valid multi-page image!");
IG_mpi_delete(hMIGear);

Remarks:

The multi-page image is valid if the IG_mpi_create() function is returned successfully and IG_mpi_delete() has not been
called.

ImageGear Professional v18 for Mac | 1090

1.3.1.2.25.12 IG_mpi_page_count_get

This function returns the number of pages in a multi-page image (the size of page array).

Declaration:

AT_ERRCOUNT ACCUAPI IG_mpi_page_count_get(
 [IN] HMIGEAR hMIGear,
 [OUT] LPUINT lpPageCount
);

Arguments:

Name Type Description

hMIGear HMIGEAR Handle to the allocated multi-page image.

lpPageCount LPUINT Pointer indicting where to return the number of pages of the given multi-page image.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
UINT nPageCount = 0; /* number of pages that should get from multi-page image */
UINT i,
 j = 0;
HIGEAR hIGear; /* handle of an image */
 ...
/* initialize multi-page image and assign it with external file */
nErrCount = IG_mpi_page_count_get(hMIGear, &nPageCount);
for (i = 0; i < nPageCount; i++)
 if (!nErrCount)
 {
 nErrCount = IG_mpi_page_get(hMIGear, i, &hIGear);
 if (IG_mpi_page_is_valid(hMIGear, i))
 j++;
 }
printf("Number of valid pages is:%i", j);

Remarks:

The HIGEAR handle of any given page is not significant in this function, other than to identify the image; this function
simply counts the array size.

ImageGear Professional v18 for Mac | 1091

1.3.1.2.25.13 IG_mpi_page_count_set

This function sets the size of the page array of a valid multi-page image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mpi_page_count_set(
 [IN] HMIGEAR hMIGear,
 [IN] UINT nPageCount
);

Arguments:

Name Type Description

hMIGear HMIGEAR The handle to the allocated multi-page image.

nPageCount UINT The new number of pages.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
UINT nPageCount = 0; /* number of pages that should get from multi-page image */
UINT i,
 ...
/* initialize of multi-page image and assign it with external file */
nErrCount = IG_mpi_page_count_get(hMIGear, &nPageCount);
if (!nErrCount)
{
 i = 0;
 while(!IG_mpi_page_is_valid(hMIGear, nPageCount - i - 1) && (i < nPageCount))
 i++;
 }
 if (!nErrCount)
 nErrCount = IG_mpi_page_count_set(hMIGear, nPageCount - i);
}

Remarks:

If the size is increased, then new pages are initialized with a default value of NULL. If the array is reduced, then the
removed pages are not deleted with the function IG_image_delete(). This function applies only to the image, but does
not affect the associated file. The number of pages is not changed.

ImageGear Professional v18 for Mac | 1092

1.3.1.2.25.14 IG_mpi_page_delete

This function deletes the nCount number of elements starting with the nStartPage index from the page array of the
multi-page image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mpi_page_delete(
 [IN] HMIGEAR hMIGear,
 [IN] UINT nStartPage,
 [IN] UINT nCount
);

Arguments:

Name Type Description

hMIGear HMIGEAR The handle to the allocated multi-page image.

nStartPage UINT The first page to delete.

nCount UINT The total number of pages to delete.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
UINT nPageCount = 0; /* number of pages that should get from multi-page image */
UINT i;
HIGEAR hIGear; /* handle of an image */
 ...
/* initialize of multi-page image and assign it with external file */
nErrCount = IG_mpi_page_count_get(hMIGear, &nPageCount);
/* delete all pages and shrink array to entries pages */
nErrCount = IG_mpi_page_delete(hMIGear, 0, nPageCount);

Remarks:

If the deleted pages are valid images, they are deleted with the function IG_image_delete(). Pages with higher indexes
are shifted by removing the number and number of pages is decreased so that all pages are numbered from 0 to
nPageCount-1.

For multi-page vector documents, this function DELETES a page in the underneath vector document data. The following
formats are currently supported by this API: PDF, PostScript.

ImageGear Professional v18 for Mac | 1093

1.3.1.2.25.15 IG_mpi_page_get

This function returns the value of a page array with index nPage.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mpi_page_get(
 [IN] HMIGEAR hMIGear,
 [IN] UINT nPage,
 [OUT] LPHIGEAR lpHIPage
);

Arguments:

Name Type Description

hMIGear HMIGEAR The handle to the allocated multi-page image.

nPage UINT The number of the page to return.

lpHIPage LPHIGEAR The far pointer indicating where to return a handle of the page.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
UINT nPageCount = 0; /* number of pages that should get from multi-page image */
UINT I = 0;
HIGEAR hIGear; /* handle of an image */
 ...
nErrCount = IG_mpi_page_get(hMIGear, i, &hIGear);
 ...

Remarks:

This value can be either NULL or a valid HIGEAR handle.

The multi-page image is not changed. This function makes a copy of the page handle.

This function does not load the page from an external file, but just returns the current page value of the multi-page
image.

For multi-page vector documents, this function GETS a page from the underneath vector document data. The following
formats are currently supported by this API: PDF, PostScript.

ImageGear Professional v18 for Mac | 1094

1.3.1.2.25.16 IG_mpi_page_is_valid

This function returns information about the page with a given index.

Declaration:

AT_BOOL ACCUAPI IG_mpi_page_is_valid(
 [IN] HMIGEAR hMIGear,
 [IN] UINT nPage,
);

Arguments:

Name Type Description

hMIGear HMIGEAR The handle to the allocated multi-page image.

nPage UINT The index of the page to check.

Return Value:

Returns TRUE if the given page is valid.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount; /* will hold returned error count */
UINT nPageCount = IGE_SUCCESS; /* number of pages that should get from multi-page image */
UINT i;
HIGEAR hIGear; /* handle of an image */
 ...
/* initialize of multi-page image and assign it with external file */
nErrCount = IG_mpi_page_count_get(hMIGear, &nPageCount);
for (i = 0; i < nPageCount; i++)
 if (!IG_mpi_page_is_valid(hMIGear, i) && (!nErrCount))
 nErrCount = IG_mpi_page_unload(hMIGear, i, 1);

Remarks:

If the page with such an index exists as well as a valid HIGEAR handle, then it returns TRUE. In all other cases FALSE is
returned.

ImageGear Professional v18 for Mac | 1095

1.3.1.2.25.17 IG_mpi_page_set

This function assigns a new value to the page of the multi-page image.

Declaration:

AT_ERRCOUNT IG_mpi_page_set(
 [IN] HMIGEAR hMIGear,
 [IN] UINT nPage,
 [IN] HIGEAR hIPage
);

Arguments:

Name Type Description

hMIGear HMIGEAR The handle to the allocated multi-page image.

nPage UINT The index of the page to set.

hIPage HIGEAR The handle of the image to set.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HMIGEAR hMIGear; /* handle to multi-page image */
AT_ERRCOUNT nErrCount = IGE_SUCCESS; /* will hold returned error count */
UINT nPageCount = 0; /* number of pages that should get from multi-page image */
HIGEAR hPage1,
 hPage2;
 ...
/* initialize of multi-page image and assign it with external file */
nErrCount = IG_mpi_page_count_get(hMIGear, &nPageCount);
/* Swap first page and last page */
if (!nErrCount && nPageCount > 1)
{
 nErrCount += IG_mpi_page_get(hMIGear, 0, &hPage1);
 nErrConut += IG_mpi_page_get(hMIGear, nPageCount - 1, &hPage2);
 if (!nErrCount)
 {
 nErrCount += IG_mpi_page_set(hMIGear, iPage1, hPage2);
 nErrCount += IG_mpi_page_set(hMIGear, iPage2, hPage1);
 }
}

Remarks:

The previous value is not deleted with the IG_image_delete() function. The size of the multi-page image is not changed,
so that page arrays is not expanded when nPage is greater than nPageCount-1.

For multi-page vector documents, this function SETS a page to the underneath vector document data. The following
formats are currently supported by this API: PDF, PostScript.

ImageGear Professional v18 for Mac | 1096

1.3.1.2.26 Multimedia Functions

This section provides information about the Multimedia group of functions.

IG_mult_audio_format_get
IG_mult_audio_format_set
IG_mult_audio_get
IG_mult_audio_seek_time
IG_mult_close
IG_mult_current_frame_advance
IG_mult_current_frame_duration_get
IG_mult_current_frame_image_get
IG_mult_current_frame_info_get
IG_mult_current_frame_info_set
IG_mult_current_frame_is_valid
IG_mult_current_frame_reset
IG_mult_current_frame_seek
IG_mult_current_frame_seek_time
IG_mult_duration_get
IG_mult_frame_duration_get
IG_mult_frame_image_get
IG_mult_frame_info_get
IG_mult_frame_info_set
IG_mult_frame_num_from_time_get
IG_mult_has_audio
IG_mult_info_get
IG_mult_has_video
IG_mult_info_set
IG_mult_open_FD
IG_mult_open_FD_format
IG_mult_open_file
IG_mult_open_file_format
IG_mult_open_mem
IG_mult_open_mem_format

ImageGear Professional v18 for Mac | 1097

1.3.1.2.26.1 IG_mult_audio_format_get

This function retrieves the format of the audio in a multimedia instance.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_audio_format_get(
 HIGMULT hMult,
 LPAT_UINT lpSampleRate,
 LPAT_UINT lpBitsPerSample,
 LPAT_UINT lpChannels
);

Arguments:

Name Type Description

hMult HIGMULT Multimedia instance handle.

lpSampleRate LPAT_UINT Number of samples per second.

lpBitsPerSample LPAT_UINT Number of bits per sample.

lpChannels LPAT_UINT Number of channels (1 = mono, 2 = stereo).

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
AT_UINT nSampleRate; /* Sample rate of audio */
AT_UINT nBitsPerSample; /* Bits per sample */
AT_UINT nChannels; /* Number of channels */
nErrcount = IG_mult_audio_format_get(hMult, &nSampleRate, &nBitsPerSample, &nChannels);

Remarks:

Note that audio retrieved using IG_mult_audio_get() is always in uncompressed PCM format. If the multimedia instance
does not contain audio, an error will occur.

ImageGear Professional v18 for Mac | 1098

1.3.1.2.26.2 IG_mult_audio_format_set

This function sets the format of the audio to be retrieved from a multimedia instance.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_audio_format_set(
 HIGMULT hMult,
 LPAT_UINT lpSampleRate,
 LPAT_UINT lpBitsPerSample,
 LPAT_UINT lpChannels
);

Arguments:

Name Type Description

hMult HIGMULT Multimedia instance handle.

lpSampleRate LPAT_UINT Number of samples per second.

lpBitsPerSample LPAT_UINT Number of bits per sample.

lpChannels LPAT_UINT Number of channels (1 = mono, 2 = stereo).

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

/* Ask for 44100Hz 16-bit stereo audio */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
AT_UINT nSampleRate = 44100; /* Sample rate of audio */
AT_UINT nBitsPerSample = 16; /* Bits per sample */
AT_UINT nChannels = 2; /* Number of channels */
nErrcount = IG_mult_audio_format_set(hMult, &nSampleRate, &nBitsPerSample, &nChannels);

Remarks:

This is not a necessary step under normal circumstances. If possible, the audio will be converted to the format you
specify as it is retrieved using IG_mult_audio_get(). If conversion is not possible, an error will occur.

ImageGear Professional v18 for Mac | 1099

1.3.1.2.26.3 IG_mult_audio_get

This function retrieves the next available audio data from a multimedia instance.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_audio_get(
 HIGMULT hMult,
 LPAT_VOID lpBuffer,
 LPAT_UINT lpBufferSize
);

Arguments:

Name Type Description

hMult HIGMULT Multimedia instance handle.

lpBuffer LPAT_VOID Buffer in which to store audio data.

lpBufferSize LPAT_UINT Pointer to the number of bytes of audio to retrieve (in), and the number of bytes actually
retrieved (out).

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
AT_UINT nSampleRate; /* Sample rate of audio */
AT_UINT nBitsPerSample; /* Bits per sample */
AT_UINT nChannels; /* Number of channels */
LPAT_BYTE lpBuffer; /* Audio buffer */
AT_UINT bufSize; /* Size of audio buffer */
nErrcount = IG_mult_audio_format_get(hMult, &nSampleRate, &nBitsPerSample, &nChannels);
/* Calculate # of bytes for one second of audio */
bufSize = nSamplesPerSec * (nBitsPerSample / 8) * nChannels;
lpBuffer = (LPAT_BYTE) malloc(bufSize);
nErrcount = IG_mult_audio_get(hMult, lpBuffer, &bufSize);

Remarks:

You must specify the number of bytes of audio data to retrieve in the value pointed to by lpBufferSize, and this number
must be a multiple of the sample size ((nBitsPerSample / 8) * nChannels). Audio data is provided in uncompressed PCM
format.

You can call this function repeatedly for buffered access to the audio data (for example, one second of audio at a time)
or you can retrieve all of the audio at once.

Note that the number of bytes retrieved by this function is returned in the lpBufferSize parameter. If you requested more
data than is available (for example, you are near the end of the file) this number will be less than what you requested.

ImageGear Professional v18 for Mac | 1100

1.3.1.2.26.4 IG_mult_audio_seek_time

This function sets the starting position within a multimedia instance for the next audio to be retrieved using
IG_mult_audio_get().

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_audio_seek_time(
 HIGMULT hMult,
 AT_UINT msTime
);

Arguments:

Name Type Description

hMult HIGMULT Multimedia instance handle.

msTime AT_UINT Time in milliseconds to which to seek.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
AT_UINT msDuration; /* Duration of file in milliseconds */
/* Seek to beginning */
nErrcount = IG_mult_audio_seek_time(hMult, 0);
/* Seek to half way */
nErrcount = IG_mult_duration_get(hMult, NULL, &msDuration);
nErrcount = IG_mult_audio_seek_time(hMult, msDuration / 2);

Remarks:

If you are streaming audio by calling IG_mult_audio_get() repeatedly, you should not call this function each time you
call IG_mult_audio_get(). Excessive seeking could result in discontinuities in the retrieved audio.

ImageGear Professional v18 for Mac | 1101

1.3.1.2.26.5 IG_mult_close

This function closes a multimedia instance.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_close(HIGMULT hMult);

Arguments:

Name Type Description

hMult HIGMULT Multimedia instance handle.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
nErrcount = IG_mult_close(hMult);

Remarks:

You must call this function after opening a multimedia instance in order to ensure that all associated resources are freed.

ImageGear Professional v18 for Mac | 1102

1.3.1.2.26.6 IG_mult_current_frame_advance

This function advances the current frame to the next frame.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_current_frame_advance(HIGMULT hMult);

Arguments:

Name Type Description

hMult HIGMULT Multimedia instance handle.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
AT_BOOL bValid; /* Is current frame valid? */
HIGEAR hIGear; /* HIGEAR handle of image */
while (IG_mult_current_frame_is_valid(hMult, &bValid) == IGE_SUCCESS && bValid)
{
 nErrcount = IG_mult_current_frame_image_get(hMult, &hIGear);
 nErrcount = IG_mult_current_frame_advance(hMult);
}

Remarks:

You can use this in a loop to iterate over all of the frames. This function will not generate an error when you advance
beyond the last available frame. You should use IG_mult_current_frame_is_valid() to determine whether or not the end
has been reached.

ImageGear Professional v18 for Mac | 1103

1.3.1.2.26.7 IG_mult_current_frame_duration_get

This function returns the duration of the current frame in 100 nanosecond units.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_current_frame_duration_get(
 HIGMULT hMult,
 LPAT_UINT lpDuration
);

Arguments:

Name Type Description

hMult HIGMULT Multimedia instance handle.

lpDuration LPAT_UINT Frame duration (in 100ns units).

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
AT_UINT msDuration; /* Duration of frame in milliseconds */
nErrcount = IG_mult_current_frame_duration_get(hMult, &duration);

Remarks:

This provides a reasonable level of accuracy for the short frame durations that are typical in video. To convert to
milliseconds, divide by 10000.

Note that retrieving the durations of individual frames is essential for proper timing when the frame rate is variable, as is
often the case with animated GIF files.

ImageGear Professional v18 for Mac | 1104

1.3.1.2.26.8 IG_mult_current_frame_image_get

This function retrieves the HIGEAR of the current frame's image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_current_frame_image_get(
 HIGMULT hMult,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

hMult HIGMULT Multimedia instance handle.

lphIGear LPHIGEAR Image handle.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

/* Saves first frame as a 128-pixel-wide thumbnail */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
HIGEAR hIGear; /* HIGEAR handle of image */
HIGEAR hIGearCopy; /* HIGEAR handle of duplicate */
AT_DIMENSION w, h; /* Width and height of image */
nErrcount = IG_mult_current_frame_reset(hMult);
nErrcount = IG_mult_current_frame_image_get(hMult, &hIGear);
nErrcount = IG_image_duplicate(hIGear, &hIGearCopy);
nErrcount = IG_image_dimensions_get(hIGearCopy, &w, &h, NULL);
nErrcount = IG_IP_resize(hIGearCopy, 128, (AT_DIMENSION) ((float) h / (float) w * 128),
IG_INTERPOLATION_BICUBIC);
nErrcount = IG_save_file(hIGearCopy, "thumb.jpg", IG_SAVE_JPG);
nErrcount = IG_image_delete(hIGearCopy);

Remarks:

This image is owned by ImageGear. You can perform read-only operations such as display or save to a file, but do not
attempt to free or alter the image. If you need to alter the image (resize it, for example), use IG_image_duplicate() to
make a copy of the image, work with the copy, and free it with IG_image_delete() when finished.

ImageGear Professional v18 for Mac | 1105

1.3.1.2.26.9 IG_mult_current_frame_info_get

This function retrieves a specific piece of information about the current frame.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_current_frame_info_get(
 HIGMULT hMult,
 AT_MODE infoID,
 LPAT_VOID lpInfo,
 LPAT_UINT lpInfoSize
);

Arguments:

Name Type Description

hMult HIGMULT Multimedia instance handle.

infoID AT_MODE ID of info to get.

lpInfo LPAT_VOID Pointer to buffer in which to store info.

lpInfoSize LPAT_UINT Size of buffer pointed to by lpInfo.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

You can specify the information to retrieve using the infoID parameter, whose value is a member of enumIGMultInfo
defined in accucnst.h.

ImageGear Professional v18 for Mac | 1106

1.3.1.2.26.10 IG_mult_current_frame_info_set

This function sets a specific piece of information about the current frame.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_current_frame_info_set(
 HIGMULT hMult,
 AT_MODE infoID,
 LPAT_VOID lpInfo,
 LPAT_UINT lpInfoSize
);

Arguments:

Name Type Description

hMult HIGMULT Multimedia instance handle.

infoID AT_MODE ID of info to set.

lpInfo LPAT_VOID Pointer to buffer containing the info.

lpInfoSize LPAT_UINT Size of buffer pointed to by lpInfo.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Specify the information to retrieve using the infoID parameter, whose value is a member of enumIGMultInfo defined in
accucnst.h.

ImageGear Professional v18 for Mac | 1107

1.3.1.2.26.11 IG_mult_current_frame_is_valid

This function lets you tell whether or not the current frame is valid.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_current_frame_is_valid(
 HIGMULT hMult,
 LPAT_BOOL lpbValid
);

Arguments:

Name Type Description

hMult HIGMULT Multimedia instance handle.

lpbValid LPAT_BOOL Boolean that is set to TRUE if the current frame is valid.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
HIGEAR hIGear; /* HIGEAR handle of image */
AT_BOOL bValid; /* Is current frame valid? */
while (IG_mult_current_frame_is_valid(hMult, &bValid) == IGE_SUCCESS && bValid)
{
 nErrcount = IG_mult_current_frame_image_get(hMult, &hIGear);
 nErrcount = IG_mult_current_frame_advance(hMult);
}

Remarks:

You can use this function in a loop over all of the frames to determine when you have advanced beyond the last available
frame.

ImageGear Professional v18 for Mac | 1108

1.3.1.2.26.12 IG_mult_current_frame_reset

This function resets the current frame to the first frame.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_current_frame_reset(HIGMULT hMult);

Arguments:

Name Type Description

hMult HIGMULT Multimedia instance handle.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
nErrcount = IG_mult_current_frame_reset(hMult);

Remarks:

You can use it to seek to the beginning of a multimedia instance.

ImageGear Professional v18 for Mac | 1109

1.3.1.2.26.13 IG_mult_current_frame_seek

This function seeks to the given frame number in a multimedia instance.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_current_frame_seek(
 HIGMULT hMult,
 AT_UINT frameNum
);

Arguments:

Name Type Description

hMult HIGMULT Multimedia instance handle.

frameNum AT_UINT Frame number to seek to (0 = first frame).

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

/* Seek to last frame */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
AT_UINT numFrames; /* Total number of frames */
nErrcount = IG_mult_duration_get(hMult, &numFrames, NULL);
nErrcount = IG_mult_current_frame_seek(hMult, numFrames - 1);

ImageGear Professional v18 for Mac | 1110

1.3.1.2.26.14 IG_mult_current_frame_seek_time

This function seeks to the given absolute time in milliseconds since the beginning of the multimedia instance.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_current_frame_seek_time(
 HIGMULT hMult,
 AT_UINT msTime
);

Arguments:

Name Type Description

hMult HIGMULT Multimedia instance handle.

msTime AT_UINT Time to seek to in milliseconds.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

/* Grab frames at two second intervals */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
AT_BOOL bValid; /* Is the current frame valid? */
AT_UINT msTime = 0; /* Timestamp used for seeking */
HIGEAR hIGear; /* HIGEAR handle of image */
IG_mult_current_frame_reset(hMult);
while (IG_mult_current_frame_is_valid(hMult, &bValid) == IGE_SUCCESS && bValid)
{
 nErrcount = IG_mult_current_frame_image_get(hMult, &hIGear);
 msTime += 2000;
 nErrcount = IG_mult_current_frame_seek_time(hMult, msTime);
}

Remarks:

This function locates the frame that would be visible at this time under normal speed playback conditions and makes this
the current frame. Seeking to a time of 0 will seek to the beginning, 1000 will seek to one second after the beginning,
and so on.

ImageGear Professional v18 for Mac | 1111

1.3.1.2.26.15 IG_mult_duration_get

This function retrieves the duration of a multimedia instance as a number of frames and a duration in milliseconds.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_duration_get(
 HIGMULT hMult,
 LPAT_UINT lpNumFrames,
 LPAT_UINT lpDuration
);

Arguments:

Name Type Description

hMult HIGMULT Multimedia instance handle.

lpNumFrames LPAT_UINT Number of frames.

lpDuration LPAT_UINT Duration of multimedia file in milliseconds.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
AT_UINT numFrames; /* Total number of frames in file */
AT_UINT msDuration; /* Duration of file in milliseconds */
nErrcount = IG_mult_duration_get(hMult, &numFrames, &msDuration);

Remarks:

You can pass NULL for one of these arguments if you only need the other one. You can use this function to determine
how many frames are in a multimedia instance and how long it would play for if played at normal speed.

ImageGear Professional v18 for Mac | 1112

1.3.1.2.26.16 IG_mult_frame_duration_get

This function returns the duration of the given frame in 100 nanosecond units.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_frame_duration_get(
 HIGMULT hMult,
 AT_UINT frameNum,
 LPAT_UINT lpDuration
);

Arguments:

Name Type Description

hMult HIGMULT Multimedia instance handle.

frameNum AT_UINT Frame number to get duration of (0 = first frame).

lpDuration LPAT_UINT Frame duration (in 100ns units).

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

/* Retrieve duration of first frame */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
AT_UINT duration; /* Duration of frame in 100ns units */
nErrcount = IG_mult_frame_duration_get(hMult, 0, &duration);

Remarks:

This provides a reasonable level of accuracy for the short frame durations that are typical in video. To convert to
milliseconds, divide by 10000.

Note that retrieving the durations of individual frames is essential for proper timing when the frame rate is variable, as is
often the case with animated GIF files.

ImageGear Professional v18 for Mac | 1113

1.3.1.2.26.17 IG_mult_frame_image_get

This function retrieves the HIGEAR of the given frame's image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_frame_image_get(
 HIGMULT hMult,
 AT_UINT frameNum,
 LPHIGEAR lphIGear
);

Arguments:

Name Type Description

hMult HIGMULT Multimedia instance handle.

frameNum AT_UINT Frame number to get image for (0 = first frame).

lphIGear LPHIGEAR Image handle.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

/* Saves first frame as a 128-pixel-wide thumbnail */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
HIGEAR hIGear; /* HIGEAR handle of image */
HIGEAR hIGearCopy; /* HIGEAR handle of duplicate */
AT_DIMENSION w, h; /* Width and height of image */
nErrcount = IG_mult_current_frame_reset(hMult);
nErrcount = IG_mult_current_frame_image_get(hMult, &hIGear);
nErrcount = IG_image_duplicate(hIGear, &hIGearCopy);
nErrcount = IG_image_dimensions_get(hIGearCopy, &w, &h, NULL);
nErrcount = IG_IP_resize(hIGearCopy, 128, (AT_DIMENSION) ((float) h / (float) w * 128),
IG_INTERPOLATION_BICUBIC);
nErrcount = IG_save_file(hIGearCopy, "thumb.jpg", IG_SAVE_JPG);
nErrcount = IG_image_delete(hIGearCopy);

Remarks:

This image is owned by ImageGear. You can perform read-only operations such as display or save to a file, but do not
attempt to free or alter the image. If you need to alter the image (resize it, for example), use IG_image_duplicate() to
make a copy of the image, work with the copy, and free it with IG_image_delete() when finished.

ImageGear Professional v18 for Mac | 1114

1.3.1.2.26.18 IG_mult_frame_info_get

This function retrieves a specific piece of information about the current frame.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_frame_info_get(
 HIGMULT hMult,
 AT_UINT frameNum,
 AT_MODE infoID,
 LPAT_VOID lpInfo,
 LPAT_UINT lpInfoSize
);

Arguments:

Name Type Description

hMult HIGMULT Multimedia instance handle.

frameNum AT_UINT Frame number to get info for (0 = first frame).

infoID AT_MODE ID of info to get.

lpInfo LPAT_VOID Pointer to buffer in which to store info.

lpInfoSize LPAT_UINT Size of buffer pointed to by lpInfo.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

You can specify the information to retrieve using the infoID parameter, whose value is a member of enumIGMultInfo
defined in accucnst.h.

ImageGear Professional v18 for Mac | 1115

1.3.1.2.26.19 IG_mult_frame_info_set

This function sets a specific piece of information about the current frame.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_frame_info_set(
 HIGMULT hMult,
 AT_UINT frameNum,
 AT_MODE infoID,
 LPAT_VOID lpInfo,
 LPAT_UINT lpInfoSize
);

Arguments:

Name Type Description

hMult HIGMULT Multimedia instance handle.

frameNum AT_UINT Frame number for which to set info.

infoID AT_MODE ID of info to set.

lpInfo LPAT_VOID Pointer to buffer containing info.

lpInfoSize LPAT_UINT Size of buffer pointed to by lpInfo.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Specify the information to retrieve using the infoID parameter, whose value is a member of enumIGMultInfo defined in
accucnst.h.

ImageGear Professional v18 for Mac | 1116

1.3.1.2.26.20 IG_mult_frame_num_from_time_get

This function returns the number of the frame that would be visible at the given time under normal speed playback
conditions.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_frame_num_from_time_get(
 HIGMULT hMult,
 AT_UINT msTime,
 LPAT_UINT lpFrameNum
);

Arguments:

Name Type Description

hMult HIGMULT Multimedia instance handle.

msTime AT_UINT Time in milliseconds (since the beginning).

lpFrameNum LPAT_UINT Frame number at given time.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

/* Finds the # of the frame at 1 second from the beginning */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
AT_UINT frameNum; /* Returned frame number */
nErrcount = IG_mult_frame_num_from_time_get(hMult, 1000, &frameNum);

ImageGear Professional v18 for Mac | 1117

1.3.1.2.26.21 IG_mult_has_audio

This function fills a Boolean variable indicating whether or not a multimedia instance has audio data available.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_has_audio(
 HIGMULT hMult,
 LPAT_BOOL lpbHasAudio
);

Arguments:

Name Type Description

hMult HIGMULT Multimedia instance handle.

lpbHasAudio AT_BOOL Pointer to Boolean set to TRUE if multimedia instance has audio.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
AT_BOOL bHasAudio; /* Is audio data available? */
nErrcount = IG_mult_has_audio(hMult, &bHasAudio);

ImageGear Professional v18 for Mac | 1118

1.3.1.2.26.22 IG_mult_info_get

This function retrieves a piece of information for a multimedia instance as a whole.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_info_get(
 HIGMULT hMult,
 AT_MODE infoID,
 LPAT_VOID lpInfo,
 LPAT_UINT lpInfoSize
);

Arguments:

Name Type Description

hMult HIGMULT Multimedia instance handle.

infoID AT_MODE ID of info to get.

lpInfo LPAT_VOID Pointer to buffer in which to store info.

lpInfoSize LPAT_UINT Size of buffer pointed to by lpInfo.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

/* Retrieve minimum frame delay setting for animated GIF */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
AT_UINT msDelay; /* Minimum frame delay (milliseconds) */
nErrcount = IG_mult_info_get(hMult, IG_MULT_INFO_GIF_MIN_DELAY, &msDelay,
sizeof(msDelay));

Remarks:

You can specify the information to retrieve using the infoID parameter, whose value is a member of enumIGMultInfo
defined in accucnst.h.

ImageGear Professional v18 for Mac | 1119

1.3.1.2.26.23 IG_mult_has_video

This function fills a Boolean variable indicating whether or not a multimedia instance has video data available.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_has_video(
 HIGMULT hMult,
 LPAT_BOOL lpbHasVideo
);

Arguments:

Name Type Description

hMult HIGMULT Multimedia instance handle.

lpbHasVideo LPAT_BOOL Pointer to Boolean set to TRUE if multimedia instance has video.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
AT_BOOL bHasVideo; /* Is video data available? */
nErrcount = IG_mult_has_video(hMult, &bHasVideo);

ImageGear Professional v18 for Mac | 1120

1.3.1.2.26.24 IG_mult_info_set

This function sets a piece of information for a multimedia instance as a whole.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_info_set(
 HIGMULT hMult,
 AT_MODE infoID,
 LPAT_VOID lpInfo,
 LPAT_UINT lpInfoSize
);

Arguments:

Name Type Description

hMult HIGMULT Multimedia instance handle.

infoID AT_MODE ID of info to set.

lpInfo LPAT_VOID Pointer to buffer containing info.

lpInfoSize LPAT_UINT Size of buffer pointed to by lpInfo.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

/* Set minimum frame delay setting for animated GIF to 100ms */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
AT_UINT msDelay = 100; /* Minimum frame delay (milliseconds) */
nErrcount = IG_mult_info_set(hMult, IG_MULT_INFO_GIF_MIN_DELAY, &msDelay,
sizeof(msDelay));

Remarks:

You can specify the information to retrieve using the infoID parameter, whose value is a member of enumIGMultInfo
defined in accucnst.h.

ImageGear Professional v18 for Mac | 1121

1.3.1.2.26.25 IG_mult_open_FD

This function creates a multimedia instance from a file descriptor.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_open_FD(
 AT_INT fd,
 LPHIGMULT lphMult
);

Arguments:

Name Type Description

fd AT_INT File descriptor.

lphMult LPHIGMULT Handle to multimedia instance.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

/* Get a multimedia file's duration using a file descriptor */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
LPCSTR szFile; /* Name of file to open */
HANDLE fd; /* File descriptor */
AT_UINT numFrames; /* Total number of frames in file */
AT_UINT duration; /* Duration of file in milliseconds */
fd = CreateFile(szFile, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_ALWAYS,
FILE_ATTRIBUTE_NORMAL, NULL);
nErrcount = IG_mult_open_FD(fd, &hMult);
nErrcount = IG_mult_duration_get(hMult, &numFrames, &duration);
nErrcount = IG_mult_close(hMult);
CloseHandle(fd);

Remarks:

The file descriptor and contents must remain accessible until the multimedia instance is closed.

ImageGear Professional v18 for Mac | 1122

1.3.1.2.26.26 IG_mult_open_FD_format

This function creates a multimedia instance from a file descriptor using only the specified format.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_open_FD_format(
 AT_INT fd,
 AT_MODE format,
 LPHIGMULT lphMult
);

Arguments:

Name Type Description

fd AT_INT File descriptor.

format AT_MODE Format of file (can be IG_FORMAT_UNKNOWN).

lphMult LPHIGMULT Handle to multimedia instance.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

/* Open an animated GIF file from a file descriptor */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
LPCSTR szFile; /* Name of file to open */
HANDLE fd; /* File descriptor */
AT_UINT numFrames; /* Total number of frames in file */
AT_UINT duration; /* Duration of file in milliseconds */
fd = CreateFile(szFile, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_ALWAYS,
FILE_ATTRIBUTE_NORMAL, NULL);
nErrcount = IG_mult_open_FD_format(fd, IG_FORMAT_GIF, &hMult);
nErrcount = IG_mult_duration_get(hMult, &numFrames, &duration);
nErrcount = IG_mult_close(hMult);
CloseHandle(fd);

Remarks:

The file descriptor and contents must remain accessible until the multimedia instance is closed. Specifying the format
lets you bypass the automatic file type identification for situations in which you know the format of the file.

See the multimedia API overview for a list of currently supported formats.

ImageGear Professional v18 for Mac | 1123

1.3.1.2.26.27 IG_mult_open_file

This function creates a multimedia instance from a filename.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_open_file(
 LPSTR szFilename,
 LPHIGMULT lphMult
);

Arguments:

Name Type Description

szFilename LPSTR Filename of multimedia to open.

lphMult LPHIGMULT Handle to multimedia instance.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

/* Get a multimedia file's duration using a filename */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
LPCSTR szFile; /* Name of file to open */
AT_UINT numFrames; /* Total number of frames in file */
AT_UINT duration; /* Duration of file in milliseconds */
nErrcount = IG_mult_open_file(szFile, &hMult);
nErrcount = IG_mult_duration_get(hMult, &numFrames, &duration);
nErrcount = IG_mult_close(hMult);

Remarks:

The file must remain accessible until the multimedia instance is closed.

ImageGear Professional v18 for Mac | 1124

1.3.1.2.26.28 IG_mult_open_file_format

This function creates a multimedia instance from a filename using only the specified format.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_open_file_format(
 LPSTR szFilename,
 AT_MODE format,
 LPHIGMULT lphMult
);

Arguments:

Name Type Description

szFilename LPSTR Filename of multimedia to open.

format AT_MODE Format of file (can be IG_FORMAT_UNKNOWN).

lphMult LPHIGMULT Handle to multimedia instance.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

/* Get an animated GIF file's duration using a filename */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
LPCSTR szFile; /* Name of file to open */
AT_UINT numFrames; /* Total number of frames in file */
AT_UINT duration; /* Duration of file in milliseconds */
nErrcount = IG_mult_open_file_format(szFile, IG_FORMAT_GIF, &hMult);
nErrcount = IG_mult_duration_get(hMult, &numFrames, &duration);
nErrcount = IG_mult_close(hMult);

Remarks:

The file must remain accessible until the multimedia instance is closed. Specifying the format lets you bypass the
automatic file type identification for situations in which you know the format of the file.

See the multimedia API overview for a list of currently supported formats.

ImageGear Professional v18 for Mac | 1125

1.3.1.2.26.29 IG_mult_open_mem

This function creates a multimedia instance from memory.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_open_mem(
 LPAT_VOID lpMem,
 AT_UINT memLen,
 LPHIGMULT lphMult
);

Arguments:

Name Type Description

lpMem LPAT_VOID Pointer to data in memory to open.

memLen AT_UINT Length of data in memory in bytes.

lphMult LPHIGMULT Handle to multimedia instance.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

/* Get a multimedia file's duration using a memory buffer */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
LPAT_VOID lpMem; /* Memory buffer with multimedia data */
AT_UINT memLen; /* Length of data in memory buffer */
AT_UINT numFrames; /* Total number of frames in file */
AT_UINT duration; /* Duration of file in milliseconds */
nErrcount = IG_mult_open_mem(lpMem, memLen, &hMult);
nErrcount = IG_mult_duration_get(hMult, &numFrames, &duration);
nErrcount = IG_mult_close(hMult);

Remarks:

The memory must contain a complete multimedia file and remain accessible until the multimedia instance is closed.

ImageGear Professional v18 for Mac | 1126

1.3.1.2.26.30 IG_mult_open_mem_format

This function creates a multimedia instance from memory using only the specified format.

Declaration:

AT_ERRCOUNT ACCUAPI IG_mult_open_mem_format(
 LPAT_VOID lpMem,
 AT_UINT memLen,
 AT_MODE format,
 LPHIGMULT lphMult
);

Arguments:

Name Type Description

lpMem LPAT_VOID Pointer to data in memory to open.

memLen AT_UINT Length of data in memory in bytes.

format AT_MODE Format of file (can be IG_FORMAT_UNKNOWN).

lphMult LPHIGMULT Handle to multimedia instance.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

/* Get an animated GIF file's duration using a memory buffer */
AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGMULT hMult; /* Multimedia instance handle */
LPAT_VOID lpMem; /* Memory buffer with multimedia data */
AT_UINT memLen; /* Length of data in memory buffer */
AT_UINT numFrames; /* Total number of frames in file */
AT_UINT duration; /* Duration of file in milliseconds */
nErrcount = IG_mult_open_mem_format(lpMem, memLen, IG_FORMAT_GIF, &hMult);
nErrcount = IG_mult_duration_get(hMult, &numFrames, &duration);
nErrcount = IG_mult_close(hMult);

Remarks:

The memory must contain a complete multimedia file and remain accessible until the multimedia instance is closed.
Specifying the format lets you bypass the automatic file type identification for situations in which you know the format of
the file.

See the multimedia API overview for a list of currently supported formats.

ImageGear Professional v18 for Mac | 1127

1.3.1.2.27 Palette Functions

This section provides information about the Palette group of functions.

IG_palette_entry_get
IG_palette_entry_set
IG_palette_get
IG_palette_load
IG_palette_save
IG_palette_set

ImageGear Professional v18 for Mac | 1128

1.3.1.2.27.1 IG_palette_entry_get

This function obtains from image hIGear's DIB palette, the palette entry indicated by nIndex.

Declaration:

AT_ERRCOUNT ACCUAPI IG_palette_entry_get (
 HIGEAR hIGear,
 LPAT_RGB lpRGBEntry,
 UINT nIndex
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRGBEntry LPAT_RGB Far pointer to an AT_RGB struct to receive the three color values of the palette entry. (Note
that this is not an AT_RGBQUAD struct. Also note that the order of the bytes is Blue, Green,
Red in an AT_RGB struct.)

nIndex UINT Which palette entry to get, 0 to 255.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Indexed RGB - 1…8 bpp.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_RGB rgbPaletteColor; /* Will hold returned color */
AT_ERRCOUNT nErrcount; /* Returned count of errors on stack*/
/* Get palette entry 255: */
nErrcount = IG_palette_entry_get (hIGear, rgbPaletteColor, 255);

ImageGear Professional v18 for Mac | 1129

1.3.1.2.27.2 IG_palette_entry_set

This function sets a single palette entry in image hIGear's DIB palette.

Declaration:

AT_ERRCOUNT ACCUAPI IG_palette_entry_set (
 HIGEAR hIGear,
 const LPAT_RGB lpRGBEntry,
 UINT nIndex
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpRGBEntry const
LPAT_RGB

Far pointer to an AT_RGB struct containing the three color values to be set into the palette
entry. Note that this is not an AT_RGBQUAD struct. Also note that the order is Blue, Green,
Red in an AT_RGB struct.

nIndex UINT Which palette entry to set, 0 to 255.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Indexed RGB - 1…8 bpp.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_RGB rgbPaletteColor; /* Will hold returned color */
AT_ERRCOUNT Errcount; /* Returned count of errors onstack */
/* Set palette entry 255 to a medium-bright yellow, intensity 175: */
rgbPaletteColor.b = 0; /* There's no blue in yellow */
rgbPaletteColor.r = rgbPaletteColor.g = 175;
nErrcount = IG_palette_entry_set (hIGear, &rgbPaletteColor, 255);

ImageGear Professional v18 for Mac | 1130

1.3.1.2.27.3 IG_palette_get

This function obtains the referenced image's DIB palette, storing it in your array of AT_RGBQUAD structs pointed to by
lpPalette.

Declaration:

AT_ERRCOUNT ACCUAPI IG_palette_get (
 HIGEAR hIGear,
 LPAT_RGBQUAD lpPalette
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image.

lpPalette LPAT_RGBQUAD Far pointer to the first of an array of AT_RGBQUAD structs sufficient to hold the entire
palette from the image's DIB.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Indexed RGB - 1…8 bpp.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_ERRCOUNT nErrcount; /* Returned count of errors on stack */
AT_RGBQUAD rgbqPalette[256]; /* Array of AT_RGBQUAD structs */
nErrcount = IG_palette_get (hIGear, rgbqPalette);

Remarks:

The array must be large enough to hold the palette. For example, if an 8-bit image, lpPalette must point to the start of
an array of 256 AT_RGBQUAD structs, therefore to an array of at least 256 x 4 = 1024 bytes. If the image is 24-bit, no
error is set but no palette is returned.

See also function IG_palette_set() function.

To obtain an image's logical palette (the palette after mapping through the display LUTs, or for a 24-bit image the
palette that would be used for displaying to an 8-bit device), use function IG_dspl_palette_create().

ImageGear Professional v18 for Mac | 1131

1.3.1.2.27.4 IG_palette_load

This function loads a palette that was saved using IG_palette_save() function.

Declaration:

AT_ERRCOUNT ACCUAPI IG_palette_load (
 const LPSTR lpszFileName,
 LPAT_RGBQUAD lpPalette,
 LPUINT lpNumEntries,
 BOOL bBGR_Order,
 LPAT_MODE lpFileType
);

Arguments:

Name Type Description

lpszFileName const LPSTR Name of file containing saved palette to load.

lpPalette LPAT_RGBQUAD Far pointer to array of AT_RGBQUAD structs to load into (see the parameter
bBGR_Order, below).

lpNumEntries LPUINT Far pointer to UINT variable to receive number of palette entries loaded (size of
palette).

bBGR_Order BOOL TRUE = store as AT_RGB structs (that is, Blue-Green-Red), instead of AT_RGBQUAD
structs (Blue-Green-Red-Unused). This switch has no effect when reading
ImageGear's text format. It loads this information as if writing to AT_RGBQUAD.

lpFileType LPAT_MODE An IG_PALETTE_FORMAT_ constant specifying the format of the file. The constants
are listed in file accucnst.h.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_RGBQUAD rgbqPalette[256]; /* Will hold the palette loaded */
UINT nEntries; /* Holds number of entries in palette*/
AT_MODE nPaletteFileType; /* Will receive IG_PALETTE_... constant*/
AT_ERRCOUNT1 nErrcount; /* Returned count of errors */
nErrcount = IG_palette_load ("Palfile.pal", &rgbqPalette[0], &nEntries, TRUE,
&nPaletteFileType);

ImageGear Professional v18 for Mac | 1132

1.3.1.2.27.5 IG_palette_save

This function saves a palette to a file.

Declaration:

AT_ERRCOUNT ACCUAPI IG_palette_save (
 const LPSTR lpszFileName,
 LPAT_RGBQUAD lpPalette,
 UINT nNumEntries,
 AT_MODE nFileType
);

Arguments:

Name Type Description

lpszFileName const LPSTR Name of file to which to save palette.

lpPalette LPAT_RGBQUAD Far pointer to array of AT_RGBQUAD structs constituting palette to save.

nNumEntries UINT Number of entries in palette.

nFileType AT_MODE IG_PALETTE_FORMAT_ constant specifying format in which to save palette. The
constants are listed in accucnst.h.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

HIGEAR hIGear; /* Handle of image whose palette to save */
LPAT_RGBQUAD lpPalettePntr; /* Will hold address of the DIB palette */
UINT nEntries; /* Will hold number of entries in palette */
/* Obtain address of DIB palette and its number of entries);
IG_image_DIB_palette_pntr_get (hIGear, &lpPalettePntr, &nEntries);
/* Save to a file, saving only 3 bytes per entry, in order B-G-R: */
nErrcount = IG_palette_save ("Savedpal.pal", lpPalettePntr, nEntries,
IG_PALETTE_FORMAT_RAW_BGR);

Remarks:

Argument nFileType lets you select the format in which to save the palette. If you save the palette using
IG_PALETTE_FORMAT_TEXT, its format will be as shown for the following palette of a 1-bit black-and-white image:

Accusoft Palette File ver 7.0.9
0 0 0 0
1 255 255 255

The first line identifies the version of ImageGear that created this Palette text file. Then each succeeding line gives the
entry number, followed by the Red, Green, and Blue color intensities, respectively, for that palette color.

ImageGear Professional v18 for Mac | 1133

1.3.1.2.27.6 IG_palette_set

This function loads the palette pointed to by lpPalette into the DIB, replacing the prior palette that was present.

Declaration:

AT_ERRCOUNT ACCUAPI IG_palette_set (
 HIGEAR hIGear,
 const LPAT_RGBQUAD lpPalette
);

Arguments:

Name Type Description

HIGEAR HIGEAR HIGEAR handle of image.

LpPalette const
LPAT_RGBQUAD

Far pointer to the first of an array of AT_RGBQUAD structs containing the palette you
wish to load into the DIB, as the image's new DIB palette.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Indexed RGB - 1…8 bpp.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
AT_ERRCOUNT nErrcount; /* Returned count of errors on stack */
AT_RGBQUAD rgbqPalette[256]; /* Array of AT_RGBQUAD structs */
INT pix; /* Loop index, = pixel value */
/* Create a grayscale palette, and set it into image hIGear's DIB: */
for (pix = 0; pix <= 255; pix++)
 {
 rgbqPalette[pix].rgbBlue = pix;
 rgbqPalette[pix].rgbGreen = pix;
 rgbqPalette[pix].rgbRed = pix;
 rgbqPalette[pix].rgbReserved = 0;
 }
nErrcount = IG_palette_set (hIGear, rgbqPalette);

Remarks:

Your palette pointed to by lpPalette must be in the form of AT_RGBQUAD structs: 4 bytes per entry, ordered Blue-Green-
Red-Unused (0). The number of consecutive AT_RGBQUAD structs you need is determined by the number of Bits Per
Pixel in the image. For example, for an 8 bit image, you would need an array of 256 AT_RGBQUAD structs.

If the image is 24 bit, this function will set an error and return.

See also function IG_palette_set().

ImageGear Professional v18 for Mac | 1134

1.3.1.2.28 Pixel Functions

This section provides information about the Pixel group of functions.

IG_pixel_bits_per_channel_get
IG_pixel_channel_count_get
IG_pixel_create
IG_pixel_data_pointer_get
IG_pixel_delete
IG_pixel_value_get
IG_pixel_value_set

ImageGear Professional v18 for Mac | 1135

1.3.1.2.28.1 IG_pixel_bits_per_channel_get

This function returns the number of bits (8, 16, or 32) allocated for storing pixel data for a single channel in the given
pixel object.

Declaration:

AT_DEPTH ACCUAPI IG_pixel_bits_per_channel_get(HIGPIXEL hPixel);

Arguments:

Name Type Description

hPixel HIGPIXEL Handle of pixel object.

Return Value:

Return value is the same for all channels and represents the maximal bit depth aligned to all bytes.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGEAR hImage; /* Handle of image */
HIGPIXEL hPix; /* Handle of pixel */
AT_DEPTH bitsPerChan; /* Number of bits per channel */
nErrcount = IG_load_file("test.jpg", &hImage);
nErrcount = IG_DIB_pix_get(hImage, 0, 0, &hPix);
bitsPerChan = IG_pixel_bits_per_channel_get(hPix);
IG_pixel_delete(hPix);
IG_image_delete(hImage);

ImageGear Professional v18 for Mac | 1136

1.3.1.2.28.2 IG_pixel_channel_count_get

This function returns the number of channels that are available to store values in the given pixel object.

Declaration:

AT_INT ACCUAPI IG_pixel_channel_count_get(HIGPIXEL hPixel);

Arguments:

Name Type Description

hPixel HIGPIXEL Handle of pixel object.

Return Value:

Number of channels in pixel object.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGEAR hImage; /* Handle of image */
HIGPIXEL hPix; /* Handle of pixel */
AT_DEPTH nChannels; /* Number of channels */
nErrcount = IG_load_file("test.jpg", &hImage);
nErrcount = IG_DIB_pix_get(hImage, 0, 0, &hPix);
nChannels = IG_pixel_channel_count_get(hPix);
IG_pixel_delete(hPix);
IG_image_delete(hImage);

ImageGear Professional v18 for Mac | 1137

1.3.1.2.28.3 IG_pixel_create

This function creates a new pixel object based on specified attributes.

Declaration:

HIGPIXEL ACCUAPI IG_pixel_create(
 AT_INT channelCount,
 AT_DEPTH bitsPerChannel
);

Arguments:

Name Type Description

channelCount AT_INT Number of channels to allocate.

bitsPerChannel AT_DEPTH Bits per channel to allocate.

Return Value:

Handle of new pixel object.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGEAR hImage; /* Handle of image */
HIGPIXEL hPix; /* Handle of pixel */
AT_INT ChannelCount; /* Number of channels in image */
AT_INT BitsPerChannel; /* Bits per channel in image */
nErrcount = IG_load_file("test.jpg", &hImage);
nErrcount = IG_image_channel_count_get(hImage, &ChannelCount);
nErrcount = IG_image_bits_per_channel_get(hImage, &BitsPerChannel);
hPix = IG_pixel_create(ChannelCount, BitsPerChannel);
/* Pixel is created using same attributes as image */
IG_pixel_delete(hPix);
IG_image_delete(hImage);

Remarks:

The number of bits per channel is the amount to allocate, and it must be 8, 16, or 32.

ImageGear Professional v18 for Mac | 1138

1.3.1.2.28.4 IG_pixel_data_pointer_get

This function returns a pointer to the pixel data stored for a pixel.

Declaration:

LPAT_VOID ACCUAPI IG_pixel_data_pointer_get(HIGPIXEL hPixel);

Arguments:

Name Type Description

hPixel HIGPIXEL Handle of pixel object.

Return Value:

N/A

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGEAR hImage; /* Handle of image */
HIGPIXEL hPix; /* Handle of pixel */
AT_INT ChannelCount; /* Number of channels in image */
AT_INT BitsPerChannel; /* Bits per channel in image */
LPAT_VOID lpPixData; /* Pixel data */
nErrcount = IG_load_file("test.jpg", &hImage);
nErrcount = IG_image_channel_count_get(hImage, &ChannelCount);
nErrcount = IG_image_bits_per_channel_get(hImage, &BitsPerChannel);
/* Get the first pixel of an image */
nErrcount = IG_DIB_pix_get(hImage, 0, 0, &hPix);
/* Set the bits in all of its channels to 1's */
lpPixData = IG_pixel_data_pointer_get(hPix);
memset(lpPixData, 255, ChannelCount * (BitsPerChannel / 8));
/* Write the modified pixel data back to the image */
IG_DIB_pix_set(hImage, 0, 0, hPix);
IG_pixel_delete(hPix);
IG_image_delete(hImage);

Remarks:

The number of accessible bytes can be calculated by multiplying the number of bits allocated per channel (8, 16, or 32)
by the number of channels allocated, then dividing by 8.

ImageGear Professional v18 for Mac | 1139

1.3.1.2.28.5 IG_pixel_delete

This function releases the allocated resources for a pixel object.

Declaration:

AT_VOID ACCUAPI IG_pixel_delete(HIGPIXEL hPixel);

Arguments:

Name Type Description

hPixel HIGPIXEL Handle of pixel object.

Return Value:

N/A

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGEAR hImage; /* Handle of image */
HIGPIXEL hPix; /* Handle of pixel */
AT_DIMENSION w, h; /* Width and height of image */
AT_INT nChannels; /* Number of channels in image */
AT_DIMENSION x, y; /* Used to loop over image */
AT_INT c; /* Used to loop over channels */
AT_INT nDepth; /* Channel depth */
AT_UINT inverted; /* Inverted channel value */
/* Invert colors in upper-left quadrant of image */
nErrcount = IG_load_file("test.jpg", &hImage);
nErrcount = IG_image_channel_count_get(hImage, &nChannels);
nErrcount = IG_image_dimensions_get(hImage, &w, &h, NULL);
for (y = 0; y < h / 2; y++)
 for (x = 0; x < w / 2; x++)
 {
 nErrcount = IG_DIB_pix_get(hImage, x, y, &hPix);
 for (c = 0; c < nChannels; c++)
 {
 IG_image_channel_depth_get(hImage, c, &nDepth);
 nDepth = (1 << nDepth) - 1;
 inverted = nDepth - IG_pixel_value_get(hPix, c);
 IG_pixel_value_set(hPix, c, inverted);
 }
 nErrcount = IG_DIB_pix_set(hImage, x, y, hPix);
 IG_pixel_delete(hPix);
 }
nErrcount = IG_save_file(hImage, OUTPUT_FILENAME,
 IG_SAVE_BMP_UNCOMP);
IG_image_delete(hImage);

ImageGear Professional v18 for Mac | 1140

1.3.1.2.28.6 IG_pixel_value_get

This function returns the value of the requested channel.

Declaration:

AT_UINT ACCUAPI IG_pixel_value_get(
 HIGPIXEL hPixel,
 AT_INT channel
);

Arguments:

Name Type Description

hPixel HIGPIXEL Handle of pixel object.

channel AT_INT Channel index from which to get value.

Return Value:

Channel value.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGEAR hImage; /* Handle of image */
HIGPIXEL hPix; /* Handle of pixel */
AT_DIMENSION w, h; /* Width and height of image */
AT_INT nChannels; /* Number of channels in image */
AT_DIMENSION x, y; /* Used to loop over image */
AT_INT c; /* Used to loop over channels */
AT_INT nDepth; /* Channel depth */
AT_UINT inverted; /* Inverted channel value */
/* Invert colors in upper-left quadrant of image */
nErrcount = IG_load_file("test.jpg", &hImage);
nErrcount = IG_image_channel_count_get(hImage, &nChannels);
nErrcount = IG_image_dimensions_get(hImage, &w, &h, NULL);
for (y = 0; y < h / 2; y++)
 for (x = 0; x < w / 2; x++)
 {
 nErrcount = IG_DIB_pix_get(hImage, x, y, &hPix);
 for (c = 0; c < nChannels; c++)
 {
 IG_image_channel_depth_get(hImage, c, &nDepth);
 nDepth = (1 << nDepth) - 1;
 inverted = nDepth - IG_pixel_value_get(hPix, c);
 IG_pixel_value_set(hPix, c, inverted);
 }
 nErrcount = IG_DIB_pix_set(hImage, x, y, hPix);
 IG_pixel_delete(hPix);
 }
nErrcount = IG_save_file(hImage, OUTPUT_FILENAME,
 IG_SAVE_BMP_UNCOMP);
IG_image_delete(hImage);

Remarks:

ImageGear Professional v18 for Mac | 1141

The range of possible values depends on the bit depth of the channel.

ImageGear Professional v18 for Mac | 1142

1.3.1.2.28.7 IG_pixel_value_set

This function updates the value for the specified channel.

Declaration:

AT_VOID ACCUAPI IG_pixel_value_set(
 HIGPIXEL hPixel,
 AT_INT channel,
 AT_UINT value
);

Arguments:

Name Type Description

hPixel HIGPIXEL Handle of pixel object.

channel AT_INT Channel index for which to set value.

value AT_UINT Value to set (range depends on channel bit depth).

Return Value:

N/A

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; /* Number of errors on stack */
HIGEAR hImage; /* Handle of image */
HIGPIXEL hPix; /* Handle of pixel */
AT_DIMENSION w, h; /* Width and height of image */
AT_INT nChannels; /* Number of channels in image */
AT_DIMENSION x, y; /* Used to loop over image */
AT_INT c; /* Used to loop over channels */
AT_INT nDepth; /* Channel depth */
AT_UINT inverted; /* Inverted channel value */
/* Invert colors in upper-left quadrant of image */
nErrcount = IG_load_file("test.jpg", &hImage);
nErrcount = IG_image_channel_count_get(hImage, &nChannels);
nErrcount = IG_image_dimensions_get(hImage, &w, &h, NULL);
for (y = 0; y < h / 2; y++)
 for (x = 0; x < w / 2; x++)
 {
 nErrcount = IG_DIB_pix_get(hImage, x, y, &hPix);
 for (c = 0; c < nChannels; c++)
 {
 IG_image_channel_depth_get(hImage, c, &nDepth);
 nDepth = (1 << nDepth) - 1;
 inverted = nDepth - IG_pixel_value_get(hPix, c);
 IG_pixel_value_set(hPix, c, inverted);
 }
 nErrcount = IG_DIB_pix_set(hImage, x, y, hPix);
 IG_pixel_delete(hPix);
 }
nErrcount = IG_save_file(hImage, OUTPUT_FILENAME,
 IG_SAVE_BMP_UNCOMP);
IG_image_delete(hImage);

ImageGear Professional v18 for Mac | 1143

Remarks:

The range of possible values depends on the bit depth of the channel.

ImageGear Professional v18 for Mac | 1144

1.3.1.2.29 Resolution Unit Conversion Functions

This section provides information about the Resolution Unit Conversion group of functions.

IG_convert_DPI_to_PPM
IG_convert_PPM_to_DPI

ImageGear Professional v18 for Mac | 1145

1.3.1.2.29.1 IG_convert_DPI_to_PPM

Converts Dots Per Inch (DPI) to Pels Per Meter (PPM).

Declaration:

LONG ACCUAPI IG_convert_DPI_to_PPM(
 LONG lDotsPerInch
);

Arguments:

Name Type Description

lDotsPerInch LONG A variable of type LONG, holding the DPI value that can be converted to PPM (pels per meter).

Return Value:

Returns a LONG indicating the pels per meter of an image.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

LONG IPpm, IDpi;
...
IPpm=IG_convert_DPI_to_PPM(IPpi);
...

Remarks:

"Pels" is an abbreviated term for pixels. This function can be useful when you are converting a file that supports dots per
inch to a DIB format, which supports pels per meter. The header structure of a DIB (the BIMAPINFOHEADER) contains
two fields whose values are defined in "pels per meter": LONG biXPelsPerMeter and LONG biYPelsPerMeter.

ImageGear Professional v18 for Mac | 1146

1.3.1.2.29.2 IG_convert_PPM_to_DPI

Converts Pels Per Meter (PPM) to Dots Per Inch (DPI).

Declaration:

LONG ACCUAPI IG_convert_PPM_to_DPI(
 LONG lPelsPerMeter
);

Arguments:

Name Type Description

lPelsPerMeter LONG A variable of type LONG, holding the pels per meter (PPM) value that can be converted to dots
per inch (DPI).

Return Value:

Returns a LONG indicating the DPI of an image.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

LONG IPpm, IDpi;
...
IPpm=IG_convert_PPM_to_DPI(IPpm);
...

Remarks:

"Pels" is an abbreviated term for pixels. This function can be useful when you are converting a DIB to a format that
supports dots per inch. The header structure of a DIB (the BIMAPINFOHEADER) contains two fields whose values are
defined in "pels per meter": LONG biXPelsPerMeter and LONG biYPelsPerMeter.

ImageGear Professional v18 for Mac | 1147

1.3.1.2.30 Run-End Functions

This section provides information about the Run-End group of functions.

IG_runs_row_get
IG_runs_row_set

ImageGear Professional v18 for Mac | 1148

1.3.1.2.30.1 IG_runs_row_get

This function returns a pointer to the run-end line specified by the yPos parameter.

Declaration:

AT_ERRCOUNT ACCUAPI IG_runs_row_get(
 HIGEAR hIGear,
 AT_PIXPOS yPos,
 AT_RUN* wRunCount,
 LPAT_RUN* lpRunEnd
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of the image from which to get the run ends information.

yPos AT_PIXPOS Y-Offset into the image.

wRunCount AT_RUN* The number of runs in the lpRunEnd buffer.

lpRunEnd LPAT_RUN* Returns a pointer to the run-end line specified by yPos.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return
value is IGE_SUCCESS.

Supported Raster Image Formats:

Indexed RGB - 1 bpp;
Grayscale – 1bpp.

Example:

AT_ERRCOUNT nErrcount;
HIGEAR hIGear;
AT_PIXPOS y;
WORD wRunCount;
LPWORD lpRunEnd, lpRunBuffer;
AT_DIMENSION nWidth, nHeight;
IG_image_dimensions_get(hIGear, &nWidth, &nHeight, NULL);
/* calculate the maximum size of a raster line */
lpRunBuffer = (LPWORD)malloc((nWidth + 3) * sizeof(WORD));
/* invert the image */
for (y = 0; y < nHeight; y++)
{
 IG_runs_row_get(hIGear, y, &wRunCount, &lpRunEnd);
 if (lpRunEnd[0] != 0)
 {
 lpRunBuffer[0] = 0;
 for (wRunCount = 0; lpRunEnd[wRunCount] !=
 nWidth; wRunCount++)
 lpRunBuffer[wRunCount + 1] = lpRunEnd[wRunCount];
 wRunCount++;
 lpRunBuffer[wRunCount++] = (WORD)nWidth;
 lpRunBuffer[wRunCount++] = (WORD)nWidth;
 lpRunBuffer[wRunCount++] = (WORD)nWidth;
 }
 else
 {

ImageGear Professional v18 for Mac | 1149

 memcpy(lpRunBuffer, lpRunEnd + 1, (wRunCount - 1) * sizeof(WORD));
 lpRunBuffer[wRunCount - 1] = nWidth;
 }
 IG_runs_row_set(hIGear, y, wRunCount, lpRunBuffer);
}
InvalidateRect(hWnd, NULL, FALSE);
free(lpRunBuffer);

Remarks:

Run-end encoding is used on 1-bit images only. The wRunCount argument returns the number of runs to which
lpRunEnd points. The read-only data in the pointer returned should not be changed because it may corrupt the image.

To safely change the data, use IG_runs_row_set(). Developers should be cautious when using the IG_runs_row_set()
function because it is possible to corrupt the image by supplying invalid run-end data.

This function will set an error, if the image specified by hIGear is not in run-ends format or if the yPos parameter is
greater than the height of the image.

The format of the run-end encoded data is as follows: Each line in the image starts with a value of type AT_RUN
which stores the number of AT_RUN values used to hold the line. This value is equal to the number of runs in the line
plus one (for the size value). The rest of the line consists of run ends of type AT_RUN. A run end specifies the first
pixel position beyond the run of color. The run ends alternate between white and black, and start with white. The line
ends with at least three run ends containing a value equal to the image's width. A 2500 pixel source line with black
pixels in positions 0, 7, 23, and 30, would be encoded as runs: 10, 0, 1, 7, 8, 23, 31, 2500, 2500, 2500 (with 10
being the number of AT_RUN values used to store the encoded line.)

This function returns a pointer to the second AT_RUN value of the line in the lpRunEnd parameter, and returns the
number of runs in wRunCount. The IG_runs_row_set() function copies the data in the lpRunEnd parameter to the
second AT_RUN value of the line. The first AT_RUN value is set to the wRunCount parameter.

ImageGear Professional v18 for Mac | 1150

1.3.1.2.30.2 IG_runs_row_set

This function sets the run-end data of the line specified by the yPos parameter.

Declaration:

AT_ERRCOUNT ACCUAPI IG_runs_row_set(
 HIGEAR hIGear,
 AT_PIXPOS yPos,
 AT_RUN wRunCount,
 LPCAT_RUN lpRunEnd
);

Arguments:

hIGear HIGEAR HIGEAR handle of the image containing the raster line you would like to modify.

yPos AT_PIXPOS Y-Offset into the image.

wRunCount AT_RUN The number of runs in the lpRunEnd buffer.

lpRunEnd LPCAT_RUN The Run- end pointer to copy into the image.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

Indexed RGB - 1 bpp;
Grayscale – 1bpp.

Example:

See the example for IG_runs_row_get().

Remarks:

The wRunCount parameter should be set to the number of runs contained in the lpRunEnd buffer. Run-end encoding is
used on 1-bit images only. This function is faster than using IG_DIB_raster_set() for a 1-bit image. This function copies
the data in the lpRunEnd parameter to the second AT_RUN value of the line. The first AT_RUN value is set to the
wRunCount parameter.

Developers should be cautious when using this function because it is possible to corrupt the image by supplying invalid
run-end data.

Both of these functions will set an error if the image specified by hIGear is not in run-ends format or if the yPos
parameter is greater than the height of the image.

The format of the run-end encoded data is as follows: Each line in the image starts with a value of type AT_RUN which
stores the number of AT_RUN values used to hold the line. This value is equal to the number of runs in the line plus one
(for the size value). The rest of the line consists of run ends of type AT_RUN. A run end specifies the first pixel position
beyond the run of color. The run ends alternate between white and black, and start with white. The line ends with at
least three run ends containing a value equal to the image's width. A 2500 pixel source line with black pixels in positions
0, 7, 23, and 30, would be encoded as runs: 10, 0, 1, 7, 8, 23, 31, 2500, 2500, 2500 (with 10 being the number of
AT_RUN values used to store the encoded line.)

See also IG_runs_row_get() function.

ImageGear Professional v18 for Mac | 1151

1.3.1.2.31 Save Functions

This section provides information about the Save group of functions.

IG_save_FD
IG_save_FD_CB
IG_save_FD_CB_direct
IG_save_FD_CB_ex
IG_save_file
IG_save_file_size_calc
IG_save_JPEG_quality_get
IG_save_JPEG_quality_set
IG_save_mem
IG_save_mem_CB
IG_save_mem_CB_direct
IG_save_mem_CB_ex
IG_save_tag_CB_register
IG_save_thumbnail_set

ImageGear Professional v18 for Mac | 1152

1.3.1.2.31.1 IG_save_FD

This function saves the image referenced by hIGear to a file that has already been opened, and for which your
application has the File descriptor.

Declaration:

AT_ERRCOUNT ACCUAPI IG_save_FD(
 HIGEAR hIGear,
 AT_INT fd,
 UINT nPage,
 UINT nReserved,
 AT_LMODE lFormatType
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to save.

fd AT_INT Handle of the open file for saving the image. This handle can be obtained from
Microsoft Windows function such as CreateFile(), and cast to AT_INT for passing to the
function parameter. FILE pointers returned by functions such as fopen(), and file
handles returned by functions such as _sopen_s() are not supported.

nPage UINT If saving to a multi-page file, set this to the page number to insert this page as. Note
that page numbers begin at 1, not 0. Otherwise set to 1.

nReserved UINT Reserved, should always be set = 0 for now.

lFormatType AT_LMODE Specifies the format to use for saving, and also the compression scheme if applicable.
See enumIGSaveFormats.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

HIGEAR hIGear; //ImageGear handle
HANDLE fd; //File Descriptor
AT_ERRCOUNT nErrcount; //Number of errors on stack

// Load the image
nErrcount = IG_load_file("picture.tif", &hIGear);
if(nErrcount == 0)
{
 // Create a file for writing
 fd = CreateFile(_T("picture_new.tif"), GENERIC_WRITE,
 0, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

 if(fd != INVALID_HANDLE_VALUE)
 {
 // Save the HIGEAR image as page 3 of file whose descriptor is fd:
 nErrcount = IG_save_FD(hIGear, (AT_INT)fd, 1, 0, IG_SAVE_TIF_UNCOMP);
 CloseHandle((HANDLE)fd);
 }
 // Destroy the image

ImageGear Professional v18 for Mac | 1153

 IG_image_delete(hIGear);
}

Remarks:

When saving to an existing file having a multi-page format, this function permits you to insert your image into the file
at the page number you designate by argument nPage. If you want to append your image as the final page of the file,
set nPage = IG_APPEND_PAGE. lFormatType should specify the format type and compression of the already existing
file. If you do not know the format type you can first make a call to IG_info_get_FD_ex.

See Saving to a Disk File Using a File Descriptor Handle for additional information.

When saving to a non-multi-page format, this function will save a new single-image file of the format type and
compression specified by lFormatType. Any previous version of the file will be lost. When saving to a non-multi-page
format, set nPage = 1.

In order for an ImageGear append page operation to work properly, the file handle must point to the very beginning
of the existing image, rather than to one of its pages, start of pixel data, or any custom wrapper preceding the image.

Appending and Inserting: While IG_APPEND_PAGE assures you that your loaded image will be appended to a pre-
existing multi-page file, there are two other instances in which the value you assign to nPage will cause an append: if
you set nPage to less than 1, or if you set nPage to greater than the number of pages in the file to which you are
saving.

To summarize: ImageGear will insert your image to a pre-existing multi-image file if you set nPage to a value
between 1 and the number of the last page in the file.

ImageGear supports the writing of tiled images for specific image formats, but does not support the insertion,
replacement, or appending of individual tiles.

ImageGear Professional v18 for Mac | 1154

1.3.1.2.31.2 IG_save_FD_CB

This function saves the image to a file using user-defined callback functions. This is an obsolete function, see
Remarks.

Declaration:

AT_ERRCOUNT ACCUAPI IG_save_FD_CB(
 AT_INT fd,
 UINT nPage,
 UINT nReserved,
 AT_LMODE lFormatType,
 LPFNIG_RASTER_GET lpfnRasterGet,
 LPFNIG_DIB_GET lpfnDIBGet,
 LPVOID lpPrivateData
);

Arguments:

Name Type Description

fd AT_INT Handle of the open file for saving the image. This handle can be obtained
from Microsoft Windows function such as CreateFile(), and cast to AT_INT
for passing to the function parameter. FILE pointers returned by functions
such as fopen(), and file handles returned by functions such as _sopen_s()
are not supported.

nPage UINT If saving to a multi-page file, set this to the page number to insert this
page as. Note that page numbers begin at 1, not 0. Otherwise set to 1.

nReserved UINT Reserved, should be set to 0 for now.

lFormatType AT_LMODE Specifies the format to use for saving, and also the compression scheme if
applicable. See enumIGSaveFormats.

lpfnRasterGet LPFNIG_RASTER_GET Pointer to a function of type LPFNIG_RASTER_GET, which will be called for
each raster line of the image, before that line is saved.

lpfnDIBGet LPFNIG_DIB_GET Pointer to a function of type LPFNIG_DIB_GET, which will be called just
prior to saving the DIB header.

lpPrivateData LPVOID Pointer to a private data area. This pointer will be passed to the above two
callback functions each time they are called.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Indexed RGB - 1, 4, 8 bpp;
Grayscale - 9...16 bpp;
RGB - 24 bpp;
CMYK - 32 bpp.

Actual set of pixel formats supported by this function can be narrower, depending on the implementation of the
user-defined callback functions.

Example:

AT_ERRCOUNT ACCUAPI MyDIBGet(
 LPVOID lpPrivate, // Private data passed in
 LPAT_DIB lpDIB, // DIB structure to return

ImageGear Professional v18 for Mac | 1155

 LPAT_RGBQUAD lpRGB // DIB palette to be set
)
{
 // Convert user DIB info into (*lpDIB) structure and copy a user palette to lpRGB
 return 0;
}

AT_ERRCOUNT ACCUAPI MyRasterGet(
 LPVOID lpPrivate, // Private data passed in
 LPAT_PIXEL lpRaster, // Raster line to set
 AT_PIXPOS row, // Y position in the image
 DWORD rasterSize // Size of the raster line
)
{
 // Copy user pixel data to lpRaster in the appropriate format
 return 0;
}

void Example_IG_save_FD_CB()
{
 HANDLE fd; // File Descriptor handle
 AT_ERRCOUNT nErrcount; // Count of returned errors on stack
 HIGEAR hIGear; //ImageGear handle
 nErrcount = IG_load_file("picture.tif", &hIGear);
 if(nErrcount == 0)
 {
 // Create a file for writing
 fd = CreateFile(_T("picture_new.tif"), GENERIC_WRITE,
 0, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
 if(fd != INVALID_HANDLE_VALUE)
 {
 nErrcount = IG_save_FD_CB((AT_INT)fd, 1, 0, IG_SAVE_TIF_UNCOMP, MyRasterGet,
MyDIBGet, NULL);
 CloseHandle(fd);
 }
 // Destroy the image
 IG_image_delete(hIGear);
 }
}

Remarks:

This function is only kept for backward compatibility reasons. Please use IG_save_FD_CB_ex instead.

First, your lpfnDIBGet() callback is called. This function supplies ImageGear with the image's width, height, Bits Per
Pixel, and all DIB information in the form of a DIB header. If the image requires a palette, this callback function also
supplies the palette.

ImageGear then writes a header out to file fd, in the lFormatType format. Next, lpfnRasterGet() is called once for
each raster line. ImageGear gets the raster line from the callback function. Then, it compresses the raster line
(according to lFormatType) and writes the line to fd. (Note that the calls for the raster lines are not necessarily in
order.)

Refer to the descriptions for callback function types LPFNIG_DIB_GET and LPFNIG_RASTER_GET in this chapter.

In order for an ImageGear append page operation to work properly, the file handle must point to the very beginning
of the existing image, rather than to one of its pages, start of pixel data, or any custom wrapper preceding the image.

Appending and Inserting: While IG_APPEND_PAGE assures you that your loaded image will be appended to a pre-
existing multi-page file, there are two other instances in which the value you assign to nPage will cause an append: if
you set nPage to less than 1, or if you set nPage to greater than the number of pages in the file that you are saving
to.

To summarize: ImageGear will insert your image to a pre-existing multi-image file if you set nPage to a value
between 1 and the number of the last page in the file.

ImageGear supports the writing of tiled images for specific image formats, but does not support the insertion,

ImageGear Professional v18 for Mac | 1156

replacement, or appending of individual tiles.

ImageGear Professional v18 for Mac | 1157

1.3.1.2.31.3 IG_save_FD_CB_direct

This function has been deprecated and will be removed from the public API in a future release. Please use
IG_save_FD_CB_ex instead.

Declaration:

AT_ERRCOUNT ACCUAPI IG_save_FD_CB_direct(
 AT_INT fd,
 UINT nPage,
 UINT nReserved,
 AT_LMODE lFormatType,
 LPFNIG_DIRECT_RASTER_GET lpfnRasterGet,
 LPFNIG_DIB_GET lpfnDIBGet,
 LPVOID lpPrivateData
);

Arguments:

Name Type Description

fd AT_INT Not used.

nPage UINT Not used.

nReserved UINT Not used.

lFormatType AT_LMODE Not used.

lpfnRasterGet LPFNIG_DIRECT_RASTER_GET Not used.

lpfnDIBGet LPFNIG_DIB_GET Not used.

lpPrivateData LPVOID Not used.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

N/A

ImageGear Professional v18 for Mac | 1158

1.3.1.2.31.4 IG_save_FD_CB_ex

This function saves the image to a file using user-defined callback functions.

Declaration:

AT_ERRCOUNT ACCUAPI IG_save_FD_CB_ex(
 AT_INT fd,
 UINT nPage,
 UINT nReserved,
 AT_LMODE lFormatType,
 LPFNIG_RASTER_GET lpfnRasterGet,
 LPFNIG_DIB_GET_EX lpfnDIBGetEx,
 LPVOID lpPrivateData
);

Arguments:

Name Type Description

fd AT_INT Handle of the open file for saving the image. This handle can be obtained
from Microsoft Windows function such as CreateFile(), and cast to AT_INT
for passing to the function parameter. FILE pointers returned by functions
such as fopen(), and file handles returned by functions such as _sopen_s()
are not supported.

nPage UINT If saving to a multi-page file, set this to the page number to insert this
page as. Note that page numbers begin at 1, not 0. Otherwise set to 1.

nReserved UINT Reserved, should be set to 0 for now.

lFormatType AT_LMODE Specifies the format to use for saving, and also the compression scheme if
applicable. See enumIGSaveFormats.

lpfnRasterGet LPFNIG_RASTER_GET Pointer to a function of type LPFNIG_RASTER_GET, which will be called for
each raster line of the image, before that line is saved.

lpfnDIBGetEx LPFNIG_DIB_GET Pointer to a function of type LPFNIG_DIB_GET, which will be called just
prior to saving the DIB header.

lpPrivateData LPVOID Pointer to a private data area. This pointer will be passed to the above two
callback functions each time they are called.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Actual set of pixel formats supported by this function can be narrower, depending on the implementation of the
user-defined callback functions.

Example:

AT_ERRCOUNT ACCUAPI MyDIBGetEx(
 LPVOID lpPrivate, // Private data passed in
 HIGDIBINFO* lphDIB // DIB info object to return
)
{
 // Convert user DIB info into lphDIB
 return 0;
}

ImageGear Professional v18 for Mac | 1159

AT_ERRCOUNT ACCUAPI MyRasterGetEx(
 LPVOID lpPrivate, // Private data passed in
 LPAT_PIXEL lpRaster,// Raster line to set
 AT_PIXPOS row, // Y position in the image
 DWORD rasterSize // Size of the raster line
)
{
 // Copy user pixel data to lpRaster in the appropriate format
 return 0;
}
void Example_IG_save_FD_CB_ex()
{
 HANDLE fd; // File Descriptor handle
 AT_ERRCOUNT nErrcount; // Count of returned errors on stack
 HIGEAR hIGear; //ImageGear handle
 nErrcount = IG_load_file("picture.tif", &hIGear);
 if(nErrcount == 0)
 {
 // Create a file for writing
 fd = CreateFile(_T("picture_new.tif"), GENERIC_WRITE,
 0, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

 if(fd != INVALID_HANDLE_VALUE)
 {
 nErrcount = IG_save_FD_CB_ex((AT_INT)fd, 1, 0, IG_SAVE_TIF_UNCOMP,
MyRasterGetEx, MyDIBGetEx, NULL);
 CloseHandle(fd);
 }
 // Destroy the image
 IG_image_delete(hIGear);
 }
}

Remarks:

First, your lpfnDIBGetEx() callback is called. This function supplies ImageGear with the image's width, height, bits per
pixel, and all DIB information in the form of a HIGDIBINFO object.

ImageGear then writes a header out to file fd, in the lFormatType format. Next, lpfnRasterGet() is called once for
each raster line. ImageGear gets the raster line from the callback function. Then, it compresses the raster line
(according to lFormatType) and writes the line to fd. (Note that the calls for the raster lines are not necessarily in
order.)

In order for an ImageGear append page operation to work properly, the file handle must point to the very beginning
of the existing image, rather than to one of its pages, start of pixel data, or any custom wrapper preceding the image.

Appending and Inserting: While IG_APPEND_PAGE assures you that your loaded image will be appended to a pre-
existing multi-page file, there are two other instances in which the value you assign to nPage will cause an append: if
you set nPage to less than 1, or if you set nPage to greater than the number of pages in the file to which you are
saving.

To summarize: ImageGear will insert your image to a pre-existing multi-image file if you set nPage to a value
between 1 and the number of the last page in the file.

ImageGear supports the writing of tiled images for specific image formats, but does not support the insertion,
replacement or appending of individual tiles.

ImageGear Professional v18 for Mac | 1160

1.3.1.2.31.5 IG_save_file

This function will store the image rectangle of the image referenced by hIGear to disk using the name lpszFilename.

Declaration:

AT_ERRCOUNT ACCUAPI IG_save_file(
 HIGEAR hIGear,
 const LPSTR lpszFileName,
 AT_LMODE lFormatType
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to save.

lpszFileName const
LPSTR

Pointer to the filename (you may include path with filename) in which to save.

lFormatType AT_MODE Specifies the format to use for saving, and also the compression scheme if applicable. See
enumIGSaveFormats.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Remarks:

lFormatType is used to set the format and compression (if applicable) of the output file. If you want to have ImageGear
use the file extension provided in your filename string (lpszFilename) to determine the file format to save to, set
lFormatType = IG_SAVE_UNKNOWN.

When an image is saved to a multi-page file format (for example, TIFF or DCX), if the file already exists then the new
image is appended as a new page in the file. When an image is saved to a non-multi-page file format, if the file already
exists it is simply overwritten; the previous version of the file is lost.

IG_fltr_save_file is an extended version of this function. It allows inserting or replacing pages in multi-page files.

Some file formats, such as TXT, JPEG, and others, may be saved with additional control, using IG_fltr_ctrl_get and
IG_fltr_ctrl_set. See the description also in the section Using Format Filters API for Filter Control.

ImageGear Professional v18 for Mac | 1161

1.3.1.2.31.6 IG_save_file_size_calc

This function is used to determine the size that is required for saving the image to the file or memory buffer in the given
format.

Declaration:

AT_ERRCOUNT ACCUAPI IG_save_file_size_calc(
 HIGEAR hIGear,
 AT_LMODE lFormatType,
 LPAT_UINT lpFileSize
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of the image on which to calculate the size.

lFormatType AT_LMODE Specifies the format to use for saving, and also the compression scheme if applicable. See
enumIGSaveFormats.

lpFileSize LPAT_UINT Returned argument showing the required size of the file or memory.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Remarks:

This call may be used prior to calling IG_save_mem to determine the amount of memory that needs to be allocated.

ImageGear Professional v18 for Mac | 1162

1.3.1.2.31.7 IG_save_JPEG_quality_get

This function returns the current setting for JPEG quality.

Declaration:

AT_ERRCOUNT ACCUAPI IG_save_JPEG_quality_get(
 LPUINT lpQuality
);

Arguments:

Name Type Description

lpQuality LPUINT A pointer to a UINT variable which will receive the current setting for JPEG quality.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

UINT lpQuality;
AT_ERRCOUNT nErrcount = IG_save_JPEG_quality_get(&lpQuality);

Remarks:

The quality level is the amount of data loss that will occur during JPEG compression. The default algorithm for JPEG
compression used by ImageGear is a lossy scheme. This means that some data will always be lost during compression.
Use this function to set the level of loss, where 100 means the least amount possible of pixel data will be lost during
compression, and 1 allows the most loss (resulting in the smallest possible file after compression). Please see JPEG
format filter description for more details.

JPEG quality is only used when an image is being saved, not during the decompression process.

This function has the same effect as using IG_fltr_ctrl_get to get the value of the "QUALITY" control parameter for
IG_FORMAT_JPG format filter.

Use IG_save_JPEG_quality_set to change the current setting.

ImageGear Professional v18 for Mac | 1163

1.3.1.2.31.8 IG_save_JPEG_quality_set

This function sets the quality level for saving JPEG compressed images.

Declaration:

AT_ERRCOUNT ACCUAPI IG_save_JPEG_quality_set(
 UINT nQuality
);

Arguments:

Name Type Description

nQuality UINT An integer value from 1 to 100, where 100 represents the "highest quality" or least amount of pixel
data lost.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount = IG_save_JPEG_quality_set(95);

Remarks:

The quality level is the amount of data loss that will occur during JPEG compression. The default algorithm for JPEG
compression used by ImageGear is a lossy scheme. This means that some data will always be lost during compression.
Use this function to set the level of loss, where 100 means the least amount possible of pixel data will be lost during
compression, and 1 allows the most loss (resulting in the smallest possible file after compression). Please see JPEG
format filter description for more details.

JPEG quality is only used when an image is being saved, not during the decompression process.

This function has the same effect as using IG_fltr_ctrl_set to set the "QUALITY" control parameter for IG_FORMAT_JPG
format filter.

A setting of 100 does not give you "lossless" JPEG. If you wish to save as lossless, use IG_fltr_ctrl_set to set the "TYPE"
control parameter for IG_FORMAT_JPG format filter to IG_JPG_LOSSLESS before saving.

Use IG_save_JPEG_quality_get to obtain the current setting.

ImageGear Professional v18 for Mac | 1164

1.3.1.2.31.9 IG_save_mem

This function saves the image referenced by hIGear in a memory block.

Declaration:

AT_ERRCOUNT ACCUAPI IG_save_mem(
 HIGEAR hIGear,
 LPVOID lpImage,
 AT_UINT nImageSize,
 AT_UINT nBufferSize,
 UINT nPage,
 UINT nReserved,
 AT_LMODE lFormatType,
 LPAT_UINT lpActualSize
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of image to save.

lpImage LPVOID Pointer to first byte of memory area in which to save.

nImageSize AT_UINT Size of the image if it already exists in the buffer, 0 otherwise.

nBufferSize AT_UINT Size of the memory buffer.

nPage UINT If saving to a multi-page file, set this to the page number to insert this page as. Note
that page numbers begin at 1, not 0. Otherwise set to 1.

nReserved UINT Reserved, should always be set = 0 for now.

lFormatType AT_LMODE Specifies the format to use for saving, and also the compression scheme if applicable.
See enumIGSaveFormats.

lpActualSize LPAT_UINT Size of new file in memory will be returned in the variable pointed by this parameter.
NULL is allowed.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount; // Count of returned errors on stack
HIGEAR hIGear; // ImageGear handle
AT_BYTE* lpMemoryBlock; // Memory block to save the image to
AT_UINT nMaxSize; // Size of the memory block
nErrcount = IG_load_file("picture.bmp", &hIGear);

if(nErrcount == 0)
{
 // Get a required size of the memory block
 nErrcount = IG_save_file_size_calc (hIGear, IG_SAVE_BMP_UNCOMP, &nMaxSize);
 // Allocate a memory block
 lpMemoryBlock = (AT_BYTE*)malloc(nMaxSize);
 // Save image to the memory block in BMP format without compression:
 nErrcount = IG_save_mem(hIGear, lpMemoryBlock, 0, nMaxSize, 1, 0, IG_SAVE_BMP_UNCOMP,
NULL);

ImageGear Professional v18 for Mac | 1165

 // Destroy the image
 IG_image_delete(hIGear);
 // Some usage of the image in the memory
 //...
 free(lpMemoryBlock);
}

Remarks:

You provide the total size of your memory area, nBufferSize, so ImageGear can avoid writing beyond the area you
have reserved for the file image. The image file that results will be identical to what would have been written to disk
had you used IG_save_FD: it will begin with a header, and will be in the format you have declared by argument
lFormatType. After writing the entire new file to memory, the actual size of this in-memory file is returned to you in
the AT_UINT variable pointed to by lpActualSize.

If the file format is multi-page, and if there already is a valid file of that format at location *lpImage, then the
HIGEAR image you are saving will be inserted as the page number you've indicated by nPage. If you want to append
your image to the multi-page file, set nPage = IG_APPEND_PAGE. If the file format is not multi-page, then any file
image already at location lpImage will be overwritten. Set nPage = 1 for non-multi-page file formats.

It is your application's responsibility to allocate the memory to hold the file image, and to free this memory when it is
no longer needed. You may call function IG_save_file_size_calc to determine the maximum amount of memory you
need to allocate. (If you have not allocated enough memory an error will be set and *lpImage will contain an
unfinished image. The image left in memory after this condition should not be used.)

In order for an ImageGear append page operation to work properly, the memory buffer must point to the very
beginning of the existing image, rather than to one of its pages, start of pixel data, or any custom wrapper preceding
the image.

Appending and Inserting: While IG_APPEND_PAGE assures you that your loaded image will be appended to a pre-
existing multi-page file, there are two other instances in which the value you assign to nPage will cause an append: if
you set nPage to less than 1, or if you set nPage to greater than the number of pages in the file to which you are
saving.

To summarize: ImageGear will insert your image to a pre-existing multi-image file if you set nPage to a value
between 1 and the number of the last page in the file.

ImageGear supports the writing of tiled images for specific image formats, but does not support the insertion,
replacement or appending of individual tiles.

ImageGear Professional v18 for Mac | 1166

1.3.1.2.31.10 IG_save_mem_CB

This function saves the image referenced by hIGear to a memory buffer using user-defined callback functions.

Declaration:

AT_ERRCOUNT ACCUAPI IG_save_mem_CB(
 LPVOID lpImage,
 AT_UINT nImageSize,
 AT_UINT nBufferSize,
 UINT nPage,
 UINT nReserved,
 AT_LMODE lFormatType,
 LPFNIG_RASTER_GET lpfnRasterGet,
 LPFNIG_DIB_GET lpfnDIBGet,
 LPVOID lpPrivateData,
 LPAT_UINT lpActualSize
);

Arguments:

Name Type Description

lpImage LPVOID Memory buffer to which to save the image.

nImageSize AT_UINT Size of the image if it already exists in the buffer, 0 otherwise.

nBufferSize AT_UINT Size of the memory buffer.

nPage UINT If saving to a multi-page file, set this to the page number to insert this
page as. Note that page numbers begin at 1, not 0. Otherwise set to 1.

nReserved UINT Reserved, should be set to 0 for now.

lFormatType AT_LMODE Specifies the format to use for saving, and also the compression scheme if
applicable. See enumIGSaveFormats.

lpfnRasterGet LPFNIG_RASTER_GET Pointer to a function of type LPFNIG_RASTER_GET, which will be called for
each raster line of the image, before that line is saved.

lpfnDIBGet LPFNIG_DIB_GET Pointer to a function of type LPFNIG_DIB_GET, which will be called just
prior to saving the DIB header.

lpPrivateData LPVOID Pointer to a private data area which is passed to the above two callback
functions each time they are called.

lpActualSize LPAT_UINT Actual size of the image is returned in the variable referenced by this
pointer. Can be NULL.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

Indexed RGB - 1, 4, 8 bpp;
Grayscale - 9...16 bpp;
RGB - 24 bpp;
CMYK - 32 bpp.

Actual set of pixel formats supported by this function can be narrower, depending on the implementation of the
user-defined callback functions.

Remarks:

This function is only kept for backward compatibility reasons. Please use IG_save_mem_CB_ex instead.

ImageGear Professional v18 for Mac | 1167

ImageGear Professional v18 for Mac | 1168

1.3.1.2.31.11 IG_save_mem_CB_direct

This function has been deprecated and will be removed from the public API in a future release. Please use
IG_save_mem_CB_ex instead.

Declaration:

AT_ERRCOUNT ACCUAPI IG_save_mem_CB_direct(
 LPVOID lpImage,
 AT_UINT nImageSize,
 AT_UINT nBufferSize,
 UINT nPage,
 UINT nReserved,
 AT_LMODE lFormatType,
 LPFNIG_DIRECT_RASTER_GET lpfnRasterGet,
 LPFNIG_DIB_GET lpfnDIBGet,
 LPVOID lpPrivateData,
 LPAT_UINT lpActualSize
);

Arguments:

Name Type Description

lpImage LPVOID Not used.

nImageSize AT_UINT Not used.

nBufferSize AT_UINT Not used.

nPage UINT Not used.

nReserved UINT Not used.

lFormatType AT_LMODE Not used.

lpfnRasterGet LPFNIG_DIRECT_RASTER_GET Not used.

lpfnDIBGet LPFNIG_DIB_GET Not used.

lpPrivateData LPVOID Not used.

lpActualSize LPAT_UINT Not used.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

N/A

ImageGear Professional v18 for Mac | 1169

1.3.1.2.31.12 IG_save_mem_CB_ex

This function saves the image referenced by hIGear to a memory buffer using user-defined callback functions.

Declaration:

AT_ERRCOUNT ACCUAPI IG_save_mem_CB_ex(
 LPVOID lpImage,
 AT_UINT nImageSize,
 AT_UINT nBufferSize,
 UINT nPage,
 UINT nReserved,
 AT_LMODE lFormatType,
 LPFNIG_RASTER_GET lpfnRasterGet,
 LPFNIG_DIB_GET_EX lpfnDIBGetEx,
 LPVOID lpPrivateData,
 LPAT_UINT lpActualSize
);

Arguments:

Name Type Description

lpImage LPVOID Memory buffer to which to save the image.

nImageSize AT_UINT Size of the image if it already exists in the buffer, 0 otherwise.

nBufferSize AT_UINT Size of the memory buffer.

nPage UINT If saving to a multi-page file, set this to the page number to insert this
page as. Note that page numbers begin at 1, not 0. Otherwise set to 1.

nReserved UINT Reserved, should be set to 0 for now.

lFormatType AT_LMODE Specifies the format to use for saving, and also the compression scheme if
applicable. See enumIGSaveFormats.

lpfnRasterGet LPFNIG_RASTER_GET Pointer to a function of type LPFNIG_RASTER_GET, which will be called for
each raster line of the image, before that line is saved.

lpfnDIBGetEx LPFNIG_DIB_GET Pointer to a function of type LPFNIG_DIB_GET, which will be called just
prior to saving the DIB header.

lpPrivateData LPVOID Pointer to a private data area which is passed to the above two callback
functions each time they are called.

lpActualSize LPAT_UINT Actual size of the image is returned in the variable referenced by this
pointer. Can be NULL.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Actual set of pixel formats supported by this function can be narrower, depending on the implementation of the
user-defined callback functions.

Example:

AT_ERRCOUNT nErrcount; // Count of returned errors on stack
HIGEAR hIGear; //ImageGear handle
AT_BYTE* lpMemoryBlock; // Memory block to save the image to

ImageGear Professional v18 for Mac | 1170

AT_UINT nMaxSize; // Size of the memory block

nErrcount = IG_load_file("picture.bmp", &hIGear);
if(nErrcount == 0)
{
 // Get a required size of the memory block
 nErrcount = IG_save_file_size_calc (hIGear, IG_SAVE_BMP_UNCOMP, &nMaxSize);
 // Allocate a memory block
 lpMemoryBlock = (AT_BYTE*)malloc(nMaxSize);
 // Save image to the memory block in BMP format without compression:
 nErrcount = IG_save_mem_CB_ex(lpMemoryBlock, 0, nMaxSize, 1, 0, IG_SAVE_BMP_UNCOMP,
 MyRasterGetEx, MyDIBGetEx, &hIGear, NULL);
 // Destroy the image
 IG_image_delete(hIGear);
 // Some usage of the image in the memory
 //...
 free(lpMemoryBlock);
}

Remarks:

This function works similarly to IG_save_FD_CB_ex, except that the saving is made to a memory buffer rather than a
file.

In order for an ImageGear append page operation to work properly, the memory buffer must point to the very
beginning of the existing image, rather than to one of its pages, start of pixel data, or any custom wrapper preceding
the image.

ImageGear Professional v18 for Mac | 1171

1.3.1.2.31.13 IG_save_tag_CB_register

This function has been deprecated and will be removed from the public API in a future release. Please use
IG_fltr_metad_callback_set instead.

Declaration:

AT_ERRCOUNT ACCUAPI IG_save_tag_CB_register(
 LPFNIG_TAG_GET lpfnTagGet,
 LPFNIG_TAG_USER_GET lpfnTagUserGet,
 LPVOID lpPrivate
);

Arguments:

Name Type Description

lpfnTagGet LPFNIG_TAG_GET Pointer to callback function to be called during save operationS, prior to
saving each Tag.

lpfnTagUserGet LPFNIG_TAG_USER_GET Pointer to callback function to be called to obtain additional user Tags.

lpPrivate LPVOID Pointer to private data (passed to callback function).

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

LPFNIG_TAG_GET MyTagChanger = NULL; // To change existing tags
LPFNIG_TAG_USER_GET MyTiffTagger = NULL; // Can add new tags
char* lpPrivate = NULL; // Pointer to private area
IG_save_tag_CB_register (MyTagChanger, MyTiffTagger, (LPVOID) lpPrivate);

Remarks:

This function registers a callback function to be called for each Tag while saving a file.

A default value of the Tag is supplied, and can be changed in the callback function. See the description for callback
function type LPFNIG_TAG_GET.

The second callback function you supply is of type LPFNIG_TAG_USER_GET, and permits you to provide additional tags.
This can be used to add additional TIFF Tags when saving in TIFF format.

ImageGear Professional v18 for Mac | 1172

1.3.1.2.31.14 IG_save_thumbnail_set

This function allows you to save a thumbnail (miniature) version of the image together with the full image, if the
format that you are saving to supports thumbnails.

Declaration:

AT_ERRCOUNT ACCUAPI IG_save_thumbnail_set(
 AT_BOOL bSaveThumbnails,
 AT_DIMENSION nWidth,
 AT_DIMENSION nHeight
);

Arguments:

Name Type Description

bSaveThumbnails AT_BOOL Thumbnail Flag: TRUE = enable saving thumbnails; FALSE = disable saving
thumbnails.

nWidth AT_DIMENSION Width of thumbnail rectangle.

nHeight AT_DIMENSION Height of thumbnail rectangle.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

HIGEAR hIGear; // Will hold handle ret'd by IG_load_file */
AT_ERRCOUNT nErrcount; // Count of errs on stack upon ret from func */

nErrcount = IG_load_file("picture.tif", &hIGear);
if (nErrcount == 0)
{
 // To the file to be saved, add a thumbnail version of processed image
 IG_save_thumbnail_set(TRUE, 32, 32);
 nErrcount = IG_save_file (hIGear, "picture_new.jpg", IG_SAVE_JPG);
 // Destroy the image
 IG_image_delete(hIGear);
}

Remarks:

This function currently affects the following format filters: JPEG, PSB, PSD and Targa.

For Targa format, thumbnail cannot exceed 64 x 64 pixels. There is no limitation on thumbnail dimensions in JPEG-
JFIF, but the result thumbnail image size should not exceed approximately 65536 bytes. Targa and JPEG-JFIF
thumbnails are always 8-bit images. If the image data has a bit depth of greater than 8, ImageGear will automatically
reduce the number of bits when creating the thumbnail.

When you load an image using one of the IG_load_...() functions, you will not automatically load any thumbnail that
accompanies the main image. To load the thumbnail you must subsequently call one of the IG_load_thumbnail_...()
functions. Similarly, when calling any of the IG_save_...() functions, the thumbnail will not be saved unless you first
make a call to IG_save_thumbnail_set() function.

An alternative way to enable thumbnail saving is using filter control parameters. See descriptions of corresponding
format filters in ImageGear Supported File Formats Reference.

ImageGear Professional v18 for Mac | 1173

If you load a file that has a thumbnail, and save it without having thumbnail saving enabled via
IG_save_thumbnail_set() or via control parameters, only the main image will be saved to the destination file; no
thumbnail will be saved.

ImageGear Professional v18 for Mac | 1174

1.3.1.2.32 Thread Functions

This section provides information about the Thread group of functions.

IG_thread_data_ID_associate
IG_thread_data_ID_get
IG_thread_local_data_cleanup
IG_thread_image_lock
IG_thread_image_unlock

ImageGear Professional v18 for Mac | 1175

1.3.1.2.32.1 IG_thread_data_ID_associate

ImageGear allows you to have different groups of settings for providing mechanisms for associating a thread with a
particular group.

Declaration:

AT_ERRCOUNT ACCUAPI IG_thread_data_ID_associate(
 DWORD dwNewId,
 AT_BOOL bLeaveThreadStorage
);

Arguments:

Name Type Description

dwNewId DWORD ID of a new Data storage.

bLeaveThreadStorage AT_BOOL If TRUE, old data storage is left in memory even if unused by any of the
threads.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrCount = 0;
nErrCount = IG_comm_comp_attach("ART");
. . .
AfxBeginThread(IGProcThread1, NULL);
AfxBeginThread(IGProcThread2 , NULL);
UINT IGProcThread1(LPVOID lpData)
{
 AT_ERRCOUNT nErrCnt;
 nErrCnt = IG_thread_data_ID_associate(1, TRUE);
 nErrCnt = IG_load_file("picture1.bmp", &hIGear);
 . . .
 return 0;
}
UINT IGProcThread2(LPVOID lpData)
{
 AT_ERRCOUNT nErrCnt;
 nErrCnt = IG_thread_data_ID_associate(2, TRUE);
 nErrCnt = IG_load_file("picture2.bmp", &hIGear);
 . . .
 return 0;
}:

Remarks:

By default, each thread uses the global copy. Such a mechanism allows you to have ImageGear settings ("groups"
that are identified by specific IDs) that are customized for each thread. This API allows you to associate a thread with
different ImageGear settings. Allocation of new settings will result in the use of that group's default values if it doesn't
exist prior to the call. The old copy of the settings will be deleted unless it's (a) a global copy used by other threads,
or (b) bLeaveThreadStorage is TRUE.

The global group of ART settings cannot be used in multi-threaded application. You have to use this function to

ImageGear Professional v18 for Mac | 1176

associate a new local group of settings for each new thread.

The access to the same PDF document from multiple threads is not permitted because the multiple threads cannot
share Adobe PDF Library data types. PDF doc created/opened in the main thread can be only used from the main
thread.

ImageGear Professional v18 for Mac | 1177

1.3.1.2.32.2 IG_thread_data_ID_get

This function retrieves the ID of the group of settings used by a particular thread.

Declaration:

AT_ERRCOUNT EXPORT ACCUAPI IG_thread_data_ID_get(LPDWORD lpdwDataId);

Arguments:

Name Type Description

LpdwDataId LPDWORD A pointer to a variable for receiving information about group ID of settings currently
associated with a thread.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

nErrCnt = IG_thread_data_ID_get(&dwLocalId);

ImageGear Professional v18 for Mac | 1178

1.3.1.2.32.3 IG_thread_local_data_cleanup

This function destroys a group of settings with a specific ID if it's not in use by any threads.

Declaration:

AT_ERRCOUNT EXPORT ACCUAPI IG_thread_local_data_cleanup(DWORD dwClDataId);

Arguments:

Name Type Description

dwClDataId DWORD The group ID of settings to clean up.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

nErrCnt = IG_thread_local_data_cleanup(1);

ImageGear Professional v18 for Mac | 1179

1.3.1.2.32.4 IG_thread_image_lock

This function locks HIGEAR for a particular operation.

Declaration:

AT_ERRCOUNT EXPORT ACCUAPI IG_thread_image_lock(
 HIGEAR hIGear,
 AT_MODE nLockMode
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR image handle

nLockMode AT_MODE The lock mode (IG_THREAD_LOCK_READ or IG_THREAD_LOCK_WRITE) indicator. Several
threads can perform read lock concurrently, but only one thread is allowed to do write lock.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

hIGear = pDoc->hMainGear;
 nErrCnt = IG_thread_image_lock(pDoc->hMainGear, IG_THREAD_LOCK_WRITE);
 if (nErrCnt == 0)
 {
 // locked successfully
 IG_IP_rotate_multiple_90(hIGear, IG_ROTATE_90);
 IG_thread_image_unlock(pDoc->hMainGear, IG_THREAD_LOCK_WRITE);
...
 }

Remarks:

Two APIs (IG_thread_image_lock(), IG_thread_image_unlock()) are required for those rare situations in which two or
more threads-at least one of which is modifying or deleting an image-are simultaneously accessing the same HIGEAR.
For example, one thread can save HIGEAR to a JPEG file (read access to a HIGEAR), while another is performing rotation
in the asynchronous mode (write access to a HIGEAR). Thus, the "saving" thread would be required to call lock/unlock
with the read mode as a parameter, and the "rotation" thread would be required to call lock/unlock with the write mode
as a parameter.

Please note that all auxiliary HIGEARs associated with the main HIGEAR (such as Alpha channel, NRA mask, and
transparency mask) need to be locked separately.

ImageGear Professional v18 for Mac | 1180

1.3.1.2.32.5 IG_thread_image_unlock

This function unlocks the specified locked HIGEAR.

Declaration:

AT_ERRCOUNT EXPORT ACCUAPI IG_thread_image_unlock(
 HIGEAR hIGear,
 AT_MODE nLockMode
);

Arguments:

Name Type Description

hIGear HIGEAR ImageGear Image handle.

nLockMode AT_MODE The lock mode (IG_THREAD_LOCK_READ or IG_THREAD_LOCK_WRITE) indicator. Several
threads can perform read lock concurrently, but only one thread is allowed to do write lock.

Return Value:

Returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

hIGear = pDoc->hMainGear;
 nErrCnt = IG_thread_image_lock(pDoc->hMainGear, IG_THREAD_LOCK_WRITE);
 if (nErrCnt == 0)
 {
 // locked successfully
 IG_IP_rotate_multiple_90(hIGear, IG_ROTATE_90);
 IG_thread_image_unlock(pDoc->hMainGear, IG_THREAD_LOCK_WRITE);
...
 }

Remarks:

Two APIs (IG_thread_image_lock() and IG_thread_image_unlock()) are required for those situations in which two or
more threads-at least one of which is modifying or deleting an image-are simultaneously accessing the same HIGEAR.
For example, one thread can save HIGEAR to a JPEG file (read access to a HIGEAR), while another is performing rotation
in the asynchronous mode (write access to a HIGEAR). Thus the "saving" thread would be required to call lock/unlock
with the read mode as a parameter, and the "rotation" thread would be required to call lock/unlock with the write mode
as a parameter.

ImageGear Professional v18 for Mac | 1181

1.3.1.2.33 Utility Functions

This section provides information about the Utility group of functions.

IG_util_colorspace_alpha_count_get
IG_util_colorspace_color_count_get
IG_util_colorspace_contains_alpha
IG_util_colorspace_contains_extra
IG_util_colorspace_extra_count_get
IG_util_colorspace_is_premultiplied
IG_util_colorspace_is_valid
IG_util_colorspace_value_to_ids
IG_util_MMX_usage_get
IG_util_MMX_usage_set
IG_util_resolution_units_convert
IG_util_version_get

ImageGear Professional v18 for Mac | 1182

1.3.1.2.33.1 IG_util_colorspace_alpha_count_get

This function returns the number of alpha channels (0 or 1) in the specified color space.

Declaration:

AT_UINT ACCUAPI IG_util_colorspace_alpha_count_get(
 enumIGColorSpaceIDs colorSpace
);

Arguments:

Name Type Description

colorSpace enumIGColorSpaceIDs Color space ID.

Return Value:

The number of alpha channels.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

enumIGColorSpaceIDs colorSpace = IG_COLOR_SPACE_ID_RGBA;
AT_UINT nAlpha; /* Number of alpha channels */
nAlpha = IG_util_colorspace_alpha_count_get(colorSpace);
/* nAlpha is 1 */

ImageGear Professional v18 for Mac | 1183

1.3.1.2.33.2 IG_util_colorspace_color_count_get

This function returns the number of color channels in the specified color space.

Declaration:

AT_UINT ACCUAPI IG_util_colorspace_color_count_get(
 enumIGColorSpaceIDs colorSpace
);

Arguments:

Name Type Description

colorSpace enumIGColorSpaceIDs Color space ID.

Return Value:

The number of color channels.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

enumIGColorSpaceIDs colorSpace = IG_COLOR_SPACE_ID_RGBA;
AT_UINT nColor; /* Number of color channels */
nColor = IG_util_colorspace_color_count_get(colorSpace);
/* nColor is 3 */

Remarks:

Color channels are all image channels except alpha and extra channels.

ImageGear Professional v18 for Mac | 1184

1.3.1.2.33.3 IG_util_colorspace_contains_alpha

This function returns whether or not the color space contains an alpha channel (either pre-multiplied or not pre-
multiplied).

Declaration:

AT_BOOL ACCUAPI IG_util_colorspace_contains_alpha(
 enumIGColorSpaceIDs colorSpace
);

Arguments:

Name Type Description

colorSpace enumIGColorSpaceIDs Color space ID.

Return Value:

Returns TRUE if the color space contains an alpha channel; FALSE otherwise.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

enumIGColorSpaceIDs colorSpace = IG_COLOR_SPACE_ID_RGBA;
AT_BOOL bAlpha; /* Does the color space have alpha? */
bAlpha = IG_util_colorspace_contains_alpha(colorSpace);
/* bAlpha is TRUE */

ImageGear Professional v18 for Mac | 1185

1.3.1.2.33.4 IG_util_colorspace_contains_extra

This function returns whether or not the color space contains extra channels.

Declaration:

AT_BOOL ACCUAPI IG_util_colorspace_contains_extra(
 enumIGColorSpaceIDs colorSpace
);

Arguments:

Name Type Description

colorSpace enumIGColorSpaceIDs Color space ID.

Return Value:

Returns TRUE if the color space contains extra channels; FALSE otherwise.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

enumIGColorSpaceIDs colorSpace = IG_COLOR_SPACE_ID_RGBAEx;
AT_BOOL bExtra; /* Does the color space have extra channels? */
bExtra = IG_util_colorspace_contains_extra(colorSpace);
/* bExtra is TRUE */

ImageGear Professional v18 for Mac | 1186

1.3.1.2.33.5 IG_util_colorspace_extra_count_get

This function returns the number of extra channels in the specified color space.

Declaration:

AT_UINT ACCUAPI IG_util_colorspace_extra_count_get(
 enumIGColorSpaceIDs colorSpace,
 AT_UINT totalChannelCount
);

Arguments:

Name Type Description

colorSpace enumIGColorSpaceIDs Color space ID.

totalChannelCount AT_UINT Total number of channels in the color space.

Return Value:

Returns the number of extra channels.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

enumIGColorSpaceIDs colorSpace = IG_COLOR_SPACE_ID_RGBAEx;
AT_UINT nExtra; /* Number of extra channels */
nExtra = IG_util_colorspace_extra_count_get(colorSpace);
/* nExtra is 1 */

Remarks:

You must specify the total number of channels in the color space in order for this to be calculated.

ImageGear Professional v18 for Mac | 1187

1.3.1.2.33.6 IG_util_colorspace_is_premultiplied

This function checks whether the alpha channel in the color space is pre-multiplied.

Declaration:

AT_BOOL ACCUAPI IG_util_colorspace_is_premultiplied(
 enumIGColorSpaceIDs colorSpace
);

Arguments:

colorSpace enumIGColorSpaceIDs Color space ID.

Return Value:

Returns TRUE, if the alpha channel in the color space is pre-multiplied. Returns FALSE, if the alpha channel in the color
space is not pre-multiplied, or the color space does not contain an alpha channel.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

enumIGColorSpaceIDs colorSpace = IG_COLOR_SPACE_ID_RGBA;
AT_BOOL bPremult; /* Does color space have premult. alpha? */
bPremult = IG_util_colorspace_is_premultiplied(colorSpace);
/* bPremult is FALSE */

ImageGear Professional v18 for Mac | 1188

1.3.1.2.33.7 IG_util_colorspace_is_valid

This function checks whether ImageGear supports the color space identified by the color space constant.

Declaration:

AT_BOOL ACCUAPI IG_util_colorspace_is_valid(
 enumIGColorSpaceIDs colorSpace
);

Arguments:

Name Type Description

colorSpace enumIGColorSpaceIDs Color space ID.

Return Value:

Returns TRUE, if the color space is supported; FALSE otherwise.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

enumIGColorSpaceIDs colorSpace;
/* Invalid color space - can't have non-premult and premult */
colorSpace = IG_COLOR_SPACE_ID_RGBA | IG_COLOR_SPACE_ID_P;
AT_BOOL bValid; /* Is the color space valid? */
bValid = IG_util_colorspace_is_valid(colorSpace);
/* bValid is FALSE */

ImageGear Professional v18 for Mac | 1189

1.3.1.2.33.8 IG_util_colorspace_value_to_ids

This function maps from legacy ImageGear color space ID (enumColorSpaces) to current ImageGear color space ID
(enumIGColorSpaceIDs).

Declaration:

enumIGColorSpaceIDs ACCUAPI IG_util_colorspace_value_to_ids(
 enumColorSpaces colorSpace
);

Arguments:

Name Type Description

colorSpace enumColorSpaces Legacy ImageGear color space ID.

Return Value:

The current ImageGear color space ID that corresponds with the given legacy ImageGear color space ID.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

enumColorSpaces oldCS; /* Old color space ID */
enumIGColorSpaceIDs cs; /* New color space ID */
oldCS = IG_COLOR_SPACE_CMYK;
cs = IG_util_colorspace_value_to_ids(oldCS);
/* cs is now IG_COLOR_SPACE_ID_CMYK */
oldCS = IG_COLOR_SPACE_RGBA;
cs = IG_util_colorspace_value_to_ids(oldCS);
/* cs is now IG_COLOR_SPACE_ID_RGBA */

Remarks:

This function exists because the newer color space IDs are different and can store more information. See accucnst.h for
the definitions of these enumerations.

ImageGear Professional v18 for Mac | 1190

1.3.1.2.33.9 IG_util_MMX_usage_get

This function returns the current state of MMX optimization.

Declaration:

AT_ERRCOUNT LACCUAPI IG_util_MMX_usage_get (LPBOOL lpbMMXUsage);

Arguments:

Name Type Description

lpbMMXUsage LPBOOL A far pointer that returns a Boolean value indicating whether or not ImageGear is set to
optimize for MMX hardware.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_ERRCOUNT nErrcount;
BOOL bMMXon;
nErrcount = IG_util_MMX_usage_get(bMMXon);

Remarks:

If lpbMMXUsage returns TRUE it means that ImageGear is set to optimize for MMX technology if the computer contains
MMX hardware.

If this parameter is TRUE, but the MMX processor is not detected, then MMX optimization will not be used.

See also IG_util_MMX_usage_set() function.

ImageGear Professional v18 for Mac | 1191

1.3.1.2.33.10 IG_util_MMX_usage_set

This function tells ImageGear whether or not to optimize for MMX hardware.

Declaration:

AT_ERRCOUNT LACCUAPI IG_util_MMX_usage_set(BOOL bMMXUsage);

Arguments:

Name Type Description

bMMXUsage BOOL Set to TRUE to turn on MMX optimization; FALSE to turn off MMX optimization.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

The JPEG sample demonstrates loading images with or without MMX support.

Example:

AT_ERRCOUNT nErrcount;
bMMXusage = TRUE;
nErrcount = IG_util_MMX_usage_set(bMMXusage);

Remarks:

Set lpbMMXUsage to TRUE to instruct ImageGear to optimize for MMX technology if the computer contains MMX
hardware.

If you set bMMXUsage = TRUE, MMX technology will be used if it is detected. If it is not detected, no error will be
generated, and MMX optimization will not be used.

Currently, the JPEG Lossy Compression is the target area for optimization.

See also IG_util_MMX_usage_get() function.

ImageGear Professional v18 for Mac | 1192

1.3.1.2.33.11 IG_util_resolution_units_convert

This utility converts resolution data into new units.

Declaration:

AT_ERRCOUNT ACCUAPI IG_util_resolution_units_convert(
 AT_RESOLUTION* Resolution,
 enumIGResolutionUnits NewUnits
);

Arguments:

Name Type Description

Resolution AT_RESOLUTION* Pointer to structure containing resolution info.

NewUnits enumIGResolutionUnits New resolution units.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

// Initialize resolution as 300 DPI
AT_RESOLUTION Resolution = {300, 1, 300, 1, IG_RESOLUTION_INCHES};
// Convert into PPM
enumIGResolutionUnits NewUnits = IG_RESOLUTION_METERS;
IG_util_resolution_units_convert(&Resolution, NewUnits);

ImageGear Professional v18 for Mac | 1193

1.3.1.2.33.12 IG_util_version_get

This utility returns text information about the ImageGear version.

Declaration:

VOID ACCUAPI IG_util_version_get(
 [OUT] LPCHAR lpStr
);

Arguments:

Name Type Description

lpStr LPCHAR Pointer to an array of chars where necessary string is returned.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

CHAR szBuf[256];
 ...
IG_util_version_get(szBuf);
 ...

ImageGear Professional v18 for Mac | 1194

1.3.1.2.34 Vector Functions

This section provides information about the Vector group of functions.

IG_vector_data_get
IG_vector_data_to_dib
IG_vector_page_create

ImageGear Professional v18 for Mac | 1195

1.3.1.2.34.1 IG_vector_data_get

This function returns the vector data interface in the lplpVectorData parameter for the given HIGEAR handle.

Declaration:

AT_ERRCOUNT ACCUAPI IG_vector_data_get(
 HIGEAR hIGear,
 LPVOID* lplpVectorData
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of the image.

lplpVectorData LPVOID* Vector data.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

Indexed RGB – 8bpp;
RGB – 24 bpp.

Example:

/* C++ interface */
IIGVectorData* pVectorData;
AT_ERRCOUNT nErrCount;
nErrCount = IG_vector_data_get(hIGear, (LPVOID*)& pVectorData);
 if(!nErrCount && pVectorData)
 {
 /* Rotate camera to 90 degrees in XY plane */
 pVectorData-> CameraRotate(3.14159/4, IG_DIR_XY);
 }
/* C interface */
IIGVectorData* pVectorData;
AT_ERRCOUNT nErrCount;
nErrCount = IG_vector_data_get(hIGear, (LPVOID*)& pVectorData);
 if(!nErrCount && pVectorData)
 {
 /* Rotate camera to 90 degrees in XY plane */
 pVectorData-> lpVtbl->CameraRotate(pVectorData, 3.14159/4, IG_DIR_XY);
 }

Remarks:

The second parameter should be converted to the IIGVectorData pointer to become an accessible for the vector data
functionality.

This function can be used only for the PDF and PS vector formats with the ImageGear PDF Component attached
only.

ImageGear Professional v18 for Mac | 1196

1.3.1.2.34.2 IG_vector_data_to_dib

This function flushes the vector data to DIB.

Declaration:

AT_ERRCOUNT ACCUAPI IG_vector_data_to_dib(
 HIGEAR hIGearSource,
 LPHIGEAR lphIGearDest
);

Arguments:

Name Type Description

hIGearSource HIGEAR Source image handle.

lphIGearDest LPHIGEAR New image - non-zero pointer to HIGEAR that takes a raster HIGEAR.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

Indexed RGB – 8bpp;
RGB – 24 bpp.

Vector

Example:

HIGEAR rasterhigear;
IG_vector_data_to_dib(hIGear, &rasterhigear);
IG_image_delete(hIGear);
hIGear = rasterhigear;

Remarks:

The second parameter must be a non-zero pointer to HIGEAR that takes a raster HIGEAR. The source HIGEAR should be
deleted manually.

ImageGear Professional v18 for Mac | 1197

1.3.1.2.34.3 IG_vector_page_create

This function creates new vector page with empty vector data.

Declaration:

AT_ERRCOUNT ACCUAPI IG_vector_page_create(
 HIGDIBINFO hDIB,
 HIGEAR* lphIGear
);

Arguments:

Name Type Description

hDIB HIGDIBINFO HIGDIBINFO used to populate the properties of the to-be-created vector page.

lphIGear HIGEAR* A reference to the HIGEAR where the vector page will be created.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

To determine the number of errors currently on the error stack use IG_error_check. After fetching all error
information you need using IG_error_get, use IG_error_clear to clear the stack.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1198

1.3.1.2.35 Version Functions

This section provides information about the Version group of functions.

IG_version_compile_date
IG_version_numbers

ImageGear Professional v18 for Mac | 1199

1.3.1.2.35.1 IG_version_compile_date

This function can be called to obtain the date of compilation of the version of ImageGear you are using.

Declaration:

LPSTR ACCUAPI IG_version_compile_date (VOID);

Return Value:

Returns a FAR pointer to a string containing the compile date in the format given above. If there are no errors, the
return value is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

#include <string.h>
char MyCompileDateString[12]; /* Will receive "Mmm dd yyyy" */
strcpy (MyCompileDateString, IG_version_compile_date())

Remarks:

The return value is a FAR pointer to a string in the form "Mmm dd yyyy", such as "Jul 04 2010."

ImageGear Professional v18 for Mac | 1200

1.3.1.2.35.2 IG_version_numbers

This function returns three integers telling you the version of ImageGear that your application is currently using,
including the last update installed.

Declaration:

AT_ERRCOUNT ACCUAPI IG_version_numbers (
 LPINT lpVerMajor,
 LPINT lpVerMinor,
 LPINT lpVerUpdate
);

Arguments:

Name Type Description

lpVerMajor LPINT Far pointer to an INT variable in which will be stored the Major version number of the version of
ImageGear that you are using.

lpVerMinor LPINT Far pointer to an INT variable in which will be stored the Minor version number of the version of
ImageGear that you are using.

lpVerUpdate LPINT Far pointer to an INT variable in which will be stored the Update (bug fix) number, reflecting
any updates you have received and installed in this version of ImageGear.

Return Value:

Returns the number of ImageGear errors that occurred during this function call. If there are no errors, the return value
is IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

INT nVerMaj, nVerMin, nVerUpdate;
IG_version_numbers (&nVerMaj, &nVerMin, &VerUpdate);

Remarks:

The Major and Minor version numbers are, for example, the "10" and "0" respectively, for the first release of ImageGear
10.0 (ImageGear2000).

The above numbers appear in accucnst.h. Your application can compare the accucnst.h constants with the numbers
returned here to verify that the proper version of the ImageGear DLL is being loaded and used.

ImageGear Professional v18 for Mac | 1201

1.3.1.2.36 Warning Functions

This section provides information about the Warning group of functions.

IG_warning_check
IG_warning_clear
IG_warning_get
IG_warning_set

ImageGear Professional v18 for Mac | 1202

1.3.1.2.36.1 IG_warning_check

This function returns the number of warnings currently on the ImageGear error stack.

Declaration:

AT_ERRCOUNT ACCUAPI IG_warning_check();

Arguments:

None

Return Value:

Returns the number of warnings on the error stack. If errors occur during this function call, the function returns
(AT_ERRCOUNT)-1, but these errors are not appended onto the error stack.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

A call to this function has the same effect as a call to IG_err_error_check with nLevel equal to 1.

ImageGear Professional v18 for Mac | 1203

1.3.1.2.36.2 IG_warning_clear

This function clears all warnings from the error stack.

Declaration:

VOID ACCUAPI IG_warning_clear();

Arguments:

None

Return Value:

None

Supported Raster Image Formats:

This function does not process image pixels.

Example:

IG_warning_clear();

Remarks:

After calling this function, IG_warning_check will return zero.

ImageGear Professional v18 for Mac | 1204

1.3.1.2.36.3 IG_warning_get

This function retrieves an ImageGear warning Code and associated information from the error stack.

Declaration:

VOID ACCUAPI IG_warning_get(
 INT iErrorIndex,
 LPSTR szFileName,
 INT cbFileNameSize,
 LPINT lpiLineNumber,
 LPAT_ERRCODE lpiCode,
 LPAT_INT lplValue1,
 LPAT_INT lplValue2,
 LPSTR pszWarning,
 INT nWarningSize
);

Arguments:

Name Type Description

iErrorIndex INT Tells which warning to fetch from stack. A value of 0 means fetch the first
warning placed on the stack.

szFileName LPSTR Pointer indicating where to return the module name in which this error
occurred. If this pointer is NULL, the module name is not returned.

cbFileNameSize INT Number of bytes available in byte array pointed to by szFileName.

lpiLineNumber LPINT Pointer indicating where to return the line number at which the warning
occurred. If NULL, the line number is not returned.

lpiCode LPAT_ERRCODE Pointer indicating where to return the Warning Code. If NULL, the Warning
Code is not returned.

lplValue1 LPAT_INT Pointer indicating where to return a value stored as lValue1 when the warning
occurred. If NULL, this value is not returned. See Remarks below for
explanation of lValue1 and lValue2.

lplValue2 LPAT_INT Pointer indicating where to return a value stored as lValue2 when the warning
occurred. If NULL, this value is not returned. See Remarks below for
explanation of lValue1 and lValue2.

pszWarning LPSTR Pointer indicating where to return additional text description.

nWarningSize INT Size of the memory buffer pszWarning.

Return Value:

None

Supported Raster Image Formats:

This function does not process image pixels.

Example:

INT i; // Will hold Loop Index and Error Index
INT iLineNumber; // Will hold returned Line Number
BYTE szFileName[30]; // Will hold ret'd module name, up to 29 chars
INT cbFileNameSize; // Will hold size of szFileName array
AT_INT lValue1, lValue2; // Will hold returned lValue1, lValue2
AT_ERRCODE iWarnCode; // Will hold returned warning code
CHAR szWaringMessage[256]; // Will hold returned warning message
AT_ERRCOUNT nWarnCount; // Will hold count of errors on error stack

ImageGear Professional v18 for Mac | 1205

TCHAR szBuf[60]; // Will hold zero-terminated string returned by wsprintf()
below
cbFileNameSize = 30; // Size of module-name array
nWarnCount = IG_warning_check(); // Get number of errors on stack
for (i = 0; i < nWarnCount; i++)
{
 // Get Module Name, Line Number, Error Code, and lValue1, lValue2:
 IG_warning_get (i, (LPSTR) &szFileName,
 cbFileNameSize, &iLineNumber, (LPAT_ERRCODE)&iWarnCode,
 (LPAT_INT) &lValue1, (LPAT_INT) &lValue2,
 szWaringMessage, sizeof(szWaringMessage));
 // Format warning message in szBuf:
 wsprintf (szBuf, _T("Earning %d in Module %s at Line %d"), iWarnCode, szFileName,
iLineNumber);
 // Display warning message in a Message Box, with heading "Warning" :
 MessageBox (NULL, szBuf, _T("Warning"), MB_OK);
}
IG_warning_clear(); // Done getting errors, clear the error stack

Remarks:

Set iErrorIndex to indicate which warning to get. iErrorIndex = 0 means the warning added to the stack first. The
other arguments (except cbFileNameSize) are pointers telling this function where to return the retrieved information
to you. This information consists of the Warning Code, the module name and line number at which the error occurred,
and two additional values (lValue1 and lValue2) that may provide additional information about the warning and a
buffer for the additional text information. A size of the buffer is passed in the last parameter. See the Appendix for a
list of all ImageGear Error Codes and the significance of lValue1, lValue2 where applicable.

To determine the number of warnings currently on the error stack use IG_warning_check. After fetching all error
information you need using IG_warning_get, use IG_warning_clear to clear the stack.

A call to this function has the same effect as a call to IG_err_error_get with nLevel equal to 1. If the user has defined
his own warning levels (greater than 1), he should use IG_err_error_get function instead.

ImageGear Professional v18 for Mac | 1206

1.3.1.2.36.4 IG_warning_set

This function places an ImageGear warning onto the error stack.

Declaration:

AT_ERRCODE ACCUAPI IG_warning_set(
 const LPSTR szFileName,
 INT iLineNumber,
 AT_ERRCODE iCode,
 AT_INT lValue1,
 AT_INT lValue2,
 const LPSTR szWarning
);

Arguments:

Name Type Description

szFileName const LPSTR Pointer to a string that supplies the name of the module from which the warning was
generated. It is recommended that you use the _FILE_ constant in this field.

iLineNumber INT An integer telling ImageGear from which line the warning was set. It is recommended
that you use the _LINE_ constant in this field.

iCode AT_ERRCODE An integer value of type AT_ERRCODE. Set this to the code number of the warning that
you wish to place on the error stack.

lValue1 AT_INT The first argument that supplies any supporting information about the warning. Your
application might use this value to decide what to do after setting a particular kind of
warning.

lValue2 AT_INT The second argument that supplies any supporting information about the warning. Your
application might use this value to decide what to do after setting a particular kind of
warning.

szWarning const LPSTR Additional text description of the warning. It can be NULL if it is not available.

Return Value:

Returns the code of the ImageGear error that occurred during this function call. A value of zero means no errors have
occurred. Errors that occurred during this function call are not appended onto the error stack.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

static const AT_ERRCODE MYWARNING = (IGE_LAST_ERROR_NUMBER - 2);
AT_ERRCOUNT nErrcount = IG_warning_set(__FILE__, __LINE__, MYWARNING, 0, 0, "Warning
message");

Remarks:

If you are setting a warning code that you have defined yourself, you must make sure that it has a value less than
ImageGear's IGE_LAST_ERROR_NUMBER. As the defined value of IGE_LAST_ERROR_NUMBER may change in the future,
you should define your warning codes relatively to IGE_LAST_ERROR_NUMBER, as demonstrated in the example, rather
than use literal values.

ImageGear Professional v18 for Mac | 1207

1.3.1.3 Core Component Callback Functions Reference

This section provides information about the ImageGear Core Component callback functions, which are organized
alphabetically.

LPAFT_IG_ICC_GET_CB
LPAFT_IG_METAD_ITEM_ADD_CB
LPAFT_IG_METAD_ITEM_GET_CB
LPAFT_IG_METAD_ITEM_SET_CB
LPFNIG_BATCH_BEFORE_OPEN
LPFNIG_BATCH_BEFORE_SAVE
LPFNIG_DIB_CREATE
LPFNIG_DIB_CREATE_EX
LPFNIG_DIB_GET
LPFNIG_DIB_GET_EX
LPFNIG_DIRECT_RASTER_GET
LPFNIG_ERRMNGR_ADD
LPFNIG_ERRMNGR_CLEAR
LPFNIG_ERRSTACK_ADD
LPFNIG_ERRSTACK_CLEAR
LPFNIG_IMAGESPOOLED
LPFNIG_LOAD_DISP
LPFNIG_MEM_ALLOC
LPFNIG_MEM_FREE
LPFNIG_MEM_REALLOC
LPFNIG_MPCB_UPDATE
LPFNIG_RASTER_PLANE_SET
LPFNIG_RASTER_GET
LPFNIG_RASTER_SET
LPFNIG_READ
LPFNIG_SEEK
LPFNIG_SIZE_CHANGE
LPFNIG_STATUS_BAR
LPFNIG_TAG_GET
LPFNIG_TAG_SET
LPFNIG_TAG_USER_GET
LPFNIG_WRITE

ImageGear Professional v18 for Mac | 1208

1.3.1.3.1 LPAFT_IG_ICC_GET_CB

This callback function is called every time the format filter encounters an ICC profile in the loaded image.

Declaration:

typedef VOID (LPACCUAPI LPAFT_IG_ICC_GET_CB)(
 AT_VOID* lpPrivate,
 AT_BYTE* lpICCData,
 AT_INT DataLength
);

Arguments:

Name Type Description

lpPrivate AT_VOID* Private callback data.

lpICCData AT_BYTE* ICC profile data, allocated by ImageGear.

DataLength AT_INT Length of ICC profile data, in bytes.

Return Value:

N/A

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The ICC profile is provided in the standard ICC format as a byte array. ImageGear allocates the buffer for ICC profile
data so that the application does not delete it. If the application needs to use the ICC profile after the callback call, it
copies it to its own buffer.

Use IG_fltr_ICC_callback_set() to register this callback function.

Use IG_fltr_ICC_callback_get() function to retrieve your ICC callback settings.

ImageGear Professional v18 for Mac | 1209

1.3.1.3.2 LPAFT_IG_METAD_ITEM_ADD_CB

This callback function is used to insert new items during a WRITE filter operation.

Declaration:

typedef AT_BOOL (LPACCUAPI LPAFT_IG_METAD_ITEM_ADD_CB)(
 LPVOID lpPrivate,
 AT_MODE FormatID,
 LPCHAR ItemName,
 DWORD ItemID,
 AT_MODE ItemType,
 LPVOID ItemValue,
 AT_MODE ValueType,
 DWORD ValueLength,
 AT_BOOL ReadOnlyValue
);

Arguments:

Name Type Description

lpPrivate LPVOID Private callback data.

FormatID AT_MODE The ID of the format filter that will send or get the item (IG_FORMAT_... constant).

ItemName LPCHAR Provides the name of the new item.

ItemID DWORD Numerical ID of the item.

ItemType AT_MODE Specifies the type of the item and reflects the status of the given record. Possible
values are:

IG_METAD_VALUE_ITEM - this value specifies that the current item is a value of
the simplest type, and the field Value contains the actual value of the item, and
ValueType contains the identifier of the type of this item. ReadOnly can be either
TRUE (readonly) or FALSE (read/ write). The Name and/or Id contains textual and
numerical identification of the item.
IG_METAD_LEVEL_START - this value specifies that the current item opens a
sublevel of items, and all next items up to the corresponding item with
a LEVEL_END value belong to this sublevel.
IG_METAD_LEVEL_END - this value closes the current sublevel and indicates that
the next item belongs to a higher level.

ItemValue LPVOID Value of the new item. If ItemType = IG_METAD_VALUE_ITEM then ItemValue
contains the actual value of the item of type specified by the ValueType parameter.
The ItemValue is stored as an array of elements where each element contains values
of type ValueType. Length of array is provided in parameter ValueLength.

ValueType AT_MODE If ItemType = IG_METAD_VALUE_ITEM then contains actual type of value stored in
ItemValue pointer. See the Non-Image Data Format section for exact list of possible
types.

ValueLength DWORD Length of array in ItemValue.

ReadOnlyValue AT_BOOL This parameter is not used.

Return Value:

Returns TRUE if a new value is added to item data; FALSE if it is not. A return of TRUE will cause the call of the Add
callback function one more time.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

ImageGear Professional v18 for Mac | 1210

See example for IG_fltr_metad_callback_set() function.

Remarks:

If the return value is TRUE then a new value is added; and if FALSE a new value is not added. ImageGear will be
calling Add callback function while it returns TRUE, so the callback function should return TRUE if the provision of
additional items is it not finished yet, and FALSE if it is finished. All parameters except of lpPrivate are used to get
information about the new value.

ImageGear assumes that all tags passed via LPAFT_IG_METAD_ITEM_ADD_CB callback are writable, except for the
tags that were sent by LPAFT_IG_METAD_ITEM_SET_CB, marked as read-only.

See also IG_fltr_metad_callback_get(), IG_fltr_metad_callback_set(), LPAFT_IG_METAD_ITEM_GET_CB,
LPAFT_IG_METAD_ITEM_SET_CB functions and the section Using Filter Callback Functions to Process Non-Image
Data.

ImageGear Professional v18 for Mac | 1211

1.3.1.3.3 LPAFT_IG_METAD_ITEM_GET_CB

This callback function is used to get information about metadata items received during a READ filter operation.

Declaration:

typedef VOID (LPACCUAPI LPAFT_IG_METAD_ITEM_GET_CB)(
 LPVOID lpPrivate,
 AT_MODE FormatID,
 LPCHAR ItemName,
 DWORD ItemID,
 AT_MODE ItemType,
 LPVOID ItemValue,
 AT_MODE ValueType,
 DWORD ValueLength,
 AT_BOOL ReadOnlyValue
);

Arguments:

Name Type Description

lpPrivate LPVOID Private callback data.

FormatID AT_MODE The ID of the format filter that will send or get the item (IG_FORMAT_... constant).

ItemName LPCHAR Name of the item.

ItemID DWORD Numerical ID of the item.

ItemType AT_MODE Specifies the type of the item and reflects the status of the given record. Possible
values are:

IG_METAD_VALUE_ITEM - this value specifies that the current item is a value of
the simplest type, and the field Value contains the actual value of the item, and
ValueType contains the identifier of the type of this item. ReadOnly can be either
TRUE (read-only) or FALSE (read/write). Name and/or Id contains textual and
numerical identification of item.
IG_METAD_LEVEL_START - this value specifies that the current item opens a
sublevel of items, and all next items up to corresponding item with a
IG_METAD_LEVEL_END value belong to this sublevel.
IG_METAD_LEVEL_END - this value closes the current sublevel and indicates that
the next item belongs to a higher level.

ItemValue LPVOID If ItemType = IG_METAD_VALUE_ITEM then ItemValue contains the actual value of
the item of the type specified by the ValueType parameter. Value is stored as array of
elements where each element contains values of type ValueType. Length of array is
provided in parameter ValueLength.

ValueType AT_MODE Type of element stored in array ItemValue.

ValueLength DWORD Length of array of elements stored in ItemValue.

ReadOnlyValue AT_BOOL If this argument is TRUE, then the actual value of the item cannot be changed by the
callback function, and the value is passed for informational purposes only. If FALSE
then the value of the item can be changed, and the application can provide a new
value through the next three parameters.

Return Value:

None

Supported Raster Image Formats:

This function does not process image pixels.

Example:

ImageGear Professional v18 for Mac | 1212

See example for IG_fltr_metad_callback_set() function.

Remarks:

The ReadOnlyValue parameter is used to inform the application that the value of a given item is for information only
and cannot be changed during future operations.

See also IG_fltr_metad_callback_get(), IG_fltr_metad_callback_set(), LPAFT_IG_METAD_ITEM_ADD_CB,
LPAFT_IG_METAD_ITEM_SET_CB functions and the section Using Filter Callback Functions to Process Non-Image
Data.

ImageGear Professional v18 for Mac | 1213

1.3.1.3.4 LPAFT_IG_METAD_ITEM_SET_CB

If this callback function is defined in the format filter, then during a filter WRITE operation it is called every time some
data is ready to be written.

Declaration:

typedef AT_BOOL (LPACCUAPI LPAFT_IG_METAD_ITEM_SET_CB)(
 LPVOID lpPrivate,
 AT_MODE FormatID,
 LPCHAR ItemName,
 DWORD ItemID,
 AT_MODE ItemType,
 LPVOID ItemValue,
 AT_MODE ValueType,
 DWORD ValueLength,
 AT_BOOL ReadOnlyValue,
 LPVOID* NewItemValue,
 LPAT_MODE* NewValueType,
 LPDWORD* NewValueLength
);

Arguments:

Name Type Description

lpPrivate LPVOID Private callback data associated with the metadata callback function.

FormatID AT_MODE The ID of the format filter that will send or get the item (IG_FORMAT_...
constant).

ItemName LPCHAR Text name of the item.

ItemID DWORD Numerical ID of the item.

ItemType AT_MODE Specifies the type of the item and reflects the status of a given record. Possible
values are:

IG_METAD_VALUE_ITEM - this value specifies that the current item is a value
of the simplest type, and the field Value contains the actual value of the item,
and the ValueType contains the identifier of the type of this item. ReadOnly
can be either TRUE (read-only) or FALSE (read/write). The Name and/or Id
contains the textual and numerical identification of item.
IG_METAD_LEVEL_START - this value specifies that the current item opens a
sublevel of items, and all the next items up to the corresponding item with a
LEVEL_END value belong to this sublevel.
IG_METAD_LEVEL_END - this value closes the current sublevel and indicates
that the next item belongs to a higher level.

ItemValue LPVOID If ItemType = IG_METAD_VALUE_ITEM then this argument contains the actual
value of the item of the type specified by the ValueType parameter. Value is
stored as an array of elements where each element contains values of type
ValueType. The Length of array is provided in the parameter ValueLength.

ValueType AT_MODE If ItemType = IG_METAD_VALUE_ITEM then ValueType contains the actual type
of value stored in the ItemValue pointer. See Non-Image Data Format for the
exact list of possible types.

ValueLength DWORD If ItemType = IG_METAD_VALUE_ITEM then ValueLength contains the number
of elements in array ValueItem of the type specified by ValueType.

ReadOnlyValue AT_BOOL If this argument is TRUE, then the actual value of the item cannot be changed by
the callback function, and the value is passed for informational purposes only. If
FALSE, then the value of item can be changed, and the application can provide
the new value through the next three parameters.

NewItemValue LPVOID* Pointer to the new item value that the application may request to set as a
replacement of the data passed in the ItemValue parameter. If it is not NULL,

ImageGear Professional v18 for Mac | 1214

then the next two parameters contain the type of the value and the length of the
array of elements.

NewValueType LPAT_MODE* Specifies the type of the new item value passed through the NewItemValue
parameter.

NewValueLength LPDWORD* Specifies the size of the array passed through the NewItemValue pointer.

Return Value:

Returns TRUE if ImageGear should overwrite the default item data with your data, or FALSE if ImageGear should
ignore your data.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

See example for IG_fltr_metad_callback_set() function.

Remarks:

The application can change/provide a new value for the given item using NewItemValue, NewValueType, and
NewValueLength parameters. This new value is to be used as a replacement for the default data passed through the
ItemValue parameter if ReadOnlyValue is FALSE. The callback function should return TRUE if the callback function has
changed value, and FALSE if it has not changed.

See also IG_fltr_metad_callback_get(), IG_fltr_metad_callback_set(), LPAFT_IG_METAD_ITEM_ADD_CB,
LPAFT_IG_METAD_ITEM_GET_CB functions and the section Using Filter Callback Functions to Process Non-Image
Data.

ImageGear Professional v18 for Mac | 1215

1.3.1.3.5 LPFNIG_BATCH_BEFORE_OPEN

LPFNIG_BATCH_BEFORE_OPEN is called before a file is opened, allowing you to get the file name and correct some
settings.

Declaration:

typedef AT_BOOL (LPACCUAPI LPFNIG_BATCH_BEFORE_OPEN)(
 LPVOID lpPrivate,
 const LPSTR lpszFileName
);

Arguments:

Name Type Description

lpPrivate LPVOID A far pointer to private data area.

lpszFileName const LPSTR The name of file to be opened.

Return Value:

Reserved (must always be TRUE).

Supported Raster Image Formats:

This function does not process image pixels.

Example:

//Dll
//User's BatchBeforeOpen CB
AT_BOOL MyBatchBeforeOpen(
 LPVOID lpPrivate, /* Private data passed in*/
 const LPSTR lpszFileName /* File name to be open*/
)
{
// Set PDF control name if the file is PDF
 AT_MODE nFileType;
 IG_info_get(lpszFileName, 1, NULL, nFileType, NULL, NULL);
 if(nFileType == IG_FORMAT_PDF)
 {
 IG_fltr_ctrl_set(IG_FORMAT_PDF, "FILENAME", (LPVOID) lpszFileName,
sizeof(lpszFileName));
 }
 return TRUE;
}
// Register BatchBeforeOpen CB
IG_batch_CB_register(MyBatchBeforeOpen, IG_BATCHCB_BEFORE_OPEN, NULL);

Remarks:

For example, some multimedia formats and PDF file names require you to get the file name before page conversion.

ImageGear Professional v18 for Mac | 1216

1.3.1.3.6 LPFNIG_BATCH_BEFORE_SAVE

LPFNIG_BATCH_BEFORE_SAVE is called before an image file is saved, allowing you to correct and image before saving.

Declaration:

typedef AT_BOOL (LPACCUAPI LPFNIG_BATCH_BEFORE_SAVE)(
 LPVOID lpPrivate,
 HIGEAR hIGear,
 UINT nPageNumber
);

Arguments:

Name Type Description

lpPrivate LPVOID Far pointer to private data area.

hIGear HIGEAR HIGEAR handle to the image.

nPageNumber UINT This variable is set to the number of pages to be saved.

Return Value:

Reserved (must always be TRUE).

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

// DLL
// User's BatchBeforeSave CB
AT_BOOL MyBatchBeforeSave(
 LPVOID lpPrivate, /* Private data passed in */
 HIGEAR hIGear, /* ImageGear image handle */
 UINT nPageNumber /* Number of page to be saved */
)
{
 // Convert bpp to 1 before saving
 UINT bits_per_pixel;
 IG_image_dimensions_get(hIGear, NULL, NULL, & bits_per_pixel);
 If(bits_per_pixel != 1)
 {
 IG_IP_color_reduce_bayer(hIGear, 1, NULL);
}
 return TRUE;
}
// Register BatchBeforeSave CB
IG_batch_CB_register(MyBatchBeforeSave, IG_BATCHCB_BEFORE_SAVE, this);

Remarks:

For example, you might want to rotate an image before saving.

Multipage documents can be saved as a set of different files if the flag IG_BATCH_MP_TO_MP is not specified.

ImageGear Professional v18 for Mac | 1217

1.3.1.3.7 LPFNIG_DIB_CREATE

This is one of the two types of callback functions supplied in calls to IG_load_FD_CB() and IG_load_mem_CB().

Declaration:

typedef AT_ERRCOUNT (ACCUAPI LPFNIG_DIB_CREATE) (
 LPVOID lpPrivate,
 const LPAT_DIB lpDIB,
 const LPAT_RGBQUAD lpRGB
);

Arguments:

Name Type Description

lpPrivate LPVOID Far pointer to private data area.

lpDIB const LPAT_DIB Far pointer to start of an AT_DIB DIB header (that is, a BITMAPINFOHEADER) struct
created by ImageGear.

lpRGB const
LPAT_RGBQUAD

Far pointer to the first of the AT_RGBQUAD structs constituting the palette in the DIB.
Will be NULL if the image is 24-bit.

Return Value:

Returns an error count.

Supported Raster Image Formats:

Indexed RGB – 1…8 bpp;
Grayscale – 9…16 bpp;
RGB – 24 bpp;
CMYK – 32 bpp.

This callback function is only kept for backward compatibility reasons. Please use IG_load_FD_CB_ex /
IG_load_mem_CB_ex and LPFNIG_DIB_CREATE_EX instead.

Example:

BOOL ACCUAPI MyDIB_Create (LPVOID lpPrivate, LPAT_DIB lpDIB, LPAT_RGBQUAD lpRGB)
{
/* Can allocate memory, create a DIB header (AT_DIB) and palette. Later, an
LPFNIG_RASTER_SET function can create the image bitmap. */
 ...
return IG_error_check();
}

Remarks:

This callback function is called by ImageGear to provide your application the information it needs to create its own DIB
header and palette.

On entry to this function lpDIB points to an AT_DIB struct which ImageGear has created upon reading the file's header.
You can use information from this AT_DIB struct to create your own DIB header, but you should not alter the information
at lpDIB.

Similarly, lpRGB points to the palette as obtained from the file. (lpRGB = NULL if no palette.) You can copy the palette,
or create your own for the DIB you are creating.

If you need to terminate the load, you can place an error on the stack yourself, using IG_error_set(). See the description
for that function.

ImageGear Professional v18 for Mac | 1218

1.3.1.3.8 LPFNIG_DIB_CREATE_EX

This callback function is called after the image header has been read.

Declaration:

typedef AT_ERRCOUNT (LPACCUAPI LPFNIG_DIB_CREATE_EX)(
 LPVOID lpPrivate,
 HIGDIBINFO hDIB
);

Arguments:

Name Type Description

lpPrivate LPVOID Far pointer to private data area.

hDIB HIGDIBINFO Extended DIB header.

Return Value:

Returns an error count.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Remarks:

It passes image information, including palette, through HIGDIBINFO structure.

hDIB object is owned by ImageGear. The application shall not use it after exiting from the callback function, and shall
not delete it.

ImageGear Professional v18 for Mac | 1219

1.3.1.3.9 LPFNIG_DIB_GET

This is one of the two types of callback functions supplied in calls to IG_save_FD_CB_ex()and IG_save_mem_CB_ex().

Declaration:

typedef AT_ERRCOUNT (ACCUAPI LPFNIG_DIB_GET) (
 LPVOID lpPrivate,
 LPAT_DIB lpDIB,
 LPAT_RGBQUAD lpRGB
);

Arguments:

Name Type Description

lpPrivate LPVOID Far pointer to private data area.

lpDIB LPAT_DIB Far pointer to start of the DIB header, that is the AT_DIB (BITMAPINFOHEADER) struct
that begins the DIB.

lpRGB LPAT_RGBQUAD Far pointer to first of the AT_RGBQUAD structs constituting the palette in the DIB. Will
be NULL if it is a 24-bit image.

Return Value:

Returns an error count.

Supported Raster Image Formats:

Indexed RGB – 1…8 bpp;
Grayscale – 9…16 bpp;
RGB – 24 bpp;
CMYK – 32 bpp.

This callback function is only kept for backward compatibility reasons. Please use IG_save_FD_CB_ex /
IG_save_mem_CB_ex and LPFNIG_DIB_GET_EX instead.

Example:

BOOL ACCUAPI MyDIBGet (LPVOID lpPrivate, LPAT_DIB lpDIB, LPAT_RGBQUAD lpPalette)
{
/* Modify the DIB header fields at *lpDIB as desired, and store a
 palette at *lpPalette */
 ...
return IG_error_check();
}

Remarks:

This callback function is called by ImageGear prior to saving the DIB header and palette.

On entry to this function, lpDIB points to the image's DIB header (AT_DIB or BITMAPINFOHEADER struct), and lpRGB
points to its DIB palette. This function is responsible for setting the DIB header fields (width, height, bits per pixel,
compression, etc.) and for assuring the palette desired if it is not a 24-bit image.

If you need to terminate the load, you can place an error on the stack yourself, using IG_error_set(). See the description
for that function.

ImageGear Professional v18 for Mac | 1220

1.3.1.3.10 LPFNIG_DIB_GET_EX

This callback function is called before writing the image header.

Declaration:

typedef AT_ERRCOUNT (LPACCUAPI LPFNIG_DIB_GET_EX)(
 LPVOID lpPrivate,
 HIGDIBINFO* lphDIB
);

Arguments:

Name Type Description

lpPrivate LPVOID Far pointer to private data area.

lphDIB HIGDIBINFO* Extended DIB header.

Return Value:

Returns an error count.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Remarks:

The application shall create a new HIGDIBINFO object containing information about the image, and pass through the
lphDIB parameter. ImageGear owns the HIGDIBINFO object after exiting from the callback, and eventually deletes it. If
the image being saved has a palette, it should be passed with HIGDIBINFO as well.

ImageGear Professional v18 for Mac | 1221

1.3.1.3.11 LPFNIG_DIRECT_RASTER_GET

This function has been deprecated and will be removed from the public API in a future release.

Declaration:

typedef LPAT_PIXEL (LPACCUAPI LPFNIG_DIRECT_RASTER_GET)(
 LPVOID lpPrivate,
 AT_PIXPOS cyPos,
 DWORD cRasterSize,
 LPAT_ERRCODE lpnErrCode
);

Arguments:

Name Type Description

lpPrivate LPVOID Not used.

cyPos AT_PIXPOS Not used.

cRasterSize DWORD Not used.

lpnErrCode LPAT_ERRCODE Not used.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1222

1.3.1.3.12 LPFNIG_ERRMNGR_ADD

This callback is called each time a new error record is added by any thread.

Declaration:

typedef VOID (LPACCUAPI LPFNIG_ERRMNGR_ADD)(
 LPVOID lpPrivate,
 DWORD dwThreadID,
 UINT nRecord,
 INT iLineNumber,
 AT_ERRCODE iCode,
 UINT nLevel,
 AT_INT lValue1,
 AT_INT lValue2,
 LPCHAR lpFileName,
 LPCHAR lpExtratext
);

Arguments:

Name Type Description

lpPrivate LPVOID Private data passed.

dwThreadID DWORD Thread identifier where error happened.

nRecord UINT Index of this record in the stack.

iLineNumber INT Line number where a problem occurred.

iCode AT_ERRCODE Error code.

nLevel UINT Level of the error.

lValue1 AT_INT Specific value identifying the reason for an error.

lValue2 AT_INT Specific value identifying the reason for an error.

lpFileName LPCHAR Pointer to a string holding a filename or NULL if not available.

lpExtratext LPCHAR Pointer to a string holding extra info or NULL if not available.

Return Value:

None

Supported Raster Image Formats:

This function does not process image pixels.

Example:

VOID ACCUAPI ErrGlAddCB(
 LPVOID lpPrivate, /* Private data passed in. */
 DWORD dwThreadID, /* Thread identifier where record added. */
 UINT nRecord, /* index of this record in the stack. */
 INT iLineNumber, /* line number where problen occurred. */
 AT_ERRCODE iCode, /* error code. */
 UINT nLevel, /* level of the error. */
 LONG lValue1,
 LONG lValue2,
 LPCHAR lpFileName, /* filename str ofr NULL if not present. */
 LPCHAR lpExtratext /* extra text info about error. */
);

ImageGear Professional v18 for Mac | 1223

{
 char szOutput[1024];
 sprintf(szOutput, "Global CallBack - new error record
added:\nThread=%i\nRecord=%i\nLine=%i\nCode=%i\nLevel=%i\nValue1=%i; Value2=%i,\nFile
Name: %s\nExtra Text: %s",
 dwThreadID, nRecord, iLineNumber, iCode, nLevel, lValue1, lValue2,
lpFileName,
lpExtratext);
 //AfxMessageBox(szOutput);
 ::MessageBox(NULL, szOutput, "THREADS", MB_OK);
}

ImageGear Professional v18 for Mac | 1224

1.3.1.3.13 LPFNIG_ERRMNGR_CLEAR

This callback is called each time an error stack is cleared by any thread.

Declaration:

typedef VOID (LPACCUAPI LPFNIG_ERRMNGR_CLEAR)(
 LPVOID lpPrivate,
 DWORD dwThreadID,
 UINT nRecords
);

Arguments:

Name Type Description

lpPrivate LPVOID Private data passed.

dwThreadID DWORD Thread identifier where the stack cleared.

nRecords UINT Number of records cleared from the stack starting from index 0.

Return Value:

None

Supported Raster Image Formats:

This function does not process image pixels.

Example:

VOID ACCUAPI ErrGlClearCB(
LPVOID lpPrivate, /* Private data passed in. */
DWORD dwThreadID, /* Thread identifier where stack cleared. */
UINT nRecords /* Number of records cleared from the stack starting from 0 index. */
)
{
char szOutput[1024];
sprintf(szOutput, "Global CallBack - error stack cleared\nThread:%i, Records cleared:%i",
dwThreadID, nRecords);
 //AfxMessageBox(szOutput);
 ::MessageBox(NULL, szOutput, "THREADS", MB_OK);
}

Remarks:

Since each thread has its own independent error stack clearing, a stack by one thread does not cause other stacks to
clear.

ImageGear Professional v18 for Mac | 1225

1.3.1.3.14 LPFNIG_ERRSTACK_ADD

This callback function is called each time a thread that registered this callback (using IG_err_callback_set() function)
adds a new record to the error stack.

Declaration:

typedef VOID (LPACCUAPI LPFNIG_ERRSTACK_ADD)(
 LPVOID lpPrivate,
 UINT nRecord,
 INT iLineNumber,
 AT_ERRCODE iCode,
 UINT nLevel,
 AT_INT lValue1,
 AT_INT lValue2,
 LPCHAR lpFileName,
 LPCHAR lpExtratext
);

Arguments:

Name Type Description

lpPrivate LPVOID Private data passed in when you register a callback.

nRecord UINT Index of this record in the stack.

iLineNumber INT Line number where the problem has occurred.

iCode AT_ERRCODE Error code.

nLevel UINT Level of the error.

lValue1 AT_INT Specific value identifying the reason for the error.

lValue2 AT_INT Specific value identifying the reason for the error.

lpFileName LPCHAR Pointer to a string holding a filename or NULL if not available.

lpExtratext LPCHAR Pointer to a string holding additional information, or NULL if not available.

Return Value:

None

Supported Raster Image Formats:

This function does not process image pixels.

Example:

VOID ACCUAPI LocThErrAddCB(
LPVOID lpPrivate, /* Private data passed in. */
UINT nRecord, /* index of this record in the stack */
INT iLineNumber, /* line number where problen occurred */
AT_ERRCODE iCode, /* error code. */
UINT nLevel, /* level of the error. */
LONG lValue1,
LONG lValue2,
LPCHAR lpFileName, /* filename str ofr NULL if not present. */
LPCHAR lpExtratext /* extra text info about error. */
)
{
 char szOutput[1024];
 sprintf(szOutput, "Local CallBack - new error record added:\nThread Id:%u\nThread

ImageGear Professional v18 for Mac | 1226

Number=%i\nRecord=%i\nLine=%i\nCode=%i\nLevel=%i\nValue1=%i; Value2=%i,\nFile Name:
%s\nExtra Text: %s",
 GetCurrentThreadId(), (int)lpPrivate, nRecord, iLineNumber, iCode, nLevel,
lValue1,
lValue2, lpFileName, lpExtratext);
 //AfxMessageBox(szOutput);
 ::MessageBox(NULL, szOutput, "THREADS", MB_OK);
}

ImageGear Professional v18 for Mac | 1227

1.3.1.3.15 LPFNIG_ERRSTACK_CLEAR

This callback function is called each time a thread that registered this callback (using IG_err_callback_set() function)
clears the stack.

Declaration:

typedef VOID (LPACCUAPI LPFNIG_ERRSTACK_CLEAR)(
 LPVOID lpPrivate,
 UINT nRecords
);

Arguments:

Name Type Description

lpPrivate LPVOID Private data passed.

nRecords UINT Number of records cleared from the stack starting with index 0.

Return Value:

None

Supported Raster Image Formats:

This function does not process image pixels.

Example:

VOID ACCUAPI LocThErrClearCB(
LPVOID lpPrivate, /* Private data passed in. */
UINT nRecords /* Number of records cleared from the stack starting from 0 index. */
)
{
 char szOutput[1024];
 sprintf(szOutput, "Local CallBack - error stack cleared\nThread Id:%u\nThread
number:%i, Records cleared:%i",
 GetCurrentThreadId(), (int)lpPrivate, nRecords);
 // AfxMessageBox(szOutput);
 ::MessageBox(NULL, szOutput, "THREADS", MB_OK);
}

ImageGear Professional v18 for Mac | 1228

1.3.1.3.16 LPFNIG_IMAGESPOOLED

This function is called by IG_dspl_document_print() to determine which image in the array of images has just been
spooled to the printer.

Declaration:

typedef BOOL (ACCUAPI LPFNIG_IMAGESPOOLED) (
 LPVOID lpPrivate,
 UINT nImageNumber,
 UINT nPageNumber
);

Arguments:

Name Type Description

lpPrivate LPVOID Far pointer to private data area you provided in your call to IG_dspl_document_print() and
IG_dspl_document_print_custom() functions.

nImageNumber UINT A variable of type UINT in which you can keep track of the number of hIGear images just
processed in the array of images.

nPageNumber UINT A variable of type UINT in which you can keep track of the number of the page (of paper)
being printed.

Return Value:

This callback function returns TRUE if the image is successfully processed, and FALSE if it is not. As soon as the callback
function returns FALSE, ImageGear stops processing the images.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The nPageNumber argument is the current page number being printed. This callback does not need to be "registered" by
a call to an IG_...CB_register() function.

ImageGear Professional v18 for Mac | 1229

1.3.1.3.17 LPFNIG_LOAD_DISP

This function is called by IG_load_file_display() after it has loaded the image and assigned to it a HIGEAR handle, but
before it has displayed the image.

Declaration:

typedef VOID (ACCUAPI LPFNIG_LOAD_DISP) (
 LPVOID lpPrivate,
 HIGEAR hIGear
);

Arguments:

Name Type Description

lpPrivate LPVOID Far pointer to private data area you provided in your call to IG_load_file_display() function.

hIGear HIGEAR HIGEAR handle assigned to the image just loaded.

Return Value:

None

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

See the Example code in the section Working with ImageGear Callback Functions.

Remarks:

Using the HIGEAR handle supplied to you in this call, you can set the image and device rectangles, set display attributes,
and perform other operations you choose, prior to returning. Upon your return, IG_load_file_display() will continue and
will display your image, line by line, using the settings you have made.

ImageGear Professional v18 for Mac | 1230

1.3.1.3.18 LPFNIG_MEM_ALLOC

Create a function of this type to give your application the flexibility of replacing ImageGear's memory allocation routine
with your own.

Declaration:

typedef LPBYTE (ACCUAPI LPFNIG_MEM_ALLOC)(AT_UINT nSize);

Arguments:

Name Type Description

nSize AT_UINT Number of bytes to allocate.

Return Value:

The user supplied callback function should return a pointer to the allocated block of memory.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

/**/
/* Memory Alloc callback function definition */
/***/
LPBYTE ACCUAPI MyMemAlloc(AT_UINT nSize) /* number of bytes to alloc*/
{
 /* Put your own memory allocation code here */
 return(buffer);
};
/*See also example for IG_mem_CB_register() */

Remarks:

This callback function is registered by calling IG_mem_CB_register(). The register function must be called prior to any
user-defined callback functions being used by the ImageGear library.

Your memory allocation function will only be used when large allocations (allocations greater than 1024) are
performed.

ImageGear Professional v18 for Mac | 1231

1.3.1.3.19 LPFNIG_MEM_FREE

Create a function of this type to give your application the flexibility of replacing ImageGear's memory free routine with
your own.

Declaration:

typedef LPBYTE (ACCUAPI LPFNIG_MEM_FREE) (LPBYTE lpBuffer);

Arguments:

Name Type Description

lpBuffer LPBYTE Far pointer to the buffer to be freed.

Return Value:

Usually NULL.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

/***/
/* Memory Free callback function definition */
***/
LPBYTE ACCUAPI MyMemFree(LPBYTE lpBuffer)
{
 /*MEMORY FREE CODE*/
 return NULL;
};
/*See also example for IG_mem_CB_register() */

Remarks:

This callback function is registered by calling IG_mem_CB_register(). The register function must be called prior to any
user-defined callback functions being used by the ImageGear library.

ImageGear Professional v18 for Mac | 1232

1.3.1.3.20 LPFNIG_MEM_REALLOC

Create a function of this type to give your application the flexibility of replacing ImageGear's memory reallocation routine
with your own.

Declaration:

typedef LPBYTE (ACCUAPI LPFNIG_MEM_REALLOC) (
 LPBYTE lpBuffer,
 AT_UINT nSize
);

Arguments:

Name Type Description

lpBuffer LPBYTE Far pointer to the buffer to be reallocated.

nSize AT_UINT New byte count for realloc buffer.

Return Value:

The user supplied callback function should return a pointer to the allocated block of memory.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

***/
/* Memory ReAlloc callback function definition */
***/
LPBYTE ACCUAPI MyMemReAlloc(LPBYTE lpbuffer, AT_UINT nSize)
{
 /* Put your memory reallocation code here */
 return(lpBuffer);
};
/*See also example for IG_mem_CB_register() */

Remarks:

This callback function is registered by calling IG_mem_CB_register(). The register function must be called prior to any
user-defined callback functions being used by the ImageGear library.

ImageGear Professional v18 for Mac | 1233

1.3.1.3.21 LPFNIG_MPCB_UPDATE

Multi-page images allow you to notify the application about status changes. Use IG_mpi_CB_set to call code that
associates the given multi-page image hMIGear with any lpPrivate data, and updates the defined function.

Declaration:

typedef VOID (LPACCUAPI LPFNIG_MPCB_UPDATE)(
 DWORD dwCBID,
 LPVOID lpPrivate,
 AT_MODE nMode,
 UINT nPage,
 UINT nCount
);

Arguments:

Name Type Description

dwCBID DWORD The identifier allocated for this callback function by IG_mpi_CB_set()

lpPrivate LPVOID The private data associated with this identifier

nMode AT_MODE The type of multi-page image change.

nPage UINT Usually the first number of the changed pages.

nCount UINT Usually the total number of changed pages.

The following table lists all possible values for nMode and the appropriate sense of the nPage and nCount parameters:

nMode nPage nCount Description

IG_MPCBMODE_MPI_
DELETE

Not used Not used Notifies the application that the multi-page image is
going to be deleted.

IG_MPCBMODE_MPI_
ASSOCIATED

Not used Not used Notifies the application that the multi-page image is
associated with an external file.

IG_MPCBMODE_MPI_
CLOSE

No used Not used Notifies the application that the multi-page image is
going to close the associated external file.

IG_MPCBMODE_MPI_
CB_SET

Not used Not used Notifies the application that this callback data is set.
This notification receives only the callback function
that has just been set.

IG_MPCBMODE_MPI_
CB_RESET

Not used Not used Notifies the application that this callback data is to be
reset.

IG_MPCBMODE_MPI_
PAGEINSERTED

Index of
where new
pages start

Number of new
pages inserted

Notifies the application that new pages have been
inserted into the multi-page image.

IG_MPCBMODE_MPI_
PAGEUPDATED

Index of the
first updated
page

Number of updated
pages starting
from nPage

Indicates that the application has updated pages in the
multi-page image.

IG_MPCBMODE_MPI_
PAGEDELETED

Index of first
deleted page

Number of deleted
pages

Indicates that the application has deleted pages in the
multi-page image.

IG_MPCBMODE_MPF_
PAGEINSERTED

Index of
where new
pages start

Number of new
pages inserted

Indicates that the application has inserted new pages
into the external file image.

IG_MPCBMODE_MPF_
PAGEUPDATED

Index of the
first updated
page

Number of updated
pages starting
from nPage

Indicates that the application has updated pages in the
external multi-page image file.

IG_MPCBMODE_MPF_
PAGEDELETED

Index of the
first deleted
page

Number of deleted
pages

Application deleted pages in the external multi-page
image file.

ImageGear Professional v18 for Mac | 1234

Return Value:

None

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This callback function returns a unique identifier, which allows multi-page associations with the given information.
After the association is made, the application receives notifications about changes to the multi-page image through
this function.

The notification function blocks the execution of the operation that performed the action. This function can be used
for thread synchronization. We do not recommended that you call a multi-page API from the notification function (to
prevent an unlimited loop from occurring).

ImageGear Professional v18 for Mac | 1235

1.3.1.3.22 LPFNIG_RASTER_PLANE_SET

This function is called by ImageGear to let your application store or process each color plane raster, as it is obtained
from the file.

Declaration:

typedef AT_ERRCOUNT (LPACCUAPI LPFNIG_RASTER_PLANE_SET)(
 AT_VOID* lpPrivate,
 const AT_VOID* lpRast,
 AT_PIXPOS cyPos,
 AT_INT cRasterSize,
 AT_INT nBitPlane
);

Arguments:

Name Type Description

lpPrivate AT_VOID* A far pointer to a private data area.

lpRast const AT_VOID* Raster line to set.

cyPos AT_PIXPOS Y position in the image.

cRasterSize AT_INT Size of the raster line.

nBitPlane AT_INT Index of the color plane in which to merge.

Return Value:

Returns 0 if successful. Otherwise, returns the number of ImageGear errors that occurred during this function call.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

ImageGear calls this function to pass raster plane data that has been read from a file to the application. The callback
is invoked when reading images where pixel data is stored in planar format. Currently, only TIFF and DICOM format
filters support this callback.

ImageGear Professional v18 for Mac | 1236

1.3.1.3.23 LPFNIG_RASTER_GET

This function is called by ImageGear to obtain from your application each raster to be saved.

Declaration:

typedef AT_ERRCOUNT (ACCUAPI LPFNIG_RASTER_GET) (
 LPVOID lpPrivate,
 LPAT_PIXEL lpRast,
 AT_PIXPOS cyPos,
 DWORD cRasterSize
);

Arguments:

Name Type Description

lpPrivate LPVOID Far pointer to private data area.

lpRast LPAT_PIXEL Far pointer to first byte of raster your function is providing.

cyPos AT_PIXPOS The raster's Y position in the image (0 = top line of image).

dwRasterSize DWORD Number of bytes in the raster.

Return Value:

Return an error count.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT ACCUAPI MyRasterGet (LPVOID lpPrivate, LPAT_PIXEL lpRast, AT_PIXPOS lYpos,
DWORD dwBytes){
/* Provide raster row lYpos, by storing it where LPAT_PIXEL points.
 Should be exactly dwBytes, counting padding. */
 ...
return IG_error_check();
}

Remarks:

This is one of the two types of callback function supplied in calls to IG_save_FD_CB_ex() or IG_save_mem_CB_ex()
functions. The line's position in the image is identified by cyPos. The lines may not be in order.

lpRast is a pointer to the start of your raster, and dwRasterSize is the number of bytes in the line. ImageGear will
compress the line for you as it saves it, according to the compression scheme specified in your original call to save the
image. lpPrivate points to the private data area supplied in that call.

You should check the ImageGear error count (AT_ERRCOUNT) after each raster is read. If you need to terminate
the load, you can place an error on the stack yourself, using IG_error_set(). See the description for that function.

ImageGear Professional v18 for Mac | 1237

1.3.1.3.24 LPFNIG_RASTER_SET

This function is called by ImageGear to provide to your application each raster as it is obtained from the file.

Declaration:

typedef AT_ERRCOUNT (ACCUAPI LPFNIG_RASTER_SET) (
 LPVOID lpPrivate,
 const LPAT_PIXEL lpRast,
 AT_PIXPOS cyPos,
 DWORD cRasterSize
);

Arguments:

Name Type Description

lpPrivate LPVOID Far pointer to private data area.

lpRast const LPAT_PIXEL Far pointer to first byte of raster that ImageGear is providing on this call.

cyPos AT_PIXPOS The raster's Y position in the image (0 = top line of image).

dwRasterSize DWORD Number of bytes in the raster.

Return Value:

Return an error count.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT ACCUAPI MyRasterSet (LPVOID lpPrivate, LPAT_PIXEL lpRast, AT_PIXPOS lYpos,
DWORD dwBytes)
{
/* Can use the above information to create a raster or rasters in image bitmap of DIB that
was created by LPFNIG_DIB_CREATE callback. */
 ...
return IG_error_check();
}

Remarks:

This is one of the two types of callback function supplied in calls to IG_load_FD_CB() or IG_load_mem_CB() functions.
The line's position in the image is identified by cyPos. The lines may not be in order.

lpRast is a pointer to the start of the raster, and dwRasterSize is the number of bytes in the line. You should not attempt
to change the data at lpRast. In general, your application will use this data (along with its knowledge of the width of the
image it is creating, any compression scheme, etc.) to create the appropriate raster for the image bitmap of the DIB
your application is creating.

See also callback type LPFNIG_DIB_CREATE.

You should check the ImageGear error count (AT_ERRCOUNT) after each raster is read. If you need to terminate
the load, you can place an error on the stack yourself, using IG_error_set(). See the description for that function.

ImageGear Professional v18 for Mac | 1238

1.3.1.3.25 LPFNIG_READ

This function will be called during file operations when a READ is required.

Declaration:

typedef LONG (ACCUAPI LPFNIG_READ) (
 LONG fd,
 LPBYTE lpBuffer,
 LONG lSize
);

Arguments:

Name Type Description

fd LONG File Descriptor handle.

lpBuffer LPBYTE Far pointer to buffer into which to read data.

lSize LONG Number of bytes to read.

Return Value:

Return the number of bytes read, or -1 to indicate that an error occurred.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

See the example for function IG_file_IO_register().

Remarks:

This type of function is established by calling IG_file_IO_register() function.

ImageGear Professional v18 for Mac | 1239

1.3.1.3.26 LPFNIG_SEEK

This function will be called during file operations when a SEEK is required.

Declaration:

typedef AT_INT(ACCUAPI LPFNIG_SEEK) (
 AT_INT fd,
 AT_INT lOffset,
 INT nFlag
);

Arguments:

Name Type Description

fd AT_INT File Descriptor handle.

lOffset AT_INT Offset to which to seek.

nFlag INT 0 = seek from start; 1 = seek from current position; 2 = seek from end.

Return Value:

Return offset into file at the completion of the seek, or -1 to indicate an error occurred.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
LPFNIG_READ MyReadFunc; /* To be called for READs */
LPFNIG_WRITE MyWriteFunc; /* To be called for WRITEs */
LPFNIG_SEEK MySeekFunc; /* To be called for SEEKs */
{
/* Register Read, Write, and Seek callback functions: */
IG_file_IO_register (MyReadFunc, MyWriteFunc, MySeekFunc);
 ...
IG_save_file (hIGear, "picture.bmp", IG_SAVE_BMP_UNCOMP);
 ...
}
/* This will be called for each seek during the above Save: */
LONG ACCUAPI MySeekFunc (AT_INT fd, AT_INT lOffset, INT nFlag)
{
AT_INT nResultOffset;
 ...
return nResultOffset;
}

Remarks:

This type of function is established by calling IG_file_IO_register(). This function should return the offset into the file
after the seek has completed, or -1 to indicate that an error occurred.

ImageGear Professional v18 for Mac | 1240

1.3.1.3.27 LPFNIG_SIZE_CHANGE

This function will be called during file operations when a change of file size is required.

Declaration:

typedef LONG (LPACCUAPI LPFNIG_SIZE_CHANGE)(
 AT_INT fd,
 AT_INT lSize
);

Arguments:

Name Type Description

fd AT_INT Descriptor ID, from open.

lSize AT_INT New size of file, in bytes.

Return Value:

Returns the new size of the file, or -1 to indicate that an error occurred.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This type of function is established by calling IG_file_IO_register().

ImageGear Professional v18 for Mac | 1241

1.3.1.3.28 LPFNIG_STATUS_BAR

This callback function is called once for each raster (row) in the image.

Declaration:

typedef BOOL (ACCUAPI LPFNIG_STATUS_BAR) (
 LPVOID lpPrivate,
 AT_PIXPOS cyPos,
 AT_DIMENSION dwHeight
);

Arguments:

Name Type Description

lpPrivate LPVOID Far pointer to private data area, as specified in your call to
IG_status_bar_CB_register() function.

cyPos AT_PIXPOS Y position in the image of this raster (row). Calls for the rows are not guaranteed to
be in a particular order.

dwHeight AT_DIMENSION Total number of rasters (rows) in the image.

Return Value:

Your LPFNIG_STATUS_BAR() callback function should return TRUE if ImageGear should continue the load, save, or
print operation it is performing, or FALSE if ImageGear should terminate the operation, placing an
IGE_INTERRUPTED_BY_USER error on the error stack.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

BOOL ACCUAPI StatusBar(
 LPVOID lpPrivate, /* Private data passed in */
 AT_PIXPOS cyPos, /* Y position in the image */
 AT_DIMENSION dwHeight /* Height of the image */
);
 ...
 /* register the status bar callback function */
 err_count = IG_status_bar_CB_register(StatusBar, &si);
if (err_count == 0)
{
 fSBEnabled = TRUE;
 CheckMenuItem(GetMenu(hWnd),ID_OPTIONS_PROGRESSBAR,MF_CHECKED);
}
 }
else
 {
 /* deregister SB function */
 /* deregister the status bar callback function */
 err_count = IG_status_bar_CB_register(NULL, NULL);
if (err_count == 0)
{
 fSBEnabled = FALSE;
 CheckMenuItem(GetMenu(hWnd),ID_OPTIONS_PROGRESSBAR,MF_UNCHECKED);
}
 }
 ...

ImageGear Professional v18 for Mac | 1242

Remarks:

This is the type of the callback function you specify in calling IG_status_bar_CB_register().

The calls will not necessarily be in row order. See also the description for function IG_status_bar_CB_register().

ImageGear Professional v18 for Mac | 1243

1.3.1.3.29 LPFNIG_TAG_GET

This function has been deprecated and will be removed from the public API in a future release. Please use
LPAFT_IG_METAD_ITEM_ADD_CB instead.

Declaration:

typedef BOOL (ACCUAPI LPFNIG_TAG_GET) (
 LPVOID lpPrivate,
 AT_MODE nIGTag,
 LPAT_MODE lpDataType,
 LPVOID lpTagData,
 DWORD dwSize
);

Arguments:

Name Type Description

lpPrivate LPVOID A far pointer to a private data area that can be used for anything you like. For example,
you might store the HIGEAR handle of the image that is being loaded.

nIGTag AT_MODE ImageGear supplies you with an IGTAG_ Tag ID constant from file Geartags.h, so that
you will know which tag is currently being saved.

lpDataType LPAT_MODE ImageGear supplies you with an IG_TAG_TYPE_ constant from file accucnst.h,
specifying the data type for this tag (e.g., BYTE, LONG, FLOAT, etc.).

lpTagData LPVOID ImageGear supplies you with this pointer to a buffer, where you should store your data.
If you read this field, you will find that it contains a default value. For example, the
ImageGear default value for the Artist tag is "1996-2014 Accusoft Inc., All rights
reserved."

dwSize DWORD ImageGear tells you the size of tag data buffer, in bytes. This is your limit for the
length of what you store to lpTagData.

Return Value:

Returns TRUE if ImageGear should overwrite the default tag data with your data, or FALSE if ImageGear should
ignore your data.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

BOOL ACCUAPI TagGet(
 LPVOID lpPrivate, /* Private data passed in */
 AT_MODE nIGTag, /* Tag ID from geartags.h */
 LPAT_MODE lpType, /* Type of data lpTag points to */
 LPBYTE lpTag, /* Pointer to tag data */
 DWORD dwSize /* Size of tag data (bytes) */
)
...
return TRUE; /* FALSE to terminate the save operation */
}
...
 IG_save_tag_CB_register(TagGet, TagUserGet, (LPVOID)&dwPrivateFlags);
/* The following example may be used for writing additional information into a GIF file:
*/
BOOL ACCUAPI GifCallbackTagGet(
 LPVOID lpPrivate,
 AT_MODE nIGTag,

ImageGear Professional v18 for Mac | 1244

 LPAT_MODE lpType,
 LPVOID lpData,
 DWORD dwSize
)
{
 LPBYTE lpRGB;
 static INT i=0;
 switch(nIGTag)
 {
 case IGTAG_GIF_SCREEN_WIDTH:
 *(LPWORD)lpData=777;
 break;
 case IGTAG_GIF_SCREEN_FLAGS:
 *(LPBYTE)lpData=0x80 | 0x07;
 break;
 case IGTAG_GIF_IMAGE_FLAGS:
 *(LPBYTE)lpData=0x80 | 0x07;
 break;
 case IGTAG_GIF_IMAGE_LEFT:
 *(LPWORD)lpData=111;
 break;
 case IGTAG_GIF_SCREEN_PALETTE:
 lpRGB=(LPBYTE)lpData;
 for(i=0; i<256; i++)
 {
 lpRGB[3*i]=(BYTE)(0);
 lpRGB[3*i+1]=(BYTE)(i);
 lpRGB[3*i+2]=(BYTE)(0);
 }
 break;
 case IGTAG_GIF_IMAGE_PALETTE:
 lpRGB=(LPBYTE)lpData;
 for(i=0; i<256; i++)
 {
 lpRGB[3*i]=(BYTE)i;
 lpRGB[3*i+1]=(BYTE)(0);
 lpRGB[3*i+2]=(BYTE)(0);
 }
 break;
 case IGTAG_GIF_EXT_NUMBER_BEFORE_IMG:
 *(LPWORD)lpData=4;
 break;
 case IGTAG_GIF_EXT_BEFORE_IMG:
 switch(i++%4)
 {
 case 0:
 CtrlExt.bLabel=CTRL_EXT_LABLE;
 CtrlExt.bPacked=249;
 {
 case 0:
 CtrlExt.bLabel=CTRL_EXT_LABEL;
 CtrlExt.bPacked=249;
 CtrlExt.wDelayTime=555;
 CtrlExt.bColorIndex=111;
 (LPVOID FAR)lpData=(LPVOID)&CtrlExt;
 break;
 case 1:
 TextExt.bLabel=TEXT_EXT_LABEL;
 TextExt.wTextGridLeft=333;
 TextExt.lpData=lpStr;
 (LPVOID FAR)lpData=(LPVOID)&TextExt;
 break;
 case 2:
 CommExt.bLabel=COMM_EXT_LABEL;

ImageGear Professional v18 for Mac | 1245

 CommExt.lpData=lpStr;
 (LPVOID FAR)lpData=(LPVOID)&CommExt;
 break;
 case 3:
 ApplExt.bLabel=APPL_EXT_LABEL;
 strcpy((CHAR*)ApplExt.Identifier,
 "Accusoft");
 strcpy((CHAR*)ApplExt.AuthentCode, "6.0");
 ApplExt.lpData=lpStr;
 (LPVOID FAR)lpData=(LPVOID)&ApplExt;
 break;
 }
 break;
 }
 return TRUE

Remarks:

This function will be called once for each "non-volatile" tag that is being written.

This callback function is registered by calling IG_save_tag_CB_register(). When ImageGear is going to perform any
save operation it will first check to see if you have registered any applicable callbacks. If you have registered a
callback of type LPFNIG_TAG_GET, it will be called once for each "non-volatile" tag that is being written. ImageGear
will not call your callback for what it terms "volatile" tags, so that you are unable to modify such tags. If you are
writing a TIFF file and want to determine which tags you can write to (that is, which tags are non-volatile), please see
the TIFF tags section of Geartags.h. This section is comprised of a list of constants for all registered TIFF tags and a
5-column key that gives you information about the read and write ability of each tag.

See also the Note under TIFF File Format Reference for an explanation of how to use the key.

While you may set the data of a non-volatile tag, your data must not exceed the length specified by dwSize. You must
also use the proper data type, which you can check by reading the lpDataType parameter.

Your callback could contain a switch statement for each tag to which you would like to write. Each case in the switch
statement could check the ImageGear default setting of the tag and decide whether to change the data. Set your
callback to TRUE if you want ImageGear to overwrite the data of a tag, FALSE if you want it to ignore your data.
When you set the callback to FALSE, ImageGear will use its own default value for the current tag, but will still call
your callback when it parses the next tag.

Note also that some tags can be set only to a certain range of valid values. If your data is out of range for such tags,
ImageGear will ignore your data.

If you would like to modify tag data as the image is being read in (for instance, you want it to be modified for display
purposes), register a callback of type LPFNIG_TAG_SET.

If you would like to add your own user-defined tags to a TIFF file, register a callback of type LPFNIG_TAG_USER_GET.
Your tags will be saved with the image when it is being saved.

See also the discussion about Tag Callbacks in the section Working with ImageGear Callback Functions.

ImageGear Professional v18 for Mac | 1246

1.3.1.3.30 LPFNIG_TAG_SET

This function has been deprecated and will be removed from the public API in a future release. Please use
LPAFT_IG_METAD_ITEM_SET_CB instead.

Declaration:

typedef BOOL (ACCUAPI LPFNIG_TAG_SET) (
 LPVOID lpPrivate,
 AT_MODE nIGTag,
 AT_MODE nDataType,
 const LPVOID lpTagData,
 DWORD dwSize
);

Arguments:

Name Type Description

lpPrivate LPVOID A far pointer to a private data area that can be used for anything you like.

nIGTag AT_MODE ImageGear supplies you with an IGTAG_ Tag ID constant from file Geartags.h, so that you
will know which tag is currently being processed.

nDataType AT_MODE ImageGear supplies you with an IG_TAG_TYPE_ constant from file accucnst.h, specifying
the data type for this tag (e.g., BYTE, LONG, FLOAT, etc.).

lpTagData const
LPVOID

ImageGear supplies you with a copy of the data from the tag currently being read.

dwSize DWORD ImageGear tells you the size of tag data, in bytes.

Return Value:

Returns TRUE if ImageGear should overwrite the default tag data with your data, or FALSE if ImageGear should
ignore your data.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

BOOL ACCUAPI TagSet(
 LPVOID lpPrivate, /* Private data passed in */
 AT_MODE nIGTag, /* Tag ID from geartags.h */
 AT_MODE nType, /* Type of data in lpTag */
 const LPVOID lpTag, /* Pointer to tag data */
 DWORD dwSize /* Size of tag data (bytes) */
)
...
return TRUE; /* FALSE to terminate the operation */
}
...
IG_load_tag_CB_register(TagSet, (LPVOID)&dwPrivateFlags);
...

The following example illustrates loading a GIF image.

/* Example of LPFNIG_TAG_SET type function, which may be used during loading GIF image:
*/
BOOL ACCUAPI GifCallbackTagSet(

ImageGear Professional v18 for Mac | 1247

 LPVOID lpPrivate,
 AT_MODE nIGTag,
 AT_MODE nDataType,
 LPVOID lpData,
 DWORD dwDataLen
{
 WORD wWidth;
 WORD wLeft;
 WORD wExtNumber;
 LPBYTE lpRGB;
 LPAT_GIF_CTRL_EXT lpCtrlExt;
 LPAT_GIF_TEXT_EXT lpTextExt;
 LPAT_GIF_COMM_EXT lpCommExt;
 LPAT_GIF_APPL_EXT lpApplExt;
 LPVOID lpExt;
/* Following code illustrates how to get GIF file information
*/
/* Parameter nIGTag in this function informs about kind of data on which points lpData.
*/
/* If GIF image is loaded this parameter may be equal to IGTAG_GIF_ constants, defined in
*/
/* file \ACCUSOFT\GEAR\SOURCE\INCLUDE\geartags.h. For example, when IGTag is equal to*/
/* IGTAG_GIF_SCREEN_ASPECT lpData must point (after conversion) to BYTE - bAspectRatio
field */
/* of GIF_SCREEN_DESC structure. Analogously for other IGTAG_GIF_ constants.*/
/* IGTAG_GIF_SCREEN_BG_COLOR - for getting or setting screen background color index*/
/* - lpData points to BYTE, */
/* 1.When GIF image is loaded: lpData points to GIF Extention Block structure*/
/* 2.When GIF image is written: lpData must points to LPVOID, which points to created by
user*/
/* GIF Extention Block structure. This structure must exist all time when image is
written.
*/
/* IGTAG_GIF_EXT_AFTER_IMG - Analogously as for IGTAG_GIF_EXT_BEFORE_IMG*/
 switch(nIGTag)
 {
 case IGTAG_GIF_SCREEN_WIDTH:
 wWidth=*(LPWORD)lpData;
 break;
 case IGTAG_GIF_IMAGE_LEFT:
 wLeft=*(LPWORD)lpData;
 break;
 case IGTAG_GIF_SCREEN_PALETTE:
 lpRGB=(LPBYTE)lpData;
 break;
 case IGTAG_GIF_IMAGE_PALETTE:
 lpRGB=(LPBYTE)lpData;
 break;
 case IGTAG_GIF_EXT_NUMBER_BEFORE_IMG:
 wExtNumber=*(LPWORD)lpData;
 break;
 case IGTAG_GIF_EXT_BEFORE_IMG:
 lpExt=lpData;
 switch(*(LPDWORD)lpExt)
 {
 case CTRL_EXT_LABLE:
 lpCtrlExt=(LPAT_GIF_CTRL_EXT)lpExt;
 break;
 case TEXT_EXT_LABLE:
 lpTextExt=(LPAT_GIF_TEXT_EXT)lpExt;
 break;
 case COMM_EXT_LABLE:
 lpCommExt=(LPAT_GIF_COMM_EXT)lpExt;
 break;

ImageGear Professional v18 for Mac | 1248

 case APPL_EXT_LABLE:
 lpApplExt=(LPAT_GIF_APPL_EXT)lpExt;
 break;
 }
 break;
 case IGTAG_GIF_EXT_NUMBER_AFTER_IMG:
 wExtNumber=*(LPWORD)lpData;
 break;
 case IGTAG_GIF_EXT_AFTER_IMG:
 lpExt=lpData;
 switch(*(LPDWORD)lpExt)
 {
 case CTRL_EXT_LABLE:
 lpCtrlExt=(LPAT_GIF_CTRL_EXT)lpExt;
 break;
 case TEXT_EXT_LABLE:
 lpTextExt=(LPAT_GIF_TEXT_EXT)lpExt;
 break;
 case COMM_EXT_LABLE:
 lpCommExt=(LPAT_GIF_COMM_EXT)lpExt;
 break;
 case APPL_EXT_LABLE:
 lpApplExt=(LPAT_GIF_APPL_EXT)lpExt;
 break;
 }
 break;
 }
 return TRUE

Remarks:

This function will be called once for each tag (both volatile and non-volatile, see LPFNIG_TAG_GET) that is being
parsed.

This callback function is registered by calling IG_load_tag_CB_register() function. When ImageGear is going to
perform any load operation it will first check to see if you have registered any applicable callbacks. If you have
registered a callback of type LPFNIG_TAG_SET, it will be called once for each tag (both volatile and non-volatile, see
LPFNIG_TAG_GET) that is being parsed. ImageGear will not let you write data to any tag while loading.

If you would like to modify tag data as the image is being saved, register a callback of type LPFNIG_TAG_GET().

If you would like to add your own user-defined tags to a TIFF file, register a callback of type LPFNIG_USER_TAG_GET.
Your tags will be saved with the image when it is being saved.

See also the discussion about Tag Callbacks in the section Working with ImageGear Callback Functions.

The HIGEAR for the image is not created until after all of the tags have been read in.

If you need to store any tag data, make a copy of the data, not the lpTagData pointer.

ImageGear Professional v18 for Mac | 1249

1.3.1.3.31 LPFNIG_TAG_USER_GET

This function has been deprecated and will be removed from the public API in a future release. Please use
LPAFT_IG_METAD_ITEM_GET_CB instead.

Declaration:

typedef BOOL (ACCUAPI LPFNIG_TAG_USER_GET) (
 LPVOID lpPrivate,
 LPAT_MODE lpUserTag,
 LPAT_MODE lpDataType,
 LPVOID32 FAR* lpTagData,
 LPDWORD lpSize
);

Arguments:

Name Type Description

lpPrivate LPVOID Far pointer to private data area, which can be used for anything you like, including the
storage of the image's HIGEAR handle.

lpIGTag LPAT_MODE Far pointer to an AT_MODE variable to receive a private tag number. Your value must
be 32768 or higher.

lpDataType LPAT_MODE Set to an IG_TAG_TYPE_ constant (these are listed in file accucnst.h) specifying the
data type for this tag.

lpTagData LPVOID32
FAR*

Return a pointer to your data.

lpSize LPDWORD Tell ImageGear the size of your data.

Return Value:

Return TRUE if returning a tag, in which case this callback function will be called again in case you have more tags to
supply. Return FALSE if you are not returning a tag and are done returning tags.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

BOOL ACCUAPI TagUserGet(
 LPVOID lpPrivate, /* Private data passed in */
 LPAT_MODE lpnIGTag, /* Tag ID from geartags.h */
 LPAT_MODE lpType, /* Type of data lpTag points to */
 LPVOID FAR* lpTag, /* Pointer to tag data */
 LPDWORD lpSize /* Size of tag data (bytes) */
)
/* set Tag ID, data type, length, and pointer to your data */
{
 *lpSize = 0;
 if((*lpnIGTag>=IGTAG_JPG_APPDATA) && (*lpnIGTag<=IGTAG_JPG_APPDATA_LAST))
 {
if((*lpnIGTag-IGTAG_JPG_APPDATA)==12) /* supplying only APP13 marker */
 {
/* supply application marker data */
 *lpType = IG_TAG_TYPE_RAWBYTES;
 *lpTag = (LPVOID)(&TestData[0]);
 *lpSize = sizeof(TestData);
 return TRUE;

ImageGear Professional v18 for Mac | 1250

 }
/* FALSE when no tag being returned */
 }
 return FALSE;
}
...
IG_save_tag_CB_register(TagGet, TagUserGet, (LPVOID)&dwPrivateFlags);
...

Remarks:

This function allows you to store a private TIFF tag with the image being saved.

This callback function is registered by calling IG_save_tag_CB_register(). In this callback, you supply a tag number,
tag type, and tag data. Note that the value of your private tag number must be higher than 32768.

When ImageGear is going to save a file it will check to see if you have registered any applicable callbacks. If you have
registered a callback of type LPFNIG_USER_TAG_GET(), it will be called until you set it to FALSE. While your callback
is still set to TRUE, it will add your user-defined tags one at a time to the TIFF image being saved.

lpIGTag is a far pointer to an AT_MODE in which you store a privately defined tag ID#. lpDataType is a pointer to
your Tag data type, lpTagData is a pointer to your tag data, and lpSize is the length of your tag data.

This callback function should return TRUE when supplying a tag, in which case it will be called again. Return FALSE
when you are done supplying tags. This callback will be called at least once if it has been registered.

ImageGear Professional v18 for Mac | 1251

1.3.1.3.32 LPFNIG_WRITE

This function will be called during file operations when a WRITE is required.

Declaration:

typedef LONG (ACCUAPI LPFNIG_WRITE) (
 LONG fd,
 const LPBYTE lpBuffer,
 LONG lSize
);

Arguments:

Name Type Description

fd LONG File Descriptor handle.

lpBuffer const LPBYTE Far pointer to buffer from which to write.

lSize LONG Number of bytes to write.

Return Value:

Return the number of bytes written, or -1 to indicate that an error occurred.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

HIGEAR hIGear; /* HIGEAR handle of image */
LPFNIG_WRITE MyWriteFunc; /* To be called for file WRITEs */
{
IG_file_IO_register (NULL, MyWriteFunc, NULL); /* Register it */
 ...
IG_save_file (hIGear, "picture.bmp", IG_SAVE_BMP_UNCOMP);
 ...
}
/* This will be called for each write during the above Save: */
LONG ACCUAPI MyWriteFunc (LONG fd, LPBYTE lpBuffer, LONG lNumToWrite)
{
LONG nNumActuallyWritten;
 ...
return nNumActuallyWritten; /* Return count, or -1 for error */

Remarks:

This type of function is established by calling IG_file_IO_register().

ImageGear Professional v18 for Mac | 1252

1.3.1.4 Core Component Structures Reference

This section provides information about the ImageGear Core Component structures, which are organized alphabetically.

AT_CHANNEL_REF
AT_COLOR_TEMPERATURE
AT_DIB
AT_DIB_EXPORT_OPTIONS
AT_DPOINT
AT_DRECTANGLE
AT_LOGFONT
AT_POINT
AT_RECT
AT_RECTANGLE
AT_RESOLUTION
AT_RGB
AT_RGBQUAD
AT_ROTATE_MULTIPLE_90_OPTIONS
AT_SCROLL_INFO
AT_SRCINFO
BITMAPINFOHEADER
tagKERN

ImageGear Professional v18 for Mac | 1253

1.3.1.4.1 AT_CHANNEL_REF

Defines channel descriptors used for color separation and color combination processing.

HIGEAR hImage;
AT_INT uNumber;

Members:

Name Type Description

hImage HIGEAR Handle to image where channel is being stored.

uNumber AT_INT Number of referenced channel in given image.

ImageGear Professional v18 for Mac | 1254

1.3.1.4.2 AT_COLOR_TEMPERATURE

Defines temperature and tint values used for color temperature processing.

AT_DOUBLE Temperature;
AT_DOUBLE Tint;

Members:

Name Type Description

Temperature AT_DOUBLE Temperature value.

Tint AT_DOUBLE Tint value.

ImageGear Professional v18 for Mac | 1255

1.3.1.4.3 AT_DIB

Type of the ImageGear DIB header struct (equivalent to Windows struct BITMAPINFOHEADER).

WORD biSize;
LONG biWidth;
LONG biHeight;
WORD biPlanes;
WORD biBitCount;
DWORD biCompression;
DWORD biSizeImage;
LONG biXPelsPerMeter;
LONG biYPelsPerMeter;
DWORD biClrUsed;
DWORD biClrImportant;

Members:

Name Type Description

biSize WORD Total length of this struct, in bytes.

biWidth LONG Number of pixels in each raster (row) of the bitmap.

biHeight LONG Number of rasters (rows) in the bitmap.

biPlanes WORD Number of bit planes. Always = 1.

biBitCount WORD Number of bits per pixel (bit depth): 1, 4, 8, 9-16-bit gray level, or 24, 32.

biCompression DWORD Type of compression, or 0 (IG_BI_RGB) if bitmap not compressed. IG_BI_RGB,
IG_BI_RLE, IG_BI_CMYK.

biSizeImage DWORD Total number of bytes in bitmap (necessary if bitmap is compressed; may be 0 if
bitmap is IG_BI_RGB).

biXPelsPerMeter LONG Pixels per meter horizontally if known (else 0).

biYPelsPerMeter LONG Rows per meter vertically if known (else 0).

biClrUsed DWORD Number of entries in the color palette that are actually used. (The number of unique
pixel values that occur.) If 0, it is assumed all palette entries are used.

biClrImportant DWORD Number of palette entries considered important. If 0, all are important.

ImageGear Professional v18 for Mac | 1256

1.3.1.4.4 AT_DIB_EXPORT_OPTIONS

This structure specifies the options for exporting a DIB from a HIGEAR object.

Declaration:

typedef struct tagAT_DIB_EXPORT_OPTIONS
{
 enumIGDIBExportFormats Format;
 AT_RECTANGLE imgRect;
 AT_BOOL UseAlpha;

} AT_DIB_EXPORT_OPTIONS, * LPAT_DIB_EXPORT_OPTIONS;

Members:

Name Type Description

Format enumIGDIBExportFormats Specifies the format for the export.

imgRect AT_RECTANGLE Specifies a rectangle area of the image to be exported. If 0 is specified for the
width or height, image width or height will be used instead, correspondingly.

UseAlpha AT_BOOL Specifies how the Alpha channel shall be handled, if it exists. If TRUE, Alpha
channel will be blended into the color channel(s) during the export. If FALSE,
Alpha channel will be ignored.

ImageGear Professional v18 for Mac | 1257

1.3.1.4.5 AT_DPOINT

This struct is simply the X and Y coordinates of a double point.

AT_DOUBLE x;
AT_DOUBLE y;

Members:

Name Type Description

x AT_DOUBLE X coordinate of the double point.

y AT_DOUBLE Y coordinate of the double point.

ImageGear Professional v18 for Mac | 1258

1.3.1.4.6 AT_DRECTANGLE

Stores a set of four integer numbers that represent the location and size of a double rectangle.

AT_DOUBLE x;
AT_DOUBLE y;
AT_DOUBLE width;
AT_DOUBLE height;

Members:

Name Type Description

x AT_DOUBLE X coordinate of the upper-left corner of the double rectangle.

y AT_DOUBLE Y coordinate of the upper-left corner of the double rectangle.

width AT_DOUBLE The width of the double rectangle.

height AT_DOUBLE The height of the double rectangle.

ImageGear Professional v18 for Mac | 1259

1.3.1.4.7 AT_LOGFONT

This structure contains members that specify font in a format similar to MS logical font.

Declaration:

typedef struct tagAT_LOGFONT
{
 AT_INT32 lfHeight;
 AT_INT32 lfWidth;
 AT_INT32 lfEscapement;
 AT_INT32 lfOrientation;
 AT_INT32 lfWeight;
 AT_BYTE lfItalic;
 AT_BYTE lfUnderline;
 AT_BYTE lfStrikeOut;
 AT_BYTE lfCharSet;
 AT_BYTE lfOutPrecision;
 AT_BYTE lfClipPrecision;
 AT_BYTE lfQuality;
 AT_BYTE lfPitchAndFamily;
 AT_CHAR lfFaceName[LF_FACESIZE];
} AT_LOGFONT, *LPAT_LOGFONT;

Members:

Name Type Description

lfHeight AT_INT32 The height of the font's character cell or character. Expressed in logical units.

Also known as the height.

lfWidth AT_INT32 The average width of characters in the font. Expressed in logical units.

lfEscapement AT_INT32 The angle between the escapement vector and the x-axis of the device. Expressed in
tenths of degrees.

lfOrientation AT_INT32 The angle between each character’s base line and the x-axis of the device.
Expressed in tenths of degrees.

lfWeight AT_INT32 The weight of the font in the range 0 through 1000. If this value is 0 then the default
weight is used.

lfItalic AT_BYTE An italic font if set to TRUE.

lfUnderline AT_BYTE An underline font if set to TRUE.

lfStrikeout AT_BYTE A strikeout font if set to TRUE.

lfCharSet AT_BYTE The character set.

lfOutPrecision AT_BYTE Defines how closely the output must match the requested font’s height, width,
character orientation, escapement, pitch, and font type.

lfClipPrecision AT_BYTE Defines how to clip characters that are partially outside the clipping region.

lfQuality AT_BYTE Defines how carefully the graphics device interface must attempt to match the
logical-font attributes to those of an actual physical font.

lfPitchAndFamily AT_BYTE The pitch and family of a font.

lfFaceName AT_CHAR A null-terminated string that specifies the font typeface name.

ImageGear Professional v18 for Mac | 1260

ImageGear Professional v18 for Mac | 1261

1.3.1.4.8 AT_POINT

This struct is simply the X and Y coordinates of a point.

AT_PIXPOS x;
AT_PIXPOS y;

Members:

Name Type Description

x AT_PIXPOS X coordinate of the point.

y AT_PIXPOS Y coordinate of the point.

ImageGear Professional v18 for Mac | 1262

1.3.1.4.9 AT_RECT

This is the type of all rectangles used in calls to ImageGear IG_...() functions (do not confuse with Windows struct type
RECT, in which the type of the coordinates is different).

AT_PIXPOS left;
AT_PIXPOS top;
AT_PIXPOS right;
AT_PIXPOS bottom;

Members:

Name Type Description

left AT_PIXPOS X coordinate of the upper-left corner of rectangle.

top AT_PIXPOS Y coordinate of the upper-left corner of rectangle.

right AT_PIXPOS X coordinate of the lower-right corner of rectangle.

bottom AT_PIXPOS Y coordinate of the lower-right corner of rectangle.

ImageGear Professional v18 for Mac | 1263

1.3.1.4.10 AT_RECTANGLE

Stores a set of four integer numbers that represent the location and size of a rectangle.

AT_DIMENSION x;
AT_DIMENSION y;
AT_DIMENSION width;
AT_DIMENSION height;

Members:

Name Type Description

x AT_DIMENSION X coordinate of the upper-left corner of the rectangle.

y AT_DIMENSION Y coordinate of the upper-left corner of the rectangle.

width AT_DIMENSION The width of the rectangle.

height AT_DIMENSION The height of the rectangle.

ImageGear Professional v18 for Mac | 1264

1.3.1.4.11 AT_RESOLUTION

This struct describes an image's resolution. This information is used to map between a number of pixels and a physical
length measurement. For example, if you have an image that is 600 pixels wide, and the horizontal resolution is
specified as 300 DPI (dots per inch, IG_RESOLUTION_INCHES), then the image should be 2 inches wide when printed.

LONG xResNumerator,
LONG xResDenominator,
LONG yResNumerator,
LONG yResDenominator
AT_LMODE nUnits;

Members:

Name Type Description

xResNumerator LONG Numerator for horizontal resolution. This number is divided by xResDenominator to
determine the horizontal resolution.

xResDenominator LONG Denominator for horizontal resolution. Divide this number into xResNumerator to
determine the horizontal resolution.

yResNumerator LONG Numerator for vertical resolution. This number is divided by yResDenominator to
determine the vertical resolution.

yResDenominator LONG Denominator for vertical resolution. Divide this number into yResNumerator to
determine the vertical resolution.

nUnits AT_LMODE Unit type for the resolution. One of the values from enumIGResolutionUnits.

See Also

IG_image_resolution_get()

IG_image_resolution_set()

ImageGear Professional v18 for Mac | 1265

1.3.1.4.12 AT_RGB

This struct contains three color bytes ordered as in the image bitmap of a standard DIB. Note the order carefully.

AT_PIXEL b;
AT_PIXEL g;
AT_PIXEL r;

Members:

Name Type Description

b AT_PIXEL Byte containing blue component of color, 0 to 255.

g AT_PIXEL Green component of color.

r AT_PIXEL Red component of color.

ImageGear Professional v18 for Mac | 1266

1.3.1.4.13 AT_RGBQUAD

Type of a DIB palette entry. This struct contains four bytes; note the order carefully.

AT_PIXEL rgbBlue;
AT_PIXEL rgbGreen;
AT_PIXEL rgbRed;
AT_BYTE rgbReserved;

Members:

Name Type Description

rgbBlue AT_PIXEL Byte containing blue component of color, 0 to 255.

rgbGreen AT_PIXEL Green component of color.

rgbRed AT_PIXEL Red component of color.

rgbReserved AT_BYTE Reserved, should be 0.

ImageGear Professional v18 for Mac | 1267

1.3.1.4.14 AT_ROTATE_MULTIPLE_90_OPTIONS

This structure provides rotation options for IG_IP_rotate_multiple_90_opt function.

Declaration:

typedef struct AT_ROTATE_MULTIPLE_90_OPTIONS
{
 AT_BOOL SwapResolutions;

} AT_ROTATE_MULTIPLE_90_OPTIONS, * LPAT_ROTATE_MULTIPLE_90_OPTIONS;

Members:

Name Type Description

SwapResolutions AT_BOOL Specifies whether to swap resolutions when rotating the image by 90 or 270 degrees. If
image's horizontal and vertical resolutions are different, setting this field to TRUE
preserves its proportions after rotation.

ImageGear Professional v18 for Mac | 1268

1.3.1.4.15 AT_SCROLL_INFO

Defines display scrolling parameters.

AT_INT h_min;
AT_INT h_max;
AT_INT h_cur_pos;
AT_INT h_page;
AT_INT h_line;
AT_INT v_min;
AT_INT v_max;
AT_INT v_cur_pos;
AT_INT v_page;
AT_INT v_line;

Members:

Name Type Description

h_min AT_INT Minimum horizontal scrolling position.

h_max AT_INT Maximum horizontal scrolling position.

h_cur_pos AT_INT Current horizontal scrolling position.

h_page AT_INT Size of horizontal scroll page.

h_line AT_INT Size of horizontal scrolling step.

v_min AT_INT Minimum vertical scrolling position.

v_max AT_INT Maximum vertical scrolling position.

v_cur_pos AT_INT Current vertical scrolling position.

v_page AT_INT Size of vertical scroll page.

v_line AT_INT Size of vertical scrolling step.

ImageGear Professional v18 for Mac | 1269

1.3.1.4.16 AT_SRCINFO

Defines the source directory and the formats of the files for batch conversion.

AT_CHAR* lpcszSrcDir;
AT_CHAR* lpcszSrcFilter;

Members:

Name Type Description

lpcszSrcDir AT_CHAR* Source directory for batch conversion.

lpcszSrcFilter AT_CHAR* File formats filter to be used for batch conversion.

ImageGear Professional v18 for Mac | 1270

1.3.1.4.17 BITMAPINFOHEADER

See structure type AT_DIB.

ImageGear Professional v18 for Mac | 1271

1.3.1.4.18 tagKERN

This structure has been deprecated and will be removed from the public API in a future release.

Declaration:

typedef struct tagtagKERN
{
 AT_PIXPOS end_x;
 AT_PIXPOS end_y;
 AT_DIMENSION height;
 AT_INT kern[IG_MAX_KERN_HEIGHT][IG_MAX_KERN_WIDTH];
 AT_DOUBLE normalizer;
 AT_MODE result_form;
 AT_PIXPOS start_x;
 AT_PIXPOS start_y;
 AT_DIMENSION width;

} tagKERN, * LPtagKERN;

Structure Members:

Name Type Description

end_x AT_PIXPOS This field has been deprecated and will be removed from the public API in a future
release.

end_y AT_PIXPOS This field has been deprecated and will be removed from the public API in a future
release.

height AT_DIMENSION This field has been deprecated and will be removed from the public API in a future
release.

kern AT_INT This field has been deprecated and will be removed from the public API in a future
release.

normalizer AT_DOUBLE This field has been deprecated and will be removed from the public API in a future
release.

result_form AT_MODE This field has been deprecated and will be removed from the public API in a future
release.

start_x AT_PIXPOS This field has been deprecated and will be removed from the public API in a future
release.

start_y AT_PIXPOS This field has been deprecated and will be removed from the public API in a future
release.

width AT_DIMENSION This field has been deprecated and will be removed from the public API in a future
release.

ImageGear Professional v18 for Mac | 1272

1.3.1.5 Core Component Enumerations Reference

This section provides information about the ImageGear Core Component enumerations, which are organized
alphabetically.

enumAsciiPageSize
enumBatchCBType
enumBlendOn
enumColorProfileAttr
enumColorProfileGroups
enumColorProfileStyle
enumColorSpace
enumControlNRAOpt
enumControlOpt
enumConv24
enumDIBArea
enumDIBAreaInfo
enumDisplayOptions
enumEncryptModes
enumEPSFittingMethod
enumExtention
enumHTTPVerb
enumIG_MP_ASSOCIATE
enumIG_MP_OPENMODE
enumIG_MPFSaveMode
enumIG_MPInfoMode
enumIG_MPISaveMode
enumIGAlphaChannelType
enumIGAlphaMode
enumIGBatchOptions
enumIGBiCompression
enumIGBitonalReductModes
enumIGBlendModes
enumIGBlurModes
enumIGBMPTagIDs
enumIGBTRTagIDs
enumIGCALTagIDs
enumIGCIFFCanonCameraSettingsTagIDs
enumIGCIFFFocalLengthTagIDs
enumIGCIFFImageInfoTagIDs
enumIGCIFFPictureInfoTagIDs
enumIGCIFFShotInfoTagIDs
enumIGCIFFTagIDs
enumIGCLPTagIDs
enumIGColorChannels
enumIGColorProfileGroups
enumIGColorSpaceIDs
enumIGColorSpaces
enumIGCompressions
enumIGContrastModes
enumIGConversionCommands
enumIGConversionOptions
enumIGConvolutionResults
enumIGCursorType
enumIGCUTTagIDs
enumIGDCRAWTagIDs
enumIGDCXTagIDs

ImageGear Professional v18 for Mac | 1273

enumIGDepthChangeMode
enumIGDIBExportFormats
enumIGDirections
enumIGDsplAliasModes
enumIGDsplAlignModes
enumIGDsplAspectModes
enumIGDsplBackgroundModes
enumIGDsplContrastFlags
enumIGDsplDitheringModes
enumIGDsplFitModes
enumIGDsplPaletteModes
enumIGDsplTranspModes
enumIGDsplZoomModes
enumIGEdgeDetectionMethods
enumIGEdgeMapMethods
enumIGEPSTagIDs
enumIGEXIFFPXRTagIDs
enumIGEXIFGPSTagIDs
enumIGEXIFInterOperTagIDs
enumIGEXIFMakerNoteTagIDs
enumIGEXIFMakerNoteType
enumIGEXIFTagIDs
enumIGExtraDataType
enumIGExtraMode
enumIGFillOrder
enumIGFlipModes
enumIGFltrFormatFlags
enumIGFormats
enumIGFrameModes
enumIGGEMTagIDs
enumIGGIFTagIDs
enumIGGrp
enumIGICATagIDs
enumIGICDocType
enumIGICOTagIDs
enumIGIFFTagIDs
enumIGIMTTagIDs
enumIGInterpolations
enumIGIPTCAppObjAttrTags
enumIGIPTCAppObjTypeTags
enumIGIPTCRecord1DatasetTags
enumIGIPTCRecord2DatasetTags
enumIGIPTCRecord3DatasetTags
enumIGIPTCRecord7DatasetTags
enumIGIPTCRecord8DatasetTags
enumIGIPTCRecord9DatasetTags
enumIGIPTCRecordTags
enumIGIPTCTags
enumIGJPGTagIDs
enumIGJPGType
enumIGKFXTagIDs
enumIGLicenseType
enumIGLVTagIDs
enumIGMergeModes
enumIGMETADItemType
enumIGMSPTagIDs

ImageGear Professional v18 for Mac | 1274

enumIGMultInfo
enumIGNCRTagIDs
enumIGNoiseMethods
enumIGOrientationModes
enumIGPaletteFormats
enumIGPBMTagIDs
enumIGPCDTagIDs
enumIGPCXTagIDs
enumIGPixAccessMode
enumIGPNGTagIDs
enumIGPromotionModes
enumIGPSDTagIDs
enumIGRASTagIDs
enumIGResampleInModes
enumIGResampleOutModes
enumIGResolutionUnits
enumIGRotationModes
enumIGRotationValues
enumIGSaveFormats
enumIGSCICTTagIDs
enumIGSGITagIDs
enumIGSysDataType
enumIGTagConstants
enumIGTags
enumIGTGATagIDs
enumIGTIFFTagIDs
enumIGTwistModes
enumIGTypeIDs
enumIGWBMPTagIDs
enumIGWipeStyles
enumIGWMFTagIDs
enumIGWPGTagIDs
enumIGXBMTagIDs
enumIGXMPTagIDs
enumIGXPMTagIDs
enumIGXWDTagIDs
enumJPG_DCM
enumLayoutConstants
enumLoadColor
enumLoadDoc
enumMaxKern
enumMPAppend
enumMPCBMODE_MPI
enumOrientation
enumPDFSaveFlags
enumPDFTextEnc
enumPixdumpComponent
enumPixdumpComponentEx
enumPixdumpData
enumPixdumpMode
enumPixel
enumPixelate
enumPNGCompLevel
enumPNGStrip
enumPostScriptLevel
enumPostScriptType

ImageGear Professional v18 for Mac | 1275

enumPrintConstants
enumRampDirection
enumRampType
enumRasterPostProc
enumRegionIS
enumROI_IS
enumScrollTypes
enumShear
enumTagTypes
enumThreadLockMode
enumTIFFBitonalPaletteMode
enumTIFFPhoto
enumTIFFWriteConfig
enumXWDType

ImageGear Professional v18 for Mac | 1276

1.3.1.5.1 enumAsciiPageSize

Specifies predefined sizes, in thousandths of an inch, for TXT (ASCII) PAGE_WIDTH, PAGE_HEIGHT filter control
parameters.

Values:

IG_ASCIIXSIZELETTER Letter size width (8 1/2").

IG_ASCIIYSIZELETTER Letter size height (11").

IG_ASCIIXSIZELEGAL Legal size width (8 1/2").

IG_ASCIIYSIZELEGAL Legal size height (14").

IG_ASCIIXSIZEEXECUTIVE Executive size width (7 1/4").

IG_ASCIIYSIZEEXECUTIVE Executive size height (10 1/2").

IG_ASCIIXSIZEENVELOPE Envelope size width (4 1/8").

IG_ASCIIYSIZEENVELOPE Envelope size height (9 1/2").

ImageGear Professional v18 for Mac | 1277

1.3.1.5.2 enumBatchCBType

Specifies type of batch I/O callback being registered.

Values:

IG_BATCHCB_BEFORE_OPEN The callback to call before a file is opened.

IG_BATCHCB_BEFORE_SAVE The callback to call before a file is saved.

ImageGear Professional v18 for Mac | 1278

1.3.1.5.3 enumBlendOn

This enumeration has been deprecated and will be removed from the public API in a future release.

Values:

IG_BLEND_ON_INTENSITY This value has been deprecated and will be removed from the public API in a future
release.

IG_BLEND_ON_IMAGE This value has been deprecated and will be removed from the public API in a future
release.

IG_BLEND_ON_HUE This value has been deprecated and will be removed from the public API in a future
release.

ImageGear Professional v18 for Mac | 1279

1.3.1.5.4 enumColorProfileAttr

GUI color profile window attributes.

Values:

IG_GUI_DATA_COLOR_COMPONENT Specifies color components to display. Attribute value is a combination of
enumGUIColorComponentEx constants.

IG_GUI_DATA_COLORPROFILE_STYLE Specifies the display style of color components information. Attribute value
is a combination of enumColorProfileStyle constants.

IG_GUI_DATA_COLORPROFILE_IMGHWND Specifies the window handle of GUI window.

Remarks:

See IG_GUI_color_profile_attribute_get for more details.

ImageGear Professional v18 for Mac | 1280

1.3.1.5.5 enumColorProfileGroups

Identifies a color profile group of the requested color profile.

Values:

IG_CP_GRP_WORKING WCP (Working Color Profile). This group of color profiles provides information about the
default color global parameters used to represent the color data for HIGEAR objects. Those
global parameters are used if the image does not have a local color profile associated with it.

IG_CP_GRP_IMPORT ICP (Import Color Profile). This group of profiles is used during a filter load operation.

IG_CP_GRP_EXPORT ECP (Export Color Profile). This group of profiles is very similar to ICP but is used in the filter
export operation.

ImageGear Professional v18 for Mac | 1281

1.3.1.5.6 enumColorProfileStyle

GUI color profile window chart attributes.

Values:

IG_GUI_COLORPROFILE_STYLE_STACK Specifies the chart style. All components data are stacked: every
component bar is displayed on top of previous color component bar.

IG_GUI_COLORPROFILE_STYLE_SEPARATE Specifies the chart style. All components data displayed in separate
charts. Each chart has its own base line.

IG_GUI_COLORPROFILE_STYLE_OVERLAID Specifies the chart style. All components data displayed on single chart
with one base line from first color component to the last one.

IG_GUI_COLORPROFILE_STYLE_TRACK Specifies whether to track mouse pointer movements across image
window. Attribute value is TRUE to track mouse or FALSE otherwise.

IG_GUI_COLORPROFILE_STYLE_XY Specifies whether to display coordinates of start and end mouse positions
in GUI window. Attribute value is TRUE to display coordinates or FALSE
otherwise.

IG_GUI_COLORPROFILE_STYLE_MASK Specifies the bit mask used to extract chart style value from GUI window
style value.

Remarks:

Specifies the style of data representation and attributes of GUI windows. See IG_GUI_color_profile_attribute_get for
more details.

ImageGear Professional v18 for Mac | 1282

1.3.1.5.7 enumColorSpace

Color space support level.

Values:

IG_CONVERT_TO_RGB Images are converted to RGB color space during loading. Only affects CMYK images.

IG_FULL_SUPPORT Full support for loading and saving of image color space.

Remarks:

This enumeration only affects the support of CMYK images. For other color spaces, ImageGear preserves the original
image pixel format during loading.

ImageGear Professional v18 for Mac | 1283

1.3.1.5.8 enumControlNRAOpt

Specifies attributes of non-rectangular ROI associated with an image.

Values:

IG_CONTROL_NR_ROI_DIB The value specified is a DIB to be used as a mask HIGEAR for the
image.

IG_CONTROL_NR_ROI_REFERENCE_POINT The value specified is a position within the HIGEAR image at which
the upper-left corner of the masking HIGEAR should be placed.

IG_CONTROL_NR_ROI_CONDITION The value specified indicates whether or not ImageGear should
override the AT_RECT argument passed to its API. If TRUE then NRA
ROI is used, otherwise the rectangular ROI is in effect.

IG_CONTROL_NR_ROI_REFERENCE_POINT_LEFT The parameter specified is a mask reference point x component.

IG_CONTROL_NR_ROI_REFERENCE_POINT_TOP The parameter specified is a mask reference point y component.

IG_CONTROL_NR_ROI_VALIDATE The value returned specifies whether there is a valid mask
associated with image.

Remarks:

See IG_IP_NR_ROI_control_set description for more information.

ImageGear Professional v18 for Mac | 1284

1.3.1.5.9 enumControlOpt

This enumeration has been deprecated and will be removed from the public API in a future release.

Values:

IG_CONTROL_JPG_QUALITY This value has been deprecated and will be removed from
the public API in a future release.

See JPEG file format reference for description of JPEG
control parameters.

IG_CONTROL_JPG_DECIMATION_TYPE This value has been deprecated and will be removed from
the public API in a future release.

See JPEG file format reference for description of JPEG
control parameters.

IG_CONTROL_JPG_SAVE_THUMBNAIL This value has been deprecated and will be removed from
the public API in a future release.

See JPEG file format reference for description of JPEG
control parameters.

IG_CONTROL_JPG_THUMBNAIL_WIDTH This value has been deprecated and will be removed from
the public API in a future release.

See JPEG file format reference for description of JPEG
control parameters.

IG_CONTROL_JPG_THUMBNAIL_HEIGHT This value has been deprecated and will be removed from
the public API in a future release.

See JPEG file format reference for description of JPEG
control parameters.

IG_CONTROL_JPG_KEEP_ALPHA This value has been deprecated and will be removed from
the public API in a future release.

See JPEG file format reference for description of JPEG
control parameters.

IG_CONTROL_JPG_TYPE This value has been deprecated and will be removed from
the public API in a future release.

See JPEG file format reference for description of JPEG
control parameters.

IG_CONTROL_JPG_PREDICTOR This value has been deprecated and will be removed from
the public API in a future release.

See JPEG file format reference for description of JPEG
control parameters.

IG_CONTROL_JPG_SCAN_INFO This value has been deprecated and will be removed from
the public API in a future release.

See JPEG file format reference for description of JPEG
control parameters.

IG_CONTROL_JPG_SCAN_INFO_COUNT This value has been deprecated and will be removed from
the public API in a future release.

See JPEG file format reference for description of JPEG
control parameters.

IG_CONTROL_JPG_LOAD_SCANS This value has been deprecated and will be removed from
the public API in a future release.

See JPEG file format reference for description of JPEG
control parameters.

ImageGear Professional v18 for Mac | 1285

IG_CONTROL_JPG_OLD_LOSSLESS_READ This value has been deprecated and will be removed from
the public API in a future release.

See JPEG file format reference for description of JPEG
control parameters.

IG_CONTROL_PJPEG_SCAN_INFO This value has been deprecated and will be removed from
the public API in a future release.

See JPEG file format reference for description of JPEG
control parameters.

IG_CONTROL_PJPEG_SCAN_INFO_COUNT This value has been deprecated and will be removed from
the public API in a future release.

See JPEG file format reference for description of JPEG
control parameters.

IG_CONTROL_PJPEG_LOAD_SCANS This value has been deprecated and will be removed from
the public API in a future release.

See JPEG file format reference for description of JPEG
control parameters.

IG_CONTROL_TXT_XDPI This value has been deprecated and will be removed from
the public API in a future release.

See TXT file format reference for description of TXT control
parameters.

IG_CONTROL_TXT_YDPI This value has been deprecated and will be removed from
the public API in a future release.

See TXT file format reference for description of TXT control
parameters.

IG_CONTROL_TXT_MARGIN_LEFT This value has been deprecated and will be removed from
the public API in a future release.

See TXT file format reference for description of TXT control
parameters.

IG_CONTROL_TXT_MARGIN_TOP This value has been deprecated and will be removed from
the public API in a future release.

See TXT file format reference for description of TXT control
parameters.

IG_CONTROL_TXT_MARGIN_RIGHT This value has been deprecated and will be removed from
the public API in a future release.

See TXT file format reference for description of TXT control
parameters.

IG_CONTROL_TXT_MARGIN_BOTTOM This value has been deprecated and will be removed from
the public API in a future release.

See TXT file format reference for description of TXT control
parameters.

IG_CONTROL_TXT_PAGE_WIDTH This value has been deprecated and will be removed from
the public API in a future release.

See TXT file format reference for description of TXT control
parameters.

IG_CONTROL_TXT_PAGE_HEIGHT This value has been deprecated and will be removed from
the public API in a future release.

See TXT file format reference for description of TXT control
parameters.

IG_CONTROL_TXT_POINT_SIZE This value has been deprecated and will be removed from

ImageGear Professional v18 for Mac | 1286

the public API in a future release.

See TXT file format reference for description of TXT control
parameters.

IG_CONTROL_TXT_WEIGHT This value has been deprecated and will be removed from
the public API in a future release.

See TXT file format reference for description of TXT control
parameters.

IG_CONTROL_TXT_ITALIC This value has been deprecated and will be removed from
the public API in a future release.

See TXT file format reference for description of TXT control
parameters.

IG_CONTROL_TXT_TAB_STOP This value has been deprecated and will be removed from
the public API in a future release.

See TXT file format reference for description of TXT control
parameters.

IG_CONTROL_TXT_TYPEFACE This value has been deprecated and will be removed from
the public API in a future release.

See TXT file format reference for description of TXT control
parameters.

IG_CONTROL_TXT_LINES_PER_PAGE This value has been deprecated and will be removed from
the public API in a future release.

See TXT file format reference for description of TXT control
parameters.

IG_CONTROL_TXT_CHAR_PER_LINE This value has been deprecated and will be removed from
the public API in a future release.

See TXT file format reference for description of TXT control
parameters.

IG_CONTROL_TXT_COMPATIBILITY_MODE This value has been deprecated and will be removed from
the public API in a future release.

See TXT file format reference for description of TXT control
parameters.

IG_CONTROL_BMP_TYPE This value has been deprecated and will be removed from
the public API in a future release.

See BMP file format reference for description of BMP control
parameters.

IG_CONTROL_BMP_UPSIDEDOWN This value has been deprecated and will be removed from
the public API in a future release.

See BMP file format reference for description of BMP control
parameters.

IG_CONTROL_BMP_16GRAY_SCANNER This value has been deprecated and will be removed from
the public API in a future release.

See BMP file format reference for description of BMP control
parameters.

IG_CONTROL_BMP_16GRAY_SCANNER_TYPE This value has been deprecated and will be removed from
the public API in a future release.

See BMP file format reference for description of BMP control
parameters.

IG_CONTROL_CCITT_FILL_ORDER This value has been deprecated and will be removed from
the public API in a future release.

ImageGear Professional v18 for Mac | 1287

See Group 3 (G3) file format reference for description of G3
control parameters.

IG_CONTROL_CCITT_KFACTOR This value has been deprecated and will be removed from
the public API in a future release.

See Group 3 (G3) file format reference for description of G3
control parameters.

IG_CONTROL_TIF_FILENAME_LEN This value has been deprecated and will be removed from
the public API in a future release.

See TIFF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_FILENAME This value has been deprecated and will be removed from
the public API in a future release.

See TIFF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_FILEDATE_LEN This value has been deprecated and will be removed from
the public API in a future release.

See TIFF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_FILEDATE This value has been deprecated and will be removed from
the public API in a future release.

See TIFF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_FORCE_SNGL_STRIP This value has been deprecated and will be removed from
the public API in a future release.

See TIFF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_BUFFER_SIZE This value has been deprecated and will be removed from
the public API in a future release.

 See TIFF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_WRITE_FILL_ORDER This value has been deprecated and will be removed from
the public API in a future release.

See TIFF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_WRITE_CONFIG This value has been deprecated and will be removed from
the public API in a future release.

See TIFF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_PHOTOMETRIC This value has been deprecated and will be removed from
the public API in a future release.

See TIFF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_BIGENDIAN This value has been deprecated and will be removed from
the public API in a future release.

See TIFF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_DOCUMENTNAME This value has been deprecated and will be removed from
the public API in a future release.

See TIFF file format reference for description of TIF control

ImageGear Professional v18 for Mac | 1288

parameters.

IG_CONTROL_TIF_DATETIME This value has been deprecated and will be removed from
the public API in a future release.

See TIFF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_IMAGE_BEFORE_IFD This value has been deprecated and will be removed from
the public API in a future release.

See TIFF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_PLANAR This value has been deprecated and will be removed from
the public API in a future release.

See TIFF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_NUMBER_OF_STRIPS This value has been deprecated and will be removed from
the public API in a future release.

See TIFF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_WRITE_CLASS_F This value has been deprecated and will be removed from
the public API in a future release.

See TIFF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_16_UPDATE_LUT This value has been deprecated and will be removed from
the public API in a future release.

See TIFF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_NEW_SUBFILE_TYPE This value has been deprecated and will be removed from
the public API in a future release.

See TIFF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_INCLUDE_PAGE_NUMBER This value has been deprecated and will be removed from
the public API in a future release.

See TIFF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_IMAGE_WIDTH This value has been deprecated and will be removed from
the public API in a future release.

See TIFF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_IMAGE_HEIGHT This value has been deprecated and will be removed from
the public API in a future release.

See TIFF file format reference for description of TIF control
parameters.

IG_CONTROL_GIF_INTERLACE This value has been deprecated and will be removed from
the public API in a future release.

See GIF file format reference for description of GIF control
parameters.

IG_CONTROL_GIF_ADD_IMAGE This value has been deprecated and will be removed from
the public API in a future release.

See GIF file format reference for description of GIF control
parameters.

ImageGear Professional v18 for Mac | 1289

IG_CONTROL_GIF_VERSION This value has been deprecated and will be removed from
the public API in a future release.

See GIF file format reference for description of GIF control
parameters.

IG_CONTROL_GIF_EXTBLOCKREADONLY This value has been deprecated and will be removed from
the public API in a future release.

See GIF file format reference for description of GIF control
parameters.

IG_CONTROL_AVI_FILENAME This value has been deprecated and will be removed from
the public API in a future release.

See AVI file format reference for description of AVI control
parameters.

IG_CONTROL_KFX_BIT_SEX This value has been deprecated and will be removed from
the public API in a future release.

See KFX file format reference for description of KFX control
parameters.

IG_CONTROL_PCT_VERSION1 This value has been deprecated and will be removed from
the public API in a future release.

See PCT file format reference for description of PCT control
parameters.

IG_CONTROL_TGA_SAVE_THUMBNAIL This value has been deprecated and will be removed from
the public API in a future release.

See TGA file format reference for description of TGA control
parameters.

IG_CONTROL_TGA_THUMBNAIL_WIDTH This value has been deprecated and will be removed from
the public API in a future release.

See TGA file format reference for description of TGA control
parameters.

IG_CONTROL_TGA_THUMBNAIL_HEIGHT This value has been deprecated and will be removed from
the public API in a future release.

See TGA file format reference for description of TGA control
parameters.

IG_CONTROL_TGA_KEEP_ALPHA This value has been deprecated and will be removed from
the public API in a future release.

See TGA file format reference for description of TGA control
parameters.

IG_CONTROL_TGA_CONVERT_TO_16 This value has been deprecated and will be removed from
the public API in a future release.

See TGA file format reference for description of TGA control
parameters.

IG_CONTROL_EPS_TIFF_PREVIEW This value has been deprecated and will be removed from
the public API in a future release.

See EPS file format reference for description of EPS control
parameters.

IG_CONTROL_EPS_FITTING_METHOD This value has been deprecated and will be removed from
the public API in a future release.

See EPS file format reference for description of EPS control
parameters.

IG_CONTROL_EPS_PIXEL_TO_PIXEL This value has been deprecated and will be removed from

ImageGear Professional v18 for Mac | 1290

the public API in a future release.

See EPS file format reference for description of EPS control
parameters.

IG_CONTROL_EPS_PAGE_WIDTH This value has been deprecated and will be removed from
the public API in a future release.

See EPS file format reference for description of EPS control
parameters.

IG_CONTROL_EPS_PAGE_HEIGHT This value has been deprecated and will be removed from
the public API in a future release.

See EPS file format reference for description of EPS control
parameters.

IG_CONTROL_EPS_XDPI This value has been deprecated and will be removed from
the public API in a future release.

See EPS file format reference for description of EPS control
parameters.

IG_CONTROL_EPS_YDPI This value has been deprecated and will be removed from
the public API in a future release.

See EPS file format reference for description of EPS control
parameters.

IG_CONTROL_EPS_TEXTENC This value has been deprecated and will be removed from
the public API in a future release.

See EPS file format reference for description of EPS control
parameters.

IG_CONTROL_WMF_LOAD_METAFILE This value has been deprecated and will be removed from
the public API in a future release.

See WMF file format reference for description of WMF control
parameters.

IG_CONTROL_PNG_COMPRESSION This value has been deprecated and will be removed from
the public API in a future release.

See PNG file format reference for description of PNG control
parameters.

IG_CONTROL_JBIG_STRIP_SIZE This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_JBIG_TYPICAL_PREDICTOR This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_JBIG_CONTEXT_SHAPE This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_JBIG_TAUX This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_SGI_SAVE_COMPRESSED This value has been deprecated and will be removed from
the public API in a future release.

See SGI file format reference for description of SGI control
parameters.

IG_CONTROL_PSD_READ_LAYER_MASK This value has been deprecated and will be removed from
the public API in a future release.

See PSD file format reference for description of PSD control
parameters.

IG_CONTROL_PSB_READ_LAYER_MASK This value has been deprecated and will be removed from
the public API in a future release.

See PSB file format reference for description of PSB control

ImageGear Professional v18 for Mac | 1291

parameters.

IG_CONTROL_PDF_TEXT_ENCODING This value has been deprecated and will be removed from
the public API in a future release.

See PDF file format reference for description of PDF control
parameters.

IG_CONTROL_PDF_FILENAME This value has been deprecated and will be removed from
the public API in a future release.

See PDF file format reference for description of PDF control
parameters.

IG_CONTROL_PDF_RESOLUTION_X This value has been deprecated and will be removed from
the public API in a future release.

See PDF file format reference for description of PDF control
parameters.

IG_CONTROL_PDF_RESOLUTION_Y This value has been deprecated and will be removed from
the public API in a future release.

See PDF file format reference for description of PDF control
parameters.

IG_CONTROL_PDF_DEPTH This value has been deprecated and will be removed from
the public API in a future release.

See PDF file format reference for description of PDF control
parameters.

IG_CONTROL_PDF_TEXTALPHA This value has been deprecated and will be removed from
the public API in a future release.

See PDF file format reference for description of PDF control
parameters.

IG_CONTROL_PDF_GRAPHICSALPHA This value has been deprecated and will be removed from
the public API in a future release.

See PDF file format reference for description of PDF control
parameters.

IG_CONTROL_PDF_PAGE_WIDTH This value has been deprecated and will be removed from
the public API in a future release.

See PDF file format reference for description of PDF control
parameters.

IG_CONTROL_PDF_PAGE_HEIGHT This value has been deprecated and will be removed from
the public API in a future release.

See PDF file format reference for description of PDF control
parameters.

IG_CONTROL_PDF_INDEPENDENT_PAGESIZE This value has been deprecated and will be removed from
the public API in a future release.

See PDF file format reference for description of PDF control
parameters.

IG_CONTROL_WLT_QUALITY This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_WL16_QUALITY This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_JPG_ENTROPY_OPTIMIZE This value has been deprecated and will be removed from
the public API in a future release.

See JPG file format reference for description of JPG control
parameters.

ImageGear Professional v18 for Mac | 1292

IG_CONTROL_TIF_TILE_H_COUNT This value has been deprecated and will be removed from
the public API in a future release.

See TIF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_TILE_V_COUNT This value has been deprecated and will be removed from
the public API in a future release.

See TIF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_TILE_WIDTH This value has been deprecated and will be removed from
the public API in a future release.

See TIF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_TILE_HEIGHT This value has been deprecated and will be removed from
the public API in a future release.

See TIF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_MISSING_COMPRESSION This value has been deprecated and will be removed from
the public API in a future release.

See TIF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_WRITE70 This value has been deprecated and will be removed from
the public API in a future release.

See TIF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_DO_NOT_WRITE_PALETTE This value has been deprecated and will be removed from
the public API in a future release.

See TIF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_SAVE_DIFF_PREDICTOR This value has been deprecated and will be removed from
the public API in a future release.

See TIF file format reference for description of TIF control
parameters.

IG_CONTROL_TIF_SUBIFD_PATH This value has been deprecated and will be removed from
the public API in a future release.

See TIF file format reference for description of TIF control
parameters.

IG_CONTROL_XWD_TYPE This value has been deprecated and will be removed from
the public API in a future release.

See XWD file format reference for description of XWD
control parameters.

IG_CONTROL_LURAWAVE_QUALITY This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURAWAVE_SCAN_MODE This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURAWAVE_DWNSCLFACTOR This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURADOC_QUANTIZATION This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURADOC_TRESHOLD This value has been deprecated and will be removed from
the public API in a future release.

ImageGear Professional v18 for Mac | 1293

IG_CONTROL_LURADOC_SEGMENTATION This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURADOC_TEXTSENSITIVITY This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURADOC_RATE This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURADOC_BITONAL This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURADOC_BACKGROUND This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURADOC_QUALITYBACK This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURADOC_BACKGROUNDSAMPLE This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURADOC_FOREGROUND This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURADOC_QUALITYFORE This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURADOC_FOREGROUNDSAMPLE This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURADOC_THUMBNAIL This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURADOC_QUALITYTHUMB This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURADOC_THUMBHEIGHT This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURADOC_THUMBWIDTH This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURADOC_THUMBSIZE This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURADOC_LAYERS This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_RAW_ALIGNMENT This value has been deprecated and will be removed from
the public API in a future release.

See RAW file format reference for description of RAW control
parameters.

IG_CONTROL_LURAJP2_RATE_BYTES This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURAJP2_WAVELET_FILTER This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURAJP2_WAVELET_LEVELS This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURAJP2_QUANTIZATION_STYLE This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURAJP2_TILE_WIDTH This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURAJP2_TILE_HEIGHT This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_LURAJP2_FILE_FORMAT This value has been deprecated and will be removed from
the public API in a future release.

IG_CONTROL_EXIF_JPEG_SAVE_THUMBNAIL This value has been deprecated and will be removed from
the public API in a future release.

See EXIF-JPEG file format reference for description of EXIF-
JPEG control parameters.

IG_CONTROL_EXIF_JPEG_THUMBNAIL_WIDTH This value has been deprecated and will be removed from

ImageGear Professional v18 for Mac | 1294

the public API in a future release.

See EXIF-JPEG file format reference for description of EXIF-
JPEG control parameters.

IG_CONTROL_EXIF_JPEG_THUMBNAIL_HEIGHT This value has been deprecated and will be removed from
the public API in a future release.

See EXIF-JPEG file format reference for description of EXIF-
JPEG control parameters.

IG_CONTROL_EXIF_JPEG_THUMBNAIL_COMPRESSED This value has been deprecated and will be removed from
the public API in a future release.

See EXIF-JPEG file format reference for description of EXIF-
JPEG control parameters.

IG_CONTROL_EXIF_JPEG_FLASHPIX_READY This value has been deprecated and will be removed from
the public API in a future release.

See EXIF-JPEG file format reference for description of EXIF-
JPEG control parameters.

IG_CONTROL_EXIF_TIFF_SAVE_THUMBNAIL This value has been deprecated and will be removed from
the public API in a future release.

See EXIF-TIFF file format reference for description of EXIF-
TIFF control parameters.

IG_CONTROL_EXIF_TIFF_THUMBNAIL_WIDTH This value has been deprecated and will be removed from
the public API in a future release.

See EXIF-TIFF file format reference for description of EXIF-
TIFF control parameters.

IG_CONTROL_EXIF_TIFF_THUMBNAIL_HEIGHT This value has been deprecated and will be removed from
the public API in a future release.

See EXIF-TIFF file format reference for description of EXIF-
TIFF control parameters.

Remarks:

This enumeration has been deprecated and will be removed from the public API in a future release.

Please use IG_fltr_ctrl_get and IG_fltr_ctrl_set functions for accessing filter control parameters. See ImageGear
Supported File Formats Reference for a description of individual control parameters.

ImageGear Professional v18 for Mac | 1295

1.3.1.5.10 enumConv24

This enumeration has been deprecated and will be removed from the public API in a future release.

Values:

IG_CONV_24_INTENSITY This value has been deprecated and will be removed from the public API in a future release.

IG_CONV_24_RGB This value has been deprecated and will be removed from the public API in a future release.

IG_CONV_24_R This value has been deprecated and will be removed from the public API in a future release.

IG_CONV_24_G This value has been deprecated and will be removed from the public API in a future release.

IG_CONV_24_B This value has been deprecated and will be removed from the public API in a future release.

ImageGear Professional v18 for Mac | 1296

1.3.1.5.11 enumDIBArea

Specifies data format to be used by IG_DIB_area_get and IG_DIB_area_set functions.

Values:

IG_DIB_AREA_RAW This value has been deprecated and will be removed from the public API in a future
release.

IG_DIB_AREA_DIB Get or set the data in standard uncompressed DIB format. Each row is padded to a
multiple of 4 bytes length. 1-bit pixels are returned 8 to the byte, most significant bit first.
4-bit pixels are returned 2 to the byte, similarly left justified. 24-bit pixels are returned 3
bytes per pixel, ordered Blue-Green-Red.

IG_DIB_AREA_UNPACKED Get or set the data using 1 pixel per byte, or 3 bytes for a 24-bit pixel, ordered Blue-
Green-Red. Each 1-bit or 4-bit pixel will be returned right justified in a single byte, padded
with zeroes in the most significant bits of the byte.

ImageGear Professional v18 for Mac | 1297

1.3.1.5.12 enumDIBAreaInfo

Specifies modes for IG_IP_area_info_get_ex function.

Values:

IG_DIB_AREA_INFO_MIN The information requested is a minimum pixel value on the area.

IG_DIB_AREA_INFO_MAX The information requested is a maximum pixel value on the area.

IG_DIB_AREA_INFO_AVE The information requested is an average pixel value on the area.

IG_DIB_AREA_INFO_CENTER The information requested is a value of the central pixel in the area.

ImageGear Professional v18 for Mac | 1298

1.3.1.5.13 enumDisplayOptions

Specifies display option settings.

Values:

IG_DISPLAY_OPTION_DOWNSHIFT This option only affects 16-bit grayscale DIBs. Each 16-bit pixel is
downshifted by a specified value, and then the least significant word is
taken for display. See IG_display_option_set for more details.

IG_DISPLAY_OPTION_LUT This option only affects 16-bit grayscale DIBs. A lookup table is used to
map 16-bit pixels into 8-bit pixel values for display. See
IG_display_option_set for more details. If IG_display_option_get is called
with IG_DISPLAY_OPTION_LUT parameter when no look up table has
been allocated yet, the function allocates a new look up table and returns
it to the caller.

IG_PRINT_ADJUST This value has been deprecated and will be removed from the public API
in a future release.

IG_DISPLAY_OPTION_USEMAPMODE This value has been deprecated and will be removed from the public API
in a future release.

IG_DISPLAY_OPTION_DDB_OPTIMIZE If this parameter is TRUE then monochrome DDB is created from 1bpp
HIGEAR image. Otherwise, a compatible bitmap to the current display is
created.

IG_DISPLAY_OPTION_OFFSCREEN_DRAW If this parameter is TRUE then the display code optimizes the drawing of
ART/ARTX marks to prevent flashing. Otherwise, each redraw operation is
directly displayed, with flashing possible.

IG_DISPLAY_OPTION_OFFSCREEN_WIDTH This option specifies the width of offscreen drawing surface.

IG_DISPLAY_OPTION_OFFSCREEN_HEIGHT This option specifies the height of offscreen drawing surface.

IG_DISPLAY_OPTION_LUT_CHECK This option only affects 16-bit grayscale DIBs, and is only used with
IG_display_option_get. IG_display_option_get returns a pointer to the
current 16x8 display look up table if it has been set previously, returns
NULL otherwise.

IG_DISPLAY_OPTION_LUT8x8 This option only affects 8-bit grayscale DIBs. A lookup table is used to
map 8-bit image pixels into 8-bit pixel values for display. See
IG_display_option_set for more details. If IG_display_option_get is called
with IG_DISPLAY_OPTION_LUT8x8 parameter when no look up table has
been allocated yet, the function allocates a new look up table and returns
it to the caller.

IG_DISPLAY_OPTION_LUT8x8_CHECK This option only affects 8-bit grayscale DIBs, and is only used with
IG_display_option_get. IG_display_option_get returns a pointer to the
current 8x8 display look up table if it has been set previously, returns
NULL otherwise.

Remarks:

See IG_display_option_set for more details.

ImageGear Professional v18 for Mac | 1299

1.3.1.5.14 enumEncryptModes

Specifies different annotation encryption methods. Used by IG_ARTX_encryption_create function.

Values:

IG_ENCRYPT_METHOD_A Encryption method A.

IG_ENCRYPT_METHOD_B Encryption method B.

IG_ENCRYPT_METHOD_C Encryption method C.

ImageGear Professional v18 for Mac | 1300

1.3.1.5.15 enumEPSFittingMethod

Specifies how to fit the image in the EPS page. Used with EPS filter control parameter FITTING_METHOD.

Values:

IG_EPS_FIT_PAGE Image is scaled for best fitting the page.

IG_EPS_FIT_ACTUAL Image is saved with its actual physical dimensions according to image resolution.

IG_EPS_FIT_SET Image is saved with physical dimensions based on values of X_DPI/Y_DPI control parameters of
EPS filter.

ImageGear Professional v18 for Mac | 1301

1.3.1.5.16 enumExtention

This enumeration has been deprecated and will be removed from the public API in a future release.

Values:

IG_EXTENTION_LZW This value has been deprecated and will be removed from the public API in a future
release.

IG_EXTENTION_MEDICAL This value has been deprecated and will be removed from the public API in a future
release.

IG_EXTENTION_ABIC This value has been deprecated and will be removed from the public API in a future
release.

IG_EXTENSION_FLASHPIX This value has been deprecated and will be removed from the public API in a future
release.

ImageGear Professional v18 for Mac | 1302

1.3.1.5.17 enumHTTPVerb

Identifies the method of saving image or annotations via the HTTP protocol.

Values:

IG_HTTP_VERB_POST Used for saving the image or annotation data to file.

IG_HTTP_VERB_PUT Used for transferring the image or annotation data to the web script.

ImageGear Professional v18 for Mac | 1303

1.3.1.5.18 enumIG_MP_ASSOCIATE

Specifies association types between a multi-page image and a multi-page image file.

Values:

IG_MP_ASSOCIATE_NONE There is no association of multi-page image with multi-page image file.

IG_MP_ASSOCIATE_FILE Multi-page image is associated with multi-page image file.

IG_MP_ASSOCIATE_MEMORY Reserved for future extensions.

Remarks:

See IG_mpi_info_get for more details.

ImageGear Professional v18 for Mac | 1304

1.3.1.5.19 enumIG_MP_OPENMODE

Specifies open modes of the associated file of the multi-page image file.

Values:

IG_MP_OPENMODE_NONE There is no association with multi-page image file.

IG_MP_OPENMODE_READONLY Associated file has been opened with read-only access mode.

IG_MP_OPENMODE_READWRITE Associated file has been opened with read-write access mode.

Remarks:

See IG_mpi_file_open for more details.

ImageGear Professional v18 for Mac | 1305

1.3.1.5.20 enumIG_MPFSaveMode

Specifies file saving modes for IG_mpf_page_save function.

Values:

IG_MPF_SAVE_INSERT Insert pages into the file at the specified index.

IG_MPF_SAVE_REPLACE Replace pages starting from the particular page index.

ImageGear Professional v18 for Mac | 1306

1.3.1.5.21 enumIG_MPInfoMode

Specifies kinds of information returned by IG_mpi_info_get function.

Values:

IG_MP_ASSOCIATION_TYPE The value returned is the association type of the given multi-page image.

IG_MP_OPEN_MODE The value returned is the open mode of the associated file.

IG_MP_FILE_NAME The value returned is the name of the associated file.

IG_MP_MEMBUFFER_PTR The value returned is the pointer to the memory associated with the multi-page image.

IG_MP_MEMBUFFER_SIZE The value returned is the size of the associated memory.

IG_MP_FORMAT The value returned is the file format of the multi-page document. One of the
enumIGFormats values.

IG_MP_DOCUMENT The value returned is the Native document associated with the multi-page document.

ImageGear Professional v18 for Mac | 1307

1.3.1.5.22 enumIG_MPISaveMode

Specifies file saving modes for IG_mpi_file_save function.

Values:

IG_MPI_SAVE_OVERWRITE Replace all existing pages with new ones.

IG_MPI_SAVE_APPEND Append new pages at the end of file.

IG_MPI_SAVE_INSERT Insert pages into the file at the specified index.

IG_MPI_SAVE_REPLACE Replace pages starting from the specified page index.

ImageGear Professional v18 for Mac | 1308

1.3.1.5.23 enumIGAlphaChannelType

This enumeration specifies what bit depth an alpha channel should have.

Values:

IG_ALPHA_CREATE_1 1 Bit.

IG_ALPHA_CREATE_8 8 Bits.

ImageGear Professional v18 for Mac | 1309

1.3.1.5.24 enumIGAlphaMode

Specifies Alpha channel loading modes.

Values:

IG_ALPHA_MODE_KEEP Load Alpha channel.

IG_ALPHA_MODE_IGNORE Ignore Alpha channel.

ImageGear Professional v18 for Mac | 1310

1.3.1.5.25 enumIGBatchOptions

Identifies the options for batch conversion.

Values:

IG_BATCH_MP_TO_MP Converts multi-page file to multi-page if the format supports this.

IG_BATCH_RECURSIVE Recursive conversion.

IG_BATCH_USE_SRC_NAME Converts file using its src name.

Remarks:

Batch Processing Defines

ImageGear Professional v18 for Mac | 1311

1.3.1.5.26 enumIGBiCompression

Identifies internal image storage formats used by ImageGear.

Values:

IG_BI_RGB RGB uncompressed image.

IG_BI_BITFIELDS This value has been deprecated and will be removed from the public API in a future release.

IG_BI_RLE RLE compressed 1-bit image.

IG_BI_CMYK CMYK uncompressed image.

IG_BI_ABIC This value has been deprecated and will be removed from the public API in a future release.

IG_BI_GRAYSCALE 9-16 bit grayscale uncompressed image.

IG_BI_PSEUDOCOLOR This value has been deprecated and will be removed from the public API in a future release.

IG_BI_EMPTY DIB image data has not been allocated.

IG_BI_EXT This value is used when converting HIGDIBINFO handle to the legacy AT_DIB structure, and
specifies that the DIB has some features which AT_DIB does not support.

Remarks:

Please see IG_image_compression_type_get for more information.

ImageGear Professional v18 for Mac | 1312

1.3.1.5.27 enumIGBitonalReductModes

This enumeration specifies types of bi-tonal color reduction.

Values:

IG_REDUCE_BITONAL_GRAYSCALE Grayscale.

IG_REDUCE_BITONAL_AVE AVE.

IG_REDUCE_BITONAL_WEIGHTED Weighted.

ImageGear Professional v18 for Mac | 1313

1.3.1.5.28 enumIGBlendModes

This enumeration specifies types of blending of two images.

Values:

IG_BLEND_OVER Blend the first image over the second image.

IG_BLEND_IN Blend the first image into the second image.

IG_BLEND_HELD_OUT The first image is held out by the second image.

IG_BLEND_LINEAR The first and second images are combined in a linear fashion.

ImageGear Professional v18 for Mac | 1314

1.3.1.5.29 enumIGBlurModes

This enumeration contains blur kernel sizes.

Values:

IG_BLUR_3 Kernel size 3.

IG_BLUR_5 Kernel size 5.

ImageGear Professional v18 for Mac | 1315

1.3.1.5.30 enumIGBMPTagIDs

Lists all BMP tag identifiers.

Values:

IGMDTAG_ID_BMP_FORMAT BMP metadata format identifier.

IGMDTAG_ID_BMP_SIZE Image size.

IGMDTAG_ID_BMP_WIDTH Image width.

IGMDTAG_ID_BMP_HEIGHT Image height.

IGMDTAG_ID_BMP_PLANES Number of color planes.

IGMDTAG_ID_BMP_BITCOUNT Image bit count.

IGMDTAG_ID_BMP_COMPRESSION Image compression type.

IGMDTAG_ID_BMP_XPELSPERMETER Horizontal resolution in pixels per meter.

IGMDTAG_ID_BMP_YPELSPERMETER Vertical resolution in pixels per meter.

IGMDTAG_ID_BMP_CLRUSED Number of color indexes in the color table that are actually used by
the bitmap.

IGMDTAG_ID_BMP_CLRIMPORTANT Number of color indexes required for displaying the bitmap.

IGMDTAG_ID_BMP_UNITS Type of units used to measure resolution (IBM OS/2 2.x).

IGMDTAG_ID_BMP_RECORDING Recording algorithm (IBM OS/2 2.x).

IGMDTAG_ID_BMP_RENDERING Halftoning algorithm used (IBM OS/2 2.x).

IGMDTAG_ID_BMP_SIZE1 Reserved for halftoning algorithm use (IBM OS/2 2.x).

IGMDTAG_ID_BMP_SIZE2 Reserved for halftoning algorithm use (IBM OS/2 2.x).

IGMDTAG_ID_BMP_COLORENCODING Color model used in bitmap (IBM OS/2 2.x).

IGMDTAG_ID_BMP_IDENTIFIER Reserved for application use (IBM OS/2 2.x).

IGMDTAG_ID_BMP_TYPE BMP format type.

IGMDTAG_ID_BMP_REDMASK Color mask that specifies the red component of each pixel. See
BITMAPV4HEADER structure description in the Windows GDI API
reference for more details.

IGMDTAG_ID_BMP_GREENMASK Color mask that specifies the green component of each pixel. See
BITMAPV4HEADER structure description in the Windows GDI API
reference for more details.

IGMDTAG_ID_BMP_BLUEMASK Color mask that specifies the blue component of each pixel. See
BITMAPV4HEADER structure description in the Windows GDI API
reference for more details.

IGMDTAG_ID_BMP_ALPHAMASK Color mask that specifies the Alpha component of each pixel. See
BITMAPV4HEADER structure description in the Windows GDI API
reference for more details.

IGMDTAG_ID_BMP_CSTYPE The color space of the DIB. See BITMAPV4HEADER structure
description in the Windows GDI API reference for more details.

IGMDTAG_ID_BMP_ENDPNTCOORDREDX This value has been deprecated and will be removed from the public
API in a future release.

IGMDTAG_ID_BMP_ENDPNTCOORDREDY This value has been deprecated and will be removed from the public
API in a future release.

IGMDTAG_ID_BMP_ENDPNTCOORDREDZ This value has been deprecated and will be removed from the public
API in a future release.

IGMDTAG_ID_BMP_ENDPNTCOORDGREENX This value has been deprecated and will be removed from the public
API in a future release.

IGMDTAG_ID_BMP_ENDPNTCOORDGREENY This value has been deprecated and will be removed from the public
API in a future release.

IGMDTAG_ID_BMP_ENDPNTCOORDGREENZ This value has been deprecated and will be removed from the public
API in a future release.

IGMDTAG_ID_BMP_ENDPNTCOORDBLUEX This value has been deprecated and will be removed from the public
API in a future release.

ImageGear Professional v18 for Mac | 1316

IGMDTAG_ID_BMP_ENDPNTCOORDBLUEY This value has been deprecated and will be removed from the public
API in a future release.

IGMDTAG_ID_BMP_ENDPNTCOORDBLUEZ This value has been deprecated and will be removed from the public
API in a future release.

IGMDTAG_ID_BMP_GAMMARED Tone response curve for red. See BITMAPV4HEADER structure
description in the Windows GDI API reference for more details.

IGMDTAG_ID_BMP_GAMMAGREEN Tone response curve for green. See BITMAPV4HEADER structure
description in the Windows GDI API reference for more details.

IGMDTAG_ID_BMP_GAMMABLUE Tone response curve for blue. See BITMAPV4HEADER structure
description in the Windows GDI API reference for more details.

IGMDTAG_ID_BMP_ENDPNTCOORDS CIEXYZ coordinates of the red, green and blue endpoints. See
BITMAPV4HEADER structure description in the Windows GDI API
reference for more details.

ImageGear Professional v18 for Mac | 1317

1.3.1.5.31 enumIGBTRTagIDs

Lists all BTR tag identifiers.

Values:

IGMDTAG_ID_BTR_FORMAT BTR metadata format identifier.

IGMDTAG_ID_BTR_MANUFACTURER Manufacturer value.

IGMDTAG_ID_BTR_VERSION Version value.

IGMDTAG_ID_BTR_IMAGETYPE Image type.

IGMDTAG_ID_BTR_HORZRES Horizontal resolution.

IGMDTAG_ID_BTR_VERTRES Vertical resolution.

IGMDTAG_ID_BTR_BITSPERPIXEL Bits per pixel.

IGMDTAG_ID_BTR_PIXELSPERLINE Pixels per line.

IGMDTAG_ID_BTR_STORAGEFMT Storage format.

IGMDTAG_ID_BTR_TRANSFMT Trans format.

IGMDTAG_ID_BTR_PREVPAGE Previous page.

IGMDTAG_ID_BTR_NEXTPAGE Next page.

IGMDTAG_ID_BTR_NUMLINES Number of lines.

ImageGear Professional v18 for Mac | 1318

1.3.1.5.32 enumIGCALTagIDs

Lists all CAL tag identifiers.

Values:

IGMDTAG_ID_CAL_FORMAT CAL metadata format identifier.

IGMDTAG_ID_CAL_SPECVERSION Spec version.

IGMDTAG_ID_CAL_SRCDOCID Source system document identifier.

IGMDTAG_ID_CAL_DSTDOCID Destination system document identifier.

IGMDTAG_ID_CAL_TXTFILID Text file identifier. This record contains a string indicating the document page that
this image page contains.

IGMDTAG_ID_CAL_FIGID Figure or table identifier. This is the number by which the image page figure is
referenced.

IGMDTAG_ID_CAL_RTYPE Raster data type. This is the format of raster image data that follows the header
record data block in this file.

IGMDTAG_ID_CAL_RORIENT Raster image orientation.

IGMDTAG_ID_CAL_RPELCNT Raster image pel count.

IGMDTAG_ID_CAL_RDENSITY Raster image density.

IGMDTAG_ID_CAL_SRCGPH Source system graphics filename.

IGMDTAG_ID_CAL_DOCCLS Document security label.

IGMDTAG_ID_CAL_FOSIPUBID PUBLIC identifier of an associated FOSI.

IGMDTAG_ID_CAL_NOTES Notes information that is not applicable to any of the other records in the CALS
raster file header.

ImageGear Professional v18 for Mac | 1319

1.3.1.5.33 enumIGCIFFCanonCameraSettingsTagIDs

Lists all CIFF Canon Camera Settings tag identifiers.

Values:

IGMDTAG_ID_CIFF_CAMERA_MACRO_MODE Macro mode.

IGMDTAG_ID_CIFF_CAMERA_SELF_TIMER Self-timer value.

IGMDTAG_ID_CIFF_CAMERA_QUALITY Quality setting.

IGMDTAG_ID_CIFF_CAMERA_CANON_FLASH_MODE Canon flash mode.

IGMDTAG_ID_CIFF_CAMERA_CONTINUOUS_DRIVE Continuous drive.

IGMDTAG_ID_CIFF_CAMERA_FOCUS_MODE Focus mode.

IGMDTAG_ID_CIFF_CAMERA_CANON_IMAGE_SIZE Canon image size.

IGMDTAG_ID_CIFF_CAMERA_EASY_MODE Easy mode.

IGMDTAG_ID_CIFF_CAMERA_DIGITAL_ZOOM Digital zoom.

IGMDTAG_ID_CIFF_CAMERA_CONTRAST Contrast setting.

IGMDTAG_ID_CIFF_CAMERA_SATURATION Saturation setting.

IGMDTAG_ID_CIFF_CAMERA_SHARPNESS Sharpness setting.

IGMDTAG_ID_CIFF_CAMERA_ISO Camera ISO.

IGMDTAG_ID_CIFF_CAMERA_METERING_MODE Metering mode.

IGMDTAG_ID_CIFF_CAMERA_FOCUS_TYPE Focus type.

IGMDTAG_ID_CIFF_CAMERA_AFPOINT AF point setting.

IGMDTAG_ID_CIFF_CAMERA_CANON_EXPOSURE_MODE Canon exposure mode.

IGMDTAG_ID_CIFF_CAMERA_LENS_TYPE Lens type.

IGMDTAG_ID_CIFF_CAMERA_LONG_FOCAL Long focal.

IGMDTAG_ID_CIFF_CAMERA_SHORT_FOCAL Short focal.

IGMDTAG_ID_CIFF_CAMERA_FOCAL_UNITS Focal units.

IGMDTAG_ID_CIFF_CAMERA_FLASH_ACTIVITY Flash activity.

IGMDTAG_ID_CIFF_CAMERA_FLASH_BITS Flash bits.

IGMDTAG_ID_CIFF_CAMERA_FOCUS_CONTINUOUS Focus continuous.

IGMDTAG_ID_CIFF_CAMERA_ZOOMED_RESOLUTION Zoomed resolution.

IGMDTAG_ID_CIFF_CAMERA_ZOOMED_RESOLUTION_BASE Zoomed resolution base.

IGMDTAG_ID_CIFF_CAMERA_COLOR_TONE Color tone.

ImageGear Professional v18 for Mac | 1320

1.3.1.5.34 enumIGCIFFFocalLengthTagIDs

Lists all CIFF Focal Length tag identifiers.

Values:

IGMDTAG_ID_CIFF_FOCAL_LENGTH_LENGTH Focal length.

IGMDTAG_ID_CIFF_FOCAL_LENGTH_PLANE_XSIZE Focal plane X size.

IGMDTAG_ID_CIFF_FOCAL_LENGTH_PLANE_YSIZE Focal plane Y size.

ImageGear Professional v18 for Mac | 1321

1.3.1.5.35 enumIGCIFFImageInfoTagIDs

Lists all CIFF Image Info tag identifiers.

Values:

IGMDTAG_ID_CIFF_IMAGE_INFO_WIDTH Width CIFF image Info.

IGMDTAG_ID_CIFF_IMAGE_INFO_HEIGHT Height CIFF image Info.

IGMDTAG_ID_CIFF_IMAGE_INFO_PIXEL_ASPECT_RATIO Pixel aspect ratio.

IGMDTAG_ID_CIFF_IMAGE_INFO_ROTATION Rotation CIFF image Info.

IGMDTAG_ID_CIFF_IMAGE_INFO_COMPONENT_BIT_DEPTH Component bit depth.

IGMDTAG_ID_CIFF_IMAGE_INFO_COLOR_BIT_DEPTH Color bit depth.

IGMDTAG_ID_CIFF_IMAGE_INFO_COLOR_BW Color BW information.

ImageGear Professional v18 for Mac | 1322

1.3.1.5.36 enumIGCIFFPictureInfoTagIDs

Lists all CIFF Picture Info tag identifiers.

Values:

IGMDTAG_ID_CIFF_PICTURE_IMAGE_WIDTH Canon image width.

IGMDTAG_ID_CIFF_PICTURE_IMAGE_HEIGHT Canon image height.

IGMDTAG_ID_CIFF_PICTURE_IMAGE_WIDTH_AS_SHOT AF image width.

IGMDTAG_ID_CIFF_PICTURE_IMAGE_HEIGHT_AS_SHOT AF image height.

IGMDTAG_ID_CIFF_PICTURE_AFPOINTS_USED AF points used.

ImageGear Professional v18 for Mac | 1323

1.3.1.5.37 enumIGCIFFShotInfoTagIDs

Lists all CIFF Shot Info tag identifiers.

Values:

IGMDTAG_ID_CIFF_SHOT_ISO Base ISO value.

IGMDTAG_ID_CIFF_SHOT_EXPOSURE_COMPENSATION Exposure compensation.

IGMDTAG_ID_CIFF_SHOT_WHITE_BALANCE White balance.

IGMDTAG_ID_CIFF_SHOT_SEQUENCE_NUMBER Sequence number.

IGMDTAG_ID_CIFF_SHOT_IXUS_AFPOINT Ixus AF point.

IGMDTAG_ID_CIFF_SHOT_FLASH_EXPOSURE_COMP Flash exposure comp.

IGMDTAG_ID_CIFF_SHOT_AUTO_EXPOSURE_BRACKETING Auto exposure bracketing.

IGMDTAG_ID_CIFF_SHOT_AEBBRACKET_VALUE AEB bracket value.

IGMDTAG_ID_CIFF_SHOT_FOCUS_DISTANCE_UPPER Focus distance upper.

IGMDTAG_ID_CIFF_SHOT_FOCUS_DISTANCE_LOWER Focus distance lower.

IGMDTAG_ID_CIFF_SHOT_FNUMBER F number value.

IGMDTAG_ID_CIFF_SHOT_EXPOSURE_TIME Exposure time.

IGMDTAG_ID_CIFF_SHOT_BULB_DURATION Bulb duration.

IGMDTAG_ID_CIFF_SHOT_AUTO_ROTATE Auto rotate.

IGMDTAG_ID_CIFF_SHOT_SELF_TIMER2 Self-timer 2.

ImageGear Professional v18 for Mac | 1324

1.3.1.5.38 enumIGCIFFTagIDs

Lists all CIFF tag identifiers.

Values:

IGMDTAG_ID_CIFF_FORMAT CIFF metadata format identifier.

IGMDTAG_ID_CIFF_NULL_RECORD Null record.

IGMDTAG_ID_CIFF_FREE_BYTES Free bytes.

IGMDTAG_ID_CIFF_CANON_COLOR_INFO1 Canon color info 1.

IGMDTAG_ID_CIFF_CANON_FILE_DESCRIPTION Canon file description.

IGMDTAG_ID_CIFF_USER_COMMENT User comment.

IGMDTAG_ID_CIFF_CANON_RAW_MAKE_MODEL Canon raw make model.

IGMDTAG_ID_CIFF_CANON_FIRMWARE_VERSION Canon firmware version.

IGMDTAG_ID_CIFF_COMPONENT_VERSION Component version.

IGMDTAG_ID_CIFF_ROM_OPERATION_MODE ROM operation mode.

IGMDTAG_ID_CIFF_OWNER_NAME Owner name.

IGMDTAG_ID_CIFF_CANON_IMAGE_TYPE Canon image type.

IGMDTAG_ID_CIFF_ORIGINAL_FILE_NAME Original file name.

IGMDTAG_ID_CIFF_THUMBNAIL_FILE_NAME Thumbnail file name.

IGMDTAG_ID_CIFF_TARGET_IMAGE_TYPE Target image type.

IGMDTAG_ID_CIFF_SHUTTER_RELEASE_METHOD Shutter release method.

IGMDTAG_ID_CIFF_SHUTTER_RELEASE_TIMING Shutter release timing.

IGMDTAG_ID_CIFF_RELEASE_SETTING Release setting.

IGMDTAG_ID_CIFF_BASE_ISO Base ISO number.

IGMDTAG_ID_CIFF_FOCAL_LENGTH Focal length.

IGMDTAG_ID_CIFF_CANON_SHOT_INFO Canon shot info.

IGMDTAG_ID_CIFF_CANON_COLOR_INFO2 Canon color info 2.

IGMDTAG_ID_CIFF_CANON_CAMERA_SETTINGS Canon camera settings.

IGMDTAG_ID_CIFF_WHITE_SAMPLE White sample.

IGMDTAG_ID_CIFF_SENSOR_INFO Sensor info.

IGMDTAG_ID_CIFF_CANON_CUSTOM_FUNCTIONS Canon custom functions.

IGMDTAG_ID_CIFF_CANON_PICTURE_INFO Canon picture info.

IGMDTAG_ID_CIFF_WHITE_BALANCE_TABLE White balance table.

IGMDTAG_ID_CIFF_COLOR_TEMPERATURE Color temperature.

IGMDTAG_ID_CIFF_COLOR_SPACE Color space.

IGMDTAG_ID_CIFF_IMAGE_FORMAT Image format.

IGMDTAG_ID_CIFF_RECORD_ID Record ID.

IGMDTAG_ID_CIFF_SELF_TIMER_TIME Self timer time.

IGMDTAG_ID_CIFF_TARGET_DISTANCE_SETTING Target distance setting.

IGMDTAG_ID_CIFF_SERIAL_NUMBER Serial number.

IGMDTAG_ID_CIFF_TIME_STAMP Time stamp.

IGMDTAG_ID_CIFF_IMAGE_INFO Image info.

IGMDTAG_ID_CIFF_FLASH_INFO Flash info.

IGMDTAG_ID_CIFF_MEASURED_EV Measured EV.

IGMDTAG_ID_CIFF_FILE_NUMBER File number.

IGMDTAG_ID_CIFF_EXPOSURE_INFO Exposure info.

IGMDTAG_ID_CIFF_DECODER_TABLE Decoder table.

ImageGear Professional v18 for Mac | 1325

IGMDTAG_ID_CIFF_RAW_DATA The raw data.

IGMDTAG_ID_CIFF_JPG_FROM_RAW Jpg from raw.

IGMDTAG_ID_CIFF_THUMBNAIL_IMAGE Thumbnail image.

IGMDTAG_ID_CIFF_IMAGE_DESCRIPTION Image description.

IGMDTAG_ID_CIFF_CAMERA_OBJECT Camera object.

IGMDTAG_ID_CIFF_SHOOTING_RECORD Shooting record.

IGMDTAG_ID_CIFF_MEASURED_INFO Measured info.

IGMDTAG_ID_CIFF_CAMERA_SPECIFICATION Camera specification.

IGMDTAG_ID_CIFF_IMAGE_PROPS Image props.

IGMDTAG_ID_CIFF_EXIF_INFORMATION Exif information.

ImageGear Professional v18 for Mac | 1326

1.3.1.5.39 enumIGCLPTagIDs

Lists all CLP tag identifiers.

Values:

IGMDTAG_ID_CLP_FORMAT CLP metadata format identifier.

IGMDTAG_ID_CLP_FILE_ID File magic id value.

IGMDTAG_ID_CLP_FORMAT_COUNT Format count.

ImageGear Professional v18 for Mac | 1327

1.3.1.5.40 enumIGColorChannels

Specifies color components (channels).

Values:

IG_COLOR_COMP_ALL All components.

IG_COLOR_COMP_R R component of RGB color space.

IG_COLOR_COMP_G G component of RGB color space.

IG_COLOR_COMP_B B component of RGB color space.

IG_COLOR_COMP_RGB R, G, B components of RGB color space.

IG_COLOR_COMP_I I component of indexed RGB color space.

IG_COLOR_COMP_C C component of CMYK color space.

IG_COLOR_COMP_M M component of CMYK color space.

IG_COLOR_COMP_Y Y component of CMYK color space.

IG_COLOR_COMP_K K component of CMYK color space.

IG_COLOR_COMP_CMYK C, M, Y, K components of CMYK color space.

IG_COLOR_COMP_YUV_Y Y component of YUV color space.

IG_COLOR_COMP_YUV_U U component of YUV color space.

IG_COLOR_COMP_YUV_V V component of YUV color space.

IG_COLOR_COMP_YUV Y, U, V components of YUV color space.

IG_COLOR_COMP_LAB_L L component of LAB color space.

IG_COLOR_COMP_LAB_A A component of LAB color space.

IG_COLOR_COMP_LAB_B B component of LAB color space.

IG_COLOR_COMP_LAB L, A, B components of LAB color space.

IG_COLOR_COMP_IHS_I I component of IHS color space.

IG_COLOR_COMP_IHS_H H component of IHS color space.

IG_COLOR_COMP_IHS_S S component of IHS color space.

IG_COLOR_COMP_IHS I, H, S components of IHS color space.

IG_COLOR_COMP_HLS_H H component of HLS color space.

IG_COLOR_COMP_HLS_L L component of HLS color space.

IG_COLOR_COMP_HLS_S S component of HLS color space.

IG_COLOR_COMP_HLS H, L, S component of HLS color space.

IG_COLOR_COMP_HSL_H This value has been deprecated and will be removed from the public API in a future
release. Please use IG_COLOR_COMP_HLS_H instead.

IG_COLOR_COMP_HSL_S This value has been deprecated and will be removed from the public API in a future
release. Please use IG_COLOR_COMP_HLS_S instead.

IG_COLOR_COMP_HSL_L This value has been deprecated and will be removed from the public API in a future
release. Please use IG_COLOR_COMP_HLS_L instead.

IG_COLOR_COMP_HSL This value has been deprecated and will be removed from the public API in a future
release. Please use IG_COLOR_COMP_HLS instead.

ImageGear Professional v18 for Mac | 1328

1.3.1.5.41 enumIGColorProfileGroups

Identifies a color profile group of the requested color profile.

Values:

IG_CP_GRP_WORKING WCP (Working Color Profile). This group of color profiles provides information about the
default color global parameters used to represent the color data for HIGEAR objects. Those
global parameters are used if the image does not have a local color profile associated with it.

IG_CP_GRP_IMPORT ICP (Import Color Profile). This group of profiles is used during a filter load operation.

IG_CP_GRP_EXPORT ECP (Export Color Profile). This group of profiles is very similar to ICP but is used in the filter
export operation.

ImageGear Professional v18 for Mac | 1329

1.3.1.5.42 enumIGColorSpaceIDs

Identifies a color space ID. This ID is a bit field which can combine multiple values from enumIGColorSpaceIDs. It can be
made up of one, two, or three components. It must describe the color space (RGB, CMYK, grayscale, etc). It may also
indicate that a type of alpha channel is present (alpha, pre-multiplied alpha) and/or the presence of one or more extra
channels. For example:

IG_COLOR_SPACE_ID_RGB - RGB with no alpha or extra channels.

IG_COLOR_SPACE_ID_Gy Or IG_COLOR_SPACE_ID_A - grayscale with an alpha channel.

IG_COLOR_SPACE_ID_RGB Or IG_COLOR_SPACE_ID_P Or IG_COLOR_SPACE_ID_Ex - RGB with a pre-multiplied alpha
channel and one or more extra channels.

Values:

IG_COLOR_SPACE_ID_None No regular (color) channels, can be combined with alpha and extra values.

IG_COLOR_SPACE_ID_RGB RGB.

IG_COLOR_SPACE_ID_Gy Grayscale (intensity).

IG_COLOR_SPACE_ID_I Indexed RGB.

IG_COLOR_SPACE_ID_IHS IHS.

IG_COLOR_SPACE_ID_HLS HLS.

IG_COLOR_SPACE_ID_LAB LAB.

IG_COLOR_SPACE_ID_YIQ YIQ.

IG_COLOR_SPACE_ID_CMY CMY.

IG_COLOR_SPACE_ID_CMYK CMYK.

IG_COLOR_SPACE_ID_YCbCr YCbCr.

IG_COLOR_SPACE_ID_YUV YUV.

IG_COLOR_SPACE_ID_XYZ For internal use only. CIE XYZ.

IG_COLOR_SPACE_ID_LAST Equal to last color space (for color channels) enum value.

IG_COLOR_SPACE_ID_ColorMask Bit mask used to access color space (for color channels) only.

IG_COLOR_SPACE_ID_A Indicates presence of an alpha channel.

IG_COLOR_SPACE_ID_P Indicates presence of a pre-multiplied alpha channel.

IG_COLOR_SPACE_ID_Ex Indicates presence of one or more extra channels.

IG_COLOR_SPACE_ID_RGBA RGB with alpha channel.

IG_COLOR_SPACE_ID_RGBPA RGB with pre-multiplied alpha channel.

IG_COLOR_SPACE_ID_GyA Intensity with alpha channel.

IG_COLOR_SPACE_ID_GyPA Intensity with pre-multiplied alpha channel.

IG_COLOR_SPACE_ID_RGBAEx RGB with alpha and extra channels.

IG_COLOR_SPACE_ID_RGBPAEx RGB with pre-multiplied alpha and extra channels.

IG_COLOR_SPACE_ID_Unknown Unknown - no color or alpha channels, only extra channels are present.

IG_COLOR_SPACE_ID_HSL HSL.

ImageGear Professional v18 for Mac | 1330

1.3.1.5.43 enumIGColorSpaces

Identifies the different color spaces.

Values:

IG_COLOR_SPACE_RGB RGB.

IG_COLOR_SPACE_I Intensity.

IG_COLOR_SPACE_IHS IHS.

IG_COLOR_SPACE_HLS HLS.

IG_COLOR_SPACE_Lab Lab.

IG_COLOR_SPACE_YIQ YIQ.

IG_COLOR_SPACE_CMY CMY.

IG_COLOR_SPACE_CMYK CMYK.

IG_COLOR_SPACE_YCrCb YCrCb.

IG_COLOR_SPACE_YUV YUV.

IG_COLOR_SPACE_MONO FlashPix only: 8-bit grayscale.

IG_COLOR_SPACE_ALPHA FlashPix only: 8-bit alpha.

IG_COLOR_SPACE_MA FlashPix only: 16-bit: mono + alpha.

IG_COLOR_SPACE_AM FlashPix only: 16-bit: alpha + mono.

IG_COLOR_SPACE_RGBA FlashPix only: 32-bit: RGB + alpha.

IG_COLOR_SPACE_ARGB FlashPix only: 32-bit: alpha + RGB.

IG_COLOR_SPACE_YCC FlashPix only: 24-bit: photoYCC.

IG_COLOR_SPACE_YCCA FlashPix only: 32-bit: photoYCC + alpha..

IG_COLOR_SPACE_AYCC FlashPix only: 32-bit: alpha + photoYCC.

IG_COLOR_SPACE_UNKNOWN FlashPix only: unknown or invalid color space.

IG_COLOR_SPACE_NOCHANGE FlashPix only: current color space.

IG_COLOR_SPACE_HSL HSL.

ImageGear Professional v18 for Mac | 1331

1.3.1.5.44 enumIGCompressions

Identifies the different format compression schemes.

Values:

IG_COMPRESSION_NONE No compression.

IG_COMPRESSION_PACKED_BITS Packed bits compression.

IG_COMPRESSION_HUFFMAN Huffman encoding.

IG_COMPRESSION_CCITT_G3 CCITT Group 3.

IG_COMPRESSION_CCITT_G4 CCITT Group 4.

IG_COMPRESSION_CCITT_G32D CCITT Group 3 2D.

IG_COMPRESSION_JPEG JPEG compression.

IG_COMPRESSION_RLE Run length encoding.

IG_COMPRESSION_LZW LZW compression.

IG_COMPRESSION_ABIC_BW IBM ABIC compression.

IG_COMPRESSION_ABIC_GRAY IBM ABIC compression.

IG_COMPRESSION_JBIG IBM JBIG compression.

IG_COMPRESSION_FPX_SINCOLOR Single color compression.

IG_COMPRESSION_FPX_NOCHANGE Save with the same compression as loaded.

IG_COMPRESSION_DEFLATE Deflate compression.

IG_COMPRESSION_IBM_MMR IBM MMR compression.

IG_COMPRESSION_ABIC IBM ABIC compression.

IG_COMPRESSION_PROGRESSIVE Progressive compression (Progressive JPEG and may be PNG in future).

IG_COMPRESSION_EQPC PowerSDK EQPC(Wavelet) compression.

IG_COMPRESSION_JBIG2 Reserved for future use.

IG_COMPRESSION_LURAWAVE This value has been deprecated and will be removed from the public API in a
future release.

IG_COMPRESSION_LURADOC This value has been deprecated and will be removed from the public API in a
future release.

IG_COMPRESSION_LURAJP2 This value has been deprecated and will be removed from the public API in a
future release.

IG_COMPRESSION_ASCII Image data is converted to ASCII text.

IG_COMPRESSION_RAW Image data is stored directory in binary raw format.

IG_COMPRESSION_JPEG2K JPEG2K compression.

IG_COMPRESSION_HDP HD Photo compression.

ImageGear Professional v18 for Mac | 1332

1.3.1.5.45 enumIGContrastModes

This enumeration specifies contrast adjustment modes.

Values:

IG_CONTRAST_PALETTE Alter image palette.

IG_CONTRAST_PIXEL Alter image pixels.

IG_CONTRAST_AUTO If the image is indexed, alter palette, otherwise alter pixels.

ImageGear Professional v18 for Mac | 1333

1.3.1.5.46 enumIGConversionCommands

Identifies the commands for file conversion.

Values:

IG_CONVERT_NONE Convert with no processing.

IG_CONVERT_ROTATE_90 Convert with rotating to 90 degrees.

IG_CONVERT_ROTATE_180 Convert with rotating to 180 degrees.

IG_CONVERT_ROTATE_270 Convert with rotating to 270 degrees.

IG_CONVERT_FLIP_HORIZONTAL Convert with flipping horizontal.

IG_CONVERT_FLIP_VERTICAL Convert with flipping vertical.

IG_CONVERT_TRANSPOSE Convert and transpose.

IG_CONVERT_TRANSVERSE Convert and transverse.

ImageGear Professional v18 for Mac | 1334

1.3.1.5.47 enumIGConversionOptions

Identifies the options for file conversion.

Values:

IG_CONVERT_OPTION_TRIM Trims image dimensions to a multiple of DCT size.

ImageGear Professional v18 for Mac | 1335

1.3.1.5.48 enumIGConvolutionResults

This enumeration specifies types of convolution result.

Values:

IG_CONV_RESULT_RAW The result is stored as is.

IG_CONV_RESULT_ABS The absolute value of the signed result is stored.

IG_CONV_RESULT_8BIT_SIGNED The result is stored as 8-bit signed values.

IG_CONV_RESULT_SIGN_CENTERED The result is stored as 8-bit signed, but 0 is equal to 0x7F. Positive numbers are
from 0x7E to 0x00. Negative numbers are from 0x80 to 0xFF. This is used for
images that are to be used as background tiles or watermarks.

ImageGear Professional v18 for Mac | 1336

1.3.1.5.49 enumIGCursorType

These values are used to specify the type of cursor that is displayed under the mouse tracking over the magnifier
window.

Values:

IG_GUI_CURSOR_NONE No cursor.

IG_GUI_CURSOR_APPSTARTING Standard arrow and small hourglass.

IG_GUI_CURSOR_ARROW Standard arrow.

IG_GUI_CURSOR_CROSS Crosshair.

IG_GUI_CURSOR_HAND Hand (Windows 98/Me, Windows 2000/XP).

IG_GUI_CURSOR_HELP Arrow and question mark.

IG_GUI_CURSOR_IBEAM I-beam.

IG_GUI_CURSOR_NO Slashed circle.

IG_GUI_CURSOR_SIZEALL Four-pointed arrow pointing North, South, East, and West.

IG_GUI_CURSOR_SIZENESW Double-pointed arrow pointing North-East and South-West.

IG_GUI_CURSOR_SIZENS Double-pointed arrow pointing North and South.

IG_GUI_CURSOR_SIZENWSE Double-pointed arrow pointing North-West and South-East.

IG_GUI_CURSOR_SIZEWE Double-pointed arrow pointing West and East.

IG_GUI_CURSOR_UPARROW Vertical arrow.

IG_GUI_CURSOR_WAIT Hourglass.

ImageGear Professional v18 for Mac | 1337

1.3.1.5.50 enumIGCUTTagIDs

Lists all CUT tag identifiers.

Values:

IGMDTAG_ID_CUT_FORMAT CUT metadata format identifier.

IGMDTAG_ID_CUT_WIDTH Image width.

IGMDTAG_ID_CUT_HEIGHT Image height.

IGMDTAG_ID_CUT_RESERVED Reserved value.

ImageGear Professional v18 for Mac | 1338

1.3.1.5.51 enumIGDCRAWTagIDs

Lists all Digital Camera RAW tag identifiers.

Values:

IGMDTAG_ID_DCRAW_FORMAT DCRAW metadata format identifier.

IGMDTAG_ID_DCRAW_COMMON Common metadata section.

IGMDTAG_ID_DCRAW_IMAGEWIDTH Image width.

IGMDTAG_ID_DCRAW_IMAGEHEIGHT Image height.

IGMDTAG_ID_DCRAW_BITSPERSAMPLE Bits per sample.

IGMDTAG_ID_DCRAW_PHOTOMETRICINTERPRETATION Photometric interpretation.

IGMDTAG_ID_DCRAW_SAMPLESPERPIXEL Samples per pixel.

IGMDTAG_ID_DCRAW_UNIQUECAMERAMODEL Unique camera model.

IGMDTAG_ID_DCRAW_MAKE Camera producer.

IGMDTAG_ID_DCRAW_MODEL Camera model.

IGMDTAG_ID_DCRAW_TIMESTAMP Time stamp.

IGMDTAG_ID_DCRAW_CFAREPEATPATTERNDIM CFA repeat pattern dim.

IGMDTAG_ID_DCRAW_CFAPATTERN CFA pattern.

IGMDTAG_ID_DCRAW_BLACKLEVELREPEATDIM Black level repeat dim.

IGMDTAG_ID_DCRAW_BLACKLEVEL Black level.

IGMDTAG_ID_DCRAW_ASSHOTNEUTRAL As shot neutral.

IGMDTAG_ID_DCRAW_STATISTICS Statistics metadata section.

IGMDTAG_ID_DCRAW_WHITELEVEL White level.

IGMDTAG_ID_DCRAW_CALIBRATIONILLUMINANT1 Calibration illuminant 1.

IGMDTAG_ID_DCRAW_CALIBRATIONILLUMINANT2 Calibration illuminant 2.

IGMDTAG_ID_DCRAW_COLORMATRIX1 Color matrix 1.

IGMDTAG_ID_DCRAW_COLORMATRIX2 Color matrix 2.

IGMDTAG_ID_DCRAW_BASELINEEXPOSURE Baseline exposure.

ImageGear Professional v18 for Mac | 1339

1.3.1.5.52 enumIGDCXTagIDs

Lists all DCX tag identifiers.

Values:

IGMDTAG_ID_DCX_FORMAT DCX metadata format identifier.

IGMDTAG_ID_DCX_MAGIC Magic value.

IGMDTAG_ID_DCX_PAGE_LIST Page list.

ImageGear Professional v18 for Mac | 1340

1.3.1.5.53 enumIGDepthChangeMode

Identifies modes used for changing channel depths of an image.

Values:

IG_DEPTH_CHANGE_NO_SCALE Changes channel depth without scaling of channel values. This results in unchanged
channel values (if the new depth is large enough to accommodate the values). The
image will likely change in appearance using this option.

IG_DEPTH_CHANGE_SCALE Changes channel depth with scaling of channel values. This causes channel values to
be scaled so that the ratio of new channel value to new channel depth is as close as
possible to the ratio of old channel value to old channel depth. The image will likely
maintain the same appearance using this option, unless channel depths are reduced
too much to maintain accuracy.

ImageGear Professional v18 for Mac | 1341

1.3.1.5.54 enumIGDIBExportFormats

Identifies DIB format to be used for a DIB export operation.

Values:

IG_DIB_EXPORT_FORMAT_WINDOWS Export DIB in standard Windows DIB format. 9-16bpp grayscale images
cannot be exported in this format. CMYK images will be exported as 24bpp
RGB.

IG_DIB_EXPORT_FORMAT_IG_LEGACY Export DIB in ImageGear legacy format. In this format, DIB compression can
be IG_BI_GRAYSCALE for 9-16bpp grayscale, in which case the DIB bit depth
will be the actual bit depth from 9 to 16. Also, DIB compression can be
IG_BI_CMYK for CMYK images, in which case the DIB bit depth will be 32.

ImageGear Professional v18 for Mac | 1342

1.3.1.5.55 enumIGDirections

This enumeration contains general purpose compass directions.

Values:

IG_COMPASS_N North.

IG_COMPASS_NE North-East.

IG_COMPASS_E East.

IG_COMPASS_SE South-East.

IG_COMPASS_S South.

IG_COMPASS_SW South-West.

IG_COMPASS_W West.

IG_COMPASS_NW North-West.

ImageGear Professional v18 for Mac | 1343

1.3.1.5.56 enumIGDsplAliasModes

Identifies image anti-aliasing modes.

IG_DSPL_ANTIALIAS_PRESERVE_BLACK, IG_DSPL_ANTIALIAS_PRESERVE_WHITE, and
IG_DSPL_ANTIALIAS_SCALE_TO_GRAY are mutually exclusive.

Values:

IG_DSPL_ANTIALIAS_COLOR Enables anti-aliasing for downscaled display of non-bi-tonal images.

IG_DSPL_ANTIALIAS_NONE Anti-aliasing is disabled.

IG_DSPL_ANTIALIAS_PRESERVE_BLACK Directs ImageGear to preserve black pixels when drawing. Only applicable to
downscaled display of bi-tonal images.

IG_DSPL_ANTIALIAS_PRESERVE_WHITE Directs ImageGear to preserve white pixels when drawing. Only applicable
to downscaled display of bi-tonal images.

IG_DSPL_ANTIALIAS_RESAMPLE_BILINE Enables bi-linear interpolation for upscaled display.

IG_DSPL_ANTIALIAS_SCALE_TO_GRAY Directs ImageGear to use scale to gray algorithm. Only applicable to
downscaled display of bi-tonal images. The image is rendered as 4 bits per
pixel grayscale.

IG_DSPL_ANTIALIAS_SUBSAMPLE Directs ImageGear to use sub-sampling during anti-alias scaling. The output
quality is higher and the display speed is considerably faster. Only applicable
to downscaled display of bi-tonal images.

ImageGear Professional v18 for Mac | 1344

1.3.1.5.57 enumIGDsplAlignModes

Identifies the different types of image display alignment modes, i.e., identifies how the displayed image is aligned
relative to the device rectangle.

Values:

IG_DSPL_ALIGN_X_LEFT The image is aligned to the left border of the device rectangle.

IG_DSPL_ALIGN_X_CENTER The image is centered horizontally.

IG_DSPL_ALIGN_X_RIGHT The image is aligned to the right border of the device rectangle.

IG_DSPL_ALIGN_Y_LEFT The image is aligned to the top border of the device rectangle.

IG_DSPL_ALIGN_Y_CENTER The image is centered vertically.

IG_DSPL_ALIGN_Y_RIGHT The image is aligned to the bottom border of the device rectangle.

ImageGear Professional v18 for Mac | 1345

1.3.1.5.58 enumIGDsplAspectModes

Identifies the different types of image's display aspect ratio (i.e., width-to-height ratio).

Values:

IG_DSPL_ASPECT_FIXED Aspect ratio is the one specified by Aspect Value parameter.

IG_DSPL_ASPECT_NOT_FIXED Aspect ratio is the one of the device rectangle.

ImageGear Professional v18 for Mac | 1346

1.3.1.5.59 enumIGDsplBackgroundModes

Identifies the different modes of image background drawing.

Values:

IG_DSPL_BACKGROUND_NONE The background is disabled, and ImageGear does not fill this area.

IG_DSPL_BACKGROUND_UNDER_IMAGE The image's transparent pixels are drawn with current background color
and background brush. The area outside of Displayed Image Rectangle is
not affected.

IG_DSPL_BACKGROUND_BEYOND_IMAGE The transparent pixels that are outside of Displayed Image Rectangle are
drawn with current background color and background brush.

IG_DSPL_BACKGROUND_EVERYWHERE The background is under the image and beyond the image.

ImageGear Professional v18 for Mac | 1347

1.3.1.5.60 enumIGDsplContrastFlags

Identifies the different color components of RGB color.

Values:

IG_DSPL_R_CHANNEL Red color component.

IG_DSPL_G_CHANNEL Green color component.

IG_DSPL_B_CHANNEL Blue color component.

IG_DSPL_ALL_CHANNELS An "OR" combination of 3 flags above; identifies all 3 color components.

ImageGear Professional v18 for Mac | 1348

1.3.1.5.61 enumIGDsplDitheringModes

Identifies dithering modes and flags.

Values:

IG_DSPL_DITHER_AUTO Destination device color resolution should be used for dithering. In this mode
ImageGear automatically applies dithering only when it is necessary.

IG_DSPL_DITHER_TO_8BPP Forces ImageGear to assume that the output device is 8 bits per pixel and
perform the necessary dithering.

IG_DSPL_DITHER_TO_4BPP Forces ImageGear to assume that the output device is 4 bits per pixel and
perform the necessary dithering.

IG_DSPL_DITHER_TO_1BPP Forces ImageGear to assume that the output device is 1 bit per pixel and
perform the necessary dithering.

IG_DSPL_DITHER_NONE Disables ImageGear's dithering. In this mode dithering is performed by the
operating system or the device driver.

IG_DSPL_DITHER_MODE Bit mask for dithering modes.

IG_DSPL_DITHER_FIXED_PALETTE Dithering flag. ImageGear will try to use the standard palette when
performing dithering. This may be useful if the output device contains more
than one image and by using this flag it is possible to draw images with the
same palette.

IG_DSPL_DITHER_NETSCAPE_PALETTE Dithering flag. Applicable only if the output device is 8 bits per pixel. It
directs ImageGear to use the 216 entries of Netscape palette.

ImageGear Professional v18 for Mac | 1349

1.3.1.5.62 enumIGDsplFitModes

Identifies how an image fits into the device rectangle.

Values:

IG_DSPL_FIT_TO_DEVICE The image is scaled to fit both the width and height of the device rectangle.

IG_DSPL_FIT_TO_WIDTH The image is scaled to fit the width of the device rectangle.

IG_DSPL_FIT_TO_HEIGHT The image is scaled to fit the height of the device rectangle.

IG_DSPL_ACTUAL_SIZE The device rectangle is ignored, and the image is scaled 1:1.

ImageGear Professional v18 for Mac | 1350

1.3.1.5.63 enumIGDsplPaletteModes

Identifies the different modes of palette handling.

Values:

IG_DSPL_PALETTE_HIGH Use the palette in the high priority mode. This means that the operating system palette
manager will try to best map colors of DevicePalette to the system palette.

IG_DSPL_PALETTE_LOW Use the palette in the low priority mode. In this mode the palette manager will try to
best preserve current view of the destination while drawing the new image on it.

IG_DSPL_PALETTE_DISABLE Not to implement DevicePalette in the destination device while drawing the image.

ImageGear Professional v18 for Mac | 1351

1.3.1.5.64 enumIGDsplTranspModes

Identifies transparency modes.

Values:

IG_DSPL_TRANSPARENCY_NONE Transparency is disabled.

IG_DSPL_TRANSPARENCY_COLOR Transparency color is enabled. Pixels which color is equal to the
Transparency Color value are displayed transparent when drawing
the image.

IG_DSPL_TRANSPARENCY_MASK Transparency Mask is enabled and the Transparency Mask image is
used to specify transparent pixels.

IG_DSPL_TRANSPMASK_STRETCH_TO_IMAGE If this flag is set, the transparency Mask image is resized and
oriented along with the image being displayed. This flag is only used
when the transparency mask is enabled.

IG_DSPL_TRANSPMASK_LOCATE_TO_IMAGE If this flag is set, the transparency mask location is calculated
relatively to the Image Rectangle. The mask is oriented along with
the image. This flag is only used when the transparency mask is
enabled.

IG_DSPL_TRANSPMASK_LOCATE_TO_CLIPRECT If this flag is set, the transparency mask location is calculated
relatively to the Clipping Rectangle. This flag is only used when the
transparency mask is enabled.

IG_DSPL_TRANSPMASK_LOCATE_ABSOLUTE If this flag is set, the transparency mask left-top corner is located
according to the MaskLocation option. This flag is only used when
the transparency mask is enabled.

IG_DSPL_TRANSPMASK_LOCATE_MODE Bit mask for mask location modes.

ImageGear Professional v18 for Mac | 1352

1.3.1.5.65 enumIGDsplZoomModes

Identifies how the image is zoomed in horizontal and vertical directions.

Values:

IG_DSPL_ZOOM_H_MASK Bit mask for accessing horizontal zoom settings.

IG_DSPL_ZOOM_H_NOT_FIXED Horizontal zoom factor is not fixed. It is calculated based on other display
parameters, such as aspect and fit modes.

IG_DSPL_ZOOM_H_FIXED Horizontal zoom factor is fixed.

IG_DSPL_ZOOM_V_MASK Bit mask for accessing vertical zoom settings.

IG_DSPL_ZOOM_V_NOT_FIXED Vertical zoom factor is not fixed. It is calculated based on other display parameters,
such as aspect and fit modes.

IG_DSPL_ZOOM_V_FIXED Vertical zoom factor is fixed.

ImageGear Professional v18 for Mac | 1353

1.3.1.5.66 enumIGEdgeDetectionMethods

These constants define the edge detection methods available.

Values:

IG_EDGE_DETECTION_MAXGRADIENT Edge detection using the maxima of gradient, i.e., maxima of the first
order derivative.

IG_EDGE_DETECTION_ZEROXC_DERIV2ND Edge detection using the zero-crossings of second order derivative along
the gradient.

IG_EDGE_DETECTION_DIFF_RECURSIVE Edge detection using an optimal difference recursive filter.

ImageGear Professional v18 for Mac | 1354

1.3.1.5.67 enumIGEdgeMapMethods

This enumeration specifies types of edge map operation.

Values:

IG_EDGE_OP_PREWITT Prewitt.

IG_EDGE_OP_ROBERTS Roberts.

IG_EDGE_OP_SOBEL Sobel.

IG_EDGE_OP_LAPLACIAN Laplacian.

IG_EDGE_OP_LOG Laplacian of Gaussian.

IG_EDGE_OP_HORIZONTAL Horizontal.

IG_EDGE_OP_VERTICAL Vertical.

IG_EDGE_OP_DIAG_POS_45 Diagonal positive.

IG_EDGE_OP_DIAG_NEG_45 Diagonal negative.

ImageGear Professional v18 for Mac | 1355

1.3.1.5.68 enumIGEPSTagIDs

Lists all EPS tag identifiers.

Values:

IGMDTAG_ID_EPS_FORMAT EPS metadata format identifier.

IGMDTAG_ID_EPS_VERSION EPS file version.

IGMDTAG_ID_EPS_WIDTH This value has been deprecated and will be removed from the public API in a
future release.

IGMDTAG_ID_EPS_HEIGHT This value has been deprecated and will be removed from the public API in a
future release.

IGMDTAG_ID_EPS_TITLE Document title.

IGMDTAG_ID_EPS_CREATOR Document creator.

IGMDTAG_ID_EPS_BOUNDINGBOX Document bounding box.

IGMDTAG_ID_EPS_TRANSLATE EPS translate.

IGMDTAG_ID_EPS_SCALE EPS scale.

IGMDTAG_ID_EPS_IMAGE This value has been deprecated and will be removed from the public API in a
future release.

ImageGear Professional v18 for Mac | 1356

1.3.1.5.69 enumIGEXIFFPXRTagIDs

Lists all EXIF FPXR tag identifiers.

Values:

IGMDTAG_ID_EXIF_FPX_HEADER FPXR header.

IGMDTAG_ID_EXIF_FPX_VERSION FPXR version.

IGMDTAG_ID_EXIF_FPX_EXTENSIONID FPXR extension ID.

IGMDTAG_ID_EXIF_FPX_INTEROPERABILITYCOUNT FPXR interoperability count.

IGMDTAG_ID_EXIF_FPX_INDEXTOCONTENTSLIST FPXR index to contents list.

IGMDTAG_ID_EXIF_FPX_OFFSETTOSTREAM FPXR offset to stream.

IGMDTAG_ID_EXIF_FPX_STREAMDATA FPXR stream data.

IGMDTAG_ID_EXIF_FPX_RESERVEDDATA FPXR reserved data.

ImageGear Professional v18 for Mac | 1357

1.3.1.5.70 enumIGEXIFGPSTagIDs

Lists all EXIF GPS tag identifiers.

Values:

IGMDTAG_ID_EXIF_GPS_VERSIONID GPS version ID.

IGMDTAG_ID_EXIF_GPS_LATITUDEREF GPS latitude ref.

IGMDTAG_ID_EXIF_GPS_LATITUDE GPS latitude.

IGMDTAG_ID_EXIF_GPS_LONGITUDEREF GPS longitude ref.

IGMDTAG_ID_EXIF_GPS_LONGITUDE GPS longitude.

IGMDTAG_ID_EXIF_GPS_ALTITUDEREF GPS altitude ref.

IGMDTAG_ID_EXIF_GPS_ALTITUDE GPS altitude.

IGMDTAG_ID_EXIF_GPS_TIMESTAMP GPS time stamp.

IGMDTAG_ID_EXIF_GPS_SATELLITES GPS satellites.

IGMDTAG_ID_EXIF_GPS_STATUS GPS status.

IGMDTAG_ID_EXIF_GPS_MEASUREMODE GPS measure mode.

IGMDTAG_ID_EXIF_GPS_DOP Measurement precision.

IGMDTAG_ID_EXIF_GPS_SPEEDREF GPS speed ref.

IGMDTAG_ID_EXIF_GPS_SPEED GPS speed.

IGMDTAG_ID_EXIF_GPS_TRACKREF GPS track ref.

IGMDTAG_ID_EXIF_GPS_TRAK GPS track.

IGMDTAG_ID_EXIF_GPS_TRACK GPS track.

IGMDTAG_ID_EXIF_GPS_IMGDIRECTIONREF GPS img direction ref.

IGMDTAG_ID_EXIF_GPS_IMGDIRECTION GPS img direction.

IGMDTAG_ID_EXIF_GPS_MAPDATUM GPS map datum.

IGMDTAG_ID_EXIF_GPS_DESTLATITUDEREF GPS dest latitude ref.

IGMDTAG_ID_EXIF_GPS_DESTLATITUDE GPS dest latitude.

IGMDTAG_ID_EXIF_GPS_DESTLONGITUDEREF GPS dest longitude ref.

IGMDTAG_ID_EXIF_GPS_DESTLONGITUDE GPS dest longitude.

IGMDTAG_ID_EXIF_GPS_DESTBEARINGREF GPS dest bearing ref.

IGMDTAG_ID_EXIF_GPS_DESTBEARING GPS dest bearing.

IGMDTAG_ID_EXIF_GPS_DESTDISTANCEREF GPS dest distance ref.

IGMDTAG_ID_EXIF_GPS_DESTDISTANCE GPS dest distance.

IGMDTAG_ID_EXIF_GPS_PROCESSINGMETHOD GPS processing method.

IGMDTAG_ID_EXIF_GPS_AREAINFORMATION GPS area information.

IGMDTAG_ID_EXIF_GPS_DATESTAMP GPS date stamp.

IGMDTAG_ID_EXIF_GPS_DIFFERENTIAL GPS differential.

ImageGear Professional v18 for Mac | 1358

1.3.1.5.71 enumIGEXIFInterOperTagIDs

Lists all EXIF Interoperability tag identifiers.

Values:

IGMDTAG_ID_EXIF_IO_INTEROPERABILITYINDEX Interoperability index.

IGMDTAG_ID_EXIF_IO_INTEROPERABILITYVERSION Interoperability version.

IGMDTAG_ID_EXIF_IO_RELATEDIMAGEFILEFORMAT Related image file format.

IGMDTAG_ID_EXIF_IO_RELATEDIMAGEWIDTH Related image width.

IGMDTAG_ID_EXIF_IO_RELATEDIMAGELENGTH Related image length.

ImageGear Professional v18 for Mac | 1359

1.3.1.5.72 enumIGEXIFMakerNoteTagIDs

Lists all general EXIF MakerNote tag identifiers.

Values:

IGMDTAG_ID_EXIF_MAKERNOTE_TYPE Makernote type.

IGMDTAG_ID_EXIF_MAKERNOTE_PREFIX Makernote prefix.

IGMDTAG_ID_EXIF_MAKERNOTE_BINARY Binary data.

IGMDTAG_ID_EXIF_MAKERNOTE_DATA_IFD Makernote data IFD.

ImageGear Professional v18 for Mac | 1360

1.3.1.5.73 enumIGEXIFMakerNoteType

Lists all EXIF MakerNote types.

Values:

IG_MAKERNOTE_TYPE_UNKNOWN Unknown. This is the default type. This type means that
ImageGear can't detect Makernote as any other type. Preserving
such a makernote and saving it with the file, most likely, does not
make any sense, because IFD offsets will be corrupted.

IG_MAKERNOTE_TYPE_IFD TIFF IFD. Makernote is a valid TIF IFD.

IG_MAKERNOTE_TYPE_IFD_PREFIXED Prefixed TIFF IFD. Same as IFD, but with a short prefix before the
IFD. The prefix is also preserved, so the whole Makernote is
preserved when writing to a file.

IG_MAKERNOTE_TYPE_TIF_HEADER_PREFIXED Makernote starts with a prefix, then goes TIF image header, which
points to an IFD.

IG_MAKERNOTE_TYPE_IFD_PREFIXED_OFFSET_II Makernote starts with a prefix, then goes offset to the IFD, then
IFD itself. Makernote IFD uses Intel byte ordering (II), even though
the whole file uses Motorola ordering.

IG_MAKERNOTE_TYPES_MAX Specifies the number of supported makernote types.

ImageGear Professional v18 for Mac | 1361

1.3.1.5.74 enumIGEXIFTagIDs

Lists all EXIF tag identifiers.

Values:

IGMDTAG_ID_EXIF_JPEG_FORMAT JPEG metadata format identifier.

IGMDTAG_ID_EXIF_TIFF_FORMAT TIF metadata format identifier.

IGMDTAG_ID_EXIF_EXPOSURETIME Exposure time.

IGMDTAG_ID_EXIF_FNUMBER F number value.

IGMDTAG_ID_EXIF_EXPOSUREPROGRAM Exposure program.

IGMDTAG_ID_EXIF_SPECTRALSENSITIVITY Spectral sensitivity.

IGMDTAG_ID_EXIF_ISOSPEEDRATING ISO speed ratings.

IGMDTAG_ID_EXIF_OECF Indicates the Opto-Electric Conversion Function (OECF)
specified in ISO 14524.

IGMDTAG_ID_EXIF_VERSION Exif version.

IGMDTAG_ID_EXIF_DATETIMEORIGINAL Date time original.

IGMDTAG_ID_EXIF_DATETIMEDIGITIZED Date time digitized.

IGMDTAG_ID_EXIF_COMPONENTCONFIGURATION Components configuration.

IGMDTAG_ID_EXIF_COMPRESSEDBITSPERPIXEL Compressed bits per pixel.

IGMDTAG_ID_EXIF_SHUTTERSPEEDVALUE Shutter speed value.

IGMDTAG_ID_EXIF_APERTUREVALUE Aperture value.

IGMDTAG_ID_EXIF_BRIGHTNESSVALUE Brightness value.

IGMDTAG_ID_EXIF_EXPOSUREBIASVALUE Exposure bias value.

IGMDTAG_ID_EXIF_MAXAPERTUREVALUE Max aperture value.

IGMDTAG_ID_EXIF_SUBJECTDISTANCE Subject distance.

IGMDTAG_ID_EXIF_MATERINGMODE Metering mode.

IGMDTAG_ID_EXIF_METERINGMODE Metering mode.

IGMDTAG_ID_EXIF_LIGHTSOURCE Light source.

IGMDTAG_ID_EXIF_FLASH Indicates whether or not flash used when the image was
captured.

IGMDTAG_ID_EXIF_FOCALLENGTH Focal length.

IGMDTAG_ID_EXIF_SUBJECTAREA Subject area.

IGMDTAG_ID_EXIF_MAKERNOTE Maker note.

IGMDTAG_ID_EXIF_USERCOMMENT User comment.

IGMDTAG_ID_EXIF_SUBSECTIME Sub sec time.

IGMDTAG_ID_EXIF_SUBSECTIMEORIGINAL Sub sec time original.

IGMDTAG_ID_EXIF_SUBSECTIMEDIGITIZED Sub sec time digitized.

IGMDTAG_ID_EXIF_FLASHPIXVERSION Flash pix version.

IGMDTAG_ID_EXIF_COLORSPACE Color space.

IGMDTAG_ID_EXIF_PIXELXDIMENSION Pixel X dimension.

IGMDTAG_ID_EXIF_PIXELYDIMENSION Pixel Y dimension.

IGMDTAG_ID_EXIF_RELATEDSOUNDFILE Related sound file.

IGMDTAG_ID_EXIF_INTEROPERABILITYIFD Interoperability IFD pointer.

IGMDTAG_ID_EXIF_FLASHENERGY Flash energy.

IGMDTAG_ID_EXIF_SPATIALFREQUENCYRESPONSE Spatial frequency response.

IGMDTAG_ID_EXIF_FOCALPLANEXRESOLUTION Focal plane X resolution.

IGMDTAG_ID_EXIF_FOCALPLANEYRESOLUTION Focal plane Y resolution.

IGMDTAG_ID_EXIF_FOCALPLANERESOLUTIONUNIT Focal plane resolution unit.

ImageGear Professional v18 for Mac | 1362

IGMDTAG_ID_EXIF_SUBJECTLOCATION Subject location.

IGMDTAG_ID_EXIF_EXPOSUREINDEX Exposure index.

IGMDTAG_ID_EXIF_SENSINGMETHOD Sensing method.

IGMDTAG_ID_EXIF_FILESOURCE File source.

IGMDTAG_ID_EXIF_SCENETYPE Scene type.

IGMDTAG_ID_EXIF_CFAPATTERN CFA pattern.

IGMDTAG_ID_EXIF_CUSTOMRENDERED Custom rendered.

IGMDTAG_ID_EXIF_EXPOSUREMODE Exposure mode.

IGMDTAG_ID_EXIF_WHITEBALANCE White balance.

IGMDTAG_ID_EXIF_DIGITALZOOMRATIO Digital zoom ratio.

IGMDTAG_ID_EXIF_FOCALLENGTHIN35MMFILM Focal length in 35mm film.

IGMDTAG_ID_EXIF_SCENECAPTURETYPE Scene capture type.

IGMDTAG_ID_EXIF_GAINCONTROL Gain control.

IGMDTAG_ID_EXIF_CONTRAST Indicates the direction of contrast processing applied by the
camera when the image was shot.

IGMDTAG_ID_EXIF_SATURATION Indicates the direction of saturation processing applied by the
camera when the image was shot.

IGMDTAG_ID_EXIF_SHARPNESS Indicates the direction of sharpness processing applied by the
camera when the image was shot.

IGMDTAG_ID_EXIF_DEVICESETTINGDESCRIPTION Device setting description.

IGMDTAG_ID_EXIF_SUBJECTDISTANCERANGE Subject distance range.

IGMDTAG_ID_EXIF_IMAGEUNIQUEID Indicates an identifier assigned uniquely to each image.

IGMDTAG_ID_EXIF_HEADER This enumeration value is for internal use only.

ImageGear Professional v18 for Mac | 1363

1.3.1.5.75 enumIGExtraDataType

Specifies types of vector extra data associated with a HIGEAR image.

Values:

IG_EXTRA_DATA_ARTX Type of extra data is ARTX.

IG_EXTRA_DATA_CAD Type of extra data is CAD.

IG_EXTRA_DATA_PDF Type of extra data is PDF.

IG_EXTRA_DATA_POSTSCRIPT Type of extra data is PostScript.

IG_EXTRA_DATA_XPS Type of extra data is XPS.

ImageGear Professional v18 for Mac | 1364

1.3.1.5.76 enumIGExtraMode

Extra channel loading mode setting.

Values:

IG_EXTRA_MODE_KEEP Load Extra channels.

IG_EXTRA_MODE_IGNORE Ignore Extra channels.

ImageGear Professional v18 for Mac | 1365

1.3.1.5.77 enumIGFillOrder

Identifies the raw bit order.

Values:

IG_FILL_MSB Little endian bit order.

IG_FILL_LSB Big endian bit order.

ImageGear Professional v18 for Mac | 1366

1.3.1.5.78 enumIGFlipModes

This enumeration specifies types of flipping.

Values:

IG_FLIP_HORIZONTAL Flipping horizontally.

IG_FLIP_VERTICAL Flipping vertically.

ImageGear Professional v18 for Mac | 1367

1.3.1.5.79 enumIGFltrFormatFlags

Identifies the format flags such as DETECTSUPPORT, PAGEREADSUPPORT, and other.

Values:

IG_FLTR_DETECTSUPPORT Format detection is supported.

IG_FLTR_PAGEREADSUPPORT Page reading is supported.

IG_FLTR_MPAGEREADPSUPPORT Multi-page reading is supported.

IG_FLTR_MPAGEWRITEPSUPPORT Multi-page writing is supported.

IG_FLTR_PAGEINSERTSUPPORT Page insertion is supported.

IG_FLTR_PAGEDELETESUPPORT Page deleting is supported.

IG_FLTR_PAGESWAPSUPPORT Page swapping is supported.

IG_FLTR_MPDATASUPPORT Multi-page data is supported.

ImageGear Professional v18 for Mac | 1368

1.3.1.5.80 enumIGFormats

Identifies the formats supported by ImageGear.

Values:

IG_FORMAT_ABIC_BILEVEL IBM ABIC

IG_FORMAT_ABIC_CONCAT IBM ABIC

IG_FORMAT_AFX Auto FX

IG_FORMAT_ATT Not supported

IG_FORMAT_AVI AVI

IG_FORMAT_BMP Microsoft Windows Bitmap

IG_FORMAT_BRK BTR

IG_FORMAT_CAD Not supported

IG_FORMAT_CAL CAL

IG_FORMAT_CGM CGM

IG_FORMAT_CLP CLP

IG_FORMAT_CUR Windows Cursors

IG_FORMAT_CUT CUT

IG_FORMAT_DCM DICOM

IG_FORMAT_DCRAW Digital Camera Raw format

IG_FORMAT_DCX Paintbrush

IG_FORMAT_DGN DGN

IG_FORMAT_DIB The same as IG_FORMAT_BMP

IG_FORMAT_DWF DWF

IG_FORMAT_DWG DWG

IG_FORMAT_DXF DXF

IG_FORMAT_EPS Encapsulated postscript

IG_FORMAT_EXIF_JPEG Exchangeable image file format

IG_FORMAT_EXIF_TIFF Exchangeable image file format (EXIF-TIFF)

IG_FORMAT_FPX FlashPix

IG_FORMAT_G3 Group 3

IG_FORMAT_G32D Group 3 2D

IG_FORMAT_G4 Group 4

IG_FORMAT_GEM GEM Raster

IG_FORMAT_GIF GIF

IG_FORMAT_HLDCRAW Headerless Digital Camera Raw format

IG_FORMAT_HPGL HPGL

IG_FORMAT_ICA IBM IOCA

IG_FORMAT_ICO Windows icon

IG_FORMAT_IFF Interchange File Format

IG_FORMAT_IMR IMR

IG_FORMAT_IMT IMT

IG_FORMAT_JB2 Reserved for future use.

IG_FORMAT_JBIG JBIG

IG_FORMAT_JPEG2K JPEG2000

IG_FORMAT_JPG JPEG File Interchange

IG_FORMAT_JPX JPX

ImageGear Professional v18 for Mac | 1369

IG_FORMAT_KFX KFX

IG_FORMAT_LURADOC This value has been deprecated and will be removed from the public API in a future
release.

IG_FORMAT_LURAJP2 This value has been deprecated and will be removed from the public API in a future
release.

IG_FORMAT_LURAWAVE This value has been deprecated and will be removed from the public API in a future
release.

IG_FORMAT_LV LV

IG_FORMAT_MAC MAC

IG_FORMAT_MOD IBM MO:DCA

IG_FORMAT_MODCA Not supported

IG_FORMAT_MSP MSP

IG_FORMAT_MUL MULTIMEDIA

IG_FORMAT_NCR NCR

IG_FORMAT_PBM PBM

IG_FORMAT_PCD PCD

IG_FORMAT_PCT Mac PICT

IG_FORMAT_PCX PC Paintbrush File Format

IG_FORMAT_PDF Adobe PDF

IG_FORMAT_PGM Not supported

IG_FORMAT_PJPEG Not supported

IG_FORMAT_PNG Portable Network Graphics

IG_FORMAT_PNM Not supported

IG_FORMAT_POSTSCRIPT Not supported

IG_FORMAT_PPM Not supported

IG_FORMAT_PSB Adobe PSB

IG_FORMAT_PSD Adobe PSD

IG_FORMAT_PTOCA PTOCA file

IG_FORMAT_RAS RAS

IG_FORMAT_RAW RAW

IG_FORMAT_SCI_CT Scitex CT file

IG_FORMAT_SCITEX Not supported

IG_FORMAT_SGI SGI

IG_FORMAT_STX Not supported

IG_FORMAT_TGA TGA

IG_FORMAT_TIF Tagged Image File Format

IG_FORMAT_TXT TXT

IG_FORMAT_U3D U3D format

IG_FORMAT_UNKNOWN Unknown format

IG_FORMAT_WBMP Wireless Bitmap File Format

IG_FORMAT_WL16 Not supported

IG_FORMAT_WLT Not supported

IG_FORMAT_WMF Windows MetaFile

IG_FORMAT_WPG WPG

IG_FORMAT_XBM XBM

IG_FORMAT_XMP XMP Metadata format

IG_FORMAT_XPM XPM

IG_FORMAT_XPS XPS format

ImageGear Professional v18 for Mac | 1370

IG_FORMAT_XRX IMG

IG_FORMAT_XWD XWD

ImageGear Professional v18 for Mac | 1371

1.3.1.5.81 enumIGFrameModes

This enumeration specifies modes of drawing of a frame.

Values:

IG_DRAW_FRAME_EXPAND The width and the height of an image are expanded by 2 times the width of the
frame.

IG_DRAW_FRAME_OVERWRITE All four sides of an image are overwritten by the frame.

ImageGear Professional v18 for Mac | 1372

1.3.1.5.82 enumIGGEMTagIDs

Lists all GEM tag identifiers.

Values:

IGMDTAG_ID_GEM_FORMAT GEM metadata format identifier.

IGMDTAG_ID_GEM_VERSION Version valie.

IGMDTAG_ID_GEM_HEADERSIZE Header size.

IGMDTAG_ID_GEM_PLANES Color map ID.

IGMDTAG_ID_GEM_PATTERNLENGTH Pattern length.

IGMDTAG_ID_GEM_WIDTH Image width.

IGMDTAG_ID_GEM_HEIGHT Image height.

ImageGear Professional v18 for Mac | 1373

1.3.1.5.83 enumIGGIFTagIDs

Lists all GIF tag identifiers.

Values:

IGMDTAG_ID_GIF_FORMAT GIF metadata format identifier.

IGMDTAG_ID_GIF_HEADER GIF header.

IGMDTAG_ID_GIF_HDR_SIGNATURE Identifies the GIF Data Stream.

IGMDTAG_ID_GIF_HDR_VERSION Version number.

IGMDTAG_ID_GIF_SCREEN_DESCRIPTOR Logical screen descriptor.

IGMDTAG_ID_GIF_SCR_SCREEN_WIDTH Logical screen width.

IGMDTAG_ID_GIF_SCR_SCREEN_HEIGHT Logical screen height.

IGMDTAG_ID_GIF_SCR_BACKGROUND_COLOR Background color index.

IGMDTAG_ID_GIF_SCR_ASPECT_RATIO Pixel aspect ratio.

IGMDTAG_ID_GIF_SCR_FIELDS Logical screen packed fields.

IGMDTAG_ID_GIF_SCR_FLD_GL_COLOR_TABLE Global color table flag.

IGMDTAG_ID_GIF_SCR_FLD_COLOR_RES Color resolution.

IGMDTAG_ID_GIF_SCR_FLD_SORT Sort flag.

IGMDTAG_ID_GIF_SCR_FLD_SIZE Global color table size.

IGMDTAG_ID_GIF_GLOBAL_COLOR_TABLE Global color table.

IGMDTAG_ID_GIF_IMAGE_DESCRIPTOR Image descriptor.

IGMDTAG_ID_GIF_IMG_LEFT_POSITION Image left position.

IGMDTAG_ID_GIF_IMG_TOP_POSITION Image top position.

IGMDTAG_ID_GIF_IMG_IMAGE_WIDTH Image width.

IGMDTAG_ID_GIF_IMG_IMAGE_HEIGHT Image height.

IGMDTAG_ID_GIF_IMG_FIELDS Image descriptor packed field.

IGMDTAG_ID_GIF_IMG_FLD_LOC_COLOR_TABLE Local color table flag.

IGMDTAG_ID_GIF_IMG_FLD_INTERLACE Interlace flag.

IGMDTAG_ID_GIF_IMG_FLD_SORT Sort flag.

IGMDTAG_ID_GIF_IMG_FLD_SIZE Local color table size.

IGMDTAG_ID_GIF_LOCAL_COLOR_TABLE Local color table.

IGMDTAG_ID_GIF_GRAPHIC_CONTROL_EXT Graphic control extension.

IGMDTAG_ID_GIF_GCE_FIELDS Graphic control extension packed fields.

IGMDTAG_ID_GIF_GCE_FLD_DISPOSAL_METHOD Disposal method.

IGMDTAG_ID_GIF_GCE_FLD_USER_INPUT User input flag.

IGMDTAG_ID_GIF_GCE_FLD_TRANSPARENT Transparent color flag.

IGMDTAG_ID_GIF_GCE_DELAY_TIME Delay time.

IGMDTAG_ID_GIF_GCE_TRANSPARENT_COLOR Transparent color index.

IGMDTAG_ID_GIF_COMMENT_EXTENSION Comment extension.

IGMDTAG_ID_GIF_PLAIN_TEXT_EXTENSION Plain text extension.

IGMDTAG_ID_GIF_TXT_GRID_LEFT Text grid left position.

IGMDTAG_ID_GIF_TXT_GRID_TOP Text grid top position.

IGMDTAG_ID_GIF_TXT_GRID_WIDTH Text grid width.

IGMDTAG_ID_GIF_TXT_GRID_HEIGHT Text grid height.

IGMDTAG_ID_GIF_TXT_CELL_WIDTH Character cell width.

IGMDTAG_ID_GIF_TXT_CELL_HEIGHT Character cell height.

IGMDTAG_ID_GIF_TXT_FOREGROUND_COLOR Text foreground color index.

ImageGear Professional v18 for Mac | 1374

IGMDTAG_ID_GIF_TXT_BACKGROUND_COLOR Text background color index.

IGMDTAG_ID_GIF_TXT_TEXT_DATA Plain text data.

IGMDTAG_ID_GIF_APP_EXTENSION Application extension.

IGMDTAG_ID_GIF_APP_IDENTIFIER Application identifier.

IGMDTAG_ID_GIF_APP_AUTH_CODE Application authentication code.

IGMDTAG_ID_GIF_APP_DATA Application data.

IGMDTAG_ID_GIF_AFTER_IMAGE_EXT After image extensions.

ImageGear Professional v18 for Mac | 1375

1.3.1.5.84 enumIGGrp

Specifies IDs of predefined display parameters groups.

Values:

IG_GRP_DEFAULT Identifies the group that can be used to display image with default options.

IG_GRP_DEFAULT_PRINT Identifies the group that can be used to print image with default print options.

IG_GRP_CURRENT_THREAD Specifies that display group associated with current thread ID should be used for image
display.

ImageGear Professional v18 for Mac | 1376

1.3.1.5.85 enumIGICATagIDs

Lists all ICA tag identifiers.

Values:

IGMDTAG_ID_ICA_FORMAT IOCA metadata format identifier.

IGMDTAG_ID_ICA_WIDTH Image width.

IGMDTAG_ID_ICA_HEIGHT Image height.

IGMDTAG_ID_ICA_DEPTH Image depth.

IGMDTAG_ID_ICA_XDPI Horizontal image resolution.

IGMDTAG_ID_ICA_YDPI Vertical image resolution.

IGMDTAG_ID_ICA_BITORDER Bit order.

IGMDTAG_ID_ICA_BASE Size units value.

IGMDTAG_ID_ICA_COMPRESSION Image compression.

IGMDTAG_ID_ICA_FILLORDER Fill order.

ImageGear Professional v18 for Mac | 1377

1.3.1.5.86 enumIGICDocType

This enumeration contains the types of document text or image alignment.

Values:

IG_IC_STANDARD_DOC Unknown document alignment.

IG_IC_LEFT_ALIGNED_DOC Left-aligned document with text formed in one column.

IG_IC_RIGHT_ALIGNED_DOC Right-aligned document with text formed in one column.

ImageGear Professional v18 for Mac | 1378

1.3.1.5.87 enumIGICOTagIDs

Lists all ICO tag identifiers.

Values:

IGMDTAG_ID_ICO_FORMAT ICO metadata format identifier.

ImageGear Professional v18 for Mac | 1379

1.3.1.5.88 enumIGIFFTagIDs

Lists all IFF tag identifiers.

Values:

IGMDTAG_ID_IFF_FORMAT IFF metadata format identifier.

IGMDTAG_ID_IFF_WIDE Image width.

IGMDTAG_ID_IFF_HIGH Image height.

IGMDTAG_ID_IFF_XORG Image X origin.

IGMDTAG_ID_IFF_YORG Image Y origin.

IGMDTAG_ID_IFF_PLANES Color map planes.

IGMDTAG_ID_IFF_MASK Mask info.

IGMDTAG_ID_IFF_COMPRESSION Image compression.

IGMDTAG_ID_IFF_TRAN_ASPT Tran aspt.

IGMDTAG_ID_IFF_PAGE_W Page width.

IGMDTAG_ID_IFF_PAGE_H Page height.

IGMDTAG_ID_IFF_VIEW_MODE View mode.

IGMDTAG_ID_IFF_TRANSP_COLOR Transp color.

IGMDTAG_ID_IFF_X_ASPECT X aspect resolution.

IGMDTAG_ID_IFF_Y_ASPECT Y aspect resolution.

ImageGear Professional v18 for Mac | 1380

1.3.1.5.89 enumIGIMTTagIDs

Lists all IMT tag identifiers.

Values:

IGMDTAG_ID_IMT_FORMAT IMT metadata format identifier.

IGMDTAG_ID_IMT_TYPE IMT file type.

IGMDTAG_ID_IMT_FMT File format.

IGMDTAG_ID_IMT_HEIGHT Image height.

IGMDTAG_ID_IMT_WIDTH Image Width.

IGMDTAG_ID_IMT_RESOLUTION Image resolution.

IGMDTAG_ID_IMT_BITSWAP Swap bits.

IGMDTAG_ID_IMT_SWAB Swap byte.

IGMDTAG_ID_IMT_INVERT Invert pixel values flag.

ImageGear Professional v18 for Mac | 1381

1.3.1.5.90 enumIGInterpolations

This enumeration specifies types of interpolation used by ImageGear.

Values:

IG_INTERPOLATION_NONE No interpolation.

IG_INTERPOLATION_AVERAGE Average interpolation.

IG_INTERPOLATION_BILINEAR Bilinear interpolation.

IG_INTERPOLATION_NEAREST_NEIGHBOR Nearest neighbor interpolation.

IG_INTERPOLATION_PADDING Resize by adding padding to the image or by cropping the image (this is
not an interpolation method).

IG_INTERPOLATION_GRAYSCALE Scale to Gray interpolation method. It applies to bi-tonal images, and
produces a 8-bit grayscale image as a result.

IG_INTERPOLATION_PRESERVE_WHITE Preserve White interpolation method.

IG_INTERPOLATION_PRESERVE_BLACK Preserve Black interpolation method.

IG_INTERPOLATION_BICUBIC Bi-cubic interpolation method.

IG_INTERPOLATION_CANVAS Same as IG_INTERPOLATION_PADDING.

ImageGear Professional v18 for Mac | 1382

1.3.1.5.91 enumIGIPTCAppObjAttrTags

Lists IPTC Application Object Attributes.

Values:

IGMDTAG_ID_IPTC_OBJATTR_CURRENT Object content is about events taking place at the time
of the report.

IGMDTAG_ID_IPTC_OBJATTR_ANALYSIS The object contains data and conclusions drawn by a
journalist who has researched the story in depth.

IGMDTAG_ID_IPTC_OBJATTR_ARCHIVE_MATERIAL The object contains material distributed previously that
has been selected from the originator's archives.

IGMDTAG_ID_IPTC_OBJATTR_BACKGROUND The object provides some scene-setting and
explanation for the event being reported.

IGMDTAG_ID_IPTC_OBJATTR_FEATURE The object content is about a particular event or
individual that may not be significant to current
breaking news.

IGMDTAG_ID_IPTC_OBJATTR_FORECAST The object contains opinion as to the outcome of a
future event.

IGMDTAG_ID_IPTC_OBJATTR_HISTORY The object content is based on previous rather than
current events.

IGMDTAG_ID_IPTC_OBJATTR_OBITUARY The object contains a narrative about an individual's life
and achievements for publication after his or her death.

IGMDTAG_ID_IPTC_OBJATTR_OPINION The object contains an editorial comment that reflects
the views of the author.

IGMDTAG_ID_IPTC_OBJATTR_POLLS_SURVEYS The object contains numeric or other information
produced as a result of questionnaires or interviews.

IGMDTAG_ID_IPTC_OBJATTR_PROFILE The object contains a description of the life or activity
of a news subject (often a living individual).

IGMDTAG_ID_IPTC_OBJATTR_RES_LISTINGS_TABLES The object contains alphanumeric data suitable for
presentation in tabular form.

IGMDTAG_ID_IPTC_OBJATTR_SIDE_BAR_SUPPORTING_INFO The object contains a related story that provides
additional insight into the news event being reported.

IGMDTAG_ID_IPTC_OBJATTR_SUMMARY The object is a collection of synopses on news items
(generally unrelated).

IGMDTAG_ID_IPTC_OBJATTR_TRANSCRIPT_VERBATIM The object contains a word-for-word report of a
discussion or briefing without significant journalistic
intervention.

ImageGear Professional v18 for Mac | 1383

1.3.1.5.92 enumIGIPTCAppObjTypeTags

Lists IPTC Application Object Types.

Values:

IGMDTAG_ID_IPTC_OBJTYPE_NEWS Object type is News (default).

IGMDTAG_ID_IPTC_OBJTYPE_DATA Object type is Data (intended for tables such as statistics or lists, as
opposed to narrative text).

IGMDTAG_ID_IPTC_OBJTYPE_ADVISORY Object type is Advisory (content provider messages, generally not
published).

ImageGear Professional v18 for Mac | 1384

1.3.1.5.93 enumIGIPTCRecord1DatasetTags

Lists all IPTC Record 1 (Envelope) DataSet tags.

Values:

IGMDTAG_ID_IPTC_ENV_MODEL_VERSION Model version.

IGMDTAG_ID_IPTC_ENV_DESTINATION Destination information (additional routing information.

IGMDTAG_ID_IPTC_ENV_FILE_FORMAT File format.

IGMDTAG_ID_IPTC_ENV_FILE_FORMAT_VERSION File format version.

IGMDTAG_ID_IPTC_ENV_SERVICE_IDENTIFIER Service identifier.

IGMDTAG_ID_IPTC_ENV_ENVELOPE_NUMBER Envelope number.

IGMDTAG_ID_IPTC_ENV_PRODUCT_ID Product ID.

IGMDTAG_ID_IPTC_ENV_ENVELOPE_PRIORITY Envelope priority.

IGMDTAG_ID_IPTC_ENV_DATE_SENT Date sent.

IGMDTAG_ID_IPTC_ENV_TIME_SENT Time sent.

IGMDTAG_ID_IPTC_ENV_CODED_CHARACTER_SET Coded character set.

IGMDTAG_ID_IPTC_ENV_UNO Unique Name of Object.

IGMDTAG_ID_IPTC_ENV_ARM_IDENTIFIER ARM identifier.

IGMDTAG_ID_IPTC_ENV_ARM_VERSION ARM version.

ImageGear Professional v18 for Mac | 1385

1.3.1.5.94 enumIGIPTCRecord2DatasetTags

Lists all IPTC Record 2 (Application) DataSet tags.

Values:

IGMDTAG_ID_IPTC_APP_RECORD_VERSION Record version.

IGMDTAG_ID_IPTC_APP_OBJ_TYPE_REF Object type reference.

IGMDTAG_ID_IPTC_APP_OBJ_ATTRIBUTE_REF Object attribute reference.

IGMDTAG_ID_IPTC_APP_OBJ_NAME Object name.

IGMDTAG_ID_IPTC_APP_EDIT_STATUS Edit status.

IGMDTAG_ID_IPTC_APP_EDITORIAL_UPDATE Editorial update.

IGMDTAG_ID_IPTC_APP_URGENCY Editorial urgency.

IGMDTAG_ID_IPTC_APP_SUBJECT_REFERENCE Subject reference.

IGMDTAG_ID_IPTC_APP_CATEGORY Category that identifies the subject of the object in
the opinion of the image provider.

IGMDTAG_ID_IPTC_APP_SUPPLEMENTAL_CATEGORY Supplemental category.

IGMDTAG_ID_IPTC_APP_FIXTURE_IDENTIFIER Fixture identifier.

IGMDTAG_ID_IPTC_APP_KEYWORDS Keywords to description.

IGMDTAG_ID_IPTC_APP_CONTENT_LOCATION_CODE Content location code.

IGMDTAG_ID_IPTC_APP_CONTENT_LOCATION_NAME Content location name.

IGMDTAG_ID_IPTC_APP_RELEASE_DATE Release date.

IGMDTAG_ID_IPTC_APP_RELEASE_TIME Release time.

IGMDTAG_ID_IPTC_APP_EXPIRATION_DATE Expiration date.

IGMDTAG_ID_IPTC_APP_EXPIRATION_TIME Expiration time.

IGMDTAG_ID_IPTC_APP_SPECIAL_INSTRUCTIONS Special instructions.

IGMDTAG_ID_IPTC_APP_ACTION_ADVISED Action advised.

IGMDTAG_ID_IPTC_APP_REFERENCE_SERVICE Reference service.

IGMDTAG_ID_IPTC_APP_REFERENCE_DATE Reference date.

IGMDTAG_ID_IPTC_APP_REFERENCE_NUMBER Reference number.

IGMDTAG_ID_IPTC_APP_DATE_CREATED Date created.

IGMDTAG_ID_IPTC_APP_TIME_CREATED Time created.

IGMDTAG_ID_IPTC_APP_DIGITAL_CREATION_DATE Digital creation date.

IGMDTAG_ID_IPTC_APP_DIGITAL_CREATION_TIME Digital creation time.

IGMDTAG_ID_IPTC_APP_ORIGINATING_PROGRAM Originating program.

IGMDTAG_ID_IPTC_APP_PROGRAM_VERSION Program version.

IGMDTAG_ID_IPTC_APP_OBJECT_CYCLE Object cycle.

IGMDTAG_ID_IPTC_APP_BY_LINE By-line information.

IGMDTAG_ID_IPTC_APP_BY_LINE_TITLE By-line title.

IGMDTAG_ID_IPTC_APP_CITY City information.

IGMDTAG_ID_IPTC_APP_SUBLOCATION Sub-location information.

IGMDTAG_ID_IPTC_APP_PROVINCE_STATE Province / State.

IGMDTAG_ID_IPTC_APP_COUNTRY_PRIMARY_LOC_CODE Country/Primary location code.

IGMDTAG_ID_IPTC_APP_COUNTRY_PRIMARY_LOC_NAME Country/Primary location name.

IGMDTAG_ID_IPTC_APP_ORIGINAL_TRANSM_REF Original transmission reference.

IGMDTAG_ID_IPTC_APP_HEADLINE Synopsis of the subject matter.

IGMDTAG_ID_IPTC_APP_CREDIT Credit information.

IGMDTAG_ID_IPTC_APP_SOURCE Source that identifies the original owner / creator.

IGMDTAG_ID_IPTC_APP_COPYRIGHT_NOTICE Copyright notice.

ImageGear Professional v18 for Mac | 1386

IGMDTAG_ID_IPTC_APP_CONTACT Contact information.

IGMDTAG_ID_IPTC_APP_CAPTION_ABSTRACT Caption / Abstract.

IGMDTAG_ID_IPTC_APP_WRITER_EDITOR Writer / Editor.

IGMDTAG_ID_IPTC_APP_RASTERIZED_CAPTION Rasterized caption.

IGMDTAG_ID_IPTC_APP_IMAGE_TYPE Image type.

IGMDTAG_ID_IPTC_APP_IMAGE_ORIENTATION Image orientation.

IGMDTAG_ID_IPTC_APP_LANGUAGE_IDENTIFIER Language identifier.

IGMDTAG_ID_IPTC_APP_AUDIO_TYPE Audio type.

IGMDTAG_ID_IPTC_APP_AUDIO_SAMPLING_RATE Audio sampling rate.

IGMDTAG_ID_IPTC_APP_AUDIO_SAMPLING_RESOLUTION Audio sampling resolution.

IGMDTAG_ID_IPTC_APP_AUDIO_DURATION Audio duration.

IGMDTAG_ID_IPTC_APP_AUDIO_OUTCUE Audio outcue.

IGMDTAG_ID_IPTC_APP_OBJ_DATA_PREV_FILE_FORMAT Object data preview file format.

IGMDTAG_ID_IPTC_APP_OBJ_DATA_PREV_FILE_FORMAT_VER Object data preview file format version.

IGMDTAG_ID_IPTC_APP_OBJ_DATA_PREV_DATA Object data preview data.

ImageGear Professional v18 for Mac | 1387

1.3.1.5.95 enumIGIPTCRecord3DatasetTags

Lists all IPTC Record 3 (Digital Newsphoto Parameter) DataSet tags.

Values:

IGMDTAG_ID_IPTC_PHOTO_RECORD_VERSION Record version.

IGMDTAG_ID_IPTC_PHOTO_PICTURE_NUMBER Picture number.

IGMDTAG_ID_IPTC_PHOTO_PIXELS_PER_LINE Pixels per line.

IGMDTAG_ID_IPTC_PHOTO_NUMBER_OF_LINE Number of line.

IGMDTAG_ID_IPTC_PHOTO_PIXEL_SIZE_SCAN_DIR Pixel size in scanning direction.

IGMDTAG_ID_IPTC_PHOTO_PIXEL_SIZE_PERP_DIR Pixel size perpendicular to scanning direction.

IGMDTAG_ID_IPTC_PHOTO_SUPPLEMENT_TYPE Supplement type.

IGMDTAG_ID_IPTC_PHOTO_COLOUR_REPRESENTATION Colour representation.

IGMDTAG_ID_IPTC_PHOTO_INTERCHANGE_COLOUR_SPACE Interchange colour space.

IGMDTAG_ID_IPTC_PHOTO_COLOUR_SEQUENCE Colour sequence.

IGMDTAG_ID_IPTC_PHOTO_ICC_INPUT_COLOUR_PROFILE ICC input colour profile.

IGMDTAG_ID_IPTC_PHOTO_COLOUR_MATRIX_TABLE Colour calibration matrix table.

IGMDTAG_ID_IPTC_PHOTO_LOOKUP_TABLE Lookup table.

IGMDTAG_ID_IPTC_PHOTO_NUMBER_OF_INDEX_ENTRIES Number of index entries.

IGMDTAG_ID_IPTC_PHOTO_COLOUR_PALETTE Colour palette.

IGMDTAG_ID_IPTC_PHOTO_NUMBER_OF_BITS_PER_SAMPLE Number of bits per sample.

IGMDTAG_ID_IPTC_PHOTO_SAMPLING_STRUCTURE Sampling structure.

IGMDTAG_ID_IPTC_PHOTO_SCANNING_DIRECTION Scanning direction.

IGMDTAG_ID_IPTC_PHOTO_IMAGE_ROTATION Image rotation.

IGMDTAG_ID_IPTC_PHOTO_DATA_COMPRESSION_METHOD Data compression method.

IGMDTAG_ID_IPTC_PHOTO_QUANTISATION_METHOD Quantisation method.

IGMDTAG_ID_IPTC_PHOTO_END_POINTS End points.

IGMDTAG_ID_IPTC_PHOTO_EXCURSION_TOLERANCE Excursion tolerance.

IGMDTAG_ID_IPTC_PHOTO_BITS_PER_COMPONENT Bits per component.

IGMDTAG_ID_IPTC_PHOTO_MAXIMUM_DENSITY_RANGE Maximum density range.

IGMDTAG_ID_IPTC_PHOTO_GAMMA_COMPENSATED_VALUE Gamma compensated value.

ImageGear Professional v18 for Mac | 1388

1.3.1.5.96 enumIGIPTCRecord7DatasetTags

Lists all IPTC Record 7 (Pre-Object) DataSet tags.

Values:

IGMDTAG_ID_IPTC_PREOBJ_SIZE_MODE Size mode.

IGMDTAG_ID_IPTC_PREOBJ_MAX_SUBFILE_SIZE Max subfile size.

IGMDTAG_ID_IPTC_PREOBJ_OBJ_DATA_SIZE_ANN Object data size announced.

IGMDTAG_ID_IPTC_PREOBJ_MAX_OBJ_DATA_SIZE Maximum object data size.

ImageGear Professional v18 for Mac | 1389

1.3.1.5.97 enumIGIPTCRecord8DatasetTags

Lists all IPTC Record 8 (Object) DataSet tags.

Values:

IGMDTAG_ID_IPTC_OBJ_SUBFILE IPTC ObjectData subfile.

ImageGear Professional v18 for Mac | 1390

1.3.1.5.98 enumIGIPTCRecord9DatasetTags

Lists all IPTC Record 9 (Post-Object) DataSet tags.

Values:

IGMDTAG_ID_IPTC_POSTOBJ_CONFIRMED_OBJ_DATA_SIZE Confirmed object data size.

ImageGear Professional v18 for Mac | 1391

1.3.1.5.99 enumIGIPTCRecordTags

Lists all IPTC Record tags.

Values:

IGMDTAG_ID_IPTC_ENVELOPE_RECORD Envelope record.

IGMDTAG_ID_IPTC_APPLICATION_RECORD Application record.

IGMDTAG_ID_IPTC_DIG_NEWS_PHOTO_PAR_RECORD Digital Newsphoto Pararameter record.

IGMDTAG_ID_IPTC_PREOBJ_DESC_RECORD Pre-object record.

IGMDTAG_ID_IPTC_OBJECT_RECORD Object record.

IGMDTAG_ID_IPTC_POSTOBJ_DESC_RECORD Post-object record.

ImageGear Professional v18 for Mac | 1392

1.3.1.5.100 enumIGIPTCTags

Lists all general IPTC tags.

Values:

IGMDTAG_ID_IPTC_FORMAT IPTC metadata format identifier.

ImageGear Professional v18 for Mac | 1393

1.3.1.5.101 enumIGJPGTagIDs

Lists all JPEG tag identifiers.

Values:

IGMDTAG_ID_JPG_FORMAT JPEG metadata format identifier.

IGMDTAG_ID_JPG_JFIF_HEADER JFIF header.

IGMDTAG_ID_JPG_JFIF_VERSION JFIF version.

IGMDTAG_ID_JPG_JFIF_UNITS JFIF resolution unit.

IGMDTAG_ID_JPG_JFIF_X_RES JFIF X resolution.

IGMDTAG_ID_JPG_JFIF_Y_RES JFIF Y resolution.

IGMDTAG_ID_JPG_THUMB_WIDTH JFIF thumbnail width.

IGMDTAG_ID_JPG_THUMB_HEIGHT JFIF thumbnail height.

IGMDTAG_ID_JPG_THUMB_DATA JFIF thumbnail data. Used internally.

IGMDTAG_ID_JPG_JFIF_EX_HEADER JFIF extension header.

IGMDTAG_ID_JPG_JFIF_EX_CODE JFIF extension code.

IGMDTAG_ID_JPG_FRAME_PRECISION SOF Precision.

IGMDTAG_ID_JPG_FRAME_LINES SOF Lines.

IGMDTAG_ID_JPG_FRAME_SAMPPL SOF Samples Per Line.

IGMDTAG_ID_JPG_FRAME_COMPS SOF Number of components.

IGMDTAG_ID_JPG_SCAN_COMPS Number of components in the scan.

IGMDTAG_ID_JPG_SCAN_SP_START Scan spectral start.

IGMDTAG_ID_JPG_SCAN_SP_END Scan spectral end.

IGMDTAG_ID_JPG_SCAN_AH_AL Scan AH, AL.

IGMDTAG_ID_JPG_PHOT_HEADER Photoshop resources identifier.

IGMDTAG_ID_JPG_SOF0_SIZE SOF0 segment size.

IGMDTAG_ID_JPG_SOF1_SIZE SOF1 segment size.

IGMDTAG_ID_JPG_SOF2_SIZE SOF2 segment size.

IGMDTAG_ID_JPG_SOF3_SIZE SOF3 segment size.

IGMDTAG_ID_JPG_DHT_SIZE DHT segment size.

IGMDTAG_ID_JPG_SOS_SIZE SOS segment size.

IGMDTAG_ID_JPG_DQT_SIZE DQT segment size.

IGMDTAG_ID_JPG_APP0_SIZE APP0 segment size.

IGMDTAG_ID_JPG_APP1_SIZE APP1 segment size.

IGMDTAG_ID_JPG_APP2_SIZE APP2 segment size.

IGMDTAG_ID_JPG_APP3_SIZE APP3 segment size.

IGMDTAG_ID_JPG_APP4_SIZE APP4 segment size.

IGMDTAG_ID_JPG_APP5_SIZE APP5 segment size.

IGMDTAG_ID_JPG_APP6_SIZE APP6 segment size.

IGMDTAG_ID_JPG_APP7_SIZE APP7 segment size.

IGMDTAG_ID_JPG_APP8_SIZE APP8 segment size.

IGMDTAG_ID_JPG_APP9_SIZE APP9 segment size.

IGMDTAG_ID_JPG_APP10_SIZE APP10 segment size.

IGMDTAG_ID_JPG_APP11_SIZE APP11 segment size.

IGMDTAG_ID_JPG_APP12_SIZE APP12 segment size.

IGMDTAG_ID_JPG_APP13_SIZE APP13 segment size.

IGMDTAG_ID_JPG_APP14_SIZE APP14 segment size.

ImageGear Professional v18 for Mac | 1394

IGMDTAG_ID_JPG_APP15_SIZE APP15 segment size.

IGMDTAG_ID_JPG_COM_SIZE COM segment size.

IGMDTAG_ID_JPG_SOF0 Baseline DCT.

IGMDTAG_ID_JPG_SOF1 Extended sequential DCT.

IGMDTAG_ID_JPG_SOF2 Progressive DCT.

IGMDTAG_ID_JPG_SOF3 Lossless (sequential).

IGMDTAG_ID_JPG_DHT Huffman tables.

IGMDTAG_ID_JPG_SOS Start of Segment.

IGMDTAG_ID_JPG_DQT Quantization tables.

IGMDTAG_ID_JPG_DRI Restart Interval.

IGMDTAG_ID_JPG_APP0 Application marker - JFIF header (APP0).

IGMDTAG_ID_JPG_APP1 Application marker - first.

IGMDTAG_ID_JPG_APP2 Application marker - 2.

IGMDTAG_ID_JPG_APP3 Application marker - 3.

IGMDTAG_ID_JPG_APP4 Application marker - 4.

IGMDTAG_ID_JPG_APP5 Application marker - 5.

IGMDTAG_ID_JPG_APP6 Application marker - 6.

IGMDTAG_ID_JPG_APP7 Application marker - 7.

IGMDTAG_ID_JPG_APP8 Application marker - 8.

IGMDTAG_ID_JPG_APP9 Application marker - 9.

IGMDTAG_ID_JPG_APP10 Application marker - 10.

IGMDTAG_ID_JPG_APP11 Application marker - 11.

IGMDTAG_ID_JPG_APP12 Application marker - 12.

IGMDTAG_ID_JPG_APP13 Application marker - 13.

IGMDTAG_ID_JPG_APP14 Application marker - 14.

IGMDTAG_ID_JPG_APP15 Application marker - last.

IGMDTAG_ID_JPG_COM Comment value.

ImageGear Professional v18 for Mac | 1395

1.3.1.5.102 enumIGJPGType

Identifies JPEG saving types.

Values:

IG_JPG_LOSSY Lossy JPEG compression.

IG_JPG_LOSSLESS Lossless JPEG compression.

IG_JPG_PROGRESSIVE Progressive JPEG compression.

ImageGear Professional v18 for Mac | 1396

1.3.1.5.103 enumIGKFXTagIDs

Lists all KFX tag identifiers.

Values:

IGMDTAG_ID_KFX_FORMAT KFX metadata format identifier.

IGMDTAG_ID_KFX_ID Image identifier. R/O.

IGMDTAG_ID_KFX_HDR_SIZE Header size. R/O.

IGMDTAG_ID_KFX_HDR_VER Header version. R/O.

IGMDTAG_ID_KFX_IMAGE_ID Image ID value. R/O.

IGMDTAG_ID_KFX_WIDTH Image width. R/O.

IGMDTAG_ID_KFX_LENGTH Image length. R/O.

IGMDTAG_ID_KFX_KFX_FORMAT KFX format. R/O.

IGMDTAG_ID_KFX_BIT_SEX Bit sex info. R/W.

IGMDTAG_ID_KFX_COLOR Color info. R/W.

IGMDTAG_ID_KFX_XRES Horizontal image resolution. R/W.

IGMDTAG_ID_KFX_YRES Vertical image resolution. R/W.

IGMDTAG_ID_KFX_PLANES Planes info. R/O.

IGMDTAG_ID_KFX_BITS_PER_PIX Bits per pixel. R/O.

IGMDTAG_ID_KFX_PAPER_SIZE Paper size. R/W.

IGMDTAG_ID_KFX_DATE_CRT Creation date. R/W.

IGMDTAG_ID_KFX_DATE_MOD Modification date. R/W.

IGMDTAG_ID_KFX_DATE_ACC Access date. R/W.

IGMDTAG_ID_KFX_IDX_OFFSET Index offset. R/W.

IGMDTAG_ID_KFX_IDX_LEN Index length. R/W.

IGMDTAG_ID_KFX_COM_OFFSET Com offset. R/W.

IGMDTAG_ID_KFX_COM_LEN Com length. R/W.

IGMDTAG_ID_KFX_USER_OFFSET User Offset. R/W.

IGMDTAG_ID_KFX_USER_LEN User length. R/W.

IGMDTAG_ID_KFX_DATA_OFFSET Data offset. R/W.

IGMDTAG_ID_KFX_DATA_LEN Data length. R/W.

ImageGear Professional v18 for Mac | 1397

1.3.1.5.104 enumIGLicenseType

Identifies the different types of product license - evaluation, development, or deployment.

Values:

IG_VERSION_NONE No license is available.

IG_VERSION_EVAL Evaluation license.

IG_VERSION_DEVELOPMENT_ONLY Development license.

IG_VERSION_DEPLOYMENT Deployment license.

ImageGear Professional v18 for Mac | 1398

1.3.1.5.105 enumIGLVTagIDs

Lists all LV tag identifiers.

Values:

IGMDTAG_ID_LV_FORMAT LV metadata format identifier.

IGMDTAG_ID_LV_YORIGIN Image Y origin. R/W.

IGMDTAG_ID_LV_XORIGIN Image X origin. R/W.

IGMDTAG_ID_LV_LINES Number of lines. R/O.

IGMDTAG_ID_LV_PIXELS Number of columns. R/O.

IGMDTAG_ID_LV_BITSPIX Bits per pixel. R/O.

IGMDTAG_ID_LV_COMPRESSION Image compression. R/O.

IGMDTAG_ID_LV_BYTEFORMAT Byte format. R/O.

IGMDTAG_ID_LV_COMPVERSION Comp version. R/O.

IGMDTAG_ID_LV_YAXIS Y axis info. R/W.

IGMDTAG_ID_LV_XAXIS X axis info. R/W.

IGMDTAG_ID_LV_NBLOCKTYPE N Block type. R/W.

IGMDTAG_ID_LV_DISPLAYMETHOD Display method. R/W.

IGMDTAG_ID_LV_XSEPERATION X separation. R/W.

IGMDTAG_ID_LV_YSEPERATION Y separation. R/W.

IGMDTAG_ID_LV_BLOCKLENGTH Block length. R/W.

IGMDTAG_ID_LV_TEXT Text info. R/W.

ImageGear Professional v18 for Mac | 1399

1.3.1.5.106 enumIGMergeModes

Identifies the type of arithmetic operation (merge method) that is performed on the values of all intersecting pixels
resulting from the merge.

For example, if you set IG_ARITH_ADD merge method, the resulting pixel values (of those pixels that intersected from
the two images) equal the sum of the value of the pixel in the original image and the value of pixel in the image being
merged.

Values:

IG_ARITH_ADD Img1 = Img1 + Img2

IG_ARITH_ADD_SIGN_CENTERED Img1 = Img1+ SC_Img2

IG_ARITH_AND Img1 = Img1 & Img2

IG_ARITH_DIVIDE Img1 = Img1 / Img2

IG_ARITH_MULTI Img1 = Img1 * Img2

IG_ARITH_NOT Img1 = ~Img1

IG_ARITH_OR Img1 = Img1 | Img2

IG_ARITH_OVER Img1 = Img2

IG_ARITH_SUB Img1 = Img1 - Img2

IG_ARITH_XOR Img1 = Img1 ^ Img2

ImageGear Professional v18 for Mac | 1400

1.3.1.5.107 enumIGMETADItemType

Identifies the Metadata item type.

Values:

IG_METAD_LEVEL_START Start of new metadata level.

IG_METAD_VALUE_ITEM Metadata item.

IG_METAD_LEVEL_END End of metadata level.

ImageGear Professional v18 for Mac | 1401

1.3.1.5.108 enumIGMSPTagIDs

Lists all MSP tag identifiers.

Values:

IGMDTAG_ID_MSP_FORMAT MSP metadata format identifier.

IGMDTAG_ID_MSP_KEY1 Magic number.

IGMDTAG_ID_MSP_KEY2 Magic number.

IGMDTAG_ID_MSP_WIDTH Width of the bitmap in pixels.

IGMDTAG_ID_MSP_HEIGHT Height of the bitmap in pixels.

IGMDTAG_ID_MSP_X_AR_BITMAP X Aspect ratio of the bitmap.

IGMDTAG_ID_MSP_Y_AR_BITMAP Y Aspect ratio of the bitmap.

IGMDTAG_ID_MSP_X_AR_PRINTER X Aspect ratio of the printer.

IGMDTAG_ID_MSP_Y_AR_PRINTER Y Aspect ratio of the printer.

IGMDTAG_ID_MSP_X_PRINTER_WIDTH Width of the printer in pixels.

IGMDTAG_ID_MSP_Y_PRINTER_HEIGHT Height of the printer in pixels.

IGMDTAG_ID_MSP_X_ASPECT_CORR X aspect correction (unused).

IGMDTAG_ID_MSP_Y_ASPECT_CORR Y aspect correction (unused).

IGMDTAG_ID_MSP_CHECKSUM Checksum of previous 24 bytes.

IGMDTAG_ID_MSP_PADDING Unused padding.

ImageGear Professional v18 for Mac | 1402

1.3.1.5.109 enumIGMultInfo

Specifies attributes of multimedia images.

Values:

IG_MULT_INFO_HAS_VIDEO TRUE value of the atribute indicates that the multimedia file has a
video stream; otherwise it is FALSE.

IG_MULT_INFO_HAS_AUDIO TRUE value of the atribute indicates that the multimedia file has an
audio stream; otherwise it is FALSE.

IG_MULT_INFO_GIF_MIN_DELAY Attribute value is a minimum delay of animated GIF frame display.
This value is applied to the frame if its own delay is less then value of
IG_MULT_INFO_GIF_MIN_DELAY_THRESHOLD attribute.

IG_MULT_INFO_GIF_MIN_DELAY_THRESHOLD Attribute value is a threshold for minimum delay of animated GIF
frame display. Frames with delay less than this value are displayed
with delay specified by IG_MULT_INFO_GIF_MIN_DELAY attribute.

Remarks:

Info IDs for overall and per-frame info common to all multimedia sources IDs are allocated as follows: 0 - 1999 =
Overall info common to all multimedia sources 2000 - 3999 = Per-frame info common to all multimedia sources 4000 -
5999 = Overall info specific to individual sources (overlap is fine) 6000 - 7999 = Per-frame info specific to individual
sources (overlap is fine) 8000 - ???? = reserved

ImageGear Professional v18 for Mac | 1403

1.3.1.5.110 enumIGNCRTagIDs

Lists all NCR tag identifiers.

Values:

IGMDTAG_ID_NCR_FORMAT NCR metadata format identifier.

IGMDTAG_ID_NCR_DATA_FORMAT Data format.

IGMDTAG_ID_NCR_OPTIONS Options info.

IGMDTAG_ID_NCR_ENCRYPTION Encryption info.

IGMDTAG_ID_NCR_AUTHENTICATION Authentication info.

IGMDTAG_ID_NCR_AUTH_MAC Authentication Mac info.

IGMDTAG_ID_NCR_DATA_SIZE Data size.

IGMDTAG_ID_NCR_REAL_BPP Real bpp value.

IGMDTAG_ID_NCR_STORE_BPP Store bpp.

IGMDTAG_ID_NCR_REAL_WIDTH Real width.

IGMDTAG_ID_NCR_STORE_WIDTH Store width.

IGMDTAG_ID_NCR_REAL_HEIGHT Real height.

IGMDTAG_ID_NCR_STORE_HEIGHT Store height.

IGMDTAG_ID_NCR_ORIENT Orientation setting.

IGMDTAG_ID_NCR_PMI Invert pixels flag.

IGMDTAG_ID_NCR_DATA_ENDIAN Data endian.

IGMDTAG_ID_NCR_FILL_ORDER Fill order.

IGMDTAG_ID_NCR_GRANULARITY Granularity info.

IGMDTAG_ID_NCR_MIN_PIX_VALUE Min pix value.

IGMDTAG_ID_NCR_MAX_PIX_VALUE Max pix value.

IGMDTAG_ID_NCR_X_RES Horizontal resolution.

IGMDTAG_ID_NCR_Y_RES Vertical resolution.

IGMDTAG_ID_NCR_RES_UNIT Resolution unit.

IGMDTAG_ID_NCR_ERROR Error info.

ImageGear Professional v18 for Mac | 1404

1.3.1.5.111 enumIGNoiseMethods

This enumeration contains noise methods for IG_FX_noise.

Values:

IG_NOISE_LINEAR Linear method.

IG_NOISE_GAUSSIAN Gaussian method.

ImageGear Professional v18 for Mac | 1405

1.3.1.5.112 enumIGOrientationModes

Identifies how the image is oriented before it is drawn on the output device. Possible values are determined by the
constants of the form IG_DSPL_ORIENT_X_Y, where each of X and Y can be LEFT, TOP, RIGHT or BOTTOM. X represents
the position of the topmost row of the bitmap after applying the transformation. Y represents the position of the left-
most column of the bitmap after applying the transformation.

For example, IG_DSPL_ORIENT_RIGHT_TOP means that the left-most column becomes the image's new topmost row,
and that the topmost row becomes the image's new right-most column. The image, therefore, is rotated on 90 degrees.

Values:

IG_DSPL_ORIENT_BOTTOM_LEFT The image is flipped vertically.

IG_DSPL_ORIENT_BOTTOM_RIGHT The image is rotated 180 degrees.

IG_DSPL_ORIENT_LEFT_BOTTOM The image is rotated 270 degrees.

IG_DSPL_ORIENT_LEFT_TOP The image is rotated 270 degrees and then flipped vertically.

IG_DSPL_ORIENT_RIGHT_BOTTOM The image is rotated 90 degrees and then flipped vertically.

IG_DSPL_ORIENT_RIGHT_TOP The image is rotated 90 degrees.

IG_DSPL_ORIENT_TOP_LEFT The image is displayed unchanged.

IG_DSPL_ORIENT_TOP_RIGHT The image is flipped horizontally.

ImageGear Professional v18 for Mac | 1406

1.3.1.5.113 enumIGPaletteFormats

Identifies the different formats used for storing image palette in the external file.

Values:

IG_PALETTE_FORMAT_INVALID Returned when a file could not be read.

IG_PALETTE_FORMAT_RAW_BGR This is the raw DIB format BGR.

IG_PALETTE_FORMAT_RAW_BGRQ This is the raw DIB format BGRQ.

IG_PALETTE_FORMAT_RAW_RGB This is the raw DIB format RGB.

IG_PALETTE_FORMAT_RAW_RGBQ This is the raw DIB format RGBQ.

IG_PALETTE_FORMAT_TEXT ASCII text file.

IG_PALETTE_FORMAT_HALO_CUT Dr Halo .PAL file for use with a CUT file format.

ImageGear Professional v18 for Mac | 1407

1.3.1.5.114 enumIGPBMTagIDs

Lists all PBM tag identifiers.

Values:

IGMDTAG_ID_PBM_FORMAT PBM metadata format identifier.

ImageGear Professional v18 for Mac | 1408

1.3.1.5.115 enumIGPCDTagIDs

Lists all PCD tag identifiers.

Values:

IGMDTAG_ID_PCD_FORMAT PCD metadata format identifier.

IGMDTAG_ID_PCD_IPICA_RESERVED IPICA reserved.

IGMDTAG_ID_PCD_IPICA_IMAGE_PACK_PARAMS IPICA image pack params.

IGMDTAG_ID_PCD_IPICA_BASE4_STOP_OFFSET IPICA base4 stop offset.

IGMDTAG_ID_PCD_IPICA_BASE16_STOP_OFFSET IPICA base16 stop offset.

IGMDTAG_ID_PCD_IPICA_IPE_STOP_OFFSET IPICA IPE stop offset.

IGMDTAG_ID_PCD_IPICA_IP_INTERLEAVE_RATIO IPICA IP interleave ratio.

IGMDTAG_ID_PCD_IPI_SIGNATURE IPI signature.

IGMDTAG_ID_PCD_IPI_VERSION_NUMBER IPI version number.

IGMDTAG_ID_PCD_IPI_SOFTWARE_RELEASE IPI software release.

IGMDTAG_ID_PCD_IPI_IMAGE_MAG_DESCRIPTION IPI image mag description.

IGMDTAG_ID_PCD_IPI_IMAGE_SCAN_TIME IPI image scan time.

IGMDTAG_ID_PCD_IPI_LAST_MODIFICATION_DATE IPI last modification date.

IGMDTAG_ID_PCD_IPI_MED_ORIGINAL_RECORDING IPI med original recording.

IGMDTAG_ID_PCD_IPI_TYPE_ORIGINAL_RECORDING IPI type original recording.

IGMDTAG_ID_PCD_IPI_SCANNER_VENDOR IPI scanner vendor.

IGMDTAG_ID_PCD_IPI_SCANNER_PRODUCT IPI scanner product.

IGMDTAG_ID_PCD_IPI_SCANNER_FIRMWARE_LEVEL IPI scanner firmware level.

IGMDTAG_ID_PCD_IPI_SCANNER_FIRMWARE_DATE IPI scanner firmware date.

IGMDTAG_ID_PCD_IPI_SCANNER_SERIAL_NUMBER IPI scanner serial number.

IGMDTAG_ID_PCD_IPI_SCANNER_PIXEL_SIZE IPI scanner pixel size.

IGMDTAG_ID_PCD_IPI_EQUIPMENT_MANUFACTURER IPI equipment manufacturer.

IGMDTAG_ID_PCD_IPI_PHOTONAME_CHAR_SET IPI photoname char set.

IGMDTAG_ID_PCD_IPI_PHOTONAME_ESC_SEQ IPI photoname esc seq.

IGMDTAG_ID_PCD_IPI_PHOTONAME IPI photoname.

IGMDTAG_ID_PCD_IPI_SBA_DATA IPI SBA data.

IGMDTAG_ID_PCD_IPI_COPYRIGHT_STATUS IPI copyright status.

IGMDTAG_ID_PCD_IPI_COPYRIGHT_FILENAME IPI copyright filename.

ImageGear Professional v18 for Mac | 1409

1.3.1.5.116 enumIGPCXTagIDs

Lists all PCX tag identifiers.

Values:

IGMDTAG_ID_PCX_FORMAT PCX metadata format identifier.

IGMDTAG_ID_PCX_MANUFACTURER Manufacturer magic value.

IGMDTAG_ID_PCX_VERSION_INFO Version info.

IGMDTAG_ID_PCX_ENCODE Encoding type.

IGMDTAG_ID_PCX_BIT_PER_PLANE Bit per plane.

IGMDTAG_ID_PCX_X1 Left image coordinate to display.

IGMDTAG_ID_PCX_Y1 Top image coordinate to display.

IGMDTAG_ID_PCX_X2 RIght image coordinate to display.

IGMDTAG_ID_PCX_Y2 Bottom image coordinate to display.

IGMDTAG_ID_PCX_H_RES Horizontal Resolution of creating device.

IGMDTAG_ID_PCX_V_RES Vertical Resolution of creating device.

IGMDTAG_ID_PCX_PALETTE_TABLE Palette table.

IGMDTAG_ID_PCX_VIDEO_MODE Video mode.

IGMDTAG_ID_PCX_NUM_OF_PLANES Number of planes.

IGMDTAG_ID_PCX_BYTES_PER_LINE Bytes per line.

IGMDTAG_ID_PCX_PALETTE_INFO Palette info.

IGMDTAG_ID_PCX_SCANNER_H_RES Scanner H_Res.

IGMDTAG_ID_PCX_SCANNER_V_RES Scanner V_Res.

IGMDTAG_ID_PCX_EXTRA Extra data length.

ImageGear Professional v18 for Mac | 1410

1.3.1.5.117 enumIGPixAccessMode

Specifies pixel data formats used by pixel access functions.

Values:

IG_PIX_ACCESS_MODE_LEGACY Legacy pixel data format, native for ImageGear versions prior 14.5.

IG_PIX_ACCESS_MODE_NEW New pixel data format, available in ImageGear version 14.5 and beyond.

ImageGear Professional v18 for Mac | 1411

1.3.1.5.118 enumIGPNGTagIDs

Lists all PNG tag identifiers.

Values:

IGMDTAG_ID_PNG_FORMAT PNG metadata format identifier.

IGMDTAG_ID_PNG_HEADER Header information.

IGMDTAG_ID_PNG_TRANSPARENCY Transparency information.

IGMDTAG_ID_PNG_GAMMA Gamma information.

IGMDTAG_ID_PNG_CHROMATICITIES Chromaticities information.

IGMDTAG_ID_PNG_SRGB Standard RGB information.

IGMDTAG_ID_PNG_ICC_PROFILE ICC profile information.

IGMDTAG_ID_PNG_BACKGROUND Background information.

IGMDTAG_ID_PNG_SIGNIFICANT_BITS Significant bits information.

IGMDTAG_ID_PNG_SUGGESTED_PALETTE Suggested palette information.

IGMDTAG_ID_PNG_HISTOGRAM Histogram information.

IGMDTAG_ID_PNG_TIME Time image last modification information.

IGMDTAG_ID_PNG_TEXT Text data information.

IGMDTAG_ID_PNG_COMPRESSED_TEXT Compressed textual data information.

IGMDTAG_ID_PNG_INTERNATIONAL_TEXT International textual data information.

IGMDTAG_ID_PNG_CALIBRATION Calibration information.

IGMDTAG_ID_PNG_PHYSICAL_SCALE Physical scale information.

IGMDTAG_ID_PNG_GIF_APP_EXT GIF application extension information.

IGMDTAG_ID_PNG_GIF_CONTROL GIF control information.

IGMDTAG_ID_PNG_IMAGE_OFFSET Image offset.

IGMDTAG_ID_PNG_FRACTAL_PARAMETERS Fractal parameters information.

IGMDTAG_ID_PNG_GIF_TEXT_EXT Gif text extension information.

IGMDTAG_ID_PNG_RESOLUTION Resolution information.

ImageGear Professional v18 for Mac | 1412

1.3.1.5.119 enumIGPromotionModes

This enumeration specifies color promotion modes.

Values:

IG_PROMOTE_TO_4 Promote to 4-bit Indexed.

IG_PROMOTE_TO_8 Promote to 8-bit Indexed.

IG_PROMOTE_TO_24 Promote to 24-bit RGB.

IG_PROMOTE_TO_32 Promote to 32-bit CMYK.

ImageGear Professional v18 for Mac | 1413

1.3.1.5.120 enumIGPSDTagIDs

Lists all PSD tag identifiers. See "Photoshop CS File Formats Specification" available in Adobe Photoshop SDK for more
details.

Values:

IGMDTAG_ID_PSD_FORMAT PSD metadata format identifier.

IGMDTAG_ID_PSD_SIGNATURE File type identifier.

IGMDTAG_ID_PSD_VERSION Version number.

IGMDTAG_ID_PSD_ROWS The height of the image in pixels.

IGMDTAG_ID_PSD_COLS The width of the image in pixels.

IGMDTAG_ID_PSD_DEPTH The number of bits per channel.

IGMDTAG_ID_PSD_MODE Color mode.

IGMDTAG_ID_PSD_MODE_LEN Color mode data length.

IGMDTAG_ID_PSD_COMPRESSION Image data compression.

IGMDTAG_ID_PSD_FILE_HDR File header.

IGMDTAG_ID_PSD_COLOR_DATA Color data.

IGMDTAG_ID_PSD_RESOURCE Photoshop resources.

IGMDTAG_ID_PSD_LAYER Layers data.

IGMDTAG_ID_PSD_GLOBAL_MASK Extra layers data.

IGMDTAG_ID_PSD_LAYER_RECT This value has been deprecated and will be removed
from the public API in a future release.

IGMDTAG_ID_PSD_LAYER_NUMBER_CHANNELS Number of channels in the layer.

IGMDTAG_ID_PSD_LAYER_BLEND_MODE_KEY Blend mode key.

IGMDTAG_ID_PSD_LAYER_OPACITY Layer opacity (0 = transparent ... 255 = opaque).

IGMDTAG_ID_PSD_LAYER_CLIPPING Layer clipping (0 = base, 1 = non-base).

IGMDTAG_ID_PSD_LAYER_FLAGS Flags: bit 0 = transparency protected; bit 1 = visible;
bit 2 = obsolete; bit 3 = 1 for Photoshop 5.0 and later,
tells if bit 4 has useful information; bit 4 = pixel data
irrelevant to appearance of document.

IGMDTAG_ID_PSD_LAYER_MASK_DATA Mask data.

IGMDTAG_ID_PSD_LAYER_ASCII_NAME Layer name as ASCII string.

IGMDTAG_ID_PSD_LAYER_CHANNEL_LEN_INFO This value has been deprecated and will be removed
from the public API in a future release.

IGMDTAG_ID_PSD_LAYER_BLENDING_RANGES_DATA This value has been deprecated and will be removed
from the public API in a future release.

IGMDTAG_ID_PSD_NUM_LAYERS Number of layers.

IGMDTAG_ID_PSD_GLOBAL_MASK_INFO This value has been deprecated and will be removed
from the public API in a future release.

IGMDTAG_ID_PSD_ADJUSTMENT_LAYER_INFO Adjustment info.

IGMDTAG_ID_PSD_LAYER_UNICODE_NAME Layer name as Unicode string.

IGMDTAG_ID_PSD_LAYER_ID Layer ID.

IGMDTAG_ID_PSD_EFFECT_LAYER_INFO Effect Layer info.

IGMDTAG_ID_PSD_EFFECT_LAYER_COMMON_STATE_INFO Effects layer, common state info.

IGMDTAG_ID_PSD_EFFECT_LAYER_SHADOW_INFO Effects layer, drop shadow and inner shadow info.

IGMDTAG_ID_PSD_EFFECT_LAYER_GLOW_INFO This value has been deprecated and will be removed
from the public API in a future release.

IGMDTAG_ID_PSD_EFFECT_LAYER_BEVEL_INFO This value has been deprecated and will be removed
from the public API in a future release.

IGMDTAG_ID_PSD_TOOL_TYPE_INFO Type Tool Info.

IGMDTAG_ID_PSD_PATTERN Pattern fill setting.

ImageGear Professional v18 for Mac | 1414

IGMDTAG_ID_PSD_ANNOTATIONS Annotations.

IGMDTAG_ID_PSD_BLEND_CLIPPING_ELEMENTS Blend clipping elements.

IGMDTAG_ID_PSD_BLEND_INTERIOR_ELEMENTS Blend interior elements.

IGMDTAG_ID_PSD_KNOCKOUT_SETTING Knockout setting.

IGMDTAG_ID_PSD_PROTECTED_SETTING Protected setting.

IGMDTAG_ID_PSD_SHEET_COLOR_SETTING Sheet color setting.

IGMDTAG_ID_PSD_REFERENCE_POINT Reference point.

IGMDTAG_ID_PSD_OBJ_BASED_EFFECTS_LAYER_INFO Object-based effects layer info.

IGMDTAG_ID_PSD_GRADIENT_SETTINGS Gradient settings.

IGMDTAG_ID_PSD_EXTRA_LAYERS_DATA Extra layers data.

IGMDTAG_ID_PSD_PhotoshopAdditionalLayerInfo Additional layer info.

IGMDTAG_ID_PSD_PhotoshopAdditionalLayerInfoKey Additional layer key.

IGMDTAG_ID_PSD_PhotoshopAdditionalLayerInfoData Additional layer data.

IGMDTAG_ID_PSD_PhotoshopAdditionalLayerInfoTag Additional layer tag.

IGMDTAG_ID_PSD_PhotoshopAdditionalLayerInfoDescr Additional layer description.

IGMDTAG_ID_PSD_HEADER Header data section.

IGMDTAG_ID_PSD_PHOTOSHOP_RESOURCES Photoshop resources.

IGMDTAG_ID_PSD_PHOTOSHOP_IMG_RESOURCE This value has been deprecated and will be removed
from the public API in a future release.

IGMDTAG_ID_PSD_PHOTOSHOP_IMG_RESOURCE_DATA This value has been deprecated and will be removed
from the public API in a future release.

IGMDTAG_ID_PSD_PHOTOSHOP_IMG_RESOURCE_SIZE This value has been deprecated and will be removed
from the public API in a future release.

IGMDTAG_ID_PSD_PHOTOSHOP_IMG_RESOURCE_ID This value has been deprecated and will be removed
from the public API in a future release.

IGMDTAG_ID_PSD_LAYER_INFO Layer info.

IGMDTAG_ID_PSD_RECTANGLE Layer rectangle.

IGMDTAG_ID_PSD_RECT_LEFT Layer rectangle left.

IGMDTAG_ID_PSD_RECT_TOP Layer rectangle top.

IGMDTAG_ID_PSD_RECT_RIGTH Layer rectangle right.

IGMDTAG_ID_PSD_RECT_BOTTOM Layer rectangle bottom.

IGMDTAG_ID_PSD_LAYER_CHANNELS_IDS Layer rectangle IDs.

IGMDTAG_ID_PSD_LAYER_EXTRA_DATA Layer extra data.

IGMDTAG_ID_PSD_LAYER_EXTRA_DATA_REC Layer extra data items.

IGMDTAG_ID_PSD_LAYERS PSD layers data.

ImageGear Professional v18 for Mac | 1415

1.3.1.5.121 enumIGRASTagIDs

Lists all RAS tag identifiers.

Values:

IGMDTAG_ID_RAS_FORMAT RAS metadata format identifier.

IGMDTAG_ID_RAS_MAGIC RAS magic value.

IGMDTAG_ID_RAS_WIDTH Image width.

IGMDTAG_ID_RAS_HEIGHT Image height.

IGMDTAG_ID_RAS_DEPTH Image depth.

IGMDTAG_ID_RAS_LENGTH Length of the image data (which is the length of the file minus the length of
the header and colormap).

IGMDTAG_ID_RAS_TYPE RAS format type.

IGMDTAG_ID_RAS_COLOR_MAP_TYPE Color map type.

IGMDTAG_ID_RAS_COLOR_MAP_LENGTH Color map length.

ImageGear Professional v18 for Mac | 1416

1.3.1.5.122 enumIGResampleInModes

This enumeration contains input modes for IG_FX_pixelate method.

Values:

IG_RESAMPLE_IN_AVE Average.

IG_RESAMPLE_IN_MIN Min.

IG_RESAMPLE_IN_MAX Max.

IG_RESAMPLE_IN_CENTER Center.

ImageGear Professional v18 for Mac | 1417

1.3.1.5.123 enumIGResampleOutModes

This enumeration contains output modes for IG_FX_pixelate method.

Values:

IG_RESAMPLE_OUT_SQUARE Square.

IG_RESAMPLE_OUT_CIRCLE Circle.

ImageGear Professional v18 for Mac | 1418

1.3.1.5.124 enumIGResolutionUnits

Identifies the different resolution units.

Values:

IG_RESOLUTION_NO_ABS No absolute units.

IG_RESOLUTION_METERS Pels (Pixels) Per Meter.

IG_RESOLUTION_INCHES Dots (Pixels) Per Inch.

IG_RESOLUTION_CENTIMETERS Pixels Per Centimeter.

IG_RESOLUTION_10_INCHES Dots (Pixels) Per 10 Inches.

IG_RESOLUTION_10_CENTIMETERS Pixels Per 10 Centimeters.

IG_RESOLUTION_LAST

ImageGear Professional v18 for Mac | 1419

1.3.1.5.125 enumIGRotationModes

This enumeration specifies modes of image rotation.

Values:

IG_ROTATE_CLIP Clip the rotated image to keep the image bitmap the same size.

IG_ROTATE_EXPAND Expand the size of the bitmap if necessary to retain the entire rotated image.

ImageGear Professional v18 for Mac | 1420

1.3.1.5.126 enumIGRotationValues

This enumeration specifies angles of image rotation by a multiple of 90 degrees.

Values:

IG_ROTATE_0 No rotation.

IG_ROTATE_90 Rotation by 90 degrees.

IG_ROTATE_180 Rotation by 180 degrees.

IG_ROTATE_270 Rotation by 270 degrees.

ImageGear Professional v18 for Mac | 1421

1.3.1.5.127 enumIGSaveFormats

Identifies the formats available for saving.

Values:

IG_SAVE_BMP_RLE Microsoft Windows bitmap with RLE compression

IG_SAVE_BMP_UNCOMP Microsoft Windows bitmap uncompressed

IG_SAVE_BRK_G3 BTR with Group 3 compression

IG_SAVE_BRK_G3_2D BTR with Group 3 2D compression

IG_SAVE_CAL CAL

IG_SAVE_CGM CGM

IG_SAVE_CLP CLP

IG_SAVE_DCM DICOM

IG_SAVE_DCX Paintbrush

IG_SAVE_DWF DWF

IG_SAVE_DWG DWG

IG_SAVE_DXF DXF

IG_SAVE_EPS_G3 Encapsulated postscript with Group 3 compression

IG_SAVE_EPS_G4 Encapsulated postscript with Group 4 compression

IG_SAVE_EPS_JPG Encapsulated postscript with JPG compression

IG_SAVE_EPS_UNCOMP Encapsulated postscript uncompressed

IG_SAVE_EXIF_JPEG Exchangeable image file format

IG_SAVE_EXIF_TIFF Exchangeable image file format (EXIF-TIFF)

IG_SAVE_FPX_JPG FlashPix with JPEG compression

IG_SAVE_FPX_NOCHANGE FlashPix with the current compression

IG_SAVE_FPX_SINCOLOR FlashPix with the single color compression

IG_SAVE_FPX_UNCOMP FlashPix uncompressed

IG_SAVE_GIF GIF

IG_SAVE_ICA_G3 IBM IOCA with Group 3 compression

IG_SAVE_ICA_G4 IBM IOCA with Group 4 compression

IG_SAVE_ICA_IBM_MMR IBM IOCA with IBM MMR compression

IG_SAVE_ICO windows icon

IG_SAVE_IFF Interchange uncompressed

IG_SAVE_IFF_RLE Interchange with RLE compression

IG_SAVE_IMT IMT

IG_SAVE_JB2 Reserved for future use.

IG_SAVE_JBIG JBIG

IG_SAVE_JPEG2K JPEG2000

IG_SAVE_JPG JPEG File Interchange

IG_SAVE_JPX JPX

IG_SAVE_LURADOC This value has been deprecated and will be removed from the public API in a future
release.

IG_SAVE_LURAJP2 This value has been deprecated and will be removed from the public API in a future
release.

IG_SAVE_LURAWAVE This value has been deprecated and will be removed from the public API in a future
release.

IG_SAVE_MOD_G3 IBM MO:DCA with Group 3 compression

IG_SAVE_MOD_G4 IBM MO:DCA with Group 4 compression

ImageGear Professional v18 for Mac | 1422

IG_SAVE_MOD_IBM_MMR IBM MO:DCA with MMR compression

IG_SAVE_NCR NCR uncompressed

IG_SAVE_NCR_G4 NCR with Group 4 compression

IG_SAVE_PBM_ASCII PBM converted to ASCII text

IG_SAVE_PBM_RAW PBM binary row format

IG_SAVE_PCT Mac Pict

IG_SAVE_PCX PC Paintbrush File Format

IG_SAVE_PDF_DEFLATE Adobe PDF with Deflate compression

IG_SAVE_PDF_G3 Adobe PDF with Group 3 compression

IG_SAVE_PDF_G3_2D Adobe PDF with Group3 2D compression

IG_SAVE_PDF_G4 Adobe PDF with Group 4 compression

IG_SAVE_PDF_JPG Adobe PDF with JPEG compression

IG_SAVE_PDF_LZW Adobe PDF with LZW compression

IG_SAVE_PDF_RLE Adobe PDF with RLE compression

IG_SAVE_PDF_UNCOMP Adobe PDF uncompressed

IG_SAVE_PJPEG Not supported

IG_SAVE_PNG Portable network graphics

IG_SAVE_PS_DEFLATE Postscript with Deflate compression

IG_SAVE_PS_G3 Postscript with Group 3 compression

IG_SAVE_PS_G3_2D Postscript with Group3 2D compression

IG_SAVE_PS_G4 Postscript with Group 4 compression

IG_SAVE_PS_JPG Postscript with JPEG compression

IG_SAVE_PS_LZW Postscript with LZW compression

IG_SAVE_PS_RLE Postscript with RLE compression

IG_SAVE_PS_UNCOMP Postscript uncompressed

IG_SAVE_PSB Adobe PSB

IG_SAVE_PSB_PACKED Adobe PSB with packed bits compression

IG_SAVE_PSD Adobe PSD

IG_SAVE_PSD_PACKED Adobe PSD with packed bits compression

IG_SAVE_RAS RAS

IG_SAVE_RAW_G3 RAW with Group 3 compression

IG_SAVE_RAW_G32D RAW with Group 3 2D compression

IG_SAVE_RAW_G4 RAW with Group 4 compression

IG_SAVE_RAW_LZW RAW with LZW compression

IG_SAVE_RAW_RLE RAW with RLE compression

IG_SAVE_SCI_ST Scitex CT format

IG_SAVE_SGI SGI

IG_SAVE_SGI_RLE SGI with RLE compression

IG_SAVE_SVG SVG

IG_SAVE_TGA TGA

IG_SAVE_TGA_RLE TGA with RLE compression

IG_SAVE_TIF_G3 Tagged Image File Format with Group 3 compression

IG_SAVE_TIF_G3_2D Tagged Image File Format with Group 3 2D compression

IG_SAVE_TIF_G4 Tagged Image File Format with Group 4 compression

IG_SAVE_TIF_HUFFMAN Tagged Image File Format with Huffman compression

IG_SAVE_TIF_JPG Tagged Image File Format with JPEG compression

IG_SAVE_TIF_LZW Tagged Image File Format with LZW compression

IG_SAVE_TIF_PACKED Tagged Image File Format with Packed Bits compression

ImageGear Professional v18 for Mac | 1423

IG_SAVE_TIF_UNCOMP Tagged Image File Format uncompressed

IG_SAVE_U3D U3D

IG_SAVE_UNKNOWN Unknown format

IG_SAVE_WBMP Wireless Bitmap File Format

IG_SAVE_WL16 Not supported

IG_SAVE_WLT Not supported

IG_SAVE_WMF Windows MetaFile

IG_SAVE_XBM XBM

IG_SAVE_XPM XPM

IG_SAVE_XPS XPS (XML Paper Specification)

IG_SAVE_XWD XWD

ImageGear Professional v18 for Mac | 1424

1.3.1.5.128 enumIGSCICTTagIDs

Lists all SCI_CT tag identifiers.

Values:

IGMDTAG_ID_SCICT_FORMAT SCI_CT metadata format identifier.

ImageGear Professional v18 for Mac | 1425

1.3.1.5.129 enumIGSGITagIDs

Lists all SGI tag identifiers.

Values:

IGMDTAG_ID_SGI_FORMAT SGI metadata format identifier.

IGMDTAG_ID_SGI_MAGIC IRIS image file magic number. R/O.

IGMDTAG_ID_SGI_STORAGE Storage format. R/O.

IGMDTAG_ID_SGI_BPC Number of bytes per pixel channel. R/O.

IGMDTAG_ID_SGI_DIMENSION Number of dimensions. R/O.

IGMDTAG_ID_SGI_X_SIZE X size in pixels. R/O.

IGMDTAG_ID_SGI_Y_SIZE Y size in pixels. R/O.

IGMDTAG_ID_SGI_Z_SIZE Number of channels. R/O.

IGMDTAG_ID_SGI_PIX_MIN Minimum pixel value. R/W.

IGMDTAG_ID_SGI_PIX_MAX Maximum pixel value. R/W.

IGMDTAG_ID_SGI_DUMMY1 Dummy 1 value. R/W.

IGMDTAG_ID_SGI_IMAGE_NAME Image name. R/W.

IGMDTAG_ID_SGI_COLOR_MAP Color map. R/O.

IGMDTAG_ID_SGI_DUMMY2 Dummy 2 value. R/W.

ImageGear Professional v18 for Mac | 1426

1.3.1.5.130 enumIGSysDataType

Identifies the ImageGear data types.

Values:

AM_TID_META_INT8 Data type is 8 bit signed integer.

AM_TID_META_UINT8 Data type is 8 bit unsigned integer.

AM_TID_META_INT16 Data type is 16 bit signed integer.

AM_TID_META_UINT16 Data type is 16 bit unsigned integer.

AM_TID_META_INT32 Data type is 32 bit signed integer.

AM_TID_META_UINT32 Data type is 32 bit unsigned integer.

AM_TID_META_BOOL Data type is Boolean.

AM_TID_META_STRING Data type is String.

AM_TID_META_RATIONAL_UINT32 Data type is Rational 32 bit unsigned integer.

AM_TID_META_RATIONAL_INT32 Data type is Rational 32 bit bit signed integer.

AM_TID_META_FLOAT Data type is Float.

AM_TID_META_DOUBLE Data type is Double.

AM_TID_RAW_DATA Data type is Raw Data.

AM_TID_META_INT64 Data type is 64 bit signed integer.

AM_TID_META_UINT64 Data type is 64 bit unsigned integer.

AM_TID_META_STRING32 Data type is a String holding up to 32 characters. Corresponds to TW_STR32
data type of TWAIN API specification.

AM_TID_META_STRING64 Data type is a String holding up to 64 characters. Corresponds to TW_STR64
data type of TWAIN API specification.

AM_TID_META_STRING128 Data type is a String holding up to 128 characters. Corresponds to TW_STR128
data type of TWAIN API specification.

AM_TID_META_STRING255 Data type is a String holding up to 254 characters. Corresponds to TW_STR255
data type of TWAIN API specification.

AM_TID_META_STRING1024 Data type is a String holding up to 1024 characters. Corresponds to
TW_STR1024 data type of TWAIN API specification.

AM_TID_META_STRING_UNICODE512 Data type is a String holding up to 512 unicode (wchar_t) characters.
Corresponds to TW_UNI512 data type of TWAIN API specification.

AM_TID_META_DRECT Data type is a AT_DRECT.

ImageGear Professional v18 for Mac | 1427

1.3.1.5.131 enumIGTagConstants

This enumeration has been deprecated and will be removed from the public API in a future release. Please use
enumIGBMPTagIDs instead.

Values:

IGTAGVAL_BMP_TYPE_BMC This value has been deprecated and will be removed from the public API in a future
release. Please use IG_BMP_TYPE_BMC instead.

IGTAGVAL_BMP_TYPE_BMI This value has been deprecated and will be removed from the public API in a future
release. Please use IG_BMP_TYPE_BMI instead.

IGTAGVAL_BMP_TYPE_BMI2 This value has been deprecated and will be removed from the public API in a future
release. Please use IG_BMP_TYPE_BMI2 instead.

IGTAGVAL_PCT_VERSION_1 This value has been deprecated and will be removed from the public API in a future
release. Please use IG_PCT_VERSION_1 instead.

IGTAGVAL_PCT_VERSION_2 This value has been deprecated and will be removed from the public API in a future
release. Please use IG_PCT_VERSION_2 instead.

ImageGear Professional v18 for Mac | 1428

1.3.1.5.132 enumIGTags

This enumeration has been deprecated and will be removed from the public API in a future release. Please use
ImageGear metadata callbacks API instead.

Values:

IGTAG_BMP_SIZE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_WIDTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_HEIGHT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_PLANES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_BITCOUNT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_COMPRESSION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_XPELSPERMETER This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_YPELSPERMETER This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_CLRUSED This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_CLRIMPORTANT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_UNITS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_RECORDING This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_RENDERING This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_SIZE1 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_SIZE2 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_COLORENCODING This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_IDENTIFIER This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_TYPE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_REDMASK This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_GREENMASK This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_BLUEMASK This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_ALPHAMASK This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_CSTYPE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_ENDPNTCOORDS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_GAMMARED This value has been deprecated and will be removed from the
public API in a future release.

ImageGear Professional v18 for Mac | 1429

IGTAG_BMP_GAMMAGREEN This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BMP_GAMMABLUE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_JFIF_ID This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_JFIF_VERSION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_JFIF_UNITS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_JFIF_X_RESOLUTION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_JFIF_Y_RESOLUTION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_JFIF_THUMBNAIL_WIDTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_JFIF_THUMBNAIL_HEIGHT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_COMMENT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_QUANT1 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_QUANT2 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_QUANT3 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_QUANT4 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_FRAME_PRECISION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_FRAME_LINES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_FRAME_SAMPLES_PER_LINE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_FRAME_COMPONENTS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_FRAME_COMPID1 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_FRAME_COMPID2 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_FRAME_COMPID3 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_FRAME_MCU_HV1 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_FRAME_MCU_HV2 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_FRAME_MCU_HV3 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_FRAME_QUANT1 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_FRAME_QUANT2 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_FRAME_QUANT3 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_SCAN_COMPONENTS This value has been deprecated and will be removed from the
public API in a future release.

ImageGear Professional v18 for Mac | 1430

IGTAG_JPG_SCAN_COMP_SELECT1 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_SCAN_COMP_SELECT2 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_SCAN_COMP_SELECT3 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_SCAN_DC_AC1 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_SCAN_DC_AC2 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_SCAN_DC_AC3 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_SCAN_SPECT_START This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_SCAN_SPECT_END This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_SCAN_AH_AL This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_APPDATA This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_APPDATA_LAST This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_JPG_FRAME_MARKER This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_CAL_SPECVERSION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_CAL_SRCDOCID This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_CAL_DSTDOCID This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_CAL_TXTFILID This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_CAL_FIGID This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_CAL_RTYPE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_CAL_RORIENT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_CAL_RPELCNT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_CAL_RDENSITY This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_CAL_SRCGPH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_CAL_DOCCLS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_CAL_FOSIPUBID This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_CAL_NOTES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCX_MANUFACTURER This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCX_VERSION_INFO This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCX_ENCODE This value has been deprecated and will be removed from the
public API in a future release.

ImageGear Professional v18 for Mac | 1431

IGTAG_PCX_BIT_PER_PLANE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCX_X1 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCX_Y1 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCX_X2 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCX_Y2 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCX_H_RES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCX_V_RES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCX_PALETTE_TABLE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCX_VIDEO_MODE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCX_NUM_OF_PLANES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCX_BYTES_PER_LINE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCX_PALETTE_INFO This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCX_SCANNER_H_RES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCX_SCANNER_V_RES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCX_EXTRA This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_DCX_MAGIC This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_DCX_PAGE_LIST This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_GEM_VERSION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_GEM_HEADERSIZE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_GEM_PLANES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_GEM_PATTERNLENGTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_GEM_WIDTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_GEM_HEIGHT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_EPS_VERSION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_EPS_WIDTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_EPS_HEIGHT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_EPS_TITLE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_EPS_CREATOR This value has been deprecated and will be removed from the
public API in a future release.

ImageGear Professional v18 for Mac | 1432

IGTAG_EPS_BOUNDINGBOX This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_EPS_TRANSLATE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_EPS_SCALE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_EPS_IMAGE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_IFF_WIDE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_IFF_HIGH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_IFF_XORG This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_IFF_YORG This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_IFF_PLANES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_IFF_MASK This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_IFF_COMPRESSION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_IFF_TRAN_ASPT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_IFF_PAGE_W This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_IFF_PAGE_H This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_IFF_VIEW_MODE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_IFF_TRANSP_COLOR This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_IFF_X_ASPECT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_IFF_Y_ASPECT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BTR_MANUFACTURER This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BTR_VERSION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BTR_IMAGETYPE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BTR_HORZRES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BTR_VERTRES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BTR_BITSPERPIXEL This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BTR_PIXELSPERLINE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BTR_STORAGEFMT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BTR_TRANSFMT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BTR_PREVPAGE This value has been deprecated and will be removed from the
public API in a future release.

ImageGear Professional v18 for Mac | 1433

IGTAG_BTR_NEXTPAGE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_BTR_NUMLINES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_IMT_TYPE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_IMT_FMT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_IMT_HEIGHT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_IMT_WIDTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_IMT_RESOLUTION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_IMT_BITSWAP This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_IMT_SWAB This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_IMT_INVERT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_LV_YORIGIN This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_LV_XORIGIN This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_LV_LINES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_LV_PIXELS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_LV_BITSPIX This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_LV_COMPRESSION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_LV_BYTEFORMAT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_LV_COMPVERSION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_LV_YAXIS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_LV_XAXIS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_LV_NBLOCKTYPE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_LV_DISPLAYMETHOD This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_LV_XSEPERATION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_LV_YSEPERATION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_LV_BLOCKLENGTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_LV_TEXT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_ICA_WIDTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_ICA_HEIGHT This value has been deprecated and will be removed from the
public API in a future release.

ImageGear Professional v18 for Mac | 1434

IGTAG_ICA_DEPTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_ICA_XDPI This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_ICA_YDPI This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_ICA_BITORDER This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_ICA_BASE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_ICA_COMPRESSION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_ICA_FILLORDER This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_RAS_MAGIC This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_RAS_WIDTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_RAS_HEIGHT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_RAS_DEPTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_RAS_LENGTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_RAS_TYPE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_RAS_COLOR_MAP_TYPE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_RAS_COLOR_MAP_LENGTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_SGI_MAGIC This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_SGI_STORAGE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_SGI_BPC This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_SGI_DIMENSION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_SGI_X_SIZE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_SGI_Y_SIZE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_SGI_Z_SIZE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_SGI_PIX_MIN This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_SGI_PIX_MAX This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_SGI_DUMMY1 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_SGI_IMAGE_NAME This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_SGI_COLOR_MAP This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_SGI_DUMMY2 This value has been deprecated and will be removed from the
public API in a future release.

ImageGear Professional v18 for Mac | 1435

IGTAG_GIF_VERSION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_GIF_SCREEN_ASPECT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_GIF_SCREEN_BG_COLOR This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_GIF_SCREEN_FLAGS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_GIF_SCREEN_HEIGHT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_GIF_SCREEN_WIDTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_GIF_SCREEN_PALETTE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_GIF_IMAGE_LEFT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_GIF_IMAGE_TOP This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_GIF_IMAGE_FLAGS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_GIF_IMAGE_PALETTE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_GIF_EXT_NUMBER_BEFORE_IMG This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_GIF_EXT_BEFORE_IMG This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_GIF_EXT_NUMBER_AFTER_IMG This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_GIF_EXT_AFTER_IMG This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_GIF_TRANSPARENT_COLOR This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_WMF_FH_KEY This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_WMF_FH_HANDLE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_WMF_FH_LEFT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_WMF_FH_TOP This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_WMF_FH_RIGHT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_WMF_FH_BOTTOM This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_WMF_FH_INCH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_WMF_FH_RESERVED This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_WMF_MH_FILE_TYPE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_WMF_MH_HEADER_SIZE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_WMF_MH_VERSION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_WMF_MH_FILE_SIZE This value has been deprecated and will be removed from the
public API in a future release.

ImageGear Professional v18 for Mac | 1436

IGTAG_WMF_MH_NUM_OBJECTS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_WMF_MH_MAX_RECORD_SIZE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_WMF_MH_NO_PARAMETERS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_CLP_FILE_ID This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_CLP_FORMAT_COUNT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_MSP_KEY1 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_MSP_KEY2 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_MSP_WIDTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_MSP_HEIGHT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_MSP_X_AR_BITMAP This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_MSP_Y_AR_BITMAP This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_MSP_X_AR_PRINTER This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_MSP_Y_AR_PRINTER This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_MSP_X_PRINTER_WIDTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_MSP_Y_PRINTER_HEIGHT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_MSP_X_ASPECT_CORR This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_MSP_Y_ASPECT_CORR This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_MSP_CHECKSUM This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_MSP_PADDING This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_KFX_ID This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_KFX_HDR_SIZE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_KFX_HDR_VER This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_KFX_IMAGE_ID This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_KFX_WIDTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_KFX_LENGTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_KFX_FORMAT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_KFX_BIT_SEX This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_KFX_COLOR This value has been deprecated and will be removed from the
public API in a future release.

ImageGear Professional v18 for Mac | 1437

IGTAG_KFX_XRES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_KFX_YRES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_KFX_PLANES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_KFX_BITS_PER_PIX This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_KFX_PAPER_SIZE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_KFX_DATE_CRT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_KFX_DATE_MOD This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_KFX_DATE_ACC This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_KFX_IDX_OFFSET This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_KFX_IDX_LEN This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_KFX_COM_OFFSET This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_KFX_COM_LEN This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_KFX_USER_OFFSET This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_KFX_USER_LEN This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_KFX_DATA_OFFSET This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_KFX_DATA_LEN This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_NCR_DATA_FORMAT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_NCR_OPTIONS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_NCR_ENCRYPTION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_NCR_AUTHENTICATION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_NCR_AUTH_MAC This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_NCR_DATA_SIZE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_NCR_REAL_BPP This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_NCR_STORE_BPP This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_NCR_REAL_WIDTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_NCR_STORE_WIDTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_NCR_REAL_HEIGHT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_NCR_STORE_HEIGHT This value has been deprecated and will be removed from the
public API in a future release.

ImageGear Professional v18 for Mac | 1438

IGTAG_NCR_ORIENT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_NCR_PMI This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_NCR_DATA_ENDIAN This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_NCR_FILL_ORDER This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_NCR_GRANULARITY This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_NCR_MIN_PIX_VALUE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_NCR_MAX_PIX_VALUE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_NCR_X_RES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_NCR_Y_RES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_NCR_RES_UNIT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_NCR_ERROR This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_SIGNATURE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_VERSION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_ROWS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_COLS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_DEPTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_MODE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_MODE_LEN This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_COMPRESSION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_FILE_HDR This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_COLOR_DATA This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_RESOURCE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_LAYER This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_GLOBAL_MASK This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_LAYER_RECT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_LAYER_NUMBER_CHANNELS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_LAYER_BLEND_MODE_KEY This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_LAYER_OPACITY This value has been deprecated and will be removed from the
public API in a future release.

ImageGear Professional v18 for Mac | 1439

IGTAG_PSD_LAYER_CLIPPING This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_LAYER_FLAGS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_LAYER_MASK_DATA This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_LAYER_ASCII_NAME This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_LAYER_CHANNEL_LEN_INFO This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_LAYER_BLENDING_RANGES_DATA This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_NUM_LAYERS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_GLOBAL_MASK_INFO This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_ADJUSTMENT_LAYER_INFO This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_LAYER_UNICODE_NAME This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_LAYER_ID This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_EFFECT_LAYER_INFO This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_EFFECT_LAYER_COMMON_STATE_INFO This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_EFFECT_LAYER_SHADOW_INFO This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_EFFECT_LAYER_GLOW_INFO This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_EFFECT_LAYER_BEVEL_INFO This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_TOOL_TYPE_INFO This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_PATTERN This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_ANNOTATIONS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_BLEND_CLIPPING_ELEMENTS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_BLEND_INTERIOR_ELEMENTS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_KNOCKOUT_SETTING This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_PROTECTED_SETTING This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_SHEET_COLOR_SETTING This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_REFERENCE_POINT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_OBJ_BASED_EFFECTS_LAYER_INFO This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PSD_GRADIENT_SETTINGS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_AFX_SIGNATURE This value has been deprecated and will be removed from the
public API in a future release.

ImageGear Professional v18 for Mac | 1440

IGTAG_AFX_VER_MAJOR This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_AFX_VER_MINOR This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_AFX_VER_REV This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_AFX_VER_DEV This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_AFX_HDR_SIZE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_AFX_CHK_SUM This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_AFX_TYPE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_AFX_PRD_VER This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_AFX_ENC_METHOD This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_AFX_COMMENT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_AFX_DATA_START This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_AFX_DATA_SIZE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_AFX_RES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPICA_RESERVED This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPICA_IMAGE_PACK_PARAMS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPICA_BASE4_STOP_OFFSET This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPICA_BASE16_STOP_OFFSET This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPICA_IPE_STOP_OFFSET This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPICA_IP_INTERLEAVE_RATIO This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPI_SIGNATURE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPI_VERSION_NUMBER This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPI_SOFTWARE_RELEASE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPI_IMAGE_MAG_DESCRIPTION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPI_IMAGE_SCAN_TIME This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPI_LAST_MODIFICATION_DATE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPI_MED_ORIGINAL_RECORDING This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPI_TYPE_ORIGINAL_RECORDING This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPI_SCANNER_VENDOR This value has been deprecated and will be removed from the
public API in a future release.

ImageGear Professional v18 for Mac | 1441

IGTAG_PCD_IPI_SCANNER_PRODUCT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPI_SCANNER_FIRMWARE_LEVEL This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPI_SCANNER_FIRMWARE_DATE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPI_SCANNER_SERIAL_NUMBER This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPI_SCANNER_PIXEL_SIZE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPI_EQUIPMENT_MANUFACTURER This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPI_PHOTONAME_CHAR_SET This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPI_PHOTONAME_ESC_SEQ This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPI_PHOTONAME This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPI_SBA_DATA This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPI_COPYRIGHT_STATUS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCD_IPI_COPYRIGHT_FILENAME This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_LD_MASK_IMAGE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PCT_VERSION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_DCRAW_IMAGEWIDTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_DCRAW_IMAGEHEIGHT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_DCRAW_BITSPERSAMPLE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_DCRAW_PHOTOMETRICINTERPRETATION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_DCRAW_SAMPLESPERPIXEL This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_DCRAW_UNIQUECAMERAMODEL This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_DCRAW_MAKE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_DCRAW_MODEL This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_DCRAW_TIMESTAMP This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_DCRAW_CFAREPEATPATTERNDIM This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_DCRAW_CFAPATTERN This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_DCRAW_BLACKLEVELREPEATDIM This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_DCRAW_BLACKLEVEL This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_DCRAW_ASSHOTNEUTRAL This value has been deprecated and will be removed from the
public API in a future release.

ImageGear Professional v18 for Mac | 1442

IGTAG_DCRAW_WHITELEVEL This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_DCRAW_CALIBRATIONILLUMINANT1 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_DCRAW_CALIBRATIONILLUMINANT2 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_DCRAW_COLORMATRIX1 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_DCRAW_COLORMATRIX2 This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_DCRAW_BASELINEEXPOSURE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_DCRAW_AS_SHOT_WHITEXY This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PTOCA_HEIGHT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_PTOCA_WIDTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_NEWSUBFILETYPE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_SUBFILETYPE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_IMAGEWIDTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_IMAGEHEIGHT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_BITSPERSAMPLE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_COMPRESSION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_PHOTOMETRICINTERPRETATION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_THRESHOLDING This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_CELLWIDTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_CELLLENGTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_FILLORDER This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_DOCUMENTNAME This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_IMAGEDESCRIPTION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_MAKE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_MODEL This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_STRIPOFFSETS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_ORIENTATION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_SAMPLESPERPIXEL This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_ROWSPERSTRIP This value has been deprecated and will be removed from the
public API in a future release.

ImageGear Professional v18 for Mac | 1443

IGTAG_TIF_STRIPBYTECOUNTS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_MINSAMPLEVALUE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_MAXSAMPLEVALUE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_XRESNUMERATOR This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_XRESDENOMINATOR This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_YRESNUMERATOR This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_YRESDENOMINATOR This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_PLANARCONFIGURATION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_PAGENAME This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_XPOSITION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_YPOSITION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_FREEOFFSETS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_FREEBYTECOUNTS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_GRAYRESPONSEUNIT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_GRAYRESPONSECURVE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_T4OPTIONS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_T6OPTIONS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_RESOLUTIONUNIT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_PAGENUMBER This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_COLORRESPONSEUNIT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_TRANSFERFUNCTION This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_SOFTWARE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_DATETIME This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_ARTIST This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_HOSTCOMPUTER This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_PREDICTOR This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_WHITPOINT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_PRIMARYCHROMATICITIES This value has been deprecated and will be removed from the
public API in a future release.

ImageGear Professional v18 for Mac | 1444

IGTAG_TIF_COLORMAP This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_HALFTONEHINTS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_TILEWIDTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_TILELENGTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_TILEOFFSETS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_TILEBYTECOUNTS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_BADFAXLINES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_CLEANFAXDATA This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_CONSECUTIVEBADFAXLINES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_INKSET This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_INKNAMES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_NUMBEROFINKS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_DOTRANGE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_TARGETPRINTER This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_EXTRASAMPLES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_SAMPLEFORMAT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_SMINSAMPLEVALUE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_SMAXSAMPLEVALUE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_TRANSFERRANGE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_JPEGPROC This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_JPEGINTERCHANGEFORMAT This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_JPEGINTERCHANGEFORMATLENGTH This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_JPEGRESTARTINTERVAL This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_JPEGLOSSLESSPREDICCTORS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_JPEGPOINTTRANSFORMS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_JPEGQTABLES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_JPEGDCTTABLES This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_JPEGACTTABLES This value has been deprecated and will be removed from the
public API in a future release.

ImageGear Professional v18 for Mac | 1445

IGTAG_TIF_YCBCRCOEFFICIENTS This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_YCBCRSUBSAMPLING This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_YCBCRPOSITIONING This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_REFERENCEBLACKWHITE This value has been deprecated and will be removed from the
public API in a future release.

IGTAG_TIF_COPYRIGHT This value has been deprecated and will be removed from the
public API in a future release.

Remarks:

See Non-Image Data Processing for more details.

ImageGear Professional v18 for Mac | 1446

1.3.1.5.133 enumIGTGATagIDs

Lists all TGA tag identifiers.

Values:

IGMDTAG_ID_TGA_FORMAT TGA metadata format identifier.

IGMDTAG_ID_TGA_HEAD Header data section.

IGMDTAG_ID_TGA_HEAD_IDLENGTH ID length.

IGMDTAG_ID_TGA_HEAD_COLORMAPTYPE Color map type.

IGMDTAG_ID_TGA_HEAD_IMAGETYPE Image type.

IGMDTAG_ID_TGA_HEAD_CMAPSTART CMap start.

IGMDTAG_ID_TGA_HEAD_CMAPLENGTH CMap length.

IGMDTAG_ID_TGA_HEAD_CMAPDEPTH CMap depth.

IGMDTAG_ID_TGA_HEAD_XOFFSET Absolute horizontal coordinate for the lower left corner of the
image as it is positioned on a display device having an origin at
the lower left of the screen.

IGMDTAG_ID_TGA_HEAD_YOFFSET Absolute vertical coordinate for the lower left corner of the image
as it is positioned on a display device having an origin at the lower
left of the screen.

IGMDTAG_ID_TGA_HEAD_WIDTH Image width.

IGMDTAG_ID_TGA_HEAD_HEIGHT Image height.

IGMDTAG_ID_TGA_HEAD_PIXELDEPTH Pixel depth.

IGMDTAG_ID_TGA_HEAD_IMAGEDESCRIPTOR Image descriptor.

IGMDTAG_ID_TGA_FOOT Footer data section.

IGMDTAG_ID_TGA_FOOT_EXTENSION_OFFSET Extension offset.

IGMDTAG_ID_TGA_FOOT_DEVELOPER_OFFSET Developer offset.

IGMDTAG_ID_TGA_FOOT_SIGNATURE Signature string.

IGMDTAG_ID_TGA_EXT Extension data section.

IGMDTAG_ID_TGA_EXT_SIZE Extension size.

IGMDTAG_ID_TGA_EXT_AUTHORNAME Author name.

IGMDTAG_ID_TGA_EXT_AUTHORCOMMENT Author comment.

IGMDTAG_ID_TGA_EXT_STAMPMONTH Stamp month.

IGMDTAG_ID_TGA_EXT_STAMPDAY Stamp day.

IGMDTAG_ID_TGA_EXT_STAMPYEAR Stamp year.

IGMDTAG_ID_TGA_EXT_STAMPHOUR Stamp hour.

IGMDTAG_ID_TGA_EXT_STAMPMINUTE Stamp minute.

IGMDTAG_ID_TGA_EXT_STAMPSECOND Stamp second.

IGMDTAG_ID_TGA_EXT_JOBNAME Job name .

IGMDTAG_ID_TGA_EXT_JOBHOUR Job hour value.

IGMDTAG_ID_TGA_EXT_JOBMINUTE Job minute value.

IGMDTAG_ID_TGA_EXT_JOBSECOND Job second value.

IGMDTAG_ID_TGA_EXT_SOFTWAREID Software ID.

IGMDTAG_ID_TGA_EXT_VERSIONNUMBER Version number.

IGMDTAG_ID_TGA_EXT_VERSIONLETTER Version letter.

IGMDTAG_ID_TGA_EXT_KEYCOLOR Key color.

IGMDTAG_ID_TGA_EXT_PIXELNUMERATOR Pixel numerator.

IGMDTAG_ID_TGA_EXT_PIXELDENOMINATOR Pixel denominator.

IGMDTAG_ID_TGA_EXT_GAMMANUMERATOR Gamma numerator.

IGMDTAG_ID_TGA_EXT_GAMMADENOMINATOR Gamma denominator.

ImageGear Professional v18 for Mac | 1447

IGMDTAG_ID_TGA_EXT_COLOROFFSET Color offset.

IGMDTAG_ID_TGA_EXT_STAMPOFFSET Stamp offset.

IGMDTAG_ID_TGA_EXT_SCANOFFSET Scan offset.

IGMDTAG_ID_TGA_EXT_ATTRIBUTESTYPE Attributes type.

IGMDTAG_ID_TGA_IMAGE_ID Image ID tag.

ImageGear Professional v18 for Mac | 1448

1.3.1.5.134 enumIGTIFFTagIDs

Lists all TIF tag identifiers. See TIFF 6.0, TIFF/EP, DNG specifications for more details.

Values:

IGMDTAG_ID_TIF_FORMAT TIF metadata format identifier.

IGMDTAG_ID_TIF_NEW_SUBFILE_TYPE New subfile type.

IGMDTAG_ID_TIF_SUBFILE_TYPE Subfile type.

IGMDTAG_ID_TIF_IMAGE_WIDTH Image width.

IGMDTAG_ID_TIF_IMAGE_HEIGHT Image height.

IGMDTAG_ID_TIF_BITS_PER_SAMPLE Bits per sample.

IGMDTAG_ID_TIF_COMPRESSION Image data compression type.

IGMDTAG_ID_TIF_PHOTO_INTERP Photometric interpretation.

IGMDTAG_ID_TIF_THRESHOLDING The technique used to convert from gray to black and white
pixels.

IGMDTAG_ID_TIF_CELL_WIDTH Cell width.

IGMDTAG_ID_TIF_CELL_HEIGHT Cell height.

IGMDTAG_ID_TIF_FILL_ORDER Fill order.

IGMDTAG_ID_TIF_DOC_NAME Document name.

IGMDTAG_ID_TIF_DESCRIPTION Image description.

IGMDTAG_ID_TIF_MAKE Manufacturer of equipment used to generate the image.

IGMDTAG_ID_TIF_MODEL The model name of equipment used to generate the image.

IGMDTAG_ID_TIF_STRIP_OFFSETS Strip offsets.

IGMDTAG_ID_TIF_ORIENTATION Image orientation.

IGMDTAG_ID_TIF_SAMPLES_PER_PIXEL Samples per pixel.

IGMDTAG_ID_TIF_ROWS_PER_STRIP Rows per strip.

IGMDTAG_ID_TIF_STRIP_BYTE_COUNT Strip byte counts.

IGMDTAG_ID_TIF_MIN_SAMPLE_VAL Min sample value.

IGMDTAG_ID_TIF_MAX_SAMPLE_VAL Max sample value.

IGMDTAG_ID_TIF_X_RES X resolution.

IGMDTAG_ID_TIF_Y_RES Y resolution.

IGMDTAG_ID_TIF_PLANAR_CONFIG Planar configuration.

IGMDTAG_ID_TIF_PAGE_NAME Page name.

IGMDTAG_ID_TIF_X_POS X position.

IGMDTAG_ID_TIF_Y_POS Y position.

IGMDTAG_ID_TIF_FREE_OFFSETS Free offsets.

IGMDTAG_ID_TIF_FREE_BYTE_COUNTS Free byte counts.

IGMDTAG_ID_TIF_GRAY_RESPONSE_UNIT Gray response unit.

IGMDTAG_ID_TIF_GRAY_RESPONSE_CURVE Gray response curve.

IGMDTAG_ID_TIF_T4_OPTIONS T4 options.

IGMDTAG_ID_TIF_T6_OPTIONS T6 options.

IGMDTAG_ID_TIF_RES_UNIT Resolution unit.

IGMDTAG_ID_TIF_PAGE_NUMBER Page number.

IGMDTAG_ID_TIF_TRANSFER_FUNC Transfer function.

IGMDTAG_ID_TIF_SOFTWARE Name and version number of the software package(s) used
to create the image.

IGMDTAG_ID_TIF_DATE_TIME Date time.

IGMDTAG_ID_TIF_ARTIST Person who created the image.

ImageGear Professional v18 for Mac | 1449

IGMDTAG_ID_TIF_HOST_COMPUTER Host computer.

IGMDTAG_ID_TIF_PREDICTOR Mathematical operator that is applied to the image data
before an encoding scheme is applied.

IGMDTAG_ID_TIF_WHITE_POINT White point.

IGMDTAG_ID_TIF_PRIMARY_CHROMA Primary chromaticities.

IGMDTAG_ID_TIF_COLOR_MAP Color map.

IGMDTAG_ID_TIF_HALFTONE_HINTS Halftone hints.

IGMDTAG_ID_TIF_TILE_WIDTH Tile width.

IGMDTAG_ID_TIF_TILE_HEIGHT Tile height.

IGMDTAG_ID_TIF_TILE_OFFSETS Tile offsets.

IGMDTAG_ID_TIF_TILE_BYTE_COUNT Tile byte counts.

IGMDTAG_ID_TIF_SUBIFDS Child IFDs offsets.

IGMDTAG_ID_TIF_INK_SET The set of inks used.

IGMDTAG_ID_TIF_INK_NAMES Ink names.

IGMDTAG_ID_TIF_NUMBER_OF_LINKS Number of inks.

IGMDTAG_ID_TIF_DOT_RANGE Dot range.

IGMDTAG_ID_TIF_TARGET_PRINTER Target printer.

IGMDTAG_ID_TIF_EXTRA_SAMPLES Extra samples.

IGMDTAG_ID_TIF_SAMPLE_FORMAT Sample format.

IGMDTAG_ID_TIF_SMIN_SAMPLE_VAL S min sample value.

IGMDTAG_ID_TIF_SMAX_SAMPLE_VAL S max sample value.

IGMDTAG_ID_TIF_TRANSFER_RANGE Transfer range.

IGMDTAG_ID_TIF_JPEG_TABLES JPEG tables.

IGMDTAG_ID_TIF_JPEG_PROC JPEG proc.

IGMDTAG_ID_TIF_JPEG_INTERCHANGE JPEG interchange format.

IGMDTAG_ID_TIF_JPEG_INTERCHANGE_LEN JPEG interchange format length.

IGMDTAG_ID_TIF_JPEG_RESTART_INTERVAL JPEG restart interval.

IGMDTAG_ID_TIF_JPEG_LOSSLESS_PREDICTOR JPEG lossless predictors.

IGMDTAG_ID_TIF_JPEG_POINT_TRANSFORMS JPEG point transforms.

IGMDTAG_ID_TIF_JPEG_Q_TABLES JPEG Q tables.

IGMDTAG_ID_TIF_JPEG_DC_TABLES JPEG DC tables.

IGMDTAG_ID_TIF_JPEG_AC_TABLES JPEG AC tables.

IGMDTAG_ID_TIF_YCBCR_COEFFICIENTS YCbCr coefficients.

IGMDTAG_ID_TIF_YCBCR_SUBSAMPLING YCbCr sub sampling.

IGMDTAG_ID_TIF_YCBCR_POS YCbCr positioning.

IGMDTAG_ID_TIF_REFERENCE_BLACK_WHITE Reference black white.

IGMDTAG_ID_TIF_XMP_METADATA XML packet containing XMP metadata.

IGMDTAG_ID_TIF_RATING Image rating. Valid values are from 0 to 5.

IGMDTAG_ID_TIF_MICROSOFT_PHOTO_RATING Microsoft photo rating. Valid values are from 0 to 99.

IGMDTAG_ID_TIF_CFA_REPEAT_PATTERN_DIM CFA repeat pattern dim.

IGMDTAG_ID_TIF_CFA_PATTERN CFA pattern.

IGMDTAG_ID_TIF_BATTERY_LEVEL Battery level.

IGMDTAG_ID_TIF_COPYRIGHT Copyright notice.

IGMDTAG_ID_TIF_EXPOSURE_TIME Exposure time.

IGMDTAG_ID_TIF_FNUMBER Actual lens f-number used when the image was captured.

IGMDTAG_ID_TIF_IPTC_NAA IPTC / NAA.

IGMDTAG_ID_TIF_PHOTOSHOP_RESOURCES Photoshop resources.

IGMDTAG_ID_TIF_EXIF_IFDPOINTER Exif IFD pointer.

ImageGear Professional v18 for Mac | 1450

IGMDTAG_ID_TIF_ICC_PROFILE ICC color profile.

IGMDTAG_ID_TIF_EXPOSURE_PROGRAM Exposure program.

IGMDTAG_ID_TIF_SPECTRAL_SENSITIVITY Spectral sensitivity.

IGMDTAG_ID_TIF_GPSINFOIFDPOINTER Exif IFD pointer.

IGMDTAG_ID_TIF_ISOSPEEDRAITINGS ISO speed raitings.

IGMDTAG_ID_TIF_OECF Indicates the Opto-Electric Conversion Function (OECF)
specified in ISO 14524.

IGMDTAG_ID_TIF_INTERLACE Indicates the field number of multifield images.

IGMDTAG_ID_TIF_TIMEZONE_OFFSET Time zone offset.

IGMDTAG_ID_TIF_SELFTIMER_MODE Self timer mode.

IGMDTAG_ID_TIF_DATETIMEORIGINAL Date time original.

IGMDTAG_ID_TIF_COMPRESSEDBITSPERPIXEL Compressed bits per pixel.

IGMDTAG_ID_TIF_SHUTTERSPEED_VALUE Shutter speed value.

IGMDTAG_ID_TIF_APERTURE_VALUE Aperture value.

IGMDTAG_ID_TIF_BRIGHTNESS_VALUE Brightness value.

IGMDTAG_ID_TIF_EXPOSURE_BIAS_VALUE Exposure bias value.

IGMDTAG_ID_TIF_MAXAPERTURE_VALUE Max aperture value.

IGMDTAG_ID_TIF_SUBJECTDISTANCE Subject distance.

IGMDTAG_ID_TIF_METERING_MODE Metering mode.

IGMDTAG_ID_TIF_LIGHT_SOURCE Light source.

IGMDTAG_ID_TIF_FLASH Indicates weither or not flash used when the image was
captured.

IGMDTAG_ID_TIF_FOCAL_LENGTH Focal length.

IGMDTAG_ID_TIF_FLASHENERGY Flash energy.

IGMDTAG_ID_TIF_SPATIAL_FREQUENCY_RESPONSE Spatial frequency response.

IGMDTAG_ID_TIF_NOISE Noise measurement values.

IGMDTAG_ID_TIF_FOCAL_PLANE_XRESOLUTION Focal plane xresolution.

IGMDTAG_ID_TIF_FOCAL_PLANE_YRESOLUTION Focal plane yresolution.

IGMDTAG_ID_TIF_FOCAL_PLANE_RESOLUTION_UNIT Focal plane resolution unit.

IGMDTAG_ID_TIF_IMAGE_NUMBER Image number.

IGMDTAG_ID_TIF_SECURITY_CLASSIFICATION Security classification.

IGMDTAG_ID_TIF_IMAGE_HISTORY Image history.

IGMDTAG_ID_TIF_SUBJECT_LOCATION Subject location.

IGMDTAG_ID_TIF_EXPOSURE_INDEX Exposure index.

IGMDTAG_ID_TIF_TIFEPS_STANDARDID TIFF/EP standard ID.

IGMDTAG_ID_TIF_SENSING_METHOD Sensing method.

IGMDTAG_ID_TIF_DNG_VERSION DNG version.

IGMDTAG_ID_TIF_DNG_BACKWARdVERSION DNG backward version.

IGMDTAG_ID_TIF_UNIQUE_CAMERAMODEL Unique camera model.

IGMDTAG_ID_TIF_LOCALIZED_CAMERAMODEL Localized camera model.

IGMDTAG_ID_TIF_CFA_PlANECOLOR CFA plane color.

IGMDTAG_ID_TIF_CFA_LAYOUT CFA layout.

IGMDTAG_ID_TIF_LINEARIZATION_TABLE Linearization table.

IGMDTAG_ID_TIF_BLACK_LEVELREPEAT_DIM Black level repeat dim.

IGMDTAG_ID_TIF_BLACK_LEVEL Black level.

IGMDTAG_ID_TIF_BLACK_LEVEL_DELTAH Black level delta H.

IGMDTAG_ID_TIF_BLACK_LEVEL_DELTAV Black level delta V.

IGMDTAG_ID_TIF_WHITE_LEVEL White level.

ImageGear Professional v18 for Mac | 1451

IGMDTAG_ID_TIF_DEFAULT_SCALE Default scale.

IGMDTAG_ID_TIF_BEST_QUALITY_SCALE Best quality scale.

IGMDTAG_ID_TIF_DEFAULT_CROP_ORIGIN Default crop origin.

IGMDTAG_ID_TIF_DEFAULT_CROP_SIZE Default crop size.

IGMDTAG_ID_TIF_CALIBRATION_ILLUMINANT1 Calibration illuminant 1.

IGMDTAG_ID_TIF_CALIBRATION_ILLUMINANT2 Calibration illuminant 2.

IGMDTAG_ID_TIF_COLOR_MATRIX1 Color matrix 1.

IGMDTAG_ID_TIF_COLOR_MATRIX2 Color matrix 2.

IGMDTAG_ID_TIF_CAMERA_CALIBRATION1 Camera calibration 1.

IGMDTAG_ID_TIF_CAMERA_CALIBRATION2 Camera calibration 2.

IGMDTAG_ID_TIF_REDUCTION_MATRIX1 Reduction matrix 1.

IGMDTAG_ID_TIF_REDUCTION_MATRIX2 Reduction matrix 2.

IGMDTAG_ID_TIF_ANALOG_BALANCE Analog balance.

IGMDTAG_ID_TIF_AS_SHOT_NEUTRAL As shot neutral.

IGMDTAG_ID_TIF_AS_SHOT_WHITEXY As shot white XY.

IGMDTAG_ID_TIF_BASELINE_EXPOSURE Baseline exposure.

IGMDTAG_ID_TIF_BASELINE_NOISE Baseline noise.

IGMDTAG_ID_TIF_BASELINE_SHARPNESS Baseline sharpness.

IGMDTAG_ID_TIF_BAYER_GREEN_SPLIT Bayer green split.

IGMDTAG_ID_TIF_LINEAR_RESPONSE_LIMIT Linear response limit.

IGMDTAG_ID_TIF_CAMERA_SERIAL_NUMBER Camera serial number.

IGMDTAG_ID_TIF_LENS_INFO Lens info.

IGMDTAG_ID_TIF_CHROMA_BLUR_RADIUS Chroma blur radius.

IGMDTAG_ID_TIF_ANTI_ALIAS_STRENGTH Anti alias strength.

IGMDTAG_ID_TIF_DNG_PRIVATE_DATA DNG private data.

IGMDTAG_ID_TIF_MAKER_NOTE_SAFETY Maker note safety.

IGMDTAG_ID_TIF_SHADOW_SCALE Shadow scale.

IGMDTAG_ID_TIF_RAW_DATA_UNIQUE_ID Raw data unique ID.

IGMDTAG_ID_TIF_ORIGINAL_RAW_FILE_NAME Original raw file name.

IGMDTAG_ID_TIF_ORIGINAL_RAW_FILE_DATA Original raw file data.

IGMDTAG_ID_TIF_ACTIVE_AREA Active area.

IGMDTAG_ID_TIF_MASKED_AREAS Masked areas.

IGMDTAG_ID_TIF_ASSHOT_ICC_PROFILE As shot ICC profile.

IGMDTAG_ID_TIF_ASSHOT_PRE_PROFILE_MATRIX As shot pre profile matrix.

IGMDTAG_ID_TIF_CURRENT_ICC_PROFILE Current ICC profile.

IGMDTAG_ID_TIF_CURRENT_PRE_PROFILE_MATRIX Current pre profile matrix.

IGMDTAG_ID_TIF_HEADER For internal use only.

IGMDTAG_ID_TIF_JPEG_INTERCHANGE_DATA For internal use only.

ImageGear Professional v18 for Mac | 1452

1.3.1.5.135 enumIGTwistModes

This enumeration contains rotation modes for IG_FX_twist function.

Values:

IG_TWIST_90 90 degrees.

IG_TWIST_180 180 degrees.

IG_TWIST_270 270 degrees.

IG_TWIST_RANDOM Random.

ImageGear Professional v18 for Mac | 1453

1.3.1.5.136 enumIGTypeIDs

Specifies ImageGear data type IDs.

Values:

AM_TID_VOID Data type is AT_VOID.

AM_TID_CHAR Data type is AT_CHAR.

AM_TID_BYTE Data type is AT_BYTE.

AM_TID_SHORT Data type is SHORT (AT_INT16).

AM_TID_WORD Data type is AT_WORD.

AM_TID_INT Data type is INT (AT_INT32).

AM_TID_UINT Data type is UINT (AT_UINT32).

AM_TID_LONG Data type is LONG (AT_INT32).

AM_TID_DWORD Data type is AT_DWORD.

AM_TID_AT_MODE Data type is AT_MODE.

AM_TID_AT_BOOL Data type is AT_BOOL.

AM_TID_AT_LMODE Data type is AT_LMODE.

AM_TID_AT_DIMENSION Data type is AT_DIMENSION.

AM_TID_AT_RECT Data type is AT_RECT.

AM_TID_DOUBLE Data type is AT_DOUBLE.

AM_TID_RGBQUAD Data type is AT_RGBQUAD.

AM_TID_STRING Data type is NULL-terminating array of AT_CHAR.

AM_TID_FLOAT Data type is AT_FLOAT.

AM_TID_LP Data type modifier to describe pointer to data.

AM_TID_TMASK Bit mask to extract data type from type description.

AM_TID_PMASK Bit mask to extract data type modifier from type description.

AM_TID_PSHIFT Bit offset of data type modifier in type description.

ImageGear Professional v18 for Mac | 1454

1.3.1.5.137 enumIGWBMPTagIDs

Lists all WBMP tag identifiers.

Values:

IGMDTAG_ID_WBMP_FORMAT WBMP metadata format identifier.

ImageGear Professional v18 for Mac | 1455

1.3.1.5.138 enumIGWipeStyles

Identifies the different image transition effects.

Values:

IG_WIPE_LEFTTORIGHT Left-to-Right Wipe.

IG_WIPE_RIGHTTOLEFT Right-To-Left Wipe.

IG_WIPE_UP_TO_DOWN Up-to-Down Wipe.

IG_WIPE_DOWN_TO_UP Down-to-Up Wipe.

IG_WIPE_SPARKLE Sparkle Transition.

IG_WIPE_ULTOLRDIAG Upper Left to Lower Right wipe.

IG_WIPE_LRTOULDIAG Lower Right to Upper Left wipe.

IG_WIPE_URTOLLDIAG Upper Right to Lower Left wipe.

IG_WIPE_LLTOURDIAG Lower Left to Upper Right wipe.

IG_WIPE_CLOCK Clockwise wipe.

IG_WIPE_SPARKLE_CLOCK Clockwise wipe with sparkles.

IG_WIPE_DOUBLE_CLOCK Two simultaneous clockwise wipes, 180 grades apart.

IG_WIPE_SLIDE_RIGHT New image slides in from the left.

IG_WIPE_SLIDE_LEFT New image slides in from the right.

IG_WIPE_SLIDE_UP New image slides in from the down.

IG_WIPE_SLIDE_DOWN New image slides in from the up.

IG_WIPE_RANDOM_BARS_DOWN Vertical bars of old image fall to reveal new image.

IG_WIPE_RAIN Vertical lines of new image cover over old, like paint running down the side of a
bucket.

IG_WIPE_BOOK Book wipe.

IG_WIPE_ROLL Old image rolls in from right to left.

IG_WIPE_UNROLL New image rolls out from left to right.

IG_WIPE_EXPAND_PROPORTIONAL New image expands from the center of old image in diagonal directions.

IG_WIPE_EXPAND_HORIZONTAL New image expands from the center of old image in horizontal directions.

IG_WIPE_EXPAND_VERTICAL New image expands from the center of old image in vertical directions.

IG_WIPE_STRIPS_HORIZONTAL New image appears as expanding horizontal strips.

IG_WIPE_STRIPS_VERTICAL New image appears as expanding vertical strips.

IG_WIPE_CELLS New image appears as expanding square cells.

IG_WIPE_BALL New image appears as tracks of spirally moving balls.

IG_WIPE_GEARS New image appears as tracks of moving ImageGear's icons.

ImageGear Professional v18 for Mac | 1456

1.3.1.5.139 enumIGWMFTagIDs

Lists all WMF tag identifiers.

Values:

IGMDTAG_ID_WMF_FORMAT WMF metadata format identifier.

IGMDTAG_ID_WMF_FH_KEY WMF file magic number.

IGMDTAG_ID_WMF_FH_HANDLE Metafile HANDLE number (should always be 0).

IGMDTAG_ID_WMF_FH_LEFT Left coordinate in metafile units.

IGMDTAG_ID_WMF_FH_TOP Top coordinate in metafile units.

IGMDTAG_ID_WMF_FH_RIGHT Right coordinate in metafile units.

IGMDTAG_ID_WMF_FH_BOTTOM Bottom coordinate in metafile units..

IGMDTAG_ID_WMF_FH_INCH Number of metafile units per inch.

IGMDTAG_ID_WMF_FH_RESERVED Reserved (should always be 0).

IGMDTAG_ID_WMF_MH_FILE_TYPE Type of metafile (1=memory, 2=disk).

IGMDTAG_ID_WMF_MH_HEADER_SIZE Size of header in WORDS (always 9).

IGMDTAG_ID_WMF_MH_VERSION Version of Microsoft Windows used.

IGMDTAG_ID_WMF_MH_FILE_SIZE Total size of the metafile in WORDs.

IGMDTAG_ID_WMF_MH_NUM_OBJECTS Number of objects in the file.

IGMDTAG_ID_WMF_MH_MAX_RECORD_SIZE The size of largest record in WORDs.

IGMDTAG_ID_WMF_MH_NO_PARAMETERS Not Used (always 0).

ImageGear Professional v18 for Mac | 1457

1.3.1.5.140 enumIGWPGTagIDs

Lists all WPG tag identifiers.

Values:

IGMDTAG_ID_WPG_FORMAT WPG metadata format identifier.

ImageGear Professional v18 for Mac | 1458

1.3.1.5.141 enumIGXBMTagIDs

Lists all XBM tag identifiers.

Values:

IGMDTAG_ID_XBM_FORMAT XBM metadata format identifier.

ImageGear Professional v18 for Mac | 1459

1.3.1.5.142 enumIGXMPTagIDs

Lists all XMP tag identifiers.

Values:

IGMDTAG_ID_XMP_FORMAT XMP Metadata Format identifier.

IGMDTAG_ID_XMP_DESCRIPTION XMP Schema tree.

IGMDTAG_ID_XMP_NAMESPACE Namespace tree.

IGMDTAG_ID_XMP_PREFIX Namespace prefix value.

IGMDTAG_ID_XMP_URI Namespace URI value.

IGMDTAG_ID_XMP_ABOUT About attribute value.

IGMDTAG_ID_XMP_PROPERTIES Properties tree.

IGMDTAG_ID_XMP_PROPERTY Property tree.

IGMDTAG_ID_XMP_PROPERTY_VALUE Property value.

IGMDTAG_ID_XMP_PROPERTY_LANG Language alternative tree.

IGMDTAG_ID_XMP_PROPERTY_QUA Qualifiers tree.

IGMDTAG_ID_XMP_PROPERTY_BAG Bag of values (unordered array) tree.

IGMDTAG_ID_XMP_PROPERTY_ALT Alternative array of values tree.

IGMDTAG_ID_XMP_PROPERTY_SEQ Sequence of values (ordered array) tree.

IGMDTAG_ID_XMP_PROPERTY_STRUCT Structure tree.

Remarks:

These identifiers represent structural types of XMP metadata, such as Value, Sequence, Bag, Qualifier, etc. ImageGear
does not provide enumerations for particular properties of XMP schemes. For more information about XMP metadata
support, see Working with XMP Metadata.

ImageGear Professional v18 for Mac | 1460

1.3.1.5.143 enumIGXPMTagIDs

Lists all XPM tag identifiers.

Values:

IGMDTAG_ID_XPM_FORMAT XPM metadata format identifier.

ImageGear Professional v18 for Mac | 1461

1.3.1.5.144 enumIGXWDTagIDs

Lists all XWD tag identifiers.

Values:

IGMDTAG_ID_XWD_FORMAT XWD metadata format identifier.

IGMDTAG_ID_XWD_HEADER_SIZE Header size. R/O.

IGMDTAG_ID_XWD_FILE_VERSION File version. R/O.

IGMDTAG_ID_XWD_PIXMAP_FORMAT Pixmap format. R/O.

IGMDTAG_ID_XWD_PIXMAP_DEPTH Pixmap depth. R/O.

IGMDTAG_ID_XWD_PIXMAP_WIDTH Pixmap width. R/O.

IGMDTAG_ID_XWD_PIXMAP_HEIGHT Pixmap height. R/O.

IGMDTAG_ID_XWD_X_OFFSET Bitmap x offset. R/W.

IGMDTAG_ID_XWD_BYTE_ORDER Byte order. R/O.

IGMDTAG_ID_XWD_BITMAP_UNIT Bitmap unit. R/O.

IGMDTAG_ID_XWD_BITMAP_BIT_ORDER Bitmap bit order (MSBFirst, LSBFirst). R/O.

IGMDTAG_ID_XWD_BITMAP_PAD Bitmap scanline pad. R/O.

IGMDTAG_ID_XWD_BITS_PER_PIXEL Bits per pixel. R/O.

IGMDTAG_ID_XWD_BYTES_PER_LINE Bytes per scanline. R/O.

IGMDTAG_ID_XWD_VISUAL_CLASS Class of colormap. R/O.

IGMDTAG_ID_XWD_RED_MASK Red mask. R/O.

IGMDTAG_ID_XWD_GREEN_MASK Green mask. R/O.

IGMDTAG_ID_XWD_BLUE_MASK Blue mask. R/O.

IGMDTAG_ID_XWD_BITS_PER_RGB Log2 of distinct color values. R/O.

IGMDTAG_ID_XWD_NUMBER_OF_COLORS Colors number. R/O.

IGMDTAG_ID_XWD_COLOR_MAP_ENTRIES Color map entries. R/O.

IGMDTAG_ID_XWD_WINDOW_WIDTH Window width. R/W.

IGMDTAG_ID_XWD_WINDOW_HEIGHT Window height. R/W.

IGMDTAG_ID_XWD_WINDOW_X Window upper left X coordinate. R/W.

IGMDTAG_ID_XWD_WINDOW_Y Window upper left Y coordinate. R/W.

IGMDTAG_ID_XWD_WINDOW_BORDER_WIDTH Window border width. R/W.

ImageGear Professional v18 for Mac | 1462

1.3.1.5.145 enumJPG_DCM

Specifies JPEG decimation types.

Values:

IG_JPG_DCM_1x1_1x1_1x1 Decimation value 1x1_1x1_1x1.

IG_JPG_DCM_2x1_1x1_1x1 Decimation value 2x1_1x1_1x1.

IG_JPG_DCM_1x2_1x1_1x1 Decimation value 1x2_1x1_1x1.

IG_JPG_DCM_2x2_1x1_1x1 Decimation value 2x2_1x1_1x1.

IG_JPG_DCM_2x2_2x1_2x1 Decimation value 2x2_2x1_2x1.

IG_JPG_DCM_4x2_1x1_1x1 Decimation value 4x2_1x1_1x1.

IG_JPG_DCM_2x4_1x1_1x1 Decimation value 2x4_1x1_1x1.

IG_JPG_DCM_4x1_1x1_1x1 Decimation value 4x1_1x1_1x1.

IG_JPG_DCM_1x4_1x1_1x1 Decimation value 1x4_1x1_1x1.

IG_JPG_DCM_4x1_2x1_2x1 Decimation value 4x1_2x1_2x1.

IG_JPG_DCM_1x4_1x2_1x2 Decimation value 1x4_1x2_1x2.

IG_JPG_DCM_4x4_2x2_2x2 Decimation value 4x4_2x2_2x2.

Remarks:

The format of these ImageGear decimation constants is: IG_JPG_DCM_<H1>x<V1>_<H2>x<V2>_<H3>x<V3>, where
Hi, Vi = horizontal and vertical decimation values for the i-channel. For a more detailed definition, see the JPEG
Specification.

ImageGear Professional v18 for Mac | 1463

1.3.1.5.146 enumLayoutConstants

Specifies bit flags indicating which arguments should be taken into account by IG_dspl_layout_set function.

Values:

IG_DSPL_IMAGE_RECT Indicates that value of lpImageRect parameter of function should be taken into account.

IG_DSPL_DEVICE_RECT Indicates that value of lpDeviceRect parameter of function should be taken into account.

IG_DSPL_CLIP_RECT Indicates that value of lpClipRect parameter of function should be taken into account.

IG_DSPL_FIT_MODE Indicates that value of nFitMode parameter of function should be taken into account.

IG_DSPL_ALIGN_MODE Indicates that value of nAlignMode parameter of function should be taken into account.

IG_DSPL_ASPECT_MODE Indicates that value of nAspectMode parameter of function should be taken into account.

IG_DSPL_ASPECT_VALUE Indicates that value of dblAspectValue parameter of function should be taken into account.

Remarks:

See IG_dspl_layout_set for more details.

ImageGear Professional v18 for Mac | 1464

1.3.1.5.147 enumLoadColor

Specifies color reduction modes on image loading.

Values:

IG_LOAD_COLOR_DEFAULT No color reduction performed.

IG_LOAD_COLOR_1 Image bit depth is reduced to 1 bit per pixel during loading.

IG_LOAD_COLOR_4 Image bit depth is reduced to 4 bits per pixel during loading.

IG_LOAD_COLOR_8 Image bit depth is reduced to 8 bits per pixel during loading.

IG_LOAD_GRAYSCALE_8 Image bit depth is reduced to 8 bits per pixel and color space converted to grayscale
during loading.

Remarks:

See IG_load_color_reduction_set for more details.

ImageGear Professional v18 for Mac | 1465

1.3.1.5.148 enumLoadDoc

This enumeration has been deprecated and will be removed from the public API in a future release.

Values:

IG_LOADDOC_DISPLAY_FIRST This value has been deprecated and will be removed from the public API in a future
release.

IG_LOADDOC_DISPLAY_ALL This value has been deprecated and will be removed from the public API in a future
release.

ImageGear Professional v18 for Mac | 1466

1.3.1.5.149 enumMaxKern

This enumeration has been deprecated and will be removed from the public API in a future release.

Values:

IG_MAX_KERN_HEIGHT This value has been deprecated and will be removed from the public API in a future release.

IG_MAX_KERN_WIDTH This value has been deprecated and will be removed from the public API in a future release.

ImageGear Professional v18 for Mac | 1467

1.3.1.5.150 enumMPAppend

Multi-page image Append flag.

Values:

IG_APPEND_PAGE This value is used as page number in image saving functions. It specifies that the page is to be
appended to the multi-page image file.

ImageGear Professional v18 for Mac | 1468

1.3.1.5.151 enumMPCBMODE_MPI

Specifies notification codes for multi-page image operations.

Values:

IG_MPCBMODE_MPI_DELETE Notify application that multi-page image is going to be deleted.

IG_MPCBMODE_MPI_ASSOCIATED Notify application that multi-page image has been associated with external file
or memory image.

IG_MPCBMODE_MPI_CLOSE Notify application that multi-page image is going to close associated external
file or memory image.

IG_MPCBMODE_MPI_CB_SET Notify application that this callback data just has been set. Only the callback
function that just has been set receives this notification.

IG_MPCBMODE_MPI_CB_RESET Notify application that this callback data is to be reset.

IG_MPCBMODE_MPI_PAGEINSERTED Application inserted new pages into multi-page image.

IG_MPCBMODE_MPI_PAGEUPDATED Application updated pages in the multi-page image.

IG_MPCBMODE_MPI_PAGEDELETED Application deleted pages in the multi-page image.

IG_MPCBMODE_MPF_PAGEINSERTED Application inserted new pages into external file image.

IG_MPCBMODE_MPF_PAGEUPDATED Application updated pages in the external multi-page image file.

IG_MPCBMODE_MPF_PAGEDELETED Application deleted pages in the external multi-page image file.

Remarks:

See IG_mpi_CB_set for more details.

ImageGear Professional v18 for Mac | 1469

1.3.1.5.152 enumOrientation

Specifies image orientation units.

Values:

IG_ORIENT_TOP_LEFT Image orientation is Row0=Top, Col0=Left (normal / portrait).

IG_ORIENT_TOP_RIGHT Image orientation is Row0=Top, Col0=Right (flipped horizontally).

IG_ORIENT_BOTTOM_RIGHT Image orientation is Row0=Bottom, Col0=Right (rotated by 180 degrees).

IG_ORIENT_BOTTOM_LEFT Image orientation is Row0=Bottom, Col0=Left (flipped vertically).

IG_ORIENT_LEFT_TOP Image orientation is Row0=Left, Col0=Top (rotated by 90 degrees counterclockwise and
then flipped vertically).

IG_ORIENT_RIGHT_TOP Image orientation is Row0=Right, Col0=Top (rotated by 90 degrees clockwise /
landscape).

IG_ORIENT_RIGHT_BOTTOM Image orientation is Row0=Right, Col0=Bottom (rotated by 90 degrees clockwise and
then flipped vertically).

IG_ORIENT_LEFT_BOTTOM Image orientation is Row0=Left, Col0=Bottom (rotated by 90 degrees counterclockwise
/ landscape).

Remarks:

There are 8 possible orientations. This enum labels them according to where the first row (row 0) and first col (col 0) of
the image data is to be displayed. Regular images are displayed with row 0 at the top and column 0 at the left. This
corresponds to IG_ORIENT_TOP_LEFT mode. The other orientations are combinations of flips and rotates. Portrait is
usually IG_ORIENT_TOP_LEFT, and Landscape is either IG_ORIENT_RIGHT_TOP or IG_ORIENT_LEFT_BOTTOM.

ImageGear Professional v18 for Mac | 1470

1.3.1.5.153 enumPDFSaveFlags

Specifies control parameters for PDF image saving.

Values:

IG_PDF_DONT_SAVE_FILE_ATTRIBUTES Prevents the file attributes and security settings of a PDF document opened
from an existing PDF file from being copied over when saved to a new PDF
file.

IG_PDF_LINEARIZED Writes the file linearized for page serving over the remote connections.

IG_PDF_OPTIMIZE_XOBJECTS Merges identical forms and images, as determined by an MD5 hash of their
contents.

IG_PDF_OPTIMIZED Performs garbage collection on unreferenced objects.

ImageGear Professional v18 for Mac | 1471

1.3.1.5.154 enumPDFTextEnc

Specifies the encoding scheme to be used to convert binary image data to the text format when saving raster image into
the PDF document. Used with PDF filter TEXT_ENCODING control parameter.

Values:

IG_PDF_TEXTENC_NONE Specifies that no encoding will be used.

IG_PDF_TEXTENC_ASCII_85 Specifies that ASCII 85 encoding will be used.

IG_PDF_TEXTENC_ASCII_HEX Specifies that ASCII HEX encoding will be used.

ImageGear Professional v18 for Mac | 1472

1.3.1.5.155 enumPixdumpComponent

This enumeration has been deprecated and will be removed from the public API in a future release. Please use
enumPixdumpComponentEx instead.

Values:

IG_GUI_PIXDUMP_COMPONENT_R This value has been deprecated and will be removed from the public API in a
future release.

IG_GUI_PIXDUMP_COMPONENT_G This value has been deprecated and will be removed from the public API in a
future release.

IG_GUI_PIXDUMP_COMPONENT_B This value has been deprecated and will be removed from the public API in a
future release.

IG_GUI_PIXDUMP_COMPONENT_RGB This value has been deprecated and will be removed from the public API in a
future release.

IG_GUI_PIXDUMP_COMPONENT_I This value has been deprecated and will be removed from the public API in a
future release.

ImageGear Professional v18 for Mac | 1473

1.3.1.5.156 enumPixdumpComponentEx

GUI pixel dump window color components.

Values:

IG_GUI_PIXDUMP_COMPONENT_1 Display value of Component 1 of image pixels.

IG_GUI_PIXDUMP_COMPONENT_2 Display value of Component 2 of image pixels.

IG_GUI_PIXDUMP_COMPONENT_3 Display value of Component 3 of image pixels.

IG_GUI_PIXDUMP_COMPONENT_4 Display value of Component 4 of image pixels.

IG_GUI_PIXDUMP_COMPONENT_ALPHA Display value of Alpha channel of image pixels.

IG_GUI_PIXDUMP_COMPONENT_EXTRA Display value of Extra channels of image pixels.

IG_GUI_PIXDUMP_COMPONENT_ALL Display value of all color components of image pixels.

Remarks:

Specifies color components to display. Color components indices are 1-based i.e. first component is
IG_GUI_PIXDUMP_COMPONENT_1 and so on. See IG_GUI_pixdump_attribute_set for more details.

ImageGear Professional v18 for Mac | 1474

1.3.1.5.157 enumPixdumpData

GUI pixel dump window attributes.

Values:

IG_GUI_PIXDUMP_FONT Specifies HFONT font handle used to display content of window.

IG_GUI_PIXDUMP_MODE Specifies the mode to data display. Attribute value is a combination of
enumPixdumpMode constants.

IG_GUI_PIXDUMP_COLOR_COMPONENT Specifies color components to display. Attribute value is a combination of
enumPixdumpComponentEx constants.

Remarks:

See IG_GUI_pixdump_attribute_get for more details.

ImageGear Professional v18 for Mac | 1475

1.3.1.5.158 enumPixdumpMode

GUI pixel dump window output mode.

Values:

IG_GUI_PIXDUMP_DIGITS_HEX If this flag is set, pixel values are displayed in hexadecimal format.

IG_GUI_PIXDUMP_DATA_COLOR Controls the display of the pixel dump for Indexed images. If this flag is set, palette
values are displayed. Otherwise, raw pixel values are displayed.

ImageGear Professional v18 for Mac | 1476

1.3.1.5.159 enumPixel

Specifies data format for pixel access functions.

Values:

IG_PIXEL_PACKED Values of several pixels can be packed in one byte.

IG_PIXEL_UNPACKED Each pixel occupies at least one byte.

IG_PIXEL_RLE Reserved for future use.

ImageGear Professional v18 for Mac | 1477

1.3.1.5.160 enumPixelate

This enumeration has been deprecated and will be removed from the public API in a future release.

Values:

IG_PIXELATE_CENTER This value has been deprecated and will be removed from the public API in a future release.

IG_PIXELATE_AVERAGE This value has been deprecated and will be removed from the public API in a future release.

ImageGear Professional v18 for Mac | 1478

1.3.1.5.161 enumPNGCompLevel

Specifies PNG compression level.

Values:

IG_PNG_MIN_COMPRESSION Minimum level of PNG compression.

IG_PNG_MAX_COMPRESSION Maximum level of PNG compression.

IG_PNG_DEFAULT_COMPRESSION Default PNG compression level.

ImageGear Professional v18 for Mac | 1479

1.3.1.5.162 enumPNGStrip

Specifies PNG strip configurations.

Values:

IG_PNG_STRIP_FIXED_COUNT Number of strips is fixed and every strip consists of equal number of rasters.

IG_PNG_STRIP_FIXED_BUFFER Size of strip buffer is fixed. Number of rasters in each strip may vary.

ImageGear Professional v18 for Mac | 1480

1.3.1.5.163 enumPostScriptLevel

Specifies PostScrip format specifications known as Level 1, 2 or 3.

Values:

IG_PS_LEVEL_1 Support of PostScript level 1.

IG_PS_LEVEL_2 Support of PostScript level 2.

IG_PS_LEVEL_3 Support of PostScript level 3.

ImageGear Professional v18 for Mac | 1481

1.3.1.5.164 enumPostScriptType

Specifies the type of the output PostScript document. Used with TYPE control parameter of the POSTSCRIPT format filter.

Values:

IG_POSTSCRIPT PostScript PS file format.

IG_EPS_NO_PREVIEW PostScript EPS file format with no preview.

IG_EPS_STANDARD_PREVIEW PostScript EPS file format with standard preview.

IG_EPS_EXTENDED_PREVIEW PostScript EPS file format with extended preview.

ImageGear Professional v18 for Mac | 1482

1.3.1.5.165 enumPrintConstants

This enumeration has been deprecated and will be removed from the public API in a future release.

Values:

IG_DSPL_PRINT_FULL_PAGE This value has been deprecated and will be removed from the public API in
a future release.

IG_DSPL_PRINT_THREE_QUARTER_PAGE This value has been deprecated and will be removed from the public API in
a future release.

IG_DSPL_PRINT_HALF_PAGE This value has been deprecated and will be removed from the public API in
a future release.

IG_DSPL_PRINT_QUARTER_PAGE This value has been deprecated and will be removed from the public API in
a future release.

IG_DSPL_PRINT_EIGHTH_PAGE This value has been deprecated and will be removed from the public API in
a future release.

IG_DSPL_PRINT_SIXTEENTH_PAGE This value has been deprecated and will be removed from the public API in
a future release.

ImageGear Professional v18 for Mac | 1483

1.3.1.5.166 enumRampDirection

This enumeration has been deprecated and will be removed from the public API in a future release.

Values:

IG_RAMP_FORWARD This value has been deprecated and will be removed from the public API in a future release.

IG_RAMP_REVERSE This value has been deprecated and will be removed from the public API in a future release.

ImageGear Professional v18 for Mac | 1484

1.3.1.5.167 enumRampType

This enumeration has been deprecated and will be removed from the public API in a future release.

Values:

IG_RAMP_HORIZONTAL This value has been deprecated and will be removed from the public API in a future release.

IG_RAMP_VERTICAL This value has been deprecated and will be removed from the public API in a future release.

IG_RAMP_PYRAMID This value has been deprecated and will be removed from the public API in a future release.

ImageGear Professional v18 for Mac | 1485

1.3.1.5.168 enumRasterPostProc

Specifies operation applied to each raster on image loading.

Values:

POST_PROCESS_ABIC_GREY_LUT Apply ABIC gray look-up table to rasters.

POST_PROCESS_INVERT_BITONAL_RASTER This value has been deprecated and will be removed from the public API
in a future release.

ImageGear Professional v18 for Mac | 1486

1.3.1.5.169 enumRegionIS

Specifies the type of region stored in the clipboard.

Values:

IG_REGION_IS_RECT The region available in clipboard is rectangle.

IG_REGION_IS_NON_RECT The region available in clipboard is a non-rectangular area.

IG_REGION_IS_NOT_AVAIL There is no image data in clipboard.

ImageGear Professional v18 for Mac | 1487

1.3.1.5.170 enumROI_IS

Specifies the types of non-rectangular Region of Interest (ROI).

Values:

IG_ROI_IS_RECTANGLE The ROI is a rectangle.

IG_ROI_IS_ELLIPSE The ROI is an ellipse.

IG_ROI_IS_POLYGON The ROI is a polygon.

Remarks:

These modes are used with IG_IP_NR_ROI_to_HIGEAR_mask and describe what kind of non-rectangular ROI is passed
in.

ImageGear Professional v18 for Mac | 1488

1.3.1.5.171 enumScrollTypes

Specifies scrollbars and scroll commands.

Values:

IG_DSPL_SCROLL_HORIZONTAL Identifies horizontal scrollbar in the scrolling API.

IG_DSPL_SCROLL_VERTICAL Identifies vertical scrollbar in the scrolling API.

IG_DSPL_HSCROLLBAR Specifies a bitmask used to extract horizontal scrollbar attributes from scrolling
mode value.

IG_DSPL_HSCROLLBAR_AUTO Specifies that horizontal scrollbar is displayed automatically when needed.

IG_DSPL_HSCROLLBAR_ENABLE Specifies that horizontal scrollbar is always displayed.

IG_DSPL_HSCROLLBAR_DISABLE Specifies that horizontal scrollbar is always disabled and hidden.

IG_DSPL_VSCROLLBAR Specifies a bitmask used to extract vertical scrollbar attributes from scrolling mode
value.

IG_DSPL_VSCROLLBAR_AUTO Specifies that vertical scrollbar is displayed automatically when needed.

IG_DSPL_VSCROLLBAR_ENABLE Specifies that vertical scrollbar is always displayed.

IG_DSPL_VSCROLLBAR_DISABLE Specifies that vertical scrollbar is always disabled and hidden.

ImageGear Professional v18 for Mac | 1489

1.3.1.5.172 enumShear

Specifies shear modes.

Values:

IG_SHEAR_HORIZONTAL Shear horizontally.

IG_SHEAR_VERTICAL Shear vertically.

ImageGear Professional v18 for Mac | 1490

1.3.1.5.173 enumTagTypes

Specifies data types for use with metadata tag callbacks.

Values:

IG_TAG_TYPE_NULL No data - end of tags.

IG_TAG_TYPE_BYTE Data is a 8 bit unsigned integer.

IG_TAG_TYPE_ASCII Data is a 8 bit, NULL-terminated string.

IG_TAG_TYPE_SHORT Data is a 16 bit unsigned integer.

IG_TAG_TYPE_LONG Data is a 32 bit unsigned integer.

IG_TAG_TYPE_RATIONAL Data is a pair of 32-bit unsigned integers, representing an unsigned rational number.

IG_TAG_TYPE_SBYTE Data is a 8 bit signed integer.

IG_TAG_TYPE_UNDEFINED Data is a 8 bit byte.

IG_TAG_TYPE_SSHORT Data is a 16-bit signed integer.

IG_TAG_TYPE_SLONG Data is a 32-bit signed integer.

IG_TAG_TYPE_SRATIONAL Data is a pair of 32-bit signed integers, representing a signed rational number.

IG_TAG_TYPE_FLOAT Data is a 4-byte single-precision IEEE floating point number.

IG_TAG_TYPE_DOUBLE Data is a 8-byte double-precision IEEE floating point number.

IG_TAG_TYPE_RAWBYTES Data is a series of raw data bytes.

IG_TAG_TYPE_LONGARRAY Data is an array of 32-bit signed integers.

IG_TAG_TYPE_UNICODE Data is a UNICODE string, 16 bit WCHARs terminated by two NULLs.

IG_TAG_TYPE_FILETIME Data is a 64 bit FILETIME structure.

IG_TAG_TYPE_DATE Data is a 64 bit DATE structure.

ImageGear Professional v18 for Mac | 1491

1.3.1.5.174 enumThreadLockMode

Specifies thread access lock modes, used by IG_thread_image_lock and IG_thread_image_unlock functions.

Values:

IG_THREAD_LOCK_READ Thread requested a read lock for the image.

IG_THREAD_LOCK_WRITE Thread requested a write lock for the image.

ImageGear Professional v18 for Mac | 1492

1.3.1.5.175 enumTIFFBitonalPaletteMode

This enumeration specifies whether ImageGear shall fix strange looking palettes when reading bi-tonal TIFF images.

Values:

IG_TIF_BITONAL_PALETTE_MODE_LEGACY Keep ImageGear 16.0 behavior: read all 1-bit palettes as is; if palette
is missing, assume increasing (blackzero) palette.

IG_TIF_BITONAL_PALETTE_MODE_KEEP_AS_IS Keep palette as is, even if it is all-black or red-green. If photometric
interpretation is PALETTE_COLOR, but COLORMAP tag is absent,
assume all-black palette.

IG_TIF_BITONAL_PALETTE_MODE_FIX Fix strange looking palettes, as follows: if (R0+G0+B0)/3 <
(R1+G1+B1)/3 change palette to (black, white). Otherwise, change
palette to (white, black). Specifically, constant palettes (all-black, all-
white) are replaced with (white, black) palette.

ImageGear Professional v18 for Mac | 1493

1.3.1.5.176 enumTIFFPhoto

Specifies TIFF photometric interpretations. Used with TIFF PHOTOMETRIC control parameter.

Values:

IG_TIF_PHOTO_WHITEZERO Indicates that zero 0 pixel value represents white color.

IG_TIF_PHOTO_BLACKZERO Indicates that zero 0 pixel value represents black color.

IG_TIF_PHOTO_RGB Indicates RGB colorspace.

IG_TIF_PHOTO_PALETTE Indicates indexed colors image with RGB palette.

IG_TIF_PHOTO_TRANSPARENCY Indicates transparency mask.

IG_TIF_PHOTO_CMYK Indicates CMYK colorspace.

IG_TIF_PHOTO_YCBCR Indicates YCBCR colorspace.

IG_TIF_PHOTO_CIELAB Indicates CIELAB colorspace.

Remarks:

See TIFF 6 specification for more information.

ImageGear Professional v18 for Mac | 1494

1.3.1.5.177 enumTIFFWriteConfig

Specifies values for saving stripped and tiled TIFF images. Used with TIFF WRITE_CONFIG control parameter.

Values:

IG_TIF_STRIP_FIXED_COUNT Write the image using a fixed number of strips. The number of strips to use can be set
via the NUMBER_OF_STRIPS control parameter.

IG_TIF_STRIP_FIXED_BUFFER Write the image using strips so that each strip is not greater than the specified size in
bytes. The size of the strip buffer can be set via the BUFFER_SIZE control parameter.
Note that at least one raster will be included in the strip.

IG_TIF_TILED_FIXED_SIZE Save the image using tiles of fixed size. The size of the tiles can be set via the
TILE_WIDTH and TILE_HEIGHT control parameters.

IG_TIF_TILED_FIXED_COUNT Save the image using a fixed number of tiles. The number of tiles in both the
horizontal and vertical direction can be set via the control parameters TILE_H_COUNT
and TILE_V_COUNT.

ImageGear Professional v18 for Mac | 1495

1.3.1.5.178 enumXWDType

This enumeration has been deprecated and will be removed from the public API in a future release.

Values:

IG_XWD_TYPE_XYBITMAP This value has been deprecated and will be removed from the public API in a future
release.

IG_XWD_TYPE_XYPIXMAP This value has been deprecated and will be removed from the public API in a future
release.

IG_XWD_TYPE_ZPIXMAP This value has been deprecated and will be removed from the public API in a future
release.

ImageGear Professional v18 for Mac | 1496

1.3.2 MD Component API Reference

This section provides information about the ImageGear Medical component.

You can call MD component functions in two ways.

First, you may call this function through it macro defined in i_MED.h public header file:

#define MED_DCM_load_DICOM(_lpFileName, _lphIGear, _nSyntax, _page_number)\ (AT_ERRCOUNT
(CACCUAPI *)(const LPSTR, \const LPCHAR, LPHIGEAR, const AT_MODE, const UINT)) \
 IG_comm_function_call)("MED.MED_DCM_load_DICOM", \
(_lpFileName),(_lphIGear),(_nSyntax), (_page_number))

In this case your application will search all included public headers for this macro and call this function through
IG_comm_function_call() component manager function call that is also determined in i_MED.h.

So, if you are going to use MD component function in a multiple loop, we recommend the second way of using this function
type declaration that is also determined in i_MED.h file:

typedef AT_ERRCOUNT (LPACCUAPI LPAFT_MED_DCM_LOAD_DICOM)(
const LPSTRlpsz FileName,
LPHIGEAR lphIGear,
const AT_MODE nSyntax,
const UINT page_number
);

So you should declare the variable of this function type, and then use IG_comm_entry_request() function to initialize this
variable with the correct value, and call it then.

This section provides information about the following:

MD Component Functions Reference
MD Component Macros Reference
MD Component Structures Reference
MD Component Enumerations Reference

ImageGear Professional v18 for Mac | 1497

1.3.2.1 MD Component Functions Reference

This section provides information about the MD Component Functions, arranged in alphabetical order within functional
groups.

Data Set Functions
Display Functions
File Functions
Image Processing Functions
Modality Transform Functions
Overlay Functions
Presentation State Functions
Utility Functions

ImageGear Professional v18 for Mac | 1498

1.3.2.1.1 Data Set Functions

This section provides information about the Data Set group of functions.

MED_DCM_DS_bits_get
MED_DCM_DS_copy_get
MED_DCM_DS_create
MED_DCM_DS_curr_data_get
MED_DCM_DS_curr_data_get_string
MED_DCM_DS_curr_data_set
MED_DCM_DS_curr_index_get
MED_DCM_DS_curr_info_get
MED_DCM_DS_curr_remove
MED_DCM_DS_DE_insert
MED_DCM_DS_destroy
MED_DCM_DS_exists
MED_DCM_DS_info_get
MED_DCM_DS_is_empty
MED_DCM_DS_LUT_copy_get
MED_DCM_DS_LUT_exists
MED_DCM_DS_LUT_update_from
MED_DCM_DS_move_ascend
MED_DCM_DS_move_descend
MED_DCM_DS_move_find
MED_DCM_DS_move_find_first
MED_DCM_DS_move_first
MED_DCM_DS_move_index
MED_DCM_DS_move_last
MED_DCM_DS_move_next
MED_DCM_DS_move_prev
MED_DCM_DS_orig_TS_get
MED_DCM_DS_part10_get
MED_DCM_DS_part10_set
MED_DCM_DS_PixPadVal_get
MED_DCM_DS_PixPadVal_set
MED_DCM_DS_preamble_get
MED_DCM_DS_preamble_set
MED_DCM_DS_Rescale_get
MED_DCM_DS_TS_get
MED_DCM_DS_TS_set
MED_DCM_DS_update_file
MED_DCM_DS_update_from
MED_DCM_DS_Window_Level_get
MED_DCM_DS_Window_Level_get_64

ImageGear Professional v18 for Mac | 1499

1.3.2.1.1.1 MED_DCM_DS_bits_get

This function returns three critical DE values from the Data Set: the number of Bits Allocated (0028,0100), the
number of Bits Stored (0028,0101), and the position of the High Bit (0028,0102). These values are stored in the HDS
structure pointed to by the HIGEAR.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_bits_get(
 const HIGEAR hIGear,
 LPUINT lpBitsAllocated,
 LPUINT lpBitsStored,
 LPUINT lpHighBit,
 LPUINT lpSamplesPerPix);

Arguments:

Name Type Description

hIGear const
HIGEAR

HIGEAR handle of the image containing a DICOM Data Set.

lpBitsAllocated LPUINT A far pointer that returns the number of Bits Allocated (0028,0100) for each pixel in the
image. Set this to NULL if you do not need this information.

lpBitsStored LPUINT A far pointer that returns the number of Bits Stored (0028,0101) for each pixel in the
image. Set this to NULL if you do not need this information.

lpHighBit LPUINT A far pointer that returns the position of the High Bit (0028,0102) of the pixels in a
DICOM image. Set this to NULL if you do not need this information.

lpSamplePerPix LPUINT A far pointer that returns the number of Samples Per Pixel (0028,0002) for the DICOM
image. Set this to NULL if you do not need this information.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

The value returned by lpBitsAllocated is not always the same as the number of bits per pixel for the image's DIB. It is
the number of bits allocated per sample for each pixel. A 24-bit RGB image would return a Bits Allocated of 8 since
each of the 3 samples has 8 bits allocated for it.

The Bits Stored is the number of bits actually used out of the total available (Bits Allocated). You can have a 16-bit
grayscale image that only actually uses 12-bits. In this case, the Bits Allocated would be 16 and Bits Stored would be
12. The Bits Stored is always less than or equal to the Bits Allocated.

The High Bit shows where the Bits Stored are placed in the Bits Allocated WORD or DWORD. Since the Bits Stored can
be less than the Bits Allocated, the Bits Stored can be placed in the Bits Allocated with different starting points. This
value tells you where the Bits Stored actually resides. High Bits is always less than Bits Allocated.

See Also

MED_IP_high_bit_transform

MED_IP_reduce_depth_with_LUT

MED_IP_reduce_depth_with_downshift

ImageGear Professional v18 for Mac | 1500

1.3.2.1.1.2 MED_DCM_DS_copy_get

This function allocates a new Element List and copies contents of the Data Set associated with HIGEAR to it.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_copy_get(
 HIGEAR hIGear,
 HIGMEDELEMLIST* lphDstList);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle to an image from which the Element List will be copied.

lphDstList HIGMEDELEMLIST* Address of the HIGMEDELEMLIST handle to the Data Element List object.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

ImageGear Professional v18 for Mac | 1501

1.3.2.1.1.3 MED_DCM_DS_create

This function creates a Data Set.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_create(
 HIGEAR hIGear,
 const AT_MODE Transfer_syntax);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle to the image.

Transfer_syntax const
AT_MODE

Set this variable to the desired Transfer Syntax (TS) with which to create the Data
Set. Use one of the ImageGear defined constants defined in enumIGMedTS, such as:
MED_DCM_TS_IMPLICIT_VR_LE, MED_DCM_TS_EXPLICIT_VR_LE,
MED_DCM_TS_EXPLICIT_VR_BE.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Example:

HIGEAR hIGear;
AT_MODE Transfer_syntax;
IG_load_file("image1.tif", &hIGear);
Transfer_syntax = MED_DCM_TS_IMPLICIT_VR_LE;
MED_DCM_DS_create(hIGear, Transfer_syntax);

Remarks:

If there is already a Data Set that is associated with the HIGEAR image, it will be replaced. In addition, the absolute
minimum of Critical DEs (Data Elements), such as Pixel Representation and Samples per Pixel will be automatically
added to the Data Set.

Below is a list of those Mandatory DEs that will be filled out automatically by this function. See Part 6:Data Dictionary
of the DICOM Specification for the definitions of these DEs.

Note that there are two different Group Numbers listed below, and that the Tag numbers (the second numbers shown
in the parentheses) identify which Data Element will be filled in:

 Affected DEs from Tag.group = 0x0028:
 (0028,0010) /* Rows */
 (0028,0011) /* Columns */
 (0028,0100) /* Bits Allocated */
 (0028,0101) /* Bits Stored */
 (0028,0102) /* High Bit */
 (0028,0004) /* Photometric Interpretation
*/
 (0028,0103) /* Pixel Representation */

ImageGear Professional v18 for Mac | 1502

 (0028,0002) /* Samples per pixel */
 (0028,0006) /* Planar Configuration */
 Affected DEs from Tag.group = 0x7FE0;
 (7FE0,0010) /* Pixel Data */

See Working With DICOM Data Structures section for more information.

ImageGear Professional v18 for Mac | 1503

1.3.2.1.1.4 MED_DCM_DS_curr_data_get

This function returns the data (Value Field) of the Current Data Element in its native form.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_curr_data_get(
 const HIGEAR hIGear,
 LPVOID lpData,
 const DWORD size_of_lpData,
 LPAT_DCM_VL lpActualSize);

Arguments:

Name Type Description

hIGear const HIGEAR HIGEAR handle to the image from which to get data.

lpData LPVOID A far pointer to a VOID buffer into which the data will be copied.

size_of_lpData const DWORD Size of above buffer, lpData.

lpActualSize LPAT_DCM_VL Actual number of bytes copied to lpData (NULL if inconsequential). This will always
be equal to or smaller than size_of_lpData. If lpActualSize is less than the VL of the
current Data Element then lpData does not contain all the data because lpData does
not point to enough memory to hold the entire object.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

Each Data Element can be of one of many different data types (int, word, bytes, float, double, string, etc.) You must
know the VR (Value Representation) of the data in order to use this data. To get the VR and the VL (Value Length), you
can use one of the MED_DCM_DS_move_...() functions or MED_DCM_DS_curr_info_get(). Each time you move the
Current Data Element with a _move_...() function, the VR and VL of the new Current Data Element are returned to you.

To retrieve the data as a string use MED_DCM_DS_curr_data_get_string().

Some VRs depend on the byte order of your operating system (Big Endian or Little Endian) and the Transfer
Syntax of the DICOM file. Examples of such VRs are: WORD, LONG, FLOAT, DOUBLE, etc. The Data Field values will
be returned to you already adjusted to the proper format and no byte-swapping is needed.

ImageGear Professional v18 for Mac | 1504

1.3.2.1.1.5 MED_DCM_DS_curr_data_get_string

This function gets the data from the Current Data Element, and always returns it to you as a NULL-terminated character
string.

Declaration:

BOOL ACCUAPI MED_DCM_DS_curr_data_get_string (
 const HIGEAR hIGear,
 LPCHAR lpString,
 const DWORD size_of_lpstring
);

Arguments:

Name Type Description

hIGear const
HIGEAR

HIGEAR handle to the image from which to get data.

lpString LPCHAR A far pointer to a memory location that will be filled with the data from the Current Data
Element as a NULL-terminated character string.

size_of_lpString const
DWORD

The variable which tells the function the length of lpString, in bytes, expressed as a
DWORD. If you specify a string length that is not long enough to hold the data, the data
will simply be truncated.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

The marker to the Current Data Element can be moved using one of the MED_DCM_DS_move_...() functions.

Data Elements can be of many different data types (int, word, bytes, float, double, string, etc.), but this function will
always convert the data to a string. To return the data in its "natural form", use MED_DCM_DS_curr_data_get().

ImageGear Professional v18 for Mac | 1505

1.3.2.1.1.6 MED_DCM_DS_curr_data_set

This function allows you to overwrite the Value Field (data) of the Current Data Element by copying the data from your
buffer to the HDS table.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_curr_data_set(
 HIGEAR hIGear,
 const LPVOID lpData,
 const DWORD size_of_data
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of the image.

lpData const
LPVOID

A far pointer of type VOID. Set this to the data you would like stored into the Data Field of
the Current Data Element.

size_of_data const
DWORD

Set this DWORD variable to the size of the data in lpData.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

The Data must be of the correct data type to match the Value Representation (VR) of the Current DE. You can use
MED_DCM_DS_curr_info_get()to find out the VR of the Current DE, and you can use one of the MED_DCM_DS_move_...
() functions to set the Current Data Element.

If the Data Value can accept multiple Data Elements, the data values should be set as a single block of memory. To
query the Value Multiplicity (VM) use MED_DCM_util_tag_info_get().

The length of a DICOM Data Field must always be an even number. If you set the size_of_lpData to an odd number of
bytes, ImageGear will pad it (and your data) to make it an even-numbered length.

An error is set if the data type does not match the VR of the Current DE.

ImageGear Professional v18 for Mac | 1506

1.3.2.1.1.7 MED_DCM_DS_curr_index_get

Returns the index of the Current Data Element in the Data Set associated with the current HIGEAR image.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_curr_index_get(
 const HIGEAR hIGear,
 LPDWORD lpIndex
);

Arguments:

Name Type Description

hIGear const HIGEAR The HIGEAR handle to the image being queried.

lpIndex LPDWORD A far pointer of type DWORD that returns with the index of the Current Data Element.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

This function indexes through all levels of the Data Set. The index of the first Data Element in the table is 0.

To move to a specific index and make it the Current Data Element, use MED_DCM_DS_move_index().

ImageGear Professional v18 for Mac | 1507

1.3.2.1.1.8 MED_DCM_DS_curr_info_get

This function returns information about the Current Data Element (DE).

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_curr_info_get(
 const HIGEAR hIGear,
 LPAT_DCM_TAG lpTag,
 LPAT_DCM_VR lpVR,
 LPAT_DCM_VL lpVL,
 LPWORD lpLevel,
 LPDWORD lpItem_count
);

Arguments:

Name Type Description

hIGear const HIGEAR HIGEAR handle to the image.

lpTag LPAT_DCM_TAG A far pointer that returns a 32-bit value of type AT_DCM_TAG indicating the
numerical value of the Tag of the Current Data Element; set this to NULL if you do
not need this information. The numerical values of the DICOM Tags are defined in
the enumIGMedTag enumeration.

lpVR LPAT_DCM_VR A far pointer to variable of type AT_DCM_VR which returns the Value Representation
(VR) of the Current Data Element; set this to NULL if you do not need this
information. See enumIGMedVR for possible VR values.

lpVL LPAT_DCM_VL A far pointer to a variable of type DWORD that returns the length, in bytes, of the
Current Data Element's Data Field; set this to NULL if you do not need this
information.

lpLevel LPWORD A far pointer to a WORD which returns the level in the hierarchy of the new Current
Data Element; set to NULL if you do not need this information.

lpItem_count LPDWORD A far pointer that returns the number of items stored in the Data Field; set this to
NULL if you do not need this information.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

This function operates in just the same way as the MED_DCM_move_...() functions, except that it does not change the
Current DE - it only reports about it.

ImageGear Professional v18 for Mac | 1508

1.3.2.1.1.9 MED_DCM_DS_curr_remove

This function removes the Current Data Element from the Data Set.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_curr_remove (
 HIGEAR hIGear,
 LPBOOL lpRemoved
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle to the image.

lpRemoved LPBOOL A far pointer to a BOOL, which returns TRUE if the Current Data Element was removed; and
will return FALSE if there are no more removable DEs in the Data Set or if the Current Data
Element could not be removed.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

The new Current Data Element will be the Data Element following the one that was just removed, unless you have
deleted the last DE, in which case the CDE will be the "new" last DE.

If the Data Set is empty (there are no removable DEs remaining) lpRemoved will return FALSE. The critical DEs cannot
be removed. Non-removable DEs also include Sequence and Item Delimiters.

ImageGear Professional v18 for Mac | 1509

1.3.2.1.1.10 MED_DCM_DS_DE_insert

This function inserts a Data Element into the Data Set.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_DE_insert(
 HIGEAR hIGear,
 const AT_DCM_TAG Tag,
 const AT_DCM_VR vr,
 const LPVOID lpData,
 const DWORD size_of_data
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle to the image.

Tag const
AT_DCM_TAG

Set to a Tag value. The Tag must be supplied as a 32-bit value in which the first 16 bits
(WORD) represent the Group Number and the second 16 bits represent the Element
Number. Public DICOM tags are listed in enumIGMedTag enumeration.

vr const
AT_DCM_VR

Set to the VR (Value Representation) of the Data Element to be inserted. See
enumIGMedVR for possible VR values.

lpData const LPVOID A far VOID pointer to the data that you would like to insert.

size_of_data const
DWORD

Set this DWORD variable to the size of the data in lpData.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Example:

HIGEAR hIGear;
MED_DCM_DS_DE_insert(hIGear, DCM_TAG_PhotometricInterpretation, MED_DCM_VR_CS,
"MONOCHROME2", 11);

Remarks:

Your new Data Element will be placed into the Data Set sorted by its Tag value on the same level as that of the Current
Data Element. If the DE already exists, the new one overwrites it. Specifying a Group Length DE does not cause an
error, but will simply be ignored. Your data will be padded to an even length if necessary.

Currently, there are no constants defined for those Data Elements that have a VR of "CS." Refer to Part 3 of the
Specification for the valid Code Strings which you can enter for data of type CS (Code String). Note also that the
length of a Code String is the number of characters between the parentheses.

ImageGear Professional v18 for Mac | 1510

1.3.2.1.1.11 MED_DCM_DS_destroy

This function destroys the Data Set associated with the HIGEAR image specified.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_destroy(HIGEAR hIGear);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of the image whose Data Set will be destroyed.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

Once the Data Set is removed, the image is just like any other image loaded into ImageGear.

ImageGear Professional v18 for Mac | 1511

1.3.2.1.1.12 MED_DCM_DS_exists

This function determines whether an image has a Data Set associated with it.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_exists(
 const HIGEAR hIGear,
 LPBOOL lpExists
);

Arguments:

Name Type Description

hIGear const
HIGEAR

A HIGEAR handle to an image.

lpExists LPBOOL A far pointer that returns a BOOL. If it returns TRUE, a Data Set exists for the image; if it returns
FALSE, a Data Set does not exist for the image.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Supply it with the HIGEAR handle to the image you want to check, and lpExists will return whether or not this image has
a Data Set. See Working With DICOM Data Structures section for more information.

ImageGear Professional v18 for Mac | 1512

1.3.2.1.1.13 MED_DCM_DS_info_get

This function returns the number of Data Elements (DEs) associated with the Data Set of the HIGEAR image.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_info_get(
 const HIGEAR hIGear,
 LPDWORD lpNumTags,
 LPDWORD lpMaxLevel
);

Arguments:

Name Type Description

hIGear const
HIGEAR

HIGEAR handle to an image.

lpNumTags LPDWORD A far pointer to a DWORD which returns the number of Data Elements (same as the number
of Tags) associated with the image's Data Set.

lpMaxLevel LPDWORD A far pointer to a DWORD which returns the maximum SQ Level of the Data Set.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

You might use the number of DEs returned to set the limit on a loop that iterates through each Data Element in a Data
Set. If the DataSet contains SQ (Sequence of Items) data elements, the function returns the total number of data
elements, including data elements contained within sequences. If there are no SQ Data Elements, lpMaxLevel is set to 0.

ImageGear Professional v18 for Mac | 1513

1.3.2.1.1.14 MED_DCM_DS_is_empty

This function returns a TRUE through lpIsEmpty argument if the Data Set associated with HIGEAR has no Data Elements
in it.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_is_empty(
 const HIGEAR hIGear,
 LPBOOL lpIsEmpty
);

Arguments:

Name Type Description

hIGear const HIGEAR HIGEAR handle to the image.

lpIsEmpty LPBOOL A far pointer to a BOOL which returns the status of the Tags in the Data Set.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

ImageGear Professional v18 for Mac | 1514

1.3.2.1.1.15 MED_DCM_DS_LUT_copy_get

This function obtains a new copy of a specified LUT from either presentation state HIGEAR (hIGearPresState), or the
image HIGEAR (hIGear).

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_LUT_copy_get(
 HIGEAR hIGear,
 HIGEAR hIGearPresstate,
 AT_DCM_TAG lutSqTag,
 HIGLUT* lpLUT
);

Arguments:

Name Type Description

hIGear HIGEAR Image whose dataset is checked for presence of the LUT.

hIGearPresstate HIGEAR Presentation state HIGEAR whose dataset is checked for presence of the LUT. Set to
NULL if no presentation state HIGEAR is available.

lutSqTag AT_DCM_TAG Specifies the LUT sequence.

lpLUT HIGLUT* Returns new HIGLUT object with the LUT obtained from a DataSet.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

If the LUT exists in both the Presentation state HIGEAR, and in the image HIGEAR, the function returns the LUT from
Presentation State HIGEAR.

Use IG_LUT_destroy() to destroy the LUT returned from this function when it is no longer needed.

This function supports the following LUT sequences:

DCM_TAG_ModalityLUTSequence
DCM_TAG_VOILUTSequence
DCM_TAG_PresentationLUTSequence

ImageGear Professional v18 for Mac | 1515

1.3.2.1.1.16 MED_DCM_DS_LUT_exists

This function checks whether a presentation state HIGEAR (hIGearPresState), or the image HIGEAR (hIGear) contain
specified LUT sequence.

Declaration:

AT_BOOL ACCUAPI MED_DCM_DS_LUT_exists(
 HIGEAR hIGear,
 HIGEAR hIGearPresstate,
 AT_DCM_TAG lutSqTag
);

Arguments:

Name Type Description

hIGear HIGEAR Image whose dataset is checked for presence of the LUT.

hIGearPresstate HIGEAR Presentation state HIGEAR whose dataset is checked for presence of the LUT. Set to
NULL if no presentation state HIGEAR is available.

lutSqTag AT_DCM_TAG Specifies the LUT sequence.

Return Value:

TRUE if the DataSet attached to the HIGEAR has a specified LUT sequence; FALSE otherwise.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

This function supports the following LUT sequences:

DCM_TAG_ModalityLUTSequence
DCM_TAG_VOILUTSequence
DCM_TAG_PresentationLUTSequence

ImageGear Professional v18 for Mac | 1516

1.3.2.1.1.17 MED_DCM_DS_LUT_update_from

This function adds specified LUT to the DataSet.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_LUT_update_from(
 HIGEAR hIGear,
 AT_DCM_TAG lutSqTag,
 HIGLUT lut
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle to the image.

lutSqTag AT_DCM_TAG LUT sequence.

lut HIGLUT LUT handle.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

The function supports the following LUTs:

LUT Sequence Tag

Modality LUT DCM_TAG_ModalityLUTSequence

VOI LUT DCM_TAG_VOILUTSequence, DCM_TAG_SoftcopyVOILUTSequence

Presentation LUT DCM_TAG_PresentationLUTSequence

ImageGear Professional v18 for Mac | 1517

1.3.2.1.1.18 MED_DCM_DS_move_ascend

This function moves the Current Data Element up one level.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_move_ascend(
 HIGEAR hIGear,
 LPAT_DCM_TAG lpTag,
 LPAT_DCM_VR lpVR,
 LPAT_DCM_VL lpVL,
 LPWORD lpLevel,
 LPDWORD lpICount
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle to the image.

lpTag LPAT_DCM_TAG A far pointer that returns a 32-bit value of type AT_DCM_TAG indicating the numerical
value of the Tag of the Current Data Element; set this to NULL if you do not need this
information. The numerical values of the DICOM Tags are defined in enumIGMedTag
enumeration.

lpVR LPAT_DCM_VR A far pointer which returns the new current VR (Value Representation). Set to NULL if
you don't need this information. See enumIGMedVR for possible VR values.

lpVL LPAT_DCM_VL A far pointer which returns the length of the Data Field, in bytes.

lpLevel LPWORD A far pointer to a WORD which returns the level in the hierarchy of the new Current Data
Element; set to NULL, if you do not need this information.

lpICount LPDWORD Returns the Item Count of the data; set to NULL if you don't need this information.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

This is only applicable if the Current Data Element is positioned within an SQ Data Element or within an Item Data
Element.

If the Current Data Element is positioned anywhere in an SQ, the Current Data Element ascends to the SQ. If within an
Item, the new Current DE becomes the Item DE. Only one level is ascended per call.

If the Current DE is at the top level (0), no action is taken.

If this function is successful, the lpLevel decreases in value by 1. Zero refers to the top level. As the number gets larger,
the Data Element is deeper into the hierarchy. Data Elements (as well as SQs and Item Delimiters) are always stored in
even-numbered levels; odd-numbered levels contain Items and SQ Delimiters.

ImageGear Professional v18 for Mac | 1518

1.3.2.1.1.19 MED_DCM_DS_move_descend

This function moves the Current Data Element down one level.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_move_descend (
 const HIGEAR hIGear,
 LPAT_DCM_TAG lpTag,
 LPAT_DCM_VR lpVR,
 LPAT_DCM_VL lpVL,
 LPWORD lpLevel,
 LPDWORD lpICount);

Arguments:

Name Type Description

hIGear const HIGEAR HIGEAR handle to the image.

lpTag LPAT_DCM_TAG A far pointer that returns a 32-bit value of type AT_DCM_TAG indicating the numerical
value of the Tag of the Current Data Element; set this to NULL if you do not need this
information. The numerical values of the DICOM Tags are defined in enumIGMedTag
enumeration.

lpVR LPAT_DCM_VR A far pointer which returns the new current VR (Value Representation). Set to NULL if
you don't need this information. See enumIGMedVR for possible VR values.

lpVL LPAT_DCM_VL A far pointer which returns the length of the Data Field, in bytes.

lpLevel LPWORD A far pointer to a WORD which returns the level in the hierarchy of the new Current Data
Element; set to NULL, if you do not need this information.

lpICount LPDWORD Returns the Item Count of the data; set to NULL if you don't need this information.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

This is only applicable if the Current Data Element is positioned at an SQ Data Element or at an Item Data Element.

If the Current Data Element is positioned at an SQ Data Element, the Current Data Element will descend to the first Item
in the sequence. If at an Item, the new Current DE becomes the first DE within the Item. Only one level is descended
per call.

If the Current DE does not point to an SQ or Item DE, no action is taken and lpLevel returns the Current Level.

If this function is successful, the lpLevel increments from its Current DE level. Zero refers to the top level. As the number
gets larger the Data Element is deeper into the hierarchy. Data Elements (as well as SQs and Item Delimiters) are
always stored in odd-numbered levels; even-numbered levels contain Items and SQ Delimiters.

ImageGear Professional v18 for Mac | 1519

1.3.2.1.1.20 MED_DCM_DS_move_find

This function searches the Data Set associated with hIGear for the Tag specified in lpTag.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_move_find(
 HIGEAR hIGear,
 const AT_MODE level_op,
 const AT_DCM_TAG Tag,
 LPAT_DCM_VR lpVR,
 LPAT_DCM_VL lpVL,
 LPDWORD lpLevel,
 LPDWORD lpICount,
 LPBOOL lpTagFound
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle to the image.

level_op const
AT_MODE

A variable of type AT_MODE that tells the function how to move when it comes to an
SQ. SQs are like indented outline items, allowing for hierarchies of Data Elements.
Set this to one of the following constants:

MED_DCM_MOVE_LEVEL_FIXED: This setting tells the function to move only
within the same level as the previous Current DE. An SQ and all its Data Elements
are skipped over. If you are in a SQ, you can only move about the SQ.
MED_DCM_MOVE_LEVEL_FLOAT: This setting tells the function to move up or
down as needed to get to the next DE. If the next DE is an SQ, the Current DE
moves down into it. At the end of the SQ the Current DE will move back out to
the lower levels (for example, from Level 2 to Level 1).

Tag const
AT_DCM_TAG

Set to a value of type DWORD that identifies the Tag value for which you would like
to search. The first 16 bits of the DWORD represent the Group Number; the second
16 bits represent the Element Number.

lpVR LPAT_DCM_VR A far pointer which returns the new current VR (Value Representation). Set to NULL
if you don't need this information. See enumIGMedVR for possible VR values.

lpVL LPAT_DCM_VL A far pointer which returns the length of the Data Field, in bytes.

lpLevel LPDWORD A far pointer to a WORD which returns the level in the hierarchy of the new Current
Data Element; set to NULL if you do not need this information.

lpICount LPDWORD Returns the Item Count of the data; set to NULL if you don't need this information.

lpTagFound LPBOOL Returns TRUE is the Tag was found; FALSE otherwise.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

If the Tag is found, the Data Element becomes the Current Data Element. This function also returns the VR (Value
Representation), the number of bytes in the Tag's data, and the Item Count.

ImageGear Professional v18 for Mac | 1520

The levels of the Data Set that will be searched depends on the setting of level_op.

ImageGear Professional v18 for Mac | 1521

1.3.2.1.1.21 MED_DCM_DS_move_find_first

This function searches the Data Set associated with the HIGEAR image for the first Tag of the Group Number specified
by GroupNum.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_move_find_first(
 const HIGEAR hIGear,
 const AT_MODE level_op,
 const WORD GroupNum,
 LPAT_DCM_VR lpVR,
 LPAT_DCM_VL lpVL,
 LPDWORD lpLevel,
 LPDWORD lpItem_count,
 LPBOOL lpTagFound
);

Arguments:

Name Type Description

hIGear const HIGEAR HIGEAR handle of the image.

level_op const
AT_MODE

A variable of type AT_MODE that tells the function how to move when it comes to an
SQ. SQs are like indented outline items, allowing for hierarchies of Data Elements.
Set this to one of the following constants:

MED_DCM_MOVE_LEVEL_FIXED: This setting tells the function to move only
within the same level as the previous Current DE. An SQ and all its Data Elements
are skipped over. If you are in a SQ, you can only move about the SQ.
MED_DCM_MOVE_LEVEL_FLOAT: This setting tells the function to move up or
down as needed to get to the next DE. If the next DE is an SQ the Current DE
moves down into it. At the end of the SQ, the Current DE will move back out to
the lower levels (for example, from Level 2 to Level 1).

GroupNum const WORD Set this WORD variable to the Group Number for which to search.

lpVR LPAT_DCM_VR A far pointer which returns the new current VR (Value Representation). Set to NULL
if you don't need this information. See enumIGMedVR for possible VR values.

lpVL LPAT_DCM_VL A far pointer which returns the length of the Data Field, in bytes.

lpLevel LPDWORD A far pointer to a WORD which returns the level in the hierarchy of the new Current
Data Element; set to NULL, if you do not need this information.

lpICount LPDWORD Returns the Item Count of the data; set to NULL if you don't need this information.

lpTagFound LPBOOL Returns TRUE is the Tag was found; FALSE otherwise.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

When the first Tag with group GroupNum is found, the Data Element is made the Current Data Element. This function
also returns the VR (Value Representation), the number of bytes in the Tag's data, and the Item Count.

ImageGear Professional v18 for Mac | 1522

Which levels of the Data Set will be considered depends on the setting of level_op.

ImageGear Professional v18 for Mac | 1523

1.3.2.1.1.22 MED_DCM_DS_move_first

This function makes the first Data Element in the specified level the Current Data Element.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_move_first(
 const HIGEAR hIGear,
 const AT_MODE level_op,
 LPAT_DCM_TAG lpTag,
 LPAT_DCM_VR lpVR,
 LPAT_DCM_VL lpVL,
 LPWORD lpLevel,
 LPDWORD lpICount
);

Arguments:

Name Type Description

hIGear const HIGEAR HIGEAR handle to the image.

level_op const AT_MODE A variable of type AT_MODE that tells the function how to move when it comes to an
SQ. SQs are like indented outline items, allowing for hierarchies of Data Elements. Set
this to one of the following constants:

MED_DCM_MOVE_LEVEL_FIXED: This setting tells the function to move only within
the same level as the previous Current DE. An SQ and all its Data Elements are
skipped over. If you are in a SQ, you can only move about the SQ.
MED_DCM_MOVE_LEVEL_FLOAT: This setting tells the function to move up or down
as needed to get to the next DE. If the next DE is an SQ the Current DE moves
down into it. At the end of the SQ, the Current DE will move back out to the lower
levels (for example, from Level 2 to Level 1).

lpTag LPAT_DCM_TAG A far pointer that returns a 32-bit value of type AT_DCM_TAG indicating the numerical
value of the Tag of the Current Data Element; set this to NULL if you do not need this
information. The numerical values of the DICOM Tags are defined in enumIGMedTag
enumeration.

lpVR LPAT_DCM_VR A far pointer which returns the new current VR (Value Representation). Set to NULL if
you don't need this information. See enumIGMedVR for possible VR values.

lpVL LPAT_DCM_VL A far pointer which returns the length of the Data Field, in bytes.

lpLevel LPWORD A far pointer to a WORD which returns the level in the hierarchy of the new Current
Data Element; set to NULL, if you do not need this information.

lpICount LPDWORD Returns the Item Count of the data; set to NULL if you don't need this information.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

This function also returns the DE's VR (Value Representation), the number of bytes in the Tag's data, and the Item
Count.

Which level of the Data Set will be considered depends upon the setting of level_op.

ImageGear Professional v18 for Mac | 1524

ImageGear Professional v18 for Mac | 1525

1.3.2.1.1.23 MED_DCM_DS_move_index

This function moves the Current Data Element to the Data Element in the Data Set indicated by index, which represents
a particular index in the array of Data Elements that make up the Data Set.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_move_index(
 const HIGEAR hIGear,
 const DWORD index,
 LPAT_DCM_TAG lpTag,
 LPAT_DCM_VR lpVR,
 LPAT_DCM_VL lpVL,
 LPDWORD lpLevel,
 LPDWORD lpICount
);

Arguments:

Name Type Description

hIGear const HIGEAR The HIGEAR handle to the image.

index const DWORD Set to a DWORD that indicates the index that you would like to become the new Current
Data Element.

lpTag LPAT_DCM_TAG A far pointer that returns a 32-bit value of type AT_DCM_TAG indicating the numerical
value of the Tag of the Current Data Element; set this to NULL if you do not need this
information. The numerical values of the DICOM Tags are defined in enumIGMedTag
enumeration.

lpVR LPAT_DCM_VR A far pointer which returns the new current VR (Value Representation). Set to NULL if
you don't need this information. See enumIGMedVR for possible VR values.

lpVL LPAT_DCM_VL A far pointer which returns the length of the Data Field, in bytes.

lpLevel LPDWORD A far pointer to a WORD which returns the level in the hierarchy of the new Current Data
Element; set to NULL, if you do not need this information.

lpICount LPDWORD Returns the Item Count of the data; set to NULL if you don't need this information.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

This function also returns the Tag's VR (Value Representation), its Tag value, the number of bytes in the Tag's data, and
the Item Count. The index refers to which element in the Data Element array should be used. The first Data Element will
always have an index of 0, and the last Data Element will always have an index of (Total # of DEs - 1). Use
MED_DCM_DS_info_get() to find out the total # of Data Elements associated with an image's Data Set.

This function pays no attention to Levels. It only returns the level of the Current Data Element.

ImageGear Professional v18 for Mac | 1526

1.3.2.1.1.24 MED_DCM_DS_move_last

This function moves the Current Data Element to the last Data Element in the Data Set, or in the current level,
depending on level_op setting.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_move_last(
 const HIGEAR hIGear,
 const AT_MODE level_op,
 LPAT_DCM_TAG lpTag,
 LPAT_DCM_VR lpVR,
 LPAT_DCM_VL lpVL,
 LPWORD lpLevel,
 LPDWORD lpICount
);

Arguments:

Name Type Description

hIGear const HIGEAR HIGEAR handle to the image.

level_op const AT_MODE A variable of type AT_MODE that tells the function how to move when it comes to an SQ.
SQs are like indented outline items, allowing for hierarchies of Data Elements. Set this to
one of the following constants:

MED_DCM_MOVE_LEVEL_FIXED: This setting tells the function to move only within
the same level as the previous Current DE. An SQ and all its Data Elements are
skipped over. If you are in a SQ, you can only move about the SQ.
MED_DCM_MOVE_LEVEL_FLOAT: This setting tells the function to move up or down as
needed to get to the next DE. If the next DE is an SQ the Current DE moves down into
it. At the end of the SQ, the Current DE will move back out to the lower levels (for
example, from Level 2 to Level 1).

lpTag LPAT_DCM_TAG A far pointer that returns a 32-bit value of type AT_DCM_TAG indicating the numerical
value of the Tag of the Current Data Element; set this to NULL if you do not need this
information. The numerical values of the DICOM Tags are defined in enumIGMedTag
enumeration.

lpVR LPAT_DCM_VR A far pointer which returns the new current VR (Value Representation). Set to NULL if
you don't need this information. See enumIGMedVR for possible VR values.

lpVL LPAT_DCM_VL A far pointer which returns the length of the Data Field, in bytes.

lpLevel LPWORD A far pointer to a WORD which returns the level in the hierarchy of the new Current Data
Element; set to NULL, if you do not need this information.

lpICount LPDWORD Returns the Item Count of the data; set to NULL if you don't need this information.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

ImageGear Professional v18 for Mac | 1527

1.3.2.1.1.25 MED_DCM_DS_move_next

This function moves the Current Data Element to the next Data Element in the Data Set.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_move_next(
 const HIGEAR hIGear,
 const AT_MODE level_op,
 LPAT_DCM_TAG lpTag;
 LPAT_DCM_VR lpVR,
 LPAT_DCM_VL lpVL,
 LPWORD lpLevel,
 LPDWORD lpICount,
 LPLONG lpNumRemaining
);

Arguments:

Name Type Description

hIGear const HIGEAR HIGEAR handle to the image.

level_op const AT_MODE A variable of type AT_MODE that tells the function how to move when it
comes to an SQ. SQs are like indented outline items, allowing for hierarchies
of Data Elements. Set this to one of the following constants:

MED_DCM_MOVE_LEVEL_FIXED: This setting tells the function to move
only within the same level as the previous Current DE. An SQ and all its
Data Elements are skipped over. If you are in a SQ, you can only move
about the SQ.
MED_DCM_MOVE_LEVEL_FLOAT: This setting tells the function to move up
or down as needed to get to the next DE. If the next DE is an SQ the
Current DE moves down into it. At the end of the SQ, the Current DE will
move back out to the lower levels (for example, from Level 2 to Level 1).

lpTag LPAT_DCM_TAG A far pointer that returns a 32-bit value of type AT_DCM_TAG indicating the
numerical value of the Tag of the Current Data Element; set this to NULL if
you do not need this information. The numerical values of the DICOM Tags
are defined in enumIGMedTag enumeration.

lpVR LPAT_DCM_VR A far pointer which returns the new current VR (Value Representation). Set to
NULL if you don't need this information. See enumIGMedVR for possible VR
values.

lpVL LPAT_DCM_VL A far pointer which returns the length of the Data Field, in bytes.

lpLevel LPWORD A far pointer to a WORD which returns the level in the hierarchy of the new
Current Data Element; set to NULL, if you do not need this information.

lpICount LPDWORD Returns the Item Count of the data; set to NULL if you don't need this
information.

lpNumRemaining LPLONG A far pointer to a LONG that returns the number of DE remaining until the end
is reached. If the returned value is 0, you are now at last DE, if the returned
value is -1, you have attempted to move past the last DE.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

ImageGear Professional v18 for Mac | 1528

Example:

AT_ERRCOUNT nErrcount;
HIGEAR hIGear;
BOOL IsLast;
AT_DCM_TAG lpTag;
AT_DCM_VR lpVR;
AT_DCM_VL lpVL;
DWORD lpICount;
DWORD size_of_lpData;
IsLast = FALSE:
 MED_DCM_DS_move_first(hIGear, &lpTag, &lpVR, &lpVL, &lpICount);
/* iterate through all Data Elements returning the Tag, VR, VL and item count of each one.
End the loop when lpIsLast == TRUE */
while (IsLast == FALSE) {
 MED_DCM_DS_curr_data_get(hIGear, lpData, size_of_lpData);
 MED_DCM_DS_move_next(hIGear, &lpTag, &lpVR, &lpVL, &lpICount, &lpIsLast);

}

Remarks:

The value of lpNumRemaining tells you whether the Tag has now become the last Tag in the list.

The level_op setting determines whether the Current Data Element can move from level to level, or it has to stay on
the same level.

ImageGear Professional v18 for Mac | 1529

1.3.2.1.1.26 MED_DCM_DS_move_prev

This function moves the Current Data Element to the previous Data Element in the Data Set.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_move_prev(
 const HIGEAR hIGear,
 const AT_MODE level_op,
 LPAT_DCM_TAG lpTag;
 LPAT_DCM_VR lpVR,
 LPAT_DCM_VL lpVL,
 LPWORD lpLevel,
 LPDWORD lpICount,
 LPLONG lpNumRemaining
);

Arguments:

Name Type Description

hIGear const HIGEAR HIGEAR handle to the image.

level_op const AT_MODE A variable of type AT_MODE that tells the function how to move when it
comes to an SQ. SQs are like indented outline items, allowing for hierarchies
of Data Elements. Set this to one of the following constants:

MED_DCM_MOVE_LEVEL_FIXED: This setting tells the function to move
only within the same level as the previous Current DE. An SQ and all its
Data Elements are skipped over. If you are in a SQ, you can only move
about the SQ.
MED_DCM_MOVE_LEVEL_FLOAT: This setting tells the function to move up
or down as needed to get to the next DE. If the next DE is an SQ the
Current DE moves down into it. At the end of the SQ, the Current DE
moves back out to the lower levels (for example, from Level 2 to Level 1).

lpTag LPAT_DCM_TAG A far pointer that returns a 32-bit value of type AT_DCM_TAG indicating the
numerical value of the Tag of the Current Data Element; set this to NULL if
you do not need this information. The numerical values of the DICOM Tags
are defined in enumIGMedTag enumeration.

lpVR LPAT_DCM_VR A far pointer which returns the new current VR (Value Representation). Set to
NULL if you don't need this information. See enumIGMedVR for possible VR
values.

lpVL LPAT_DCM_VL A far pointer which returns the length of the Data Field, in bytes.

lpLevel LPWORD A far pointer to a WORD which returns the level in the hierarchy of the new
Current Data Element; set to NULL, if you do not need this information.

lpICount LPDWORD Returns the Item Count of the data; set to NULL if you don't need this
information.

lpNumRemaining LPLONG A far pointer to a LONG that returns the number of DE remaining until the top
is reached. If the returned value is 0, you are now at first DE, if the returned
value is -1, you have attempted to move past the first DE.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

ImageGear Professional v18 for Mac | 1530

Remarks:

The value of lpNumRemaining tells you whether the Tag has now become the first Tag in the list.

The level_op setting determines whether the Current Data Element can move from level to level, or has to stay on the
same level.

ImageGear Professional v18 for Mac | 1531

1.3.2.1.1.27 MED_DCM_DS_orig_TS_get

This function returns the original Transfer Syntax used for the image, and indicates whether of not it had a Part 10
header and the group length Data Elements.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_orig_TS_get(
 const HIGEAR hIGear,
 LPAT_MODE lpOrigTS,
 LPBOOL lpPart10,
 LPBOOL lpGrpLengths
);

Arguments:

Name Type Description

hIGear const
HIGEAR

HIGEAR handle to the image.

lpOrigTS LPAT_MODE A far pointer to the original setting for TS (Transfer Syntax). Set to NULL if you do not
need this information. See enumIGMedTS enumeration for complete list of Transfer
Syntaxes.

lpPart10 LPBOOL A far pointer to a BOOL which indicates whether the original file was a Part 10 file. If
TRUE-the original was a Part 10 file; If FALSE-the original was not a Part 10 file. Set to
NULL if you do not need this information.

lpGrpLengths LPBOOL A far pointer that returns a Boolean value indicating whether the original DICOM image
had any Group Length Data Elements in it. TRUE means that it did have Group Length
Data Elements; FALSE means that there were none. Set to NULL if you do not need this
information.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

ImageGear Professional v18 for Mac | 1532

1.3.2.1.1.28 MED_DCM_DS_part10_get

This function returns the data from the item in the Part 10 header identified by part10_item.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_part10_get(
 const HIGEAR hIGear,
 const AT_MODE part10_item,
 const DWORD size_of_lpData,
 LPVOID lpData,
 LPDWORD lpSize_of_item
);

Arguments:

Name Type Description

hIGear const
HIGEAR

HIGEAR handle to the image.

part10_item const
AT_MODE

Set to the item in Part 10 that you would like to get. Use one of the AT_MODE constants
defined in DCM.h that begin with DCM_PART10_ITEM_SET_.

size_of_lpData const
DWORD

Set to the size of the buffer lpData that you allocate to receive the data. This function
will not copy more than this amount of data from the Part 10 Header, stored in the
HIGEAR, to this buffer.

lpData LPVOID A far pointer to a VOID buffer in which return the data from the item specified by
part10_item.

lpSize_of_Item LPDWORD A far pointer that returns the actual size of the Data Value that is stored in the Part 10
Header. It is not always the size of the data being returned in lpData. If this parameter
returns a value greater than size_of_lpData then lpData does not contain all of the data-
some has been clipped.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Example:

#define BUFF_SIZE 150
HIGEAR hIGear;
char data[BUFF_SIZE];
MED_DCM_DS_part10_get(g_hIGear, DCM_PART10_ITEM_PREAMBLE, BUFF_SIZE, data, &size_of_data);

ImageGear Professional v18 for Mac | 1533

1.3.2.1.1.29 MED_DCM_DS_part10_set

This function sets the data of the item in the Part 10 header identified by part10_item.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_part10_set(
 const HIGEAR hIGear,
 const AT_MODE part10_item,
 const LPVOID lpData,
 const AT_DCM_VL vl
);

Arguments:

Name Type Description

hIGear const
HIGEAR

HIGEAR handle to the image.

part10_item const
AT_MODE

Set this variable to the type of Part 10 item you would like to set. Use one of the
constants defined in DCM.h that begin with DCM_PART10_ITEM_.

lpData const
LPVOID

A far VOID pointer to the data that you would like to store into the Part 10 item.

vl const
AT_DCM_VL

Set to the length of the Data Field, in bytes.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

ImageGear Professional v18 for Mac | 1534

1.3.2.1.1.30 MED_DCM_DS_PixPadVal_get

This function retrieves the Pixel Padding Value (PPV) that is being used for the display of 16-bit grayscale images.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_PixPadVal_get(
 HIGEAR hIGear,
 LPBOOL lpUse_Pix_Padding,
 LPLONG lpPix_Padding_Val,
 LPBYTE lpShow_PPV_as
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle to the image for which you would like to set the value of the "Pixel
Padding Value" Data Element (0028,0120).

lpUse_Pix_Padding LPBOOL Returns TRUE if the value of Pixel Padding Value (0028,0120) will be used; FALSE if
the value of Pixel Padding Value will be ignored.

lpPix_Padding_Val LPLONG Returns the grayscale value that will be used for padding. This value read is that which
is stored in the Pixel Padding Value Data Element (0028,0120) of the internal Data Set.

lpShow_PPV_as LPBYTE Returns the grayscale value that will be used to display pixels equal to the Pixel
Padding Value.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Example:

AT_ERRCOUNT nErrcount;
HIGEAR hIGear;
LONG Pix_Padding_Val;
BYTE Show_PPV_as;
nErrcount = MED_DCM_DS_PixPadVal_get(g_hIGear, NULL, &Pix_Padding_Val, &Show_PPV_as);

Remarks:

This function also returns whether or not the PPV value will be used. The Pixel Padding Value is most often used to fill in
the regions around a circular image. This function does not retrieve the PPV Data Element from the Data Set attached to
the HIGEAR. It gets the value for PPV from the Internal Data Set (HDS) (which may be equal to the value in the actual
Data Set). The purpose of this function is to let you know whether Pixel Padding is set on and off, what value it has, if
any, and what color it is set to display as.

Please see the description for MED_DCM_DS_PixPadVal_set() for a complete description of how ImageGear handles the
Pixel Padding Value Data Element.

To turn off the Pixel Padding Value or to alter the value being used use MED_DCM_DS_PixPadVal_set().

ImageGear Professional v18 for Mac | 1535

1.3.2.1.1.31 MED_DCM_DS_PixPadVal_set

This function is used to set the Pixel Padding Value that is to be used while displaying a 16-bit grayscale image.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_PixPadVal_set(
 HIGEAR hIGear,
 const BOOL Use_Pix_Padding,
 const LONG Pix_Padding_Val,
 const BYTE Show_PPV_as
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle to the image for which you would like to set the value of the internal
representation of the "Pixel Padding ValueData Element (0028,0120)".

Use_Pix_Padding const
BOOL

Set this to TRUE to use the value of Pixel Padding Value (0028,0120); FALSE to ignore
the value of Pixel Padding Value.

Pix_Padding_Val const
LONG

Set this argument to the grayscale value to use for the image. This value will be
stored in the Pixel Padding Value Data Element (0028,0120) of the internal Data Set.
This new value is the value that will be locked into the 16x8 LUT when Pixel Padding is
turned on.

Show_PPV_as const
BYTE

Set to the grayscale value that will be used to display pixels equal to the Pixel Padding
Value.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Example:

AT_ERRCOUNT nErrcount;
HIGEAR hIGear;
LONG Pix_Padding_Val;
BYTE Show_PPV_as;
BOOL Pref_use_pix_pad;
nErrcount = MED_DCM_DS_PixPadVal_set(hIGear, bPref_use_pix_pad, Pix_Padding_Val,
Show_PPV_as);

Remarks:

Here is a description of what this Data Element is used for and how ImageGear implements its use:

DICOM images sometimes contain a Data Element called "Pixel Padding Value" (PPV). The PPV is used mostly to fill in
the corners of round images. DICOM provides a Tag for PPV which is (0028,0120). This Data Element stores a 16-bit
grayscale value that is to be treated as the Pixel Padding Value. Any pixels in the image that have this value are not
to be treated as meaningful objects-but as background color.

When ImageGear Medical loads a DICOM image that contains a PPV the value is captured and stored in the HDS,
which is attached to the HIGEAR of the new image. In fact, 3 values are stored to the HDS: the PPV from the PPV

ImageGear Professional v18 for Mac | 1536

Data Element, a flag indicating that a PPV was found in the file when it was loaded, and an 8-bit grayscale value to
use to display pixels with this value. This function sets the values of these in-memory copies of the PPV data.

When Use_Pix_Padding is set to TRUE, pixels from the original image equal to the PPV are treated as background. All
functions that fill the 16x8 LUT skip this value and place the Show_PPV_As value in the PPV slot of the table. This
allows an application to adjust the contrast of the image while keeping the PPV or background constant. The
background will be displayed with a grayscale value equal to that stored in Show_PPV_As. The PPV is also used for
the IP functions. Functions like MED_IP_min_max() ignore pixel values that are equal to the PPV. (see below).

Use_Pix_Padding is initially set to TRUE if the loaded image contained the Pixel Padding Value Data Element
(0028,0120). If this Data Element was not found then this defaults to FALSE

Pix_Padding_Val is initially set to the Data Field of the Pixel Padding Value Data Element (0028,0120) if it is found. If
it is not it is set to default (NULL).

Show_PPV_As is not part of the PPV Data Element. This value always defaults to 64.

When the Pixel Padding Value is turned "on" (Use_Pix_Padding=TRUE) the MED_IP_min_max() function will know to
ignore this value as it searches through the image for the brightest and darkest pixel value so that it avoids treating
the Pixel Padding Value as the minimum or max pixel value. This error could easily occur because Pixel Padding Value
is most often set to a very large or very small value so that it can be easily differentiated from the real pixel values.

To retrieve the Pixel Padding Value that is currently stored in the HIGEAR (not the one in the Data Set although them
may have the same value) see MED_DCM_DS_PixPadVal_get().

ImageGear Professional v18 for Mac | 1537

1.3.2.1.1.32 MED_DCM_DS_preamble_get

This function gets the preamble item from the Part 10 header of the image, if one exists.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_preamble_get(
 const HIGEAR hIGear,
 LPCHAR* lpPreamble
);

Arguments:

Name Type Description

hIGear const
HIGEAR

HIGEAR handle to the image.

lpPreamble LPCHAR* A far pointer to a buffer that will be used to hold the data from the preamble. The buffer
must be at least 128 bytes.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

Your receiving buffer must be at least 128 bytes.

ImageGear Professional v18 for Mac | 1538

1.3.2.1.1.33 MED_DCM_DS_preamble_set

This function sets the value of the Preamble item of the Part 10 header.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_preamble_set(
 const HIGEAR hIGear,
 LPCHAR lpPreamble,
 const DWORD bytes_in_lpPreamble
);

Arguments:

Name Type Description

hIGear const HIGEAR HIGEAR handle to the image.

lpPreamble LPCHAR A far pointer to the preamble of the Data Set.

bytes_in_lpPreamble const DWORD The number of bytes in your Preamble data.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

Provide this function with the address of the Preamble in lpPreamble, and the number of bytes for the new Preamble in
bytes_in_lpPreamble. If the length of the data is less than 128 bytes, the remainder of the Preamble is filled with NULLs.

ImageGear Professional v18 for Mac | 1539

1.3.2.1.1.34 MED_DCM_DS_Rescale_get

This function will search the DICOM Data Set of the HIGEAR image and return the value from Rescale Slope (0028,1053)
and Rescale Intercept (0028,1054).

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_Rescale_get(
 const HIGEAR hIGear,
 LPDOUBLE lpRescale_Slope,
 LPDOUBLE lpRescale_Intercept,
 LPBOOL lpFound
);

Arguments:

Name Type Description

hIGear const
HIGEAR

Set to the HIGEAR handle of the image from which you would like to retrieve the
Rescale values.

lpRescale_slope LPDOUBLE Returns you the value of the Rescale Slope Data Element as a DOUBLE. The Tag
value of this DE is (0028,1053).

lpRescale_intercept LPDOUBLE Returns you the value of the Rescale Intercept Data Element as a DOUBLE. The Tag
value of this DE is (0028,1054).

lpFound LPBOOL Returns whether or not these two Data Elements were found/present in the image's
Data Set.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Example:

AT_ERRCOUNT nErrcount;
HIGEAR hIGear;
DOUBLE RescaleSlope, RescaleIntercept;
nErrcount = MED_DCM_DS_Rescale_get(hIGear, &RescaleSlope, &RescaleIntercept, NULL);

Remarks:

This function is a short cut that was created because the values of these Data Elements are often sought after. You could
perform this same operation, as you would for getting the information from any DE, by using
MED_DCM_DS_move_find() and MED_DCM_DS_curr_data_get().

If both of these DEs are found in the Data Set, then lpFound returns TRUE. If one or both are missing then lpFound will
return FALSE, lpRescale_slope will return 1.0, and lpRescale_intercept will return 0.0. lpFound can be set to NULL if you
do not need to know if they are found or not. The returned slope and interface values returned are always usable even if
they are not found in the Data Set.

Both this function and MED_DCM_DS_Window_Level_get() should be called before displaying an image using
MED_display_contrast().

ImageGear Professional v18 for Mac | 1540

1.3.2.1.1.35 MED_DCM_DS_TS_get

This function returns the Transfer Syntax constant that corresponds to the value of
DCM_PART10_ITEM_TRANSSYNTAXUID part 10 item in the DataSet.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_TS_get(
 const HIGEAR hIGear,
 LPAT_MODE lpTransfer_syntax
);

Arguments:

Name Type Description

hIGear const
HIGEAR

HIGEAR handle of the image.

lpTransfer_syntax LPAT_MODE Returns the Transfer Syntax constant that corresponds to the
DCM_PART10_ITEM_TRANSSYNTAXUID part 10 item in the DataSet.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

lpTransfer_syntax returns one of the Transfer Syntax constants, defined in enumIGMedTS enumeration.

ImageGear Professional v18 for Mac | 1541

1.3.2.1.1.36 MED_DCM_DS_TS_set

This function sets the Transfer Syntax value in the Part 10 Header for "Transfer Syntax UID" Data Element (0002,0010).

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_TS_set(
 HIGEAR hIGear,
 const AT_MODE Transfer_syntax
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of the image.

Transfer_syntax const
AT_MODE

Set to the type of transfer syntax that you would like to store in the Transfer Syntax
field of the Part 10 header.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

This value overrides that set by MED_DCM_DS_create() function.

Transfer_syntax must be set to one of the following supported Transfer Syntax constants:

MED_DCM_TS_IMPLICIT_VR_LE,
MED_DCM_TS_EXPLICIT_VR_LE
MED_DCM_TS_EXPLICIT_VR_BE

ImageGear Professional v18 for Mac | 1542

1.3.2.1.1.37 MED_DCM_DS_update_file

This function creates a new file with an exact copy of the source file's pixel data and with new metadata (File Meta
Information header and DataSet) taken from HIGEAR image handle.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_update_file (
 HIGEAR hIGear,
 const LPSTR lpszFileNameSrc,
 const LPSTR lpszFileNameDst
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle containing metadata to be saved to result file.

lpszFileNameSrc const LPSTR Source file name.

lpszFileNameDst const LPSTR Result file name.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

Pixel data is not decoded, but copied directly from source to destination file.

This function can be used for updating metadata in an image file without modifying the pixel data. To achieve this, delete
the source file after calling this function, and rename the result file to the source file name.

The function does not change the tags that affect decoding of pixel data.

The function takes into account the following DICOM filter control parameters:

SAVE_GROUPLENGTHS
SAVE_ASPART10

ImageGear Professional v18 for Mac | 1543

1.3.2.1.1.38 MED_DCM_DS_update_from

This function copies the Element List associated with hSrcList to the image associated with hIGear.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_update_from(
 HIGEAR hIGear,
 HIGMEDELEMLIST hSrcList
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle to an image, from which the Element List will be copied.

hSrcList HIGMEDELEMLIST HIGMEDELEMLIST handle to the Data Element List object.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

ImageGear Professional v18 for Mac | 1544

1.3.2.1.1.39 MED_DCM_DS_Window_Level_get

This function searches the Data Set of the HIGEAR image for the Window Width and Window Center Data Elements.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_Window_Level_get(
 const HIGEAR hIGear,
 LPLONG lpWindow_Width,
 LPLONG lpWindow_Center,
 LPBOOL lpFound
);

Arguments:

Name Type Description

hIGear const
HIGEAR

HIGEAR handle to the image from which you would like to retrieve the Window Level
values.

lpWindow_Width LPLONG Returns the value of the Window Level Width Data Element (0028,1051).

lpWindow_Center LPLONG Returns the value of the Window Level Center Data Element (0028,1050).

lpFound LPBOOL Returns TRUE if both of these DEs are found in the Data Set; returns FALSE if one or the
other is missing from the Data Set. Set to NULL if you do not need this information.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Example:

AT_ERRCOUNT nErrcount;
HIGEAR hIGear;
LONG lWindow_min, lWindow_max;
nErrcount = MED_DCM_DS_Window_Level_get(hIGear, &lWindow_min, &lWindow_max, NULL);

Remarks:

This function is a shortcut that was created because the values of these Data Elements are often sought after. You could
perform this same operation, as you would for getting the information from any DE, by using
MED_DCM_DS_move_find() and MED_DCM_DS_curr_data_get().

If both are found they are returned and lpFound is set to TRUE. If one or both of these DEs are not found, lpFound is set
to FALSE and ImageGear attempts to calculate adequate values for both Width and Center to display all pixels in the
image.

For 17-32 bits per pixel images, please use MED_DCM_DS_Window_Level_get_64().

ImageGear Professional v18 for Mac | 1545

1.3.2.1.1.40 MED_DCM_DS_Window_Level_get_64

This function searches the Data Set of the HIGEAR image for the Window Width and Window Center Data Elements.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_DS_Window_Level_get_64(
 const HIGEAR hIGear,
 LPAT_INT64 lpWindow_Width,
 LPAT_INT64 lpWindow_Center,
 LPBOOL lpFound
);

Arguments:

Name Type Description

hIGear const
HIGEAR

HIGEAR handle to the image from which you would like to retrieve the Window Level
values.

lpWindow_Width LPAT_INT64 Returns the value of the Window Level Width Data Element (0028,1051) as 64 bit
integer.

lpWindow_Center LPAT_INT64 Returns the value of the Window Level Center Data Element (0028,1050) as 64 bit
integer.

lpFound LPBOOL Returns TRUE if both of these DEs are found in the Data Set; returns FALSE if one
or the other is missing from the Data Set. Set to NULL if you do not need this
information.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Example:

AT_ERRCOUNT nErrcount;
HIGEAR hIGear;
AT_INT64 lWindow_min, lWindow_max;
nErrcount = MED_DCM_DS_Window_Level_get_64(hIGear, &lWindow_min, &lWindow_max, NULL);

Remarks:

Use this function for 17-32 bits per pixel images. Although you can use this function for 8-16 bit images, it may impact
performance in 32 bit operation systems. This function is a shortcut that was created because the values of these Data
Elements are often sought after. You could perform this same operation, as you would for getting the information from
any DE, by using MED_DCM_DS_move_find() and MED_DCM_DS_curr_data_get().

If both are found they are returned and lpFound is set to TRUE. If one or both of these DEs are not found, lpFound is set
to FALSE and ImageGear attempts to calculate adequate values for both Width and Center to display all pixels in the
image.

ImageGear Professional v18 for Mac | 1546

1.3.2.1.2 Display Functions

This section provides information about the Display group of functions.

MED_display_color_create
MED_display_color_limits
MED_display_color_set
MED_display_contrast
MED_display_contrast_auto
MED_display_grayscale_LUT_build
MED_display_grayscale_LUT_build_auto
MED_VOI_window_init_from_min_max
MED_VOI_window_max_get
MED_VOI_window_min_get

ImageGear Professional v18 for Mac | 1547

1.3.2.1.2.1 MED_display_color_create

This function is used to fill 3 LUTs with one of several pseudo-color schemes.

Declaration:

AT_ERRCOUNT ACCUAPI MED_display_color_create(
 const AT_MODE scheme,
 const LONG param1,
 const LONG param2,
 const LONG param3,
 LPAT_PIXEL lpRLUT,
 LPAT_PIXEL lpGLUT,
 LPAT_PIXEL lpBLUT
);

Arguments:

Name Type Description

scheme const
AT_MODE

Set to the pre-defined color scheme that you would like to use to pseudo-color an image.
These AT_MODE color schemes are defined in MedAPI.h and begin with
DCM_PSEUDOCOLOR_SCHEME_ . See below for details.

param1 const LONG Set to a LONG value if the color scheme requires it. See below.

param2 const LONG Set to a LONG value if the color scheme requires it. See below.

param3 const LONG Set to a LONG value if the color scheme requires it. See below.

lpRLUT LPAT_PIXEL Pass this argument an array of 256 bytes. It returns the Red LUT that will be used to
pseudo-color an image when MED_display_color_set() is called.

lpGLUT LPAT_PIXEL Pass this argument an array of 256 bytes. It returns the Green LUT that will be used to
pseudo-color an image when MED_display_color_set() is called.

lpBLUT LPAT_PIXEL Pass this argument an array of 256 bytes. It returns the Blue LUT that will be used to
pseudo-color an image when MED_display_color_set() is called.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

HIGEAR hIGear;
{
AT_PIXEL RLUT[256];
AT_PIXEL GLUT[256];
AT_PIXEL BLUT[256];
MED_display_color_create(DCM_PSEUDOCOLOR_SCHEME_6, 0, 0, 0, RLUT, GLUT, BLUT);
MED_display_color_set(hIGear, RLUT, GLUT, BLUT);
repaint_image_and_error_check(hWnd);
}

Remarks:

The scheme parameter selects which ImageGear pre-defined pseudo-color method to use. Some of the schemes may
require parameters that are passed into param1, param2, and param3. Other schemes do not use these parameters
and any value passed in are ignored. See below.

ImageGear Professional v18 for Mac | 1548

lpRLUT, lpGLUT, and lpBLUT must be passed an array of 256 bytes, each. When this function returns, these 3 tables
will be filled with values that can be used to pseudo-color an 8-16 bit grayscale image.

This function does not apply the color to an image. It only fills these 3 LUTs. To apply these tables to an image you
need to follow this function call with a call to MED_display_color_set().

Currently, these are the available preset ImageGear pseudo-color schemes:

DCM_PSEUDOCOLOR_SCHEME_OFF Reset to grayscale - does not use param1, param2, param3

DCM_PSEUDOCOLOR_SCHEME_1 Oil Film - does not use param1, param2, param3

DCM_PSEUDOCOLOR_SCHEME_2 Dark Blue to Bright Red - does not use param1, param2, param3

DCM_PSEUDOCOLOR_SCHEME_3 Green to Red - does not use param1, param2, param3

DCM_PSEUDOCOLOR_SCHEME_4 Red, Green, Blue - does not use param1, param2, param3

DCM_PSEUDOCOLOR_SCHEME_5 Thermal - does not use param1, param2, param3

DCM_PSEUDOCOLOR_SCHEME_6 Bright Rainbow - does not use param1, param2, param3

ImageGear Professional v18 for Mac | 1549

1.3.2.1.2.2 MED_display_color_limits

This function can be used to pseudo-color the brightest and the darkest pixels in a 16-bit grayscale image.

Declaration:

AT_ERRCOUNT ACCUAPI MED_display_color_limits(
 HIGEAR hIGear,
 const INT thresh_low,
 const INT low_red,
 const INT low_green,
 const INT low_blue,
 const INT thresh_high,
 const INT high_red,
 const INT high_green,
 const INT high_blue
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle to the image.

thresh_low const
INT

Set to an INT value for the lower pixel value limit. All pixels at or below this value will be
pseudo-colored.

low_red const
INT

Set to an INT for the red component of the RGB color that will be used for all pixels below
thresh_low.

low_green const
INT

Set to an INT for the green component of the RGB color that will be used for all pixels
below thresh_low.

low_blue const
INT

Set to an INT for the blue component of the RGB color that will be used for all pixels below
thresh_low.

thresh_high const
INT

Set to an INT value for the upper pixel value limit. All pixels at or above this value will be
pseudo-colored.

high_red const
INT

Set to an INT for the red component of the RGB color that will be used for all pixels above
thresh_high.

high_green const
INT

Set to an INT for the green component of the RGB color that will be used for all pixels
above thresh_high.

high_blue const
INT

Set to an INT for the blue component of the RGB color that will be used for all pixels above
thresh_high.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Remarks:

This is typically used to clearly see pixel values that are over-saturated (255 and up) or under-saturated (0 and
below). However, this function lets you customize the settings for the upper and lower pixel value limits with
thresh_low and thresh_high.

The color is applied after the 16x8 display LUT is applied to the image and is not affected by altering this LUT.

Pixels having values at or below thresh_low are colored by low_color and pixels having values at or above
thresh_high are colored by high_color. All pixels having values within the 2 limits are set to normal linear gray.

To turn off this effect, set thresh_low to -1 and thresh_high to 256.

ImageGear Professional v18 for Mac | 1550

This function does not cause the image to be displayed or repainted. It only fills the 16x8 LUT. To display the results
of this function, use IG_dspl_image_draw().

ImageGear Professional v18 for Mac | 1551

1.3.2.1.2.3 MED_display_color_set

This function allows applications to apply pseudo-color to 8-16-bit grayscale images.

Declaration:

AT_ERRCOUNT ACCUAPI MED_display_color_set(
 HIGEAR hIGear,
 const DWORD dwGrpID,
 const LPAT_PIXEL lpRLUT,
 const LPAT_PIXEL lpGLUT,
 const LPAT_PIXEL lpBLUT
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of the 8-16-bit grayscale image to color.

dwGrpID const DWORD Display group identifier that should be used for display operations.

lpRLUT const LPAT_PIXEL Set to a 256 byte Red table or set to NULL for ramp.

lpGLUT const LPAT_PIXEL Set to a 256 byte Green table or set to NULL for ramp.

lpBLUT const LPAT_PIXEL Set to a 256 byte Blue table or set to NULL for ramp.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Example:

AT_ERRCOUNT nErrcount;
HIGEAR hIGear;
{
AT_PIXEL RLUT[256];
AT_PIXEL GLUT[256];
AT_PIXEL BLUT[256];
MED_display_color_create(DCM_PSEUDOCOLOR_SCHEME_6, 0, 0, 0, RLUT, GLUT, BLUT);
MED_display_color_set(hIGear, 0, RLUT, GLUT, BLUT);
repaint_image_and_error_check(hWnd);
}

Remarks:

The 3 LUTs can be user-defined or they can be filled by calling MED_display_color_create(). Each LUT must either be
256 bytes each or set to NULL. If a NULL is passed in as one of the LUTs, a linear 0-255 grayscale LUT is used. If a
NULL is not passed in, the LUT points to an array of 256 bytes. The entries from this LUT are used to color the output
of the 16x8 LUT.

The pseudo-coloring is not altered by any functions that update the 16x8 LUT. This function alters the display of a
grayscale image only and does not change the pixel values of the image or any entries in the 16x8 LUT.

To turn off the pseudo-color, simply pass in NULLs for all of the LUT parameters. These three color channels will be
reset to their default linear ramps.

This function does not cause the image to be displayed or repainted. It only fills the 16x8 LUT. To display the results
of this function, use IG_dspl_image_draw().

ImageGear Professional v18 for Mac | 1552

ImageGear Professional v18 for Mac | 1553

1.3.2.1.2.4 MED_display_contrast

This function uses the window/level mapping method to change the contrast of an 9-16-bit image.

Declaration:

AT_ERRCOUNT ACCUAPI MED_display_contrast(
 HIGEAR hIGear,
 const DOUBLE rescale_slope,
 const DOUBLE rescale_intercept,
 const LONG window_center,
 const LONG window_width,
 const DOUBLE gamma
);

Arguments:

Name Type Description

hIGear HIGEAR 16g image having its 16x8 LUT updated.

rescale_slope const
DOUBLE

Set to the desired value for Rescale Slope (0028,1053). Call
MED_DCM_DS_Rescale_get() to obtain this value.

rescale_intercept const
DOUBLE

Set to the desired value for Rescale Intercept (0028,1054). Call
MED_DCM_DS_Rescale_get() to obtain this value.

window_center const
LONG

Set to the desired value for Window Center (0028,1050). Call
MED_DCM_DS_Window_Level_get() to obtain this value.

window_width const
LONG

Set to the desired value for Window Width (0028,1051). Call
MED_DCM_DS_Window_Level_get() to obtain this value.

gamma const
DOUBLE

Set this to the amount of Gamma correction you would like applied to the image. To
turn off Gamma correction, set to 1.0. The valid range of values is any DOUBLE
between 0.20-1.80.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

Grayscale – 8…32 bpp.

Remarks:

It takes values for Window Center & Width, and Rescale Slope & Intercept, and it also allows you to apply Gamma
correction, if you desire.

This function fills the 16x8 LUT with values that will display a 9-16 bit image according to VOI LUT (Window
Center/Width) and Modality LUT (Rescale Intercept/Slope) values that you specify. Any values that have been in the
16x8 LUT are overwritten with these new ones.

If the Rescale Slope and Intercept of the image are known, you should provide them. If they are not known, pass in a
1.0 and 0.0, respectively.

If you do not have values for Window Center and Window Width, these can be calculated using the minimum and
maximum pixel values (if you have them known). Here are the formulas you should use to display all pixel values:

Window Center = (max + min) / 2;

Window Width = (max - min);

This function does not cause the image to be displayed or repainted. It only fills the 16x8 LUT. To display the results
of this function, use IG_dspl_image_draw().

See also MED_display_contrast_auto()

ImageGear Professional v18 for Mac | 1554

1.3.2.1.2.5 MED_display_contrast_auto

This function automatically fills the 16x8 LUT of a 16-bit image loaded into ImageGear in order to optimize its
displaying.

Declaration:

AT_ERRCOUNT ACCUAPI MED_display_contrast_auto(
 const HIGEAR hIGear,
 const LPAT_RECT lpRect,
 const DOUBLE rescale_slope,
 const DOUBLE rescale_intercept,
 const DOUBLE gamma,
 const LONG lReserved_option,
 LPLONG lpWindow_center,
 LPLONG lpWindow_width
);

Arguments:

Name Type Description

hIGear const
HIGEAR

The HIGEAR handle to the image to convert.

lpRect const
AT_RECT

Use this AT_RECT structure to specify the rectangular portion of the image for which
to optimize the contrast on; set to NULL for the whole image. Please see the
ImageGear User's Manual if you are unfamiliar with this structure.

rescale_slope const
DOUBLE

Set to the value of the Data Element, Rescale Slope (0028,1053). You can use
MED_DCM_DS_Rescale_get() to obtain this value. If this Data Element is not
present in the Data Set, please set this value to 1.0.

rescale_intercept const
DOUBLE

Set to the value of the Data Element, Rescale Intercept (0028,1054). You can use
MED_DCM_DS_Rescale_get() to obtain this value. If this Data Element is not
present in the Data Set, please set this value to 0.0.

gamma DOUBLE Gamma correction for 16x8 Lookup Table. Set to 1.0 to turn the correction off.

lReserved_option const
LONG

Reserved for future use; please set to 0 for now.

lpWindow_center LPLONG A far pointer that returns a LONG for the Window Center; set to NULL if you don't
need this information.

lpWindow_width LPLONG A far pointer that returns a LONG for the Window Width; set to NULL if you don't
need this information.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

Grayscale – 8…32 bpp.

Example:

HIGEAR hIGear;
DOUBLE fRescaleSlope = 1.0;
DOUBLE fRescaleIntercept = 1.0;
DOUBLE fGama = 1.0;
LONG WindowWidth;
LONG WindowCenter;
MED_display_contrast_auto(hIGear, NULL, fRescaleSlope,

ImageGear Professional v18 for Mac | 1555

 fRescaleIntercept, fGamma, 0, &WindowCenter,
 &WindowWidth);

Remarks:

The rectangular portion of the image that you specify (or the whole image) is scanned and the maximum and
minimum pixel values are determined; the Window Center and Width are calculated from these.

If the Rescale Slope and Intercept of the image are known, you should provide them. If they are not known, pass in a
1.0 and 0.0, respectively.

The Window Center and Width that this function computes are passed back to you in lpWindow_center and
lpWindow_width, unless you set these arguments to NULL.

This function does not cause the image to be displayed or repainted. It only fills the 16x8 LUT. To display the results
of this function, use IG_dspl_image_draw().

See also MED_display_contrast().

Since this function must scan the pixels for the minimum and maximum values, it takes more time to run than
IG_display_contrast().

ImageGear Professional v18 for Mac | 1556

1.3.2.1.2.6 MED_display_grayscale_LUT_build

This function fills a grayscale LUT according to lpDICOMDisplaySettings.

Declaration:

AT_ERRCOUNT ACCUAPI MED_display_grayscale_LUT_build(
 AT_MED_DCM_DISPLAY_SETTINGS* lpDICOMDisplaySettings,
 HIGLUT hLUT
);

Arguments:

Name Type Description

lpDICOMDisplaySettings AT_MED_DCM_DISPLAY_SETTINGS* AT_MED_DCM_DISPLAY_SETTINGS structure.

hLUT HIGLUT LUT handle.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The LUT must be created prior to calling this function. Use IG_LUT_create() to create a LUT.

ImageGear Professional v18 for Mac | 1557

1.3.2.1.2.7 MED_display_grayscale_LUT_build_auto

This function calculates lpDICOMDisplaySettings->VOIWindow from image's min and max values, and then builds
grayscale LUT according to lpDICOMDisplaySettings.

Declaration:

AT_ERRCOUNT ACCUAPI MED_display_grayscale_LUT_build_auto(
 HIGEAR hIGear,
 const AT_RECT* lpRect,
 AT_MED_DCM_DISPLAY_SETTINGS* lpDICOMDisplaySettings,
 HIGLUT hlut
);

Arguments:

Name Type Description

hIGear HIGEAR 16g image having its 16x8 LUT updated.

lpRect const AT_RECT* AT_RECT structure.

lpDICOMDisplaySettings AT_MED_DCM_DISPLAY_SETTINGS* AT_MED_DCM_DISPLAY_SETTINGS structure.

hlut HIGLUT LUT handle.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

Grayscale – 8…32 bpp.

ImageGear Professional v18 for Mac | 1558

1.3.2.1.2.8 MED_VOI_window_init_from_min_max

This function initializes a AT_MED_VOI_WINDOW structure from window Min and Max.

Declaration:

AT_VOID MED_VOI_window_init_from_min_max(
 AT_MED_VOI_WINDOW* lpWindow,
 AT_INT Min,
 AT_INT Max
);

Arguments:

Name Type Description

lpWindow AT_MED_VOI_WINDOW* Window structure.

Min AT_INT Window min.

Max AT_INT Window max.

Return Value:

None

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1559

1.3.2.1.2.9 MED_VOI_window_max_get

This function returns AT_MED_VOI_WINDOW maximum.

Declaration:

AT_INT MED_VOI_window_max_get(
 AT_MED_VOI_WINDOW* lpWindow
);

Arguments:

Name Type Description

lpWindow AT_MED_VOI_WINDOW* Window structure.

Return Value:

AT_MED_VOI_WINDOW maximum.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1560

1.3.2.1.2.10 MED_VOI_window_min_get

This function returns AT_MED_VOI_WINDOW minimum.

Declaration:

AT_INT MED_VOI_window_min_get(
 AT_MED_VOI_WINDOW* lpWindow
);

Arguments:

Name Type Description

lpWindow AT_MED_VOI_WINDOW* Window structure.

Return Value:

AT_MED_VOI_WINDOW minimum.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1561

1.3.2.1.3 File Functions

This section provides information about the File group of functions.

MED_DCM_load_DICOM
MED_DCM_load_DICOM_FD
MED_DCM_save_DICOM
MED_DCM_save_DICOM_FD

ImageGear Professional v18 for Mac | 1562

1.3.2.1.3.1 MED_DCM_load_DICOM

This function loads a DICOM image file.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_load_DICOM(
 const LPSTR lpszFileName,
 LPHIGEAR lphIGear,
 const AT_MODE nSyntax,
 const UINT page_number
);

Arguments:

Name Type Description

lpFileName const
LPSTR

A far pointer to the name of the file to load.

lphIGear LPHIGEAR A far pointer which returns the HIGEAR handle for the newly loaded image.

nSyntax const
AT_MODE

Set to the type of Transfer Syntax used for the file that you will be loading. Use one of the
MED_DCM_TS_ constants defined in enumIGMedTS.

page_number const
UINT

If the file is a multi-page (multiframe) file, you may set this variable to specify the page
to load. If the file is not multi-page, set this to 1.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional DICOM format filter.

Remarks:

This function cannot be used to load an image of any other format. The advantage to using this function over
IG_load_file() is that it provides more control, and is a faster loading utility because ImageGear's filter detection is not
used.

This function loads the file specified by the path and filename in lpFileName, and returns a new HIGEAR handle for the
image in lphIGear.

To further speed up this function, provide the correct Transfer Syntax (TS) of the file. If you do not know the TS,
ImageGear detects it for you if you set nSyntax to MED_DCM_TS_AUTODETECT.

You may also specify the page to load from a multi-page (multiframe) file.

To remove a HIGEAR image from memory, call IG_image_delete().

If your application supports unicode or multi-byte strings, you can open a file yourself and pass the FD handle. If
you prefer to open your own file, use MED_DCM_load_DICOM_FD() .

ImageGear Professional v18 for Mac | 1563

1.3.2.1.3.2 MED_DCM_load_DICOM_FD

This function performs the same operation as MED_DCM_load_DICOM() except that is takes a File Descriptor (FD) and
offset instead of a filename.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_load_DICOM_FD(
 const AT_INT fd,
 const LONG lOffset,
 LPHIGEAR lphIGear,
 const AT_MODE nSyntax,
 const UINT page_number
);

Arguments:

Name Type Description

fd const
AT_INT

Set to the File Descriptor handle of the opened image file.

lOffset const
LONG

Set to a LONG value that gives the offset from the current position in the open file to the
beginning of the DICOM data. In most cases this value will be 0.

lphIGear LPHIGEAR A far pointer which returns the HIGEAR handle for the newly loaded image.

nSyntax const
AT_MODE

Set to the type of Transfer Syntax used for the file that you will be loading. Use one of the
MED_DCM_TS_ constants defined in enumIGMedTS.

page_number const
UINT

If the file is a multi-page file, you may set this variable to specify the page to load. If the
file is not multi-page, set this to 1.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional DICOM format filter.

Remarks:

lOffset should be set to the position of the image within the file so that the ImageGear Medical knows where to begin
decoding the image. If the beginning of the DICOM image file starts at the first byte, pass in an 0L for lOffset.

Since you are responsible for opening and closing the file, this function can be used to bypass the IG_load_file()
limitation of not handling unicode or multi-byte character strings.

ImageGear Professional v18 for Mac | 1564

1.3.2.1.3.3 MED_DCM_save_DICOM

This function saves a DICOM image file.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_save_DICOM(
 const LPSTR lpszFileName,
 const HIGEAR hIGear,
 const AT_MODE nSyntax,
 const BOOL bIncludeGroupLengths,
 const BOOL bSaveAsPart10,
 const AT_MODE PlanarConfiguration,
 const BOOL IncludeSmallestLargest,
 const UINT nJPEGQuality,
 const DWORD dwReserved
);

Arguments:

Name Type Description

lpszFileName const
LPSTR

A far pointer to the name of the file to save.

hIGear const
HIGEAR

The HIGEAR handle of the image to save. This HIGEAR must have an attached
DICOM Data Set.

nSyntax const
AT_MODE

Set to the type of Transfer Syntax with which to save the image.

bIncludeGroupLengths const
BOOL

Set this Boolean variable to TRUE if you want to store the Group Lengths with
the image.

bSaveAsPart10 const
BOOL

Set this Boolean variable to TRUE if you want to save a Part 10 header with
the image.

PlanarConfiguration const
AT_MODE

Determines how RGB pixel values are to be saved to the DICOM image file.
The Planar Configuration Data Element (0028, 0006) will be automatically
inserted and this value stored in it. If the Data Set already contains
(0028,006) its value is ignored and the value of this parameter is used
instead. This parameter is used for RGB only. It is ignored for all other image
types. Set to one of the constants that begins with MED_DCM_PLANAR_.

IncludeSmallestLargest const
BOOL

If the image's original Data Set did not contain Data Elements for Smallest
Image Pixel Value (0028,0106) and Largest Image Pixel Value (0028,0107)
and you set IncludeSmallestLargest = TRUE, ImageGear will scan the image
and determine a values for these DEs. Smallest Image Pixel Value and Largest
Image Pixel Value will be included in the Data Set of the DICOM image being
saved, and will contain the ImageGear-determined values. The values of the
DE from the original Data Set (if any) will be ignored.

If you set IncludeSmallestLargest = FALSE, ImageGear will not determine this
value for you, and the Data Set of the image being saved will not include the
Smallest Image Pixel Value and Largest Image Pixel Value Data Elements.
However, if the original Data Set did contain these DEs, ImageGear will
preserve and include them in the Data Set being saved.

nJPEGQuality const
UINT

The value of this argument is only relevant to lossy JPEG compression. When
using any other compression scheme, this value will be ignored. (This setting
would be meaningless for Lossless JPEG compression). Set to the amount of
pixel data to preserve during lossy JPEG compression. The range of valid
values is 1-100 with a default value of 70. Higher settings result in higher
quality and a larger file. Note that even at 100, JPEG compression is not
capable of being completely "lossless." The compression used, if any, is set by
nSyntax. (MED_DCM_TS_JPEG_LOSSY_8 indicates the use of 8-bit JPEG
compression).

ImageGear Professional v18 for Mac | 1565

dwReserved const
DWORD

Reserved for future use. Set to 0 for now.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

This function cannot be used to save an image of any other format. It provides a convenient way to save DICOM
images, using DICOM-specific saving options. However, general saving functions such as IG_fltr_save_file, together
with DICOM control parameters, provide greater flexibility for saving DICOM images. We recommend that you use the
latter way of saving DICOM images.

In order to save an image as a DICOM file the HIGEAR must have a Data Set attached to it. If you loaded the HIGEAR
from a DICOM file then there already is a Data Set attached. If not, you can use the function MED_DCM_DS_create()
to create one. If you are not sure if the image has a Data Set, call MED_DCM_DS_exists() to find out. If you are going
to create a Data Set using MED_DCM_DS_create(), then you must still populate the Data Set with valid Data
Elements using MED_DCM_DS_DE_insert().

The nSyntax parameter determines how the DICOM image file is encoded. The valid options are the constants whose
names begin with MED_DCM_TS_ (except for _TS_UNKNOWN, and _TS_AUTODETECT).

Group Lengths are optional in a DICOM image file. By default, Group Lengths are not stored in the Data Set that is
attached to the HIGEAR. If you have read a DICOM file that included Group Lengths, they have been discarded as
they were found. Set bIncludeGroupLength to TRUE to have them recreated and placed in the Data Set as it has been
written to disk.

DICOM Image files are supposed to be written to disk using the Meta-Info Header that is defined in Part 10 of the
DICOM Specification. However, many DICOM applications choose not to use this header. If bSaveAsPart10 is set to
TRUE, the Meta Information Header will be placed at the beginning of the file. Setting this to FALSE will skip the
header.

If the image is saved without a Part 10 header, it is often called a Raw DICOM image file. Note that the Part 10
Header Data Elements are not stored the same way as other Data Elements in the Data Set. If you wish to store this
data you must populate the header using the MED_DCM_DS_part10_set() function before writing the file.

 If your application supports unicode or multi-byte strings, you can open a file yourself and pass us the FD
handle. If you prefer to open your own file, use MED_DCM_save_DICOM_FD().

ImageGear Professional v18 for Mac | 1566

1.3.2.1.3.4 MED_DCM_save_DICOM_FD

This function performs the same operation as MED_DCM_save_DICOM() except that it uses the FD instead of the file
name.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_save_DICOM_FD(
 AT_INT fd,
 const HIGEAR hIGear,
 const AT_MODE nSyntax,
 const BOOL bIncludeGroupLengths,
 const BOOL bSaveAsPart10,
 const AT_MODE nPlanarConfiguration,
 const BOOL bInludeSmallestLargest,
 const UINT nJPEGQuality,
 const DWORD lReserved
);

Arguments:

Name Type Description

fd AT_INT Set to the FD handle of the open image. The image must have been opened
with Read/Write access.

hIGear const
HIGEAR

The HIGEAR handle of the image to save. This HIGEAR must have an
attached DICOM Data Set.

nSyntax const
AT_MODE

Set to the type of Transfer Syntax used for the file that you will be saving.
Use one of the MED_DCM_TS_ constants defined in enumIGMedTS.

bIncludeGroupLengths const
BOOL

Set this Boolean variable to TRUE if you want to store the Group Lengths
with the image.

bSaveAsPart10 const
BOOL

Set this Boolean variable to TRUE if you want to save a Part 10 header with
the image.

nPlanarConfiguration const
AT_MODE

Determines how RGB pixel values are to be saved to the DICOM image file.
The Planar Configuration Data Element (0028, 0006) will be automatically
inserted and this value stored in it. If the Data Set already contains
(0028,006), its value is ignored, and the value of this parameter is used
instead. This parameter is used for RGB only. It is ignored for all other
image types. Set to one of the constants that begins with
MED_DCM_PLANAR_.

bIncludeSmallestLargest const
BOOL

Setting this parameter to TRUE will cause the Smallest and Largest pixel
value in the image to be computed and saved in Smallest Image Pixel Value
(0028,0106) and Largest Image Pixel Value (0028,0107). If the Data Set
contains these 2 Data Elements already, they are ignored and the computed
values are used. If this parameter is set to FALSE these two Data Elements
are not stored in the file.

nJPEGQuality const
UINT

The value of this argument is only relevant to lossy JPEG compression. When
using any other compression scheme, this value will be ignored. Set to the
amount of pixel data to preserve during lossy JPEG compression. The range
of valid values is 1-100 with a default value of 70. Higher settings result is
higher quality and a larger file. Note that even at 100, JPEG compression is
not capable of being completely "lossless".

lReserved const
DWORD

Reserved for future use. Set to 0 for now.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

ImageGear Professional v18 for Mac | 1567

Supported Raster Image Formats:

All pixel formats supported by IG_FORMAT_DCM format.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

The file must have been opened with Read/Write access.

Since you are responsible for opening and closing the file, this function can be used to bypass the IG_save_file()
limitation of not handling unicode or multi-byte character strings.

ImageGear Professional v18 for Mac | 1568

1.3.2.1.4 Image Processing Functions

This section provides information about the Image Processing group of functions.

MED_IP_contrast
MED_IP_contrast_auto
MED_IP_high_bit_transform
MED_IP_histo_clear
MED_IP_histo_tabulate
MED_IP_min_max
MED_IP_min_max_64
MED_IP_normalize
MED_IP_promote_to_16_gray
MED_IP_reduce_depth_with_downshift
MED_IP_reduce_depth_with_LUT
MED_IP_swap_bytes

ImageGear Professional v18 for Mac | 1569

1.3.2.1.4.1 MED_IP_contrast

This function converts a 16-bit grayscale image to an 8-bit grayscale image in the same way as MED_display_contrast().

Declaration:

AT_ERRCOUNT ACCUAPI MED_IP_contrast(
 HIGEAR hIGear,
 const DOUBLE rescale_slope,
 const DOUBLE rescale_intercept,
 const LONG window_center,
 const LONG window_width,
 const DOUBLE gamma
);

Arguments:

Name Type Description

hIGear HIGEAR 16g image that will have its 16x8 LUT updated.

rescale_slope const
DOUBLE

Set to the desired value for Rescale Slope (0028,1053). Call
MED_DCM_DS_Rescale_get() to obtain this value.

rescale_intercept const
DOUBLE

Set to the desired value for Rescale Intercept (0028,1054). Call
MED_DCM_DS_Rescale_get() to obtain this value.

window_center const
LONG

Set to the desired value for Window Center (0028,1050). Call
MED_DCM_DS_Window_Level_get() to obtain this value.

window_width const
LONG

Set to the desired value for Window Width (0028,1051). Call
MED_DCM_DS_Window_Level_get() to obtain this value.

gamma const
DOUBLE

Set this to the amount of Gamma correction you would like applied to the image. To turn
off Gamma correction, set to 1.0. The valid range of values is any DOUBLE between
0.20-1.80.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

Grayscale – 9…16 bpp.

Remarks:

The difference between this function and MED_display_contrast() is that this function permanently alters the pixel
values.

See also MED_display_contrast().

The functionality of MED_IP_window_level() has been incorporated into the new function MED_IP_contrast(), which
also takes settings for Rescale Slope, Rescale Intercept, and gamma correction.

ImageGear Professional v18 for Mac | 1570

1.3.2.1.4.2 MED_IP_contrast_auto

This function converts a 16-bit grayscale image to an 8-bit grayscale image using the same function as
MED_display_contrast_auto() except that this function permanently alters the pixel values.

Declaration:

AT_ERRCOUNT ACCUAPI MED_IP_contrast_auto(
 const HIGEAR hIGear,
 const LPAT_RECT lpRect,
 const DOUBLE rescale_slope,
 const DOUBLE rescale_intercept,
 const DOUBLE gamma,
 const LONG lReserved_option,
 LPLONG lpWindow_center,
 LPLONG lpWindow_width
);

Arguments:

Name Type Description

hIGear const
HIGEAR

The HIGEAR handle to the image to convert.

lpRect const
AT_RECT

Use this AT_RECT structure to specify the rectangular portion of the image for which to
optimize the contrast on; set to NULL for the whole image. Please see the ImageGear
User's Manual if you are unfamiliar with this structure.

rescale_slope const
DOUBLE

Set to the value of the Data Element, Rescale Slope (0028,1053). You can use
MED_DCM_DS_Rescale_get() to obtain this value. If this Data Element is not present in
the Data Set, please set this value to 1.0.

rescale_intercept const
DOUBLE

Set to the value of the Data Element, Rescale Intercept (0028,1054). You can use
MED_DCM_DS_Rescale_get() to obtain this value. If this Data Element is not present in
the Data Set, please set this value to 0.0.

gamma const
DOUBLE

Non-linear method to adjust the contrast of DICOM image. In this method, the amount
a pixel's intensity changes depends on its original intensity. Usual range is 0.75 to 3.0.

lReserved_option const
LONG

Reserved for future use; please set to 0 for now.

lpWindow_center LPLONG A far pointer that returns a LONG for the Window Center; set to NULL if you don't need
this information.

lpWindow_width LPLONG A far pointer that returns a LONG for the Window Width; set to NULL if you don't need
this information.

Supported Raster Image Formats:

Grayscale – 9…16 bpp.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

See Also

MED_display_contrast_auto()

MED_IP_reduce_depth_with_downshift()

ImageGear Professional v18 for Mac | 1571

1.3.2.1.4.3 MED_IP_high_bit_transform

This function changes the High Bit Data Element of the currently loaded DICOM 16-bit grayscale image.

Declaration:

AT_ERRCOUNT ACCUAPI MED_IP_high_bit_transform(
 HIGEAR hIGear,
 const LONG lMin
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of the image.

lMin const LONG New High bit value.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

Grayscale – 9…16 bpp.

Remarks:

The 16-bits are shifted up or down as needed to accommodate the new High Bit value, and the High Bit Data Element is
updated. Zeros are shifted in as needed.

ImageGear Professional v18 for Mac | 1572

1.3.2.1.4.4 MED_IP_histo_clear

This function is used to clear the histogram created by MED_IP_histo_tabulate().

Declaration:

AT_ERRCOUNT ACCUAPI MED_IP_histo_clear(
 LPLONG lpHisto,
 const DWORD nBin_count
);

Arguments:

Name Type Description

lpHisto LPLONG A far pointer of type LONG which points to the buffer that will was used to hold the
histogram.

nBin_count const
DWORD

Set this DWORD variable to the number of bins allocated for the histogram.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1573

1.3.2.1.4.5 MED_IP_histo_tabulate

This function is used to tabulate the histogram of a 8 or 16-bit grayscale image.

Declaration:

AT_ERRCOUNT ACCUAPI MED_IP_histo_tabulate(
 const HIGEAR hIGear,
 const LPAT_RECT lpRect,
 LPLONG lpHisto,
 const WORD nBin_width,
 const DWORD dwBin_count,
 LPBOOL lpSigned,
 LPLONG lpCount
);

Arguments:

Name Type Description

hIGear const
HIGEAR

The HIGEAR handle to the image for which to create a histogram.

lpRect const
LPAT_RECT

A far pointer to a struct of type AT_RECT that defines the rectangular portion of the
image to use for creating a histogram. Please see the ImageGear User's Manual if you are
unfamiliar with this structure.

lpHisto LPLONG A far pointer to a buffer to be used for holding the histogram.

nBin_width const
WORD

An integer variable that specifies the range of pixel values to be counted into one bin.

dwBin_count const
DWORD

A DWORD variable that specifies the number of bins allocated.

lpSigned LPBOOL A far pointer to a BOOL that returns the sign status of the image. If it returns TRUE, the
image is signed.

lpCount LPLONG A far pointer to a LONG which returns the number of pixels counted.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

Grayscale – 8…16 bpp.

Remarks:

The histogram is returned in the memory block, lpHisto, allocated by the application. This memory block must be large
enough to hold the histogram for the image. Each histogram bin must be 4 bytes wide. The size of lpHisto needed (in
bytes) can be computed as follows:

size = ((possible_pixel_values) * 4) / nBin_width

where possible_pixel_values depends on the bit depth of the image (8g=256, 9g=512,...). nBin_width is used to
determine the range of pixel values that are counted in their own bin. A value of 1 indicates that each pixel value is
counted in its own histogram bin. A value of 2 would allow neighboring values (such as 128 and 129) to be counted as a
single bin (as a single value). If nBin_width==possible_pixel_values then only a single histogram bin (4 bytes) is filled
and the count will be equal to the number of pixel values in the lpRect.

nBin_count is used as a safety. This should be set to the number of bins in the histogram that your application has
allocated. If a pixel value is going to overflow this memory it will be ignored. This pixel value will not be included in the
sum returned in lpCount (you can use this to determine if any values were ignored).

ImageGear Professional v18 for Mac | 1574

1.3.2.1.4.6 MED_IP_min_max

This function scans an 8- or 16-bit grayscale image and returns the raw minimum and maximum pixel values and the
"is signed" flag.

Declaration:

AT_ERRCOUNT ACCUAPI MED_IP_min_max(
 const HIGEAR hIGear,
 const LPAT_RECT lpRect,
 LPLONG lpMin,
 LPLONG lpMax,
 LPBOOL lpSigned
);

Arguments:

Name Type Description

hIGear const
HIGEAR

The HIGEAR handle of the image to scan.

lpRect const
AT_RECT

Use this AT_RECT structure to specify the rectangular portion of the image to scan. Please
see the ImageGear User's Manual if you are unfamiliar with this structure.

lpMin LPLONG A far pointer to a LONG which returns the value of the minimum pixel value in the region that
was "scanned".

lpMax LPLONG A far pointer to a LONG which returns the value of the maximum pixel value in the region
that was "scanned".

lpSigned LPBOOL A far pointer to a BOOL which returns the status of the image sign. TRUE means the image is
signed.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

Grayscale – 8…16 bpp.

Example:

HIGEAR hIGear;
AT_ERRCOUNT nErrcount;
AT_RECT rcROI;
LONG lMin, lMax;
BOOL bSigned;
nErrcount = MED_IP_min_max(hIGear, &rcROI, &lMin, &lMax, &bSigned);

Remarks:

If the image is 16-bit signed, then the returned values are also signed.

Note that this function returns the min and max raw pixel values. That is, the returned values are not corrected using
the Modality LUT (Rescale Slope/Intercept) values. To apply this correction to the min and max values that you get
from MED_IP_min_max() call the function MED_DCM_DS_Rescale_get() which will return you the values of Rescale
Slope and Rescale Intercept. Then use the following formulas:

min_corrected = (min_raw * rescale_slope) + rescale_intercept;

max_corrected = (max_raw * rescale_slope) + rescale_intercept;

When a 16-bit grayscale image is "unsigned" it has pixel values between 0 and 65,000. If a 16-bit image is "signed" it

ImageGear Professional v18 for Mac | 1575

has pixel values between -32k and +32k. By the same rule, when an 8-bit grayscale image is "unsigned" it has pixel
values between 0-255. If an 8-bit image is "signed", it has pixel values between -128 and +127. Some modalities of
DICOM use signed images. So if you know whether the image is signed or unsigned will help you to interpret the
minimum and maximum values.

For 17-32 bits per pixel images, please use MED_IP_min_max_64().

ImageGear Professional v18 for Mac | 1576

1.3.2.1.4.7 MED_IP_min_max_64

This function scans an 17-32 bit grayscale image and returns the raw minimum and maximum pixel values and the "is
signed" flag.

Declaration:

AT_ERRCOUNT ACCUAPI MED_IP_min_max_64(
 const HIGEAR hIGear,
 const LPAT_RECT lpRect,
 LPAT_INT64 lpMin,
 LPAT_INT64 lpMax,
 LPBOOL lpSigned
);

Arguments:

Name Type Description

hIGear const
HIGEAR

The HIGEAR handle of the image to scan.

lpRect const
AT_RECT

Use this AT_RECT structure to specify the rectangular portion of the image to scan. Please
see the ImageGear User's Manual if you are unfamiliar with this structure.

lpMin LPAT_INT64 A far pointer to a AT_INT64which returns the value of the minimum pixel value in the
region that was "scanned".

lpMax LPAT_INT64 A far pointer to a AT_INT64 which returns the value of the maximum pixel value in the
region that was "scanned".

lpSigned LPBOOL A far pointer to a BOOL which returns the status of the image sign. TRUE means the
image is signed.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

Grayscale – 8…32 bpp.

Example:

HIGEAR hIGear;
AT_ERRCOUNT nErrcount;
AT_RECT rcROI;
AT_INT64 lMin, lMax;
BOOL bSigned;
nErrcount = MED_IP_min_max_64(hIGear, &rcROI, &lMin, &lMax, &bSigned);

Remarks:

If the image is signed, then the returned values are also signed. It is OK to use this function for 8-16 bit images too,
but in 32 bit operation systems it can bring to insignificant slowdown of performance.

Note that this function returns the min and max raw pixel values. That is, the returned values are not corrected using
the Modality LUT (Rescale Slope/Intercept) values. To apply this correction to the min and max values that you get
from MED_IP_min_max_64() call the function MED_DCM_DS_Rescale_get() which will return you the values of
Rescale Slope and Rescale Intercept. Then use the following formulas:

min_corrected = (min_raw * rescale_slope) + rescale_intercept;

max_corrected = (max_raw * rescale_slope) + rescale_intercept;

ImageGear Professional v18 for Mac | 1577

Some modalities of DICOM use signed images. So if you know whether the image is signed or unsigned will help you
to interpret the minimum and maximum values.

ImageGear Professional v18 for Mac | 1578

1.3.2.1.4.8 MED_IP_normalize

This function's main purpose is to convert the pixel data of a 16-bit image from signed to unsigned.

Declaration:

AT_ERRCOUNT ACCUAPI MED_IP_normalize(
 HIGEAR hIGear,
 const LONG lMin
);

Arguments:

Name Type Description

hIGear HIGEAR The HIGEAR handle to the image to normalize.

lMin const LONG A variable of type LONG used to set the minimum pixel value for the resulting image.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

Grayscale – 8…32 bpp.

Remarks:

If you are using this function to convert the pixel data of a 16-bit image from signed to unsigned, set lMin to 0.

It can also be used to convert the minimum pixel value for the image. To do this, set lMin to greater than 0. This
function searches the image for the minimum pixel value. It maps this value to lMin. Then, all pixel values are linearly
adjusted to maintain the original contrast. If lMin is equal to the min pixel value in hIGear, then no change is made. The
resulting image remains a 16-bit.

ImageGear Professional v18 for Mac | 1579

1.3.2.1.4.9 MED_IP_promote_to_16_gray

This function takes an 8-bit grayscale or color image and converts it to a grayscale image with a bit depth of 16 bpp.

Declaration:

AT_ERRCOUNT ACCUAPI MED_IP_promote_to_16_gray(
 HIGEAR hIGear,
 const UINT iBits,
 const UINT iHighBit
);

Arguments:

Name Type Description

hIGear HIGEAR The HIGEAR handle of the image to be converted.

iBits const
UINT

An integer variable that sets the number of bits that are actually used. The value range is 9 - 16
bits.

iHighBit const
UINT

An integer variable that sets the high bit for the new 16-bit image. The eighth bit of the original 8
bits is positioned here. If the image is saved as a DICOM, this information is saved to the High Bit
Data Element (0028,0102).

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

Grayscale – 8 bpp.

Remarks:

The original 8-bit image is discarded. All images created by this function have 16-bit pixels, iBits sets the number of bits
out of the 16 that are actually used. iHighBit sets the new position among the 16 bits at which the original 8 bits should
be positioned.

ImageGear Professional v18 for Mac | 1580

1.3.2.1.4.10 MED_IP_reduce_depth_with_downshift

This function is used to downshift a chosen range of 8 bits (out of a maximum of 16) to the 256 pixel values that can be
shown on an 8-bit display device.

Declaration:

AT_ERRCOUNT ACCUAPI MED_IP_reduce_depth_with_downshift (
 HIGEAR hIGear,
 const UINT downshift
);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle to the image.

downshift const UINT A UINT variable specifying the downshift value.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

Grayscale – 9…16 bpp.

Remarks:

This function is used to downshift a chosen range of 8 bits (out of a maximum of 16) to the 256 pixel values that can be
shown on an 8-bit display device. For example, if you set downshift to 8, and the image has 16 bpp, bits 8-15 will be
downshifted and used alone as the pixel values.

This function will directly alter the pixel data.

See also MED_IP_reduce_depth_with_LUT().

ImageGear Professional v18 for Mac | 1581

1.3.2.1.4.11 MED_IP_reduce_depth_with_LUT

This function takes a 16-bit grayscale image and reduces it to a 8-bit grayscale one using provided (filled) LUT or current
16x8 display LUT.

Declaration:

AT_ERRCOUNT ACCUAPI MED_IP_reduce_depth_with_LUT(
 HIGEAR hIGear,
 const LPBYTE lpLUT,
 const DWORD dwEntries
);

Arguments:

Name Type Description

hIGear HIGEAR The HIGEAR handle to the image to convert.

lpLUT const
LPBYTE

A far pointer to the look-up table to use for reduction. Set to NULL if you want to use the
display LUT.

dwEntries const
DWORD

A variable of type DWORD that specifies the number of entries in the LUT. This value is
ignored if the display LUT is used.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

Grayscale – 9…16 bpp.

Remarks:

The 16-bit image is discarded and replaced with the new 8-bit grayscale image.

To reduce memory requirements the LUT does not have to have a 16-bit input. dwEntries should hold the number of
entries in the LUT. If there is a pixel found that can overflow the LUT it is ignored and replaced with a 0.

This function does not reduce 8-bit images. To reduce an 8-bit image, use the appropriate IG_IP_color_reduce_...()
function from the baseline ImageGear API.

Once this function is called, the display LUT will be thrown away, since it is now an 8-bit image.

See also MED_IP_reduce_depth_with_downshift().

ImageGear Professional v18 for Mac | 1582

1.3.2.1.4.12 MED_IP_swap_bytes

This function swaps the 2 bytes of each 16-bit pixel in the image.

Declaration:

AT_ERRCOUNT ACCUAPI MED_IP_swap_bytes(HIGEAR hIGear);

Arguments:

Name Type Description

hIGear HIGEAR HIGEAR handle of the image.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

Grayscale – 9…16 bpp.

Remarks:

This function can be used to help fix poorly constructed images which have the high and low bytes of each 16-bit
grayscale pixel reversed. All pixels in the image are transformed.

ImageGear Professional v18 for Mac | 1583

1.3.2.1.5 Modality Transform Functions

This section provides information about the Modality Transform group of functions.

MED_modality_transform_apply
MED_modality_transform_apply_64

ImageGear Professional v18 for Mac | 1584

1.3.2.1.5.1 MED_modality_transform_apply

If hModalityLUT is not NULL, this function applies Modality LUT to the specified value.

Declaration:

AT_INT MED_modality_transform_apply(
 const AT_MED_MODALITY_RESCALE* lpRescale,
 HIGLUT hModalityLUT,
 AT_INT Value
);

Arguments:

Name Type Description

lpRescale const AT_MED_MODALITY_RESCALE* AT_MED_MODALITY_RESCALE structure.

hModalityLUT HIGLUT Modality LUT handle.

Value AT_INT Value to which to apply Modality transform.

Return Value:

Returns the resulting pixel value.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

If hModalityLUT is NULL, this function applies the linear modality transform (lpRescale) to the specified value. For 17-32
bit values, please use MED_modality_transform_apply_64().

ImageGear Professional v18 for Mac | 1585

1.3.2.1.5.2 MED_modality_transform_apply_64

Applies the linear modality transform (lpRescale) to the specified value.

Declaration:

AT_INT MED_modality_transform_apply_64(
 const AT_MED_MODALITY_RESCALE* lpRescale,
 AT_INT64 Value,
 LPAT_INT64 lpResult
);

Arguments:

lpRescale const
AT_MED_MODALITY_RESCALE*

Pointer to AT_MED_MODALITY_RESCALE structure.

Value AT_INT64 64-bit value to which to apply Modality transform.

lpResult LPAT_INT64 Far pointer to 64 bit integer, where the function will put resulting
value.

Return Value:

Returns the resulting pixel value.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1586

1.3.2.1.6 Presentation State Functions

This section provides information about the Presentation State group of functions.

MED_PS_apply
MED_PS_display_contrast
MED_PS_display_contrast_auto
MED_PS_display_contrast_auto_64
MED_PS_extract
MED_PS_GSDF_LUT_build
MED_PS_GSDF_LUT_init
MED_PS_pres_LUT_get
MED_PS_pres_LUT_info_get
MED_PS_pres_LUT_set
MED_PS_pres_state_GSDF_apply

ImageGear Professional v18 for Mac | 1587

1.3.2.1.6.1 MED_PS_apply

This function extracts PS data from DICOM DataSet of hIGearPresState, and adjusts display of hIGear based on this
data.

Declaration:

AT_ERRCOUNT ACCUAPI MED_PS_apply (
 HIGEAR hIGear,
 HIGEAR hIGearPresState,
 DWORD dwFeatureFlags,
 DWORD dwGrpID,
 LPAT_MED_LUT_DESC lpGSDFLUT
);

Arguments:

Name Type Description

hIGear HIGEAR Image to which Pres State shall be applied.

hIGearPresState HIGEAR Image containing Presentation State DataSet.

dwFeatureFlags DWORD Tells which features of PS to use - bit mask.

dwGrpID DWORD Display Group ID.

lpGSDFLUT LPAT_MED_LUT_DESC GSDF LUT info.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

hIGearPresState must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

This function may result in the following:

Adjust Display LUT associated with the image, using
VOI and Modality LUTs found in the presentation state DataSet
Presentation LUT found in the presentation state DataSet
GSDF LUT parameter

Change display layout, including image rectangle, zoom and orientation
Add ART objects

If there are no VOI or Modality LUT in the hIGearPresState, the function tries to find them in the DataSet of hIGear. If
there are no such LUTs in hIGear, default values are taken.

If MED_PS_FEATURE_PRES_LUT option is specified, the function assumes that MED_PS_FEATURE_CONTRAST is selected
as well.

ImageGear Professional v18 for Mac | 1588

1.3.2.1.6.2 MED_PS_display_contrast

Builds the 16x8 display LUT, using rescale, window, Presentation LUT and GSDF LUT.

Declaration:

AT_ERRCOUNT ACCUAPI MED_PS_display_contrast (
 HIGEAR hIGear,
 DOUBLE rescale_slope,
 DOUBLE rescale_intercept,
 LONG window_center,
 LONG window_width,
 DOUBLE gamma,
 LPAT_MED_LUT_DESC lpPresLUTInfo,
 LPAT_MED_LUT_DESC lpGSDFLUTInfo,
);

Arguments:

Name Type Description

hIGear HIGEAR 16g image to have its LUT16x8 updated.

rescale_slope DOUBLE Rescale Slope (0028,1053).

rescale_intercept DOUBLE Rescale Intercept (0028,1054).

window_center LONG Window Center (0028,1050).

window_width LONG Window Width (0028,1051).

gamma DOUBLE Gamma correction - set to 1.0 to turn off.

lpPresLUTInfo LPAT_MED_LUT_DESC Presentation LUT info.

lpGSDFLUTInfo LPAT_MED_LUT_DESC GSDF LUT info.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

Grayscale – 8…32 bpp.

Remarks:

If lpGSDFLUTInfo parameter is not NULL, gamma is not used.

ImageGear Professional v18 for Mac | 1589

1.3.2.1.6.3 MED_PS_display_contrast_auto

Builds the 16x8 display LUT, using rescale, Presentation LUT and GSDF LUT.

Declaration:

AT_ERRCOUNT ACCUAPI MED_PS_display_contrast_auto (
 HIGEAR hIGear,
 LPAT_RECT lpRect,
 DOUBLE rescale_slope,
 DOUBLE rescale_intercept,
 DOUBLE gamma,
 LPAT_MED_LUT_DESC lpPresLUTInfo,
 LPAT_MED_LUT_DESC lpGSDFLUTInfo,
 LPLONG lpWindow_center,
 LPLONG lpWindow_width
);

Arguments:

Name Type Description

hIGear HIGEAR 16g image to have its LUT16x8 updated.

lpRect LPAT_RECT set to NULL to scan the entire image.

rescale_slope DOUBLE Rescale Slope (0028,1053).

rescale_intercept DOUBLE Rescale Intercept (0028,1054).

gamma DOUBLE Gamma correction - set to 1.0 to turn off.

lpPresLUTInfo LPAT_MED_LUT_DESC Presentation LUT info.

lpGSDFLUTInfo LPAT_MED_LUT_DESC GSDF LUT info.

lpWindow_center LPLONG Window Center (0028,1050).

lpWindow_width LPLONG Window Width (0028,1051).

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

Grayscale – 8…16 bpp.

Remarks:

Window center and width are calculated automatically, based on min and max values of the image. If lpGSDFLUTInfo
parameter is not NULL, gamma is not used.

For 17-32 bits per pixel images, please use MED_PS_display_contrast_auto_64().

ImageGear Professional v18 for Mac | 1590

1.3.2.1.6.4 MED_PS_display_contrast_auto_64

Builds the 16x8 display LUT, using rescale, Presentation LUT and GSDF LUT.

Declaration:

AT_ERRCOUNT ACCUAPI MED_PS_display_contrast_auto_64 (
 HIGEAR hIGear,
 LPAT_RECT lpRect,
 DOUBLE rescale_slope,
 DOUBLE rescale_intercept,
 DOUBLE gamma,
 LPAT_INT64 lpWindow_center,
 LPAT_INT64 lpWindow_width
);

Arguments:

Name Type Description

hIGear HIGEAR 16g image to have its LUT16x8 updated.

lpRect AT_RECT set to NULL to scan the entire image.

rescale_slope DOUBLE Rescale Slope (0028,1053).

rescale_intercept DOUBLE Rescale Intercept (0028,1054).

gamma DOUBLE Gamma correction - set to 1.0 to turn off.

lpWindow_center LPAT_INT64 Window Center (0028,1050) as 64 bit integer.

lpWindow_width LPAT_INT64 Window Width (0028,1051) as 64 bit integer.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

Grayscale – 8…32 bpp.

Remarks:

Window center and width are calculated automatically, based on min and max values of the image. If lpGSDFLUTInfo
parameter is not NULL, gamma is not used. Use this function for 17-32 bit grayscale images. Although you can also use
this function for 8-16 bit images, performance may be affected in 32 bit operation systems.

ImageGear Professional v18 for Mac | 1591

1.3.2.1.6.5 MED_PS_extract

This function adds Presentation State tags to the DataSet of hIGearPresState, based on the display settings of
hIGear, an ART marks attached to it.

Declaration:

AT_ERRCOUNT ACCUAPI MED_PS_extract (
 HIGEAR hIGear,
 HIGEAR hIGearPresState,
 DWORD dwFeatureFlags,
 DWORD dwGrpID
);

Arguments:

Name Type Description

hIGear HIGEAR Image whose settings should be exported to PS.

hIGearPresState HIGEAR Image that will contain Presentation State DataSet.

dwFeatureFlags DWORD Tells which features of PS to export - bit mask.

dwGrpID DWORD Display Group ID.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

Remarks:

If any of the tags are already present in the hIGearPresState, they are overwritten.

This function may add/update the following tags/sequences in the hIGearPresState:

DCM_TAG_DisplayedAreaSelectionSequence
DCM_TAG_GraphicAnnotationSequence
DCM_TAG_GraphicLayerSequence
DCM_TAG_ImageHorizontalFlip
DCM_TAG_ImageRotation

To create a new presentation state DataSet, use the following steps:

1. Call IG_image_create_DIB_ex() with lCompression set to IG_BI_EMPTY.
2. Call MED_PS_extract() to add Presentation State tags.
3. Add the other tags required by the Presentation State module using general DataSet access functions.
4. Save Presentation State to file using IG_fltr_save_file() or similar functions.

To modify an existing Presentation State DataSet, use the following steps:

1. Load a Presentation State DataSet using IG_fltr_load_file() or similar functions.
2. Apply the Presentation State to a DICOM image, using MED_PS_apply().
3. Change display settings or ART marks.
4. Extract Presentation Data from DICOM image back to Presentation State DataSet.
5. Save Presentation State to file using IG_fltr_save_file() or similar functions.

Use MED_PS_pres_LUT_set() to add Presentation LUT to the Presentation State HIGEAR.

Use general DataSet functions to add VOI and Modality LUT to the Presentation State HIGEAR.

Use ImageGear image saving functions (nFormat=IG_FORMAT_DCM) to save lphIGearPresState into a presentation
state file (.pre).

ImageGear Professional v18 for Mac | 1592

ImageGear Professional v18 for Mac | 1593

1.3.2.1.6.6 MED_PS_GSDF_LUT_build

This function builds a look-up table that maps pixel intensities from DICOM GSDF-compliant color space into pixel
intensities of the display device.

Declaration:

AT_ERRCOUNT ACCUAPI MED_PS_GSDF_LUT_build(
 DWORD dwCharactCurveEntryCount,
 LPDOUBLE lpCharactCurve,
 LPAT_MED_LUT_DESC lpLUT
);

Arguments:

Name Type Description

dwCharactCurveEntryCount DWORD Number of entries in Characteristic Curve.

lpCharactCurve LPDOUBLE Characteristic Curve of the display.

lpLUT LPAT_MED_LUT_DESC GSDF LUT to fill.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The user should fill in the members of the lpLUT structure and allocate the lpLUTData buffer. The space necessary for
holding the LUT can be calculated using the AM_MED_LUT_SIZE_GET macro.

The LUT obtained from this function can be used for building the 16x8 or 8x8 display LUT. See MED_PS_apply(),
MED_PS_display_contrast().

At the moment, ImageGear does not support any display devices that are capable of displaying more than 256 shades of
grayscale. Hence, MED_PS_GSDF_LUT_build can only build a LUT consisting of 8-bit entries.

ImageGear Professional v18 for Mac | 1594

1.3.2.1.6.7 MED_PS_GSDF_LUT_init

This function initializes the HIGLUT object with GSDF LUT data.

Declaration:

AT_ERRCOUNT ACCUAPI MED_PS_GSDF_LUT_init(
 DWORD dwCharactCurveEntryCount,
 LPDOUBLE lpCharactCurve,
 HIGLUT lut
);

Arguments:

Name Type Description

dwCharactCurveEntryCount DWORD Number of entries in Characteristic Curve.

lpCharactCurve LPDOUBLE Characteristic Curve of the display.

lut HIGLUT GSDF LUT to fill.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This function replaces MED_PS_GSDF_LUT_build().

ImageGear Professional v18 for Mac | 1595

1.3.2.1.6.8 MED_PS_pres_LUT_get

This function fills the Presentation LUT with the data contained in the Presentation State DataSet.

Declaration:

AT_ERRCOUNT ACCUAPI MED_PS_pres_LUT_get(
 HIGEAR hIGearPresState,
 LPAT_MED_LUT_DESC lpPresLUTInfo
);

Arguments:

Name Type Description

hIGearPresState HIGEAR Image that contains Presentation State DataSet .

lpPresLUTInfo LPAT_MED_LUT_DESC Presentation LUT info.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

ImageGear Professional v18 for Mac | 1596

1.3.2.1.6.9 MED_PS_pres_LUT_info_get

This function returns information about Presentation LUT contained in a Presentation State DataSet.

Declaration:

AT_ERRCOUNT ACCUAPI MED_PS_pres_LUT_info_get(
 HIGEAR hIGearPresState,
 LPAT_MED_LUT_DESC lpPresLUTInfo
);

Arguments:

Name Type Description

hIGearPresState HIGEAR Image that contains Presentation State DataSet.

lpPresLUTInfo LPAT_MED_LUT_DESC Presentation LUT info.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

ImageGear Professional v18 for Mac | 1597

1.3.2.1.6.10 MED_PS_pres_LUT_set

This function adds Presentation LUT sequence to the DataSet of hIGearPresState.

Declaration:

AT_ERRCOUNT ACCUAPI MED_PS_pres_LUT_set(
 HIGEAR hIGearPresState,
 LPAT_MED_LUT_DESC lpPresLUTInfo
);

Arguments:

Name Type Description

hIGearPresState HIGEAR Image that contains Presentation State DataSet.

lpPresLUTInfo LPAT_MED_LUT_DESC Presentation LUT info.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

Use this function together with MED_PS_extract().

ImageGear Professional v18 for Mac | 1598

1.3.2.1.6.11 MED_PS_pres_state_GSDF_apply

This function extracts PS data from DICOM DataSet of hIGearPresState, and adjusts display of hIGear based on this
data.

Declaration:

AT_ERRCOUNT ACCUAPI MED_PS_pres_state_GSDF_apply(
 HIGEAR hIGear,
 HIGEAR hIGearPresState,
 DWORD dwFeatureFlags,
 DWORD dwGrpID,
 HIGLUT GSDFLUT
);

Arguments:

Name Type Description

hIGear HIGEAR Image to which Pres State shall be applied.

hIGearPresState HIGEAR Image containing Presentation State DataSet.

dwFeatureFlags DWORD Tells which features of PS to use - bit mask.

dwGrpID DWORD Display Group ID.

GSDFLUT HIGLUT GSDF LUT.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

All pixel formats supported by ImageGear Professional.

hIGearPresState must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Remarks:

This function may result in the following:

Adjust Display LUT associated with the image, using
VOI and Modality LUTs found in the presentation state DataSet
Presentation LUT found in the presentation state DataSet
GSDF LUT parameter

Change display layout, including image rectangle, zoom and orientation
Add ART objects

If there are no VOI or Modality LUT in hIGearPresState, the function tries to find them in the DataSet of hIGear. If there
are no such LUTs in hIGear, default values are taken.

If MED_PS_FEATURE_PRES_LUT option is specified, the function assumes that MED_PS_FEATURE_CONTRAST is
selected.

This function replaces MED_PS_apply(). It provides the same functionality as MED_PS_apply(), but uses a more general
type HIGLUT for GSDFLUT parameter.

ImageGear Professional v18 for Mac | 1599

1.3.2.1.7 Utility Functions

This section provides information about the Utility group of functions.

MED_DCM_util_data_to_string
MED_DCM_util_tag_info_add
MED_DCM_util_tag_info_free
MED_DCM_util_tag_info_get
MED_DCM_util_VR_info_mode
MED_DCM_util_VR_info_string

ImageGear Professional v18 for Mac | 1600

1.3.2.1.7.1 MED_DCM_util_data_to_string

This function takes the DICOM Data Field of the Current Data Element, designated in lpData, and converts it to a NULL-
terminated character string.

Declaration:

BOOL ACCUAPI MED_DCM_util_data_to_string(
 const LPCHAR lpData,
 const AT_DCM_VR vr,
 const AT_DCM_VL vl,
 const INT first_item,
 const INT last_item,
 LPCHAR lpString,
 const DWORD string_len,
 const CHAR separator
);

Arguments:

Name Type Description

lpData const
LPCHAR

A far pointer to the data from a Data Element which you would like to convert to a string.

vr const
AT_DCM_VR

Set to the Value Representation (VR) for the Data. See enumIGMedVR for possible VR
values.

vl const
AT_DCM_VL

Set to the Value Length of the Data.

first_item const INT First data value to process. Set to -1 to process all values.

last_item const INT Data value to stop processing at. This argument is only effective if first_item is not set to -
1. If first_item is 0, set this argument to the number of values you'd like to process.

lpString LPCHAR A far pointer to a NULL-terminated string which returns the representation of the DICOM
data field specified in lpData.

string_len const
DWORD

Set this to the length in bytes of lpString. If the length is shorter than the data being
retrieved, it will simply truncate the data.

separator const CHAR Set this to the character that you would like to use to separate multiple data values; for
example, you might set it to a comma or semicolon.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Set the vr argument to determine how the lpData is to be interpreted.

lpString can only be filled up to string_len - 1. 1 is subtracted from the string_len to accommodate the NULL. Any
remainder is simply clipped.

For Data Fields with more than one data value, the separator character specified in separator is used to delimit the
items.

ImageGear Professional v18 for Mac | 1601

1.3.2.1.7.2 MED_DCM_util_tag_info_add

This function allows you to add new entries into an internal table of Tag entries.

Declaration:

BOOL ACCUAPI MED_DCM_util_tag_info_add(
 const AT_DCM_TAG Tag,
 const AT_DCM_VR VR,
 const AT_DCM_VM VM,
 const WORD wVersion,
 const LPCHAR lpszTagName
);

Arguments:

Name Type Description

Tag const
AT_DCM_TAG

Set to a Tag value. The Tag must be supplied as a 32-bit value in which the first 16
bits (WORD) represent the Group Number and the second 16 bits represent the
Element Number. Group and Element are expressed as WORDs.

lpVR const
AT_DCM_VR

Set to the VR of the new Tag. See enumIGMedVR for possible VR values.

lpVM const
AT_DCM_VM

Set to the VM of the new Tag. Value Multiplicity tells whether and/or how many items
can be stored in this type of Data Element. See Remarks below.

wVersion const WORD Set this to the DICOM version. This should identify the first version of DICOM that
includes this Tag. Most applications should set this to 3 but any value is accepted.

LpszTagName const
LPCHAR

Set to a character string name that should be provided as the description of this Tag.

Return Value:

Returns TRUE if the new Tag was successfully added to the Data Dictionary; FALSE otherwise.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

It can be used for adding newly defined DICOM Tags (new to the specification) or for adding private user-defined Tags.
Once a new entry is added, the new Tag works just like all other Tags do.

Set VM to a non-zero positive integer for a Tag which must contain a specific number of Items.
Set VM to 0 for a Tag which can have an unlimited number of Items.
Set VM to a negative integer for a Tag which can have a limited number of items up to the absolute value of the
provided VM. For example, VM = -3 means that the Tag may have up to 3 items.

ImageGear Professional v18 for Mac | 1602

1.3.2.1.7.3 MED_DCM_util_tag_info_free

This function frees up the user-defined Data Dictionary, if it exists.

Declaration:

BOOL ACCUAPI MED_DCM_util_tag_info_free(VOID);

Arguments:

None

Remarks:

All User-Defined entries are discarded. The pre-defined Data Dictionary is not affected. This function returns TRUE if a
table was freed. FALSE if there was no table to free.

Supported Raster Image Formats:

This function does not process image pixels.

Return Value:

TRUE if a table was freed; FALSE if there was no table to free.

ImageGear Professional v18 for Mac | 1603

1.3.2.1.7.4 MED_DCM_util_tag_info_get

This function returns information about the specified Tag.

Declaration:

BOOL ACCUAPI MED_DCM_util_tag_info_get(
 const AT_DCM_TAG Tag,
 LPAT_DCM_VR lpVR,
 LPAT_DCM_VM lpVM,
 LPWORD lpwVersion,
 LPCHAR lpszTagName
);

Arguments:

Name Type Description

Tag const
AT_DCM_TAG

Set to a Tag value. The Tag must be supplied as a 32-bit value in which the first 16
bits (WORD) represent the Group Number and the second 16 bits represent the
Element Number.

lpVR LPAT_DCM_VR A far pointer which returns the current VR (Value Representation). Set to NULL if you
don't need this information. See enumIGMedVR for possible VR values.

lpVM LPAT_DCM_VM A far pointer which returns the VM (Value Multiplicity) of the current Tag; set to
NULL if you don't need this information. Value Multiplicity tells you whether and/or
how many items can be stored in this type of Data Element. See Remarks below.

lpwVersion LPWORD Returns the version of DICOM Specification, such as 3.0.

lpszTagName LPCHAR Returns the name of the specified Tag.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

It returns the Value Representation, Value Multiplicity, DICOM version, and the Tag name. The function searches in the
user-defined Data Dictionary first, and then if the Tag is not found, searches in the static Data Dictionary, which
represents the Data Dictionary listed in Part 6 of the DICOM standard.

You might use this function before making a call that alters a Data Element.

If lpVM returns a Positive integer: there must be this number of Items.
If it returns a 0: you may have an unlimited number of items, including 0.
If it returns a Negative integer: The number of items may include up to the absolute value of the value returned. For
example, if lpVM = -3, you may have up to 3 items.

ImageGear Professional v18 for Mac | 1604

1.3.2.1.7.5 MED_DCM_util_VR_info_mode

This function looks up the Value Representation specified in vr_mode and returns the following information about it: its
text representation, length, restrictions, and whether or not it can be a NULL-terminated string.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_util_VR_info_mode(
 const AT_DCM_VR vr_mode,
 LPCHAR lpVRstring,
 LPWORD lpwLength,
 LPWORD lpwRestriction,
 LPBOOL lpCheck_form,
 LPBOOL lpIsString
);

Arguments:

Name Type Description

vr_mode const
AT_DCM_VR

Set this to the type of VR (or data type) you would like information on. See
enumIGMedVR for possible VR values.

lpVRstring LPCHAR A far pointer that returns the text representation of VR in 3 characters.

lpwLength LPWORD A far pointer that returns the size of the VR.

lpwRestriction LPWORD A far pointer that returns any restriction flags. These will be returned as constants that
are defined in enumIGMedVRRestriction and begin with MED_DCM_LEN_.

lpReserved LPBOOL This argument has not been implemented yet. Please set to NULL for now.

lpIsString LPBOOL A far pointer to a BOOL value that tells you whether the data of this type of VR is a
NULL-terminated string or not. If TRUE, data of this type is a NULL-terminated string
and could be printed using the print format %s. If FALSE, the data is an integer or
other binary data type.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1605

1.3.2.1.7.6 MED_DCM_util_VR_info_string

This function returns the type of Value Representation used.

Declaration:

AT_ERRCOUNT ACCUAPI MED_DCM_util_VR_info_string(
 const LPCHAR lpVR_string,
 LPWORD lpwLength,
 LPWORD lpwRestriction,
 LPBOOL lpReserved,
 LPBOOL lpIsString,
 LPAT_DCM_VR lpVr
);

Arguments:

Name Type Description

lpVRstring const LPCHAR Set to the 3-character text representation of the VR as used in the DICOM
Specification, e.g., "PN", "CS", or "SQ." While these are 2-character codes, the end of
line string termination makes it 3.

lpwLength LPWORD A far pointer that returns the size of the VR. This is the length in byes of a single
instance of data that is of the specified type. For example, a VR of "SL" has a fixed
length of 4 bytes per item. If the VM allows more than a single data value, then each
one will take up 4 bytes. Other VRs have a maximum length. "PN" and "UI" both
have a maximum of 64 bytes.

lpwRestriction LPWORD A far pointer that returns any restriction flags . These will be returned as constants
that are defined in enumIGMedVRRestriction and begin with MED_DCM_LEN_.

lpReserved LPBOOL This argument has not been implemented yet. Please set to NULL for now.

lpIsString LPBOOL A far pointer to a BOOL value that tells you whether the data of this type of VR is a
NULL-terminated string or not. If TRUE, data of this type is a NULL-terminated string
and could be printed using the print format %s. If FALSE, the data is an integer or
other binary data type.

lpVR LPAT_DCM_VR A far pointer that returns an AT_MODE constant that identifies the type of Value
Representation. See enumIGMedVR for possible VR values.

Return Value:

Returns the number of ImageGear errors that occurred during the function call.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Supply a 3-character string (two alphabetic characters plus the end-of-string terminator), and this function will return
one of the MED_DCM_VR_ constants defined in enumIGMedVR.

ImageGear Professional v18 for Mac | 1606

1.3.2.2 MD Component Macros Reference

This section provides information about the MD Component Macros, arranged in alphabetical order.

MED_DCM_DS_TAG_ELEMENT
MED_DCM_DS_TAG_GROUP
MED_DCM_DS_TAG_MAKE

ImageGear Professional v18 for Mac | 1607

1.3.2.2.1 MED_DCM_DS_TAG_ELEMENT

This macro is used for getting the Element number out of a Tag.

Declaration:

 MED_DCM_DS_TAG_ELEMENT(Tag);

Arguments:

Tag Supply this argument with a 32-bit Tag value that begins with DCM_TAG_

Return Value:

Returns the 16-bit Element Number portion of a 32-bit Tag value.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Example:

element = MED_DCM_DS_TAG_ELEMENT(DCM_TAG_IssuerOfPatientID)
/* element equals 0x0021 */

Remarks:

Supply it with a 32-bit Tag value, and it will return the 16-bit Element Number value. The Element Number is the least
significant WORD of the 32-bit Tag value.

ImageGear Professional v18 for Mac | 1608

1.3.2.2.2 MED_DCM_DS_TAG_GROUP

This macro is used for getting the Group Number out of a Tag.

Declaration:

 MED_DCM_DS_TAG_GROUP(Tag)

Arguments:

Tag Supply this argument with a 32-bit Tag value.

Return Value:

Returns the 16-bit Group Number portion of a 32-bit Tag value.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Example:

group = MED_DCM_DS_TAG_GROUP(DCM_TAG_IssuerOfPatientID)
/* group equals 0x0010 */

Remarks:

Supply it with a 32-bit Tag value, and it will return the 16-bit Group Number value. The Group Number is the most
significant WORD of the 32-bit Tag value.

ImageGear Professional v18 for Mac | 1609

1.3.2.2.3 MED_DCM_DS_TAG_MAKE

This macro takes a 16-bit Group Number and a 16-bit Element Number and returns a 32-bit Tag value.

Declaration:

 MED_DCM_DS_TAG_MAKE(gn, en);

Arguments:

gn Supply this with a valid DICOM Group Number.

en Supply this with a valid DICOM Element Number.

Return Value:

Returns the 32-bit Tag value from the 16-bit Group Number and 16-bit Element Number that you provide.

Supported Raster Image Formats:

This function does not process image pixels.

The image must have a DICOM DataSet attached to it. Use MED_DCM_DS_exists to check whether the image
contains a DataSet.

Example:

AT_DCM_TAG Tag; Tag = MED_DCM_DS_TAG_MAKE(0x0010, 0x0021) /* Tag equals
DCM_TAG_IssuerOfPatientID or 0x00100021 */

Remarks:

The returned Tag is compatible with the enumIGMedTag enumeration.

ImageGear Professional v18 for Mac | 1610

1.3.2.3 MD Component Structures Reference

This section provides information about the MD Component Structures, arranged in alphabetical order.

AT_MED_DCM_DISPLAY_SETTINGS
AT_MED_MODALITY_RESCALE
AT_MED_PIXEL_PADDING_SETTINGS
AT_MED_VOI_WINDOW

ImageGear Professional v18 for Mac | 1611

1.3.2.3.1 AT_MED_DCM_DISPLAY_SETTINGS

This structure contains settings that can be used for displaying DICOM images with proper contrast.

Declaration:

struct AT_MED_DCM_DISPLAY_SETTINGS
{
 AT_MED_MODALITY_RESCALE ModalityRescale;
 HIGLUT ModalityLUT;
 AT_MED_VOI_WINDOW VOIWindow;
 HIGLUT VOILUT;
 AT_BOOL IsInverted;
 AT_DOUBLE Gamma;
 HIGLUT PresentationLUT;
 HIGLUT GSDFLUT;
 AT_MED_PIXEL_PADDING_SETTINGS PixelPadding;
};
typedef struct AT_MED_DCM_DISPLAY_SETTINGS;

Members:

Name Type Description

ModalityRescale AT_MED_MODALITY_RESCALE Specifies linear Modality transform (Rescale
Slope/Intercept). Ignored if ModalityLUT is not NULL.

ModalityLUT HIGLUT Specifies Modality LUT.

VOIWindow AT_MED_VOI_WINDOW Specifies linear VOI transform (Window center/width).
Ignored if VOI LUT is not NULL.

VOILUT HIGLUT Specifies VOI LUT.

IsInverted AT_BOOL Tells whether the image should be displayed inverted. TRUE
corresponds to MONOCHROME1 photometric interpretation,
FALSE corresponds to MONOCHROME2 photometric
interpretation.

Gamma AT_DOUBLE Specifies gamma correction value. Ignored if GSDFLUT is
not NULL.

PresentationLUT HIGLUT Specifies Presentation LUT.

GSDFLUT HIGLUT Specifies Grayscale Standard Display Function LUT.

PixelPadding AT_MED_PIXEL_PADDING_SETTINGS Specifies pixel padding settings.

Remarks:

The settings are applied in the following order: Modality (LUT or Rescale), VOI (LUT or Window), IsInverted flag,
Presentation LUT, Gamma or GSDFLUT.

ImageGear Professional v18 for Mac | 1612

1.3.2.3.2 AT_MED_MODALITY_RESCALE

This structure specifies linear Modality transform.

Declaration:

struct AT_MED_MODALITY_RESCALE
{
 AT_DOUBLE Slope;
 AT_DOUBLE Intercept;
};
typedef struct AT_MED_MODALITY_RESCALE;

Members:

Name Type Description

Slope AT_DOUBLE Rescale slope.

Intercept AT_DOUBLE Rescale Intercept.

ImageGear Professional v18 for Mac | 1613

1.3.2.3.3 AT_MED_PIXEL_PADDING_SETTINGS

This structure represents DICOM pixel padding settings.

Declaration:

struct AT_MED_PIXEL_PADDING_SETTINGS
{
 AT_BOOL UsePixPadding;
 AT_INT PixPaddingValue;
 AT_INT ShowPaddingAs;
};

Members:

Name Type Description

UsePixPadding AT_BOOL Specifies whether pixel padding should be taken into account during display.

PixPaddingValue AT_INT Specifies pixel padding value.

ShowPaddingAs AT_INT Specifies the output intensity for displaying padding pixels.

ImageGear Professional v18 for Mac | 1614

1.3.2.3.4 AT_MED_VOI_WINDOW

This structure specifies linear VOI transform.

Declaration:

struct AT_MED_VOI_WINDOW
{
 AT_INT Center;
 AT_INT Width;
};
typedef struct AT_MED_VOI_WINDOW;

Members:

Name Type Description

Center AT_INT Window center.

Width AT_INT Window width.

ImageGear Professional v18 for Mac | 1615

1.3.2.4 MD Component Enumerations Reference

This section provides information about the MD Component Enumerations, arranged in alphabetical order.

enumIGMedColorSchemes
enumIGMedLevelOption
enumIGMedPhotoInt
enumIGMedPixelRep
enumIGMedPlanarConfig
enumIGMedPSFeatureFlags
enumIGMedSOP
enumIGMedTag
enumIGMedTS
enumIGMedVR
enumIGMedVRRestriction

ImageGear Professional v18 for Mac | 1616

1.3.2.4.1 enumIGMedColorSchemes

Identifies medical pseudo-coloring schemes.

Values:

MED_PSEUDOCOLOR_OFF Reset to Grayscale.

MED_PSEUDOCOLOR_OIL_FILM Oil Film.

MED_PSEUDOCOLOR_DARK_BLUE_TO_BRIGHT_RED Dark Blue to Bright Red.

MED_PSEUDOCOLOR_GREEN_TO_RED Green to Red.

MED_PSEUDOCOLOR_RED_GREEN_BLUE Red, Green, Blue.

MED_PSEUDOCOLOR_THERMAL Thermal.

MED_PSEUDOCOLOR_BRIGHT_RAINBOW Bright Rainbow.

ImageGear Professional v18 for Mac | 1617

1.3.2.4.2 enumIGMedLevelOption

Identifies DICOM Element List level navigation options.

Values:

MED_DCM_MOVE_LEVEL_FIXED This setting tells the method to move only within the same level as the previous
Current Data Element. Any SQs and all of their Data Elements will be skipped over.
If you are in an SQ, you can only move within the SQ.

MED_DCM_MOVE_LEVEL_FLOAT This setting tells the method to move up or down as needed to get to the next DE.
If the next DE is an SQ the Current DE moves down into it. At the end of the SQ,
the Current DE moves back to the lower levels (for example, from Level 2 to Level
1).

ImageGear Professional v18 for Mac | 1618

1.3.2.4.3 enumIGMedPhotoInt

Identifies DICOM Photometric Interpretations. See DICOM specification PS 3.3 C.7.6.3.1.2 for more details.

Values:

MED_DCM_PHOTO_INT_ARGB This value has been deprecated and will be removed from the public
API in a future release.

MED_DCM_PHOTO_INT_CMYK This value has been deprecated and will be removed from the public
API in a future release.

MED_DCM_PHOTO_INT_HSV This value has been deprecated and will be removed from the public
API in a future release.

MED_DCM_PHOTO_INT_MONOCHROME1 Pixel data represent a single monochrome image plane. The minimum
sample value is intended to be displayed as white.

MED_DCM_PHOTO_INT_MONOCHROME2 Pixel data represent a single monochrome image plane. The minimum
sample value is intended to be displayed as black.

MED_DCM_PHOTO_INT_PALETTE_COLOR Pixel data describe a color image with a single sample per pixel
(single image plane). The pixel value is used as an index into each of
the Red, Blue, and Green Palette Color Lookup Tables

MED_DCM_PHOTO_INT_RGB Pixel data represent a color image described by red, green, and blue
image planes.

MED_DCM_PHOTO_INT_UNKNOWN Photometric interpretation is unknown.

MED_DCM_PHOTO_INT_YBR_FULL Pixel data represent a color image described by one luminance (Y)
and two chrominance planes (Cb and Cr).

MED_DCM_PHOTO_INT_YBR_FULL_422 The same as YBR_FULL except that the Cb and Cr values are sampled
horizontally at half the Y rate and as a result there are half as many
Cb and Cr values as Y values.

MED_DCM_PHOTO_INT_YBR_ICT Irreversible Color Transformation. Pixel data represent a color image
described by one luminance (Y) and two chrominance planes (Cb and
Cr). Used with JPEG 2000 transfer syntax.

MED_DCM_PHOTO_INT_YBR_PARTIAL_422 The same as YBR_FULL_422 with certain limitations. See DICOM
specification PS 3.3 for more detail.

MED_DCM_PHOTO_INT_YBR_RCT Reversible Color Transformation. Pixel data represent a color image
described by one luminance (Y) and two chrominance planes (Cb and
Cr). Used with JPEG 2000 transfer syntax.

ImageGear Professional v18 for Mac | 1619

1.3.2.4.4 enumIGMedPixelRep

Identifies DICOM Pixel Representations.

Values:

MED_DCM_PIXEL_REP_2S_COMPLEMENT 2's complement signed integer.

MED_DCM_PIXEL_REP_UNKNOWN Unknown.

MED_DCM_PIXEL_REP_UNSIGNED Unsigned integer.

ImageGear Professional v18 for Mac | 1620

1.3.2.4.5 enumIGMedPlanarConfig

Identifies DICOM Planar Configurations.

Values:

MED_DCM_PLANAR_PIXEL_BY_PIXEL Pixels are stored pixel-by-pixel.

MED_DCM_PLANAR_PLANE_BY_PLANE Pixels are stored plane-by-plane.

ImageGear Professional v18 for Mac | 1621

1.3.2.4.6 enumIGMedPSFeatureFlags

A bitmask that specifies features of the Presentation State object that can be applied or extracted separately.

Values:

MED_PS_FEATURE_NONE No feature.

MED_PS_FEATURE_PRES_LUT Presentation LUT.

MED_PS_FEATURE_VOI_LUT VOI LUT.

MED_PS_FEATURE_MODALITY_LUT Modality LUT.

MED_PS_FEATURE_DISPLAYED_AREA Reserved for future use.

MED_PS_FEATURE_ORIENTATION Orientation.

MED_PS_FEATURE_ANNOTAIONS Annotations.

MED_PS_FEATURE_ALL All features.

Remarks:

See MED_PS_apply and MED_PS_extract for more details.

ImageGear Professional v18 for Mac | 1622

1.3.2.4.7 enumIGMedSOP

Specifies DICOM Service Object Pair (SOP) constants.

Values:

MED_DCM_SOP_NULL Null class.

MED_DCM_SOP_VERIFICATION Verification SOP Class.

MED_DCM_SOP_MEDIA_STORAGE_DIR_STORAGE Media Storage Directory
Storage.

MED_DCM_SOP_HOT_IRON_COLOR_PALETTE_INSTANCE Hot Iron Color Palette SOP
Instance (Well-known).

MED_DCM_SOP_PET_COLOR_PALETTE_INSTANCE PET Color Palette SOP Instance
(Well-known).

MED_DCM_SOP_HOT_METAL_BLUE_COLOR_PALETTE_INSTANCE Hot Metal Blue Color Palette
SOP Instance (Well-known).

MED_DCM_SOP_PET_20_STEP_COLOR_PALETTE_INSTANCE PET 20 Step Color Palette SOP
Instance (Well-known).

MED_DCM_SOP_BASIC_STUDY_CONTENT_NOTIFICATION Basic Study Content
Notification SOP Class
(Retired).

MED_DCM_SOP_STORAGE_COMMITMENT_PUSH_CLASS Storage Commitment Push
Model SOP Class.

MED_DCM_SOP_STORAGE_COMMITMENT_PUSH_INSTANCE Storage Commitment Push
Model SOP Instance (Well-
known).

MED_DCM_SOP_STORAGE_COMMITMENT_PULL_CLASS Storage Commitment Pull
Model SOP Class (Retired).

MED_DCM_SOP_STORAGE_COMMITMENT_PULL_INSTANCE Storage Commitment Pull
Model SOP Instance (Well-
known) (Retired).

MED_DCM_SOP_PROCEDURAL_EVENT_LOGGING Procedural Event Logging SOP
Class.

MED_DCM_SOP_PROCEDURAL_EVENT_LOGGING_INSTANCE Procedural Event Logging SOP
Instance (Well-known).

MED_DCM_SOP_SUBSTANCE_ADMINISTRATION_LOGGING Substance Administration
Logging SOP Class.

MED_DCM_SOP_SUBSTANCE_ADMINISTRATION_LOGGING_INSTANCE Substance Administration
Logging SOP Instance (Well-
known).

MED_DCM_SOP_DICOM_UID_REGISTRY DICOM UID Registry (DICOM
UIDs as a Coding Scheme).

MED_DCM_SOP_DICOM_CONTROLLED_TERMINOLOGY DICOM Controlled Terminology
(Coding Scheme).

MED_DCM_SOP_DICOM_APP_CONTEXT DICOM Application Context
Name.

MED_DCM_SOP_PAT_MGMT_DET Detached Patient Management
SOP Class (Retired).

MED_DCM_SOP_PAT_MGMT_META Detached Patient Management
Meta SOP Class (Retired).

MED_DCM_SOP_VISIT_MGMT_DET Detached Visit Management
SOP Class (Retired).

MED_DCM_SOP_STUDY_MGMT_DET Detached Study Management
SOP Class (Retired).

ImageGear Professional v18 for Mac | 1623

MED_DCM_SOP_STUDY_MGMT_COMP Study Component Management
SOP Class (Retired).

MED_DCM_SOP_MOD_PERF_PROC_STEP Modality Performed Procedure
Step SOP Class.

MED_DCM_SOP_MOD_PERF_PROC_STEP_RETRIEVE Modality Performed Procedure
Step Retrieve SOP Class.

MED_DCM_SOP_MOD_PERF_PROC_STEP_NOTIFY Modality Performed Procedure
Step Notification SOP Class.

MED_DCM_SOP_RESULT_MGMT_DET Detached Results Management
SOP Class (Retired).

MED_DCM_SOP_RESULT_MGMT_META Detached Results Management
Meta SOP Class (Retired).

MED_DCM_SOP_STUDY_MGMT_META Detached Study Management
Meta SOP Class (Retired).

MED_DCM_SOP_INTERP_MGMT_DET Detached Interpretation
Management SOP Class
(Retired).

MED_DCM_SOP_STORAGE_SERVICE_CLASS Storage Service Class.

MED_DCM_SOP_BASIC_FILM_SESSION Basic Film Session SOP Class.

MED_DCM_SOP_BASIC_FILM_BOX Basic Film Box SOP Class.

MED_DCM_SOP_BASIC_GRAY_IMG_BOX Basic Grayscale Image Box SOP
Class.

MED_DCM_SOP_BASIC_COLOR_IMG_BOX Basic Color Image Box SOP
Class.

MED_DCM_SOP_REF_IMG_BOX Reference Image Box SOP
Class (Retired).

MED_DCM_SOP_BASIC_GRAY_PRINT_MGMT_META Basic Grayscale Print
Management Meta SOP Class.

MED_DCM_SOP_REF_GRAY_PRINT_MGMT_META Referenced Grayscale Print
Management Meta SOP Class
(Retired).

MED_DCM_SOP_PRINT_JOB Print Job SOP Class.

MED_DCM_SOP_BASIC_ANNOTATION_BOX Basic Annotation Box SOP
Class.

MED_DCM_SOP_PRINTER Printer SOP Class.

MED_DCM_SOP_PRINTER_CONFIGURATION_RETRIEVAL Printer Configuration Retrieval
SOP Class.

MED_DCM_SOP_PRINTER_INSTANCE Printer SOP Instance (Well-
known).

MED_DCM_SOP_PRINTER_CONFIGURATION_RETRIEVAL_INSTANCE Printer Configuration Retrieval
SOP Instance (Well-known).

MED_DCM_SOP_BASIC_COLOR_PRINT_MGMT_META Basic Color Print Management
Meta SOP Class.

MED_DCM_SOP_REF_COLOR_PRINT_MGMT_META Referenced Color Print
Management Meta SOP class
(Retired).

MED_DCM_SOP_VOI_LUT_BOX VOI LUT Box SOP Class.

MED_DCM_SOP_PRESENTATION_LUT Presentation LUT SOP Class.

MED_DCM_SOP_IMG_OVLY_BOX Image Overlay Box SOP Class
(Retired).

MED_DCM_SOP_BASIC_PRINT_IMAGE_OVERLAY_BOX Basic Print Image Overlay Box
SOP Class (Retired).

ImageGear Professional v18 for Mac | 1624

MED_DCM_SOP_PRINT_QUEUE_INSTANCE Print Queue SOP Instance
(Well-known) (Retired).

MED_DCM_SOP_PRINT_QUEUE_MGMT Print Queue Management SOP
Class (Retired).

MED_DCM_SOP_STORED_PRINT_STORAGE Stored Print Storage SOP Class
(Retired).

MED_DCM_SOP_HARDCOPY_GRAYSCALE_STORAGE Hardcopy Grayscale Image
Storage SOP Class (Retired).

MED_DCM_SOP_HARDCOPY_COLOR_STORAGE Hardcopy Color Image Storage
SOP Class (Retired).

MED_DCM_SOP_PULL_PRINT_REQUEST Pull Print Request SOP Class
(Retired).

MED_DCM_SOP_PULL_STORED_PRINT_MGMT_META Pull Stored Print Management
Meta SOP Class (Retired).

MED_DCM_SOP_MEDIA_CREATION_MANAGEMENT_UID Media Creation Management
UID SOP Class.

MED_DCM_SOP_CR_STORAGE Computed Radiography Image
Storage.

MED_DCM_SOP_DIGI_XRAY_PRES_IMG_STORAGE Digital X-Ray Image Storage -
For Presentation.

MED_DCM_SOP_DIGI_XRAY_PROC_IMG_STORAGE Digital X-Ray Image Storage -
For Processing.

MED_DCM_SOP_DIGI_MAMMO_PRES_IMG_STORAGE Digital Mammography X-Ray
Image Storage - For
Presentation.

MED_DCM_SOP_DIGI_MAMMO_PROC_IMG_STORAGE Digital Mammography X-Ray
Image Storage - For
Processing.

MED_DCM_SOP_DIGI_INTRA_ORAL_PRES_IMG_STORAGE Digital Intra-oral X-Ray Image
Storage - For Presentation.

MED_DCM_SOP_DIGI_INTRA_ORAL_PROC_IMG_STORAGE Digital Intra-oral X-Ray Image
Storage - For Processing.

MED_DCM_SOP_CT_STORAGE CT Image storage.

MED_DCM_SOP_CT_ENHANCED_STORAGE Enhanced CT Image Storage.

MED_DCM_SOP_USMF_STORAGE__RET Ultrasound Multi-frame Image
Storage (Retired).

MED_DCM_SOP_USMF_STORAGE Ultrasound Multi-frame Image
Storage.

MED_DCM_SOP_MR_STORAGE MR Image Storage.

MED_DCM_SOP_MR_ENHANCED_IMAGE_STORAGE Enhanced MR Image Storage.

MED_DCM_SOP_MR_SPECTROSCOPY_STORAGE MR Spectroscopy Storage.

MED_DCM_SOP_ENHANCED_MR_COLOR_IMAGE_STORAGE Enhanced MR Color Image
Storage.

MED_DCM_SOP_NM_STORAGE__RET Nuclear Medicine Image
Storage (Retired).

MED_DCM_SOP_US_STORAGE__RET Ultrasound Image Storage
(Retired).

MED_DCM_SOP_US_STORAGE Ultrasound Image Storage.

MED_DCM_SOP_ENHANCED_US_VOLUME_STORAGE Enhanced US Volume Storage.

MED_DCM_SOP_SC_STORAGE Secondary Capture Image
Storage.

MED_DCM_SOP_SC_MF_SINGLE_BIT_IMAGE_STORAGE Multiframe Single Bit Secondary

ImageGear Professional v18 for Mac | 1625

Capture Image Storage.

MED_DCM_SOP_SC_MF_GRAYSCALE_BYTE_IMAGE_STORAGE Multiframe Grayscale Byte
Secondary Capture Image
Storage.

MED_DCM_SOP_SC_MF_GRAYSCALE_WORD_IMAGE_STORAGE Multiframe Grayscale Word
Secondary Capture Image
Storage.

MED_DCM_SOP_SC_MF_TRUE_COLOR_IMAGE_STORAGE Multiframe True Color
Secondary Capture Image
Storage.

MED_DCM_SOP_OVERLAY_STORAGE Standalone Overlay Storage
(Retired).

MED_DCM_SOP_CURVE_STORAGE Standalone Curve Storage
(Retired).

MED_DCM_SOP_WAVEFORM_STORAGE Waveform Storage - Trial
(Retired).

MED_DCM_SOP_WAVEFORM_ECG_STORAGE General ECG Waveform
Storage.

MED_DCM_SOP_WAVEFORM_AUDIO_STORAGE Waveform Audio Storage.

MED_DCM_SOP_AMBULATORY_ECG_WAVEFORM_STORAGE Ambulatory ECG Waveform
Storage.

MED_DCM_SOP_WAVEFORM_HEMO_STORAGE Hemodynamic Waveform
Storage.

MED_DCM_SOP_CARDIAC_ELECTROPHYSIOLOGY_WAVEFORM_STORAGE Cardiac Electrophysiology
Waveform Storage.

MED_DCM_SOP_BASIC_VOICE_AUDIO_WAVEFORM_STORAGE Basic Voice Audio Waveform
Storage.

MED_DCM_SOP_GENERAL_AUDIO_WAVEFORM_STORAGE General Audio Waveform
Storage.

MED_DCM_SOP_ARTERIAL_PULSE_WAVEFORM_STORAGE Arterial Pulse Waveform
Storage.

MED_DCM_SOP_RESPIRATORY_WAVEFORM_STORAGE Respiratory Waveform Storage.

MED_DCM_SOP_MOD_LUT_STORAGE Standalone Modality LUT
Storage (Retired).

MED_DCM_SOP_VOI_LUT_STORAGE Standalone VOI LUT Storage
(Retired).

MED_DCM_SOP_GRAY_SOFTCOPY_PRES_STATE_STORAGE Grayscale Softcopy
Presentation State Storage SOP
Class.

MED_DCM_SOP_COLOR_SOFTCOPY_PRES_STATE_STORAGE Color Softcopy Presentation
State Storage SOP Class.

MED_DCM_SOP_PSEUDO_COLOR_SOFTCOPY_PRES_STATE_STORAGE Pseudo-Color Softcopy
Presentation State Storage SOP
Class.

MED_DCM_SOP_BLENDING_SOFTCOPY_PRES_STATE_STORAGE Blending Softcopy Presentation
State Storage SOP Class.

MED_DCM_SOP_XA_XRF_GRAYSCALE_SOFTCOPY_PRES_STATE_STORAGE XA/XRF Grayscale Softcopy
Presentation State Storage.

MED_DCM_SOP_XRAY_ANGIO_STORAGE X-Ray Angiographic Image
Storage.

MED_DCM_SOP_XRAY_ENHANCED_XA_IMAGE_STORAGE Enhanced XA Image Storage.

MED_DCM_SOP_XRAY_RF_STORAGE X-Ray Radiofluoroscopic Image
Storage.

ImageGear Professional v18 for Mac | 1626

MED_DCM_SOP_ENHANCED_XRF_IMAGE_STORAGE Enhanced XRF Image Storage.

MED_DCM_SOP_XRAY_ANGIO_BI_PLANE_STORAGE X-Ray Angiographic Bi-Plane
Image storage (Retired).

MED_DCM_SOP_XRAY_3D_ANGIOGRAPHIC_STORAGE X-Ray 3D Angiographic Image
Storage.

MED_DCM_SOP_XRAY_3D_CRANIOFACIAL_STORAGE X-Ray 3D Craniofacial Image
Storage.

MED_DCM_SOP_BREAST_TOMOSYNTHESIS_IMAGE_STORAGE Breast Tomosynthesis Image
Storage.

MED_DCM_SOP_NM_STORAGE Nuclear Medicine Image
storage.

MED_DCM_SOP_RAW_DATA_STORAGE RAW data storage.

MED_DCM_SOP_SPATIAL_REGISTRATION_STORAGE Spatial Registration Storage.

MED_DCM_SOP_SPATIAL_FIDUCIALS_STORAGE Spatial Fiducials Storage.

MED_DCM_SOP_DEFORMABLE_SPATIAL_REGISTRATION_STORAGE Deformable Spatial Registration
Storage.

MED_DCM_SOP_SEGMENTATION_STORAGE Segmentation Storage.

MED_DCM_SOP_SURFACE_SEGMENTATION_STORAGE Surface Segmentation Storage.

MED_DCM_SOP_REAL_WORLD_VALUE_MAPPING_STORAGE Real World Value Mapping
Storage.

MED_DCM_SOP_VL_IMG_STORAGE VL Image Storage - Trial
(Retired).

MED_DCM_SOP_VL_MULTIFRAME_IMG_STORAGE VL Multi-frame Image Storage -
Trial (Retired).

MED_DCM_SOP_VL_ENDO_IMG_STORAGE VL Endoscopic Image Storage.

MED_DCM_SOP_VIDEO_ENDOSCOPIC_IMAGE_STORAGE Video Endoscopic Image
Storage.

MED_DCM_SOP_VL_MICRO_IMG_STORAGE VL Microscopic Image Storage.

MED_DCM_SOP_VIDEO_MICROSCOPIC_IMAGE_STORAGE Video Microscopic Image
Storage.

MED_DCM_SOP_VL_SLIDE_MICRO_IMG_STORAGE VL Slide-Coordinates
Microscopic Image Storage.

MED_DCM_SOP_VL_PHOTO_IMG_STORAGE VL Photographic Image
Storage.

MED_DCM_SOP_VIDEO_PHOTOGRAPHIC_IMAGE_STORAGE Video Photographic Image
Storage.

MED_DCM_SOP_OPHTHALMIC_PHOTOGRAPHY_8_BIT_IMAGE_STORAGE Ophthalmic Photography 8 Bit
Image Storage.

MED_DCM_SOP_OPHTHALMIC_PHOTOGRAPHY_16_BIT_IMAGE_STORAGE Ophthalmic Photography 16 Bit
Image Storage.

MED_DCM_SOP_STEREOMETRIC_RELATIONSHIP_STORAGE Stereometric Relationship
Storage.

MED_DCM_SOP_OPHTHALMIC_TOMOGRAPHY_IMAGE_STORAGE Ophthalmic Tomography Image
Storage.

MED_DCM_SOP_LENSOMETRY_MEASUREMENTS_STORAGE Lensometry Measurements
Storage.

MED_DCM_SOP_AUTOREFRACTION_MEASUREMENTS_STORAGE Autorefraction Measurements
Storage.

MED_DCM_SOP_KERATOMETRY_MEASUREMENTS_STORAGE Keratometry Measurements
Storage.

MED_DCM_SOP_SUBJECTIVE_REFRACTION_MEASUREMENTS_STORAGE Subjective Refraction

ImageGear Professional v18 for Mac | 1627

Measurements Storage.

MED_DCM_SOP_VISUAL_ACUITY_MEASUREMENTS_STORAGE Visual Acuity Measurements
Storage.

MED_DCM_SOP_SPECTACLE_PRESCRIPTION_REPORTS_STORAGE Spectacle Prescription Reports
Storage.

MED_DCM_SOP_MACULAR_GRID_THICKNESS_AND_VOLUME_REPORT_STORAGE Macular Grid Thickness and
Volume Report Storage.

MED_DCM_SOP_SR_TEXT_STORAGE Text SR Storage - Trial
(Retired).

MED_DCM_SOP_SR_AUDIO_STORAGE Audio SR Storage - Trial
(Retired).

MED_DCM_SOP_SR_DETAIL_STORAGE Detail SR Storage - Trial
(Retired).

MED_DCM_SOP_SR_COMPREHENSIVE_STORAGE Comprehensive SR Storage -
Trial (Retired).

MED_DCM_SOP_SR_BASIC_TEXT Basic Text SR Storage.

MED_DCM_SOP_SR_ENHANCED Enhanced SR Storage.

MED_DCM_SOP_SR_COMPREHENSIVE Comprehensive SR Storage.

MED_DCM_SOP_PROCEDURE_LOG_STORAGE Procedure Log Storage.

MED_DCM_SOP_SR_MAMMO_CAD Mammography CAD SR
Storage.

MED_DCM_SOP_KEY_OBJECT_SELECTION_DOCUMENT Key Object Selection Document
Storage.

MED_DCM_SOP_SR_CHEST_CAD Chest CAD SR Storage.

MED_DCM_SOP_XRAY_RADIATION_DOSE_SR_STORAGE X-Ray Radiation Dose SR
Storage.

MED_DCM_SOP_COLON_CAD_SR_STORAGE Colon CAD SR Storage.

MED_DCM_SOP_ENCAPSULATED_PDF_STORAGE Encapsulated PDF Storage.

MED_DCM_SOP_ENCAPSULATED_CDA_STORAGE Encapsulated CDA Storage.

MED_DCM_SOP_PET_STORAGE Positron Emission Tomography
Image Storage.

MED_DCM_SOP_PET_CURVE_STORAGE Standalone PET Curve Storage
(Retired).

MED_DCM_SOP_ENHANCED_PET_IMAGE_STORAGE Enhanced PET Image Storage.

MED_DCM_SOP_BASIC_STRUCTURED_DISPLAY_STORAGE Basic Structured Display
Storage.

MED_DCM_SOP_RT_IMG_STORAGE RT image storage.

MED_DCM_SOP_RT_DOSE_STORAGE RT Dose Storage.

MED_DCM_SOP_RT_STRUCTURE_SET_STORAGE RT Structure Set Storage.

MED_DCM_SOP_RT_TREATMENT_RECORD_STORAGE RT Beams Treatment Record
Storage.

MED_DCM_SOP_RT_PLAN_STORAGE RT Plan Storage.

MED_DCM_SOP_RT_BRACHY_TREATMENT_RECORD_STORAGE RT Brachy Treatment Record
Storage.

MED_DCM_SOP_RT_TREATMENT_SUMMARY_RECORD_STORAGE RT Treatment Summary Record
Storage.

MED_DCM_SOP_RT_ION_PLAN_STORAGE RT Ion Plan Storage.

MED_DCM_SOP_RT_ION_BEAMS_TREATMENT_RECORD_STORAGE RT Ion Beams Treatment
Record Storage.

MED_DCM_SOP_PAT_ROOT_QR_FIND Patient Root Query/Retrieve

ImageGear Professional v18 for Mac | 1628

Information Model - FIND.

MED_DCM_SOP_PAT_ROOT_QR_MOVE Patient Root Query/Retrieve
Information Model - MOVE.

MED_DCM_SOP_PAT_ROOT_QR_GET Patient Root Query/Retrieve
Information Model - GET.

MED_DCM_SOP_STUDY_ROOT_QR_FIND Study Root Query/Retrieve
Information Model - FIND.

MED_DCM_SOP_STUDY_ROOT_QR_MOVE Study Root Query/Retrieve
Information Model - MOVE.

MED_DCM_SOP_STUDY_ROOT_QR_GET Study Root Query/Retrieve
Information Model - GET.

MED_DCM_SOP_PAT_STUDY_ROOT_QR_FIND Patient/Study Only
Query/Retrieve Information
Model - FIND (Retired).

MED_DCM_SOP_PAT_STUDY_ROOT_QR_MOVE Patient/Study Only
Query/Retrieve Information
Model - MOVE (Retired).

MED_DCM_SOP_PAT_STUDY_ROOT_QR_GET Patient/Study Only
Query/Retrieve Information
Model - GET (Retired).

MED_DCM_SOP_COMPOSITE_INSTANCE_ROOT_RETRIEVE_MOVE Composite Instance Root
Retrieve - MOVE.

MED_DCM_SOP_COMPOSITE_INSTANCE_ROOT_RETRIEVE_GET Composite Instance Root
Retrieve - GET.

MED_DCM_SOP_COMPOSITE_INSTANCE_RETRIEVE_WITHOUT_BULK_DATA_GET Composite Instance Retrieve
Without Bulk Data - GET.

MED_DCM_SOP_MODALITY_WORKLIST_FIND Modality Worklist Information
Model - FIND.

MED_DCM_SOP_GEN_WORKLIST_MANAGEMENT_META General Purpose Worklist
Management Meta SOP Class.

MED_DCM_SOP_GEN_WORKLIST_FIND General Purpose Worklist
Information Model - FIND.

MED_DCM_SOP_GEN_SCHEDULED_PROC_STEP General Purpose Scheduled
Procedure Step.

MED_DCM_SOP_GEN_PERFORMED_PROC_STEP General Purpose Performed
Procedure Step.

MED_DCM_SOP_INSTANCE_AVAILABILITY_NOTIFICATION Instance Availability Notification
SOP Class.

MED_DCM_SOP_RT_BEAMS_DELIVERY_INSTRUCTION_STORAGE RT Beams Delivery Instruction
Storage (Supplement 74 Frozen
Draft).

MED_DCM_SOP_RT_CONVENTIONAL_MACHINE_VERIFICATION RT Conventional Machine
Verification (Supplement 74
Frozen Draft).

MED_DCM_SOP_RT_ION_MACHINE_VERIFICATION RT Ion Machine Verification
(Supplement 74 Frozen Draft).

MED_DCM_SOP_UNIFIED_WORKLIST_PROC_STEP_SERVICE_CLASS Unified Worklist and Procedure
Step Service class.

MED_DCM_SOP_UNIFIED_PROC_STEP_PUSH Unified Procedure Step - Push
SOP Class.

MED_DCM_SOP_UNIFIED_PROC_STEP_WATCH Unified Procedure Step - Watch
SOP Class.

MED_DCM_SOP_UNIFIED_PROC_STEP_PULL Unified Procedure Step - Pull
SOP Class.

ImageGear Professional v18 for Mac | 1629

MED_DCM_SOP_UNIFIED_PROC_STEP_EVENT Unified Procedure Step - Event
SOP Class.

MED_DCM_SOP_UNIFIED_WORKLIST_PROC_STEP_INSTANCE Unified Worklist and Procedure
Step SOP Instance (Well-
known).

MED_DCM_SOP_GENERAL_RELEVANT_PATIENT_INFORMATION_QUERY General Relevant Patient
Information Query.

MED_DCM_SOP_BREAST_IMAGING_RELEVANT_PATIENT_INFORMATION_QUERY Breast Imaging Relevant
Patient Information Query.

MED_DCM_SOP_CARDIAC_RELEVANT_PATIENT_INFORMATION_QUERY Cardiac Relevant Patient
Information Query.

MED_DCM_SOP_HANGING_PROTOCOL_STORAGE Hanging Protocol Storage.

MED_DCM_SOP_HANGING_PROTOCOL_INFORMATION_MODEL_FIND Hanging Protocol Information
Model - FIND.

MED_DCM_SOP_HANGING_PROTOCOL_INFORMATION_MODEL_MOVE Hanging Protocol Information
Model - MOVE.

MED_DCM_SOP_HANGING_PROTOCOL_INFORMATION_MODEL_GET Hanging Protocol Information
Model - GET.

MED_DCM_SOP_COLOR_PALETTE_STORAGE Color Palette Storage.

MED_DCM_SOP_COLOR_PALETTE_INFORMATION_MODEL_FIND Color Palette Information Model
- FIND.

MED_DCM_SOP_COLOR_PALETTE_INFORMATION_MODEL_MOVE Color Palette Information Model
- MOVE.

MED_DCM_SOP_COLOR_PALETTE_INFORMATION_MODEL_GET Color Palette Information Model
- GET.

MED_DCM_SOP_PRODUCT_CHARACTERISTICS Product Characteristics Query
SOP Class.

MED_DCM_SOP_SUBSTANCE_APPROVAL_QUERY Substance Approval Query SOP
Class.

MED_DCM_SOP_GE_PLAN_STORAGE GE Plan Storage.

MED_DCM_SOP_GE_MACHINE_STORAGE GE Machine Storage.

MED_DCM_SOP_MSICOM3_LZW_STORAGE MsiCOM3 LZW storage.

ImageGear Professional v18 for Mac | 1630

1.3.2.4.8 enumIGMedTag

Specifies DICOM tag identifiers.

Values:

DCM_TAG_CommandGroupLength Command Group Length.

DCM_TAG_Group0000Length Command Group Length. This
tag name has been deprecated
and will be removed from the
public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_CommandLengthToEnd Command Length to End. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_Group0000LengthToEnd Command Length to End. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_LengthToEnd Command Length to End. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_AffectedSOPClassUID Affected SOP Class UID.

DCM_TAG_RequestedSOPClassUID Requested SOP Class UID.

DCM_TAG_RecognitionCode Recognition Code. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_CommandField Command Field.

DCM_TAG_MessageID Message ID.

DCM_TAG_MessageIDBeingRespondedTo Message ID Being Responded To.

DCM_TAG_SenderAeTitle Initiator. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_ReceiverAeTitle Receiver. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_FindLocation Find Location. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_MoveDestination Move Destination.

DCM_TAG_Priority Operation Priority.

DCM_TAG_DataSetType Data Set Type.

DCM_TAG_NumberOfMatches Number of Matches. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ResponseSequenceNumber Response Sequence Number.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_Status Operation Status.

ImageGear Professional v18 for Mac | 1631

DCM_TAG_OffendingElement Offending Element.

DCM_TAG_ErrorComment Error Comment.

DCM_TAG_ErrorID Error Identifier.

DCM_TAG_AffectedSOPInstanceUID Affected SOP Instance UID.

DCM_TAG_RequestedSOPInstanceUID Requested SOP Instance UID.

DCM_TAG_EventTypeID Event Type ID.

DCM_TAG_AttributeIdentifierList Attribute Identifier List.

DCM_TAG_ActionTypeID Action Type ID.

DCM_TAG_NumberOfRemainingSuboperations Number of Remaining Sub-
operations.

DCM_TAG_NumberOfCompletedSuboperations Number of Completed Sub-
operations.

DCM_TAG_NumberOfFailedSuboperations Number of Failed Sub-
operations.

DCM_TAG_NumberOfWarningSuboperations Number of Warning Sub-
operations.

DCM_TAG_MoveOriginatorApplicationEntityTitle Move Originator Application
Entity Title.

DCM_TAG_MoveOriginatorMessageID Move Originator Message ID.

DCM_TAG_DIALOGReceiver DIALOG Receiver. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_TerminalType Terminal Type. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_MessageSetID Message Set ID. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_EndMessageID End Message ID. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_DisplayFormat Display Format. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_PagePositionID Page Position ID. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_TextFormatID Text Format ID. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_NormalReverse Normal Reverse. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_NorRev Normal Reverse. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_AddGrayScale Add Gray Scale. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

ImageGear Professional v18 for Mac | 1632

DCM_TAG_Borders Borders. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_Copies Copies. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_Erase Erase. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_Print Print. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_Overlays Overlays. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_FileMetaInformationGroupLength File Meta Information Group
Length.

DCM_TAG_Group0002Length File Meta Information Group
Length. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_FileMetaInformationVersion File Meta Information Version.

DCM_TAG_MediaStorageSOPClassUID Media Storage SOP Class UID.

DCM_TAG_MediaStoredSOPClassUID Media Storage SOP Class UID.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_MediaStorageSOPInstanceUID Media Storage SOP Instance
UID.

DCM_TAG_MediaStoredSOPInstanceUID Media Storage SOP Instance
UID. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_TransferSyntaxUID Transfer Syntax UID. This tells
whether the DICOM file uses big
or little endian format, which
compression is used, if any, and
whether the file uses Implicit or
Explicit Value Representation
syntax.

DCM_TAG_ImplementationClassUID Implementation Class UID.

DCM_TAG_ImplementationVersionName Implementation Version Name.

DCM_TAG_SourceApplicationEntityTitle Source Application Entity Title.

DCM_TAG_PrivateInformationCreatorUID Private Information Creator UID.

DCM_TAG_PrivateInformation Private Information.

DCM_TAG_Group0004Length Group 0004 Length. This tag is
marked as retired in DICOM

ImageGear Professional v18 for Mac | 1633

specification. See DICOM
specification for alternatives.

DCM_TAG_FilesetID File-set ID.

DCM_TAG_FilesetDescriptorFileID File-set Descriptor File ID.

DCM_TAG_SpecificCharacterSetOfFilesetDescriptorFile Specific Character Set of File-set
Descriptor File.

DCM_TAG_CharSet Specific Character Set of File-set
Descriptor File. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_OffsetOfTheFirstDirectoryRecordOfTheRootDirectoryEntity Offset of the First Directory
Record of the Root Directory
Entity.

DCM_TAG_RootDirectoryEntitysFirstDirectoryRecordOffset Offset of the First Directory
Record of the Root Directory
Entity. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_OffsetOfTheLastDirectoryRecordOfTheRootDirectoryEntity Offset of the Last Directory
Record of the Root Directory
Entity.

DCM_TAG_RootDirectoryEntitysLastDirectoryRecordOffset Offset of the Last Directory
Record of the Root Directory
Entity. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_FilesetConsistencyFlag File-set Consistency Flag.

DCM_TAG_DirectoryRecordSequence Directory Record Sequence.

DCM_TAG_OffsetOfTheNextDirectoryRecord Offset of the Next Directory
Record.

DCM_TAG_NextDirectoryRecordOffset Offset of the Next Directory
Record. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_RecordInUseFlag Record In-use Flag.

DCM_TAG_OffsetOfReferencedLowerLevelDirectoryEntity Offset of Referenced Lower-Level
Directory Entity.

DCM_TAG_ReferencedLowerlevelDirectoryEntityOffset Offset of Referenced Lower-Level
Directory Entity. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_DirectoryRecordType Directory Record Type.

DCM_TAG_PrivateRecordUID Private Record UID.

DCM_TAG_ReferencedFileID Referenced File ID.

DCM_TAG_MRDRDirectoryRecordOffset MRDR Directory Record Offset.

ImageGear Professional v18 for Mac | 1634

This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ReferencedSOPClassUIDInFile Referenced SOP Class UID in
File.

DCM_TAG_ReferencedSOPInstanceUIDInFile Referenced SOP Instance UID in
File.

DCM_TAG_ReferencedTransferSyntaxUIDInFile Referenced Transfer Syntax UID
in File.

DCM_TAG_ReferencedFileXferSynUID Referenced Transfer Syntax UID
in File.

DCM_TAG_ReferencedRelatedGeneralSOPClassUIDinFile Referenced Related General SOP
Class UID in File.

DCM_TAG_NumberOfReferences Number of References. This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_Group0008Length Group 0008 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_Group0008LengthToEnd Group 0008 Length to End. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_SpecificCharacterSet Specific Character Set.

DCM_TAG_LanguageCodeSequence Language Code Sequence.

DCM_TAG_ImageType Image Type.

DCM_TAG_RecognitionCodeRetired Recognition Code (Retired). This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_InstanceCreationDate Instance Creation Date.

DCM_TAG_InstanceCreationTime Instance Creation Time.

DCM_TAG_InstanceCreatorUID Instance Creator UID.

DCM_TAG_SOPClassUID SOP Class UID.

DCM_TAG_SOPInstanceUID SOP Instance UID.

DCM_TAG_RelatedGeneralSOPClassUID Related General SOP Class UID.

DCM_TAG_RelatedGeneral Related General SOP Class UID.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_OriginalSpecializedSOPClassUID Original Specialized SOP Class
UID.

DCM_TAG_OriginalSpecialized Original Specialized SOP Class
UID. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_StudyDate Study Date.

DCM_TAG_SeriesDate Series Date.

DCM_TAG_AcquisitionDate Acquisition Date.

DCM_TAG_ContentDate Content Date.

ImageGear Professional v18 for Mac | 1635

DCM_TAG_OverlayDate Overlay Date. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_CurveDate Curve Date. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_AcquisitionDatetime Acquisition DateTime. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_StudyTime Study Time.

DCM_TAG_SeriesTime Series Time.

DCM_TAG_AcquisitionTime Acquisition Time.

DCM_TAG_ContentTime Content Time.

DCM_TAG_OverlayTime Overlay Time. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_CurveTime Curve Time. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_DataSetSubtype Data Set Subtype. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_NuclearMedicineSeriesType Nuclear Medicine Series Type.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_AccessionNumber Accession Number.

DCM_TAG_IssuerOfAccessionNumberSequence Issuer of Accession Number
Sequence.

DCM_TAG_QueryRetrieveLevel Query/Retrieve Level.

DCM_TAG_RetrieveAETitle Retrieve AE Title.

DCM_TAG_InstanceAvailability Instance Availability.

DCM_TAG_FailedSOPInstanceUIDList Failed SOP Instance UID List.

DCM_TAG_Modality Modality value.

DCM_TAG_ModalitiesInStudy Modalities in Study.

DCM_TAG_SOPClassesInStudy SOP Classes In Study.

DCM_TAG_ConversionType Conversion Type.

DCM_TAG_PresentationIntentType Presentation Intent Type.

DCM_TAG_Manufacturer The Manufacturer.

DCM_TAG_InstitutionName Institution Name.

DCM_TAG_InstitutionAddress Institution Address.

DCM_TAG_InstitutionCodeSequence Institution Code Sequence.

DCM_TAG_ReferringPhysicianName Referring Physician's Name.

DCM_TAG_ReferringPhysiciansName Referring Physician's Name. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous

ImageGear Professional v18 for Mac | 1636

line.

DCM_TAG_ReferringPhysicianAddress Referring Physician's Address.

DCM_TAG_ReferringPhysiciansAddress Referring Physician's Address.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_ReferringPhysicianTelephoneNumbers Referring Physician's Telephone
Numbers.

DCM_TAG_ReferringPhysiciansTelephoneNumbers Referring Physician's Telephone
Numbers. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ReferringPhysicianIdentificationSequence Referring Physician Identification
Sequence.

DCM_TAG_ReferringPhysicianIDSequence Referring Physician Identification
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_CodeValue Code Value.

DCM_TAG_CodingSchemeDesignator Coding Scheme Designator.

DCM_TAG_CodingSchemeVersion Coding Scheme Version.

DCM_TAG_CodeMeaning Code Meaning.

DCM_TAG_MappingResource Mapping Resource.

DCM_TAG_ContextGroupVersion Context Group Version.

DCM_TAG_ContextGroupLocalVersion Context Group Local Version.

DCM_TAG_ContextGroupExtensionFlag Context Group Extension Flag.

DCM_TAG_CodingSchemeUID Coding Scheme UID.

DCM_TAG_ContextGroupExtensionCreatorUID Context Group Extension Creator
UID.

DCM_TAG_ContextIdentifier Context Identifier.

DCM_TAG_CodingSchemeIdentificationSequence Coding Scheme Identification
Sequence.

DCM_TAG_CodingSchemeIDSequence Coding Scheme Identification
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_CodingSchemeRegistry Coding Scheme Registry.

DCM_TAG_CodingSchemeExternalID Coding Scheme External ID.

DCM_TAG_CodingSchemeName Coding Scheme Name.

DCM_TAG_CodingSchemeResponsibleOrganization Coding Scheme Responsible
Organization.

DCM_TAG_ContextUID Context UID.

DCM_TAG_TimezoneOffsetFromUTC Timezone Offset From UTC.

DCM_TAG_NetworkID Network ID. This tag is marked
as retired in DICOM specification.

ImageGear Professional v18 for Mac | 1637

See DICOM specification for
alternatives.

DCM_TAG_StationName Station Name.

DCM_TAG_StudyDescription Study Description.

DCM_TAG_ProcedureCodeSequence Procedure Code Sequence.

DCM_TAG_SeriesDescription Series Description.

DCM_TAG_SeriesDescriptionCodeSequence Series Description Code
Sequence.

DCM_TAG_InstitutionalDepartmentName Institutional Department Name.

DCM_TAG_PhysiciansOfRecord Physician(s) of Record.

DCM_TAG_PhysiciansOfRecordIdentificationSequence Physician(s) of Record
Identification Sequence.

DCM_TAG_PhysicianOfRecordIDSequence Physician(s) of Record
Identification Sequence. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_PerformingPhysicianName Performing Physician's Name.

DCM_TAG_PerformingPhysiciansName Performing Physician's Name.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_PerformingPhysicianIdentificationSequence Performing Physician
Identification Sequence.

DCM_TAG_PerformingPhysicianIDSequence Performing Physician
Identification Sequence. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_NameOfPhysiciansReadingStudy Name of Physician(s) Reading
Study.

DCM_TAG_PhysiciansReadingStudyIdentificationSequence Physician(s) Reading Study
Identification Sequence.

DCM_TAG_PhysicianReadingStudyIDSequence Physician(s) Reading Study
Identification Sequence. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_OperatorsName Operators' Name.

DCM_TAG_OperatorIdentificationSequence Operator Identification
Sequence.

DCM_TAG_OperatorIDSequence Operator Identification
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_AdmittingDiagnosesDescription Admitting Diagnoses Description.

DCM_TAG_AdmittingDiagnosesCodeSequence Admitting Diagnoses Code
Sequence.

ImageGear Professional v18 for Mac | 1638

DCM_TAG_AdmittingDiagnosisCodeSequence Admitting Diagnoses Code
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ManufacturerModelName Manufacturer's Model Name.

DCM_TAG_ManufacturersModelName Manufacturer's Model Name. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_ReferencedResultsSequence Referenced Results Sequence.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ReferencedStudySequence Referenced Study Sequence.

DCM_TAG_ReferencedPerformedProcedureStepSequence Referenced Performed Procedure
Step Sequence.

DCM_TAG_ReferencedPerformedProcStepSequence Referenced Performed Procedure
Step Sequence. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ReferencedSeriesSequence Referenced Series Sequence.

DCM_TAG_ReferencedPatientSequence Referenced Patient Sequence.

DCM_TAG_ReferencedVisitSequence Referenced Visit Sequence.

DCM_TAG_ReferencedOverlaySequence Referenced Overlay Sequence.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ReferencedStereometricInstanceSequence Referenced Stereometric
Instance Sequence.

DCM_TAG_ReferencedWaveformSequence Referenced Waveform Sequence.

DCM_TAG_ReferencedImageSequence Referenced Image Sequence.

DCM_TAG_ReferencedCurveSequence Referenced Curve Sequence.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ReferencedPreviousWaveform Referenced Previous Waveform.

DCM_TAG_ReferencedInstanceSequence Referenced Instance Sequence.

DCM_TAG_ReferencedSimultaneousWaveforms Referenced Instance Sequence.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_ReferencedRealWorldValueMappingInstanceSequence Referenced Real World Value
Mapping Instance Sequence.

DCM_TAG_ReferencedRealWorldValueMappingInstance Referenced Real World Value
Mapping Instance Sequence. This
tag name has been deprecated
and will be removed from the
public API in a future release.

ImageGear Professional v18 for Mac | 1639

Please use the tag with the same
value defined in the previous
line.

DCM_TAG_ReferencedSubsequentWaveform Referenced Subsequent
Waveform. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_ReferencedSOPClassUID Referenced SOP Class UID.

DCM_TAG_ReferencedSOPInstanceUID Referenced SOP Instance UID.

DCM_TAG_SOPClassesSupported SOP Classes Supported.

DCM_TAG_SOPClassSupported SOP Classes Supported. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_ReferencedFrameNumber Referenced Frame Number.

DCM_TAG_SimpleFrameList Simple Frame List.

DCM_TAG_CalculatedFrameList Calculated Frame List.

DCM_TAG_TimeRange Time Range.

DCM_TAG_FrameExtractionSequence Frame Extraction Sequence.

DCM_TAG_MultiFrameSourceSOPInstanceUID Multi-Frame Source SOP
Instance UID.

DCM_TAG_TransactionUID Transaction UID.

DCM_TAG_FailureReason Failure Reason.

DCM_TAG_FailedSOPSequence Failed SOP Sequence.

DCM_TAG_ReferencedSOPSequence Referenced SOP Sequence.

DCM_TAG_StudiesContainingOtherReferencedInstancesSequence Studies Containing Other
Referenced Instances Sequence.

DCM_TAG_RelatedSeriesSequence Related Series Sequence.

DCM_TAG_LossyImageCompressionRetired Lossy Image Compression
(Retired). This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_DerivationDescription Derivation Description.

DCM_TAG_SourceImageSequence Source Image Sequence.

DCM_TAG_StageName Stage Name.

DCM_TAG_StageNumber Stage Number.

DCM_TAG_NumberOfStages Number of Stages.

DCM_TAG_ViewName View Name.

DCM_TAG_ViewNumber View Number.

DCM_TAG_NumberOfEventTimers Number of Event Timers.

DCM_TAG_NumberOfViewsInStage Number of Views in Stage.

DCM_TAG_EventElapsedTimes Event Elapsed Time(s).

DCM_TAG_EventTimerNames Event Timer Name(s).

DCM_TAG_EventTimerSequence Event Timer Sequence.

DCM_TAG_EventTimeOffset Event Time Offset.

DCM_TAG_EventCodeSequence Event Code Sequence.

DCM_TAG_StartTrim Start Trim.

DCM_TAG_StopTrim Stop Trim.

DCM_TAG_RecommendedDisplayFrameRate Recommended Display Frame

ImageGear Professional v18 for Mac | 1640

Rate.

DCM_TAG_TransducerPosition Transducer Position.

DCM_TAG_TransducerOrientation Transducer Orientation.

DCM_TAG_AnatomicStructure Anatomic Structure.

DCM_TAG_AnatomicRegionSequence Anatomic Region Sequence.

DCM_TAG_AnatomicRegionModifierSequence Anatomic Region Modifier
Sequence.

DCM_TAG_PrimaryAnatomicStructureSequence Primary Anatomic Structure
Sequence.

DCM_TAG_AnatomicStructureSpaceOrRegionSequence Anatomic Structure, Space or
Region Sequence.

DCM_TAG_AnatomicStructureSpaceRegionSequence Anatomic Structure, Space or
Region Sequence. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_PrimaryAnatomicStructureModifierSequence Primary Anatomic Structure
Modifier Sequence.

DCM_TAG_TransducerPositionSequence Transducer Position Sequence.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_TransducerPositionModifierSequence Transducer Position Modifier
Sequence. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_TransducerOrientationSequence Transducer Orientation
Sequence. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_TransducerOrientationModifierSequence Transducer Orientation Modifier
Sequence. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_AnatomicStructureSpaceOrRegionCodeSequence Anatomic Structure Space Or
Region Code Sequence (Trial).
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_AnatomicPortalOfEntranceCodeSequence Anatomic Portal Of Entrance
Code Sequence (Trial). This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_AnatomicApproachDirectionCodeSequence Anatomic Approach Direction
Code Sequence (Trial). This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_AnatomicPerspectiveDescription Anatomic Perspective Description
(Trial). This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_AnatomicPerspectiveCodeSequence Anatomic Perspective Code
Sequence (Trial). This tag is

ImageGear Professional v18 for Mac | 1641

marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_AnatomicLocationOfExaminingInstrumentDescription Anatomic Location Of Examining
Instrument Description (Trial).
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_AnatomicLocationOfExaminingInstrumentCodeSequence Anatomic Location Of Examining
Instrument Code Sequence
(Trial). This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_AnatomicStructureSpaceOrRegionModifierCodeSequence Anatomic Structure Space Or
Region Modifier Code Sequence
(Trial). This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_OnAxisBackgroundAnatomicStructureCodeSequence OnAxis Background Anatomic
Structure Code Sequence (Trial).
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_AlternateRepresentationSequence Alternate Representation
Sequence.

DCM_TAG_IrradiationEventUID Irradiation Event UID.

DCM_TAG_IdentifyingComments Identifying Comments. This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_FrameType Frame Type.

DCM_TAG_ReferencedImageEvidenceSequence Referenced Image Evidence
Sequence.

DCM_TAG_RefImgEvidenceSequence Referenced Image Evidence
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ReferencedRawDataSequence Referenced Raw Data Sequence.

DCM_TAG_RefRawDataSequence Referenced Raw Data Sequence.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_CreatorVersionUID Creator Version UID.

DCM_TAG_DerivationImageSequence Derivation Image Sequence.

DCM_TAG_DerivationImgSequence Derivation Image Sequence. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_SourceImageEvidenceSequence Source Image Evidence
Sequence.

ImageGear Professional v18 for Mac | 1642

DCM_TAG_SrcImgEvidenceSequence Source Image Evidence
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_PixelPresentation Pixel Presentation.

DCM_TAG_VolumetricProperties Volumetric Properties.

DCM_TAG_VolumeBasedCalculationTechnique Volume Based Calculation
Technique.

DCM_TAG_VolumeBasedCalcTechnique Volume Based Calculation
Technique. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ComplexImageComponent Complex Image Component.

DCM_TAG_ComplexImgComponent Complex Image Component. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_AcquisitionContrast Acquisition Contrast.

DCM_TAG_DerivationCodeSequence Derivation Code Sequence.

DCM_TAG_ReferencedPresentationStateSequence Referenced Presentation State
Sequence.

DCM_TAG_ReferencedGrayscalePresentationStateSequence Referenced Grayscale
Presentation State Sequence.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_RefGrayscalePresStateSequence Referenced Grayscale
Presentation State Sequence.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_ReferencedOtherPlaneSequence Referenced Other Plane
Sequence.

DCM_TAG_FrameDisplaySequence Frame Display Sequence.

DCM_TAG_RecommendedDisplayFrameRateinFloat Recommended Display Frame
Rate in Float.

DCM_TAG_SkipFrameRangeFlag Skip Frame Range Flag.

DCM_TAG_Group0010Length Group 0010 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_PatientName Patient's Name.

DCM_TAG_PatientsName Patient's Name. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the

ImageGear Professional v18 for Mac | 1643

tag with the same value defined
in the previous line.

DCM_TAG_PatientID Patient ID.

DCM_TAG_IssuerOfPatientID Issuer of Patient ID.

DCM_TAG_TypeOfPatientID Type of Patient ID.

DCM_TAG_IssuerOfPatientIDQualifiersSequence Issuer of Patient ID Qualifiers
Sequence.

DCM_TAG_PatientBirthDate Patient's Birth Date.

DCM_TAG_PatientsBirthDate Patient's Birth Date. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_PatientBirthTime Patient's Birth Time.

DCM_TAG_PatientsBirthTime Patient's Birth Time. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_PatientSex Patient's Sex.

DCM_TAG_PatientsSex Patient's Sex. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_PatientInsurancePlanCodeSequence Patient's Insurance Plan Code
Sequence.

DCM_TAG_PatientsInsurancePlanCodeSequence Patient's Insurance Plan Code
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_PatientPrimaryLanguageCodeSequence Patient's Primary Language Code
Sequence.

DCM_TAG_PatientsPrimaryLanguageCodeSequence Patient's Primary Language Code
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_PatientPrimaryLangCodeSequence Patient's Primary Language Code
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_PatientPrimaryLanguageModifierCodeSequence Patient's Primary Language
Modifier Code Sequence.

DCM_TAG_PatientsPrimaryLanguageCodeModifierSequence Patient's Primary Language Code
Modifier Sequence. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value

ImageGear Professional v18 for Mac | 1644

defined in the previous line.

DCM_TAG_PatientPrimaryLangCodeModSequence Patient's Primary Language Code
Modifier Sequence. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_OtherPatientIDs Other Patient IDs.

DCM_TAG_OtherPatientNames Other Patient Names.

DCM_TAG_OtherPatientIDsSequence Other Patient IDs Sequence.

DCM_TAG_PatientBirthName Patient's Birth Name.

DCM_TAG_PatientsBirthName Patient's Birth Name. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_PatientAge Patient's Age.

DCM_TAG_PatientsAge Patient's Age. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_PatientSize Patient's Size.

DCM_TAG_PatientsSize Patient's Size. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_PatientWeight Patient's Weight.

DCM_TAG_PatientsWeight Patient's Weight. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_PatientAddress Patient's Address.

DCM_TAG_PatientsAddress Patient's Address. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_InsurancePlanIdentification Insurance Plan Identification.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_PatientMotherBirthName Patient's Mother's Birth Name.

DCM_TAG_PatientsMothersBirthName Patient's Mother's Birth Name.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_MilitaryRank Military Rank.

DCM_TAG_BranchOfService Branch of Service.

ImageGear Professional v18 for Mac | 1645

DCM_TAG_MedicalRecordLocator Medical Record Locator.

DCM_TAG_MedicalAlerts Medical Alerts.

DCM_TAG_Allergies Allergies value.

DCM_TAG_ContrastAllergies Allergies value. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_CountryOfResidence Country of Residence.

DCM_TAG_RegionOfResidence Region of Residence.

DCM_TAG_PatientTelephoneNumbers Patient's Telephone Numbers.

DCM_TAG_PatientsTelephoneNumbers Patient's Telephone Numbers.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_EthnicGroup Ethnic Group.

DCM_TAG_Occupation Patient's Occupation.

DCM_TAG_SmokingStatus Smoking Status.

DCM_TAG_AdditionalPatientHistory Additional Patient History.

DCM_TAG_PregnancyStatus Pregnancy Status.

DCM_TAG_LastMenstrualDate Last Menstrual Date.

DCM_TAG_PatientReligiousPreference Patient's Religious Preference.

DCM_TAG_PatientsReligiousPreference Patient's Religious Preference.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_PatientSpeciesDescription Patient Species Description.

DCM_TAG_PatientSpeciesCodeSequence Patient Species Code Sequence.

DCM_TAG_PatientSexNeutered Patient's Sex Neutered.

DCM_TAG_PatientsSexNeutered Patient's Sex Neutered. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_AnatomicalOrientationType Anatomical Orientation Type.

DCM_TAG_PatientBreedDescription Patient Breed Description.

DCM_TAG_PatientBreedCodeSequence Patient Breed Code Sequence.

DCM_TAG_BreedRegistrationSequence Breed Registration Sequence.

DCM_TAG_BreedRegistrationNumber Breed Registration Number.

DCM_TAG_BreedRegistryCodeSequence Breed Registry Code Sequence.

DCM_TAG_ResponsiblePerson Responsible Person.

DCM_TAG_ResponsiblePersonRole Responsible Person Role.

DCM_TAG_ResponsibleOrganization Responsible Organization.

DCM_TAG_PatientResponsibleOrganization Responsible Organization. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same

ImageGear Professional v18 for Mac | 1646

value defined in the previous
line.

DCM_TAG_PatientComments Patient Comments.

DCM_TAG_ExaminedBodyThickness Examined Body Thickness.

DCM_TAG_Group0012Length Group 0012 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ClinicalTrialSponsorName Clinical Trial Sponsor Name.

DCM_TAG_ClinicalTrialProtocolID Clinical Trial Protocol ID.

DCM_TAG_ClinicalTrialProtocolName Clinical Trial Protocol Name.

DCM_TAG_ClinicalTrialSiteID Clinical Trial Site ID.

DCM_TAG_ClinicalTrialSiteName Clinical Trial Site Name.

DCM_TAG_ClinicalTrialSubjectID Clinical Trial Subject ID.

DCM_TAG_ClinicalTrialSubjectReadingID Clinical Trial Subject Reading ID.

DCM_TAG_ClinicalTrialTimePointID Clinical Trial Time Point ID.

DCM_TAG_ClinicalTrialTimePointDescription Clinical Trial Time Point
Description.

DCM_TAG_ClinicalTrialTimePointDesc Clinical Trial Time Point
Description. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ClinicalTrialCoordinatingCenterName Clinical Trial Coordinating Center
Name.

DCM_TAG_ClinicalTrialCenterName Clinical Trial Coordinating Center
Name. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_PatientIdentityRemoved Patient Identity Removed.

DCM_TAG_DeidentificationMethod De-identification Method.

DCM_TAG_DeidentificationMethodCodeSequence De-identification Method Code
Sequence.

DCM_TAG_ClinicalTrialSeriesID Clinical Trial Series ID.

DCM_TAG_ClinicalTrialSeriesDescription Clinical Trial Series Description.

DCM_TAG_ClinicalTrialProtocolEthicsCommitteeName Clinical Trial Protocol Ethics
Committee Name.

DCM_TAG_ClinicalTrialProtocolEthicsCommitteeApprovalNumber Clinical Trial Protocol Ethics
Committee Approval Number.

DCM_TAG_ConsentForClinicalTrialUseSequence Consent for Clinical Trial Use
Sequence.

DCM_TAG_DistributionType Distribution Type.

DCM_TAG_ConsentForDistributionFlag Consent for Distribution Flag.

DCM_TAG_Group0018Length Group 0018 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ContrastBolusAgent Contrast/Bolus Agent.

DCM_TAG_ContrastBolusAgentSequence Contrast/Bolus Agent Sequence.

DCM_TAG_ContrastBolusAdministrationRouteSequence Contrast/Bolus Administration
Route Sequence.

ImageGear Professional v18 for Mac | 1647

DCM_TAG_ContrastBolusAdminRouteSequence Contrast/Bolus Administration
Route Sequence. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_BodyPartExamined Body Part Examined.

DCM_TAG_ScanningSequence Scanning Sequence.

DCM_TAG_SequenceVariant Sequence Variant.

DCM_TAG_ScanOptions Scan Options.

DCM_TAG_MrAcquisitionType MR Acquisition Type.

DCM_TAG_SequenceName Sequence Name.

DCM_TAG_AngioFlag Angio Flag.

DCM_TAG_InterventionDrugInformationSequence Intervention Drug Information
Sequence.

DCM_TAG_InterventionDrugInfoSequence Intervention Drug Information
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_InterventionDrugStopTime Intervention Drug Stop Time.

DCM_TAG_InterventionDrugDose Intervention Drug Dose.

DCM_TAG_InterventionDrugCodeSequence Intervention Drug Code
Sequence.

DCM_TAG_InterventionDrugSequence Intervention Drug Code
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_AdditionalDrugSequence Additional Drug Sequence.

DCM_TAG_Radionuclide Radionuclide. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_Radiopharmaceutical Radiopharmaceutical value.

DCM_TAG_EnergyWindowCenterline Energy Window Centerline. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_EnergyWindowTotalWidth Energy Window Total Width. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_InterventionDrugName Intervention Drug Name.

DCM_TAG_InterventionDrugStartTime Intervention Drug Start Time.

DCM_TAG_InterventionSequence Intervention Sequence.

DCM_TAG_TherapyType Therapy Type. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_InterventionStatus Intervention Status.

DCM_TAG_TherapyDescription Therapy Description. This tag is
marked as retired in DICOM

ImageGear Professional v18 for Mac | 1648

specification. See DICOM
specification for alternatives.

DCM_TAG_InterventionDescription Intervention Description.

DCM_TAG_CineRate Cine Rate.

DCM_TAG_InitialCineRunState Initial Cine Run State.

DCM_TAG_SliceThickness Slice Thickness.

DCM_TAG_Kvp KVP (kilovolts peak).

DCM_TAG_CountsAccumulated Counts Accumulated.

DCM_TAG_AcquisitionTerminationCondition Acquisition Termination
Condition.

DCM_TAG_EffectiveDuration Effective Duration.

DCM_TAG_EffectiveSeriesDuration Effective Duration. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_AcquisitionStartCondition Acquisition Start Condition.

DCM_TAG_AcqStartCondition Acquisition Start Condition. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_AcquisitionStartConditionData Acquisition Start Condition Data.

DCM_TAG_AcqStartConditionData Acquisition Start Condition Data.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_AcquisitionTerminationConditionData Acquisition Termination Condition
Data.

DCM_TAG_AcqStopConditionData Acquisition Termination Condition
Data. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_RepetitionTime Repetition Time.

DCM_TAG_EchoTime Echo Time.

DCM_TAG_InversionTime Inversion Time.

DCM_TAG_NumberOfAverages Number of Averages.

DCM_TAG_ImagingFrequency Imaging Frequency.

DCM_TAG_ImagedNucleus Imaged Nucleus.

DCM_TAG_EchoNumbers Echo Number(s).

DCM_TAG_MagneticFieldStrength Magnetic Field Strength.

DCM_TAG_SpacingBetweenSlices Spacing Between Slices.

DCM_TAG_NumberOfPhaseEncodingSteps Number of Phase Encoding
Steps.

DCM_TAG_DataCollectionDiameter Data Collection Diameter.

DCM_TAG_EchoTrainLength Echo Train Length.

DCM_TAG_PercentSampling Percent Sampling.

ImageGear Professional v18 for Mac | 1649

DCM_TAG_PercentPhaseFieldOfView Percent Phase Field of View.

DCM_TAG_PixelBandwidth Pixel Bandwidth.

DCM_TAG_DeviceSerialNumber Device Serial Number.

DCM_TAG_DeviceUID Device UID.

DCM_TAG_DeviceID Device ID.

DCM_TAG_PlateID Plate Identifier.

DCM_TAG_GeneratorID Generator ID.

DCM_TAG_GridID Grid Identifier.

DCM_TAG_CassetteID Cassette ID.

DCM_TAG_GantryID Gantry ID.

DCM_TAG_SecondaryCaptureDeviceID Secondary Capture Device ID.

DCM_TAG_HardcopyCreationDeviceID Hardcopy Creation Device ID.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_DateOfSecondaryCapture Date of Secondary Capture.

DCM_TAG_TimeOfSecondaryCapture Time of Secondary Capture.

DCM_TAG_SecondaryCaptureDeviceManufacturer Secondary Capture Device
Manufacturer.

DCM_TAG_SecondaryCaptureDeviceManufacturers Secondary Capture Device
Manufacturers. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_HardcopyDeviceManufacturer Hardcopy Device Manufacturer.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_SecondaryCaptureDeviceManufacturerModelName Secondary Capture Device
Manufacturer's Model Name.

DCM_TAG_SecondaryCaptureDeviceManufacturersModelName Secondary Capture Device
Manufacturer's Model Name. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_SecondaryCaptureDeviceSoftwareVersions Secondary Capture Device
Software Version(s).

DCM_TAG_HardcopyDeviceSoftwareVersion Hardcopy Device Software
Version. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_HardcopyDeviceManufacturersModelName Hardcopy Device Manufacturer's
Model Name. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_SoftwareVersions Software Version(s).

DCM_TAG_VideoImageFormatAcquired Video Image Format Acquired.

DCM_TAG_DigitalImageFormatAcquired Digital Image Format Acquired.

DCM_TAG_ProtocolName Protocol Name.

DCM_TAG_ContrastBolusRoute Contrast/Bolus Route.

ImageGear Professional v18 for Mac | 1650

DCM_TAG_ContrastBolusVolume Contrast/Bolus Volume.

DCM_TAG_ContrastBolusStartTime Contrast/Bolus Start Time.

DCM_TAG_ContrastBolusStopTime Contrast/Bolus Stop Time.

DCM_TAG_ContrastBolusTotalDose Contrast/Bolus Total Dose.

DCM_TAG_SyringeCounts Syringe Counts.

DCM_TAG_ContrastFlowRate Contrast Flow Rate.

DCM_TAG_ContrastFlowDuration Contrast Flow Duration.

DCM_TAG_ContrastBolusIngredient Contrast/Bolus Ingredient.

DCM_TAG_ContrastBolusIngredientConcentration Contrast/Bolus Ingredient
Concentration.

DCM_TAG_SpatialResolution Spatial Resolution.

DCM_TAG_TriggerTime Trigger Time.

DCM_TAG_TriggerSourceorType Trigger Source or Type.

DCM_TAG_NominalInterval Nominal Interval.

DCM_TAG_FrameTime Frame Time.

DCM_TAG_CardiacFramingType Cardiac Framing Type.

DCM_TAG_FramingType Cardiac Framing Type. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_FrameTimeVector Frame Time Vector.

DCM_TAG_FrameDelay Frame Delay.

DCM_TAG_ImageTriggerDelay Image Trigger Delay.

DCM_TAG_MultiplexGroupTimeOffset Multiplex Group Time Offset.

DCM_TAG_TriggerTimeOffset Trigger Time Offset.

DCM_TAG_SynchronizationTrigger Synchronization Trigger.

DCM_TAG_SynchronizationChannel Synchronization Channel.

DCM_TAG_TriggerSamplePosition Trigger Sample Position.

DCM_TAG_RadiopharmaceuticalRoute Radiopharmaceutical Route.

DCM_TAG_RadiopharmaRoute Radiopharmaceutical Route. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_RadiopharmaceuticalVolume Radiopharmaceutical Volume.

DCM_TAG_RadiopharmaVolume Radiopharmaceutical Volume.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_RadiopharmaceuticalStartTime Radiopharmaceutical Start Time.

DCM_TAG_RadiopharmaStartTime Radiopharmaceutical Start Time.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_RadiopharmaceuticalStopTime Radiopharmaceutical Stop Time.

ImageGear Professional v18 for Mac | 1651

DCM_TAG_RadiopharmaStopTime Radiopharmaceutical Stop Time.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_RadionuclideTotalDose Radionuclide Total Dose.

DCM_TAG_RadionuclideHalfLife Radionuclide Half Life.

DCM_TAG_RadionuclidePositronFraction Radionuclide Positron Fraction.

DCM_TAG_RadiopharmaceuticalSpecificActivity Radiopharmaceutical Specific
Activity.

DCM_TAG_RadiopharmaSpecificActivity Radiopharmaceutical Specific
Activity. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_RadiopharmaceuticalStartDatetime Radiopharmaceutical Start
DateTime. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_RadiopharmaceuticalStopDatetime Radiopharmaceutical Stop
DateTime. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_BeatRejectionFlag Beat Rejection Flag.

DCM_TAG_LowRrValue Low R-R Value.

DCM_TAG_HighRrValue High R-R Value.

DCM_TAG_IntervalsAcquired Intervals Acquired.

DCM_TAG_IntervalsRejected Intervals Rejected.

DCM_TAG_PvcRejection PVC Rejection.

DCM_TAG_SkipBeats Skip Beats.

DCM_TAG_HeartRate Heart Rate.

DCM_TAG_CardiacNumberOfImages Cardiac Number of Images.

DCM_TAG_TriggerWindow Trigger Window.

DCM_TAG_ReconstructionDiameter Reconstruction Diameter.

DCM_TAG_DistanceSourceToDetector Distance Source to Detector.

DCM_TAG_DistanceSourceToPatient Distance Source to Patient.

DCM_TAG_EstimatedRadiographicMagnificationFactor Estimated Radiographic
Magnification Factor.

DCM_TAG_EstRadiographicMagFactor Estimated Radiographic
Magnification Factor. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_GantryDetectorTilt Gantry/Detector Tilt.

DCM_TAG_GantryDetectorSlew Gantry/Detector Slew.

DCM_TAG_TableHeight Table Height.

ImageGear Professional v18 for Mac | 1652

DCM_TAG_TableTraverse Table Traverse.

DCM_TAG_TableMotion Table Motion.

DCM_TAG_TableVerticalIncrement Table Vertical Increment.

DCM_TAG_TableLateralIncrement Table Lateral Increment.

DCM_TAG_TableLongitudinalIncrement Table Longitudinal Increment.

DCM_TAG_TableAngle Table Angle.

DCM_TAG_TableType Table Type.

DCM_TAG_RotationDirection Rotation Direction.

DCM_TAG_AngularPosition Angular Position. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_RadialPosition Radial Position.

DCM_TAG_ScanArc Scan Arc value.

DCM_TAG_AngularStep Angular Step.

DCM_TAG_CenterOfRotationOffset Center of Rotation Offset.

DCM_TAG_RotationOffset Rotation Offset.

DCM_TAG_FieldOfViewShape Field of View Shape.

DCM_TAG_FieldOfViewDimensions Field of View Dimension(s).

DCM_TAG_ExposureTime Exposure Time.

DCM_TAG_XrayTubeCurrent X-Ray Tube Current. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_Exposure Exposure value.

DCM_TAG_ExposureInuAs Exposure in micro As.

DCM_TAG_ExposureInMicroAs Exposure in micro As. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_ExposureInMicroA Exposure in micro As. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_AveragePulseWidth Average Pulse Width.

DCM_TAG_RadiationSetting Radiation Setting.

DCM_TAG_RectificationType Rectification Type.

DCM_TAG_RadiationMode Radiation Mode.

DCM_TAG_ImageAndFluoroscopyAreaDoseProduct Image and Fluoroscopy Area
Dose Product.

DCM_TAG_ImageAreaDoseProduct Image and Fluoroscopy Area
Dose Product. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_FilterType Filter Type.

DCM_TAG_TypeOfFilters Type of Filters.

ImageGear Professional v18 for Mac | 1653

DCM_TAG_IntensifierSize Intensifier Size.

DCM_TAG_ImagerPixelSpacing Imager Pixel Spacing.

DCM_TAG_Grid Grid value.

DCM_TAG_GeneratorPower Generator Power.

DCM_TAG_CollimatorGridName Collimator/grid Name.

DCM_TAG_CollimatorType Collimator Type.

DCM_TAG_FocalDistance Focal Distance.

DCM_TAG_XFocusCenter X Focus Center.

DCM_TAG_YFocusCenter Y Focus Center.

DCM_TAG_FocalSpots Focal Spot(s).

DCM_TAG_AnodeTargetMaterial Anode Target Material.

DCM_TAG_BodyPartThickness Body Part Thickness.

DCM_TAG_CompressionForce Compression Force.

DCM_TAG_DateOfLastCalibration Date of Last Calibration.

DCM_TAG_TimeOfLastCalibration Time of Last Calibration.

DCM_TAG_ConvolutionKernel Convolution Kernel.

DCM_TAG_UpperLowerPixelValues Upper/Lower Pixel Values. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ActualFrameDuration Actual Frame Duration.

DCM_TAG_CountRate Count Rate.

DCM_TAG_PreferredPlaybackSequencing Preferred Playback Sequencing.

DCM_TAG_ReceiveCoilName Receive Coil Name.

DCM_TAG_TransmitCoilName Transmit Coil Name.

DCM_TAG_PlateType Plate Type.

DCM_TAG_PhosphorType Phosphor Type.

DCM_TAG_ScanVelocity Scan Velocity.

DCM_TAG_WholeBodyTechnique Whole Body Technique.

DCM_TAG_ScanLength Scan Length.

DCM_TAG_AcquisitionMatrix Acquisition Matrix.

DCM_TAG_InPlanePhaseEncodingDirection In-plane Phase Encoding
Direction.

DCM_TAG_FlipAngle Flip Angle.

DCM_TAG_VariableFlipAngleFlag Variable Flip Angle Flag.

DCM_TAG_Sar SAR (specific absorption rate).

DCM_TAG_DbDt The dB/dt.

DCM_TAG_AcquisitionDeviceProcessingDescription Acquisition Device Processing
Description.

DCM_TAG_AcquisitionDeviceProcessingCode Acquisition Device Processing
Code.

DCM_TAG_CassetteOrientation Cassette Orientation.

DCM_TAG_CassetteSize Cassette Size.

DCM_TAG_ExposuresOnPlate Exposures on Plate.

DCM_TAG_ExposureOnPlate Exposures on Plate. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_RelativeXrayExposure Relative X-Ray Exposure. This

ImageGear Professional v18 for Mac | 1654

tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_ColumnAngulation Column Angulation.

DCM_TAG_TomoLayerHeight Tomo Layer Height.

DCM_TAG_TomoAngle Tomo Angle.

DCM_TAG_TomoTime Tomo Time.

DCM_TAG_TomoType Tomo Type.

DCM_TAG_TomoClass Tomo Class.

DCM_TAG_NumberOfTomosynthesisSourceImages Number of Tomosynthesis
Source Images.

DCM_TAG_TomoSourceImageNumber Number of Tomosynthesis
Source Images. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_PositionerMotion Positioner Motion.

DCM_TAG_PositionerType Positioner Type.

DCM_TAG_PositionerPrimaryAngle Positioner Primary Angle.

DCM_TAG_PositionerSecondaryAngle Positioner Secondary Angle.

DCM_TAG_PositionerPrimaryAngleIncrement Positioner Primary Angle
Increment.

DCM_TAG_PositionerPrimaryAngleIncr Positioner Primary Angle
Increment. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_PositionerSecondaryAngleIncrement Positioner Secondary Angle
Increment.

DCM_TAG_PositionerSecondaryAngleIncr Positioner Secondary Angle
Increment. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_DetectorPrimaryAngle Detector Primary Angle.

DCM_TAG_DetectorSecondaryAngle Detector Secondary Angle.

DCM_TAG_ShutterShape Shutter Shape.

DCM_TAG_ShutterLeftVerticalEdge Shutter Left Vertical Edge.

DCM_TAG_ShutterRightVerticalEdge Shutter Right Vertical Edge.

DCM_TAG_ShutterUpperHorizontalEdge Shutter Upper Horizontal Edge.

DCM_TAG_ShutterLowerHorizontalEdge Shutter Lower Horizontal Edge.

DCM_TAG_CenterOfCircularShutter Center of Circular Shutter.

DCM_TAG_RadiusOfCircularShutter Radius of Circular Shutter.

DCM_TAG_VerticesOfThePolygonalShutter Vertices of the Polygonal
Shutter.

DCM_TAG_PolygonalShutterVertices Vertices of the Polygonal
Shutter. This tag name has been
deprecated and will be removed

ImageGear Professional v18 for Mac | 1655

from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_ShutterPresentationValue Shutter Presentation Value.

DCM_TAG_ShutterOverlayGroup Shutter Overlay Group.

DCM_TAG_ShutterPresentationColorCIELabValue Shutter Presentation Color
CIELab Value.

DCM_TAG_CollimatorShape Collimator Shape.

DCM_TAG_CollimatorLeftVerticalEdge Collimator Left Vertical Edge.

DCM_TAG_CollimatorRightVerticalEdge Collimator Right Vertical Edge.

DCM_TAG_CollimatorUpperHorizontalEdge Collimator Upper Horizontal
Edge.

DCM_TAG_CollimatorLowerHorizontalEdge Collimator Lower Horizontal
Edge.

DCM_TAG_CenterOfCircularCollimator Center of Circular Collimator.

DCM_TAG_RadiusOfCircularCollimator Radius of Circular Collimator.

DCM_TAG_VerticesOfThePolygonalCollimator Vertices of the Polygonal
Collimator.

DCM_TAG_PolygonalCollimatorVertices Vertices of the Polygonal
Collimator. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_AcquisitionTimeSynchronized Acquisition Time Synchronized.

DCM_TAG_TimeSource Time Source.

DCM_TAG_TimeDistributionProtocol Time Distribution Protocol.

DCM_TAG_NTPSourceAddress NTP Source Address.

DCM_TAG_PageNumberVector Page Number Vector.

DCM_TAG_FrameLabelVector Frame Label Vector.

DCM_TAG_FramePrimaryAngleVector Frame Primary Angle Vector.

DCM_TAG_FrameSecondaryAngleVector Frame Secondary Angle Vector.

DCM_TAG_SliceLocationVector Slice Location Vector.

DCM_TAG_DisplayWindowLabelVector Display Window Label Vector.

DCM_TAG_NominalScannedPixelSpacing Nominal Scanned Pixel Spacing.

DCM_TAG_DigitizingDeviceTransportDirection Digitizing Device Transport
Direction.

DCM_TAG_RotationOfScannedFilm Rotation of Scanned Film.

DCM_TAG_IvusAcquisition IVUS Acquisition.

DCM_TAG_IvusPullbackRate IVUS Pullback Rate.

DCM_TAG_IvusGatedRate IVUS Gated Rate.

DCM_TAG_IvusPullbackStartFrameNumber IVUS Pullback Start Frame
Number.

DCM_TAG_IvusPullbackStopFrameNumber IVUS Pullback Stop Frame
Number.

DCM_TAG_LesionNumber Lesion Number.

DCM_TAG_AcquisitionComments Acquisition Comments. This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_OutputPower Output Power.

DCM_TAG_TransducerData Transducer Data.

ImageGear Professional v18 for Mac | 1656

DCM_TAG_FocusDepth Focus Depth.

DCM_TAG_ProcessingFunction Processing Function.

DCM_TAG_PreprocessingFunction Processing Function. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_PostprocessingFunction Postprocessing Function. This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_MechanicalIndex Mechanical Index.

DCM_TAG_BoneThermalIndex Bone Thermal Index.

DCM_TAG_CranialThermalIndex Cranial Thermal Index.

DCM_TAG_SoftTissueThermalIndex Soft Tissue Thermal Index.

DCM_TAG_SoftTissueFocusThermalIndex Soft Tissue-focus Thermal Index.

DCM_TAG_SoftTissueSurfaceThermalIndex Soft Tissue-surface Thermal
Index.

DCM_TAG_DynamicRange Dynamic Range. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_TotalGain Total Gain. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_DepthOfScanField Depth of Scan Field.

DCM_TAG_PatientPosition Patient Position.

DCM_TAG_ViewPosition View Position.

DCM_TAG_ProjectionEponymousNameCodeSequence Projection Eponymous Name
Code Sequence.

DCM_TAG_ProjEponymousNameCodeSequence Projection Eponymous Name
Code Sequence. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ImageTransformationMatrix Image Transformation Matrix.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ImageTranslationVector Image Translation Vector. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_Sensitivity Sensitivity value.

DCM_TAG_SequenceOfUltrasoundRegions Sequence of Ultrasound Regions.

DCM_TAG_RegionSpatialFormat Region Spatial Format.

DCM_TAG_RegionDataType Region Data Type.

DCM_TAG_RegionFlags Region Flags.

DCM_TAG_RegionLocationMinX0 Region Location Min X0.

DCM_TAG_RegionLocationMinY0 Region Location Min Y0.

DCM_TAG_RegionLocationMaxX1 Region Location Max X1.

DCM_TAG_RegionLocationMaxY1 Region Location Max Y1.

ImageGear Professional v18 for Mac | 1657

DCM_TAG_ReferencePixelX0 Reference Pixel X0.

DCM_TAG_ReferencePixelY0 Reference Pixel Y0.

DCM_TAG_PhysicalUnitsXDirection Physical Units X Direction.

DCM_TAG_PhysicalUnitsYDirection Physical Units Y Direction.

DCM_TAG_ReferencePixelPhysicalValueX Reference Pixel Physical Value X.

DCM_TAG_ReferencePixelPhysicalValueY Reference Pixel Physical Value Y.

DCM_TAG_PhysicalDeltaX Physical Delta X.

DCM_TAG_PhysicalDeltaY Physical Delta Y.

DCM_TAG_TransducerFrequency Transducer Frequency.

DCM_TAG_TransducerType Transducer Type.

DCM_TAG_PulseRepetitionFrequency Pulse Repetition Frequency.

DCM_TAG_DopplerCorrectionAngle Doppler Correction Angle.

DCM_TAG_SteeringAngle Steering Angle.

DCM_TAG_DopplerSampleVolumeXPositionRetired Doppler Sample Volume X
Position (Retired). This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_DopplerSampleVolumeXPosition Doppler Sample Volume X
Position.

DCM_TAG_DopplerSampleVolumeYPositionRetired Doppler Sample Volume Y
Position (Retired). This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_DopplerSampleVolumeYPosition Doppler Sample Volume Y
Position.

DCM_TAG_TMLinePositionX0Retired TM-Line Position X0 (Retired).
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_TmLinePositionX0 TM-Line Position X0.

DCM_TAG_TMLinePositionY0Retired TM-Line Position Y0 (Retired).
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_TmLinePositionY0 TM-Line Position Y0.

DCM_TAG_TMLinePositionX1Retired TM-Line Position X1 (Retired).
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_TmLinePositionX1 TM-Line Position X1.

DCM_TAG_TMLinePositionY1Retired TM-Line Position Y1 (Retired).
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_TmLinePositionY1 TM-Line Position Y1.

DCM_TAG_PixelComponentOrganization Pixel Component Organization.

DCM_TAG_PixelComponentMask Pixel Component Mask.

DCM_TAG_PixelComponentRangeStart Pixel Component Range Start.

DCM_TAG_PixelComponentRangeStop Pixel Component Range Stop.

DCM_TAG_PixelComponentPhysicalUnits Pixel Component Physical Units.

DCM_TAG_PixelComponentDataType Pixel Component Data Type.

DCM_TAG_NumberOfTableBreakPoints Number of Table Break Points.

ImageGear Professional v18 for Mac | 1658

DCM_TAG_TableOfXBreakPoints Table of X Break Points.

DCM_TAG_TableOfYBreakPoints Table of Y Break Points.

DCM_TAG_NumberOfTableEntries Number of Table Entries.

DCM_TAG_TableOfPixelValues Table of Pixel Values.

DCM_TAG_TableOfParameterValues Table of Parameter Values.

DCM_TAG_RWaveTimeVector R Wave Time Vector.

DCM_TAG_R_Wave_Time_Vector R Wave Time Vector. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_DetectorConditionsNominalFlag Detector Conditions Nominal
Flag.

DCM_TAG_DetectorTemperature Detector Temperature.

DCM_TAG_DetectorType Detector Type.

DCM_TAG_DetectorConfiguration Detector Configuration.

DCM_TAG_DetectorDescription Detector Description.

DCM_TAG_DetectorMode Detector Mode.

DCM_TAG_DetectorID Detector ID.

DCM_TAG_DateOfLastDetectorCalibration Date of Last Detector Calibration.

DCM_TAG_DetectorCalibrationDate Date of Last Detector Calibration.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_TimeOfLastDetectorCalibration Time of Last Detector
Calibration.

DCM_TAG_DetectorCalibrationTime Time of Last Detector
Calibration. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ExposuresOnDetectorSinceLastCalibration Exposures on Detector Since Last
Calibration.

DCM_TAG_ExposuresSinceCalibration Exposures on Detector Since Last
Calibration. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ExposuresOnDetectorSinceManufactured Exposures on Detector Since
Manufactured.

DCM_TAG_ExposuresSinceManufactured Exposures on Detector Since
Manufactured. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_DetectorTimeSinceLastExposure Detector Time Since Last
Exposure.

DCM_TAG_DetectorTimeSinceExposure Detector Time Since Last
Exposure. This tag name has

ImageGear Professional v18 for Mac | 1659

been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_DetectorActiveTime Detector Active Time.

DCM_TAG_DetectorActivationOffsetFromExposure Detector Activation Offset From
Exposure.

DCM_TAG_DetectorActivationOffset Detector Activation Offset From
Exposure. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_DetectorBinning Detector Binning.

DCM_TAG_DetectorElementPhysicalSize Detector Element Physical Size.

DCM_TAG_DetectorElementSpacing Detector Element Spacing.

DCM_TAG_DetectorActiveShape Detector Active Shape.

DCM_TAG_DetectorActiveDimensions Detector Active Dimension(s).

DCM_TAG_DetectorActiveDimension Detector Active Dimension(s).
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_DetectorActiveOrigin Detector Active Origin.

DCM_TAG_DetectorManufacturerName Detector Manufacturer Name.

DCM_TAG_DetectorManufacturerModelName Detector Manufacturer's Model
Name.

DCM_TAG_DetectorManufacturersModelName Detector Manufacturer's Model
Name. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_FieldOfViewOrigin Field of View Origin.

DCM_TAG_FovOrigin Field of View Origin. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_FieldOfViewRotation Field of View Rotation.

DCM_TAG_FovRotation Field of View Rotation. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_FieldOfViewHorizontalFlip Field of View Horizontal Flip.

DCM_TAG_FovHorizontalFlip Field of View Horizontal Flip. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

ImageGear Professional v18 for Mac | 1660

DCM_TAG_GridAbsorbingMaterial Grid Absorbing Material.

DCM_TAG_GridSpacingMaterial Grid Spacing Material.

DCM_TAG_GridThickness Grid Thickness.

DCM_TAG_GridPitch Grid Pitch.

DCM_TAG_GridAspectRatio Grid Aspect Ratio.

DCM_TAG_GridPeriod Grid Period.

DCM_TAG_GridFocalDistance Grid Focal Distance.

DCM_TAG_FilterMaterial Filter Material.

DCM_TAG_FilterThicknessMinimum Filter Thickness Minimum.

DCM_TAG_FilterMinThickness Filter Thickness Minimum. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_FilterThicknessMaximum Filter Thickness Maximum.

DCM_TAG_FilterMaxThickness Filter Thickness Maximum. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_FilterBeamPathLengthMinimum Filter Beam Path Length
Minimum.

DCM_TAG_FilterBeamPathLengthMaximum Filter Beam Path Length
Maximum.

DCM_TAG_ExposureControlMode Exposure Control Mode.

DCM_TAG_ExposureControlModeDescription Exposure Control Mode
Description.

DCM_TAG_ExposureControlModeDesc Exposure Control Mode
Description. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ExposureStatus Exposure Status.

DCM_TAG_PhototimerSetting Phototimer Setting.

DCM_TAG_ExposureTimeInuS Exposure Time in micro S.

DCM_TAG_ExposureTimeInMicroS Exposure Time in micro S. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_ExposureTimeIn_mS Exposure Time in micro S. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_XRayTubeCurrentInuA X-Ray Tube Current in micro A.

DCM_TAG_XRayTubeCurrentInMicroA X-Ray Tube Current in micro A.
This tag name has been
deprecated and will be removed

ImageGear Professional v18 for Mac | 1661

from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_XRayTubeCurrentInmA X-Ray Tube Current in micro A.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_ContentQualification Content Qualification.

DCM_TAG_PulseSequenceName Pulse Sequence Name.

DCM_TAG_MrImagingModifierSequence MR Imaging Modifier Sequence.

DCM_TAG_EchoPulseSequence Echo Pulse Sequence.

DCM_TAG_InversionRecovery Inversion Recovery.

DCM_TAG_FlowCompensation Flow Compensation.

DCM_TAG_MultipleSpinEcho Multiple Spin Echo.

DCM_TAG_MultiPlanarExcitation Multi-planar Excitation.

DCM_TAG_PhaseContrast Phase Contrast.

DCM_TAG_TimeOfFlightContrast Time of Flight Contrast.

DCM_TAG_Spoiling Spoiling value.

DCM_TAG_SteadyStatePulseSequence Steady State Pulse Sequence.

DCM_TAG_EchoPlanarPulseSequence Echo Planar Pulse Sequence.

DCM_TAG_TagAngleFirstAxis Tag Angle First Axis.

DCM_TAG_MagnetizationTransfer Magnetization Transfer.

DCM_TAG_T2Preparation T2 Preparation.

DCM_TAG_BloodSignalNulling Blood Signal Nulling.

DCM_TAG_SaturationRecovery Saturation Recovery.

DCM_TAG_SpectrallySelectedSuppression Spectrally Selected Suppression.

DCM_TAG_SpectrallySelectedExcitation Spectrally Selected Excitation.

DCM_TAG_SpatialPresaturation Spatial Pre-saturation.

DCM_TAG_Tagging Tagging value.

DCM_TAG_OverSamplingPhase Oversampling Phase.

DCM_TAG_TagSpacingFirstDimension Tag Spacing First Dimension.

DCM_TAG_GeometryOfKspaceTraversal Geometry of k-Space Traversal.

DCM_TAG_SegmentedKspaceTraversal Segmented k-Space Traversal.

DCM_TAG_RectilinearPhaseEncodeReordering Rectilinear Phase Encode
Reordering.

DCM_TAG_TagThickness Tag Thickness.

DCM_TAG_PartialFourierDirection Partial Fourier Direction.

DCM_TAG_CardiacSynchronizationTechnique Cardiac Synchronization
Technique.

DCM_TAG_CardiacSyncTechnique Cardiac Synchronization
Technique. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ReceiveCoilManufacturerName Receive Coil Manufacturer Name.

DCM_TAG_MrReceiveCoilSequence MR Receive Coil Sequence.

DCM_TAG_ReceiveCoilType Receive Coil Type.

ImageGear Professional v18 for Mac | 1662

DCM_TAG_QuadratureReceiveCoil Quadrature Receive Coil.

DCM_TAG_MultiCoilDefinitionSequence Multi-Coil Definition Sequence.

DCM_TAG_MultiCoilConfiguration Multi-Coil Configuration.

DCM_TAG_MultiCoilElementName Multi-Coil Element Name.

DCM_TAG_MultiCoilElementUsed Multi-Coil Element Used.

DCM_TAG_MrTransmitCoilSequence MR Transmit Coil Sequence.

DCM_TAG_TransmitCoilManufacturerName Transmit Coil Manufacturer
Name.

DCM_TAG_TransmitCoilType Transmit Coil Type.

DCM_TAG_SpectralWidth Spectral Width.

DCM_TAG_ChemicalShiftReference Chemical Shift Reference.

DCM_TAG_VolumeLocalizationTechnique Volume Localization Technique.

DCM_TAG_MrAcquisitionFrequencyEncodingSteps MR Acquisition Frequency
Encoding Steps.

DCM_TAG_MrAcqFrequencyEncodingSteps MR Acquisition Frequency
Encoding Steps. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_Decoupling De-coupling value.

DCM_TAG_DecoupledNucleus De-coupled Nucleus.

DCM_TAG_DecouplingFrequency De-coupling Frequency.

DCM_TAG_DecouplingMethod De-coupling Method.

DCM_TAG_DecouplingChemicalShiftReference De-coupling Chemical Shift
Reference.

DCM_TAG_KspaceFiltering K-space Filtering.

DCM_TAG_TimeDomainFiltering Time Domain Filtering.

DCM_TAG_NumberOfZeroFills Number of Zero fills.

DCM_TAG_BaselineCorrection Baseline Correction.

DCM_TAG_ParallelReductionFactorInPlane Parallel Reduction Factor In-
plane.

DCM_TAG_CardiacRRintervalSpecified Cardiac R-R Interval Specified.

DCM_TAG_AcquisitionDuration Acquisition Duration.

DCM_TAG_FrameAcquisitionDateTime Frame Acquisition DateTime.

DCM_TAG_FrameAcqDatetime Frame Acquisition DateTime. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_DiffusionDirectionality Diffusion Directionality.

DCM_TAG_DiffusionGradientDirectionSequence Diffusion Gradient Direction
Sequence.

DCM_TAG_ParallelAcquisition Parallel Acquisition.

DCM_TAG_ParallelAcquisitionTechnique Parallel Acquisition Technique.

DCM_TAG_ParallelAcqTechnique Parallel Acquisition Technique.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

ImageGear Professional v18 for Mac | 1663

DCM_TAG_InversionTimes Inversion Times.

DCM_TAG_MetaboliteMapDescription Metabolite Map Description.

DCM_TAG_MetaboliteMapDesc Metabolite Map Description. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_PartialFourier Partial Fourier.

DCM_TAG_EffectiveEchoTime Effective Echo Time.

DCM_TAG_MetaboliteMapCodeSequence Metabolite Map Code Sequence.

DCM_TAG_ChemicalShiftSequence Chemical Shift Sequence.

DCM_TAG_CardiacSignalSource Cardiac Signal Source.

DCM_TAG_DiffusionBvalue Diffusion b-value.

DCM_TAG_Diffusion_b_value Diffusion b-value. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_DiffusionGradientOrientation Diffusion Gradient Orientation.

DCM_TAG_VelocityEncodingDirection Velocity Encoding Direction.

DCM_TAG_VelocityEncodingMinimumValue Velocity Encoding Minimum
Value.

DCM_TAG_VelocityEncodingMinValue Velocity Encoding Minimum
Value. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_NumberOfKspaceTrajectories Number of k-Space Trajectories.

DCM_TAG_CoverageOfKspace Coverage of k-Space.

DCM_TAG_SpectroscopyAcquisitionPhaseRows Spectroscopy Acquisition Phase
Rows.

DCM_TAG_SpectroscopyAcqPhaseRows Spectroscopy Acquisition Phase
Rows. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_ParallelReductionFactorInPlaneRetired Parallel Reduction Factor In-
plane (Retired). This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_TransmitterFrequency Transmitter Frequency.

DCM_TAG_ResonantNucleus Resonant Nucleus.

DCM_TAG_FrequencyCorrection Frequency Correction.

DCM_TAG_MrSpectroscopyFovGeometrySequence MR Spectroscopy FOV/Geometry
Sequence.

DCM_TAG_SlabThickness Slab Thickness.

DCM_TAG_SlabOrientation Slab Orientation.

DCM_TAG_MidSlabPosition Mid Slab Position.

DCM_TAG_MrSpatialSaturationSequence MR Spatial Saturation Sequence.

ImageGear Professional v18 for Mac | 1664

DCM_TAG_MrTimingAndRelatedParametersSequence MR Timing and Related
Parameters Sequence.

DCM_TAG_MrTimingParameterSequence MR Timing and Related
Parameters Sequence. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_MrEchoSequence MR Echo Sequence.

DCM_TAG_MrModifierSequence MR Modifier Sequence.

DCM_TAG_MrDiffusionSequence MR Diffusion Sequence.

DCM_TAG_CardiacSynchronizationSequence Cardiac Synchronization
Sequence.

DCM_TAG_CardiacTriggerSequence Cardiac Synchronization
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_MrAveragesSequence MR Averages Sequence.

DCM_TAG_MrFovGeometrySequence MR FOV/Geometry Sequence.

DCM_TAG_VolumeLocalizationSequence Volume Localization Sequence.

DCM_TAG_SpectroscopyAcquisitionDataColumns Spectroscopy Acquisition Data
Columns.

DCM_TAG_SpectroscopyAcqDataColumns Spectroscopy Acquisition Data
Columns. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_DiffusionAnisotropyType Diffusion Anisotropy Type.

DCM_TAG_FrameReferenceDatetime Frame Reference DateTime. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_MrMetaboliteMapSequence MR Metabolite Map Sequence.

DCM_TAG_ParallelReductionFactorOutOfPlane Parallel Reduction Factor out-of-
plane.

DCM_TAG_SpectroscopyAcquisitionOutOfPlanePhaseSteps Spectroscopy Acquisition Out-of-
plane Phase Steps.

DCM_TAG_SpectroscopyAcqOutOfPlanePhaseStep Spectroscopy Acquisition Out-of-
plane Phase Steps. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_BulkMotionStatus Bulk Motion Status. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ParallelReductionFactorSecondInPlane Parallel Reduction Factor Second
In-plane.

DCM_TAG_CardiacBeatRejectionTechnique Cardiac Beat Rejection

ImageGear Professional v18 for Mac | 1665

Technique.

DCM_TAG_RespiratoryMotionCompensationTechnique Respiratory Motion
Compensation Technique.

DCM_TAG_RespiratoryMotionCompTechnique Respiratory Motion
Compensation Technique. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_RespiratorySignalSource Respiratory Signal Source.

DCM_TAG_BulkMotionCompensationTechnique Bulk Motion Compensation
Technique.

DCM_TAG_BulkMotionCompTechnique Bulk Motion Compensation
Technique. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_BulkMotionSignalSource Bulk Motion Signal Source.

DCM_TAG_ApplicableSafetyStandardAgency Applicable Safety Standard
Agency.

DCM_TAG_ApplicableSafetyStandardDescription Applicable Safety Standard
Description.

DCM_TAG_ApplicableSafetyStandardDesc Applicable Safety Standard
Description. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_OperatingModeSequence Operating Mode Sequence.

DCM_TAG_OperatingModeType Operating Mode Type.

DCM_TAG_OperatingMode Operating Mode.

DCM_TAG_SpecificAbsorptionRateDefinition Specific Absorption Rate
Definition.

DCM_TAG_GradientOutputType Gradient Output Type.

DCM_TAG_SpecificAbsorptionRateValue Specific Absorption Rate Value.

DCM_TAG_GradientOutput Gradient Output.

DCM_TAG_FlowCompensationDirection Flow Compensation Direction.

DCM_TAG_FlowCompDirection Flow Compensation Direction.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_TaggingDelay Tagging Delay.

DCM_TAG_RespiratoryMotionCompensationTechniqueDescription Respiratory Motion
Compensation Technique
Description.

DCM_TAG_RespiratorySignalSourceID Respiratory Signal Source ID.

DCM_TAG_ChemicalShiftsMinimumIntegrationLimitInHz Chemical Shifts Minimum
Integration Limit in Hz. This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

ImageGear Professional v18 for Mac | 1666

DCM_TAG_ChemicalShiftsMaximumIntegrationLimitInHz Chemical Shifts Maximum
Integration Limit in Hz. This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_MrVelocityEncodingSequence MR Velocity Encoding Sequence.

DCM_TAG_FirstOrderPhaseCorrection First Order Phase Correction.

DCM_TAG_WaterReferencedPhaseCorrection Water Referenced Phase
Correction.

DCM_TAG_MrSpectroscopyAcquisitionType MR Spectroscopy Acquisition
Type.

DCM_TAG_MrSpectroscopyAcqType MR Spectroscopy Acquisition
Type. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_RespiratoryCyclePosition Respiratory Cycle Position.

DCM_TAG_VelocityEncodingMaximumValue Velocity Encoding Maximum
Value.

DCM_TAG_VelocityEncodingMaxValue Velocity Encoding Maximum
Value. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_TagSpacingSecondDimension Tag Spacing Second Dimension.

DCM_TAG_TagAngleSecondAxis Tag Angle Second Axis.

DCM_TAG_FrameAcquisitionDuration Frame Acquisition Duration.

DCM_TAG_FrameAcqDuration Frame Acquisition Duration. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_MrImageFrameTypeSequence MR Image Frame Type
Sequence.

DCM_TAG_MrSpectroscopyFrameTypeSequence MR Spectroscopy Frame Type
Sequence.

DCM_TAG_MrAcquisitionPhaseEncodingStepsInPlane MR Acquisition Phase Encoding
Steps in-plane.

DCM_TAG_MrAcqPhaseEncodingStepsInPlane MR Acquisition Phase Encoding
Steps in-plane. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_MrAcquisitionPhaseEncodingStepsOutOfPlane MR Acquisition Phase Encoding
Steps out-of-plane.

DCM_TAG_MrAcqPhaseEncodingStepsOutOfPlane MR Acquisition Phase Encoding
Steps out-of-plane. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

ImageGear Professional v18 for Mac | 1667

DCM_TAG_SpectroscopyAcquisitionPhaseColumns Spectroscopy Acquisition Phase
Columns.

DCM_TAG_SpectroscopyAcqPhaseColumns Spectroscopy Acquisition Phase
Columns. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_CardiacCyclePosition Cardiac Cycle Position.

DCM_TAG_SpecificAbsorptionRateSequence Specific Absorption Rate
Sequence.

DCM_TAG_RFEchoTrainLength RF Echo Train Length.

DCM_TAG_GradientEchoTrainLength Gradient Echo Train Length.

DCM_TAG_ChemicalShiftMinimumIntegrationLimitInppm Chemical Shift Minimum
Integration Limit in ppm.

DCM_TAG_ChemicalShiftsMinimumIntegrationLimitinppm Chemical Shift Minimum
Integration Limit in ppm. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_ChemicalShiftMaximumIntegrationLimitInppm Chemical Shift Maximum
Integration Limit in ppm.

DCM_TAG_ChemicalShiftsMaximumIntegrationLimitinppm Chemical Shift Maximum
Integration Limit in ppm. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_CTAcquisitionTypeSequence CT Acquisition Type Sequence.

DCM_TAG_AcquisitionType Acquisition Type.

DCM_TAG_TubeAngle Tube Angle.

DCM_TAG_CTAcquisitionDetailsSequence CT Acquisition Details Sequence.

DCM_TAG_RevolutionTime Revolution Time.

DCM_TAG_SingleCollimationWidth Single Collimation Width.

DCM_TAG_TotalCollimationWidth Total Collimation Width.

DCM_TAG_CTTableDynamicsSequence CT Table Dynamics Sequence.

DCM_TAG_TableSpeed Table Speed.

DCM_TAG_TableFeedperRotation Table Feed per Rotation.

DCM_TAG_SpiralPitchFactor Spiral Pitch Factor.

DCM_TAG_CTGeometrySequence CT Geometry Sequence.

DCM_TAG_DataCollectionCenterPatient Data Collection Center (Patient).

DCM_TAG_CTReconstructionSequence CT Reconstruction Sequence.

DCM_TAG_ReconstructionAlgorithm Reconstruction Algorithm.

DCM_TAG_ConvolutionKernelGroup Convolution Kernel Group.

DCM_TAG_ReconstructionFieldofView Reconstruction Field of View.

DCM_TAG_ReconstructionTargetCenterPatient Reconstruction Target Center
(Patient).

DCM_TAG_ReconstructionAngle Reconstruction Angle.

DCM_TAG_ImageFilter Image Filter.

ImageGear Professional v18 for Mac | 1668

DCM_TAG_CTExposureSequence CT Exposure Sequence.

DCM_TAG_ReconstructionPixelSpacing Reconstruction Pixel Spacing.

DCM_TAG_ExposureModulationType Exposure Modulation Type.

DCM_TAG_EstimatedDoseSaving Estimated Dose Saving.

DCM_TAG_CTXRayDetailsSequence CT X-Ray Details Sequence.

DCM_TAG_CTX_rayDetailsSequence CT X-Ray Details Sequence. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_CTPositionSequence CT Position Sequence.

DCM_TAG_TablePosition Table Position.

DCM_TAG_ExposureTimeinms Exposure Time in ms.

DCM_TAG_CTImageFrameTypeSequence CT Image Frame Type Sequence.

DCM_TAG_XRayTubeCurrentInMilliA X-Ray Tube Current in mA.

DCM_TAG_X_RayTubeCurrentinmA X-Ray Tube Current in mA. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_ExposureinmAs Exposure in mAs.

DCM_TAG_ExposureInMilliAs Exposure in mAs. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ConstantVolumeFlag Constant Volume Flag.

DCM_TAG_FluoroscopyFlag Fluoroscopy Flag.

DCM_TAG_DistanceSourcetoDataCollectionCenter Distance Source to Data
Collection Center.

DCM_TAG_ContrastBolusAgentNumber Contrast/Bolus Agent Number.

DCM_TAG_ContrastBolusIngredientCodeSequence Contrast/Bolus Ingredient Code
Sequence.

DCM_TAG_ContrastAdministrationProfileSequence Contrast Administration Profile
Sequence.

DCM_TAG_ContrastBolusUsageSequence Contrast/Bolus Usage Sequence.

DCM_TAG_ContrastBolusAgentAdministered Contrast/Bolus Agent
Administered.

DCM_TAG_ContrastBolusAgentDetected Contrast/Bolus Agent Detected.

DCM_TAG_ContrastBolusAgentPhase Contrast/Bolus Agent Phase.

DCM_TAG_CTDIvol The CTDIvol.

DCM_TAG_CTDIPhantomTypeCodeSequence CTDI Phantom Type Code
Sequence.

DCM_TAG_CalciumScoringMassFactorPatient Calcium Scoring Mass Factor
Patient.

DCM_TAG_CalciumScoringMassFactorDevice Calcium Scoring Mass Factor
Device.

DCM_TAG_EnergyWeightingFactor Energy Weighting Factor.

DCM_TAG_CTAdditionalXRaySourceSequence CT Additional X-Ray Source
Sequence.

ImageGear Professional v18 for Mac | 1669

DCM_TAG_ProjectionPixelCalibrationSequence Projection Pixel Calibration
Sequence.

DCM_TAG_DistanceSourcetoIsocenter Distance Source to Isocenter.

DCM_TAG_DistanceObjecttoTableTop Distance Object to Table Top.

DCM_TAG_ObjectPixelSpacinginCenterofBeam Object Pixel Spacing in Center of
Beam.

DCM_TAG_PositionerPositionSequence Positioner Position Sequence.

DCM_TAG_TablePositionSequence Table Position Sequence.

DCM_TAG_CollimatorShapeSequence Collimator Shape Sequence.

DCM_TAG_XAXRFFrameCharacteristicsSequence XA/XRF Frame Characteristics
Sequence.

DCM_TAG_XA_XRFFrameCharacteristicsSequence XA/XRF Frame Characteristics
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_FrameAcquisitionSequence Frame Acquisition Sequence.

DCM_TAG_XRayReceptorType X-Ray Receptor Type.

DCM_TAG_AcquisitionProtocolName Acquisition Protocol Name.

DCM_TAG_AcquisitionProtocolDescription Acquisition Protocol Description.

DCM_TAG_ContrastBolusIngredientOpaque Contrast/Bolus Ingredient
Opaque.

DCM_TAG_DistanceReceptorPlanetoDetectorHousing Distance Receptor Plane to
Detector Housing.

DCM_TAG_IntensifierActiveShape Intensifier Active Shape.

DCM_TAG_IntensifierActiveDimensions Intensifier Active Dimension(s).

DCM_TAG_PhysicalDetectorSize Physical Detector Size.

DCM_TAG_PositionofIsocenterProjection Position of Isocenter Projection.

DCM_TAG_FieldofViewSequence Field of View Sequence.

DCM_TAG_FieldofViewDescription Field of View Description.

DCM_TAG_ExposureControlSensingRegionsSequence Exposure Control Sensing
Regions Sequence.

DCM_TAG_ExposureControlSensingRegionShape Exposure Control Sensing Region
Shape.

DCM_TAG_ExposureControlSensingRegionLeftVerticalEdge Exposure Control Sensing Region
Left Vertical Edge.

DCM_TAG_ExposureControlSensingRegionRightVerticalEdge Exposure Control Sensing Region
Right Vertical Edge.

DCM_TAG_ExposureControlSensingRegionUpperHorizontalEdge Exposure Control Sensing Region
Upper Horizontal Edge.

DCM_TAG_ExposureControlSensingRegionUpperHorizontal Exposure Control Sensing Region
Upper Horizontal Edge. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_ExposureControlSensingRegionLowerHorizontalEdge Exposure Control Sensing Region
Lower Horizontal Edge.

DCM_TAG_ExposureControlSensingRegionLowerHorizontal Exposure Control Sensing Region
Lower Horizontal Edge. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please

ImageGear Professional v18 for Mac | 1670

use the tag with the same value
defined in the previous line.

DCM_TAG_CenterofCircularExposureControlSensingRegion Center of Circular Exposure
Control Sensing Region.

DCM_TAG_RadiusofCircularExposureControlSensingRegion Radius of Circular Exposure
Control Sensing Region.

DCM_TAG_VerticesOfThePolygonalExposureControlSensingRegion Vertices of the Polygonal
Exposure Control Sensing
Region.

DCM_TAG_VerticesofthePolygonalExposureControlSensing Vertices of the Polygonal
Exposure Control Sensing
Region. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_RET RET. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_ColumnAngulationPatient Column Angulation (Patient).

DCM_TAG_BeamAngle Beam Angle.

DCM_TAG_FrameDetectorParametersSequence Frame Detector Parameters
Sequence.

DCM_TAG_CalculatedAnatomyThickness Calculated Anatomy Thickness.

DCM_TAG_CalibrationSequence Calibration Sequence.

DCM_TAG_ObjectThicknessSequence Object Thickness Sequence.

DCM_TAG_PlaneIdentification Plane Identification.

DCM_TAG_FieldofViewDimensionsInFloat Field of View Dimension(s) in
Float.

DCM_TAG_IsocenterReferenceSystemSequence Isocenter Reference System
Sequence.

DCM_TAG_PositionerIsocenterPrimaryAngle Positioner Isocenter Primary
Angle.

DCM_TAG_PositionerIsocenterSecondaryAngle Positioner Isocenter Secondary
Angle.

DCM_TAG_PositionerIsocenterDetectorRotationAngle Positioner Isocenter Detector
Rotation Angle.

DCM_TAG_TableXPositiontoIsocenter Table X Position to Isocenter.

DCM_TAG_TableYPositiontoIsocenter Table Y Position to Isocenter.

DCM_TAG_TableZPositiontoIsocenter Table Z Position to Isocenter.

DCM_TAG_TableHorizontalRotationAngle Table Horizontal Rotation Angle.

DCM_TAG_TableHeadTiltAngle Table Head Tilt Angle.

DCM_TAG_TableCradleTiltAngle Table Cradle Tilt Angle.

DCM_TAG_FrameDisplayShutterSequence Frame Display Shutter Sequence.

DCM_TAG_AcquiredImageAreaDoseProduct Acquired Image Area Dose
Product.

DCM_TAG_CarmPositionerTabletopRelationship C-arm Positioner Tabletop
Relationship.

DCM_TAG_XRayGeometrySequence X-Ray Geometry Sequence.

DCM_TAG_IrradiationEventIdentificationSequence Irradiation Event Identification
Sequence.

DCM_TAG_XRay3DFrameTypeSequence X-Ray 3D Frame Type Sequence.

DCM_TAG_ContributingSourcesSequence Contributing Sources Sequence.

ImageGear Professional v18 for Mac | 1671

DCM_TAG_XRay3DAcquisitionSequence X-Ray 3D Acquisition Sequence.

DCM_TAG_PrimaryPositionerScanArc Primary Positioner Scan Arc.

DCM_TAG_SecondaryPositionerScanArc Secondary Positioner Scan Arc.

DCM_TAG_PrimaryPositionerScanStartAngle Primary Positioner Scan Start
Angle.

DCM_TAG_SecondaryPositionerScanStartAngle Secondary Positioner Scan Start
Angle.

DCM_TAG_PrimaryPositionerIncrement Primary Positioner Increment.

DCM_TAG_SecondaryPositionerIncrement Secondary Positioner Increment.

DCM_TAG_StartAcquisitionDateTime Start Acquisition DateTime.

DCM_TAG_EndAcquisitionDateTime End Acquisition DateTime.

DCM_TAG_ApplicationName Application Name.

DCM_TAG_ApplicationVersion Application Version.

DCM_TAG_ApplicationManufacturer Application Manufacturer.

DCM_TAG_AlgorithmType Algorithm Type.

DCM_TAG_AlgorithmDescription Algorithm Description.

DCM_TAG_XRay3DReconstructionSequence X-Ray 3D Reconstruction
Sequence.

DCM_TAG_ReconstructionDescription Reconstruction Description.

DCM_TAG_PerProjectionAcquisitionSequence Per Projection Acquisition
Sequence.

DCM_TAG_DiffusionBMatrixSequence Diffusion b-matrix Sequence.

DCM_TAG_Diffusion_b_matrixSequence Diffusion b-matrix Sequence.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_DiffusionBValueXX Diffusion b-value XX.

DCM_TAG_Diffusion_b_valueXX Diffusion b-value XX. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_DiffusionBValueXY Diffusion b-value XY.

DCM_TAG_Diffusion_b_valueXY Diffusion b-value XY. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_DiffusionBValueXZ Diffusion b-value XZ.

DCM_TAG_Diffusion_b_valueXZ Diffusion b-value XZ. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_DiffusionBValueYY Diffusion b-value YY.

DCM_TAG_Diffusion_b_valueYY Diffusion b-value YY. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

ImageGear Professional v18 for Mac | 1672

DCM_TAG_DiffusionBValueYZ Diffusion b-value YZ.

DCM_TAG_Diffusion_b_valueYZ Diffusion b-value YZ. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_DiffusionBValueZZ Diffusion b-value ZZ.

DCM_TAG_Diffusion_b_valueZZ Diffusion b-value ZZ. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_DecayCorrectionDateTime Decay Correction DateTime.

DCM_TAG_StartDensityThreshold Start Density Threshold.

DCM_TAG_StartRelativeDensityDifferenceThreshold Start Relative Density Difference
Threshold.

DCM_TAG_StartCardiacTriggerCountThreshold Start Cardiac Trigger Count
Threshold.

DCM_TAG_StartRespiratoryTriggerCountThreshold Start Respiratory Trigger Count
Threshold.

DCM_TAG_TerminationCountsThreshold Termination Counts Threshold.

DCM_TAG_TerminationDensityThreshold Termination Density Threshold.

DCM_TAG_TerminationRelativeDensityThreshold Termination Relative Density
Threshold.

DCM_TAG_TerminationTimeThreshold Termination Time Threshold.

DCM_TAG_TerminationCardiacTriggerCountThreshold Termination Cardiac Trigger
Count Threshold.

DCM_TAG_TerminationRespiratoryTriggerCountThreshold Termination Respiratory Trigger
Count Threshold.

DCM_TAG_DetectorGeometry Detector Geometry.

DCM_TAG_TransverseDetectorSeparation Transverse Detector Separation.

DCM_TAG_AxialDetectorDimension Axial Detector Dimension.

DCM_TAG_RadiopharmaceuticalAgentNumber Radiopharmaceutical Agent
Number.

DCM_TAG_PETFrameAcquisitionSequence PET Frame Acquisition Sequence.

DCM_TAG_PETDetectorMotionDetailsSequence PET Detector Motion Details
Sequence.

DCM_TAG_PETTableDynamicsSequence PET Table Dynamics Sequence.

DCM_TAG_PETPositionSequence PET Position Sequence.

DCM_TAG_PETFrameCorrectionFactorsSequence PET Frame Correction Factors
Sequence.

DCM_TAG_RadiopharmaceuticalUsageSequence Radiopharmaceutical Usage
Sequence.

DCM_TAG_AttenuationCorrectionSource Attenuation Correction Source.

DCM_TAG_NumberOfIterations Number of Iterations.

DCM_TAG_NumberOfSubsets Number of Subsets.

DCM_TAG_PETReconstructionSequence PET Reconstruction Sequence.

DCM_TAG_PETFrameTypeSequence PET Frame Type Sequence.

DCM_TAG_TimeOfFlightInformationUsed Time of Flight Information Used.

DCM_TAG_ReconstructionType Reconstruction Type.

DCM_TAG_DecayCorrected Decay Corrected.

DCM_TAG_AttenuationCorrected Attenuation Corrected.

ImageGear Professional v18 for Mac | 1673

DCM_TAG_ScatterCorrected Scatter Corrected.

DCM_TAG_DeadTimeCorrected Dead Time Corrected.

DCM_TAG_GantryMotionCorrected Gantry Motion Corrected.

DCM_TAG_PatientMotionCorrected Patient Motion Corrected.

DCM_TAG_CountLossNormalizationCorrected Count Loss Normalization
Corrected.

DCM_TAG_RandomsCorrected Randoms Corrected.

DCM_TAG_NonUniformRadialSamplingCorrected Non-uniform Radial Sampling
Corrected.

DCM_TAG_SensitivityCalibrated Sensitivity Calibrated.

DCM_TAG_DetectorNormalizationCorrection Detector Normalization
Correction.

DCM_TAG_IterativeReconstructionMethod Iterative Reconstruction Method.

DCM_TAG_AttenuationCorrectionTemporalRelationship Attenuation Correction Temporal
Relationship.

DCM_TAG_PatientPhysiologicalStateSequence Patient Physiological State
Sequence.

DCM_TAG_PatientPhysiologicalStateCodeSequence Patient Physiological State Code
Sequence.

DCM_TAG_DepthsOfFocus Depth(s) of Focus.

DCM_TAG_ExcludedIntervalsSequence Excluded Intervals Sequence.

DCM_TAG_ExclusionStartDatetime Exclusion Start Datetime.

DCM_TAG_ExclusionDuration Exclusion Duration.

DCM_TAG_USImageDescriptionSequence US Image Description Sequence.

DCM_TAG_ImageDataTypeSequence Image Data Type Sequence.

DCM_TAG_DataType Data Type.

DCM_TAG_TransducerScanPatternCodeSequence Transducer Scan Pattern Code
Sequence.

DCM_TAG_AliasedDataType Aliased Data Type.

DCM_TAG_PositionMeasuringDeviceUsed Position Measuring Device Used.

DCM_TAG_TransducerGeometryCodeSequence Transducer Geometry Code
Sequence.

DCM_TAG_TransducerBeamSteeringCodeSequence Transducer Beam Steering Code
Sequence.

DCM_TAG_TransducerApplicationCodeSequence Transducer Application Code
Sequence.

DCM_TAG_ContributingEquipmentSequence Contributing Equipment
Sequence.

DCM_TAG_ContributionDateTime Contribution Date Time.

DCM_TAG_ContributionDescription Contribution Description.

DCM_TAG_ContributionDesc Contribution Description. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_Group0020Length Group 0020 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_StudyInstanceUID Study Instance UID.

DCM_TAG_SeriesInstanceUID Series Instance UID.

DCM_TAG_StudyID Study Identifier.

ImageGear Professional v18 for Mac | 1674

DCM_TAG_SeriesNumber Series Number.

DCM_TAG_AcquisitionNumber Acquisition Number.

DCM_TAG_InstanceNumber Instance Number.

DCM_TAG_IsotopeNumber Isotope Number. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_PhaseNumber Phase Number. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_IntervalNumber Interval Number. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_TimeSlotNumber Time Slot Number. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_AngleNumber Angle Number. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ItemNumber Item Number.

DCM_TAG_PatientOrientation Patient Orientation.

DCM_TAG_OverlayNumber Overlay Number. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_CurveNumber Curve Number. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_LUTNumber LUT Number. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_LookupTableNumber Lookup Table Number. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ImagePosition Image Position. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ImagePositionPatient Image Position (Patient).

DCM_TAG_ImageOrientation Image Orientation. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ImageOrientationPatient Image Orientation (Patient).

DCM_TAG_Location Location. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_FrameOfReferenceUID Frame of Reference UID.

DCM_TAG_Laterality The Laterality.

DCM_TAG_ImageLaterality Image Laterality.

DCM_TAG_ImageGeometryType Image Geometry Type. This tag

ImageGear Professional v18 for Mac | 1675

is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_MaskingImage Masking Image. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_TemporalPositionIdentifier Temporal Position Identifier.

DCM_TAG_NumberOfTemporalPositions Number of Temporal Positions.

DCM_TAG_TemporalResolution Temporal Resolution.

DCM_TAG_SynchronizationFrameOfReferenceUID Synchronization Frame of
Reference UID.

DCM_TAG_SyncFrameOfRefUID Synchronization Frame of
Reference UID. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_SOPInstanceUIDOfConcatenationSource SOP Instance UID of
Concatenation Source.

DCM_TAG_SeriesInStudy Series in Study. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_AcquisitionsInSeries Acquisitions in Series. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ImagesInAcquisition Images in Acquisition.

DCM_TAG_ImagesInSeries Images in Series. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_AcquisitionsInStudy Acquisitions in Study. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ImagesInStudy Images in Study. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_Reference Reference. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_PositionReferenceIndicator Position Reference Indicator.

DCM_TAG_SliceLocation Slice Location.

DCM_TAG_OtherStudyNumbers Other Study Numbers. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_NumberOfPatientRelatedStudies Number of Patient Related
Studies.

DCM_TAG_NumberOfPatientRelatedSeries Number of Patient Related
Series.

DCM_TAG_NumberOfPatientRelatedInstances Number of Patient Related
Instances.

DCM_TAG_NumberOfStudyRelatedSeries Number of Study Related Series.

ImageGear Professional v18 for Mac | 1676

DCM_TAG_NumberOfStudyRelatedInstances Number of Study Related
Instances.

DCM_TAG_NumberOfSeriesRelatedInstances Number of Series Related
Instances.

DCM_TAG_NumberOfSeriesRelatedInstance Number of Series Related
Instances. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_SourceImageIDs Source Image IDs. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ModifyingDeviceID Modifying Device ID. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ModifiedImageID Modified Image ID. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ModifiedImageDate Modified Image Date. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ModifyingDeviceManufacturer Modifying Device Manufacturer.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ModifiedImageTime Modified Image Time. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ModifiedImageDescription Modified Image Description. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ImageComments Image Comments.

DCM_TAG_OriginalImageIdentification Original Image Identification.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_OriginalImageIdentificationNomenclature Original Image Identification
Nomenclature. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_StackID Stack Identifier.

DCM_TAG_InStackPositionNumber In-Stack Position Number.

DCM_TAG_FrameAnatomySequence Frame Anatomy Sequence.

DCM_TAG_FrameLaterality Frame Laterality.

DCM_TAG_FrameContentSequence Frame Content Sequence.

DCM_TAG_PlanePositionSequence Plane Position Sequence.

DCM_TAG_PlaneOrientationSequence Plane Orientation Sequence.

DCM_TAG_TemporalPositionIndex Temporal Position Index.

DCM_TAG_NominalCardiacTriggerDelayTime Nominal Cardiac Trigger Delay
Time.

ImageGear Professional v18 for Mac | 1677

DCM_TAG_TriggerDelayTime Nominal Cardiac Trigger Delay
Time. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_FrameAcquisitionNumber Frame Acquisition Number.

DCM_TAG_FrameAcqNumber Frame Acquisition Number. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_DimensionIndexValues Dimension Index Values.

DCM_TAG_DimensionIndexValue Dimension Index Values. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_FrameComments Frame Comments.

DCM_TAG_ConcatenationUID Concatenation UID.

DCM_TAG_InConcatenationNumber In-concatenation Number.

DCM_TAG_InConcatenationTotalNumber In-concatenation Total Number.

DCM_TAG_DimensionOrganizationUID Dimension Organization UID.

DCM_TAG_DimensionIndexPointer Dimension Index Pointer.

DCM_TAG_FunctionalGroupPointer Functional Group Pointer.

DCM_TAG_DimensionIndexPrivateCreator Dimension Index Private Creator.

DCM_TAG_DimensionOrganizationSequence Dimension Organization
Sequence.

DCM_TAG_DimensionIndexSequence Dimension Index Sequence.

DCM_TAG_ConcatenationFrameOffsetNumber Concatenation Frame Offset
Number.

DCM_TAG_FunctionalGroupPrivateCreator Functional Group Private Creator.

DCM_TAG_NominalPercentageOfCardiacPhase Nominal Percentage of Cardiac
Phase.

DCM_TAG_NominalPercentageOfRespiratoryPhase Nominal Percentage of
Respiratory Phase.

DCM_TAG_StartingRespiratoryAmplitude Starting Respiratory Amplitude.

DCM_TAG_StartingRespiratoryPhase Starting Respiratory Phase.

DCM_TAG_EndingRespiratoryAmplitude Ending Respiratory Amplitude.

DCM_TAG_EndingRespiratoryPhase Ending Respiratory Phase.

DCM_TAG_RespiratoryTriggerType Respiratory Trigger Type.

DCM_TAG_RRIntervalTimeNominal R - R Interval Time Nominal.

DCM_TAG_RRIntervalTimeMeasured R - R Interval Time Nominal. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_ActualCardiacTriggerDelayTime Actual Cardiac Trigger Delay
Time.

DCM_TAG_RespiratorySynchronizationSequence Respiratory Synchronization
Sequence.

ImageGear Professional v18 for Mac | 1678

DCM_TAG_RespiratoryTriggerSequence Respiratory Synchronization
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_RespiratoryIntervalTime Respiratory Interval Time.

DCM_TAG_NominalRespiratoryTriggerDelayTime Nominal Respiratory Trigger
Delay Time.

DCM_TAG_RespiratoryTriggerDelayTime Nominal Respiratory Trigger
Delay Time. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_RespiratoryTriggerDelayThreshold Respiratory Trigger Delay
Threshold.

DCM_TAG_ActualRespiratoryTriggerDelayTime Actual Respiratory Trigger Delay
Time.

DCM_TAG_ImagePositionVolume Image Position (Volume).

DCM_TAG_ImageOrientationVolume Image Orientation (Volume).

DCM_TAG_UltrasoundAcquisitionGeometry Ultrasound Acquisition Geometry.

DCM_TAG_ApexPosition Apex Position.

DCM_TAG_VolumeToTransducerMappingMatrix Volume to Transducer Mapping
Matrix.

DCM_TAG_VolumeToTableMappingMatrix Volume to Table Mapping Matrix.

DCM_TAG_PatientFrameOfReferenceSource Patient Frame of Reference
Source.

DCM_TAG_TemporalPositionTimeOffset Temporal Position Time Offset.

DCM_TAG_PlanePositionVolumeSequence Plane Position (Volume)
Sequence.

DCM_TAG_PlaneOrientationVolumeSequence Plane Orientation (Volume)
Sequence.

DCM_TAG_TemporalPositionSequence Temporal Position Sequence.

DCM_TAG_DimensionOrganizationType Dimension Organization Type.

DCM_TAG_VolumeFrameOfReferenceUID Volume Frame of Reference UID.

DCM_TAG_TableFrameOfReferenceUID Table Frame of Reference UID.

DCM_TAG_DimensionDescriptionLabel Dimension Description Label.

DCM_TAG_PatientOrientationinFrameSequence Patient Orientation in Frame
Sequence.

DCM_TAG_FrameLabel Frame Label.

DCM_TAG_AcquisitionIndex Acquisition Index.

DCM_TAG_ContributingSOPInstancesReferenceSequence Contributing SOP Instances
Reference Sequence.

DCM_TAG_ReconstructionIndex Reconstruction Index.

DCM_TAG_Group0022Length Group 0022 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_LightPathFilterPassThroughWavelength Light Path Filter Pass-Through
Wavelength.

DCM_TAG_LightPathFilterPassBand Light Path Filter Pass Band.

DCM_TAG_ImagePathFilterPassThroughWavelength Image Path Filter Pass-Through
Wavelength.

ImageGear Professional v18 for Mac | 1679

DCM_TAG_ImagePathFilterPassBand Image Path Filter Pass Band.

DCM_TAG_PatientEyeMovementCommanded Patient Eye Movement
Commanded.

DCM_TAG_PatientEyeMovementCommandCodeSequence Patient Eye Movement Command
Code Sequence.

DCM_TAG_SphericalLensPower Spherical Lens Power.

DCM_TAG_CylinderLensPower Cylinder Lens Power.

DCM_TAG_CylinderAxis Cylinder Axis.

DCM_TAG_EmmetropicMagnification Emmetropic Magnification.

DCM_TAG_IntraOcularPressure Intra Ocular Pressure.

DCM_TAG_HorizontalFieldofView Horizontal Field of View.

DCM_TAG_PupilDilated Pupil Dilated.

DCM_TAG_DegreeofDilation Degree of Dilation.

DCM_TAG_StereoBaselineAngle Stereo Baseline Angle.

DCM_TAG_StereoBaselineDisplacement Stereo Baseline Displacement.

DCM_TAG_StereoHorizontalPixelOffset Stereo Horizontal Pixel Offset.

DCM_TAG_StereoVerticalPixelOffset Stereo Vertical Pixel Offset.

DCM_TAG_StereoRotation Stereo Rotation.

DCM_TAG_AcquisitionDeviceTypeCodeSequence Acquisition Device Type Code
Sequence.

DCM_TAG_IlluminationTypeCodeSequence Illumination Type Code
Sequence.

DCM_TAG_LightPathFilterTypeStackCodeSequence Light Path Filter Type Stack Code
Sequence.

DCM_TAG_ImagePathFilterTypeStackCodeSequence Image Path Filter Type Stack
Code Sequence.

DCM_TAG_LensesCodeSequence Lenses Code Sequence.

DCM_TAG_ChannelDescriptionCodeSequence Channel Description Code
Sequence.

DCM_TAG_RefractiveStateSequence Refractive State Sequence.

DCM_TAG_MydriaticAgentCodeSequence Mydriatic Agent Code Sequence.

DCM_TAG_RelativeImagePositionCodeSequence Relative Image Position Code
Sequence.

DCM_TAG_StereoPairsSequence Stereo Pairs Sequence.

DCM_TAG_LeftImageSequence Left Image Sequence.

DCM_TAG_RightImageSequence Right Image Sequence.

DCM_TAG_AxialLengthOfTheEye Axial Length of the Eye.

DCM_TAG_OphthalmicFrameLocationSequence Ophthalmic Frame Location
Sequence.

DCM_TAG_ReferenceCoordinates Reference Coordinates.

DCM_TAG_DepthSpatialResolution Depth Spatial Resolution.

DCM_TAG_MaximumDepthDistortion Maximum Depth Distortion.

DCM_TAG_AlongScanSpatialResolution Along-scan Spatial Resolution.

DCM_TAG_MaximumAlongScanDistortion Maximum Along-scan Distortion.

DCM_TAG_OphthalmicImageOrientation Ophthalmic Image Orientation.

DCM_TAG_DepthOfTransverseImage Depth of Transverse Image.

DCM_TAG_MydriaticAgentConcentrationUnitsSequence Mydriatic Agent Concentration
Units Sequence.

DCM_TAG_AcrossScanSpatialResolution Across-scan Spatial Resolution.

DCM_TAG_MaximumAcrossScanDistortion Maximum Across-scan Distortion.

DCM_TAG_MydriaticAgentConcentration Mydriatic Agent Concentration.

ImageGear Professional v18 for Mac | 1680

DCM_TAG_IlluminationWaveLength Illumination Wave Length.

DCM_TAG_IlluminationPower Illumination Power.

DCM_TAG_IlluminationBandwidth Illumination Bandwidth.

DCM_TAG_MydriaticAgentSequence Mydriatic Agent Sequence.

DCM_TAG_Group0028Length Group 0028 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_SamplesPerPixel Samples per Pixel.

DCM_TAG_SamplesperPixelUsed Samples per Pixel Used.

DCM_TAG_PhotometricInterpretation Photometric Interpretation.

DCM_TAG_ImageDimensions Image Dimensions. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_PlanarConfiguration Planar Configuration.

DCM_TAG_NumberOfFrames Number of Frames.

DCM_TAG_FrameIncrementPointer Frame Increment Pointer.

DCM_TAG_FrameDimensionPointer Frame Dimension Pointer.

DCM_TAG_Rows Rows. Height of the DICOM
image.

DCM_TAG_Columns Columns. Width of the DICOM
image.

DCM_TAG_Planes Planes. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_UltrasoundColorDataPresent Ultrasound Color Data Present.

DCM_TAG_PixelSpacing Pixel Spacing.

DCM_TAG_ZoomFactor Zoom Factor.

DCM_TAG_ZoomCenter Zoom Center.

DCM_TAG_PixelAspectRatio Pixel Aspect Ratio.

DCM_TAG_ImageFormat Image Format. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ManipulatedImage Manipulated Image. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_CorrectedImage Corrected Image.

DCM_TAG_CompressionRecognitionCode Compression Recognition Code.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_CompressionCode Compression Code. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_CompressionOriginator Compression Originator. This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_CompressionLabel Compression Label. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

ImageGear Professional v18 for Mac | 1681

DCM_TAG_CompressionDescription Compression Description. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_CompressionSequence Compression Sequence. This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_CompressionStepPointers Compression Step Pointers. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_RepeatInterval Repeat Interval. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_BitsGrouped Bits Grouped. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_PerimeterTable Perimeter Table. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_PerimeterValue Perimeter Value. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_PredictorRows Predictor Rows. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_PredictorColumns Predictor Columns. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_PredictorConstants Predictor Constants. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_BlockedPixels Blocked Pixels. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_BlockRows Block Rows. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_BlockColumns Block Columns. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_RowOverlap Row Overlap. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_ColumnOverlap Column Overlap. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_BitsAllocated Bits Allocated.

DCM_TAG_BitsStored Bits Stored.

ImageGear Professional v18 for Mac | 1682

DCM_TAG_HighBit Image High Bit.

DCM_TAG_PixelRepresentation Pixel Representation.

DCM_TAG_SmallestValidPixelValue Smallest Valid Pixel Value. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_LargestValidPixelValue Largest Valid Pixel Value. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_SmallestImagePixelValue Smallest Image Pixel Value.

DCM_TAG_LargestImagePixelValue Largest Image Pixel Value.

DCM_TAG_SmallestPixelValueInSeries Smallest Pixel Value in Series.

DCM_TAG_LargestPixelValueInSeries Largest Pixel Value in Series.

DCM_TAG_SmallestImagePixelValueInPlane Smallest Image Pixel Value in
Plane. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_LargestImagePixelValueInPlane Largest Image Pixel Value in
Plane. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_PixelPaddingValue Pixel Padding Value.

DCM_TAG_PixelPaddingRangeLimit Pixel Padding Range Limit.

DCM_TAG_ImageLocation Image Location. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_QualityControlImage Quality Control Image.

DCM_TAG_BurnedInAnnotation Burned In Annotation.

DCM_TAG_TransformLabel Transform Label. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_TransformVersionNumber Transform Version Number. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_NumberOfTransformSteps Number of Transform Steps. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_SequenceOfCompressedData Sequence of Compressed Data.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_DetailsOfCoefficients Details of Coefficients. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_RowsForNthOrderCoefficients Rows For Nth Order Coefficients.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ColumnsForNthOrderCoefficients Columns For Nth Order
Coefficients. This tag is marked
as retired in DICOM specification.
See DICOM specification for

ImageGear Professional v18 for Mac | 1683

alternatives.

DCM_TAG_CoefficientCoding Coefficient Coding. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_CoefficientCodingPointers Coefficient Coding Pointers. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_DCTLabel DCT Label. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_DataBlockDescription Data Block Description. This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_DataBlock Data Block. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_NormalizationFactorFormat Normalization Factor Format.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ZonalMapNumberFormat Zonal Map Number Format. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ZonalMapLocation Zonal Map Location. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ZonalMapFormat Zonal Map Format. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_AdaptiveMapFormat Adaptive Map Format. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_CodeNumberFormat Code Number Format. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_CodeLabel Code Label. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_NumberOfTables Number of Tables. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_NumberOfTable Number of Tables. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_CodeTableLocation Code Table Location. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_BitsForCodeWord Bits For Code Word. This tag is

ImageGear Professional v18 for Mac | 1684

marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ImageDataLocation Image Data Location. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_PixelSpacingCalibrationType Pixel Spacing Calibration Type.

DCM_TAG_PixelSpacingCalibrationDescription Pixel Spacing Calibration
Description.

DCM_TAG_PixelIntensityRelationship Pixel Intensity Relationship.

DCM_TAG_PixelIntensityRelationshipSign Pixel Intensity Relationship Sign.

DCM_TAG_WindowCenter Window Center.

DCM_TAG_WindowWidth Window Width.

DCM_TAG_RescaleIntercept Rescale Intercept.

DCM_TAG_RescaleSlope Rescale Slope.

DCM_TAG_RescaleType Rescale Type.

DCM_TAG_WindowCenterWidthExplanation Window Center and Width
Explanation.

DCM_TAG_WindowCenterAndWidthExplanation Window Center and Width
Explanation. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_VOILUTFunction VOI LUT Function.

DCM_TAG_GrayScale Gray Scale. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_RecommendedViewingMode Recommended Viewing Mode.

DCM_TAG_GrayLookupTableDescriptor Gray Lookup Table Descriptor.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_RedPaletteColorLookupTableDescriptor Red Palette Color Lookup Table
Descriptor.

DCM_TAG_GreenPaletteColorLookupTableDescriptor Green Palette Color Lookup Table
Descriptor.

DCM_TAG_BluePaletteColorLookupTableDescriptor Blue Palette Color Lookup Table
Descriptor.

DCM_TAG_AlphaPaletteColorLookupTableDescriptor Alpha Palette Color Lookup Table
Descriptor.

DCM_TAG_LargeRedPaletteColorLookupTableDescriptor Large Red Palette Color Lookup
Table Descriptor. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_LargeGreenPaletteColorLookupTableDescriptor Large Green Palette Color
Lookup Table Descriptor. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_LargeBluePaletteColorLookupTableDescriptor Large Blue Palette Color Lookup
Table Descriptor. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

ImageGear Professional v18 for Mac | 1685

DCM_TAG_PaletteColorLookupTableUID Palette Color Lookup Table UID.

DCM_TAG_LutUID Palette Color Lookup Table UID.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_GrayLookupTableData Gray Lookup Table Data. This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_RedPaletteColorLookupTableData Red Palette Color Lookup Table
Data.

DCM_TAG_GreenPaletteColorLookupTableData Green Palette Color Lookup Table
Data.

DCM_TAG_BluePaletteColorLookupTableData Blue Palette Color Lookup Table
Data.

DCM_TAG_AlphaPaletteColorLookupTableData Alpha Palette Color Lookup Table
Data.

DCM_TAG_LargeRedPaletteColorLookupTableData Large Red Palette Color Lookup
Table Data. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_LargeGreenPaletteColorLookupTableData Large Green Palette Color
Lookup Table Data(RET). See
DICOM specification for
alternatives.

DCM_TAG_LargeBluePaletteColorLookupTableData Large Blue Palette Color Lookup
Table Data. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_LargePaletteColorLookupTableUID Large Palette Color Lookup Table
UID. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_SegmentedRedPaletteColorLookupTableData Segmented Red Palette Color
Lookup Table Data.

DCM_TAG_SegmentedRedLutData Segmented Red Palette Color
Lookup Table Data.This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_SegmentedGreenPaletteColorLookupTableData Segmented Green Palette Color
Lookup Table Data.

DCM_TAG_SegmentedGreenLutData Segmented Green Palette Color
Lookup Table Data. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_SegmentedBluePaletteColorLookupTableData Segmented Blue Palette Color
Lookup Table Data.

DCM_TAG_SegmentedBlueLutData Segmented Blue Palette Color
Lookup Table Data. This tag
name has been deprecated and

ImageGear Professional v18 for Mac | 1686

will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_BreastImplantPresent Breast Implant Present.

DCM_TAG_ImplantPresent Breast Implant Present. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_PartialView Partial View.

DCM_TAG_PartialViewDescription Partial View Description.

DCM_TAG_PartialViewCodeSequence Partial View Code Sequence.

DCM_TAG_SpatialLocationsPreserved Spatial Locations Preserved.

DCM_TAG_DataFrameAssignmentSequence Data Frame Assignment
Sequence.

DCM_TAG_DataPathAssignment Data Path Assignment.

DCM_TAG_BitsMappedToColorLookupTable Bits Mapped to Color Lookup
Table.

DCM_TAG_BlendingLUT1Sequence Blending LUT 1 Sequence.

DCM_TAG_BlendingLUT1TransferFunction Blending LUT 1 Transfer
Function.

DCM_TAG_BlendingWeightConstant Blending Weight Constant.

DCM_TAG_BlendingLookupTableDescriptor Blending Lookup Table
Descriptor.

DCM_TAG_BlendingLookupTableData Blending Lookup Table Data.

DCM_TAG_EnhancedPaletteColorLookupTableSequence Enhanced Palette Color Lookup
Table Sequence.

DCM_TAG_BlendingLUT2Sequence Blending LUT 2 Sequence.

DCM_TAG_BlendingLUT2TransferFunction Blending LUT 2 Transfer
Function.

DCM_TAG_DataPathID Data Path ID.

DCM_TAG_RGBLUTTransferFunction RGB LUT Transfer Function.

DCM_TAG_AlphaLUTTransferFunction Alpha LUT Transfer Function.

DCM_TAG_ICCProfile ICC Profile.

DCM_TAG_LossyImageCompression Lossy Image Compression.

DCM_TAG_LossyImageCompressionRatio Lossy Image Compression Ratio.

DCM_TAG_LossyImageCompressionMethod Lossy Image Compression
Method.

DCM_TAG_ModalityLUTSequence Modality LUT Sequence.

DCM_TAG_LUTDescriptor LUT Descriptor.

DCM_TAG_LUTExplanation LUT Explanation.

DCM_TAG_ModalityLUTType Modality LUT Type.

DCM_TAG_LUTData LUT (Lookup Table) Data.

DCM_TAG_VOILUTSequence VOI LUT Sequence.

DCM_TAG_SoftcopyVOILUTSequence Softcopy VOI LUT Sequence.

DCM_TAG_ImagePresentationComments Image Presentation Comments.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_BiPlaneAcquisitionSequence Bi-Plane Acquisition Sequence.
This tag is marked as retired in
DICOM specification. See DICOM

ImageGear Professional v18 for Mac | 1687

specification for alternatives.

DCM_TAG_RepresentativeFrameNumber Representative Frame Number.

DCM_TAG_FrameNumbersOfInterest Frame Numbers of Interest
(FOI).

DCM_TAG_FrameOfInterestDescription Frame of Interest Description.

DCM_TAG_FramesOfInterestDescription Frame of Interest Description.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_FrameofInterestType Frame of Interest Type.

DCM_TAG_MaskPointers Mask Pointer(s). This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_RWavePointer R Wave Pointer.

DCM_TAG_RWavePoints R Wave Pointer. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_MaskSubtractionSequence Mask Subtraction Sequence.

DCM_TAG_MaskOperation Mask Operation.

DCM_TAG_ApplicableFrameRange Applicable Frame Range.

DCM_TAG_MaskFrameNumbers Mask Frame Numbers.

DCM_TAG_ContrastFrameAveraging Contrast Frame Averaging.

DCM_TAG_MaskSubpixelShift Mask Sub-pixel Shift.

DCM_TAG_TidOffset TID Offset.

DCM_TAG_MaskOperationExplanation Mask Operation Explanation.

DCM_TAG_PixelDataProviderURL Pixel Data Provider URL.

DCM_TAG_DataPointRows Data Point Rows.

DCM_TAG_DataPointColumns Data Point Columns.

DCM_TAG_SignalDomainColumns Signal Domain Columns.

DCM_TAG_LargestMonochromePixelValue Largest Monochrome Pixel Value.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_DataRepresentation Data Representation.

DCM_TAG_PixelMeasuresSequence Pixel Measures Sequence.

DCM_TAG_FrameVoiLutSequence Frame VOI LUT Sequence.

DCM_TAG_PixelValueTransformationSequence Pixel Value Transformation
Sequence.

DCM_TAG_SignalDomainRows Signal Domain Rows.

DCM_TAG_DisplayFilterPercentage Display Filter Percentage.

DCM_TAG_FramePixelShiftSequence Frame Pixel Shift Sequence.

DCM_TAG_SubtractionItemID Subtraction Item ID.

DCM_TAG_PixelIntensityRelationshipLUTSequence Pixel Intensity Relationship LUT
Sequence.

DCM_TAG_FramePixelDataPropertiesSequence Frame Pixel Data Properties
Sequence.

DCM_TAG_GeometricalProperties Geometrical Properties.

ImageGear Professional v18 for Mac | 1688

DCM_TAG_GeometricMaximumDistortion Geometric Maximum Distortion.

DCM_TAG_ImageProcessingApplied Image Processing Applied.

DCM_TAG_MaskSelectionMode Mask Selection Mode.

DCM_TAG_LUTFunction LUT Function.

DCM_TAG_MaskVisibilityPercentage Mask Visibility Percentage.

DCM_TAG_PixelShiftSequence Pixel Shift Sequence.

DCM_TAG_RegionPixelShiftSequence Region Pixel Shift Sequence.

DCM_TAG_VerticesOfTheRegion Vertices of the Region.

DCM_TAG_MultiFramePresentationSequence Multi-frame Presentation
Sequence.

DCM_TAG_PixelShiftFrameRange Pixel Shift Frame Range.

DCM_TAG_LUTFrameRange LUT Frame Range.

DCM_TAG_ImageToEquipmentMappingMatrix Image to Equipment Mapping
Matrix.

DCM_TAG_EquipmentCoordinateSystemIdentification Equipment Coordinate System
Identification.

DCM_TAG_Group0032Length Group 0032 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_StudyStatusID Study Status ID. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_StudyPriorityID Study Priority ID. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_StudyIDIssuer Study ID Issuer. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_StudyVerifiedDate Study Verified Date. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_StudyVerifiedTime Study Verified Time. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_StudyReadDate Study Read Date. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_StudyReadTime Study Read Time. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ScheduledStudyStartDate Scheduled Study Start Date. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ScheduledStudyStartTime Scheduled Study Start Time. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ScheduledStudyStopDate Scheduled Study Stop Date. This
tag is marked as retired in
DICOM specification. See DICOM

ImageGear Professional v18 for Mac | 1689

specification for alternatives.

DCM_TAG_ScheduledStudyStopTime Scheduled Study Stop Time. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ScheduledStudyLocation Scheduled Study Location. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ScheduledStudyLocationAeTitles Scheduled Study Location AE
Title. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_ReasonForStudy Reason for Study. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_RequestingPhysicianIdentificationSequence Requesting Physician
Identification Sequence.

DCM_TAG_RequestingPhysicianIDSequence Requesting Physician
Identification Sequence. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_RequestingPhysician Requesting Physician.

DCM_TAG_RequestingService Requesting Service.

DCM_TAG_RequestingServiceCodeSequence Requesting Service Code
Sequence.

DCM_TAG_StudyArrivalDate Study Arrival Date. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_StudyArrivalTime Study Arrival Time. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_StudyCompletionDate Study Completion Date. This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_StudyCompletionTime Study Completion Time. This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_StudyComponentStatusID Study Component Status ID.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_RequestedProcedureDescription Requested Procedure
Description.

DCM_TAG_RequestedProcedureCodeSequence Requested Procedure Code
Sequence.

DCM_TAG_RequestedContrastAgent Requested Contrast Agent.

DCM_TAG_StudyComments Study Comments. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

ImageGear Professional v18 for Mac | 1690

DCM_TAG_Group0038Length Group 0038 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ReferencedPatientAliasSequence Referenced Patient Alias
Sequence.

DCM_TAG_VisitStatusID Visit Status ID.

DCM_TAG_AdmissionID Admission ID.

DCM_TAG_IssuerOfAdmissionID Issuer of Admission ID. This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_IssuerOfAdmissionIDSequence Issuer of Admission ID
Sequence.

DCM_TAG_RouteOfAdmissions Route of Admissions.

DCM_TAG_ScheduledAdmissionDate Scheduled Admission Date. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ScheduledAdmissionTime Scheduled Admission Time. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ScheduledDischargeDate Scheduled Discharge Date. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ScheduledDischargeTime Scheduled Discharge Time. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ScheduledPatientInstitutionResidence Scheduled Patient Institution
Residence. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_AdmittingDate Admitting Date.

DCM_TAG_AdmittingTime Admitting Time.

DCM_TAG_DischargeDate Discharge Date. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_DischargeTime Discharge Time. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_DischargeDiagnosisDescription Discharge Diagnosis Description.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_DischargeDiagnosisCodeSequence Discharge Diagnosis Code
Sequence. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_SpecialNeeds Special Needs.

DCM_TAG_ServiceEpisodeID Service Episode ID.

DCM_TAG_IssuerOfServiceEpisodeID Issuer of Service Episode ID.
This tag is marked as retired in
DICOM specification. See DICOM

ImageGear Professional v18 for Mac | 1691

specification for alternatives.

DCM_TAG_ServiceEpisodeDescription Service Episode Description.

DCM_TAG_IssuerOfServiceEpisodeIDSequence Issuer of Service Episode ID
Sequence.

DCM_TAG_PertinentDocumentsSequence Pertinent Documents Sequence.

DCM_TAG_CurrentPatientLocation Current Patient Location.

DCM_TAG_PatientInstitutionResidence Patient's Institution Residence.

DCM_TAG_PatientsInstitutionResidence Patient's Institution Residence.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_PatientState Patient State.

DCM_TAG_PatientClinicalTrialParticipationSequence Patient Clinical Trial Participation
Sequence.

DCM_TAG_VisitComments Visit Comments.

DCM_TAG_Group003ALength Group 003A Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_WaveformOriginality Waveform Originality.

DCM_TAG_NumberOfWaveformChannels Number of Waveform Channels.

DCM_TAG_NumberOfWaveformSamples Number of Waveform Samples.

DCM_TAG_SamplingFrequency Sampling Frequency.

DCM_TAG_MultiplexGroupLabel Multiplex Group Label.

DCM_TAG_GroupLabel Multiplex Group Label. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_WaveformSampleValueRepresentation Waveform Sample Value
Representation.

DCM_TAG_ChannelDefinitionSequence Channel Definition Sequence.

DCM_TAG_WaveformChannelNumber Waveform Channel Number.

DCM_TAG_ChannelLabel Channel Label.

DCM_TAG_ChannelStatus Channel Status.

DCM_TAG_ChannelSourceSequence Channel Source Sequence.

DCM_TAG_WaveformSource Channel Source Sequence. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_ChannelSourceModifiersSequence Channel Source Modifiers
Sequence.

DCM_TAG_WaveformSourceModifiers Channel Source Modifiers
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_SourceWaveformSequence Source Waveform Sequence.

ImageGear Professional v18 for Mac | 1692

DCM_TAG_DifferentialWaveformSource Source Waveform Sequence.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_DifferentialWaveformSourceModifiers Differential Waveform Source
Modifiers. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_ChannelDerivationDescription Channel Derivation Description.

DCM_TAG_ChannelSensitivity Channel Sensitivity.

DCM_TAG_ChannelSensitivityUnitsSequence Channel Sensitivity Units
Sequence.

DCM_TAG_ChannelSensitivityUnits Channel Sensitivity Units
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ChannelSensitivityCorrectionFactor Channel Sensitivity Correction
Factor.

DCM_TAG_ChannelBaseline Channel Baseline.

DCM_TAG_ChannelTimeSkew Channel Time Skew.

DCM_TAG_ChannelSampleSkew Channel Sample Skew.

DCM_TAG_ChannelOffset Channel Offset.

DCM_TAG_WaveformBitsStored Waveform Bits Stored.

DCM_TAG_FilterLowFrequency Filter Low Frequency.

DCM_TAG_FilterHighFrequency Filter High Frequency.

DCM_TAG_NotchFilterFrequency Notch Filter Frequency.

DCM_TAG_NotchFilterBandwidth Notch Filter Bandwidth.

DCM_TAG_WaveformDataDisplayScale Waveform Data Display Scale.

DCM_TAG_WaveformDisplayBackgroundCIELabValue Waveform Display Background
CIELab Value.

DCM_TAG_WaveformPresentationGroupSequence Waveform Presentation Group
Sequence.

DCM_TAG_PresentationGroupNumber Presentation Group Number.

DCM_TAG_ChannelDisplaySequence Channel Display Sequence.

DCM_TAG_ChannelRecommendedDisplayCIELabValue Channel Recommended Display
CIELab Value.

DCM_TAG_ChannelPosition Channel Position.

DCM_TAG_DisplayShadingFlag Display Shading Flag.

DCM_TAG_FractionalChannelDisplayScale Fractional Channel Display Scale.

DCM_TAG_AbsoluteChannelDisplayScale Absolute Channel Display Scale.

DCM_TAG_MultiplexedAudioChannelsDescriptionCodeSequence Multiplexed Audio Channels
Description Code Sequence.

DCM_TAG_ChannelIdentificationCode Channel Identification Code.

DCM_TAG_ChannelMode Channel Mode.

DCM_TAG_Group0040Length Group 0040 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

ImageGear Professional v18 for Mac | 1693

DCM_TAG_ScheduledStationAeTitle Scheduled Station AE Title.

DCM_TAG_ScheduledProcedureStepStartDate Scheduled Procedure Step Start
Date.

DCM_TAG_ScheduledProcedureStepStartTime Scheduled Procedure Step Start
Time.

DCM_TAG_ScheduledProcedureStepEndDate Scheduled Procedure Step End
Date.

DCM_TAG_ScheduledProcedureStepEndTime Scheduled Procedure Step End
Time.

DCM_TAG_ScheduledPerformingPhysiciansName Scheduled Performing Physician's
Name.

DCM_TAG_ScheduledPerformingPhysicianName Scheduled Performing Physician's
Name. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_ScheduledProcedureStepDescription Scheduled Procedure Step
Description.

DCM_TAG_ScheduledProtocolCodeSequence Scheduled Protocol Code
Sequence.

DCM_TAG_ScheduledActionItemCodeSequence Scheduled Protocol Code
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ScheduledProcedureStepID Scheduled Procedure Step ID.

DCM_TAG_StageCodeSequence Stage Code Sequence.

DCM_TAG_ScheduledPerformingPhysicianIdentificationSequence Scheduled Performing Physician
Identification Sequence.

DCM_TAG_ScheduledPerformingPhysicianIDSequence Scheduled Performing Physician
Identification Sequence. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_ScheduledStationName Scheduled Station Name.

DCM_TAG_ScheduledProcedureStepLocation Scheduled Procedure Step
Location.

DCM_TAG_PreMedication Pre Medication.

DCM_TAG_ScheduledProcedureStepStatus Scheduled Procedure Step
Status.

DCM_TAG_OrderPlacerIdentifierSequence Order Placer Identifier Sequence.

DCM_TAG_OrderFillerIdentifierSequence Order Filler Identifier Sequence.

DCM_TAG_LocalNamespaceEntityID Local Namespace Entity ID.

DCM_TAG_UniversalEntityID Universal Entity ID.

DCM_TAG_UniversalEntityIDType Universal Entity ID Type.

DCM_TAG_IdentifierTypeCode Identifier Type Code.

DCM_TAG_AssigningFacilitySequence Assigning Facility Sequence.

DCM_TAG_AssigningJurisdictionCodeSequence Assigning Jurisdiction Code
Sequence.

DCM_TAG_AssigningAgencyOrDepartmentCodeSequence Assigning Agency or Department
Code Sequence.

ImageGear Professional v18 for Mac | 1694

DCM_TAG_ScheduledProcedureStepSequence Scheduled Procedure Step
Sequence.

DCM_TAG_ReferencedNonImageCompositeSOPInstanceSequence Referenced Non-Image
Composite SOP Instance
Sequence.

DCM_TAG_RefStandaloneSOPInstSequence Referenced Non-Image
Composite SOP Instance
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_PerformedStationAeTitle Performed Station AE Title.

DCM_TAG_PerformedStationName Performed Station Name.

DCM_TAG_PerformedLocation Performed Location.

DCM_TAG_PerformedProcedureStepStartDate Performed Procedure Step Start
Date.

DCM_TAG_PerformedProcedureStepStartTime Performed Procedure Step Start
Time.

DCM_TAG_PerformedProcedureStepEndDate Performed Procedure Step End
Date.

DCM_TAG_PerformedProcedureStepEndTime Performed Procedure Step End
Time.

DCM_TAG_PerformedProcedureStepStatus Performed Procedure Step
Status.

DCM_TAG_PerformedProcedureStepID Performed Procedure Step ID.

DCM_TAG_PerformedProcedureStepDescription Performed Procedure Step
Description.

DCM_TAG_PerformedProcedureStepDesc Performed Procedure Step
Description. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_PerformedProcedureTypeDescription Performed Procedure Type
Description.

DCM_TAG_PerformedProcedureTypeDesc Performed Procedure Type
Description. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_PerformedProtocolCodeSequence Performed Protocol Code
Sequence.

DCM_TAG_PerformedActionItemSequence Performed Protocol Code
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_PerformedProtocolType Performed Protocol Type.

DCM_TAG_ScheduledStepAttributesSequence Scheduled Step Attributes
Sequence.

DCM_TAG_RequestAttributesSequence Request Attributes Sequence.

DCM_TAG_CommentsOnThePerformedProcedureStep Comments on the Performed
Procedure Step.

ImageGear Professional v18 for Mac | 1695

DCM_TAG_PerformedProcedureStepComment Comments on the Performed
Procedure Step. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_PerformedProcedureStepDiscontinuationReasonCodeSequence Performed Procedure Step
Discontinuation Reason Code
Sequence.

DCM_TAG_PerfProcStepDiscontReasonCodeSequence Performed Procedure Step
Discontinuation Reason Code
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_QuantitySequence Quantity Sequence.

DCM_TAG_Quantity Quantity value.

DCM_TAG_MeasuringUnitsSequence Measuring Units Sequence.

DCM_TAG_MeasuringUnitSequence Measuring Units Sequence. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_BillingItemSequence Billing Item Sequence.

DCM_TAG_TotalTimeofFluoroscopy Total Time of Fluoroscopy.

DCM_TAG_TotalNumberOfExposures Total Number of Exposures.

DCM_TAG_TotalNumberofExposure Total Number of Exposures. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_EntranceDose Entrance Dose.

DCM_TAG_ExposedArea Exposed Area.

DCM_TAG_DistanceSourceToEntrance Distance Source to Entrance.

DCM_TAG_SourceToEntranceDistance Distance Source to Entrance.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_DistanceSourceToSupport Distance Source to Support. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ExposureDoseSequence Exposure Dose Sequence.

DCM_TAG_CommentsOnRadiationDose Comments on Radiation Dose.

DCM_TAG_RadiationDoseComment Comments on Radiation Dose.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

ImageGear Professional v18 for Mac | 1696

DCM_TAG_XrayOutput X-Ray Output.

DCM_TAG_HalfValueLayer Half Value Layer.

DCM_TAG_OrganDose Organ Dose.

DCM_TAG_OrganExposed Organ Exposed.

DCM_TAG_BillingProcedureStepSequence Billing Procedure Step Sequence.

DCM_TAG_FilmConsumptionSequence Film Consumption Sequence.

DCM_TAG_BillingSuppliesAndDevicesSequence Billing Supplies and Devices
Sequence.

DCM_TAG_BillingSuppliesAndDeviceSequence Billing Supplies and Devices
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_BillingSupplyDeviceSequence Billing Supplies and Devices
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ReferencedProcedureStepSequence Referenced Procedure Step
Sequence. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_PerformedSeriesSequence Performed Series Sequence.

DCM_TAG_CommentsOnTheScheduledProcedureStep Comments on the Scheduled
Procedure Step.

DCM_TAG_ScheduledProcedureComment Comments on the Scheduled
Procedure Step. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ProtocolContextSequence Protocol Context Sequence.

DCM_TAG_ContentItemModifierSequence Content Item Modifier Sequence.

DCM_TAG_ScheduledSpecimenSequence Scheduled Specimen Sequence.

DCM_TAG_SpecimenAccessionNumber Specimen Accession Number.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ContainerIdentifier Container Identifier.

DCM_TAG_IssuerOfTheContainerIdentifierSequence Issuer of the Container Identifier
Sequence.

DCM_TAG_AlternateContainerIdentifierSequence Alternate Container Identifier
Sequence.

DCM_TAG_ContainerTypeCodeSequence Container Type Code Sequence.

DCM_TAG_ContainerDescription Container Description.

DCM_TAG_ContainerComponentSequence Container Component Sequence.

DCM_TAG_SpecimenSequence Specimen Sequence. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_SpecimenIdentifier Specimen Identifier.

DCM_TAG_SpecimenDescriptionSequenceTrial Specimen Description Sequence

ImageGear Professional v18 for Mac | 1697

- Trial. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_SpecimenDescriptionTrial Specimen Description - Trial.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_SpecimenDescription Specimen Description - Trial.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_SpecimenUID Specimen UID.

DCM_TAG_AcquisitionContextSequence Acquisition Context Sequence.

DCM_TAG_AcquisitionContextDescription Acquisition Context Description.

DCM_TAG_AcquisitionContextDesc Acquisition Context Description.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_SpecimenDescriptionSequence Specimen Description Sequence.

DCM_TAG_IssuerOfTheSpecimenIdentifierSequence Issuer of the Specimen Identifier
Sequence.

DCM_TAG_SpecimenTypeCodeSequence Specimen Type Code Sequence.

DCM_TAG_SpecimenShortDescription Specimen Short Description.

DCM_TAG_SpecimenDetailedDescription Specimen Detailed Description.

DCM_TAG_SpecimenPreparationSequence Specimen Preparation Sequence.

DCM_TAG_SpecimenPreparationStepContentItemSequence Specimen Preparation Step
Content Item Sequence.

DCM_TAG_SpecimenLocalizationContentItemSequence Specimen Localization Content
Item Sequence.

DCM_TAG_SlideIdentifier Slide Identifier. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ImageCenterPointCoordinatesSequence Image Center Point Coordinates
Sequence.

DCM_TAG_ImageCenterPointCoordSequence Image Center Point Coordinates
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_XOffsetInSlideCoordinateSystem X offset in Slide Coordinate
System.

DCM_TAG_XOffset X offset in Slide Coordinate
System. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_YOffsetInSlideCoordinateSystem Y offset in Slide Coordinate
System.

DCM_TAG_YOffset Y offset in Slide Coordinate
System. This tag name has been
deprecated and will be removed

ImageGear Professional v18 for Mac | 1698

from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_ZOffsetInSlideCoordinateSystem Z offset in Slide Coordinate
System.

DCM_TAG_ZOffset Z offset in Slide Coordinate
System. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_PixelSpacingSequence Pixel Spacing Sequence.

DCM_TAG_CoordinateSystemAxisCodeSequence Coordinate System Axis Code
Sequence.

DCM_TAG_CoordSystemAxisCodeSequence Coordinate System Axis Code
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_MeasurementUnitsCodeSequence Measurement Units Code
Sequence.

DCM_TAG_MeasurementUnitCodeSequence Measurement Units Code
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_VitalStainCodeSequenceTrial Vital Stain Code Sequence -
Trial. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_VitalStainCodeSequence Vital Stain Code Sequence -
Trial. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_RequestedProcedureID Requested Procedure ID.

DCM_TAG_ReasonForTheRequestedProcedure Reason for the Requested
Procedure.

DCM_TAG_RequestedProcedureReason Reason for the Requested
Procedure. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_RequestedProcedurePriority Requested Procedure Priority.

DCM_TAG_PatientTransportArrangements Patient Transport Arrangements.

DCM_TAG_PatientTransport Patient Transport Arrangements.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_RequestedProcedureLocation Requested Procedure Location.

ImageGear Professional v18 for Mac | 1699

DCM_TAG_PlacerOrderNumberProcedure Placer Order Number /
Procedure. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_FillerOrderNumberProcedure Filler Order Number / Procedure.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ConfidentialityCode Confidentiality Code.

DCM_TAG_ReportingPriority Reporting Priority.

DCM_TAG_ReasonforRequestedProcedureCodeSequence Reason for Requested Procedure
Code Sequence.

DCM_TAG_NamesOfIntendedRecipientsOfResults Names of Intended Recipients of
Results.

DCM_TAG_IntendedRecipients Names of Intended Recipients of
Results. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_IntendedRecipientsOfResultsIdentificationSequence Intended Recipients of Results
Identification Sequence.

DCM_TAG_IntendedRecipientOfResultIDSequence Intended Recipients of Results
Identification Sequence. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_ReasonForPerformedProcedureCodeSequence Reason For Performed Procedure
Code Sequence.

DCM_TAG_PersonIdentificationCodeSequence Person Identification Code
Sequence.

DCM_TAG_PersonIDCodeSequence Person Identification Code
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_PersonsAddress Person's Address.

DCM_TAG_PersonAddress Person's Address. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_PersonTelephoneNumbers Person's Telephone Numbers.

DCM_TAG_PersonsTelephoneNumbers Person's Telephone Numbers.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_PersonTelephoneNumber Person's Telephone Numbers.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with

ImageGear Professional v18 for Mac | 1700

the same value defined in the
previous line.

DCM_TAG_RequestedProcedureComments Requested Procedure Comments.

DCM_TAG_RequestedProcedureComment Requested Procedure Comments.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_ReasonForTheImagingServiceRequest Reason for the Imaging Service
Request. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_IssueDateOfImagingServiceRequest Issue Date of Imaging Service
Request.

DCM_TAG_ImagingServiceRequestDate Issue Date of Imaging Service
Request. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_IssueTimeOfImagingServiceRequest Issue Time of Imaging Service
Request.

DCM_TAG_ImagingServiceRequestTime Issue Time of Imaging Service
Request. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_PlacerOrderNumberImagingServiceRequestRetired Placer Order Number / Imaging
Service Request (Retired). This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ImagingServiceRequestPlacerOrderNum Placer Order Number / Imaging
Service Request (Retired). This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_FillerOrderNumberImagingServiceRequestRetired Filler Order Number / Imaging
Service Request (Retired). This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ImagingServiceRequestFillerOrderNum Filler Order Number / Imaging
Service Request (Retired). This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_OrderEnteredBy Order Entered By.

DCM_TAG_OrderEnterer Order Entered By. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_OrderEnterersLocation Order Enterer's Location.

DCM_TAG_OrderEntererLocation Order Enterer's Location. This

ImageGear Professional v18 for Mac | 1701

tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_OrderCallbackPhoneNumber Order Callback Phone Number.

DCM_TAG_PlacerOrderNumberImagingServiceRequest Placer Order Number / Imaging
Service Request.

DCM_TAG_FillerOrderNumberImagingServiceRequest Filler Order Number / Imaging
Service Request.

DCM_TAG_ImagingServiceRequestComments Imaging Service Request
Comments.

DCM_TAG_ImagingServiceRequestComment Imaging Service Request
Comments. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ConfidentialityConstraintOnPatientDataDescription Confidentiality Constraint on
Patient Data Description.

DCM_TAG_ConfidentialityConstraint Confidentiality Constraint on
Patient Data Description.

DCM_TAG_GeneralPurposeScheduledProcedureStepStatus General Purpose Scheduled
Procedure Step Status.

DCM_TAG_GeneralScheduledProcedureStepStatus General Purpose Scheduled
Procedure Step Status. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_GeneralPurposePerformedProcedureStepStatus General Purpose Performed
Procedure Step Status.

DCM_TAG_GeneralPerformedProcedureStepStatus General Purpose Performed
Procedure Step Status. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_GeneralPurposeScheduledProcedureStepPriority General Purpose Scheduled
Procedure Step Priority.

DCM_TAG_GeneralScheduledProcedureStepPriority General Purpose Scheduled
Procedure Step Priority. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_ScheduledProcessingApplicationsCodeSequence Scheduled Processing
Applications Code Sequence.

DCM_TAG_ScheduledProcessingAppCodeSequence Scheduled Processing
Applications Code Sequence. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_ScheduledProcedureStepStartDateTime Scheduled Procedure Step Start

ImageGear Professional v18 for Mac | 1702

Date Time.

DCM_TAG_ScheduledProcedureStepStartDateAndTime Scheduled Procedure Step Start
Date and Time. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ScheduledProcedureStepStartDT Scheduled Procedure Step Start
Date and Time. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_MultipleCopiesFlag Multiple Copies Flag.

DCM_TAG_PerformedProcessingApplicationsCodeSequence Performed Processing
Applications Code Sequence.

DCM_TAG_PerformedProcessingAppCodeSequence Performed Processing
Applications Code Sequence. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_HumanPerformerCodeSequence Human Performer Code
Sequence.

DCM_TAG_ScheduledProcedureStepModificationDateTime Scheduled Procedure Step
Modification Date Time.

DCM_TAG_ScheduledProcedureStepModificationDateandTime Scheduled Procedure Step
Modification Date and Time. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_ExpectedCompletionDateTime Expected Completion Date Time.

DCM_TAG_ExpectedCompletionDateAndTime Expected Completion Date and
Time. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_ExpectedCompletionDT Expected Completion Date and
Time. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_ResultingGeneralPurposePerformedProcedureStepsSequence Resulting General Purpose
Performed Procedure Steps
Sequence.

DCM_TAG_ResultingGenPerformedProcStepSequence Resulting General Purpose
Performed Procedure Steps
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined

ImageGear Professional v18 for Mac | 1703

in the previous line.

DCM_TAG_ReferencedGeneralPurposeScheduledProcedureStepSequence Referenced General Purpose
Scheduled Procedure Step
Sequence.

DCM_TAG_RefGenScheduledProcStepSequence Referenced General Purpose
Scheduled Procedure Step
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ScheduledWorkitemCodeSequence Scheduled Workitem Code
Sequence.

DCM_TAG_PerformedWorkitemCodeSequence Performed Workitem Code
Sequence.

DCM_TAG_InputAvailabilityFlag Input Availability Flag.

DCM_TAG_InputInformationSequence Input Information Sequence.

DCM_TAG_RelevantInformationSequence Relevant Information Sequence.

DCM_TAG_ReferencedGeneralPurposeScheduledProcedureStepTransactionUID Referenced General Purpose
Scheduled Procedure Step
Transaction UID.

DCM_TAG_ReferencedGenScheduledProcStepUID Referenced General Purpose
Scheduled Procedure Step
Transaction UID. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ScheduledStationNameCodeSequence Scheduled Station Name Code
Sequence.

DCM_TAG_ScheduledStationClassCodeSequence Scheduled Station Class Code
Sequence.

DCM_TAG_ScheduledStationGeographicLocationCodeSequence Scheduled Station Geographic
Location Code Sequence.

DCM_TAG_ScheduledStationGeoLocationCode Scheduled Station Geographic
Location Code Sequence. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_PerformedStationNameCodeSequence Performed Station Name Code
Sequence.

DCM_TAG_PerformedStationClassCodeSequence Performed Station Class Code
Sequence.

DCM_TAG_PerformedStationGeographicLocationCodeSequence Performed Station Geographic
Location Code Sequence.

DCM_TAG_PerformedStationGeoLocationCode Performed Station Geographic
Location Code Sequence. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_RequestedSubsequentWorkitemCodeSequence Requested Subsequent Workitem
Code Sequence.

ImageGear Professional v18 for Mac | 1704

DCM_TAG_RequestedSubsWorkitemCodeSequence Requested Subsequent Workitem
Code Sequence. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_NonDICOMOutputCodeSequence Non-DICOM Output Code
Sequence.

DCM_TAG_OutputInformationSequence Output Information Sequence.

DCM_TAG_ScheduledHumanPerformersSequence Scheduled Human Performers
Sequence.

DCM_TAG_ScheduledHumanPerformerSequence Scheduled Human Performers
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ActualHumanPerformersSequence Actual Human Performers
Sequence.

DCM_TAG_ActualHumanPerformerSequence Actual Human Performers
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_HumanPerformerOrganization Human Performer's Organization.

DCM_TAG_HumanPerformersOrganization Human Performer's Organization.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_HumanPerformerName Human Performer's Name.

DCM_TAG_HumanPerformersName Human Performer's Name. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_RawDataHandling Raw Data Handling.

DCM_TAG_EntranceDoseInmGy Entrance Dose in mGy.

DCM_TAG_ReferencedImageRealWorldValueMappingSequence Referenced Image Real World
Value Mapping Sequence.

DCM_TAG_RealWorldValueMappingSequence Real World Value Mapping
Sequence.

DCM_TAG_RealWorldValMappingSequence Real World Value Mapping
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_PixelValueMappingCodeSequence Pixel Value Mapping Code
Sequence.

DCM_TAG_LutLabel LUT Label.

DCM_TAG_RealWorldValueLastValueMapped Real World Value Last Value

ImageGear Professional v18 for Mac | 1705

Mapped.

DCM_TAG_RealWorldValLastValMapped Real World Value Last Value
Mapped. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_RealWorldValueLUTData Real World Value LUT Data.

DCM_TAG_RealWorldValLutData Real World Value LUT Data. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_RealWorldValueFirstValueMapped Real World Value First Value
Mapped.

DCM_TAG_RealWorldValFirstValMapped Real World Value First Value
Mapped. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_RealWorldValueIntercept Real World Value Intercept.

DCM_TAG_RealWorldValIntercept Real World Value Intercept. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_RealWorldValueSlope Real World Value Slope.

DCM_TAG_RealWorldValSlope Real World Value Slope. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_RelationshipType Relationship Type.

DCM_TAG_VerifyingOrganization Verifying Organization.

DCM_TAG_VerificationDateTime Verification Date Time.

DCM_TAG_ObservationDateTime Observation Date Time.

DCM_TAG_ValueType Value Type.

DCM_TAG_ConceptNameCodeSequence Concept Name Code Sequence.

DCM_TAG_ContinuityOfContent Continuity Of Content.

DCM_TAG_AlertCodeSequence Alert Code Sequence.

DCM_TAG_VerifyingObserverSequence Verifying Observer Sequence.

DCM_TAG_VerifyingObserverName Verifying Observer Name.

DCM_TAG_AuthorObserverSequence Author Observer Sequence.

DCM_TAG_ParticipantSequence Participant Sequence.

DCM_TAG_CustodialOrganizationSequence Custodial Organization
Sequence.

DCM_TAG_ParticipationType Participation Type.

DCM_TAG_ParticipationDatetime Participation DateTime. This tag
name has been deprecated and
will be removed from the public

ImageGear Professional v18 for Mac | 1706

API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_ObserverType Observer Type.

DCM_TAG_VerifyingObserverIdentificationCodeSequence Verifying Observer Identification
Code Sequence.

DCM_TAG_VerifyingObserverIDCodeSequence Verifying Observer Identification
Code Sequence. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_EquivalentCDADocumentSequence Equivalent CDA Document
Sequence. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_ReferencedTypeofData Referenced Type of Data.

DCM_TAG_ReferencedWaveformChannels Referenced Waveform Channels.

DCM_TAG_DateTime DateTime value.

DCM_TAG_Date Date value.

DCM_TAG_Time Time value.

DCM_TAG_PersonName Person Name.

DCM_TAG_UID UID (unique identifier).

DCM_TAG_TemporalRangeType Temporal Range Type.

DCM_TAG_ReferencedSamplePositions Referenced Sample Positions.

DCM_TAG_ReferencedSampleOffsets Referenced Sample Positions.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_ReferencedFrameNumbers Referenced Frame Numbers.

DCM_TAG_ReferencedTimeOffsets Referenced Time Offsets.

DCM_TAG_ReferencedDatetime Referenced DateTime. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_TextValue Text Value.

DCM_TAG_ConceptCodeSequence Concept Code Sequence.

DCM_TAG_PurposeOfReferenceCodeSequence Purpose of Reference Code
Sequence.

DCM_TAG_AnnotationGroupNumber Annotation Group Number.

DCM_TAG_ModifierCodeSequence Modifier Code Sequence.

DCM_TAG_ConceptCodeSequenceModifier Modifier Code Sequence. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_CoordinateGeometricType Coordinate Geometric Type.

DCM_TAG_PixelCoordinateSet Pixel Coordinate Set.

DCM_TAG_MeasuredValueSequence Measured Value Sequence.

ImageGear Professional v18 for Mac | 1707

DCM_TAG_NumericValueQualifierCodeSequence Numeric Value Qualifier Code
Sequence.

DCM_TAG_NumericValue Numeric Value.

DCM_TAG_AddressTrial Address - Trial. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_Address Address - Trial. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_TelephoneNumberTrial Telephone Number - Trial. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_TelephoneNumber Telephone Number - Trial. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_PredecessorDocumentsSequence Predecessor Documents
Sequence.

DCM_TAG_ReferencedRequestSequence Referenced Request Sequence.

DCM_TAG_PerformedProcedureCodeSequence Performed Procedure Code
Sequence.

DCM_TAG_CurrentRequestedProcedureEvidenceSequence Current Requested Procedure
Evidence Sequence.

DCM_TAG_PertinentOtherEvidenceSequence Pertinent Other Evidence
Sequence.

DCM_TAG_HL7StructuredDocumentReferenceSequence HL7 Structured Document
Reference Sequence.

DCM_TAG_CompletionFlag Completion Flag.

DCM_TAG_CompletionFlagDescription Completion Flag Description.

DCM_TAG_VerificationFlag Verification Flag.

DCM_TAG_ArchiveRequested Archive Requested.

DCM_TAG_PreliminaryFlag Preliminary Flag.

DCM_TAG_ContentTemplateSequence Content Template Sequence.

DCM_TAG_IdenticalDocumentsSequence Identical Documents Sequence.

DCM_TAG_ContentSequence Content Sequence.

DCM_TAG_RelationshipTypeCodeSequence Relationship Type Code
Sequence.

DCM_TAG_WaveformAnnotationSequence Waveform Annotation Sequence.

DCM_TAG_AnnotationSequence Waveform Annotation Sequence.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_TemplateIdentifier Template Identifier.

DCM_TAG_TemplateVersion Template Version. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_TemplateLocalVersion Template Local Version. This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

ImageGear Professional v18 for Mac | 1708

DCM_TAG_TemplateExtensionFlag Template Extension Flag. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_TemplateExtensionOrganizationUID Template Extension Organization
UID. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_TemplateExtensionCreatorUID Template Extension Creator UID.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ReferencedContentItemIdentifier Referenced Content Item
Identifier.

DCM_TAG_ReferencedContentItemID Referenced Content Item
Identifier. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_HL7InstanceIdentifier HL7 Instance Identifier.

DCM_TAG_HL7DocumentEffectiveTime HL7 Document Effective Time.

DCM_TAG_HL7DocumentTypeCodeSequence HL7 Document Type Code
Sequence.

DCM_TAG_RetrieveURI Retrieve URI.

DCM_TAG_RetrieveLocationUID Retrieve Location UID.

DCM_TAG_Group0042Length Group 0042 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_DocumentTitle Document Title.

DCM_TAG_EncapsulatedDocument Encapsulated Document.

DCM_TAG_MIMETypeofEncapsulatedDocument MIME Type of Encapsulated
Document.

DCM_TAG_SourceInstanceSequence Source Instance Sequence.

DCM_TAG_ListOfMIMETypes List of MIME Types.

DCM_TAG_Group0044Length Group 0044 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ProductPackageIdentifier Product Package Identifier.

DCM_TAG_SubstanceAdministrationApproval Substance Administration
Approval.

DCM_TAG_ApprovalStatusFurtherDescription Approval Status Further
Description.

DCM_TAG_ApprovalStatusDateTime Approval Status DateTime.

DCM_TAG_ProductTypeCodeSequence Product Type Code Sequence.

DCM_TAG_ProductName Product Name.

DCM_TAG_ProductDescription Product Description.

DCM_TAG_ProductLotIdentifier Product Lot Identifier.

DCM_TAG_ProductExpirationDateTime Product Expiration DateTime.

DCM_TAG_SubstanceAdministrationDateTime Substance Administration
DateTime.

DCM_TAG_SubstanceAdministrationNotes Substance Administration Notes.

ImageGear Professional v18 for Mac | 1709

DCM_TAG_SubstanceAdministrationDeviceID Substance Administration Device
ID.

DCM_TAG_ProductParameterSequence Product Parameter Sequence.

DCM_TAG_SubstanceAdministrationParameterSequence Substance Administration
Parameter Sequence.

DCM_TAG_Group0046Length Group 0046 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_LensDescription Lens Description.

DCM_TAG_RightLensSequence Right Lens Sequence.

DCM_TAG_LeftLensSequence Left Lens Sequence.

DCM_TAG_UnspecifiedLateralityLensSequence Unspecified Laterality Lens
Sequence.

DCM_TAG_CylinderSequence Cylinder Sequence.

DCM_TAG_PrismSequence Prism Sequence.

DCM_TAG_HorizontalPrismPower Horizontal Prism Power.

DCM_TAG_HorizontalPrismBase Horizontal Prism Base.

DCM_TAG_VerticalPrismPower Vertical Prism Power.

DCM_TAG_VerticalPrismBase Vertical Prism Base.

DCM_TAG_LensSegmentType Lens Segment Type.

DCM_TAG_OpticalTransmittance Optical Transmittance.

DCM_TAG_ChannelWidth Channel Width.

DCM_TAG_PupilSize Pupil Size.

DCM_TAG_CornealSize Corneal Size.

DCM_TAG_AutorefractionRightEyeSequence Autorefraction Right Eye
Sequence.

DCM_TAG_AutorefractionLeftEyeSequence Autorefraction Left Eye
Sequence.

DCM_TAG_DistancePupillaryDistance Distance Pupillary Distance.

DCM_TAG_NearPupillaryDistance Near Pupillary Distance.

DCM_TAG_IntermediatePupillaryDistance Intermediate Pupillary Distance.

DCM_TAG_OtherPupillaryDistance Other Pupillary Distance.

DCM_TAG_KeratometryRightEyeSequence Keratometry Right Eye
Sequence.

DCM_TAG_KeratometryLeftEyeSequence Keratometry Left Eye Sequence.

DCM_TAG_SteepKeratometricAxisSequence Steep Keratometric Axis
Sequence.

DCM_TAG_RadiusOfCurvature Radius of Curvature.

DCM_TAG_KeratometricPower Keratometric Power.

DCM_TAG_KeratometricAxis Keratometric Axis.

DCM_TAG_FlatKeratometricAxisSequence Flat Keratometric Axis Sequence.

DCM_TAG_BackgroundColor Background Color.

DCM_TAG_Optotype Optotype tag.

DCM_TAG_OptotypePresentation Optotype Presentation.

DCM_TAG_SubjectiveRefractionRightEyeSequence Subjective Refraction Right Eye
Sequence.

DCM_TAG_SubjectiveRefractionLeftEyeSequence Subjective Refraction Left Eye
Sequence.

DCM_TAG_AddNearSequence Add Near Sequence.

DCM_TAG_AddIntermediateSequence Add Intermediate Sequence.

ImageGear Professional v18 for Mac | 1710

DCM_TAG_AddOtherSequence Add Other Sequence.

DCM_TAG_AddPower Add Power.

DCM_TAG_ViewingDistance Viewing Distance.

DCM_TAG_VisualAcuityTypeCodeSequence Visual Acuity Type Code
Sequence.

DCM_TAG_VisualAcuityRightEyeSequence Visual Acuity Right Eye
Sequence.

DCM_TAG_VisualAcuityLeftEyeSequence Visual Acuity Left Eye Sequence.

DCM_TAG_VisualAcuityBothEyesOpenSequence Visual Acuity Both Eyes Open
Sequence.

DCM_TAG_ViewingDistanceType Viewing Distance Type.

DCM_TAG_VisualAcuityModifiers Visual Acuity Modifiers.

DCM_TAG_DecimalVisualAcuity Decimal Visual Acuity.

DCM_TAG_OptotypeDetailedDefinition Optotype Detailed Definition.

DCM_TAG_ReferencedRefractiveMeasurementsSequence Referenced Refractive
Measurements Sequence.

DCM_TAG_SpherePower Sphere Power.

DCM_TAG_CylinderPower Cylinder Power.

DCM_TAG_Group0050Length Group 0050 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_CalibrationImage Calibration Image.

DCM_TAG_DeviceSequence Device Sequence.

DCM_TAG_ContainerComponentTypeCodeSequence Container Component Type Code
Sequence.

DCM_TAG_ContainerComponentThickness Container Component Thickness.

DCM_TAG_DeviceLength Device Length.

DCM_TAG_ContainerComponentWidth Container Component Width.

DCM_TAG_DeviceDiameter Device Diameter.

DCM_TAG_DeviceDiameterUnits Device Diameter Units.

DCM_TAG_DeviceDiameterUnit Device Diameter Units. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_DeviceVolume Device Volume.

DCM_TAG_InterMarkerDistance Inter-Marker Distance.

DCM_TAG_ContainerComponentMaterial Container Component Material.

DCM_TAG_ContainerComponentID Container Component ID.

DCM_TAG_ContainerComponentLength Container Component Length.

DCM_TAG_ContainerComponentDiameter Container Component Diameter.

DCM_TAG_ContainerComponentDescription Container Component
Description.

DCM_TAG_DeviceDescription Device Description.

DCM_TAG_Group0054Length Group 0054 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_EnergyWindowVector Energy Window Vector.

DCM_TAG_NumberOfEnergyWindows Number of Energy Windows.

DCM_TAG_EnergyWindowInformationSequence Energy Window Information

ImageGear Professional v18 for Mac | 1711

Sequence.

DCM_TAG_EnergyWindowInfoSequence Energy Window Information
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_EnergyWindowRangeSequence Energy Window Range Sequence.

DCM_TAG_EnergyWindowLowerLimit Energy Window Lower Limit.

DCM_TAG_EnergyWindowUpperLimit Energy Window Upper Limit.

DCM_TAG_RadiopharmaceuticalInformationSequence Radiopharmaceutical Information
Sequence.

DCM_TAG_RadiopharmaInfoSequence Radiopharmaceutical Information
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ResidualSyringeCounts Residual Syringe Counts.

DCM_TAG_EnergyWindowName Energy Window Name.

DCM_TAG_DetectorVector Detector Vector.

DCM_TAG_NumberOfDetectors Number of Detectors.

DCM_TAG_DetectorInformationSequence Detector Information Sequence.

DCM_TAG_DetectorInfoSequence Detector Information Sequence.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_PhaseVector Phase Vector.

DCM_TAG_NumberOfPhases Number of Phases.

DCM_TAG_PhaseInformationSequence Phase Information Sequence.

DCM_TAG_PhaseInfoSequence Phase Information Sequence.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_NumberOfFramesInPhase Number of Frames in Phase.

DCM_TAG_PhaseDelay Phase Delay.

DCM_TAG_PauseBetweenFrames Pause Between Frames.

DCM_TAG_PhaseDescription Phase Description.

DCM_TAG_RotationVector Rotation Vector.

DCM_TAG_NumberOfRotations Number of Rotations.

DCM_TAG_RotationInformationSequence Rotation Information Sequence.

DCM_TAG_RotationInfoSequence Rotation Information Sequence.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_NumberOfFramesInRotation Number of Frames in Rotation.

ImageGear Professional v18 for Mac | 1712

DCM_TAG_RrIntervalVector R-R Interval Vector.

DCM_TAG_NumberOfRrIntervals Number of R-R Intervals.

DCM_TAG_GatedInformationSequence Gated Information Sequence.

DCM_TAG_GatedInfoSequence Gated Information Sequence.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_DataInformationSequence Data Information Sequence.

DCM_TAG_DataInfoSequence Data Information Sequence. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_TimeSlotVector Time Slot Vector.

DCM_TAG_NumberOfTimeSlots Number of Time Slots.

DCM_TAG_TimeSlotInformationSequence Time Slot Information Sequence.

DCM_TAG_TimeSlotInfoSequence Time Slot Information Sequence.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_TimeSlotTime Time Slot Time.

DCM_TAG_SliceVector Slice Vector.

DCM_TAG_NumberOfSlices Number of Slices.

DCM_TAG_AngularViewVector Angular View Vector.

DCM_TAG_TimeSliceVector Time Slice Vector.

DCM_TAG_NumberOfTimeSlices Number of Time Slices.

DCM_TAG_StartAngle Start Angle.

DCM_TAG_StartAngleVector Start Angle. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_TypeOfDetectorMotion Type of Detector Motion.

DCM_TAG_TriggerVector Trigger Vector.

DCM_TAG_NumberOfTriggersInPhase Number of Triggers in Phase.

DCM_TAG_ViewCodeSequence View Code Sequence.

DCM_TAG_ViewCodeSequnce View Code Sequence. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_ViewModifierCodeSequence View Modifier Code Sequence.

DCM_TAG_ViewAngulationModifierCodeSequence View Modifier Code Sequence.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the

ImageGear Professional v18 for Mac | 1713

previous line.

DCM_TAG_RadionuclideCodeSequence Radionuclide Code Sequence.

DCM_TAG_AdministrationRouteCodeSequence Administration Route Code
Sequence.

DCM_TAG_RadiopharmaceuticalCodeSequence Radiopharmaceutical Code
Sequence.

DCM_TAG_RadiopharmaCodeSequence Radiopharmaceutical Code
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_CalibrationDataSequence Calibration Data Sequence.

DCM_TAG_EnergyWindowNumber Energy Window Number.

DCM_TAG_ImageID Image Identifier.

DCM_TAG_PatientOrientationCodeSequence Patient Orientation Code
Sequence.

DCM_TAG_PatientOrientCodeSequence Patient Orientation Code
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_PatientOrientationModifierCodeSequence Patient Orientation Modifier Code
Sequence.

DCM_TAG_PatientOrientModifierCodeSequence Patient Orientation Modifier Code
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_PatientGantryRelationshipCodeSequence Patient Gantry Relationship Code
Sequence.

DCM_TAG_PatientGantryRelationCodeSequence Patient Gantry Relationship Code
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_SliceProgressionDirection Slice Progression Direction.

DCM_TAG_SeriesType Series Type.

DCM_TAG_Units The Units.

DCM_TAG_CountsSource Counts Source.

DCM_TAG_ReprojectionMethod Reprojection Method.

DCM_TAG_RandomsCorrectionMethod Randoms Correction Method.

DCM_TAG_AttenuationCorrectionMethod Attenuation Correction Method.

DCM_TAG_DecayCorrection Decay Correction.

DCM_TAG_ReconstructionMethod Reconstruction Method.

DCM_TAG_DetectorLinesOfResponseUsed Detector Lines of Response Used.

DCM_TAG_ScatterCorrectionMethod Scatter Correction Method.

DCM_TAG_AxialAcceptance Axial Acceptance.

DCM_TAG_AxialMash Axial Mash.

DCM_TAG_TransverseMash Transverse Mash.

ImageGear Professional v18 for Mac | 1714

DCM_TAG_DetectorElementSize Detector Element Size.

DCM_TAG_CoincidenceWindowWidth Coincidence Window Width.

DCM_TAG_SecondaryCountsType Secondary Counts Type.

DCM_TAG_FrameReferenceTime Frame Reference Time.

DCM_TAG_PrimaryPromptsCountsAccumulated Primary (Prompts) Counts
Accumulated.

DCM_TAG_PrimaryCountsAccumulated Primary (Prompts) Counts
Accumulated. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_SecondaryCountsAccumulated Secondary Counts Accumulated.

DCM_TAG_SliceSensitivityFactor Slice Sensitivity Factor.

DCM_TAG_DecayFactor Decay Factor.

DCM_TAG_DoseCalibrationFactor Dose Calibration Factor.

DCM_TAG_ScatterFractionFactor Scatter Fraction Factor.

DCM_TAG_DeadTimeFactor Dead Time Factor.

DCM_TAG_ImageIndex Image Index.

DCM_TAG_CountsIncluded Counts Included. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_DeadTimeCorrectionFlag Dead Time Correction Flag. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_Group0060Length Group 0060 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_HistogramSequence Histogram Sequence.

DCM_TAG_HistogramNumberOfBins Histogram Number of Bins.

DCM_TAG_HistogramBinNumber Histogram Number of Bins. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_HistogramFirstBinValue Histogram First Bin Value.

DCM_TAG_HistogramLastBinValue Histogram Last Bin Value.

DCM_TAG_HistogramBinWidth Histogram Bin Width.

DCM_TAG_HistogramExplanation Histogram Explanation.

DCM_TAG_HistogramData Histogram Data.

DCM_TAG_Group0062Length Group 0062 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_SegmentationType Segmentation Type.

DCM_TAG_SegmentSequence Segment Sequence.

DCM_TAG_SegmentedPropertyCategoryCodeSequence Segmented Property Category
Code Sequence.

DCM_TAG_SegmentNumber Segment Number.

DCM_TAG_SegmentLabel Segment Label.

ImageGear Professional v18 for Mac | 1715

DCM_TAG_SegmentDescription Segment Description.

DCM_TAG_SegmentAlgorithmType Segment Algorithm Type.

DCM_TAG_SegmentAlgorithmName Segment Algorithm Name.

DCM_TAG_SegmentIdentificationSequence Segment Identification
Sequence.

DCM_TAG_ReferencedSegmentNumber Referenced Segment Number.

DCM_TAG_RecommendedDisplayGrayscaleValue Recommended Display Grayscale
Value.

DCM_TAG_RecommendedDisplayCIELabValue Recommended Display CIELab
Value.

DCM_TAG_MaximumFractionalValue Maximum Fractional Value.

DCM_TAG_SegmentedPropertyTypeCodeSequence Segmented Property Type Code
Sequence.

DCM_TAG_SegmentationFractionalType Segmentation Fractional Type.

DCM_TAG_Group0064Length Group 0064 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_DeformableRegistrationSequence Deformable Registration
Sequence.

DCM_TAG_SourceFrameOfReferenceUID Source Frame of Reference UID.

DCM_TAG_DeformableRegistrationGridSequence Deformable Registration Grid
Sequence.

DCM_TAG_GridDimensions Grid Dimensions.

DCM_TAG_GridResolution Grid Resolution.

DCM_TAG_VectorGridData Vector Grid Data.

DCM_TAG_PreDeformationMatrixRegistrationSequence Pre Deformation Matrix
Registration Sequence.

DCM_TAG_PostDeformationMatrixRegistrationSequence Post Deformation Matrix
Registration Sequence.

DCM_TAG_Group0066Length Group 0066 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_NumberOfSurfaces Number of Surfaces.

DCM_TAG_SurfaceSequence Surface Sequence.

DCM_TAG_SurfaceNumber Surface Number.

DCM_TAG_SurfaceComments Surface Comments.

DCM_TAG_SurfaceProcessing Surface Processing.

DCM_TAG_SurfaceProcessingRatio Surface Processing Ratio.

DCM_TAG_SurfaceProcessingDescription Surface Processing Description.

DCM_TAG_RecommendedPresentationOpacity Recommended Presentation
Opacity.

DCM_TAG_RecommendedPresentationType Recommended Presentation
Type.

DCM_TAG_FiniteVolume Finite Volume.

DCM_TAG_Manifold Manifold tag.

DCM_TAG_SurfacePointsSequence Surface Points Sequence.

DCM_TAG_SurfacePointsNormalsSequence Surface Points Normals
Sequence.

DCM_TAG_SurfaceMeshPrimitivesSequence Surface Mesh Primitives
Sequence.

DCM_TAG_NumberOfSurfacePoints Number of Surface Points.

ImageGear Professional v18 for Mac | 1716

DCM_TAG_PointCoordinatesData Point Coordinates Data.

DCM_TAG_PointPositionAccuracy Point Position Accuracy.

DCM_TAG_MeanPointDistance Mean Point Distance.

DCM_TAG_MaximumPointDistance Maximum Point Distance.

DCM_TAG_PointsBoundingBoxCoordinates Points Bounding Box
Coordinates.

DCM_TAG_AxisOfRotation Axis of Rotation.

DCM_TAG_CenterOfRotation Center of Rotation.

DCM_TAG_NumberOfVectors Number of Vectors.

DCM_TAG_VectorDimensionality Vector Dimensionality.

DCM_TAG_VectorAccuracy Vector Accuracy.

DCM_TAG_VectorCoordinateData Vector Coordinate Data.

DCM_TAG_TrianglePointIndexList Triangle Point Index List.

DCM_TAG_EdgePointIndexList Edge Point Index List.

DCM_TAG_VertexPointIndexList Vertex Point Index List.

DCM_TAG_TriangleStripSequence Triangle Strip Sequence.

DCM_TAG_TriangleFanSequence Triangle Fan Sequence.

DCM_TAG_LineSequence Line Sequence.

DCM_TAG_PrimitivePointIndexList Primitive Point Index List.

DCM_TAG_SurfaceCount Surface Count.

DCM_TAG_ReferencedSurfaceSequence Referenced Surface Sequence.

DCM_TAG_ReferencedSurfaceNumber Referenced Surface Number.

DCM_TAG_SegmentSurfaceGenerationAlgorithmIdentificationSequence Segment Surface Generation
Algorithm Identification
Sequence.

DCM_TAG_SegmentSurfaceSourceInstanceSequence Segment Surface Source
Instance Sequence.

DCM_TAG_AlgorithmFamilyCodeSequence Algorithm Family Code
Sequence.

DCM_TAG_AlgorithmNameCodeSequence Algorithm Name Code Sequence.

DCM_TAG_AlgorithmVersion Algorithm Version.

DCM_TAG_AlgorithmParameters Algorithm Parameters.

DCM_TAG_FacetSequence Facet Sequence.

DCM_TAG_SurfaceProcessingAlgorithmIdentificationSequence Surface Processing Algorithm
Identification Sequence.

DCM_TAG_AlgorithmName Algorithm Name.

DCM_TAG_Group0070Length Group 0070 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_GraphicAnnotationSequence Graphic Annotation Sequence.

DCM_TAG_GraphicLayer Graphic Layer.

DCM_TAG_BoundingBoxAnnotationUnits Bounding Box Annotation Units.

DCM_TAG_AnchorPointAnnotationUnits Anchor Point Annotation Units.

DCM_TAG_GraphicAnnotationUnits Graphic Annotation Units.

DCM_TAG_UnformattedTextValue Unformatted Text Value.

DCM_TAG_TextObjectSequence Text Object Sequence.

DCM_TAG_GraphicObjectSequence Graphic Object Sequence.

DCM_TAG_BoundingBoxTopLeftHandCorner Bounding Box Top Left Hand
Corner.

DCM_TAG_BoundingBoxBottomRightHandCorner Bounding Box Bottom Right Hand

ImageGear Professional v18 for Mac | 1717

Corner.

DCM_TAG_BoundingBoxTextHorizontalJustification Bounding Box Text Horizontal
Justification.

DCM_TAG_AnchorPoint Anchor Point.

DCM_TAG_AnchorPointVisibility Anchor Point Visibility.

DCM_TAG_GraphicDimensions Graphic Dimensions.

DCM_TAG_NumberOfGraphicPoints Number of Graphic Points.

DCM_TAG_GraphicData Graphic Data.

DCM_TAG_GraphicType Graphic Type.

DCM_TAG_GraphicFilled Graphic Filled.

DCM_TAG_ImageRotationRetired Image Rotation (Retired). This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ImageHorizontalFlip Image Horizontal Flip.

DCM_TAG_ImageRotation Image Rotation.

DCM_TAG_DisplayedAreaTopLeftHandCornerTrial Displayed Area Top Left Hand
Corner (Trial). This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_DisplayedAreaBottomRightHandCornerTrial Displayed Area Bottom Right
Hand Corner (Trial). This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_DisplayedAreaTopLeftHandCorner Displayed Area Top Left Hand
Corner.

DCM_TAG_DisplayedAreaBottomRightHandCorner Displayed Area Bottom Right
Hand Corner.

DCM_TAG_DisplayedAreaSelectionSequence Displayed Area Selection
Sequence.

DCM_TAG_GraphicLayerSequence Graphic Layer Sequence.

DCM_TAG_GraphicLayerOrder Graphic Layer Order.

DCM_TAG_GraphicLayerRecommendedDisplayGrayscaleValue Graphic Layer Recommended
Display Grayscale Value.

DCM_TAG_GraphicLayerRecommendedDisplayRGBValue Graphic Layer Recommended
Display RGB Value. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_GraphicLayerDescription Graphic Layer Description.

DCM_TAG_ContentLabel Content Label.

DCM_TAG_PresentationLabel Content Label. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ContentDescription Content Description.

DCM_TAG_PresentationDescription Content Description. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_PresentationCreationDate Presentation Creation Date.

ImageGear Professional v18 for Mac | 1718

DCM_TAG_PresentationCreationTime Presentation Creation Time.

DCM_TAG_ContentCreatorName Content Creator's Name.

DCM_TAG_ContentCreatorsName Content Creator's Name. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_PresentationCreatorsName Content Creator's Name. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_ContentCreatorIdentificationCodeSequence Content Creator's Identification
Code Sequence.

DCM_TAG_ContentCreatorsIdentificationCodeSequence Content Creator's Identification
Code Sequence. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_AlternateContentDescriptionSequence Alternate Content Description
Sequence.

DCM_TAG_PresentationSizeMode Presentation Size Mode.

DCM_TAG_PresentationPixelSpacing Presentation Pixel Spacing.

DCM_TAG_PresentationPixelAspectRatio Presentation Pixel Aspect Ratio.

DCM_TAG_PresentationPixelMagnificationRatio Presentation Pixel Magnification
Ratio.

DCM_TAG_ShapeType Shape Type.

DCM_TAG_RegistrationSequence Registration Sequence.

DCM_TAG_MatrixRegistrationSequence Matrix Registration Sequence.

DCM_TAG_MatrixSequence Matrix Sequence.

DCM_TAG_FrameofReferenceTransformationMatrixType Frame of Reference
Transformation Matrix Type.

DCM_TAG_RegistrationTypeCodeSequence Registration Type Code
Sequence.

DCM_TAG_FiducialDescription Fiducial Description.

DCM_TAG_FiducialIdentifier Fiducial Identifier.

DCM_TAG_FiducialIdentifierCodeSequence Fiducial Identifier Code
Sequence.

DCM_TAG_ContourUncertaintyRadius Contour Uncertainty Radius.

DCM_TAG_UsedFiducialsSequence Used Fiducials Sequence.

DCM_TAG_GraphicCoordinatesDataSequence Graphic Coordinates Data
Sequence.

DCM_TAG_FiducialUID Fiducial UID.

DCM_TAG_FiducialSetSequence Fiducial Set Sequence.

DCM_TAG_FiducialSequence Fiducial Sequence.

DCM_TAG_GraphicLayerRecommendedDisplayCIELabValue Graphic Layer Recommended
Display CIELab Value.

DCM_TAG_BlendingSequence Blending Sequence.

DCM_TAG_RelativeOpacity Relative Opacity.

DCM_TAG_ReferencedSpatialRegistrationSequence Referenced Spatial Registration
Sequence.

ImageGear Professional v18 for Mac | 1719

DCM_TAG_BlendingPosition Blending Position.

DCM_TAG_Group0072Length Group 0072 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_HangingProtocolName Hanging Protocol Name.

DCM_TAG_HangingProtocolDescription Hanging Protocol Description.

DCM_TAG_HangingProtocolLevel Hanging Protocol Level.

DCM_TAG_HangingProtocolCreator Hanging Protocol Creator.

DCM_TAG_HangingProtocolCreationDatetime Hanging Protocol Creation
DateTime. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_HangingProtocolDefinitionSequence Hanging Protocol Definition
Sequence.

DCM_TAG_HangingProtocolUserIdentificationCodeSequence Hanging Protocol User
Identification Code Sequence.

DCM_TAG_HangingProtocolUserGroupName Hanging Protocol User Group
Name.

DCM_TAG_SourceHangingProtocolSequence Source Hanging Protocol
Sequence.

DCM_TAG_NumberofPriorsReferenced Number of Priors Referenced.

DCM_TAG_ImageSetsSequence Image Sets Sequence.

DCM_TAG_ImageSetSelectorSequence Image Set Selector Sequence.

DCM_TAG_ImageSetSelectorUsageFlag Image Set Selector Usage Flag.

DCM_TAG_SelectorAttribute Selector Attribute.

DCM_TAG_SelectorValueNumber Selector Value Number.

DCM_TAG_TimeBasedImageSetsSequence Time Based Image Sets
Sequence.

DCM_TAG_ImageSetNumber Image Set Number.

DCM_TAG_ImageSetSelectorCategory Image Set Selector Category.

DCM_TAG_RelativeTime Relative Time.

DCM_TAG_RelativeTimeUnits Relative Time Units.

DCM_TAG_AbstractPriorValue Abstract Prior Value.

DCM_TAG_AbstractPriorCodeSequence Abstract Prior Code Sequence.

DCM_TAG_ImageSetLabel Image Set Label.

DCM_TAG_SelectorAttributeVR Selector Attribute VR.

DCM_TAG_SelectorSequencePointer Selector Sequence Pointer.

DCM_TAG_SelectorSequencePointerPrivateCreator Selector Sequence Pointer
Private Creator.

DCM_TAG_SelectorAttributePrivateCreator Selector Attribute Private
Creator.

DCM_TAG_SelectorATValue Selector AT Value.

DCM_TAG_SelectorCSValue Selector CS Value.

DCM_TAG_SelectorISValue Selector IS Value.

DCM_TAG_SelectorLOValue Selector LO Value.

DCM_TAG_SelectorLTValue Selector LT Value.

DCM_TAG_SelectorPNValue Selector PN Value.

DCM_TAG_SelectorSHValue Selector SH Value.

DCM_TAG_SelectorSTValue Selector ST Value.

ImageGear Professional v18 for Mac | 1720

DCM_TAG_SelectorUTValue Selector UT Value.

DCM_TAG_SelectorDSValue Selector DS Value.

DCM_TAG_SelectorFDValue Selector FD Value.

DCM_TAG_SelectorFLValue Selector FL Value.

DCM_TAG_SelectorULValue Selector UL Value.

DCM_TAG_SelectorUSValue Selector US Value.

DCM_TAG_SelectorSLValue Selector SL Value.

DCM_TAG_SelectorSSValue Selector SS Value.

DCM_TAG_SelectorCodeSequenceValue Selector Code Sequence Value.

DCM_TAG_NumberofScreens Number of Screens.

DCM_TAG_NominalScreenDefinitionSequence Nominal Screen Definition
Sequence.

DCM_TAG_NumberofVerticalPixels Number of Vertical Pixels.

DCM_TAG_NumberofHorizontalPixels Number of Horizontal Pixels.

DCM_TAG_DisplayEnvironmentSpatialPosition Display Environment Spatial
Position.

DCM_TAG_ScreenMinimumGrayscaleBitDepth Screen Minimum Grayscale Bit
Depth.

DCM_TAG_ScreenMinimumColorBitDepth Screen Minimum Color Bit Depth.

DCM_TAG_ApplicationMaximumRepaintTime Application Maximum Repaint
Time.

DCM_TAG_DisplaySetsSequence Display Sets Sequence.

DCM_TAG_DisplaySetNumber Display Set Number.

DCM_TAG_DisplaySetLabel Display Set Label.

DCM_TAG_DisplaySetPresentationGroup Display Set Presentation Group.

DCM_TAG_DisplaySetPresentationGroupDescription Display Set Presentation Group
Description.

DCM_TAG_PartialDataDisplayHandling Partial Data Display Handling.

DCM_TAG_SynchronizedScrollingSequence Synchronized Scrolling
Sequence.

DCM_TAG_DisplaySetScrollingGroup Display Set Scrolling Group.

DCM_TAG_NavigationIndicatorSequence Navigation Indicator Sequence.

DCM_TAG_NavigationDisplaySet Navigation Display Set.

DCM_TAG_ReferenceDisplaySets Reference Display Sets.

DCM_TAG_ImageBoxesSequence Image Boxes Sequence.

DCM_TAG_ImageBoxNumber Image Box Number.

DCM_TAG_ImageBoxLayoutType Image Box Layout Type.

DCM_TAG_ImageBoxTileHorizontalDimension Image Box Tile Horizontal
Dimension.

DCM_TAG_ImageBoxTileVerticalDimension Image Box Tile Vertical
Dimension.

DCM_TAG_ImageBoxScrollDirection Image Box Scroll Direction.

DCM_TAG_ImageBoxSmallScrollType Image Box Small Scroll Type.

DCM_TAG_ImageBoxSmallScrollAmount Image Box Small Scroll Amount.

DCM_TAG_ImageBoxLargeScrollType Image Box Large Scroll Type.

DCM_TAG_ImageBoxLargeScrollAmount Image Box Large Scroll Amount.

DCM_TAG_ImageBoxOverlapPriority Image Box Overlap Priority.

DCM_TAG_CineRelativeToRealTime Cine Relative to Real-Time.

DCM_TAG_FilterOperationsSequence Filter Operations Sequence.

DCM_TAG_FilterbyCategory Filter-by Category.

ImageGear Professional v18 for Mac | 1721

DCM_TAG_FilterbyAttributePresence Filter-by Attribute Presence.

DCM_TAG_FilterbyOperator Filter-by Operator.

DCM_TAG_StructuredDisplayBackgroundCIELabValue Structured Display Background
CIELab Value.

DCM_TAG_EmptyImageBoxCIELabValue Empty Image Box CIELab Value.

DCM_TAG_StructuredDisplayImageBoxSequence Structured Display Image Box
Sequence.

DCM_TAG_StructuredDisplayTextBoxSequence Structured Display Text Box
Sequence.

DCM_TAG_ReferencedFirstFrameSequence Referenced First Frame
Sequence.

DCM_TAG_ImageBoxSynchronizationSequence Image Box Synchronization
Sequence.

DCM_TAG_SynchronizedImageBoxList Synchronized Image Box List.

DCM_TAG_TypeOfSynchronization Type of Synchronization.

DCM_TAG_BlendingOperationType Blending Operation Type.

DCM_TAG_ReformattingOperationType Reformatting Operation Type.

DCM_TAG_ReformattingThickness Reformatting Thickness.

DCM_TAG_ReformattingInterval Reformatting Interval.

DCM_TAG_ReformattingOperationInitialViewDirection Reformatting Operation Initial
View Direction.

DCM_TAG_ThreeDRenderingType 3D Rendering Type.

DCM_TAG_RenderingType3D 3D Rendering Type. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_3DRenderingType 3D Rendering Type. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_SortingOperationsSequence Sorting Operations Sequence.

DCM_TAG_SortbyCategory Sort-by Category.

DCM_TAG_SortingDirection Sorting Direction.

DCM_TAG_DisplaySetPatientOrientation Display Set Patient Orientation.

DCM_TAG_DisplaySetPatientOrientationCS2 Display Set Patient Orientation.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_VOIType VOI (Value Of Interest) Type.

DCM_TAG_PseudocolorType Pseudo-color Type.

DCM_TAG_ShowGrayscaleInverted Show Grayscale Inverted.

DCM_TAG_ShowImageTrueSizeFlag Show Image True Size Flag.

DCM_TAG_ShowGraphicAnnotationFlag Show Graphic Annotation Flag.

DCM_TAG_ShowPatientDemographicsFlag Show Patient Demographics Flag.

DCM_TAG_ShowAcquisitionTechniquesFlag Show Acquisition Techniques
Flag.

DCM_TAG_DisplaySetHorizontalJustification Display Set Horizontal
Justification.

ImageGear Professional v18 for Mac | 1722

DCM_TAG_DisplaySetVerticalJustification Display Set Vertical Justification.

DCM_TAG_Group0074Length Group 0074 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_UnifiedProcedureStepState Unified Procedure Step State.

DCM_TAG_UnifiedProcedureStepProgressInformationSequence Unified Procedure Step Progress
Information Sequence.

DCM_TAG_UPSProgressInformationSequence Unified Procedure Step Progress
Information Sequence. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_UnifiedProcedureStepProgress Unified Procedure Step Progress.

DCM_TAG_UnifiedProcedureStepProgressDescription Unified Procedure Step Progress
Description.

DCM_TAG_UnifiedProcedureStepCommunicationsURISequence Unified Procedure Step
Communications URI Sequence.

DCM_TAG_ContactURI Contact URI.

DCM_TAG_ContactDisplayName Contact Display Name.

DCM_TAG_UnifiedProcedureStepDiscontinuationReasonCodeSequence Unified Procedure Step
Discontinuation Reason Code
Sequence.

DCM_TAG_BeamTaskSequence Beam Task Sequence.

DCM_TAG_BeamTaskType Beam Task Type.

DCM_TAG_BeamOrderIndex Beam Order Index.

DCM_TAG_DeliveryVerificationImageSequence Delivery Verification Image
Sequence.

DCM_TAG_VerificationImageTiming Verification Image Timing.

DCM_TAG_DoubleExposureFlag Double Exposure Flag.

DCM_TAG_DoubleExposureOrdering Double Exposure Ordering.

DCM_TAG_DoubleExposureMeterset Double Exposure Meterset.

DCM_TAG_DoubleExposureFieldDelta Double Exposure Field Delta.

DCM_TAG_RelatedReferenceRTImageSequence Related Reference RT Image
Sequence.

DCM_TAG_GeneralMachineVerificationSequence General Machine Verification
Sequence.

DCM_TAG_ConventionalMachineVerificationSequence Conventional Machine
Verification Sequence.

DCM_TAG_IonMachineVerificationSequence Ion Machine Verification
Sequence.

DCM_TAG_FailedAttributesSequence Failed Attributes Sequence.

DCM_TAG_OverriddenAttributesSequence Overridden Attributes Sequence.

DCM_TAG_ConventionalControlPointVerificationSequence Conventional Control Point
Verification Sequence.

DCM_TAG_IonControlPointVerificationSequence Ion Control Point Verification
Sequence.

DCM_TAG_AttributeOccurrenceSequence Attribute Occurrence Sequence.

DCM_TAG_AttributeOccurrencePointer Attribute Occurrence Pointer.

DCM_TAG_AttributeItemSelector Attribute Item Selector.

DCM_TAG_AttributeOccurrencePrivateCreator Attribute Occurrence Private
Creator.

ImageGear Professional v18 for Mac | 1723

DCM_TAG_ScheduledProcedureStepPriority Scheduled Procedure Step
Priority.

DCM_TAG_WorklistLabel Worklist Label.

DCM_TAG_ProcedureStepLabel Procedure Step Label.

DCM_TAG_ScheduledProcessingParametersSequence Scheduled Processing
Parameters Sequence.

DCM_TAG_PerformedProcessingParametersSequence Performed Processing
Parameters Sequence.

DCM_TAG_UnifiedProcedureStepPerformedProcedureSequence Unified Procedure Step
Performed Procedure Sequence.

DCM_TAG_UPSPerformedProcedureSequence Unified Procedure Step
Performed Procedure Sequence.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_RelatedProcedureStepSequence Related Procedure Step
Sequence.

DCM_TAG_ProcedureStepRelationshipType Procedure Step Relationship
Type.

DCM_TAG_DeletionLock Deletion Lock.

DCM_TAG_ReceivingAE Receiving AE.

DCM_TAG_RequestingAE Requesting AE.

DCM_TAG_ReasonForCancellation Reason for Cancellation.

DCM_TAG_SCPStatus SCP Status.

DCM_TAG_SubscriptionListStatus Subscription List Status.

DCM_TAG_UnifiedProcedureStepListStatus Unified Procedure Step List
Status.

DCM_TAG_UPSListStatus Unified Procedure Step List
Status. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_Group0088Length Group 0088 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_StorageMediaFilesetID Storage Media File-set ID.

DCM_TAG_StorageMediaFilesetUID Storage Media File-set UID.

DCM_TAG_IconImageSequence Icon Image Sequence.

DCM_TAG_TopicTitle Topic Title. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_TopicSubject Topic Subject. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_TopicAuthor Topic Author. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_TopicKeywords Topic Keywords. This tag is
marked as retired in DICOM

ImageGear Professional v18 for Mac | 1724

specification. See DICOM
specification for alternatives.

DCM_TAG_Group0100Length Group 0100 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_SOPInstanceStatus SOP Instance Status.

DCM_TAG_SOPAuthorizationDateTime SOP Authorization Date Time.

DCM_TAG_SOPAuthorizationDateandTime SOP Authorization Date and
Time. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_SOPAuthorizationComment SOP Authorization Comment.

DCM_TAG_AuthorizationEquipmentCertificationNumber Authorization Equipment
Certification Number.

DCM_TAG_Group0400Length Group 0400 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_MacIDNumber MAC ID Number.

DCM_TAG_MacCalculationTransferSyntaxUID MAC Calculation Transfer Syntax
UID.

DCM_TAG_MacCalcTransferSyntaxUID MAC Calculation Transfer Syntax
UID. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_MacAlgorithm MAC Algorithm.

DCM_TAG_DataElementsSigned Data Elements Signed.

DCM_TAG_DigitalSignatureUID Digital Signature UID.

DCM_TAG_DigitalSignatureDateTime Digital Signature DateTime.

DCM_TAG_CertificateType Certificate Type.

DCM_TAG_CertificateOfSigner Certificate of Signer.

DCM_TAG_Signature The Signature.

DCM_TAG_CertifiedTimestampType Certified Timestamp Type.

DCM_TAG_CertifiedTimestamp Certified Timestamp.

DCM_TAG_DigitalSignaturePurposeCodeSequence Digital Signature Purpose Code
Sequence.

DCM_TAG_ReferencedDigitalSignatureSequence Referenced Digital Signature
Sequence.

DCM_TAG_ReferencedSOPInstanceMACSequence Referenced SOP Instance MAC
Sequence.

DCM_TAG_MAC MAC (Message Authentication
Code).

DCM_TAG_EncryptedAttributesSequence Encrypted Attributes Sequence.

DCM_TAG_EncryptedContentTransferSyntaxUID Encrypted Content Transfer
Syntax UID.

DCM_TAG_EncryptedContent Encrypted Content.

DCM_TAG_ModifiedAttributesSequence Modified Attributes Sequence.

DCM_TAG_OriginalAttributesSequence Original Attributes Sequence.

DCM_TAG_AttributeModificationDatetime Attribute Modification DateTime.

ImageGear Professional v18 for Mac | 1725

This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_ModifyingSystem Modifying System.

DCM_TAG_SourceOfPreviousValues Source of Previous Values.

DCM_TAG_ReasonForTheAttributeModification Reason for the Attribute
Modification.

DCM_TAG_Group1000Length Group 1000 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_EscapeTriplet Escape Triplet. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_RunLengthTriplet Run Length Triplet. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_HuffmanTableSize Huffman Table Size. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_HuffmanTableTriplet Huffman Table Triplet. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ShiftTableSize Shift Table Size. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ShiftTableTriplet Shift Table Triplet. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_Group1010Length Group 1010 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ZonalMap Zonal Map. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_Group2000Length Group 2000 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_NumberOfCopies Number of Copies.

DCM_TAG_PrinterConfigurationSequence Printer Configuration Sequence.

DCM_TAG_PrinterConfigSequence Printer Configuration Sequence.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_PrintPriority Print Priority.

DCM_TAG_MediumType Medium Type.

ImageGear Professional v18 for Mac | 1726

DCM_TAG_FilmDestination Film Destination.

DCM_TAG_FilmSessionLabel Film Session Label.

DCM_TAG_MemoryAllocation Memory Allocation.

DCM_TAG_MaximumMemoryAllocation Maximum Memory Allocation.

DCM_TAG_MaxMemoryAllocation Maximum Memory Allocation.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_ColorImagePrintingFlag Color Image Printing Flag. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_CollationFlag Collation Flag. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_AnnotationFlag Annotation Flag. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ImageOverlayFlag Image Overlay Flag. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_PresentationLutFlag Presentation LUT Flag. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ImageBoxPresentationLUTFlag Image Box Presentation LUT
Flag. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_MemoryBitDepth Memory Bit Depth.

DCM_TAG_PrintingBitDepth Printing Bit Depth.

DCM_TAG_MediaInstalledSequence Media Installed Sequence.

DCM_TAG_OtherMediaAvailableSequence Other Media Available Sequence.

DCM_TAG_SupportedImageDisplayFormatsSequence Supported Image Display
Formats Sequence.

DCM_TAG_ReferencedFilmBoxSequence Referenced Film Box Sequence.

DCM_TAG_ReferencedStoredPrintSequence Referenced Stored Print
Sequence. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_Group2010Length Group 2010 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ImageDisplayFormat Image Display Format.

DCM_TAG_AnnotationDisplayFormatID Annotation Display Format ID.

DCM_TAG_FilmOrientation Film Orientation.

DCM_TAG_FilmSizeID Film Size ID.

DCM_TAG_PrinterResolutionID Printer Resolution ID.

DCM_TAG_DefaultPrinterResolutionID Default Printer Resolution ID.

ImageGear Professional v18 for Mac | 1727

DCM_TAG_MagnificationType Magnification Type.

DCM_TAG_SmoothingType Smoothing Type.

DCM_TAG_DefaultMagnificationType Default Magnification Type.

DCM_TAG_OtherMagnificationTypesAvailable Other Magnification Types
Available.

DCM_TAG_DefaultSmoothingType Default Smoothing Type.

DCM_TAG_OtherSmoothingTypesAvailable Other Smoothing Types
Available.

DCM_TAG_BorderDensity Border Density.

DCM_TAG_EmptyImageDensity Empty Image Density.

DCM_TAG_MinDensity Min Density.

DCM_TAG_MaxDensity Max Density.

DCM_TAG_Trim Trim value.

DCM_TAG_ConfigurationInformation Configuration Information.

DCM_TAG_ConfigurationInformationDescription Configuration Information
Description.

DCM_TAG_MaximumCollatedFilms Maximum Collated Films.

DCM_TAG_Illumination Illumination value.

DCM_TAG_ReflectedAmbientLight Reflected Ambient Light.

DCM_TAG_PrinterPixelSpacing Printer Pixel Spacing.

DCM_TAG_ReferencedFilmSessionSequence Referenced Film Session
Sequence.

DCM_TAG_ReferencedImageBoxSequence Referenced Image Box
Sequence.

DCM_TAG_ReferencedBasicImageBoxSequence Referenced Image Box
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ReferencedBasicAnnotationBoxSequence Referenced Basic Annotation Box
Sequence.

DCM_TAG_Group2020Length Group 2020 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ImageBoxPosition Image Box Position.

DCM_TAG_FilmImagePosition Image Box Position. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_Polarity Image Polarity.

DCM_TAG_RequestedImageSize Requested Image Size.

DCM_TAG_RequestedDecimateCropBehavior Requested Decimate/Crop
Behavior.

DCM_TAG_DecimateCropRequested Requested Decimate/Crop
Behavior. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_RequestedResolutionID Requested Resolution ID.

ImageGear Professional v18 for Mac | 1728

DCM_TAG_ResolutionIDRequested Requested Resolution ID. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_RequestedImageSizeFlag Requested Image Size Flag.

DCM_TAG_ImageSizeFlagRequested Requested Image Size Flag. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_DecimateCropResult Decimate/Crop Result.

DCM_TAG_BasicGrayscaleImageSequence Basic Grayscale Image
Sequence.

DCM_TAG_PreformattedGrayscaleImageSequence Basic Grayscale Image
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_BasicColorImageSequence Basic Color Image Sequence.

DCM_TAG_PreformattedColorImageSequence Basic Color Image Sequence.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_ReferencedImageOverlayBoxSequence Referenced Image Overlay Box
Sequence. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_ReferencedVOILUTBoxSequence Referenced VOI LUT Box
Sequence. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_Group2030Length Group 2030 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_AnnotationPosition Annotation Position.

DCM_TAG_TextString Text String.

DCM_TAG_Group2040Length Group 2040 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ReferencedOverlayPlaneSequence Referenced Overlay Plane
Sequence. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_ReferencedOverlayPlaneGroups Referenced Overlay Plane
Groups. This tag is marked as
retired in DICOM specification.
See DICOM specification for

ImageGear Professional v18 for Mac | 1729

alternatives.

DCM_TAG_OverlayPixelDataSequence Overlay Pixel Data Sequence.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_OverlayMagnificationType Overlay Magnification Type. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_OverlaySmoothingType Overlay Smoothing Type. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_OverlayorImageMagnification Overlay or Image Magnification.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_MagnifytoNumberofColumns Magnify to Number of Columns.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_OverlayForegroundDensity Overlay Foreground Density. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_OverlayBackgroundDensity Overlay Background Density.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_OverlayMode Overlay Mode. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ThresholdDensity Threshold Density. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ReferencedImageBoxSequenceRetired Referenced Image Box Sequence
(Retired). This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_Group2050Length Group 2050 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_PresentationLutSequence Presentation LUT Sequence.

DCM_TAG_PresentationLutShape Presentation LUT Shape.

DCM_TAG_ReferencedPresentationLutSequence Referenced Presentation LUT
Sequence.

DCM_TAG_Group2100Length Group 2100 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_PrintJobID Print Job ID. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_ExecutionStatus Execution Status.

DCM_TAG_ExecutionStatusInfo Execution Status Info.

ImageGear Professional v18 for Mac | 1730

DCM_TAG_CreationDate Creation Date.

DCM_TAG_CreationTime Creation Time.

DCM_TAG_Originator The Originator.

DCM_TAG_DestinationAe Destination AE. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_OwnerID Owner Identifier.

DCM_TAG_NumberOfFilms Number of Films.

DCM_TAG_ReferencedPrintJobSequencePullStoredPrint Referenced Print Job Sequence
(Pull Stored Print). This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_Group2110Length Group 2110 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_PrinterStatus Printer Status.

DCM_TAG_PrinterStatusInfo Printer Status Info.

DCM_TAG_PrinterName Printer Name.

DCM_TAG_PrintQueueID Print Queue ID. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_Group2120Length Group 2120 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_QueueStatus Queue Status. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_PrintJobDescriptionSequence Print Job Description Sequence.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ReferencedPrintJobSequence Referenced Print Job Sequence.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_Group2130Length Group 2130 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_PrintManagementCapabilitiesSequence Print Management Capabilities
Sequence. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_PrinterCharacteristicsSequence Printer Characteristics Sequence.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_FilmBoxContentSequence Film Box Content Sequence. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ImageBoxContentSequence Image Box Content Sequence.
This tag is marked as retired in

ImageGear Professional v18 for Mac | 1731

DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_AnnotationContentSequence Annotation Content Sequence.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_ImageOverlayBoxContentSequence Image Overlay Box Content
Sequence. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_PresentationLutContentSequence Presentation LUT Content
Sequence. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_ProposedStudySequence Proposed Study Sequence. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_OriginalImageSequence Original Image Sequence. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_Group2200Length Group 2200 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_LabelUsingInformationExtractedFromInstances Label Using Information
Extracted From Instances.

DCM_TAG_LabelText Label Text.

DCM_TAG_LabelStyleSelection Label Style Selection.

DCM_TAG_MediaDisposition Media Disposition.

DCM_TAG_BarcodeValue Barcode Value.

DCM_TAG_BarcodeSymbology Barcode Symbology.

DCM_TAG_AllowMediaSplitting Allow Media Splitting.

DCM_TAG_IncludeNonDICOMObjects Include Non-DICOM Objects.

DCM_TAG_IncludeDisplayApplication Include Display Application.

DCM_TAG_PreserveCompositeInstancesAfterMediaCreation Preserve Composite Instances
After Media Creation.

DCM_TAG_TotalNumberofPiecesofMediaCreated Total Number of Pieces of Media
Created.

DCM_TAG_RequestedMediaApplicationProfile Requested Media Application
Profile.

DCM_TAG_ReferencedStorageMediaSequence Referenced Storage Media
Sequence.

DCM_TAG_FailureAttributes Failure Attributes.

DCM_TAG_AllowLossyCompression Allow Lossy Compression.

DCM_TAG_RequestPriority Request Priority.

DCM_TAG_Group3002Length Group 3002 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_RtImageLabel RT Image Label.

DCM_TAG_RtImageName RT Image Name.

DCM_TAG_RtImageDescription RT Image Description.

DCM_TAG_ReportedValuesOrigin Reported Values Origin.

ImageGear Professional v18 for Mac | 1732

DCM_TAG_RtImagePlane RT Image Plane.

DCM_TAG_XRayImageReceptorTranslation X-Ray Image Receptor
Translation.

DCM_TAG_XrayImageReceptorAngle X-Ray Image Receptor Angle.

DCM_TAG_RtImageOrientation RT Image Orientation.

DCM_TAG_ImagePlanePixelSpacing Image Plane Pixel Spacing.

DCM_TAG_RtImagePosition RT Image Position.

DCM_TAG_RadiationMachineName Radiation Machine Name.

DCM_TAG_RadiationMachineSad Radiation Machine SAD.

DCM_TAG_RadiationMachineSsd Radiation Machine SSD.

DCM_TAG_RtImageSid RT Image SID.

DCM_TAG_SourceToReferenceObjectDistance Source to Reference Object
Distance.

DCM_TAG_FractionNumber Fraction Number.

DCM_TAG_ExposureSequence Exposure Sequence.

DCM_TAG_MetersetExposure Meterset Exposure.

DCM_TAG_DiaphragmPosition Diaphragm Position.

DCM_TAG_FluenceMapSequence Fluence Map Sequence.

DCM_TAG_FluenceDataSource Fluence Data Source.

DCM_TAG_FluenceDataScale Fluence Data Scale.

DCM_TAG_PrimaryFluenceModeSequence Primary Fluence Mode Sequence.

DCM_TAG_FluenceMode Fluence Mode.

DCM_TAG_FluenceModeID Fluence Mode ID.

DCM_TAG_Group3004Length Group 3004 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_DvhType DVH (Dose-volume histogram)
Type.

DCM_TAG_DoseUnits Dose Units.

DCM_TAG_DoseUnit Dose Units. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_DoseType Dose Type.

DCM_TAG_DoseComment Dose Comment.

DCM_TAG_NormalizationPoint Normalization Point.

DCM_TAG_DoseSummationType Dose Summation Type.

DCM_TAG_GridFrameOffsetVector Grid Frame Offset Vector.

DCM_TAG_DoseGridScaling Dose Grid Scaling.

DCM_TAG_RtDoseRoiSequence RT Dose ROI Sequence.

DCM_TAG_DoseValue Dose Value.

DCM_TAG_TissueHeterogeneityCorrection Tissue Heterogeneity Correction.

DCM_TAG_DvhNormalizationPoint DVH Normalization Point.

DCM_TAG_DvhNormalizationDoseValue DVH Normalization Dose Value.

DCM_TAG_DvhSequence DVH Sequence.

DCM_TAG_DvhDoseScaling DVH Dose Scaling.

DCM_TAG_DvhVolumeUnits DVH Volume Units.

DCM_TAG_DvhVolumeUnit DVH Volume Units. This tag

ImageGear Professional v18 for Mac | 1733

name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_DvhNumberOfBins DVH Number of Bins.

DCM_TAG_DvhData The DVH Data.

DCM_TAG_DvhReferencedRoiSequence DVH Referenced ROI Sequence.

DCM_TAG_DvhRoiContributionType DVH ROI Contribution Type.

DCM_TAG_DvhMinimumDose DVH Minimum Dose.

DCM_TAG_DvhMaximumDose DVH Maximum Dose.

DCM_TAG_DvhMeanDose DVH Mean Dose.

DCM_TAG_Group3006Length Group 3006 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_StructureSetLabel Structure Set Label.

DCM_TAG_StructureSetName Structure Set Name.

DCM_TAG_StructureSetDescription Structure Set Description.

DCM_TAG_StructureSetDate Structure Set Date.

DCM_TAG_StructureSetTime Structure Set Time.

DCM_TAG_ReferencedFrameOfReferenceSequence Referenced Frame of Reference
Sequence.

DCM_TAG_RtReferencedStudySequence RT Referenced Study Sequence.

DCM_TAG_RtReferencedSeriesSequence RT Referenced Series Sequence.

DCM_TAG_ContourImageSequence Contour Image Sequence.

DCM_TAG_StructureSetRoiSequence Structure Set ROI Sequence.

DCM_TAG_RoiNumber ROI Number.

DCM_TAG_ReferencedFrameOfReferenceUID Referenced Frame of Reference
UID.

DCM_TAG_RoiName ROI (Region of Interest) Name.

DCM_TAG_RoiDescription ROI Description.

DCM_TAG_RoiDisplayColor ROI Display Color.

DCM_TAG_RoiVolume ROI Volume.

DCM_TAG_RtRelatedRoiSequence RT Related ROI Sequence.

DCM_TAG_RtRoiRelationship RT ROI Relationship.

DCM_TAG_RoiGenerationAlgorithm ROI Generation Algorithm.

DCM_TAG_RoiGenerationDescription ROI Generation Description.

DCM_TAG_RoiContourSequence ROI Contour Sequence.

DCM_TAG_ContourSequence Contour Sequence.

DCM_TAG_ContourGeometricType Contour Geometric Type.

DCM_TAG_ContourSlabThickness Contour Slab Thickness.

DCM_TAG_ContourOffsetVector Contour Offset Vector.

DCM_TAG_NumberOfContourPoints Number of Contour Points.

DCM_TAG_ContourNumber Contour Number.

DCM_TAG_AttachedContours Attached Contours.

DCM_TAG_ContourData Contour Data.

DCM_TAG_RtRoiObservationsSequence RT ROI Observations Sequence.

DCM_TAG_RtRoiObservationSequence RT ROI Observations Sequence.
This tag name has been
deprecated and will be removed

ImageGear Professional v18 for Mac | 1734

from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_ObservationNumber Observation Number.

DCM_TAG_ReferencedRoiNumber Referenced ROI Number.

DCM_TAG_RoiObservationLabel ROI Observation Label.

DCM_TAG_RtRoiIdentificationCodeSequence RT ROI Identification Code
Sequence.

DCM_TAG_RoiObservationDescription ROI Observation Description.

DCM_TAG_RelatedRtRoiObservationsSequence Related RT ROI Observations
Sequence.

DCM_TAG_RelatedRtRoiObservationSequence Related RT ROI Observations
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_RtRoiInterpretedType RT ROI Interpreted Type.

DCM_TAG_RoiInterpreter ROI Interpreter.

DCM_TAG_RoiPhysicalPropertiesSequence ROI Physical Properties
Sequence.

DCM_TAG_RoiPhysicalPropertySequence ROI Physical Properties
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_RoiPhysicalProperty ROI Physical Property.

DCM_TAG_RoiPhysicalPropertyValue ROI Physical Property Value.

DCM_TAG_ROIElementalCompositionSequence ROI Elemental Composition
Sequence.

DCM_TAG_ROIElementalCompositionAtomicNumber ROI Elemental Composition
Atomic Number.

DCM_TAG_ROIElementalCompositionAtomicMassFraction ROI Elemental Composition
Atomic Mass Fraction.

DCM_TAG_FrameOfReferenceRelationshipSequence Frame of Reference Relationship
Sequence.

DCM_TAG_RelatedFrameOfReferenceUID Related Frame of Reference UID.

DCM_TAG_FrameOfReferenceTransformationType Frame of Reference
Transformation Type.

DCM_TAG_FrameOfReferenceTransformationMatrix Frame of Reference
Transformation Matrix.

DCM_TAG_FrameOfReferenceTransformationComment Frame of Reference
Transformation Comment.

DCM_TAG_Group3008Length Group 3008 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_MeasuredDoseReferenceSequence Measured Dose Reference
Sequence.

DCM_TAG_MeasuredDoseRefSequence Measured Dose Reference
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the

ImageGear Professional v18 for Mac | 1735

tag with the same value defined
in the previous line.

DCM_TAG_MeasuredDoseDescription Measured Dose Description.

DCM_TAG_MeasuredDoseDesc Measured Dose Description. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_MeasuredDoseType Measured Dose Type.

DCM_TAG_MeasuredDoseValue Measured Dose Value.

DCM_TAG_TreatmentSessionBeamSequence Treatment Session Beam
Sequence.

DCM_TAG_TreatmentSessionIonBeamSequence Treatment Session Ion Beam
Sequence.

DCM_TAG_CurrentFractionNumber Current Fraction Number.

DCM_TAG_TreatmentControlPointDate Treatment Control Point Date.

DCM_TAG_TreatmentControlPointTime Treatment Control Point Time.

DCM_TAG_TreatmentTerminationStatus Treatment Termination Status.

DCM_TAG_TreatmentTerminationCode Treatment Termination Code.

DCM_TAG_TreatmentVerificationStatus Treatment Verification Status.

DCM_TAG_ReferencedTreatmentRecordSequence Referenced Treatment Record
Sequence.

DCM_TAG_RefTreatmentRecSequence Referenced Treatment Record
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_SpecifiedPrimaryMeterset Specified Primary Meterset.

DCM_TAG_SpecifiedSecondaryMeterset Specified Secondary Meterset.

DCM_TAG_DeliveredPrimaryMeterset Delivered Primary Meterset.

DCM_TAG_DeliveredSecondaryMeterset Delivered Secondary Meterset.

DCM_TAG_SpecifiedTreatmentTime Specified Treatment Time.

DCM_TAG_DeliveredTreatmentTime Delivered Treatment Time.

DCM_TAG_ControlPointDeliverySequence Control Point Delivery Sequence.

DCM_TAG_IonControlPointDeliverySequence Ion Control Point Delivery
Sequence.

DCM_TAG_SpecifiedMeterset Specified Meterset.

DCM_TAG_DeliveredMeterset Delivered Meterset.

DCM_TAG_MetersetRateSet Meterset Rate Set.

DCM_TAG_MetersetRateDelivered Meterset Rate Delivered.

DCM_TAG_ScanSpotMetersetsDelivered Scan Spot Metersets Delivered.

DCM_TAG_DoseRateDelivered Dose Rate Delivered.

DCM_TAG_TreatmentSummaryCalculatedDoseReferenceSequence Treatment Summary Calculated
Dose Reference Sequence.

DCM_TAG_TreatmentSummaryCalcDoseRef Treatment Summary Calculated
Dose Reference Sequence. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous

ImageGear Professional v18 for Mac | 1736

line.

DCM_TAG_CumulativeDoseToDoseReference Cumulative Dose to Dose
Reference.

DCM_TAG_CumulativeDoseToDoseRef Cumulative Dose to Dose
Reference. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_FirstTreatmentDate First Treatment Date.

DCM_TAG_MostRecentTreatmentDate Most Recent Treatment Date.

DCM_TAG_NumberOfFractionsDelivered Number of Fractions Delivered.

DCM_TAG_NumberOfFractionDelivered Number of Fractions Delivered.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_OverrideSequence Override Sequence.

DCM_TAG_ParameterSequencePointer Parameter Sequence Pointer.

DCM_TAG_OverrideParameterPointer Override Parameter Pointer.

DCM_TAG_ParameterItemIndex Parameter Item Index.

DCM_TAG_MeasuredDoseReferenceNumber Measured Dose Reference
Number.

DCM_TAG_MeasuredDoseRefNumber Measured Dose Reference
Number. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_ParameterPointer Parameter Pointer.

DCM_TAG_OverrideReason Override Reason.

DCM_TAG_CorrectedParameterSequence Corrected Parameter Sequence.

DCM_TAG_CorrectionValue Correction Value.

DCM_TAG_CalculatedDoseReferenceSequence Calculated Dose Reference
Sequence.

DCM_TAG_CalcDoseRefSequence Calculated Dose Reference
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_CalculatedDoseReferenceNumber Calculated Dose Reference
Number.

DCM_TAG_CalcDoseRefNumber Calculated Dose Reference
Number. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_CalculatedDoseReferenceDescription Calculated Dose Reference
Description.

DCM_TAG_CalcDoseRefDesc Calculated Dose Reference
Description. This tag name has

ImageGear Professional v18 for Mac | 1737

been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_CalculatedDoseReferenceDoseValue Calculated Dose Reference Dose
Value.

DCM_TAG_CalcDoseRefDoseValue Calculated Dose Reference Dose
Value. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_StartMeterset Start Meterset.

DCM_TAG_EndMeterset End Meterset.

DCM_TAG_ReferencedMeasuredDoseReferenceSequence Referenced Measured Dose
Reference Sequence.

DCM_TAG_RefMeasuredDoseRefSequence Referenced Measured Dose
Reference Sequence. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_ReferencedMeasuredDoseReferenceNumber Referenced Measured Dose
Reference Number.

DCM_TAG_RefMeasuredDoseRefNumber Referenced Measured Dose
Reference Number. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_ReferencedCalculatedDoseReferenceSequence Referenced Calculated Dose
Reference Sequence.

DCM_TAG_RefCalcDoseRefSequence Referenced Calculated Dose
Reference Sequence. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_ReferencedCalculatedDoseReferenceNumber Referenced Calculated Dose
Reference Number.

DCM_TAG_RefCalcDoseRefNumber Referenced Calculated Dose
Reference Number. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_BeamLimitingDeviceLeafPairsSequence Beam Limiting Device Leaf Pairs
Sequence.

DCM_TAG_BeamLimitingDeviceLeafPairSequence Beam Limiting Device Leaf Pairs
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_RecordedWedgeSequence Recorded Wedge Sequence.

ImageGear Professional v18 for Mac | 1738

DCM_TAG_RecordedCompensatorSequence Recorded Compensator
Sequence.

DCM_TAG_RecordedBlockSequence Recorded Block Sequence.

DCM_TAG_TreatmentSummaryMeasuredDoseReferenceSequence Treatment Summary Measured
Dose Reference Sequence.

DCM_TAG_TreatmentSummarySequence Treatment Summary Measured
Dose Reference Sequence. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_RecordedSnoutSequence Recorded Snout Sequence.

DCM_TAG_RecordedRangeShifterSequence Recorded Range Shifter
Sequence.

DCM_TAG_RecordedLateralSpreadingDeviceSequence Recorded Lateral Spreading
Device Sequence.

DCM_TAG_RecordedRangeModulatorSequence Recorded Range Modulator
Sequence.

DCM_TAG_RecordedSourceSequence Recorded Source Sequence.

DCM_TAG_SourceSerialNumber Source Serial Number.

DCM_TAG_TreatmentSessionApplicationSetupSequence Treatment Session Application
Setup Sequence.

DCM_TAG_TreatmentSessionSetupSequence Treatment Session Application
Setup Sequence. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ApplicationSetupCheck Application Setup Check.

DCM_TAG_AppSetupCheck Application Setup Check. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_RecordedBrachyAccessoryDeviceSequence Recorded Brachy Accessory
Device Sequence.

DCM_TAG_RecordedBrachyAccDeviceSequence Recorded Brachy Accessory
Device Sequence. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ReferencedBrachyAccessoryDeviceNumber Referenced Brachy Accessory
Device Number.

DCM_TAG_RefBrachyAccDevNumber Referenced Brachy Accessory
Device Number. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_RecordedChannelSequence Recorded Channel Sequence.

DCM_TAG_SpecifiedChannelTotalTime Specified Channel Total Time.

DCM_TAG_DeliveredChannelTotalTime Delivered Channel Total Time.

DCM_TAG_SpecifiedNumberofPulses Specified Number of Pulses.

ImageGear Professional v18 for Mac | 1739

DCM_TAG_DeliveredNumberofPulses Delivered Number of Pulses.

DCM_TAG_SpecifiedPulseRepetitionInterval Specified Pulse Repetition
Interval.

DCM_TAG_DeliveredPulseRepetitionInterval Delivered Pulse Repetition
Interval.

DCM_TAG_RecordedSourceApplicatorSequence Recorded Source Applicator
Sequence.

DCM_TAG_ReferencedSourceApplicatorNumber Referenced Source Applicator
Number.

DCM_TAG_RecordedChannelShieldSequence Recorded Channel Shield
Sequence.

DCM_TAG_ReferencedChannelShieldNumber Referenced Channel Shield
Number.

DCM_TAG_BrachyControlPointDeliveredSequence Brachy Control Point Delivered
Sequence.

DCM_TAG_SafePositionExitDate Safe Position Exit Date.

DCM_TAG_SafePositionExitTime Safe Position Exit Time.

DCM_TAG_SafePositionReturnDate Safe Position Return Date.

DCM_TAG_SafePositionReturnTime Safe Position Return Time.

DCM_TAG_CurrentTreatmentStatus Current Treatment Status.

DCM_TAG_TreatmentStatusComment Treatment Status Comment.

DCM_TAG_FractionGroupSummarySequence Fraction Group Summary
Sequence.

DCM_TAG_ReferencedFractionNumber Referenced Fraction Number.

DCM_TAG_FractionGroupType Fraction Group Type.

DCM_TAG_BeamStopperPosition Beam Stopper Position.

DCM_TAG_FractionStatusSummarySequence Fraction Status Summary
Sequence.

DCM_TAG_TreatmentDate Treatment Date.

DCM_TAG_TreatmentTime Treatment Time.

DCM_TAG_Group300ALength Group 300A Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_RtPlanLabel RT Plan Label.

DCM_TAG_RtPlanName RT Plan Name.

DCM_TAG_RtPlanDescription RT Plan Description.

DCM_TAG_RtPlanDate RT Plan Date.

DCM_TAG_RtPlanTime RT Plan Time.

DCM_TAG_TreatmentProtocols Treatment Protocols.

DCM_TAG_TreatmentProtocol Treatment Protocols. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_PlanIntent Plan Intent.

DCM_TAG_TreatmentIntent Plan Intent. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_TreatmentSites Treatment Sites.

ImageGear Professional v18 for Mac | 1740

DCM_TAG_TreatmentSite Treatment Sites. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_RtPlanGeometry RT Plan Geometry.

DCM_TAG_PrescriptionDescription Prescription Description.

DCM_TAG_DoseReferenceSequence Dose Reference Sequence.

DCM_TAG_DoseReferenceNumber Dose Reference Number.

DCM_TAG_DoseReferenceUID Dose Reference UID.

DCM_TAG_DoseReferenceStructureType Dose Reference Structure Type.

DCM_TAG_NominalBeamEnergyUnit Nominal Beam Energy Unit.

DCM_TAG_DoseReferenceDescription Dose Reference Description.

DCM_TAG_DoseReferencePointCoordinates Dose Reference Point
Coordinates.

DCM_TAG_DoseReferencePointCoordinate Dose Reference Point
Coordinates. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_NominalPriorDose Nominal Prior Dose.

DCM_TAG_DoseReferenceType Dose Reference Type.

DCM_TAG_ConstraintWeight Constraint Weight.

DCM_TAG_ConsraintWeight Constraint Weight. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_DeliveryWarningDose Delivery Warning Dose.

DCM_TAG_DeliveryMaximumDose Delivery Maximum Dose.

DCM_TAG_TargetMinimumDose Target Minimum Dose.

DCM_TAG_TargetPrescriptionDose Target Prescription Dose.

DCM_TAG_TargetMaximumDose Target Maximum Dose.

DCM_TAG_TargetUnderdoseVolumeFraction Target Underdose Volume
Fraction.

DCM_TAG_OrganAtRiskFullVolumeDose Organ at Risk Full-volume Dose.

DCM_TAG_OrganAtRiskLimitDose Organ at Risk Limit Dose.

DCM_TAG_OrganAtRiskMaximumDose Organ at Risk Maximum Dose.

DCM_TAG_OrganAtRiskOverdoseVolumeFraction Organ at Risk Overdose Volume
Fraction.

DCM_TAG_ToleranceTableSequence Tolerance Table Sequence.

DCM_TAG_ToleranceTableNumber Tolerance Table Number.

DCM_TAG_ToleranceTableLabel Tolerance Table Label.

DCM_TAG_GantryAngleTolerance Gantry Angle Tolerance.

DCM_TAG_BeamLimitingDeviceAngleTolerance Beam Limiting Device Angle
Tolerance.

DCM_TAG_BeamLimitingDeviceToleranceSequence Beam Limiting Device Tolerance
Sequence.

DCM_TAG_BeamLimitingDevicePositionTolerance Beam Limiting Device Position
Tolerance.

ImageGear Professional v18 for Mac | 1741

DCM_TAG_SnoutPositionTolerance Snout Position Tolerance.

DCM_TAG_PatientSupportAngleTolerance Patient Support Angle Tolerance.

DCM_TAG_TableTopEccentricAngleTolerance Table Top Eccentric Angle
Tolerance.

DCM_TAG_TableTopPitchAngleTolerance Table Top Pitch Angle Tolerance.

DCM_TAG_TableTopRollAngleTolerance Table Top Roll Angle Tolerance.

DCM_TAG_TableTopVerticalPositionTolerance Table Top Vertical Position
Tolerance.

DCM_TAG_TableTopLongitudinalPositionTolerance Table Top Longitudinal Position
Tolerance.

DCM_TAG_TableTopLogitudinalPositionTolerance Table Top Longitudinal Position
Tolerance. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_TableTopLateralPositionTolerance Table Top Lateral Position
Tolerance.

DCM_TAG_RtPlanRelationship RT Plan Relationship.

DCM_TAG_FractionGroupSequence Fraction Group Sequence.

DCM_TAG_FractionGroupNumber Fraction Group Number.

DCM_TAG_FractionGroupDescription Fraction Group Description.

DCM_TAG_NumberOfFractionsPlanned Number of Fractions Planned.

DCM_TAG_NumberOfFractionPlanned Number of Fractions Planned.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_NumberOfFractionPatternDigitsPerDay Number of Fraction Pattern Digits
Per Day.

DCM_TAG_NumberOfFractionPerDay Number of Fraction Pattern Digits
Per Day. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_RepeatFractionCycleLength Repeat Fraction Cycle Length.

DCM_TAG_FractionPattern Fraction Pattern.

DCM_TAG_NumberOfBeams Number of Beams.

DCM_TAG_BeamDoseSpecificationPoint Beam Dose Specification Point.

DCM_TAG_BeamDose Beam Dose.

DCM_TAG_BeamMeterset Beam Meterset.

DCM_TAG_BeamDosePointDepth Beam Dose Point Depth.

DCM_TAG_BeamDosePointEquivalentDepth Beam Dose Point Equivalent
Depth.

DCM_TAG_BeamDosePointSSD Beam Dose Point SSD.

DCM_TAG_NumberOfBrachyApplicationSetups Number of Brachy Application
Setups.

DCM_TAG_NumberOfBrachyApplicationSetup Number of Brachy Application
Setups. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with

ImageGear Professional v18 for Mac | 1742

the same value defined in the
previous line.

DCM_TAG_BrachyApplicationSetupDoseSpecificationPoint Brachy Application Setup Dose
Specification Point.

DCM_TAG_BrachySetupDoseSpecificationPoint Brachy Application Setup Dose
Specification Point. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_BrachyApplicationSetupDose Brachy Application Setup Dose.

DCM_TAG_BrachySetupDose Brachy Application Setup Dose.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_BeamSequence Beam Sequence.

DCM_TAG_TreatmentMachineName Treatment Machine Name.

DCM_TAG_PrimaryDosimeterUnit Primary Dosimeter Unit.

DCM_TAG_SourceAxisDistance Source-Axis Distance.

DCM_TAG_BeamLimitingDeviceSequence Beam Limiting Device Sequence.

DCM_TAG_RtBeamLimitingDeviceType RT Beam Limiting Device Type.

DCM_TAG_SourceToBeamLimitingDeviceDistance Source to Beam Limiting Device
Distance.

DCM_TAG_IsocentertoBeamLimitingDeviceDistance Isocenter to Beam Limiting
Device Distance.

DCM_TAG_NumberOfLeafJawPairs Number of Leaf/Jaw Pairs.

DCM_TAG_LeafPositionBoundaries Leaf Position Boundaries.

DCM_TAG_BeamNumber Beam Number.

DCM_TAG_BeamName Beam Name.

DCM_TAG_BeamDescription Beam Description.

DCM_TAG_BeamType Beam Type.

DCM_TAG_RadiationType Radiation Type.

DCM_TAG_HighDoseTechniqueType High-Dose Technique Type.

DCM_TAG_ReferenceImageNumber Reference Image Number.

DCM_TAG_PlannedVerificationImageSequence Planned Verification Image
Sequence.

DCM_TAG_ImagingDeviceSpecificAcquisitionParameters Imaging Device-Specific
Acquisition Parameters.

DCM_TAG_ImagingDeviceSpecificAcquisitionParameter Imaging Device-Specific
Acquisition Parameters. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_ImagingDeviceSpecificAcqParameter Imaging Device-Specific
Acquisition Parameters. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_TreatmentDeliveryType Treatment Delivery Type.

ImageGear Professional v18 for Mac | 1743

DCM_TAG_NumberOfWedges Number of Wedges.

DCM_TAG_NumberOfWedge Number of Wedges. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_WedgeSequence Wedge Sequence.

DCM_TAG_WedgeNumber Wedge Number.

DCM_TAG_WedgeType Wedge Type.

DCM_TAG_WedgeID Wedge Identifier.

DCM_TAG_WedgeAngle Wedge Angle.

DCM_TAG_WedgeFactor Wedge Factor.

DCM_TAG_TotalWedgeTrayWaterEquivalentThickness Total Wedge Tray Water-
Equivalent Thickness.

DCM_TAG_WedgeOrientation Wedge Orientation.

DCM_TAG_IsocentertoWedgeTrayDistance Isocenter to Wedge Tray
Distance.

DCM_TAG_SourceToWedgeTrayDistance Source to Wedge Tray Distance.

DCM_TAG_WedgeThinEdgePosition Wedge Thin Edge Position.

DCM_TAG_BolusID Bolus Identifier.

DCM_TAG_BolusDescription Bolus Description.

DCM_TAG_NumberOfCompensators Number of Compensators.

DCM_TAG_NumberOfCompensator Number of Compensators. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_MaterialID Material ID.

DCM_TAG_TotalCompensatorTrayFactor Total Compensator Tray Factor.

DCM_TAG_CompensatorSequence Compensator Sequence.

DCM_TAG_CompensatorNumber Compensator Number.

DCM_TAG_CompensatorID Compensator ID.

DCM_TAG_SourceToCompensatorTrayDistance Source to Compensator Tray
Distance.

DCM_TAG_CompensatorRows Compensator Rows.

DCM_TAG_CompensatorRow Compensator Rows. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_CompensatorColumns Compensator Columns.

DCM_TAG_CompensatorColumn Compensator Columns. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_CompensatorPixelSpacing Compensator Pixel Spacing.

DCM_TAG_CompensatorPosition Compensator Position.

DCM_TAG_CompensatorTransmissionData Compensator Transmission Data.

DCM_TAG_CompensatorThicknessData Compensator Thickness Data.

ImageGear Professional v18 for Mac | 1744

DCM_TAG_NumberOfBoli Number of Boli.

DCM_TAG_CompensatorType Compensator Type.

DCM_TAG_NumberOfBlocks Number of Blocks.

DCM_TAG_NumberOfBlock Number of Blocks. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_TotalBlockTrayFactor Total Block Tray Factor.

DCM_TAG_TotalBlockTrayWaterEquivalentThickness Total Block Tray Water-
Equivalent Thickness.

DCM_TAG_BlockSequence Block Sequence.

DCM_TAG_BlockTrayID Block Tray ID.

DCM_TAG_SourceToBlockTrayDistance Source to Block Tray Distance.

DCM_TAG_IsocentertoBlockTrayDistance Isocenter to Block Tray Distance.

DCM_TAG_BlockType Block Type.

DCM_TAG_AccessoryCode Accessory Code.

DCM_TAG_BlockDivergence Block Divergence.

DCM_TAG_BlockMountingPosition Block Mounting Position.

DCM_TAG_BlockNumber Block Number.

DCM_TAG_BlockName Block Name.

DCM_TAG_BlockThickness Block Thickness.

DCM_TAG_BlockTransmission Block Transmission.

DCM_TAG_BlockNumberOfPoints Block Number of Points.

DCM_TAG_BlockData Block Data.

DCM_TAG_ApplicatorSequence Applicator Sequence.

DCM_TAG_ApplicatorID Applicator ID.

DCM_TAG_ApplicatorType Applicator Type.

DCM_TAG_ApplicatorDescription Applicator Description.

DCM_TAG_CumulativeDoseReferenceCoefficient Cumulative Dose Reference
Coefficient.

DCM_TAG_FinalCumulativeMetersetWeight Final Cumulative Meterset
Weight.

DCM_TAG_NumberOfControlPoints Number of Control Points.

DCM_TAG_ControlPointSequence Control Point Sequence.

DCM_TAG_ControlPointIndex Control Point Index.

DCM_TAG_NominalBeamEnergy Nominal Beam Energy.

DCM_TAG_DoseRateSet Dose Rate Set.

DCM_TAG_WedgePositionSequence Wedge Position Sequence.

DCM_TAG_WedgePosition Wedge Position.

DCM_TAG_BeamLimitingDevicePositionSequence Beam Limiting Device Position
Sequence.

DCM_TAG_LeafJawPositions Leaf/Jaw Positions.

DCM_TAG_LeafJawPosition Leaf/Jaw Positions.

DCM_TAG_GantryAngle Gantry Angle.

DCM_TAG_GantryRotationDirection Gantry Rotation Direction.

DCM_TAG_BeamLimitingDeviceAngle Beam Limiting Device Angle.

DCM_TAG_BeamLimitingDeviceRotationDirection Beam Limiting Device Rotation
Direction.

DCM_TAG_PatientSupportAngle Patient Support Angle.

ImageGear Professional v18 for Mac | 1745

DCM_TAG_PatientSupportRotationDirection Patient Support Rotation
Direction.

DCM_TAG_TableTopEccentricAxisDistance Table Top Eccentric Axis
Distance.

DCM_TAG_TableTopEccentricAngle Table Top Eccentric Angle.

DCM_TAG_TableTopEccentricRotationDirection Table Top Eccentric Rotation
Direction.

DCM_TAG_TableTopVerticalPosition Table Top Vertical Position.

DCM_TAG_TableTopLongitudinalPosition Table Top Longitudinal Position.

DCM_TAG_TableTopLateralPosition Table Top Lateral Position.

DCM_TAG_IsocenterPosition Isocenter Position.

DCM_TAG_SurfaceEntryPoint Surface Entry Point.

DCM_TAG_SourceToSurfaceDistance Source to Surface Distance.

DCM_TAG_CumulativeMetersetWeight Cumulative Meterset Weight.

DCM_TAG_TableTopPitchAngle Table Top Pitch Angle.

DCM_TAG_TableTopPitchRotationDirection Table Top Pitch Rotation
Direction.

DCM_TAG_TableTopRollAngle Table Top Roll Angle.

DCM_TAG_TableTopRollRotationDirection Table Top Roll Rotation Direction.

DCM_TAG_HeadFixationAngle Head Fixation Angle.

DCM_TAG_GantryPitchAngle Gantry Pitch Angle.

DCM_TAG_GantryPitchRotationDirection Gantry Pitch Rotation Direction.

DCM_TAG_GantryPitchAngleTolerance Gantry Pitch Angle Tolerance.

DCM_TAG_PatientSetupSequence Patient Setup Sequence.

DCM_TAG_PatientSetupNumber Patient Setup Number.

DCM_TAG_PatientSetupLabel Patient Setup Label.

DCM_TAG_PatientAdditionalPosition Patient Additional Position.

DCM_TAG_FixationDeviceSequence Fixation Device Sequence.

DCM_TAG_FixationDeviceType Fixation Device Type.

DCM_TAG_FixationDeviceLabel Fixation Device Label.

DCM_TAG_FixationDeviceDescription Fixation Device Description.

DCM_TAG_FixationDevicePosition Fixation Device Position.

DCM_TAG_FixationDevicePitchAngle Fixation Device Pitch Angle.

DCM_TAG_FixationDeviceRollAngle Fixation Device Roll Angle.

DCM_TAG_ShieldingDeviceSequence Shielding Device Sequence.

DCM_TAG_ShieldingDeviceType Shielding Device Type.

DCM_TAG_ShieldingDeviceLabel Shielding Device Label.

DCM_TAG_ShieldingDeviceDescription Shielding Device Description.

DCM_TAG_ShieldingDevicePosition Shielding Device Position.

DCM_TAG_SetupTechnique Setup Technique.

DCM_TAG_SetupTechniqueDescription Setup Technique Description.

DCM_TAG_SetupDeviceSequence Setup Device Sequence.

DCM_TAG_SetupDeviceType Setup Device Type.

DCM_TAG_SetupDeviceLabel Setup Device Label.

DCM_TAG_SetupDeviceDescription Setup Device Description.

DCM_TAG_SetupDeviceParameter Setup Device Parameter.

DCM_TAG_SetupReferenceDescription Setup Reference Description.

DCM_TAG_TableTopVerticalSetupDisplacement Table Top Vertical Setup
Displacement.

ImageGear Professional v18 for Mac | 1746

DCM_TAG_TableTopLongitudinalSetupDisplacement Table Top Longitudinal Setup
Displacement.

DCM_TAG_TableTopLogitudinalSetupDisplacement Table Top Longitudinal Setup
Displacement. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_TableTopLateralSetupDisplacement Table Top Lateral Setup
Displacement.

DCM_TAG_BrachyTreatmentTechnique Brachy Treatment Technique.

DCM_TAG_BrachyTreatmentType Brachy Treatment Type.

DCM_TAG_TreatmentMachineSequence Treatment Machine Sequence.

DCM_TAG_SourceSequence Source Sequence.

DCM_TAG_SourceNumber Source Number.

DCM_TAG_SourceType Source Type.

DCM_TAG_SourceManufacturer Source Manufacturer.

DCM_TAG_ActiveSourceDiameter Active Source Diameter.

DCM_TAG_ActiveSourceLength Active Source Length.

DCM_TAG_SourceEncapsulationNominalThickness Source Encapsulation Nominal
Thickness.

DCM_TAG_SourceEncapsulationNominalTransmission Source Encapsulation Nominal
Transmission.

DCM_TAG_SourceIsotopeName Source Isotope Name.

DCM_TAG_SourceIsotopeHalfLife Source Isotope Half Life.

DCM_TAG_SourceStrengthUnits Source Strength Units.

DCM_TAG_ReferenceAirKermaRate Reference Air Kerma Rate.

DCM_TAG_SourceStrength Source Strength.

DCM_TAG_SourceStrengthReferenceDate Source Strength Reference Date.

DCM_TAG_SourceStrengthAirKermaRateReferenceDateDA1 Source Strength Reference Date.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_SourceStrengthReferenceTime Source Strength Reference Time.

DCM_TAG_SourceStrengthAirKermaRateReferenceTimeTM1 Source Strength Reference Time.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_ApplicationSetupSequence Application Setup Sequence.

DCM_TAG_ApplicationSetupType Application Setup Type.

DCM_TAG_ApplicationSetupNumber Application Setup Number.

DCM_TAG_ApplicationSetupName Application Setup Name.

DCM_TAG_ApplicationSetupManufacturer Application Setup Manufacturer.

DCM_TAG_TemplateNumber Template Number.

DCM_TAG_TemplateType Template Type.

DCM_TAG_TemplateName Template Name.

DCM_TAG_TotalReferenceAirKerma Total Reference Air Kerma.

ImageGear Professional v18 for Mac | 1747

DCM_TAG_BrachyAccessoryDeviceSequence Brachy Accessory Device
Sequence.

DCM_TAG_BrachyAccDeviceSequence Brachy Accessory Device
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_BrachyAccessoryDeviceNumber Brachy Accessory Device
Number.

DCM_TAG_BrachyAccDeviceNumber Brachy Accessory Device
Number. This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_BrachyAccessoryDeviceID Brachy Accessory Device ID.

DCM_TAG_BrachyAccDeviceID Brachy Accessory Device ID. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_BrachyAccessoryDeviceType Brachy Accessory Device Type.

DCM_TAG_BrachyAccDeviceType Brachy Accessory Device Type.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_BrachyAccessoryDeviceName Brachy Accessory Device Name.

DCM_TAG_BrachyAccDeviceName Brachy Accessory Device Name.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_BrachyAccessoryDeviceNominalThickness Brachy Accessory Device
Nominal Thickness.

DCM_TAG_BrachyAccDeviceNominalThickness Brachy Accessory Device
Nominal Thickness. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_BrachyAccessoryDeviceNominalTransmission Brachy Accessory Device
Nominal Transmission.

DCM_TAG_BrachyAccDeviceNominalTransmission Brachy Accessory Device
Nominal Transmission. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_ChannelSequence Channel Sequence.

DCM_TAG_BrachyChannelSequence Channel Sequence. This tag

ImageGear Professional v18 for Mac | 1748

name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_ChannelNumber Channel Number.

DCM_TAG_BrachyChannelNumber Channel Number. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ChannelLength Channel Length.

DCM_TAG_BrachyChannelLength Channel Length. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ChannelTotalTime Channel Total Time.

DCM_TAG_BrachyChannelTotalTime Channel Total Time. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_SourceMovementType Source Movement Type.

DCM_TAG_NumberOfPulses Number of Pulses.

DCM_TAG_PulseRepetitionInterval Pulse Repetition Interval.

DCM_TAG_SourceApplicatorNumber Source Applicator Number.

DCM_TAG_SourceApplicatorID Source Applicator ID.

DCM_TAG_SourceApplicatorType Source Applicator Type.

DCM_TAG_SourceApplicatorName Source Applicator Name.

DCM_TAG_SourceApplicatorLength Source Applicator Length.

DCM_TAG_SourceApplicatorManufacturer Source Applicator Manufacturer.

DCM_TAG_SourceApplicatorWallNominalThickness Source Applicator Wall Nominal
Thickness.

DCM_TAG_SourceApplicatorWallNominalTransmission Source Applicator Wall Nominal
Transmission.

DCM_TAG_SourceApplicatorStepSize Source Applicator Step Size.

DCM_TAG_TransferTubeNumber Transfer Tube Number.

DCM_TAG_TransferTubeLength Transfer Tube Length.

DCM_TAG_ChannelShieldSequence Channel Shield Sequence.

DCM_TAG_ChannelShieldNumber Channel Shield Number.

DCM_TAG_ChannelShieldID Channel Shield ID.

DCM_TAG_ChannelShieldName Channel Shield Name.

DCM_TAG_ChannelShieldNominalThickness Channel Shield Nominal
Thickness.

DCM_TAG_ChannelShieldNominalTransmission Channel Shield Nominal
Transmission.

DCM_TAG_FinalCumulativeTimeWeight Final Cumulative Time Weight.

DCM_TAG_BrachyControlPointSequence Brachy Control Point Sequence.

DCM_TAG_ControlPointRelativePosition Control Point Relative Position.

DCM_TAG_ControlPoint3dPosition Control Point 3D Position.

DCM_TAG_CumulativeTimeWeight Cumulative Time Weight.

ImageGear Professional v18 for Mac | 1749

DCM_TAG_CompensatorDivergence Compensator Divergence.

DCM_TAG_CompensatorMountingPosition Compensator Mounting Position.

DCM_TAG_SourceToCompensatorDistance Source to Compensator Distance.

DCM_TAG_TotalCompensatorTrayWaterEquivalentThickness Total Compensator Tray Water-
Equivalent Thickness.

DCM_TAG_IsocentertoCompensatorTrayDistance Isocenter to Compensator Tray
Distance.

DCM_TAG_CompensatorColumnOffset Compensator Column Offset.

DCM_TAG_IsocentertoCompensatorDistances Isocenter to Compensator
Distances.

DCM_TAG_CompensatorRelativeStoppingPowerRatio Compensator Relative Stopping
Power Ratio.

DCM_TAG_CompensatorMillingToolDiameter Compensator Milling Tool
Diameter.

DCM_TAG_IonRangeCompensatorSequence Ion Range Compensator
Sequence.

DCM_TAG_CompensatorDescription Compensator Description.

DCM_TAG_RadiationMassNumber Radiation Mass Number.

DCM_TAG_RadiationAtomicNumber Radiation Atomic Number.

DCM_TAG_RadiationChargeState Radiation Charge State.

DCM_TAG_ScanMode Scan Mode.

DCM_TAG_VirtualSourceAxisDistances Virtual Source-Axis Distances.

DCM_TAG_SnoutSequence Snout Sequence.

DCM_TAG_SnoutPosition Snout Position.

DCM_TAG_SnoutID Snout Identifier.

DCM_TAG_NumberofRangeShifters Number of Range Shifters.

DCM_TAG_RangeShifterSequence Range Shifter Sequence.

DCM_TAG_RangeShifterNumber Range Shifter Number.

DCM_TAG_RangeShifterID Range Shifter ID.

DCM_TAG_RangeShifterType Range Shifter Type.

DCM_TAG_RangeShifterDescription Range Shifter Description.

DCM_TAG_NumberofLateralSpreadingDevices Number of Lateral Spreading
Devices.

DCM_TAG_LateralSpreadingDeviceSequence Lateral Spreading Device
Sequence.

DCM_TAG_LateralSpreadingDeviceNumber Lateral Spreading Device
Number.

DCM_TAG_LateralSpreadingDeviceID Lateral Spreading Device ID.

DCM_TAG_LateralSpreadingDeviceType Lateral Spreading Device Type.

DCM_TAG_LateralSpreadingDeviceDescription Lateral Spreading Device
Description.

DCM_TAG_LateralSpreadingDeviceWaterEquivalentThickness Lateral Spreading Device Water
Equivalent Thickness.

DCM_TAG_NumberofRangeModulators Number of Range Modulators.

DCM_TAG_RangeModulatorSequence Range Modulator Sequence.

DCM_TAG_RangeModulatorNumber Range Modulator Number.

DCM_TAG_RangeModulatorID Range Modulator ID.

DCM_TAG_RangeModulatorType Range Modulator Type.

DCM_TAG_RangeModulatorDescription Range Modulator Description.

DCM_TAG_BeamCurrentModulationID Beam Current Modulation ID.

DCM_TAG_PatientSupportType Patient Support Type.

ImageGear Professional v18 for Mac | 1750

DCM_TAG_PatientSupportID Patient Support ID.

DCM_TAG_PatientSupportAccessoryCode Patient Support Accessory Code.

DCM_TAG_FixationLightAzimuthalAngle Fixation Light Azimuthal Angle.

DCM_TAG_FixationLightPolarAngle Fixation Light Polar Angle.

DCM_TAG_MetersetRate Meterset Rate.

DCM_TAG_RangeShifterSettingsSequence Range Shifter Settings
Sequence.

DCM_TAG_RangeShifterSetting Range Shifter Setting.

DCM_TAG_IsocentertoRangeShifterDistance Isocenter to Range Shifter
Distance.

DCM_TAG_RangeShifterWaterEquivalentThickness Range Shifter Water Equivalent
Thickness.

DCM_TAG_LateralSpreadingDeviceSettingsSequence Lateral Spreading Device
Settings Sequence.

DCM_TAG_LateralSpreadingDeviceSetting Lateral Spreading Device Setting.

DCM_TAG_IsocentertoLateralSpreadingDeviceDistance Isocenter to Lateral Spreading
Device Distance.

DCM_TAG_RangeModulatorSettingsSequence Range Modulator Settings
Sequence.

DCM_TAG_RangeModulatorGatingStartValue Range Modulator Gating Start
Value.

DCM_TAG_RangeModulatorGatingStopValue Range Modulator Gating Stop
Value.

DCM_TAG_RangeModulatorGatingStartWaterEquivalentThickness Range Modulator Gating Start
Water Equivalent Thickness.

DCM_TAG_RangeModulatorGatingStartWaterEquivalent Range Modulator Gating Start
Water Equivalent Thickness. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_RangeModulatorGatingStopWaterEquivalentThickness Range Modulator Gating Stop
Water Equivalent Thickness.

DCM_TAG_RangeModulatorGatingStopWaterEquivalent Range Modulator Gating Stop
Water Equivalent Thickness. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_IsocentertoRangeModulatorDistance Isocenter to Range Modulator
Distance.

DCM_TAG_ScanSpotTuneID Scan Spot Tune ID.

DCM_TAG_NumberofScanSpotPositions Number of Scan Spot Positions.

DCM_TAG_ScanSpotPositionMap Scan Spot Position Map.

DCM_TAG_ScanSpotMetersetWeights Scan Spot Meterset Weights.

DCM_TAG_ScanningSpotSize Scanning Spot Size.

DCM_TAG_NumberofPaintings Number of Paintings.

DCM_TAG_IonToleranceTableSequence Ion Tolerance Table Sequence.

DCM_TAG_IonBeamSequence Ion Beam Sequence.

DCM_TAG_IonBeamLimitingDeviceSequence Ion Beam Limiting Device
Sequence.

DCM_TAG_IonBlockSequence Ion Block Sequence.

ImageGear Professional v18 for Mac | 1751

DCM_TAG_IonControlPointSequence Ion Control Point Sequence.

DCM_TAG_IonWedgeSequence Ion Wedge Sequence.

DCM_TAG_IonWedgePositionSequence Ion Wedge Position Sequence.

DCM_TAG_ReferencedSetupImageSequence Referenced Setup Image
Sequence.

DCM_TAG_SetupImageComment Setup Image Comment.

DCM_TAG_MotionSynchronizationSequence Motion Synchronization
Sequence.

DCM_TAG_ControlPointOrientation Control Point Orientation.

DCM_TAG_GeneralAccessorySequence General Accessory Sequence.

DCM_TAG_GeneralAccessoryID General Accessory ID.

DCM_TAG_GeneralAccessoryDescription General Accessory Description.

DCM_TAG_GeneralAccessoryType General Accessory Type.

DCM_TAG_GeneralAccessoryNumber General Accessory Number.

DCM_TAG_Group300CLength Group 300C Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ReferencedRtPlanSequence Referenced RT Plan Sequence.

DCM_TAG_ReferencedBeamSequence Referenced Beam Sequence.

DCM_TAG_ReferencedBeamNumber Referenced Beam Number.

DCM_TAG_ReferencedReferenceImageNumber Referenced Reference Image
Number.

DCM_TAG_StartCumulativeMetersetWeight Start Cumulative Meterset
Weight.

DCM_TAG_EndCumulativeMetersetWeight End Cumulative Meterset Weight.

DCM_TAG_ReferencedBrachyApplicationSetupSequence Referenced Brachy Application
Setup Sequence.

DCM_TAG_ReferencedBrachyAppSetupSequence Referenced Brachy Application
Setup Sequence. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ReferencedBrachyApplicationSetupNumber Referenced Brachy Application
Setup Number.

DCM_TAG_ReferencedBrachyAppSetupNumber Referenced Brachy Application
Setup Number. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ReferencedSourceNumber Referenced Source Number.

DCM_TAG_ReferencedFractionGroupSequence Referenced Fraction Group
Sequence.

DCM_TAG_ReferencedFractionGroupNumber Referenced Fraction Group
Number.

DCM_TAG_ReferencedVerificationImageSequence Referenced Verification Image
Sequence.

DCM_TAG_ReferencedReferenceImageSequence Referenced Reference Image
Sequence.

DCM_TAG_ReferencedDoseReferenceSequence Referenced Dose Reference
Sequence.

DCM_TAG_ReferencedDoseReferenceNumber Referenced Dose Reference

ImageGear Professional v18 for Mac | 1752

Number.

DCM_TAG_BrachyReferencedDoseReferenceSequence Brachy Referenced Dose
Reference Sequence.

DCM_TAG_ReferencedStructureSetSequence Referenced Structure Set
Sequence.

DCM_TAG_ReferencedPatientSetupNumber Referenced Patient Setup
Number.

DCM_TAG_ReferencedDoseSequence Referenced Dose Sequence.

DCM_TAG_ReferencedToleranceTableNumber Referenced Tolerance Table
Number.

DCM_TAG_ReferencedBolusSequence Referenced Bolus Sequence.

DCM_TAG_ReferencedWedgeNumber Referenced Wedge Number.

DCM_TAG_ReferencedCompensatorNumber Referenced Compensator
Number.

DCM_TAG_ReferencedBlockNumber Referenced Block Number.

DCM_TAG_ReferencedControlPointIndex Referenced Control Point Index.

DCM_TAG_ReferencedControlPoint Referenced Control Point Index.
This tag name has been
deprecated and will be removed
from the public API in a future
release. Please use the tag with
the same value defined in the
previous line.

DCM_TAG_ReferencedControlPointSequence Referenced Control Point
Sequence.

DCM_TAG_ReferencedStartControlPointIndex Referenced Start Control Point
Index.

DCM_TAG_ReferencedStopControlPointIndex Referenced Stop Control Point
Index.

DCM_TAG_ReferencedRangeShifterNumber Referenced Range Shifter
Number.

DCM_TAG_ReferencedLateralSpreadingDeviceNumber Referenced Lateral Spreading
Device Number.

DCM_TAG_ReferencedRangeModulatorNumber Referenced Range Modulator
Number.

DCM_TAG_Group300ELength Group 300E Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ApprovalStatus Approval Status.

DCM_TAG_ReviewDate Review Date.

DCM_TAG_ReviewTime Review Time.

DCM_TAG_ReviewerName Reviewer Name.

DCM_TAG_Group4000Length Group 4000 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_Arbitrary Arbitrary. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_TextComments Text Comments. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_Group4008Length Group 4008 Length. This tag is
marked as retired in DICOM

ImageGear Professional v18 for Mac | 1753

specification. See DICOM
specification for alternatives.

DCM_TAG_ResultsID Results ID. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_ResultsIDIssuer Results ID Issuer. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ReferencedInterpretationSequence Referenced Interpretation
Sequence. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_InterpretationRecordedDate Interpretation Recorded Date.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_InterpretationRecordedTime Interpretation Recorded Time.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_InterpretationRecorder Interpretation Recorder. This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_ReferencetoRecordedSound Reference to Recorded Sound.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_InterpretationTranscriptionDate Interpretation Transcription
Date. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_InterpretationTranscriptionTime Interpretation Transcription
Time. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_InterpretationTranscriber Interpretation Transcriber. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_InterpretationText Interpretation Text. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_InterpretationAuthor Interpretation Author. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_InterpretationApproverSequence Interpretation Approver
Sequence. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_InterpretationApprovalDate Interpretation Approval Date.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

ImageGear Professional v18 for Mac | 1754

DCM_TAG_InterpretationApprovalTime Interpretation Approval Time.
This tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_PhysicianApprovingInterpretation Physician Approving
Interpretation. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_InterpretationDiagnosisDescription Interpretation Diagnosis
Description. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_InterpretationDiagnosisCodeSequence Interpretation Diagnosis Code
Sequence. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_ResultsDistributionListSequence Results Distribution List
Sequence. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_DistributionName Distribution Name. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_DistributionAddress Distribution Address. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_InterpretationID Interpretation ID. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_InterpretationIDIssuer Interpretation ID Issuer. This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_InterpretationTypeID Interpretation Type ID. This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_InterpretationStatusID Interpretation Status ID. This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_Impressions Impressions. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_ResultsComments Results Comments. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_Group4FFELength Group 4FFE Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_MacParametersSequence MAC Parameters Sequence.

DCM_TAG_Group50xxLength Group 50xx Length. This tag is

ImageGear Professional v18 for Mac | 1755

marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_CurveDimensions Curve Dimensions. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_NumberOfPoints Number of Points. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_TypeOfData Type of Data. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_CurveDescription Curve Description. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_AxisUnits Axis Units. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_AxisLabels Axis Labels. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_DataValueRepresentation Data Value Representation. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_MinimumCoordinateValue Minimum Coordinate Value. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_MaximumCoordinateValue Maximum Coordinate Value. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_CurveRange Curve Range. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_CurveDataDescriptor Curve Data Descriptor. This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_CoordinateStartValue Coordinate Start Value. This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_CoordinateStepValue Coordinate Step Value. This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_CurveActivationLayer Curve Activation Layer. This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_AudioType Audio Type. This tag is marked
as retired in DICOM specification.
See DICOM specification for

ImageGear Professional v18 for Mac | 1756

alternatives.

DCM_TAG_AudioSampleFormat Audio Sample Format. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_NumberOfChannels Number of Channels. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_NumberOfSamples Number of Samples. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_SampleRate Sample Rate. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_TotalTime Total Time. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_AudioSampleData Audio Sample Data. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_AudioComments Audio Comments. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_CurveLabel Curve Label. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_CurveReferencedOverlaySequence Curve Referenced Overlay
Sequence. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_CurveReferencedOverlayGroup Curve Referenced Overlay
Group. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_CurveData Curve Data. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_Group5200Length Group 5200 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_SharedFunctionalGroupsSequence Shared Functional Groups
Sequence.

DCM_TAG_SharedFunctionalGroupSequence Shared Functional Groups
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_PerFrameFunctionalGroupsSequence Per-frame Functional Groups
Sequence.

ImageGear Professional v18 for Mac | 1757

DCM_TAG_PerFrameFunctionalGroupSequence Per-frame Functional Groups
Sequence. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_Group5400Length Group 5400 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_WaveformSequence Waveform Sequence.

DCM_TAG_ChannelMinimumValue Channel Minimum Value.

DCM_TAG_ChannelMaximumValue Channel Maximum Value.

DCM_TAG_WaveformBitsAllocated Waveform Bits Allocated.

DCM_TAG_WaveformSampleInterpretation Waveform Sample
Interpretation.

DCM_TAG_WaveformPaddingValue Waveform Padding Value.

DCM_TAG_WaveformData Waveform Data.

DCM_TAG_Group5600Length Group 5600 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_FirstOrderPhaseCorrectionAngle First Order Phase Correction
Angle.

DCM_TAG_SpectroscopyData Spectroscopy Data.

DCM_TAG_Group60xxLength Group 60xx Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_OverlayRows Overlay Rows.

DCM_TAG_OverlayColumns Overlay Columns.

DCM_TAG_OverlayPlanes Overlay Planes. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_NumberOfFramesInOverlay Number of Frames in Overlay.

DCM_TAG_OverlayDescription Overlay Description.

DCM_TAG_OverlayType Overlay Type.

DCM_TAG_OverlaySubtype Overlay Subtype.

DCM_TAG_OverlayOrigin Overlay Origin.

DCM_TAG_Origin Overlay Origin. This tag name
has been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ImageFrameOrigin Image Frame Origin.

DCM_TAG_OverlayPlaneOrigin Overlay Plane Origin. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_OverlayCompressionCode Overlay Compression Code. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_OverlayCompressionOriginator Overlay Compression Originator.
This tag is marked as retired in

ImageGear Professional v18 for Mac | 1758

DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_OverlayCompressionLabel Overlay Compression Label. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_OverlayCompressionDescription Overlay Compression
Description. This tag is marked
as retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_OverlayCompressionStepPointers Overlay Compression Step
Pointers. This tag is marked as
retired in DICOM specification.
See DICOM specification for
alternatives.

DCM_TAG_OverlayRepeatInterval Overlay Repeat Interval. This tag
is marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_OverlayBitsGrouped Overlay Bits Grouped. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_OverlayBitsAllocated Overlay Bits Allocated.

DCM_TAG_BitAllocated Overlay Bits Allocated. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_OverlayBitPosition Overlay Bit Position.

DCM_TAG_BitPosition Overlay Bit Position. This tag
name has been deprecated and
will be removed from the public
API in a future release. Please
use the tag with the same value
defined in the previous line.

DCM_TAG_OverlayFormat Overlay Format. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_OverlayLocation Overlay Location. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_OverlayCodeLabel Overlay Code Label. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_OverlayNumberOfTables Overlay Number of Tables. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_OverlayCodeTableLocation Overlay Number of Tables. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_OverlayBitsForCodeWord Overlay Bits For Code Word. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

ImageGear Professional v18 for Mac | 1759

DCM_TAG_OverlayActivationLayer Overlay Activation Layer.

DCM_TAG_OverlayDescriptorGray Overlay Descriptor - Gray. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_OverlayDescriptorRed Overlay Descriptor - Red. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_OverlayDescriptorGreen Overlay Descriptor - Green. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_OverlayDescriptorBlue Overlay Descriptor - Blue. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_OverlaysGray Overlays - Gray. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_OverlaysRed Overlays - Red. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_OverlaysGreen Overlays - Green. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_OverlaysBlue Overlays - Blue. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_RoiArea The ROI Area.

DCM_TAG_RoiMean The ROI Mean.

DCM_TAG_RoiStandardDeviation ROI Standard Deviation.

DCM_TAG_OverlayLabel Overlay Label.

DCM_TAG_OverlayData Overlay Data.

DCM_TAG_OverlayComments Overlay Comments. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_Group7FE0Length Group 7FE0 Length. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_PixelData Pixel Data.

DCM_TAG_CoefficientsSDVN Coefficients SDVN. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_CoefficientsSDHN Coefficients SDHN. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_CoefficientsSDDN Coefficients SDDN. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_Group7FFFLength Group 7FFF Length. This tag is

ImageGear Professional v18 for Mac | 1760

marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_VariablePixelData Variable Pixel Data. This tag is
marked as retired in DICOM
specification. See DICOM
specification for alternatives.

DCM_TAG_VariableNextDataGroup Variable Next Data Group. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_VariableCoefficientsSDVN Variable Coefficients SDVN. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_VariableCoefficientsSDHN Variable Coefficients SDHN. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_VariableCoefficientsSDDN Variable Coefficients SDDN. This
tag is marked as retired in
DICOM specification. See DICOM
specification for alternatives.

DCM_TAG_DigitalSignaturesSequence Digital Signatures Sequence.

DCM_TAG_DataSetTrailingPadding Data Set Trailing Padding.

DCM_TAG_DatasetPadding Data Set Trailing Padding. This
tag name has been deprecated
and will be removed from the
public API in a future release.
Please use the tag with the same
value defined in the previous
line.

DCM_TAG_Item Item marker.

DCM_TAG_ItemItem Item marker. This tag name has
been deprecated and will be
removed from the public API in a
future release. Please use the
tag with the same value defined
in the previous line.

DCM_TAG_ItemDelimitationItem Item Delimitation Item.

DCM_TAG_SequenceDelimitationItem Sequence Delimitation Item.

DCM_TAG_DataStreamEncodingFragment Data Stream Encoding Fragment.

ImageGear Professional v18 for Mac | 1761

1.3.2.4.9 enumIGMedTS

Specifies DICOM Transfer Syntaxes.

Values:

MED_DCM_TS_IMPLICIT_VR_LE Implicit VR Little Endian: Default Transfer Syntax for DICOM
(uncompressed).

MED_DCM_TS_EXPLICIT_VR_LE Explicit VR Little Endian (uncompressed).

MED_DCM_TS_EXPLICIT_VR_BE Explicit VR Big Endian (uncompressed).

MED_DCM_TS_DEFLATED_EXPLICIT_VR_LE Deflated Explicit VR Little Endian.

MED_DCM_TS_JPEG_BASELINE_PR_1 JPEG Baseline (Process 1): Default Transfer Syntax for Lossy
JPEG 8 Bit Image Compression.

MED_DCM_TS_JPEG_EXTENDED_PR_2_4 JPEG Extended (Process 2 & 4): Default Transfer Syntax for
Lossy JPEG 12 Bit Image Compression (Process 4 only).

MED_DCM_TS_JPEG_EXTENDED_PR_3_5 JPEG Extended (Process 3 & 5) (Retired).

MED_DCM_TS_JPEG_SPECTRAL_NONH_PR_6_8 JPEG Spectral Selection, Non-Hierarchical (Process 6 & 8)
(Retired).

MED_DCM_TS_JPEG_SPECTRAL_NONH_PR_7_9 JPEG Spectral Selection, Non-Hierarchical (Process 7 & 9)
(Retired).

MED_DCM_TS_JPEG_FULL_PROG_NONH_PR_10_12 JPEG Full Progression, Non-Hierarchical (Process 10 & 12)
(Retired).

MED_DCM_TS_JPEG_FULL_PROG_NONH_PR_11_13 JPEG Full Progression, Non-Hierarchical (Process 11 & 13)
(Retired).

MED_DCM_TS_JPEG_LOSSLESS_NONH_PR_14 JPEG Lossless, Non-Hierarchical (Process 14).

MED_DCM_TS_JPEG_LOSSLESS_NONH_PR_15 JPEG Lossless, Non-Hierarchical (Process 15) (Retired).

MED_DCM_TS_JPEG_EXTENDED_HIER_PR_16_18 JPEG Extended, Hierarchical (Process 16 & 18) (Retired).

MED_DCM_TS_JPEG_EXTENDED_HIER_PR_17_19 JPEG Extended, Hierarchical (Process 17 & 19) (Retired).

MED_DCM_TS_JPEG_SPECTRAL_HIER_PR_20_22 JPEG Spectral Selection, Hierarchical (Process 20 & 22)
(Retired).

MED_DCM_TS_JPEG_SPECTRAL_HIER_PR_21_23 JPEG Spectral Selection, Hierarchical (Process 21 & 23)
(Retired).

MED_DCM_TS_JPEG_FULL_PROG_HIER_PR_24_26 JPEG Full Progression, Hierarchical (Process 24 & 26)
(Retired).

MED_DCM_TS_JPEG_FULL_PROG_HIER_PR_25_27 JPEG Full Progression, Hierarchical (Process 25 & 27)
(Retired).

MED_DCM_TS_JPEG_LOSSLESS_HIER_PR_28 JPEG Lossless, Hierarchical (Process 28) (Retired).

MED_DCM_TS_JPEG_LOSSLESS_HIER_PR_29 JPEG Lossless, Hierarchical (Process 29) (Retired).

MED_DCM_TS_JPEG_LOSSLESS_NONH_FIRSTORDER_PR_14 JPEG Lossless, Non-Hierarchical, First-Order Prediction
(Process 14 [Selection Value 1]): Default Transfer Syntax for
Lossless JPEG Image Compression.

MED_DCM_TS_JPEG_LS_LOSSLESS JPEG-LS Lossless Image Compression.

MED_DCM_TS_JPEG_LS_LOSSY JPEG-LS Lossy (Near-Lossless) Image Compression.

MED_DCM_TS_JPEG_2K_LOSSLESS_ONLY JPEG 2000 Image Compression (Lossless Only).

MED_DCM_TS_JPEG_2K JPEG 2000 Image Compression.

MED_DCM_TS_JPEG_2000_PART_2_MULTI_COMPONENT_IMAGE_COMPRESSION_Lossless_Only JPEG 2000 Part 2 Multi-component Image Compression
(Lossless Only).

MED_DCM_TS_JPEG_2000_PART_2_MULTI_COMPONENT_IMAGE_COMPRESSION JPEG 2000 Part 2 Multi-component Image Compression.

MED_DCM_TS_JPIP_REFERENCED JPIP Referenced.

MED_DCM_TS_JPIP_REFERENCED_DEFLATE JPIP Referenced Deflate.

MED_DCM_TS_MPEG2_MAIN_PROFILE MPEG2 Main Profile @ Main Level.

MED_DCM_TS_MPEG2_MAIN_PROFILE_HIGH_LEVEL MPEG2 Main Profile @ High Level.

MED_DCM_TS_RLE RLE Lossless.

MED_DCM_TS_RFC_2557_MIME_ENCAPSULATION RFC 2557 MIME encapsulation.

MED_DCM_TS_XML XML Encoding.

MED_DCM_TS_DEFAULT DICOM default transfer syntax: Implicit VR Little Endian.

MED_DCM_TS_UNKNOWN Unknown transfer syntax.

MED_DCM_TS_NULL Unknown transfer syntax.

MED_DCM_TS_PART_10 Autodetect. This value is used with DICOM LoadSyntax
format option, to allow detection of DICOM Part10 compliant
images.

MED_DCM_TS_AUTODETECT Autodetect. This value is used with DICOM LoadSyntax
format option, to allow automatic detection of transfer
syntax.

MED_DCM_TS_JPEG_LOSSY JPEG Baseline (Process 1): Default Transfer Syntax for Lossy
JPEG 8 Bit Image Compression.

MED_DCM_TS_JPEG_LOSSLESS JPEG Lossless, Non-Hierarchical (Process 14).

MED_DCM_TS_JPEG_LOSSLESS_FIRSTORDER Alias for
MED_DCM_TS_JPEG_LOSSLESS_NONH_FIRSTORDER_PR_14.

ImageGear Professional v18 for Mac | 1762

MED_DCM_TS_JPEG_BASELINE_PR_1_ONLY Only used for image saving. Specifies JPEG baseline (process
1) Transfer Syntax.

ImageGear Professional v18 for Mac | 1763

1.3.2.4.10 enumIGMedVR

Identifies DICOM Value Representations.

Values:

MED_DCM_VR_AE Application Entity.

MED_DCM_VR_AS Age String.

MED_DCM_VR_AT Attribute Tag.

MED_DCM_VR_CS Code String.

MED_DCM_VR_DA Date.

MED_DCM_VR_DS Decimal String.

MED_DCM_VR_DT Date Time.

MED_DCM_VR_FL Floating Point Single.

MED_DCM_VR_FD Floating Point Double.

MED_DCM_VR_IS Integer String.

MED_DCM_VR_LO Long String.

MED_DCM_VR_LT Long Text.

MED_DCM_VR_OB Other Byte String.

MED_DCM_VR_OF Other Float String.

MED_DCM_VR_OW Other Word String.

MED_DCM_VR_PN Person Name.

MED_DCM_VR_SH Short String.

MED_DCM_VR_SL Signed Long.

MED_DCM_VR_SQ Sequence of Items.

MED_DCM_VR_SS Signed Short.

MED_DCM_VR_ST Short Text.

MED_DCM_VR_TM Time.

MED_DCM_VR_UI Unique Identifier.

MED_DCM_VR_UL Unsigned Long.

MED_DCM_VR_US Unsigned Short.

MED_DCM_VR_UN Unknown.

MED_DCM_VR_UT Unlimited text.

MED_DCM_VR_NONE VR is not known.

ImageGear Professional v18 for Mac | 1764

1.3.2.4.11 enumIGMedVRRestriction

Identifies Value Representation length restrictions.

Values:

MED_DCM_LEN_MAX Up to this maximum.

MED_DCM_LEN_FIXED Fixed Length.

MED_DCM_LEN_TS Depends on Transfer Syntax.

MED_DCM_LEN_NA Not applicable.

MED_DCM_LEN_UNLIMITED No max length.

ImageGear Professional v18 for Mac | 1765

1.3.3 PDF Component API Reference

The ImageGear PDF component is responsible for the PDF functionality. The ImageGear PDF component exposes handles
and objects described in the following table. The general PDF layer is implemented via "PDF" objects (for example,
HIG_PDF_DOC). The PDF editing layer is implemented via "PDE" objects (for example, HIG_PDE_CONTENT).

This chapter references the Adobe PDF 1.7 specification, which can be downloaded from here:
http://www.adobe.com/devnet/pdf/pdf_reference.html

The ImageGear PDF Component API reference is grouped as follows:

PDF General Functions Reference PDF functions that provide general ImageGear PDF Component functionality.

PDF Callback Functions Reference ImageGear PDF Component callback functions.

PDF Macro Reference ImageGear PDF Component macros.

PDF Objects Reference ImageGear PDF Component objects.

PDF Structures Reference ImageGear PDF Component structures.

PDF Enumerations Reference ImageGear PDF Component enumerations.

ImageGear Professional v18 for Mac | 1766

http://www.adobe.com/devnet/pdf/pdf_reference.html

1.3.3.1 PDF Component Functions Reference

This section provides information about the General group of functions.

IG_PDE_get_default_gstate
IG_PDF_get_host_encoding
IG_PDF_initialize
IG_PDF_register_authproc
IG_PDF_terminate
IG_PDF_text_extract
IG_PDF_translate_to_host
IG_PDF_translate_to_pdf

ImageGear Professional v18 for Mac | 1767

1.3.3.1.1 IG_PDE_get_default_gstate

Fills out a LPAT_PDE_GRAPHICSTATE structure with the default graphic state.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_get_default_gstate(
 LPAT_PDE_GRAPHICSTATE lpGstate
);

Arguments:

Name Type Description

lpGstate LPAT_PDE_GRAPHICSTATE Pointer to AT_PDE_GRAPHICSTATE structure with the default graphic state.

Return Value:

Error count

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Non-NULL objects in the graphic state, such as the fill and stroke color spaces, have their reference counts incremented
by this function. Be sure to release these non-NULL objects when disposing of lpGstate.

ImageGear Professional v18 for Mac | 1768

1.3.3.1.2 IG_PDF_get_host_encoding

Indicates what kind of host encoding a system uses: Roman or non-Roman.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_get_host_encoding(
 LPVOID* lpHostEncoding
);

Arguments:

Name Type Description

lpHostEncoding LPVOID* Returns 0 for a Roman system; nonzero for a non-Roman system (a structure that
depends on the host encoding). Users should simply test whether this value is 0 or not.

Return Value:

Error count

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Non-Roman is also known as CJK-capable, that is, capable of handling multi-byte character sets, such as Chinese,
Japanese, or Korean.

Host encoding is a platform-dependent encoding for the host machine. For non-UNIX Roman systems, it is
MacRomanEncoding in Mac OS and WinAnsiEncoding in Windows. In UNIX (except HP-UX) Roman systems, it is
ISO8859-1 (ISO Latin-1); for HP-UX, it is HP-ROMAN8. See Appendix D in the PDF Reference for descriptions of
MacRomanEncoding, WinAnsiEncoding, and PDFDocEncoding.

For non-Roman systems, the host encoding may be a variety of encodings, which are defined by a CMap (character
map). See Section 5.6.4 in the PDF Reference for a list of predefined CMaps.

ImageGear Professional v18 for Mac | 1769

1.3.3.1.3 IG_PDF_initialize

This function is used to initialize the ImageGear PDF Component.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_initialize(
 LPVOID lpVoid
);

Arguments:

Name Type Description

lpVoid LPVOID Reserved, must be set to NULL.

Return Value:

Error count

Supported Raster Image Formats:

This function does not process image pixels.

Example:

Remarks:

To initialize the ImageGear PDF component it needs to be attached to the core ImageGear and then
IG_PDF_initialize() function must be called.

For a multi-threaded application, you must call IG_PDF_initialize and IG_PDF_terminate in the main thread and
in each worker thread which uses PDF component. See Single- and Multi-Threaded Applications for more
information.

The following resource content is required by the ImageGear PDF component initialization routine:

Resource\PDF\CIDFont\ PDF CID fonts directory.

Resource\PDF\CMap\ PDF font CMaps directory.

Resource\PDF\Font\ PDF fonts directory.

Resource\PDF\Unicode\ PDF unicode mappings directory.

Resource\PS\ColorRendering\ Color rendering PostScript.

Resource\PS\ICCProfiles\ Directory containing the ICC profiles that allow using the Adobe® Color Engine®
(ACE®).

The profiles in this directory must be placed in the system folder named, which
on Windows is named \Windows\System32\Color.

Resource\PS\Fonts\ PS fonts directory.

Resource\PS\ProcSet\ PostScript procedures.

Resource\PS\ps.vm A file for initializing the PostScript Interpreter's virtual memory.

Resource\PS\startupNORM.ps Startup PostScript program used to initialize the PostScript Interpreter.

Resource\PS\superatm.db Adobe® Type Manager® (ATM®) database used to substitute missing fonts.

ImageGear PDF component uses the following PDF global control parameters to locate resource content:

PDF.PDF_RESOURCE_PATH Path to the Resource\PDF directory

PDF.PS_RESOURCE_PATH Path to the Resource\PS directory

PDF.HOST_FONT_PATH Path to the system font directory

ImageGear Professional v18 for Mac | 1770

PDF.TMP_PATH Path to the TEMP directory

Examples provided below demonstrate setting and getting the value of PDF.PDF_RESOURCE_PATH control parameter.

// Path to the Resource\PDF directory.
char* szResourcePath = "C:\\PDF\\Resource\\PDF\\";

IG_gctrl_item_set("PDF.PDF_RESOURCE_PATH", AM_TID_MAKELP(AM_TID_CHAR),
szResourcePath, (DWORD)strlen(szResourcePath) + 1, "");

// Get path to the Resource\PDF directory.
char szResourcePath[_MAX_PATH];

IG_gctrl_item_get("PDF.PDF_RESOURCE_PATH", NULL, (LPVOID)&szResourcePath,
sizeof(szResourcePath) - 1, NULL, NULL, 0, NULL);

If the PDF global parameters are not defined, the ImageGear PDF Component behavior depends on the OS:

Resource content gets from the ImageGear component directory defined by COMM.PATH parameter
Host fonts get from the Windows font directory
Temporary directory gets from the GetTempPath() result

ImageGear Professional v18 for Mac | 1771

1.3.3.1.4 IG_PDF_register_authproc

Registers the authorization callback, which will be called when opening a secured PDF file, i.e., a PDF that has either the
user or the master password set.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_register_authproc(
 LPFNIG_PDF_AUTHPROC lpfnAuthProc,
 LPVOID lpAuthData
);

Arguments:

Name Type Description

lpfnAuthProc LPFNIG_PDF_AUTHPROC Authorization callback, called only if the file has been secured (that is, if the
file has either the user or the master password set). This callback should
obtain whatever information is needed to determine whether the user is
authorized to open the file, then call IG_PDF_doc_perm_request (which
returns the permissions that the authentication data enables).

lpAuthData LPVOID Pointer to user-supplied data to pass to lpfnAuthProc each time it is called.

Return Value:

Error count

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1772

1.3.3.1.5 IG_PDF_terminate

This function terminates the ImageGear PDF component, and must be called before terminating a user application.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_terminate();

Return Value:

Error count

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

For a multi-threaded application, you must call IG_PDF_initialize and IG_PDF_terminate in the main thread and in
each worker thread which uses PDF component. See Single- and Multi-Threaded Applications for more information.

ImageGear Professional v18 for Mac | 1773

1.3.3.1.6 IG_PDF_text_extract

This function extracts text from pages determined by arguments nStartPage and nPageCount.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_text_extract(
 LPSTR lpszFileName,
 LPSTR lpszTextName,
 UINT nStartPage,
 UINT nPageCount
);

Arguments:

Name Type Description

lpFileName LPSTR Name of the PDF or PS document.

lpTextFileName LPSTR Name of the output TXT file.

nStartPage UINT Number of the first page.

nPageCount UINT Total number of pages to be processed (starting at nStartPage).

Return Value:

Error count

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1774

1.3.3.1.7 IG_PDF_translate_to_host

Translates a string from Unicode or PDFDocEncoding to host encoding.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_translate_to_host(
 LPCSTR szInPDFStr,
 LONG nInPDFStrSize,
 LPSTR szOutHostStr,
 LONG nOutHostStrSize,
 LPLONG lpnOutHostStrBytes
);

Arguments:

Name Type Description

szInPDFStr LPCSTR Pointer to the string to translate (may point to the same memory as szOutHostStr,
allowing strings to translate in place).

nInPDFStrSize LONG The length of szInPDFStr, in bytes.

szOutHostStr LPSTR Pointer to the translated string (may point to the same memory as szInPDFStr).

nOutHostStrSize LONG The length of the szOutHostStr buffer, in bytes.

lpnOutHostStrBytes LPLONG Number of bytes in the translated string szOutHostStr.

Return Value:

Error count

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This function is useful when setting or retrieving displayed text that might be in Unicode, such as text that appears in a
text annotation or bookmark.

A character that cannot be converted to the destination encoding is replaced with a space.

Host encoding is a platform-dependent encoding for the host machine. For non-UNIX Roman systems, it is
MacRomanEncoding in Mac OS and WinAnsiEncoding in Windows. In UNIX (except HP-UX) Roman systems, it is
ISO8859-1 (ISO Latin-1); for HP-UX, it is HP-ROMAN8. See Appendix D in the PDF Reference for descriptions of
MacRomanEncoding, WinAnsiEncoding, and PDFDocEncoding.

For non-Roman systems, the host encoding may be a variety of encodings, which are defined by a CMap (character
map). See Section 5.6.4 in the PDF Reference for information on CMaps.

Use IG_PDF_get_host_encoding to determine if a system's host encoding is Roman or not.

ImageGear Professional v18 for Mac | 1775

1.3.3.1.8 IG_PDF_translate_to_pdf

Translates a string from host encoding to PDFDocEncoding or Unicode.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_translate_to_pdf(
 AT_PDF_BOOL bUseUnicode,
 LPCSTR szInHostStr,
 LONG nInHostStrSize,
 LPSTR szOutPDFStr,
 LONG nOutPDFStrSize,
 LPLONG lpnOutPDFStrBytes
);

Arguments:

Name Type Description

bUseUnicode AT_PDF_BOOL If TRUE, translate the string to Unicode; otherwise use PDFDocEncoding.

szInHostStr LPCSTR Pointer to the string to translate (may point to the same memory as
szOutPDFStr, allowing strings to translate in place).

nInHostStrSize LONG Number of bytes in szOutPDFStr.

szOutPDFStr LPSTR Pointer to the translated string (may point to the same memory as szInHostStr).

nOutPDFStrSize LONG The length of the szOutPDFStr buffer, in bytes.

lpnOutPDFStrBytes LPLONG Number of bytes in the translated string szOutPDFStr.

Return Value:

Error count

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This function is useful when using text that must be in PDFDocEncoding or Unicode, such as text in a text annotation,
bookmark, or article title.

A character that cannot be converted to the destination encoding is replaced with a space.

For example, it converts \n to a space character (\r is present in PDFDocEncoding and is left unchanged).

Host encoding is a platform-dependent encoding for the host machine. For non-UNIX Roman systems, it is
MacRomanEncoding in Mac OS and WinAnsiEncoding in Windows. In UNIX (except HP-UX) Roman systems, it is
ISO8859-1 (ISO Latin-1); for HP-UX, it is HP-ROMAN8. See Appendix D in the PDF Reference for descriptions of
MacRomanEncoding, WinAnsiEncoding, and PDFDocEncoding.

For non-Roman systems, the host encoding may be a variety of encodings, which are defined by a CMap (character
map). See Section 5.6.4 in the PDF Reference for a list of predefined CMaps.

Use IG_PDF_get_host_encoding to determine if a system's host encoding is Roman or not.

ImageGear Professional v18 for Mac | 1776

1.3.3.2 PDF Component Callback Functions Reference

This section provides information about the Callback functions.

LPFNIG_PDF_AUTHPROC
LPFNIG_PDF_STREAM_PROC
LPFNIG_PDF_STREAM_DESTROYPROC
LPFNIG_PDF_SYSFONT_ENUMPROC
LPFNIG_PDE_CLIP_ENUMPROC

ImageGear Professional v18 for Mac | 1777

1.3.3.2.1 LPFNIG_PDF_AUTHPROC

This callback is used by document open routine; it is called when an encrypted document is being opened to determine
whether or not the user is authorized to open the file.

Declaration:

typedef AT_PDF_BOOL (LPACCUAPI LPFNIG_PDF_AUTHPROC)(
 HIG_PDF_DOC hDoc,
 LPVOID clientData
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The PDF document to open.

clientData LPVOID User-supplied data that was passed in the call to IG_PDF_register_authproc.

Return Value:

TRUE if the user is authorized to open the document; FALSE otherwise.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This callback implements whatever authorization strategy you choose and calls the callbacks of the appropriate security
handler (the one that was used to secure the document) to obtain and check authorization data.

The LPFNIG_PDF_AUTHPROC should obtain the authorization data (a password) and call IG_PDF_doc_perm_request().
IG_PDF_doc_perm_request in turn calls the document encryption handler's Authorize function, which returns the
permissions that the authorization data enables. IG_PDF_doc_perm_request adds these permissions to those currently
allowed, and returns the new set of allowed permissions.

ImageGear Professional v18 for Mac | 1778

1.3.3.2.2 LPFNIG_PDF_STREAM_PROC

Callback for use by IG_PDF_stream_read_CB_register and IG_PDF_stream_write_CB_register.

Declaration:

typedef LONG (LPACCUAPI LPFNIG_PDF_STREAM_PROC)(
 LPSTR lpData,
 UINT nDataLen,
 LPVOID clientData
);

Arguments:

Name Type Description

lpData LPSTR Buffer into which your procedure must place the number of bytes specified by nDataLen.

nDataLen UINT Number of bytes to read from the stream and place into data.

clientData LPVOID User-supplied data that was specified in the call to IG_PDF_stream_read_CB_register or
IG_PDF_stream_write_CB_register.

Return Value:

Returns the number of bytes actually read or written.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This procedure must return the number of bytes specified by nDataLen, obtaining them in any way it wishes.

ImageGear Professional v18 for Mac | 1779

1.3.3.2.3 LPFNIG_PDF_STREAM_DESTROYPROC

Callback for use by IG_PDF_stream_write_CB_register.

Declaration:

typedef void (LPACCUAPI LPFNIG_PDF_STREAM_DESTROYPROC)(
 LPVOID clientData
);

Arguments:

Name Type Description

clientData LPVOID User-supplied data that was specified in the call to IG_PDF_stream_write_CB_register.

Return Value:

Returns the number of bytes actually read or written.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This callback function is called at end of stream so you can perform clean up and free allocated memory.

ImageGear Professional v18 for Mac | 1780

1.3.3.2.4 LPFNIG_PDF_SYSFONT_ENUMPROC

This callback for IG_PDF_sysfont_enumerate is called once for each system font.

Declaration:

typedef (LPACCUAPI LPFNIG_PDF_SYSFONT_ENUMPROC)(
 HIG_PDF_SYSFONT hSysFont,
 LPVOID clientData
);

Arguments:

Name Type Description

hSysFont HIG_PDF_SYSFONT The system font.

clientData LPVOID User-supplied data that was specified in the call to IG_PDF_sysfont_enumerate.

Return Value:

Returns TRUE to continue enumeration; FALSE to halt enumeration.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1781

1.3.3.2.5 LPFNIG_PDE_CLIP_ENUMPROC

Callback for IG_PDE_clip_enumerate_elements(), which enumerates all of a PDE Clip's PDE Elements in a flattened
manner.

Declaration:

typedef AT_PDF_BOOL (LPACCUAPI LPFNIG_PDE_CLIP_ENUMPROC)(
 HIG_PDE_ELEMENT hElement,
 LPVOID clientData
);

Arguments:

Name Type Description

hElement HIG_PDE_ELEMENT The PDE Element currently being enumerated.

clientData LPVOID User-supplied data that was passed in the call to IG_PDE_clip_enumerate_elements.

Return Value:

If FALSE, enumeration halts. If TRUE, enumeration continues.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1782

1.3.3.3 PDF Component Macros Reference

This section provides information about the PDF Macros.

AM_PDF_LONG_TO_FIXED
AM_PDF_FIXED_ROUND_TO_LONG
AM_PDF_FIXED_TRUNC_TO_LONG
AM_PDF_SHORT_TO_FIXED
AM_PDF_FIXED_ROUND_TO_SHORT
AM_PDF_FIXED_TRUNC_TO_SHORT
AM_PDF_DOUBLE_TO_FIXED
AM_PDF_FIXED_TO_DOUBLE

ImageGear Professional v18 for Mac | 1783

1.3.3.3.1 AM_PDF_LONG_TO_FIXED

Converts x to AT_PDF_FIXED and returns it.

Declaration:

 AM_PDF_LONG_TO_FIXED(x)

Arguments:

X Long integer value.

Return Value:

AT_PDF_FIXED value

ImageGear Professional v18 for Mac | 1784

1.3.3.3.2 AM_PDF_FIXED_ROUND_TO_LONG

Converts the AT_PDF_FIXED number f to an integer, rounding it to the nearest long integer value and returns it.

Declaration:

 AM_PDF_FIXED_ROUND_TO_LONG (f)

Arguments:

f Fixed value.

Return Value:

Long integer value

ImageGear Professional v18 for Mac | 1785

1.3.3.3.3 AM_PDF_FIXED_TRUNC_TO_LONG

Converts the AT_PDF_FIXED number f to an integer, truncating it to the next lower long integer value and returns it.

Declaration:

 AM_PDF_FIXED_TRUNC_TO_LONG (f)

Arguments:

f Fixed value.

Return Value:

Long integer value

ImageGear Professional v18 for Mac | 1786

1.3.3.3.4 AM_PDF_SHORT_TO_FIXED

Converts x to AT_PDF_FIXED and returns it.

Declaration:

 AM_PDF_SHORT_TO_FIXED(x)

Arguments:

x Short integer value.

Return Value:

AT_PDF_FIXED value

ImageGear Professional v18 for Mac | 1787

1.3.3.3.5 AM_PDF_FIXED_ROUND_TO_SHORT

Converts the AT_PDF_FIXED number f to an integer, rounding it to the nearest short integer value and returns it.

Declaration:

 AM_PDF_FIXED_ROUND_TO_SHORT (f)

Arguments:

f Fixed value.

Return Value:

Short integer value

ImageGear Professional v18 for Mac | 1788

1.3.3.3.6 AM_PDF_FIXED_TRUNC_TO_SHORT

Converts the AT_PDF_FIXED number f to an integer, truncating it to the next lower short integer value and returns it.

Declaration:

 AM_PDF_FIXED_TRUNC_TO_SHORT (f)

Arguments:

f Fixed value.

Return Value:

Short integer value

ImageGear Professional v18 for Mac | 1789

1.3.3.3.7 AM_PDF_DOUBLE_TO_FIXED

Converts x to AT_PDF_FIXED and returns it.

Declaration:

 AM_PDF_DOUBLE_TO_FIXED (x)

Arguments:

x Double value.

Return Value:

AT_PDF_FIXED Value

ImageGear Professional v18 for Mac | 1790

1.3.3.3.8 AM_PDF_FIXED_TO_DOUBLE

Converts the AT_PDF_FIXED number f to double value and returns it.

Declaration:

 AM_PDF_FIXED_TO_DOUBLE (f)

Arguments:

f Fixed value.

Return Value:

Double Value

ImageGear Professional v18 for Mac | 1791

1.3.3.4 PDF Component Objects Reference

This section provides information about the PDF Objects, grouped as follows:

Basic Objects
General Objects
Page Editing Objects and Elements

ImageGear Professional v18 for Mac | 1792

1.3.3.4.1 Basic Objects

This section describes the basic PDF objects and utility functions used throughout the ImageGear PDF API. These
objects provide access to the building blocks used to construct PDF documents. Its functions allow applications to
manipulate the low-level data in a PDF file, such as strings, numbers, and dictionaries. Adobe PDF supports the
following basic platform-independent types of object:

Arrays
Boolean values
Dictionaries
Integer and Fixed (real) numbers
Names
The null object
Strings

These objects may be labeled so that they can be referred to by other objects. A labeled object is called an indirect
object. When a direct object is created, the object itself is returned. As a result, a direct object can only be attached
to one other Base object at a time; it cannot, for example, be shared by two different dictionaries. When an indirect
object is created, something equivalent to a pointer to the object is returned. As a result, an indirect object can be
attached to multiple places in a PDF file simultaneously; it can, for example, be shared by two different dictionaries.

PDF documents are trees of these Base objects. Base objects represent document components such as bookmarks,
pages, and fonts. Unlike using the other ImageGear PDF Objects functions, using Base Object functions improperly
could result in an invalid PDF file. Therefore, you should not use Base Object methods unless necessary, for example
to add private data to portions of a PDF file that cannot be accessed in other ways.

The following table describes the objects supported by the ImageGear PDF component:

Basic Objects

HIG_PDF_BASOBJ Basic Object - basic PDF object interface. PDF supports eight basic types of object:
Arrays
Boolean values
Dictionaries
Integer and Fixed (real) numbers
Names
Streams
The null object
Strings

Objects may be labeled so that they can be referred to by other objects. A labeled object is
called an indirect object.

HIG_PDF_BASARR Basic Array - an array object is a one-dimensional collection of objects arranged sequentially.
Unlike arrays in many other computer languages, PDF arrays may be heterogeneous; that is,
an array's elements may be any combination of numbers, strings, dictionaries, or any other
objects, including other arrays.

HIG_PDF_BASBOOL Basic Boolean - PDF provides Boolean objects identified by the keywords TRUE and FALSE.
Boolean objects can be used as the values of array elements and dictionary entries.

HIG_PDF_BASDICT Basic Dictionary - a dictionary object is an associative table containing pairs of objects, known
as the dictionary's entries. The first element of each entry is the key and the second element
is the value. The key must be a name. The value can be any kind of object, including another
dictionary.

HIG_PDF_BASFIXED Basic Fixed - Fixed objects approximate mathematical real numbers, but with limited range
and precision; they are typically represented in fixed-point, rather than floating-point, form.

HIG_PDF_BASINT Basic Integer - Integer objects represent mathematical integers within a certain interval
centered at 0.

HIG_PDF_BASNAME Basic Name - A name object is an atomic symbol uniquely defined by a sequence of
characters. Uniquely defined means that any two name objects made up of the same
sequence of characters are identically the same object. Atomic means that a name has no
internal structure; although it is defined by a sequence of characters, those characters are
not "elements" of the name.

HIG_PDF_BASNULL Basic Null - The null object has a type and value that are unequal to those of any other
object. There is only one object of type null, denoted by the keyword null.

ImageGear Professional v18 for Mac | 1793

1.3.3.4.1.1 HIG_PDF_BASOBJ

Handle to the basic object.

Members:

IG_PDF_basobj_get_type Gets an object's type.

IG_PDF_basobj_release Releases PDF Object.

IG_PDF_basobj_remove Removes basic object.

ImageGear Professional v18 for Mac | 1794

1.3.3.4.1.1.1 IG_PDF_basobj_get_type

Gets an object's type.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basobj_get_type (
 HIG_PDF_BASOBJ hObject,
 LPLONG lpnType
);

Arguments:

Name Type Description

hObject HIG_PDF_BASOBJ Basic object.

lpnType LPLONG The object's type.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1795

1.3.3.4.1.1.2 IG_PDF_basobj_release

Releases PDF Object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basobj_release (
 HIG_PDF_BASOBJ hObject
);

Arguments:

Name Type Description

hObject HIG_PDF_BASOBJ Object to release.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1796

1.3.3.4.1.1.3 IG_PDF_basobj_remove

Removes basic object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basobj_remove(
 HIG_PDF_BASOBJ hObject
);

Arguments:

Name Type Description

hObject HIG_PDF_BASOBJ The object to remove.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

If a composite object (array, dictionary, or stream) is removed, all the direct objects in it are automatically removed, but
the indirect objects in it are not removed.

ImageGear Professional v18 for Mac | 1797

1.3.3.4.1.2 HIG_PDF_BASARR

General HIG_PDF_BASOBJ is used to handle to the basic array object. An array object is a one-dimensional collection of
objects arranged sequentially. Unlike arrays in many other computer languages, PDF arrays may be heterogeneous; that
is, an array's elements may be any combination of numbers, strings, dictionaries, or any other objects, including other
arrays.

Members:

IG_PDF_basarr_create Creates a new array of objects.

IG_PDF_basarr_get_length Gets the number of elements in hArray.

IG_PDF_basarr_get Gets the specified element from an array.

IG_PDF_basarr_put Puts the specified object into the specified location in an array.

IG_PDF_basarr_put_int Puts the specified fixed value into the specified location in an array.

IG_PDF_basarr_put_fixed Puts the specified fixed value into the specified location in an array.

IG_PDF_basarr_put_bool Puts the specified Boolean value into the specified location in an array.

IG_PDF_basarr_put_name Puts the specified name value into the specified location in an array.

IG_PDF_basarr_remove Finds the first element, if any, equal to the specified object and removes it from the
array.

IG_PDF_basarr_remove_nth Checks whether the position is within the array bounds and then removes it from the
array and moves each subsequent element to the slot with the next smaller index and
decrements the array's length by 1.

ImageGear Professional v18 for Mac | 1798

1.3.3.4.1.2.1 IG_PDF_basarr_create

Creates a new array of objects.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basarr_create(
 HIG_PDF_DOC hDoc,
 AT_PDF_BOOL bIndirect,
 UINT nElements,
 LPHIG_PDF_BASOBJ lphArray
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document in which the array is used.

bIndirect AT_PDF_BOOL If TRUE, creates the array as an indirect object. If FALSE, creates the dictionary as
a direct object.

nElements UINT Number of entries in the array. This value is only a hint - the arrays grow
dynamically as needed.

lphArray LPHIG_PDF_BASOBJ New array.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1799

1.3.3.4.1.2.2 IG_PDF_basarr_get_length

Gets the number of elements in hArray.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basarr_get_length(
 HIG_PDF_BASOBJ hArray,
 LPLONG lpnLength
);

Arguments:

Name Type Description

hArray HIG_PDF_BASOBJ The array.

lpnLength LPLONG The number of elements in hArray.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1800

1.3.3.4.1.2.3 IG_PDF_basarr_get

Gets the specified element from an array.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basarr_get(
 HIG_PDF_BASOBJ hArray,
 UINT nIndex,
 LPHIG_PDF_BASOBJ lphObject
);

Arguments:

Name Type Description

hArray HIG_PDF_BASOBJ The array from which an element is obtained.

nIndex UINT The array element to obtain. The first element in an array has an index of zero.

lphObject LPHIG_PDF_BASOBJ The basic object occupying the nIndex element of array. Returns
IG_PDF_BASIC_NULL object if index is outside the array bounds.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1801

1.3.3.4.1.2.4 IG_PDF_basarr_put

Puts the specified object into the specified location in an array.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basarr_put(
 HIG_PDF_BASOBJ hArray,
 UINT nIndex,
 HIG_PDF_BASOBJ hObject
);

Arguments:

Name Type Description

hArray HIG_PDF_BASOBJ The array in which hObject is stored.

nIndex UINT The location in array to store hObject. The first element of an array has an index of
zero.

hObject HIG_PDF_BASOBJ The object to insert into hArray.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The array is extended as much as necessary.

ImageGear Professional v18 for Mac | 1802

1.3.3.4.1.2.5 IG_PDF_basarr_put_int

Puts the specified integer value into the specified location in an array.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basarr_put_int(
 HIG_PDF_BASOBJ hArray,
 UINT nIndex,
 AT_PDF_BOOL bIndirect,
 INT nValue
);

Arguments:

Name Type Description

hArray HIG_PDF_BASOBJ The array in which a value is stored.

nIndex UINT The location in array to store a value. The first element of an array has an index of
zero.

bIndirect AT_PDF_BOOL If TRUE, creates the key value as an indirect object. If FALSE, creates the key value as
a direct object.

nValue INT The integer value to insert into hArray.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The array is extended as much as necessary.

ImageGear Professional v18 for Mac | 1803

1.3.3.4.1.2.6 IG_PDF_basarr_put_fixed

Puts the specified fixed value into the specified location in an array.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basarr_put_fixed(
 HIG_PDF_BASOBJ hArray,
 UINT nIndex,
 AT_PDF_BOOL bIndirect,
 AT_PDF_FIXED nValue
);

Arguments:

Name Type Description

hArray HIG_PDF_BASOBJ The array in which a value is stored.

nIndex UINT The location in array to store a value. The first element of an array has an index of
zero.

bIndirect AT_PDF_BOOL If TRUE, creates the key value as an indirect object. If FALSE, creates the key value as
a direct object.

nValue AT_PDF_FIXED The fixed value to insert into hArray.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The array is extended as much as necessary.

ImageGear Professional v18 for Mac | 1804

1.3.3.4.1.2.7 IG_PDF_basarr_put_bool

Puts the specified Boolean value into the specified location in an array.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basarr_put_bool(
 HIG_PDF_BASOBJ hArray,
 UINT nIndex,
 AT_PDF_BOOL bIndirect,
 AT_PDF_BOOL bValue
);

Arguments:

Name Type Description

hArray HIG_PDF_BASOBJ The array in which a value is stored.

nIndex UINT The location in array to store a value. The first element of an array has an index of
zero.

bIndirect AT_PDF_BOOL If TRUE, creates the key value as an indirect object. If FALSE, creates the key value as
a direct object.

bValue AT_PDF_BOOL The Boolean value to insert into hArray.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The array is extended as much as necessary.

ImageGear Professional v18 for Mac | 1805

1.3.3.4.1.2.8 IG_PDF_basarr_put_name

Puts the specified name value into the specified location in an array.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basarr_put_name(
 HIG_PDF_BASOBJ hArray,
 UINT nIndex,
 AT_PDF_BOOL bIndirect,
 HIG_PDF_ATOM nName
);

Arguments:

Name Type Description

hArray HIG_PDF_BASOBJ The array in which a value is stored.

nIndex UINT The location in array to store a value. The first element of an array has an index of
zero.

bIndirect AT_PDF_BOOL If TRUE, creates the key value as an indirect object. If FALSE, creates the key value as
a direct object.

nName HIG_PDF_ATOM The name value to insert into hArray.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The array is extended as much as necessary.

ImageGear Professional v18 for Mac | 1806

1.3.3.4.1.2.9 IG_PDF_basarr_remove

Finds the first element, if any, equal to the specified object and removes it from the array.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basarr_remove(
 HIG_PDF_BASOBJ hArray,
 HIG_PDF_BASOBJ hObject
);

Arguments:

Name Type Description

hArray HIG_PDF_BASOBJ The array in which hObject is removed.

hObject HIG_PDF_BASOBJ The object to remove.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1807

1.3.3.4.1.2.10 IG_PDF_basarr_remove_nth

Checks whether the position is within the array bounds, then removes it from the array, moves each subsequent element
to the slot with the next smaller index, and decrements the array's length by 1.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basarr_remove_nth(
 HIG_PDF_BASOBJ hArray,
 UINT nIndex
);

Arguments:

Name Type Description

hArray HIG_PDF_BASOBJ The array from which to remove the member.

nIndex UINT The index for the array member to remove. Array indices start at 0.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1808

1.3.3.4.1.3 HIG_PDF_BASBOOL

Handle to the basic Boolean object. PDF provides Boolean objects identified by the keywords TRUE and FALSE. Boolean
objects can be used as the values of array elements and dictionary entries.

Members:

IG_PDF_basbool_create Creates a new Boolean object associated with the specified document and having the
specified value.

IG_PDF_basbool_get_value Gets the value of the specified Boolean object.

ImageGear Professional v18 for Mac | 1809

1.3.3.4.1.3.1 IG_PDF_basbool_create

Creates a new Boolean object associated with the specified document and having the specified value.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basbool_create(
 HIG_PDF_DOC hDoc,
 AT_PDF_BOOL bIndirect,
 AT_PDF_BOOL bValue,
 LPHIG_PDF_BASOBJ lphBool
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document in which the Boolean is used.

bIndirect AT_PDF_BOOL If TRUE, creates the Boolean object as an indirect object. If FALSE, creates the
Boolean as a direct object.

bValue AT_PDF_BOOL The value the new Boolean will have.

lphBool LPHIG_PDF_BASOBJ A Boolean object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1810

1.3.3.4.1.3.2 IG_PDF_basbool_get_value

Gets the value of the specified Boolean object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basbool_get_value (
 HIG_PDF_BASOBJ hBool,
 LPAT_PDF_BOOL lpbValue
);

Arguments:

Name Type Description

hBool LPHIG_PDF_BASOBJ Object.

lpbValue LPAT_PDF_BOOL Value.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1811

1.3.3.4.1.4 HIG_PDF_BASDICT

General HIG_PDF_BASOBJ is used as a handle to the basic dictionary object. A dictionary object is an associative table
containing pairs of objects, known as the dictionary's entries. The first element of each entry is the key, and the second
element is the value. The key must be a name. The value can be any kind of object, including another dictionary.

Members:

IG_PDF_basdict_create Creates a new dictionary.

IG_PDF_basdict_known Tests whether a specific key is found in the specified dictionary.

IG_PDF_basdict_get Gets the value of the specified key in the specified dictionary.

IG_PDF_basdict_put Sets the value of a dictionary key, adding the key to the dictionary if it is not already
present.

IG_PDF_basdict_put_int Sets the integer value of a dictionary key, adding the key to the dictionary if it is not
already present.

IG_PDF_basdict_put_fixed Sets the Boolean value of a dictionary key, adding the key to the dictionary if it is not
already present.

IG_PDF_basdict_put_bool Sets the Boolean value of a dictionary key, adding the key to the dictionary if it is not
already present.

IG_PDF_basdict_put_name Sets the name value of a dictionary key, adding the key to the dictionary if it is not
already present.

IG_PDF_basdict_remove Removes a key-value pair from a dictionary.

ImageGear Professional v18 for Mac | 1812

1.3.3.4.1.4.1 IG_PDF_basdict_create

Creates a new dictionary.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basdict_create(
 HIG_PDF_DOC hDoc,
 AT_PDF_BOOL bIndirect,
 UINT nEntries,
 LPHIG_PDF_BASOBJ lphDictionary
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document in which the dictionary is used.

bIndirect AT_PDF_BOOL If TRUE, creates the dictionary as an indirect object. If FALSE, creates the
dictionary as a direct object.

nEntries UINT Number of entries in the dictionary. This value is only a hint - the dictionaries
grow dynamically as needed.

lphDictionary LPHIG_PDF_BASOBJ New dictionary.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

See the PDF Reference for information on dictionary objects that are part of standard PDF, such as annotations or page
objects.

ImageGear Professional v18 for Mac | 1813

1.3.3.4.1.4.2 IG_PDF_basdict_known

Tests whether a specific key is found in the specified dictionary.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basdict_known(
 HIG_PDF_BASOBJ hDictionary,
 HIG_PDF_ATOM hKey,
 LPAT_PDF_BOOL lpbKnown
);

Arguments:

Name Type Description

hDictionary HIG_PDF_BASOBJ The dictionary in which to look for key.

hKey HIG_PDF_ATOM The key to find. See the PDF Reference to obtain the names of keys in dictionary
objects that are part of standard PDF, such as annotations or page objects.

lpbKnown LPAT_PDF_BOOL TRUE if the value of a key is known (exists and is not null) in hDictionary; FALSE
otherwise.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1814

1.3.3.4.1.4.3 IG_PDF_basdict_get

Gets the value of the specified key in the specified dictionary.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basdict_get(
 HIG_PDF_BASOBJ hDictionary,
 HIG_PDF_ATOM hKey,
 LPHIG_PDF_BASOBJ lphObject
);

Arguments:

Name Type Description

hDictionary HIG_PDF_BASOBJ The dictionary or stream from which a value is obtained.

hKey HIG_PDF_ATOM The key whose value is obtained. See the PDF Reference to obtain the names of
keys in dictionary objects that are part of standard PDF, such as annotations or
page objects.

lphObject LPHIG_PDF_BASOBJ The object associated with the specified key. If key is not present or if its value is
null, returns an object of type IG_PDF_BASIC_NULL.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

If called with a stream object instead of a dictionary object, this function gets the value of the specified key from the
stream's attributes dictionary.

ImageGear Professional v18 for Mac | 1815

1.3.3.4.1.4.4 IG_PDF_basdict_put

Sets the value of a dictionary key, adding the key to the dictionary if it is not already present.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basdict_put(
 HIG_PDF_BASOBJ hDictionary,
 HIG_PDF_ATOM hKey,
 HIG_PDF_BASOBJ hObject
);

Arguments:

Name Type Description

hDictionary HIG_PDF_BASOBJ The dictionary in which a value is set.

hKey HIG_PDF_ATOM The key whose value is set. See the PDF Reference to obtain the names of keys in
dictionary objects that are part of standard PDF, such as annotations or page
objects.

hObject HIG_PDF_BASOBJ The value to set.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1816

1.3.3.4.1.4.5 IG_PDF_basdict_put_int

Sets the integer value of a dictionary key, adding the key to the dictionary if it is not already present.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basdict_put_int(
 HIG_PDF_BASOBJ hDictionary,
 HIG_PDF_ATOM hKey,
 AT_PDF_BOOL bIndirect,
 INT nValue
);

Arguments:

Name Type Description

hDictionary HIG_PDF_BASOBJ The dictionary in which a value is set.

hKey HIG_PDF_ATOM The key whose value is set. See the PDF Reference to obtain the names of keys in
dictionary objects that are part of standard PDF, such as annotations or page
objects.

bIndirect AT_PDF_BOOL If TRUE, creates the key value as an indirect object. If FALSE, creates the key value
as a direct object.

nValue INT The integer value to set.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1817

1.3.3.4.1.4.6 IG_PDF_basdict_put_fixed

Sets the fixed value of a dictionary key, adding the key to the dictionary if it is not already present.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basdict_put_fixed(
 HIG_PDF_BASOBJ hDictionary,
 HIG_PDF_ATOM hKey,
 AT_PDF_BOOL bIndirect,
 AT_PDF_FIXED nValue
);

Arguments:

Name Type Description

hDictionary HIG_PDF_BASOBJ The dictionary in which a value is set.

hKey HIG_PDF_ATOM The key whose value is set. See the PDF Reference to obtain the names of keys in
dictionary objects that are part of standard PDF, such as annotations or page
objects.

bIndirect AT_PDF_BOOL If TRUE, creates the key value as an indirect object. If FALSE, creates the key value
as a direct object.

nValue AT_PDF_FIXED The fixed value to set.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1818

1.3.3.4.1.4.7 IG_PDF_basdict_put_bool

Sets the Boolean value of a dictionary key, adding the key to the dictionary if it is not already present.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basdict_put_bool(
 HIG_PDF_BASOBJ hDictionary,
 HIG_PDF_ATOM hKey,
 AT_PDF_BOOL bIndirect,
 AT_PDF_BOOL bValue
);

Arguments:

Name Type Description

hDictionary HIG_PDF_BASOBJ The dictionary in which a value is set.

hKey a href="IGDLL-26-
079.html">HIG_PDF_ATOM

The key whose value is set. See the PDF Reference to obtain the names of
keys in dictionary objects that are part of standard PDF, such as
annotations or page objects.

bIndirect AT_PDF_BOOL If true, creates the key value as an indirect object. If FALSE, creates the
key value as a direct object.

bValue AT_PDF_BOOL The Boolean value to set.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1819

1.3.3.4.1.4.8 IG_PDF_basdict_put_name

Sets the name value of a dictionary key, adding the key to the dictionary if it is not already present.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basdict_put_name(
 HIG_PDF_BASOBJ hDictionary,
 HIG_PDF_ATOM hKey,
 AT_PDF_BOOL bIndirect,
 HIG_PDF_ATOM nName
);

Arguments:

Name Type Description

hDictionary HIG_PDF_BASOBJ The dictionary in which a value is set.

hKey HIG_PDF_ATOM The key whose value is set. See the PDF Reference to obtain the names of keys in
dictionary objects that are part of standard PDF, such as annotations or page
objects.

bIndirect AT_PDF_BOOL If TRUE, creates the key value as an indirect object. If FALSE, creates the key value
as a direct object.

nName HIG_PDF_ATOM The name value to set.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1820

1.3.3.4.1.4.9 IG_PDF_basdict_remove

Removes a key-value pair from a dictionary.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basdict_remove(
 HIG_PDF_BASOBJ hDictionary,
 HIG_PDF_ATOM hKey
);

Arguments:

Name Type Description

hDictionary HIG_PDF_BASOBJ The dictionary in which a key is removed.

hKey HIG_PDF_ATOM The key to remove.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1821

1.3.3.4.1.5 HIG_PDF_BASFIXED

Handle to the basic fixed object. Fixed objects approximate mathematical real numbers, but with limited range and
precision; they are typically represented in fixed-point, rather than floating-point, form.

Members:

IG_PDF_basfixed_create Creates a new fixed object associated with the specified document and having the
specified value.

IG_PDF_basfixed_get_value Gets the value of the specified fixed object.

ImageGear Professional v18 for Mac | 1822

1.3.3.4.1.5.1 IG_PDF_basfixed_create

Creates a new fixed object associated with the specified document and having the specified value.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basfixed_create(
 HIG_PDF_DOC hDoc,
 AT_PDF_BOOL bIndirect,
 LONG nValue,
 LPHIG_PDF_BASOBJ lphFixed
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document in which the object is used.

bIndirect AT_PDF_BOOL If TRUE, creates the fixed as an indirect object. If FALSE, creates the fixed as a
direct object.

nValue LONG The value the new fixed will have.

lphFixed LPHIG_PDF_BASOBJ The value the new fixed will have.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1823

1.3.3.4.1.5.2 IG_PDF_basfixed_get_value

Gets the value of the specified fixed object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basfixed_get_value (
 HIG_PDF_BASOBJ hFixed,
 LPLONG lpnValue
);

Arguments:

Name Type Description

hFixed HIG_PDF_BASOBJ Object.

lpnValue LPLONG Value.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1824

1.3.3.4.1.6 HIG_PDF_BASINT

Handle to the basic integer object. Integer objects represent mathematical integers within a certain interval centered at
0.

Members:

IG_PDF_basint_create Creates a new integer object associated with the specified document and having the
specified value.

IG_PDF_basint_get_value Gets the value of the specified integer object.

ImageGear Professional v18 for Mac | 1825

1.3.3.4.1.6.1 IG_PDF_basint_create

Creates a new integer object associated with the specified document and having the specified value.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basint_create(
 HIG_PDF_DOC hDoc,
 AT_PDF_BOOL bIndirect,
 LONG nValue,
 LPHIG_PDF_BASOBJ lphInt
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document in which the object is used.

bIndirect AT_PDF_BOOL If TRUE, creates the integer as an indirect object. If FALSE, creates the integer as a
direct object.

nValue LONG The value the new integer will have.

lphInt LPHIG_PDF_BASOBJ An integer object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1826

1.3.3.4.1.6.2 IG_PDF_basint_get_value

Gets the value of the specified integer object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basint_get_value (
 HIG_PDF_BASOBJ hInt,
 LPLONG lpnValue
);

Arguments:

Name Type Description

hInt HIG_PDF_BASOBJ Object.

lpnValue LPLONG Value.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1827

1.3.3.4.1.7 HIG_PDF_BASNAME

Handle to the basic name object. A name object is an atomic symbol uniquely defined by a sequence of characters.

Uniquely defined means that any two name objects made up of the same sequence of characters are identically the same
object. Atomic means that a name has no internal structure; although it is defined by a sequence of characters, those
characters are not "elements" of the name.

Members:

IG_PDF_basname_create Creates a new name object associated with the specified document and having the
specified value.

IG_PDF_basname_get_value Gets the value of the specified name object.

ImageGear Professional v18 for Mac | 1828

1.3.3.4.1.7.1 IG_PDF_basname_create

Creates a new name object associated with the specified document and having the specified value.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basname_create(
 HIG_PDF_DOC hDoc,
 AT_PDF_BOOL bIndirect,
 HIG_PDF_ATOM hNameVal,
 LPHIG_PDF_BASOBJ lphName
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document in which the object is used.

bIndirect AT_PDF_BOOL If TRUE, creates the name as an indirect object. If FALSE, creates the name as a
direct object.

hNameVal HIG_PDF_ATOM The value the new name will have.

lphName LPHIG_PDF_BASOBJ A name object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1829

1.3.3.4.1.7.2 IG_PDF_basname_get_value

Gets the value of the specified name object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basname_get_value (
 HIG_PDF_BASOBJ hName,
 LPHIG_PDF_ATOM lphNameVal
);

Arguments:

Name Type Description

hName HIG_PDF_BASOBJ Object.

lpnNameVal LPHIG_PDF_ATOM Value.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1830

1.3.3.4.1.8 HIG_PDF_BASNULL

Handle to the basic null object. The null object has a type and value that are unequal to those of any other object. There
is only one object of type null, denoted by the keyword null.

Members:

IG_PDF_basnull_create Creates a direct null object.

ImageGear Professional v18 for Mac | 1831

1.3.3.4.1.8.1 IG_PDF_basnull_create

Creates a direct null object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basnull_create(
 LPHIG_PDF_BASOBJ lphNull
);

Arguments:

Name Type Description

lphNull LPHIG_PDF_BASOBJ Null object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1832

1.3.3.4.1.9 HIG_PDF_BASSTR

Handle to the basic string object. A string object consists of a series of bytes-unsigned integer values in the range 0 to
255. The string elements are not integer objects, but are stored in a more compact format.

Members:

IG_PDF_basstr_create Creates a new string object associated with the specified document and having the
specified value.

IG_PDF_basstr_get_value Copies at most nLen bytes from obj's string value into lpString, and stores the actual length
of the basic string in lpnBytes.

ImageGear Professional v18 for Mac | 1833

1.3.3.4.1.9.1 IG_PDF_basstr_create

Creates a new string object associated with the specified document and having the specified value.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basstr_create(
 HIG_PDF_DOC hDoc,
 AT_PDF_BOOL bIndirect,
 LPBYTE lpString,
 LONG nBytes,
 LPHIG_PDF_BASOBJ lphString
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document in which the object is used.

bIndirect AT_PDF_BOOL If TRUE, creates the string as an indirect object. If FALSE, creates the string as a
direct object.

lpString LPBYTE The value the new string will have.

nBytes LONG The length of lpString.

lphString LPHIG_PDF_BASOBJ The value the new string will have.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1834

1.3.3.4.1.9.2 IG_PDF_basstr_get_value

Copies at most nLen bytes from obj's string value into lpString, and stores the actual length of the basic string in
lpnBytes.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_basstr_get_value (
 HIG_PDF_BASOBJ hString,
 LPBYTE lpString,
 LONG nLen,
 LPLONG lpnBytes
);

Arguments:

Name Type Description

hString HIG_PDF_BASOBJ Object.

lpString LPBYTE The buffer into which the original string value is copied or NULL.

nLen LONG The length of buffer or 0.

lpnBytes LPLONG The length of the original string in bytes. Must be a non-NULL pointer.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1835

1.3.3.4.1.10 HIG_PDF_BASSTREAM

Handle to the basic stream object.

Members:

IG_PDF_basstream_create Creates a new stream object associated with the specified document and having the
specified value.

IG_PDF_basstream_get_dict Gets a stream’s attributes dictionary.

IG_PDF_basstream_get_value Copies at most nBufferLenbytes from object's stream value into lpBuffer, and stores
the actual length of the basic string in lpnStreamLen.

ImageGear Professional v18 for Mac | 1836

1.3.3.4.1.10.1 IG_PDF_basstream_create

Creates a new stream object associated with the specified document and having the specified value.

Declaration:

AT_ERRCOUNTACCUAPI IG_PDF_basstream_create(
 HIG_PDF_DOC hDoc,
 HIG_PDF_STREAM hStream,
 AT_PDF_BOOL bEncodeTheSourceData,
 HIG_PDF_BASOBJ hAttributesDictionary,
 HIG_PDF_BASOBJ hEncodeParameters,
 LPHIG_PDF_BASOBJ lphBasStream
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document in which the object is used.

hStream HIG_PDF_STREAM The source stream containing the data to copy into the new stream.

bEncodeTheSourceData AT_PDF_BOOL Determines whether the data in stm should be encoded using filters
specified in hAttributesDictionary.

hAttributesDictionary HIG_PDF_BASOBJ Either the NULL, or a dictionary containing stream attributes, such as
the length of the stream data and a list of decoding filters, as defined
in Section 3.2.7 in the PDF Reference.

hEncodeParameters HIG_PDF_BASOBJ The parameters to be used by the encoding filters.

lphBasStream LPHIG_PDF_BASOBJ The value the new stream will have.

Return Value:

Error count.

ImageGear Professional v18 for Mac | 1837

1.3.3.4.1.10.2 IG_PDF_basstream_get_dict

Gets a stream’s attributes dictionary.

Declaration:

AT_ERRCOUNTACCUAPI IG_PDF_basstream_get_dict(
 HIG_PDF_BASOBJ hStream,
 LPHIG_PDF_BASOBJ lphAttrDictionary
);

Arguments:

Name Type Description

hStream HIG_PDF_BASOBJ The Basic stream object.

lphAttrDictionary LPHIG_PDF_BASOBJ The stream’s attributes dictionary.

Return Value:

Error count.

ImageGear Professional v18 for Mac | 1838

1.3.3.4.1.10.3 IG_PDF_basstream_get_value

Copies at most nBufferLenbytes from object's stream value into lpBuffer, and stores the actual length of the basic string
in lpnStreamLen.

Declaration:

AT_ERRCOUNTACCUAPI IG_PDF_basstream_get_value(
 HIG_PDF_BASOBJ hStream,
 LPBYTE lpBuffer,
 LONG nBufferLen,
 LPLONG lpnStreamLen
);

Arguments:

Name Type Description

hStream HIG_PDF_BASOBJ The Basic stream object.

lpBuffer LPBYTE The buffer into which the original stream content is copied or NULL.

nBufferLen LONG The length of buffer or 0.

lpnStreamLen LPLONG The length of the original stream in bytes. Must be a non-NULL pointer.

Return Value:

Error count.

ImageGear Professional v18 for Mac | 1839

1.3.3.4.2 General Objects

This section describes a group of objects that provide access to PDF document's components such as metadata,
pages, fonts, etc. These objects and functions allow applications to manipulate the PDF content and data. Some of the
objects allow you to work with host system fonts and encodings, and the supplementary objects such as Atom and
Stream used to simplify and optimize working with PDF content.

The following table describes the general objects supported by the ImageGear PDF component:

General Objects

HIG_PDF_ACTION Handle to a PDF action object, which is a task that is performed when a user clicks on a
link or a bookmark.

HIG_PDF_ATOM Atom - a hashed token used in place of strings to optimize performance (it is much
faster to compare Atoms than strings). Many functions use Atoms.

HIG_PDF_BOOKMARK Handle to a PDF bookmark object, which allows the user to navigate interactively from
one part of the document to another.

HIG_PDF_DESTINATION Handle to a PDF destination object, which represents a particular view of a page in a
document.

HIG_PDF_DOC Document - the underlying PDF representation of a document. Through PDF Document,
your application can perform most of the Edit Pages operations (delete, replace, and so
on). Thumbnails can be created and deleted through this object. You can set and retrieve
document information fields through this object as well.

HIG_PDF_PAGE Page - a single page in the PDF representation of a document. A page contains a series
of objects representing the objects drawn on the page (Graphic), a list of resources used
in drawing the page, annotations (Annotation), an optional thumbnail image of the page,
and the beads used in any articles that occur on the page.

HIG_PDF_STREAM Stream - a data stream that may be a buffer in memory, or an arbitrary user-written
procedure. Typically used to extract or provide data.

HIG_PDF_STYLE Style - provides access to information about the fonts, font sizes, and colors used in a
Word.

HIG_PDF_SYSENCODING SysEncoding - provides system encoding for a PDF file.

HIG_PDF_SYSFONT SysFont - a reference to a font installed in the host system. SysFont methods allow you
to list the fonts available in the host system and to find a font in the system that
matches a PDE Font, if it is present.

HIG_PDF_WORD Word - a word in a PDF file. Each word contains a sequence of characters in one or more
styles (see Style).

HIG_PDF_WORDFINDER WordFinder - extracts words from a PDF file, and enumerates the words on a single page
or on all pages in a document.

ImageGear Professional v18 for Mac | 1840

1.3.3.4.2.1 HIG_PDF_ACTION

Handle to a PDF action object, which is a task that is performed when a user clicks on a link or a bookmark. Action types
include:

Going to another view within the same document
Going to a specified view in another PDF file
Launching an arbitrary file
Resolving a URL

See Section 8.5 in the PDF Reference for more information on actions.

Members:

IG_PDF_action_create Creates a new action object.

IG_PDF_action_create_destination Creates a new action that takes the user to the specified destination view.

IG_PDF_action_create_filename Creates an action of the specified type from a file name.

IG_PDF_action_delete Deletes an action object.

IG_PDF_action_get_destination Gets an action's destination view.

IG_PDF_action_get_dictionary Gets the dictionary corresponding to an action.

IG_PDF_action_get_filename Gets a file name from an action.

IG_PDF_action_get_type Gets an action's type.

ImageGear Professional v18 for Mac | 1841

1.3.3.4.2.1.1 IG_PDF_action_create

Creates a new action object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_action_create(
 HIG_PDF_DOC hDoc,
 HIG_PDF_ATOM hType,
 LPHIG_PDF_ACTION lphAction
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document in which the action is created and used.

hType HIG_PDF_ATOM The atom corresponding to the action's subtype.

lphAction LPHIG_PDF_ACTION The newly created action object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1842

1.3.3.4.2.1.2 IG_PDF_action_create_destination

Creates a new action that takes the user to the specified destination view.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_action_create_destination(
 HIG_PDF_DOC hDoc,
 HIG_PDF_DESTINATION hDest,
 LPHIG_PDF_ACTION lphAction
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document in which the action is created and used.

hDest HIG_PDF_DESTINATION The destination.

lphAction LPHIG_PDF_ACTION The newly created action object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This function can only be used for destinations in the same document as the source document. Cross-document links
must be built up from the base level, populating the Action dictionary for the GotoR action as described in Section 8.5.3
in the PDF Reference.

ImageGear Professional v18 for Mac | 1843

1.3.3.4.2.1.3 IG_PDF_action_create_filename

Creates an action of the specified type from a file name.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_action_create_filename(
 HIG_PDF_DOC hDoc,
 HIG_PDF_ATOM hType,
 LPCSTR szFileName,
 LPHIG_PDF_ACTION lphAction
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document in which the action is created and used.

hType HIG_PDF_ATOM The type of action to create.

szFileName LPCSTR The file name.

lphAction LPHIG_PDF_ACTION The newly created action object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1844

1.3.3.4.2.1.4 IG_PDF_action_delete

Deletes an action object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_action_delete(
 HIG_PDF_ACTION hAction
);

Arguments:

Name Type Description

hAction HIG_PDF_ACTION The action object to delete.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1845

1.3.3.4.2.1.5 IG_PDF_action_get_destination

Gets an action's destination view.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_action_get_destination(
 HIG_PDF_ACTION hAction,
 LPHIG_PDF_DESTINATION lphDest
);

Arguments:

hAction HIG_PDF_ACTION The action whose destination is obtained.

lphDest HIG_PDF_DESTINATION The action's destination, which may be either an explicit or named (basic string or
name object). Use the IG_PDF_destination_resolve on this returned value to obtain
an explicit destination.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This only works for actions that contain a view destination - that is, actions whose type is GoTo. For named destinations,
this function may return a basic string or name object. See Section 8.2.1 in the PDF Reference for more information on
named destinations.

 Since this function may not return an explicit destination, use the IG_PDF_destination_resolve on the returned
value to obtain an explicit destination.

ImageGear Professional v18 for Mac | 1846

1.3.3.4.2.1.6 IG_PDF_action_get_dictionary

Gets the dictionary corresponding to an action.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_action_get_dictionary(
 HIG_PDF_ACTION hAction,
 LPHIG_PDF_BASOBJ lphDictionary
);

Arguments:

Name Type Description

hAction HIG_PDF_ACTION The action whose dictionary is obtained.

lphDictionary LPHIG_PDF_BASOBJ Dictionary object for the action.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1847

1.3.3.4.2.1.7 IG_PDF_action_get_filename

Gets a file name from an action.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_action_get_filename(
 HIG_PDF_ACTION hAction,
 LPSTR lpBuf,
 AT_INT nSize,
 LPAT_INT lpnLen
);

Arguments:

Name Type Description

hAction HIG_PDF_ACTION The action whose file name is obtained.

lpBuf LPSTR The buffer to return a file name.

nSize AT_INT Size of lpBuf.

lpnLen LPAT_INT Length of the file name.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Not all types of actions have file names; this function only works for actions that contain a file specification. See Section
8.5 in the PDF Reference for more information on the contents of various types of actions.

ImageGear Professional v18 for Mac | 1848

1.3.3.4.2.1.8 IG_PDF_action_get_type

Gets an action's type.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_action_get_type(
 HIG_PDF_ACTION hAction,
 LPHIG_PDF_ATOM lphType
);

Arguments:

Name Type Description

hAction HIG_PDF_ACTION The action whose type is obtained.

lphType LPHIG_PDF_ATOM The atom corresponding to the action's type.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1849

1.3.3.4.2.2 HIG_PDF_ATOM

Handle to the PDF atom object. A hashed token used in place of strings to optimize performance (it is much faster to
compare Atoms than strings). Many methods use Atoms.

Members:

IG_PDF_atom_from_string Gets the Atom for the specified string.

IG_PDF_atom_get_string Gets the string associated with the specified Atom.

ImageGear Professional v18 for Mac | 1850

1.3.3.4.2.2.1 IG_PDF_atom_from_string

Gets the Atom for the specified string.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_atom_from_string(
 LPCSTR lpString,
 LPHIG_PDF_ATOM lphAtom
);

Arguments:

Name Type Description

lpString LPCSTR The string for which an atom is obtained.

lphAtom LPHIG_PDF_ATOM Atom return value.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

You can also use this function to create an Atom, since it creates one for the string if one does not already exist.

If an Atom already exists for lpString, the existing Atom is returned. Thus Atoms may be compared for equality of the
underlying string.

Because Atoms cannot be deleted, they are useful for strings that are used many times, but are not advisable for strings
that have a short lifetime. For the same reason, it is not a good idea to create large numbers of Atoms.

ImageGear Professional v18 for Mac | 1851

1.3.3.4.2.2.2 IG_PDF_atom_get_string

Gets the string associated with the specified Atom.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_atom_get_string(
 HIG_PDF_ATOM hAtom,
 LPCSTR* lpString
);

Arguments:

Name Type Description

hAtom HIG_PDF_ATOM The Atom whose string is obtained.

lpString LPCSTR* The string corresponding to hAtom. Returns an empty string if hAtom is equal to
IG_PDF_ATOM_NULL or NULL if the hAtom has not been defined.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1852

1.3.3.4.2.3 HIG_PDF_BOOKMARK

Handle to a PDF bookmark object, which allows the user to navigate interactively from one part of the document to
another. It consists of a tree-structured hierarchy of bookmarks. Each bookmark has:

A title that appears on screen
An action that specifies what happens when the user clicks on the bookmark

The typical action for a user-created bookmark is to move to another location in the current document or outside of it.
Each bookmark in the bookmark tree structure has zero or more children that appear indented on screen, and zero or
more siblings that appear at the same indentation level. All bookmarks except the bookmark at the top level of the
hierarchy have an one parent, i.e., the bookmark under which it is indented. A bookmark is said to be open if its children
are visible on the screen, and closed if they are not.

See the section 8.2.2, "Document Outline," in the PDF Reference for more information on bookmarks.

Members:

IG_PDF_bookmark_add_child Adds hChildBookmark as the last child of parent.

IG_PDF_bookmark_add_new_child Adds a new bookmark to the tree containing hBookmark.

IG_PDF_bookmark_add_next Adds hNewNext as the new right sibling to hBookmark.

IG_PDF_bookmark_add_new_sibling Adds a new bookmark to the tree containing hBookmark as the new right sibling.

IG_PDF_bookmark_add_prev Adds hNewPrev as the new left sibling to hBookmark.

IG_PDF_bookmark_add_subtree Adds a copy of the bookmark sub-tree source to hBookmark.

IG_PDF_bookmark_delete Deletes a bookmark object.

IG_PDF_bookmark_find_title Gets the first bookmark whose title is lpTitle.

IG_PDF_bookmark_get_action Gets hBookmark's action.

IG_PDF_bookmark_get_color Gets the color of the specified bookmark.

IG_PDF_bookmark_get_count Gets the number of open bookmarks in a sub-tree.

IG_PDF_bookmark_get_first_child Gets hBookmark's first child.

IG_PDF_bookmark_get_flags Gets the flags of the specified bookmark.

IG_PDF_bookmark_get_indent Gets the indentation level of a bookmark in its containing tree.

IG_PDF_bookmark_get_last_child Gets hBookmark's last child.

IG_PDF_bookmark_get_next Gets hBookmark's next (right) sibling.

IG_PDF_bookmark_get_parent Gets hBookmark's parent bookmark.

IG_PDF_bookmark_get_prev Gets hBookmark's previous (left) sibling.

IG_PDF_bookmark_get_title Gets hBookmark's title.

IG_PDF_bookmark_has_children Tests whether a bookmark has children.

IG_PDF_bookmark_is_open Tests whether a bookmark is open.

IG_PDF_bookmark_remove Removes hBookmark sub-tree from the bookmark tree containing it.

IG_PDF_bookmark_remove_action Removes hBookmark's action.

IG_PDF_bookmark_set_action Sets hBookmark's action.

IG_PDF_bookmark_set_color Sets hBookmark's color.

IG_PDF_bookmark_set_flags Sets the flags of the specified bookmark.

IG_PDF_bookmark_set_open Opens or closes a bookmark.

IG_PDF_bookmark_set_title Sets hBookmark's title.

IG_PDF_bookmark_unlink Unlinks a bookmark from the bookmark tree that contains it.

ImageGear Professional v18 for Mac | 1853

1.3.3.4.2.3.1 IG_PDF_bookmark_add_child

Adds hChildBookmark as the last child of parent, adjusting the tree containing parent appropriately.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_add_child(
 HIG_PDF_BOOKMARK hBookmark,
 HIG_PDF_BOOKMARK hChildBookmark
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The parent of the bookmark being added.

hChildBookmark HIG_PDF_BOOKMARK The bookmark that will become the last child of hBookmark.
hChildBookmark must have been previously unlinked.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

If parent previously had no children, it is open after the child is added.

ImageGear Professional v18 for Mac | 1854

1.3.3.4.2.3.2 IG_PDF_bookmark_add_new_child

Adds a new bookmark to the tree containing hBookmark as the new last child of hBookmark.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_add_new_child(
 HIG_PDF_BOOKMARK hBookmark,
 LPSTR lpszInitialText,
 LPHIG_PDF_BOOKMARK lphChildBookmark
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The bookmark to which a new last child is added.

lpszInitialText LPSTR The new bookmark's title.

lphChildBookmark LPHIG_PDF_BOOKMARK The newly created bookmark.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

If hBookmark previously had no children, it will be open after the child is added.

ImageGear Professional v18 for Mac | 1855

1.3.3.4.2.3.3 IG_PDF_bookmark_add_next

Adds hNewNext as the new right sibling to hBookmark.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_add_next(
 HIG_PDF_BOOKMARK hBookmark,
 HIG_PDF_BOOKMARK hNewNext
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The bookmark that will receive a new right sibling.

hNewNext HIG_PDF_BOOKMARK The bookmark to become the new right sibling of hBookmark. hNewNext must
have been previously unlinked.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1856

1.3.3.4.2.3.4 IG_PDF_bookmark_add_new_sibling

Adds a new bookmark to the tree containing hBookmark as the new right sibling.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_add_new_sibling(
 HIG_PDF_BOOKMARK hBookmark,
 LPSTR lpszInitialText,
 LPHIG_PDF_BOOKMARK lphSiblingBookmark
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The bookmark that will be the left sibling of the new bookmark.

lpszInitialText LPSTR The new bookmark's title.

lphSiblingBookmark LPHIG_PDF_BOOKMARK The newly created bookmark.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1857

1.3.3.4.2.3.5 IG_PDF_bookmark_add_prev

Adds hNewPrev as the new left sibling to hBookmark, adjusting the tree containing hBookmark appropriately.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_add_prev(
 HIG_PDF_BOOKMARK hBookmark,
 HIG_PDF_BOOKMARK hNewPrev
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The bookmark that will receive a new left sibling.

hNewPrev HIG_PDF_BOOKMARK The bookmark to become the new left sibling of hBookmark. hNewPrev must
have been previously unlinked.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1858

1.3.3.4.2.3.6 IG_PDF_bookmark_add_subtree

Adds a copy of the bookmark sub-tree source to hBookmark as a new last child of hBookmark.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_add_subtree(
 HIG_PDF_BOOKMARK hBookmark,
 HIG_PDF_BOOKMARK hSubtree,
 LPSTR lpszSourceTitle
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The bookmark to which the sub-tree source is added as a new last child.

hSubtree HIG_PDF_BOOKMARK The bookmark sub-tree to add.

lpszSourceTitle LPSTR The new bookmark's title.

Remarks:

This new item will have the text value lpszSourceTitle, will be open, and will have no destination attribute. hSubtree
must have been previously unlinked. If hBookmark previously had no children, it will be open after the sub-tree is added.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1859

1.3.3.4.2.3.7 IG_PDF_bookmark_delete

Deletes a bookmark object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_delete(
 HIG_PDF_BOOKMARK hBookmark
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The bookmark object to delete.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1860

1.3.3.4.2.3.8 IG_PDF_bookmark_find_title

Gets the first bookmark whose title is lpTitle.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_find_title(
 HIG_PDF_BOOKMARK hBookmark,
 LPSTR lpTitle,
 AT_INT nTitleLen,
 AT_INT nMaxDepth,
 LPHIG_PDF_BOOKMARK lphBookmark
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The root of the bookmark sub-tree to search.

lpTitle LPSTR The text value for which to search.

nTitleLen AT_INT The length of lpTitle.

nMaxDepth AT_INT The number of sub-tree levels to search, not counting the root level.
0 - Only look at hBookmark, not at any of its children.
1 - Check hBookmark and its children, but not any grandchildren or great
grandchildren, and so on.
-1 - Check the entire sub-tree.

lphBookmark LPHIG_PDF_BOOKMARK The bookmark with the specified title or NULL if there is no such bookmark.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1861

1.3.3.4.2.3.9 IG_PDF_bookmark_get_action

This function gets hBookmark's action.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_get_action(
 HIG_PDF_BOOKMARK hBookmark,
 LPHIG_PDF_ACTION lphAction
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The bookmark whose action is obtained.

lphAction LPHIG_PDF_ACTION The bookmark's action.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1862

1.3.3.4.2.3.10 IG_PDF_bookmark_get_color

Gets the color of the specified bookmark.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_get_color(
 HIG_PDF_BOOKMARK hBookmark,
 LPAT_PDF_COLORVALUE lpBookmarkColor
);

Arguments:

hBookmark HIG_PDF_BOOKMARK The bookmark whose color is obtained.

lpBookmarkColor LPAT_PDF_COLORVALUE Color of the bookmark.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1863

1.3.3.4.2.3.11 IG_PDF_bookmark_get_count

Gets the number of open bookmarks in a sub-tree.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_get_count(
 HIG_PDF_BOOKMARK hBookmark,
 LPAT_INT lpnCount
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The root bookmark of a sub-tree to count.

lpnCount LPAT_INT Number of open bookmarks in the sub-tree (not including hBookmark).

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1864

1.3.3.4.2.3.12 IG_PDF_bookmark_get_first_child

Gets hBookmark's first child.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_get_first_child(
 HIG_PDF_BOOKMARK hBookmark,
 LPHIG_PDF_BOOKMARK lphFirstChild
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The bookmark whose first child is obtained.

lphFirstChild LPHIG_PDF_BOOKMARK First child of hBookmark or NULL, if hBookmark has no children.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1865

1.3.3.4.2.3.13 IG_PDF_bookmark_get_flags

Gets the flags of the specified bookmark.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_get_flags(
 HIG_PDF_BOOKMARK hBookmark,
 LPAT_INT lpnFlags
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The bookmark whose flags are obtained.

lpnFlags LPAT_INT Bookmark's flags. The OR value of the enumIGPDFBookmarkFlags.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1866

1.3.3.4.2.3.14 IG_PDF_bookmark_get_indent

Gets the indentation level of a bookmark in its containing tree.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_get_indent(
 HIG_PDF_BOOKMARK hBookmark,
 LPAT_INT lpnIndent
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The bookmark whose indentation level is obtained.

lpnIndent LPAT_INT The indentation level of hBookmark in its containing tree. The root level has an
indentation level of zero.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1867

1.3.3.4.2.3.15 IG_PDF_bookmark_get_last_child

Gets hBookmark's last child.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_get_last_child(
 HIG_PDF_BOOKMARK hBookmark,
 LPHIG_PDF_BOOKMARK lphLastChild
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The bookmark whose last child is obtained.

lphLastChild LPHIG_PDF_BOOKMARK Last child of hBookmark or NULL if hBookmark has no children.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1868

1.3.3.4.2.3.16 IG_PDF_bookmark_get_next

Gets hBookmark's next (right) sibling.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_get_next(
 HIG_PDF_BOOKMARK hBookmark,
 LPHIG_PDF_BOOKMARK lphNext
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The bookmark whose right sibling is obtained.

lphNext LPHIG_PDF_BOOKMARK hBookmark's next (right) sibling or NULL if hBookmark has no next sibling (it
is its parent's last child).

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1869

1.3.3.4.2.3.17 IG_PDF_bookmark_get_parent

Gets hBookmark's parent bookmark.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_get_parent(
 HIG_PDF_BOOKMARK hBookmark,
 LPHIG_PDF_BOOKMARK lphParent
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The bookmark whose parent is obtained.

lphParent LPHIG_PDF_BOOKMARK Parent bookmark of hBookmark or NULL, if hBookmark is the root of its tree.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1870

1.3.3.4.2.3.18 IG_PDF_bookmark_get_prev

Gets hBookmark's previous (left) sibling.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_get_prev(
 HIG_PDF_BOOKMARK hBookmark,
 LPHIG_PDF_BOOKMARK lphPrev
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The bookmark whose left sibling is obtained.

lphPrev LPHIG_PDF_BOOKMARK Previous (left) sibling of hBookmark or NULL, if hBookmark has no previous
sibling (it is its parent's first child).

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1871

1.3.3.4.2.3.19 IG_PDF_bookmark_get_title

Gets hBookmark's title.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_get_title(
 HIG_PDF_BOOKMARK hBookmark,
 LPSTR szBuffer,
 AT_INT nSize,
 LPAT_INT lpnBytes
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The bookmark whose title is obtained.

szBuffer LPSTR Buffer into which the title will be written. If szBuffer is non-NULL, its length is
assumed to be nSize + 1, because a null byte is appended to the title.

nSize AT_INT The size of szBuffer.

lpnBytes LPAT_INT The number of bytes copied into szBuffer, not counting the trailing null byte. If
szBuffer is NULL, the number of bytes in the bookmark is returned.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1872

1.3.3.4.2.3.20 IG_PDF_bookmark_has_children

This function tests whether a bookmark has children or not.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_has_children(
 HIG_PDF_BOOKMARK hBookmark,
 LPAT_PDF_BOOL lpbHasChildren
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The bookmark to test.

lpbHasChildren LPAT_PDF_BOOL TRUE if hBookmark has any children; FALSE otherwise.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1873

1.3.3.4.2.3.21 IG_PDF_bookmark_is_open

Tests whether a bookmark is open.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_is_open(
 HIG_PDF_BOOKMARK hBookmark,
 LPAT_PDF_BOOL lpbOpen
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The bookmark to test.

lpbOpen LPAT_PDF_BOOL TRUE if hBookmark is open; FALSE otherwise.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

An open bookmark shows all its children.

ImageGear Professional v18 for Mac | 1874

1.3.3.4.2.3.22 IG_PDF_bookmark_remove

Removes hBookmark sub-tree from the bookmark tree containing it.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_remove(
 HIG_PDF_BOOKMARK hBookmark
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The root bookmark of the sub-tree to remove.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1875

1.3.3.4.2.3.23 IG_PDF_bookmark_remove_action

Removes hBookmark's action.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_remove_action(
 HIG_PDF_BOOKMARK hBookmark
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The bookmark whose action is removed.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1876

1.3.3.4.2.3.24 IG_PDF_bookmark_set_action

Sets hBookmark's action.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_set_action(
 HIG_PDF_BOOKMARK hBookmark,
 HIG_PDF_ACTION hAction
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The bookmark whose action is set.

hAction HIG_PDF_ACTION The bookmark's action to set.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1877

1.3.3.4.2.3.25 IG_PDF_bookmark_set_color

Sets hBookmark's color.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_set_color(
 HIG_PDF_BOOKMARK hBookmark,
 LPAT_PDF_COLORVALUE lpBookmarkColor
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The bookmark whose color is set.

lpBookmarkColor LPAT_PDF_COLORVALUE The bookmark's color to set. Must be in IG_PDF_DEVICE_RGB.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1878

1.3.3.4.2.3.26 IG_PDF_bookmark_set_flags

Sets the flags of the specified bookmark.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_set_flags(
 HIG_PDF_BOOKMARK hBookmark,
 AT_INT nFlags
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The bookmark whose flags are set.

nFlags AT_INT Bookmark's flags. The OR value of the enumIGPDFBookmarkFlags.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1879

1.3.3.4.2.3.27 IG_PDF_bookmark_set_open

Opens or closes a bookmark.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_set_open(
 HIG_PDF_BOOKMARK hBookmark,
 AT_PDF_BOOL bIsOpen
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The bookmark to open or close.

bIsOpen AT_PDF_BOOL TRUE if the bookmark is opened; FALSE if the bookmark is closed.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

An open bookmark shows its children, while a closed bookmark does not.

ImageGear Professional v18 for Mac | 1880

1.3.3.4.2.3.28 IG_PDF_bookmark_set_title

This function sets hBookmark's title.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_set_title(
 HIG_PDF_BOOKMARK hBookmark,
 LPCSTR lpTitle,
 AT_INT nTitleLen
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The bookmark whose title is set.

lpTitle LPCSTR String containing the bookmark's new title.

nTitleLen AT_INT The size of lpTitle.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1881

1.3.3.4.2.3.29 IG_PDF_bookmark_unlink

Unlinks a bookmark from the bookmark tree that contains it, and adjusts the tree appropriately.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_bookmark_unlink(
 HIG_PDF_BOOKMARK hBookmark
);

Arguments:

Name Type Description

hBookmark HIG_PDF_BOOKMARK The bookmark to unlink.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1882

1.3.3.4.2.4 HIG_PDF_DESTINATION

Handle to a PDF destination object, which represents a particular view of a page in a document. It contains a reference
to a page, a rectangle on that page, and information specifying how to adjust the view to fit the window's size and
shape. See section 8.2, "Document-Level Navigation," in the PDF Reference for more information on destinations.

Members:

IG_PDF_destination_create Creates a new destination object.

IG_PDF_destination_delete Deletes a destination object.

IG_PDF_destination_get_explicit_attrs Gets a destination's fit type, destination rectangle, and zoom factor.

IG_PDF_destination_get_named_attrs Gets a destination's named attributes.

IG_PDF_destination_get_type Gets a destination's type.

IG_PDF_destination_remove Removes a view destination object.

IG_PDF_destination_resolve Resolves a destination.

ImageGear Professional v18 for Mac | 1883

1.3.3.4.2.4.1 IG_PDF_destination_create

Creates a new destination object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_destination_create(
 HIG_PDF_DOC hDoc,
 HIG_PDF_PAGE hPage,
 HIG_PDF_ATOM hInitialFitType,
 LPAT_PDF_FIXEDRECT lpInitialRect,
 AT_PDF_FIXED nInitialZoom,
 LPHIG_PDF_DESTINATION lphDest
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document in which the destination is used.

hPage HIG_PDF_PAGE The destination page.

hInitialFitType HIG_PDF_ATOM Destination fit type. Must be one of the View Destination Fit Types.

lpInitialRect LPAT_PDF_FIXEDRECT Pointer to a AT_PDF_FIXEDRECT specifying the destination rectangle,
specified in user space coordinates. The appropriate information will be
extracted from lpInitialRect, depending on hInitialFitType, to create the
destination. All four of lpInitialRect's components should be set.

nInitialZoom AT_PDF_FIXED The zoom factor to set for the destination. Used only if hInitialFitType is
XYZ. Use the predefined value IG_PDF_DEST_NULL to indicate a NULL
zoom factor.

lphDest LPHIG_PDF_DESTINATION The newly created destination object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1884

1.3.3.4.2.4.2 IG_PDF_destination_delete

Deletes a destination object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_destination_delete(
 HIG_PDF_DESTINATION hDest
);

Arguments:

Name Type Description

hDest HIG_PDF_DESTINATION The destination object to delete.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1885

1.3.3.4.2.4.3 IG_PDF_destination_get_explicit_attrs

Gets a destination's fit type, destination rectangle, and zoom factor.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_destination_get_explicit_attrs(
 HIG_PDF_DESTINATION hDest,
 LPAT_INT lpnPageNum,
 LPHIG_PDF_ATOM lphFitType,
 LPAT_PDF_FIXEDRECT lpRect,
 LPAT_PDF_FIXED lpnZoom
);

Arguments:

Name Type Description

hDest HIG_PDF_DESTINATION The destination whose explicit attributes are obtained.

lpnPageNum LPAT_INT The page number of the destination's page.

lphFitType LPHIG_PDF_ATOM Destination fit type. One of the Destination Fit Types values.

lpRect AT_PDF_FIXEDRECT Pointer to a AT_PDF_FIXEDRECT containing the destination's rectangle,
specified in user space coordinates.

lpnZoom LPAT_PDF_FIXED The destination's zoom factor.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Applies only to IG_PDF_DEST_EXPLICIT type of destination.

ImageGear Professional v18 for Mac | 1886

1.3.3.4.2.4.4 IG_PDF_destination_get_named_attrs

Gets a destination's named attributes.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_destination_get_named_attrs(
 HIG_PDF_DESTINATION hDest,
 LPHIG_PDF_BASOBJ lphName
);

Arguments:

Name Type Description

hDest HIG_PDF_DESTINATION The destination whose named attributes are obtained.

lphName LPHIG_PDF_BASOBJ Basic array object for the destination. Returns NULL if the destination is invalid.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Applies only to IG_PDF_DEST_NAMED type of destination.

ImageGear Professional v18 for Mac | 1887

1.3.3.4.2.4.5 IG_PDF_destination_get_type

Gets a destination's type.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_destination_get_type(
 HIG_PDF_DESTINATION hDest,
 LPAT_INT lpnType
);

Arguments:

Name Type Description

hDest HIG_PDF_DESTINATION The destination whose type is obtained.

lpnType LPAT_INT The destination type. One of the enumIGPDFDestinationType values.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1888

1.3.3.4.2.4.6 IG_PDF_destination_remove

Removes a view destination object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_destination_remove(
 HIG_PDF_DESTINATION hDest
);

Arguments:

Name Type Description

hDest HIG_PDF_DESTINATION The destination to remove.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1889

1.3.3.4.2.4.7 IG_PDF_destination_resolve

Resolves a destination.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_destination_resolve(
 HIG_PDF_DESTINATION hDest,
 HIG_PDF_DOC hDoc,
 LPHIG_PDF_DESTINATION lphResolvedDest
);

Arguments:

Name Type Description

hDest HIG_PDF_DESTINATION The destination whose type is obtained.

hDoc HIG_PDF_DOC The PDF document that contains the destination.

lphResolvedDest LPHIG_PDF_DESTINATION The resolved view destination.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

hDest is the value of the D key in an action. It can be a real destination (an array) or a name. If it is a name, look it up
in hDoc's Dests dictionary. The value found there can be a real destination (an array) or a dictionary. If it's a dictionary,
look up the D key in that dictionary. This function is useful for getting an explicit view destination from an action.

ImageGear Professional v18 for Mac | 1890

1.3.3.4.2.5 HIG_PDF_DICTIONARY

Handle to a PDF dictionary object, which represents an optional-content membership dictionary object.

Members:

IG_PDF_dictionary_create Creates a new optional-content membership dictionary object in the given
document for the given layers and visibility policy.

IG_PDF_dictionary_get_layer Gets the layer with the specified index in a membership dictionary.

IG_PDF_dictionary_get_layer_count Gets the number of layers listed in a membership dictionary.

IG_PDF_dictionary_get_unique_id Returns some 32-bit integer that is unique for all Dictionary objects.

IG_PDF_dictionary_get_vis_policy Gets the optional-content membership dictionary's visibility policy.

IG_PDF_dictionary_release Releases the native object and frees memory.

ImageGear Professional v18 for Mac | 1891

1.3.3.4.2.5.1 IG_PDF_dictionary_create

Creates a new optional-content membership dictionary object in the given document for the given layers and visibility
policy.

Declaration:

IG_PDF_dictionary_create(
 HIG_PDF_DOC hDoc,
 LPHIG_PDF_LAYER hLayers,
 AT_INT nLayersCount,
 AT_INT policy,
 LPHIG_PDF_DICTIONARY lphDictionary
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document in which the dictionary is used.

hLayers LPHIG_PDF_LAYER Array of layers to be the members of the dictionary.

nLayersCount AT_INT The number of layers.

policy AT_INT The visibility policy that determines the visibility of content with respect
to the ON/OFF state of the layers listed in the dictionary.

lphDictionary LPHIG_PDF_DICTIONARY The newly created dictionary object.

Return Value:

The newly created dictionary object, or NULL if no layers are supplied.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

To add layer to the existing dictionary, get the current layers' list, modify it, and then create a new dictionary with the
new list of layers.

ImageGear Professional v18 for Mac | 1892

1.3.3.4.2.5.2 IG_PDF_dictionary_get_layer

Gets the layer with the specified index in a membership dictionary.

Declaration:

IG_PDF_dictionary_get_layer(
 HIG_PDF_DICTIONARY hDictionary,
 UINT nIndex,
 LPHIG_PDF_LAYER lpLayer
);

Arguments:

Name Type Description

hDictionary HIG_PDF_DICTIONARY The membership dictionary whose layer is obtained.

nIndex UINT The index of the needed layer in the dictionary.

lpLayer LPHIG_PDF_LAYER The layer object.

Return Value:

Layer object.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1893

1.3.3.4.2.5.3 IG_PDF_dictionary_get_layer_count

Gets the number of layers listed in a membership dictionary.

Declaration:

IG_PDF_dictionary_get_layer_count(
 HIG_PDF_DICTIONARY hDictionary,
 LPUINT lpnCount
);

Arguments:

Name Type Description

hDictionary HIG_PDF_DICTIONARY The membership dictionary whose layers count is obtained.

lpnCount LPUINT The count of the document's layers.

Return Value:

The count of the document's layers.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1894

1.3.3.4.2.5.4 IG_PDF_dictionary_get_unique_id

Returns some 32-bit integer that is unique for all Dictionary objects.

Declaration:

IG_PDF_dictionary_get_unique_id(
 HIG_PDF_DICTIONARY hDictionary,
 LPUINT lpnUniqueId
);

Arguments:

Name Type Description

hDictionary HIG_PDF_DICTIONARY Dictionary object.

lpnUniqueId LPUINT The unique identifier.

Return Value:

An unique identifier of this Dictionary Object.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

It is guaranteed that there cannot be two Dictionary objects with the same UniqueIds.

Can be used for Dictionary objects' identification.

ImageGear Professional v18 for Mac | 1895

1.3.3.4.2.5.5 IG_PDF_dictionary_get_vis_policy

Gets the optional-content membership dictionary's visibility policy, which determines the visibility of content with respect
to the ON-OFF state of the layers listed in the dictionary.

Declaration:

IG_PDF_dictionary_get_vis_policy(
 HIG_PDF_DICTIONARY hDictionary,
 LPAT_INT lpPolicy
);

Arguments:

Name Type Description

hDictionary HIG_PDF_DICTIONARY The dictionary whose policy is obtained.

lpPolicy LPAT_INT The visibility policy.

Return Value:

The visibility policy.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1896

1.3.3.4.2.5.6 IG_PDF_dictionary_release

Releases the native object and frees memory.

Declaration:

IG_PDF_dictionary_release(
 HIG_PDF_DICTIONARY hDictionary
);

Arguments:

Name Type Description

hDictionary HIG_PDF_DICTIONARY Dictionary object to release.

Return Value:

Nothing.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1897

1.3.3.4.2.6 HIG_PDF_DOC

Handle to the PDF document object. The underlying PDF representation of a document. Through PDF Document, your
application can perform most of the Edit Pages operations (delete, replace, and so on). Thumbnails can be created and
deleted through this object. You can set and retrieve document information fields through this object as well.

Members:

IG_PDF_doc_create Creates a PDF document and attaches it to HMIGEAR.

IG_PDF_doc_create_new_page Creates a new PDF page for the hMPIDoc.

IG_PDF_doc_delete_pages Deletes the specified pages.

IG_PDF_doc_insert_pages Inserts nPageCount pages from hDoc2 into hDoc.

IG_PDF_doc_get_bookmark Gets the root of the document's bookmark tree.

IG_PDF_doc_get_info Gets the value of a key in a document's Info dictionary, or the value of this
same key in the XMP metadata, whichever is latest.

IG_PDF_doc_get_layer Gets the layer with a specified index.

IG_PDF_doc_get_layer_count Gets the layer count for the document.

IG_PDF_doc_get_page Gets a handle to a specific page.

IG_PDF_doc_get_page_count Gets the number of pages in the document.

IG_PDF_doc_get_root Returns the Catalog dictionary of the PDF document

IG_PDF_doc_set_info Sets the value of a key in a document's Info dictionary.

IG_PDF_doc_print Prints PDF pages from a PDF document, allowing the user to specify options
such as page size, rotation, and fit mode.

IG_PDF_doc_create_wordfinder Creates a word finder that is used to extract text in the host encoding from a
PDF file.

IG_PDF_doc_create_wordfinder_ucs Creates a word finder that is used to extract text in the host encoding from a
PDF file.

IG_PDF_doc_get_new_crypt_handler Gets the specified document's new security handler (that is, the security handler
that will be used after the document is saved).

IG_PDF_doc_get_new_security_data Gets the security data structure for the specified document's new security
handler.

IG_PDF_doc_get_new_security_info Gets the security information from the specified document's new security
handler.

IG_PDF_doc_get_security_data Gets the security data structure for the specified document's new security
handler.

IG_PDF_doc_page_release Releases a handle to a PDF page.

IG_PDF_doc_perm_request Checks the permissions associated with the specified document using the latest
permissions format, and determines whether the requested operation is allowed
for the specified object in the document.

IG_PDF_doc_set_new_crypt_handler Sets specified document's new security handler (the security handler that will be
used after the document is saved).

IG_PDF_doc_set_new_security_data Sets the security data structure for the specified document's new security
handler.

ImageGear Professional v18 for Mac | 1898

1.3.3.4.2.6.1 IG_PDF_doc_create

This function creates a PDF document and attaches it to HMIGEAR.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_doc_create(
 HMIGEAR hMPIDoc
);

Arguments:

Name Type Description

hMPIDoc HMIGEAR ImageGear document to which to attach a PDF document.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This function does not do anything if hMPIDoc is already vector document.

To obtain a handle to the PDF document, use the following:

 HIG_PDF_DOC hPDFDoc = (HIG_PDF_DOC)NULL;
 IG_mpi_info_get(hMPIDoc, IG_MP_DOCUMENT, &hPDFDoc, sizeof(hPDFDoc));

ImageGear Professional v18 for Mac | 1899

1.3.3.4.2.6.2 IG_PDF_doc_create_new_page

This function creates a new PDF page for the hMPIDoc.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_doc_create_new_page(
 HMIGEAR hMPIDoc,
 LONG nAfterPage,
 LPAT_PDF_FIXEDRECT lpMediaBox
);

Arguments:

Name Type Description

hMPIDoc HMIGEAR The document in which the page is created.

nAfterPage LONG The page number after which the new page is inserted. The first page is 0. Use
IG_PDF_BEFORE_FIRST_PAGE to insert the new page at the beginning of a
document.

lpMediaBox LPAT_PDF_FIXEDRECT Rectangle specifying the page's media box, specified in user space coordinates.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The new PDF page is created at the specified position.

The previous value (if any) is not deleted with the IG_image_delete function. The size of the multi-page image is
not changed, so that page arrays is not expanded when nAfterPage is greater than pageCount-1.

To obtain a handle to the PDF page, use the following:

HIGEAR hNewPage = NULL;
IG_mpi_page_get(m_hMPDoc, nAfterPage+1, &hNewPage);
HIG_PDF_PAGE hNewPDFPage = NULL;
IG_vector_data_get(hNewPage, (LPVOID*)&hNewPDFPage);

ImageGear Professional v18 for Mac | 1900

1.3.3.4.2.6.3 IG_PDF_doc_create_wordfinder

Creates a word finder that is used to extract text in the host encoding from a PDF file.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_doc_create_wordfinder(
 HIG_PDF_DOC hDoc,
 LPWORD lpOutEncInfo,
 LPCHAR* lpOutEncVec,
 LPCHAR* lpLigatureTbl,
 SHORT nAlgVersion,
 WORD nFlags,
 LPVOID lpClientData,
 LPHIG_PDF_WORDFINDER lphWordFinder
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document on which the word finder is used.

lpOutEncInfo LPWORD Array of 256 flags, specifying the type of character at each position in
the encoding. Each flag is an OR of the Character Type Codes. If
lpOutEncInfo is NULL, the platform's default encoding info is used.
Use lpOutEncInfo and lpOutEncVec together; for every lpOutEncInfo
use a corresponding lpOutEncVec to specify the character at that
position in the encoding.

lpOutEncVec LPCHAR* Array of 256 null-terminated strings that are the glyph names in
encoding order. See the discussion of character names in Section 5.3
of the PostScript Language Reference Manual, Third Edition. If
lpOutEncVec is NULL, the platform's default encoding vector is used.
Use this parameter with lpOutEncInfo.

lpLigatureTbl LPCHAR* A null-terminated array of null-terminated strings. Each string is the
glyph name of a ligature in the font. When a word contains a ligature,
the glyph name of the ligature is substituted for the ligature (for
example, ff is substituted for the ff ligature). If ligatureTbl is NULL, a
default ligature table is used, containing the following ligatures: fi, ff,
fl, ffi, ffl, ch, cl, ct, ll, ss, fs, st, oe, OE.

nAlgVersion SHORT The version of the word-finding algorithm to use.

nFlags WORD Word-finding options that determine the tables filled when using
IG_PDF_wordfinder_acquire_word_list. Must be an OR of one or more
of enumIGPDFWordFlags.

lpClientData LPVOID Pointer to user-supplied data to pass to the newly created word
finder. Set to NULL.

lphWordFinder LPHIG_PDF_WORDFINDER Handle to the new WordFinder.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The word finder also extracts text from Form XObjects that are executed in the page contents. For information about
Form XObjects, see Section 4.9 in the PDF Reference.

This function also works for non-Roman (CJK or Chinese-Japanese-Korean) viewers. In this case, words are extracted

ImageGear Professional v18 for Mac | 1901

to the host encoding. Users desiring Unicode output must use IG_PDF_doc_create_wordfinder_ucs, which does the
extraction for Roman or non-Roman text.

The type of WordFinder determines the encoding of the string returned by IG_PDF_word_get_string. For instance, if
IG_PDF_doc_create_wordfinder_ucs is used to create the word finder, IG_PDF_word_get_string returns only Unicode.

For CJK viewers, words are stored internally using CID encoding. For more information on CIDFonts and related
topics, see Section 5.6 in the PDF Reference. For detailed information on CIDFonts, see Technical Note #5092, CID-
Keyed Font Technology Overview, and Technical Note #5014, Adobe CMap and CIDFont Files Specification.

ImageGear Professional v18 for Mac | 1902

1.3.3.4.2.6.4 IG_PDF_doc_create_wordfinder_ucs

Creates a word finder that is used to extract text in the host encoding from a PDF file.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_doc_create_wordfinder_ucs(
 HIG_PDF_DOC hDoc,
 SHORT nAlgVersion,
 WORD nFlags,
 LPVOID lpClientData,
 LPHIG_PDF_WORDFINDER lphWordFinder
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document on which the word finder is used.

nAlgVersion SHORT The version of the word-finding algorithm to use.

nFlags WORD Word-finding options that determine the tables filled when using
IG_PDF_wordfinder_acquire_word_list. Must be an OR of one or more of
enumIGPDFWordFlags.

lpClientData LPVOID Pointer to user-supplied data to pass to the newly created word finder.
Set to NULL.

lphWordFinder LPHIG_PDF_WORDFINDER Handle to the new WordFinder.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The word finder also extracts text from Form XObjects that are executed in the page contents. For information about
Form XObjects, see Section 4.9 in the PDF Reference.

This function also works for non-Roman (CJK or Chinese-Japanese-Korean) viewers. In this case, words are extracted to
the host encoding. Users desiring Unicode output must use IG_PDF_doc_create_wordfinder_ucs, which does the
extraction for Roman or non-Roman text.

The type of WordFinder determines the encoding of the string returned by IG_PDF_word_get_string. For instance, if
IG_PDF_doc_create_wordfinder_ucs is used to create the word finder, IG_PDF_word_get_string returns only Unicode.

For CJK viewers, words are stored internally using CID encoding. For more information on CIDFonts and related topics,
see Section 5.6 in the PDF Reference. For detailed information on CIDFonts, see Technical Note #5092, CID-Keyed Font
Technology Overview, and Technical Note #5014, Adobe CMap and CIDFont Files Specification.

ImageGear Professional v18 for Mac | 1903

1.3.3.4.2.6.5 IG_PDF_doc_delete_pages

Deletes the specified pages.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_doc_delete_pages(
 HIG_PDF_DOC hDoc,
 LONG nStartPage,
 LONG nPageCount
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document from which pages are deleted.

nStartPage LONG The page number of the first page to delete. The first page is 0.

nPageCount LONG The number of pages to delete.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1904

1.3.3.4.2.6.6 IG_PDF_doc_get_bookmark

Gets the root of the document's bookmark tree.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_doc_get_bookmark(
 HIG_PDF_DOC hDoc,
 LPHIG_PDF_BOOKMARK lphRootBookmark
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document whose root bookmark is obtained.

lphRootBookmark LPHIG_PDF_BOOKMARK The document's root bookmark.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The lphRootBookmark value is valid even if document's bookmark tree is empty.

ImageGear Professional v18 for Mac | 1905

1.3.3.4.2.6.7 IG_PDF_doc_get_info

This function can be used to obtain the values of the following standard document information dictionary keys: "Title",
"Author", "Subject", "Keywords", "Creator", "Producer", "Created", and "Modified".

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_doc_get_info(
 HIG_PDF_DOC hDoc,
 LPCSTR szInfoKey,
 LPSTR szBuffer,
 LONG nSize,
 LPLONG lpnBytes
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document whose Info dictionary key is obtained.

szInfoKey LPCSTR The name of the Info dictionary key whose value is obtained.

szBuffer LPSTR Result buffer containing the value associated with infoKey. If buffer is NULL, the method
will just return the number of bytes required.

nSize LONG The maximum number of bytes that can be written into buffer.

lpnBytes LPLONG If szBuffer is NULL, the number of bytes in the specified key's value. If szBuffer is not
NULL, returns the number of bytes copied into buffer, excluding the terminating NULL.
You must pass at least the length + 1 as the buffer size since the routine adds a '\0'
terminator to the data, even though the data is not a C string (it can contain embedded
'\0's).

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

See Section 10.2.1 in the PDF Reference for information about Info dictionaries. All values in the Info dictionary should
be strings; other data types such as numbers and Booleans should not be used as values in the Info dictionary.

Users may define their own Info dictionary entries. In this case, it is strongly recommended that the key have the
developer's prefix assigned by the Adobe Solutions Network.

ImageGear Professional v18 for Mac | 1906

1.3.3.4.2.6.8 IG_PDF_doc_get_layer

Gets the layer with a specified index.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_doc_get_layer(
 HIG_PDF_DOC hDoc,
 UINT nIndex,
 LPHIG_PDF_LAYER lphLayer
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC Document whose layer is obtained.

nIndex UINT Index of the layer to obtain.

lphLayer LPHIG_PDF_LAYER The obtained layer.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1907

1.3.3.4.2.6.9 IG_PDF_doc_get_layer_count

Gets the layer count for the document.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_doc_get_layer_count(
 HIG_PDF_DOC hDoc,
 LPUINT lpnCount
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC Document whose layer count is obtained.

lpnCount LPUINT Layer count.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1908

1.3.3.4.2.6.10 IG_PDF_doc_get_new_crypt_handler

Gets the specified document's new security handler (that is, the security handler that will be used after the document is
saved).

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_doc_get_new_crypt_handler(
 HIG_PDF_DOC hDoc,
 LPHIG_PDF_ATOM lphCryptHandler
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document whose new security handler is obtained.

lphCryptHandler LPHIG_PDF_ATOM The PDF atom corresponding to the name of the document's new security
handler. Returns IG_PDF_ATOM_NULL if the document does not have a new
security handler.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

If the document does not have a new security handler, returns the document's current security handler.

ImageGear Professional v18 for Mac | 1909

1.3.3.4.2.6.11 IG_PDF_doc_get_new_security_data

Gets the security data structure for the specified document's new security handler.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_doc_get_new_security_data(
 HIG_PDF_DOC hDoc,
 LPAT_PDF_SECURITYDATA* lppSecData
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document whose new security data structure is obtained.

lppSecData LPAT_PDF_SECURITYDATA* The security data structure for the document's new security handler.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Use IG_PDF_doc_get_security_data to get the security data structure for the document's current security handler.

The password strings in PDF are padded or truncated to exactly 32 bytes. If the password string is more than 32 bytes
long, used only its first 32 bytes; if it is less than 32 bytes long, it padded by appending the required number of
additional bytes from the beginning of the following padding string: < 28 BF 4E 5E 4E 75 8A 41 64 00 4E 56 FF FA 01 08
2E 2E 00 B6 D0 68 3E 80 2F 0C A9 FE 64 53 69 7A >

ImageGear Professional v18 for Mac | 1910

1.3.3.4.2.6.12 IG_PDF_doc_get_new_security_info

Gets the security information from the specified document's new security handler.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_doc_get_new_security_info(
 HIG_PDF_DOC hDoc,
 LPUINT lpnSecInfo
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document whose new security information is obtained.

lpnSecInfo LPUINT The document's new security information. The OR value of the
enumIGPDFSecurityInfoFlags.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

No permissions are required to call this function.

ImageGear Professional v18 for Mac | 1911

1.3.3.4.2.6.13 IG_PDF_doc_get_page

This function obtains a handle to a PDF page.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_doc_get_page(
 HIG_PDF_DOC hDoc,
 UINT nPageNumber,
 LPHIG_PDF_PAGE lphPage
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document from which the page is obtained.

nPageNumber UINT The index of the page to obtain. The first page is 0.

lphPage LPHIG_PDF_PAGE A pointer to memory that is populated with an HIG_PDF_PAGE handle for the
selected page.

Return Value:

The number of ImageGear errors that occurred during this function call. If there are no errors, the return value is
IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Applications that obtain an HIG_PDF_PAGE from IG_PDF_doc_get_page are required to invoke this function to
decrement that PDF page's reference count and release the HIG_PDF_PAGE instance. This ensures that the PDF
document can successfully close.

For example:

const AT_INT FIRST_PAGE = 0 ;
HMIGEAR higDoc = 0 ;
HIG_PDF_DOC hPdfDoc = 0 ;
HIG_PDF_PAGE hPdfPage = 0 ;
UINT annotation_count = (UINT)-1 ;
// Recover number of annotations on first PDF page
IG_mpi_create(&higDoc , 0) ;
IG_mpi_file_open("sample.pdf" , higDoc, IG_FORMAT_PDF , IG_MP_OPENMODE_READWRITE) ;
IG_mpi_info_get(higDoc, IG_MP_DOCUMENT, &hPdfDoc, sizeof(hPdfDoc)) ;
IG_PDF_doc_get_page(hPdfDoc, FIRST_PAGE, &hPdfPage) ;
IG_PDF_page_get_annotation_count(hPdfPage , &annotation_count) ;
IG_PDF_doc_page_release(hPdfPage) ;
IG_mpi_delete(higDoc) ;

ImageGear Professional v18 for Mac | 1912

1.3.3.4.2.6.14 IG_PDF_doc_get_page_count

Gets the number of pages in the document.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_doc_get_page_count(
 HIG_PDF_DOC hDoc,
 LPUINT lpnCount
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document for which the number of pages is obtained.

lpnCount LPUINT The number of pages in the document.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1913

1.3.3.4.2.6.15 IG_PDF_doc_get_root

This function returns the Catalog dictionary of the PDF document (this Catalog dictionary is the root of a PDF
document`s object hierarchy).

Declaration:

AT_VOID IG_PDF_doc_get_root(
 HIG_PDF_DOC hDoc,
 LPHIG_PDF_BASOBJ lphRootDictionary
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The PDF document.

lphRootDictionary LPHIG_PDF_BASOBJ The resulting Catalog dictionary.

Return Value:

None

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

See also the PDF Reference, ch.3.6.

ImageGear Professional v18 for Mac | 1914

1.3.3.4.2.6.16 IG_PDF_doc_get_security_data

Gets the security data structure for the specified document's current security handler.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_doc_get_security_data(
 HIG_PDF_DOC hDoc,
 LPAT_PDF_SECURITYDATA* lppSecData
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document whose security data structure is obtained.

lppSecData LPAT_PDF_SECURITYDATA* A pointer to the document's current security data structure.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Use IG_PDF_doc_get_new_security_data to get the data structure for the document's new security handler.

The password strings in PDF are padded or truncated to exactly 32 bytes. If the password string is more than 32 bytes
long, used only its first 32 bytes; if it is less than 32 bytes long, it padded by appending the required number of
additional bytes from the beginning of the following padding string: < 28 BF 4E 5E 4E 75 8A 41 64 00 4E 56 FF FA 01 08
2E 2E 00 B6 D0 68 3E 80 2F 0C A9 FE 64 53 69 7A >

ImageGear Professional v18 for Mac | 1915

1.3.3.4.2.6.17 IG_PDF_doc_insert_pages

This function inserts nPageCount pages from hDoc2 into hDoc.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_doc_insert_pages(
 HIG_PDF_DOC hDoc,
 LONG nAfterThisPage,
 HIG_PDF_DOC hDoc2,
 LONG nStartPage,
 LONG nPageCount,
 WORD nInsertFlags
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document into which pages are inserted.

nAfterThisPage LONG The page number in hDoc after which pages from hDoc2 are inserted. The first
page is 0. If IG_PDF_BEFORE_FIRST_PAGE is used, the pages are inserted before
the first page in hDoc . Use IG_PDF_LAST_PAGE to insert pages after the last
page in hDoc.

hDoc2 HIG_PDF_DOC The document containing the pages that are inserted into hDoc.

nStartPage LONG The page number of the first page in hDoc2 to insert into hDoc. The first page is
0.

nPageCount LONG The number of pages in hDoc2 to insert into hDoc. Use IG_PDF_ALL_PAGES to
insert all pages from hDoc2 into hDoc.

nInsertFlags WORD Flags that determine what additional information is copied from hDoc2 into hDoc.
An OR of enumIGPDFInsertFlags constants:

IG_PDF_INSERT_BOOKMARKS - Inserts bookmarks as well as pages. The
bookmark tree of hDoc2 is merged into the bookmark tree of hDoc by copying
it as a new first-level sub-tree of hDoc's bookmark tree root of which it
becomes the last child. If hDoc has no bookmark tree, it acquires one identical
to the bookmark tree from hDoc2.
IG_PDF_INSERT_THREADS - Inserts threads as well as pages.
IG_PDF_INSERT_ALL - Inserts all pages, regardless of nStartPage and
nPageCount, and document data.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

AT_CHAR* first_filename = "first.pdf" ;
UINT first_page_count = 0 ;
HMIGEAR first_hmigear = 0 ;
HIG_PDF_DOC first_hig_pdf_doc = 0 ;

AT_CHAR* second_filename = "second.pdf" ;
UINT second_page_count = 0 ;
HMIGEAR second_hmigear = 0 ;

ImageGear Professional v18 for Mac | 1916

HIG_PDF_DOC second_hig_pdf_doc = 0 ;

AT_CHAR* combined_filename = "combined.pdf" ;
UINT combined_page_count = 0 ;

/* Open first PDF */
IG_mpi_create(&first_hmigear , 0) ;
IG_mpi_file_open(first_filename, first_hmigear, IG_FORMAT_UNKNOWN,
 IG_MP_OPENMODE_READONLY) ;
IG_PDF_doc_create(first_hmigear) ;
IG_mpi_info_get(first_hmigear, IG_MP_DOCUMENT, &first_hig_pdf_doc,
 sizeof(first_hig_pdf_doc)) ;
IG_mpi_page_count_get(first_hmigear, &first_page_count) ;

/* Open second PDF */
IG_mpi_create(&second_hmigear , 0) ;
IG_mpi_file_open(second_filename , second_hmigear, IG_FORMAT_UNKNOWN,
 IG_MP_OPENMODE_READONLY) ;
IG_PDF_doc_create(second_hmigear) ;
IG_mpi_info_get(second_hmigear, IG_MP_DOCUMENT, &second_hig_pdf_doc,
 sizeof(second_hig_pdf_doc)) ;
IG_mpi_page_count_get(second_hmigear, &second_page_count) ;

/* Insert pages */
IG_PDF_doc_insert_pages(second_hig_pdf_doc , IG_PDF_LAST_PAGE,
 first_hig_pdf_doc , 0 , first_page_count ,
IG_PDF_INSERT_ALL) ;

/* Save combined PDF document */
combined_page_count = first_page_count + second_page_count ;
IG_mpi_file_save(combined_filename , second_hmigear, 0 , 0,
combined_page_count ,
 IG_FORMAT_PDF , IG_MPI_SAVE_OVERWRITE) ;

IG_mpi_close(first_hmigear) ;
IG_mpi_delete(first_hmigear) ;
IG_mpi_close(second_hmigear) ;
IG_mpi_delete(second_hmigear) ;

Remarks:

All annotations, and anything else associated with the page (such as a thumbnail image) are copied from the hDoc2
pages to the new pages in hDoc. This function does not insert pages, if hDoc is equal to hDoc2. The nInsertFlags
controls whether bookmarks and threads are inserted along with the specified pages.

ImageGear Professional v18 for Mac | 1917

1.3.3.4.2.6.18 IG_PDF_doc_page_release

This function decrements the reference count for a PDF page.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_doc_page_release(
 HIG_PDF_PAGE hPage
);

Arguments:

Name Type Description

hPage HIG_PDF_PAGE The page to release.

Return Value:

The number of ImageGear errors that occurred during this function call. If there are no errors, the return value is
IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Applications that obtain an HIG_PDF_PAGE from IG_PDF_doc_get_page are required to invoke this function to
decrement that PDF page's reference count and release the HIG_PDF_PAGE instance. This ensures that the PDF
document can successfully close.

For example:

const AT_INT FIRST_PAGE = 0 ;

HMIGEAR higDoc = 0 ;
HIG_PDF_DOC hPdfDoc = 0 ;
HIG_PDF_PAGE hPdfPage = 0 ;
UINT annotation_count = (UINT)-1 ;

// Recover number of annotations on first PDF page
IG_mpi_create(&higDoc , 0) ;
IG_mpi_file_open("sample.pdf" , higDoc, IG_FORMAT_PDF , IG_MP_OPENMODE_READWRITE) ;
IG_mpi_info_get(higDoc, IG_MP_DOCUMENT, &hPdfDoc, sizeof(hPdfDoc)) ;

IG_PDF_doc_get_page(hPdfDoc, FIRST_PAGE, &hPdfPage) ;
IG_PDF_page_get_annotation_count(hPdfPage , &annotation_count) ;
IG_PDF_doc_page_release(hPdfPage) ;

IG_mpi_delete(higDoc) ;

Applications that obtain an HIG_PDF_PAGE from IG_vector_data_get should instead use IG_mpi_delete. The
HMIGEAR retains ownership of HIG_PDF_PAGE and is responsible for releasing it.

For example:

const AT_INT FIRST_PAGE = 0 ;

HMIGEAR higDoc = 0 ;
HIGEAR higPage = 0 ;
HIG_PDF_PAGE hPdfPage = 0 ;
AT_ERRCOUNT errCount = 0 ;

ImageGear Professional v18 for Mac | 1918

UINT annotation_count = (UINT)-1 ;

// Recover number of annotations on the first PDF page
IG_mpi_create(&higDoc , 0) ;
IG_mpi_file_open("sample.pdf" , higDoc, IG_FORMAT_PDF , IG_MP_OPENMODE_READWRITE) ;
IG_mpi_page_get(higDoc , FIRST_PAGE , &higPage) ;

IG_vector_data_get(higPage, (LPVOID*)&hPdfPage) ;
IG_PDF_page_get_annotation_count(hPdfPage , &annotation_count) ;

IG_mpi_delete(higDoc) ;

ImageGear Professional v18 for Mac | 1919

1.3.3.4.2.6.19 IG_PDF_doc_perm_request

Checks the permissions associated with the specified document using the latest permissions format, and determines
whether the requested operation is allowed for the specified object in the document.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_doc_perm_request(
 HIG_PDF_DOC hDoc,
 UINT nReqObj,
 UINT nReqOpr,
 LPVOID lpAuthData,
 LPSHORT lpnReqStatus
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document whose permissions are being requested.

nReqObj UINT The target object of the permissions request.

nReqOpr UINT The target operation of the permissions request.

lpAuthData LPVOID A pointer to an authorization data (password string).

lpnReqStatus LPSHORT One of enumIGPDFPermReqStatus request status constants.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1920

1.3.3.4.2.6.20 IG_PDF_doc_print

Prints PDF pages from a PDF document, allowing the user to specify options such as page size, rotation, and fit mode.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_doc_print(
 HIG_PDF_DOC hDoc,
 LPAT_PDF_PRINTOPTIONS lpPrintOptions
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC Handle to the document to print.

lpPrintOptions LPAT_PDF_PRINTOPTIONS Parameters to control printing.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Please refer to the MFC PDF sample for a complete code example of using the IG_PDF_doc_print function.

ImageGear Professional v18 for Mac | 1921

1.3.3.4.2.6.21 IG_PDF_doc_set_info

This function can be used to set new values for the following standard document information dictionary keys: "Title",
"Author", "Subject", "Keywords", and "Creator".

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_doc_set_info(
 HIG_PDF_DOC hDoc,
 LPCSTR szInfoKey,
 LPSTR szBuffer,
 LONG nSize
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document whose Info dictionary key is set.

szInfoKey LPCSTR The name of the Info dictionary key whose value is set.

szBuffer LPSTR Buffer containing the value to associate with szInfoKey.

nSize LONG The number of bytes in buffer.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The following standard document information dictionary keys are read-only: "Producer", "Created", and "Modified";
the library will overwrite the values of these keys on document save.

See Section 10.2.1 on Info dictionaries in the PDF Reference for information about Info dictionaries. All values in the Info
dictionary should be strings; other data types such as numbers and Booleans should not be used as values in the Info
dictionary. If an info dictionary key is specified that is not currently in the info dictionary, it is added to the dictionary.

ImageGear Professional v18 for Mac | 1922

1.3.3.4.2.6.22 IG_PDF_doc_set_new_crypt_handler

Sets specified document's new security handler (the security handler that will be used after the document is saved).

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_doc_set_new_crypt_handler(
 HIG_PDF_DOC hDoc,
 HIG_PDF_ATOM hNewCryptHandler
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document whose new security handler is set.

hNewCryptHandler HIG_PDF_ATOM The PDF atom for the name of the new security handler to use for the
document. Use IG_PDF_ATOM_NULL to remove security from the document.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This function returns with no action if the new security handler is the same as the old one.

ImageGear Professional v18 for Mac | 1923

1.3.3.4.2.6.23 IG_PDF_doc_set_new_security_data

Sets the security data structure for the specified document's new security handler.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_doc_set_new_security_data(
 HIG_PDF_DOC hDoc,
 LPAT_PDF_SECURITYDATA lpSecData
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document whose new security data structure is set.

lppSecData LPAT_PDF_SECURITYDATA Pointer to the new security data structure to set for doc.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The new security handler must have been previously set using IG_PDF_doc_set_new_crypt_handler.

ImageGear Professional v18 for Mac | 1924

1.3.3.4.2.7 HIG_PDF_FONT

Handle to a PDF font object that is used to draw text on a page. A HIG_PDF_FONT has a number of attributes, including
an array of widths and the character encoding.

Members:

IG_PDF_font_get_bbox Gets a Type 3 font's bounding box.

IG_PDF_font_get_charset Gets the font's character set.

IG_PDF_font_get_cid_systeminfo Gets Registry and Ordering information for a CIDFont.

IG_PDF_font_get_cid_system_supplement Gets the SystemSupplement number of a CIDFont.

IG_PDF_font_get_descendant Gets a Type 0 font's descendant.

IG_PDF_font_get_encoding_index Gets a font's encoding index.

IG_PDF_font_get_encoding_name Gets a string representing a font's encoding.

IG_PDF_font_get_font_matrix Gets a font's matrix.

IG_PDF_font_get_metrics Gets a font's metrics.

IG_PDF_font_get_name Gets the name of a font.

IG_PDF_font_get_subtype Gets a font's subtype.

IG_PDF_font_get_widths Gets the advance width of every glyph in a font.

IG_PDF_font_is_embedded Tests whether the specified font is embedded in the PDF file.

IG_PDF_font_set_metrics Sets a font's metrics.

IG_PDF_font_translate_string Translates a string from the hFont's encoding into host encoding.

IG_PDF_font_translate_to_host Translates a string from the hFont's encoding to host encoding.

IG_PDF_font_translate_to_ucs Translates a string from whatever encoding the hFont uses to Unicode
encoding.

IG_PDF_font_translate_widths Translates an array of 256 glyph advance widths from their order in the
PDF file into host encoding order.

ImageGear Professional v18 for Mac | 1925

1.3.3.4.2.7.1 IG_PDF_font_get_bbox

Gets a Type 3 font's bounding box, which is the smallest rectangle that would enclose every character in the font if they
were overlaid and painted.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_font_get_bbox(
 HIG_PDF_FONT hFont,
 LPAT_PDF_FIXEDRECT lpBBox
);

Arguments:

Name Type Description

hFont HIG_PDF_FONT The font whose bounding box is obtained.

lpBBox LPAT_PDF_FIXEDRECT The font's bounding box.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1926

1.3.3.4.2.7.2 IG_PDF_font_get_charset

Gets the font's character set.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_font_get_charset(
 HIG_PDF_FONT hFont,
 LPAT_INT lpCharSet
);

Arguments:

Name Type Description

hFont HIG_PDF_FONT The font whose character set is obtained.

lpCharSet LPAT_INT The font's character set.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

For non-Roman character set viewers, call IG_PDF_font_get_encoding_name() instead.

ImageGear Professional v18 for Mac | 1927

1.3.3.4.2.7.3 IG_PDF_font_get_cid_systeminfo

Gets Registry and Ordering information for a CIDFont.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_font_get_cid_systeminfo(
 HIG_PDF_FONT hFont,
 LPHIG_PDF_ATOM lphCIDSystemInfo
);

Arguments:

Name Type Description

hFont HIG_PDF_FONT The font whose Registry and Ordering information is obtained.

lphCIDSystemInfo LPHIG_PDF_ATOM CIDFont's Registry and Ordering information.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This function takes either a Type 0 font or descendant font (CIDType0 or CIDType2) as an argument. This information is
always present for any Type 0 font; the actual registry ordering information is a part of the descendant font.

ImageGear Professional v18 for Mac | 1928

1.3.3.4.2.7.4 IG_PDF_font_get_cid_system_supplement

Gets the SystemSupplement number of a CIDFont.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_font_get_cid_system_supplement(
 HIG_PDF_FONT hFont,
 LPLONG lpCIDSystemSupplement
);

Arguments:

Name Type Description

hFont HIG_PDF_FONT The font whose SystemSupplement field is obtained.

lpCIDSystemSupplement LPLONG The SystemSupplement field from the CIDFont.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1929

1.3.3.4.2.7.5 IG_PDF_font_get_descendant

Gets a Type 0 font's descendant, which may be a CIDType0 or CIDType2 font.

Declaration:

AT_ERRCOUNT ACCUAPI (
 HIG_PDF_FONT hFont,
 LPHIG_PDF_FONT lphFont
);

Arguments:

Name Type Description

hFont HIG_PDF_FONT The font whose descendant is obtained.

lphFont LPHIG_PDF_FONT The font's descendant font.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1930

1.3.3.4.2.7.6 IG_PDF_font_get_encoding_index

Gets a font's encoding index.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_font_get_encoding_index(
 HIG_PDF_FONT hFont,
 LPLONG lpIndex
);

Arguments:

Name Type Description

hFont HIG_PDF_FONT The font whose encoding index is obtained.

lpIndex LPLONG A font encoding index.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

For non-Roman character set viewers, it is not appropriate to call this function; call IG_PDF_font_get_encoding_name()
instead.

ImageGear Professional v18 for Mac | 1931

1.3.3.4.2.7.7 IG_PDF_font_get_encoding_name

Gets a string representing a font's encoding.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_font_get_encoding_name(
 HIG_PDF_FONT hFont,
 LPBYTE* EncodingName
);

Arguments:

Name Type Description

hFont HIG_PDF_FONT The font whose encoding name is obtained.

EncodingName LPBYTE* String representing the font's encoding.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Use IG_PDF_font_get_encoding_index() to get encoding information for Roman viewers.

ImageGear Professional v18 for Mac | 1932

1.3.3.4.2.7.8 IG_PDF_font_get_font_matrix

Gets a font's matrix, which specifies the transformation from character space to text space.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_font_get_font_matrix(
 HIG_PDF_FONT hFont,
 LPAT_PDF_FIXEDMATRIX lpMatrix
);

Arguments:

Name Type Description

hFont HIG_PDF_FONT The font whose matrix is obtained.

lpMatrix LPAT_PDF_FIXEDMATRIX Font's matrix.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This is only valid for Type 3 fonts.

ImageGear Professional v18 for Mac | 1933

1.3.3.4.2.7.9 IG_PDF_font_get_metrics

Gets a font's metrics, which provide the information needed to create a substitute multiple master font when the original
font is unavailable.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_font_get_metrics(
 HIG_PDF_FONT hFont,
 LPAT_PDF_FONT_METRICS lpFontMetrics
);

Arguments:

Name Type Description

hFont HIG_PDF_FONT The font whose metrics are obtained.

lpFontMetrics LPAT_PDF_FONT_METRICS The font's metrics.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1934

1.3.3.4.2.7.10 IG_PDF_font_get_name

Gets the name of a font.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_font_get_name(
 HIG_PDF_FONT hFont,
 LPSTR buffer,
 LONG bufSize,
 LPLONG lpCharacterNum
);

Arguments:

Name Type Description

hFont HIG_PDF_FONT The font whose name is obtained.

buffer LPSTR Buffer into which the font's name is stored. The client may pass NULL to obtain
the buffer size, then call the method with a buffer of the appropriate size.

bufSize LONG Length of buffer, in bytes.

lpCharacterNum LPLONG The number of characters in the font name.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The behavior depends on the font type; for a Type 3 font it gets the value of the Name key in a PDF Font resource. For
other types, it gets the value of the BaseFont key in a PDF font resource.

ImageGear Professional v18 for Mac | 1935

1.3.3.4.2.7.11 IG_PDF_font_get_subtype

Gets a font's subtype.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_font_get_subtype(
 HIG_PDF_FONT hFont,
 LPHIG_PDF_ATOM lphSubType
);

Arguments:

Name Type Description

hFont HIG_PDF_FONT The font whose subtype is obtained.

lphSubType LPHIG_PDF_ATOM The font's subtype.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1936

1.3.3.4.2.7.12 IG_PDF_font_get_widths

Gets the advance width of every glyph in a font.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_font_get_widths(
 HIG_PDF_FONT hFont,
 LPSHORT lpWidths
);

Arguments:

Name Type Description

hFont HIG_PDF_FONT The font whose glyph advance widths are obtained.

lphSubType LPSHORT An array of glyph advance widths, measured in character space units. Unencoded code
points will have a width of zero. For non-Roman character set viewers, an array for a
single byte range (0 through 255).

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The advance width is the amount by which the current point advances when the glyph is drawn. The advance width may
not correspond to the visible width of the glyph (for example, a glyph representing an accent mark might have an
advance width of zero so that characters can be drawn under it). For this reason, the advance width cannot be used to
determine the glyphs' bounding boxes. For non-Roman character set viewers, this function gets the width for a single
byte range (0 through 255).

ImageGear Professional v18 for Mac | 1937

1.3.3.4.2.7.13 IG_PDF_font_is_embedded

Tests whether the specified font is embedded in the PDF file (that is, the font is stored as a font file, which is a stream
embedded in the PDF file).

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_font_is_embedded(
 HIG_PDF_FONT hFont,
 LPAT_PDF_BOOL lpbIsEmbedded
);

Arguments:

Name Type Description

hFont HIG_PDF_FONT The font to test.

lpbIsEmbedded LPAT_PDF_BOOL Returns TRUE if the font is embedded in the file; FALSE otherwise.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Only Type 1 and TrueType fonts can be embedded.

ImageGear Professional v18 for Mac | 1938

1.3.3.4.2.7.14 IG_PDF_font_set_metrics

Sets a font's metrics, which provide the information needed to create a substitute multiple master font when the original
font is unavailable.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_font_set_metrics(
 HIG_PDF_FONT hFont,
 LPAT_PDF_FONT_METRICS lpFontMetrics
);

Arguments:

Name Type Description

hFont HIG_PDF_FONT The font whose metrics are being set.

lpFontMetrics LPAT_PDF_FONT_METRICS Pointer to a AT_PDF_FONT_METRICS structure containing the font's
metrics.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This function can only be used on Type 1, multiple master Type 1, and TrueType fonts; it cannot be used on Type 3
fonts.

ImageGear Professional v18 for Mac | 1939

1.3.3.4.2.7.15 IG_PDF_font_translate_string

Translates a string from the hFont's encoding into host encoding.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_font_translate_string(
 HIG_PDF_FONT hFont,
 LPSTR inP,
 LPSTR outP,
 LONG len,
 LPAT_PDF_BOOL lpbTableExists
);

Arguments:

Name Type Description

hFont HIG_PDF_FONT The font (and hence, encoding) that inP uses.

inP LPSTR The string to translate.

outP LPSTR The translated string. outP may point to the same buffer as inP to allow in-place
translation.

len LONG The length of inP and outP.

lpbTableExists LPAT_PDF_BOOL Returns TRUE if an XlateTable exists in the font; FALSE otherwise. If no XlateTable
exists in the font, outP is not written.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

If any characters cannot be represented in host encoding, they are replaced with space characters. If no XlateTable
exists in the font, the function returns FALSE and outP is not written. For non-Roman character set viewers, it is not
appropriate to call this function.

ImageGear Professional v18 for Mac | 1940

1.3.3.4.2.7.16 IG_PDF_font_translate_to_host

Translates a string from the hFont's encoding to host encoding.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_font_translate_to_host(
 HIG_PDF_FONT hFont,
 LPSTR inP,
 LONG inLen,
 LPSTR outP,
 LONG outLen,
 LPLONG lpLen
);

Arguments:

Name Type Description

hFont HIG_PDF_FONT The font used in the input string inP.

inP LPSTR The pointer to the string to translate.

inLen LONG The length of the inP buffer, in bytes.

outP LPSTR The pointer to the translated string.

outLen LONG The length of the outP buffer, in bytes.

lpLen LPLONG The number of bytes in the translated string outP.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1941

1.3.3.4.2.7.17 IG_PDF_font_translate_to_ucs

Translates a string from whatever encoding the hFont uses to Unicode encoding.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_font_translate_to_ucs(
 HIG_PDF_FONT hFont,
 LPSTR inP,
 LONG inLen,
 LPSTR outP,
 LONG outLen,
 LPLONG lpLen
);

Arguments:

Name Type Description

hFont HIG_PDF_FONT The font of the input string inP.

inP LPSTR The pointer to the string to translate.

inLen LONG The length of the inP buffer, in bytes.

outP LPSTR The pointer to the translated string.

outLen LONG The length of the outP buffer, in bytes.

lpLen LPLONG The number of bytes in the translated string outP.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1942

1.3.3.4.2.7.18 IG_PDF_font_translate_widths

Translates an array of 256 glyph advance widths from their order in the PDF file into host encoding order.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_font_translate_widths(
 HIG_PDF_FONT hFont,
 LPSHORT inP,
 LPSHORT outP
);

Arguments:

Name Type Description

hFont HIG_PDF_FONT The font whose glyph widths are translated.

inP LPSHORT Array of glyph advance widths to rearrange.

outP LPSHORT Rearranged array of glyph advance widths.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

If the widths are already in host encoding order, the widths are merely copied. All un-encoded code points are given a
width of zero. For non-Roman character set viewers, it is not appropriate to call this function.

ImageGear Professional v18 for Mac | 1943

1.3.3.4.2.8 HIG_PDF_LAYER

Handle to the PDF layer object which represents a named object whose state can be toggled in a User Interface to affect
changes in visibility of content.

Members:

IG_PDF_layer_create Creates new layer (optional-content group) object in the document.

IG_PDF_layer_get_name Gets the layer name.

IG_PDF_layer_set_name Sets the new layer name.

IG_PDF_layer_get_current_state Gets the current ON-OFF state of the layer object.

IG_PDF_layer_set_current_state Sets the current ON-OFF state of the layer object.

IG_PDF_layer_get_initial_state Gets the initial ON-OFF state of the layer object.

IG_PDF_layer_set_initial_state Sets the initial ON-OFF state of the layer object.

IG_PDF_layer_has_usage_info Tests whether a layer object is associated with a Usage dictionary.

IG_PDF_layer_get_usage_info Gets usage information from a layer object.

IG_PDF_layer_set_usage_info Sets a Usage dictionary entry in a layer object.

IG_PDF_layer_get_intent Gets the intent list for a layer.

IG_PDF_layer_set_intent Sets the Intent entry in a layer's dictionary.

IG_PDF_layer_get_unique_id Sets a unique ID.

IG_PDF_layer_release Releases a layer object.

IG_PDF_layer_remove Destroys layer (optional-content group) object.

ImageGear Professional v18 for Mac | 1944

1.3.3.4.2.8.1 IG_PDF_layer_create

Creates new layer (optional-content group) object in the document.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_layer_create(
 HIG_PDF_DOC hDoc,
 LPSTR lpTextBuf,
 AT_DWORD nTextLen,
 LPHIG_PDF_LAYER lphLayer
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document in which the group is used.

lpTextBuf LPSTR The name of the layer.

nTextLen AT_DWORD Length of the lpTextBuf.

lphLayer LPHIG_PDF_LAYER A pointer to memory that is overwritten with the value of the newly created group
object handle.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1945

1.3.3.4.2.8.2 IG_PDF_layer_get_current_state

This function gets the current ON-OFF state of the layer object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_layer_get_current_state(
 HIG_PDF_LAYER hLayer,
 LPAT_PDF_BOOL lpbState
);

Arguments:

Name Type Description

hLayer HIG_PDF_LAYER Layer whose current state is obtained.

lpbState LPAT_PDF_BOOL Returns TRUE if the state is ON; FALSE if it is OFF.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1946

1.3.3.4.2.8.3 IG_PDF_layer_get_initial_state

This function gets the initial ON-OFF state of the layer object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_layer_get_initial_state(
 HIG_PDF_LAYER hLayer,
 LPAT_PDF_BOOL lpbState
);

Arguments:

Name Type Description

hLayer HIG_PDF_LAYER Layer whose initial state is obtained.

lpbState LPAT_PDF_BOOL Returns TRUE if the state is ON; FALSE if it is OFF.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1947

1.3.3.4.2.8.4 IG_PDF_layer_get_intent

This function gets the intent list for a layer.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_layer_get_intent(
 HIG_PDF_LAYER hLayer,
 LPHIG_PDF_ATOM lphIntent,
 UINT nSize,
 LPUINT lpnLen
);

Arguments:

Name Type Description

hLayer HIG_PDF_LAYER Layer object whose intent is obtained.

lphIntent LPHIG_PDF_ATOM Returns array of intent entries.

nSize UINT Maximal size of lphIntent.

lpnLen LPUINT Actual number of intent entries copied to lphIntent.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Intent is an atom value broadly describing the intended use, either View or Design. A layer's content is considered to be
optional (that is, the layer's state is considered in its visibility) if any intent in its list matches an intent of the context.
The intent list of the context is usually set from the intent list of the document configuration.

ImageGear Professional v18 for Mac | 1948

1.3.3.4.2.8.5 IG_PDF_layer_get_name

This function gets the layer name.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_layer_get_name(
 HIG_PDF_LAYER hLayer,
 LPSTR lpTextBuf,
 UINT nBufSize,
 LPUINT lpnTextLen
);

Arguments:

Name Type Description

hLayer HIG_PDF_LAYER Layer whose name is obtained.

lpTextBuf LPSTR Pointer to a buffer for text string.

nBufSize UINT Maximum size of the buffer.

lpnTextLen LPUINT Actual length of the name string copied into the buffer.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1949

1.3.3.4.2.8.6 IG_PDF_layer_get_unique_id

Returns some 32-bit integer that is unique for all Layer objects.

Declaration:

IG_PDF_layer_get_unique_id(
 HIG_PDF_LAYER hLayer,
 LPUINT lpnUniqueId
);

Arguments:

Name Type Description

hLayer HIG_PDF_LAYER Layer object.

lpnUniqueId LPUINT The unique identifier.

Return Value:

A unique identifier of this Layer Object.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

It is guaranteed that there cannot be two Layer objects with the same UniqueIds. This can be used for Layer objects'
identification.

ImageGear Professional v18 for Mac | 1950

1.3.3.4.2.8.7 IG_PDF_layer_get_usage_info

This function gets usage information from a layer object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_layer_get_usage_info(
 HIG_PDF_LAYER hLayer,
 HIG_PDF_ATOM hUsageKey,
 LPHIG_PDF_BASOBJ lphUsageInfo
);

Arguments:

Name Type Description

hLayer HIG_PDF_LAYER Layer object whose usage information is obtained.

hUsageKey HIG_PDF_ATOM The usage key in the usage dictionary entry. Possible key values are:
CreatorInfo
Language
Export
Zoom
Print
View
User
PageElement

lphUsageInfo LPHIG_PDF_BASOBJ The usage information associated with the given key in the Usage dictionary for
the layer, or a NULL if the operation fails (because the layer is malformed or has
no dictionary, or because the dictionary has no entry corresponding to the given
key).

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

A Usage dictionary entry provides more specific intended usage information than an intent entry.

ImageGear Professional v18 for Mac | 1951

1.3.3.4.2.8.8 IG_PDF_layer_has_usage_info

This function verifies whether a layer object is associated with a Usage dictionary.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_layer_has_usage_info(
 HIG_PDF_LAYER hLayer,
 LPAT_PDF_BOOL lpbHasUsage
);

Arguments:

Name Type Description

hLayer HIG_PDF_LAYER Layer object.

lpbHasUsage LPAT_PDF_BOOL Returns TRUE if the layer has a Usage dictionary; FALSE otherwise.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1952

1.3.3.4.2.8.9 IG_PDF_layer_release

Releases the native object and frees its memory.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_layer_release(
 HIG_PDF_LAYER hLayer
);

Arguments:

Name Type Description

hLayer HIG_PDF_LAYER Layer object to release.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1953

1.3.3.4.2.8.10 IG_PDF_layer_remove

Destroys layer (optional-content group) object, but does not delete any content.

Declaration:

IG_PDF_layer_remove(
 HIG_PDF_LAYER hLayer
);

Arguments:

Name Type Description

hLayer HIG_PDF_LAYER The layer object.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1954

1.3.3.4.2.8.11 IG_PDF_layer_set_current_state

This function sets the current ON-OFF state of the layer object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_layer_set_current_state(
 HIG_PDF_LAYER hLayer,
 AT_PDF_BOOL bState
);

Arguments:

Name Type Description

hLayer HIG_PDF_LAYER Layer whose current state is set.

bState AT_PDF_BOOL New state.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1955

1.3.3.4.2.8.12 IG_PDF_layer_set_initial_state

This function sets the initial ON-OFF state of the layer object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_layer_set_initial_state(
 HIG_PDF_LAYER hLayer,
 AT_PDF_BOOL bState
);

Arguments:

Name Type Description

hLayer HIG_PDF_LAYER Layer whose initial state is set.

bState AT_PDF_BOOL The new state.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1956

1.3.3.4.2.8.13 IG_PDF_layer_set_intent

This function sets the Intent entry in a layer's dictionary.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_layer_set_intent(
 HIG_PDF_LAYER hLayer,
 LPHIG_PDF_ATOM lphIntent,
 UINT nLen
);

Arguments:

Name Type Description

hLayer HIG_PDF_LAYER Layer object whose intent is set.

lphIntent LPHIG_PDF_ATOM New Intent entry value, an array of intent entries (atoms).

nLen UINT Number of intent entries in lphIntent.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Intent is an atom value broadly describing the intended use, either View or Design. A layer's content is considered to be
optional (that is, the layer's state is considered in its visibility) if any intent in its list matches an intent of the context.
The intent list of the context is usually set from the intent list of the document configuration.

ImageGear Professional v18 for Mac | 1957

1.3.3.4.2.8.14 IG_PDF_layer_set_name

This function sets the new layer name.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_layer_set_name(
 HIG_PDF_LAYER hLayer,
 LPSTR lpTextBuf,
 UINT nTextLen
);

Arguments:

Name Type Description

hLayer HIG_PDF_LAYER Layer whose name is set.

lpTextBuf LPSTR Pointer to a string buffer.

nBufSize UINT Length of the string buffer.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1958

1.3.3.4.2.8.15 IG_PDF_layer_set_usage_info

This function sets a Usage dictionary entry in a layer object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_layer_set_usage_info(
 HIG_PDF_LAYER hLayer,
 HIG_PDF_ATOM hUsageKey,
 HIG_PDF_BASOBJ hUsageInfo
);

Arguments:

Name Type Description

hLayer HIG_PDF_LAYER Layer object whose usage information is set.

hUsageKey HIG_PDF_ATOM The usage key in the usage dictionary entry. Possible key values are:
CreatorInfo
Language
Export
Zoom
Print
View
User
PageElement

hUsageInfo HIG_PDF_BASOBJ The usage information to associate with the key.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The entry associates usage information with an entry key for retrieval. If a dictionary does not exist, the method creates
one.

A Usage dictionary entry provides more specific intended usage information than an intent entry.

The usage value can act as a kind of metadata, describing the sort of things that belong to the layer: for example, text
in French, fine detail on a map, or a watermark. The usage values can also be used by the AutoState mechanism to
make decisions about what layers should be on and what layers should be off.

ImageGear Professional v18 for Mac | 1959

1.3.3.4.2.9 HIG_PDF_PAGE

Handle to the PDF page object. A single page in the PDF representation of a document. A page contains a series of
objects representing the objects drawn on the page (Graphic), a list of resources used in drawing the page, annotations
(Annotation), an optional thumbnail image of the page, and the beads used in any articles that occur on the page.

Members:

IG_PDF_page_get_content Creates HIG_PDE_CONTENT from HIG_PDF_PAGE.

IG_PDF_page_get_crop_box Gets the crop box for the page.

IG_PDF_page_get_rotation Gets the rotation for the page.

IG_PDF_page_make_color_separations Separates hPage's DeviceN colorants into individual layers.

IG_PDF_page_set_content Sets the page's PDF content back into the HIG_PDF_PAGE object, using the
same compression filters with which the content was previously encoded.

IG_PDF_page_release_content Decrements HIG_PDF_PAGE's PDF content internal reference count.

IG_PDF_page_get_annotation_count Gets the number of annotations on a page.

ImageGear Professional v18 for Mac | 1960

1.3.3.4.2.9.1 IG_PDF_page_get_annotation_count

Gets the number of annotations on a page.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_page_get_annotation_count(
 HIG_PDF_PAGE hPage,
 LPUINT lpnCount
);

Arguments:

Name Type Description

hPage HIG_PDF_PAGE The page for which the number of annotations is obtained.

lpnCount LPUINT The number of annotations return value.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Annotations associated with pop-up windows (such as strikeouts) are counted as two annotations. Widget annotations
(form fields) are included in the count.

ImageGear Professional v18 for Mac | 1961

1.3.3.4.2.9.2 IG_PDF_page_get_content

Creates HIG_PDE_CONTENT from HIG_PDF_PAGE.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_page_get_content(
 HIG_PDF_PAGE hPage,
 LPHIG_PDE_CONTENT lpnContent
);

Arguments:

Name Type Description

hPage HIG_PDF_PAGE The page whose content object is acquired.

lpnContent LPHIG_PDE_CONTENT PDE content return value.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The PDF content is cached, so that subsequent calls on the same page return the same PDF content.

ImageGear Professional v18 for Mac | 1962

1.3.3.4.2.9.3 IG_PDF_page_get_crop_box

Gets the crop box for the page.

Declaration:

AT_ERRCOUNT ACCUAPI i_IG_PDF_page_get_crop_box(
 HIG_PDF_PAGE hPage,
 LPAT_PDF_FIXEDRECT lpFixedBox
);

Arguments:

Name Type Description

hPage HIG_PDF_PAGE The page whose crop box is obtained.

lpFixedBox LPAT_PDF_FIXEDRECT The crop box.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1963

1.3.3.4.2.9.4 IG_PDF_page_get_rotation

Gets the rotation for the page.

Declaration:

AT_ERRCOUNT ACCUAPI i_IG_PDF_page_get_rotation(
 HIG_PDF_PAGE hPage,
 LPSHORT lpRotation
);

Arguments:

Name Type Description

hPage HIG_PDF_PAGE The page whose rotation is obtained.

lpRotation LPSHORT The rotation.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1964

1.3.3.4.2.9.5 IG_PDF_page_make_color_separations

Separates hPage's DeviceN colorants into individual layers; the resulting page is inserted in hDoc after the page with
index nAfterPage.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_page_make_color_separations(
 HIG_PDF_PAGE hPage,
 LPHIG_PDF_ATOM pColorChannels,
 UINT nColorChannelsNum,
 HIG_PDF_DOC hDoc,
 LONG nAfterPage
);

Arguments:

Name Type Description

hPage HIG_PDF_PAGE The page whose content object is acquired.

pColorChannels LPHIG_PDF_ATOM Atom array containing the colorant names to separate. Example: "C", "M",
"Y", "K", "PANTONE 300 C", etc.

nColorChannelsNum UINT Number of elements in pColorChannels.

hDoc HIG_PDF_DOC Output PDF document.

nAfterPage LONG The page number in the output PDF document after which the result page
is inserted.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

HIG_PDF_ATOM* pColorChannels = new HIG_PDF_ATOM[2];
IG_PDF_atom_from_string("Y", &pColorChannels[0]);
IG_PDF_atom_from_string("PANTONE 300 C", &pColorChannels[1]);
nErrCount += IG_PDF_page_make_color_separations(GetCurPDFPage(), pColorChannels, 2,
GetPDFDoc(), nPageCount-2);
delete pColorChannels;

ImageGear Professional v18 for Mac | 1965

1.3.3.4.2.9.6 IG_PDF_page_release_content

Decrements HIG_PDF_PAGE's PDF content internal reference count.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_page_release_content(
 HIG_PDF_PAGE hPage
);

Arguments:

Name Type Description

hPage HIG_PDF_PAGE The page whose content object's use count is decremented.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The content is not automatically deleted when the reference count becomes zero - it remains in the cache until the cache
slot is needed for another HIG_PDF_PAGE. Thus, you do not need to keep a content acquired for performance reasons.

ImageGear Professional v18 for Mac | 1966

1.3.3.4.2.9.7 IG_PDF_page_set_content

Sets the page's PDF content back into the HIG_PDF_PAGE object, using the same compression filters with which the
content was previously encoded.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_page_set_content(
 HIG_PDF_PAGE hPage
);

Arguments:

Name Type Description

hPage HIG_PDF_PAGE The page whose content object is set.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1967

1.3.3.4.2.10 HIG_PDF_STREAM

Handle to the PDF stream object. A data stream that may be a buffer in memory, or an arbitrary user-written procedure.
Typically used to extract or provide data.

Members:

IG_PDF_stream_open_mem_for_read Creates a read-only PDF stream from a memory-resident buffer.

IG_PDF_stream_read_CB_register Creates a read-only PDF stream from an arbitrary data-producing procedure.

IG_PDF_stream_write_CB_register Creates a PDF stream from an arbitrary data-producing procedure.

IG_PDF_stream_read Creates a read-only PDF stream from an arbitrary data-producing procedure.

IG_PDF_stream_flush Flushes any buffered data to the specified stream.

IG_PDF_stream_close Closes the specified stream.

ImageGear Professional v18 for Mac | 1968

1.3.3.4.2.10.1 IG_PDF_stream_close

Closes the specified stream.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_stream_close(
 HIG_PDF_STREAM hStream
);

Arguments:

Name Type Description

hStream HIG_PDF_STREAM The stream to close.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1969

1.3.3.4.2.10.2 IG_PDF_stream_flush

Flushes any buffered data to the specified stream.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_stream_flush(
 HIG_PDF_STREAM hStream,
 LPLONG lpnResult
);

Arguments:

Name Type Description

hStream HIG_PDF_STREAM The stream to flush.

lpnResult LPLONG 0 if successful; otherwise non-zero.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1970

1.3.3.4.2.10.3 IG_PDF_stream_open_mem_for_read

Creates a read-only PDF stream from a memory-resident buffer.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_stream_open_mem_for_read(
 LPSTR lpData,
 UINT nLen,
 LPHIG_PDF_STREAM lphStream
);

Arguments:

Name Type Description

lpData LPSTR Buffer containing the data to read into the stream. This data buffer must not be
disposed of until the stream is closed.

nLen UINT Length of data, in bytes.

lphStream LPHIG_PDF_STREAM Handle to the new stream.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The stream is seek-able.

ImageGear Professional v18 for Mac | 1971

1.3.3.4.2.10.4 IG_PDF_stream_read

Creates a read-only PDF stream from an arbitrary data-producing procedure.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_stream_read(
 HIG_PDF_STREAM hStream,
 LPSTR lpBuffer,
 LONG nItems,
 SHORT nItemSize,
 LPLONG lpnItemsRead
);

Arguments:

Name Type Description

hStream HIG_PDF_STREAM The stream from which data is read.

lpBuffer LPSTR Buffer into which data is written.

nItems LONG Number of items to read. The amount of data read into the memory buffer will be
nItems ? nItemSize, unless an EOF is encountered first. The relative values of
nItems and nItemSize really do not matter; the only thing that matters is their
product. It is often convenient to set nItemSize to 1, so that nItems is the
number of bytes to read.

nItemSize SHORT Number of bytes in an item in the stream.

lpnItemsRead LPLONG The number of items (not bytes) read.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The stream is not seek-able. lpfnReadProc is called when the client of the stream attempts to read data from it.

ImageGear Professional v18 for Mac | 1972

1.3.3.4.2.10.5 IG_PDF_stream_read_CB_register

Creates a read-only PDF stream from an arbitrary data-producing procedure.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_stream_read_CB_register(
 LPFNIG_PDF_STREAM_PROC lpfnReadProc,
 LPVOID lpClientData,
 LPHIG_PDF_STREAM lphStream
);

Arguments:

Name Type Description

lpfnReadProc LPFNIG_PDF_STREAM_PROC User-supplied callback that supplies the stream's data.

lpClientData LPVOID Pointer to user-supplied data to pass to lpfnReadProc each time it is
called.

lphStream LPHIG_PDF_STREAM Handle to the new stream.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The stream is not seek-able. lpfnReadProc is called when the client of the stream attempts to read data from it.

ImageGear Professional v18 for Mac | 1973

1.3.3.4.2.10.6 IG_PDF_stream_write_CB_register

Creates a PDF stream from an arbitrary data-producing procedure.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_stream_write_CB_register(
 LPFNIG_PDF_STREAM_PROC lpfnWriteProc,
 LPFNIG_PDF_STREAM_DESTROYPROC lpfnDestroyProc,
 LPVOID lpClientData,
 LPHIG_PDF_STREAM lphStream
);

Arguments:

Name Type Description

lpfnWriteProc LPFNIG_PDF_STREAM_PROC User-supplied callback that provides the data for the
stream.

lpfnDestroyProc LPFNIG_PDF_STREAM_DESTROYPROC User-supplied callback that destroys the specified stream.

lpClientData LPVOID Pointer to user-supplied data to pass to lpfnWriteProc each
time it is called.

lphStream LPHIG_PDF_STREAM Handle to the new stream.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The stream is not seek-able.

ImageGear Professional v18 for Mac | 1974

1.3.3.4.2.11 HIG_PDF_STYLE

Handle to the PDF style object; provides access to information about the fonts, font sizes, and colors used in a Word.

Members:

IG_PDF_style_get_color Gets a style's color.

IG_PDF_style_get_font Gets the specified style's font.

IG_PDF_style_get_font_size Get a style's font size.

IG_PDF_style_delete Deletes a PDF style object.

ImageGear Professional v18 for Mac | 1975

1.3.3.4.2.11.1 IG_PDF_style_delete

Deletes a PDF style object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_style_delete(
 HIG_PDF_STYLE hStyle
);

Arguments:

Name Type Description

hStyle HIG_PDF_STYLE Style object to delete.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1976

1.3.3.4.2.11.2 IG_PDF_style_get_color

Gets a style's color.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_style_get_color(
 HIG_PDF_STYLE hStyle,
 LPAT_PDF_COLORVALUE lpColor
);

Arguments:

Name Type Description

hStyle HIG_PDF_STYLE The style whose color is obtained.

lpColor LPAT_PDF_COLORVALUE The style's color.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1977

1.3.3.4.2.11.3 IG_PDF_style_get_font

Gets the specified style's font.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_style_get_font(
 HIG_PDF_STYLE hStyle,
 LPHIG_PDF_FONT lphFont
);

Arguments:

Name Type Description

hStyle HIG_PDF_STYLE The style whose font is obtained.

lphFont LPHIG_PDF_FONT The font for the specified style.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1978

1.3.3.4.2.11.4 IG_PDF_style_get_font_size

Get a style's font size.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_style_get_font_size(
 HIG_PDF_STYLE hStyle,
 LPAT_PDF_FIXED lpnFontSize
);

Arguments:

Name Type Description

hStyle HIG_PDF_STYLE The style whose font size is obtained.

lpnFontSize LPAT_PDF_FIXED A style's font size.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1979

1.3.3.4.2.12 HIG_PDF_SYSENCODING

Handle to the system encoding object. Provides system encoding for a PDF file.

Members:

IG_PDF_sysencoding_create_from_base_name Create an encoding object from base name.

IG_PDF_sysencoding_create_from_cmap_name Create an encoding object from a PDF CMap name.

IG_PDF_sysencoding_create_from_code_page Create an encoding object from a PDF CMap name.

IG_PDF_sysencoding_get_writing_mode Returns writing mode in lpnWritingMode.

IG_PDF_sysencoding_is_identity Returns in lpbResult TRUE for Identity-H or Identity-V encoding;
FALSE otherwise.

IG_PDF_sysencoding_is_multibyte Returns in lpbResult TRUE for CMap encoding; FALSE otherwise.

IG_PDF_sysencoding_release Release an encoding object.

ImageGear Professional v18 for Mac | 1980

1.3.3.4.2.12.1 IG_PDF_sysencoding_create_from_base_name

Create an encoding object from base name.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_sysencoding_create_from_base_name(
 HIG_PDF_ATOM hBaseEncName,
 LPCSTR* lpDiffEnc,
 LPHIG_PDF_SYSENCODING lphSysEncoding
);

Arguments:

Name Type Description

hBaseEncName HIG_PDF_ATOM The base encoding. See Section 5.5.5 in the PDF Reference.

lpDiffEnc LPCSTR* Array of 256 const char* describing the differences from the encoding
specified by hBaseEncName. May be NULL.

lphSysEncoding LPHIG_PDF_SYSENCODING New encoding object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1981

1.3.3.4.2.12.2 IG_PDF_sysencoding_create_from_cmap_name

Create an encoding object from a PDF CMap name.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_sysencoding_create_from_cmap_name(
 HIG_PDF_ATOM hCMapName,
 LPHIG_PDF_SYSENCODING lphSysEncoding
);

Arguments:

Name Type Description

hCMapName HIG_PDF_ATOM The CMap name.

lphSysEncoding LPHIG_PDF_SYSENCODING New encoding object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1982

1.3.3.4.2.12.3 IG_PDF_sysencoding_create_from_code_page

Create an encoding object from a code page.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_sysencoding_create_from_code_page(
 LONG nCodePage,
 SHORT nWritingMode,
 LPHIG_PDF_SYSENCODING lphSysEncoding
);

Arguments:

Name Type Description

nCodePage LONG The code page character-mapping construct. One of
enumIGPDFCodePages values.

nWritingMode SHORT 0 for horizontal writing, 1 for vertical writing.

lphSysEncoding LPHIG_PDF_SYSENCODING New encoding object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1983

1.3.3.4.2.12.4 IG_PDF_sysencoding_get_writing_mode

Returns writing mode in lpnWritingMode; 0 for horizontal writing, and 1 for vertical writing.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_sysencoding_get_writing_mode(
 HIG_PDF_SYSENCODING hSysEncoding,
 LPSHORT lpnWritingMode
);

Arguments:

Name Type Description

hSysEncoding HIG_PDF_SYSENCODING An encoding object.

lpnWritingMode LPSHORT 0 for horizontal writing, and 1 for vertical writing.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1984

1.3.3.4.2.12.5 IG_PDF_sysencoding_is_identity

Returns in lpbResult TRUE for Identity-H or Identity-V encoding; FALSE otherwise.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_sysencoding_is_identity(
 HIG_PDF_SYSENCODING hSysEncoding,
 LPAT_BOOL lpbResult
);

Arguments:

Name Type Description

hSysEncoding HIG_PDF_SYSENCODING An encoding object.

lpbResult LPAT_BOOL TRUE for Identity-H or Identity-V encoding; FALSE otherwise.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1985

1.3.3.4.2.12.6 IG_PDF_sysencoding_is_multibyte

Returns in lpbResult TRUE for CMap encoding; FALSE otherwise.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_sysencoding_is_multibyte(
 HIG_PDF_SYSENCODING hSysEncoding,
 LPAT_BOOL lpbResult
);

Arguments:

Name Type Description

hSysEncoding HIG_PDF_SYSENCODING An encoding object.

lpbResult LPAT_BOOL TRUE for CMap encoding; FALSE otherwise.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1986

1.3.3.4.2.12.7 IG_PDF_sysencoding_release

Releases an encoding object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_sysencoding_release(
 HIG_PDF_SYSENCODING hSysEncoding
);

Arguments:

Name Type Description

hSysEncoding HIG_PDF_SYSENCODING An encoding object to release.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1987

1.3.3.4.2.13 HIG_PDF_SYSFONT

Handle to the system font object. A reference to a font installed in the host system. SysFont methods allow you to list
the fonts available in the host system and to find a font in the system that matches a PDE Font, if it is present.

Members:

IG_PDF_sysfont_enumerate Enumerates all of the system fonts with a user-supplied procedure.

IG_PDF_sysfont_find Finds a system font that matches the requested attributes.

IG_PDF_sysfont_find_for_pdefont Finds a system font that matches the requested hFont.

IG_PDF_sysfont_get_platform_data Gets platform-specific data for use by user interface code.

IG_PDF_sysfont_get_attrs Gets the attributes of a system font.

IG_PDF_sysfont_get_cid_system_info Derives the registry, ordering, and supplement information of a multi-byte
system font.

IG_PDF_sysfont_get_create_flags This function obtains lpnFlags that can be passed to
IG_PDE_font_create_from_sysfont_and_encoding.

IG_PDF_sysfont_get_info Gets high-level information about a system font.

IG_PDF_sysfont_get_name Gets the PostScript or TrueType styled name for a system font.

IG_PDF_sysfont_get_widths Gets the widths of a single byte encoded system font.

IG_PDF_sysfont_release_platform_data Releases platform-specific data for the specified hSysFont.

IG_PDF_sysfont_release Releases a system font object.

ImageGear Professional v18 for Mac | 1988

1.3.3.4.2.13.1 IG_PDF_sysfont_enumerate

Enumerates all of the system fonts with a user-supplied procedure.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_sysfont_enumerate(
 LPFNIG_PDF_SYSFONT_ENUMPROC lpfnEnumProc,
 LPVOID lpClientData
);

Arguments:

Name Type Description

lpfnEnumProc LPFNIG_PDF_SYSFONT_ENUMPROC User-supplied callback to call once for each system font.
Enumeration continues until all fonts have been enumerated, or
until lpfnEnumProc returns FALSE.

lpClientData LPVOID Pointer to user-supplied data to pass to lpfnEnumProc each time
it is called.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The SysFont parameters must be copied during the enumeration if they are needed beyond the lpfnEnumProc.

Developers should not assume that the lpfnEnumProc will get called. If no system fonts are found, lpfnEnumProc is never
called.

ImageGear Professional v18 for Mac | 1989

1.3.3.4.2.13.2 IG_PDF_sysfont_find

Finds a system font that matches the requested attributes.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_sysfont_find(
 LPAT_PDE_FONTATTRS lpAttrs,
 LONG nFlags,
 LPHIG_PDF_SYSFONT lphSysFont
);

Arguments:

Name Type Description

lpAttrs LPAT_PDE_FONTATTRS Pointer to AT_PDE_FONTATTRS structure with the attributes of the font for
which you are searching.

nFlags LONG Bit field comprised of enumIGPDFSysFontMatchFlags values. Passing zero
matches font by name only.

lphSysFont LPHIG_PDF_SYSFONT The desired system font.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1990

1.3.3.4.2.13.3 IG_PDF_sysfont_find_for_pdefont

Finds a system font that matches the requested hFont.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_sysfont_find_for_pdefont(
 HIG_PDE_FONT hFont,
 LONG nFlags,
 LPHIG_PDF_SYSFONT lphSysFont);

Arguments:

Name Type Description

hFont HIG_PDE_FONT A PDE Font whose matching system font is found.

nFlags LONG Bit field comprised of enumIGPDFSysFontMatchFlags values. Passing zero
matches font by name only.

lphSysFont LPHIG_PDF_SYSFONT The desired system font.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1991

1.3.3.4.2.13.4 IG_PDF_sysfont_get_attrs

Gets the attributes of a system font.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_sysfont_get_attrs(
 HIG_PDF_SYSFONT hSysFont,
 LPAT_PDE_FONTATTRS lpAttrs
);

Arguments:

Name Type Description

hSysFont HIG_PDF_SYSFONT A SysFont object referencing a system font.

lpAttrs LPAT_PDE_FONTATTRS Pointer to AT_PDE_FONTATTRS with the attributes of a system font.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The attributes will be returned in the buffer pointed to by lpAttrs.

This call can be expensive to execute, as it may involve parsing the font in order to determine attributes.

ImageGear Professional v18 for Mac | 1992

1.3.3.4.2.13.5 IG_PDF_sysfont_get_cid_system_info

Derives the registry, ordering, and supplement information of a multi-byte system font.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_sysfont_get_cid_system_info(
 HIG_PDF_SYSFONT hSysFont,
 LPHIG_PDF_ATOM lphRegistry,
 LPHIG_PDF_ATOM lphOrdering,
 LPLONG lpnSupplement
);

Arguments:

Name Type Description

hSysFont HIG_PDF_SYSFONT A SysFont object referencing a multi-byte system font.

lphRegistry LPHIG_PDF_ATOM The PDF atom representing the CID Font's registry information, as in "Adobe".

lphOrdering LPHIG_PDF_ATOM The PDF atom representing the CID Font's ordering information, for example,
"Japan1".

lpnSupplement LPLONG The SystemSupplement field from the CID Font.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This information can be used to create a PDE Font from a system font.

ImageGear Professional v18 for Mac | 1993

1.3.3.4.2.13.6 IG_PDF_sysfont_get_create_flags

This function obtains lpnFlags that can be passed to IG_PDE_font_create_from_sysfont_and_encoding.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_sysfont_get_create_flags(
 HIG_PDF_SYSFONT hSysFont,
 HIG_PDF_SYSENCODING hSysEncoding,
 LPLONG lpnFlags
);

Arguments:

Name Type Description

hSysFont HIG_PDF_SYSFONT A SysFont object.

hSysEncoding HIG_PDF_SYSENCODING A SysEncoding object.

lpnFlags LPLONG Create flags that can be passed to
IG_PDE_font_create_from_sysfont_and_encoding. If the combination of
hSysFont and hSysEncoding is not allowed, it is set to -1.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

If the combination of hSysFont and hSysEncoding is not allowed, it is set to -1.

ImageGear Professional v18 for Mac | 1994

1.3.3.4.2.13.7 IG_PDF_sysfont_get_info

Gets high-level information about a system font.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_sysfont_get_info(
 HIG_PDF_SYSFONT hSysFont,
 LPAT_PDE_FONT_INFO lpInfo
);

Arguments:

Name Type Description

hSysFont HIG_PDF_SYSFONT A SysFont object referencing a system font whose information is obtained.

lpInfo Pointer to AT_PDE_FONT_INFO structure to fill with font information for hSysFont.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1995

1.3.3.4.2.13.8 IG_PDF_sysfont_get_name

Gets the PostScript or TrueType styled name for a system font.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_sysfont_get_name(
 HIG_PDF_SYSFONT hSysFont,
 LPHIG_PDF_ATOM lphName
);

Arguments:

Name Type Description

hSysFont HIG_PDF_SYSFONT A SysFont object referencing a system font whose name is obtained.

lphName LPHIG_PDF_ATOM The PDF atom for the system font's name.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1996

1.3.3.4.2.13.9 IG_PDF_sysfont_get_platform_data

Gets platform-specific data for use by user interface code.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_sysfont_get_platform_data(
 HIG_PDF_SYSFONT hSysFont,
 LPAT_PDF_SYSFONT_PLATDATA* lpPlatData
);

Arguments:

Name Type Description

hSysFont HIG_PDF_SYSFONT A SysFont object referencing a system font.

lpPlatData LPAT_PDF_SYSFONT_PLATDATA* Pointer to an AT_PDF_SYSFONT_PLATDATA containing information
relating to a system font. Returns NULL if out of memory.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Must be released when finished by IG_PDF_sysfont_release_platform_data.

ImageGear Professional v18 for Mac | 1997

1.3.3.4.2.13.10 IG_PDF_sysfont_get_widths

Gets the widths of a single byte encoded system font.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_sysfont_get_widths(
 HIG_PDF_SYSFONT hSysFont,
 LPSHORT lpWidths,
 LPAT_PDF_FIXED mmDesignVector
);

Arguments:

Name Type Description

hSysFont HIG_PDF_SYSFONT A SysFont object referencing a system font whose widths are obtained.

lpWidths LPSHORT Pointer to widths array. lpWidths must have room for 256 entries.

mmDesignVector LPAT_PDF_FIXED If hSysFont is a multiple master font, points to the design vector, whose
length must equal the number of design axes of hSysFont.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1998

1.3.3.4.2.13.11 IG_PDF_sysfont_release

Releases a system font object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_sysfont_release(
 HIG_PDF_SYSFONT hSysFont
);

Arguments:

Name Type Description

hSysFont HIG_PDF_SYSFONT A system font to release.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 1999

1.3.3.4.2.13.12 IG_PDF_sysfont_release_platform_data

Releases platform-specific data for the specified hSysFont.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_sysfont_release_platform_data(
 HIG_PDF_SYSFONT hSysFont,
 LPAT_PDF_SYSFONT_PLATDATA lpPlatData
);

Arguments:

Name Type Description

hSysFont HIG_PDF_SYSFONT A SysFont object referencing a system font.

lpPlatData LPAT_PDF_SYSFONT_PLATDATA Pointer to AT_PDF_SYSFONT_PLATDATA containing platform-specific
data to release.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2000

1.3.3.4.2.14 HIG_PDF_WORD

Handle to the PDF word object. A word in a PDF file. Each word contains a sequence of characters in one or more styles
(see Style).

Members:

IG_PDF_word_get_char_offset Returns a word's character offset from the beginning of its page.

IG_PDF_word_get_char_style Returns a PDF Style object for the specified style in a word.

IG_PDF_word_get_charquad Gets the quad, expressed in user space coordinates, for a specific character from a
word.

IG_PDF_word_get_length Gets the number of bytes in a word.

IG_PDF_word_get_quad Gets the specified word's quad, specified in user space coordinates.

IG_PDF_word_get_quad_count Gets the number of quads in a word.

IG_PDF_word_get_string Gets a word's text and also converts ligatures to their constituent characters.

IG_PDF_word_get_style_transition Gets the locations of style transitions in a word.

IG_PDF_word_delete Deletes a word object.

ImageGear Professional v18 for Mac | 2001

1.3.3.4.2.14.1 IG_PDF_word_delete

Deletes a word object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_word_delete(
 HIG_PDF_WORD hWord
);

Arguments:

Name Type Description

hWord HIG_PDF_WORD Word object to delete.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2002

1.3.3.4.2.14.2 IG_PDF_word_get_char_offset

Returns a word's character offset from the beginning of its page.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_word_get_char_offset(
 HIG_PDF_WORD hWord,
 LPWORD lpnCharOffset
);

Arguments:

Name Type Description

hWord HIG_PDF_WORD The word whose character offset is obtained.

lpnCharOffset LPWORD The word's character offset. On multi-byte systems, it points to the first byte.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2003

1.3.3.4.2.14.3 IG_PDF_word_get_char_style

Returns a PDF Style object for the specified style in a word.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_word_get_char_style(
 HIG_PDF_WORDFINDER hWordFinder,
 HIG_PDF_WORD hWord,
 LONG nIndex,
 LPHIG_PDF_STYLE lphStyle
);

Arguments:

Name Type Description

hWordFinder HIG_PDF_WORDFINDER A word finder object.

hWord HIG_PDF_WORD The word whose character style is obtained.

nIndex LONG The index of the style to obtain. The first style in a word has an index of
zero.

lphStyle LPHIG_PDF_STYLE The obtained style in the word. Returns NULL if nIndex is greater than the
number of styles in the word.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2004

1.3.3.4.2.14.4 IG_PDF_word_get_charquad

Gets the bounding quadrilateral, expressed in user space coordinates, for a specific character from a word.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_word_get_charquad(
 HIG_PDF_WORD hWord,
 AT_WORD nByteIndex,
 LPAT_PDF_FIXEDQUAD lpQuad,
 LPAT_PDF_BOOL lpbHasQuad
);

Arguments:

Name Type Description

hWord HIG_PDF_WORD The word to inspect.

nByteIndex AT_WORD The byte index of the character quad to obtain. The first character in a word
has an index of zero. Use IG_PDF_word_get_length to identify the number of
bytes in the word.

lpQuad LPAT_PDF_FIXEDQUAD Pointer to the character's quad, expressed in user-space coordinates. Upon
successful completion, the memory referenced with this parameter is written
with the character's quad.

lpbHasQuad LPAT_PDF_BOOL Pointer to memory that indicates whether the byte index has a quad. Upon
successful completion, the memory referenced with this parameter is set to
TRUE if the byte index has a quad; otherwise FALSE is set.

Return Value:

The number of ImageGear errors that occurred during this function call. If there are no errors, the return value is
IGE_SUCCESS.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

See IG_PDF_word_get_quad_count for a description of a quad.

The quad's height is the height of the font's bounding box, not the height of the tallest character used in the word. The
font's bounding box is determined by the glyphs in the font that extend farthest above and below the baseline; it often
extends somewhat above the top of "A" and below the bottom of "y."

The quad's width is determined from the characters actually present in the word.

As an example, the quads for the words "AWAY" and "away" have the same height, but generally do not have the same
width unless the font is a mono-spaced font (a font in which all characters have the same width).

ImageGear Professional v18 for Mac | 2005

1.3.3.4.2.14.5 IG_PDF_word_get_length

Gets the number of bytes in a word.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_word_get_length(
 HIG_PDF_WORD hWord,
 LPWORD lpnLength
);

Arguments:

Name Type Description

hWord HIG_PDF_WORD The word whose character count is obtained.

lpnLength LPWORD The number of characters in the word.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This function also works on non-Roman systems.

ImageGear Professional v18 for Mac | 2006

1.3.3.4.2.14.6 IG_PDF_word_get_quad

Gets the specified word's quad, specified in user space coordinates.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_word_get_quad(
 HIG_PDF_WORD hWord,
 SHORT nIndex,
 LPAT_PDF_FIXEDQUAD lpQuad,
 LPAT_PDF_BOOL lpbHasQuad
);

Arguments:

Name Type Description

hWord HIG_PDF_WORD The word whose quad is obtained.

nIndex SHORT The index of the quad to obtain. The first quad in a word has an index of zero.

lpQuad LPAT_PDF_FIXEDQUAD Pointer to the word's quad, specified in user-space coordinates.

lpbHasQuad LPAT_PDF_BOOL TRUE if the word has the specified quad; FALSE otherwise.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

See IG_PDF_word_get_quad_count for a description of a quad.

The quad's height is the height of the font's bounding box, not the height of the tallest character used in the word. The
font's bounding box is determined by the glyphs in the font that extend farthest above and below the baseline; it often
extends somewhat above the top of "A" and below the bottom of "y."

The quad's width is determined from the characters actually present in the word.

As an example, the quads for the words "AWAY" and "away" have the same height, but generally do not have the same
width unless the font is a mono-spaced font (a font in which all characters have the same width).

ImageGear Professional v18 for Mac | 2007

1.3.3.4.2.14.7 IG_PDF_word_get_quad_count

Gets the number of quads in a word.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_word_get_quad_count (
 HIG_PDF_WORD hWord,
 LPWORD lpnQuadCount
);

Arguments:

Name Type Description

hWord HIG_PDF_WORD The word whose quad count is obtained.

lpnQuadCount LPWORD The number of quads in the word.

Remarks:

A quad is a quadrilateral bounding a contiguous piece of a word. Every word has at least one quad. A word has more
than one quad, for example, if it is hyphenated and split across multiple lines or if the word is set on a curve rather than
on a straight line.

Supported Raster Image Formats:

This function does not process image pixels.

Return Value:

Error count.

ImageGear Professional v18 for Mac | 2008

1.3.3.4.2.14.8 IG_PDF_word_get_string

Gets a word's text and also converts ligatures to their constituent characters.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_word_get_string(
 HIG_PDF_WORD hWord,
 LPCHAR lpString,
 LONG nLen
);

Arguments:

Name Type Description

hWord HIG_PDF_WORD The word whose string is obtained.

lpString LPCHAR The word string. The encoding of the string is the encoding used by the PDF WordFinder
that supplied the PDF Word. For instance, if IG_PDF_doc_create_wordfinder_ucs is used
to create the word finder, this function returns only Unicode.

nLen LONG Length of string, in bytes. Up to nLen characters of word will be copied into lpString. If
lpString is long enough, it will be null-terminated.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The string to return includes any word break characters (such as space characters) that follow the word, but not any that
precede the word. The characters that are treated as word breaks are defined in the outEncInfo parameter of
IG_PDF_doc_create_wordfinder function.

This function produces a string in whatever encoding the PDF Word uses, for both Roman and non-Roman systems.

ImageGear Professional v18 for Mac | 2009

1.3.3.4.2.14.9 IG_PDF_word_get_style_transition

Gets the locations of style transitions in a word.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_word_get_style_transition(
 HIG_PDF_WORD hWord,
 LPSHORT lpTransTbl,
 SHORT nSize,
 LPSHORT lpnStTrCount
);

Arguments:

Name Type Description

hWord HIG_PDF_WORD The word whose style transition list is obtained.

lpTransTbl LPSHORT (Filled by the method) Array of style transitions. Each element is the character
offset in word where the style changes. The offset specifies the first character in the
word that has the new style. The first character in a word has an offset of zero.

nSize SHORT Number of entries that lpTransTbl can hold. The word is searched only until this
number of style transitions has been found.

lpnStTrCount LPSHORT Number of style transition offsets copied to lpTransTbl.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Every word has at least one style transition, at character position zero in the word.

ImageGear Professional v18 for Mac | 2010

1.3.3.4.2.15 HIG_PDF_WORDFINDER

Handle to the PDF word finder object. Extracts words from a PDF file, and enumerates the words on a single page or on
all pages in a document.

Members:

IG_PDF_wordfinder_acquire_wordlist Finds all words on the specified page.

IG_PDF_wordfinder_release_wordlist Releases the word list for a given page.

IG_PDF_wordfinder_get_word Gets the word in the word list obtained using
IG_PDF_wordfinder_acquire_wordlist.

IG_PDF_wordfinder_delete Deletes a word finder.

ImageGear Professional v18 for Mac | 2011

1.3.3.4.2.15.1 IG_PDF_wordfinder_acquire_wordlist

Finds all words on the specified page.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_wordfinder_acquire_wordlist(
 HIG_PDF_WORDFINDER hWordFinder,
 LONG nPageNumber,
 LPLONG lpnWordCount
);

Arguments:

Name Type Description

hWordFinder HIG_PDF_WORDFINDER The word finder used to acquire the word list.

nPageNumber LONG The page number for which words are found. First page is 0.

lpnWordCount LPLONG The number of words found on the page.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Only words within or partially within the page's crop box are enumerated. Words outside the crop box are skipped.

There can be only one word list in existence at a time; clients must release the previous word list, using
IG_PDF_wordfinder_release_wordlist, before creating a new one.

ImageGear Professional v18 for Mac | 2012

1.3.3.4.2.15.2 IG_PDF_wordfinder_delete

Deletes a word finder.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_wordfinder_delete(
 HIG_PDF_WORDFINDER hWordFinder
);

Arguments:

Name Type Description

hWordFinder HIG_PDF_WORDFINDER Word finder object to delete.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Use this function when you are done extracting text in a file.

ImageGear Professional v18 for Mac | 2013

1.3.3.4.2.15.3 IG_PDF_wordfinder_get_word

Gets the word in the word list obtained using IG_PDF_wordfinder_acquire_wordlist.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_wordfinder_get_word (
 HIG_PDF_WORDFINDER hWordFinder,
 WORD nFlags,
 LONG nIndex,
 LPHIG_PDF_WORD lphWord
);

Arguments:

Name Type Description

hWordFinder HIG_PDF_WORDFINDER The word finder object.

nFlags WORD Word-finding options. Must be an OR of one or more of
enumIGPDFWordFlags.

nIndex LONG The index of the word to obtain. The first word on a page has an index of
zero. Words are counted in PDF order.

lphWord HIG_PDF_WORD A handle to the word object. Returns NULL when the end of the list is
reached.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2014

1.3.3.4.2.15.4 IG_PDF_wordfinder_release_wordlist

Releases the word list for a given page.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDF_wordfinder_release_wordlist(
 HIG_PDF_WORDFINDER hWordFinder,
 LONG nPageNumber
);

Arguments:

Name Type Description

hWordFinder HIG_PDF_WORDFINDER The word finder object.

nPageNumber LONG The page number for which the word list is released.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Use this to release a list created by IG_PDF_wordfinder_acquire_wordlist when you are done using this list.

ImageGear Professional v18 for Mac | 2015

1.3.3.4.3 Page Editing Objects and Elements

Objects described in this Section provide easy access to PDF page contents. With this group of objects, you can treat
a page's contents as a list of objects rather than having to manipulate the content stream's PDF marking operators.
PDE objects are meant to be used in conjunction with the General and Base Object methods for manipulating PDF
documents.

The PDE objects are split in two groups: PDE elements and PDE objects. A page display list is represented as a PDE
object that contains PDE elements. The page's content is usually treated as a list of PDE elements. Each PDE element
is a path, text, image, form, or a marked content place or container of PDE Elements. Using the PDE Objects and
functions you can add or remove objects inside a PDE Object. You can also change attributes of Elements in a PDE
Object, such as a bounding box, a text font, or a clipping path.

The PDE objects are used to create the PDE elements and provide specific information for the elements. For example,
PDE Image, which is an element, usually has or is created based on a PDE ColorSpace, which is an object. PDE text,
which is an element, usually has or is created based on a PDE Font, which is an object.

This API is meant to be used in conjunction with basic and general objects.

The following table contains the objects and their descriptions supported by the ImageGear PDF component:

Page Editing Objects and Elements

HIG_PDE_OBJECT Object - base interface for all the PDE objects.

HIG_PDE_CONTENT Content - modifiable content of a PDF page, which contains elements. Content may be
obtained from an existing page or from a Form XObject.

HIG_PDE_COLORSPACE ColorSpace - a reference to a color space used on a page in a PDF file. The color space is
part of the graphics state attributes of a PDE Element.

HIG_PDE_FONT Font - A reference to a font used on a page in a PDF file. It may be equated with a font in
the system.

HIG_PDE_ELEMENT Element - base interface for the elements of a page display list (PDE content) and for clip
objects. The general PDE element methods allow you to get and set general element
properties.

HIG_PDE_CLIP Clip - a list of elements containing a list of Paths and Texts that describe a clip state. Clips
can be created and built up with PDE Clip methods. Any PDE Element object can have Clip
associated with it. Clip objects can contain PDE Containers and PDE Groups to an arbitrary
level of nesting. This allows PDE Containers to be used to mark clip objects. PDE Groups
inside PDE Clips that contain at least one PDE Text and no PDE Paths have a special
meaning. All PDE Text objects contained in such a PDE Group are considered to be part of
the same BT/ET block. This means that the union of these PDE Texts makes up a single
clipping path-as opposed to the intersection of the PDE Texts. See Section 5.3 in the PDF
reference for more information about BT/ET block.

HIG_PDE_CONTAINER Container - a group of elements on a page in a PDF file. In the PDF file, containers are
delimited by Marked Content BMC/EMC or BDC/EMC pairs. Every container has a Marked
Content tag associated with it. In addition to grouping a set of elements, a BDC/EMC pair
specifies a property list to be associated with the grouping. Thus a container
corresponding to a BDC/EMC pair also has a property list dictionary associated with it. See
Section 10.5 in the PDF reference for more information about Marked Content operators.

HIG_PDE_FORM Form - an element that corresponds to an instance of XObject Form on a page (or other
containing stream such as another XObject Form or annotation form). The context
associated with this instance includes the actual stream that represents the XObject Form
and the initial conditions of the graphics state. The latter consists of the transformation
matrix, initial color values, and so forth. It is possible to have two Forms that refer to the
same XObject Form. The forms will exist at different places on the same page, depending
on the transformation matrix. They may also have different colors or line stroking
parameters. In the case of a transparency group, the opacity is specified in the gstate.
Within a Form, each element has its own gstate (or is a container, place, or group object).
These gstates are independent of the parent Form gstate. Form elements may have their
own opacity. Content may be obtained from a Form to edit the form's display list.

HIG_PDE_GROUP Group - an in-memory representation of objects in Content. It has no state and is not
represented in any way in a content stream (that is, Content). When used in a Clip, this
object is used to associate Text objects into a single clipping object.

HIG_PDE_IMAGE Image - an element that contains an Image XObject or in-line image. You can associate
data or a stream with an image.

HIG_PDE_PATH Path - an element that contains a path. Path objects can be stroked, filled, and/or serve as
a clipping path.

ImageGear Professional v18 for Mac | 2016

HIG_PDE_PLACE Place - an element that marks a place on a page in a PDF file. In a PDF file, a place is
represented by the MP or DP Marked Content operators. Marked content is useful for
adding structure information to a PDF file. For instance, a drawing program may want to
mark a point with information, such as the start of a path of a certain type. Marked
content provides a way to retain this information in the PDF file. A DP operator functions
the same as the MP operator and, in addition, allows a property list dictionary to be
associated with a place.

HIG_PDE_POSTSCRIPT PostScript - an element representing in-line or XObject pass-through PostScript object.
XObject PostScripts are listed in page XObject resources.

HIG_PDE_SOFTMASK SoftMask - an object for creating and manipulating a soft mask in a PDF file.

HIG_PDE_SHADING Shading - an element that represents smooth shading.

HIG_PDE_TEXT Text - an element representing text. It is a container for text as show strings or as
individual characters. Each sub-element may have different graphics state properties.
However, the same clip applies to all sub-elements of a Text. Also, the char path of a Text
can be used to represent a clip.

HIG_PDE_TEXTITEM TextItem - a PDE element representing a text object.

HIG_PDE_XGROUP XGroup - a transparency (XGroup) resource.

HIG_PDE_XOBJECT XObject - an element representing an arbitrary XObject.

ImageGear Professional v18 for Mac | 2017

1.3.3.4.3.1 HIG_PDE_OBJECT

Handle to abstract PDE object. Base interface for all the PDE objects.

Members:

IG_PDE_object_get_type Gets the type of an object.

ImageGear Professional v18 for Mac | 2018

1.3.3.4.3.1.1 IG_PDE_object_get_type

Gets the type of an object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_object_get_type(
 HIG_PDE_OBJECT hObject,
 LPLONG lpnType
);

Arguments:

Name Type Description

hObject HIG_PDE_OBJECT The object whose type is obtained.

lpnType LPLONG Type return value.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2019

1.3.3.4.3.2 HIG_PDE_CLIP

Handle to the PDE clip object. A clip is a list of elements containing a list of Paths and Texts that describe a clip state.
Clips can be created and built up with PDE Clip methods. Any PDE Element object can have Clip associated with it. Clip
objects can contain PDE Containers and PDE Groups to an arbitrary level of nesting. This allows PDE Containers to be
used to mark clip objects.

PDE Groups inside PDE Clips that contain at least one PDE Text and no PDE Paths have a special meaning. All PDE Text
objects contained in such a PDE Group are considered to be part of the same BT/ET block. This means that the union of
these PDE Texts makes up a single clipping path, as opposed to the intersection of the PDE Texts.

See Section 5.3 in the PDF reference for more information about BT/ET block.

Members:

IG_PDE_clip_create Creates an empty clip object.

IG_PDE_clip_clone Makes a deep copy of a PDE Clip object.

IG_PDE_clip_add_element Adds an element to a clip path.

IG_PDE_clip_get_element Gets an element from a clip object.

IG_PDE_clip_remove_elements Removes one or more elements from a clip object.

IG_PDE_clip_get_element_count Gets the number of top-level elements in a clip object.

IG_PDE_clip_enumerate_elements For a given PDE Clip, enumerates all of the PDE Elements in a flattened manner.

ImageGear Professional v18 for Mac | 2020

1.3.3.4.3.2.1 IG_PDE_clip_create

Creates an empty clip object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_clip_create(
 LPHIG_PDE_CLIP lphClip
);

Arguments:

Name Type Description

lphClip LPHIG_PDE_CLIP The newly created clip object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This represents a clipping object that has no affect on elements that refer to it.

Call IG_PDE_element_release to dispose of the object.

ImageGear Professional v18 for Mac | 2021

1.3.3.4.3.2.2 IG_PDE_clip_clone

Makes a deep copy of a PDE Clip object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_clip_clone(
 HIG_PDE_CLIP hClip,
 LPHIG_PDE_CLIP lphCloneClip
);

Arguments:

Name Type Description

hClip HIG_PDE_CLIP The clipping path to copy.

lphCloneClip LPHIG_PDE_CLIP The deep copy of hClip.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2022

1.3.3.4.3.2.3 IG_PDE_clip_add_element

Adds an element to a clip path.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_clip_add_element(
 HIG_PDE_CLIP hClip,
 LONG nAfterIndex,
 HIG_PDE_ELEMENT hElement
);

Arguments:

Name Type Description

hClip HIG_PDE_CLIP The clip path to which an element is added.

nAfterIndex LONG The index after which to add hElement. Use IG_PDE_BEFORE_FIRST to insert an
element at the beginning of the clip object.

hElement HIG_PDE_ELEMENT The element added, which may be a PDE Path, a PDE Text, a PDE Container, a
PDE Group or a PDE Place object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2023

1.3.3.4.3.2.4 IG_PDE_clip_get_element

Gets an element from a clip object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_clip_get_element(
 HIG_PDE_CLIP hClip,
 LONG nIndex,
 LPHIG_PDE_ELEMENT lphElement
);

Arguments:

Name Type Description

hClip HIG_PDE_CLIP The clip object from which an element is obtained.

nIndex LONG Index of element to get from clip.

lphElement LPHIG_PDE_ELEMENT The element from the clip object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2024

1.3.3.4.3.2.5 IG_PDE_clip_remove_elements

Removes one or more elements from a clip object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_clip_remove_elements(
 HIG_PDE_CLIP hClip,
 LONG nIndex,
 LONG nCount
);

Arguments:

Name Type Description

hClip HIG_PDE_CLIP The clip object from which an element is removed.

nIndex LONG First element to remove.

nCount LONG Number of elements to remove.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2025

1.3.3.4.3.2.6 IG_PDE_clip_get_element_count

Gets the number of top-level elements in a clip object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_clip_get_element_count(
 HIG_PDE_CLIP hClip,
 LPUINT lpnCount
);

Arguments:

Name Type Description

hClip HIG_PDE_CLIP The clip object to examine.

lpnCount LPUINT Number of path and charpath elements in clip. If clip contains PDE Groups, this function
returns the top-level PDE Path, PDE Text, PDE Container, PDE Group, or PDE Place object.
Use IG_PDE_clip_enumerate_elements to see only the PDE Path and PDE Text objects.

PDEGroup is not a persistent object. You cannot save to PDF and re-get group
objects.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Top-level elements may be a path or char-path, a marked content container or place, or a group.

Paths are represented as PDE Path objects; char-paths are represented as PDE Text objects.

ImageGear Professional v18 for Mac | 2026

1.3.3.4.3.2.7 IG_PDE_clip_enumerate_elements

For a given PDE Clip, enumerates all of the PDE Elements in a flattened manner.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_clip_enumerate_elements (
 HIG_PDE_CLIP hClip,
 LPFNIG_PDE_CLIP_ENUMPROC lpfnEnumProc,
 LPVOID lpClientData,
 LPAT_PDF_BOOL lpbResult
);

Arguments:

Name Type Description

hClip HIG_PDE_CLIP The PDEClip to enumerate.

lpfnEnumProc LPFNIG_PDE_CLIP_ENUMPROC Called with each flattened element. Enumeration continues until all
elements have been enumerated, or until lpfnEnumProc returns
FALSE.

lpClientData LPVOID Pointer to user-supplied data to pass to lpfnEnumProc each time it is
called.

lpbResult LPAT_PDF_BOOL Returns value of lpfnEnumProc. TRUE if successful; FALSE otherwise.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

PDE Containers and PDE Groups nested in the PDE Clip will not be handed back, but any PDE Paths and PDE Texts
nested in them will be. Additionally, PDE Place objects inside the PDE Clip are not returned.

ImageGear Professional v18 for Mac | 2027

1.3.3.4.3.3 HIG_PDE_COLORSPACE

Handle to the PDE color space object. A reference to a color space used on a page in a PDF file. The color space is part of
the graphics state attributes of a PDE Element.

Members:

IG_PDE_colorspace_create Creates a new color space object of the specified type.

IG_PDE_colorspace_get_base_name Gets the name of the base color space.

IG_PDE_colorspace_get_base_color_components Gets the number of components in the base color space of an
indexed color space.

IG_PDE_colorspace_get_ctable Gets the component information for an indexed color space.

IG_PDE_colorspace_get_hival Gets the highest index for the color look-up table for an indexed
color space.

IG_PDE_colorspace_get_name Gets the name of a color space object.

IG_PDE_colorspace_get_color_components Calculates the number of components in a color space.

IG_PDE_colorspace_release Releases a color space object.

ImageGear Professional v18 for Mac | 2028

1.3.3.4.3.3.1 IG_PDE_colorspace_create

Creates a new color space object of the specified type.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_colorspace_create(
 HIG_PDF_ATOM hFamily,
 LPAT_PDE_COLORDATA lpColorData,
 LPHIG_PDE_COLORSPACE lphColorSpace
);

Arguments:

Name Type Description

hFamily HIG_PDF_ATOM Supports the following PDF color spaces:

Device-dependent names: DeviceCMYK, DeviceGray, DeviceN, or
DeviceRGB.
Device-independent names: CalGray, CalRGB, Lab, or ICCBased.
Special names: Indexed, Pattern, or Separation.

lpColorData LPAT_PDE_COLORDATA Color data for the type of color space you want to create.

lphColorSpace LPHIG_PDE_COLORSPACE Handle to the new color space.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2029

1.3.3.4.3.3.2 IG_PDE_colorspace_get_base_name

Gets the name of the base color space.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_colorspace_get_base_name (
 HIG_PDE_COLORSPACE hColorSpace,
 LPHIG_PDF_ATOM lphBaseName
);

Arguments:

Name Type Description

hColorSpace HIG_PDE_COLORSPACE The base color space.

lphBaseName LPHIG_PDF_ATOM The atom for the name of the base color space.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This is a helper routine for indexed color spaces.

ImageGear Professional v18 for Mac | 2030

1.3.3.4.3.3.3 IG_PDE_colorspace_get_base_color_components

Gets the number of components in the base color space of an indexed color space.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_colorspace_get_base_color_components (
 HIG_PDE_COLORSPACE hColorSpace,
 LPLONG lpnColorComponents
);

Arguments:

Name Type Description

hColorSpace HIG_PDE_COLORSPACE The base color space.

lpnColorComponents LPLONG Number of components in hColorSpace.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

For example, for [/Indexed /DeviceRGB...], the number of components is 3.

ImageGear Professional v18 for Mac | 2031

1.3.3.4.3.3.4 IG_PDE_colorspace_get_ctable

Gets the component information for an indexed color space.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_colorspace_get_ctable (
 HIG_PDE_COLORSPACE hColorSpace,
 LPBYTE lpColorTable
);

Arguments:

Name Type Description

hColorSpace HIG_PDE_COLORSPACE The color space whose component information table is obtained.

lpColorTable LPBYTE The color look-up table, which is nColorComponents * (nHiVal + 1) bytes
long, where nColorComponents = number of components in the base
hColorSpace. Each entry in the table contains nColorComponents bytes, and
the table is indexed 0 to nHiVal, where nHiVal is the highest index in the color
table. The table is indexed from 0 to nHiVal, thus the table contains nHiVal +
1 entries.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2032

1.3.3.4.3.3.5 IG_PDE_colorspace_get_hival

Gets the highest index for the color look-up table for an indexed color space.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_colorspace_get_hival (
 HIG_PDE_COLORSPACE hColorSpace,
 LPLONG lpnHiVal
);

Arguments:

Name Type Description

hColorSpace HIG_PDE_COLORSPACE An indexed color space.

lpnHiVal LPLONG The highest index (nHiVal) in the color look-up table.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Since the color table is indexed from zero to nHiVal, the actual number of entries is nHiVal + 1.

ImageGear Professional v18 for Mac | 2033

1.3.3.4.3.3.6 IG_PDE_colorspace_get_name

Gets the name of a color space object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_colorspace_get_name (
 HIG_PDE_COLORSPACE hColorSpace,
 LPHIG_PDF_ATOM lphName
);

Arguments:

Name Type Description

hColorSpace HIG_PDE_COLORSPACE A color space object.

lphName LPHIG_PDF_ATOM The color space object's name. Supports the following PDF color spaces:

Device-dependent names: DeviceCMYK, DeviceGray, DeviceN, or
DeviceRGB.
Device-independent names: CalGray, CalRGB, Lab, or ICCBased.
Special names: Indexed, Pattern, or Separation.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2034

1.3.3.4.3.3.7 IG_PDE_colorspace_get_color_components

Calculates the number of components in a color space.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_colorspace_get_color_components (
 HIG_PDE_COLORSPACE hColorSpace,
 LPLONG lnpColorComponents
);

Arguments:

Name Type Description

hColorSpace HIG_PDE_COLORSPACE A color space object.

lpnColorComponents LPLONG Number of components in hColorSpace.

DeviceGray, CalGray, Separation: Returns 1.
DeviceRGB, CalRGB: Returns 3.
DeviceCMYK, Lab: Returns 4.
DeviceN, ICCBased: Returns the number of components
dependent on the specific color space object.
Indexed: Returns 1.

Use IG_PDE_colorspace_get_base_color_components to get the
number of components in the base color space.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2035

1.3.3.4.3.3.8 IG_PDE_colorspace_release

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_colorspace_release(
 HIG_PDE_COLORSPACE hColorSpace
);

Arguments:

Name Type Description

hColorSpace HIG_PDE_COLORSPACE Color space object to release.

Description:

Releases a color space object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2036

1.3.3.4.3.4 HIG_PDE_CONTAINER

Handle to the PDE container object. A container is a group of elements on a page in a PDF file. In the PDF file, containers
are delimited by Marked Content BMC/EMC or BDC/EMC pairs. Every container has a Marked Content tag associated with
it. In addition to grouping a set of elements, a BDC/EMC pair specifies a property list to be associated with the grouping.
Thus a container corresponding to a BDC/EMC pair also has a property list dictionary associated with it.

See Section 10.5 in the PDF reference for more information about Marked Content operators.

Members:

IG_PDE_container_create Creates a container object.

IG_PDE_container_get_content Gets the PDE Content for hContainer.

IG_PDE_container_set_content Sets the content for a container.

IG_PDE_container_get_dictionary Gets the Marked Content dictionary for a container.

IG_PDE_container_set_dictionary Changes the Marked Content dictionary for a container.

IG_PDE_container_get_mctag Gets the Marked Content tag for a container.

IG_PDE_container_set_mctag Sets the Marked Content tag for a hContainer.

ImageGear Professional v18 for Mac | 2037

1.3.3.4.3.4.1 IG_PDE_container_create

Creates a container object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_container_create(
 HIG_PDF_ATOM hMCTag,
 HIG_PDF_BASOBJ hDictionary,
 AT_PDF_BOOL bIsInline,
 LPHIG_PDE_CONTAINER lphContainer
);

Arguments:

Name Type Description

hMCTag HIG_PDF_ATOM Tag name for the container.

hDictionary HIG_PDF_BASOBJ Optional Marked Content dictionary for the container.

bIsInline AT_PDF_BOOL If TRUE, emits container into the page content stream inline.

lphContainer LPHIG_PDE_CONTAINER The newly created container object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Call IG_PDE_element_release to dispose of the object.

ImageGear Professional v18 for Mac | 2038

1.3.3.4.3.4.2 IG_PDE_container_get_content

Gets the PDE Content for hContainer.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_container_get_content(
 HIG_PDE_CONTAINER hContainer,
 LPHIG_PDE_CONTENT lphContent
);

Arguments:

Name Type Description

hContainer HIG_PDE_CONTAINER A container whose content is obtained.

lphContent LPHIG_PDE_CONTENT The PDE Content for hContainer.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2039

1.3.3.4.3.4.3 IG_PDE_container_set_content

Sets the content for a container.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_container_set_content(
 HIG_PDE_CONTAINER hContainer,
 HIG_PDE_CONTENT hContent
);

Arguments:

Name Type Description

hContainer HIG_PDE_CONTAINER A container whose content is set.

hContent HIG_PDE_CONTENT The content of hContainer.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The existing PDE Content is released by this function.

ImageGear Professional v18 for Mac | 2040

1.3.3.4.3.4.4 IG_PDE_container_get_dictionary

Gets the Marked Content dictionary for a container.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_container_get_dictionary(
 HIG_PDE_CONTAINER hContainer,
 LPHIG_PDF_BASOBJ lphDictionary,
 LPAT_PDF_BOOL lpbIsInline,
 LPAT_PDF_BOOL lpbResult
);

Arguments:

Name Type Description

hContainer HIG_PDE_CONTAINER A container.

lphDictionary LPHIG_PDF_BASOBJ Marked Content dictionary for hContainer. NULL if hContainer has no Marked
Content dictionary.

lpbIsInline LPAT_PDF_BOOL TRUE if the dictionary is inline; FALSE otherwise. Undefined if hContainer has
no Marked Content dictionary.

lpbResult LPAT_PDF_BOOL TRUE if hContainer has a Marked Content dictionary; FALSE otherwise.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2041

1.3.3.4.3.4.5 IG_PDE_container_set_dictionary

Changes the Marked Content dictionary for a container.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_container_set_dictionary(
 HIG_PDE_CONTAINER hContainer,
 HIG_PDF_BASOBJ hDictionary,
 AT_PDF_BOOL bIsInline
);

Arguments:

Name Type Description

hContainer HIG_PDE_CONTAINER A container whose dictionary is changed.

hDictionary HIG_PDF_BASOBJ Marked Content dictionary being set into hContainer.

bIsInline AT_PDF_BOOL If TRUE, the dictionary is emitted inline.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2042

1.3.3.4.3.4.6 IG_PDE_container_get_mctag

Gets the Marked Content tag for a container.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_container_get_mctag (
 HIG_PDE_CONTAINER hContainer,
 LPHIG_PDF_ATOM lphMCTag
);

Arguments:

Name Type Description

hContainer HIG_PDE_CONTAINER A container.

lphMCTag LPHIG_PDF_ATOM Marked Content tag of hContainer. Returns IG_PDF_ATOM_NULL if hContainer
has no Marked Content tag.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2043

1.3.3.4.3.4.7 IG_PDE_container_set_mctag

Sets the Marked Content tag for a hContainer.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_container_set_mctag (
 HIG_PDE_CONTAINER hContainer,
 HIG_PDF_ATOM hMCTag
);

Arguments:

Name Type Description

hContainer HIG_PDE_CONTAINER A container to tag.

hMCTag HIG_PDF_ATOM Marked Content tag.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2044

1.3.3.4.3.5 HIG_PDE_CONTENT

Handle to the PDE content object. Modifiable content of a PDF page, which contains elements. Content may be obtained
from an existing page or from a Form XObject.

Members:

IG_PDE_content_create Creates empty PDEContent.

IG_PDE_content_get_element Obtains requested element from content.

IG_PDE_content_add_element Inserts an element into content.

IG_PDE_content_remove_element Removes an element from content.

IG_PDE_content_get_element_count Gets the number of elements in a content.

IG_PDE_content_get_default_color_space Gets a default color space from hContent.

IG_PDE_content_get_attrs Gets the attributes of a content.

ImageGear Professional v18 for Mac | 2045

1.3.3.4.3.5.1 IG_PDE_content_create

This function creates empty PDEContent.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_content_create(
 LPHIG_PDE_CONTENT lphContent
);

Arguments:

Name Type Description

lphContent LPHIG_PDE_CONTENT The created PDEContent.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2046

1.3.3.4.3.5.2 IG_PDE_content_get_element

Obtains requested element from content.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_content_get_element(
 HIG_PDE_CONTENT hContent,
 LONG nIndex,
 LPHIG_PDE_ELEMENT lphElement
);

Arguments:

Name Type Description

hContent HIG_PDE_CONTENT Content to obtain.

nIndex LONG Index of element to obtain.

lphElement LPHIG_PDE_ELEMENT PDE element return value.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2047

1.3.3.4.3.5.3 IG_PDE_content_add_element

Inserts an element into content.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_content_add_element(
 HIG_PDE_CONTENT hContent,
 LONG nAfterIndex,
 HIG_PDE_ELEMENT hElement
);

Arguments:

Name Type Description

hContent HIG_PDE_CONTENT Content to which hElement is added.

nAfterIndex LONG Location after which hElement is added. Should be IG_PDE_BEFORE_FIRST to add
to the beginning of the display list.

hElement HIG_PDE_ELEMENT The element to add to the content.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2048

1.3.3.4.3.5.4 IG_PDE_content_remove_element

Removes an element from content.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_content_remove_element(
 HIG_PDE_CONTENT hContent,
 LONG nIndex
);

Arguments:

Name Type Description

hContent HIG_PDE_CONTENT Content to remove.

nIndex LONG Index of element to remove.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2049

1.3.3.4.3.5.5 IG_PDE_content_get_element_count

Gets the number of elements in a content.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_content_get_element_count(
 HIG_PDE_CONTENT hContent,
 LPUINT lpnCount
);

Arguments:

Name Type Description

hContent HIG_PDE_CONTENT Content.

lpnCount LPUINT The number of elements return value .

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2050

1.3.3.4.3.5.6 IG_PDE_content_get_default_color_space

Gets a default color space from hContent.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_content_get_default_color_space(
 HIG_PDE_CONTENT hContent,
 HIG_PDF_ATOM hColorSpaceName,
 LPHIG_PDE_COLORSPACE lphDefaultColorSpace
);

Arguments:

Name Type Description

hContent HIG_PDE_CONTENT Content to whose default color space is obtained.

hColorSpaceName HIG_PDF_ATOM An atom for the name of the desired color space. Must be an atom
for one of DefaultRGB, DefaultCMYK, or DefaultGray.

lphDefaultColorSpace LPHIG_PDE_COLORSPACE The desired color space in hContent. Returns NULL if
hColorSpaceName does not correspond to a known default, such
as DefaultRGB.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

See Section 4.5.4 in the PDF Reference for more information about default color spaces.

ImageGear Professional v18 for Mac | 2051

1.3.3.4.3.5.7 IG_PDE_content_get_attrs

Gets the attributes of a content.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_content_get_attrs (
 HIG_PDE_CONTENT hContent,
 LPAT_PDE_CONTENTATTRS lpAttrs
);

Arguments:

Name Type Description

hContent HIG_PDE_CONTENT Content whose attributes are obtained

lpAttrs LPAT_PDE_CONTENTATTRS Pointer to an AT_PDE_CONTENTATTRS structure to fill with the attributes of
the content.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2052

1.3.3.4.3.6 HIG_PDE_ELEMENT

Handle to the PDE element object. Base interface for the elements of a page display list (PDE content) and for clip
objects. The general PDE element methods allow you to get and set general element properties.

Members:

IG_PDE_element_get_type Gets the type of an element.

IG_PDE_element_clone Makes a copy of an element.

IG_PDE_element_is_at_point Tests whether a point is on an element.

IG_PDE_element_is_at_rect Tests whether any part of a rectangle is on an element.

IG_PDE_element_get_bbox Gets the bounding box for an element.

IG_PDE_element_get_clip Gets the current clip for an element.

IG_PDE_element_get_gstate Gets the graphics state information for an element.

IG_PDE_element_set_gstate Sets the graphics state information for an element.

IG_PDE_element_get_matrix Gets the transformation matrix for an element.

IG_PDE_element_set_matrix Sets the transformation matrix for an element.

IG_PDE_element_get_dictionary Returns a Dictionary (OCMD object).

IG_PDE_element_get_unique_id Returns some 32bit integer that is unique for all Element objects.

IG_PDE_element_has_gstate Tests if hElement has a graphics state information.

IG_PDE_element_release Release the specified element.

ImageGear Professional v18 for Mac | 2053

1.3.3.4.3.6.1 IG_PDE_element_get_type

Gets the type of an element.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_element_get_type(
 HIG_PDE_ELEMENT hElement,
 LPLONG lpnType
);

Arguments:

Name Type Description

hElement HIG_PDE_ELEMENT The element whose type is obtained.

lpnType LPLONG Type return value.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2054

1.3.3.4.3.6.2 IG_PDE_element_clone

Makes a copy of an element.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_element_clone(
 HIG_PDE_ELEMENT hElement,
 LONG nFlags,
 LPHIG_PDE_ELEMENT lphCloneElement
);

Arguments:

Name Type Description

hElement HIG_PDE_ELEMENT The element to copy.

nFlags LONG Bit field of enumIGPDEElementCopyFlags.

lphCloneElement LPHIG_PDE_ELEMENT A copy of hElement.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The caller is responsible for releasing the copy with IG_PDE_element_release.

ImageGear Professional v18 for Mac | 2055

1.3.3.4.3.6.3 IG_PDE_element_is_at_point

Tests whether a point is on an element.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_element_is_at_point(
 HIG_PDE_ELEMENT hElement,
 LPAT_PDF_FIXEDPOINT lpPoint,
 LPAT_BOOL lpbResult
);

Arguments:

Name Type Description

hElement HIG_PDE_ELEMENT The element to test.

If hElement is Text or an Image, it uses the bounding box of the element to
make the check.
If the hElement is a Path and it is stroked, it checks if the point is on the
path.
If the hElement is a Path and it is filled, it checks if the point is in the fill area,
taking into consideration whether it is filled using the non-zero winding
number rule or the even-odd rule.

lpPoint LPAT_PDF_FIXEDPOINT The point, specified in user space coordinates.

lpbResult LPAT_BOOL TRUE if the point is on the element; FALSE otherwise.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2056

1.3.3.4.3.6.4 IG_PDE_element_is_at_rect

Tests whether any part of a rectangle is on an element.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_element_is_at_rect(
 HIG_PDE_ELEMENT hElement,
 LPAT_PDF_FIXEDRECT lpRect,
 LPAT_BOOL lpbResult
);

Arguments:

Name Type Description

hElement HIG_PDE_ELEMENT The element to test.

If hElement is a PDE Text or PDE Image, it uses the bounding box of the PDE
Element to make the check.
If hElement is a PDE Path and it is stroked, it checks if the rectangle is on the
path.
If hElement is a PDE Path and it is filled, it checks if the rectangle is in the fill
area, taking into consideration whether it is filled using the non-zero winding
number rule or the even-odd rule.

lpRect LPAT_PDF_FIXEDRECT The rectangle, specified in user space coordinates.

lpbResult LPAT_BOOL True if any part of the rectangle is on the element; FALSE otherwise.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2057

1.3.3.4.3.6.5 IG_PDE_element_get_bbox

Gets the bounding box for an element.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_element_get_bbox(
 HIG_PDE_ELEMENT hElement,
 LPAT_PDF_FIXEDRECT lpBBox
);

Arguments:

Name Type Description

hElement HIG_PDE_ELEMENT An element whose bounding box is obtained.

lpBBox LPAT_PDF_FIXEDRECT Pointer to an AT_PDF_FIXEDRECT structure specifying the bounding box of
hElement, specified in user space coordinates.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The returned bounding box is guaranteed to encompass the element, but is not guaranteed to be the smallest box that
could contain the element. For example, for an arc, lpBBox encloses the Bezier control points, not just the curve itself.

ImageGear Professional v18 for Mac | 2058

1.3.3.4.3.6.6 IG_PDE_element_get_clip

Gets the current clip for an element.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_element_get_clip(
 HIG_PDE_ELEMENT hElement,
 LPHIG_PDE_CLIP lphClip
);

Arguments:

Name Type Description

hElement HIG_PDE_ELEMENT An element whose clip is obtained.

A clip may be shared by many elements. Use care when modifying a clip. Copy
it first if you want to modify the clip for a specific element.

lphClip LPHIG_PDE_CLIP Clip object for hElement.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2059

1.3.3.4.3.6.7 IG_PDE_element_set_clip

Sets the clip for an element.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_element_set_clip(
 HIG_PDE_ELEMENT hElement,
 HIG_PDE_CLIP hClip
);

Arguments:

Name Type Description

hElement HIG_PDE_ELEMENT An element whose clip is set.

hClip HIG_PDE_CLIP The clip to set for hElement.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2060

1.3.3.4.3.6.8 IG_PDE_element_get_gstate

Gets the graphics state information for an element.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_element_get_gstate(
 HIG_PDE_ELEMENT hElement,
 LPAT_PDE_GRAPHICSTATE lpGstate
);

Arguments:

Name Type Description

hElement HIG_PDE_ELEMENT An element whose graphics state is obtained.

lpGstate LPAT_PDE_GRAPHICSTATE Pointer to AT_PDE_GRAPHICSTATE structure that contains graphics state
information for hElement. This graphics state information may contain PDE
objects for color spaces or an ExtGState. They are not acquired by this
function.

For a PDE Image, only the ExtGState value is used for images. For
indexed images, the fill color space and values are categorized in the
PDE Image object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This function is only valid for PDE Form, PDE Image, PDE Path, and PDE Shading elements.

Non-NULL objects in the graphic state, such as the fill and stroke color spaces, have their reference counts
incremented by this function. Be sure to release these non-NULL objects when disposing of lpGstate.

ImageGear Professional v18 for Mac | 2061

1.3.3.4.3.6.9 IG_PDE_element_set_gstate

Sets the graphics state information for an element.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_element_set_gstate(
 HIG_PDE_ELEMENT hElement,
 LPAT_PDE_GRAPHICSTATE lpGstate
);

Arguments:

Name Type Description

hElement HIG_PDE_ELEMENT An element whose graphics state is set.

lpGstate LPAT_PDE_GRAPHICSTATE Pointer to AT_PDE_GRAPHICSTATE structure with graphics state information
to set for hElement.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This function is valid only for PDE Form, PDE Image, PDE Path, and PDE Shading elements.

ImageGear Professional v18 for Mac | 2062

1.3.3.4.3.6.10 IG_PDE_element_get_matrix

Gets the transformation matrix for an element.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_element_get_matrix(
 HIG_PDE_ELEMENT hElement,
 LPAT_PDF_FIXEDMATRIX lpMatrix
);

Arguments:

Name Type Description

hElement HIG_PDE_ELEMENT An element whose transformation matrix is obtained.

lpMatrix LPAT_PDF_FIXEDMATRIX Pointer to AT_PDF_FIXEDMATRIX that holds a transformation matrix for
hElement. If hElement is a text object, returns the identity matrix.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This matrix provides the transformation from user space to device space for the element. If there is no cm operator
(concatmatrix) in the page stream, the matrix is the identity matrix.

ImageGear Professional v18 for Mac | 2063

1.3.3.4.3.6.11 IG_PDE_element_set_matrix

Sets the transformation matrix for an element.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_element_set_matrix(
 HIG_PDE_ELEMENT hElement,
 LPAT_PDF_FIXEDMATRIX lpMatrix
);

Arguments:

Name Type Description

hElement HIG_PDE_ELEMENT An element whose transformation matrix is set.

lpMatrix LPAT_PDF_FIXEDMATRIX Pointer to AT_PDF_FIXEDMATRIX that holds the transformation matrix to set
for hElement.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The element may not be a PDE Container, a PDE Group, a PDE Place, or a PDE Text.

ImageGear Professional v18 for Mac | 2064

1.3.3.4.3.6.12 IG_PDE_element_get_dictionary

Returns a Dictionary (OCMD object) that is associated with this Element; or, if no Dictionary is associated, returns NULL.

Declaration:

IG_PDE_element_get_dictionary(
 HIG_PDE_ELEMENT hElement,
 LPHIG_PDF_DICTIONARY lphOCMD
);

Arguments:

Name Type Description

hElement HIG_PDE_ELEMENT The Source Element.

lphOCMD LPHIG_PDF_DICTIONARY The returned Dictionary (OCMD object).

Return Value:

Associated Dictionary, or NULL if no Dictionary is associated.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2065

1.3.3.4.3.6.13 IG_PDE_element_get_unique_id

Returns some 32-bit integer that is unique for all Element objects.

Declaration:

IG_PDE_element_get_unique_id(
 HIG_PDE_ELEMENT hElement,
 LPLONG lpnId
);

Arguments:

Name Type Description

hElement HIG_PDE_ELEMENT Element object.

lpnId LPLONG The unique identifier.

Return Value:

An unique identifier of this Element Object.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

It is guaranteed that there cannot be two Element objects with the same UniqueIds.

Can be used for Element objects' identification.

ImageGear Professional v18 for Mac | 2066

1.3.3.4.3.6.14 IG_PDE_element_has_gstate

Tests if hElement has a graphics state information.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_element_has_gstate(
 HIG_PDE_ELEMENT hElement,
 LPAT_PDF_BOOL lpbHasGstate
);

Arguments:

Name Type Description

hElement HIG_PDE_ELEMENT An element whose graphics state is checked.

lpbHasGstate LPAT_PDF_BOOL Returns TRUE if the element has a graphics state; FALSE otherwise.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2067

1.3.3.4.3.6.15 IG_PDE_element_release

Release the specified element.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_element_release(
 HIG_PDE_ELEMENT hElement
);

Arguments:

Name Type Description

hElement HIG_PDE_ELEMENT The element to release.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2068

1.3.3.4.3.7 HIG_PDE_FONT

Handle to the PDE font object. A reference to a font used on a page in a PDF file. It may be equated with a font in the
system.

Members:

IG_PDE_font_create Creates a new PDE Font from the specified parameters.

IG_PDE_font_create_from_sysfont Creates a PDE Font corresponding to a font in the system.

IG_PDE_font_create_from_sysfont_and_encoding Create a PDE Font from hSysFont and hSysEncoding.

IG_PDE_font_create_from_sysfont_with_params Used to obtain a PDE Font corresponding to a font in the system.

IG_PDE_font_get_attrs Gets the attributes for a font object.

IG_PDE_font_create_tounicode_now Creates the /ToUnicode table.

IG_PDE_font_create_widths_now Creates width entries for font.

IG_PDE_font_embed_now Embeds font stream.

IG_PDE_font_embed_now_dont_subset Embeds the given hFont inside hDoc without creating a subset.

IG_PDE_font_get_create_need_flags Returns flags indicating what needs to be done to make hFont
complete.

IG_PDE_font_get_codebyte_count Gets the number of bytes comprising the next code in a string of
single or multi-byte character codes.

IG_PDE_font_get_onebyte_encoding Gets an array of delta encodings for the given one byte PDE Font.

IG_PDE_font_get_sysencoding Gets the system encoding object associated with a font object.

IG_PDE_font_get_sysfont Gets the system font object associated with a font object.

IG_PDE_font_get_widths Gets the widths for a font object.

IG_PDE_font_get_widths_now Gets a Type0 font's width information for only the characters used
in the file.

IG_PDE_font_is_embedded Tests whether a font is an embedded font in the document in which
it was created.

IG_PDE_font_is_multibyte Tests whether a font contains any multi-byte characters.

IG_PDE_font_set_sysencoding Sets the system encoding object associated with a font object.

IG_PDE_font_set_sysfont Sets the system font object to be used with a font object that does
not currently have a system font associated with it.

IG_PDE_font_subset_now Subsets a given PDE Font in hDoc.

IG_PDE_font_sum_widths Gets the sum to the widths of nTextLen characters from a string of
single or multi-byte characters.

IG_PDE_font_translate_glyphids_to_unicode Translates a string to Unicode values.

IG_PDE_font_release Releases PDE font object.

ImageGear Professional v18 for Mac | 2069

1.3.3.4.3.7.1 IG_PDE_font_create

Creates a new PDE Font from the specified parameters.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_font_create(
 LPAT_PDE_FONTATTRS lpAttrs,
 LONG nFirstCharIndex,
 LONG nLastCharIndex,
 LPSHORT lpWidths,
 LPSTR* lpEncoding,
 HIG_PDF_ATOM hEncodingBaseName,
 HIG_PDF_STREAM hFontStm,
 LONG nLen1,
 LONG nLen2,
 LONG nLen3,
 LPHIG_PDE_FONT lphFont
);

Arguments:

Name Type Description

lpAttrs LPAT_PDE_FONTATTRS Pointer to AT_PDE_FONTATTRS for the font attributes.

nFirstCharIndex LONG First character index for the widths array, lpWidths.

nLastCharIndex LONG Last character index for the widths array, lpWidths.

lpWidths LPSHORT Widths array.

lpEncoding LPSTR* Array of 256 glyph names specifying the custom encoding. If any
pointer is NULL, no encoding information is written for that entry.

hEncodingBaseName HIG_PDF_ATOM Encoding base name if the encoding is a custom encoding. If
encoding is NULL, encodingBaseName is used as the value of the
encoding, and must be one of WinAnsiEncoding,
MacRomanEncoding, or MacExpertEncoding. If no encoding value
is desired, use IG_PDF_ATOM_NULL.

hFontStm HIG_PDF_STREAM Stream with font information.

nLen1 LONG Length in bytes of the ASCII portion of the Type 1 font file after it
has been decoded. For other font formats, such as TrueType or
CFF, only Len1 is used, and it is the size of the font.

nLen2 LONG Length in bytes of the encrypted portion of the Type 1 font file
after it has been decoded.

nLen3 LONG Length in bytes of the portion of the Type 1 font file that contains
the 512 zeros, plus the clear-to-mark operator, plus any following
data.

lphFont LPHIG_PDE_FONT The specified PDE font.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The PDE Font may be represented as an embedded font (a FontFile entry in the font descriptor of the PDF file). To
create a PDE Font that is stored as an embedded font, the FontFile stream may be passed in hFontStm, and the

ImageGear Professional v18 for Mac | 2070

nLen1, nLen2, and nLen3 parameters contain the Length1, Length2, and Length3 values of the FontFile stream
attributes dictionary. See Section 5.8 in the PDF Reference for more information about embedded fonts.

Call IG_PDE_font_release to dispose of the returned font object when finished with it.

ImageGear Professional v18 for Mac | 2071

1.3.3.4.3.7.2 IG_PDE_font_create_from_sysfont

Creates a PDE Font corresponding to a font in the system.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_font_create_from_sysfont(
 HIG_PDF_SYSFONT hSysFont,
 LONG nCreateFlags,
 HIG_PDF_ATOM hSnapshotName,
 LPAT_PDF_FIXED mmDesignVec,
 LPHIG_PDE_FONT lphFont
);

Arguments:

Name Type Description

hSysFont HIG_PDF_SYSFONT PDF system font object referencing a system font.

nCreateFlags LONG Indicates whether to embed the font and whether to subset the font. Must be
one of enumIGPDEFontCreateFlags. If you want to subset a font, set both the
IG_PDE_FONT_CREATE_EMBEDDED and IG_PDE_FONT_WILL_SUBSET flags.

hSnapshotName HIG_PDF_ATOM Name to be associated with this particular instantiation of the PDE Font.

mmDesignVec LPAT_PDF_FIXED Multiple master font design vector.

lphFont LPHIG_PDE_FONT The PDE Font corresponding to hSysFont.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

If the font is a multiple master font, mmDesignVec points to the design vector, whose length must equal the number of
design axes of the font.

The enumIGPDEFontCreateFlags flags IG_PDE_FONT_CREATE_EMBEDDED and IG_PDE_FONT_WILL_SUBSET must both
be set in order to subset a font.

If you create a PDE Font that is a subset, call IG_PDE_font_subset_now on this font afterwards.

Call IG_PDE_font_release to dispose of the returned font object when finished with it.

ImageGear Professional v18 for Mac | 2072

1.3.3.4.3.7.3 IG_PDE_font_create_from_sysfont_and_encoding

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_font_create_from_sysfont_and_encoding(
 HIG_PDF_SYSFONT hSysFont,
 HIG_PDF_SYSENCODING hSysEncoding,
 HIG_PDF_ATOM hUseThisBaseFont,
 LONG nCreateFlags,
 LPHIG_PDE_FONT lphFont
);

Arguments:

Name Type Description

hSysFont HIG_PDF_SYSFONT PDF system font object referencing a system font.

hSysEncoding HIG_PDF_SYSENCODING A PDF SysEncoding object.

hUseThisBaseFont HIG_PDF_ATOM The base font. An error will be set if the base font name passed is a
subset name (XXXXXX+FontName) or an empty string.

nCreateFlags LONG One of the enumIGPDEFontCreateFlags values.

lphFont LPHIG_PDE_FONT The new PDE Font object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Create a PDE Font from hSysFont and hSysEncoding. If it fails, it returns an error. Users can call
IG_PDF_sysfont_get_create_flags to see if the combination of hSysFont and hSysEncoding makes sense.

Call IG_PDE_font_release to dispose of the returned font object when finished with it.

ImageGear Professional v18 for Mac | 2073

1.3.3.4.3.7.4 IG_PDE_font_create_from_sysfont_with_params

Used to obtain a PDE Font corresponding to a font in the system.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_font_create_from_sysfont_with_params(
 HIG_PDF_SYSFONT hSysFont,
 LPAT_PDE_FONT_CREATEFROMSYSFONTPARAMS lpParams,
 LPHIG_PDE_FONT lphFont
);

Arguments:

Name Type Description

hSysFont HIG_PDF_SYSFONT PDF system font object referencing a system font.

lpParams LPAT_PDE_FONT_CREATEFROMSYSFONTPARAMS Pointer to the parameters structure.

lphFont LPHIG_PDE_FONT The new PDE Font object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Call IG_PDE_font_release to dispose of the returned font object when finished with it.

ImageGear Professional v18 for Mac | 2074

1.3.3.4.3.7.5 IG_PDE_font_get_attrs

Gets the attributes for a font object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_font_get_attrs(
 HIG_PDE_FONT hFont,
 LPAT_PDE_FONTATTRS lpAttrs
);

Arguments:

Name Type Description

hFont HIG_PDE_FONT PDE font whose attributes are found.

lpAttrs LPAT_PDE_FONTATTRS Font attributes return value.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2075

1.3.3.4.3.7.6 IG_PDE_font_create_tounicode_now

This function creates the /ToUnicode table.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_font_create_tounicode_now(
 HIG_PDE_FONT hFont,
 HIG_PDF_DOC hDoc
);

Arguments:

Name Type Description

hFont HIG_PDE_FONT PDE font for which to create /ToUnicode table.

hDoc HIG_PDF_DOC The container document.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The user can check the return value of IG_PDE_font_get_create_need_flags to see if calling of
IG_PDE_font_create_tounicode_now is needed.

ImageGear Professional v18 for Mac | 2076

1.3.3.4.3.7.7 IG_PDE_font_create_widths_now

This function creates width entries for font.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_font_create_widths_now(
 HIG_PDE_FONT hFont,
 HIG_PDF_DOC hDoc
);

Arguments:

Name Type Description

hFont HIG_PDE_FONT PDE font for which to create width entries.

hDoc HIG_PDF_DOC The container document.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The user can check the return value of IG_PDE_font_get_create_need_flags to see if calling of
IG_PDE_font_create_widths_now is needed.

ImageGear Professional v18 for Mac | 2077

1.3.3.4.3.7.8 IG_PDE_font_embed_now

This function embeds font stream.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_font_embed_now(
 HIG_PDE_FONT hFont,
 HIG_PDF_DOC hDoc);

Arguments:

Name Type Description

hFont HIG_PDE_FONT PDE font to embed.

hDoc HIG_PDF_DOC The container document.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The user can check the return value of IG_PDE_font_get_create_need_flags to see if calling of IG_PDE_font_embed_now
is needed.

ImageGear Professional v18 for Mac | 2078

1.3.3.4.3.7.9 IG_PDE_font_embed_now_dont_subset

Embeds the given hFont inside hDoc without creating a subset.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_font_embed_now_dont_subset(
 HIG_PDE_FONT hFont,
 HIG_PDF_DOC hDoc);

Arguments:

Name Type Description

hFont HIG_PDE_FONT PDE font to embed.

hDoc HIG_PDF_DOC The container document.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Use this function instead of IG_PDE_font_embed_now if you created font with the IG_PDE_FONT_WILL_SUBSET flag but
changed your mind.

ImageGear Professional v18 for Mac | 2079

1.3.3.4.3.7.10 IG_PDE_font_get_create_need_flags

This function returns flags indicating what needs to be done to make hFont complete.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_font_get_create_need_flags(
 HIG_PDE_FONT hFont,
 LPLONG lpnFlags
);

Arguments:

Name Type Description

hFont HIG_PDE_FONT PDE font object.

lpnFlags LPLONG A value corresponding to enumIGPDEFontCreateNeedFlags.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

IG_PDE_FONT_CREATE_NEED_WIDTHS can be cleared by IG_PDE_font_create_widths_now.

IG_PDE_FONT_CREATE_NEED_TO_UNICODE can be cleared by IG_PDE_font_create_tounicode_now.

IG_PDE_FONT_CREATE_NEED_EMBED can be cleared by IG_PDE_font_embed_now.

ImageGear Professional v18 for Mac | 2080

1.3.3.4.3.7.11 IG_PDE_font_get_codebyte_count

Gets the number of bytes comprising the next code in a string of single or multi-byte character codes.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_font_get_codebyte_count(
 HIG_PDE_FONT hFont,
 LPBYTE lpText,
 LONG nTextLen,
 LPUINT lpnCount
);

Arguments:

Name Type Description

hFont HIG_PDE_FONT PDE font object.

lpText LPBYTE Pointer into a string of characters.

nTextLen LONG The length, in bytes, of the string of characters, starting with the character pointed to by
lpText.

lpnCount LPUINT Number of bytes in the next character code pointed to by lpText.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2081

1.3.3.4.3.7.12 IG_PDE_font_get_onebyte_encoding

Gets an array of delta encodings for the given one byte PDE Font.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_font_get_onebyte_encoding(
 HIG_PDE_FONT hFont,
 LPHIG_PDF_ATOM lphEncodingDelta,
 LPAT_BOOL lpbGotEncodingDelta
);

Arguments:

Name Type Description

hFont HIG_PDE_FONT PDE font object.

lphEncodingDelta LPHIG_PDF_ATOM Pointer to an atom array that is filled with the delta encodings for font.
Each entry is the atom for a glyph name that differs from the base
encoding. See Section 5.5.5 in the PDF Reference for more information
about font encodings. The array must be allocated to hold 256 entries.

lpbGotEncodingDelta LPAT_BOOL TRUE if encodingDelta is filled; FALSE otherwise.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2082

1.3.3.4.3.7.13 IG_PDE_font_get_sysencoding

Gets the system encoding object associated with a font object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_font_get_sysencoding(
 HIG_PDE_FONT hFont,
 LPHIG_PDF_SYSENCODING lphSysEncoding
);

Arguments:

Name Type Description

hFont HIG_PDE_FONT PDE font whose system encoding is found.

lphSysEncoding LPHIG_PDF_SYSENCODING The system encoding object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2083

1.3.3.4.3.7.14 IG_PDE_font_get_sysfont

Gets the system font object associated with a font object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_font_get_sysfont(
 HIG_PDE_FONT hFont,
 LPHIG_PDF_SYSFONT lphSysFont
);

Arguments:

Name Type Description

hFont HIG_PDE_FONT PDE font whose system font is found.

lphSysFont LPHIG_PDF_SYSFONT The system font object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2084

1.3.3.4.3.7.15 IG_PDE_font_get_widths

Gets the widths for a font object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_font_get_widths(
 HIG_PDE_FONT hFont,
 LPSHORT lpWidths
);

Arguments:

Name Type Description

hFont HIG_PDE_FONT PDE font whose widths are found.

lpWidths LPSHORT Pointer to widths array. lpWidths must have room for 256 values. The widths are
returned in character space (1000 EM units). An EM is a typographic unit of measurement
equal to the size of a font. To convert to text space, divide the value returned by 1000.
To convert to user space, multiply the text space value by the font size.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2085

1.3.3.4.3.7.16 IG_PDE_font_get_widths_now

Gets a Type0 font's width information for only the characters used in the file.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_font_get_widths_now(
 HIG_PDE_FONT hFont,
 HIG_PDF_DOC hDoc
);

Arguments:

Name Type Description

hFont HIG_PDE_FONT PDE font whose widths are found.

hDoc HIG_PDF_DOC The container document.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Call this routine when the font was created with the IG_PDE_FONT_DEFER_WIDTHS flag but without the
IG_PDE_FONT_CREATE_EMBEDDED flag (if the font is to be embedded, call IG_PDE_font_subset_now, which also gets
the width info).

ImageGear Professional v18 for Mac | 2086

1.3.3.4.3.7.17 IG_PDE_font_is_embedded

Tests whether a font is an embedded font in the document in which it was created.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_font_is_embedded(
 HIG_PDE_FONT hFont,
 LPAT_BOOL lpbResult
);

Arguments:

Name Type Description

hFont HIG_PDE_FONT PDE font object.

lpbResult LPAT_BOOL TRUE if the font is embedded; FALSE if it is not, or if it was created in one document and
embedded in a different document.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2087

1.3.3.4.3.7.18 IG_PDE_font_is_multibyte

Tests whether a font contains any multi-byte characters.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_font_is_multibyte(
 HIG_PDE_FONT hFont,
 LPAT_BOOL lpbResult
);

Arguments:

Name Type Description

hFont HIG_PDE_FONT PDE font object.

lpbResult LPAT_BOOL TRUE if the font contains any multi-byte characters; FALSE otherwise.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2088

1.3.3.4.3.7.19 IG_PDE_font_set_sysencoding

Sets the system encoding object associated with a font object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_font_set_sysencoding(
 HIG_PDE_FONT hFont,
 HIG_PDF_SYSENCODING hSysEncoding
);

Arguments:

Name Type Description

hFont HIG_PDE_FONT PDE Font whose system encoding is set.

hSysEncoding HIG_PDF_SYSENCODING The new system encoding object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Changing the system encoding may produce unexpected results.

ImageGear Professional v18 for Mac | 2089

1.3.3.4.3.7.20 IG_PDE_font_set_sysfont

Sets the system font object to be used with a font object that does not currently have a system font associated with it.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_font_set_sysfont(
 HIG_PDE_FONT hFont,
 HIG_PDF_SYSFONT hSysFont
);

Arguments:

Name Type Description

hFont HIG_PDE_FONT PDE Font whose system font is set.

hSysFont HIG_PDF_SYSFONT The new system font object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2090

1.3.3.4.3.7.21 IG_PDE_font_subset_now

Subsets a given PDE Font in hDoc.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_font_subset_now(
 HIG_PDE_FONT hFont,
 HIG_PDF_DOC hDoc
);

Arguments:

Name Type Description

hFont HIG_PDE_FONT PDE font to subset.

hDoc HIG_PDF_DOC The document whose font is subset.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

If you created font with IG_PDE_font_create_from_sysfont, you must have set both the
IG_PDE_FONT_CREATE_EMBEDDED and IG_PDE_FONT_WILL_SUBSET set in the flags parameter to be able to subset
the font.

ImageGear Professional v18 for Mac | 2091

1.3.3.4.3.7.22 IG_PDE_font_sum_widths

Gets the sum to the widths of nTextLen characters from a string of single or multi-byte characters.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_font_sum_widths(
 HIG_PDE_FONT hFont,
 LPBYTE lpText,
 LONG nTextLen,
 LPLONG lpnSum
);

Arguments:

Name Type Description

hFont HIG_PDE_FONT PDE font object.

lpText LPBYTE Pointer into a string of characters.

nTextLen LONG Number of characters in the string.

lpnSum LPLONG Width of text string in EM space. (In EM space, the width of "M" is about 1000 EM units).

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2092

1.3.3.4.3.7.23 IG_PDE_font_translate_glyphids_to_unicode

Translates a string to Unicode values.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_font_translate_glyphids_to_unicode(
 HIG_PDE_FONT hFont,
 LPBYTE lpText,
 LONG nTextLen,
 LPBYTE lpUniText,
 LONG nUniTextLen,
 LPLONG lpnResult
);

Arguments:

Name Type Description

hFont HIG_PDE_FONT PDE font object.

lpText LPBYTE The string to convert.

nTextLen LONG The length of lpText, in bytes.

lpUniText LPBYTE Buffer to hold the translated string.

nUniTextLen LONG The size of the lpUniText buffer.

lpnResult LPLONG 0 if the string was successfully translated. If lpUniText is too small for the translated
string, it returns the number of bytes required.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The PDE Font must have a /ToUnicode table.

ImageGear Professional v18 for Mac | 2093

1.3.3.4.3.7.24 IG_PDE_font_release

Releases PDE font object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_font_release(
 HIG_PDE_FONT hFont
);

Arguments:

Name Type Description

hFont HIG_PDE_FONT PDE font object to release.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2094

1.3.3.4.3.8 HIG_PDE_FORM

Handle to the PDE form object. A form is an element that corresponds to an instance of XObject Form on a page (or
other containing stream such as another XObject Form or annotation form). The context associated with this instance
includes the actual stream that represents the XObject Form and the initial conditions of the graphics state. The latter
consists of the transformation matrix, initial color values, and so forth. It is possible to have two Forms that refer to the
same XObject Form. The forms will exist at different places on the same page, depending on the transformation matrix.
They may also have different colors or line stroking parameters. In the case of a transparency group, the opacity is
specified in the gstate.

Within a Form, each element has its own gstate (or is a container, place, or group object). These gstates are
independent of the parent Form gstate. Form elements may have their own opacity.

Content may be obtained from a Form to edit the form's display list.

Members:

IG_PDE_form_create Creates a new form from an existing object.

IG_PDE_form_clone Creates a new form from an existing form object.

IG_PDE_form_get_content Gets a PDE Content object for a form.

IG_PDE_form_set_content Sets the form content.

IG_PDE_form_has_xgroup Determines whether the XObject form has a Transparency XGroup.

IG_PDE_form_get_xgroup Acquires the transparency group dictionary of the XObject form.

IG_PDE_form_set_xgroup Sets the transparency group dictionary of the form XObject.

ImageGear Professional v18 for Mac | 2095

1.3.3.4.3.8.1 IG_PDE_form_create

Creates a new form from an existing object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_form_create (
 HIG_PDF_BASOBJ hXObject,
 HIG_PDF_BASOBJ hResources,
 LPAT_PDF_FIXEDMATRIX lpMatrix,
 LPHIG_PDE_FORM lphForm
);

Arguments:

Name Type Description

hXObject HIG_PDF_BASOBJ XObject from which a form is created.

hResources HIG_PDF_BASOBJ The hXObject's Resources dictionary. If you do not pass in a Resource object,
subsequent calls to IG_PDF_page_get_content will fail (after the file is
saved).

lpMatrix LPAT_PDF_FIXEDMATRIX Pointer to AT_PDF_FIXEDMATRIX that holds the transformation matrix to use
for the form.

lphForm LPHIG_PDE_FORM The newly created form object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Call IG_PDE_element_release to dispose of the object.

ImageGear Professional v18 for Mac | 2096

1.3.3.4.3.8.2 IG_PDE_form_clone

Creates a new form from an existing form object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_form_clone (
 HIG_PDE_FORM hForm,
 LPHIG_PDE_FORM lphCloneForm
);

Arguments:

Name Type Description

hForm HIG_PDE_FORM Form object from which a new PDE Form is created.

lphCloneForm LPHIG_PDE_FORM The newly created form object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Creates a copy of the PDE Form, including the underlying objects.

ImageGear Professional v18 for Mac | 2097

1.3.3.4.3.8.3 IG_PDE_form_get_content

Gets a PDE Content object for a form.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_form_get_content(
 HIG_PDE_FORM hForm,
 LPHIG_PDE_CONTENT lphContent
);

Arguments:

Name Type Description

hForm HIG_PDE_FORM The form whose content is obtained.

lphContent LPHIG_PDE_CONTENT Form content object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2098

1.3.3.4.3.8.4 IG_PDE_form_set_content

Sets the form content.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_form_set_content(
 HIG_PDE_FORM hForm,
 HIG_PDE_CONTENT hContent
);

Arguments:

Name Type Description

hForm HIG_PDE_FORM The form whose content is set.

hContent LPHIG_PDE_CONTENT The new content for form.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2099

1.3.3.4.3.8.5 IG_PDE_form_has_xgroup

Determines whether the XObject form has a Transparency XGroup.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_form_has_xgroup(
 HIG_PDE_FORM hForm,
 LPAT_PDF_BOOL lpbHasXGroup
);

Arguments:

Name Type Description

hForm HIG_PDE_FORM The form object.

lpbHasXGroup LPAT_PDF_BOOL TRUE if the XObject form has a Transparency XGroup; FALSE otherwise.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2100

1.3.3.4.3.8.6 IG_PDE_form_get_xgroup

Acquires the transparency group dictionary of the XObject form.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_form_get_xgroup(
 HIG_PDE_FORM hForm,
 LPHIG_PDE_XGROUP lphXGroup
);

Arguments:

Name Type Description

hForm HIG_PDE_FORM The form whose XGroup is obtained.

lphXGroup LPHIG_PDE_XGROUP Transparency group object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2101

1.3.3.4.3.8.7 IG_PDE_form_set_xgroup

Sets the transparency group dictionary of the form XObject.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_form_set_xgroup(
 HIG_PDE_FORM hForm,
 HIG_PDE_XGROUP hXGroup
);

Arguments:

Name Type Description

hForm HIG_PDE_FORM The form whose XGroup is set.

hXGroup LPHIG_PDE_XGROUP The transparency dictionary.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2102

1.3.3.4.3.9 HIG_PDE_GROUP

Handle to the PDE group object. A group is an in-memory representation of objects in Content. It has no state and is not
represented in any way in a content stream (that is, Content).

When used in a Clip, this object is used to associate Text objects into a single clipping object.

Members:

IG_PDE_group_create Creates a PDE Group object.

IG_PDE_group_get_content Gets a PDE Content object for a group.

IG_PDE_group_set_content Sets the group's content.

ImageGear Professional v18 for Mac | 2103

1.3.3.4.3.9.1 IG_PDE_group_create

Creates a PDE Group object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_group_create (
 LPHIG_PDE_GROUP lphGroup
);

Arguments:

Name Type Description

lphGroup LPHIG_PDE_GROUP The newly created group object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2104

1.3.3.4.3.9.2 IG_PDE_group_get_content

Gets a PDE Content object for a group.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_group_get_content(
 HIG_PDE_GROUP hGroup,
 LPHIG_PDE_CONTENT lphContent
);

Arguments:

Name Type Description

hGroup HIG_PDE_GROUP The group whose content is obtained.

lphContent LPHIG_PDE_CONTENT Group content object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2105

1.3.3.4.3.9.3 IG_PDE_group_set_content

Sets the group's content.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_group_set_content(
 HIG_PDE_GROUP hGroup,
 HIG_PDE_CONTENT hContent
);

Arguments:

Name Type Description

hGroup HIG_PDE_GROUP The group whose content is set.

hContent HIG_PDE_CONTENT The new content for group.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2106

1.3.3.4.3.10 HIG_PDE_IMAGE

Handle to the PDE image object. An image is an element that contains an Image XObject or in-line image. You can
associate data or a stream with an image.

Members:

IG_PDE_image_create Creates an image object.

IG_PDE_image_is_data_encoded Determines if image data is encoded or not.

IG_PDE_image_get_attrs Gets the attributes for an image.

IG_PDE_image_get_color_mask Gets the Mask entry from the image dictionary.

IG_PDE_image_get_colorspace Gets the color space object for an image.

IG_PDE_image_get_data Gets an image's data.

IG_PDE_image_get_data_length Gets the length of data for an image.

IG_PDE_image_get_data_stream Gets a data stream for an image.

IG_PDE_image_get_decode_array Gets the decode array for an image.

IG_PDE_image_get_dictionary Gets the dictionary for an image.

IG_PDE_image_get_filter_array Gets the filter array for an image.

IG_PDE_image_get_matte_array Gets the matte array for the image XObject.

IG_PDE_image_get_soft_mask Gets the soft mask for an image.

IG_PDE_image_has_soft_mask Checks whether the image has a soft mask.

IG_PDE_image_is_xobject Determines if an image is an XObject image.

IG_PDE_image_set_color_mask Sets the color space of the image.

IG_PDE_image_set_colorspace Sets the Mask entry from the image dictionary.

IG_PDE_image_set_data Sets data for an image.

IG_PDE_image_set_data_stream Sets a data stream for an image.

IG_PDE_image_set_decode_array Sets the decode array of an image.

IG_PDE_image_set_matte_array Sets the matte array for the image XObject.

IG_PDE_image_set_soft_mask Sets the soft mask.

ImageGear Professional v18 for Mac | 2107

1.3.3.4.3.10.1 IG_PDE_image_create

Creates an image object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_image_create(
 LPAT_PDE_IMAGEATTRS lpAttrs,
 LPAT_PDF_FIXEDMATRIX lpMatrix,
 LONG nFlag,
 HIG_PDE_COLORSPACE hColorSpace,
 LPAT_PDE_COLORVALUE lpColorValue,
 LPAT_PDE_FILTERARRAY lpFilters,
 HIG_PDF_STREAM hDataStream,
 LPBYTE lpData,
 LONG nDataLen,
 LPHIG_PDE_IMAGE lphImage
);

Arguments:

Name Type Description

lpAttrs LPAT_PDE_IMAGEATTRS Pointer to AT_PDE_IMAGEATTRS with attributes of the image.

lpMatrix LPAT_PDF_FIXEDMATRIX Pointer to AT_PDF_FIXEDMATRIX that holds the transformation matrix to
use for the image.

nFlag LONG enumIGPDEImageDataFlags flags. If the
AT_PDE_IMAGE_ENCODED_DATA flag is set, and the data is provided
directly (not as a stream), then nDataLen must specify the length of
data.

hColorSpace HIG_PDE_COLORSPACE Color space of the image. When the image is an imagemask,
hColorSpace is the color space of the lpColorValue argument.

lpColorValue LPAT_PDE_COLORVALUE Pointer to AT_PDE_COLORVALUE structure. If the image is an image
mask, lpColorValue must be provided.

lpFilters LPAT_PDE_FILTERARRAY Pointer to AT_PDE_FILTERARRAY structure that specifies which filters to
use in encoding the contents; may be NULL. Filters will be used to
encode the data in the order in which they are specified in the array.

hDataStream HIG_PDF_STREAM Stream holding the image data.

lpData LPBYTE Image data. If hDataStream is non-NULL, data is ignored. If there is a
great deal of data, as for a large image, it is recommended you use the
hDataStream parameter for the image data.

nDataLen LONG Encoded length of lpData, in bytes.

lphImage LPHIG_PDE_IMAGE The image object.

Return Value:

Error count.

Supported Raster Image Formats:

See Section 4.8 of the PDF Reference for information on image types supported by the PDF format.

Remarks:

The image data may be specified as a stream or as a buffer. If hDataStream is non-NULL, lpData is ignored.

See IG_PDE_image_set_data_stream for information on handling the stream.

The caller must dispose of hDataStream after calling this function.

ImageGear Professional v18 for Mac | 2108

Call IG_PDE_element_release to dispose the created image object when finished with it.

ImageGear Professional v18 for Mac | 2109

1.3.3.4.3.10.2 IG_PDE_image_is_data_encoded

Determines if image data is encoded or not. Used only for inline images; not relevant to XObject images.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_image_is_data_encoded(
 HIG_PDE_IMAGE hImage,
 LPAT_PDF_BOOL lpbIsEncoded,
 LPDWORD lpnEncodedLen
);

Arguments:

Name Type Description

hImage HIG_PDE_IMAGE Image to examine.

lpbIsEncoded LPAT_PDF_BOOL TRUE if IG_PDE_image_get_data returns encoded data; FALSE otherwise. Returns
FALSE for XObject images.

lpnEncodedLen LPDWORD Length of the encoded data-if the data is encoded, that is, if lpbIsEncoded returns
TRUE.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

lpbIsEncoded always returns FALSE for XObject images; XObject image data can be obtained from
IG_PDE_image_get_data or IG_PDE_image_get_data_stream, either encoded or decoded.

Only if IG_PDE_image_create is used to explicitly create a new image using encoded data does lpbIsEncoded returns
TRUE.

ImageGear Professional v18 for Mac | 2110

1.3.3.4.3.10.3 IG_PDE_image_get_attrs

Gets the attributes for an image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_image_get_attrs (
 HIG_PDE_IMAGE hImage,
 LPAT_PDE_IMAGEATTRS lpAttrs
);

Arguments:

Name Type Description

hImage HIG_PDE_IMAGE Image whose attributes are obtained.

lpAttrs LPAT_PDE_IMAGEATTRS Pointer to AT_PDE_IMAGEATTRS structure with attributes of the image.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2111

1.3.3.4.3.10.4 IG_PDE_image_get_color_mask

Use this function to obtain the Mask entry from the image dictionary.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_image_get_color_mask(
 HIG_PDE_IMAGE hImage,
 LPLONG lpMask,
 LPUINT lpnLen
);

Arguments:

Name Type Description

hImage HIG_PDE_IMAGE The image object whose color mask is obtained.

lpMask LPLONG A pointer to the array of LONG values to fill with color mask values. lpMask must contain
enough values to hold the entire color mask array.

lpnLen LPUINT The number of color mask elements obtained by the method - size of lpMask array.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The mask entry is an array specifying a range of colors to be masked out. Samples in the image that fall within this
range are not painted, allowing the existing background to show through. The effect is similar to that of the video
technique known as chroma-key.

The value of each Mask entry is an array of 2n integers, [min1 max1 ... minn maxn], where n is the number of color
components in the image's color space. Each integer must be in the range 0 to (2^BitsPerComponent - 1), representing
color values before decoding with the Decode array. An image sample is masked (not painted) if all of its color
components before decoding, c1...cn, fall within the specified ranges.

ImageGear Professional v18 for Mac | 2112

1.3.3.4.3.10.5 IG_PDE_image_get_colorspace

Gets the color space object for an image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_image_get_colorspace (
 HIG_PDE_IMAGE hImage,
 LPHIG_PDE_COLORSPACE lphColorSpace
);

Arguments:

Name Type Description

hImage HIG_PDE_IMAGE Image whose color space is obtained.

lphColorSpace LPHIG_PDE_COLORSPACE Color space for hImage. Returns NULL if hImage is an image mask.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2113

1.3.3.4.3.10.6 IG_PDE_image_get_data

Gets an image's data.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_image_get_data (
 HIG_PDE_IMAGE hImage,
 LONG nFlags,
 LPBYTE lpData
);

Arguments:

Name Type Description

hImage HIG_PDE_IMAGE Image whose data is obtained.

nFlags LONG Unused, must be 0.

lpData LPBYTE Image data. If the data is decoded, lpData must be large enough to contain the number
of bytes specified in the AT_PDE_IMAGEATTRS structure obtained by
IG_PDE_image_get_attrs. If the data is encoded, lpData must be large enough to contain
the number of bytes in the lpnEncodedLen parameter obtained by
IG_PDE_image_is_data_encoded.

Remarks:

If the image is a XObject image, data is always returned as decoded data.

See the note about inline images under IG_PDE_image_is_data_encoded.

Supported Raster Image Formats:

This function does not process image pixels.

Return Value:

Error count.

ImageGear Professional v18 for Mac | 2114

1.3.3.4.3.10.7 IG_PDE_image_get_data_length

Gets the length of data for an image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_image_get_data_length (
 HIG_PDE_IMAGE hImage,
 LPLONG lpnLength
);

Arguments:

Name Type Description

hImage HIG_PDE_IMAGE Image whose data length is obtained.

lpnLength LPLONG Number of bytes of image data, specified by the width, height, bits per component,
and color space of the image.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2115

1.3.3.4.3.10.8 IG_PDE_image_get_data_stream

Gets a data stream for an image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_image_get_data_stream (
 HIG_PDE_IMAGE hImage,
 LONG nFlags,
 LPHIG_PDF_STREAM lphStream
);

Arguments:

Name Type Description

hImage HIG_PDE_IMAGE Image whose data stream is obtained.

nFlags LONG enumIGPDEImageDataFlags flags. If the AT_PDE_IMAGE_ENCODED_DATA flag is
set, data is returned in encoded form. Otherwise, data is decoded.

lphStream LPHIG_PDF_STREAM Stream for hImage.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

May only be called for XObject images.

The caller must dispose of the returned stream by calling IG_PDF_stream_close.

ImageGear Professional v18 for Mac | 2116

1.3.3.4.3.10.9 IG_PDE_image_get_decode_array

Gets the decode array for an image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_image_get_decode_array (
 HIG_PDE_IMAGE hImage,
 LPAT_PDF_FIXED lpDecode,
 LONG nDecodeSize,
 LPLONG lpnLength
);

Arguments:

Name Type Description

hImage HIG_PDE_IMAGE The image whose decode array is obtained.

lpDecode LPAT_PDF_FIXED Pointer to the decode array. If NULL, the number of decode elements required is
returned via lpnLength.

nDecodeSize LONG Size of lpDecode in bytes.

lpnLength LPLONG Number of elements in the decode array.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2117

1.3.3.4.3.10.10 IG_PDE_image_get_dictionary

Gets the dictionary for an image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_image_get_dictionary(
 HIG_PDE_IMAGE hImage,
 LPHIG_PDF_BASOBJ lphDictionary
);

Arguments:

Name Type Description

hImage HIG_PDE_IMAGE An image object.

lphDictionary LPHIG_PDF_BASOBJ Dictionary for hImage.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2118

1.3.3.4.3.10.11 IG_PDE_image_get_filter_array

Gets the filter array for an image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_image_get_filter_array (
 HIG_PDE_IMAGE hImage,
 LPAT_PDE_FILTERARRAY lpFilters
 LPLONG lpnLength
);

Arguments:

Name Type Description

hImage HIG_PDE_IMAGE Image whose filter array is obtained.

lpFilters LPAT_PDE_FILTERARRAY Pointer to AT_PDE_FILTERARRAY structure to fill with the current filter array
for the image. lpFilters must be large enough to contain all of the elements.
May be NULL to obtain the number of filter elements via lpnLength.

lpnLength LPLONG Number of filter elements.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2119

1.3.3.4.3.10.12 IG_PDE_image_get_matte_array

Gets the matte array for the image XObject.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_image_get_matte_array (
 HIG_PDE_IMAGE hImage,
 LPAT_PDF_FIXED lpMatte,
 LONG nValuesCount,
 LPLONG lpnLength
);

Arguments:

Name Type Description

hImage HIG_PDE_IMAGE The image XObject.

lpMatte LPAT_PDF_FIXED An array of values.

nValuesCount LONG The number of values in lpMatte.

lpnLength LPLONG Number of values copied.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2120

1.3.3.4.3.10.13 IG_PDE_image_get_soft_mask

Gets the soft mask for an image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_image_get_soft_mask (
 HIG_PDE_IMAGE hImage,
 LPHIG_PDE_IMAGE lphSoftMask
);

Arguments:

Name Type Description

hImage HIG_PDE_IMAGE The image object.

lphSoftMask LPHIG_PDE_IMAGE The soft mask for image.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Use IG_PDE_element_release to dispose of the object when it is no longer referenced.

ImageGear Professional v18 for Mac | 2121

1.3.3.4.3.10.14 IG_PDE_image_has_soft_mask

Checks whether the image has a soft mask.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_image_has_soft_mask (
 HIG_PDE_IMAGE hImage,
 LPAT_PDF_BOOL lpbHasSoftMask
);

Arguments:

Name Type Description

hImage HIG_PDE_IMAGE The image object.

lpbHasSoftMask LPAT_PDF_BOOL TRUE if the soft mask exists; FALSE otherwise.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2122

1.3.3.4.3.10.15 IG_PDE_image_is_xobject

Determines if an image is an XObject image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_image_is_xobject (
 HIG_PDE_IMAGE hImage,
 LPAT_PDF_BOOL lpbIsXObject
);

Arguments:

Name Type Description

hImage HIG_PDE_IMAGE The image object.

lpbIsXObject LPAT_PDF_BOOL TRUE if the image is an XObject image; FALSE otherwise.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2123

1.3.3.4.3.10.16 IG_PDE_image_set_color_mask

Use this function to set the Mask entry from the image dictionary.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_image_set_color_mask(
 HIG_PDE_IMAGE hImage,
 LPLONG lpMask,
 UINT nLen
);

Arguments:

Name Type Description

hImage HIG_PDE_IMAGE The image object whose color mask is set.

lpMask LPLONG A pointer to the array of LONG values containing the color mask values.

nLen UINT The number of color mask elements in lpMask - size of lpMask array.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Example:

//24-bit rgb color mask with 1 mask entry
LONG lpMask[] = {250, 255, 250, 255, 250, 255};
int iMaskLen=6;
IG_PDE_image_set_color_mask(hElement,lpMask,iMaskLen);

Remarks:

The mask entry is an array specifying a range of colors to be masked out. Samples in the image that fall within this
range are not painted, allowing the existing background to show through. The effect is similar to that of the video
technique known as chroma-key.

The value of each Mask entry is an array of 2n integers, [min1 max1 ... minn maxn], where n is the number of color
components in the image's color space. Each integer must be in the range 0 to (2^BitsPerComponent - 1), representing
color values before decoding with the Decode array. An image sample is masked (not painted) if all of its color
components before decoding, c1...cn, fall within the specified ranges.

ImageGear Professional v18 for Mac | 2124

1.3.3.4.3.10.17 IG_PDE_image_set_colorspace

Sets the color space of the image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_image_set_colorspace (
 HIG_PDE_IMAGE hImage,
 HIG_PDE_COLORSPACE hColorSpace
);

Arguments:

Name Type Description

hImage HIG_PDE_IMAGE Image whose color space is set.

hColorSpace HIG_PDE_COLORSPACE PDE ColorSpace object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2125

1.3.3.4.3.10.18 IG_PDE_image_set_data

Sets data for an image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_image_set_data (
 HIG_PDE_IMAGE hImage,
 LONG nFlags,
 LPBYTE lpData,
 LONG nLength
);

Arguments:

Name Type Description

hImage HIG_PDE_IMAGE Image whose data is set.

nFlags LONG A set of enumIGPDEImageDataFlags flags. If AT_PDE_IMAGE_ENCODED_DATA is set,
the data must be encoded for the current filters, and nLength is the length of the
encoded data. If the AT_PDE_IMAGE_ENCODED_DATA flag is not set, data is not
encoded and nLength is the size of the decoded data.

lpData LPBYTE Image data.

nLength LONG Length of data.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2126

1.3.3.4.3.10.19 IG_PDE_image_set_data_stream

Sets a data stream for an image; can only be used for XObject images.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_image_set_data_stream (
 HIG_PDE_IMAGE hImage,
 LONG nFlags,
 LPAT_PDE_FILTERARRAY lpFilters,
 HIG_PDF_STREAM hDataStream
);

Arguments:

Name Type Description

hImage HIG_PDE_IMAGE Image whose data stream is set.

nFlags LONG enumIGPDEImageDataFlags flags. If the AT_PDE_IMAGE_ENCODED_DATA
flag is set, the stream must be encoded.

lpFilters LPAT_PDE_FILTERARRAY Pointer to AT_PDE_FILTERARRAY structure. If not NULL, is used to build the
objects for the Filter, DecodeParms, and EncodeParms objects. If lpFilters is
NULL, the existing Filter and DecodeParms are used. EncodeParms is set to
DecodeParms if it exists.

hDataStream HIG_PDF_STREAM Stream for the image data.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2127

1.3.3.4.3.10.20 IG_PDE_image_set_decode_array

Sets the decode array of an image.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_image_set_decode_array (
 HIG_PDE_IMAGE hImage,
 LPAT_PDF_FIXED lpDecode,
 LONG nDecodeSize
);

Arguments:

Name Type Description

hImage HIG_PDE_IMAGE Image whose decode array is set.

lpDecode LPAT_PDF_FIXED Pointer to the decode array.

nDecodeSize LONG Size of decode array in bytes.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Normally, the decode array is accessed through the decode field in the AT_PDE_IMAGEATTRS structure. However, this
function defines a decode array to handle images with a color space that has more than 4 components.

ImageGear Professional v18 for Mac | 2128

1.3.3.4.3.10.21 IG_PDE_image_set_matte_array

Sets the matte array for the image XObject.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_image_set_matte_array (
 HIG_PDE_IMAGE hImage,
 LPAT_PDF_FIXED lpMatte,
 LONG nValuesCount
);

Arguments:

Name Type Description

hImage HIG_PDE_IMAGE The image XObject.

lpMatte LPAT_PDF_FIXED An array of values.

nValuesCount LONG The number of values in lpMatte.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2129

1.3.3.4.3.10.22 IG_PDE_image_set_soft_mask

Sets the soft mask.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_image_set_soft_mask (
 HIG_PDE_IMAGE hImage,
 HIG_PDE_IMAGE hSoftMask
);

Arguments:

Name Type Description

hImage HIG_PDE_IMAGE The image XObject.

hSoftMask HIG_PDE_IMAGE The soft mask.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2130

1.3.3.4.3.11 HIG_PDE_PATH

Handle to the PDE path object. A path is an element that contains a path. Path objects can be stroked, filled, and/or
serve as a clipping path.

Members:

IG_PDE_path_create Creates an empty path element.

IG_PDE_path_add_segment Adds a segment to a path.

IG_PDE_path_get_data Gets the size of the path data and, optionally, the path data.

IG_PDE_path_set_data Sets new path data for a path element.

IG_PDE_path_get_paint_op Gets the fill and stroke attributes of a path.

IG_PDE_path_set_paint_op Sets the fill and stroke attributes of a path.

ImageGear Professional v18 for Mac | 2131

1.3.3.4.3.11.1 IG_PDE_path_create

Creates an empty path element.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_path_create(
 LPHIG_PDE_PATH lphPath
);

Arguments:

Name Type Description

lphPath LPHIG_PDE_PATH Newly created empty path element.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Call IG_PDE_element_release to dispose of the created path object when finished with it.

ImageGear Professional v18 for Mac | 2132

1.3.3.4.3.11.2 IG_PDE_path_add_segment

Adds a segment to a path.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_path_add_segment(
 HIG_PDE_PATH hPath,
 LONG nSegType,
 AT_PDF_FIXED x1,
 AT_PDF_FIXED y1,
 AT_PDF_FIXED x2,
 AT_PDF_FIXED y2,
 AT_PDF_FIXED x3,
 AT_PDF_FIXED y3
);

Arguments:

Name Type Description

hPath HIG_PDE_PATH The path to which a segment is added.

nSegType LONG A enumIGPDEPathElementType value indicating the type of path to add.

x1 AT_PDF_FIXED x-coordinate of first point.

y1 AT_PDF_FIXED y-coordinate of first point.

x2 AT_PDF_FIXED x-coordinate of second point.

y2 AT_PDF_FIXED y-coordinate of second point.

x3 AT_PDF_FIXED x-coordinate of third point.

y3 AT_PDF_FIXED y-coordinate of third point.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The number of AT_PDF_FIXED values used depends upon nSegType:

IG_PDE_MOVE_TO: x1, y1
IG_PDE_LINE_TO: x1, y1
IG_PDE_CURVE_TO: x1, y1, x2, y2, x3, y3
IG_PDE_CURVE_TO_V: x1, y1, x2, y2
IG_PDE_CURVE_TO_Y: x1, y1, x2, y2
IG_PDE_RECT: x1, y1, x2 (width), y2 (height)
IG_PDE_CLOSE_PATH: None

ImageGear Professional v18 for Mac | 2133

1.3.3.4.3.11.3 IG_PDE_path_get_data

Gets the size of the path data and, optionally, the path data.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_path_get_data(
 HIG_PDE_PATH hPath,
 LPLONG lpData,
 LONG nDataSize,
 LPLONG lpnLenght
);

Arguments:

Name Type Description

hPath HIG_PDE_PATH The path whose data is obtained.

lpData LPLONG Pointer to path data. If lpData is non-NULL, it contains a variable-sized array of path
operators and operands. The format is a 32-bit operator followed by 0 to 3
AT_PDF_FIXEDPOINT values, depending on the operator. Opcodes are codes for moveto,
lineto, curveto, rect, or closepath operators; operands are AT_PDF_FIXEDPOINT values.
If data is NULL, the number of bytes required for data is returned in lpnLenght.

Returns "raw" path data. If you want the points in page coordinates, concatenate
the path data points with the PDE Element matrix obtained from
IG_PDE_element_get_matrix.

nDataSize LONG Specifies the size of the buffer provided in data. If it is less than the length of the path
data, the method copies datasize bytes.

lpnLength LPLONG Length of data of hPath.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2134

1.3.3.4.3.11.4 IG_PDE_path_set_data

Sets new path data for a path element.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_path_set_data(
 HIG_PDE_PATH hPath,
 LPLONG lpData,
 LONG nDataSize
);

Arguments:

Name Type Description

hPath HIG_PDE_PATH The path whose data is set.

lpData LPLONG Pointer to path data. It is a variable-sized array of path operators and operands. The
format is a 32-bit operator followed by 0 to 3 AT_PDF_FIXEDPOINT values, depending
on the operator. Operators are codes for moveto, lineto, curveto, rect, or closepath
operators and must be one of enumIGPDEPathElementType. Operands are
AT_PDF_FIXEDPOINT values. The data is copied into hPath object.

nDataSize LONG Size of the new path data, in bytes.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2135

1.3.3.4.3.11.5 IG_PDE_path_get_paint_op

Gets the fill and stroke attributes of a path.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_path_get_paint_op(
 HIG_PDE_PATH hPath,
 LPLONG lpnPaintOpAttrs
);

Arguments:

Name Type Description

hPath HIG_PDE_PATH The path whose fill and stroke attributes are obtained.

lpnPaintOpAttrs LPLONG A set of enumIGPDEPathOpFlags flags describing fill and stroke attributes.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2136

1.3.3.4.3.11.6 IG_PDE_path_set_paint_op

Sets the fill and stroke attributes of a path.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_path_set_paint_op(
 HIG_PDE_PATH hPath,
 LONG nPaintOpAttrs
);

Arguments:

Name Type Description

hPath HIG_PDE_PATH The path whose fill and stroke attributes are set.

nPaintOpAttrs LONG The operation to set; must be one of enumIGPDEPathOpFlags.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2137

1.3.3.4.3.12 HIG_PDE_PLACE

Handle to the PDE place object. A place is an element that marks a place on a page in a PDF file. In a PDF file, a place is
represented by the MP or DP Marked Content operators.

Marked content is useful for adding structure information to a PDF file. For instance, a drawing program may want to
mark a point with information, such as the start of a path of a certain type. Marked content provides a way to retain this
information in the PDF file. A DP operator functions the same as the MP operator and, in addition, allows a property list
dictionary to be associated with a place.

Members:

IG_PDE_place_create Creates a place object.

IG_PDE_place_get_dictionary Gets the Marked Content dictionary for hPlace.

IG_PDE_place_set_dictionary Sets the Marked Content dictionary for hPlace.

IG_PDE_place_get_mctag Gets the Marked Content tag for a hPlace.

IG_PDE_place_set_mctag Sets the Marked Content tag for a hPlace.

ImageGear Professional v18 for Mac | 2138

1.3.3.4.3.12.1 IG_PDE_place_create

Creates a place object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_place_create(
 HIG_PDF_ATOM mcTag,
 HIG_PDF_BASOBJ mcDict,
 AT_PDF_BOOL bIsInline
 LPHIG_PDE_PLACE lphPlace
);

Arguments:

Name Type Description

mcTag HIG_PDF_ATOM Tag name for the place. Must not contain any white space characters (for example,
spaces or tabs).

mcDict HIG_PDF_BASOBJ Optional Marked Content dictionary associated with the place.

bIsInline AT_PDF_BOOL If TRUE, place is emitted into the page content stream inline.

lphPlace LPHIG_PDE_PLACE The place object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Call IG_PDE_element_release to dispose the created place object when finished with it.

ImageGear Professional v18 for Mac | 2139

1.3.3.4.3.12.2 IG_PDE_place_get_dictionary

Gets the Marked Content dictionary for hPlace.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_place_get_dictionary(
 HIG_PDE_PLACE hPlace,
 LPHIG_PDF_BASOBJ lpmcDict,
 LPAT_PDF_BOOL lpbIsInline,
 LPAT_PDF_BOOL lpbResult
);

Arguments:

Name Type Description

hPlace HIG_PDE_PLACE The place whose Marked Content dictionary is obtained.

lpmcDict LPHIG_PDF_BASOBJ Pointer to the Marked Content dictionary; may be NULL.

lpbIsInline LPAT_PDF_BOOL If TRUE, the Marked Content dictionary is inline; may be NULL.

lpbResult LPAT_PDF_BOOL TRUE if dictionary is obtained; FALSE if no dictionary is present.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2140

1.3.3.4.3.12.3 IG_PDE_place_set_dictionary

Sets the Marked Content dictionary for hPlace.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_place_set_dictionary(
 HIG_PDE_PLACE hPlace,
 HIG_PDF_BASOBJ mcDict,
 AT_PDF_BOOL bIsInline
);

Arguments:

Name Type Description

hPlace HIG_PDE_PLACE The place whose Marked Content dictionary is set.

lpmcDict HIG_PDF_BASOBJ Marked Content dictionary for hPlace.

lpbIsInline AT_PDF_BOOL If TRUE, the dictionary is emitted inline.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2141

1.3.3.4.3.12.4 IG_PDE_place_get_mctag

Gets the Marked Content tag for a hPlace.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_place_get_mctag(
 HIG_PDE_PLACE hPlace,
 LPHIG_PDF_ATOM lpmcTag
);

Arguments:

Name Type Description

hPlace HIG_PDE_PLACE The place whose Marked Content tag is obtained.

lpmcTag LPHIG_PDF_ATOM Tag for hPlace.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2142

1.3.3.4.3.12.5 IG_PDE_place_set_mctag

Sets the Marked Content tag for a hPlace.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_place_set_mctag(
 HIG_PDE_PLACE hPlace,
 HIG_PDF_ATOM mcTag
);

Arguments:

Name Type Description

hPlace HIG_PDE_PLACE The place whose Marked Content tag is set.

mcTag HIG_PDF_ATOM The tag for hPlace.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2143

1.3.3.4.3.13 HIG_PDE_POSTSCRIPT

Handle to the PDE PostScript object. PostScript - an element representing in-line or XObject pass-through PostScript
object. XObject PostScripts are listed in page XObject resources.

Members:

IG_PDE_postscript_create Creates a PDE PostScript object.

IG_PDE_postscript_get_attrs Gets hPostScript attributes.

IG_PDE_postscript_get_data Gets all or part of the image data.

IG_PDE_postscript_set_data Sets the data for hPostScript.

IG_PDE_postscript_get_data_stream Gets a stream for the data.

IG_PDE_postscript_set_data_stream Sets a stream for the data.

ImageGear Professional v18 for Mac | 2144

1.3.3.4.3.13.1 IG_PDE_postscript_create

Creates a PDE PostScript object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_postscript_create(
 LPAT_PDE_PSATTRS lpAttrs,
 HIG_PDF_STREAM hDataStream,
 LPBYTE lpData,
 LONG nDataSize
 LPHIG_PDE_POSTSCRIPT lphPostScript
);

Arguments:

Name Type Description

lpAttrs LPAT_PDE_PSATTRS Pointer to AT_PDE_PSATTRS attributes data structure.

hDataStream HIG_PDF_STREAM Data stream. May be NULL.

lpData LPBYTE Data. May be NULL.

nDataSize LONG Number of bytes of data.

lphPostScript LPHIG_PDE_POSTSCRIPT The postscript object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

lpData and hDataStream may be NULL. If so, use IG_PDE_postscript_set_data and IG_PDE_postscript_set_data_stream
to attach data to the object. If hDataStream is non-NULL, then data will be ignored.

If data is non-NULL and hDataStream is NULL, the data must contain nDataSize number of bytes as specified in the
AT_PDE_PSATTRS.

Call IG_PDE_element_release to dispose of the created object when finished with it.

ImageGear Professional v18 for Mac | 2145

1.3.3.4.3.13.2 IG_PDE_postscript_get_attrs

Gets hPostScript attributes.

Declaration:

AT_ERRCOUNT ACCUAPIIG_PDE_postscript_get_attrs(
 HIG_PDE_POSTSCRIPT hPostScript,
 LPAT_PDE_PSATTRS lpAttrs
);

Arguments:

Name Type Description

hPostScript HIG_PDE_POSTSCRIPT PDE postscript object.

lpAttrs LPAT_PDE_PSATTRS Pointer to AT_PDE_PSATTRS data structure containing the attributes
information.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2146

1.3.3.4.3.13.3 IG_PDE_postscript_get_data

Gets all or part of the image data.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_postscript_get_data (
 HIG_PDE_POSTSCRIPT hPostScript,
 LPBYTE lpBuffer,
 LONG nBufferSize,
 LONG nOffset,
 LPLONG lpnBytesWritten
);

Arguments:

Name Type Description

hPostScript HIG_PDE_POSTSCRIPT PDE postscript object.

lpBuffer LPBYTE Receives the data.

nBufferSize LONG Size of the buffer.

nOffset LONG Offset into the source data at which to start filling buffer.

lpnBytesWritten LPLONG The number of bytes written into the buffer. If it is less than nBufferSize,
then there is no more data.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2147

1.3.3.4.3.13.4 IG_PDE_postscript_set_data

Sets the data for hPostScript.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_postscript_set_data (
 HIG_PDE_POSTSCRIPT hPostScript,
 LPBYTE lpBuffer,
 LONG nBufferSize
);

Arguments:

Name Type Description

hPostScript HIG_PDE_POSTSCRIPT PDE postscript object.

lpBuffer LPBYTE Contains the data.

nBufferSize LONG Length of the data in bytes.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2148

1.3.3.4.3.13.5 IG_PDE_postscript_get_data_stream

Gets a stream for the data.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_postscript_get_data_stream (
 HIG_PDE_POSTSCRIPT hPostScript,
 LPHIG_PDF_STREAM lphStream
);

Arguments:

Name Type Description

hPostScript HIG_PDE_POSTSCRIPT PDE postscript object.

lphStream LPHIG_PDF_STREAM Stream for hPostScript.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The data in the stream is decoded (no filters).

The caller must dispose of the returned stream by calling IG_PDF_stream_close.

ImageGear Professional v18 for Mac | 2149

1.3.3.4.3.13.6 IG_PDE_postscript_set_data_stream

Sets a stream for the data; the data must be un-encoded (no filters).

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_postscript_set_data_stream (
 HIG_PDE_POSTSCRIPT hPostScript,
 HIG_PDF_STREAM hStream
);

Arguments:

Name Type Description

hPostScript HIG_PDE_POSTSCRIPT PDE postscript object.

hStream HIG_PDF_STREAM Stream for the data.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2150

1.3.3.4.3.14 HIG_PDE_SOFTMASK

Handle to the PDE soft mask object. A soft mask is an object for creating and manipulating a soft mask in a PDF file.

Members:

IG_PDE_softmask_create Creates a new soft mask object.

IG_PDE_softmask_create_from_name Create a new soft mask from a name.

IG_PDE_softmask_get_form Acquires the form that defines the soft mask.

IG_PDE_softmask_set_form Sets the form that defines the soft mask.

IG_PDE_softmask_get_backdrop_color Gets the array of color values of the backdrop color.

IG_PDE_softmask_set_backdrop_color Sets the backdrop color values.

IG_PDE_softmask_get_name Gets the soft mask name.

ImageGear Professional v18 for Mac | 2151

1.3.3.4.3.14.1 IG_PDE_softmask_create

Creates a new soft mask object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_softmask_create(
 HIG_PDF_DOC hDoc,
 LONG nType,
 HIG_PDE_FORM hForm,
 LPHIG_PDE_SOFTMASK lphSoftMask
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The container document.

nType LONG Specifies how the mask is to be computed. One of the
enumIGPDESoftMaskCreateFlags.

hForm HIG_PDE_FORM The form XObject that defines the soft mask. It is the source of the mask
values and the color space in which the composite computation is to be done.

lphSoftMask LPHIG_PDE_SOFTMASK The newly created object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Call IG_PDE_element_release to dispose the created object when finished with it.

ImageGear Professional v18 for Mac | 2152

1.3.3.4.3.14.2 IG_PDE_softmask_create_from_name

Create a new soft mask from a name.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_softmask_create_from_name(
 HIG_PDF_ATOM hName,
 LPHIG_PDE_SOFTMASK lphSoftMask
);

Arguments:

Name Type Description

hName HIG_PDF_ATOM The new name for the soft mask. Currently, the only valid name is None.

lphSoftMask LPHIG_PDE_SOFTMASK The newly created object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Call IG_PDE_element_release to dispose the created object when finished with it.

ImageGear Professional v18 for Mac | 2153

1.3.3.4.3.14.3 IG_PDE_softmask_get_form

Acquires the form that defines the soft mask.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_softmask_get_form(
 HIG_PDE_SOFTMASK hSoftMask,
 LPAT_PDF_FIXEDMATRIX lpMatrix,
 LPHIG_PDE_FORM lphForm
);

Arguments:

Name Type Description

hSoftMask HIG_PDE_SOFTMASK The soft mask object.

lpMatrix LPAT_PDF_FIXEDMATRIX Matrix defining the transformation from coordinate space to user space.

lphForm LPHIG_PDE_FORM The XObject form of the soft mask.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2154

1.3.3.4.3.14.4 IG_PDE_softmask_set_form

Sets the form that defines the soft mask.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_softmask_set_form(
 HIG_PDE_SOFTMASK hSoftMask,
 HIG_PDE_FORM hForm
);

Arguments:

Name Type Description

hSoftMask HIG_PDE_SOFTMASK The soft mask object.

hForm HIG_PDE_FORM The form XObject.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2155

1.3.3.4.3.14.5 IG_PDE_softmask_get_backdrop_color

Gets the array of color values of the backdrop color.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_softmask_get_backdrop_color (
 HIG_PDE_SOFTMASK hSoftMask,
 LPAT_PDF_FIXED lpColorValues,
 LONG nColorValuesLen,
 LPLONG lpnCount
);

Arguments:

Name Type Description

hSoftMask HIG_PDE_SOFTMASK The soft mask object.

lpColorValues LPAT_PDF_FIXED Pointer to an array of color values. If NULL, the number of color values is
returned in lpnCount.

nColorValuesLen LONG Length of the array lpColorValues.

lpnCount LPLONG Number of values copied.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Given a pointer to an array and the length of the array, copies the color values to that array and returns the number of
values copied. If the pointer to the array is NULL, the number of color values is returned in lpnCount.

ImageGear Professional v18 for Mac | 2156

1.3.3.4.3.14.6 IG_PDE_softmask_set_backdrop_color

Sets the backdrop color values.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_softmask_set_backdrop_color (
 HIG_PDE_SOFTMASK hSoftMask,
 LPAT_PDF_FIXED lpColorValues,
 LONG nColorValuesLen
);

Arguments:

Name Type Description

hSoftMask HIG_PDE_SOFTMASK The soft mask object.

lpColorValues LPAT_PDF_FIXED Pointer to an array of color values.

nColorValuesLen LONG The number of values pointed to by lpColorValues.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2157

1.3.3.4.3.14.7 IG_PDE_softmask_get_name

Gets the soft mask name.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_softmask_get_name (
 HIG_PDE_SOFTMASK hSoftMask,
 LPHIG_PDF_ATOM lphName
);

Arguments:

Name Type Description

hSoftMask HIG_PDE_SOFTMASK The soft mask object.

lphName LPHIG_PDF_ATOM Soft mask name if it is a name; IG_PDF_ATOM_NULL otherwise.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2158

1.3.3.4.3.15 HIG_PDE_SHADING

Handle to the PDE shading object. Shading - an element that represents smooth shading.

Members:

IG_PDE_shading_create Creates a smooth shading object.

IG_PDE_shading_get_dictionary Gets the dictionary for a shading.

ImageGear Professional v18 for Mac | 2159

1.3.3.4.3.15.1 IG_PDE_shading_create

Creates a smooth shading object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_shading_create (
 HIG_PDF_BASOBJ hDictionary,
 LPAT_PDF_FIXEDMATRIX lpMatrix,
 LPHIG_PDE_SHADING lphShading
);

Arguments:

Name Type Description

hDictionary HIG_PDF_BASOBJ The shading dictionary.

lpMatrix LPAT_PDF_FIXEDMATRIX The location and transformation matrix of the shading object.

lphShading LPHIG_PDE_SHADING A smooth shading object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Call IG_PDE_element_release to dispose of the created object when finished with it.

ImageGear Professional v18 for Mac | 2160

1.3.3.4.3.15.2 IG_PDE_shading_get_dictionary

Gets the dictionary for a shading.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_shading_get_dictionary(
 HIG_PDE_SHADING hShading,
 LPHIG_PDF_BASOBJ lphDictionary
);

Arguments:

Name Type Description

hShading HIG_PDE_SHADING A shading object.

lphDictionary LPHIG_PDF_BASOBJ Dictionary for hShading.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2161

1.3.3.4.3.16 HIG_PDE_TEXT

Handle to the PDE text object. Text - an element representing text. It is a container for text as show strings or as
individual characters. Each sub-element may have different graphics state properties. However, the same clip applies to
all sub-elements of a Text. Also, the char path of a Text can be used to represent a clip.

Members:

IG_PDE_text_create Creates an empty text object.

IG_PDE_text_add Adds a character or a text run to a PDE Text object.

IG_PDE_text_add_item Adds a text item to a text element at a given index position.

IG_PDE_text_get_advance Gets the advance width of a character or a text element.

IG_PDE_text_get_bbox Gets the bounding box of a character or a text run.

IG_PDE_text_get_font Gets the font for a text character or element.

IG_PDE_text_get_gstate Gets the graphics state of a character or a text run.

IG_PDE_text_get_item Obtains a text item from a text element at a given index position.

IG_PDE_text_get_matrix Returns the matrix of a character or a text element.

IG_PDE_text_get_byte_count Gets the number of bytes occupied by the character code or text run.

IG_PDE_text_get_char_count Gets the number of characters in a text object.

IG_PDE_text_get_runs_count Gets the number of text runs (show strings) in a text object.

IG_PDE_text_get_quad Gets the quad bounding the specified text run or character.

IG_PDE_text_get_run_for_char Gets the index of the text run that contains the nth character in a text object.

IG_PDE_text_get_state Gets the text state of a character or a text element.

IG_PDE_text_get_stroke_matrix Gets the stroke matrix of a character or a text run.

IG_PDE_text_get_text Gets the text for a text run or character.

IG_PDE_text_is_at_point Tests whether a point is on specified text.

IG_PDE_text_is_at_rect Tests whether any part of a rectangle is on the specified text.

IG_PDE_text_remove Removes characters or text runs from a text object.

IG_PDE_text_remove_items Removes contiguous text items from a text element starting at a given index
position.

IG_PDE_text_replace_chars Replaces characters in a text object.

IG_PDE_text_run_get_char_offset Gets the character offset of the first character of the specified text run.

IG_PDE_text_run_get_char_count Gets the number of characters in a text run.

IG_PDE_text_run_set_font Sets the font of a text run.

IG_PDE_text_run_set_gstate Sets the graphics state of a text run.

IG_PDE_text_run_set_matrix Sets the matrix of a text run.

IG_PDE_text_run_set_state Sets the text state of a text run.

IG_PDE_text_run_set_stroke_matrix Sets the stroke matrix of a text run.

IG_PDE_text_split_run_at Splits a text run into two text runs.

ImageGear Professional v18 for Mac | 2162

1.3.3.4.3.16.1 IG_PDE_text_create

Creates an empty text object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_create(
 LPHIG_PDE_TEXT lphText
);

Arguments:

Name Type Description

lphText LPHIG_PDE_TEXT An empty text object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Call IG_PDE_element_release to dispose the created object when finished with it.

ImageGear Professional v18 for Mac | 2163

1.3.3.4.3.16.2 IG_PDE_text_add

Adds a character or a text run to a PDE Text object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_add(
 HIG_PDE_TEXT hText,
 UINT nFlag,
 UINT nIndex,
 LPBYTE lpText,
 UINT nTextLen,
 HIG_PDE_FONT hFont,
 LPAT_PDE_GRAPHICSTATE lpGstate,
 LPAT_PDE_TEXTSTATE lpTstate,
 LPAT_PDF_FIXEDMATRIX lpTextMatrix,
 LPAT_PDF_FIXEDMATRIX lpStrokeMatrix
);

Arguments:

Name Type Description

hText LPHIG_PDE_TEXT Text object to which a character or text run is added.

nFlag UINT enumIGPDETextFlags flag that specifies what kind of text to add. Must
be either:

IG_PDE_TEXT_CHAR - for a text character
IG_PDE_TEXT_RUN - for a text run.

nIndex UINT Index after which to add character or text run.

lpText LPBYTE Pointer to the characters to add.

Passing NULL for text can invalidate the text object but will not
raise an error. Callers must not pass NULL for this parameter.

nTextLen UINT Length of the text, in bytes.

hFont HIG_PDE_FONT Font for the element.

lpGstate LPAT_PDE_GRAPHICSTATE Pointer to AT_PDE_GRAPHICSTATE structure with the graphics state for
the element.

lpTstate LPAT_PDE_TEXTSTATE Pointer to AT_PDE_TEXTSTATE structure with text state for the element.

lpTextMatrix LPAT_PDF_FIXEDMATRIX Pointer to AT_PDF_FIXEDMATRIX that holds the matrix for the element.

lpStrokeMatrix LPAT_PDF_FIXEDMATRIX Pointer to AT_PDF_FIXEDMATRIX that holds the matrix for the line width
when stroking text. May be NULL.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2164

1.3.3.4.3.16.3 IG_PDE_text_add_item

Adds a text item to a text element at a given index position.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_add_item(
 HIG_PDE_TEXT hText,
 UINT nIndex,
 HIG_PDE_TEXTITEM hTextItem
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object to which an item is added.

nIndex UINT Index of the text item in hText.

hTextItem HIG_PDE_TEXTITEM The text item to add.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2165

1.3.3.4.3.16.4 IG_PDE_text_get_advance

Gets the advance width of a character or a text element.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_get_advance(
 HIG_PDE_TEXT hText,
 UINT nFlags,
 UINT nIndex,
 LPAT_PDF_FIXEDPOINT lpAdvanceWidth
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object containing a character or text run whose advance width is
found.

nFlags UINT enumIGPDETextFlags value that specifies whether index refers to the
character offset from the beginning of the text object or the index of the
text run in the text object. Must be either:

IG_PDE_TEXT_CHAR - for a text character
IG_PDE_TEXT_RUN - for a text run

In addition, set the IG_PDE_TEXT_PAGE_SPACE flag to obtain the advance
width in user space. If it is not set, the advance width is in character
space. If this flag is not set, this function returns a value that is
independent of any sizes, matrices, or scaling, simply adding up the font's
raw glyph widths, supplemented only by nonscaled character and word
spacing.

nIndex UINT Index of the character or text run in hText.

lpAdvanceWidth LPAT_PDF_FIXEDPOINT Pointer to AT_PDF_FIXEDPOINT value indicating the advance width.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Advance width is returned in either character space or user space. The advance width is the amount by which the current
point advances when the character is drawn.

Advance width may be horizontal or vertical, depending on the writing style. Thus lpAdvanceWidth has both a horizontal
and vertical component.

ImageGear Professional v18 for Mac | 2166

1.3.3.4.3.16.5 IG_PDE_text_get_bbox

Gets the bounding box of a character or a text run.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_get_bbox(
 HIG_PDE_TEXT hText,
 UINT nFlags,
 UINT nIndex,
 LPAT_PDF_FIXEDRECT lpBBox
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object containing a character or text run whose bounding box is found.

nFlags UINT enumIGPDETextFlags value that specifies whether index refers to the character
offset from the beginning of the text object or the index of the text run in the text
object. Must be either:

IG_PDE_TEXT_CHAR - for a text character
IG_PDE_TEXT_RUN - for a text run

nIndex UINT Index of the character or text run in the text object.

lpBBox LPAT_PDF_FIXEDRECT Pointer to AT_PDF_FIXEDRECT to set to the bounding box of specified character or
text run.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2167

1.3.3.4.3.16.6 IG_PDE_text_get_font

Gets the font for a text character or element.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_get_font(
 HIG_PDE_TEXT hText,
 UINT nFlags,
 UINT nIndex,
 LPHIG_PDE_FONT lphFont
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object containing a character or text run whose font is found.

nFlags UINT enumIGPDETextFlags value that specifies whether index refers to the character offset
from the beginning of the text object or the index of the text run in the text object. Must
be either:

IG_PDE_TEXT_CHAR - for a text character
IG_PDE_TEXT_RUN - for a text run

nIndex UINT Index of the character or text run in the text object.

lphFont LPHIG_PDE_FONT HIG_PDE_FONT return value.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2168

1.3.3.4.3.16.7 IG_PDE_text_get_gstate

Gets the graphics state of a character or a text run.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_get_gstate(
 HIG_PDE_TEXT hText,
 UINT nFlags,
 UINT nIndex,
 LPAT_PDE_GRAPHICSTATE lpGstate
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object containing a character or text run whose graphics state is
obtained.

nFlags UINT enumIGPDETextFlags value that specifies whether index refers to the character
offset from the beginning of the text object or the index of the text run in the
text object. Must be either:

IG_PDE_TEXT_CHAR - for a text character
IG_PDE_TEXT_RUN - for a text run

nIndex UINT Index of the character or text run in the text object.

lpGstate LPAT_PDE_GRAPHICSTATE Pointer to a AT_PDE_GRAPHICSTATE structure with graphics state of specified
character or text run.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Non-NULL objects in the graphic state, such as the fill and stroke color spaces, have their reference counts incremented
by this function. Be sure to release these non-NULL objects when disposing of lpGstate.

ImageGear Professional v18 for Mac | 2169

1.3.3.4.3.16.8 IG_PDE_text_get_item

Obtains a text item from a text element at a given index position.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_get_item(
 HIG_PDE_TEXT hText,
 UINT nIndex,
 LPHIG_PDE_TEXTITEM lphTextItem
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object from which the text item is obtained.

nIndex UINT Index of the text item in hText.

lphTextItem LPHIG_PDE_TEXTITEM The text item object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2170

1.3.3.4.3.16.9 IG_PDE_text_get_matrix

Returns the matrix of a character or a text element.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_get_matrix(
 HIG_PDE_TEXT hText,
 UINT nFlags,
 UINT nIndex,
 LPAT_PDF_FIXEDMATRIX lpMatrix
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object containing a character or text run whose matrix is obtained.

nFlags UINT enumIGPDETextFlags value that specifies whether index refers to the character
offset from the beginning of the text object or the index of the text run in the
text object. Must be either:

IG_PDE_TEXT_CHAR - for a text character
IG_PDE_TEXT_RUN - for a text run

nIndex UINT Index of the character or text run in the text object.

lpMatrix LPAT_PDF_FIXEDMATRIX Pointer to AT_PDF_FIXEDMATRIX that holds the matrix of specified character or
text run.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2171

1.3.3.4.3.16.10 IG_PDE_text_get_byte_count

Gets the number of bytes occupied by the character code or text run.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_get_byte_count(
 HIG_PDE_TEXT hText,
 UINT nFlags,
 UINT nIndex,
 LPUINT lpnByteCount
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object containing a character or text run whose text is examined.

nFlags UINT enumIGPDETextFlags value that specifies whether index refers to the character offset
from the beginning of the text object or the index of the text run in the text object.
Must be either:

IG_PDE_TEXT_CHAR - for a text character
IG_PDE_TEXT_RUN - for a text run

nIndex UINT Index of the character or text run in the text object.

lpnByteCount LPUINT Number of bytes occupied by the text run or character.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2172

1.3.3.4.3.16.11 IG_PDE_text_get_char_count

Gets the number of characters in a text object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_get_char_count(
 HIG_PDE_TEXT hText,
 LPUINT lpnCharCount
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object containing a character or text run whose text is examined.

lpnCharCount LPUINT Total number of characters in hText.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2173

1.3.3.4.3.16.12 IG_PDE_text_get_runs_count

Gets the number of text runs (show strings) in a text object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_get_runs_count(
 HIG_PDE_TEXT hText,
 LPUINT lpnRunsCount
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object whose number of text runs is found.

lpnRunsCount LPUINT Number of text runs in hText.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2174

1.3.3.4.3.16.13 IG_PDE_text_get_quad

Gets the quad bounding the specified text run or character.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_get_quad(
 HIG_PDE_TEXT hText,
 UINT nFlags,
 UINT nIndex,
 LPAT_PDF_FIXEDQUAD lpQuad
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object containing a character or text run whose text is examined.

nFlags UINT enumIGPDETextFlags value that specifies whether index refers to the character
offset from the beginning of the text object or the index of the text run in the text
object. Must be either:

IG_PDE_TEXT_CHAR - for a text character
IG_PDE_TEXT_RUN - for a text run

In addition, if the IG_PDE_TEXT_GET_BOUNDS flag is set, this function uses the
font descriptor's FontBBox, which is the smallest rectangle that encloses all
characters in the font. The advance portion is based on the x-coordinates of the left
and right sides of FontBBox and the advance width.

nIndex UINT Index of the character or text run in the text object.

lpQuad LPAT_PDF_FIXEDQUAD Pointer to AT_PDF_FIXEDQUAD that bounds the specified character or text run.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

The advance portion of the quad is based on the left side bearing and advance width.

ImageGear Professional v18 for Mac | 2175

1.3.3.4.3.16.14 IG_PDE_text_get_run_for_char

Gets the index of the text run that contains the nth character in a text object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_get_run_for_char(
 HIG_PDE_TEXT hText,
 UINT nCharIndex,
 LPUINT lpnRunIndex
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object containing a character or text run whose text is examined.

nCharIndex UINT Number of the character to find in hText.

lpnRunIndex LPUINT Index of the text run with the specified character index in hText.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2176

1.3.3.4.3.16.15 IG_PDE_text_get_state

Gets the text state of a character or a text element.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_get_state(
 HIG_PDE_TEXT hText,
 UINT nFlags,
 UINT nIndex,
 LPAT_PDE_TEXTSTATE lpTstate
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object containing a character or text run whose text is examined.

nFlags UINT enumIGPDETextFlags value that specifies whether index refers to the character
offset from the beginning of the text object or the index of the text run in the text
object. Must be either:

IG_PDE_TEXT_CHAR - for a text character
IG_PDE_TEXT_RUN - for a text run

nIndex UINT Index of the character or text run in the text object.

lpTstate LPAT_PDE_TEXTSTATE Pointer to AT_PDE_TEXTSTATE structure to fill with the text state of the specified
character or text run.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2177

1.3.3.4.3.16.16 IG_PDE_text_get_stroke_matrix

Gets the stroke matrix of a character or a text run.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_get_stroke_matrix(
 HIG_PDE_TEXT hText,
 UINT nFlags,
 UINT nIndex,
 LPAT_PDF_FIXEDMATRIX lpMatrix
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object containing a character or text run whose text is examined.

nFlags UINT enumIGPDETextFlags value that specifies whether index refers to the character
offset from the beginning of the text object or the index of the text run in the
text object. Must be either:

IG_PDE_TEXT_CHAR - for a text character
IG_PDE_TEXT_RUN - for a text run

nIndex UINT Index of the character or text run in the text object.

lpMatrix LPAT_PDF_FIXEDMATRIX Pointer to AT_PDF_FIXEDMATRIX that holds the stroke matrix of specified
character or text run. This matrix is the transformation for line widths when
stroking. The h and v values of the matrix are ignored.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2178

1.3.3.4.3.16.17 IG_PDE_text_get_text

Gets the text for a text run or character.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_get_text(
 HIG_PDE_TEXT hText,
 UINT nFlags,
 UINT nIndex,
 LPBYTE lpText,
 LPUINT lpnTextLen
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object containing a character or text run whose text is found.

nFlags UINT enumIGPDETextFlags value that specifies whether index refers to the character offset
from the beginning of the text object or the index of the text run in the text object.
Must be either:

IG_PDE_TEXT_CHAR - for a text character
IG_PDE_TEXT_RUN - for a text run

nIndex UINT Index of the character or text run in the text object.

lpText LPBYTE Text of specified character or text run. lpText must be large enough to hold the
returned text.

lpnTextLen LPUINT Number of bytes in text run or character.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2179

1.3.3.4.3.16.18 IG_PDE_text_is_at_point

Tests whether a point is on specified text.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_is_at_point(
 HIG_PDE_TEXT hText,
 UINT nFlags,
 UINT nIndex,
 LPAT_PDF_FIXEDPOINT lpPoint,
 LPAT_BOOL lpbResult
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object containing a character or text run.

nFlags UINT enumIGPDETextFlags value that specifies whether index refers to the character
offset from the beginning of the text object or the index of the text run in the
text object. Must be either:

IG_PDE_TEXT_CHAR - for a text character
IG_PDE_TEXT_RUN - for a text run

nIndex UINT Index of the character or text run in the text object.

lpPoint LPAT_PDF_FIXEDPOINT The point, specified in user space coordinates.

lpbResult LPAT_BOOL TRUE if the point is on the text; FALSE otherwise.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Checks if the point is in a bounding box for hText.

ImageGear Professional v18 for Mac | 2180

1.3.3.4.3.16.19 IG_PDE_text_is_at_rect

Tests whether any part of a rectangle is on the specified text.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_is_at_rect(
 HIG_PDE_TEXT hText,
 UINT nFlags,
 UINT nIndex,
 LPAT_PDF_FIXEDRECT lpFixedRect,
 LPAT_BOOL lpbResult
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object containing a character or text run.

nFlags UINT enumIGPDETextFlags value that specifies whether index refers to the character
offset from the beginning of the text object or the index of the text run in the
text object. Must be either:

IG_PDE_TEXT_CHAR - for a text character
IG_PDE_TEXT_RUN - for a text run

nIndex UINT Index of the character or text run in the text object.

lpFixedRect LPAT_PDF_FIXEDRECT The rectangle, specified in user space coordinates.

lpbResult LPAT_BOOL TRUE if the text is on the rectangle; FALSE otherwise.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2181

1.3.3.4.3.16.20 IG_PDE_text_remove

Removes characters or text runs from a text object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_remove(
 HIG_PDE_TEXT hText,
 UINT nFlags,
 UINT nIndex,
 UINT nCount
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object containing a character or text run.

nFlags UINT enumIGPDETextFlags value that specifies whether index refers to the character offset from
the beginning of the text object or the index of the text run in the text object. Must be
either:

IG_PDE_TEXT_CHAR - for a text character
IG_PDE_TEXT_RUN - for a text run

nIndex UINT Index of the character or text run in the text object.

nCount UINT Number of characters or text runs to remove.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2182

1.3.3.4.3.16.21 IG_PDE_text_remove_items

Removes contiguous text items from a text element starting at a given index position.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_remove_items(
 HIG_PDE_TEXT hText,
 UINT nIndex,
 UINT nCount
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object from which the text items are removed.

nIndex UINT Index of the first text item in pdeText to remove.

nCount UINT The number of text items to remove.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2183

1.3.3.4.3.16.22 IG_PDE_text_replace_chars

Replaces characters in a text object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_replace_chars(
 HIG_PDE_TEXT hText,
 UINT nFlags,
 UINT nIndex,
 LPBYTE lpText,
 UINT nTextLen
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object containing a character or text run.

nFlags UINT enumIGPDETextFlags value that specifies whether index refers to the character offset
from the beginning of the text object or the index of the text run in the text object. Must
be either:

IG_PDE_TEXT_CHAR - for a text character
IG_PDE_TEXT_RUN - for a text run

nIndex UINT Index of the character or text run in the text object.

lpText LPBYTE Replacement text.

nTextLen UINT Number of bytes to replace.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This function does not change the number of characters in the text object; extra characters are ignored.

ImageGear Professional v18 for Mac | 2184

1.3.3.4.3.16.23 IG_PDE_text_run_get_char_offset

Gets the character offset of the first character of the specified text run.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_run_get_char_offset(
 HIG_PDE_TEXT hText,
 UINT nRunIndex,
 LPUINT lpnOffset
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object containing a text run.

nRunIndex UINT Index of the text run.

lpnOffset LPUINT Character offset of the first character of the specified text run in hText.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2185

1.3.3.4.3.16.24 IG_PDE_text_run_get_char_count

Gets the number of characters in a text run.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_run_get_char_count(
 HIG_PDE_TEXT hText,
 UINT nRunIndex,
 LPUINT lpnCount
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object containing a text run.

nRunIndex UINT Index of the text run.

lpnCount LPUINT Number of characters in the specified text run.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2186

1.3.3.4.3.16.25 IG_PDE_text_run_set_font

Sets the font of a text run.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_run_set_font(
 HIG_PDE_TEXT hText,
 UINT nRunIndex,
 HIG_PDE_FONT hFont
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object containing a text run.

nRunIndex UINT Index of the text run.

hFont HIG_PDE_FONT Font set for the text run.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2187

1.3.3.4.3.16.26 IG_PDE_text_run_set_gstate

Sets the graphics state of a text run.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_run_set_gstate(
 HIG_PDE_TEXT hText,
 UINT nRunIndex,
 LPAT_PDE_GRAPHICSTATE lpGstate
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object containing a text run.

nRunIndex UINT Index of the text run.

lpGstate LPAT_PDE_GRAPHICSTATE Pointer to AT_PDE_GRAPHICSTATE structure with graphics state to set.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2188

1.3.3.4.3.16.27 IG_PDE_text_run_set_matrix

Sets the matrix of a text run.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_run_set_matrix(
 HIG_PDE_TEXT hText,
 UINT nRunIndex,
 LPAT_PDF_FIXEDMATRIX lpMatrix
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object containing a text run.

nRunIndex UINT Index of the text run.

lpMatrix LPAT_PDF_FIXEDMATRIX Pointer to AT_PDF_FIXEDMATRIX structure with matrix to set.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2189

1.3.3.4.3.16.28 IG_PDE_text_run_set_state

Sets the text state of a text run.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_run_set_state(
 HIG_PDE_TEXT hText,
 UINT nRunIndex,
 LPAT_PDE_TEXTSTATE lpState
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object containing a text run.

nRunIndex UINT Index of the text run.

lpState LPAT_PDE_TEXTSTATE Pointer to AT_PDE_TEXTSTATE structure with state to set.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2190

1.3.3.4.3.16.29 IG_PDE_text_run_set_stroke_matrix

Sets the stroke matrix of a text run.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_run_set_stroke_matrix(
 HIG_PDE_TEXT hText,
 UINT nRunIndex,
 LPAT_PDF_FIXEDMATRIX lpMatrix
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object containing a text run.

nRunIndex UINT Index of the text run.

lpMatrix LPAT_PDF_FIXEDMATRIX Pointer to AT_PDF_FIXEDMATRIX structure with store matrix to set.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2191

1.3.3.4.3.16.30 IG_PDE_text_split_run_at

Splits a text run into two text runs.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_text_split_run_at(
 HIG_PDE_TEXT hText,
 UINT nSplitLoc
);

Arguments:

Name Type Description

hText HIG_PDE_TEXT Text object containing a text run.

nSplitLoc UINT Split location, relative to the text object. The first text run is from character index 0 up to
nSplitLoc. The second text run is from nSplitLoc + 1 to the end of the run.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2192

1.3.3.4.3.17 HIG_PDE_TEXTITEM

Handle to the PDE text item object. TextItem - a PDE element representing a text object.

Members:

IG_PDE_textitem_create Creates a text item element containing a character or text run, which can be added
to a PDE Text object.

IG_PDE_textitem_copy_text Copies the text from a text item element into a character buffer.

IG_PDE_textitem_get_font Gets the font for a text item.

IG_PDE_textitem_set_font Sets a font for a text item.

IG_PDE_textitem_get_gstate Gets the graphics state for a text item.

IG_PDE_textitem_set_gstate Sets the graphics state of a text item.

IG_PDE_textitem_get_text_length Gets the text length for a text item.

IG_PDE_textitem_get_matrix Gets the text matrix for a character in a text item.

IG_PDE_textitem_set_matrix Sets the text matrix for a text item.

IG_PDE_textitem_get_state Gets the text state of a text item.

IG_PDE_textitem_set_state Sets the text state of a text item.

IG_PDE_textitem_remove_chars Removes contiguous characters from a text item.

IG_PDE_textitem_replace_chars Replaces characters in a text item.

IG_PDE_textitem_replace_text Replaces all of the text in a text item.

ImageGear Professional v18 for Mac | 2193

1.3.3.4.3.17.1 IG_PDE_textitem_create

Creates a text item element containing a character or text run, which can be added to a PDE Text object.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_textitem_create(
 LPBYTE lpText,
 UINT nTextLen,
 HIG_PDE_FONT hFont,
 LPAT_PDE_GRAPHICSTATE lpGstate,
 LPAT_PDE_TEXTSTATE lpTstate,
 LPAT_PDF_FIXEDMATRIX lpTextMatrix
 LPHIG_PDE_TEXTITEM lphTextItem
);

Arguments:

Name Type Description

lpText LPBYTE Pointer to the characters to add.

Passing NULL for text can invalidate the text object but will not raise
an error. Callers must not pass NULL for this parameter.

nTextLen UINT Length of the text, in bytes.

hFont HIG_PDE_FONT Font for the element.

lpGstate LPAT_PDE_GRAPHICSTATE Pointer to AT_PDE_GRAPHICSTATE structure with the graphics state for
the element.

lpTstate LPAT_PDE_TEXTSTATE Pointer to AT_PDE_TEXTSTATE structure with text state for the element.

lpTextMatrix LPAT_PDF_FIXEDMATRIX Pointer to AT_PDF_FIXEDMATRIX that holds the matrix for the element.

lphTextItem LPHIG_PDE_TEXTITEM A text element object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Call IG_PDE_element_release to dispose the created object when finished with it.

ImageGear Professional v18 for Mac | 2194

1.3.3.4.3.17.2 IG_PDE_textitem_copy_text

Copies the text from a text item element into a character buffer.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_textitem_copy_text(
 HIG_PDE_TEXTITEM hTextItem,
 LPBYTE lpText,
 UINT nTextLen,
 LPUINT lpnTextItemLen
);

Arguments:

Name Type Description

hTextItem HIG_PDE_TEXTITEM Text item object.

lpText LPBYTE A pointer to a buffer in which to store the copy.

nTextLen UINT Length of the text buffer, in bytes.

lpnTextItemLen LPUINT The length in bytes of hTextItem.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2195

1.3.3.4.3.17.3 IG_PDE_textitem_get_font

Gets the font for a text item.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_textitem_get_font(
 HIG_PDE_TEXT hTextItem,
 LPHIG_PDE_FONT lphFont
);

Arguments:

Name Type Description

hTextItem HIG_PDE_TEXT Text item whose font is obtained.

lphFont LPHIG_PDE_FONT Font for hTextItem.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2196

1.3.3.4.3.17.4 IG_PDE_textitem_set_font

Sets a font for a text item.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_textitem_set_font(
 HIG_PDE_TEXT hTextItem,
 HIG_PDE_FONT hFont
);

Arguments:

Name Type Description

hTextItem HIG_PDE_TEXT Text object containing a text run.

hFont HIG_PDE_FONT Font set for a text item.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2197

1.3.3.4.3.17.5 IG_PDE_textitem_get_gstate

Gets the graphics state for a text item.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_textitem_get_gstate(
 HIG_PDE_TEXT hTextItem,
 LPAT_PDE_GRAPHICSTATE lpGstate
);

Arguments:

Name Type Description

hTextItem HIG_PDE_TEXT Text item whose graphic state is obtained.

lpGstate LPAT_PDE_GRAPHICSTATE Pointer to AT_PDE_GRAPHICSTATE structure with graphics state of the text
item.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Non-NULL objects in the graphic state, such as the fill and stroke color spaces, have their reference counts
incremented by this function. Be sure to release these non-NULL objects when disposing of lpGstate.

ImageGear Professional v18 for Mac | 2198

1.3.3.4.3.17.6 IG_PDE_textitem_set_gstate

Sets the graphics state of a text item.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_textitem_set_gstate(
 HIG_PDE_TEXTITEM hTextItem,
 LPAT_PDE_GRAPHICSTATE lpGstate
);

Arguments:

Name Type Description

hTextItem HIG_PDE_TEXTITEM Text item whose graphic state is set.

lpGstate LPAT_PDE_GRAPHICSTATE Pointer to AT_PDE_GRAPHICSTATE structure with graphics state to set.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2199

1.3.3.4.3.17.7 IG_PDE_textitem_get_text_length

Gets the text length for a text item.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_textitem_get_text_length(
 HIG_PDE_TEXT hTextItem,
 LPLONG lpnLength
);

Arguments:

Name Type Description

hTextItem HIG_PDE_TEXTITEM Text item whose length is obtained.

lpnLength LPLONG The text length, in bytes.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2200

1.3.3.4.3.17.8 IG_PDE_textitem_get_matrix

Gets the text matrix for a character in a text item.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_textitem_get_matrix(
 HIG_PDE_TEXTITEM hTextItem,
 UINT nCharOffset,
 LPAT_PDF_FIXEDMATRIX lpMatrix
);

Arguments:

Name Type Description

hTextItem HIG_PDE_TEXTITEM The text item.

nCharOffset UINT The offset of the character whose text matrix is obtained.

lpMatrix LPAT_PDF_FIXEDMATRIX Pointer to AT_PDF_FIXEDMATRIX with text matrix of the character.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2201

1.3.3.4.3.17.9 IG_PDE_textitem_set_matrix

Sets the text matrix for a text item.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_textitem_set_matrix(
 HIG_PDE_TEXTITEM hTextItem,
 LPAT_PDF_FIXEDMATRIX lpMatrix
);

Arguments:

Name Type Description

hTextItem HIG_PDE_TEXTITEM The text item.

lpMatrix LPAT_PDF_FIXEDMATRIX Pointer to AT_PDF_FIXEDMATRIX with the new text matrix of the text item.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2202

1.3.3.4.3.17.10 IG_PDE_textitem_get_state

Gets the text state of a text item.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_textitem_get_state(
 HIG_PDE_TEXTITEM hTextItem,
 LPAT_PDE_TEXTSTATE lpTstate
);

Arguments:

Name Type Description

hTextItem HIG_PDE_TEXTITEM The text item.

lpTstate AT_PDE_TEXTSTATE Pointer to AT_PDE_TEXTSTATE structure with text state of the text item..

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2203

1.3.3.4.3.17.11 IG_PDE_textitem_set_state

Sets the text state of a text item.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_textitem_set_state(
 HIG_PDE_TEXTITEM hTextItem,
 LPAT_PDE_TEXTSTATE lpTstate
);

Arguments:

Name Type Description

hTextItem HIG_PDE_TEXTITEM The text item.

lpTstate LPAT_PDE_TEXTSTATE Pointer to AT_PDE_TEXTSTATE structure with new text state of the text item.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2204

1.3.3.4.3.17.12 IG_PDE_textitem_remove_chars

Removes contiguous characters from a text item.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_textitem_remove_chars (
 HIG_PDE_TEXTITEM hTextItem,
 UINT nCharOffset,
 UINT nCount
);

Arguments:

Name Type Description

hTextItem HIG_PDE_TEXTITEM The text item.

nCharOffset UINT Offset of the first character to remove.

nCount UINT The number of characters to remove.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2205

1.3.3.4.3.17.13 IG_PDE_textitem_replace_chars

Replaces characters in a text item.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_textitem_replace_chars (
 HIG_PDE_TEXTITEM hTextItem,
 UINT nCharIndex,
 LPBYTE lpNewChars,
 UINT nNewCharsLen
);

Arguments:

Name Type Description

hTextItem HIG_PDE_TEXTITEM The text item.

nCharIndex UINT Index position of the characters to replace.

lpNewChars LPBYTE Replacement text.

nNewCharsLen UINT Number of bytes to replace.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

This function does not change the number of characters in the text item; extra characters are ignored.

ImageGear Professional v18 for Mac | 2206

1.3.3.4.3.17.14 IG_PDE_textitem_replace_text

Replaces all of the text in a text item.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_textitem_replace_text (
 HIG_PDE_TEXTITEM hTextItem,
 LPBYTE lpNewText,
 UINT nNewTextLen
);

Arguments:

Name Type Description

hTextItem HIG_PDE_TEXTITEM The text item.

lpNewText LPBYTE Replacement text.

nNewTextLen UINT Number of bytes to replace.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2207

1.3.3.4.3.18 HIG_PDE_XGROUP

Handle to the PDE XGroup object. XGroup - a transparency (XGroup) resource.

Members:

IG_PDE_xgroup_create Creates a new XGroup of the given type.

IG_PDE_xgroup_get_colorspace Acquires the color space of the transparency group.

IG_PDE_xgroup_set_colorspace Sets the color space for the XGroup.

IG_PDE_xgroup_get_isolated Gets the isolated Boolean value of the transparency group.

IG_PDE_xgroup_set_isolated Sets the XGroup to be isolated or not.

IG_PDE_xgroup_get_knockout Gets the knockout Boolean value of the transparency group.

IG_PDE_xgroup_set_knockout Sets the knockout value.

ImageGear Professional v18 for Mac | 2208

1.3.3.4.3.18.1 IG_PDE_xgroup_create

Creates a new XGroup of the given type.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_xgroup_create(
 HIG_PDF_DOC hDoc,
 LONG nType,
 LPHIG_PDE_XGROUP lphXGroup
);

Arguments:

Name Type Description

hDoc HIG_PDF_DOC The document in which the object will be created.

nType LONG enumIGPDEXGroupCreateFlags value.

lphXGroup LPHIG_PDE_XGROUP The newly created XGroup object.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Call IG_PDE_element_release to dispose the created object when finished with it.

ImageGear Professional v18 for Mac | 2209

1.3.3.4.3.18.2 IG_PDE_xgroup_get_colorspace

Acquires the color space of the transparency group.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_xgroup_get_colorspace (
 HIG_PDE_XGROUP hXGroup,
 LPHIG_PDE_COLORSPACE lphColorSpace
);

Arguments:

Name Type Description

hXGroup HIG_PDE_XGROUP The transparency group object

lphColorSpace LPHIG_PDE_COLORSPACE The color space.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2210

1.3.3.4.3.18.3 IG_PDE_xgroup_set_colorspace

Sets the color space for the XGroup.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_xgroup_set_colorspace (
 HIG_PDE_XGROUP hXGroup,
 HIG_PDE_COLORSPACE hColorSpace
);

Arguments:

Name Type Description

hXGroup HIG_PDE_XGROUP The transparency group object.

hColorSpace HIG_PDE_COLORSPACE The color space to associate with the XGroup.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2211

1.3.3.4.3.18.4 IG_PDE_xgroup_get_isolated

Gets the isolated Boolean value of the transparency group.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_xgroup_get_isolated (
 HIG_PDE_XGROUP hXGroup,
 LPAT_PDF_BOOL lpbIsolated
);

Arguments:

Name Type Description

hXGroup HIG_PDE_XGROUP The transparency group object.

lpbIsolated LPAT_PDF_BOOL TRUE if the transparency group is isolated; FALSE otherwise.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2212

1.3.3.4.3.18.5 IG_PDE_xgroup_set_isolated

Sets the XGroup to be isolated or not.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_xgroup_set_isolated (
 HIG_PDE_XGROUP hXGroup,
 AT_PDF_BOOL bIsolated
);

Arguments:

Name Type Description

hXGroup HIG_PDE_XGROUP The transparency group object

bIsolated AT_PDF_BOOL TRUE to isolate the XGroup; FALSE otherwise.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Corresponds to the /I key within the XGroup's dictionary.

ImageGear Professional v18 for Mac | 2213

1.3.3.4.3.18.6 IG_PDE_xgroup_get_knockout

Gets the knockout Boolean value of the transparency group.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_xgroup_get_knockout(
 HIG_PDE_XGROUP hXGroup,
 LPAT_PDF_BOOL lpbKnockout
);

Arguments:

Name Type Description

hXGroup HIG_PDE_XGROUP The transparency group object.

lpbKnockout LPAT_PDF_BOOL The knockout value.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2214

1.3.3.4.3.18.7 IG_PDE_xgroup_set_knockout

Sets the knockout value.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_xgroup_set_knockout(
 HIG_PDE_XGROUP hXGroup,
 AT_PDF_BOOL bKnockout
);

Arguments:

Name Type Description

hXGroup HIG_PDE_XGROUP The transparency group object.

bKnockout AT_PDF_BOOL The knockout value.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

ImageGear Professional v18 for Mac | 2215

1.3.3.4.3.19 HIG_PDE_XOBJECT

Handle to the PDE XObject object. XObject - an element representing an arbitrary XObject.

Members:

IG_PDE_xobject_create Creates a new XObject from hObject.

ImageGear Professional v18 for Mac | 2216

1.3.3.4.3.19.1 IG_PDE_xobject_create

Creates a new XObject from hObject.

Declaration:

AT_ERRCOUNT ACCUAPI IG_PDE_xobject_create(
 HIG_PDF_BASOBJ hBasObj,
 LPHIG_PDE_XOBJECT lphXObject
);

Arguments:

Name Type Description

hBasObj HIG_PDF_BASOBJ Base object for XObject.

lphXObject LPHIG_PDE_XOBJECT XObject corresponding to the hBasObj.

Return Value:

Error count.

Supported Raster Image Formats:

This function does not process image pixels.

Remarks:

Call IG_PDE_element_release to dispose the created object when finished with it.

ImageGear Professional v18 for Mac | 2217

1.3.3.5 PDF Component Structures Reference

This section provides information about simple structure types that are used for creating, attributing, and
manipulating general and editing objects.

The following table describes the structures supported by the ImageGear PDF component:

Subsidiary Type / DLL Structure Description

AT_PDE_COLORDATA Fill in one of the following members of this union, then pass it to
PDE ColorSpace creation routine. Please see section 7.10 of the
PDF Reference Manual for information on color spaces.

AT_PDE_COLORDATA_CALGRAY CalGray color space.

AT_PDE_COLORDATA_CALRGB CalRGB color space.

AT_PDE_COLORDATA_DEVICEN DeviceN color space.

AT_PDE_COLORDATA_ICCBASED ICC based color space.

AT_PDE_COLORDATA_INDEXED Indexed color space.

AT_PDE_COLORDATA_LAB L*a*b* color space.

AT_PDE_COLORDATA_SEPARATION Separation color space

AT_PDE_COLORRANGE Color range.

AT_PDE_COLORSPEC Color specification.

AT_PDE_COLORVALUE Color value.

AT_PDE_CONTENTATTRS Attributes of a PDE Content object.

AT_PDE_DASH Dash specification, as described in Table 4.8 in the PDF Reference.
See Section 4.3.2 for more information on line dash patterns.

AT_PDE_FILTERARRAY Filter information for streams. Array of FilterSpec elements.
Usually consists of 2 filter elements: text encoding and image
compression.

AT_PDE_FILTERSPEC Filter element in a filter array.

AT_PDE_FONT_CREATEFROMSYSFONTPARAMS Parameters for PDE font creation.

AT_PDE_FONT_INFO PDE Font information.

AT_PDE_FONTATTRS Attributes of a PDE Font and a PDF SysFont.

AT_PDE_GRAPHICSTATE Attributes of a PDE Element or a PDE Text sub-element.

AT_PDE_IMAGEATTRS Attributes of a PDE Image object.

AT_PDE_PSATTRS Attributes of a PDE PS object.

AT_PDE_TEXTSTATE Attributes of a PDE Text element.

AT_PDE_XYZCOLOR XYZ color.

AT_PDF_BOOL Boolean type with two values: TRUE (1) or FALSE (0).

AT_PDF_COLORVALUE Data structure representing a color.

ImageGear Professional v18 for Mac | 2218

AT_PDF_FIXED The Fixed type is a 32-bit quantity representing a rational number
with the high (low on little-endian machines) 16 bits representing
the number's mantissa and the low (high) 16 bits representing the
fractional part.

AT_PDF_FIXEDMATRIX Matrix containing fixed numbers.

AT_PDF_FIXEDPOINT Point (in two-dimensional space) represented by two fixed
numbers.

AT_PDF_FIXEDQUAD Quadrilateral represented by four fixed points (one at each
corner). A quadrilateral differs from a rectangle in that the latter
must always have horizontal and vertical sides, and opposite sides
must be parallel.

AT_PDF_FIXEDRECT A rectangle represented by the coordinates of its four sides. A
rectangle differs from a quadrilateral in that the former must
always have horizontal and vertical sides, and opposite sides must
be parallel.

AT_PDF_FLATTEN Controls tile flattening.

AT_PDF_FONT_METRICS Font metrics.

AT_PDF_FONT_STYLES Font styles.

AT_PDF_PRINTOPTIONS This structure is used to provide printing parameters for the
IG_PDF_doc_print function.

AT_PDF_PRINTPARAMS This structure indicates how a document should be printed.

AT_PDF_SECURITYDATA Describes the data for the standard security handler.

AT_PDF_SYSFONT_PLATDATA PDF SysFont platform specific data.

AT_PDF_TILE Specifies printing flags.

AT_PDF_TILEEX Specifies printing flags.

ImageGear Professional v18 for Mac | 2219

1.3.3.5.1 AT_PDE_COLORDATA

Fill in one of the following members of this union then pass this data to PDE color space creation routine.

Declaration:

typedef union tagAT_PDE_COLORDATA
{
 AT_PDE_COLORDATA_CALGRAY* calGray;
 AT_PDE_COLORDATA_CALRGB* calRGB;
 AT_PDE_COLORDATA_LAB* lab;
 AT_PDE_COLORDATA_ICCBASED* icc;
 AT_PDE_COLORDATA_INDEXED* indexed;
 HIG_PDE_COLORSPACE patternbase;
 AT_PDE_COLORDATA_SEPARATION* sep;
 AT_PDE_COLORDATA_DEVICEN* devn;
} AT_PDE_COLORDATA;
typedef AT_PDE_COLORDATA FAR* LPAT_PDE_COLORDATA;

Members:

Name Type Description

calGray AT_PDE_COLORDATA_CALGRAY Pointer to a structure describing a CalGray color space.

calRGB AT_PDE_COLORDATA_CALRGB Pointer to a structure describing a CalRGB color space.

lab AT_PDE_COLORDATA_LAB Pointer to a structure describing a L*a*b* color space.

icc AT_PDE_COLORDATA_ICCBASED Pointer to a structure describing an ICCBased color space.

indexed AT_PDE_COLORDATA_INDEXED Pointer to a structure describing an Indexed color space.

patternbase HIG_PDE_COLORSPACE A handle to a Pattern color space.

sep AT_PDE_COLORDATA_SEPARATION Pointer to a structure describing a Separation color space.

devn AT_PDE_COLORDATA_DEVICEN Pointer to a structure describing a DeviceN color space.

Remarks:

Please see section 7.10 of the PDF Reference Manual for information on color spaces.

ImageGear Professional v18 for Mac | 2220

1.3.3.5.2 AT_PDE_COLORDATA_CALGRAY

Describes a CalGray color space.

Declaration:

typedef struct tagAT_PDE_COLORDATA_CALGRAY
{
 AT_PDE_XYZCOLOR whitePoint;
 AT_PDE_XYZCOLOR blackPoint;
 float gamma;
} AT_PDE_COLORDATA_CALGRAY;
typedef AT_PDE_COLORDATA_CALGRAY FAR* LPAT_PDE_COLORDATA_CALGRAY;

Members:

Name Type Description

whitePoint AT_PDE_XYZCOLOR White point

blackPoint AT_PDE_XYZCOLOR Black point

gamma float Gamma

Remarks:

Default calGray = {{0, 0, 0}, {0, 0, 0}, 1};

ImageGear Professional v18 for Mac | 2221

1.3.3.5.3 AT_PDE_COLORDATA_CALRGB

Describes a CalRGB color space.

Declaration:

typedef struct tagAT_PDE_COLORDATA_CALRGB
{
 AT_PDE_XYZCOLOR whitePoint;
 AT_PDE_XYZCOLOR blackPoint;
 float redGamma;
 float greenGamma;
 float blueGamma;
 float matrix[9];
} AT_PDE_COLORDATA_CALRGB;
typedef AT_PDE_COLORDATA_CALRGB FAR* LPAT_PDE_COLORDATA_CALRGB;

Members:

Name Type Description

whitePoint AT_PDE_XYZCOLOR White point

blackPoint AT_PDE_XYZCOLOR Black point

redGamma float Red gamma

greenGamma float Green gamma

blueGamma float Blue gamma

matrix float[9] Matrix

Remarks:

Default calRGB = {{0, 0, 0}, {0, 0, 0}, 1, 1, 1, {1, 0, 0, 0, 1, 0, 0, 0, 1}};

ImageGear Professional v18 for Mac | 2222

1.3.3.5.4 AT_PDE_COLORDATA_DEVICEN

DeviceN color space.

Declaration:

typedef struct tagAT_PDE_COLORDATA_DEVICEN
{
 AT_UINT size;
 HIG_PDF_ATOM* names;
 UINT nNames;
 HIG_PDE_COLORSPACE alt;
 HIG_PDF_BASOBJ tintTransform;
} AT_PDE_COLORDATA_DEVICEN;
typedef AT_PDE_COLORDATA_DEVICEN FAR* LPAT_PDE_COLORDATA_DEVICEN;

Members:

Name Type Description

size AT_UINT size = sizeof(AT_PDE_COLORDATA_DEVICEN).

names HIG_PDF_ATOM Names of colorants.

nNames UINT Number of colorants.

alt HIG_PDE_COLORSPACE Alternative color space.

tintTransform HIG_PDF_BASOBJ The tintTransform dictionary or function. See Section 4.5.5 in the PDF
Reference for more information.

ImageGear Professional v18 for Mac | 2223

1.3.3.5.5 AT_PDE_COLORDATA_ICCBASED

ICC based color space.

Declaration:

typedef struct tagAT_PDE_COLORDATA_ICCBASED
{
 AT_UINT size;
 HIG_PDF_STREAM iccstream;
 UINT nComps;
 HIG_PDE_COLORSPACE altCs;
} AT_PDE_COLORDATA_ICCBASED;
typedef AT_PDE_COLORDATA_ICCBASED FAR* LPAT_PDE_COLORDATA_ICCBASED;

Members:

Name Type Description

size AT_UINT size = sizeof(AT_PDE_COLORDATA_ICCBASED).

iccstream HIG_PDF_STREAM Stream containing ICC Profile.

nComps UINT Number of color components (1, 3, or 4).

altCs HIG_PDE_COLORSPACE Alternate ColorSpace (optional).

ImageGear Professional v18 for Mac | 2224

1.3.3.5.6 AT_PDE_COLORDATA_INDEXED

Indexed color space.

Declaration:

typedef struct tagAT_PDE_COLORDATA_INDEXED
{
 AT_UINT size;
 HIG_PDE_COLORSPACE baseCs;
 WORD hival;
 LPBYTE lookup;
 UINT lookupLen;
} AT_PDE_COLORDATA_INDEXED;
typedef AT_PDE_COLORDATA_INDEXED FAR* LPAT_PDE_COLORDATA_INDEXED;

Members:

Name Type Description

size AT_UINT size = sizeof(AT_PDE_COLORDATA_INDEXED).

baseCs HIG_PDE_COLORSPACE Base colorspace.

hival WORD Highest color value.

lookup LPBYTE Indexed color lookup data.

lookupLen UINT Number of bytes in lookup data.

ImageGear Professional v18 for Mac | 2225

1.3.3.5.7 AT_PDE_COLORDATA_LAB

Describes a L*a*b* color space.

Declaration:

typedef struct tagAT_PDE_COLORDATA_LAB
{
 AT_PDE_XYZCOLOR whitePoint;
 AT_PDE_XYZCOLOR blackPoint;
 AT_PDE_COLORRANGE rangeA, rangeB;
} AT_PDE_COLORDATA_LAB;
typedef AT_PDE_COLORDATA_LAB FAR* LPAT_PDE_COLORDATA_LAB;

Members:

Name Type Description

whitePoint AT_PDE_XYZCOLOR White point

blackPoint AT_PDE_XYZCOLOR Black point

rangeA AT_PDE_COLORRANGE Color ranges

rangeB AT_PDE_COLORRANGE Color ranges

Remarks:

Default lab = {{0, 0, 0}, {0, 0, 0}, {-100, 100}, {-100, 100}};

ImageGear Professional v18 for Mac | 2226

1.3.3.5.8 AT_PDE_COLORDATA_SEPARATION

Separation color space.

Declaration:

typedef struct tagAT_PDE_COLORDATA_SEPARATION
{
 AT_UINT size;
 HIG_PDF_ATOM name;
 HIG_PDE_COLORSPACE alt;
 HIG_PDF_BASOBJ tintTransform;
} AT_PDE_COLORDATA_SEPARATION;
typedef AT_PDE_COLORDATA_SEPARATION FAR* LPAT_PDE_COLORDATA_SEPARATION;

Members:

Name Type Description

size AT_UINT size = sizeof(AT_PDE_COLORDATA_SEPARATION).

name HIG_PDF_ATOM Name of separation or colorant.

alt HIG_PDE_COLORSPACE Alternative color space.

tintTransform HIG_PDF_BASOBJ The tintTransform dictionary or function. See Section 4.5.5 in the PDF
Reference for more information.

ImageGear Professional v18 for Mac | 2227

1.3.3.5.9 AT_PDE_COLORRANGE

Contains color range.

Declaration:

typedef struct tagAT_PDE_COLORRANGE
{
 float min;
 float max;
} AT_PDE_COLORRANGE;
typedef AT_PDE_COLORRANGE FAR* LPAT_PDE_COLORRANGE;

Members:

Name Type Description

min float Minimum value

max float Maximum value

ImageGear Professional v18 for Mac | 2228

1.3.3.5.10 AT_PDE_COLORSPEC

Describes color specification.

Declaration:

typedef struct tagAT_PDE_COLORSPEC
{
 HIG_PDE_COLORSPACE space;
 AT_PDE_COLORVALUE value;
} AT_PDE_COLORSPEC;
typedef AT_PDE_COLORSPEC FAR* LPAT_PDE_COLORSPEC;

Members:

Name Type Description

space HIG_PDE_COLORSPACE The specified color space.

value AT_PDE_COLORVALUE The color value.

ImageGear Professional v18 for Mac | 2229

1.3.3.5.11 AT_PDE_COLORVALUE

Describes color value.

Declaration:

typedef struct tagAT_PDE_COLORVALUE
{
 AT_PDF_FIXED color[7];
 HIG_PDE_OBJECT colorObj2;
 HIG_PDE_OBJECT colorObj;
} AT_PDE_COLORVALUE;
typedef AT_PDE_COLORVALUE FAR* LPAT_PDE_COLORVALUE;

Members:

Name Type Description

color AT_PDF_FIXED[7] Color value components. For instance, a Gray color space has 1 component, an RGB
color space has 3 components, a CMYK has 4 components, and so on.

colorObj2 HIG_PDE_OBJECT For DeviceN color space.

colorObj HIG_PDE_OBJECT For color spaces whose color values do not have numeric values, such as the Pattern
and Separation color spaces.

ImageGear Professional v18 for Mac | 2230

1.3.3.5.12 AT_PDE_CONTENTATTRS

Attributes of a PDE Content object.

Declaration:

typedef struct tagAT_PDE_CONTENTATTRS
{
 AT_DWORD flags;
 AT_PDF_FIXED cacheDevice[8];
 LONG formType;
 AT_PDF_FIXEDRECT bbox;
 AT_PDF_FIXEDMATRIX matrix;
 HIG_PDF_BASOBJ XUID;
} AT_PDE_CONTENTATTRS;
typedef AT_PDE_CONTENTATTRS FAR* LPAT_PDE_CONTENTATTRS;

Members:

Name Type Description

flags AT_DWORD enumIGPDEContentFlags value.

cacheDevice AT_PDF_FIXED[8] CharProc attributes If flags has IG_PDE_SET_CACHE_DEVICE set, the first
6 cache device values contain the operands for the d1 (setcachdevice) page
operator. If flags has IG_PDE_SET_CHAR_WIDTH set, cacheDevice contains
2 charwidth values.

formType LONG Form attributes Only used if HIG_PDE_CONTENT contains a Form XObject.
Corresponds to FormType key in the XObject Form attributes dictionary.

bbox AT_PDF_FIXEDRECT Only used if HIG_PDE_CONTENT contains a Form. Bounding box of the
HIG_PDE_CONTENT object. Corresponds to BBox key in the XObject Form
attributes dictionary.

matrix AT_PDF_FIXEDMATRIX Only used if HIG_PDE_CONTENT contains a Form. Transformation matrix
for the HIG_PDE_CONTENT object. Corresponds to Matrix key in the
XObject Form attributes dictionary.

XUID HIG_PDF_BASOBJ Only used if HIG_PDE_CONTENT contains a Form. The form's XUID, an ID
that uniquely identifies the form. Corresponds to XUID key in the XObject
Form attributes dictionary.

ImageGear Professional v18 for Mac | 2231

1.3.3.5.13 AT_PDE_DASH

Describes dash specification, as described in Table 4.8 in the PDF Reference (see Section 4.3.2 for more information on
line dash patterns).

Declaration:

typedef struct tagAT_PDE_DASH
{
 AT_PDF_FIXED dashPhase;
 LONG dashLen;
 AT_PDF_FIXED dashes[11];
} AT_PDE_DASH;
typedef AT_PDE_DASH FAR* LPAT_PDE_DASH;

Members:

Name Type Description

dashPhase AT_PDF_FIXED Dash phase. Phase is a number that specifies a distance in user space into the dash
pattern at which to begin marking the path.

dashLen LONG Number of entries in the dash array, an element of the Border array.

dashes AT_PDF_FIXED[11] Dash array, which specifies distances in user space for the length of dashes and
gaps.

ImageGear Professional v18 for Mac | 2232

1.3.3.5.14 AT_PDE_FILTERARRAY

Array of filter specifications usually containing two or less filters: encoding and/or compression.

Declaration:

typedef struct tagAT_PDE_FILTERARRAY
{
 LONG numFilters;
 AT_PDE_FILTERSPEC spec[2];
} AT_PDE_FILTERARRAY;
typedef AT_PDE_FILTERARRAY FAR* LPAT_PDE_FILTERARRAY;

Members:

Name Type Description

numFilters LONG Number of filters in the array.

spec AT_PDE_FILTERSPEC[2] Variable length array of filter spec.

ImageGear Professional v18 for Mac | 2233

1.3.3.5.15 AT_PDE_FILTERSPEC

Filter element in a filter array.

Declaration:

typedef struct tagAT_PDE_FILTERSPEC
{
 HIG_PDF_BASOBJ decodeParms;
 HIG_PDF_BASOBJ encodeParms;
 HIG_PDF_ATOM name;
} AT_PDE_FILTERSPEC;
typedef AT_PDE_FILTERSPEC FAR* LPAT_PDE_FILTERSPEC;

Members:

Name Type Description

decodeParms HIG_PDF_BASOBJ Parameters used by the decoding filters specified with the Filter key. Corresponds
to the DecodeParms key in the stream dictionary. Must be set to NULL if
AT_PDE_FILTERSPEC is specified but no decode parameters are specified. This can
be done by zeroing the unused decode params. Required decode params for
DCTDecode are Columns, Rows, and Colors.

encodeParms HIG_PDF_BASOBJ Parameters used when encoding the stream. Required for DCTDecode filter;
optional for other filters. Must be set to NULL if AT_PDE_FILTERSPEC is specified
but no encode parameters are specified. This can be done by zeroing the unused
encode params.

name HIG_PDF_ATOM Filter name. Supported filters are: ASCIIHexDecode, ASCII85Decode, LZWDecode,
DCTDecode, CCITTFaxDecode, RunLengthDecode, and FlateDecode.

ImageGear Professional v18 for Mac | 2234

1.3.3.5.16 AT_PDE_FONT_CREATEFROMSYSFONTPARAMS

Data structure used with PDE Font creation.

Declaration:

typedef struct tagAT_PDE_FONT_CREATEFROMSYSFONTPARAMS
{
 AT_DWORD structSize;
 AT_DWORD flags;
 HIG_PDF_ATOM snapshotName;
 AT_PDF_FIXED* mmDesignVec;
 AT_INT ctCodePage;
 HIG_PDF_ATOM encoding;
 LPVOID cosDoc;
} AT_PDE_FONT_CREATEFROMSYSFONTPARAMS;
typedef AT_PDE_FONT_CREATEFROMSYSFONTPARAMS FAR* LPAT_PDE_FONT_CREATEFROMSYSFONTPARAMS;

Members:

Name Type Description

structSize AT_DWORD Size of the data structure. Must be set to
sizeof(AT_PDE_FONT_CREATEFROMSYSFONTPARAMS).

flags AT_DWORD A bit mask of the enumIGPDEFontCreateFlags.

snapshotName HIG_PDF_ATOM The name of a multiple master snapshot. See PDF Reference for more information
on snapshots.

mmDesignVec AT_PDF_FIXED Pointer to multiple master font design vector.

ctCodePage AT_INT Used to select a specific code page supported by the font. When a non-zero code
page is supplied, embedding must be turned on and the
IG_PDE_FONT_ENCODE_BY_GID flag set.

encoding HIG_PDF_ATOM Used to specify which encoding to use with a CID font. Pass IG_PDF_ATOM_NULL
to use the platform default.

cosDoc LPVOID Unused. Set to 0.

ImageGear Professional v18 for Mac | 2235

1.3.3.5.17 AT_PDE_FONT_INFO

PDE font information

Declaration:

typedef struct tagAT_PDE_FONT_INFO
{
 HIG_PDF_ATOM name;
 HIG_PDF_ATOM type;
 HIG_PDF_ATOM charSet;
 HIG_PDF_ATOM encoding;
 SHORT wMode;
} AT_PDE_FONT_INFO;
typedef AT_PDE_FONT_INFO FAR* LPAT_PDE_FONT_INFO;

Members:

Name Type Description

name HIG_PDF_ATOM HIG_PDF_ATOM for font name, as in "Times-Roman."

type HIG_PDF_ATOM HIG_PDF_ATOM for font type, "Type 1," "TrueType," and so on.

charSet HIG_PDF_ATOM HIG_PDF_ATOM for "Roman" or IG_PDF_ATOM_NULL. If "Roman," the characters must
be a subset of the Adobe Standard Roman Character Set.

encoding HIG_PDF_ATOM HIG_PDF_ATOM for font encoding, as in WinAnsiEncoding.

wMode SHORT Writing mode: 0 = horizontal; 1 = vertical.

ImageGear Professional v18 for Mac | 2236

1.3.3.5.18 AT_PDE_FONTATTRS

Attributes for HIG_PDE_FONT and HIG_PDF_SYSFONT.

Declaration:

typedef struct tagAT_PDE_FONTATTRS
{
 HIG_PDF_ATOM name;
 HIG_PDF_ATOM type;
 HIG_PDF_ATOM charSet;
 HIG_PDF_ATOM encoding;
 UINT flags;
 AT_PDF_FIXEDRECT fontBBox;
 SHORT missingWidth;
 SHORT stemV;
 SHORT stemH;
 SHORT capHeight;
 SHORT xHeight;
 SHORT ascent;
 SHORT descent;
 SHORT leading;
 SHORT maxWidth;
 SHORT avgWidth;
 SHORT italicAngle;
 HIG_PDF_ATOM cidFontType;
 SHORT wMode;
 HIG_PDF_ATOM psName;
 HIG_PDF_ATOM platformName;
 HIG_PDF_ATOM lang;
 HIG_PDF_ATOM registry;
 HIG_PDF_ATOM ordering;
 LONG supplement;
 LONG cantEmbed;
 HIG_PDF_ATOM deltaEncoding;
 UINT protection;
 LONG packageType;
} AT_PDE_FONTATTRS;
typedef AT_PDE_FONTATTRS FAR* LPAT_PDE_FONTATTRS;

Members:

Name Type Description

name HIG_PDF_ATOM A HIG_PDF_ATOM for font name, as in "Times-Roman." Corresponds to the
BaseFont key in the font dictionary of a PDF file (see Section 5.6.3 in the
PDF Reference).

type HIG_PDF_ATOM A HIG_PDF_ATOM for font type, corresponding to the Subtype key in a font
dictionary. May be "Type1," "TrueType," "MMType1," or "Type0."

charSet HIG_PDF_ATOM A HIG_PDF_ATOM for "Roman" or IG_PDF_ATOM_NULL. If "Roman," the
characters must be a subset of the Adobe Standard Roman Character Set.

encoding HIG_PDF_ATOM A HIG_PDF_ATOM for font encoding. May be MacRomanEncoding,
WinAnsiEncoding, or IG_PDF_ATOM_NULL. In the case of
IG_PDF_ATOM_NULL, call PDSysFontGetEncoding to get more information
about the encoding.

flags UINT Desired font flags, one or more of Font Flags. Use IG_PDF_SCRIPT, etc. to
get flags.

fontBBox AT_PDF_FIXEDRECT Font bounding box in 1000 EM units.

missingWidth SHORT Width of missing character (.notdef).

ImageGear Professional v18 for Mac | 2237

stemV SHORT Vertical stem width.

stemH SHORT Horizontal stem width.

capHeight SHORT Capital height.

xHeight SHORT X height.

ascent SHORT Max ascender height.

descent SHORT Max descender depth.

leading SHORT Additional leading between lines.

maxWidth SHORT Maximum character width.

avgWidth SHORT Average character width.

italicAngle SHORT Italic angle in degrees, if any.

cidFontType HIG_PDF_ATOM CIDFontType0 or CIDFontType2.

wMode SHORT Writing mode. Must be one of 0 for horizontal writing or 1 for vertical
writing.

psName HIG_PDF_ATOM HIG_PDF_ATOM representing the PostScript name of a TrueType font.

platformName HIG_PDF_ATOM The platform name.

lang HIG_PDF_ATOM HIG_PDF_ATOM representing the ISO 639 language code. These are
available from http://www.iso.ch.

registry HIG_PDF_ATOM HIG_PDF_ATOM representing the CIDFont's Registry information, as in
"gAdobe-Japan".

ordering HIG_PDF_ATOM HIG_PDF_ATOM representing the CIDFont's Ordering information, for
example, "g1".

supplement LONG The SystemSupplement field from the CIDFont.

cantEmbed LONG A non-zero value means the font can't be embedded.

deltaEncoding HIG_PDF_ATOM The name of the base encoding; that is, the BaseEncoding entry in an
encoding dictionary (see section 5.5.5 of the PDF Reference). The
Differences entry of the encoding dictionary describes differences (deltas)
from the base encoding.

protection UINT protection Allows setting one of the following bits to disable font embedding:
IG_PDE_FONT_NO_EMBEDDING = 1: font should not be embedded.
IG_PDE_FONT_NO_EDITABLE_EMBEDDING = 2: font should not be
embedded for editing purposes.

packageType LONG enumIGPDFSysFontPackageType value.

ImageGear Professional v18 for Mac | 2238

1.3.3.5.19 AT_PDE_GRAPHICSTATE

Attributes of a PDE element or a PDE text sub-element.

Declaration:

typedef struct tagAT_PDE_GRAPHICSTATE
{
 UINT wasSetFlags;
 AT_PDE_COLORSPEC fillColorSpec;
 AT_PDE_COLORSPEC strokeColorSpec;
 AT_PDE_DASH dash;
 AT_PDF_FIXED lineWidth;
 AT_PDF_FIXED miterLimit;
 AT_PDF_FIXED flatness;
 LONG lineCap;
 LONG lineJoin;
 HIG_PDF_ATOM renderIntent;
 HIG_PDE_OBJECT extGState;
 AT_PDF_FIXEDMATRIX softMaskMatrix;
} AT_PDE_GRAPHICSTATE;
typedef AT_PDE_GRAPHICSTATE FAR* LPAT_PDE_GRAPHICSTATE;

Members:

Name Type Description

wasSetFlags UINT enumIGPDEGraphicStateWasSetFlags indicating if an attribute has been
set.

Support for these flags is not complete. For compatibility, you should
set them, but do not depend on reading their values back. The
intended use is with XObject Forms to indicate whether the value is
inherited or explicitly set.

fillColorSpec AT_PDE_COLORSPEC Fill color specification. The default value is DeviceGray,
IG_PDF_FIXED_ZERO.

strokeColorSpec AT_PDE_COLORSPEC Stroke color specification. The default value is DeviceGray,
IG_PDF_FIXED_ZERO.

dash AT_PDE_DASH Dash specification. The default value is [0, 0].

lineWidth AT_PDF_FIXED Line width, corresponding to the w (setlinewidth) operator. The default
value is IG_PDF_FIXED_ONE.

miterLimit AT_PDF_FIXED Miter limit, corresponding to the M (setmiterlimit) operator. The default
value is IG_PDF_FIXED_TEN.

flatness AT_PDF_FIXED Line flatness, corresponding to the i (setflat) operator. The default value is
IG_PDF_FIXED_ZERO.

lineCap LONG Line cap style, corresponding to the J (setlinecap) operator. The default
value is 0.

lineJoin LONG Line join style, corresponding to the j (setlinejoin) operator. The default
value is 0.

renderIntent HIG_PDF_ATOM A color rendering intent, corresponding to the Intent key in the image
dictionary. The default value is 0.

extGState HIG_PDE_OBJECT An extended graphics, corresponding to the gs operator. The default value
is NULL.

softMaskMatrix AT_PDF_FIXEDMATRIX The CTM at the time soft mask was established. The default value is
identity matrix.

ImageGear Professional v18 for Mac | 2239

1.3.3.5.20 AT_PDE_IMAGEATTRS

Attributes of a PDE Image object.

Declaration:

typedef struct tagAT_PDE_IMAGEATTRS
{
 UINT flags;
 LONG width;
 LONG height;
 LONG bitsPerComponent;
 AT_PDF_FIXED decode[8];
 HIG_PDF_ATOM intent;
} AT_PDE_IMAGEATTRS;
typedef AT_PDE_IMAGEATTRS FAR* LPAT_PDE_IMAGEATTRS;

Members:

Name Type Description

flags UINT enumIGPDEImageAttrFlags indicating image attributes.

width LONG Width of the image, corresponding to the Width key in the image dictionary.

height LONG Height of the image, corresponding to the Height key in the image dictionary.

bitsPerComponent LONG Number of bits used to represent each color component in the image,
corresponding to the BitsPerComponent key in the image dictionary.

decode AT_PDF_FIXED[8] An array of numbers specifying the mapping from sample values in the image
to values appropriate for the current color space. These values correspond to
the Decode key in the image dictionary.

intent HIG_PDF_ATOM Color rendering intent, corresponding to the Intent key in the image
dictionary.

ImageGear Professional v18 for Mac | 2240

1.3.3.5.21 AT_PDE_PSATTRS

Attributes of a PDE PostScript object.

Declaration:

typedef struct tagAT_PDE_PSATTRS
{
 UINT flags;
} AT_PDE_PSATTRS;
typedef AT_PDE_PSATTRS FAR* LPAT_PDE_PSATTRS;

Members:

Name Type Description

flags UINT IG_PDE_PS_INLINE

ImageGear Professional v18 for Mac | 2241

1.3.3.5.22 AT_PDE_TEXTSTATE

Attributes of a PDE text element.

Declaration:

typedef struct tagAT_PDE_TEXTSTATE
{
 UINT wasSetFlags;
 AT_PDF_FIXED charSpacing;
 AT_PDF_FIXED wordSpacing;
 LONG renderMode;
 AT_PDF_FIXED fontSize;
 AT_PDF_FIXED hScale;
 AT_PDF_FIXED textRise;
} AT_PDE_TEXTSTATE;
typedef AT_PDE_TEXTSTATE FAR* LPAT_PDE_TEXTSTATE;

Members:

Name Type Description

wasSetFlags UINT enumIGPDEGraphicStateWasSetFlags indicating if an attribute has been set.

Support for these flags is not complete. For compatibility, you should set them,
but do not depend on reading their values back. The intended use is with
XObject Forms to indicate whether the value is inherited or explicitly set. PDFEdit
ignores the wasSetFlags flag, so you must initialize the AT_PDE_TEXTSTATE
fields.

charSpacing AT_PDF_FIXED Character spacing was set, corresponding to the Tc operator.

wordSpacing AT_PDF_FIXED Word spacing, corresponding to the Tw operator.

renderMode LONG Text rendering mode, corresponding to the Tr operator.

fontSize AT_PDF_FIXED Default is 1.

hScale AT_PDF_FIXED Default=100 (==100%)

textRise AT_PDF_FIXED Specifies the distance, in text space units that are not scaled, to move the baseline up
or down from its default location. See Section 5.2.6 in the PDF Reference.

ImageGear Professional v18 for Mac | 2242

1.3.3.5.23 AT_PDE_XYZCOLOR

XYZ color data.

Declaration:

typedef struct tagAT_PDE_XYZCOLOR
{
 float x;
 float y;
 float z;
} AT_PDE_XYZCOLOR;
typedef AT_PDE_XYZCOLOR FAR* LPAT_PDE_XYZCOLOR;

Members:

Name Type Description

x float The X component of a tristimulus value in CIE 1931 XYZ color space.

y float The Y component of a tristimulus value in CIE 1931 XYZ color space.

z float The Z component of a tristimulus value in CIE 1931 XYZ color space.

Remarks:

Please see section 7.10 of the PDF Reference Manual for information on color spaces.

ImageGear Professional v18 for Mac | 2243

1.3.3.5.24 AT_PDF_BOOL

Boolean type with two values: TRUE (1) or FALSE (0).

Declaration:

typedef WORD AT_PDF_BOOL;
typedef AT_PDF_BOOL FAR *LPAT_PDF_BOOL;

ImageGear Professional v18 for Mac | 2244

1.3.3.5.25 AT_PDF_COLORVALUE

Data structure representing a color.

Declaration:

typedef struct tagAT_PDF_COLORVALUE
{
 BYTE space;
 AT_PDF_FIXED value[4];

} AT_PDF_COLORVALUE;
typedef AT_PDF_COLORVALUE FAR* LPAT_PDF_COLORVALUE;

Members:

Name Type Description

space BYTE The color space type. Can be one of the following:
IG_PDF_DEVICE_GRAY. Grayscale color specification. Requires 1 value entry to specify
the color.
IG_PDF_DEVICE_RGB. Red-Green-Blue color specification. Requires 3 value entries to
specify the color.
IG_PDF_DEVICE_CMYK. Cyan-Magenta-Yellow-Black color specification. Requires 4
value entries to specify the color.

value AT_PDF_FIXED[4] The color value. The number of elements needed in the value field depends on the color
space type (specified in the space field):

IG_PDF_DEVICE_GRAY - 1 value
IG_PDF_DEVICE_RGB - 3 values
IG_PDF_DEVICE_CMYK - 4 values

ImageGear Professional v18 for Mac | 2245

1.3.3.5.26 AT_PDF_FIXED

The Fixed type is a 32-bit quantity representing a rational number with the high (low on little-endian machines) 16 bits
representing the number's mantissa and the low (high) 16 bits representing the fractional part.

Declaration:

typedef LONG AT_PDF_FIXED;
typedef AT_PDF_FIXED FAR *LPAT_PDF_FIXED;

Remarks:

The definition is platform-dependent. Addition, subtraction, and negation with AT_PDF_FIXED types can be done with +
and -, unless you care about overflow. Overflow in Fixed-value operations is indicated by the values
IG_PDF_FIXED_POSITIVE_INFINITY and IG_PDF_FIXED_NEGATIVE_INFINITY.

ImageGear Professional v18 for Mac | 2246

1.3.3.5.27 AT_PDF_FIXEDMATRIX

Matrix containing fixed numbers.

Declaration:

typedef struct tagAT_PDF_FIXEDMATRIX
{
 AT_PDF_FIXED a;
 AT_PDF_FIXED b;
 AT_PDF_FIXED c;
 AT_PDF_FIXED d;
 AT_PDF_FIXED h;
 AT_PDF_FIXED v;
} AT_PDF_FIXEDMATRIX;
typedef AT_PDF_FIXEDMATRIX FAR* LPAT_PDF_FIXEDMATRIX;

Members:

Name Type Description

a AT_PDF_FIXED A value

b AT_PDF_FIXED B value

c AT_PDF_FIXED C value

d AT_PDF_FIXED D value

h AT_PDF_FIXED H value

v AT_PDF_FIXED V value

ImageGear Professional v18 for Mac | 2247

1.3.3.5.28 AT_PDF_FIXEDPOINT

Point (in two-dimensional space) represented by two fixed numbers.

Declaration:

typedef struct tagAT_PDF_FIXEDPOINT
{
 AT_PDF_FIXED h;
 AT_PDF_FIXED v;
} AT_PDF_FIXEDPOINT;
typedef AT_PDF_FIXEDPOINT FAR* LPAT_PDF_FIXEDPOINT;

Members:

Name Type Description

h AT_PDF_FIXED Horizontal value.

v AT_PDF_FIXED Vertical value.

ImageGear Professional v18 for Mac | 2248

1.3.3.5.29 AT_PDF_FIXEDQUAD

Quadrilateral represented by four fixed points (one at each corner); a quadrilateral differs from a rectangle in that the
latter must always have horizontal and vertical sides, and opposite sides must be parallel.

Declaration:

typedef struct tagAT_PDF_FIXEDQUAD
{
 AT_PDF_FIXEDPOINT tl, tr, bl, br;
} AT_PDF_FIXEDQUAD;
typedef AT_PDF_FIXEDQUAD FAR* LPAT_PDF_FIXEDQUAD;

Members:

Name Type Description

tl AT_PDF_FIXEDPOINT Top left value

tr AT_PDF_FIXEDPOINT Top right value

bl AT_PDF_FIXEDPOINT Bottom left value

br AT_PDF_FIXEDPOINT Bottom right value

ImageGear Professional v18 for Mac | 2249

1.3.3.5.30 AT_PDF_FIXEDRECT

A rectangle represented by the coordinates of its four sides; a rectangle differs from a quadrilateral in that the former
must always have horizontal and vertical sides, and opposite sides must be parallel.

Declaration:

typedef struct tagAT_PDF_FIXEDRECT
{
 AT_PDF_FIXED left;
 AT_PDF_FIXED top;
 AT_PDF_FIXED right;
 AT_PDF_FIXED bottom;
} AT_PDF_FIXEDRECT;
typedef AT_PDF_FIXEDRECT FAR* LPAT_PDF_FIXEDRECT;

Members:

Name Type Description

left AT_PDF_FIXED Left value

right AT_PDF_FIXED Right value

top AT_PDF_FIXED Top value

bottom AT_PDF_FIXED Bottom value

ImageGear Professional v18 for Mac | 2250

1.3.3.5.31 AT_PDF_FLATTEN

Controls tile flattening.

Declaration:

typedef struct tagAT_PDF_FLATTEN
{
 AT_UINT size;
 AT_INT32 tilingMode;
 AT_PDF_BOOL useTextOutlines;
 AT_PDF_BOOL allowShadingOutput;
 AT_PDF_BOOL allowLevel3ShadingOutput;
 AT_PDF_BOOL strokeToFill;
 AT_PDF_BOOL clipComplexRegions;
 AT_FLOAT internalDPI;
 AT_FLOAT externalDPI;
 AT_FLOAT pathDPI;
 AT_DWORD tileSizePts;
 AT_DWORD maxFltnrImageSize;
 AT_DWORD adaptiveThreshold;
 AT_PDF_BOOL preserveOverprint;

} AT_PDF_FLATTEN;
typedef AT_PDF_FLATTEN FAR* LPAT_PDF_FLATTEN;

Members:

Name Type Description

size AT_UINT Must be set to the size of this struct.

tilingMode AT_INT32 Specifies the tiling mode. One of the following values:

0 = no tiling
1 = constant tiling
2 = adaptive tiling

useTextOutlines AT_PDF_BOOL Outputs text outlines instead of native text when set to TRUE.

allowShadingOutput AT_PDF_BOOL Allows shading output when set to TRUE.

allowLevel3ShadingOutput AT_PDF_BOOL Allows Level 3 shading when set to TRUE.

strokeToFill AT_PDF_BOOL Converts stroke to outline when set to TRUE.

clipComplexRegions AT_PDF_BOOL Displays the Clip Complex checkbox when set to TRUE.

internalDPI AT_FLOAT Specifies the resolution for flattening the interior of atomic regions.

externalDPI AT_FLOAT Specifies the resolution for flattening the edges of atomic regions.

pathDPI AT_FLOAT Specifies the flattener path resolution; the default is 800.

tileSizePts AT_DWORD Specifies the target tile size, in points.

maxFltnrImageSize AT_DWORD Specifies the maximum image size when flattening; the default is 0.

adaptiveThreshold AT_DWORD Specifies the adaptive flattening threshold.

preserveOverprint AT_PDF_BOOL Attempts to preserve overprint when set to TRUE.

ImageGear Professional v18 for Mac | 2251

1.3.3.5.32 AT_PDF_FONT_METRICS

Font metrics.

Declaration:

typedef struct tagAT_PDF_FONT_METRICS
{
 UINT flags;
 AT_PDF_FIXEDRECT fontBBox;
 AT_INT16 missingWidth;
 AT_INT16 stemV;
 AT_INT16 stemH;
 AT_INT16 capHeight;
 AT_INT16 xHeight;
 AT_INT16 ascent;
 AT_INT16 descent;
 AT_INT16 leading;
 AT_INT16 maxWidth;
 AT_INT16 avgWidth;
 AT_INT16 italicAngle;
 AT_PDF_FONT_STYLES style;
 AT_INT16 baseLineAdj;
} AT_PDF_FONT_METRICS;

Members:

Name Type Description

flags AT_PDF_FIXEDRECT Must be an OR of the Font Flags values. All unused flags must be off.

fontBBox AT_INT16 Font bounding box in 1000 EM units. (An EM is a typographic unit of
measurement equal to the size of a font. In a 12-point font, an EM is 12
points.)

missingWidth AT_INT16 Width of missing character.

stemV AT_INT16 Vertical stem width.

stemH AT_INT16 Horizontal stem width.

capHeight AT_INT16 Capital height.

xHeight AT_INT16 X height.

ascent AT_INT16 Max ascender height.

descent AT_INT16 Max descender depth.

Leading AT_INT16 Additional leading between lines.

maxWidth AT_INT16 Maximum character width.

avgWidth AT_INT16 Average character width.

italicAngle AT_INT16 Italic angle in degrees, if any.

style AT_PDF_FONT_STYLES Panose and sFamily class values.

baseLineAdj AT_INT16 Baseline adjustment, which is a vertical adjustment for font baseline
difference and writing mode 1 (vertical). This should only be used for
CIDFontType 2 fonts with font substitution.

ImageGear Professional v18 for Mac | 2252

1.3.3.5.33 AT_PDF_FONT_STYLES

Font styles.

Declaration:

typedef struct tagAT_PDF_FONT_STYLES
{
 AT_BYTE sFamilyClassID;
 AT_BYTE sFamilySubclassID;
 AT_BYTE bFamilyType;
 AT_BYTE bSerifStyle;
 AT_BYTE bWeight;
 AT_BYTE bProportion;
} AT_PDF_FONT_STYLES;

Members:

Name Type Description

sFamilyClassID AT_BYTE Number that identifies the font family and determines the meaning of the remaining
Panose digits. Possible families are Latin, Kanji, Hebrew, and so forth.

sFamilySubclassID AT_BYTE Number to identify the kind of family: text, decorative, handwritten, symbols, and so
on.

bFamilyType AT_BYTE Number to identify the family type: text, decorative, handwritten, symbols, and so on.

bSerifStyle AT_BYTE Number that specifies the font's serif style, such as cove, obtuse cove, square, bone,
and so forth.

bWeight AT_BYTE Number that specifies the font's weight, such as very light, heavy, black, and so on.

bProportion AT_BYTE Number that specifies the font's proportions, such as modern, expanded, condensed,
mono-spaced, and so on.

ImageGear Professional v18 for Mac | 2253

1.3.3.5.34 AT_PDF_PRINTOPTIONS

This structure provides printing parameters for the IG_PDF_doc_print function.

Declaration:

typedef struct tagAT_PDF_PRINTOPTIONS
{
 AT_DWORD size;
 LPAT_PDF_PRINTPARAMS printParams;
 AT_PDF_BOOL emitToFile;
 HIG_PDF_STREAM printStm;
 AT_WORD paperWidth;
 AT_WORD paperHeight;
 AT_DWORD dontEmitListLen;
 char** dontEmitList;
 AT_PDF_BOOL emitToPrinter;
 char* command;
 LPVOID cancelProc;
 LPVOID clientData;
 int startResult;
 LPVOID userCallbacks;
 LONG startPage;
 LONG endPage;
 LONG psLevel;
 int nCopies;
 AT_UINT PPDFeatures;
 AT_UINT ppdFileName;
} AT_PDF_PRINTOPTIONS;
typedef AT_PDF_PRINTOPTIONS FAR* LPAT_PDF_PRINTOPTIONS;

Members:

Name Type Description

size AT_DWORD Size

printParams LPAT_PDF_PRINTPARAMS AT_PDF_PRINTPARAMS structure. Applies to PostScript file.

emitToFile AT_PDF_BOOL Create a PostScript file; must be FALSE for now.

printStm HIG_PDF_STREAM Writeable HIG_PDF_STREAM that points to file stm or proc stm.

paperWidth AT_WORD Width of paper in points.

paperHeight AT_WORD Height of paper in points.

dontEmitListLen AT_DWORD Number of fonts that should not be downloaded.

dontEmitList char** List of fonts (T1, TT, CID) that should not be downloaded.

emitToPrinter AT_PDF_BOOL Output PDF file to a PS or non-PS printer; must be TRUE for now.

command char* Optional command line arguments, used only if emitToPrinter is true.
Example: "lp" or "lpr"

cancelProc LPVOID CancelProc and clientData are optional for emitToFile or
emitToPrinter. LPFNIG_PDF_PRINTCANCELPROC callback function.

clientData LPVOID Optional data passed to cancelProc. Applies to both PostScript printer
and file.

ImageGear Professional v18 for Mac | 2254

startResult int Spooler ID from StartDoc().

userCallbacks LPVOID Unused. Set to 0.

startPage LONG Page to start printing with, 0-based.

endPage LONG Page to end printing on.

psLevel LONG PostScript level.

nCopies int The number of copies to print.

PPDFeatures AT_UINT Unused. Set to 0.

ppdFileName AT_UINT Unused. Set to 0.

ImageGear Professional v18 for Mac | 2255

1.3.3.5.35 AT_PDF_PRINTPARAMS

This structure indicates how a document should be printed.

Declaration:

typedef struct tagAT_PDF_PRINTPARAMS
{
 AT_UINT size;
 AT_PDF_PAGE_RANGE* ranges;
 AT_INT32 numRanges;
 AT_PDF_BOOL shrinkToFit;
 AT_PDF_BOOL expandToFit;
 AT_PDF_BOOL rotateAndCenter;
 CHAR printWhat;
 CHAR printWhatAnnot;
 AT_PDF_BOOL emitPS;
 AT_INT32 psLevel;
 CHAR outputType;
 CHAR incBaseFonts;
 CHAR incEmbeddedFonts;
 CHAR incType1Fonts;
 CHAR incType3Fonts;
 CHAR incTrueTypeFonts;
 CHAR incCIDFonts;
 CHAR incProcsets;
 CHAR incOtherResources;
 AT_INT32 fontPerDocVM;
 AT_PDF_BOOL emitShowpage;
 AT_PDF_BOOL emitTTFontsFirst;
 AT_PDF_BOOL setPageSize;
 AT_PDF_BOOL emitDSC;
 AT_PDF_BOOL setupProcsets;
 AT_PDF_BOOL emitColorSeps;
 AT_PDF_BOOL binaryOK;
 AT_PDF_BOOL useSubFileDecode;
 AT_PDF_BOOL emitRawData;
 AT_PDF_BOOL TTasT42;
 AT_FLOAT scale;
 AT_PDF_BOOL emitExternalStreamRef;
 AT_PDF_BOOL emitHalftones;
 AT_PDF_BOOL emitPSXObjects;
 AT_PDF_BOOL centerCropBox;
 AT_PDF_BOOL emitSeparableImagesOnly;
 AT_PDF_BOOL emitDeviceExtGState;
 AT_PDF_FIXEDRECT boundingBox;
 AT_PDF_BOOL useFontAliasNames;
 AT_PDF_BOOL emitPageRotation;
 AT_PDF_BOOL reverse;
 AT_PDF_FIXEDRECT* tCropBox;
 AT_PDF_BOOL emitPageClip;
 AT_PDF_BOOL emitTransfer;
 AT_PDF_BOOL emitBG;
 AT_PDF_BOOL emitUCR;
 CHAR farEastFontOpt;
 AT_PDF_BOOL suppressCJKSubstitution;
 AT_PDF_BOOL suppressCSA;
 AT_PDF_BOOL hostBased;
 HIG_PDF_ATOM hostBasedOutputCS;
 CHAR duplex;
 CHAR doTiling;
 LPAT_PDF_TILEEX tileInfo;

ImageGear Professional v18 for Mac | 2256

 AT_PDF_BOOL rotate;
 AT_PDF_BOOL hostBasedCM;
 char destProfile[256];
 HIG_PDF_ATOM destCSAtom;
 AT_PDF_BOOL saveVM;
 AT_PDF_BOOL doOPP;
 AT_INT32 suppressOPPWhenNoSpots;
 AT_PDF_BOOL optimizeForSpeed;
 AT_PDF_BOOL brokenCRDs;
 AT_PDF_BOOL useMaxVM;
 AT_INT32 lastWidth;
 AT_INT32 lastHeight;
 AT_DWORD bitmapResolution;
 AT_DWORD gradientResolution;
 AT_DWORD transparencyQuality;
 AT_DWORD ocContext;
 AT_PDF_BOOL applyOCGPrintOverrides;
 AT_PDF_BOOL useFullResolutionJP2KData;
 AT_PDF_BOOL emitInRipSeps;
 AT_DWORD whichMarks;
 AT_PDF_BOOL westernMarksStyle;
 AT_PDF_BOOL doProofing;
 char proofProfile[256];
 AT_PDF_BOOL inkBlack;
 AT_PDF_BOOL paperWhite;
 AT_PDF_BOOL useExecForm;
 LPAT_PDF_FLATTEN flattenInfo;
 AT_PDF_BOOL negative;
 CHAR mirrorprint;
 AT_DWORD numCollatedCopies;
 AT_PDF_BOOL emitFlatness;
 AT_INT32 trapType;
 AT_PDF_BOOL TTasCIDT2;
 AT_DWORD markStyle;
 AT_FLOAT lineWidth;
 AT_PDF_BOOL macQDPrinter;
 AT_UINT customMarksFileName;
 AT_VOID* pAGMPI;
 AT_PDF_BOOL disableFlattening;
 AT_PDF_BOOL doNotDownloadFauxFonts;
 AT_PDF_BOOL suppressSnapToDevice;
 AT_INT32 suppressElement;
 AT_DWORD maxFlatSeconds;
 AT_DWORD testTilingMode;
} AT_PDF_PRINTPARAMS;
typedef AT_PDF_PRINTPARAMS FAR* LPAT_PDF_PRINTPARAMS;

Members:

Name Type Description

size AT_UINT Size of the data structure. Must be set to
sizeof(AT_PDF_PRINTPARAMS).

ranges AT_PDF_PAGE_RANGE* Ranges of pages to print. Use NULL to print the entire
document.

numRanges AT_INT32 Number of ranges of pages to print in ranges. The default
value is 0.

shrinkToFit AT_PDF_BOOL TRUE if the page is scaled to fit the printer page size; FALSE
otherwise. This field overrides scale. The default value is
FALSE.

expandToFit AT_PDF_BOOL TRUE if small pages are to be scaled up to fit the printer
page size; FALSE otherwise. Overrides scale. The default
value is FALSE.

ImageGear Professional v18 for Mac | 2257

rotateAndCenter AT_PDF_BOOL TRUE if page is to be rotated to fit printer's orientation, and
centered in printer's page size; FALSE otherwise.The default
value is FALSE. Rotation and centering (TRUE) only occur,
however, if the page contents are too wide to fit on a
narrow page (or vice versa) and the page contents are less
than an inch smaller than the target page in one direction.

printWhat CHAR enumIGPDFPrintWhat flag. Default is
IG_PDF_PRINT_DOCUMENT.

printWhatAnnot CHAR Combination of enumIGPDFPrintWhatAnnot flags which
extend printWhat to enable Pro product behavior.

emitPS AT_PDF_BOOL If TRUE, emit a PostScript file. The default value is TRUE.

psLevel AT_INT32 PostScript level: 1, 2 or 3. The default value is 2.

outputType CHAR Print PostScript or EPS with or without a preview.

incBaseFonts CHAR Embed the base fonts. The default value is
IG_PDF_INCLUDE_NEVER.

incEmbeddedFonts CHAR Embed fonts that are embedded in the PDF file. This
overrides the incType1Fonts, incTrueTypeFonts, and
incCIDFonts fields. The default value is
IG_PDF_INCLUDE_ONCE_PER_DOC.

incType1Fonts CHAR Embed Type 1 fonts. The default value is
IG_PDF_INCLUDE_ONCE_PER_DOC.

incType3Fonts CHAR Embed Type 3 fonts. The default value is
IG_PDF_INCLUDE_ON_EVERY_PAGE.

This parameter must always be set to
IG_PDF_INCLUDE_ON_EVERY_PAGE. PDF files exist
with Type 3 fonts that contain different encodings on
different pages.

incTrueTypeFonts CHAR Embed TrueType fonts. The default value is
IG_PDF_INCLUDE_ONCE_PER_DOC.

incCIDFonts CHAR Embed CID fonts. The default value is
IG_PDF_INCLUDE_ONCE_PER_DOC.

incProcsets CHAR Include Procsets in the file. The default value is
IG_PDF_INCLUDE_ONCE_PER_DOC.

incOtherResources CHAR Include all other types of resources in the file. The default
value is IG_PDF_INCLUDE_ONCE_PER_DOC.

fontPerDocVM AT_INT32 Amount of VM available for font downloading at the
document level. Ignored if <=0.

This must be set to 0 for the toolkit; it is only used by
the viewer.

emitShowpage AT_PDF_BOOL Emit save and restore showpage in PostScript files. The
default value is TRUE.

emitTTFontsFirst AT_PDF_BOOL Emit TrueType fonts before any other fonts. The default
value is FALSE.

setPageSize AT_PDF_BOOL (PostScript level 2 only) Set the page size on each page.
Use the media box for outputting to PostScript files, use the
crop box for EPS files. Default is FALSE.

emitDSC AT_PDF_BOOL Write DSC (Document Structuring Conventions) comments.
The default value is TRUE.

setupProcsets AT_PDF_BOOL If procsets are included, also include init/term code. The
default value is TRUE.

This must be set to TRUE.

ImageGear Professional v18 for Mac | 2258

emitColorSeps AT_PDF_BOOL Emit images for Level-1 separations. The default value is
FALSE.

binaryOK AT_PDF_BOOL TRUE if binary data is permitted in the PostScript file; FALSE
otherwise. The default value is TRUE.

useSubFileDecode AT_PDF_BOOL Add SubFileDecode filter to work around stream problems.
The default value is FALSE.

emitRawData AT_PDF_BOOL TRUE if add no unnecessary filters when emitting image
data; FALSE otherwise. The default value is TRUE.

TTasT42 AT_PDF_BOOL If including TrueType fonts, convert to Type 42 fonts instead
of Type 1 fonts. The default value is FALSE.

scale AT_FLOAT Document-wide scale factor. 100.0 = full size. The default
value is 100.

emitExternalStreamRef AT_PDF_BOOL If an Image resource uses an external stream, emit code
that points to the external file. The default value is FALSE.

This must be set to FALSE.

emitHalftones AT_PDF_BOOL Preserve any halftone screening in the PDF file. The default
value is FALSE.

emitPSXObjects AT_PDF_BOOL Emit PostScript XObjects into the PostScript stream. The
default value is FALSE.

centerCropBox AT_PDF_BOOL TRUE if CropBox output is centered on the page when the
CropBox < MediaBox; FALSE otherwise. The default value is
TRUE.

emitSeparableImagesOnly AT_PDF_BOOL If emitting EPS, include only CMYK and gray images.

emitDeviceExtGState AT_PDF_BOOL When emitting the extended graphics state, include the
device-dependent parameters (overprint, black generation,
undercolor removal, transfer, halftone, halftone phase,
smoothness, flatness, rendering intent) in addition to the
device-independent parameters (font, line width, line cap,
line join, miter limit, dash pattern). If this flag is FALSE,
only the device-independent parameters will be emitted.
This flag overrides emitHalftones; if this is FALSE, then
halftones are not emitted. The default value is TRUE.

boundingBox AT_PDF_FIXEDRECT If all zeroes, is ignored. Otherwise, is used for
%BoundingBox DSC comment and in centerCropBox
calculations and for setpagedevice. The default value is [0 0
0 0].

useFontAliasNames AT_PDF_BOOL Used when printing with system fonts. The default value is
FALSE.

emitPageRotation AT_PDF_BOOL Emit a concat at the beginning of each page so that the
page is properly rotated. Used when emitting EPS. The
default value is FALSE.

reverse AT_PDF_BOOL If set to TRUE, reverse the order of page output.

tCropBox AT_PDF_FIXEDRECT* Temporary crop box to represent selected region.

emitPageClip AT_PDF_BOOL Set to TRUE to emit page clip.

emitTransfer AT_PDF_BOOL Set to TRUE to emit transfer.

emitBG AT_PDF_BOOL Set to TRUE to emit black generation.

emitUCR AT_PDF_BOOL Set to TRUE to emit undercolor removal.

farEastFontOpt CHAR Far East font option. Currently not used. Set to 0.

suppressCJKSubstitution AT_PDF_BOOL If TRUE, do not do CJK substitution on the printer.

suppressCSA AT_PDF_BOOL If TRUE, don't emit CSAs for 4 component (CMYK) colors.

hostBased AT_PDF_BOOL For separator, do host-based color management.

hostBasedOutputCS HIG_PDF_ATOM The output color space when hostBased color management

ImageGear Professional v18 for Mac | 2259

is TRUE.

duplex CHAR Currently not used. Set to 0.

doTiling CHAR Whether to tile none, all, or only large pages

tileInfo LPAT_PDF_TILEEX If non-NULL, tiling is desired with these parameters.

rotate AT_PDF_BOOL Enable the auto-rotating behavior from past versions of
Acrobat.

hostBasedCM AT_PDF_BOOL Host base color management. Default: FALSE, do CSA
generation for profiles instead of converting all colors on the
host.

destProfile char[256] If hostBaseCM color management is TRUE, use this profile.

destCSAtom HIG_PDF_ATOM An atom representing the device color space (DeviceGray,
DeviceRGB, etc.).

saveVM AT_PDF_BOOL TRUE means try to save VM when printing to PostScript.

doOPP AT_PDF_BOOL If TRUE, do the overprint preview operation.

suppressOPPWhenNoSpots AT_INT32 When TRUE, suppress OPP for pages that do not contain
spot colors

optimizeForSpeed AT_PDF_BOOL If TRUE, do it fast; FALSE means PostScript code must be
page independent. If set to TRUE, font downloads are forced
from IG_PDF_INCLUDE_ON_EVERY_PAGE to
IG_PDF_INCLUDE_ONCE_PER_DOC.

brokenCRDs AT_PDF_BOOL If TRUE, don't set rendering intent in PostScript stream due
to broken non-default CRDs.

useMaxVM AT_PDF_BOOL If TRUE, store all possible resources in VM.

lastWidth AT_INT32 Used when setPageSize is TRUE to prevent unneeded
setpagedevice calls.

lastHeight AT_INT32 Used when setPageSize is TRUE to prevent unneeded
setpagedevice calls.

bitmapResolution AT_DWORD DPI for bitmaps. Default is 300.

gradientResolution AT_DWORD DPI for gradients interior to the object (not edges). Can
generally be lower than the bitmapResolution. Default is
150.

transparencyQuality AT_DWORD The transparency level. Range is 1-100.

ocContext AT_DWORD The optional-content context to use for visibility state
information, or NULL to use the document's current states in
the default context.

applyOCGPrintOverrides AT_PDF_BOOL When TRUE, apply print-specific visibility state settings from
the optional-content group.

useFullResolutionJP2KData AT_PDF_BOOL Whether to use the maximum available JPEG 2000
resolution.

emitInRipSeps AT_PDF_BOOL When TRUE, requests that separations, one sheet per ink,
be generated in the RIP (printer).

whichMarks AT_DWORD Page mark indication. A bit-wise OR of the
enumIGPDFPageMarkFlags values.

westernMarksStyle AT_PDF_BOOL When TRUE, use western style for page marks.

doProofing AT_PDF_BOOL When TRUE, print using proofing settings.

proofProfile char[256] Description string for the proofing profile.

inkBlack AT_PDF_BOOL Proofing settings: simulate ink black.

paperWhite AT_PDF_BOOL Proofing settings: simulate paper white.

useExecForm AT_PDF_BOOL When TRUE, emit execform calls when emitting Form
XObjects.

flattenInfo LPAT_PDF_FLATTEN A structure containing parameters that control tile

ImageGear Professional v18 for Mac | 2260

flattening.

negative AT_PDF_BOOL When TRUE, invert the plate.

mirrorprint CHAR PostScript mirroring attribute. Currently not used.

numCollatedCopies AT_DWORD Enables collation for viewer.

emitFlatness AT_PDF_BOOL Set to TRUE to emit flatness.

trapType AT_INT32 Specifies trap type.

TTasCIDT2 AT_PDF_BOOL Set to TRUE to emit TrueType fonts as CIDType2 instead of
as CIDFontType0.

markStyle AT_DWORD Specify the style to use for page marks.

lineWidth AT_FLOAT Line width to use for printer marks.

macQDPrinter AT_PDF_BOOL Set to TRUE if the printer is a Mac QuickDraw printer.

customMarksFileName AT_UINT If markStyle == -1, this should be a valid file name pointing
to a valid .mrk file for custom printer marks.

pAGMPI AT_VOID* The AGMP interface pointer. Should be NULL.

disableFlattening AT_PDF_BOOL Disable flattening of the PDF file; transparency data will be
ignored.

doNotDownloadFauxFonts AT_PDF_BOOL Allow user to select if faux files are downloaded.

suppressSnapToDevice AT_PDF_BOOL Allow user to control "Snap_To_Device".

suppressElement AT_INT32 Unused. Set to 0.

maxFlatSeconds AT_DWORD Maximum flattener session seconds (of execution) before
quality reduction.

testTilingMode AT_DWORD Provide a means for all 4 page rotations to be tiling-
exercised at once.

Remarks:

All fields in the AT_PDF_PRINTPARAMS structure apply to PostScript file creation. AT_PDF_PRINTPARAMS are
ignored when printing to non-PostScript devices.

ImageGear Professional v18 for Mac | 2261

1.3.3.5.36 AT_PDF_SECURITYDATA

This structure describes the data for the standard security handler.

Declaration:

typedef struct tagAT_PDF_SECURITYDATA
{
 AT_UINT size;
 AT_PDF_BOOL newUserPW;
 AT_PDF_BOOL hasUserPW;
 CHAR userPW[256];
 AT_PDF_BOOL newOwnerPW;
 AT_PDF_BOOL hasOwnerPW;
 CHAR ownerPW[256];
 AT_DWORD perms;
 LONG keyLength;
 AT_INT32 revision;
 AT_PDF_BOOL encryptMetadata;
 LONG encryptMethod;
 AT_PDF_BOOL encryptAttachmentsOnly;
 AT_INT32 version;
} AT_PDF_SECURITYDATA;
typedef AT_PDF_SECURITYDATA FAR* LPAT_PDF_SECURITYDATA;

Members:

Name Type Description

size AT_UINT Size of this structure.

newUserPW AT_PDF_BOOL TRUE if the user password should be changed.

hasUserPW AT_PDF_BOOL TRUE if there is a user password.

userPW CHAR[256] The user password string.

newOwnerPW AT_PDF_BOOL TRUE if the owner password should be changed; FALSE otherwise.

hasOwnerPW AT_PDF_BOOL TRUE if an owner password is provided; FALSE otherwise.

ownerPW CHAR[256] The owner password string.

perms AT_DWORD Permissions to allow. An OR of the enumIGPDFPermsFlags values.

keyLength LONG Encryption key length in byte.

revision AT_INT32 Indicates /R value.

encryptMetadata AT_PDF_BOOL Flag that indicates whether document metadata will be encrypted.

encryptMethod LONG Method of encryption for filters to use. One of the
enumIGPDFStdSecurityMethod values.

encryptAttachmentsOnly AT_PDF_BOOL Flag to indicate that only Attachments are encrypted - encryptMetadata
and encryptAttachmentsOnly cannot both be true.

version AT_INT32 Indicates a /V value.

Remarks:

The password strings in PDF are padded or truncated to exactly 32 bytes. If the password string is more than 32 bytes
long, used only its first 32 bytes; if it is less than 32 bytes long, it padded by appending the required number of
additional bytes from the beginning of the following padding string: <28 BF 4E 5E 4E 75 8A 41 64 00 4E 56 FF FA 01 08
2E 2E 00 B6 D0 68 3E 80 2F 0C A9 FE 64 53 69 7A >

ImageGear Professional v18 for Mac | 2262

1.3.3.5.37 AT_PDF_SYSFONT_PLATDATA

SysFont platform specific data.

Declaration:

typedef struct tagAT_PDF_SYSFONT_PLATDATA
{
 DWORD size;
 LPAT_VOID fontRef;

} AT_PDF_SYSFONT_PLATDATA;
typedef AT_PDF_SYSFONT_PLATDATA FAR* LPAT_PDF_SYSFONT_PLATDATA;

Members:

Name Type Description

size DWORD sizeof(AT_PDF_SYSFONT_PLATDATA).

fontRef LPAT_VOID The ATSFontRef of the sys font.

ImageGear Professional v18 for Mac | 2263

1.3.3.5.38 AT_PDF_TILE

Specifies printing flags.

Declaration:

typedef struct tagAT_PDF_TILE
{
 AT_DWORD overlap;
 AT_PDF_BOOL center;
 AT_DWORD marksflags;
 AT_DWORD paperWidth;
 AT_DWORD paperHeight;
 char* docTitle;
 char* docDate;
 char* docTime;
 AT_DWORD col;
 AT_DWORD row;
 AT_DWORD numCols;
 AT_DWORD numRows;
 AT_DWORD xOffset;
 AT_DWORD yOffset;

} AT_PDF_TILE;
typedef AT_PDF_TILE FAR* LPAT_PDF_TILE;

Members:

Name Type Description

overlap AT_DWORD Specifies the number of points to overlap (UI units may be different; application shall
convert UI units to points).

center AT_PDF_BOOL Centers the pages' contents on the physical paper when set to TRUE.

marksflags AT_DWORD Specifies the printer marks to emit.

paperWidth AT_DWORD Specifies the width of the paper (in points); client-provided, since client has PPD
access.

paperHeight AT_DWORD Specifies the height of the paper (in points); client-provided, since client has PPD
access.

docTitle char* Specifies the title string for slug (optional).

docDate char* Specifies the date string for slug (optional).

docTime char* Specifies the time string for slug (optional).

col AT_DWORD Used for communicating the current page's state during print time: the current col (0
... numcols-1).

row AT_DWORD Used for communicating the current page's state during print time: the current row.

numCols AT_DWORD Used for communicating the current page's state during print time: the numCols for
this page.

numRows AT_DWORD Used for communicating the current page's state during print time: the numRows for
this page.

xOffset AT_DWORD The amount to shift the first tile right, to center entire image on sheets.

yOffset AT_DWORD The amount to shift the first tile down, to center entire image on sheets.

ImageGear Professional v18 for Mac | 2264

1.3.3.5.39 AT_PDF_TILEEX

Specifies printing flags.

Declaration:

typedef struct tagAT_PDF_TILEEX
{
 AT_PDF_TILE pubRec;
 AT_DWORD imageablePaperWidth;
 AT_DWORD imageablePaperHeight;
 AT_DWORD unprintablePaperWidth;
 AT_DWORD unprintablePaperHeight;
 AT_DWORD indent;
 AT_INT32 rotateAngle;
 AT_UINT labelTemplate;
 AT_DOUBLE driverScale;
 AT_DOUBLE tileScale;

} AT_PDF_TILEEX;
typedef AT_PDF_TILEEX FAR* LPAT_PDF_TILEEX;

Members:

Name Type Description

pubRec AT_PDF_TILE Used for passing info to and from user.

imageablePaperWidth AT_DWORD Used internally.

imageablePaperHeight AT_DWORD Used internally.

unprintablePaperWidth AT_DWORD Used internally.

unprintablePaperHeight AT_DWORD Used internally.

indent AT_DWORD Used internally.

rotateAngle AT_INT32 Used internally.

labelTemplate AT_UINT Used internally.

driverScale AT_DOUBLE Used internally.

tileScale AT_DOUBLE Used internally.

ImageGear Professional v18 for Mac | 2265

1.3.3.6 PDF Component Enumerations Reference

This section represents ImageGear PDF component enumerations including their meaning and values.

enumIGPDEContentFlags
enumIGPDEContentGetResourceFlags
enumIGPDEElementCopyFlags
enumIGPDEFontCreateFlags
enumIGPDEFontCreateNeedFlags
enumIGPDEFontProtection
enumIGPDEGraphicStateWasSetFlags
enumIGPDEImageAttrFlags
enumIGPDEImageDataFlags
enumIGPDEInsertElement
enumIGPDEPathElementType
enumIGPDEPathOpFlags
enumIGPDEPSAttrFlags
enumIGPDESoftMaskCreateFlags
enumIGPDETextFlags
enumIGPDEType
enumIGPDEXGroupCreateFlags
enumIGPDFBasicType
enumIGPDFBookmarkFlags
enumIGPDFCharset
enumIGPDFCodePages
enumIGPDFColorSpace
enumIGPDFCompressions
enumIGPDFDestinationType
enumIGPDFDuplexEnum
enumIGPDFFarEastFont
enumIGPDFFixedValues
enumIGPDFFlattenTilingMode
enumIGPDFFontFlags
enumIGPDFInclusion
enumIGPDFInsertFlags
enumIGPDFOCMDVisPolicy
enumIGPDFPageDrawFlags
enumIGPDFPageDrawMode
enumIGPDFPageDrawSmoothFlags
enumIGPDFPageMarkFlags
enumIGPDFPageNumber
enumIGPDFPageRange
enumIGPDFPageTilingMode
enumIGPDFPermReqObj
enumIGPDFPermReqOpr
enumIGPDFPermReqStatus
enumIGPDFPermsFlags
enumIGPDFPrintWhat
enumIGPDFPrintWhatAnnot
enumIGPDFRevision
enumIGPDFRotation
enumIGPDFSecurityInfoFlags
enumIGPDFStdSecurityMethod
enumIGPDFStreamType
enumIGPDFSysFontMatchFlags
enumIGPDFSysFontPackageType

ImageGear Professional v18 for Mac | 2266

enumIGPDFWordFinderVersion
enumIGPDFWordFlags

ImageGear Professional v18 for Mac | 2267

1.3.3.6.1 enumIGPDEContentFlags

Bit field for AT_PDE_CONTENTATTRS.

Values:

IG_PDE_SET_CACHE_DEVICE 0x0001 If set, cacheDevice contains 6 cache device values.

IG_PDE_SET_CHAR_WIDTH 0x0002 If set, cacheDevice contains 2 charwidth values.

IG_PDE_FORM_MATRIX 0x0004 If set, formMatrix contains a valid matrix.

ImageGear Professional v18 for Mac | 2268

1.3.3.6.2 enumIGPDEContentGetResourceFlags

Bit field for AT_PDE_CONTENTATTRS.

Values:

IG_PDE_GET_FONTS 0 Obtain font resources.

IG_PDE_GET_XOBJECTS 1 Obtain Xobject resources.

IG_PDE_GET_COLORSPACES 2 Obtain color space resources.

ImageGear Professional v18 for Mac | 2269

1.3.3.6.3 enumIGPDEElementCopyFlags

Bitfield for PDE element copy.

Values:

IG_PDE_ELEMENT_COPY_FOR_CLIP 0x0001 Copied element does not need gstate or clip.

IG_PDE_ELEMENT_COPY_CLIPPING 0x0002 Acquire the clip path and put it in the copied object.

ImageGear Professional v18 for Mac | 2270

1.3.3.6.4 enumIGPDEFontCreateFlags

Flags for PDE font creation routine. If you want to subset a font, set both the IG_PDE_FONT_CREATE_EMBEDDED and
IG_PDE_FONT_WILL_SUBSET flags.

Values:

IG_PDE_FONT_CREATE_NOT_ALLOWED -1 Creation is not allowed. Usually returns by SysFont's
"getCreateFlags" when the combination of SysFont and
SysEncoding is not allowed.

IG_PDE_FONT_CREATE_EMBEDDED 0x0001 Embed the font. Create an embedded font. By itself, this will not
subset the font.

IG_PDE_FONT_WILL_SUBSET 0x0002 Subset the font. If you want to subset a font, set both the
IG_PDE_FONT_CREATE_EMBEDDED and
IG_PDE_FONT_WILL_SUBSET flags. You must call "subsetNow" to
actually subset the font. Both embedding and sub-setting a font
creates a CFF font.

IG_PDE_FONT_DO_NOT_EMBED 0x0004 Do not embed the font. You cannot set both this and the
IG_PDE_FONT_WILL_SUBSET flags. Nor can you set
IG_PDE_FONT_CREATE_EMBEDDED.

IG_PDE_FONT_ENCODE_BY_GID 0x0008 Create a CIDFont with identity (GID) encoding.

IG_PDE_FONT_DEFER_WIDTHS 0x0010 Wait to get widths until later (affects Type0 fonts only).

IG_PDE_FONT_CREATE_SUBSET 0x0002 Subset the font. If you want to subset a font, set both the
IG_PDE_FONT_CREATE_EMBEDDED and
IG_PDE_FONT_WILL_SUBSET flags. You must call "subsetNow" to
actually subset the font. Both embedding and sub-setting a font
creates a CFF font.

IG_PDE_FONT_CREATE_GID_OVERRIDE 0x0020 The library will convert cp to gid with identity embedded.

IG_PDE_FONT_CREATE_TO_UNICODE 0x0040 Create ToUnicode cmap.

IG_PDE_FONT_CREATE_ALL_WIDTHS 0x0080 Supply entire widths table (affects Type0 fonts only).

ImageGear Professional v18 for Mac | 2271

1.3.3.6.5 enumIGPDEFontCreateNeedFlags

Flags for PDE Font CreateNeedFlags.

Values:

IG_PDE_FONT_CREATE_NEED_WIDTHS 0x00010000 Need to create width.

IG_PDE_FONT_CREATE_NEED_TO_UNICODE 0x00020000 Need to create ToUnicode stream.

IG_PDE_FONT_CREATE_NEED_EMBED 0x00040000 Need to embed it.

ImageGear Professional v18 for Mac | 2272

1.3.3.6.6 enumIGPDEFontProtection

Setting for disabling font embedding.

Values:

IG_PDE_FONT_NO_EMBEDDING 0x00000001 Flags for protection of AT_PDE_FONTATTRS - embedding
is not allowed.

IG_PDE_FONT_NO_EDITABLE_EMBEDDING 0x00000002 Flags for protection of AT_PDE_FONTATTRS - editable
embedding is not allowed.

ImageGear Professional v18 for Mac | 2273

1.3.3.6.7 enumIGPDEGraphicStateWasSetFlags

Structure describing the graphics state that was set.

Values:

IG_PDE_FILL_CSPACE_WAS_SET 0x0001 A fill color space was set, corresponding to the cs (setcolorspace)
operator.

IG_PDE_FILL_CVALUE_WAS_SET 0x0002 A color fill value was set, corresponding to the sc (setcolor) operator.

IG_PDE_STROKE_CSPACE_WAS_SET 0x0004 A color space stroke value was set, corresponding to the CS
(setcolorspace) operator.

IG_PDE_STROKE_CVALUE_WAS_SET 0x0008 A color stroke value was set, corresponding to the SC (setcolor)
operator.

IG_PDE_DASH_WAS_SET 0x0010 A dash specification was set, corresponding to the d (setdash)
operator.

IG_PDE_LINE_WIDTH_WAS_SET 0x0020 The line width was set, corresponding to the w (setlinewidth)
operator.

IG_PDE_MITER_LIMIT_WAS_SET 0x0040 The miter limit was set, corresponding to the M (setmiterlimit)
operator.

IG_PDE_FLATNESS_WAS_SET 0x0080 Line flatness was set, corresponding to the i (setflat) operator.

IG_PDE_LINE_CAP_WAS_SET 0x0100 Line cap style was set, corresponding to the J (setlinecap) operator.

IG_PDE_LINE_JOIN_WAS_SET 0x0200 Line join style was set, corresponding to the j (setlinejoin) operator.

IG_PDE_RENDER_INTENT_WAS_SET 0x0400 A color rendering intent was set, corresponding to the Intent key in
the image dictionary.

IG_PDE_EXT_GSTATE_WAS_SET 0x0800 An extended graphics state was set, corresponding to the gs
operator.

ImageGear Professional v18 for Mac | 2274

1.3.3.6.8 enumIGPDEImageAttrFlags

Flags for AT_PDE_IMAGEATTRS. See Section 4.8.4 in the PDF Reference for more information on image attributes.

Values:

IG_PDE_IMAGE_EXTERNAL 0x0001 Image is an XObject.

IG_PDE_IMAGE_MASK 0x0002 Image is an imagemask.

IG_PDE_IMAGE_INTERPOLATE 0x0004 Interpolate is true.

IG_PDE_IMAGE_HAVE_DECODE 0x0008 We have a decode array.

IG_PDE_IMAGE_INDEXED 0x0010 Uses an indexed color space.

IG_PDE_IMAGE_MASKED_BY_POSITION 0x0020 Image has a Mask key containing an ImageMask stream.

IG_PDE_IMAGE_MASKED_BY_COLOR 0x0040 Image has a Mask key containing an array of color values.

ImageGear Professional v18 for Mac | 2275

1.3.3.6.9 enumIGPDEImageDataFlags

Image Data Flags.

Values:

AT_PDE_IMAGE_DATA_NOT_ENCODED 0x0000 Indicates filter is active; data is not encoded.

AT_PDE_IMAGE_ENCODED_DATA 0x0001 Indicates filter is active; data is encoded.

ImageGear Professional v18 for Mac | 2276

1.3.3.6.10 enumIGPDEInsertElement

Used for inserting a PDE element into the content.

Values:

IG_PDE_BEFORE_FIRST ((LONG) -1) Specifies position before the first element. Usually used to insert
first content element.

IG_PDE_AFTER_LAST (IG_PDF_FIXED_MAX
- 1)

Specifies the last element position. Usually used to insert last
content element.

ImageGear Professional v18 for Mac | 2277

1.3.3.6.11 enumIGPDEPathElementType

Constant values that describe path segment operators in PDE path elements.

Values:

IG_PDE_MOVE_TO 0 Designates m (moveto) operator, which moves the current point.

IG_PDE_LINE_TO 1 Designates l (lineto) operator, which appends a straight line segment from the current
point.

IG_PDE_CURVE_TO 2 Designates c (curveto) operator, which appends a Bezier curve to the path.

IG_PDE_CURVE_TO_V 3 Designates v (curveto) operator, which appends a Bezier curve to the current path when
the first control point coincides with initial point on the curve.

IG_PDE_CURVE_TO_Y 4 Designates y (curveto) operator, which appends a Bezier curve to the current path when
the second control point coincides with final point on the curve.

IG_PDE_RECT 5 Designates re operator, which adds a rectangle to the current path.

IG_PDE_CLOSE_PATH 6 Designates h (closepath) operator, which closes the current subpath.

ImageGear Professional v18 for Mac | 2278

1.3.3.6.12 enumIGPDEPathOpFlags

Flags for paint operators in a PDE path.

Values:

IG_PDE_INVISIBLE 0x00 Path is neither stroked nor filled, so it is invisible.

IG_PDE_STROKE 0x01 Stroke the path, as with the S (stroke) operator.

IG_PDE_FILL 0x02 Fills the path, using the nonzero winding number rule to determine the region to fill, as
with the f (fill) operator.

IG_PDE_EO_FILL 0x04 Fills the path, using the even-odd rule to determine the region to fill, as with the f*
(eofill) operator.

ImageGear Professional v18 for Mac | 2279

1.3.3.6.13 enumIGPDEPSAttrFlags

Flags for AT_PDE_PSATTRS.

Values:

IG_PDE_PS_INLINE 0 Inline PostScript.

ImageGear Professional v18 for Mac | 2280

1.3.3.6.14 enumIGPDESoftMaskCreateFlags

Flags for use with SoftMask create.

Values:

IG_PDE_SOFTMASK_TYPE_LUMINOSITY 0x0001 Specifies how the mask is to be computed.

IG_PDE_SOFTMASK_TYPE_ALPHA 0x0002 Specifies how the mask is to be computed.

ImageGear Professional v18 for Mac | 2281

1.3.3.6.15 enumIGPDETextFlags

Flags used in the text API.

Values:

IG_PDE_TEXT_RUN 0x0001 Specifies an action for the run.

IG_PDE_TEXT_CHAR 0x0002 Specifies an action for single character.

IG_PDE_TEXT_PAGE_SPACE 0x0004 Specifies user space.

IG_PDE_TEXT_GET_BOUNDS 0x0008 Specifies using the font descriptor's FontBBox.

ImageGear Professional v18 for Mac | 2282

1.3.3.6.16 enumIGPDEType

Types of the editing objects.

Values:

IG_PDE_CONTENT 0 Content.

IG_PDE_TEXT 1 Text.

IG_PDE_PATH 2 Path.

IG_PDE_IMAGE 3 Image.

IG_PDE_FORM 4 Form.

IG_PDE_POSTSCRIPT 5 PostScript.

IG_PDE_XOBJECT 6 XObject.

IG_PDE_CLIP 7 Clip.

IG_PDE_FONT 8 Font.

IG_PDE_COLORSPACE 9 ColorSpace.

IG_PDE_GSTATE 10 Graphic State.

IG_PDE_PLACE 11 Place.

IG_PDE_CONTAINER 12 Container.

IG_PDF_SYSFONT 13 System Font.

IG_PDE_PATTERN 14 Pattern.

IG_PDE_DEVICENCOLORS 15 Device N Colors.

IG_PDE_SHADING 16 Shading.

IG_PDE_GROUP 17 Group.

IG_PDE_UNKNOWN 18 Unknown.

IG_PDE_BEGIN_CONTAINER 19 Begin Container.

IG_PDE_END_CONTAINER 20 End Container.

IG_PDE_BEGIN_GROUP 21 Begin Group.

IG_PDE_END_GROUP 22 End Group.

IG_PDE_XGROUP 23 XGroup.

IG_PDE_SOFTMASK 24 SoftMask.

IG_PDF_SYSENCODING 25 System Encoding.

IG_PDE_DOC 26 Document.

IG_PDE_PAGE 27 Page.

IG_PDE_READER 28 Reader.

IG_PDE_WRITER 29 Writer.

IG_PDE_TEXTITEM 30 Text Item.

IG_PDE_LASTTYPE 31 Last Type.

ImageGear Professional v18 for Mac | 2283

1.3.3.6.17 enumIGPDEXGroupCreateFlags

Enumerated data type used to specify the type of transparency group to create.

Values:

IG_PDE_XGROUP_TYPE_TRANSPARENCY 0x0001 Creates a transparency XGroup object.

ImageGear Professional v18 for Mac | 2284

1.3.3.6.18 enumIGPDFBasicType

Basic PDF objects.

Values:

IG_PDF_BASIC_NULL 0 Null object.

IG_PDF_BASIC_INT 1 Integer object.

IG_PDF_BASIC_FIXED 2 Fixed (real) object.

IG_PDF_BASIC_BOOL 3 Boolean object.

IG_PDF_BASIC_NAME 4 Name object.

IG_PDF_BASIC_STRING 5 String object.

IG_PDF_BASIC_DICT 6 Dictionary object.

IG_PDF_BASIC_ARRAY 7 Array object.

IG_PDF_BASIC_STREAM 8 Stream object.

ImageGear Professional v18 for Mac | 2285

1.3.3.6.19 enumIGPDFBookmarkFlags

Represents PDF bookmark flags.

Values:

IG_PDF_BOOKMARK_FONT_ITALIC 1 Italic font.

IG_PDF_BOOKMARK_FONT_BOLD 2 Bold font.

ImageGear Professional v18 for Mac | 2286

1.3.3.6.20 enumIGPDFCharset

Represents the PDF Character Set.

Values:

IG_PDF_CHARSET_UNKNOWN 0 The font does not use Adobe Standard Encoding.

IG_PDF_CHARSET_ROMAN 1 The font uses Adobe Standard encoding. This is determined by the "Uses Adobe
Standard Encoding" bit in the font descriptor.

IG_PDF_CHARSET_EXPERT 2 Currently unused.

IG_PDF_CHARSET_LAST 3 Placeholder for the last value of this enumeration.

ImageGear Professional v18 for Mac | 2287

1.3.3.6.21 enumIGPDFCodePages

Code page character-mapping constants.

Values:

IG_PDF_CODEPAGE_WIN_EAST_EUROPEAN_ROMAN 1250 Windows code pages.

IG_PDF_CODEPAGE_WIN_CYRILLIC 1251 Windows code pages.

IG_PDF_CODEPAGE_WIN_GREEK 1253 Windows code pages.

IG_PDF_CODEPAGE_WIN_TURKISH 1254 Windows code pages.

IG_PDF_CODEPAGE_WIN_HEBREW 1255 Windows code pages.

IG_PDF_CODEPAGE_WIN_ARABIC 1256 Windows code pages.

IG_PDF_CODEPAGE_WIN_BALTIC 1257 Windows code pages.

IG_PDF_CODEPAGE_MAC_CENTRAL_EUROPEAN -9994 Macintosh pseudo code pages.

IG_PDF_CODEPAGE_MAC_CROATIAN -9993 Macintosh pseudo code pages.

IG_PDF_CODEPAGE_MAC_ROMANIAN -9992 Macintosh pseudo code pages.

IG_PDF_CODEPAGE_MAC_CYRILLIC -9991 Macintosh pseudo code pages.

IG_PDF_CODEPAGE_MAC_UKRAINIAN -9990 Macintosh pseudo code pages.

IG_PDF_CODEPAGE_MAC_GREEK -9989 Macintosh pseudo code pages.

IG_PDF_CODEPAGE_MAC_TURKISH -9988 Macintosh pseudo code pages.

IG_PDF_CODEPAGE_MAC_HEBREW -9987 Macintosh pseudo code pages.

IG_PDF_CODEPAGE_MAC_ARABIC -9986 Macintosh pseudo code pages.

ImageGear Professional v18 for Mac | 2288

1.3.3.6.22 enumIGPDFColorSpace

Specifies the color space in which a color value is specified (for example, RGB or Grayscale).

Values:

IG_PDF_DEVICE_GRAY Grayscale color specification. Requires 1 value entry to specify the color.

IG_PDF_DEVICE_RGB Red-Green-Blue color specification. Requires 3 value entries to specify the color.

IG_PDF_DEVICE_CMYK Cyan-Magenta-Yellow-Black color specification. Requires 4 value entries to specify the color.

ImageGear Professional v18 for Mac | 2289

1.3.3.6.23 enumIGPDFCompressions

PDF compressions for raster images.

Values:

IG_PDF_COMPRESSION_NONE 0 No compression.

IG_PDF_COMPRESSION_CCITT_G3 1 CCITT G3 compression.

IG_PDF_COMPRESSION_CCITT_G4 2 CCITT G4 compression.

IG_PDF_COMPRESSION_CCITT_G32D 3 CCITT G32D compression.

IG_PDF_COMPRESSION_JPEG 4 JPEG compression.

IG_PDF_COMPRESSION_LZW 5 LZW compression.

IG_PDF_COMPRESSION_RLE 6 RLE compression.

IG_PDF_COMPRESSION_DEFLATE 7 Deflate compression.

ImageGear Professional v18 for Mac | 2290

1.3.3.6.24 enumIGPDFDestinationType

Represents the types of PDF object destination.

Values:

IG_PDF_DEST_INVALID 0 Invalid destination.

IG_PDF_DEST_EXPLICIT 1 Explicit destination.

IG_PDF_DEST_NAMED 2 Named destination.

ImageGear Professional v18 for Mac | 2291

1.3.3.6.25 enumIGPDFDuplexEnum

Specifies duplex values.

Values:

IG_PDF_DUPLEX_OFF 0x0000 Respect whatever duplex option was selected in printer preferences.

IG_PDF_DUPLEX_ON_TUMBLE_SHORT 0x0001 Specify Duplex mode, tumbling on the short axis of the page (e.g.,
tablet-style).

IG_PDF_DUPLEX_ON_TUMBLE_LONG 0x0002 Specify Duplex mode, tumbling on the long axis of the page (e.g.,
Portrait book-style).

IG_PDF_DUPLEX_FORCE_SIMPLEX 0x0003 Force simplex printing, ignoring the printer preferences.

ImageGear Professional v18 for Mac | 2292

1.3.3.6.26 enumIGPDFFarEastFont

Specifies CJK font related option for PostScript printing.

Values:

IG_PDF_FAREASTFONT_DOWNLOAD_ALL Download all CJK fonts to printer.

IG_PDF_FAREASTFONT_DOWNLOAD_NONE Download only embedded fonts to printer.

IG_PDF_FAREASTFONT_PRINT_AS_IMAGE Do not download CJK fonts to printer. Render characters and send them
to printer as bitmaps. PS Level 1 should use this to print CJK.

ImageGear Professional v18 for Mac | 2293

1.3.3.6.27 enumIGPDFFixedValues

PDF Fixed value. A variety of predefined fixed-point constants.

Values:

IG_PDF_FIXED_ZERO ((LONG) 0x00000000L) 0

IG_PDF_FIXED_HUNDREDTH ((LONG) 0x0000028FL) 1/100

IG_PDF_FIXED_SIXTEENTH ((LONG) 0x00001000L) 1/16

IG_PDF_FIXED_TWELFTH ((LONG) 0x00001555L) 1/12

IG_PDF_FIXED_TENTH ((LONG) 0x00001999L) 1/10

IG_PDF_FIXED_EIGHTH ((LONG) 0x00002000L) 1/8

IG_PDF_FIXED_QUARTER ((LONG) 0x00004000L) 1/4

IG_PDF_FIXED_THIRD ((LONG) 0x00005555L) 1/3

IG_PDF_FIXED_HALF ((LONG) 0x00008000L) 1/2

IG_PDF_FIXED_TWOTHIRDS ((LONG) 0x0000AAAAL) 2/3

IG_PDF_FIXED_THREEQUARTERS ((LONG) 0x0000C000L) 3/4

IG_PDF_FIXED_PI4 ((LONG) 0x0000c910L) PI/4

IG_PDF_FIXED_SEVENEIGHTS ((LONG) 0x0000E000L) 7/8

IG_PDF_FIXED_ONE1 ((LONG) 0x0000ffffL) -1

IG_PDF_FIXED_ONE ((LONG) 0x00010000L) 1

IG_PDF_FIXED_PI2 ((LONG) 0x00019220L) PI/2

IG_PDF_FIXED_GOLDEN ((LONG) 0x00019e37L) Golden.

IG_PDF_FIXED_TEN ((LONG) 0x000A0000L) 10

IG_PDF_FIXED_MAX ((LONG) 0x7FFFFFFF) Max fixed-point value.

IG_PDF_FIXED_MIN ((LONG) 0x80000000) Min fixed-point value.

IG_PDF_FIXED_NEGATIVE_INFINITY ((LONG) IG_PDF_FIXED_MAX) Negative fixed-point infinity.

IG_PDF_FIXED_POSITIVE_INFINITY ((LONG) IG_PDF_FIXED_MIN) Positive fixed-point infinity.

ImageGear Professional v18 for Mac | 2294

1.3.3.6.28 enumIGPDFFlattenTilingMode

Specifies tiled flattening modes.

Values:

IG_PDF_NO_TILING No tiling.

IG_PDF_CONSTANT_TILING Constant tiling.

IG_PDF_ADAPTIVE_TILING Adaptive tiling.

ImageGear Professional v18 for Mac | 2295

1.3.3.6.29 enumIGPDFFontFlags

Font flags. Constants that indicate a font's attributes (fixed width, roman or symbolic, sans serif, and so forth).

Values:

IG_PDF_FIXED_WIDTH 0x00000001 All glyphs in the font are the same width.

IG_PDF_SERIF 0x00000002 The font is a serif font.

IG_PDF_PI 0x00000004 The font is a symbolic (pi) font.

IG_PDF_SCRIPT 0x00000008 The font is a script font.

IG_PDF_STD_ENCODING 0x00000020 The font uses standard encoding.

IG_PDF_ITALIC 0x00000040 The font is an italic font.

IG_PDF_ALL_CAP 0x00010000 The font is an all-caps font.

IG_PDF_SMALL_CAP 0x00020000 The font is a small caps font.

IG_PDF_FORCE_BOLD 0x00040000 Force bold characters to draw bold even at small point sizes.

ImageGear Professional v18 for Mac | 2296

1.3.3.6.30 enumIGPDFInclusion

This enumeration specifies how to include a resource in a file.

Values:

IG_PDF_INCLUDE_ONCE_PER_DOC Include the resource only once per file.

IG_PDF_INCLUDE_ON_EVERY_PAGE Include the resource on every page in the file.

IG_PDF_INCLUDE_NEVER Never include the resource.

IG_PDF_INCLUDE_WHEN_NEEDED Include the resources only when needed.

IG_PDF_INCLUDE_BY_RANGE Include the range of resource.

ImageGear Professional v18 for Mac | 2297

1.3.3.6.31 enumIGPDFInsertFlags

Specifies PDF page insert flags.

Values:

IG_PDF_INSERT_BOOKMARKS Insert bookmarks only.

IG_PDF_INSERT_ALL Insert all.

IG_PDF_INSERT_THREADS Insert threads only.

ImageGear Professional v18 for Mac | 2298

1.3.3.6.32 enumIGPDFOCMDVisPolicy

Represents the 4 legal values for the /P key in an OCMD dictionary. They specify the visibility of content with respect to
the on/off state of the OCGs layers listed in the OCMD dictionary.

Values:

IGPDFOCMDVisibility_AllOn Content in the member groups is visible only when all groups are ON.

IGPDFOCMDVisibility_AnyOn Content in the member groups is visible only when any of the groups is ON.

IGPDFOCMDVisibility_AnyOff Content in the member groups is visible only when any of the groups is OFF.

IGPDFOCMDVisibility_AllOff Content in the member groups is visible only when all groups are OFF.

ImageGear Professional v18 for Mac | 2299

1.3.3.6.33 enumIGPDFPageDrawFlags

Bit flags indicating how a page is rendered.

Values:

IG_PDF_PAGE_DO_LAZY_ERASE Erase the page while rendering only as needed.

IG_PDF_PAGE_USE_ANNOT_FACES Draw annotation appearances.

IG_PDF_PAGE_IS_PRINTING The page is being printed.

ImageGear Professional v18 for Mac | 2300

1.3.3.6.34 enumIGPDFPageDrawMode

Specifies PDF page drawing mode.

Values:

IG_PDF_PAGE_DRAW_ENTIRE_PAGE Render entire page content.

IG_PDF_PAGE_DRAW_VISIBLE_AREA Render visible page area.

ImageGear Professional v18 for Mac | 2301

1.3.3.6.35 enumIGPDFPageDrawSmoothFlags

Specifies bit flags indicating how a page is rendered.

Values:

IG_PDF_PAGE_DRAW_SMOOTH_TEXT 0x0001 Draw smooth text.

IG_PDF_PAGE_DRAW_SMOOTH_LINE_ART 0x0002 Draw smooth line art.

IG_PDF_PAGE_DRAW_SMOOTH_IMAGE 0x0004 Draw smooth image.

IG_PDF_ENHANCE_THIN_LINES 0x0008 Enhance thin lines.

ImageGear Professional v18 for Mac | 2302

1.3.3.6.36 enumIGPDFPageMarkFlags

Bit flags indicating which page marks are emitted for color separations.

Values:

IG_PDF_PAGE_EMIT_COLOR_BARS Emit color bars.

IG_PDF_PAGE_EMIT_REG_MARKS Emit register marks.

IG_PDF_PAGE_EMIT_CROP_MARKS Emit crop marks.

IG_PDF_PAGE_EMIT_BLEED_MARKS Emit bleed marks.

IG_PDF_PAGE_EMIT_PAGE_INFO Emit page info.

IG_PDF_PAGE_EMIT_TRIM_MARKS Emit trim marks.

IG_PDF_PAGE_EMIT_SLUR_MARKS Emit slur marks.

ImageGear Professional v18 for Mac | 2303

1.3.3.6.37 enumIGPDFPageNumber

PageNumber specification.

Values:

IG_PDF_BEFORE_FIRST_PAGE -
1

Specifies position before the first page. Usually used to insert first document
page.

IG_PDF_LAST_PAGE -
2

Specifies the last page position. Usually used to insert last document page.

ImageGear Professional v18 for Mac | 2304

1.3.3.6.38 enumIGPDFPageRange

The types of PDF pages range.

Values:

IG_PDF_ALL_PAGES -3 (&HFFFFFFFD) All pages.

IG_PDF_EVEN_PAGES -5 (&HFFFFFFFB) Even pages only.

IG_PDF_ODD_PAGES -4 (&HFFFFFFFC) Odd pages only.

ImageGear Professional v18 for Mac | 2305

1.3.3.6.39 enumIGPDFPageTilingMode

Specifies PDF page tiling mode.

Values:

IG_PDF_NO_PAGE_TILING Print all pages normally.

IG_PDF_TILE_ALL_PAGES Use tiling settings for all pages.

IG_PDF_TILE_LARGE_PAGES Use tiling only for pages larger than size indicated in PDTileRec of tileInfo.

ImageGear Professional v18 for Mac | 2306

1.3.3.6.40 enumIGPDFPermReqObj

Enumerated data type used to describe the target object of a permission request.

Values:

IG_PDF_PERM_REQ_OBJ_DOC 1 Document.

IG_PDF_PERM_REQ_OBJ_PAGE 2 Page.

IG_PDF_PERM_REQ_OBJ_LINK 3 Link.

IG_PDF_PERM_REQ_OBJ_BOOKMARK 4 Bookmark.

IG_PDF_PERM_REQ_OBJ_THUMBNAIL 5 Thumbnail.

IG_PDF_PERM_REQ_OBJ_ANNOT 6 Annotation.

IG_PDF_PERM_REQ_OBJ_FORM 7 Form.

IG_PDF_PERM_REQ_OBJ_SIGNATURE 8 Signature.

IG_PDF_PERM_REQ_OBJ_LAST 9 Used for checking cache size.

ImageGear Professional v18 for Mac | 2307

1.3.3.6.41 enumIGPDFPermReqOpr

Enumerated data type used to describe the target operation of a permissions request.

Values:

IG_PDF_PERM_REQ_OPR_ALL 1 Check all operations.

IG_PDF_PERM_REQ_OPR_CREATE 2 Generic operation.

IG_PDF_PERM_REQ_OPR_DELETE 3 Delete.

IG_PDF_PERM_REQ_OPR_MODIFY 4 Modify.

IG_PDF_PERM_REQ_OPR_COPY 5 Copy.

IG_PDF_PERM_REQ_OPR_ACCESSIBLE 6 For Accessibility use

IG_PDF_PERM_REQ_OPR_SELECT 7 For doc or page, selecting (not copying) text or graphics.

IG_PDF_PERM_REQ_OPR_OPEN 8 For document open.

IG_PDF_PERM_REQ_OPR_SECURE 9 For doc to changing security settings.

IG_PDF_PERM_REQ_OPR_PRINT_HIGH 10 For doc, Regular printing.

IG_PDF_PERM_REQ_OPR_PRINT_LOW 11 For doc, low quality printing.

IG_PDF_PERM_REQ_OPR_FILL_IN 12 Form fill-in or Sign existing field.

IG_PDF_PERM_REQ_OPR_ROTATE 13 Rotate.

IG_PDF_PERM_REQ_OPR_CROP 14 Crop.

IG_PDF_PERM_REQ_OPR_SUMMARIZE 15 For summarize notes.

IG_PDF_PERM_REQ_OPR_INSERT 16 Insert.

IG_PDF_PERM_REQ_OPR_REPLACE 17 For page.

IG_PDF_PERM_REQ_OPR_REORDER 18 For page.

IG_PDF_PERM_REQ_OPR_FULL_SAVE 19 For doc.

IG_PDF_PERM_REQ_OPR_IMPORT 20 For notes & Image.

IG_PDF_PERM_REQ_OPR_EXPORT 21 For notes. ExportPS should check print.

IG_PDF_PERM_REQ_OPR_ANY 22 Used for checking to see if any operation is allowed.

IG_PDF_PERM_REQ_OPR_UNKNOWNOPR 23 Used for error checking.

IG_PDF_PERM_REQ_OPR_SUBMIT_STANDALONE 24 Submit forms outside of the browser.

IG_PDF_PERM_REQ_OPR_SPAWN_TEMPLATE 25 Allows form to spawn template page.

IG_PDF_PERM_REQ_OPR_LAST 26 This should be always the last item.

ImageGear Professional v18 for Mac | 2308

1.3.3.6.42 enumIGPDFPermReqStatus

An enumerated data type that provides the status of PDF Doc-related permissions methods.

Values:

IG_PDF_PERM_REQ_DENIED 1 Request was denied.

IG_PDF_PERM_REQ_GRANTED 0 Request was granted.

IG_PDF_PERM_REQ_UNKNOWN_OBJECT 1 The object is unknown.

IG_PDF_PERM_REQ_UNKNOWN_OPERATION 2 The operation is unknown.

IG_PDF_PERM_REQ_OPERATION_NA 3 The operation is not applicable for the specified object.

IG_PDF_PERM_REQ_PENDING 4 The handler doesn't have enough info to answer at this point. Try
again later.

ImageGear Professional v18 for Mac | 2309

1.3.3.6.43 enumIGPDFPermsFlags

Flags that describe permissions wanted and granted for a document. Not all permissions will be granted if the
document is protected or if the document is newer version than the application knows about.

Values:

IG_PDF_PERM_OPEN 0x01 The user is permitted to open and
decrypt the document.

IG_PDF_PERM_SECURE 0x02 The user is permitted to change the
document's security settings.

IG_PDF_PERM_PRINT 0x04 The user is permitted to print the
document. Page Setup access is
unaffected by this permission, since
that affects Acrobat's preferences - not
the document's. In the Document
Security dialog, this corresponds to the
Printing entry.

IG_PDF_PERM_EDIT 0x08 The user is permitted to edit the
document more than adding or
modifying text notes (see also
IG_PDF_PERM_EDIT_NOTES). In the
Document Security dialog, this
corresponds to the Changing the
Document entry.

IG_PDF_PERM_COPY 0x10 The user is permitted to copy
information from the document to the
clipboard. In the Document Security
dialog, this corresponds to the Content
Copying or Extraction entry.

IG_PDF_PERM_EDIT_NOTES 0x20 The user is permitted to add, modify,
and delete text notes (see also
IG_PDF_PERM_EDIT). In the
Document Security dialog, this
corresponds to the Authoring
Comments and Form Fields entry.

IG_PDF_PERM_SAVE_AS 0x40 The user is permitted to perform a
"Save As..." If both
IG_PDF_PERM_EDIT and
IG_PDF_PERM_EDIT_NOTES are
disallowed, "Save" will be disabled but
"Save As..." is enabled. The "Save
As..." menu item is not necessarily
disabled even if the user is not
permitted to perform a "Save As...".

Not settable by clients.

IG_PDF_PERM_EXT 0x80

IG_PDF_PRIV_PERM_FILL_AND_SIGN 0x100 Override other enumIGPDFPermsFlags
bits. It allows a user to fill-in or sign
existing form or signature fields.

IG_PDF_PRIV_PERM_ACCESSIBLE 0x200 Override IG_PDF_PERM_COPY to
enable Accessibility API. If a document
is saved in Rev2 format (Acrobat 4.0
compatible), only IG_PDF_PERM_COPY
bit is checked to determine
Accessibility API state.

IG_PDF_PRIV_PERM_DOC_ASSEMBLY 0x400 Override various IG_PDF_PERM_EDIT
bit and allow the following operations;
page insert/delete/rotate and create

ImageGear Professional v18 for Mac | 2310

bookmark and thumbnail.

IG_PDF_PRIV_PERM_HIGH_PRINT 0x800 This bit is supplement to
IG_PDF_PERM_PRINT. If it is clear
(disabled) only low quality printing
(Print As Image) is allowed. Under
UNIX platforms, where "Print As
Image" doesn't exist, printing is
disabled.

IG_PDF_PERM_OWNER 0x8000 The user is permitted to perform all
operations, regardless of the
permissions specified by the
document. Unless this permission is
set, the document's permissions will be
reset to those in the document after a
full save.

IG_PDF_PRIV_PERM_FORM_SUBMIT 0x10000 Should be set if user can submit forms
outside of the browser. This bit is
supplement to
IG_PDF_PRIV_PERM_FILL_AND_SIGN.

IG_PDF_PRIV_PERM_FORM_SPAWN_TEMPL 0x20000 Should be set if user can spawn
template pages. This bit will allow page
template spawning even if
IG_PDF_PERM_EDIT and
IG_PDF_PERM_EDIT_NOTES are clear.

IG_PDF_PERM_ALL 0xFFFFFFFF Sets all permissions, including bit-
fields that are reserved for future use.

IG_PDF_PERM_SETTABLE IG_PDF_PERM_PRINT +
IG_PDF_PERM_EDIT +
IG_PDF_PERM_COPY +
IG_PDF_PERM_EDIT_NOTES

The OR of all operations that can be
set by the user in the Standard
Security dialog (IG_PDF_PERM_PRINT
+ IG_PDF_PERM_EDIT +
IG_PDF_PERM_COPY +
IG_PDF_PERM_EDIT_NOTES)

IG_PDF_PERM_USER IG_PDF_PERM_ALL -
IG_PDF_PERM_OPEN -
IG_PDF_PERM_SECURE

All permissions.

ImageGear Professional v18 for Mac | 2311

1.3.3.6.44 enumIGPDFPrintWhat

Specifies the kind of data to be printed, e.g., only the document, document and comments, etc.

Values:

IG_PDF_PRINT_DOCUMENT Print only the document.

IG_PDF_PRINT_DOCUMENT_AND_COMMENTS Print the document and associated annotations.

IG_PDF_PRINT_FORM_FIELDS_ONLY Print only the data within form fields.

IG_PDF_PRINT_COUNT Service value used to mark end last enum value.

IG_PDF_PRINT_MIN Service value specifies minimum constant of this enum.

ImageGear Professional v18 for Mac | 2312

1.3.3.6.45 enumIGPDFPrintWhatAnnot

Specifies which extra annotations to print.

Values:

IG_PDF_PRINT_NO_EXTRAS No extra printing marks.

IG_PDF_PRINT_TRAP_ANNOTS Print trap annotations.

IG_PDF_PRINT_PRINTER_MARKS Print printer marks.

ImageGear Professional v18 for Mac | 2313

1.3.3.6.46 enumIGPDFRevision

Specifies /R revision value.

Values:

IG_PDF_REVISION_2 2 Support by Acrobat 3.0 and up.

IG_PDF_REVISION_3 3 Support by Acrobat 5.0 and up.

IG_PDF_REVISION_4 4 Support by Acrobat 6.0 and up.

ImageGear Professional v18 for Mac | 2314

1.3.3.6.47 enumIGPDFRotation

Specifies page rotation, in degrees. Used for routines that set/get the value of a page's Rotate key.

Values:

IG_PDF_ROTATE_0 Zero rotate angle.

IG_PDF_ROTATE_90 Rotate angle is 90 degrees.

IG_PDF_ROTATE_180 Rotate angle is 180 degrees.

IG_PDF_ROTATE_270 Rotate angle is 270 degrees.

ImageGear Professional v18 for Mac | 2315

1.3.3.6.48 enumIGPDFSecurityInfoFlags

Flags used to specify various information about the Acrobat viewer's security and permissions.

Values:

IG_PDF_INFO_HAS_USER_PW IG_PDF_PERM_OPEN The document has a user password.

IG_PDF_INFO_HAS_OWNER_PW IG_PDF_PERM_SECURE The document has an owner password.

IG_PDF_INFO_CAN_PRINT IG_PDF_PERM_PRINT The document can be printed.

IG_PDF_INFO_CAN_EDIT IG_PDF_PERM_EDIT The document can be modified, for example by adding
notes, links, or bookmarks.

IG_PDF_INFO_CAN_COPY IG_PDF_PERM_COPY The document text and graphics can be copied to the
clipboard.

ImageGear Professional v18 for Mac | 2316

1.3.3.6.49 enumIGPDFStdSecurityMethod

Specifies standard security algorithms.

Values:

IG_PDF_STD_SECURITY_METHOD_RC4_V2 2 RC4 algorithm for encryption.

IG_PDF_STD_SECURITY_METHOD_AES_V1 5 AES algorithm for encryption with a zero initialized iv.

IG_PDF_STD_SECURITY_METHOD_AES_V2 6 AES algorithm for encryption with a random initialized iv.

IG_PDF_STD_SECURITY_METHOD_AES_V3 7 AES algorithm for encryption with a 4 byte random iv.

ImageGear Professional v18 for Mac | 2317

1.3.3.6.50 enumIGPDFStreamType

Specifies type of the registered stream event, used in IGPDFCtl.RegisterStreamEvent.

Values:

IG_STREAM_READ 0 Used to register StreamRead event for read-only from Stream.

IG_STREAM_WRITE 1 Used to register StreamWrite event for writing to Stream.

ImageGear Professional v18 for Mac | 2318

1.3.3.6.51 enumIGPDFSysFontMatchFlags

Font matching flags for SysFont find routine.

Values:

IG_PDF_SYSFONT_MATCH_NAME_AND_CHARSET 0x0001 Match the font name and character set.

IG_PDF_SYSFONT_MATCH_FONT_TYPE 0x0002 Match the font type.

IG_PDF_SYSFONT_MATCH_WRITING_MODE 0x0004 Match the writing mode, that is, horizontal or vertical.

ImageGear Professional v18 for Mac | 2319

1.3.3.6.52 enumIGPDFSysFontPackageType

Flags for packageType of AT_PDE_FONTATTRS.

Values:

IG_PDF_SYSFONT_UNKNOWN 0 Unknown.

IG_PDF_SYSFONT_TYPE1 1 Type1.

IG_PDF_SYSFONT_TRUETYPE 2 TrueType.

IG_PDF_SYSFONT_CID 3 CID.

IG_PDF_SYSFONT_ATC 4 ATC.

IG_PDF_SYSFONT_OCF 5 OCF.

IG_PDF_SYSFONT_OPENTYPE_CFF 6 OpenType CFF.

IG_PDF_SYSFONT_OPENTYPE_CID 7 OpenType CID.

IG_PDF_SYSFONT_OPENTYPE_TT 8 OpenType TT.

ImageGear Professional v18 for Mac | 2320

1.3.3.6.53 enumIGPDFWordFinderVersion

WordFinder algorithm version.

Values:

IG_PDF_WF_LATEST_VERSION 0 The latest available version.

IG_PDF_WF_VERSION_2 2 Version used for Acrobat 3.x, 4.x.

IG_PDF_WF_VERSION_3 3 Available in Acrobat 5.0 without Accessibility enabled. Includes some improved
word piecing algorithms.

IG_PDF_WF_VERSION_4 4 For Acrobat 5.0 with Accessibility enabled. Includes advanced word ordering
algorithms in addition to improved word piecing algorithms.

ImageGear Professional v18 for Mac | 2321

1.3.3.6.54 enumIGPDFWordFlags

Context flags.

Values:

IG_PDF_ORDER 0x2 Use PDF order for text enumeration.

IG_PDF_XY_SORT 0x4 Use XY order for text enumeration.

ImageGear Professional v18 for Mac | 2322

	ImageGear Professional v18.1
	Copyright Information
	User Guide
	Introduction
	What's New in ImageGear Professional
	ImageGear Overview
	High Speed Display
	Image Loading and Saving
	Printing
	Image Processing
	Pixel Access
	ROI Processing
	Format Conversion
	Compression
	Transitions
	Native CMYK Support
	Database
	Supported Formats and Compressions
	ImageGear Samples

	About Customer Support

	Installing, Licensing, and Distributing ImageGear
	Minimum Requirements
	Installing ImageGear
	Directory Structure
	Description of Installed Files

	Uninstalling ImageGear
	ImageGear Licensing
	License Manager
	Evaluation Licensing
	Registering Evaluation Licenses
	Command Line Mode
	Evaluation Licensing Troubleshooting
	Evaluation License Has Expired
	Evaluation License Has Exceeded Installation Limit
	Evaluation on a Device without an Internet Connection

	Toolkit Licensing
	Assigned Toolkit License
	Product Editions
	Registration
	Registering When Connected to the Internet
	Registering When Disconnected from the Internet

	Developing Code

	Runtime Licensing
	Automatically Reported Runtime (Node-Locked)
	Licensing API
	License Pools
	License Configuration Files
	Server Licensing Utility (SLU)
	Command Line Mode

	Manually Reported Runtime (Non-Node-Locked)

	Application Packaging
	Licensing Glossary

	Getting Started
	ImageGear Samples
	Developing an Application
	Loading an Image
	Displaying an Image
	Changing Image Display Settings
	Fit Mode
	Align Mode
	Image Orientation
	Zooming an Image

	Image Processing
	Rotating an Image
	Flipping an Image

	Using the Sample Code For Your Application

	Using ImageGear
	General Aspects
	ImageGear Architecture Overview
	API Naming Conventions
	Error Detection and Handling
	ImageGear Components
	ImageGear Component Descriptions
	ImageGear Core Component
	ImageGear GIF/TIFF-LZW Component
	ImageGear Medical Component
	ImageGear PDF Component

	Component Manager API
	Calling ImageGear Component API Functions
	ImageGear Component Names

	Thread Safety
	Global Control Parameters
	Callback Functions
	Private Data Use in Callback Functions
	Registering a Callback Function
	Status Bar Callback

	Images and Documents
	Single-Page Images
	DIB Information
	Image Orientation

	Multi-Page Documents
	Accessing Image Pixels
	Pixel Access Modes
	Allocating Space for ImageGear Pixel Access
	Getting and Setting Individual Pixels
	Getting and Setting Linear Groups of Pixels
	Getting and Setting a Rectangular Area of Pixels
	Filling DIB Area

	Grayscale Look-Up Tables
	Clipboard Operations
	Copying/Cutting to the Clipboard
	Checking the Contents of the Clipboard
	Pasting an Image from the Clipboard

	Run Ends Image Storage Format
	Decompressing and Compressing the Entire Image
	Run Ends Format Description
	Accessing Run Ends Data
	Sample Run Ends Code

	Working with Image Utility Functions
	Creating DIBs and DDBs
	Deleting DIBs and DDBs
	Reading and Writing Palettes
	Getting Information about a HIGEAR Image

	Working with Gigabyte-Sized Images
	Quick Start
	How to Configure
	Accessing Pixels of a Gigabyte-Sized Image
	Reading and Writing Gigabyte-Sized Image Files

	Loading and Saving Images
	Loading Images
	Detecting Image File Format

	Saving Images
	Saving Images to a Disk File
	Saving to a Disk File Using a File Descriptor Handle
	Saving an Image to Memory
	Converting Images from One File Format to Another
	The Image Rectangle
	Using Format Filters API for Image Saving

	Format Filter Utility Functions
	Getting Information about a File Format Filter
	Inquiring Format Filters for Supported Features

	Working with Multi-Page Documents
	Creating and Deleting a Multi-Page Image Object
	Opening and Closing an External Image File
	Loading and Saving Pages
	Using Other Functions that Work with Pages
	Using the Multi-Page Image Callback Function

	Format Filter Control Parameters
	Non-Image Data Processing
	Non-Image Data Format
	Using Filter Callback Functions to Process Non-Image Data
	Updating Non-Image Data without Loading and Saving the Image
	Working with XMP Metadata

	Stripped Images
	Tiled Images
	Padding
	Automatic Tile Stitching
	Saving a TIFF File Using Tiles

	Internal Stream Bufferization

	Displaying Images
	Concepts
	Understanding Storage Options
	Understanding Display Options
	Geometric Layout
	Dithering, Anti-Aliasing, and Palette Handling
	Transparency and Background
	Look-Up Tables and Gamma Correction
	Grayscale Look-Up Tables

	Printing Images
	Processing Images
	Geometric Transformations
	Contrast Alteration
	Color Reduction
	Color Promotion
	Blending and Combining Images
	Image Correction
	Image Encryption
	Image Analysis
	Region of Interest Processing

	Color Management
	Using Color Profile Manager
	Color Profile Basic Concepts
	ImageGear Color Profile Groups
	Color Profile Manager API

	Annotating Images
	Advanced Image Formats
	Adobe PDF
	About the PDF Component
	About PDF Standards
	Attaching the PDF Component to Core ImageGear
	Single- and Multi-Threaded Applications
	Working with PDF Layers
	Distributing PDF and PS Fonts with Your Application

	DICOM
	Loading and Saving DICOM Images
	Processing 9...16-bit Grayscale Images
	Displaying Medical Grayscale Images
	Working with DICOM Non-Image Data
	Associating DICOM Data with an ImageGear Image
	Reading Data from Data Elements
	Writing Data to Data Elements
	Working With DICOM Data Structures
	Working with DICOM Data Dictionary

	Working with Presentation State Objects

	Library Utility Functions
	Checking the ImageGear Version

	Creating Your Imaging Application
	Compiling and Linking
	Creating the Project
	Project Settings
	Adding Project Files

	Preparing Your Application for the End User

	File Format Reference
	Format Suitability at a Glance
	ImageGear Support for Graphics File Formats
	Support for Adobe PDF/PS Formats
	Support for DICOM File Format
	Support for Metafile Formats
	Support for Multi-Page File Formats

	ImageGear Supported Bit Depths
	ImageGear Alpha Channel Support
	ImageGear Transparency Support
	ImageGear Supported Compressions Reference
	ASCII
	CCITT Group 3
	CCITT Group 3 2D
	CCITT Group 4
	Deflate
	Huffman
	IBM MMR
	JPEG
	Lossless JPEG
	LZW (Lempel-Ziv-Welch)
	Packbits
	Progressive JPEG
	RAW
	RLE

	ImageGear Supported File Formats Reference
	Adobe DNG
	Adobe PDF
	Adobe PSB
	Adobe PSD
	AFX
	AVI
	BMP
	BTR
	CAL
	CLP
	CUR
	CUT
	DCX
	DICOM
	EPS
	EXIF-JPEG
	EXIF-TIFF
	GEM
	GIF
	Group 3
	Group 3 2D
	Group 4
	IBM AFP
	IBM IOCA
	IBM MO:DCA
	ICO
	IFF
	IMG
	IMR
	IMT
	JPEG
	KFX
	LV
	MAC
	MAC PICT
	MSP
	NCR
	PBM
	PCD
	PCX
	PGM
	PNG
	PNM
	PPM
	QuickTime
	RAS
	RAW
	Scitex CT
	SGI
	TGA
	TIFF
	TXT (ASCII Text)
	WBMP
	WMF
	WPG
	XBM
	XPM
	XWD

	ImageGear Supported Non-Image Data Storage
	Metadata Structure "ValueType" and "Value"
	Non-Image Data Structure
	EXIF-JPEG Non-image Data Structure
	EXIF-TIFF Non-Image Data Structure
	GIF Non-image Data Structure
	IPTC Non-Image Data Structure
	JPEG Non-Image Data Structure
	PNG Non-Image Data Structure
	TIFF Non-Image Data Structure
	XMP Non-Image Data Structure

	Appendices/General Reference
	Software License Agreement
	Pixel Formats Supported by ImageGear Professional
	Understanding Bitmap Images
	Pixels
	Channels
	Color Spaces
	24-bit RGB Images
	1-bit Images
	4-bit and 8-bit Images
	Grayscale Images
	Color Values Used During Display
	Device-Independent/Device-Dependent Bitmaps
	Device-Independent Bitmaps (DIB)
	Device-Dependent Bitmaps (DDBs)
	Vector Images

	ImageGear Architecture Diagram

	Function Error Return Codes
	ImageGear Global Control Parameters
	Glossary
	ImageGear Licensing and Deployment Kit Terminology

	Bibliography

	API Reference Guide
	Core Component API Reference
	Core Component Data Types Reference
	AT_BOOL
	AT_CHAR
	AT_DIMENSION
	AT_ERRCOUNT
	AT_LMODE
	AT_MODE
	AT_PIXEL
	AT_PIXPOS
	AT_WCHAR
	HIGEAR

	Core Component Functions Reference
	ASCII Functions
	IG_ascii_import
	IG_ascii_page_width_get

	Callback Register Functions
	IG_batch_CB_register
	IG_file_IO_register
	IG_mem_CB_register
	IG_status_bar_CB_register

	Clipboard Functions
	IG_clipboard_copy
	IG_clipboard_cut
	IG_clipboard_dimensions
	IG_clipboard_paste
	IG_clipboard_paste_available
	IG_clipboard_paste_available_ex
	IG_clipboard_paste_merge
	IG_clipboard_paste_merge_ex
	IG_clipboard_paste_op_get
	IG_clipboard_paste_op_set

	Color Space Options Functions
	IG_color_space_level_get
	IG_color_space_level_set

	Component Manager Functions
	IG_comm_comp_attach
	IG_comm_comp_check
	IG_comm_comp_list
	IG_comm_entry_request
	IG_comm_function_call

	Color Profile Management Functions
	IG_cpm_image_embedded_profile_check
	IG_cpm_image_profile_get
	IG_cpm_image_profile_set
	IG_cpm_profile_get
	IG_cpm_profile_set
	IG_cpm_profiles_reset

	DIB Functions
	IG_DIB_area_get
	IG_DIB_area_set
	IG_DIB_area_size_get
	IG_DIB_bit_depth_get
	IG_DIB_channel_count_get
	IG_DIB_channel_depth_get
	IG_DIB_channel_depths_get
	IG_DIB_colorspace_get
	IG_DIB_column_get
	IG_DIB_column_set
	IG_DIB_flood_fill
	IG_DIB_flush
	IG_DIB_height_get
	IG_DIB_info_copy
	IG_DIB_info_create
	IG_DIB_info_delete
	IG_DIB_info_raster_size_get
	IG_DIB_legacy_bit_depth_get
	IG_DIB_line_get
	IG_DIB_line_set
	IG_DIB_palette_alloc
	IG_DIB_palette_length_get
	IG_DIB_palette_pointer_get
	IG_DIB_palette_size_get
	IG_DIB_pixel_array_size_get
	IG_DIB_pixel_get
	IG_DIB_pixel_set
	IG_DIB_pix_get
	IG_DIB_pix_set
	IG_DIB_raster_get
	IG_DIB_raster_set
	IG_DIB_raster_size_get
	IG_DIB_resolution_get
	IG_DIB_resolution_set
	IG_DIB_resolution_units_get
	IG_DIB_resolution_units_set
	IG_DIB_row_get
	IG_DIB_row_set
	IG_DIB_width_get

	Display Functions
	IG_display_animation_delay_get
	IG_display_animation_delay_set
	IG_display_option_get
	IG_display_option_set
	IG_display_transparent_get
	IG_display_transparent_set
	IG_dspl_antialias_get
	IG_dspl_antialias_get_ex
	IG_dspl_antialias_set
	IG_dspl_antialias_set_ex
	IG_dspl_background_get
	IG_dspl_background_set
	IG_dspl_DDB_create
	IG_dspl_DDB_draw
	IG_dspl_DDB_import
	IG_dspl_device_to_image
	IG_dspl_device_to_image_d
	IG_dspl_dithering_get
	IG_dspl_dithering_set
	IG_dspl_document_print
	IG_dspl_document_print_custom
	IG_dspl_foreground_get
	IG_dspl_foreground_set
	IG_dspl_free_grp_id_get
	IG_dspl_gamma_correction_LUT_build
	IG_dspl_gamma_correction_set
	IG_dspl_grayscale_LUT_copy_get
	IG_dspl_grayscale_LUT_exists
	IG_dspl_grayscale_LUT_update_from
	IG_dspl_grp_reset
	IG_dspl_image_calc
	IG_dspl_image_draw
	IG_dspl_image_print
	IG_dspl_image_to_device
	IG_dspl_image_to_device_d
	IG_dspl_image_wipe
	IG_dspl_layout_get
	IG_dspl_layout_set
	IG_dspl_LUT_get
	IG_dspl_LUT_set
	IG_dspl_mapmode_get
	IG_dspl_mapmode_set
	IG_dspl_orientation_get
	IG_dspl_orientation_set
	IG_dspl_page_print
	IG_dspl_palette_create
	IG_dspl_palette_handle
	IG_dspl_palette_get
	IG_dspl_palette_set
	IG_dspl_PPM_correct_get
	IG_dspl_PPM_correct_set
	IG_dspl_resize_handle
	IG_dspl_ROP_get
	IG_dspl_ROP_set
	IG_dspl_scroll_get
	IG_dspl_scroll_handle
	IG_dspl_scroll_set
	IG_dspl_scroll_to
	IG_dspl_scroll_to_ex
	IG_dspl_transparency_get
	IG_dspl_transparency_set
	IG_dspl_zoom_get
	IG_dspl_zoom_set
	IG_dspl_zoom_to_rect

	Error Functions
	IG_err_callback_get
	IG_err_callback_set
	IG_err_count_get
	IG_err_error_check
	IG_err_error_get
	IG_err_error_set
	IG_err_record_get
	IG_err_stack_clear
	IG_errmngr_callback_get
	IG_errmngr_callback_set
	IG_error_check
	IG_error_clear
	IG_error_get
	IG_error_set

	Filter Functions
	IG_fltr_compressionlist_get
	IG_fltr_compressionlist_get_ex
	IG_fltr_ctrl_get
	IG_fltr_ctrl_list
	IG_fltr_ctrl_set
	IG_fltr_detect_FD
	IG_fltr_detect_file
	IG_fltr_detect_get
	IG_fltr_detect_mem
	IG_fltr_detect_set
	IG_fltr_formatlist_get
	IG_fltr_formatlist_sort
	IG_fltr_ICC_callback_get
	IG_fltr_ICC_callback_set
	IG_fltr_info_get
	IG_fltr_load_FD_format
	IG_fltr_load_file
	IG_fltr_load_file_format
	IG_fltr_metad_callback_get
	IG_fltr_metad_callback_set
	IG_fltr_metad_update_file
	IG_fltr_pagecount_FD_format
	IG_fltr_pagecount_file_format
	IG_fltr_pagedelete_file
	IG_fltr_pageinfo_get
	IG_fltr_pageinfo_get_ex
	IG_fltr_pageswap_file
	IG_fltr_raster_plane_callback_get
	IG_fltr_raster_plane_callback_set
	IG_fltr_save_FD_size_calc
	IG_fltr_save_file
	IG_fltr_save_file_size_calc
	IG_fltr_save_mem
	IG_fltr_save_mem_size_calc
	IG_fltr_savelist_get
	IG_fltr_savelist_get_ex

	FX Functions
	IG_FX_blur
	IG_FX_chroma_key
	IG_FX_diffuse
	IG_FX_emboss
	IG_FX_motion
	IG_FX_noise
	IG_FX_pixelate
	IG_FX_posterize
	IG_FX_spotlight
	IG_FX_stitch
	IG_FX_texture
	IG_FX_twist
	IG_FX_watermark

	General Image Functions
	IG_image_batch_convert
	IG_image_bits_per_channel_get
	IG_image_compression_type_get
	IG_image_control_get
	IG_image_control_set
	IG_image_convert
	IG_image_create
	IG_image_create_alpha
	IG_image_create_DIB
	IG_image_create_DIB_ex
	IG_image_create_empty
	IG_image_delete
	IG_image_dimensions_get
	IG_image_duplicate
	IG_image_grayscale_LUT_copy_get
	IG_image_grayscale_LUT_exists
	IG_image_grayscale_LUT_update_from
	IG_image_is_gray
	IG_image_is_PDF
	IG_image_is_signed_get
	IG_image_is_signed_set
	IG_image_is_valid
	IG_image_orientation_get
	IG_image_orientation_set
	IG_image_resolution_get
	IG_image_resolution_set
	IG_image_savelist_get

	Global Control Parameter Functions
	IG_gctrl_item_by_index_get
	IG_gctrl_item_count_get
	IG_gctrl_item_get
	IG_gctrl_item_id_get
	IG_gctrl_item_set

	Image Blending Functions
	IG_image_blend_with_alpha

	Image Channel Functions
	IG_image_channel_add
	IG_image_channel_copy_create
	IG_image_channel_count_get
	IG_image_channel_depth_get
	IG_image_channel_depths_get
	IG_image_channel_depths_change
	IG_image_channel_remove
	IG_image_channel_update
	IG_image_channels_combine
	IG_image_channels_separate

	Image DIB Functions
	IG_image_DIB_export
	IG_image_DIB_export_size_calc
	IG_image_DIB_import
	IG_image_DIB_info_get
	IG_image_DIB_palette_pntr_get
	IG_image_DIB_raster_pntr_get

	Image Colorspace Functions
	IG_image_colorspace_convert
	IG_image_colorspace_get

	Image Processing Functions
	IG_IP_add_tilt
	IG_IP_alpha_create
	IG_IP_area_info_get
	IG_IP_arithmetic
	IG_IP_arithmetic_rect
	IG_IP_blend_percent
	IG_IP_blend_with_LUT
	IG_IP_color_combine_ex
	IG_IP_color_convert
	IG_IP_color_count_get
	IG_IP_color_promote
	IG_IP_color_reduce_bayer
	IG_IP_color_reduce_diffuse
	IG_IP_color_reduce_halftone
	IG_IP_color_reduce_median_cut
	IG_IP_color_reduce_octree
	IG_IP_color_reduce_popularity
	IG_IP_color_reduce_to_bitonal
	IG_IP_color_separate
	IG_IP_contrast_adjust
	IG_IP_contrast_adjust_ex
	IG_IP_contrast_equalize
	IG_IP_contrast_gamma
	IG_IP_contrast_invert
	IG_IP_contrast_stretch
	IG_IP_convert_to_gray
	IG_IP_convolve_matrix
	IG_IP_crop
	IG_IP_decrypt
	IG_IP_deskew_angle_find
	IG_IP_deskew_auto
	IG_IP_despeckle
	IG_IP_draw_frame
	IG_IP_drop_shadow
	IG_IP_edge_detection
	IG_IP_edge_map
	IG_IP_encrypt
	IG_IP_enhance_local
	IG_IP_find_tilt
	IG_IP_flip
	IG_IP_gaussian_blur
	IG_IP_geom_despeckle
	IG_IP_histo_clear
	IG_IP_histo_tabulate
	IG_IP_maximum
	IG_IP_median
	IG_IP_merge
	IG_IP_minimum
	IG_IP_NR_ROI_control_get
	IG_IP_NR_ROI_control_set
	IG_IP_NR_ROI_mask_associate
	IG_IP_NR_ROI_mask_delete
	IG_IP_NR_ROI_mask_unassociate
	IG_IP_NR_ROI_to_HIGEAR_mask
	IG_IP_pseudocolor_limits
	IG_IP_pseudocolor_small_grads
	IG_IP_remove_tilt
	IG_IP_resize
	IG_IP_resize_bkgrnd
	IG_IP_resize_bkgrnd_ex
	IG_IP_resize_canvas
	IG_IP_resize_ex
	IG_IP_RGB_to_hue
	IG_IP_rotate_any_angle
	IG_IP_rotate_any_angle_bkgrnd
	IG_IP_rotate_any_angle_ex
	IG_IP_rotate_compute_size
	IG_IP_rotate_multiple_90
	IG_IP_rotate_multiple_90_opt
	IG_IP_sharpen
	IG_IP_smooth
	IG_IP_swap_red_blue
	IG_IP_thumbnail_create
	IG_IP_thumbnail_create_ex
	IG_IP_transform_with_LUT
	IG_IP_transform_with_LUT_ex
	IG_IP_unsharp_mask

	Info Functions
	IG_info_get
	IG_info_get_ex
	IG_info_get_FD
	IG_info_get_FD_ex
	IG_info_get_mem
	IG_info_get_mem_ex
	IG_page_count_get
	IG_page_count_get_FD
	IG_page_count_get_mem
	IG_tile_count_get
	IG_tile_count_get_FD
	IG_tile_count_get_mem

	Licensing Functions
	IG_lic_OEM_license_key_set
	IG_lic_solution_key_set
	IG_lic_solution_name_set

	Load Functions
	IG_load_alpha_mode_get
	IG_load_alpha_mode_set
	IG_load_auto_detect_get
	IG_load_auto_detect_set
	IG_load_CCITT_FD
	IG_load_CCITT_mem
	IG_load_color_reduction_get
	IG_load_color_reduction_set
	IG_load_extra_mode_get
	IG_load_extra_mode_set
	IG_load_FD
	IG_load_FD_CB
	IG_load_FD_CB_ex
	IG_load_file
	IG_load_file_display
	IG_load_mem
	IG_load_mem_CB
	IG_load_mem_CB_ex
	IG_load_raw_FD
	IG_load_raw_file
	IG_load_raw_mem
	IG_load_rect_get
	IG_load_rect_set
	IG_load_size_get
	IG_load_size_set
	IG_load_tag_CB_register
	IG_load_thumbnail
	IG_load_thumbnail_FD
	IG_load_thumbnail_mem
	IG_load_tiles_stitch
	IG_load_tiles_stitch_FD
	IG_load_tiles_stitch_mem

	LUT Functions
	IG_LUT_copy
	IG_LUT_copy_to_byte_array
	IG_LUT_copy_to_word_array
	IG_LUT_create
	IG_LUT_destroy
	IG_LUT_input_depth_get
	IG_LUT_input_is_signed_get
	IG_LUT_is_valid
	IG_LUT_item_get
	IG_LUT_item_set
	IG_LUT_length_get
	IG_LUT_output_depth_get
	IG_LUT_output_is_signed_get
	IG_LUT_size_get
	IG_LUT_update_from_byte_array
	IG_LUT_update_from_word_array

	Mac Initialize and Close Functions
	IG_initialize
	IG_close

	Multi Page Image File Functions
	IG_mpf_info_get
	IG_mpf_page_count_get
	IG_mpf_page_delete
	IG_mpf_page_get
	IG_mpf_page_info_get
	IG_mpf_page_info_get_ex
	IG_mpf_page_load
	IG_mpf_page_save
	IG_mpf_page_swap
	IG_mpf_page_unload
	IG_mpf_tile_count_get

	Multi Page Image Functions
	IG_mpi_CB_get
	IG_mpi_CB_reset
	IG_mpi_CB_reset_all
	IG_mpi_CB_set
	IG_mpi_close
	IG_mpi_create
	IG_mpi_delete
	IG_mpi_file_open
	IG_mpi_file_save
	IG_mpi_info_get
	IG_mpi_is_valid
	IG_mpi_page_count_get
	IG_mpi_page_count_set
	IG_mpi_page_delete
	IG_mpi_page_get
	IG_mpi_page_is_valid
	IG_mpi_page_set

	Multimedia Functions
	IG_mult_audio_format_get
	IG_mult_audio_format_set
	IG_mult_audio_get
	IG_mult_audio_seek_time
	IG_mult_close
	IG_mult_current_frame_advance
	IG_mult_current_frame_duration_get
	IG_mult_current_frame_image_get
	IG_mult_current_frame_info_get
	IG_mult_current_frame_info_set
	IG_mult_current_frame_is_valid
	IG_mult_current_frame_reset
	IG_mult_current_frame_seek
	IG_mult_current_frame_seek_time
	IG_mult_duration_get
	IG_mult_frame_duration_get
	IG_mult_frame_image_get
	IG_mult_frame_info_get
	IG_mult_frame_info_set
	IG_mult_frame_num_from_time_get
	IG_mult_has_audio
	IG_mult_info_get
	IG_mult_has_video
	IG_mult_info_set
	IG_mult_open_FD
	IG_mult_open_FD_format
	IG_mult_open_file
	IG_mult_open_file_format
	IG_mult_open_mem
	IG_mult_open_mem_format

	Palette Functions
	IG_palette_entry_get
	IG_palette_entry_set
	IG_palette_get
	IG_palette_load
	IG_palette_save
	IG_palette_set

	Pixel Functions
	IG_pixel_bits_per_channel_get
	IG_pixel_channel_count_get
	IG_pixel_create
	IG_pixel_data_pointer_get
	IG_pixel_delete
	IG_pixel_value_get
	IG_pixel_value_set

	Resolution Unit Conversion Functions
	IG_convert_DPI_to_PPM
	IG_convert_PPM_to_DPI

	Run-End Functions
	IG_runs_row_get
	IG_runs_row_set

	Save Functions
	IG_save_FD
	IG_save_FD_CB
	IG_save_FD_CB_direct
	IG_save_FD_CB_ex
	IG_save_file
	IG_save_file_size_calc
	IG_save_JPEG_quality_get
	IG_save_JPEG_quality_set
	IG_save_mem
	IG_save_mem_CB
	IG_save_mem_CB_direct
	IG_save_mem_CB_ex
	IG_save_tag_CB_register
	IG_save_thumbnail_set

	Thread Functions
	IG_thread_data_ID_associate
	IG_thread_data_ID_get
	IG_thread_local_data_cleanup
	IG_thread_image_lock
	IG_thread_image_unlock

	Utility Functions
	IG_util_colorspace_alpha_count_get
	IG_util_colorspace_color_count_get
	IG_util_colorspace_contains_alpha
	IG_util_colorspace_contains_extra
	IG_util_colorspace_extra_count_get
	IG_util_colorspace_is_premultiplied
	IG_util_colorspace_is_valid
	IG_util_colorspace_value_to_ids
	IG_util_MMX_usage_get
	IG_util_MMX_usage_set
	IG_util_resolution_units_convert
	IG_util_version_get

	Vector Functions
	IG_vector_data_get
	IG_vector_data_to_dib
	IG_vector_page_create

	Version Functions
	IG_version_compile_date
	IG_version_numbers

	Warning Functions
	IG_warning_check
	IG_warning_clear
	IG_warning_get
	IG_warning_set

	Core Component Callback Functions Reference
	LPAFT_IG_ICC_GET_CB
	LPAFT_IG_METAD_ITEM_ADD_CB
	LPAFT_IG_METAD_ITEM_GET_CB
	LPAFT_IG_METAD_ITEM_SET_CB
	LPFNIG_BATCH_BEFORE_OPEN
	LPFNIG_BATCH_BEFORE_SAVE
	LPFNIG_DIB_CREATE
	LPFNIG_DIB_CREATE_EX
	LPFNIG_DIB_GET
	LPFNIG_DIB_GET_EX
	LPFNIG_DIRECT_RASTER_GET
	LPFNIG_ERRMNGR_ADD
	LPFNIG_ERRMNGR_CLEAR
	LPFNIG_ERRSTACK_ADD
	LPFNIG_ERRSTACK_CLEAR
	LPFNIG_IMAGESPOOLED
	LPFNIG_LOAD_DISP
	LPFNIG_MEM_ALLOC
	LPFNIG_MEM_FREE
	LPFNIG_MEM_REALLOC
	LPFNIG_MPCB_UPDATE
	LPFNIG_RASTER_PLANE_SET
	LPFNIG_RASTER_GET
	LPFNIG_RASTER_SET
	LPFNIG_READ
	LPFNIG_SEEK
	LPFNIG_SIZE_CHANGE
	LPFNIG_STATUS_BAR
	LPFNIG_TAG_GET
	LPFNIG_TAG_SET
	LPFNIG_TAG_USER_GET
	LPFNIG_WRITE

	Core Component Structures Reference
	AT_CHANNEL_REF
	AT_COLOR_TEMPERATURE
	AT_DIB
	AT_DIB_EXPORT_OPTIONS
	AT_DPOINT
	AT_DRECTANGLE
	AT_LOGFONT
	AT_POINT
	AT_RECT
	AT_RECTANGLE
	AT_RESOLUTION
	AT_RGB
	AT_RGBQUAD
	AT_ROTATE_MULTIPLE_90_OPTIONS
	AT_SCROLL_INFO
	AT_SRCINFO
	BITMAPINFOHEADER
	tagKERN

	Core Component Enumerations Reference
	enumAsciiPageSize
	enumBatchCBType
	enumBlendOn
	enumColorProfileAttr
	enumColorProfileGroups
	enumColorProfileStyle
	enumColorSpace
	enumControlNRAOpt
	enumControlOpt
	enumConv24
	enumDIBArea
	enumDIBAreaInfo
	enumDisplayOptions
	enumEncryptModes
	enumEPSFittingMethod
	enumExtention
	enumHTTPVerb
	enumIG_MP_ASSOCIATE
	enumIG_MP_OPENMODE
	enumIG_MPFSaveMode
	enumIG_MPInfoMode
	enumIG_MPISaveMode
	enumIGAlphaChannelType
	enumIGAlphaMode
	enumIGBatchOptions
	enumIGBiCompression
	enumIGBitonalReductModes
	enumIGBlendModes
	enumIGBlurModes
	enumIGBMPTagIDs
	enumIGBTRTagIDs
	enumIGCALTagIDs
	enumIGCIFFCanonCameraSettingsTagIDs
	enumIGCIFFFocalLengthTagIDs
	enumIGCIFFImageInfoTagIDs
	enumIGCIFFPictureInfoTagIDs
	enumIGCIFFShotInfoTagIDs
	enumIGCIFFTagIDs
	enumIGCLPTagIDs
	enumIGColorChannels
	enumIGColorProfileGroups
	enumIGColorSpaceIDs
	enumIGColorSpaces
	enumIGCompressions
	enumIGContrastModes
	enumIGConversionCommands
	enumIGConversionOptions
	enumIGConvolutionResults
	enumIGCursorType
	enumIGCUTTagIDs
	enumIGDCRAWTagIDs
	enumIGDCXTagIDs
	enumIGDepthChangeMode
	enumIGDIBExportFormats
	enumIGDirections
	enumIGDsplAliasModes
	enumIGDsplAlignModes
	enumIGDsplAspectModes
	enumIGDsplBackgroundModes
	enumIGDsplContrastFlags
	enumIGDsplDitheringModes
	enumIGDsplFitModes
	enumIGDsplPaletteModes
	enumIGDsplTranspModes
	enumIGDsplZoomModes
	enumIGEdgeDetectionMethods
	enumIGEdgeMapMethods
	enumIGEPSTagIDs
	enumIGEXIFFPXRTagIDs
	enumIGEXIFGPSTagIDs
	enumIGEXIFInterOperTagIDs
	enumIGEXIFMakerNoteTagIDs
	enumIGEXIFMakerNoteType
	enumIGEXIFTagIDs
	enumIGExtraDataType
	enumIGExtraMode
	enumIGFillOrder
	enumIGFlipModes
	enumIGFltrFormatFlags
	enumIGFormats
	enumIGFrameModes
	enumIGGEMTagIDs
	enumIGGIFTagIDs
	enumIGGrp
	enumIGICATagIDs
	enumIGICDocType
	enumIGICOTagIDs
	enumIGIFFTagIDs
	enumIGIMTTagIDs
	enumIGInterpolations
	enumIGIPTCAppObjAttrTags
	enumIGIPTCAppObjTypeTags
	enumIGIPTCRecord1DatasetTags
	enumIGIPTCRecord2DatasetTags
	enumIGIPTCRecord3DatasetTags
	enumIGIPTCRecord7DatasetTags
	enumIGIPTCRecord8DatasetTags
	enumIGIPTCRecord9DatasetTags
	enumIGIPTCRecordTags
	enumIGIPTCTags
	enumIGJPGTagIDs
	enumIGJPGType
	enumIGKFXTagIDs
	enumIGLicenseType
	enumIGLVTagIDs
	enumIGMergeModes
	enumIGMETADItemType
	enumIGMSPTagIDs
	enumIGMultInfo
	enumIGNCRTagIDs
	enumIGNoiseMethods
	enumIGOrientationModes
	enumIGPaletteFormats
	enumIGPBMTagIDs
	enumIGPCDTagIDs
	enumIGPCXTagIDs
	enumIGPixAccessMode
	enumIGPNGTagIDs
	enumIGPromotionModes
	enumIGPSDTagIDs
	enumIGRASTagIDs
	enumIGResampleInModes
	enumIGResampleOutModes
	enumIGResolutionUnits
	enumIGRotationModes
	enumIGRotationValues
	enumIGSaveFormats
	enumIGSCICTTagIDs
	enumIGSGITagIDs
	enumIGSysDataType
	enumIGTagConstants
	enumIGTags
	enumIGTGATagIDs
	enumIGTIFFTagIDs
	enumIGTwistModes
	enumIGTypeIDs
	enumIGWBMPTagIDs
	enumIGWipeStyles
	enumIGWMFTagIDs
	enumIGWPGTagIDs
	enumIGXBMTagIDs
	enumIGXMPTagIDs
	enumIGXPMTagIDs
	enumIGXWDTagIDs
	enumJPG_DCM
	enumLayoutConstants
	enumLoadColor
	enumLoadDoc
	enumMaxKern
	enumMPAppend
	enumMPCBMODE_MPI
	enumOrientation
	enumPDFSaveFlags
	enumPDFTextEnc
	enumPixdumpComponent
	enumPixdumpComponentEx
	enumPixdumpData
	enumPixdumpMode
	enumPixel
	enumPixelate
	enumPNGCompLevel
	enumPNGStrip
	enumPostScriptLevel
	enumPostScriptType
	enumPrintConstants
	enumRampDirection
	enumRampType
	enumRasterPostProc
	enumRegionIS
	enumROI_IS
	enumScrollTypes
	enumShear
	enumTagTypes
	enumThreadLockMode
	enumTIFFBitonalPaletteMode
	enumTIFFPhoto
	enumTIFFWriteConfig
	enumXWDType

	MD Component API Reference
	MD Component Functions Reference
	Data Set Functions
	MED_DCM_DS_bits_get
	MED_DCM_DS_copy_get
	MED_DCM_DS_create
	MED_DCM_DS_curr_data_get
	MED_DCM_DS_curr_data_get_string
	MED_DCM_DS_curr_data_set
	MED_DCM_DS_curr_index_get
	MED_DCM_DS_curr_info_get
	MED_DCM_DS_curr_remove
	MED_DCM_DS_DE_insert
	MED_DCM_DS_destroy
	MED_DCM_DS_exists
	MED_DCM_DS_info_get
	MED_DCM_DS_is_empty
	MED_DCM_DS_LUT_copy_get
	MED_DCM_DS_LUT_exists
	MED_DCM_DS_LUT_update_from
	MED_DCM_DS_move_ascend
	MED_DCM_DS_move_descend
	MED_DCM_DS_move_find
	MED_DCM_DS_move_find_first
	MED_DCM_DS_move_first
	MED_DCM_DS_move_index
	MED_DCM_DS_move_last
	MED_DCM_DS_move_next
	MED_DCM_DS_move_prev
	MED_DCM_DS_orig_TS_get
	MED_DCM_DS_part10_get
	MED_DCM_DS_part10_set
	MED_DCM_DS_PixPadVal_get
	MED_DCM_DS_PixPadVal_set
	MED_DCM_DS_preamble_get
	MED_DCM_DS_preamble_set
	MED_DCM_DS_Rescale_get
	MED_DCM_DS_TS_get
	MED_DCM_DS_TS_set
	MED_DCM_DS_update_file
	MED_DCM_DS_update_from
	MED_DCM_DS_Window_Level_get
	MED_DCM_DS_Window_Level_get_64

	Display Functions
	MED_display_color_create
	MED_display_color_limits
	MED_display_color_set
	MED_display_contrast
	MED_display_contrast_auto
	MED_display_grayscale_LUT_build
	MED_display_grayscale_LUT_build_auto
	MED_VOI_window_init_from_min_max
	MED_VOI_window_max_get
	MED_VOI_window_min_get

	File Functions
	MED_DCM_load_DICOM
	MED_DCM_load_DICOM_FD
	MED_DCM_save_DICOM
	MED_DCM_save_DICOM_FD

	Image Processing Functions
	MED_IP_contrast
	MED_IP_contrast_auto
	MED_IP_high_bit_transform
	MED_IP_histo_clear
	MED_IP_histo_tabulate
	MED_IP_min_max
	MED_IP_min_max_64
	MED_IP_normalize
	MED_IP_promote_to_16_gray
	MED_IP_reduce_depth_with_downshift
	MED_IP_reduce_depth_with_LUT
	MED_IP_swap_bytes

	Modality Transform Functions
	MED_modality_transform_apply
	MED_modality_transform_apply_64

	Presentation State Functions
	MED_PS_apply
	MED_PS_display_contrast
	MED_PS_display_contrast_auto
	MED_PS_display_contrast_auto_64
	MED_PS_extract
	MED_PS_GSDF_LUT_build
	MED_PS_GSDF_LUT_init
	MED_PS_pres_LUT_get
	MED_PS_pres_LUT_info_get
	MED_PS_pres_LUT_set
	MED_PS_pres_state_GSDF_apply

	Utility Functions
	MED_DCM_util_data_to_string
	MED_DCM_util_tag_info_add
	MED_DCM_util_tag_info_free
	MED_DCM_util_tag_info_get
	MED_DCM_util_VR_info_mode
	MED_DCM_util_VR_info_string

	MD Component Macros Reference
	MED_DCM_DS_TAG_ELEMENT
	MED_DCM_DS_TAG_GROUP
	MED_DCM_DS_TAG_MAKE

	MD Component Structures Reference
	AT_MED_DCM_DISPLAY_SETTINGS
	AT_MED_MODALITY_RESCALE
	AT_MED_PIXEL_PADDING_SETTINGS
	AT_MED_VOI_WINDOW

	MD Component Enumerations Reference
	enumIGMedColorSchemes
	enumIGMedLevelOption
	enumIGMedPhotoInt
	enumIGMedPixelRep
	enumIGMedPlanarConfig
	enumIGMedPSFeatureFlags
	enumIGMedSOP
	enumIGMedTag
	enumIGMedTS
	enumIGMedVR
	enumIGMedVRRestriction

	PDF Component API Reference
	PDF Component Functions Reference
	IG_PDE_get_default_gstate
	IG_PDF_get_host_encoding
	IG_PDF_initialize
	IG_PDF_register_authproc
	IG_PDF_terminate
	IG_PDF_text_extract
	IG_PDF_translate_to_host
	IG_PDF_translate_to_pdf

	PDF Component Callback Functions Reference
	LPFNIG_PDF_AUTHPROC
	LPFNIG_PDF_STREAM_PROC
	LPFNIG_PDF_STREAM_DESTROYPROC
	LPFNIG_PDF_SYSFONT_ENUMPROC
	LPFNIG_PDE_CLIP_ENUMPROC

	PDF Component Macros Reference
	AM_PDF_LONG_TO_FIXED
	AM_PDF_FIXED_ROUND_TO_LONG
	AM_PDF_FIXED_TRUNC_TO_LONG
	AM_PDF_SHORT_TO_FIXED
	AM_PDF_FIXED_ROUND_TO_SHORT
	AM_PDF_FIXED_TRUNC_TO_SHORT
	AM_PDF_DOUBLE_TO_FIXED
	AM_PDF_FIXED_TO_DOUBLE

	PDF Component Objects Reference
	Basic Objects
	HIG_PDF_BASOBJ
	IG_PDF_basobj_get_type
	IG_PDF_basobj_release
	IG_PDF_basobj_remove

	HIG_PDF_BASARR
	IG_PDF_basarr_create
	IG_PDF_basarr_get_length
	IG_PDF_basarr_get
	IG_PDF_basarr_put
	IG_PDF_basarr_put_int
	IG_PDF_basarr_put_fixed
	IG_PDF_basarr_put_bool
	IG_PDF_basarr_put_name
	IG_PDF_basarr_remove
	IG_PDF_basarr_remove_nth

	HIG_PDF_BASBOOL
	IG_PDF_basbool_create
	IG_PDF_basbool_get_value

	HIG_PDF_BASDICT
	IG_PDF_basdict_create
	IG_PDF_basdict_known
	IG_PDF_basdict_get
	IG_PDF_basdict_put
	IG_PDF_basdict_put_int
	IG_PDF_basdict_put_fixed
	IG_PDF_basdict_put_bool
	IG_PDF_basdict_put_name
	IG_PDF_basdict_remove

	HIG_PDF_BASFIXED
	IG_PDF_basfixed_create
	IG_PDF_basfixed_get_value

	HIG_PDF_BASINT
	IG_PDF_basint_create
	IG_PDF_basint_get_value

	HIG_PDF_BASNAME
	IG_PDF_basname_create
	IG_PDF_basname_get_value

	HIG_PDF_BASNULL
	IG_PDF_basnull_create

	HIG_PDF_BASSTR
	IG_PDF_basstr_create
	IG_PDF_basstr_get_value

	HIG_PDF_BASSTREAM
	IG_PDF_basstream_create
	IG_PDF_basstream_get_dict
	IG_PDF_basstream_get_value

	General Objects
	HIG_PDF_ACTION
	IG_PDF_action_create
	IG_PDF_action_create_destination
	IG_PDF_action_create_filename
	IG_PDF_action_delete
	IG_PDF_action_get_destination
	IG_PDF_action_get_dictionary
	IG_PDF_action_get_filename
	IG_PDF_action_get_type

	HIG_PDF_ATOM
	IG_PDF_atom_from_string
	IG_PDF_atom_get_string

	HIG_PDF_BOOKMARK
	IG_PDF_bookmark_add_child
	IG_PDF_bookmark_add_new_child
	IG_PDF_bookmark_add_next
	IG_PDF_bookmark_add_new_sibling
	IG_PDF_bookmark_add_prev
	IG_PDF_bookmark_add_subtree
	IG_PDF_bookmark_delete
	IG_PDF_bookmark_find_title
	IG_PDF_bookmark_get_action
	IG_PDF_bookmark_get_color
	IG_PDF_bookmark_get_count
	IG_PDF_bookmark_get_first_child
	IG_PDF_bookmark_get_flags
	IG_PDF_bookmark_get_indent
	IG_PDF_bookmark_get_last_child
	IG_PDF_bookmark_get_next
	IG_PDF_bookmark_get_parent
	IG_PDF_bookmark_get_prev
	IG_PDF_bookmark_get_title
	IG_PDF_bookmark_has_children
	IG_PDF_bookmark_is_open
	IG_PDF_bookmark_remove
	IG_PDF_bookmark_remove_action
	IG_PDF_bookmark_set_action
	IG_PDF_bookmark_set_color
	IG_PDF_bookmark_set_flags
	IG_PDF_bookmark_set_open
	IG_PDF_bookmark_set_title
	IG_PDF_bookmark_unlink

	HIG_PDF_DESTINATION
	IG_PDF_destination_create
	IG_PDF_destination_delete
	IG_PDF_destination_get_explicit_attrs
	IG_PDF_destination_get_named_attrs
	IG_PDF_destination_get_type
	IG_PDF_destination_remove
	IG_PDF_destination_resolve

	HIG_PDF_DICTIONARY
	IG_PDF_dictionary_create
	IG_PDF_dictionary_get_layer
	IG_PDF_dictionary_get_layer_count
	IG_PDF_dictionary_get_unique_id
	IG_PDF_dictionary_get_vis_policy
	IG_PDF_dictionary_release

	HIG_PDF_DOC
	IG_PDF_doc_create
	IG_PDF_doc_create_new_page
	IG_PDF_doc_create_wordfinder
	IG_PDF_doc_create_wordfinder_ucs
	IG_PDF_doc_delete_pages
	IG_PDF_doc_get_bookmark
	IG_PDF_doc_get_info
	IG_PDF_doc_get_layer
	IG_PDF_doc_get_layer_count
	IG_PDF_doc_get_new_crypt_handler
	IG_PDF_doc_get_new_security_data
	IG_PDF_doc_get_new_security_info
	IG_PDF_doc_get_page
	IG_PDF_doc_get_page_count
	IG_PDF_doc_get_root
	IG_PDF_doc_get_security_data
	IG_PDF_doc_insert_pages
	IG_PDF_doc_page_release
	IG_PDF_doc_perm_request
	IG_PDF_doc_print
	IG_PDF_doc_set_info
	IG_PDF_doc_set_new_crypt_handler
	IG_PDF_doc_set_new_security_data

	HIG_PDF_FONT
	IG_PDF_font_get_bbox
	IG_PDF_font_get_charset
	IG_PDF_font_get_cid_systeminfo
	IG_PDF_font_get_cid_system_supplement
	IG_PDF_font_get_descendant
	IG_PDF_font_get_encoding_index
	IG_PDF_font_get_encoding_name
	IG_PDF_font_get_font_matrix
	IG_PDF_font_get_metrics
	IG_PDF_font_get_name
	IG_PDF_font_get_subtype
	IG_PDF_font_get_widths
	IG_PDF_font_is_embedded
	IG_PDF_font_set_metrics
	IG_PDF_font_translate_string
	IG_PDF_font_translate_to_host
	IG_PDF_font_translate_to_ucs
	IG_PDF_font_translate_widths

	HIG_PDF_LAYER
	IG_PDF_layer_create
	IG_PDF_layer_get_current_state
	IG_PDF_layer_get_initial_state
	IG_PDF_layer_get_intent
	IG_PDF_layer_get_name
	IG_PDF_layer_get_unique_id
	IG_PDF_layer_get_usage_info
	IG_PDF_layer_has_usage_info
	IG_PDF_layer_release
	IG_PDF_layer_remove
	IG_PDF_layer_set_current_state
	IG_PDF_layer_set_initial_state
	IG_PDF_layer_set_intent
	IG_PDF_layer_set_name
	IG_PDF_layer_set_usage_info

	HIG_PDF_PAGE
	IG_PDF_page_get_annotation_count
	IG_PDF_page_get_content
	IG_PDF_page_get_crop_box
	IG_PDF_page_get_rotation
	IG_PDF_page_make_color_separations
	IG_PDF_page_release_content
	IG_PDF_page_set_content

	HIG_PDF_STREAM
	IG_PDF_stream_close
	IG_PDF_stream_flush
	IG_PDF_stream_open_mem_for_read
	IG_PDF_stream_read
	IG_PDF_stream_read_CB_register
	IG_PDF_stream_write_CB_register

	HIG_PDF_STYLE
	IG_PDF_style_delete
	IG_PDF_style_get_color
	IG_PDF_style_get_font
	IG_PDF_style_get_font_size

	HIG_PDF_SYSENCODING
	IG_PDF_sysencoding_create_from_base_name
	IG_PDF_sysencoding_create_from_cmap_name
	IG_PDF_sysencoding_create_from_code_page
	IG_PDF_sysencoding_get_writing_mode
	IG_PDF_sysencoding_is_identity
	IG_PDF_sysencoding_is_multibyte
	IG_PDF_sysencoding_release

	HIG_PDF_SYSFONT
	IG_PDF_sysfont_enumerate
	IG_PDF_sysfont_find
	IG_PDF_sysfont_find_for_pdefont
	IG_PDF_sysfont_get_attrs
	IG_PDF_sysfont_get_cid_system_info
	IG_PDF_sysfont_get_create_flags
	IG_PDF_sysfont_get_info
	IG_PDF_sysfont_get_name
	IG_PDF_sysfont_get_platform_data
	IG_PDF_sysfont_get_widths
	IG_PDF_sysfont_release
	IG_PDF_sysfont_release_platform_data

	HIG_PDF_WORD
	IG_PDF_word_delete
	IG_PDF_word_get_char_offset
	IG_PDF_word_get_char_style
	IG_PDF_word_get_charquad
	IG_PDF_word_get_length
	IG_PDF_word_get_quad
	IG_PDF_word_get_quad_count
	IG_PDF_word_get_string
	IG_PDF_word_get_style_transition

	HIG_PDF_WORDFINDER
	IG_PDF_wordfinder_acquire_wordlist
	IG_PDF_wordfinder_delete
	IG_PDF_wordfinder_get_word
	IG_PDF_wordfinder_release_wordlist

	Page Editing Objects and Elements
	HIG_PDE_OBJECT
	IG_PDE_object_get_type

	HIG_PDE_CLIP
	IG_PDE_clip_create
	IG_PDE_clip_clone
	IG_PDE_clip_add_element
	IG_PDE_clip_get_element
	IG_PDE_clip_remove_elements
	IG_PDE_clip_get_element_count
	IG_PDE_clip_enumerate_elements

	HIG_PDE_COLORSPACE
	IG_PDE_colorspace_create
	IG_PDE_colorspace_get_base_name
	IG_PDE_colorspace_get_base_color_components
	IG_PDE_colorspace_get_ctable
	IG_PDE_colorspace_get_hival
	IG_PDE_colorspace_get_name
	IG_PDE_colorspace_get_color_components
	IG_PDE_colorspace_release

	HIG_PDE_CONTAINER
	IG_PDE_container_create
	IG_PDE_container_get_content
	IG_PDE_container_set_content
	IG_PDE_container_get_dictionary
	IG_PDE_container_set_dictionary
	IG_PDE_container_get_mctag
	IG_PDE_container_set_mctag

	HIG_PDE_CONTENT
	IG_PDE_content_create
	IG_PDE_content_get_element
	IG_PDE_content_add_element
	IG_PDE_content_remove_element
	IG_PDE_content_get_element_count
	IG_PDE_content_get_default_color_space
	IG_PDE_content_get_attrs

	HIG_PDE_ELEMENT
	IG_PDE_element_get_type
	IG_PDE_element_clone
	IG_PDE_element_is_at_point
	IG_PDE_element_is_at_rect
	IG_PDE_element_get_bbox
	IG_PDE_element_get_clip
	IG_PDE_element_set_clip
	IG_PDE_element_get_gstate
	IG_PDE_element_set_gstate
	IG_PDE_element_get_matrix
	IG_PDE_element_set_matrix
	IG_PDE_element_get_dictionary
	IG_PDE_element_get_unique_id
	IG_PDE_element_has_gstate
	IG_PDE_element_release

	HIG_PDE_FONT
	IG_PDE_font_create
	IG_PDE_font_create_from_sysfont
	IG_PDE_font_create_from_sysfont_and_encoding
	IG_PDE_font_create_from_sysfont_with_params
	IG_PDE_font_get_attrs
	IG_PDE_font_create_tounicode_now
	IG_PDE_font_create_widths_now
	IG_PDE_font_embed_now
	IG_PDE_font_embed_now_dont_subset
	IG_PDE_font_get_create_need_flags
	IG_PDE_font_get_codebyte_count
	IG_PDE_font_get_onebyte_encoding
	IG_PDE_font_get_sysencoding
	IG_PDE_font_get_sysfont
	IG_PDE_font_get_widths
	IG_PDE_font_get_widths_now
	IG_PDE_font_is_embedded
	IG_PDE_font_is_multibyte
	IG_PDE_font_set_sysencoding
	IG_PDE_font_set_sysfont
	IG_PDE_font_subset_now
	IG_PDE_font_sum_widths
	IG_PDE_font_translate_glyphids_to_unicode
	IG_PDE_font_release

	HIG_PDE_FORM
	IG_PDE_form_create
	IG_PDE_form_clone
	IG_PDE_form_get_content
	IG_PDE_form_set_content
	IG_PDE_form_has_xgroup
	IG_PDE_form_get_xgroup
	IG_PDE_form_set_xgroup

	HIG_PDE_GROUP
	IG_PDE_group_create
	IG_PDE_group_get_content
	IG_PDE_group_set_content

	HIG_PDE_IMAGE
	IG_PDE_image_create
	IG_PDE_image_is_data_encoded
	IG_PDE_image_get_attrs
	IG_PDE_image_get_color_mask
	IG_PDE_image_get_colorspace
	IG_PDE_image_get_data
	IG_PDE_image_get_data_length
	IG_PDE_image_get_data_stream
	IG_PDE_image_get_decode_array
	IG_PDE_image_get_dictionary
	IG_PDE_image_get_filter_array
	IG_PDE_image_get_matte_array
	IG_PDE_image_get_soft_mask
	IG_PDE_image_has_soft_mask
	IG_PDE_image_is_xobject
	IG_PDE_image_set_color_mask
	IG_PDE_image_set_colorspace
	IG_PDE_image_set_data
	IG_PDE_image_set_data_stream
	IG_PDE_image_set_decode_array
	IG_PDE_image_set_matte_array
	IG_PDE_image_set_soft_mask

	HIG_PDE_PATH
	IG_PDE_path_create
	IG_PDE_path_add_segment
	IG_PDE_path_get_data
	IG_PDE_path_set_data
	IG_PDE_path_get_paint_op
	IG_PDE_path_set_paint_op

	HIG_PDE_PLACE
	IG_PDE_place_create
	IG_PDE_place_get_dictionary
	IG_PDE_place_set_dictionary
	IG_PDE_place_get_mctag
	IG_PDE_place_set_mctag

	HIG_PDE_POSTSCRIPT
	IG_PDE_postscript_create
	IG_PDE_postscript_get_attrs
	IG_PDE_postscript_get_data
	IG_PDE_postscript_set_data
	IG_PDE_postscript_get_data_stream
	IG_PDE_postscript_set_data_stream

	HIG_PDE_SOFTMASK
	IG_PDE_softmask_create
	IG_PDE_softmask_create_from_name
	IG_PDE_softmask_get_form
	IG_PDE_softmask_set_form
	IG_PDE_softmask_get_backdrop_color
	IG_PDE_softmask_set_backdrop_color
	IG_PDE_softmask_get_name

	HIG_PDE_SHADING
	IG_PDE_shading_create
	IG_PDE_shading_get_dictionary

	HIG_PDE_TEXT
	IG_PDE_text_create
	IG_PDE_text_add
	IG_PDE_text_add_item
	IG_PDE_text_get_advance
	IG_PDE_text_get_bbox
	IG_PDE_text_get_font
	IG_PDE_text_get_gstate
	IG_PDE_text_get_item
	IG_PDE_text_get_matrix
	IG_PDE_text_get_byte_count
	IG_PDE_text_get_char_count
	IG_PDE_text_get_runs_count
	IG_PDE_text_get_quad
	IG_PDE_text_get_run_for_char
	IG_PDE_text_get_state
	IG_PDE_text_get_stroke_matrix
	IG_PDE_text_get_text
	IG_PDE_text_is_at_point
	IG_PDE_text_is_at_rect
	IG_PDE_text_remove
	IG_PDE_text_remove_items
	IG_PDE_text_replace_chars
	IG_PDE_text_run_get_char_offset
	IG_PDE_text_run_get_char_count
	IG_PDE_text_run_set_font
	IG_PDE_text_run_set_gstate
	IG_PDE_text_run_set_matrix
	IG_PDE_text_run_set_state
	IG_PDE_text_run_set_stroke_matrix
	IG_PDE_text_split_run_at

	HIG_PDE_TEXTITEM
	IG_PDE_textitem_create
	IG_PDE_textitem_copy_text
	IG_PDE_textitem_get_font
	IG_PDE_textitem_set_font
	IG_PDE_textitem_get_gstate
	IG_PDE_textitem_set_gstate
	IG_PDE_textitem_get_text_length
	IG_PDE_textitem_get_matrix
	IG_PDE_textitem_set_matrix
	IG_PDE_textitem_get_state
	IG_PDE_textitem_set_state
	IG_PDE_textitem_remove_chars
	IG_PDE_textitem_replace_chars
	IG_PDE_textitem_replace_text

	HIG_PDE_XGROUP
	IG_PDE_xgroup_create
	IG_PDE_xgroup_get_colorspace
	IG_PDE_xgroup_set_colorspace
	IG_PDE_xgroup_get_isolated
	IG_PDE_xgroup_set_isolated
	IG_PDE_xgroup_get_knockout
	IG_PDE_xgroup_set_knockout

	HIG_PDE_XOBJECT
	IG_PDE_xobject_create

	PDF Component Structures Reference
	AT_PDE_COLORDATA
	AT_PDE_COLORDATA_CALGRAY
	AT_PDE_COLORDATA_CALRGB
	AT_PDE_COLORDATA_DEVICEN
	AT_PDE_COLORDATA_ICCBASED
	AT_PDE_COLORDATA_INDEXED
	AT_PDE_COLORDATA_LAB
	AT_PDE_COLORDATA_SEPARATION
	AT_PDE_COLORRANGE
	AT_PDE_COLORSPEC
	AT_PDE_COLORVALUE
	AT_PDE_CONTENTATTRS
	AT_PDE_DASH
	AT_PDE_FILTERARRAY
	AT_PDE_FILTERSPEC
	AT_PDE_FONT_CREATEFROMSYSFONTPARAMS
	AT_PDE_FONT_INFO
	AT_PDE_FONTATTRS
	AT_PDE_GRAPHICSTATE
	AT_PDE_IMAGEATTRS
	AT_PDE_PSATTRS
	AT_PDE_TEXTSTATE
	AT_PDE_XYZCOLOR
	AT_PDF_BOOL
	AT_PDF_COLORVALUE
	AT_PDF_FIXED
	AT_PDF_FIXEDMATRIX
	AT_PDF_FIXEDPOINT
	AT_PDF_FIXEDQUAD
	AT_PDF_FIXEDRECT
	AT_PDF_FLATTEN
	AT_PDF_FONT_METRICS
	AT_PDF_FONT_STYLES
	AT_PDF_PRINTOPTIONS
	AT_PDF_PRINTPARAMS
	AT_PDF_SECURITYDATA
	AT_PDF_SYSFONT_PLATDATA
	AT_PDF_TILE
	AT_PDF_TILEEX

	PDF Component Enumerations Reference
	enumIGPDEContentFlags
	enumIGPDEContentGetResourceFlags
	enumIGPDEElementCopyFlags
	enumIGPDEFontCreateFlags
	enumIGPDEFontCreateNeedFlags
	enumIGPDEFontProtection
	enumIGPDEGraphicStateWasSetFlags
	enumIGPDEImageAttrFlags
	enumIGPDEImageDataFlags
	enumIGPDEInsertElement
	enumIGPDEPathElementType
	enumIGPDEPathOpFlags
	enumIGPDEPSAttrFlags
	enumIGPDESoftMaskCreateFlags
	enumIGPDETextFlags
	enumIGPDEType
	enumIGPDEXGroupCreateFlags
	enumIGPDFBasicType
	enumIGPDFBookmarkFlags
	enumIGPDFCharset
	enumIGPDFCodePages
	enumIGPDFColorSpace
	enumIGPDFCompressions
	enumIGPDFDestinationType
	enumIGPDFDuplexEnum
	enumIGPDFFarEastFont
	enumIGPDFFixedValues
	enumIGPDFFlattenTilingMode
	enumIGPDFFontFlags
	enumIGPDFInclusion
	enumIGPDFInsertFlags
	enumIGPDFOCMDVisPolicy
	enumIGPDFPageDrawFlags
	enumIGPDFPageDrawMode
	enumIGPDFPageDrawSmoothFlags
	enumIGPDFPageMarkFlags
	enumIGPDFPageNumber
	enumIGPDFPageRange
	enumIGPDFPageTilingMode
	enumIGPDFPermReqObj
	enumIGPDFPermReqOpr
	enumIGPDFPermReqStatus
	enumIGPDFPermsFlags
	enumIGPDFPrintWhat
	enumIGPDFPrintWhatAnnot
	enumIGPDFRevision
	enumIGPDFRotation
	enumIGPDFSecurityInfoFlags
	enumIGPDFStdSecurityMethod
	enumIGPDFStreamType
	enumIGPDFSysFontMatchFlags
	enumIGPDFSysFontPackageType
	enumIGPDFWordFinderVersion
	enumIGPDFWordFlags

