
PICTools and
AIMTools™

Programmer's Guide
Imaging Development Kits

October 2019

© 1993-2019 Accusoft Corporation. All Rights Reserved.

 PICToolsand AIMTools™ Programmer’s Guide

2

Table of Contents

Introduction ... 4

About This Guide .. 4

Overview of the PICTools API .. 4

Input and Output Parameters: PIC_PARM Structure. ..6

1. Brief Overview of the PICTools Architecture.. 8

2. A Complete Code Example ... 9

3. Calling Pegasus .. 22

3.1 PIC_PARM Structure ... 23

3.2 Table of REQUEST Codes .. 23

3.3 Table of RESPONSE Codes ... 24

4. Calling PegasusQuery ... 25

5. PicTools Libraries. ... 27

5.1 Loading an Opcode DLL .. 28

5.2 Unloading an Opcode DLL .. 28

5.3 Packaging Opcodes into an Application Resource (Windows only) 29

6. Setting the PIC_PARM Structure ... 30

6.1 Setting General PIC_PARM Data .. 30

6.2 Setting PIC_PARM Operation Data ... 30

7. Queue Management .. 31

7.1 Overview .. 31

7.2 Linear Buffer .. 31

7.2.1 Linear Get Buffer Processing ... 32

7.2.2 Linear Put Buffer Processing .. 33

7.3 Reversed Linear Buffer .. 33

7.3.1 Reversed Linear Get Buffer Processing ... 35

7.3.2 Reversed Linear Put Buffer Processing ... 35

7.4 Sample Code for Linear and Reversed Buffer Processing.. 37

8. Accessing Comments and Other Auxiliary Data .. 42

8.1 PIC2List Data Packet... 42

8.1.1 PIC2List - Included in Output Image... 42

8.1.2 PIC2List - Retrieved from Input Image ... 43

9. Using the PIC Libraries .. 45

9.1 Include files .. 45

 PICToolsand AIMTools™ Programmer’s Guide

3

9.2 Preprocessor Definitions ... 45

9.3 Windows (32-bit, 64-bit) Import Libraries... 45

9.4 Other platforms: Linux, Solaris, AIX, OSX, iOS, Android .. 46

10. Debugging, Tracing and Logging ... 47

10.1 Generating PICTools Debug Log Files on Win32/64 ... 48

10.2 Generating PICTools Debug Log Files on Linux, Solaris SPARC/x86, AIX, and OS X 48

10.3 Generating AIMTools Debug Log Files on iOS .. 49

10.4 Generating AIMTools Debug Log Files on Android .. 49

11. Deploying PICTools Applications .. 51

11.1 Win32 platforms .. 51

11.2 Win64 platforms .. 51

11.3 Other platforms: Linux, Solaris, AIX, OSX, iOS, Android ... 51

12. Toolkit Software License Agreement ... 52

 PICToolsand AIMTools™ Programmer’s Guide

4

Introduction

About This Guide

The purpose of this Programmer’s Guide is to show how to use PICTools and AIMTools to solve some of
the image processing problems facing application developers. These problems include compressing and
decompressing images, reading and writing image files, converting between image file formats,
transforming images and displaying images. The guide describes the application interface (API) provided
by the PICTools and AIMTools toolkits. The PICTools Programmer’s Reference and the AIMTools
Programmer’s Reference documents are companion documents to this Programmer’s Guide; they
provide extensive specific documentation on the usage of the API.

AIMTools is designed to solve image processing challenges for Developers writing mobile applications.
AIMTools is based on the same architecture as the PICTools product, so this Programmer's Guide is
relevant to either product. Throughout this Programmer’s Guide document, references to PICTools also
apply to AIMTools. Both Programmer’s Reference documents include a comprehensive list of which
opcodes are available in each SDK.

Overview of the PICTools API

Getting Image Information: PegasusQuery()

The PICTools API provides the application with a way to obtain information about an image by calling the
PegasusQuery() function. PegasusQuery() is passed an input buffer containing image data. It returns
information about the image including, for example, the image file format, height and width.

Requesting an Operation to be Performed to an Image: Pegasus()

The main purpose of using PICTools is to perform
operations on a given image. For example, one
operation provided by PICTools is “compress a DIB
image to a sequential JPEG image”. Another
operation is “rotate a sequential JPEG image”. An
operation is supplied with image data as input. The
operation acts on the input image data and produces
output image data. The output image is returned to
the application requesting the PICTools operation.
Operations are also referred to as opcodes, because
each operation is requested using a manifest
constant called an opcode.

An operation is requested by calling a function
named Pegasus. A REQUEST code and a pointer
to a PIC_PARM data structure are parameters to the
function and the returned value is a RESPONSE
code. The PIC_PARM data eventually includes all
the input, output and input/output parameters
needed to perform the requested operation.

In the simplest case, Pegasus is called three times.
The first time it is called, REQ_INIT is the request
code and all operation initialization is performed.
The second time it is called, REQ_EXEC is the
request code and the requested operation acts on
the input data, producing the output data. The last

 PICToolsand AIMTools™ Programmer’s Guide

5

time it is called, REQ_TERM is the request code and all operation cleanup occurs. In this simplest case,
each call returns a response of RES_DONE if no error was detected or RES_ERR if an error was
detected.

Handling Pegasus() Responses

In some scenarios, Pegasus may send one or more intermediate responses to the application before the
requested operation is completed and the final response (usually RES_DONE or RES_ERROR) is sent.
Examples of common scenarios where intermediate responses are expected include:

a. The application is using an input buffer smaller than the input image. In this case, every time
Pegasus consumes all the data in the input buffer, it notifies the application that it needs more
data.

b. The application is using an output buffer smaller than the output image. Once Pegasus fills up
the output buffer, it notifies the application that it needs more space for output.

c. The application has asked to be notified whenever some portion of an operation has been
performed. As the operation completion proceeds, Pegasus notifies the application about its
progress.

In some cases, an intermediate response from Pegasus may require some processing from the
application before Pegasus can resume performing the requested operation. In other cases, no response
or action by the application is expected and the intermediate response is just a notification.

The application can choose between two different modes of receiving and handling these intermediate
responses from Pegasus:

 One mode is the “DeferFn” or callback mode. In this mode, the application provides a
response-handling (call back) function pointer in the PIC_PARM data. The function is called
by Pegasus to send an intermediate response. The application logic to process the
intermediate response is coded in the call back function. A nonzero return value from the call
back function to Pegasus is a signal to Pegasus to abort processing. A zero return value
indicates that Pegasus should continue processing.

 The other mode is coroutine mode. In this mode, the application’s call to Pegasus returns
whenever intermediate response is to be sent to the application. The application performs any
required action, if needed, and continues processing by calling Pegasus again using a
REQ_CONT request parameter or aborts processing by calling Pegasus again using a
REQ_TERM request parameter.

 PICToolsand AIMTools™ Programmer’s Guide

6

Input and Output Parameters: PIC_PARM Structure.

The PIC_PARM structure passed as an argument to the Pegasus function is the main mechanism to
allow code that is calling PICTools to exchange information with PICTools. PIC_PARM has one set of
parameters which is relatively independent of the image operation and another set of parameters which is
specific to the image operation.

The set of PIC_PARM parameters independent of the operation can be further subdivided into three
categories. The first category is general data. This category includes the PICTools version expected by
the application and an opcode specifying the requested operation. The second category is BITMAPINFO
data describing the image. The BITMAPINFO data structure is the same data structure which is used in
Windows development. The third category specifies the buffering of the input and output data. In the
simplest case an input buffer contains all the input data and an output buffer has room for all the output
data before Pegasus is called.

Note: In many opcodes, the second category is now augmented with a REGION structure. This replaces
much of the BITMAPINFOHEADER structure to allow for more general image formats such as .RAW.

The PIC_PARM parameters specific to each operation are encapsulated in a C union with a structure for
each type of operation.

 PICToolsand AIMTools™ Programmer’s Guide

7

 PICToolsand AIMTools™ Programmer’s Guide

8

1. Brief Overview of the PICTools Architecture

Code using PICTools sits on top of a module called the dispatcher. The dispatcher implements the
Pegasus() function as an entry point into the PICTools opcodes. When a particular operation is invoked,
the dispatcher finds and loads the appropriate opcode module and calls it. When the opcode returns to
the dispatcher, the dispatcher returns to the calling code. The dispatcher contains PegasusQuery,
provides common functions needed by the opcodes and facilitates the portability of PICTools across
different platforms.

 Dispatcher
 exposes a common API to clients that is used across all opcodes
 if using dynamic libraries, loads opcode libraries for execution
 provides common functions to the opcodes
 contains PegasusQuery

 Opcodes
 PICTools functions are grouped into cohesive, modular libraries (opcodes)
 each opcode implements a specific technology, e.g.

 sequential JPEG compression opcode

 binarize opcode

 JPEG 2000 expand opcode

 document cleanup opcode
 modular opcode architecture means that client applications only need to deploy the

specific opcode or opcodes containing the functionality required by the application
 Complete lists of opcodes are provided in the PICTools Programmer’s Reference and the

AIMTools Programmers’ Reference documents.

The following sections describe the PICTools API in more detail.

 A Code Example contains example code to expand a sequential JPEG image into a Windows
DIB (Device-Independent-Bitmap).

 Calling Pegasus describes how to call Pegasus, what return values are expected and what
application actions are expected based upon the return values.

 Setting the PIC_PARM Structure describes how to initialize the PIC_PARM structure before,
and in some cases between, the calls to Pegasus.

 Queue Management describes how to use the buffering options provided by Pegasus.

 PICToolsand AIMTools™ Programmer’s Guide

9

2. A Complete Code Example

Following is a complete example which decompresses a sequential JPEG image to a DIB. The function

ExpandJPEGTo24BitDIB () receives a buffer which already contains a JPEG image. The function

allocates and returns a buffer containing a DIB expanded from the JPEG image. The BITMAPINFO for
the DIB is also returned. The function returns ERR_NONE if no error occurs. Otherwise it returns a
PICTools API error code1.

Include Files

All programs using PICTools must include the file pic.h in their code. This file contains the API
declarations required by the application and will pull in other PICTools include files as needed. The
application may need to include errors.h also, if the application refers to the manifest error constants that
represent PICTools error codes. In this example, errors.h is included so that the code can use

ERR_BAD_IMAGE_TYPE, ERR_UNEXPECTED_RESPONSE, etc. PICTools error codes are returned in

PicParm.Status if the RESPONSE code is RES_ERR.

Validating the image type

The example uses PegasusQuery to validate that the image type is a sequential JPEG image. The
PIC_PARM data structure is always initialized to 0 first. Then specific PIC_PARM fields are initialized for
the call to PegasusQuery. Specifically, the input buffer pointers are set to point to the JPEG image
buffer. See the Queue Management section for more information about setting the input buffer pointers.
Finally, PegasusQuery is called and the returned image type is tested. See the Setting the PIC_PARM
Structure and Calling PegasusQuery sections for additional information.

LONG ExpandJPEGTo24BitDIB(

 LPBYTE pbInputBuffer, // pointer to JPEG image

 DWORD dwInputLength, // length of JPEG image

 LPBYTE *ppbOutputBuffer, // receive pointer to DIB

 DWORD *pdwOutputLength, // receive length of DIB

 LPBITMAPINFO pOutputBitmapInfo) // receives DIB BITMAPINFO

{

 PIC_PARM ppquery; // to be used with PegasusQuery()

 PIC_PARM ppwork; // to be used with Pegasus()

 RESPONSE response;

 // See PICTools and AIMTools Programmers Guide Section 6

 // for more information on Setting the PIC_PARM Structure.

 // general PIC_PARM initialization for all operations

 memset(&ppquery, 0, sizeof(ppquery));

 ppquery.ParmSize = sizeof(ppquery);

 ppquery.ParmVer = CURRENT_PARMVER; // #define’d in PIC.H

 ppquery.ParmVerMinor = 1; // a magic number for the current version

 // initialize input buffer pointers

 ppquery.Get.Start = pbInputBuffer;

 ppquery.Get.End = pbInputBuffer + dwInputLength;

1 It also returns ERR_NONE if an invalid registration code error occurs.

 PICToolsand AIMTools™ Programmer’s Guide

10

 // initialize input queue pointers

 ppquery.Get.Front = ppquery.Get.Start;

 ppquery.Get.Rear = ppquery.Get.End;

 ppquery.Get.QFlags = Q_EOF; // since no input follows

 // identify and validate the source image type

 // request that PegasusQuery return the image type

 ppquery.u.QRY.BitFlagsReq = QBIT_BICOMPRESSION;

 if (!PegasusQuery(&ppquery) ||

 (ppquery.Head.biCompression != BI_picJPEG &&

 ppquery.Head.biCompression != BI_PICJ))

 return (ERR_BAD_IMAGE_TYPE);

 // for this sample we are only going to support 24 bpp RGB

 // images, however 8bpp gray and other formats are also supported

 // by the opcode.

 if (ppquery.Head.biBitCount != 24)

 return (ERR_BAD_BIT_COUNT);

Pegasus DeferFn mode

In this simple example, Pegasus will not need any additional information so the DeferFn function can be
minimal:

LONG DeferFn(PIC_PARM* pPicParm, RESPONSE response)

{

 // For this trivial example, just return 0 to continue

 // the operation. See sample program source in the samples

 // directories for more detailed and realistic examples of

 // DeferFn() usage.

 NOREF(pPicParm);

 NOREF(response);

 return 0;

}

// initialize DeferFn to handle requests from Pegasus

PicParm.DeferFn = DeferFn;

PicParm.Flags |= F_UseDeferFn;

Pegasus initialization phase

Before calling Pegasus to decompress the image, it is necessary to reset the PIC_PARM structure and
initialize the operation (calling REQ_INIT). In this case, with PIC_PARM initialized like this, if the
initialization call to Pegasus returns anything other than a RES_DONE response, an error or unexpected
condition has occurred. For additional information see the Calling Pegasus section.

 // set PicParm and initialize Pegasus

 memset(&ppwork, 0, sizeof(ppwork));

 ppwork.ParmSize = sizeof(ppwork);

 ppwork.ParmVer = CURRENT_PARMVER; // #define’d in PIC.H

 ppwork.ParmVerMinor = 1; // a magic number for the current version

 ppwork.Get.Start = pbInputBuffer;

 ppwork.Get.End = pbInputBuffer + dwInputLength;

 PICToolsand AIMTools™ Programmer’s Guide

11

 ppwork.Get.Front = ppwork.Get.Start;

 ppwork.Get.Rear = ppwork.Get.End;

 ppwork.Get.QFlags = Q_EOF; // since no input follows

 PICToolsand AIMTools™ Programmer’s Guide

12

 // initialize parameters specific to expand JPEG

 ppwork.Op = OP_S2D; // requests Sequential JPEG to DIB operation

 ppwork.u.J2D.DibSize = 24; // request 24-bit DIB output

 // A heavily-compressed decoded image might not look as good as it could

 // but this will be faster.

 ppwork.u.J2D.PicFlags |= PF_NoCrossBlockSmoothing;

 // initialize DeferFn to handle intermediate responses from Pegasus

 ppwork.DeferFn = DeferFn;

 ppwork.Flags |= F_UseDeferFn;

 // JPEG expand operation initialization

 response = Pegasus(&ppwork, REQ_INIT);

 if (response == RES_ERR)

 {

 // The opcodes OP_S2D and OP_SE2DPLUS will both expand a JPEG file

 // to a bitmap, however OP_S2D may not be available on all

 // platforms. If we get an opcode not found error, attempt to load

 // the opcode OP_SE2DPLUS and try again.

 if (ppwork.Status == ERR_OPCODE_DLL_NOT_FOUND)

 {

 ppwork.Op = OP_SE2DPLUS;

 ppwork.Status = 0;

 response = Pegasus(&ppwork, REQ_INIT); // try again.

 }

 if (response == RES_ERR)

 return (ppwork.Status);

 }

 // any other response is unexpected

 if (response != RES_DONE)

 {

 Pegasus(&ppwork, REQ_TERM);

 return (ERR_UNEXPECTED_RESPONSE);

 }

 Allocating the DIB output buffer

During initialization, Pegasus computes the length in bytes of each DIB image line according to the
image width and the requested output bits per pixel. It is convenient, therefore, to allocate the output DIB
buffer after initialization. In many cases the algorithm to compress or decompress an image requires a
multiple of lines, not just a single line. For example JPEG compresses or decompresses 8 or 16 lines at a
time depending on the input image color subsampling. The minimum such set of lines times the number
of bytes per line is called the StripSize. The DIB buffer size must be at least StripSize or it can be larger.
If it is larger, it must be an integer multiple of StripSize, or large enough for the full output image. See the
Queue Management section for additional information about setting the PIC_PARM pointers to the
output buffer.
 // Allocate DIB output buffer

 *pdwOutputLength = ppwork.Head.biHeight * ppwork.u.S2D.WidthPad;

 *ppbOutputBuffer = malloc(*pdwOutputLength);

 if (*ppbOutputBuffer == 0)

 {

 Pegasus(&ppwork, REQ_TERM);

 *pdwOutputLength = 0;

 PICToolsand AIMTools™ Programmer’s Guide

13

 return (ERR_OUT_OF_SPACE);

 }

 // See PICTools and AIMTools Programmers Guide Section 7

 // Queue Management for more information on setting

 // the Put Queue pointers.

 // initialize output buffer pointers

 ppwork.Put.Start = *ppbOutputBuffer;

 ppwork.Put.End = *ppbOutputBuffer + *pdwOutputLength;

 // See PICTools and AIMTools Programmers Guide Section 7.3

 // Reversed Linear Buffer.

 // initialize reversed output queue pointers

 ppwork.Put.Front = ppwork.Put.End;

 ppwork.Put.Rear = ppwork.Put.Front;

 ppwork.Put.QFlags = Q_REVERSE; // top DIB line is at buffer bottom

Pegasus execution phase

Now Pegasus is called again to execute the expand operation. In this case, with PIC_PARM initialized
like this, if it returns anything other than RES_DONE, some error or unexpected condition has occurred.

 // JPEG expand operation execution

 response = Pegasus(&ppwork, REQ_EXEC);

 if (response == RES_ERR)

 {

 // If Pegasus returns RES_ERR then we do not

 // need to call REQ_TERM

 free(*ppbOutputBuffer);

 *ppbOutputBuffer = 0;

 *pdwOutputLength = 0;

 return (ppwork.Status);

 }

 // any other response is unexpected

 if (response != RES_DONE)

 {

 Pegasus(&ppwork, REQ_TERM);

 free(*ppbOutputBuffer);

 *ppbOutputBuffer = 0;

 *pdwOutputLength = 0;

 return (ERR_UNEXPECTED_RESPONSE);

 }

Pegasus cleanup phase

If the expected response RES_DONE was returned, Pegasus is called a final time to clean up after the
expand operation so that internally allocated memory can be released.. If the response was RES_ERR
then cleanup has already been done so Pegasus need not be called again. Any memory allocated by
the Application can be freed at this time, or subsequently when it is no longer needed by the application.

The PicParm.Head field now contains the BITMAPINFOHEADER describing the output DIB, immediately
followed by the DIB’s color table (PicParm.ColorTable) where applicable. This information is returned to
the caller so that the DIB can be displayed or written to a Windows .BMP file.

 PICToolsand AIMTools™ Programmer’s Guide

14

 // JPEG expand operation cleanup

 response = Pegasus(&ppwork, REQ_TERM);

 // any other response is unexpected

 if (response != RES_DONE)

 return (ERR_UNEXPECTED_RESPONSE);

 // return the DIB bitmap info and color table

 memcpy(pOutputBitmapInfo, &ppwork.Head, sizeof(ppwork.Head));

 return (ERR_NONE);

 PICToolsand AIMTools™ Programmer’s Guide

15

The Complete Code Example

The following example just collects the above code fragments into one place and provides a main()
function for the application.

//**

// Very simple example showing how to use an opcode. This code is

// available in the PICTools and AIMTols Programmer's Guide.

// The ExpandJPEGTo24BitDIB function contains all of the relevant

// PICTools code and expands a JPEG file to a Bitmap.

//**

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include "pic.h" // PICTools API declarations

#include "errors.h" // PICTools error codes

#define NOREF(x) (x=x) // suppress unreferenced parameter

 // compiler warning

// See PICTools and AIMTools Programmers Guide Section 3

// Calling Pegasus for more information about DeferFn.

//***

// DeferFn

//***

LONG DeferFn(PIC_PARM* pPicParm, RESPONSE response)

{

 // For this trivial example, just return 0 to continue

 // the operation. See sample program source in the samples

 // directories for more detailed and realistic examples of

 // DeferFn() usage.

 NOREF(pPicParm);

 NOREF(response);

 return 0;

}

//***

// ExpandJPEGTo24BitDIB

//***

LONG ExpandJPEGTo24BitDIB(

 LPBYTE pbInputBuffer, // pointer to JPEG image

 DWORD dwInputLength, // length of JPEG image

 LPBYTE *ppbOutputBuffer, // receive pointer to DIB

 DWORD *pdwOutputLength, // receive length of DIB

 LPBITMAPINFO pOutputBitmapInfo) // receives DIB BITMAPINFO

{

 PIC_PARM ppquery; // to be used with PegasusQuery()

 PIC_PARM ppwork; // to be used with Pegasus()

 RESPONSE response;

 PICToolsand AIMTools™ Programmer’s Guide

16

 // See PICTools and AIMTools Programmers Guide Section 6

 // for more information on Setting the PIC_PARM Structure.

 // general PIC_PARM initialization for all operations

 memset(&ppquery, 0, sizeof(ppquery));

 ppquery.ParmSize = sizeof(ppquery);

 ppquery.ParmVer = CURRENT_PARMVER; // #define’d in PIC.H

 ppquery.ParmVerMinor = 1; // a magic number for the current version

 // initialize input buffer pointers

 ppquery.Get.Start = pbInputBuffer;

 ppquery.Get.End = pbInputBuffer + dwInputLength;

 // initialize input queue pointers

 ppquery.Get.Front = ppquery.Get.Start;

 ppquery.Get.Rear = ppquery.Get.End;

 ppquery.Get.QFlags = Q_EOF; // since no input follows

 // identify and validate the source image type

 // request that PegasusQuery return the image type

 ppquery.u.QRY.BitFlagsReq = QBIT_BICOMPRESSION;

 if (!PegasusQuery(&ppquery) ||

 (ppquery.Head.biCompression != BI_picJPEG &&

 ppquery.Head.biCompression != BI_PICJ))

 return (ERR_BAD_IMAGE_TYPE);

 // for this sample we are only going to support 24 bpp RGB

 // images, however 8bpp gray and other formats are also supported

 // by the opcode.

 if (ppquery.Head.biBitCount != 24)

 return (ERR_BAD_BIT_COUNT);

 // See PICTools and AIMTools Programmers Guide Section 6

 // for more information on Setting the PIC_PARM Structure.

 // general PIC_PARM initialization for all operations

 memset(&ppwork, 0, sizeof(ppwork));

 ppwork.ParmSize = sizeof(ppwork);

 ppwork.ParmVer = CURRENT_PARMVER; // #define’d in PIC.H

 ppwork.ParmVerMinor = 1; // a magic number for the current version

 ppwork.Get.Start = pbInputBuffer;

 ppwork.Get.End = pbInputBuffer + dwInputLength;

 ppwork.Get.Front = ppwork.Get.Start;

 ppwork.Get.Rear = ppwork.Get.End;

 ppwork.Get.QFlags = Q_EOF; // since no input follows

 // initialize parameters specific to expand JPEG

 ppwork.Op = OP_S2D; // requests Sequential JPEG to DIB operation

 ppwork.u.J2D.DibSize = 24; // request 24-bit DIB output

 // A heavily-compressed decoded image might not look as good as it could

 // but this will be faster.

 ppwork.u.J2D.PicFlags |= PF_NoCrossBlockSmoothing;

 // initialize DeferFn to handle intermediate responses from Pegasus

 ppwork.DeferFn = DeferFn;

 ppwork.Flags |= F_UseDeferFn;

 PICToolsand AIMTools™ Programmer’s Guide

17

 // JPEG expand operation initialization

 response = Pegasus(&ppwork, REQ_INIT);

 if (response == RES_ERR)

 {

 // The opcodes OP_S2D and OP_SE2DPLUS will both expand a JPEG file

 // to a bitmap, however OP_S2D may not be available on all

 // platforms. If we get an opcode not found error, attempt to load

 // the opcode OP_SE2DPLUS and try again.

 if (ppwork.Status == ERR_OPCODE_DLL_NOT_FOUND)

 {

 ppwork.Op = OP_SE2DPLUS;

 ppwork.Status = 0;

 response = Pegasus(&ppwork, REQ_INIT); // try again.

 }

 if (response == RES_ERR)

 return (ppwork.Status);

 }

 // any other response is unexpected

 if (response != RES_DONE)

 {

 Pegasus(&ppwork, REQ_TERM);

 return (ERR_UNEXPECTED_RESPONSE);

 }

 // Allocate DIB output buffer

 *pdwOutputLength = ppwork.Head.biHeight * ppwork.u.S2D.WidthPad;

 *ppbOutputBuffer = malloc(*pdwOutputLength);

 if (*ppbOutputBuffer == 0)

 {

 Pegasus(&ppwork, REQ_TERM);

 *pdwOutputLength = 0;

 return (ERR_OUT_OF_SPACE);

 }

 // See PICTools and AIMTools Programmers Guide Section 7

 // Queue Management for more information on setting

 // the Put Queue pointers.

 // initialize output buffer pointers

 ppwork.Put.Start = *ppbOutputBuffer;

 ppwork.Put.End = *ppbOutputBuffer + *pdwOutputLength;

 // See PICTools and AIMTools Programmers Guide Section 7.3

 // Reversed Linear Buffer.

 // initialize reversed output queue pointers

 ppwork.Put.Front = ppwork.Put.End;

 ppwork.Put.Rear = ppwork.Put.Front;

 ppwork.Put.QFlags = Q_REVERSE; // top DIB line is at buffer bottom

 // JPEG expand operation execution

 response = Pegasus(&ppwork, REQ_EXEC);

 if (response == RES_ERR)

 {

 PICToolsand AIMTools™ Programmer’s Guide

18

 // If Pegasus returns RES_ERR then we do not

 // need to call REQ_TERM

 free(*ppbOutputBuffer);

 *ppbOutputBuffer = 0;

 *pdwOutputLength = 0;

 return (ppwork.Status);

 }

 // any other response is unexpected

 if (response != RES_DONE)

 {

 Pegasus(&ppwork, REQ_TERM);

 free(*ppbOutputBuffer);

 *ppbOutputBuffer = 0;

 *pdwOutputLength = 0;

 return (ERR_UNEXPECTED_RESPONSE);

 }

 // JPEG expand operation cleanup

 response = Pegasus(&ppwork, REQ_TERM);

 // any other response is unexpected

 if (response != RES_DONE)

 return (ERR_UNEXPECTED_RESPONSE);

 // return the DIB bitmap info

 memcpy(pOutputBitmapInfo, &ppwork.Head, sizeof(ppwork.Head));

 return (ERR_NONE);

}

// Write byte to a file.

PRIVATE void putb(FILE *file, BYTE b)

{

 putc(b,file);

}

// Write WORD in little-endian format to a file.

PRIVATE void putwle(FILE *file, WORD w)

{

 putb(file,(BYTE)w);

 putb(file,(BYTE)(w >> 8));

}

// Write DWORD in little-endian format to a file.

PRIVATE void putdwle(FILE *file, DWORD dw)

{

 putwle(file,(WORD)dw);

 putwle(file,(WORD)(dw >> 16));

}

int main(int argc, char* argv[])

{

 FILE* InputFile = 0;

 FILE* OutputFile = 0;

 PICToolsand AIMTools™ Programmer’s Guide

19

 LONG ret = 0;

 LPBYTE InputBuffer = 0;

 DWORD dwInputSize = 0;

 LPBYTE OutputBuffer = 0;

 DWORD dwOutputSize = 0;

 PICSIZET InputRead = 0;

 BITMAPINFO BitmapInfo;

 int offbits;

 if (argc < 3)

 {

 printf("Usage: quickstartsample [input.jpg] [output.bmp]\n");

 return (-1);

 }

 InputFile = fopen(argv[1], "rb");

 if (InputFile == 0)

 {

 printf("Failed to open %s.\n", argv[1]);

 return (-1);

 }

 OutputFile = fopen(argv[2], "wb");

 if (OutputFile == 0)

 {

 printf("Failed to open %s.\n", argv[2]);

 return (-1);

 }

 fseek(InputFile, 0, SEEK_END);

 dwInputSize = ftell(InputFile);

 fseek(InputFile, 0, SEEK_SET);

 InputBuffer = malloc(dwInputSize);

 if (InputBuffer == 0)

 {

 printf("Failed to allocate input buffer.\n");

 fclose(OutputFile);

 fclose(InputFile);

 return (-1);

 }

 InputRead = fread(InputBuffer, 1, dwInputSize, InputFile);

 fclose(InputFile);

 // Make sure the bytes read == to the bytes expected.

 if (InputRead != dwInputSize)

 {

 printf("Failed to read input file %s. Expected %d bytes, read %d\n",

 argv[2],dwInputSize, InputRead);

 fclose(OutputFile);

 PICToolsand AIMTools™ Programmer’s Guide

20

 free(InputBuffer);

 return (-1);

 }

 // The interesting PICTools code is in here.

 ret = ExpandJPEGTo24BitDIB(InputBuffer, dwInputSize, &OutputBuffer,

 &dwOutputSize, &BitmapInfo);

 if (ret != ERR_NONE)

 {

 if (ret == ERR_BAD_BIT_COUNT)

 {

 printf("This example only supports 24bpp images. Please "

 "choose another input file and try again.\n");

 }

 else

 printf("ExpandJPEGTo24BitDIB returned %d\n", (int)ret);

 fclose(OutputFile);

 free(InputBuffer);

 if (OutputBuffer != NULL)

 free(OutputBuffer);

 return (-1);

 }

 // The BITMAPFILEHEADER and BITMAPINFOHEADER must be little-endian in

 // the file. This method ensures the file is written correctly

 // regardless of the endian-ness of the machine used to produce this

 // file.

 // Write bitmap file header

 offbits = sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER) +

 BitmapInfo.bmiHeader.biClrUsed * sizeof(RGBQUAD);

 putb(OutputFile,'B'); // bfType

 putb(OutputFile,'M');

 putdwle(OutputFile, offbits + dwOutputSize); // bfSize

 putwle(OutputFile,0); // Reserved1

 putwle(OutputFile,0); // Reserved2

 putdwle(OutputFile, offbits); // bfOffBits

 // Write bitmap info header

 putdwle(OutputFile, sizeof(BITMAPINFOHEADER));

 putdwle(OutputFile, BitmapInfo.bmiHeader.biWidth);

 putdwle(OutputFile, BitmapInfo.bmiHeader.biHeight);

 putwle(OutputFile, 1);

 putwle(OutputFile, BitmapInfo.bmiHeader.biBitCount);

 putdwle(OutputFile, BitmapInfo.bmiHeader.biCompression);

 putdwle(OutputFile, BitmapInfo.bmiHeader.biSizeImage);

 putdwle(OutputFile, BitmapInfo.bmiHeader.biXPelsPerMeter);

 putdwle(OutputFile, BitmapInfo.bmiHeader.biYPelsPerMeter);

 putdwle(OutputFile, BitmapInfo.bmiHeader.biClrUsed);

 putdwle(OutputFile, BitmapInfo.bmiHeader.biClrImportant);

 // Write out the color table

 PICToolsand AIMTools™ Programmer’s Guide

21

 if (BitmapInfo.bmiHeader.biClrUsed != 0)

 {

 fwrite(&BitmapInfo.bmiColors, 1,

 BitmapInfo.bmiHeader.biClrUsed * sizeof(RGBQUAD),OutputFile);

 }

 // Write out the remainder of the file

 fwrite(OutputBuffer, 1, dwOutputSize, OutputFile);

 fclose(OutputFile);

 if (OutputBuffer != NULL)

 free(OutputBuffer);

 free(InputBuffer);

 return 0;

}

 PICToolsand AIMTools™ Programmer’s Guide

22

3. Calling Pegasus

Before calling Pegasus, the application initializes the PIC_PARM structure according to the desired
image operation (see the Setting the PIC_PARM Structure section). The application then calls
Pegasus with a REQ_INIT request code to perform initialization for the operation. Next the application
calls Pegasus with a REQ_EXEC request code to perform the operation. Finally, the application calls
Pegasus with a REQ_TERM request code to clean up as needed.

When the application calls Pegasus with request REQ_INIT, Pegasus begins initialization for the
requested operation, including allocating memory for internal use. When the application calls Pegasus
with request REQ_EXEC, Pegasus begins performing the requested operation. As Pegasus initializes
or performs the requested operation it may call an application-supplied DeferFn function (or may return in
coroutine mode) so that the application can perform some action on behalf of Pegasus or to notify the
application of the occurrence of some event. Pegasus calls the DeferFn function (or Pegasus returns in
coroutine mode):

 when more input is needed

 when more space for output is needed

 when data is needed from or put to a non-contiguous location in the input or output stream

 when a color table has been created

 to allow the application to perform processing during the Pegasus operation (e.g. progress
reporting)

 to allow the application to allocate space for an image comment, for image application data,
or for other data

 to notify the application that a second or later image comment was encountered

 to allow the application to extend the Pic2List

 other events listed in the RESPONSE typedef

The specific event is identified by the response code returned by Pegasus. The appropriate application
action is described in the Handling Pegasus Response Codes sub-section. After taking the appropriate
action, the application will ordinarily continue the operation processing by returning 0 from DeferFn.
Otherwise the application may abort the operation by setting the PIC_PARM Status field to an error code
and returning 1 from DeferFn. In coroutine mode, the application will ordinarily continue the operation by
calling Pegasus with a REQ_CONT request parameter. Otherwise the application may abort the
operation by calling Pegasus with a REQ_TERM request parameter.

The following is pseudo-code for a simple example using DeferFn mode:

 Response = Pegasus(&PicParm, REQ_EXEC);

 if (Response == RES_DONE)

 {

 if (PicParm.Put.Front != PicParm.Put.Rear)

 PutSpace(&PicParm);

 Pegasus(&PicParm, REQ_TERM);

 }

 // else Response == RES_ERR

 ///

 // the DeferFn function might be:

 LONG DeferFn(PIC_PARM* pPicParm, RESPONSE Response)

 {

 switch (Response)

 {

 case RES_PUT_NEED_SPACE:

 pPicParm->Status = PutSpace(pPicParm);

 PICToolsand AIMTools™ Programmer’s Guide

23

 break;

 case RES_GET_NEED_DATA:

 pPicParm->Status = GetData(pPicParm);

 break;

 default:

 pPicParm->Status = ERR_UNKNOWN_RESPONSE;

 break;

 }

 // return 0 for ERR_NONE, else != 0 and abort

 return (pPicParm->Status!= ERR_NONE);

 }

Pegasus will not return until an error occurs or the operation finishes. As shown above, an application
will frequently handle RES_PUT_NEED_SPACE and RES_GET_NEED_DATA responses. However, if
the Get buffer contains all input data and Q_EOF is set in QFlags, then RES_GET_NEED_DATA will not
occur. If the Put buffer has space for all output data, then RES_PUT_NEED_SPACE will not occur. See
the Linear Buffer sub-section of the Queue Management section. Note that the code checks the Put
buffer after the operation is complete to see if there has been additional output. Additional output may
have been placed in the Put buffer after the last RES_PUT_NEED_SPACE, and that data must also be
processed.

An application may receive other responses for certain operations, for certain image types, or if the
application has set certain flags or parameters in the PIC_PARM union structure for a requested
operation.

Pegasus is multi-instance and thread-safe. This means that a multithreaded application can call
Pegasus from each thread. Note that in such case, each thread must have its own copy of the PicParm
structure. See the Programmer’s Reference for additional details regarding calling Pegasus in a
multithreaded application.

3.1 PIC_PARM Structure

See the Setting the PIC_PARM Structure section.

The PIC_PARM structure cannot be moved.

After Pegasus is called with a REQ_INIT request code, subsequent calls to Pegasus, until and including
the REQ_TERM request, must pass the same PIC_PARM data at the same address.

Application developers must exercise care when performing memory operations with the PicParm data
structure (such as copying it or moving it to a different location), because subsequent calls to Pegasus as
part of the same operation must use the same PIC_PARM data at the same address.

3.2 Table of REQUEST Codes

 Code Pegasus Action

 REQ_INIT Begins initialization appropriate to the requested operation

 REQ_EXEC Begins performing requested operation

 REQ_CONT Continues performing REQ_INIT or REQ_EXEC activities in
coroutine mode

 REQ_TERM Terminates and performs cleanup appropriate to the requested
operation.

 PICToolsand AIMTools™ Programmer’s Guide

24

3.3 Table of RESPONSE Codes

Here is a list of some of the most common return codes for Pegasus Responses. A complete list is
provided in the PicTools Programmer’s Reference and in the AIMTools Programmer’s Reference. In each
of the following Application Actions, except for RES_DONE and RES_ERR, the application will normally
continue the requested operation by returning 0 from its DeferFn function or in coroutine mode by calling
Pegasus with a REQ_CONT request parameter.

 Code Application Action

 RES_COLORS_MADE The application requested that an optimal color table be
created. The color table is now available. No action is
required.

 RES_DONE The REQ_INIT or REQ_EXEC or REQ_TERM phase of
the operation is complete without error. When returned
after REQ_INIT, the application calls Pegasus with a
REQ_EXEC request. When returned after REQ_EXEC
the application will ordinarily call Pegasus with a
REQ_TERM request.

 RES_ERR An error was detected and Pegasus has terminated the
operation. The error is returned in PIcParm.Status. No
action is required and Pegasus does not need to be called
with a REQ_TERM request.

 RES_EXTEND_PIC2LIST See the Accessing Comments and Other Auxiliary
Data section.

 RES_GET_DATA_YIELD The application set the PF_YieldGet flag and Pegasus has
processed some amount of input. No action is required.

 RES_GET_NEED_DATA The application must supply additional input data.

 RES_HAVE_COMMENT See the Accessing Comments and Other Auxiliary
Data section.

 RES_NULL_PICPARM_PTR This is a programming error in the call to Pegasus. The
PicParm pointer is the null pointer.

 RES_PUT_DATA_YIELD The application has set the PF_YieldPut flag and Pegasus
has output some amount of data. No action is required. It
is recommended that you do not modify the PUT queue
pointer location in response to this message.

 RES_PUT_NEED_SPACE The application must provide additional space in the
output buffer. Ordinarily the application will remove some
or all of the data which was placed in the output buffer and
will reset the Front and Rear pointers. Note that additional
output data may be placed in the output buffer after the
final RES_PUT_NEED_SPACE, so you will have to
process that output after the operation is complete.

 RES_SEEK The application must provide input or output data starting
at the specified offset into the input or output image.

 PICToolsand AIMTools™ Programmer’s Guide

25

4. Calling PegasusQuery

The PegasusQuery function allows various image properties to be obtained from an image. The same
PIC_PARM data structure that is used for Pegasus is used for PegasusQuery.

PegasusQuery uses the PIC_PARM union QRY structure to control which image properties are returned.
The QRY structure has a bit-mapped field, PIC_PARM.u.QRY.BitFlagsReq, which controls which image
properties are returned. Some image properties are returned in the same QRY structure. Other image
properties are returned in the PIC_PARM.Head BITMAPINFOHEADER data structure.

If PegasusQuery returns TRUE, then the image data appeared to be valid and all the requested image
properties were returned. If FALSE is returned, and the PIC_PARM.Status field is ERR_NONE, then
some requested image property was not available. Otherwise PegasusQuery returned FALSE and the
PIC_PARM.Status field has the error code. The error code is ordinarily ERR_BAD_IMAGE_TYPE
indicating that the image is not recognized as a supported image type. Otherwise ERR_NULL_POINTER
or ERR_BAD_DATA is returned if the Get queue is unspecified or empty.

If PegasusQuery returned FALSE because some image property was not available, you can determine
which image properties were returned by looking at the PIC_PARM.u.QRY.BitFlagsAck field. If a
requested image property was not available, the corresponding bit in BitFlagsAck will be clear.

Following are the possible BitFlagsReq (BitFlagsAck) parameters:

 Variable Value

 QBIT_BISIZE returns PIC_PARM.Head.biSize, ordinarily
sizeof(BITMAPINFOHEADER)

 QBIT_BIWIDTH returns PIC_PARM.Head.biWidth, the width or number of colums
of the image

 QBIT_BIHEIGHT returns PIC_PARM.Head.biHeight, the height or number of rows
in the image

 QBIT_BIPLANES returns PIC_PARM.Head.biPlanes = 1

 QBIT_BIBITCOUNT returns PIC_PARM.Head.biBitCount

 QBIT_BICOMPRESSION returns PIC_PARM.Head.biCompression, the image type

 QBIT_BISIZEIMAGE returns PIC_PARM.Head.biSizeImage, the size in bytes of the
image data when decoded.

 QBIT_BIXPELSPERMETER returns PIC_PARM.Head.biXPelsMerMeter

 QBIT_BIYPELSPERMETER returns PIC_PARM.Head.biYPelsPerMeter

 QBIT_BICLRUSED returns PIC_PARM.Head.biClrUsed, the number of colors in the
color table

 QBIT_BICLRIMPORTANT returns PIC_PARM.Head.biClrImportant, the number of
significant colors in the color table

 QBIT_IMAGESIZE returns PIC_PARM.u.QRY.ImageSize. It contains the ImageSize
as the size of the input "file"including header information and
image data

 QBIT_AUXSIZE returns PIC_PARM.u.QRY.AuxSize, the size of the buffer needed
for auxiliary data in preparation for an image file utility operation

 QBIT_NUMIMAGES returns PIC_PARM.u.QRY.NumImages, the number of images or
pages in the file.

 PICToolsand AIMTools™ Programmer’s Guide

26

 QBIT_COMMENT returns PIC_PARM.Comment if not NULL and
PIC_PARM.CommentSize is not 0.

 QBIT_PALETTE returns the image color table, if any, in PIC_PARM.ColorTable

 QBIT_SOIMARKER returns PIC_PARM.u.QRY.SOIMarker, if applicable

Some image file formats support multiple images in the same file. PIC_PARM.u.QRY.ImageNum can be
set to indicate the particular image for which properties are to be returned.

Unlike Pegasus, PegasusQuery has no method for requesting additional input data from the application.
Although it doesn’t need all of the image data in the input buffer to return image properties, some image
properties may not be available when the input buffer contains too little image data.

 PICToolsand AIMTools™ Programmer’s Guide

27

5. PicTools Libraries.
 On most systems, the dispatcher is available in the form of either a static or dynamic library.

 The dynamic libraries are found in the SDK in the bin directory
 The static libraries are found in the SDK in the lib directory
 The file names for the libraries are as follows:

 Dynamic Library Static Library

Win32 picn20.dll picn20m.dll

Win64 picx20.dll picx20m.dll

Linux32 libpicl20.so libpicl20.a

Linux64 libpiclx20.so libpiclx20.a

Solaris-Sparc32 libpicu20.so libpicu20.a

Solaris-Sparc64 libpicux20.so libpicux20.a

Solaris-Intel32 libpics20.so libpics20.a

Solaris-Intel64 libpicsx20.so libpicsx20.a

Aix32 libpica20.a n/a

Aix64 libpicax20.a n/a

OS X 32 libpicmu20.dylib n/a

OS X 64 libpicmux20.dylib n/a

iOS n/a libpici20.a

Android libpicd20.so libpicd20.a

 Opcodes are available as:
 dynamic libraries
 SSM files: these are compressed versions of the opcodes that are smaller, load faster,

and can be embedded as resources in a client application (see the PICTools
Programmer’s Reference section on PegasusLoadFromRes for details on embedding
SSM files)

 static libraries
 Some platforms may only allow one of these formats.
 A separate file exists for each opcode, named with a unique number
 A complete list of opcodes and opcode numbers can be found in the Overview section of

the PICTools Programmer’s Reference

 PICToolsand AIMTools™ Programmer’s Guide

28

 The opcode files are provided in the SDK bin directory

 Names for the opcode files are as follows (‘??’ represents the opcode number):

 Dynamic Library SSM Static Library

Win32 picn??20.dll picn??20.ssm n/a

Win64 picx??20.dll picx??20.ssm n/a

Linux32 n/a picn??20.ssm n/a

Linux64 n/a picx??20.ssm n/a

Solaris-Sparc32 picu??20.so n/a n/a

Solaris-Sparc64 picux??20.so n/a n/a

Solaris-Intel32 n/a picn??20.ssm n/a

Solaris-Intel64 n/a picx??20.ssm n/a

Aix32 pica??20.so n/a n/a

Aix64 picax??20.so n/a n/a

OS X 32 picm??20.piclib picn??20.ssm n/a

OS X 64 n/a picx??20.ssm n/a

iOS n/a n/a pici??20.a

Android picd??20.so n/a n/a

5.1 Loading an Opcode DLL

The PICTools dispatcher loads the appropriate opcode when an application calls Pegasus for the first
time requesting that opcode. By default in Windows, the dispatcher looks for the opcode in the same
location as the dispatcher DLL. If the opcode is not found in that location, then the Windows versions of
the dispatcher use the Windows directory search order exactly as specified for the Windows LoadLibrary
function.

5.2 Unloading an Opcode DLL

The normal windows application shutdown procedure unloads all PICTools opcodes. PegasusUnload
can be used to unload a PICTools DLL prior to application termination if desired.

 PICToolsand AIMTools™ Programmer’s Guide

29

5.3 Packaging Opcodes into an Application Resource (Windows only)

Applications that desire to have greater control over the version of opcodes that they will load, can
package the opcode SSM files provided into a resource file. Then they should use the
PegasusLoadFromRes() function instead of PegasusLoad(). Consult the PICTools Programmer’s
Reference manual for additional details on how to apply this technique.

 PICToolsand AIMTools™ Programmer’s Guide

30

6. Setting the PIC_PARM Structure

Zero the PIC_PARM Structure

We recommend you “zero” the PIC_PARM structure before setting the fields which are important to your
application. Zero is the default for all fields, so if you set everything to zero you can just concentrate on
what is important to the requested operation.

Pegasus tests for a non-zero value in the Reserved field. This indicates that the structure has been
initialized internally. The Reserved field points to memory which is internally allocated by REQ_INIT, used
by REQ_EXEC, and freed by REQ_TERM. If you do not zero the structure, Pegasus may believe the
operation is already initialized and may try to access the memory pointed to by the Reserved field. This
will likely result in an access violation fault, or worse, it might write to an arbitrary area of memory.

6.1 Setting General PIC_PARM Data

The application initializes the following fields before calling Pegasus for any operation and before calling
PegasusQuery.

 Field Value

 ParmSize sizeof(PIC_PARM)

 ParmVer CURRENT_PARMVER

 ParmMinorVer As documented for the opcode

 Op This is the opcode corresponding to requested operation. This field
is ignored by PegasusQuery.

 DeferFn In DeferFn mode, this is a pointer to a function to handle requests
for additional information from Pegasus.

 Flags In DeferFn mode, set the F_UseDeferFn bit so Pegasus will use the
DeferFn function. See the PICTools Programmer’s Reference for
other flag bits and their usage.

 Get See the Queue Management section. The Get queue buffer is
defined before PegasusQuery. It is ordinarily defined before
Pegasus REQ_INIT is called.

 Put See the Queue Management section. Some operations require
that the Put queue be specified before Pegasus REQ_INIT is
called.

6.2 Setting PIC_PARM Operation Data

Each Pegasus operation, as well as PegasusQuery, uses one of the structures in the PIC_PARM.u
union to specify parameters that control the operation. The particular parameters for each operation
are described in detail in the Programmer’s Reference.

 PICToolsand AIMTools™ Programmer’s Guide

31

7. Queue Management

7.1 Overview

The Get (input) and Put (output) buffers within the PIC system are implemented in Pegasus as circular
queues. This powerful data structure provides enough power and flexibility for asynchronous, multi-
threaded, insertion and removal of data while the PIC routines operate. However, since not all
applications warrant such an elaborate access method, an application will frequently use these queue
structures as a simple linear buffer. This document will describe how to use the queues from the simplest
linear buffer to the more complicated circular queue.

The queue data structure is defined as:\

 typedef struct {

 BYTE PICFAR * FrontEnd;

 BYTE PICFAR * Start;

 BYTE PICFAR * Front;

 BYTE PICFAR * Rear;

 BYTE PICFAR * End;

 BYTE PICFAR * RearEnd;

 DWORD QFlags;

 } QUEUE;

The FrontEnd and RearEnd pointers only have meaning for a few operations and they are ignored in
most applications and in this discussion.

The Start pointer points to the start of a buffer. The End pointer points to one byte past the last byte
which is contained in the buffer. Thus (End - Start) is the length of the buffer in bytes. Ignoring the
reversed buffer case described later, the Front pointer points to the first byte of valid data in the queue
and the Rear pointer points to one byte after the last byte of valid data in the queue. The QFlags are
used to indicate queue conditions such as Q_EOF which is used to signal that there will be no more data
following the data already present in the queue.

7.2 Linear Buffer

This is the most frequent method for using the queue buffers. A buffer is allocated which is at least big
enough to hold all the data. In the following, the buffer is assumed exactly big enough to hold all the data.
The Start pointer is set to the start of the buffer and the End pointer is set to end of the buffer -- the
address computed by adding the length of the buffer to the address of the start of the buffer.

Empty Linear Buffer

In an empty linear buffer the Front and Rear pointers equal each other. When Front and Rear are equal,
they will ordinarily have been reset to the Start of the queue by the code which is supplying the queue
with data.

eee
e

 ^ ^
 Start End
 Front
 Rear
 QFlags = 0

where the e’s represent empty space.

 PICToolsand AIMTools™ Programmer’s Guide

32

Full Linear Buffer

In a full linear buffer, the Front pointer equals Start and the Rear pointer equals End.

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

 ^ ^
 Start End
 Front Rear
 QFlags = Q_EOF

where the D’s represent filled space.

Partially Full Linear Buffer

A linear buffer which is neither full nor empty would have one of the following states:

DDDDDDDDDDDDDDDDDDeeeeeeeeeeeeeeeeee

 ^ ^ ^
 Start Rear End
 Front
 QFlags = 0

eeeeeeeeeeeDDDDDDDDDDDDDDDDDDeeeeeee

 ^ ^ ^ ^
 Start Front Rear End
 QFlags = 0

eeeeeeeeeeeeeeeeeeDDDDDDDDDDDDDDDDDD

 ^ ^ ^
 Start Front End
 Rear
 QFlags = Q_EOF

7.2.1 Linear Get Buffer Processing

In the simplest case all the input is available. Use the buffer containing input data as the Get queue
buffer, setting the pointers as in the full buffer case pictured above. For example:

 PicParm.Get.Start = pbInputDataBuffer;

 PicParm.Get.End = pbInputDataBuffer + dwInputLengthValidData;

 PicParm.Get.Front = PicParm.Get.Start;

 PicParm.Get.Rear = PicParm.Get.End;

 PicParm.Get.QFlags = Q_EOF;

In this simplest case, Pegasus will not return with a RES_GET_NEED_DATA response.

If all the input isn’t available, start with the empty buffer case above as:

PicParm.Get.Start = pbInputDataBuffer;

PicParm.Get.End = pbInputDataBuffer + dwInputBufferAllocatedSize;

PicParm.Get.Front = PicParm.Get.Start;

PicParm.Get.Rear = PicParm.Get.Front;

 PICToolsand AIMTools™ Programmer’s Guide

33

When Pegasus returns with a RES_GET_NEED_DATA response additional input is put into the buffer
starting at the Rear pointer. The Rear pointer is advanced past the copied data as:

memcpy(PicParm.Get.Rear, pbNewData, dwNewDataLength);

PicParm.Get.Rear += dwNewDataLength;

After all the input has been copied to the buffer, and no more input will be available, set the bit in the
QFlags field to signal this state as:

PicParm.Get.QFlags |= Q_EOF;

7.2.2 Linear Put Buffer Processing

In Put buffer processing, the application is consuming data supplied by Pegasus. The Put pointers are
set to an empty buffer which is large enough to contain all the output produced as:

PicParm.Put.Start = pbOutputBuffer;

PicParm.Put.End = pbOutputBuffer + dwOutputBufferAllocatedSize;

PicParm.Put.Front = PicParm.Put.Start;

PicParm.Put.Rear = PicParm.Put.Front;

In this case, Pegasus will not return with a RES_PUT_NEED_SPACE response. If Pegasus returns with
a RES_PUT_DATA_YIELD response, the output is valid from the Front pointer up to, but not including,
the Rear pointer. It is recommended that you do not modify the pointer location in response to the
RES_PUT_DATA_YIELD message.

memcpy(

 pbAnotherBuffer,

 PicParm.Put.Front,

 PicParm.Put.Rear - PicParm.Put.Front);

7.3 Reversed Linear Buffer

Device-Independent Bitmaps (DIB’s) are stored in reverse order from what you might expect. The top line
on the screen is the last line in the DIB buffer. The first line in the DIB buffer, the line at the start of the
buffer, is the bottom line on the screen. Most other image formats, for example JPEG, store the image in
the order you might expect where the top line on the screen is stored as the first line in the image buffer.
A JPEG image is expanded sequentially beginning with the first line in the JPEG image buffer. Therefore,
when expanding a JPEG image, the output is produced beginning with the first, and therefore the top,
image line.

The problem is that this line is the line which appears at the end of the DIB buffer. In the case we have
been discussing, where the output buffer is big enough for the entire DIB, this is only a minor problem
because the application must only be aware that the output buffer is valid starting with the end of the
buffer and moving towards the start of the buffer, rather than the more usual buffer organization.

A similar problem occurs when compressing a DIB into a JPEG image. The input must be consumed
starting from the end of the buffer so that the top image line is compressed first.

When processing these cases, the application sets the Q_REVERSE bit in the QFlags field of the queue
data structure to notify Pegasus that the buffer organization is reversed in this way.

Unfortunately, things are more complicated than this. First, the DIB doesn’t reverse the order of pixels
within a line. Thus the last pixel contained in the DIB buffer is the rightmost screen pixel on the top line.
A JPEG image also stores the image pixels within a line in that order, left-to-right. Therefore the DIB

 PICToolsand AIMTools™ Programmer’s Guide

34

bytes produced for each individual JPEG image line have to be copied to the buffer in the same order
they are produced, rather than in reverse order, but, they have to be copied to the bottom of the empty
area in the buffer because the DIB lines are in reverse order.

Finally, it’s even a little worse than that because the JPEG image is actually expanded or compressed
some number of lines at a time. PICTools refers to this number of lines as a strip. For each strip, if
Q_REVERSE is set, Pegasus produces output with the strip’s bottom screen line at the start of the
appropriate area in the buffer and with the strip’s top line at the end of the area in the buffer, the same
order in which they will appear in the DIB. Therefore, all the bytes in a strip have to be copied to the
buffer in the same order they are produced, but at the bottom of the empty area in the buffer. Similar
considerations apply if Pegasus is consuming DIB data from the Get buffer to produce a JPEG image as
output.

Empty Reversed Linear Buffer

In an empty linear buffer the Front and Rear pointers equal each other. When Front and Rear are equal,
they will ordinarily have been reset to the End of the queue by the code which is supplying the queue with
data.

eee
e

 ^ ^
 Start End
 Front
 Rear
 QFlags = 0

Full Reversed Linear Buffer

In a full linear buffer, the Front pointer equals End and the Rear pointer equals Front

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

 ^ ^
 Start End
 Rear Front
 QFlags = Q_EOF

Partially Full Reversed Linear Buffer

A linear buffer which is neither full nor empty would have one of the following states:

eeeeeeeeeeeeeeeeeeDDDDDDDDDDDDDDDDDD

 ^ ^ ^
 Start Rear End
 Front
 QFlags = 0

eeeeeeeeeeeDDDDDDDDDDDDDDDDDDeeeeeee

 ^ ^ ^ ^
 Start Rear Front End
 QFlags = 0

DDDDDDDDDDDDDDDDDDeeeeeeeeeeeeeeeeee

 ^ ^ ^
 Start Front End
 Rear
 QFlags = Q_EOF

 PICToolsand AIMTools™ Programmer’s Guide

35

Note that when the linear buffer is reversed, the Rear pointer points to the last byte of valid data. The
Front pointer points one byte past (in the direction towards the End address) the first byte of valid data.

7.3.1 Reversed Linear Get Buffer Processing

In the simplest case, where all the input is available, use the buffer containing input data as the buffer,
setting the pointers as in the full buffer case pictured above. For example:

PicParm.Get.Start = pbInputDataBuffer;

PicParm.Get.End = pbInputDataBuffer + dwInputLengthValidData;

PicParm.Get.Front = PicParm.Get.End;

PicParm.Get.Rear = PicParm.Get.Start;

PicParm.Get.QFlags = Q_REVERSE | Q_EOF;

In this simplest case, Pegasus will not return with a RES_GET_NEED_DATA response.

When all the input isn’t available, start with the empty buffer case above as:
PicParm.Get.Start = pbInputDataBuffer;

PicParm.Get.End = pbInputDataBuffer + dwInputBufferAllocatedSize;

PicParm.Get.Front = PicParm.Get.End;

PicParm.Get.Rear = PicParm.Get.Front;

PicParm.Get.QFlags = Q_REVERSE;

When Pegasus returns with a RES_GET_NEED_DATA response (or RES_GET_DATA_YIELD if
appropriate), and the lastmost strip(s) of additional input is (are) available, the strip(s) can be placed into
the Get buffer as follows:

PicParm.Get.Rear -= dwNewDataAvailableLength;

memcpy(

 PicParm.Get.Rear,

 pbAnotherBuffer,

 dwNewDataAvailableLength);

dwNewDataAvailableLength must be an integer multiple of StripSize. Get.End – Get.Start must be an
integer multiple of StripSize. After all the input has been copied to the buffer, and no more input will be
available, set the QFlags to signal this state as:

PicParm.Get.QFlags |= Q_EOF;

7.3.2 Reversed Linear Put Buffer Processing

In Put buffer processing, the application is consuming data supplied by Pegasus. The Put pointers are
set to an empty buffer which is large enough to contain all the output produced as:

PicParm.Put.Start = pbOutputBuffer;

PicParm.Put.End = pbOutputBuffer + dwOutputBufferAllocatedSize;

PicParm.Put.Front = PicParm.Put.End;

PicParm.Put.Rear = PicParm.Put.Front;

In this case, Pegasus will not return with a RES_PUT_NEED_SPACE response. If a
RES_PUT_DATA_YIELD response is returned, the application can, but doesn’t have to, make use of the
data extending from the Front pointer to the Rear pointer as:

 PICToolsand AIMTools™ Programmer’s Guide

36

memcpy(

 pbAnotherBuffer,

 PicParm.Put.Rear,

 PicParm.Put.Front - PicParm.Put.Rear);

The Front pointer would ordinarily not be decremented (moving towards the buffer Start) past the copied
data. This is because, when Front and Rear are equal, Pegasus will reset them both to the End of the
buffer. The next output produced would then overwrite the previous data. It is recommended that you do
not change the PUT queue pointers in response to this message.

 PICToolsand AIMTools™ Programmer’s Guide

37

7.4 Sample Code for Linear and Reversed Buffer Processing

This section presents sample application code to illustrate buffer processing in 2 common scenarios:
Expanding a JPEG file to a DIB and Compressing a DIB into a JPEG file. It is assumed that the buffer is
smaller than the entire image. The code consists of 2 functions. The first function,

CopyFromFileToGetQueue, is called by the application to pull data from the input file and into the

Pegasus input buffer (Get Queue). It would be normally called in response to a RES_GET_NEED_DATA

reply from Pegasus. The second function, CopyFromPutQueueToFile, is called by the application to

write data to the output file from the Pegasus output buffer (Put Queue). Normally, this function would be

called in response to a RES_PUT_NEED_SPACE reply from Pegasus. The sample functions implement

the required logic for both the linear and reversed linear queue processing, and determine the appropriate

case by checking if the PIC_PARM flag Q_REVERSE has been set or not.

Before showing the code, a brief description of the scenarios is provided.

Expanding a JPEG file to a DIB

 This is the typical scenario when using the OP_S2D opcode.

 Requires linear queue processing for passing the input image data from the JPEG file into

Pegasus.

 Requires reversed linear queue processing to save the Pegasus output into the new DIB file.

 PICToolsand AIMTools™ Programmer’s Guide

38

Compressing a DIB into a JPEG file

 This is the typical scenario when using the OP_D2S opcode.

 Requires reversed linear queue processing for passing the input image data from the DIB file

into Pegasus.

 Requires linear queue processing to save the Pegasus output into the new JPEG file.

Defer Function

 Here is a very simplified implementation of a “Defer Function” that calls

CopyFromFileToGetQueue and CopyFromPutQueueToFile.

LONG DeferFn2(PIC_PARM* pp, RESPONSE response)

{

 switch (response)

 {

 case RES_GET_NEED_DATA:

 CopyFromFileToGetQueue (InputFile, pp);

 break;

 case RES_PUT_NEED_SPACE:

 CopyFromPutQueueToFile (OutputFile, pp);

 break;

 }

 return (0); // continue the operation

}

 PICToolsand AIMTools™ Programmer’s Guide

39

Sample Code

These functions illustrate just a portion of the application processing needed to support these scenarios.
The main items not shown by the sample code are:

 Opening of the input and output files.

 Allocation of the Input and Output buffers. In particular the buffer that will be used to store reversed
DIB image data needs to be sized as a multiple of Stripe as mentioned previously.

 In the case of a top down DIB output file, the application needs to write the header information to
the file before calling Pegasus (which in turn will eventually call a Defer function that will call
CopyFromPutQueueToFile). Also the application needs to fseek the file pointer to point to the end

of the file before calling Pegasus (see comments for function CopyFromPutQueueToFile).
/***\

This function would normally be called when replying to a

RES_GET_NEED_DATA response from Pegasus. The input parameters are:

 FILE *fp: Input file opened for reading.

 PIC_PARM *pp: The PIC_PARM parameter used to communicate with Pegasus

 Just before calling Pegasus (and therefore before this function is called)

 the file pointer should be positioned (fseek) by the application to

 point to the beginning of the image data (0 for JPEG file, file length

 for a top down BMP). From that point on, the application should not

 perform operations that change the file or move the file pointer.

***/

void CopyFromFileToGetQueue (FILE *fp, PIC_PARM *pp)

{

 LONG nbneeded; // number of bytes needed to fill the input buffer

 LONG nbread; // number of bytes actually read from the file

 // Usually a JPEG image is top-down and a BMP image is bottom-up

 if (pp->Get.QFlags & Q_REVERSE) {

 if (pp->Get.Rear == pp->Get.Front) // if input buffer empty:

 pp->Get.Rear = pp->Get.Front = pp->Get.End;

 nbneeded = (LONG) (pp->Get.Rear - pp->Get.Start);

 pp->Get.Rear -= nbneeded;

 fseek(fp, -nbneeded, SEEK_CUR);

 nbread = (LONG)fread(pp->Get.Rear, 1, nbneeded, fp);

 fseek(fp, -nbneeded, SEEK_CUR);

 } else { // forward (not reversed) scenario

 if (pp->Get.Rear == pp->Get.Front) // if input buffer empty:

 pp->Get.Rear = pp->Get.Front = pp->Get.Start;

 nbneeded = (LONG) (pp->Get.End - pp->Get.Rear);

 nbread = (LONG)fread(pp->Get.Rear, 1, nbneeded, fp);

 pp->Get.Rear += nbread;

 }

 if (feof(fp))

 pp->Get.QFlags |= Q_EOF;

 else if (ferror(fp))

 pp->Get.QFlags |= Q_IO_ERR;

 PICToolsand AIMTools™ Programmer’s Guide

40

}

/***\

This function would normally be called when replying to a

RES_PUT_NEED_SPACE response from Pegasus. The input parameters are:

 FILE *fp: Input file opened for reading.

 PIC_PARM *pp: The PIC_PARM parameter used to communicate with Pegasus

 Just before calling Pegasus (and therefore before this function is called)

 the file pointer should be positioned (fseek) by the application to

 point to the beginning of the image data. In the forward (not reversed)

 case, such as when saving to a JPEG file, this is just the begining of

 the file.

 In the reversed case, the position should be just past the size

 of the image plus the image header... the preparatory code, would

 look similar to this:

 // populate BitmapHeader and BitmapInfo...

 outputImgPos = sizeof(BitmapHeader) + BitmapInfo.bmiHeader.biSize +

 ppwork.Head.biHeight * ppwork.u.S2D.WidthPad;

 fwrite(&BitmapHeader, 1, sizeof(BitmapHeader), OutputFile);

 fwrite(&BitmapInfo, 1, BitmapInfo.bmiHeader.biSize, OutputFile);

 fseek(OutputFile, outputImgPos, SEEK_SET);

 Note also that once Pegasus is invoked, the application should not

 perform operations that change the file or move the file pointer.

***/

void CopyFromPutQueueToFile (FILE *fp, PIC_PARM *pp)

{

 LONG nbytesInQ; // number of bytes on the output buffer, waiting

 // to be written to file

 LONG nwritten; // number of bytes actually written to the file

 nbytesInQ = (LONG)(pp->Put.Rear - pp->Put.Front);

 if (nbytesInQ == 0) // is the output buffer empty?

 return;

 // Usually a JPEG image is top-down and a BMP image is bottom-up

 if (pp->Put.QFlags & Q_REVERSE) {

 nbytesInQ = -nbytesInQ;

 fseek(fp, -nbytesInQ, SEEK_CUR);

 nwritten = (LONG) fwrite(pp->Put.Rear, 1, nbytesInQ, fp);

 if (nwritten != nbytesInQ) {

 pp->Put.QFlags |= Q_IO_ERR; // wrote fewer bytes than attempted

 return;

 }

 fseek(fp, -nbytesInQ, SEEK_CUR);

 pp->Put.Rear = pp->Put.Front = pp->Put.End;

 } else { // forward (not reversed) scenario

 nwritten = (LONG) fwrite(pp->Put.Front, 1, nbytesInQ, fp);

 if (nwritten != nbytesInQ) {

 pp->Put.QFlags |= Q_IO_ERR; // wrote fewer bytes than attempted

 return;

 PICToolsand AIMTools™ Programmer’s Guide

41

 }

 pp->Put.Rear = pp->Put.Front = pp->Put.Start;

 }

}

 PICToolsand AIMTools™ Programmer’s Guide

42

8. Accessing Comments and Other Auxiliary Data

The PICTools libraries provide access to additional data that is frequently stored with the image. Some
image formats allow image comments to be stored with the image. Other image formats, such as JPEG,
allow application data to be stored with the image. This application data can have any meaning and
format which is helpful to the application which created the image but it is not otherwise needed to
decode the image. In addition, some PICTools image file utility operations allow auxiliary data to be
stored with some image formats. For additional information about auxiliary data, refer to the
Programmer’s Reference.

The PICTools libraries allow this additional data to be supplied to most operations that output image
formats which support the data. The PICTools libraries allow this additional data to be retrieved from
most operations that input image formats which support the data.

The comment, application, or other data fields are normally retrieved during the initialization (REQ_INIT)
call to Pegasus or sometimes via a call to PegasusQuery. Comments may also be encountered during
REQ_EXEC procession. In the following, retrieving comments and application data is discussed. Similar
considerations apply to retrieving auxiliary data.

Newer PICTools operations organize this data as a PIC2List. PIC2List is a buffer consisting of
sequential data packets containing different types of data. For example a comment packet might be
followed by an application data packet which might be followed by a second comment packet. The
PIC2List pointer points to this buffer, which is allocated and freed by the application. PIC2ListSize is the
size of the buffer in bytes. PIC2ListLen is the length of the buffer which contains valid data.

Full support for PIC2List has been introduced at different points in time for different opcodes. Please
consult the Programmer's Reference for additional details regarding each specific opcode and minimum
software version required to use PIC2List.

8.1 PIC2List Data Packet

Each PIC2List data packet consists of an 8-bit packet type followed by a 32-bit packet length, followed by
the packet data. The packet length specifies the number of bytes of packet data so the total length of the
packet including all data is 5 plus the packet length. A 0 byte denoting end-of-packets follows the final
packet. The packet types are defined in PIC2FILE.H. Some common types are:

 Packet Type Description

 P2P_Comment ASCIIZ image comment or description.

 P2P_RawData Application-determined binary data.

 P2P_Watermark ASCIIZ image watermark.

 P2P_Script ASCIIZ script for image playback – content is reserved.

8.1.1 PIC2List - Included in Output Image

To include PIC2List comments, etc. in the output image (e.g. comments when compressing a DIB into a
JPEG image), set PIC2List to point to a buffer for the PIC2List data before calling Pegasus(REQ_INIT).
At the same time, set PIC2ListLen to the total length of the data -- including a 0 byte marking the end of
the packets. PIC2ListSize will be ignored by the operation. The following code fragment would put a
comment, a watermark, another comment and some application data into the PIC2List buffer:
 #include “pic2file.h”

 . . .

 {

 P2PktGeneric *p = (P2PktGeneric *)PicParm.PIC2List;

 PICToolsand AIMTools™ Programmer’s Guide

43

 P2PktRawData *prd;

 PicParm.ParmVerMinor = 2; /* required for operations supporting

 PIC2List */

 p->Type = P2P_Comment;

 p->Length = strlen(FirstComment) + 1; /* include null terminator */

 strcpy(p->Data, FirstComment);

 p = (P2PktGeneric *)((LPBYTE)p + p->Length + sizeof(P2PktNull));

 p->Type = P2P_Watermark;

 p->Length = strlen(Watermark);

 strcpy(p->Data, Watermark);

 p = (P2PktGeneric *)((LPBYTE)p + p->Length + sizeof(P2PktNull));

 p->Type = P2P_Comment;

 p->Length = strlen(SecondComment) + 1;

 strcpy(p->Data, SecondComment);

 p = (P2PktGeneric *)((LPBYTE)p + p->Length + sizeof(P2PktNull));

 prd = (P2PktRawData *)p;

 prd->Type = P2P_RawData;

 prd->Length = sizeof(P2PktRawData) - 5 + AppDataLen;

 memcpy(prd->RawDescription, “APPL”, sizeof(prd->RawDescription));

 /* “APP0” .. “APP9”, “APPA” .. “APPF” suggested for JPEG,

 all nulls or “APPL” suggested for IMStar */

 prd->RawLength = AppDataLen;

 memcpy(prd->RawData, AppData, AppDataLen); /* raw binary data */

 p = (P2PktGeneric *)((LPBYTE)p + p->Length + sizeof(P2PktNull));

 PicParm.PIC2ListLen = (LPBYTE)p - PicParm.PIC2List;

 PicParm.PIC2List[PicParm.PIC2ListLen++] = 0; /* end-of-packets */

 }

8.1.2 PIC2List - Retrieved from Input Image

8.1.2.1 Application Pre-allocates a Buffer before Pegasus Operation

To discard all comments, etc. from the input image, set PIC2ListSize to 0. Otherwise, to retrieve
comments from the input image, set PIC2ListSize to the allocated size of a buffer, set PIC2List to point
to the buffer and set PIC2ListLen to 0. So long as the buffer is large enough for the comment or other
data including an end-of-buffer null byte, an appropriate PIC2List packet will be constructed and copied
into the buffer. PIC2ListLen will be updated at the time the data is copied, to reflect the data currently in
the PIC2List buffer.

If the buffer is not large enough for some comment or other data, because the difference between
PIC2ListSize and PIC2ListLen is smaller than needed for the data including the 5-byte packet overhead
(and including the end-of-packet byte if PIC2ListLen is 0), then a RES_EXTEND_PIC2LIST response is
returned from Pegasus. This response is handled as described in the following section 9.1.2.2.

8.1.2.2 Application (re)Allocates a Buffer during Pegasus Operation

An application can also avoid allocating a buffer until and unless needed, and can allocate only the
specific size needed to retrieve the comment or other data. If the application sets PIC2ListSize to -1,
then no PIC2List buffer need be allocated, but the Pegasus will return a RES_EXTEND_PIC2LIST
response whenever a comment or other data is encountered.

 PICToolsand AIMTools™ Programmer’s Guide

44

When RES_EXTEND_PIC2LIST is returned, PIC2ListLen is set to the new PIC2ListSize required for the
buffer in order to retrieve the entire comment and including all packet overhead. PacketType is set to the
PIC2List packet type so the application can choose to retrieve data only from certain types of packets.

Ordinarily, the application will allocate or reallocate the PIC2List buffer and set PIC2ListSize to the new
size before returning 0 from DeferFn as follows:

 LONG DeferFn(PIC_PARM* pPicParm, RESPONSE response)

 {

 switch (response)

 {

 ..

 case RES_EXTEND_PIC2LIST:

 pNew = realloc(PicParm.PIC2List, PicParm.PIC2ListLen);

 if (pNew == 0)

 {

 pPicParm->Status = ERR_OUT_OF_SPACE;

 return (1); // abort the operation

 }

 PicParm.PIC2List = pNew;

 PicParm.PIC2ListSize = PicParm.PIC2ListLen;

 break;

 ..

 }

 return (0); // continue the operation

 }

If there is insufficient space for at least the packet type and packet length on return from DeferFn, then no
part of the packet is retrieved. So long as PIC2ListSize is not 0, any further comments or other data will
result in another RES_EXTEND_PIC2LIST response.

8.1.2.3 Accessing Retrieved Data

After RES_DONE is returned from Pegasus(REQ_EXEC), or at any other time that PIC2ListLen is not 0,
comment and other data may be retrieved by stepping through the PIC2List packets selecting packets of
interest and accessing those packets’ data. For example, to output image comments to standard output:

 #include “pic2file.h”

 {

 P2PktComment *p = PicParm.PIC2List;

 if (PicParm.Pic2ListLen != 0)

 {

 while (p->Type != P2P_EOF)

 {

 if (p->Type == P2P_Comment)

 puts(p->Comment);

 p = (P2PktComment*)((LPBYTE)p + p->Length + sizeof(P2PktNull));

 }

 }

 }

Memory allocated by the application for use in the PIC2List is freed by the application after RES_DONE is
returned from Pegasus(REQ_TERM),

 PICToolsand AIMTools™ Programmer’s Guide

45

9. Using the PIC Libraries

9.1 Include files

Applications using the PICTools API include the PIC.H file, and ordinarily include the ERRORS.H file.
PIC2FILE.H and PIC2LIST.H are convenient for PIC2List processing. Additional PICTools include files
may be needed for some applications and some are included by the above include files.

9.2 Preprocessor Definitions

Applications using the PICTools API must specify the required preprocessor symbols in their projects.
The preprocessor symbols required per platform are specified in the following table. The symbols to be
used are specified in the column headings.

 WIN32 WIN64 WINDOWS PIC64 __unix__ __sun__ __SPARC__ _POWER __AIX64__

Windows32 X X

Windows64 X X X X

Linux32 X

Linux64 X X

Solaris-Intel32 X X

Solaris-Intel64 X X X

Solaris-Sparc32 X X

Solaris-Sparc64 X X X

AIX32 X X

AIX64 X X X X

Mac-Intel32 X

Mac-Intel64 X X

iOS ++ X

Android X

++ Special note for iOS. An iOS application using the AIMTools API can be built for individual 32-bit or
64-bit architectures, or as a single, universal binary that supports multiple architectures. The AIMTools
opcodes for iOS are being updated to be universal binaries for multiple 32-bit and 64-bit architectures.
Applications that run on 64-bit architectures (such as arm64 or x86_64) must define the preprocessor
symbol PIC64. Those running on 32-bit architectures (such as i386 or armv7) must not define PIC64. A
suggested technique for developing common code for either architecture that satisfies this AIMTools
requirement automatically is to conditionally define PIC64 according to architecture within the
application's precompiled prefix header file. When the compiler defines the symbol __LP64__, ensure that
PIC64 is defined as well and not otherwise. Refer to the AIMTools sample programs that demonstrate this
practice in their supplied precompiled prefix header files.

9.3 Windows (32-bit, 64-bit) Import Libraries

When using one of the Microsoft compilers to create a 32-bit application using PICN20.DLL, link to the
PICNM.LIB import library. When using one of the Microsoft compilers to create a 32-bit application using
a static link library, link to the PICN20M.LIB import library. If you are using a Microsoft compiler prior to
Visual Studio 2005 use PICN20MVS6.LIB

 PICToolsand AIMTools™ Programmer’s Guide

46

If using a compiler from another vendor to create a 32-bit application, use PICN.LIB. The PICNM.LIB is a
COFF-format library as required by Microsoft’s development tools. The PICN.LIB is an OBJ-format library
as required by some other vendors’ development tools.

When using the Microsoft compilers to create a 64-bit application using PICX20.DLL, link to the
PICXM.LIB import library. When using one of the Microsoft compilers to create a 64-bit application using a
static link library, link to the PICXM20.LIB import library

9.4 Other platforms: Linux, Solaris, AIX, OSX, iOS, Android

Consult the document “Deploying PicTools applications on Linux, Solaris (SPARC and x86), AIX and
OS/X” provided in the documentation directory (doc) of the PicTools SDK. For iOS, consult the “AIMTools
iOS QuickStart Guide”. For Android, consult the “AIMTools Android QuickStart Guide”.

 PICToolsand AIMTools™ Programmer’s Guide

47

10. Debugging, Tracing and Logging

Additional help is available for PICTools API debugging and problem detection/identification in all
environments. The debug dispatcher provides additional parameter validation for Pegasus. It also
allows tracing and logging of Pegasus parameters and responses to a file and/or to the debug monitor.

The debug dispatcher is controlled by a PDEBUG.INI file which must be edited and placed in the
Windows directory in Win32 and Win64. The PDEBUG.INI file can have a [General] section with general
debug options, an [All] section with options which are defaults for all opcodes, and a section with options
for each opcode named with the opcode number (e.g. [10] would contain options for sequential JPEG
pack operations). The options in the opcode section override the options in the [All] section for that
opcode.

The [General] section can have the following variables:

 Variable Value

 LogFile Names the log file to be used. If the value is empty or the variable
is not present, then no log file is used.

 AppendLog If FALSE or unspecified, a new application’s log entries overwrite
a previous application session’s log entries. If TRUE, a new
application’s log entries are appended to the log file.

 FlushLog If FALSE or unspecified, log entries may not all be written to the
disk until the application terminates. If TRUE, then log entries are
written to the disk immediately.

 DebugMonitor If FALSE or unspecified, log entries are not displayed on the
Debug monitor or device. If TRUE, then log entries are displayed
on the Debug monitor or device.

 DllName If TRUE, then log entries contain the opcode DLL name.

 TimeStamp If TRUE, then log entries contain a date/time stamp.

 Instance If TRUE, then log entries assign a unique instance number to
each open PIC_PARM for an individual opcode and log entries
contain this instance number.

 PicParm If TRUE, then general PIC_PARM fields are reported.

 GetQueue If TRUE, then Get queue pointers are reported.

 PutQueue If TRUE, then Put queue pointers are reported.

 PicBitmapInfoHeader If TRUE, then the Head field in PIC_PARM is reported

 PicUnion If TRUE, then the opcode-specific data in the opcode’s union
structure is reported for many opcodes.

 UseLoadLibrary This is a Windows and Solaris Sparc setting. If true, the dispatcher
loads the opcodes using LoadLibrary (Win32/Win64) or dlOpen
(Solaris Sparc32/Sparc64)

 PICToolsand AIMTools™ Programmer’s Guide

48

The [All] and [<opcode>] sections can have the following variables:

 Variable Value

 Warning If TRUE, then warnings are logged.

 Error If TRUE, then errors are logged.

 FYI If TRUE, then other useful information is logged.

 Enter If TRUE, then each entry to Pegasus, PegasusLoad and
PegasusUnload is logged.

 Exit If TRUE, then each return from Pegasus, PegasusLoad and
PegasusUnload is logged.

10.1 Generating PICTools Debug Log Files on Win32/64

1) In the folder from which the application loads the dispatcher library file, find the dispatcher file:
picn20.dll for win32, picx20.dll for win64. Replace the existing file with the debug version
(picn20d.dll for win32 and picx20d.dll) renamed to picn20.dll or picx20.dll.

2) Edit the pdebug.ini file from the SDK’s bin folder to modify the line "logfile = c:\logfile.txt" to reflect
a valid location in your system to write the log file.

3) Place the edited pdebug.ini file in your “WINDIR” folder

4) Run your executable to create the log file named in the pdebug.ini entry for logfile=.

5) Remember to reset the dispatcher library file back to the “release" version when you are finished
creating the desired log files.

10.2 Generating PICTools Debug Log Files on Linux, Solaris SPARC/x86, AIX, and
OS X

1) If opcodes are not in the /usr/local/lib/pegasus folder, set the environment variable SSMPATH to
point to the folder holding the opcodes and export SSMPATH so it is active for the shell and its
children.

2) For Linux, replace the existing dispatcher (libpicl20.so or libpiclx20.so in the location added to
LD_LIBRARY_PATH above) with libpicl20d.so or libpiclx20d.so renamed (this is important) to
libpicl20.so or libpiclx20.so. Alternatively, link your application to the static library dispatcher
libpicl20d.a or libpiclx20d.a.

For Solaris SPARC, this is libpicu20d.so or libpicux20d.so renamed to libpicu20.so or
libpicux20.so and copied over the existing dispatcher (in the location added to
LD_LIBRARY_PATH above). If linking to the static dispatcher, change " –lpicu20" or
" -lpicux20" in the linker flags to " –lpicu20d" or " –lpicux20d" instead.

For Solaris x86, this is libpics20d.so or libpicsx20d.so renamed to libpics20.so or libpicsx20.so
and copied over the existing dispatcher (in the location added to LD_LIBRARY_PATH above). If
linking to the static dispatcher, change " –lpics20" or
" -lpicsx20" in the linker flags to " –lpics20d" or " –lpicsx20d" instead.

For AIX, this is libpica20d.a or libpicax20d.a renamed to libpica20.a or libpicax20.a and copied
over the existing dispatcher (in the location added to LIBPATH above).

For OS X, this is libpicmu20d.dylib or libpicmux20d.dylib renamed to libpicmu20.dylib or
libpicmux20.dylib and copied over the existing dispatcher (in the location added to
DYLD_LIBRARY_PATH above).

 PICToolsand AIMTools™ Programmer’s Guide

49

3) Edit the pdebug.ini file from your bin folder and modify the line
Logfile=c:\logfile.txt to reflect a valid location in your system to write the log file.

4) Place the edited pdebug.ini file somewhere the dispatcher will find it. The dispatcher will first look
for pdebug.ini in /etc/pegasus, but perhaps you can’t or won’t create the folder, so failing that, the
dispatcher will then look for pdebug.ini in the folder pointed to in the SSMPATH environment
variable.

5) Run your executable to create the log file named in the pdebug.ini entry for Logfile=

6) Remember to reset the dispatcher library file back to the “release" version when you are finished
creating the desired log files.

10.3 Generating AIMTools Debug Log Files on iOS

1) Since iOS Apps are built by statically linking with the dispatcher and opcodes, the App must link
with the debug dispatcher. Replace the existing dispatcher (libpici20.a in the location where your
app is configured to look for libraries) with libpici20d.a, renamed (this is important) to libpici20.a.

2) Edit the pdebug.ini file from your bin folder and modify the line
Logfile=c:\logfile.txt to contain just the name of the logfile, without a path.

3) Make sure your App is configured to support iTunes file sharing. Using iTunes, copy the
pdebug.ini file from your bin folder to the documents folder associated with your App on the
device.

4) Run your app to create the log file and retrieve the log file, using iTunes, from the App’s
document folder.

5) Remember to reset the dispatcher library file back to the “release" version when you are finished
creating the desired log files.

10.4 Generating AIMTools Debug Log Files on Android

1) Optionally, have your app add the directory containing the opcodes to its LD_LIBRARY_PATH
(see steps 2 and 4 below). In general, this will be the lib directory within your application’s
directory, e.g., /data/data/com.example.myapp/lib, but it can be determined programmatically
from the nativeLibraryDir member of your application’s ApplicationInfo, e.g.,
MyApp.this.getApplicationInfo().nativeLibraryDir.

2) Replace the existing dispatcher (libpicd20.so in the location added to LD_LIBRARY_PATH
above) with libpicd20d.so renamed (this is important) to libpicd20.so. Be sure to use the
appropriate dispatcher (ARMV5 or ARMV7A) for your target. Alternatively, link your application to
the static library dispatcher libpicd20d.a.

3) Edit the pdebug.ini file from your bin folder and modify the line
Logfile=c:\logfile.txt to reflect a valid location in your system to write the log file. If the location is
within external storage, make sure that your App has write permissions for external storage,
which would be added within your AndroidManifest.xml.

4) Make sure your target is configured to allow developer access. Using ADB place the edited
pdebug.ini file somewhere the dispatcher will find it. The dispatcher will first look for pdebug.ini in
/mnt/sdcard/pegasus, but perhaps you can’t or won’t create the folder, so failing that, the
dispatcher will then look for pdebug.ini in a folder pointed to in the LD_LIBRARY_PATH
environment variable. .

5) Run your app to create the log file and retrieve the log file, using ADB, from the location specified
in pdebug.ini.

6) Remember to reset the dispatcher library file back to the “release" version when you are finished
creating the desired log files.

 PICToolsand AIMTools™ Programmer’s Guide

50

 PICToolsand AIMTools™ Programmer’s Guide

51

11. Deploying PICTools Applications

11.1 Win32 platforms

1) Dispatcher – The PICTools dispatcher must be available to the application that makes calls to
Pegasus().

a. Use PICN20.DLL linked via picnm.lib on MS linkers or picn.lib on non-MS linkers.

b. Or, preferably, use the static library version of picn20.dll by linking to picn20m.lib (MS
linkers), picn20mvs6.lib (MS pre-VS2005) or picn20.lib (other linkers).

2) Opcodes – The PICTools opcodes must be available to the PICTools dispatcher. The PICTools
dispatcher will search for and execute the opcodes in standard LoadLibrary path order. First
looking for the .SSM version and then the .DLL version of particular opcode library named in the
PIC_PARM.Op structure.

11.2 Win64 platforms

1) Dispatcher – The PICTools dispatcher must be available to the application that makes calls to
Pegasus().

a. Use PICX20.DLL linked via picxm.lib.

b. Or, preferably, use the static library version of picx20.dll by linking to picx20m.lib.

2) Opcodes – The PICTools opcodes must be available to the PICTools dispatcher. The PICTools
dispatcher will search for and execute the opcodes in standard LoadLibrary path order. First
looking for the .SSM version and then the .DLL version of particular opcode library named in the
PIC_PARM.Op structure.

3) Include Files – Make sure the include files from the Win64 development kit, not from the Win32
development kit, are used.

4) Compiler Project Settings – The project used to build the client application must include PIC64 in
its list of preprocessor macro settings.

Best and simplest approach in Windows is to place the opcode and dispatcher files in the process
executable start up directory. The dispatcher will automatically load the needed opcodes the first time
Pegasus is called for the opcode. However, it is also possible to place the opcodes in a known folder and
use PegasusLoad() to load them explicitly. Additionally, the opcode SSM files can be embedded in a
resource file and loaded using PegasusLoadFromRes(). Additional details on each of these approaches
can be found in the PICTools Programmer’s Reference.

11.3 Other platforms: Linux, Solaris, AIX, OSX, iOS, Android

Consult the document Deploying PicTools applications on Linux, Solaris (SPARC and x86), AIX and OS
X provided in the documentation directory (doc) of the PicTools SDK. For iOS, consult the “AIMTools
iOS QuickStart Guide”. For Android, consult the “AIMTools Android QuickStart Guide”.

 PICToolsand AIMTools™ Programmer’s Guide

52

12. Toolkit Software License Agreement

PLEASE READ THE FOLLOWING SOFTWARE LICENSE AGREEMENT WHICH GOVERNS YOUR
RIGHT TO USE OF THE TOOLKIT. YOU MUST ACCEPT THESE TERMS BEFORE YOU ARE
ALLOWED TO INSTALL THE TOOLKIT. YOU EXPRESSLY AGREE THAT YOU HAVE THE
AUTHORITY TO CONTRACTUALLY BIND THE ORGANIZATION AGREEING TO THESE TERMS.

BY CLICKING "I ACCEPT," OR INSTALLING TOOLKIT, OR PLACING TOOLKIT IN-USE, YOU
AGREE TO BE BOUND BY THIS AGREEMENT.

1. GRANT OF LICENSE

a) Evaluation License: This Accusoft Corporation ("ACCUSOFT") Software License Agreement
("AGREEMENT") grants the individual or organization contracting under this agreement ("LICENSEE")
a limited, nontransferable, nonexclusive, and non-assignable license to use the trial mode version of this
ACCUSOFT Development Toolkit ("TOOLKIT") on a single computer for evaluation of fitness only and not
for any commercial purpose; or to use a properly purchased and registered TOOLKIT for development
purposes only on a single computer, provided the TOOLKIT is IN-USE on only one computer at any time.
(However, additional TOOLKIT licenses may be purchased.) TOOLKIT is "IN-USE" on a computer when
it becomes loaded by any means for any purpose into temporary memory (that is, including but not limited
to RAM) or when it becomes copied or installed to less temporary storage by any means for any purpose
(that is, including but not limited to hard disk, CD-ROM or other removable disk or tape, USB or other
flash memory drive or card, or other local, networked, or cloud storage or device) when it is accessible to
that computer. The TOOLKIT is explicitly not to be used on a site-wide or on a public or private network
basis, via a server or other networked connection.

b) Commercial License: If any of your requirements aren’t met by the 1.a. Evaluation License then you
need a Commercial License. A Commercial License for a commercial purpose may be acquired by
contacting sales@accusoft.com. If a separate extended license agreement for TOOLKIT is entered into
between Accusoft and LICENSEE at that time, then the terms of that agreement and the Term of that
agreement shall govern only where different from the terms and Term of this Agreement. If a separate
Accusoft license agreement for TOOLKIT is not entered into at that time, then LICENSEE’s permitted use
of Program is governed by this Paragraph 1.b., in addition to Paragraph 1.a. Evaluation License, and all
other terms and Term are according to this Agreement. In that case, if the Commercial License is an
annual license, then the Term of the license grant is for one year beginning on the date of purchase of
Program and as may subsequently be extended by Accusoft on LICENSEE’s request. If the Commercial
License is not an annual license, then the Term of the license grant is until terminated according to this
Agreement. In either case, Accusoft grants to LICENSEE a limited, non-exclusive, non-assignable
license to install TOOLKIT on a single computer and to use TOOLKIT for a commercial purpose provided
the TOOLKIT is IN-USE on only one computer at any time and provided the TOOLKIT is not used on a
site-wide basis, or on a public or private network basis, via a server or other networked connection. If a
Commercial License is a deployment license for the redistributable runtime portion of TOOLKIT
(“PORTION”), then you may reproduce, display, or otherwise distribute and transfer, only as an integral
part of a LICENSEE product, the number of RUNTIMES for which a deployment license was provided.

2. EVALUATION LICENSE TELEMETRY DISCLAIMER

By using the TOOLKIT with an Evaluation License, you hereby agree to allow ACCUSOFT to collect and
monitor data about which of the TOOLKIT API calls you use and which of our sample programs you use.
We use this tracking information to determine which areas of the TOOLKIT are most (and least) popular
to improve our SDK capabilities and our samples in the future. The tracking information is anonymized in
such a way that neither ACCUSOFT nor anybody else can associate this information with you. Please
note that no usage data is collected for a licensed TOOLKIT.

3. REDISTRIBUTION OF TOOLKIT RUNTIMES

ACCUSOFT does not grant LICENSEE any rights to deploy, license, sell, reproduce, copy, install, lease,

mailto:sales@accusoft.com

 PICToolsand AIMTools™ Programmer’s Guide

53

timeshare, rent, or otherwise distribute or transfer TOOLKIT or any PORTION of TOOLKIT except as
provided in Section 1. GRANT OF AGREEMENT. For licensing information about any other distribution
of TOOLKIT or PORTION, please visit our web site (https://www.accusoft.com/licensing.htm), or contact
our sales staff. LICENSEE agrees to notify ACCUSOFT immediately of any violations or changes in
status regarding LICENSEE's compliance with any term of this AGREEMENT.

In the event that ACCUSOFT grants LICENSEE in a written, separate runtime license agreement
("RUNTIME AGREEMENT") a right to deploy, license, sell, reproduce, copy, install, lease, timeshare,
rent, or otherwise distribute or transfer PORTIONS, the RUNTIME AGREEMENT will specify what
PORTIONS may be distributed ("RUNTIME"). LICENSEE agrees to acknowledge and uphold the terms
and conditions of this AGREEMENT as well as the terms of the RUNTIME AGREEMENT itself, which will
be provided only in writing. In such event, LICENSEE may distribute RUNTIMES as part of the
LICENSEE's software application or derivative works ("PRODUCT") upon additionally agreeing to the
following:

a) LICENSEE understands and acknowledges that in order to receive any discounted pricing for
RUNTIME distribution licensing fees based on the type of installation, it must either: 1) prepay for a
number of RUNTIME licenses that is sufficient to qualify for ACCUSOFT's then-current published quantity
discount, or 2) it must pay for the licenses in accordance with a written contract between LICENSEE and
ACCUSOFT.

b) LICENSEE's PRODUCT shall not compete to any degree with the TOOLKIT. Such competitive
PRODUCTS are defined as software development toolkits that include similar functionality as TOOLKIT
and that are intended for use by software developers and/or system integrators.

c) LICENSEE's PRODUCT must be substantially greater in scope with greater functionality and features
than those of the TOOLKIT.

d) LICENSEE will not use ACCUSOFT's name, logo, or trademarks to market PRODUCT without prior
written approval of ACCUSOFT except LICENSEE will include a statement substantially similar to the
following within PRODUCT documentation and about box: "Portions of this product contain imaging and
other technology owned by Accusoft Corporation, Tampa, FL, (www.accusoft.com). ALL RIGHTS
RESERVED." See Section 21. THIRD PARTY NOTICES for additional requirements.

e) LICENSEE agrees to only distribute the RUNTIMES. No license or other rights are granted to
LICENSEE for any distribution of the TOOLKIT or PORTIONS including, but not limited to,
documentation, source code, or the RUNTIME distribution unlock codes.

g) LICENSEE will only distribute the RUNTIMES on the hardware and operating system(s) for which the
RUNTIMES are intended to be used according to the RUNTIME AGREEMENT.

If ANY of the terms of this AGREEMENT are not applicable to LICENSEE'S situation, or if any of the
terms of this AGREEMENT cannot be complied with, or if LICENSEE needs modifications to this
AGREEMENT or the license granted for any reason, LICENSEE must contact ACCUSOFT about
obtaining an expanded license from ACCUSOFT (available by phone at: 813-875-7575, by e-mail at:
sales@accusoft.com or by fax at: 813-875-7705).

This AGREEMENT grants rights to LICENSEE only for the TOOLKIT and does not convey any other
rights of any kind including, but not limited to, use or distribution of ACCUSOFT technology.

4. OWNERSHIP

LICENSEE acknowledges and agrees that ACCUSOFT owns all rights, title, and interest in the TOOLKIT,
in all forms, including without limitation any and all worldwide proprietary rights therein, including but not
limited to trademarks, copyrights, patent rights, patent continuations, trade secrets and confidential
information.

LICENSEE may not remove or alter the copyright notice from any copy of the TOOLKIT or any copy of
the written materials, accompanying the TOOLKIT.

LICENSEE waives its right to contest any of ACCUSOFT's patents, trademarks, service marks, trade

https://www.accusoft.com/licensing.htm
https://www.accusoft.com/
mailto:sales@accusoft.com

 PICToolsand AIMTools™ Programmer’s Guide

54

names, copyrights, and other intellectual property and proprietary rights in and to the TOOLKIT.

LICENSEE shall not use such trademarks, service marks, and trade names except where and as
permitted under this AGREEMENT without receiving ACCUSOFT's prior written approval of such use. If
such approval is granted, LICENSEE’s right to use such trademarks, service marks, and trade names
shall end upon the termination of this AGREEMENT.

5. RESTRICTIONS AND RESERVATIONS

All rights and licenses not expressly granted to LICENSEE are reserved to ACCUSOFT. LICENSEE is
strictly prohibited from reproducing, copying, marketing, selling, distributing, licensing, sublicensing,
leasing, timesharing, or renting the TOOLKIT or PORTION, and LICENSEE is strictly prohibited from any
use of the TOOLKIT or PORTION except as permitted by this AGREEMENT, and such actions are
expressly prohibited. LICENSEE is strictly prohibited from incorporating or including the TOOLKIT or
PORTION into or as part of any PRODUCT or service of LICENSEE except as provided by this
AGREEMENT, regardless of the functionality of TOOLKIT (or lack thereof) within or as part of such
PRODUCT or service of LICENSEE. LICENSEE shall not for any reason disassemble, decompile,
decrypt, or reverse engineer the TOOLKIT or PORTION or in any manner attempt to discover or
reproduce the source code or any other copyrightable, proprietary, or trade secret aspect of the TOOLKIT
or PORTION. Nor shall LICENSEE use the TOOLKIT or PORTION, directly or indirectly, in developing
LICENSEE's own PRODUCT with, or including, similar functionality. LICENSEE shall not make any
copies of the TOOLKIT or PORTION for any purpose whatsoever except as permitted by this
AGREEMENT. Source code that is provided with TOOLKIT for sample or demonstration purposes may
be used directly or indirectly in developing PRODUCT, however, it may not be distributed in source form
in whole or in part with or as part of PRODUCT.

6. WARRANTY DISCLAIMER

LICENSEE ACKNOWLEDGES AND AGREES THAT THE TOOLKIT IS PROVIDED "AS IS." ACCUSOFT
DISCLAIMS ANY AND ALL REPRESENTATIONS AND WARRANTIES OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND AGAINST INFRINGEMENT.

7. LIMITATION OF LIABILITY

ACCUSOFT SHALL HAVE NO LIABILITY TO LICENSEE, LICENSEE AFFILIATES, SUBSIDIARIES,
SHAREHOLDERS, OFFICERS, DIRECTORS, EMPLOYEES, REPRESENTATIVES, OR ANY THIRD
PARTY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, OR PRODUCTS LIABILITY, FOR ANY
CLAIM, LOSS, OR DAMAGE, INCLUDING BUT NOT LIMITED TO, LOST PROFITS, LOSS OF USE,
BUSINESS INTERRUPTION, LOST DATA, LOST FILES, OR FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVER ARISING
OUT OF OR IN CONNECTION WITH USE OF OR INABILITY TO USE THE TOOLKIT, OR THE
PERFORMANCE OR OPERATION OF THE TOOLKIT, EVEN IF ACCUSOFT HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

8. INDEMNIFICATION BY LICENSEE

LICENSEE SHALL INDEMNIFY, HOLD HARMLESS, AND DEFEND ACCUSOFT FOR ANY LOSS,
CLAIM, ACTION, OR PROCEEDING THAT ARISES OR RESULTS FROM ANY ACTIONS OR
OMISSIONS OF LICENSEE PERTAINING TO THE PRODUCT OR THE TOOLKIT AND FROM ANY
ACTIONS OF LICENSEE THAT ARE IN VIOLATION OF THIS AGREEMENT.

9. TERM AND TERMINATION

Unless otherwise agreed to by the parties, this AGREEMENT shall become effective upon the earlier of
LICENSEE's clicking of "I Accept" or LICENSEE'S installing or placing TOOLKIT IN-USE ("Effective
Date") and shall continue in full force and effect through Term or until terminated in accordance with the
terms set forth in this AGREEMENT.

 PICToolsand AIMTools™ Programmer’s Guide

55

Any material breach of this AGREEMENT shall automatically and immediately terminate this
AGREEMENT. In the event that LICENSEE ceases to do business or is adjudged bankrupt or insolvent,
ACCUSOFT may, at its sole option, terminate this AGREEMENT, by giving ten (10) Business Days
written notice of such termination, which notice shall identify and describe the basis for such termination.

In the event of any termination of this AGREEMENT, any RUNTIME AGREEMENT is simultaneously
terminated and LICENSEE shall stop using the TOOLKIT and PORTION, shall cease manufacturing the
PRODUCT containing TOOLKIT or PORTION, and shall cease distributing PRODUCT containing
TOOLKIT or PORTION. LICENSEE shall also require its resellers, OEMs, and other distribution channels
(if any) to likewise stop manufacturing and distributing the PRODUCT containing TOOLKIT or PORTION.
Within ten (10) Business Days thereafter, LICENSEE shall return or, at ACCUSOFT's option, destroy, the
TOOLKIT and all PORTIONS, whether or not incorporated in or with the PRODUCT, that are within
LICENSEE’s possession, custody, and control, and shall certify to ACCUSOFT in writing within ten (10)
Business Days after that return or destruction that it has complied with the foregoing obligation.

All sections except Section 1. GRANT OF LICENSE shall continue in full force and effect,
notwithstanding any termination of this AGREEMENT.

10. LIQUIDATED DAMAGES

In the event LICENSEE (a) copies the TOOLKIT or PORTION except as permitted by this AGREEMENT,
(b) uses the TOOLKIT or PORTION for any reason other than as permitted by this AGREEMENT, (c)
installs or uses the TOOLKIT or PORTION on more than a single computer, or (d) otherwise violates or
breaches this Agreement, LICENSEE agrees that ACCUSOFT is entitled to obtain as liquidated damages
and not as a penalty the greater of the amount of (v) the published quantity one distribution price based
upon the type of distribution; (w) $99 per each user of each PRODUCT or service of LICENSEE in which
the TOOLKIT or PORTION is included, copied, incorporated, embedded, or accessible; (x) $100 per
copy of TOOLKIT or PORTION; (y) $100 per copy of any PRODUCT in which TOOLKIT or PORTION is
included, copied, incorporated, embedded, or accessible; or (z) three percent (3%) of all revenues
realized by LICENSEE pertaining to any PRODUCTS or services of LICENSEE in which TOOLKIT or
PORTION is included, copied, incorporated, embedded, or accessible. THE LICENSEE EXPRESSLY
AGREES THAT THE FOREGOING LIQUIDATED DAMAGES ARE NOT A PENALTY.

11. CONFIDENTIALITY

LICENSEE acknowledges that the TOOLKIT contains ACCUSOFT know-how, confidential, and trade
secret information ("PROPRIETARY INFORMATION"). LICENSEE agrees: (a) to hold the
PROPRIETARY INFORMATION in the strictest confidence, (b) not to, directly or indirectly, copy,
reproduce, distribute, manufacture, duplicate, reveal, report, publish, disclose, cause to be disclosed, or
otherwise transfer the PROPRIETARY INFORMATION to any third party, (c) not to make use of the
PROPRIETARY INFORMATION other than as permitted by this AGREEMENT, and (d) to disclose the
PROPRIETARY INFORMATION only to LICENSEE's representatives requiring such material for effective
performance of this AGREEMENT and who have undertaken an obligation of confidentiality and limitation
of use consistent with this AGREEMENT. This obligation shall continue as long as allowed under
applicable law.

12. INJUNCTIVE RELIEF

LICENSEE agrees that any violation or threat of violation of this AGREEMENT will result in irreparable
harm to ACCUSOFT for which damages would be an inadequate remedy. Therefore, in addition to its
rights and remedies available at law (including but not limited to the recovery of damages for breach of
this AGREEMENT), ACCUSOFT shall be entitled to immediate injunctive relief to prevent any violation of
ACCUSOFT's copyright, trademark, trade secret rights regarding the TOOLKIT, or to prevent any
violation of this AGREEMENT, including, but not limited to, unauthorized use, copying, distribution or
disclosure of or regarding the TOOLKIT or PORTION, as well as any other equitable relief as the court
may deem proper under the circumstances.

13. NO REDUCED PRICING

 PICToolsand AIMTools™ Programmer’s Guide

56

In any determination of ACCUSOFT's damages (whether liquidated damages or actual damages), or any
determination of any licensing fees or royalties due ACCUSOFT under this AGREEMENT due to a breach
by LICENSEE hereunder, LICENSEE shall not be entitled to any discounts (volume or otherwise) or
reduced licensing fees or royalties. The foregoing sentence shall be applicable unless LICENSEE has
negotiated and entered into a written, signed agreement with ACCUSOFT for such reduced or discounted
licensing fees or royalties and paid ACCUSOFT such fees or royalties in advance of any: (a) distribution
of the TOOLKIT or PORTION, (b) copying of the TOOLKIT or PORTION, or (c) incorporation or use of the
TOOLKIT or PORTION in or pertaining to any PRODUCT or service of LICENSEE. Further, LICENSEE
agrees that it shall not be entitled to reduced licensing fees or royalties when determining ACCUSOFT's
damages due to any undertaking or activity by LICENSEE regarding the TOOLKIT or PORTION outside
of or exceeding the scope of permission or other terms of this AGREEMENT, or LICENSEE's actions
otherwise in violation of this AGREEMENT.

14. ATTORNEYS' FEES AND COSTS

In the event of any lawsuit or other proceeding brought as a result of any actual or alleged breach of this
AGREEMENT, to enforce any provisions of this AGREEMENT, or to enforce any intellectual property or
other rights in or pertaining to the TOOLKIT or PORTION, the prevailing party shall be entitled to an
award of its reasonable attorneys’ fees and costs, including the costs of any expert witnesses, incurred at
all levels of proceedings.

15. GOVERNING LAW

This AGREEMENT shall be construed, governed, and enforced in accordance with the laws of the State
of Florida, without regard to any conflicts of laws rules. Any action related to or arising out of this
AGREEMENT will be filed only in the Florida courts and LICENSEE consents to the exclusive jurisdiction
and venue of the state and federal courts located in Tampa, Florida.

16. SEVERABILITY

If any provision of this AGREEMENT is determined to be invalid by any court of final jurisdiction, then it
shall be omitted and the remainder of the AGREEMENT shall continue to be binding and enforceable. In
addition, the Court is hereby authorized to enforce any provision of the AGREEMENT that the Court
otherwise deems unenforceable, to whatever lesser extent the Court deems reasonable and appropriate,
rather than invalidating the entire provision. Without limiting the generality of the foregoing, LICENSEE
expressly agrees that should LICENSEE be found to have breached the AGREEMENT, under no
circumstances shall LICENSEE be entitled to any volume or other discount, or reduced licensing fee or
royalty in the determination of ACCUSOFT's damages, or otherwise in the determination of any licensing
fee or royalty owed to ACCUSOFT.

17. GOVERNMENT RIGHTS

The TOOLKIT and accompanying documentation have been developed at private expense and are sold
commercially. They are provided under any U.S. government contracts or subcontracts with the most
restricted and the most limited rights permitted by law and regulation. Whenever so permitted, the
government and any intermediaries will obtain only those rights specified in ACCUSOFT's standard
commercial license. Thus, the TOOLKIT referenced herein, and the documentation provided by Accusoft
hereunder, which are provided to any agency of the U.S. Government or U.S. Government contractor or
subcontractor at any tier shall be subject to the maximum restrictions on use as permitted by FAR 52.227-
19 (June 1987) or DFARS 227.7202-3(a) (Jan. 1, 2000) or successor regulations. Manufacturer is
Accusoft Corporation, 4001 N. Riverside Drive Tampa, FL 33603.

18. ENTIRE AGREEMENT

This AGREEMENT represents the entire understanding of the parties concerning the subject matter
hereof and supersedes all prior communications and agreements, whether oral or written, relating to the
subject matter of this AGREEMENT. Only a writing signed by the parties may modify this AGREEMENT.
In the event of any modification in writing of this AGREEMENT, including an expanded license
agreement, all sections of this Agreement survive except Section 1. Grant of License.

 PICToolsand AIMTools™ Programmer’s Guide

57

19. CONTACT US

Should you have any questions concerning this AGREEMENT, or if you desire to contact ACCUSOFT for
any reason, please contact ACCUSOFT at 1-813-875-7575.

20. OTHER RESTRICTIONS

a) This AGREEMENT shall not be amended, altered, changed, or modified in any way, unless agreed to
in writing by both ACCUSOFT and LICENSEE. Such writing must be executed by a duly authorized
representative of ACCUSOFT and a duly authorized representative of LICENSEE.

b) This AGREEMENT is not transferable or assignable by LICENSEE under any circumstances, without
the prior written consent of ACCUSOFT. ACCUSOFT will not unreasonably withhold such consent. This
AGREEMENT shall be binding upon, and is made for the benefit of, each party, its successors, and
permitted assignees (if any). For the purposes of this AGREEMENT, any change in control of LICENSEE
shall constitute an assignment or transfer of this AGREEMENT requiring prior written consent of
ACCUSOFT. As used in this section, a change in control is defined as (i) any change in ownership of
more than fifty percent (50%) of the voting interest in LICENSEE, whether by merger, purchase,
foreclosure of a security interest, or other transaction, or (ii) a sale of all or substantially all of the assets of
LICENSEE.

c) The relationship established by this AGREEMENT between LICENSEE and ACCUSOFT shall be that
of Licensee and Licensor. Nothing contained in this AGREEMENT shall be construed as creating a
relationship of agency, joint venture, or partnership between LICENSEE and ACCUSOFT. Neither party
shall have any right whatsoever to incur any liabilities or obligations on behalf of the other party.

d) ACCUSOFT's failure to perform any term or condition of this AGREEMENT as a result of conditions
beyond its control such as, but not limited to, war, strikes, fires, floods, acts of God, governmental
restrictions, power failures, or damage or destruction of any network facilities or servers, shall not be
deemed a breach of this AGREEMENT.

e) The headings provided in this AGREEMENT are for convenience and reference purposes only. In the
event of a conflict between the terms and conditions listed in this AGREEMENT, and any attached
Schedules or Appendices, the terms and conditions of this AGREEMENT shall govern.

f) A waiver of a breach, violation, or default under this AGREEMENT shall not be a waiver of any
subsequent breach, violation, or default. Failure of either party to enforce compliance with any term or
condition of this AGREEMENT shall not constitute a waiver by the party of such term or condition.

g) All notices and communications shall be in writing and shall be deemed to have been duly given the
earlier of when delivered or three (3) Business Days after mailing by certified mail, return receipt
requested, postage prepaid, or by international delivery service, addressed to the parties at their
respective addresses set forth on the Order Form or at such other addresses as the parties may
designate by written notice in accordance with this section.

21. THIRD PARTY NOTICES

a) ADOBE PDF TECHNOLOGY

Portions of the PDF functionality in the TOOLKIT may include Adobe Technology ("Adobe") licensed to
ACCUSOFT. If so, the term "TOOLKIT" as defined in the Agreement includes this technology licensed
from Adobe and related documentation, and any upgrades, modified versions, updates, additions, and
copies thereof.

FONT LICENSE: If the TOOLKIT includes font software, LICENSEE may embed the font software, or
outlines of the font software, into its Application to the extent that the font vendor copyright owner allows
for such embedding. The fonts contained in this package may contain both Adobe and non-Adobe owned
fonts. LICENSEE may fully embed any font owned by Adobe.

LIMITED WARRANTY

 PICToolsand AIMTools™ Programmer’s Guide

58

THE TERMS OF THIS AGREEMENT STATE THE SOLE AND EXCLUSIVE REMEDIES FOR
ACCUSOFT’S BREACH OF WARRANTY. EXCEPT FOR THE FOREGOING LIMITED WARRANTY,
ADOBE AND ITS SUPPLIERS MAKE NO WARRANTY, EXPRESS OR IMPLIED, AS TO
MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO
EVENT WILL ADOBE OR ITS SUPPLIERS BE LIABLE TO LICENSEE FOR ANY CONSEQUENTIAL,
INCIDENTAL OR SPECIAL DAMAGES, INCLUDING ANY LOST PROFITS OR LOST SAVINGS, EVEN
IF AN ADOBE REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES,
OR FOR ANY CLAIM BY ANY THIRD PARTY. Some states or jurisdictions do not allow the exclusion or
limitation of incidental, consequential or special damages, or the exclusion of implied warranties, or
limitations on how long an implied warranty may last, so the above limitations may not apply to
LICENSEE. In such states/countries and to the extent permissible, any implied warranties are limited to
thirty (30) days.

INTELLECTUAL PROPERTY.

The Adobe technology is the intellectual property of Adobe and is protected under trademarks, registered
trademarks, copyrights, and/or patents in the United States and/or other countries. ALL RIGHTS
RESERVED.

b) CAPTIVA ISIS TECHNOLOGY

Any ISIS functionality in the TOOLKIT is licensed to ACCUSOFT from Captiva Software, a division of
OpenText Corp. In that case, the term "TOOLKIT" as defined in the Agreement includes technology
licensed from Captiva and related documentation, and any upgrades, modified versions, updates,
additions, and copies thereof.

LIMITED WARRANTY

THE TERMS OF THIS AGREEMENT STATE THE SOLE AND EXCLUSIVE REMEDIES FOR
ACCUSOFT'S BREACH OF WARRANTY. EXCEPT FOR THE FOREGOING LIMITED WARRANTY,
CAPTIVA AND ITS SUPPLIERS MAKE NO WARRANTY, EXPRESS OR IMPLIED, AS TO
MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO
EVENT WILL CAPTIVA OR ITS SUPPLIERS BE LIABLE TO LICENSEE FOR ANY CONSEQUENTIAL,
INCIDENTAL OR SPECIAL DAMAGES, INCLUDING ANY LOST PROFITS OR LOST SAVINGS, EVEN
IF A CAPTIVA REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES,
OR FOR ANY CLAIM BY ANY THIRD PARTY. Some states or jurisdictions do not allow the exclusion or
limitation of incidental, consequential or special damages, or the exclusion of implied warranties, or
limitations on how long an implied warranty may last, so the above limitations may not apply to
LICENSEE. In such states/countries and to the extent permissible, any implied warranties are limited to
thirty (30) days.

INTELLECTUAL PROPERTY.

All ISIS technology is the intellectual property of Captiva and is protected under trademarks, registered
trademarks, copyrights, and/or patents in the United States and/or other countries. ALL RIGHTS
RESERVED.

Rev. 20191018

