

Add-in Express™ Regions
for Microsoft® Outlook and VSTO

 2 Add-in Express™
www.add-in-express.com

Add-in Express Regions for Outlook and VSTO Developer's Guide

Add-in Express Regions for Microsoft® Outlook and VSTO

Developer's Guide

Revised on 28-Apr-17

Copyright © Add-in Express Ltd. All rights reserved.

Add-in Express, ADX Extensions, ADX Toolbar Controls, Afalina, AfalinaSoft and Afalina Software are trademarks or registered trademarks of Add-in Express

Ltd. in the United States and/or other countries. Microsoft, Outlook, and the Office logo are trademarks or registered trademarks of Microsoft Corporation in the

United States and/or other countries. Borland and the Delphi logo are trademarks or registered trademarks of Borland Corporation in the United States and/or

other countries.

THIS SOFTWARE IS PROVIDED "AS IS" AND ADD-IN EXPRESS LTD. MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY

WAY OF EXAMPLE, BUT NOT LIMITATION, ADD-IN EXPRESS LTD. MAKES NO REPRESENTATIONS OR WARRANTIES OF MERCHANTABILITY OR

FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE, DATABASE OR DOCUMENTATION WILL NOT

INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

 3 Add-in Express™
www.add-in-express.com

Add-in Express Regions for Outlook and VSTO Table of Contents

Table of Contents

Add-in Express Regions for Microsoft® Outlook and VSTO 2

Introduction ... 5

Technical Support ... 6

Installing and Activating ... 6
Activation Basics .. 6
Setup Package Contents ... 7
Redistributables ... 7
Solving Installation Problems ... 7

Other Add-in Express Products ... 8

Getting Started ... 9

Terms and Definitions ... 10

You First Advanced Outlook Region ... 11
Adding an Advanced Outlook Form Region Class ... 11
Checking the Project .. 15
Configuring the Form Region ... 16
Programming with Advanced Regions ... 18
Running the Add-in .. 23
Deploying the Region .. 24
What's Next? ... 24

Advanced Outlook Form and View Regions 25

Outlook view regions .. 26

Outlook form regions .. 30

The UI Mechanics ... 32

Region States and UI-related Properties and Events .. 33

The Header and the Close Button .. 34

Showing/Hiding Form Instances Programmatically .. 35

Accessing Instances of Your Form Region .. 36
ADXOlFormsCollectionItem.GetForm().. 36
ADXOlFormsCollectionItem.GetCurrentForm() .. 36
ADOlFormsCollectionItem.FormInstances() .. 36

 4 Add-in Express™
www.add-in-express.com

Add-in Express Regions for Outlook and VSTO Table of Contents

From a Form Instance to the Outlook Object Model .. 37

Resizing the Form ... 38

Drag-n-Drop and Advanced Form Regions .. 38

Coloring up the Form .. 39

Tuning the Settings at Run-Time ... 39

Context-Sensitivity of Your Outlook Form .. 39

Caching Forms .. 40

WebViewPane .. 40

Tips and Notes ... 41

Is It Inspector or Explorer? ... 41

Useful Links ... 41

Reset Regions .. 41

Identifying Outlook Windows ... 41

Finally ... 42

 5 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET Introduction

Introduction

Add-in Express Regions for Microsoft® Outlook and VSTO supports creating custom

panes in VSTO-based Outlook add-in projects in Visual Studio.

 6 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET Installing and Activating

Technical Support

Add-in Express Regions for Outlook and VSTO is developed and supported by the Add-in Express Team, a

branch of Add-in Express Ltd. The Add-in Express web site at www.add-in-express.com provides a wealth of

information and software downloads for Add-in Express developers, including:

• Our technical blog provides the most recent information as well as How To and Video How To samples.

• The HOWTOs section contains sample projects answering most common "how to" questions.

For technical support through the Internet use our forums or e-mail us at support@add-in-express.com. We are

actively participating in these forums.

If you are a subscriber of our Premium Support Service and need help immediately, you can request technical

support via an instant messenger, e.g. Windows/MSN Messenger or Skype.

Installing and Activating

There are two main points in the installation. First off, you have to specify the development environments in

which you are going to use Add-in Express. Second, you need to activate the product.

Activation Basics

During the activation process, the activation wizard prompts you to enter your license key. The key is a 30-

character alphanumeric code shown in six groups of five characters each (for example, AXN4M-GBFTK-3UN78-

MKF8G-T8GTY-NQS8R). Keep the license key in a safe location and do not share it with others. This license

key forms the basis for your ability to use the software.

For purposes of product activation only, a non-unique hardware identifier is created from general information that

is included in the system components. At no time are files on the hard drive scanned, nor is personally

identifiable information of any kind used to create the hardware identifier. Product activation is completely

anonymous. To ensure your privacy, the hardware identifier is created by what is known as a "one-way hash".

To produce a one-way hash, information is processed through an algorithm to create a new alphanumeric string.

It is impossible to calculate the original information from the resulting string.

Your license key and a hardware identifier are the only pieces of information required to activate the

product. No other information is collected from your PC or sent to the activation server.

If you choose the Automatic Activation option of the activation wizard, the wizard attempts to establish an online

connection to the activation server, www.activatenow.com . If the connection is established, the wizard sends

both the license key and the hardware identifier over the Internet. The activation service generates an activation

code using this information and sends it back to the activation wizard. The wizard saves the activation code to

the registry.

If an online connection cannot be established (or you choose the Manual Activation option), you can activate the

software using your web-browser. In this case, you will be prompted to enter the license key and a hardware

http://www.add-in-express.com/
http://www.add-in-express.com/creating-addins-blog/
http://www.add-in-express.com/creating-addins-blog/cat/howto-samples/
http://www.add-in-express.com/creating-addins-blog/cat/video-howto-samples/
http://www.add-in-express.com/support/add-in-express-howto.php
http://www.add-in-express.com/forum/
mailto:support@add-in-express.com
http://www.activatenow.com/

 7 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET Installing and Activating

identifier on a web page, and you will get an activation code. This process finishes with saving the activation

code to the registry.

Activation is completely anonymous; no personally identifiable information is required. The activation code can

be used to activate the product on that computer an unlimited number of times. However, if you need to install

the product on several computers, you will need to perform the activation process again on every PC. Please

refer to your end-user license agreement for information about the number of computers you can install the

software on.

Setup Package Contents

The setup program installs the following folders on your PC:

• Bin – binary files

• Docs – documentation including class reference

• Images – icons

• Demo Projects – a sample project (available in C# and VB.NET)

• Sources – source code (if the package includes it)

The setup program installs the following text files on your PC:

• licence.txt – EULA

• readme.txt – a short description of the product, support addresses and such

• whatsnew.txt – this file contains the latest information on the product features added and bugs fixed.

Redistributables

The only redistributable file is located in {Add-in Express}\Bin. Its name is AddinExpress.Outlook.Regions.dll.

Solving Installation Problems

Make sure you are an administrator on the PC. On Vista, Windows 7 and Windows 2008 Server, set UAC to its

default level. In Control Panel | System | Advanced | Performance | Settings | Data Execution Prevention, set the

... for essential Windows programs and services only flag. Remove the following registry key, if it exists:

HKEY_CURRENT_USER\Software\Add-in Express\{product identifier} {version} {package}

Run setup.exe, not the *.MSI. Finally, use the Automatic activation option in the installer windows.

 8 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET Other Add-in Express Products

Other Add-in Express Products

Add-in Express provides a number of products for developers on its web site.

• Add-in Express for Microsoft Office and .NET

It simplifies the creation and deployment of version-neutral managed COM add-ins, smart tags, Excel

Automation add-ins, XLL add-ins and RTD servers in Visual Studio 2010-2017 for Office 2000-2016 (without

VSTO). See http://www.add-in-express.com/add-in-net/.

• Add-in Express for Microsoft Office and CodeGear VCL

It allows creating fast version-neutral native-code COM add-ins, smart tags, Excel automation add-ins, and RTD

servers in Delphi. See http://www.add-in-express.com/add-in-delphi/.

• Add-in Express for Internet Explorer and .NET

It allows developing add-ons for IE 6, 7, 8, 9, 10 and 11 in .NET. Custom toolbars, sidebars and BHOs are

already on board. See http://www.add-in-express.com/programming-internet-explorer/.

• Security Manager for Microsoft Outlook

This is a product designed for Outlook solution developers. It allows controlling the Outlook e-mail security guard

by turning it off and on in order to suppress unwanted Outlook security warnings. See http://www.add-in-

express.com/outlook-security/.

http://www.add-in-express.com/add-in-net/
http://www.add-in-express.com/add-in-delphi/
http://www.add-in-express.com/programming-internet-explorer/
http://www.add-in-express.com/outlook-security/
http://www.add-in-express.com/outlook-security/

 9 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET Getting Started

Getting Started

Here we guide you through the following steps of developing Add-in Express projects:

• Adding an Advanced Outlook Form Region Class to the project

• Configuring the Advanced Form Region

• Deploying your project to a target PC

 10 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET Terms and Definitions

Terms and Definitions

In Add-in Express terms, an advanced Outlook region is a sub-pane, or a dock, of Outlook windows that may

host native .NET forms. There are two types of the advanced regions – Outlook view regions (sub-panes of the

Outlook Explorer window) and Outlook form regions (sub-panes of the Outlook Inspector window).

An advanced form region is a descendant of System.Windows.Forms.Form, which is extended by the Add-in

Express team to comply with Outlook windowing rules.

You never create an instance of a form region in the way you create an instance of a Windows form.

Instead, there is a manager class providing a collection, which you populate at design-time or run-time or

both. Each item of the collection binds an advanced form region to the visualization and context settings

(such as Outlook item types for which your region will be shown). And it is the forms manager that

creates instances of the form region automatically or at your request.

The terms above are translated into class names as below; the class names are located in the

AddinExpress.OL namespace provided by AddinExpress.Outlook.Regions.dll (redistributable):

• Advanced Form Region – ADXOlForm

• Manager – ADXOlFormsManager

• Collection – ADXOlFormsCollection

• Collection item – ADXOlFormsCollectionItem

The Visible property of a form region instance is true when the instance is embedded into a window region

(as specified by the visualization settings) regardless of the actual visibility of the instance.

The Active property of the form region instance is true when the instance is shown on top of all other

instances in the same region.

 11 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET You First Advanced Outlook Region

You First Advanced Outlook Region

Adding an Advanced Outlook Form Region Class

So, you start with adding an advanced form region class to your Outlook add-in project. Open the Add New Item

dialog of your VSTO project and select the Add-in Express node.

Clicking Add starts a three-step wizard. Let's see how to use it.

 12 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET You First Advanced Outlook Region

On step #1, you choose a value from the Explorer Layout dropdown list to specify how your form will be shown

in the Outlook Explorer window. The values available in the dropdown list are described in Advanced Outlook

Form and View Regions. Leaving the Explorer Layout set to Unknown (the default value) means that your form

will not be shown in the Outlook Explorer.

Specifying the layout is not enough, however. To have instances of the form displayed, you also need to set at

least one of the three context-sensitivity properties – ExplorerItemTypes, ExplorerMessageClass or

FolderNames. You use these properties to specify folders for which your form (or rather an instance of your

form) will be shown. The properties refer to the properties of the Outlook.Folder (Outlook.MAPIFolder)

class that specify the default item type and default message class for items in the folder.

At run-time, different [sets of] folders may correspond to the values chosen in the Explorer Item Types and

Explorer Message Class. In this case, your form will be shown for all of the folders specified by these settings.

This happens because all context-sensitive properties are calculated using Boolean OR, not AND.

Step #1 of the wizard provides the Explorer Item Types and Explorer Message Class controls (you set folders on

step #3). In this sample project, you choose RightSubpane in the Explorer Layout dropdown and check MailItem

and ContactItem in the Explorer Item Types list box. Now click Next.

On step #2, you specify how the form is shown on Outlook Inspector windows in the very similar fashion.

 13 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET You First Advanced Outlook Region

That is, you choose a value in the Inspector Layout dropdown list (see Advanced Outlook Form and View

Regions for reference). Leaving the Inspector Layout set to its default value means your form will not be shown

in the Outlook Inspector.

The Inspector Item Types, Inspector Message Class and Inspector Mode controls refer to the properties of the

Outlook item shown in an Outlook Inspector; the properties define the message class and item type of the item.

Please check Context-Sensitivity of Your Outlook Form.

Choosing any value in the Inspector Item Type Note guarantees that your form will be displayed for all

inspectors showing items of the specified type(s). Similarly, specifying any particular message class guarantees

that your form will be displayed for all inspectors showing items of the specified message class. This is due to

the fact that all context-sensitive properties are calculated using Boolean OR, not AND.

In this sample, you choose the Inspector.Right layout and Mail and Contact item types. Click Next.

On step #3, you set up the features listed below:

 14 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET You First Advanced Outlook Region

• Default region state - You choose between normal (default), minimized and hidden states; this property

works only if the Add-in Express Regions were not run. You can reproduce this situation by choosing Reset

Regions in the context menu of the form's designer surface.

• Splitter - You choose between two values: Standard – the end-user is able to resize the form and the

developer is not; another value is None – the end-user cannot resize the form and the developer is able to

resize it programmatically.

• Always show header - This option helps to handle only one scenario: if the default value is chosen, the

header for your form region will not be shown if the form is the only form shown in the given layout. In

other words, if this option is set, the header for your form region will be shown even if the form is the only

form in the given layout.

• Close button - This option determines if the Close button is shown in the header (naturally, if the header is

shown).

• Allow drag-n-drop - If this is set to false, the end-user cannot move the form to another location. If it is set to

true, the end-user can drag the form to a location specified in the ExplorerAllowedDropRegions and

InspectorAllowedDropRegions properties of the ADXOlFormsCollectionItem.

 15 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET You First Advanced Outlook Region

• Allow the hidden state - If set to false, the user cannot hide the form by clicking on the "dotted" mini-button or

by double-clicking anywhere else on the splitter; nevertheless, you can do this programmatically; see also

Region States and UI-related Properties and Events.

• Allow the normal state - If set to false, the form will be shown in the minimized state; the user will be able to

expand it as described in Region States and UI-related Properties and Events.

• Allow the minimized state - If set to true, the form can be shown reduced to the size of the form's caption (the

minimized state); see also Region States and UI-related Properties and Events.

• Use the Office theme for the background - if set to true, the background color of your form is set to match the

current theme in Office 2007-2016.

• Folder names - If you chose to show your form in any given Explorer layout, specifying the full path to a

folder(s) guarantees that your form region will be shown when you navigate to the folder(s) in the Outlook

UI. Similarly, if you design your form to show up in any Inspector layout, specifying a folder(s) guarantees

that the form region will be shown for all Outlook items you open in that folder(s). An example of the folder

path is "\\Personal Folders\Inbox". See also Conte

xt-Sensitivity of Your Outlook Form.

Set the Always show header and Close button options and click Finish.

The wizard allows populating the most often used properties.

The detailed information on how to use all available properties

is provided in The UI Mechanics.

Checking the Project

The wizard adds the following items to your project:

• AddinExpress.Outlook.Regions.dll to the Reference section,

• the advanced region, which is ADXOlForm1.vb in this case,

• FormsManager.vb (FormsManager.cs) code file.

Don't rename FormsManager.vb (FormsManager.cs)!

Also, initialization and finalization calls for the forms manager are added to ThisAddin.vb (ThisAddin.cs).

Public Class ThisAddIn

 16 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET You First Advanced Outlook Region

 Private Sub ThisAddIn_Startup() Handles Me.Startup

 ' <auto-generated>

 ' Add-in Express Regions generated code - do not modify

 Me.FormsManager = AddinExpress.OL.ADXOlFormsManager.CurrentInstance

 Me.FormsManager.Initialize(Me)

 ' </auto-generated>

 End Sub

 Private Sub ThisAddIn_Shutdown() Handles Me.Shutdown

 ' <auto-generated>

 ' Add-in Express Regions generated code - do not modify

 Me.FormsManager.Finalize(Me)

 ' </auto-generated>

 End Sub

End Class

The FormsManager mentioned in the code above is declared in FormsManager.vb. Let's study its code.

Configuring the Form Region

Open FormsManager.vb (FormsManager.cs); it extends ThisAddIn with the following code:

Imports AddinExpress.OL

Partial Public Class ThisAddIn

 Public WithEvents FormsManager As ADXOlFormsManager = Nothing

 ''' <summary>

 ''' Use this event to initialize regions and connect

 ''' to the events of ADXOlFormsManager

 ''' </summary>

 Private Sub FormsManager_OnInitialize() Handles FormsManager.OnInitialize

 '<ADXOlForm1>

 ' TODO: Use the ADXOlForm1Item properties to configure the region's

 ' location, appearance and behavior.

 ' See the "The UI Mechanics" chapter of the Add-in Express Developer's

 ' Guide for more information.

 Dim ADXOlForm1Item As ADXOlFormsCollectionItem = _

 New AddinExpress.OL.ADXOlFormsCollectionItem()

 ADXOlForm1Item.ExplorerLayout = ADXOlExplorerLayout.RightSubpane

 ADXOlForm1Item.ExplorerItemTypes = ADXOlExplorerItemTypes.olMailItem _

 Or ADXOlExplorerItemTypes.olContactItem

 ADXOlForm1Item.InspectorLayout = ADXOlInspectorLayout.RightSubpane

 17 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET You First Advanced Outlook Region

 ADXOlForm1Item.InspectorItemTypes = ADXOlInspectorItemTypes.olMail _

 Or ADXOlInspectorItemTypes.olContact

 ADXOlForm1Item.AlwaysShowHeader = True

 ADXOlForm1Item.CloseButton = True

 ADXOlForm1Item.UseOfficeThemeForBackground = True

 ADXOlForm1Item.FormClassName = GetType(ADXOlForm1).FullName

 Me.FormsManager.Items.Add(ADXOlForm1Item)

 '</ADXOlForm1>

 End Sub

#Region "RequestService"

 ''' <summary>

 ''' Required method for DockRight, DockLeft, DockTop and

 ''' DockBottom layout support.

 ''' </summary>

 Protected Overrides Function RequestService(ByVal serviceGuid As Guid) _

 As Object

 If serviceGuid = GetType(Office.ICustomTaskPaneConsumer).GUID Then

 Return AddinExpress.OL.CTPFactoryGettingTaskPane.Instance

 End If

 Return MyBase.RequestService(serviceGuid)

 End Function

#End Region

End Class

The code above consists of three parts:

• The declaration of the forms manager object, see FormsManager.

• The FormsManager_OnInitialize method, which is the event handler for the OnInitialize event of

the forms manager. You use this method to configure advanced regions; say you can fill the FolderName

(FolderNames) property of ADXOlFomsCollectionItem with actual values in that method. In the code above,

you see how settings specified in the wizard are mapped to the properties of ADXOlForm1Item, which

binds the name of the form region class, ADXOlForm1, together with the visualization and context-

sensitivity settings specified, for example, in the ExplorerItemTypes property above; please check

Context-Sensitivity of Your Outlook Form.

• The RequestService method, which is required if you use "Dock*" Explorer layouts (see Outlook view

regions).

Don't rename the FormsManager property and FormsManager_OnInitialize method!

 18 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET You First Advanced Outlook Region

Programming with Advanced Regions

In this sample project, we add a button (Button1) and label (Label1) onto the form.

Is It Inspector or Explorer?

Add an event handler for the Load event of the form and write the following code:

Public Class ADXOlForm1

...

 Private Sub ADXOlForm1_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 If Me.InspectorObj Is Nothing Then Me.Button1.Visible = False

 If Me.ExplorerObj Is Nothing Then Me.Label1.Visible = False

 End Sub

The code above demonstrates the base principle:

• if ADXOlForm.InspectorObj returns a value other than Nothing (null in C#), then the form is shown in

an Outlook Inspector window;

• similarly, if ADXOlForm.ExplorerObj returns a value other than Nothing (null in C#), then the form is

shown in an Outlook Explorer window.

InspectorObj and ExplorerObj properties return COM objects that you must never release in your code

because their state is crucial for the functionality of your advanced region. These properties will be released

automatically when your form is removed from its region. This may occur several times during the lifetime of a

given form instance because the manager may remove your form from a given region and then embed the form

to the same region in order to comply with the Outlook windowing.

Accessing ThisAddIn from the Form

We suggest adding a Shared (static in C#) member in ThisAddIn. In this sample, we use the code below:

Public Class ThisAddIn

 Public Shared AddinInstance As ThisAddIn

 Private Sub ThisAddIn_Startup() Handles Me.Startup

 ' <auto-generated>

 ' Add-in Express Regions generated code - do not modify

 Me.FormsManager = AddinExpress.OL.ADXOlFormsManager.CurrentInstance

 19 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET You First Advanced Outlook Region

 Me.FormsManager.Initialize(Me)

 ' </auto-generated>

 ThisAddIn.AddinInstance = Me

 End Sub

...

End Class

The use of AddinInstance is demonstrated below.

Accessing the Outlook Object Model

Add the following to the Click event handler of the button:

Imports System.Windows.Forms

Public Class ADXOlForm1

...

 Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

 MessageBox.Show(ThisAddIn.AddinInstance. _

 GetSubject(TryCast(Me.InspectorObj, Outlook.Inspector)))

 End Sub

And in ThisAddIn, add methods that deal with the Outlook object model:

Imports System.Runtime.InteropServices

Public Class ThisAddIn

...

 Public Function GetSubject(ByVal anInspector As Outlook.Inspector) As String

 Dim result As String = ""

 If anInspector Is Nothing Then

 Throw New Exception("The parameter must be an Outlook.Inspector.")

 result = "undefined"

 Else

 Dim item As Object = anInspector.CurrentItem

 result = GetSubject(item)

 Me.ReleaseComObject(item)

 item = Nothing

 End If

 ' The caller is responsible for releasing anInspector (a COM object)

 Return result

 End Function

 20 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET You First Advanced Outlook Region

 Private Function GetSubject(ByVal OutlookItem As Object) As String

 Dim result As String = ""

 If Not TypeOf OutlookItem Is Outlook.MailItem Then

 result = "This is not an e-mail."

 Else

 Dim mail As Outlook.MailItem = TryCast(OutlookItem, Outlook.MailItem)

 Try

 result = mail.Subject

 If result = "" Then result = "(no subject)"

 Catch ex As Exception

 result = "Exception: " + ex.Message

 End Try

 End If

 ' The caller is responsible for releasing OutlookItem (a COM object)

 Return result

 End Function

Note that the COM object standing for the Outlook Inspector is not released in the code above; that's because

that COM object is controlled by the forms manager and it must not be released in your code (see below).

Releasing COM Objects – a must in Outlook Add-ins

A comprehensive review of typical problems (and solutions) related to releasing COM objects in Office add-ins is

given in an article published on the Add-in Express technical blog – When to release COM objects in Office add-

ins?.

Below are some useful tips.

Pay attention that Inspector.CurrentItem returns an Object (with an underlying RCW pointing to the COM

object) and passing the Object to another method as well as casting it to Outlook.MailItem doesn't

produce new COM objects (doesn't increase the reference counter).

Passing Nothing (null in C#) to ReleaseComObject produces an exception. Passing a non-COM object to

ReleaseComObject produces an exception, too. These situations are handled by the following method that

you add to ThisAddIn:

Public Class ThisAddIn

...

 Private Sub ReleaseComObject(ByVal obj As Object)

 If obj IsNot Nothing Then

 If Marshal.IsComObject(obj) Then

 Marshal.ReleaseComObject(obj)

 End If

 End If

http://www.add-in-express.com/creating-addins-blog/
http://www.add-in-express.com/creating-addins-blog/2008/10/30/releasing-office-objects-net/
http://www.add-in-express.com/creating-addins-blog/2008/10/30/releasing-office-objects-net/

 21 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET You First Advanced Outlook Region

 End Sub

You can also get the "COM object that has been separated from its underlying RCW cannot be used" exception

if you pass a variable to ReleaseComObject and then use the variable in your code. We recommend assigning

Nothing (null in C#) to all released variables.

The functionality provided by Add-in Express Regions for Outlook and VSTO is based on the combined use of

the Outlook windowing and features provided by the Outlook object model. These two areas are essentially

different and keeping objects from these areas in sync requires significant efforts. Some difficulties are

impossible to overcome. One of them is born by the need to control the state of COM objects provided by in

properties and events of Add-in Express Regions: releasing any of such objects may lead to a run-time

exception.

Do not release any COM objects you acquire in the properties and events of ADXOlFormsManager and

ADXOlForm. On the contrary, release every COM object you create in your code.

Dealing with Outlook Events

Let's handle the SelectionChange event provided by the Outlook.Explorer object.

Public Class ThisAddIn

 Private WithEvents theExplorer As Outlook.Explorer

...

 Private Sub ThisAddIn_Startup() Handles Me.Startup

...

 theExplorer = Me.Application.ActiveExplorer()

...

 End Sub

 Private Sub DoExplorerSelectionChange() Handles theExplorer.SelectionChange

 Dim result As String = GetSubject(theExplorer)

 'TODO: show the subject on the form

 End Sub

 Public Function GetSubject(anExplorer As Outlook.Explorer) As String

 Dim selection As Outlook.Selection = Nothing

 Try

 selection = anExplorer.Selection

 Catch

 ' Skip an exception that occurs if the current

 ' Outlook folder is one of the following types:

 ' - a top-level folder e.g Personal Folders,

 ' - RSS Feeds, etc.

 22 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET You First Advanced Outlook Region

 End Try

 Dim result As String = ""

 If selection Is Nothing Then

 result = "This is a top-level folder. It contains no items."

 Else

 Try

 If selection.Count = 0 Then

 result = "The current folder contains no items."

 Else

 Dim item As Object = selection.Item(1)

 result = GetSubject(item)

 Me.ReleaseComObject(item)

 item = Nothing

 End If

 Finally

 Me.ReleaseComObject(selection)

 selection = Nothing

 End Try

 End If

 Return result

 End Function

 Private Sub DoExplorerClose() Handles theExplorer.Close

 Me.ReleaseComObject(theExplorer)

 theExplorer = Nothing

 End Sub

...

End Class

The DoExplorerClose method demonstrates how you disconnect from events provided by a COM object.

Accessing the Form from ThisAddIn

You get a collection item and call the GetCurrentForm method. That method provides a parameter the

possible values of which address to the Visible and Active properties of ADXOlForm.

The Visible property of a form region instance is true when the instance is embedded into a window

region (as specified by the visualization settings) regardless of the actual visibility of the instance.

The Active property of the form region instance is true when the instance is shown on top of all other

instances in the same region.

 23 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET You First Advanced Outlook Region

The code is shown below:

 Public Sub OnAction(control As IRibbonControl)

 Dim result As String = GetSubject()

 Dim form As ADXOlForm1 = _

 TryCast(FormsManager.Items(0).GetCurrentForm(_

 AddinExpress.OL.EmbeddedFormStates.Visible), ADXOlForm1)

 If form IsNot Nothing Then form.SelectedItemSubject = result

 End Sub

The code refers to the SelectedItemSubject property defined in ADXOlForm1; the code of the property is

omitted for brevity – it just assigns the string to Label1.Text.

Running the Add-in

Press {F5} to get a result similar to what is shown on the screenshots below:

 24 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET You First Advanced Outlook Region

Deploying the Region

Make sure your setup project delivers AddinExpress.Outlook.Regions.dll to the target PC.

There's also an optional DLL - intResource.dll (intResource64.dll). It ensures the compatibility between various

Add-in Express based add-ins. If it is not available in the add-in folder, it gets unpacked it to the Temporary Files

folder and loaded into the host application.

What's Next?

Please refer yourself to Advanced Outlook Form and View Regions and The UI Mechanics below.

 25 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET Advanced Outlook Form and View Regions

Advanced Outlook Form and View Regions

Outlook view regions are specified in the ExplorerLayout property of the item (=

ADXOlFormsCollectionItem). Outlook form regions are specified in the

InspectorLayout property of the item. That is, one ADXOlFormsCollectionItem

may show your form in a view and form region. Note that you must also specify the

ExplorerItemTypes and/or InspectorItemTypes properties of the item;

otherwise, the form (an instance of ADXOlForm) will never be shown.

 26 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET Outlook view regions

Outlook view regions

In Add-in Express terms, an advanced Outlook region is a sub-pane, or a dock, of Outlook windows that may

host native .NET forms. There are two types of the advanced regions – Outlook view regions (sub-panes on the

Outlook Explorer window) and Outlook form regions (sub-panes of the Outlook Inspector window).

Outlook view regions are specified in the ExplorerLayout property of the item (=

ADXOlFormsCollectionItem). Outlook form regions are specified in the InspectorLayout property of the

item. That is, one ADXOlFormsCollectionItem may show your form in a view and form region. Note that you

must also specify the item's ExplorerItemTypes and/or InspectorItemTypes properties; otherwise, the

form (an instance of ADXOlForm) will never be shown.

Here is the list of Outlook view regions:

• Four regions around the list of mails, tasks, contacts etc. The region names are LeftSubpane,

TopSubpane, RightSubpane, BottomSubpane (see the screenshot below). A restriction: those regions

are not available for Calendar folders in Outlook 2010-2016.

• One region below the Navigation Pane – BottomNavigationPane (see the screenshot below)

• One region below the To-Do Bar – BottomTodoBar (see the screenshot below). A restriction: this region

is not available in Outlook 2013-2016.

 27 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET Outlook view regions

• Four regions around the Explorer window (Outlook 2007-2016) – DockLeft, DockTop, DockRight,

DockBottom (see the screenshot below). The restrictions of these regions are:

1. The Hidden region state is not supported for docked regions

2. Docked panes have limitations on the minimum height or width

•

 28 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET Outlook view regions

• Four regions around the Reading Pane – LeftReadingPane, TopReadingPane, RightReadingPane,

BottomReadingPane (see the screenshot below)

• The WebViewPane region (see the screenshot below). Note that it uses Outlook properties in order to

replace the items grid with your form (see also WebViewPane).

 29 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET Outlook view regions

• The FolderView region (see two screenshots below). Unlike WebViewPane, it allows the user to switch

between the original Outlook view and your form. A restriction: this region is not available for Calendar

folders in Outlook 2010-2016.

• The ReadingPane region (see two screenshots above)

 30 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET Outlook form regions

Outlook form regions

And here is the list of Outlook form regions:

• Four regions around the body of an e-mail, task, contact, etc. The region names are LeftSubpane,

TopSubpane, RightSubpane, BottomSubpane (see the screenshot below)

• The InspectorRegion region (see two screenshots below) allows switching between your form and the

Outlook inspector pane.

 31 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET Outlook form regions

• The CompleteReplacement inspector region shown in the screenshot below is similar to the

InspectorRegion with two significant differences: a) it doesn't show the header and in this way, it doesn't

allow switching between your form and the Outlook inspector pane and b) it is activated automatically.

 32 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET The UI Mechanics

The UI Mechanics

A lot of useful information on the UI and programming interfaces that Advanced Outlook

Form and View Regions provide.

 33 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET Region States and UI-related Properties and Events

Region States and UI-related Properties and Events

As mentioned in Terms and Definitions, the manager creates instances of the form region. An instance of the

form region class (further on the instance is referenced as form) is considered visible if it is embedded into the

specified sub-pane of an Outlook window. Note that the form may be actually invisible either due to the region

state (see below) or because other forms in the same sub-pane hide it; anyway, in this case,

ADXOlForm.Visible returns true. To prevent embedding the form into a sub-pane, you can set

ADXOlForm.Visible to false in the event named ADXBeforeFormShow. When the form is shown in a sub-

pane, the Activated event occurs and ADXOlForm.Active becomes true. When the user moves the focus

onto the form, the ADXOlForm generates the ADXEnter event. When the form loses focus, the ADXLeave

event occurs. When the form becomes invisible (actually), it generates the Deactivate event. When the

manager removes the form from its sub-pane, ADXOlForm.Visible becomes false and the form generates

the ADXAfterFormHide event.

In accordance to the value that you specify for the DefaultRegionState property of the item, the form may be

initially shown in any of the following region states: Normal, Hidden (collapsed to a 5px wide strip), Minimized

(reduced to the size of the form caption).

Note however that DefaultRegionState will work only when you show the form in a particular sub-pane for

the very first time and no other forms have been shown in that sub-pane before. You can reproduce this situation

on your PC by choosing Reset Regions in the context menu of the form's designer surface.

You can change the state of your form at run-time using the ADXOlForm.RegionState property. When

showing your form in certain sub-panes, you may need to show the native Outlook view or form that your form

overlays; use the ADXOlForm.ActivateStandardPane() method.

When the region is in the hidden state, i.e. when it is collapsed to a 5px wide strip, the user can click on the

splitter and the region will be restored (it will go to the normal state).

When the region is in the normal state, the user can choose any of the options below:

• change the region size by dragging the splitter; this raises size-related events of the form

• hide the form by clicking on the "dotted" mini-button or by double-clicking anywhere on the splitter; this fires

the Deactivate event of the ADXOlForm; this option is not available for the end-user if you set

ADXOlFormsCollectionItem.IsHiddenStateAllowed = False

 34 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET The Header and the Close Button

• close the form by clicking on the Close button in the form header; this fires the ADXCloseButtonClick

event of the ADXOlForm. The event is cancellable (see The Header and the Close Button); if the event

isn't cancelled, the Deactivate event occurs, then the pane is being removed from the region

(ADXOlForm.Visible = false) and finally, the ADXAfterFormHide event of the ADXOlForm occurs

• show another form by clicking the header and choosing an appropriate item in the popup menu; this fires the

Deactivate event on the first form and the Activated event on the second form

• transfer the region to the minimized state by clicking the arrow in the right corner of the form header; this

fires the Deactivate event of the form.

When the region is in the minimized state, the user can choose any of the three options below:

• restore the region to the normal state by clicking the arrow at the top of the slim profile of the form region;

this raises the Activated event of the form and changes the

Active property of the form to true

• expand the form itself by clicking on the form's button; this opens the

form so that it overlays a part of the Office application's window near

the form region (see the figure at the right); this also raises the

Activated event of the form and sets the Active property of the

form to true.

• drag an Outlook item, Excel chart, file, selected text, etc. onto the form

button; this fires the ADXDragOverMinimized event of the form; the

event allows you to check the object being dragged and to decide if the form should be restored.

The Header and the Close Button

The header is always shown when there are two or more forms in the same region. When there is just one form

in a region, the header is shown only if ADXOlFormsCollectionItem.AlwaysShowHeader is set to true.

The Close button is shown if the CloseButton property of the ADXOlFormsCollectionItem is true.

Clicking on the Close button in the form header fires the ADXCloseButtonClick event of the ADXOlForm, the

event is cancellable:

Private Sub ADXOlForm1_ADXCloseButtonClick(ByVal sender As System.Object, _

 ByVal e As AddinExpress.OL.ADXOlForm.ADXCloseButtonClickEventArgs) _

 Handles MyBase.ADXCloseButtonClick

 e.CloseForm = False

End Sub

You can create a Ribbon or command bar button that allows the user to show the form that was previously

hidden.

 35 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET Showing/Hiding Form Instances Programmatically

Showing/Hiding Form Instances Programmatically

Outlook can show several instances of two window types (explorer and inspector) simultaneously. In addition,

the user can navigate through the folder tree and select, create and read several Outlook item types.

Accordingly, an ADXOlFormsCollectionItem can generate and show several instances of ADXOlForm at the

same time.

To access the form, which is currently active in Outlook, you use the GetCurrentForm method. To access all

instances of the form in Outlook, you use the FormInstances method of ADXOlFormsCollectionItem.

By setting the Enabled property of an item to false, you delete all form instances created for that

ADXOlFormsCollectionItem. To hide any given form (i.e. to remove it from the region), call its Hide method.

You can check that a form is not available in the UI (say, you cancelled the ADXBeforInstanceCreate event

or set ADXOlForm.Visible = False in the ADXBeforeFormShow event or the user closed it) by checking

the Visible property of the form:

Function FindCurrentForm(ByVal item As ADXOlFormsCollectionItem) As ADXOlForm

 Dim hwndActive As IntPtr = Win32API.GetActiveWindow()

 For i As Integer = 0 To item.FormInstanceCount - 1

 Dim form As ADXOlForm = item.FormInstances(i)

 If form.Visible AndAlso form.Active Then

 'Active form in form region has Visible = true , Active = true

 'Inactive form in form region has Visible = true , Active = false

 If (hwndActive = form.Handle) OrElse _

 (hwndActive = form.CurrentOutlookWindowHandle) Then

 Return form

 End If

 End If

 Next

 Return Nothing

End Function

Public Class Win32API

 <DllImport("User32")> _

 Public Shared Function GetActiveWindow() As IntPtr

 End Function

End Class

If the form is not available in the UI, you can show such a form in one step: call the ApplyTo method of the

ADXOlFormsCollectionItem; the method accepts the parameter, which is either an Outlook.Explorer or

Outlook.Inspector. This also changes the state of the region that shows the form to normal.

 36 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET Accessing Instances of Your Form Region

If the Active property of your form is false, that is if your form is hidden by other forms in the region, then you

can call the Activate method of the ADXOlForm to show the form on top of all other forms in that region. If the

region was in either minimized or hidden state, calling Activate will also return it to the normal state.

Note that your form does not restore its Active state in subsequent sessions of the host application if several

add-ins show their forms in the same region. In other words, if the current session ends with a given form on top

of all other forms in that region, some other form may become active on the subsequent start of the host

application. This is because add-ins are loaded in an unpredictable order. When dealing with several forms of a

given add-in, they are created in the order determined by their locations in the Items collection of the

ADXOlFormsManager.

Due to the context-sensitivity features provided by the ADXOlFormsCollectionItem, an instance of your form

will be created whenever the current Outlook context matches that specified by the corresponding

ADXOlFormsCollectionItem.

Accessing Instances of Your Form Region

The user may open multiple Explorer and Inspector windows. That is, the Outlook Forms Manager will create

multiple instances of your form region class now and then. How to retrieve the form instance shown in a

particular Outlook window? How to get all form instances?

ADXOlFormsCollectionItem.GetForm()

This method returns an instance of your form region in the specified Outlook window.

ADXOlFormsCollectionItem.GetCurrentForm()

This method returns an instance of your form region in the active Outlook window.

Consider the following scenarios:

• In Accessing the Form from ThisAddIn, the algorithm relies on the fact that the Click event of a Ribbon

button can occur in the active Outlook window only; accordingly, GetCurrentForm() returns the form

instance embedded into the Inspector (Explorer) window in which the button is clicked.

• GetCurrentForm() will never find e.g. an Inspector form region if an Explorer window is active;

• Some add-in or antivirus may cause the ExplorerSelectionChange event to fire in an inactive Explorer

window; that is, using GetCurrentForm() in an Explorer-related event may produce a wrong result. To

avoid this, use GetForm() or make sure that GetCurrentForm() is called in the active window.

ADOlFormsCollectionItem.FormInstances()

This method allows enumerating all instances of your form region created for a given

ADOlFormsCollectionItem.

 37 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET From a Form Instance to the Outlook Object Model

From a Form Instance to the Outlook Object Model

The Outlook Forms Manager creates an instance of your form when the Outlook context matches the settings of

the corresponding ADOlFormCollectionItem.

After creating the form instance, the manager sets a number of properties providing entry points to the Outlook

object model; note that these properties are not set when the form region's constructor is running. The properties

are listed below. Note that the state of the COM objects retuned by these properties is essential for Add-in

Express functioning – you must not release them in your code because passing any of them to

Marshal.ReleaseComObject() may cause Outlook to crash.

ADXOlForm.ExplorerObj If the form is embedded (ADXOlForm.Visible=True) into an Outlook

Explorer window, returns a reference to the corresponding Outlook.Explorer

object (a COM object). Otherwise, returns null (Nothing in VB.NET).

ADXOlForm.InspectorObj If the form is embedded (ADXOlForm.Visible=True) into an Outlook

Inspector window, returns a reference to the corresponding Outlook.Inspector

object (a COM object). Otherwise, returns null (Nothing in VB.NET).

ADXOlForm.FolderObj If the form is embedded into an Outlook Explorer window

(ADXOlForm.ExplorerObj is not null), returns a reference to the

Outlook.MAPIFolder object (a COM object) representing the current

folder in the Explorer window.

If the form is embedded into an Outlook Inspector window

(ADXOlForm.InspectorObj is not null), returns a reference to the

Outlook.MAPIFolder object (a COM object) representing the parent folder

of the Outlook item which is shown in the Inspector window.

ADXOlForm.FolderItemsObj If the form is embedded into an Outlook Explorer window

(ADXOlForm.ExplorerObj is not null), returns a reference to the

Outlook.Items object (a COM object) representing the collection of items

of the current folder in the Explorer window.

If the form is embedded into an Outlook inspector window

(ADXOlForm.InspectorObj is not null), returns a reference to the

Outlook.Items object (a COM object) representing the collection of items

in the parent folder of the Outlook item which is shown in the Inspector

window.

ADXOlForm.OutlookAppObj Returns a reference to the Outlook.Application object (a COM object)

representing the Outlook application into which the add-in is loaded.

 38 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET Drag-n-Drop and Advanced Form Regions

Resizing the Form

There are two values of the ADXOlFormsCollectionItem.Splitter property. The default one is

Standard. This value shows the splitter, the user drags the splitter to change the form size as required. The

form size is stored in the registry so that the size is restored whenever the user starts the host application.

You can only resize your form programmatically, if you set the Splitter property to None. This prevents the

user form resizing the form. Changing the Splitter property at run time does not affect a form currently loaded

into its region (that is, having Visible = true). Instead, it will be applied to any newly shown form.

If the form is shown in a given region for the first time and no form was ever shown in this region, the form will be

shown using the appropriate dimensions that you set at design-time. During subsequent sessions of the host

application, the form will be shown using the dimensions set by the user.

Drag-n-Drop and Advanced Form Regions

The form can be dragged only if all of the following conditions are met A) it has the header (see The Header and

the Close Button), B) you set ADXOlFormsCollectionItem.IsDragDropAllowed=True and C) you specify

the positions in which your form can be dropped (see the

ADXOlFormsCollectionItem.ExplorerAllowedDropRegions property). The form is dragged in the VS

style, see the screenshot below.

 39 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET Context-Sensitivity of Your Outlook Form

Coloring up the Form

By default, the background color of the form is set automatically to match the current Office 2007-2016 color

scheme. To use the background color of your own in these Office versions, you need to set

ADXOlFormsCollectionItem.UseOfficeThemeForBackground = True.

Tuning the Settings at Run-Time

To add/remove an item to/from the collection and to customize the properties of an item at add-in start-up, you

use the OnInitialize event of the ADXOlFormsManager class.

Changing the Enable, Cached, FormClassName properties at run-time deletes all form instances created by

the ADXOlFormsCollectionItem.

Changing the InspectorItemTypes, ExplorerItemTypes, ExplorerMessageClasses,

ExplorerMessageClass, InspectorMessageClasses, InspectorMessageClass, FolderNames,

FolderName properties of the ADXOlFormsCollectionItem deletes all non-visible form instances.

Changing the ExplorerLayout or InspectorLayout properties of the ADXOlFormsCollectionItem

changes the position for all visible form instances.

Changing the Splitter and Tag properties of the ADXOlFormsCollectionItem doesn't do anything for the

currently visible form instances. You will see the changed splitter when the manager shows a new instance of

the ADXOlForm.

Context-Sensitivity of Your Outlook Form

Whenever the Outlook Forms Manager detects a context change in Outlook, it searches the

ADXOlFormsCollection collection for enabled items that match the current context and, if any match is

found, it shows or creates the corresponding instances.

ADXOlFormsCollectionItem provides a number of properties that allow specifying the context settings for

your form. Say, you can specify item types for which your form will be shown. Note that in case of explorer, the

item types that you specify are compared with the default item type of the current folder. In addition, you can

specify the names of the folders for which your form will be shown in the FolderName and FolderNames

properties; these properties also work for Inspector windows – in this case, the parent folder of the Outlook item

is checked. An example of the folder path is "\\Personal Folders\Inbox".

A special value in FolderName is an asterisk ('*'), which means "all folders". You can also specify message

class(es) for which your form will be shown. Note that all context-sensitivity properties of an

ADXOlFormsCollectionItem are processed using the OR Boolean operation. That is, specifying e.g. folder

names extends, but not limits, the list of contexts for which your form will be shown.

In advanced scenarios, you can also use the ADXOlFormsManager.ADXBeforeFormInstanceCreate and

ADXOlForm.ADXBeforeFormShow events in order to prevent your form from being shown (see

 40 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET WebViewPane

Showing/Hiding Form Instances Programmatically). In addition, you can use events provided by ADXOlForm in

order to check the current context. Say, you can use the ADXFolderSwitch or ADXSelectionChange

events of ADXOlForm.

Caching Forms

By default, whenever the forms manager needs to show a form, it creates a new instance of that form. You can

change this behavior by choosing an appropriate value of the ADXOlFormsCollectionItem.Cached

property. The values of this property are:

• NewInstanceForEachFolder – it shows the same form instance whenever the user navigates to the

same Outlook folder.

• OneInstanceForAllFolders – it shows the same form instance for all Outlook folders.

• None – no form caching is used.

Caching works within the same Explorer window: when the user opens another Explorer window, the forms

manager creates another set of cached forms. Forms shown in Inspector windows cannot be cached.

WebViewPane

When this value (see Advanced Outlook Form and View Regions) is chosen in the ExplorerLayout property

of ADXOlFormsCollectionItem, Advanced Outlook Form Regions uses the WebViewUrl and WebViewOn

properties of Outlook.MAPIFolder (also Outlook.Folder in Outlook 2007-2016) in order to show your form

as a home page for a given folder(s).

Add-in Express doesn't allow using WebViewPane for PublicFolders, Outbox and Sync Issues folders in Outlook

as well as all folders below them.

Please note that WebViewPane cannot be used for an Outlook folder if the WebViewOn and WebViewUrl

properties of the folder object cannot be set. A possible solution is to enable Allow Script in shared folders and

Allow Script in Public Folders options in the security settings. See also http://support.microsoft.com/kb/923933.

http://support.microsoft.com/kb/923933

 41 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET Identifying Outlook Windows

Tips and Notes

These are some useful tips from the development team.

Is It Inspector or Explorer?

Check the InspectorObj and ExplorerObj properties of ADXOlForm. These properties return COM objects

that will be released when your form is removed from its region. This may occur several times during the lifetime

of a given form instance because Add-in Express may remove your form from a given region and then embed

the form to the same region in order to comply with Outlook windowing.

Useful Links

Please check the Learning Center and our blog archive.

Reset Regions

Form regions preserve their position, size and state between sessions. To reproduce the "first-start" scenario on

the development PC, you use the "Reset Regions" command located in the context menu of the designer

surface of the form region.

Identifying Outlook Windows

You pass an object corresponding to an Outlook window (such as Outlook.Explorer) to

ADXOlFormsManager.GetOutlookWindowHandle; it returns an IntPtr, which is the WinAPI handle of the

Outlook window. Then you loop through instances of your forms querying

ADXOlForm.CurrentOutlookWindowHandle; it returns the handle of the Outlook window in which the form

is shown.

http://www.add-in-express.com/learning-center/outlook-regions-vsto.php
http://www.add-in-express.com/creating-addins-blog/cat/outlook-regions-vsto/

 42 Add-in Express™
www.add-in-express.com

Add-in Express for IE and .NET Finally

Finally

If your questions are not answered here, please see the HOWTOs section on our web site: see http://www.add-

in-express.com/support/add-in-express-howto.php. You can also search our forums for an answer; the search

page is http://www.add-in-express.com/forum/search.php. Another useful resource is our blog – see

http://www.add-in-express.com/creating-addins-blog/.

http://www.add-in-express.com/support/add-in-express-howto.php
http://www.add-in-express.com/support/add-in-express-howto.php
http://www.add-in-express.com/forum/search.php
http://www.add-in-express.com/creating-addins-blog/

	Add-in Express Regions for Microsoft® Outlook and VSTO
	Introduction
	Technical Support
	Installing and Activating
	Activation Basics
	Setup Package Contents
	Redistributables
	Solving Installation Problems

	Other Add-in Express Products

	Getting Started
	Terms and Definitions
	You First Advanced Outlook Region
	Adding an Advanced Outlook Form Region Class
	Checking the Project
	Configuring the Form Region
	Programming with Advanced Regions
	Is It Inspector or Explorer?
	Accessing ThisAddIn from the Form
	Accessing the Outlook Object Model
	Releasing COM Objects – a must in Outlook Add-ins
	Dealing with Outlook Events
	Accessing the Form from ThisAddIn

	Running the Add-in
	Deploying the Region
	What's Next?

	Advanced Outlook Form and View Regions
	Outlook view regions
	Outlook form regions

	The UI Mechanics
	Region States and UI-related Properties and Events
	The Header and the Close Button
	Showing/Hiding Form Instances Programmatically
	Accessing Instances of Your Form Region
	ADXOlFormsCollectionItem.GetForm()
	ADXOlFormsCollectionItem.GetCurrentForm()
	ADOlFormsCollectionItem.FormInstances()

	From a Form Instance to the Outlook Object Model
	Resizing the Form
	Drag-n-Drop and Advanced Form Regions
	Coloring up the Form
	Tuning the Settings at Run-Time
	Context-Sensitivity of Your Outlook Form
	Caching Forms
	WebViewPane

	Tips and Notes
	Is It Inspector or Explorer?
	Useful Links
	Reset Regions
	Identifying Outlook Windows

	Finally

