

Add-in Express™
for Microsoft® Office and Delphi VCL

2 Add-in Express™

www.add-in-express.com

Add-in Express for Office and VCL Add-in Express™ for Microsoft® Office and Delphi VCL

Add-in Express™ for Microsoft® Office and Delphi VCL

Developer's Guide

Revised on 25-Nov-21

Copyright © Add-in Express Ltd. All rights reserved.

Add-in Express, ADX Extensions, ADX Toolbar Controls, Afalina, AfalinaSoft and Afalina Software are trademarks or registered trademarks of Add-in Express

Ltd. in the United States and/or other countries. Microsoft, Outlook, and the Office logo are trademarks or registered trademarks of Microsoft Corporation in the

United States and/or other countries.

THIS SOFTWARE IS PROVIDED "AS IS" AND ADD-IN EXPRESS LTD. MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY

WAY OF EXAMPLE, BUT NOT LIMITATION, ADD-IN EXPRESS LTD. MAKES NO REPRESENTATIONS OR WARRANTIES OF MERCHANTABILITY OR

FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE, DATABASE OR DOCUMENTATION WILL NOT

INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

3 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Table of Contents

Table of Contents

Add-in Express™ for Microsoft® Office and Delphi VCL 2

Introduction ... 6

Why Add-in Express? ... 7
Add-in Express Products ... 7

System Requirements .. 8
Supported Delphi Versions .. 8
Supported Office applications, versions and bitness ... 8

Technical Support ... 10

Installing and Activating... 11
Activation Basics ... 11
Setup Package Contents... 11
Solving Installation Problems .. 12

Getting Started .. 13

Your First Microsoft Office COM Add-in ... 14
A Bit of Theory .. 14
Step #1 – Creating a COM Add-in Project ... 15
Step #2 – COM Add-in Module ... 16
Step #3 – COM Add-in Designer ... 18
Step #4 – Adding a New Command Bar.. 18
Step #5 – Adding a New Command Bar Button .. 19
Step #6 – Accessing Host Application Objects .. 20
Step #7 - Customizing Main Menus .. 21
Step #8 – Customizing Context Menus ... 22
Step #9 – Handling Host Application Events ... 23
Step #10 – Customizing the Office Ribbon User Interface .. 24
Step #11 –Advanced Task Panes in Excel 2000+... 25
Step #12 –Advanced Task Panes in PowerPoint 2000+ ... 26
Step #13 –Advanced Task Panes in Word 2000+ ... 26
Step #14 – Running the COM Add-in .. 27
Step #15 – Debugging the COM Add-in .. 30
Step #16 – Deploying the COM Add-in ... 30

Your First Microsoft Outlook COM Add-in ... 31
A Bit of Theory .. 31
Step #1 – Creating an Outlook COM Add-in Project ... 32
Step #2 – COM Add-in Module ... 34
Step #3 – COM Add-in Designer ... 36
Step #4 – Adding a New Explorer Command Bar ... 37
Step #5 – Adding a New Command Bar Button .. 38
Step #6 – Accessing Outlook Objects ... 38
Step #7 – Handling Outlook Events .. 39
Step #8 – Adding a New Inspector Command Bar .. 40
Step #9 – Customizing Main Menus in Outlook ... 41
Step #10 – Customizing Context Menus in Outlook .. 42
Step #11 – Handling Events of Outlook Items Object ... 43

4 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Table of Contents

Step #12 – Adding Property Pages to the Folder Properties Dialogs .. 45
Step #13 – Intercepting Keyboard Shortcuts ... 46
Step #14 – Customizing the Outlook Ribbon User Interface ... 47
Step #15 –Advanced Task Panes in Outlook 2000+ ... 48
Step #16 – Running the COM Add-in .. 50
Step #17 – Debugging the COM Add-in .. 52
Step #18 – Deploying the COM Add-in ... 52

Your First Excel RTD Server .. 53
A Bit of Theory .. 53
Step #1 – Creating a New RTD Server Project ... 54
Step #2 – RTD Server Module .. 55
Step #3 – RTD Server Designer .. 56
Step #4 – Adding and Handling a New Topic .. 56
Step #5 – Running the RTD Server ... 58
Step #6 – Debugging the RTD Server ... 59
Step #7 – Deploying the RTD Server .. 59

Your First Smart Tag ... 60
A Bit of Theory .. 60
Step #1 – Creating a New Smart Tag Library Project ... 60
Step #2 – Smart Tag Module .. 61
Step #3 – Smart Tag Designer .. 63
Step #4 – Adding a New Smart Tag .. 63
Step #6 - Running Your Smart Tag ... 65
Step #7 – Debugging the Smart Tag ... 66
Step #8 – Deploying the Smart Tag .. 66

Your First Excel Automation Add-in ... 67
A Bit of Theory .. 67
Step #1 – Creating a New COM Add-in Project .. 68
Step #2 – Creating an Excel Automation Add-in ... 70
Step #3– Creating User-Defined Functions ... 70
Step #4 – Running the Excel Automation Add-in .. 72
Step #5 – Debugging the Excel Automation Add-in .. 73
Step #6 – Deploying the Excel Automation Add-in .. 73

Add-in Express Components .. 74

Office Ribbon Components ... 75
How Ribbon Controls Are Created .. 76
Referring to Built-in Ribbon Controls ... 77
Intercepting Built-in Ribbon Controls ... 78
Positioning Ribbon Controls .. 78
Creating Ribbon Controls at Run-time .. 78
Updating Ribbon Controls at Run-Time... 79
Determining a Ribbon Control's Context ... 79
Sharing Ribbon Controls across Multiple Add-ins ... 79

Custom Task Panes in Office 2007+ ... 81

Command Bars: Toolbars, Menus, and Context Menus ... 81
Toolbar .. 81
Main Menu .. 82
Context Menu .. 83
Outlook Toolbars and Main Menus ... 83

5 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Table of Contents

Connecting to Existing Command Bars ... 84

Command Bar Controls .. 84
Command Bar Control Properties and Events .. 85
Command Bar Control Types .. 85
Using Built-in Command Bar Controls ... 85

Built-in Control Connector ... 86

Keyboard Shortcut .. 86

Outlook Bar Shortcut Manager .. 86

Outlook Property Page ... 87

Advanced Outlook Regions and Advanced Office Task Panes ... 87
Introducing Advanced Task Panes in Word, Excel and PowerPoint ... 87
Introducing Advanced Outlook Form and View Regions ... 89
Hello, World! .. 94
The UI Mechanics ... 95
Excel Task Panes ... 101
Advanced Outlook Regions ... 103

Smart Tag ... 107

RTD Topic .. 107

Host Application Events ... 107

MSForms Controls .. 107

Tips and Notes .. 108

Terminology .. 108
Getting Help on COM Objects, Properties and Methods ... 108
COM Add-ins Dialog ... 108
How to Get Access to the Add-in Host Applications .. 109
Registry Entries ... 109
ControlTag vs. Tag Property ... 109
Pop-ups ... 109
Edits and Combo Boxes and the Change Event ... 109
Built-in Controls and Command Bars .. 110
CommandBar.SupportedApps .. 110
Outlook Command Bar Visibility Rules .. 110
Removing Custom Command Bars and Controls .. 110
My Add-in Is Always Disconnected ... 110
Update Speed for an RTD Server ... 110
Sequence of Events When an Office Custom Task Pane Shows up .. 111
Adding an Office Custom Task Pane to an Existing Add-in Express Project... 111
Temporary or not? ... 112
Registering with User Privileges .. 113
Additional Files .. 115
How to find if Office 64-bit is installed on the target machine .. 116
Excel Workbooks .. 116
Word Documents .. 116
Don't use any Office object models in the OnCreate and OnDestroy events .. 117
OneNote Add-ins ... 117

Final Note ... 118

6 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Introduction

Add-in Express for Office and Delphi VCL Introduction

Introduction

Add-in Express is a development tool designed to simplify and speed up the

development of Office COM Add-ins, Run-Time Data servers (RTD servers), Smart

Tags, and Excel Automation Add-ins in Delphi through the consistent use of the RAD

paradigm. It provides a number of specialized components that allow the developer to

walk through the interface-programming phase to the functional programming phase

with a minimal loss of time.

.

7 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Why Add-in Express?

Why Add-in Express?

Microsoft supplied us with another term – Office Extensions. This term covers all the customization

technologies provided for Office applications. The technologies are:

• COM Add-ins

• Smart Tags

• Excel RTD Servers

• Excel Automation Add-ins

Add-in Express allows you to overcome the basic problem when customizing Office applications – building your

solutions into the Office application. Based on the True RAD paradigm, Add-in Express saves the time that you

would have to spend on research, prototyping, and debugging numerous issues of any of the above-mentioned

technologies in all versions and updates of all Office applications. The issues include safe loading / unloading,

host application startup / shutdown, as well as user-interaction-related and deployment-related issues.

Add-in Express Products

Add-in Express offers a number of products for developers on its web site.

• Add-in Express for Microsoft Office and .NET

It allows creating version-neutral managed COM add-ins, smart tags, Excel Automation add-ins, XLL add-ins

and RTD servers in Visual Studio. See http://www.add-in-express.com/add-in-net/ .

• Add-in Express for Internet Explorer and .NET

It allows developing add-ons for IE in Visual Studio. Custom toolbars, sidebars and BHOs are on board. See

http://www.add-in-express.com/programming-internet-explorer/ .

• Security Manager for Microsoft Outlook

This is a product designed for Outlook solution developers. It allows controlling the Outlook e-mail security

guard by turning it off and on in order to suppress unwanted Outlook security warnings. See http://www.add-in-

express.com/outlook-security/ .

http://www.add-in-express.com/add-in-net/
http://www.add-in-express.com/programming-internet-explorer/
http://www.add-in-express.com/outlook-security/
http://www.add-in-express.com/outlook-security/

8 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL System Requirements

System Requirements

You must have Microsoft Office 2000 Sample Automation Server Wrapper Components installed.

Supported Delphi Versions

• Delphi XE2 Architect, Ultimate, Enterprise and Professional with Update Pack 4 Hotfix 1

• Delphi XE3 Architect, Ultimate, Enterprise and Professional with Update Pack 1

• Delphi XE4 Architect, Ultimate, Enterprise and Professional with Update Pack 1

• Delphi XE5 Architect, Ultimate, Enterprise and Professional

• Delphi XE6 Architect, Ultimate, Enterprise and Professional

• Delphi XE7 Architect, Ultimate, Enterprise and Professional

• Delphi XE8 Architect, Ultimate, Enterprise and Professional

• Delphi 10 Seattle Architect, Ultimate, Enterprise, Professional

• Delphi 10.1 Berlin Architect, Ultimate, Enterprise, Professional

• Delphi 10.2 Tokyo Architect, Enterprise, Professional, Community

• Delphi 10.3 Rio Architect, Enterprise, Professional, Community

• Delphi 10.4 Sydney Architect, Enterprise, Professional, Community

• Delphi 11 Alexandria Architect, Enterprise, Professional, Community

Supported Office applications, versions and bitness

Office 2000-2007 applications are 32-bit. With Office 2010+, 32-bit or 64-bit versions are available. Supported

are all of them. The bitness of your Office extension must be the same as the bitness of the host Office

application.

COM Add-ins

• Microsoft Excel 2000 and higher

• Microsoft Outlook 2000 and higher

• Microsoft Word 2000 and higher

• Microsoft FrontPage 2000 and higher

• Microsoft PowerPoint 2000 and higher

• Microsoft Access 2000 and higher

• Microsoft Project 2000 and higher

• Microsoft MapPoint 2002 and higher

• Microsoft Visio 2002 and higher

9 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL System Requirements

• Microsoft Publisher 2003 and higher

• Microsoft InfoPath 2007 and higher

Real-Time Data Servers

• Microsoft Excel 2002 and higher

Smart Tags

• Microsoft Excel 2002 and higher

• Microsoft Word 2002 and higher

• Microsoft PowerPoint 2003 and higher

Smart tags are declared deprecated since Office 2010. However, you can still use the related APIs

in projects for Excel 2010+ and Word 2010+; see Changes in Word 2010 and Changes in Excel

2010 .

Excel Automation Add-ins

• Microsoft Excel 2002 and higher

http://technet.microsoft.com/en-ca/library/cc179199.aspx
http://technet.microsoft.com/en-ca/library/cc179167.aspx
http://technet.microsoft.com/en-ca/library/cc179167.aspx

10 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Technical Support

Technical Support

Add-in Express is developed and supported by the Add-in Express Team, a branch of Add-in Express Ltd. You

can get technical support using any of the following methods.

The Add-in Express web site at www.add-in-express.com provides a mine of information and software

downloads for Add-in Express developers, including:

• The HOWTOs section that contains sample projects answering most common "how to" questions.

• Add-in Express technical blog contains most recent information as well as Video HOWTOs.

• Add-in Express Toys contains "open sourced" add-ins for popular Office applications.

• Built-in Controls Scanner utility, which is free.

For technical support through the Internet, e-mail us at support@add-in-express.com or use our forums .

If you are a subscriber of our Premium Support Service and need help immediately, you can request technical

support via an instant messenger, e. g. Windows/MSN Messenger or Skype.

http://www.add-in-express.com/
http://www.add-in-express.com/support/add-in-express-howto.php
http://www.add-in-express.com/creating-addins-blog/
http://www.add-in-express.com/free-addins/
http://www.add-in-express.com/downloads/controls-scanner.php
mailto:support@add-in-express.com
http://www.add-in-express.com/forum/

11 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Installing and Activating

Installing and Activating

What follows below is a brief guide on installing and activating your copy of Add-in Express.

Activation Basics

The goal of product activation is to reduce a form of piracy known as casual copying, which is the sharing and

installation of software that is not in compliance with the software's End-User License Agreement. Product

activation helps ensure that each copy is installed on no more than the limited number of computers allowed by

the product license.

During software activation, the activation wizard prompts you to enter a license key. The license key is a 30-

character alphanumeric code shown in six groups of five characters each (for example, ADX4M-GBFTK-

3UN78-MKF8G-T8GTY-NQS8R). Keep the license key in a safe location and do not share it with others.

For purposes of product activation only, a non-unique hardware identifier is created from general information

that is included in the system components. At no time are files on the hard drive scanned, nor is personally

identifiable information of any kind used to create the hardware identifier. Product activation is completely

anonymous. To ensure your privacy, the hardware identifier is created by what is known as a "one-way hash".

To produce a one-way hash, information is processed through an algorithm to create a new alphanumeric

string. It is impossible to calculate the original information from the resulting string.

During activation, the wizard tries to connect to the activation server at www.add-in-express.com to get an

activation code based on your license key and a hardware identifier. If the activation code is received, the

installation continues, otherwise fails.

The activation process needs to be performed on each computer individually. Please refer to your End-User

License Agreement for information about the number of computers you can install the software on.

Setup Package Contents

The Add-in Express setup program installs the following folders on your PC:

• Packages – design-time packages for supported Delphi versions

• Docs – Add-in Express documentation

• Redistributables – Add-in Express redistributable files

• Sources – Add-in Express source code

• Sources \ DesignTime – design-time source code.

http://www.add-in-express.com/

12 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Installing and Activating

Please note that the source code of Add-in Express is delivered or not depending on the product

package you purchased. See Feature Matrix & Pricing for details.

Add-in Express setup program installs the following text files on your PC:

• licence.txt – the EULA

• readme.txt – short description of the product, support addresses and such

• whatsnew.txt – this file describes the latest information on the product features added and bugs fixed.

Solving Installation Problems

Make sure you are an administrator on the PC.

Set UAC to its default level.

In Control Panel | System | Advanced | Performance | Settings | Data Execution Prevention, set the "... for

essential Windows programs and services only" flag.

Remove the following registry key if it exists:

HKEY_CURRENT_USER\Software\Add-in Express\{product identifier} {version}

{package}

http://www.add-in-express.com/add-in-delphi/featurematrix.php

13 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Installing and Activating

Getting Started

In this chapter, we guide you through the following steps of developing Add-in Express projects:

• Create an Add-in Express project

• Add components to the Add-in Express designer

• Add some business logics

• Build, register, and debug the project

• Deploy your project to a target PC

14 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Office COM Add-in

Your First Microsoft Office COM Add-in

This chapter highlights creating COM Add-ins for Microsoft Office applications. The sample project described

below implements a COM add-in for Excel, Word and PowerPoint. It is included in Add-in Express for Office

and VCL sample projects available on the Downloads page.

Add-in Express provides a number of components targeting Outlook. See Your First Microsoft Outlook

COM Add-in.

A Bit of Theory

COM add-ins have been around since Office 2000 when Microsoft allowed Office applications to extend their

features with COM DLLs supporting the IDTExtensibility2 interface (it is a COM interface, of course).

COM add-ins is the only way to add new or re-use built-in UI elements such as command bar controls and

Ribbon controls. Say, a COM add-in can show a command bar or Ribbon button to process selected Outlook e-

mails, Excel cells, or paragraphs in a Word document and perform some actions on the selected objects. A

COM add-in supporting Outlook, Excel, Word or PowerPoint can show advanced task panes in Office 2000-

2021/365. In a COM add-in targeting Outlook, you can add custom option pages to the Tools | Options and

Folder Properties dialogs. A COM add-in also handles events and calls properties and methods provided by the

object model of the host application. For instance, a COM add-in can modify an e-mail when it is being sent; it

can cancel saving an Excel workbook or it can check if a Word document meets some conditions.

Per-user and per-machine COM add-ins

A COM add-in can be registered either for the current user (the user running the installer) or for all users on the

machine. Add-in Express generates a per-user add-in project; your add-in is per-machine if the add-in module

has ADXAddinModule.RegisterForAllUsers = True. Registering for all users means writing to HKLM

and that means the user registering a per-machine add-in must have administrative permissions. Accordingly,

RegisterForAllUsers = Flase means writing to HKCU (=for the current user). See Registry Entries.

A standard user may turn a per-user add-in off and on in the COM Add-ins Dialog. You use that dialog to check

if your add-in is active.

http://www.add-in-express.com/downloads/adxvcl.php

15 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Office COM Add-in

Step #1 – Creating a COM Add-in Project

Run Delphi via the Run as Administrator command.

Add-in Express adds the COM Add-in project template to the New Items dialog.

When you select the template and click OK, the COM Add-in Wizard starts. In the wizard windows, you choose

the project options.

16 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Office COM Add-in

The project wizard creates and opens the COM Add-in project in the IDE.

The add-in project includes the following items:

• The project source files (MyAddin1.*).

• The type library files (MyAddin1_TLB.pas, MyAddin1.ridl).

• The add-in module (MyAddin1_IMPL.pas and MyAddin1_IMPL.dfm)

discussed below.

Step #2 – COM Add-in Module

The add-in module (MyAddin1_IMPL.pas and MyAddin1_IMPL.dfm) is the core component of the COM add-in

project. It is a container for Add-in Express components. You specify the add-in properties in the module's

properties, add the required components to the module's designer, and write the functional code of your add-in

in this module.

The code for MyAddin1_IMPL.pas is as follows:

unit MyAddin1_IMPL;

interface

uses

17 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Office COM Add-in

 SysUtils, ComObj, ComServ, ActiveX, Variants, Office2000, adxAddIn,

 MyAddin1_TLB;

type

 TcoMyAddin1 = class(TadxAddin, IcoMyAddin1)

 end;

 TAddInModule = class(TadxCOMAddInModule)

 procedure adxCOMAddInModuleAddInInitialize(Sender: TObject);

 procedure adxCOMAddInModuleAddInFinalize(Sender: TObject);

 private

 protected

 public

 end;

var

 adxcoMyAddin1: TAddInModule;

implementation

{$R *.dfm}

procedure TAddInModule.adxCOMAddInModuleAddInInitialize(Sender: TObject);

begin

 adxcoMyAddin1 := Self;

end;

procedure TAddInModule.adxCOMAddInModuleAddInFinalize(Sender: TObject);

begin

 adxcoMyAddin1 := nil;

end;

initialization

 TadxFactory.Create(ComServer, TcoMyAddin1, CLASS_coMyAddin1,

 TAddInModule);

end.

The add-in module contains two classes: the “interfaced” class (TcoMyAddin1 in this case) and the add-in

module class (TAddInModule). The “interfaced” class is a descendant of the TadxAddIn class that

implements the IDTExtensibility2 interface required by the COM Add-in architecture. Usually, you do not

need to change anything in the TadxAddIn class.

The add-in module class implements the add-in functionality. It is an analogue of the Data Module, but unlike

the Data Module, the add-in module allows you to set all properties of your add-in, handle its events, and create

toolbars and controls.

18 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Office COM Add-in

Step #3 – COM Add-in Designer

The designer of the add-in module allows setting add-in properties and adding components to the module.

Click the module's designer surface, activate Object Inspector, choose the SupportedApps property and

select Excel, Word, and PowerPoint.

You find Add-in Express components in the Tool Palette. See also Add-in Express Components.

Step #4 – Adding a New Command Bar

To add a command bar to your add-in, find the TadxCommandBar component in the Tool Palette and drag-n-

drop it onto the TadxCOMAddinModule designer (see also Command Bars: Toolbars, Menus, and Context

Menus).

19 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Office COM Add-in

Select the command bar component, and, in the Object Inspector, specify the command bar name using the

CommandBarName property. In addition, you select its position in the Position property.

To display a command bar in the Office Ribbon you must explicitly set the UseForRibbon property

of the command bar component to True. The controls added to such a command bar will be shown

on the built-in Ribbon tab called Add-ins.

Step #5 – Adding a New Command Bar Button

To add a new button to the command bar, in the Object Inspector you run the property editor of the Controls

property for the appropriate command bar component. The property editor is a simple and easy designer of

command bars and their controls.

Specify the button's Caption property and set the Style property to adxMsoButtonIconAndCaption

(default value = adxMsoButtonAutomatic). In the Object Inspector, you switch to the Events tab to add the

OnClick event handler for the command bar button component.

20 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Office COM Add-in

Step #6 – Accessing Host Application Objects

The add-in module supplies the HostApplication property that returns the Application object (of the

OleVariant type) of the host application in which the add-in is running now. For your convenience Add-in

Express provides the <HostName>App properties, say ExcelApp of the TExcelApplication type and

WordApp of the TWordApplication type. Together with the HostType property, it allows writing the following

code to the OnClick event of the newly added button.

procedure TAddInModule.DefaultAction(Sender: TObject);

begin

 ShowMessage(GetInfoString());

end;

function TAddInModule.GetInfoString(): string;

var

 er: ExcelRange;

 IWindow: IDispatch;

begin

 Result := 'No document window found!';

 try

 // Word raises an exception if there's no document open

 IWindow := HostApp.ActiveWindow;

 except

 end;

 try

 if IWindow <> nil then

 case HostType of

 ohaExcel:

 try

 er := (IWindow as Excel2000.Window).ActiveCell;

 //relative address

 Result := 'The current cell is: '

 + er.AddressLocal[False, False, xlA1, EmptyParam, EmptyParam];

 finally

 er := nil;

 end;

 ohaWord:

 Result := 'The current selection contains '

 + IntToStr(

 (IWindow as Word2000.Window).Selection.Range.Words.Count)

 + ' words';

 ohaPowerPoint:

 Result := 'The current selection contains '

 + IntToStr(

 (IWindow as MSPpt2000.DocumentWindow).Selection.SlideRange.Count)

 + ' slides';

21 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Office COM Add-in

 else

 Result := 'The ' + AddinName

 + ' COM Add-in doesn''t support the current host application!' ;

 end;

 except

 end;

 IWindow := nil;

end;

Step #7 - Customizing Main Menus

Add-in Express provides a component to customize main menus in Office applications (see Your First Microsoft

Outlook COM Add-in for customizing Outlook main menus). Some applications from Office 2000-2003 have

several main menus. Say, in these Excel versions, you find Worksheet Menu Bar and Chart Menu Bar.

Naturally, in Excel 2007+, these menus are replaced with the Ribbon UI. Nevertheless, the main menus are still

accessible programmatically and you may want to use this fact in your code.

In this sample, we are going to customize the File menu in Excel and Word version 2000-2003. You start with

adding two main menu components (TadxMainMenu) and

specifying correct host applications in their SupportedApp

properties. Then, in the CommandBarName property, you specify

the main menu.

The screenshot shows how you set up the main menu component

in order to customize the Worksheet Menu Bar main menu in

Excel 2000-2003.

The TadxMainMenu.Controls property provides a designer

that allows adding custom controls to a set of predefined popup

controls that corresponds to built-in main menu items such as File, Edit, etc. Those popups demonstrate the

main principle of referencing built-in command bar controls: if the OfficeID property of a CommandBar control

component is other than 1, you are referencing the

corresponding built-in control. You can find the IDs of built-in

command bar controls using the free Built-in Controls Scanner

utility. Download it at http://www.add-in-

express.com/downloads/controls-scanner.php .

In the source code of the sample add-in described here, you

can find how you can customize the Office Button menu in

Office 2007 (see the component named

adxRibbonOfficeMenu1). As to the Backstage View, also

known as a File tab in Office 2010+, the sample projects

provide the adxBackstageView1 component that implements

the customization shown in Figure 3 at Introduction to the Office 2010 Backstage View for Developers . Note

http://www.add-in-express.com/downloads/controls-scanner.php
http://www.add-in-express.com/downloads/controls-scanner.php
http://msdn.microsoft.com/en-us/library/ee691833(office.14).aspx

22 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Office COM Add-in

that if you customize the Office Button menu only, Add-in Express maps your controls to the Backstage View. If,

however, both Office Button menu and File tab are customized at the same time, Add-in Express ignores

custom controls you add to the Office Button menu.

Step #8 – Customizing Context Menus

Add-in Express allows customizing CommandBar-based context menus in Office 2000+ with the

TadxContextMenu component. Its use is similar to that of the TadxMainMenu component. To set up a

TadxContextMenu to add a custom button to a context menu, you do the following:

• Add a context menu component to the add-in module

• In the component's properties choose the host application and the context menu to be customized,

• Use the editor of the Controls collection to populate the context menu with custom controls

The screenshot below demonstrates adding a custom item to the context menu Cells in Excel.

You may want to use the OnBeforeAddControls event provided by the component to modify the context

menu depending on the current context. Say, custom controls in the context menu may reflect the content of an

Excel cell, the current chapter of the Word document, etc.

There are several issues related to using command bar based context menus:

• Excel contains two different context menus named Cell. This fact breaks down the command bar

development model because the only way to recognize two command bars is to compare their names. This

23 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Office COM Add-in

isn't the only exception: see the Built-in Control Scanner to find a number of examples. In this case, the

context menu component cannot distinguish context menus. Accordingly, it connects to the first context

menu with the specified name.

• Command bar based context menu items cannot be positioned in the Ribbon-based context menus: a

custom context menu item created with the ADXContextMenu component will always be shown below the

built-in and custom context menu items in a Ribbon-based context menu of Office 2010+.

To add a custom item to a context menu in Office 2010+, you use the TadxRibbonContextMenu component.

Unlike its commandbar-based counterpart (TadxContextMenu), this component allows adding the same

custom controls to several context menus in the specified Ribbon. Say, the screenshots below show component

settings required for adding a control to the ExcelWorkbook Ribbon. To specify the context menus to which the

control will be added, you use the editor of the ContexMenuNames property of the component.

See also Context Menu.

Step #9 – Handling Host Application Events

Add-in Express supplies several components that provide application-level events for the add-in module (see

Host Application Events). To handle Excel events to the add-in, drop a TadxExcelAppEvents onto the

module. Naturally, handling Word events requires using a TadxWordAppEvents while

TadxPowerPointAppEvents provides PowerPoint application-level events.

With the above components, you can handle any application-level events of the host application. Say, you may

want to disable a button when a window deactivates and enable it when a window activates. The code

processing the PowerPoint version of the WindowActivate and WindowDeactivate events is as follows:

procedure TAddInModule.adxPowerPointAppEvents1WindowActivate(

 ASender: TObject; const Pres: _Presentation; const Wn: DocumentWindow);

begin

24 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Office COM Add-in

 adxCommandBar1.Controls[0].Enabled := true;

end;

procedure TAddInModule.adxPowerPointAppEvents1WindowDeactivate(

 ASender: TObject; const Pres: _Presentation; const Wn: DocumentWindow);

begin

 adxCommandBar1.Controls[0].Enabled := false;

end;

It is possible to create a set of event handlers and connect it to any given Excel worksheet. You can

do this by adding a TExcelWorksheet (Tool Palette, the Servers tab) onto the add-in module.

Step #10 – Customizing the Office Ribbon User Interface

To add a new tab to the Ribbon UI of the host application(s) of your add-in, you add the TadxRibbonTab

component to the module.

In the Object Inspector, run the editor for the Controls collection of the Ribbon tab component. In the editor,

use the toolbar buttons or context menu to add or delete Add-in Express components that form the Ribbon

interface of your add-in. First, you add a Ribbon tab and change its caption to My Ribbon Tab. Then, you select

the tab component, add a Ribbon group, and change its caption to My Ribbon Group. Next, you select the

group, and add a button. Set the button caption to My Ribbon Button. Use the Glyph property to set the icon for

the button.

Now write the following code in the OnClick event handler of the newly added Ribbon button (the code below

refers to the code added in Step #6 – Accessing Host Application Objects):

25 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Office COM Add-in

procedure TAddInModule.adxRibbonTab1Controls0Controls0Controls0Click(

 Sender: TObject; const RibbonControl: IRibbonControl);

begin

 DefaultAction(nil);

end;

The TadxRibbonTab.Controls editor performs the XML-schema validation automatically, so from time to

time you will run into the situation when you cannot add a control to some Ribbon level. It is a restriction of the

Ribbon XML-schema. See also Office Ribbon Components.

Step #11 –Advanced Task Panes in Excel 2000+

Creating a new Excel task pane includes the following steps:

• Add an Excel Task Panes Manager (TadxExcelTaskPanesManager) to your add-in module.

• Add an Add-in Express Excel Task Pane (TadxExcelTaskPane) to your project via the New Items dialog.

• In the visual designer available for the Controls collection of the manager, add an item to the collection,

bind the pane to the item and specify its properties as shown in the screenshot.

Below is the description of the settings:

• AlwaysShowHeader - specifies that the pane header will be

shown even if the pane is the only one in the current region.

• CloseButton - specifies if the Close button is shown in the

pane header. Obviously, there isn’t much sense in setting

this property to true when the header is not shown.

• Position - specifies the region in which an instance of the

pane will be shown. Excel panes are allowed in four regions

docked to the four sides of the main Excel window: pRight,

pBottom, pLeft, and pTop. The fifth region is pUnknown.

• TaskPaneClassName - specifies the class name of the

Excel task pane.

Now drop a label onto the pane and create an event handler for

the OnADXBeforeTaskPaneShow event:

procedure TadxExcelTaskPane1.adxExcelTaskPaneADXBeforeTaskPaneShow(

 ASender: TObject; Args: TadxBeforeTaskPaneShowEventArgs);

begin

 Label1.Caption := (AddinModule as TAddInModule).GetInfoString();

26 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Office COM Add-in

end;

See also Advanced Outlook Regions and Advanced Office Task Panes and Excel Task Panes.

Step #12 –Advanced Task Panes in PowerPoint 2000+

• Add a PowerPoint Task Panes Manager (TadxPowerPointTaskPanesManager) to your add-in module.

• Add an Add-in Express PowerPoint Task Pane (TadxPowerPointTaskPane) to your project using the

New Items dialog.

• In the visual designer available for the Controls collection of the manager, add an item to the collection,

bind the pane to the item and specify the appropriate value in the Position.

Now add a label onto the form, and update the label in the OnADXBeforeTaskPaneShow event handler of the

form:

procedure TadxPowerPointTaskPane1.adxPowerPointTaskPaneADXBeforeTaskPaneShow(

 ASender: TObject; Args: TadxBeforeTaskPaneShowEventArgs);

begin

 Label1.Caption := (AddinModule as TAddInModule).GetInfoString();

end;

See also Advanced Outlook Regions and Advanced Office Task Panes.

Step #13 –Advanced Task Panes in Word 2000+

• Add a Word Task Panes Manager (TadxWordTaskPanesManager) to your add-in module.

• Add an Add-in Express Word Task Pane (TadxWordTaskPane) to your project using the New Items dialog.

• In the visual designer available for the Controls collection of the manager, add an item to the collection,

bind the pane to the item and specify an appropriate value in the Position.

When the item's properties are set, you add a label onto the form, and write the code that updates it in the

OnADXBeforeTaskPaneShow event handler of your form:

procedure TadxWordTaskPane1.adxWordTaskPaneADXBeforeTaskPaneShow(

 ASender: TObject; Args: TadxBeforeTaskPaneShowEventArgs);

begin

 Label1.Caption := (AddinModule as TAddInModule).GetInfoString();

end;

See also Advanced Outlook Regions and Advanced Office Task Panes.

27 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Office COM Add-in

Step #14 – Running the COM Add-in

Choose Register ActiveX Server in menu Run, restart the host application(s) you selected, find your toolbar and

click the button. You can also find your add-in in the COM Add-ins Dialog.

28 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Office COM Add-in

29 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Office COM Add-in

30 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Office COM Add-in

Step #15 – Debugging the COM Add-in

To debug your add-in, just indicate the add-in host application in the Host Application field in the Project

Options window.

To debug your add-in in a 64-bit Office application, register the add-in DLL using regsvr32; run it

from an elevated 64-bit Command Prompt. In addition, you must explicitly specify to run the 64-bit

application in the dialog window shown above.

Step #16 – Deploying the COM Add-in

Make sure your setup project registers the add-in DLL. Say, in Inno Setup projects you use the regserver

command. See also:

• Registering with User Privileges

• Additional Files

31 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Outlook COM Add-in

Your First Microsoft Outlook COM Add-in

Add-in Express provides the Outlook-specific add-in module and two Outlook-specific command bar

components: TadxOlExplorerCommandBar and TadxOlInspectorCommandBar. The former adds a

command bar to the Outlook Explorer window and solves many problems with custom Outlook command bars.

The latter adds a command bar to the Outlook Inspector window. Both command bar components have the

FolderName, FolderNames and ItemTypes properties that add context-sensitivity to Outlook command

bars. The olExplorerItemTypes, olInspectorItemTypes, and olItemTypeAction properties add

context-sensitivity to Outlook command bar controls.

Additionally, the Add-in Express Outlook Add-in wizard allows creating property pages which will be shown in

the Options (see menu Tools | Options) and folder Properties dialogs.

The sample project described below implements a COM add-in for Outlook. It is included in Add-in Express for

Office and VCL sample projects available on the Downloads page.

A Bit of Theory

COM add-ins have been around since Office 2000 when Microsoft allowed Office applications to extend their

features with COM DLLs supporting the IDTExtensibility2 interface (it is a COM interface, of course).

COM add-ins is the only way to add new or re-use built-in UI elements such as command bar controls and

Ribbon controls. Say, a COM add-in can show a command bar or Ribbon button to process selected Outlook e-

mails, Excel cells, or paragraphs in a Word document and perform some actions on the selected objects. A

COM add-in supporting Outlook, Excel, Word or PowerPoint can show advanced task panes in Office 2000-

2021/365. In a COM add-in targeting Outlook, you can add custom option pages to the Tools | Options and

Folder Properties dialogs. A COM add-in also handles events and calls properties and methods provided by the

object model of the host application. For instance, a COM add-in can modify an e-mail when it is being sent; it

can cancel saving an Excel workbook or it can check if a Word document meets some conditions.

Per-user and per-machine COM add-ins

A COM add-in can be registered either for the current user (the user running the installer) or for all users on the

machine. Add-in Express generates a per-user add-in project; your add-in is per-machine if the add-in module

has ADXAddinModule.RegisterForAllUsers = True. Registering for all users means writing to HKLM

and that means the user registering a per-machine add-in must have administrative permissions. Accordingly,

RegisterForAllUsers = Flase means writing to HKCU (=for the current user). See Registry Entries.

A standard user may turn a per-user add-in off and on in the COM Add-ins Dialog. You use that dialog to check

if your add-in is active.

http://www.add-in-express.com/downloads/adxvcl.php

32 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Outlook COM Add-in

Step #1 – Creating an Outlook COM Add-in Project

Run Delphi via the Run as Administrator command.

You use the Outlook Add-in project template available in the New Items dialog:

When you select the template and click OK, the project wizard starts.

In the wizard windows, you choose the project options, define task panes and option pages for your add-in.

33 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Outlook COM Add-in

The wizard creates and opens a new COM Add-in project in the IDE.

34 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Outlook COM Add-in

The add-in project includes the following items:

• The project source files (MyOutlookAddin1.*).

• The type library files (MyOutlookAddin1_TLB.pas,

MyOutlookAddin1.ridl).

• The Outlook add-in module (MyOutlookAddin1_IMPL.pas and

MyOutlookAddin1_IMPL.dfm) discussed in the following step.

• The Outlook Property Page (PropertPage1.pas and

PropertPage1.dfm) discussed in Step #12 – Adding Property

Pages to the Folder Properties Dialogs;

Step #2 – COM Add-in Module

The add-in module (MyOutlookAddin1_IMPL.pas and MyOutlookAddin1_IMPL.dfm) is the core part of the COM

add-in project (see COM Add-ins Dialog). It is a container for Add-in Express components. You specify the add-

in properties in the module's properties, add the required components to the module's designer, and write the

functional code of your add-in in this module.

The code for MyAddin1_IMPL.pas is as follows:

unit MyOutlookAddin1_IMPL;

interface

uses

 SysUtils, ComObj, ComServ, ActiveX, Variants, Office2000, adxAddIn,

MyOutlookAddin1_TLB, Outlook2000;

type

 TcoMyOutlookAddin1 = class(TadxAddin, IcoMyOutlookAddin1)

 end;

 TAddInModule = class(TadxCOMAddInModule)

 procedure adxCOMAddInModuleAddInInitialize(Sender: TObject);

 procedure adxCOMAddInModuleAddInFinalize(Sender: TObject);

 private

 protected

 procedure NameSpaceOptionsPagesAdd(ASender: TObject;

 const Pages: PropertyPages; const Folder: MAPIFolder); override;

 public

 end;

var

35 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Outlook COM Add-in

 adxcoMyOutlookAddin1: TAddInModule;

implementation

{$R *.dfm}

procedure TAddInModule.adxCOMAddInModuleAddInInitialize(Sender: TObject);

begin

 adxcoMyOutlookAddin1 := Self;

end;

procedure TAddInModule.adxCOMAddInModuleAddInFinalize(Sender: TObject);

begin

 adxcoMyOutlookAddin1 := nil;

end;

procedure TAddInModule.NameSpaceOptionsPagesAdd(ASender: TObject;

 const Pages: PropertyPages; const Folder: MAPIFolder);

 function GetFullFolderName(const AFolder: MAPIFolder): string;

 var

 IDisp: IDispatch;

 Folder: MAPIFolder;

 begin

 Result := '';

 Folder := AFolder;

 while Assigned(Folder) do begin

 Result := '\' + Folder.Name + Result;

 try

 IDisp := Folder.Parent;

 if Assigned(IDisp) then

 IDisp.QueryInterface(IID_MAPIFolder, Folder);

 except

 Break;

 end;

 end;

 IDisp := nil;

 Folder := nil;

 if Result <> '' then Delete(Result, 1, 1);

 end;

begin

 if GetFullFolderName(Folder) = 'Personal Folders\Inbox' then

 Pages.Add('MyOutlookAddin1.PropertyPage1', 'My Property Page');

end;

initialization

36 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Outlook COM Add-in

 TadxFactory.Create(ComServer, TcoMyOutlookAddin1, CLASS_coMyOutlookAddin1,

TAddInModule);

end.

The add-in module contains two classes: the “interfaced” class (TcoMyOutlookAddin1 in this case) and the

add-in module class (TAddInModule). The “interfaced” class is a descendant of the TadxAddIn class that

implements the IDTExtensibility2 interface required by the COM Add-in architecture. Usually you don't

need to change anything in the TadxAddIn class.

The add-in module class implements the add-in functionality. It is an analogue of the Data Module, but unlike

the Data Module, the add-in module allows you to set all

properties of your add-in, handle its events, and create toolbars

and controls.

Step #3 – COM Add-in Designer

First off, you can drop a component from the Tool Palette onto the

designer of the Outlook add-in module.

Also, the module designer allows setting add-in properties. The

most important are the name of your add-in (AddInName) and

how it loads into the host application (LoadBehavior). The

typical value of the LoadBehavior property is 3, which means

Loaded & Connected.

37 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Outlook COM Add-in

Step #4 – Adding a New Explorer Command Bar

To add a command bar to the Outlook Explorer window, use the TadxOlExplorerCommandBar component

from the Add-in Express group in the Tool Palette.

Select the Outlook Explorer Command Bar component, and in

the Object Inspector window, specify the command bar name

using the CommandBarName property and choose its position

(see the Position property). Outlook-specific versions of the

CommandBar component provide context-sensitive properties,

such as FolderName, FolderNames, and ItemTypes (see

Outlook Command Bar Visibility Rules).

In the screenshot, you see the properties of the Outlook

Explorer command bar component that will create the command

bar named AdxOlExplorerCommandBar1. The command bar

will be shown for every Outlook folder (FolderName = ''),

the default item types of which are Mail or Task. See also

Command Bars: Toolbars, Menus, and Context Menus.

38 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Outlook COM Add-in

Step #5 – Adding a New Command Bar Button

You run the property editor for the Controls property in the Object Inspector. The editor allows adding

command bar controls in an intuitive way.

Add a button to the toolbar, specify the Caption and set Style to adxMsoButtonIconAndCaption. To

handle the Click event, in the Object Inspector window, switch to Events and add a Click event handler.

Step #6 – Accessing Outlook Objects

Add-in Express provides the OutlookApp property of the TOutlookApplication type for Outlook add-ins.

This allows you to write the following code to the Click event of the newly added button.

procedure TAddInModule.DefaultActionInExplorer(

 Sender: TObject);

var

 IExplorer: _Explorer;

begin

 IExplorer := OutlookApp.ActiveExplorer;

 if Assigned(IExplorer) then

 begin

 ShowMessage('The subject is:' + CRLF + GetSubject(IExplorer));

 IExplorer := nil;

 end;

end;

function TAddInModule.GetSubject(

 const ExplorerOrInspector: IDispatch): string;

var

 IExplorer: _Explorer;

 ISelection: Selection;

 IInspector: _Inspector;

begin

 Result := '';

39 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Outlook COM Add-in

 if (ExplorerOrInspector <> nil) then

 begin

 ExplorerOrInspector.QueryInterface(IID__Explorer, IExplorer);

 if Assigned(IExplorer) then

 try

 try

 ISelection := IExplorer.Selection;

 except

 ISelection := nil;

 //skip an exception generated by Outlook when some folders are selected

 end;

 if Assigned(ISelection) then

 try

 if ISelection.Count > 0 then

 Result := OleVariant(ISelection.Item(1)).Subject;

 finally

 ISelection := nil;

 end;

 finally

 IExplorer := nil;

 end

 else

 begin

 ExplorerOrInspector.QueryInterface(IID__Inspector, IInspector);

 if Assigned(IInspector) then

 try

 Result := OleVariant(IInspector.CurrentItem).Subject;

 finally

 IInspector := nil;

 end;

 end;

 end;

end;

The code of the GetSubject method emphasizes the following:

• Outlook fires an exception when you try to obtain the Selection object in some situations.

• There may be no items in the Selection object.

Step #7 – Handling Outlook Events

Add-in Express provides several components that make host's events available for the add-in module (see Host

Application Events). To add Outlook events to the add-in, find the TadxOutlookAppEvents component in the

Tool Palette and drag-n-drop it onto the module. You can use the component to get access to the events of all

Outlook versions. If both TAddInModule and TadxOutlookAppEvents provide the same event, you should

40 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Outlook COM Add-in

use the event provided by TAddInModule. For instance, both TAddInModule and TadxOutlookAppEvents

provide the BeforeFolderSwitch event. According to the rule, we choose the event provided by the add-in

module and write the following code:

procedure TAddInModule.adxCOMAddInModuleOLExplorerBeforeFolderSwitch (

 ASender: TObject; const NewFolder: IDispatch; var Cancel: WordBool);

begin

 if (NewFolder <> nil) then

 ShowMessage('You are switching to the '

 + (NewFolder as MAPIFolder).Name + ' folder');

end;

Step #8 – Adding a New Inspector Command Bar

To add a command bar to Outlook Inspector windows, use the TadxOlInspectorCommandBar component

from the Add-in Express group in the Tool Palette.

The Inspector command bar component provides the same properties as the Explorer command bar

component. We use the default settings of the component in this sample. You should populate an Inspector

command bar with controls the way it’s described in Step #5 – Adding a New Command Bar Button. Add a

button to the command bar and display the subject of the currently open item using the following code that

handles the Click event of the button:

procedure TAddInModule.DefaultActionInInspector(

 Sender: TObject);

var

 IInspector: _Inspector;

begin

 IInspector := OutlookApp.ActiveInspector;

41 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Outlook COM Add-in

 if Assigned(IInspector) then

 begin

 ShowMessage('The subject is:' + CRLF + GetSubject(IInspector));

 IInspector := nil;

 end;

end;

To display an Inspector command bar in the Ribbon UI you must explicitly set the UseForRibbon

property of the command bar component to True.

See also Command Bars: Toolbars, Menus, and Context Menus and Outlook Command Bar Visibility Rules.

Step #9 – Customizing Main Menus in Outlook

Outlook 2000-2003 provides two main menu types. They are available for two main types of Outlook windows:

Explorer and Inspector. Accordingly, Add-in Express provides two main menu components: Explorer Main

Menu component and Inspector Main Menu component (note the Ribbon UI replaces the main menu of

Inspector windows in Outlook 2007 and all main menus in

Outlook 2010+). You add either of them using the context

menu of the add-in module. Then you use the visual designer

provided for the Controls property of the component. For

instance, to add a custom control to the popup shown by the

File | New item in all Outlook Explorer windows, you do the

following:

• Use our free Built-in Control Scanner to get the IDs and

names of built-in command bars and controls in Outlook

The screenshot below shows the result of scanning. You

will need the Office IDs from the screenshot below to bind

Add-in Express controls to them:

http://www.add-in-express.com/downloads/mapi-store-events.php

42 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Outlook COM Add-in

• Add a popup control to the menu and set its OfficeId property to 30002

• Add a popup control to the popup control above and set its OfficeId to 30037

• Add a button to the popup above and specify its properties.

In the sample add-in described in this chapter, the BeforeId property of the My Item button is set to 1757,

which is the ID of the Mail Message item. In this way, we position our item before Mail Message. See also

Using Built-in Command Bar Controls.

Step #10 – Customizing Context Menus in Outlook

Add-in Express allows customizing Outlook context menus via the Context Menu component. You use the

context menu of the add-in module to add such a component onto the module. Then you choose Outlook in the

SupportedApp property of the component. Then, in the CommanBarName property, you choose the context

43 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Outlook COM Add-in

menu you want to customize. Finally, you add custom controls in the visual designer supplied for the Controls

property.

The sample add-in described in this chapter adds a custom item to the Folder Context Menu command bar that

represents the context menu shown when you right-click a folder in the folder tree.

Outlook 2000 context menus are not customizable.

Outlook 2002-2007 context menus can be customized only using TadxContextMenu.

Outlook 2010 context menus are customizable using TadxContextMenu (with some limitations) and

TadxRibbonContextMenu.

Outlook 2013+ context menus are customizable only using TadxRibbonContextMenu (see below).

Also, you can customize many Ribbon-based context menus in Outlook 2010+. Find the

TadxRibbonContextMenu component on the Tool Palette and drop it on the add-in module. The component

allows specifying Ribbons that supply context menu names for the ContextMenuNames property. You use the

ContextMenuNames property editor to choose the context menu(s) that will display your custom controls

specified in the Controls property.

Step #11 – Handling Events of Outlook Items Object

The Outlook2000 unit contains the TItems component (of the TOleServer type). This component provides

the following events: OnItemAdd, OnItemChange, and OnItemRemove. To process these events, you add the

following to the add-in module:

 TAddInModule = class(TadxCOMAddInModule)

44 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Outlook COM Add-in

 private

 ...

 procedure ItemsAdd(ASender: TObject; const Item: IDispatch);

 function GetIsFolderTracked: boolean;

 procedure SetIsFolderTracked(const Value: boolean);

 ...

 public

 ...

 Items: TItems;

 property IsFolderTracked: boolean read GetIsFolderTracked write

SetIsFolderTracked;

 ...

 end;

...

procedure TAddInModule.adxCOMAddInModuleAddInStartupComplete(Sender: TObject);

begin

 IsFolderTracked := true;

end;

procedure TAddInModule.adxCOMAddInModuleAddInBeginShutdown(Sender: TObject);

begin

 IsFolderTracked := false;

end;

procedure TAddInModule.SetIsFolderTracked(const Value: boolean);

begin

 if Assigned(ItemsEvents) then begin

 if not Value then begin

 ItemsEvents.Disconnect;

 ItemsEvents.Free;

 ItemsEvents := nil;

 end;

 end

 else if Value then begin

 ItemsEvents := TItems.Create(Self);

 ItemsEvents.OnItemAdd := ItemsAdd;

 ItemsEvents.ConnectTo(

 Self.OutlookApp.GetNamespace('MAPI').

 GetDefaultFolder(olFolderInbox).Items);

 end;

end;

function TAddInModule.GetIsFolderTracked: boolean;

begin

 if Assigned(ItemsEvents) then

 Result := Assigned(ItemsEvents.DefaultInterface)

 else

45 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Outlook COM Add-in

 Result := false;

end;

procedure TAddInModule.ItemsAdd(ASender: TObject; const Item: IDispatch);

var

 S: WideString;

begin

 S := '';

 try

 S := OleVariant(Item).Subject;

 except

 end;

 if (S <> '') then

 ShowMessage('The item with subject "' + S

 + '" has been added to the Inbox folder');

end;

Step #12 – Adding Property Pages to the Folder Properties Dialogs

Outlook allows you to add custom option pages to the Options dialog box (the Tools | Options menu) and / or to

the Properties dialog box of any folder. To automate this task, the Add-in Express wizard provides you with the

Option Pages window (see Step #1 – Creating an Outlook COM Add-in Project).

By default, a property page contains two controls only: a label and an edit box. The edit box gives you an

example of how to handle events of the controls on the property page.

procedure TPropertyPage1.Edit1Change(Sender: TObject);

begin

 GetPropertyPageSite;

 // TODO - put your code here

 UpdatePropertyPageSite;

end;

You add the TCheckBox component to the Property page, handle its OnClick event following the code

template above, and connect or disconnect the TItems component in the Apply method. You initialize the

check box in the Initialize method of the property page:

function TcoPropertyPage1.Apply: HResult;

begin

 adxcoMyOutlookAddin1.IsFolderTracked := CheckBox1.State = cbChecked;

 FDirty := False;

 Result := S_OK;

end;

46 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Outlook COM Add-in

procedure TPropertyPage1.Initialize;

begin

 ...

 if (adxcoMyOutlookAddin1.IsFolderTracked) then

 begin

 if (CheckBox1.State <> cbChecked) then

 CheckBox1.State := cbChecked;

 end

 else

 if (CheckBox1.State <> cbUnchecked) then

 CheckBox1.State := cbUnchecked;

end;

See also Outlook Property Page.

Step #13 – Intercepting Keyboard Shortcuts

To intercept a keyboard shortcut, you add a TadxKeyboardShortcut component to the add-in module. In the

Object Inspector window you select (or enter) the desired shortcut in the ShortcutText property. We chose

the shortcut for the Send button in the Standard command bar of the mail Inspector. It is Ctrl+Enter.

To use keyboard shortcuts, set the HandleShortcuts property of the add-in module to true.

procedure TAddInModule.adxKeyboardShortcut1Action(Sender: TObject);

begin

 ShowMessage('You`ve pressed ' +

 TadxKeyboardShortcut(Sender).ShortcutText);

47 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Outlook COM Add-in

end;

Step #14 – Customizing the Outlook Ribbon User Interface

To add a new tab to the Ribbon, you add the TadxRibbonTab component to the module. Then, in the Object

Inspector window, run the editor for the Controls collection of the Ribbon tab component. In the editor, use

the toolbar buttons or context menu to add or delete Add-in Express components that form the Ribbon interface

of your add-in. First, you add a Ribbon tab and change its caption to My Ribbon Tab. Then, you select the tab

component, add a Ribbon group, and change its caption to My Ribbon Group. Next, you select the group, and

add a button. Set the button caption to My Ribbon Button. Use the Glyph property to set the icon for the button.

Now add the event handler to the Click event of the button and write the following code:

procedure TAddInModule.adxRibbonTab1Controls0Controls0Controls0Click(Sender:

TObject; const RibbonControl: IRibbonControl);

var

 IExplorer: _Explorer;

 Window: IDispatch;

begin

 Window := OutlookApp.ActiveWindow;

 if Window <> nil then begin

 Window.QueryInterface(IID__Explorer, IExplorer);

 if Assigned(IExplorer) then

 DefaultActionInExplorer(nil)

 else

 DefaultActionInInspector(nil);

 end;

end;

48 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Outlook COM Add-in

Remember, the TadxRibbonTab.Controls editor performs the XML-schema validation automatically, so

from time to time you will run into the situation when you cannot add a control to some Ribbon level. It is a

restriction of the Ribbon XML-schema.

Unlike other Ribbon-based applications, Outlook has numerous ribbons. Use the Ribbons property of your

TadxRibbonTab components to specify the ribbons you customize with your tabs. See also Office Ribbon

Components.

Step #15 –Advanced Task Panes in Outlook 2000+

As described in Advanced Outlook Regions and Advanced Office Task Panes, you add an Outlook Forms

Manager component (TadxOlFormsManager) to your add-in module and an Add-in Express Outlook Form to

your project using the New Items dialog. Then you add an item to the Items collection of the manager and

specify the following properties:

• ExplorerItemTypes = expMailItem – your form will be shown for all mail folders.

• ExplorerLayout = elBottomSubpane – an instance

of the form will be shown below the list of mails in Outlook

Explorer windows.

• InspectorItemTypes = insMail – your task pane will

be shown whenever you open an e-mail.

• InspectorLayout = ilBottomSubpane – an instance

of the form will be shown to the right of the message

body.

• AlwaysShowHeader = True – the header containing

the icon (a 16x16 .ico) and the caption of your form (see

the Icon and Caption properties of your form) will be

shown for your form even if it is a single form in the given

region.

• CloseButton = True – the header will contain the

Close button; a click on it generates the

OnADXBeforeCloseButtonClick event of the form.

• FormClassName =TadxOlForm1 – the class name of

the form whose instances will be shown in the regions

specified by the ExplorerLayout and/or

InspectorLayout properties.

On the form, you add a label and handle, say, the OnADXSelectionChange event of the form:

49 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Outlook COM Add-in

procedure TadxOlForm1.adxOlFormADXSelectionChange(Sender: TObject);

begin

 RefreshMe();

end;

procedure TadxOlForm1.RefreshMe;

var

 module: TAddinModule;

begin

 module := (self.AddinModule as TAddinModule);

 if (self.InspectorObj <> nil) then

 Label1.Caption := module.GetSubject(self.InspectorObj)

 else if (self.ExplorerObj <> nil) then

 Label1.Caption := module.GetSubject(self.ExplorerObj);

end;

The GetSubject method above retrieves the subject of the e-mail currently open in the Outlook Inspector

window or the one selected in the current Explorer window.

50 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Outlook COM Add-in

Step #16 – Running the COM Add-in

Choose Register ActiveX Server in menu Run, then restart Outlook and find your option page(s), command

bars, and controls. Note that your add-in is also listed in the COM Add-ins Dialog.

51 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Outlook COM Add-in

52 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Microsoft Outlook COM Add-in

Step #17 – Debugging the COM Add-in

To debug your add-in, indicate the add-in's host application in the Host Application field in the Project Options

window.

To debug your add-in in a 64-bit Outlook, register the add-in DLL using regsvr32; run it from an

elevated 64-bit Command Prompt. In addition, you must explicitly specify to run the 64-bit Outlook

in the dialog window shown above.

Step #18 – Deploying the COM Add-in

Make sure your setup project registers the add-in DLL. For example, in Inno Setup projects you use the

regserver command. See also:

• Registering with User Privileges

• Additional Files

53 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Excel RTD Server

Your First Excel RTD Server

The sample project described below implements an RTD server. It is included in Add-in Express for Office and

VCL sample projects available on the Downloads page.

A Bit of Theory

The RTD Server technology (introduced in Excel 2002) is used to provide the end user with a flow of changing

data such as stock quotes, currency exchange rates etc. If an RTD server is mentioned in a formula (placed on

an Excel worksheet), Excel loads the RTD server and waits for new data from it. When data arrive, Excel seeks

for a proper moment and updates the formula with new data.

RTD Server terminology:

• An RTD server is a Component Object Model (COM) Automation server that implements the IRtdServer

COM interface. Excel uses the RTD server to communicate with a real-time data source on one or more

topics.

• A real-time data source is any source of data that you can access programmatically.

• A topic is a string (or a set of strings) that uniquely identifies a data source or a piece of data that resides in

a real-time data source. The RTD server passes the topic to the real-time data source and receives the

value of the topic from the real-time data source; the RTD server then passes the value of the topic to

Excel for displaying. For example, the RTD server passes the topic "New Topic" to the real-time data

source, and the RTD server receives the topic's value of "72.12" from the real-time data source. The RTD

server then passes the topic's value to Excel for display.

Per-user and Per-machine RTD Servers

An RTD Server can be registered either for the current user (the user running the installer) or for all users on

the machine. That's why the corresponding module type, ADXRTDServerModule, provides the

RegisterForAllUsers property. Registering for all users means writing to HKLM and that means the user

registering a per-machine RTD server must have administrative permissions. Accordingly,

RegisterForAllUsers = Flase means writing to HKCU (=for the current user).

http://www.add-in-express.com/downloads/adxvcl.php

54 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Excel RTD Server

Step #1 – Creating a New RTD Server Project

Run Delphi via the Run as Administrator command.

Add-in Express adds the RTD Server project template to the New Items dialog.

When you select the template and click OK, the RTD Server project wizard starts. You choose the project

options in the wizard windows.

55 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Excel RTD Server

The project wizard creates and opens the RTD server project in the IDE.

The RTD server project includes the following items:

• The project source files (MyRtdServer1.*);

• The type library files (MyRtdServer1_TLB.pas, MyRtdServer1.ridl);

• The RTD server module (MyRtdServer1_IMPL.pas and

MyRtdServer1_IMPL.dfm) discussed below.

Step #2 – RTD Server Module

The RTD server module (MyRtdServer1_IMPL.pas and MyRtdServer1_IMPL.dfm) is the core part of the RTD

server project. The module is the container for TadxRTDTopic components.

The code of MyRtdServer1_IMPL.pas is as follows:

unit MyRtdServer1_IMPL;

interface

uses

 SysUtils, Classes, ComServ, MyRtdServer1_TLB, adxRTDServ;

56 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Excel RTD Server

type

 TcoMyRtdServer1 = class(TadxRTDServer, IcoMyRtdServer1);

 TRTDServerModule = class(TadxXLRTDServerModule)

 private

 protected

 public

 end;

implementation

{$R *.dfm}

initialization

 TadxRTDFactory.Create(ComServer, TcoMyRtdServer1, CLASS_coMyRtdServer1,

TRTDServerModule);

end.

Step #3 – RTD Server Designer

The module designer allows setting RTD server properties and adding

components to the module. You set the properties of your RTD server module

in the Object Inspector.

The only Add-in Express component available for the module is

TadxRTDTopic (see RTD Topic).

Step #4 – Adding and Handling a New Topic

To add a new topic to your RTD server, find the TadxRTDTopic component in

the Tool Palette and drag-n-drop it onto the RTD server module (see RTD

Topic).

Select the newly added component and, in the Object Inspector, specify the topic using the String##

properties. Write your code to handle the RefreshData event of the RTD Topic component:

57 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Excel RTD Server

function TRTDServerModule.adxRTDTopic1RefreshData(Sender: TObject): OleVariant;

begin

 Result := RandomRange(-100, 100);

end;

58 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Excel RTD Server

Step #5 – Running the RTD Server

Choose the Register ActiveX Server item in the Run menu, restart Excel, and enter the RTD function to a cell.

59 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Excel RTD Server

Step #6 – Debugging the RTD Server

To debug your RTD server, just indicate Excel as the Host Application in the Project Options window.

To debug your RTD server in a 64-bit Excel, register the DLL using regsvr32; run it from an elevated

64-bit Command Prompt. In addition, you must explicitly specify to run the 64-bit Excel in the dialog

window shown above.

Step #7 – Deploying the RTD Server

Make sure your setup project registers the RTD server DLL (or EXE). Say, in Inno Setup projects you use the

regserver command. If you use the Register with User Privileges option, please read the following:

• Registering with User Privileges

60 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Smart Tag

Your First Smart Tag

The sample project described below implements a smart tag. It is included in Add-in Express for Office and VCL

sample projects available on the Downloads page.

A Bit of Theory

Smart Tags were introduced in Word 2002 and Excel 2002. Then they added PowerPoint 2003 to the list of

smart tag host applications.

Since Office 2010 Microsoft declared smart tags deprecated. Although you can still use the related APIs in

projects for Excel, Word, and PowerPoint 2010-2021/365, these applications do not automatically recognize

terms, and recognized terms are no longer underlined. Users must trigger recognition and view custom actions

associated with text by right-clicking the text and clicking the Additional Actions on the context menu. Please

see Changes in Word 2010 and Changes in Excel 2010 .

Below is what was said about the Smart Tag technology in earlier days:

This technology provides Office users with more interactivity for the content of their Office documents. A smart

tag is an element of text in an Office document having custom actions associated with it. Smart tags allow

recognizing such text using either a dictionary-based or a custom-processing approach. An example of such

text might be an e-mail address you type into a Word document or an Excel workbook. When smart tag

recognizes the e-mail address, it allows the user to choose one of the actions associated with the text. For e-

mail addresses, possible actions are to look up additional contact information or send a new e-mail message to

that contact.

Per-user Smart Tags

A smart tag is a per-user thing that requires registering in HKCU. In other words, a smart tag cannot be

registered for all users on the machine. Instead, it must be registered for every user separately.

Step #1 – Creating a New Smart Tag Library Project

Start Delphi via the Run as Administrator command.

Add-in Express adds the Smart Tag project template to the New Items dialog:

http://www.add-in-express.com/downloads/adxvcl.php
http://technet.microsoft.com/en-ca/library/cc179199.aspx
http://technet.microsoft.com/en-ca/library/cc179167.aspx

61 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Smart Tag

When you select the template and click OK, the Smart Tag project wizard starts. In the wizard windows, you

choose the project options.

The project wizard creates and opens the Smart Tag project in the IDE.

The smart tag project includes the following items:

• The project source files (MySmartTag1.*).

• The type library files (MySmartTag1.ridl and MySmartTag1_TLB.pas).

• The smart tag module (MySmartTag1_IMPL.pas and

MySmartTag1_IMPL.dfm) discussed in the following step.

Step #2 – Smart Tag Module

The smart tag module (MySmartTag1_IMPL.pas and MySmartTag1_IMPL.dfm) is the core part of the smart tag

project. The smart tag module is a container for TadxSmartTag components.

The code for MySmartTag1_IMPL.pas is as follows:

62 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Smart Tag

unit MySmartTag1_IMPL;

interface

uses

 SysUtils, ComObj, ComServ, ActiveX, Variants, adxSmartTag, adxSmartTagTLB,

MySmartTag1_TLB;

type

 TcoMySmartTag1Recognizer = class(TadxRecognizerObject,

IcoMySmartTag1Recognizer)

 protected

 end;

 TcoMySmartTag1Action = class(TadxActionObject, IcoMySmartTag1Action)

 protected

 end;

 TSmartTagModule = class(TadxSmartTagModule)

 private

 protected

 public

 end;

implementation

{$R *.dfm}

initialization

 TadxRecognizerFactory.Create(ComServer, TcoMySmartTag1Recognizer,

 CLASS_coMySmartTag1Recognizer, TSmartTagModule);

 TadxActionFactory.Create(ComServer, TcoMySmartTag1Action,

 CLASS_coMySmartTag1Action, TSmartTagModule);

end.

The smart tag module contains three classes:

• The “interfaced” classes (TcoMySmartTag1Recognizer and TMySmartTag1Action);

• The smart tag module class (TSmartTagModule).

The “interfaced” classes are descendants of the TadxRecognizerObject class and the TadxActionObject

class that implement the smart tag specific interfaces required by the smart tag architecture:

63 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Smart Tag

ISmartTagRecognizer, ISmartTagRecognizer2, ISmartTagAction and ISmartTagAction2. Usually

you don't need to change anything in these classes.

In the smart tag module class, we write the functionality to be implemented by the smart tag. The smart tag

module is an analogue of the Data Module, but unlike the Data Module, the smart tag module allows you to set

all properties of your smart tags.

Step #3 – Smart Tag Designer

In the Project Manager, select the smart tag module, activate the Object Inspector, specify your smart tag name

in the SmartTagName property (this name appears in the Smart

Tags tab on the host application AutoCorrect Options dialog box),

and enter the description of the smart tag through the

SmartTagDesc property. These properties depend on Office

localization.

The designer of the Smart Tag module allows setting smart tag

library properties and adding TadxSmartTag components to the

module.

Step #4 – Adding a New Smart Tag

To add a new Smart Tag to your library, find the TadxSmartTag component in the Tool Palette and drag-n-

drop it onto the Smart Tag Module.

64 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Smart Tag

In the Object Inspector window, specify the caption for the added smart

tag. The value of the Caption property will become a caption of the

smart tag context menu. Also, specify the phrase(s) recognizable by

the smart tag in the RecognizedWords string collection.

Say, in this sample, the words are the following:

Step #5 – Adding and Handling Smart Tag Actions

To add a new smart tag action, right-click the smart tag component, select Smart Tag Actions on the pop-up

menu, and, in the Editing window, click the Add New button. Select the action in

the Editing window and fill in the Caption property the Object Inspector. The

value of the Caption property will be shown on an item of the smart tag context

menu (pop-up).

To handle clicking on this menu item, select the Events tab of the Object

Inspector, double click the OnClick event, and enter code:

65 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Smart Tag

procedure TSmartTagModule.adxSmartTag1Actions0Click(Sender: TObject;

 const AppName: WideString; const Target: IDispatch; const Text,

 Xml: WideString; LocaleID: Integer);

begin

 ShowMessage('Recognized text is ' + Text);

end;

Step #6 - Running Your Smart Tag

Choose Register ActiveX Server in menu Run, restart Word or Excel, enter the words recognizable by your

smart tag into a document, and see if the smart tag works.

• In Office 2003-2003, choose the Tools | AutoCorrect menu item and find your smart tag on the Smart Tags

tab.

• In Office 2007, the path to this dialog is as follows: Office button | Word Options | Add-ins | "Manage" Smart

Tags | Go.

• In Office 2010+, see File tab | Options | Add-ins | "Manage" Actions | Go.

66 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Smart Tag

Step #7 – Debugging the Smart Tag

To debug your Smart Tag, just indicate a required application as the Host Application in the Project Options.

Step #8 – Deploying the Smart Tag

Make sure your setup project registers the smart tag DLL. Say, in Inno Setup projects you use the regserver

command. If you use the Register with User Privileges option, please read the following:

• Registering with User Privileges

67 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Excel Automation Add-in

Your First Excel Automation Add-in

The sample project described below implements an Excel Automation add-in smart tag. It is included in Add-in

Express for Office and VCL sample projects available on the Downloads page.

The fact is that Excel Automation Add-ins do not differ from COM Add-ins except for the registry entries. That's

why Add-in Express bases Excel Automation Add-in projects on COM Add-in projects.

A Bit of Theory

Excel 2002 brought in Automation Add-ins – a technology that allows writing user-defined functions for use in

Excel formulas. Add-in Express provides you with a specialized module, COM Excel Add-in Module, that cuts

down this task to just writing one or more user-defined functions. A typical function accepts one or more Excel

ranges and/or other parameters. Excel shows the resulting value of the function in the cell where the user calls

it.

Add-in Express allows developing Excel Automation add-ins using the add-in module that has the

XLAutomationAddin Boolean property. Set the property to true, add a method to the add-in module's type

library, and write the method’s code.

Excel user-defined functions (UDFs) are used to build custom functions in Excel for the end user to use them in

formulas. This definition underlines the main restriction of an UDF: it should return a result that can be used in a

formula – not an object of any given type but a number, a string, or an error value (Booleans and dates are

essentially numbers). When used in an array formula, the UDF should return a properly dimensioned array of

values of the types above. Excel shows the value returned by the function in the cell where the user calls the

function.

There are two Excel UDF types: Excel Automation add-in and Excel XLL add-in. Add-in Express allows creating

only an Excel Automation add-in.

Per-user Excel UDFs

An Excel UDF is a per-user thing that requires registering in HKCU. In other words, a UDF cannot be registered

for all users on the machine. Instead, it must be registered for every user separately. See also Registry Entries.

http://www.add-in-express.com/downloads/adxvcl.php

68 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Excel Automation Add-in

Step #1 – Creating a New COM Add-in Project

Start Delphi via the Run as Administrator command.

Add-in Express adds the COM Add-in project template to the New Items dialog:

When you select the template and click OK, the COM Add-in wizard starts. You choose the necessary project

options in the wizard windows.

69 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Excel Automation Add-in

The project wizard creates and opens the COM Add-in project

in the IDE.

The add-in project includes the following items:

• The project source files (MyExcelAutomationAdd-in1.*).

• The type library files (MyExcelAutomationAddin1.ridl and MyExcelAutomationAddin1_TLB.pas).

• The add-in module (MyExcelAutomationAddin1_IMPL.pas and MyExcelAutomationAddin1_IMPL.dfm)

discussed in Your First Microsoft Office COM Add-in.

70 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Excel Automation Add-in

Step #2 – Creating an Excel Automation Add-in

Before you start adding Excel user-defined functions to the COM

Add-in, you set the XLAutomationAddin property of the add-in

module to true.

Step #3– Creating User-Defined Functions

Open the project type library (menu View | Type Library). Add a new method to the type library and define its

parameters.

71 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Excel Automation Add-in

Click the Refresh button and write your code to the TcoMyExcelAutomationAddin1.MyFunc function:

function TcoMyExcelAutomationAddin1.MyFunc(var Range: OleVariant): OleVariant;

begin

 Result := 0;

 case VarType(Range) of

 varSmallint, varInteger, varSingle,

 varDouble, varCurrency, varShortInt, varByte,

 varWord, varLongWord, varInt64: Result := Range * 1000;

 else

 try

 Result := Range.Cells[1, 1].Value * 1000;

 except

 Result := CVErr(xlErrValue);

 end;

 end;

end;

72 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Excel Automation Add-in

Step #4 – Running the Excel Automation Add-in

Choose Register ActiveX Server in menu Run, restart Excel, and check if your add-in works.

73 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL

Your First Excel Automation Add-in

Step #5 – Debugging the Excel Automation Add-in

To debug your add-in, just indicate the add-in host application as the Host Application in Project Options.

To debug your add-in in a 64-bit Excel, register the add-in DLL using regsvr32; run it from an

elevated 64-bit Command Prompt. In addition, you must explicitly specify to run the 64-bit Excel in

the dialog window shown above.

Step #6 – Deploying the Excel Automation Add-in

Make sure your setup project registers the add-in DLL. Say, in Inno Setup projects you use the regserver

command. See also:

• Registering with User Privileges

• Additional Files

74 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

Add-in Express Components

You can find all the Add-in Express components below in the Add-in Express category on the Tool Palette:

• TadxCommandBar – a command bar (see Command Bars: Toolbars, Menus, and Context Menus).

• TadxOlExplorerCommandBar – an Outlook Explorer command bar (see Command Bars: Toolbars,

Menus, and Context Menus).

• TadxOlInspectorCommandBar – an Outlook Inspector command bar (see Command Bars: Toolbars,

Menus, and Context Menus).

• TadxMainMenu – a main menu in any Office application (see Command Bars: Toolbars, Menus, and

Context Menus).

• TadxOlExplorerMainMenu – a main menu in Outlook Explorer (see Command Bars: Toolbars, Menus,

and Context Menus).

• TadxOlInspectorMainMenu – a main menu in Outlook Inspector (see Command Bars: Toolbars,

Menus, and Context Menus).

• TadxContextMenu – a context menu in any Office application (see Command Bars: Toolbars, Menus,

and Context Menus).

• TadxBuiltInControl – allows intercepting the action of a built-in control of the host application(s) (see

Built-in Control Connector).

• TadxOlBarShortcutManager – allows adding Outlook Bar shortcuts and shortcut groups (see Outlook

Bar Shortcut Manager).

• TadxKeyboardShortcut – allows intercepting application-level keyboard shortcuts (see Keyboard

Shortcut).

• TadxRTDTopic – represents a topic supported by your RTD server (see RTD Topic).

• TadxSmartTag – represents a Smart Tag.

• Tadx<application name>AppEvents – allows connecting to application-level events in the

corresponding Office applications (see Host Application Events).

• TadxRibbonTab – a Ribbon tab (see Office Ribbon Components).

• TadxRibbonQAT – the Ribbon Quick Access Toolbar (see Office Ribbon Components).

• TadxRibbonOfficeMenu – the Ribbon Office Menu (see Office Ribbon Components).

• TadxRibbonCommand – allows intercepting built-in Ribbon commands (see Office Ribbon Components).

75 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

• TadxOLSolutionModule – allows adding a solution module to the Outlook 2010+ UI (see Programming

the Outlook 2010 Solutions Module).

• TadxRibbonContextMenu – allows customizing context menus available in the Ribbon UI of Office

2010+ (see Context Menu).

• TadxBackstageView – allows customizing the File Tab in the Ribbon UI of Office 2010+.

• TadxOlFormsManager – allows embedding custom VCL forms into Outlook windows (see Advanced

Outlook Regions and Advanced Office Task Panes).

• TadxExcelTaskPanesManager – allows embedding custom VCL forms into the main Excel window (see

Advanced Outlook Regions and Advanced Office Task Panes).

• TadxWordTaskPanesManager – allows embedding custom VCL forms into the Word windows (see

Advanced Outlook Regions and Advanced Office Task Panes).

• TadxPowerPointTaskPanesManager – allows embedding custom VCL forms into the main PowerPoint

window (see Advanced Outlook Regions and Advanced Office Task Panes).

Office Ribbon Components

Starting from version 2007 Office provides the Ribbon user interface. Microsoft states that the interface makes it

easier and quicker for users to achieve the desired results. The developers extend this interface by using the

XML markup that the COM add-in should return to the host through the appropriate interface.

http://msdn.microsoft.com/en-us/library/ee692173.aspx
http://msdn.microsoft.com/en-us/library/ee692173.aspx

76 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

Add-in Express provides some 50 Ribbon-related components to give you the full power of the Ribbon UI

customization features. You start with TadxRibbonTab, TadxBackstageView in Office 2010+ or

TadxRibbonOfficeMenu in Office 2007 and TadxRibbonQAT (Quick Access Toolbar) that undertake the

task of creating the markup. You add controls to a tab or menu using a convenient tree-view-like editor that

allows you to see all the items of a tab or menu at a glance. To access the controls in your code you use the

FindRibbonControl function of the add-in module. Please note, Microsoft requires developers to use the

StartFromScratch parameter (see the StartFromScratch property of the add-in module) when

customizing the Quick Access Toolbar.

In Office 2010, Microsoft abandoned the Office Button (introduced in Office 2007) in favor of the File Tab (also

known as Backstage View). When the add-in is being loaded in Office 2010+, TadxRibbonOfficeMenu maps

your controls to the File tab unless you have a TadxBackStageView component in your add-in; in this case,

all controls you add to TadxRibbonOfficeMenu are ignored.

To use command bars in add-ins targeting Ribbon-enabled Office versions, you must explicitly set the

UseForRibbon property of the appropriate command bar components to True. In this case, your toolbars are

added to the built-in ribbon tab called Add-ins.

You use the Ribbon Command (TadxRibbonCommand) component to override the default action of a built-in

Ribbon control. Note that Microsoft allows intercepting only buttons, toggle buttons and check boxes; see the

ActionTarget property of the component. You specify the built-in Ribbon control to be intercepted in the

IdMso property of the component; see Referring to Built-in Ribbon Controls.

Ribbon UI features introduced in Office 2010 are covered by the TadxBackStageView and

TadxRibbonContextMenu components discussed in Main Menu and Context Menu.

How Ribbon Controls Are Created

When your add-in is being loaded by the host application supporting the Ribbon UI, the very first event received

by the add-in is the OnRibbonBeforeCreate event of the add-in module (in a pre-Ribbon Office application,

the very first event is OnAddinInitialize). This is the only event in which you can add/remove/modify the

Ribbon components onto/from/on the add-in module.

Then Add-in Express generates the XML markup reflecting the settings of the Ribbon components and raises

the OnRibbonBeforeLoad event. In that event, you can modify the generated markup, say, by adding XML

tags generating extra Ribbon controls.

Finally, the markup is passed to Office and the add-in module fires the OnRibbonLoaded event. In the event

parameters, you get an object of the IRibbonUI type that allows invalidating a Ribbon control; you call the

corresponding methods when you need the Ribbon to re-draw the control. Also, in Office 2010+, IRibbonUI

allows activating a Ribbon tab.

The Ribbon designers perform the XML-schema validation automatically, so from time to time you may run into

the situation when you cannot add a control to some level due to a restriction of the Ribbon XML-schema.

77 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

Still, we recommend turning on the Ribbon XML validation mechanism through the UI of the host application of

your add-in; you need to look for a checkbox named "Show add-in user interface errors", see here .

Referring to Built-in Ribbon Controls

All built-in Ribbon controls are identified by their IDs. While the ID of a command bar control is an integer, the

ID of a built-in Ribbon control is a string. IDs of built-in Ribbon controls can be downloaded from GitHub, see

here . The IDs are in Excel files: the Control Name column of each contains the IDs of almost all built-in

Ribbon controls for the corresponding Ribbon; see the screenshot below.

Add-in Express Ribbon components provide the IdMso property; if you leave it empty the component will create

a custom Ribbon control. To refer to a built-in Ribbon control, you set the IdMso property of the component to

the ID of the built-in Ribbon control. For instance, you can add a custom Ribbon group to a built-in tab. To do

this, you add a Ribbon tab component onto the add-in module and set its IdMso to the ID of the required built-

http://msdn.microsoft.com/en-us/library/bb608619.aspx
https://github.com/OfficeDev/office-fluent-ui-command-identifiers

78 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

in Ribbon tab. Then you add your custom group to the tab and populate it with controls. Note that the Ribbon

does not allow adding a custom control to a built-in Ribbon group.

Intercepting Built-in Ribbon Controls

You use the Ribbon Command (TadxRibbonCommand) component to override the default action of a built-in

Ribbon control. Note that the Ribbon allows intercepting only buttons, toggle buttons and check boxes; see the

ActionTarget property of the component. You specify the ID of a built-in Ribbon control to be intercepted in

the IdMso property of the component. To get such an ID, see Referring to Built-in Ribbon Controls.

Another use of the component is demonstrated by the screenshot below; this is how you disable the Copy

command in Word 2007+:

Positioning Ribbon Controls

Every Ribbon component provides the InsertBeforeId, InsertBeforeIdMso and InsertAfterId,

InsertAfterIdMso properties. You use the InsertBeforeId and InsertAfterId properties to position

the control among other controls created by your add-in, just specify the Id of the corresponding Ribbon

components in any of these properties. The InsertBeforeIdMso and InsertAfterIdMso properties allow

positioning the control among built-in Ribbon controls (see also Referring to Built-in Ribbon Controls).

Creating Ribbon Controls at Run-time

You cannot create Ribbon controls at run-time because Ribbon is a static thing from birth; but see How Ribbon

Controls Are Created The only control providing any dynamism is Dynamic Menu; if the

TadxRibbonMenu.Dynamic property is set to True at design time, the component will generate the

OnCreate event allowing creating menu items at run-time. For other control types, you can only imitate that

dynamism by setting the Visible property of a Ribbon control.

79 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

Updating Ribbon Controls at Run-Time

Add-in Express Ribbon components implement two schemas of refreshing Ribbon controls.

The simple schema allows you to change a property of the Ribbon component and the component will supply it

to the Ribbon whenever hat property is requested. This mechanism is an ideal when you need to display static

or almost static things such as a button caption that doesn't change or changes across all windows showing the

button, say in Outlook inspectors or Word documents. This works because Add-in Express supplies the same

property value whenever the Ribbon invokes a corresponding callback function.

You use the advanced schema when you need to show different captions of a Ribbon button in different

Inspector windows or Word document. To achieve this, you need to intercept the PropertyChanging event,

which all Ribbon components provide. That event occurs when the Ribbon expects that you can supply a new

value for a property of the Ribbon control. The event allows you to learn the current context, see Determining a

Ribbon Control's Context. It also allows you to get the property being changed and its current value. Finally, you

can change that value as required.

Determining a Ribbon Control's Context

The developer retrieves an IDispatch that represents the context is in these ways:

• In action events such as Click and Change, you use the IRibbonControl parameter to retrieve

IRibbonControl.Context.

• In the PropertyChanging event (see Updating Ribbon Controls at Run-Time), the context is supplied in

the Context parameter.

For a Ribbon control shown on a Ribbon tab, the context represents the window in which the Ribbon control is

shown: Excel.Window, Word.Window, PowerPoint.DocumentWindow, Outlook.Inspector,

Outlook.Explorer, etc. For a Ribbon control shown in a Ribbon context menu the context object may not be

a window e. g. Outlook.Selection, Outlook.AttachmentSelection, etc. When debugging the add-in

we recommend that you find the actual type name behind the context object by using

IDispatch.GetTypeInfo() and then ITypeInfo.GetDocumentation().

Sharing Ribbon Controls across Multiple Add-ins

First off, you assign the same string value to the TAddinModule.Namespace property of every add-in that will

share your Ribbon controls. Add-in Express reacts to this by adding two xmlns attributes to the customUI tag

in the resulting xml markup:

• xmlns:default="%ProgId, say TAddinModule.COMAddInClassFactory.ProgID%",

• xmlns:shared="%the value of the TAddinModule.Namespace property%".

80 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

Originally, all Ribbon controls are located in the default namespace (id="%Ribbon control's id%" or

idQ="default:%Ribbon control's id%") and you have a full control over them via the callbacks

provided by Add-in Express. When you specify the Namespace property, Add-in Express changes the markup

to use idQ's instead of id's.

Then, in all add-ins that should share a Ribbon control, you set the Shared property to True for the control

with the same Id (you can change the Id's to match), For the Ribbon control whose Shared property is True,

Add-in Express changes its idQ to use the shared namespace (idQ="shared:%Ribbon control's id%")

instead of the default one. Also, for such Ribbon controls, Add-in Express cuts out all callbacks and replaces

them with "static" versions of the attributes. Say, getVisible="GetVisible_CallBack" will be replaced

with visible="%value%".

The shareable Ribbon controls are the following Ribbon container controls:

• Ribbon Tab - TadxRibbonTab

• Ribbon Box - TadxRibbonBox

• Ribbon Group - TadxRibbonGroup

• Ribbon Button Group - TadxRibbonButtonGroup

When referring to a shared Ribbon control in the BeforeId and AfterId properties of another Ribbon control,

you use the shared controls' idQ: %namespace abbreviation% + ':' + %control id%. The

abbreviations of these namespaces are available in the adxDefaultNS and adxSharedNS constants

('default' and 'shared' string values). The resulting XML markup may look like this:

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui"

 xmlns:default="MyOutlookAddin1.coMyOutlookAddin1"

 xmlns:shared="MyNameSpace" [callbacks omitted]>

 <ribbon>

 <tabs>

 <tab idQ=" shared:adxRibbonTab1" visible="true" label="My Tab">

 <group idQ="default:adxRibbonGroup1" [callbacks omitted]>

 <button idQ="default:adxRibbonButton1" [callbacks omitted]/>

 </group>

 </tab>

 </tabs>

 </ribbon>

</customUI>

In the XML-code above, the add-in creates a shared tab with a private group containing a button.

81 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

Custom Task Panes in Office 2007+

To allow further customization of its applications, Office 2007 provides custom task panes. Add-in Express

supports Office 2007 custom task panes by providing the appropriate window in the project wizard and

equipping the add-in module with the TaskPanes property. Use the Add-in Express COM Add-in project wizard

to add a task pane(s) to your project. Add your reaction to the OnTaskPaneXXX event series of the add-in

module and the OnDockPositionStateChange and OnVisibleStateChange events of the task pane. See

also Adding an Office Custom Task Pane to an Existing Add-in Express Project.

Add-in Express provides a technology to show custom panes in Outlook, Excel, Word and PowerPoint of all

Office versions, from 2000 to 2021/365. See Advanced Outlook Regions and Advanced Office Task Panes for

details.

Command Bars: Toolbars, Menus, and Context Menus

Microsoft Office 2000-2003 supplied us with a common term for Office toolbars, menus, and context menus.

This term is "command bar". Add-in Express provides toolbar, menu, and context menu components that allow

tuning up targeted command bars at design time. Every such component provides a visual designer available in

the Controls property of the component.

For instance, the screenshot above shows a visual designer for the toolbar component that creates a custom

toolbar with a button. Note that this screenshot was taken when creating a sample project described in Your

First Microsoft Office COM Add-in.

To create toolbars, menus, and context menus in Outlook, you need to use Outlook-specific versions

of command bar components.

Toolbar

To add a toolbar to your add-in, find TadxCommandBar (TadxOlExplorerCommandBar,

TadxOlInspectorCommandBar) in the Tool Palette and drop it onto the add-in module. Its most important

property is CommandBarName. If its value is not equal to the name of any built-in command bar of the host

82 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

application, then you are creating a new command bar. If its

value is equal to any built-in command bar of the host

application, then you are connecting to a built-in command bar.

To find out the built-in command bar names, use our free Built-

in Controls Scanner utility.

To position your toolbar, use the Position property that

allows docking your toolbar to the top, right, bottom, or left

edges of the host application window. You can also leave your

toolbar floating. For a fine positioning you can use the

CommandBarLeft, CommandBarTop, and RowIndex

properties. To show a toolbar in the Ribbon UI, set the UseForRibbon property of the corresponding command

bar component to true.

To speed up add-in loading when connecting to an existing command bar, set the Temporary property to

False. To make the host application remove the command bar when the host application quits, set the

Temporary property to true. See also Temporary or not?

Main Menu

By using the Add Main Menu command of the add-in module, you add a TadxMainMenu, which is intended for

customizing main menu in an Office application that you specify in the SupportedApp property.

Like the toolbar component, it provides a visual designer for the Controls property. To add a custom top-level

menu item, just add a popup control to the command bar. Then you can populate it with other controls. Note,

however, that for all menu components, the controls can be buttons and pop-ups only. To add a custom button

to a built-in top-level menu item, you specify the ID of the top-level menu item in the OfficeId property of the

button control. For instance, the ID of the File menu item in all Office applications is 30002. See more details

about IDs of command bar controls in Using Built-in Command Bar Controls and Step #7 - Customizing Main

Menus in Your First Microsoft Office COM Add-in. See also Command Bar Controls, Built-in Control Connector.

In main applications of Office 2007, they replaced the command system with the Ribbon UI. So, instead of

adding custom items to the main menu, you need to add them to a custom or built-in Ribbon tab. Also, you can

add custom items to the menu of the Office Button. In Office 2010+, they added the Ribbon UI to all Office

applications and abandoned the Office button in favor of the File Tab, also known as Backstage View. Add-in

Express provides components allowing customizing both the File Tab and the Ribbon Office menu, see Step #7

- Customizing Main Menus in Your First Microsoft Office COM Add-in. Note, if you customize the Office Button

menu only, Add-in Express maps your controls to the Backstage View. If, however, both Office Button menu

and File tab are customized at the same time, Add-in Express ignores custom controls you add to the Office

Button menu.

http://www.add-in-express.com/downloads/controls-scanner.php
http://www.add-in-express.com/downloads/controls-scanner.php

83 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

Context Menu

The TadxContextMenu component allows you to add a custom command bar control to any context menu

available in all Office applications except for Outlook 2000 and Outlook 2013+. The component allows

connecting to a single context menu of a single host application. Like for the Main Menu component, you must

specify the SupportedApp property. To connect the Context Menu component to a context menu, simply

choose the name of the context menu in the CommandBarName combo.

Note that context menu names for this combo were taken from Office 2007, the last Office version that

introduced new commandbar-based context menus. Therefore, it is possible that the targeted context menu is

not available in a pre-2007 Office version.

In Office 2010 and higher, you can customize both commandbar-based and Ribbon-based context menus. Note

that in Outlook 2013+ you are only allowed to customize Ribbon-based context menus.

See also Step #8 – Customizing Context Menus in Your First Microsoft Office COM Add-in and Step #10 –

Customizing Context Menus in Outlook in Your First Microsoft Outlook COM Add-in.

Outlook Toolbars and Main Menus

While the look-and-feel of all Office toolbars is the same, Outlook toolbars differ from toolbars of other Office

applications because Outlook has toolbars in Outlook Explorer and Outlook Inspector windows that work in

quite different ways. Accordingly, Add-in Express includes Outlook-specific command bar components that

work correctly in multiple Explorer and Inspector windows scenarios: TadxOlExplorerCommandBar and

TadxOlInspectorCommandBar. In the same way, Add-in Express provides Outlook-specific versions of the

Main Menu component: TadxOlExplorerMainMenu and TadxOlInspectorMainMenu.

All of the components above provide the FolderName, FolderNames, and ItemTypes properties that add

context-sensitive features to the command bar. For instance, you can choose your toolbar to show up for e-

mails only. To achieve this just specify a correct value in the ItemTypes property editor.

84 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

Connecting to Existing Command Bars

In Office, all command bars are identified by their names. Keeping it in mind, you can add a custom or built-in

control to any existing command bar. The only thing you need to know is the command bar name. Use our free

Built-in Controls Scanner to get the names of all command bars and controls existing in any Office

application. Then you can specify any of the command bar names in the CommandBarName property of the

appropriate command bar component.

Command Bar Controls

The Office Object Model (OOM) includes the following command bar controls: CommandBarButton,

CommandBarComboBox, and CommandBarPopup. Using the correct property settings of the

CommandBarComboBox component, you can extend the list with edits and dropdowns.

What follows below is a list of controls available for Add-in Express command bars:

• TadxCommandBarButton

• TadxCommandBarComboBox

• TadxCommandBarEdit

• TadxCommandBarPopup

• TadxCommandBarDropDownList

• TadxCommandBarControl (you use this item to add built-in controls to your command bars)

• TadxCommandBarAdvancedControl (reserved for future use).

 Please note that due to the nature of command bars (remember, a 'command bar' stands for toolbar, menu,

and context menu), [context] menu items can be buttons, combo boxes, and pop-ups only.

Command bar components provide the Controls property. Clicking it in the Object Inspector window in Delphi

invokes the appropriate visual designer. On the picture below, you can see the visual designer to populate a

toolbar with custom controls.

http://www.add-in-express.com/downloads/controls-scanner.php

85 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

Using the designer, you can populate your command bars with controls and set up their properties at the design

time. At run-time, you use the Controls collection of your command bar. Every control (built-in and custom)

added to this collection will be added to the corresponding toolbar at your add-in startup.

Command Bar Control Properties and Events

The main property of any command bar control (they descend from TadxCommandBarControl) is the

OfficeId property. To add a built-in control to your toolbar, specify its ID in the OfficeId property of a

corresponding command bar control component. To find out the ID of every built-in control in any Office

application, use our free Built-in Controls Scanner utility. To add a custom control onto the toolbar, leave

OfficeId unchanged.

To add a separator before any given control, set its BeginGroup property to true.

Set up the control's appearance using a large number of its properties, such as Enabled and Visible, Style

and State, Caption and ToolTipText, DropDownLines and DropDownWidth, etc. You also control the

size (Height, Width) and location (Before, AfterId, and BeforeId) properties. To provide your command

bar buttons with a default list of icons, drop an ImageList component onto the add-in module and specify the

ImageList in the Images property of the module. Do not forget to set the button's Style property to either

adxMsoButtonIconAndCaption or adxMsoButtonIcon.

Use the OlExplorerItemTypes, OlInspectorItemTypes, and OlItemTypesAction properties to add

context-sensitivity to controls on Outlook-specific command bars. The OlItemTypesAction property defines

an action that Add-in Express will perform with the control when the current item's type coincides with that

specified by you.

To handle user actions, use the Click event for buttons and the Change event for edit, combo box, and drop

down list controls. Also use the DisableStandardAction property available for built-in buttons added to your

command bar. To intercept events of any built-in control, see Built-in Control Connector.

Command Bar Control Types

The Office Object Model contains the following control types available for toolbars: button, combo box, and

pop-up. Using the correct property settings of the combo box component, you can extend the list with edits and

dropdowns.

Please note that due to the nature of command bars, menu and context menu items can only be buttons and

pop-ups (item File in any main menu is a sample of a popup).

Using Built-in Command Bar Controls

Add-in Express connects to a built-in control using the ID that you supply in the OfficeID property. That is, if

you specify the ID of a control not equal to 1, Add-in Express adds it to your toolbar. Using this approach, you

can override the standard behavior of a built-in button on a given toolbar:

http://www.add-in-express.com/downloads/controls-scanner.php

86 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

• Add a new toolbar component to the module

• Specify the toolbar name in the CommandBarName property

• Add a TadxCommandBarButton to the command bar

• Specify the ID of the built-in button in the TadxCommandBarButton.OfficeId property

• Set DisableStandardAction to true

• Now you can handle the Click event of the button

You can find the IDs using the free Built-in Controls Scanner utility. Download it at http://www.add-in-

express.com/downloads/controls-scanner.php .

Built-in Control Connector

Built-in controls of an Office application have predefined IDs. You can find the IDs using the free Built-in

Controls Scanner utility .

The Built-in Control Connector component allows overriding the standard action of any built-in control without

adding it onto any command bar.

Add TadxBuiltInControl onto TadxCOMAddinModule. Set its Id property to the command bar control ID.

To connect the component to the command bar control, leave its CommandBar property empty. To connect the

component to the control on a given toolbar, specify the toolbar in the CommandBar property. To override the

default action of the control, use the Action event. The component traces the context and when any change

happens, it reconnects to the currently active instance of the command bar control with the given Id, taking this

task away from you.

Connecting to built-in Ribbon controls is described in Office Ribbon Components

Keyboard Shortcut

Every Office application provides built-in keyboard combinations that allow shortening the access path for

commands, features, and options of the application. Add-in Express allows adding custom keyboard

combinations and processing both custom and built-in ones.

Add the component onto TadxCOMAddinModule, choose the keyboard shortcut you need in the

ShortcutText property, set the HandleShortCuts property of the Add-in Express module to true and

process the Action event of the KeyboardShortcut component.

Outlook Bar Shortcut Manager

Outlook provides us with the Outlook Bar (Navigation Pane in Outlook 2003). The Outlook Bar displays Shortcut

groups consisting of Shortcuts that you can target at a Microsoft Outlook folder, a file-system folder, or a file-

system path or URL. You use the Outlook Bar Shortcut Manager to customize the Outlook Bar with your

shortcuts and groups.

http://www.add-in-express.com/downloads/controls-scanner.php
http://www.add-in-express.com/downloads/controls-scanner.php
http://www.add-in-express.com/downloads/controls-scanner.php
http://www.add-in-express.com/downloads/controls-scanner.php

87 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

This component is available for TadxCOMAddinModule. Use the Groups collection of the component to create

a new shortcut group. Use the Shortcuts collection of a short group to create a new shortcut. To connect to

an existing shortcut or shortcut group, set the Caption properties of the corresponding TadxOlBarShortcut

and/or TadxOlBarGroup components equal to the caption of the existing shortcut or shortcut group. Please

note that there is no other way to identify the group or shortcut.

That is why your shortcuts and shortcut groups must be named uniquely for Add-in Express to remove only the

specified ones (and not those having the same names) when the add-in is uninstalled. That is why you have to

do this yourself. Depending on the type of its value, the Target property of the TadxOlBarShortcut

component allows you to specify different shortcut types. If the type is MAPIFolder, the shortcut represents a

Microsoft Outlook folder. If the type is a String, the shortcut represents a file-system path or a URL.

Outlook Property Page

Outlook allows extending its Options dialog with custom pages. You see this dialog when you choose Tools |

Options menu. In addition, Outlook allows adding such page to the Folder Properties dialog. You see this dialog

when you choose the Properties item in the folder context menu. The Outlook Add-in project wizard allows

creating such pages.

The FolderName, FolderNames, and ItemTypes properties of the Outlook folder pages work in the same

way as those of Outlook-specific command bars.

Specify reactions required by your business logics in the Apply event handler. In the page controls' event

handlers, use the UpdatePropertyPageSite method to mark the page as Dirty.

Advanced Outlook Regions and Advanced Office Task Panes

Add-in Express allows COM add-ins to show Advanced Form and View Regions in Outlook and Advanced Task

Panes in Excel, Word, and PowerPoint; versions 2000-2021/365 are supported.

Introducing Advanced Task Panes in Word, Excel and PowerPoint

In Add-in Express terms, an advanced Office task pane is a sub-pane, or a dock, of the main Excel, Word or

PowerPoint window that may host native Delphi forms. The screenshot below shows a sample task pane

embedded into all available Excel docks.

88 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

89 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

Introducing Advanced Outlook Form and View Regions

In Add-in Express terms, an advanced Outlook region is a sub-pane, or a dock, of Outlook windows that hosts

native Delphi forms. There are two types of advanced regions – Outlook view regions (sub-panes on the

Outlook Explorer window) and Outlook form regions (sub-panes of the Outlook Inspector window).

Outlook view regions are specified in the ExplorerLayout property of the item (=

TadxOlFormsCollectionItem). Outlook form regions are specified in the InspectorLayout property of

the item. That is, one TadxOlFormsCollectionItem can show your form in a view and form region. Note

that you must also specify the item's ExplorerItemTypes and/or InspectorItemTypes properties;

otherwise, the form (an instance of TadxOlForm) will never be shown.

Here is the list of Outlook view regions:

• Four regions around the list of mails, tasks, contacts etc. The region names are LeftSubpane,

TopSubpane, RightSubpane, BottomSubpane (see the screenshot below). A restriction: these

regions are not available for Calendar folders in Outlook 2010 and above.

• One region below the Navigation Pane – BottomNavigationPane (see the screenshot below)

• One region below the To-Do Bar – BottomTodoBar (see the screenshot below)

• One region below the Outlook Bar (Outlook 2000 and 2002 only) – BottomOutlookBar. A restriction: this

region is not available in Outlook 2013 and above.

90 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

• Four regions around the Explorer window (Outlook 2007 and above) – DockLeft, DockTop, DockRight,

DockBottom (see the screenshot below). The restrictions for these regions are:

1. Docked regions are not available for pre-2007 versions of Outlook

2. Hidden state is not supported in docked layouts

3. Docked panes have limitations on the minimum height or width

91 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

• Four regions around the Reading Pane – LeftReadingPane, TopReadingPane, RightReadingPane,

BottomReadingPane (see the screenshot below).

• The WebViewPane region (see the screenshot below). Note that it uses Outlook properties in order to

replace the items grid with your form (see also WebViewPane).

92 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

• The FolderView region (see two screenshots below). Unlike WebViewPane, it allows the user to switch

between the original Outlook view and your form. A restriction: this region is not available for Calendar

folders in Outlook 2010 and above.

• The ReadingPane region (see two screenshots above).

93 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

And here is the list of Outlook form regions:

• Four regions around the body of an e-mail, task, contact, etc. The region names are LeftSubpane,

TopSubpane, RightSubpane, BottomSubpane (see the screenshot below).

• The InspectorRegion region (see two screenshots below) allows switching between your form and the

Outlook inspector pane.

94 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

• The CompleteReplacement inspector region shown in the screenshot below is similar to the

InspectorRegion with two significant differences: a) it doesn't show the header and in this way, it

doesn't allow switching between your form and the Outlook inspector pane and b) it is activated

automatically.

Hello, World!

The process of adding custom panes to a particular application is described in the respective parts of the

following samples:

95 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

• Outlook – in Your First Microsoft Outlook COM Add-in see Step #15 –Advanced Task Panes in Outlook

2000.

• Excel, PowerPoint, Word – in Your First Microsoft Office COM Add-in, see Step #11 –Advanced Task

Panes in Excel 2000+.

The UI Mechanics

An Absolute Must-Know

Here are the three main points you should know:

• There are application-specific <Manager> components; every <Manager> component provides a

collection; each <Item> from the collection binds a <Form> (an application-specific descendant of TForm)

to the visualization and context (Outlook-only) settings.

• You never create an instance of a <Form> in the way you create an instance of TForm; instead, the

<Manager> creates instances of the <Form> for you either automatically or at your request.

• The Visible property of a <Form> instance is true when the instance is embedded into a window region

(as specified by the visualization settings) regardless of the actual visibility of the instance; the Active

property of the <Form> instance is true when the instance is shown on top of all other instances in the

same region.

Anywhere in this section, a term in angle brackets, such as <Manager> or <Form> above, specifies a

component, class, or class member, the actual name of which is application-dependent. Every such

term is covered in the corresponding chapter of this manual.

Region States and UI-Related Properties and Events

As mentioned in An Absolute Must-Know, the <Manager> creates instances of the <Form>.

To prevent an instance from being created you cancel one of the events listed below:

Table 1. Events that occur before a form instance is created.

Application <Manager> type Event

Excel TadxExcelTaskPanesManager OnADXBeforeTaskPaneInstanceCreate

96 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

Outlook TadxOlFormsManager OnADXBeforeFormInstanceCreate

OnADXBeforeFormInstanceCreateEx

PowerPoint TadxPowerPointTaskPanesManager OnADXBeforeTaskPaneInstanceCreate

Word TadxWordTaskPanesManager OnADXBeforeTaskPaneInstanceCreate

An instance of the <Form> (further on it is referenced as form) is considered visible if it is embedded into a

region. The form may be actually invisible either due to the region state (see below) or because other forms in

the same region hide it. Anyway, in this case <Form>.Visible returns true.

To prevent embedding the form into a region, you can set <Form>.Visible to false in these events.

Table 2. Events that occur before a form instance is embedded into a sub-pane.

Application <Form> type Event

Excel TadxExcelTaskPane OnADXBeforeTaskPaneShow

Outlook TadxOlForm OnADXBeforeFormShow

PowerPoint TadxPowerPointTaskPane OnADXBeforeTaskPaneShow

Word TadxWordTaskPane OnADXBeforeTaskPaneShow

When the form is shown in a region, the OnActivate event occurs and <Form>.Active becomes true.

When the user moves the focus onto the form, the <Form> generates the OnADXEnter event. When the form

loses focus, the OnADXLeave event occurs. When the form becomes actually invisible, it generates the

OnDeactivate event. When the corresponding <Manager> removes the form from its region,

<Form>.Visible becomes false and the form generates the OnADXAfterFormHide event in Outlook,

OnADXAfterTaskPaneHide event in Excel, Word, and PowerPoint.

In accordance to the value that you specify for the <Item>.DefaultRegionState property, the form may be

initially shown in any of the following region states: Normal, Hidden (collapsed to a 5px wide strip), Minimized

(reduced to the size of the form caption).

Note however that DefaultRegionState will work only when you show the form in a particular sub-pane for

the very first time and no other forms have been shown in that sub-pane before. You can reproduce this

situation on your PC by choosing Reset Regions in the context menu of the manager component.

97 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

You can change the state of your form at run-time using the <Form>.RegionState property. When showing

your Outlook form in some sub-panes, you may need to show the native Outlook view or form that your form

overlays; use the TadxOlForm.ActivateStandardPane() method

When the region is in the hidden state, the user can click on the splitter and the region will get back to the

normal state.

When the region is in the normal state, the user can choose any of the options below:

• change the region size by moving the splitter; this raises size-related events of the form

• hide the form by clicking on the "dotted" mini-button or by double-clicking anywhere on the splitter; this fires

the OnDeactivate event of the <Form>; this option isn't available for the end user if you set

TadxOlFormsCollectionItem.IsHiddenStateAllowed = False

• close the form by clicking on the Close button in the form header; this fires the OnADXCloseButtonClick

event of the <Form>. The event is cancellable, see The Close Button and the Header; if the event isn't

cancelled, the OnDeactivate event occurs, then the pane is being removed from the region

(<Form>.Visible = false) and finally, the <OnADXAfterFormHide> event of the <Form> occurs

• show another form by clicking the header and choosing an appropriate item in the popup menu; this fires

the OnDeactivate event on the first form and the OnActivate event on the second form

• transfer the region to the minimized state by clicking the arrow in the right corner

of the form header; this fires the OnDeactivate event of the form.

When the region is in the minimized state, the user can choose either of the two

options below:

• return the region to the normal state by clicking the arrow at the top of the slim

profile of the form region; this raises the OnActivate event of the form and

changes the Active property of the form to true

• expand the form itself by clicking on the form's button; this opens the form so that it overlaps a part of the

Outlook window near the form region; this also raises the OnActivate event of the form and sets the

Active property of the form to true.

• drag an Outlook item, Excel chart, file, selected text, etc. onto the form button; this fires the

OnADXDragOverMinimized event of the form; the event allows you to check the object being dragged

and to decide if the form should be restored.

The Close Button and the Header

The Close button is shown if the CloseButton property of the <Item> is true. The header is always

displayed when there are two or more forms in the same region. When there is just one form in a region, the

98 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

header is shown only if the AlwaysShowHeader property of the <Item> is true. Clicking on the Close button

in the form header fires the OnADXCloseButtonClick event of the <Form>, the event is cancellable:

procedure TadxOlForm1.adxOlFormADXCloseButtonClick(Sender: TObject;

 Args: TadxOlCloseButtonClickEventArgs);

begin

 //Args.CloseForm := false;

end;

Accessing a Form Instance

Add-in Express forms (panes) are based on the windowing of the corresponding Office application – Excel,

Word, Outlook, and PowerPoint. At run time, Add-in Express intercepts the messages the application sends to

its windows and reacts to the messages so that your form is shown, hidden, resized, etc. along with the

application's windows.

In Excel 2000-2010 and PowerPoint 2000-2007, a single instance of the <Form> is always created for a given

<Item> because these applications show documents in a single main window. Word is an application that

shows multiple windows, and in this situation, the Word Task Panes Manager creates one instance of the task

pane for every document window opened in Word.

Outlook is a specific host application. It shows several instances of two window types simultaneously. In

addition, the user can navigate through the folder tree and select, create and read several Outlook item types.

Accordingly, an ADXOlFormsCollectionItem can generate and show several instances of ADXOlForm at

the same time. Find more details on managing custom panes in Outlook in Advanced Outlook Regions.

To access the form, which is currently active in Excel or PowerPoint, you use the TaskPaneInstance

property of the <Item>; in Word, the property name is CurrentTaskPaneInstance; in Outlook, it is the

GetCurrentForm method. To access all instances of the <Form> in Word, you use the

TaskPaneInstances property of ADXWordTaskPanesCollectionItem; in Outlook, you use the

FormInstances method of ADXOlFormsCollectionItem (find more details in Form Region Instancing).

It is essential that Add-in Express panes are built on the windowing of the host application, not on the events of

the application's object model. This means that getting an instance of an Add-in Express pane in a certain event

may result in getting nil if the call is issued before the pane is shown or after it is hidden. For instance, it is

often the case with WindowActivate/WindowDeactivate in Excel, Word, and PowerPoint. Below is a list of

events where Add-in Express panes may be inaccessible:

Table 3. Events in which Add-in Express panes may be inaccessible

Excel WindowActivate, WindowDeactivate, WorkbookActivate,

WorkbookDeactivate, NewWorkbook, WorkbookOpen, WorkbookBeforeClose

99 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

Outlook NewInspector, Inspector.Activate, Inspector.Close,

Inspector.Deactivate, NewExplorer, Explorer.Activate, Explorer.Close,

Explorer.Deactivate

PowerPoint WindowActivate, WindowDeactivate, NewPresentation,

AfterNewPresentation, PresentationOpen, AfterPresentationOpen,

PresentationBeforeClose, PresentationClose

Word WindowActivate, WindowDeactivate, NewDocument, DocumentOpen,

DocumentChange, DocumentBeforeClose

So, you may encounter a problem if your add-in retrieves a pane instance in an event above. To bypass this

problem, we suggest modifying the code of the add-in so that it gets notified about a pane instance being

shown or hidden (instead of getting the pane instance by handling the events above).

Use the ADXBeforeTaskPaneShow event of the task pane class (Excel, Word, and PowerPoint) and the

TadxOlForm.ADXBeforeFormShow (Outlook) event to be notified about the specified pane instance being

shown. When the form becomes hidden you'll get TadxOlForm.ADXAfterFormHide (Outlook) and the

ADXAfterTaskPaneHide event of the task pane class (Excel, Word, and PowerPoint).

Controlling Form Visibility

To prevent a form from being displayed in the host application's window, you can set <Form>.Visible to

false in the events listed in Table 2. Events that occur before a form instance is embedded into a sub-pane.

By setting the Enabled property of an <Item> to false, you delete all form instances created for that

<Item>. To hide any given form (i.e., to remove it from the region), call its Hide method.

You can check that a form is not available in the UI (say, you cancelled the <OnBeforInstanceCreate> or

<OnBeforeFormShow> events or the user closed it) by checking the Visible property of the form:

function TAddInModule.DoesPaneExistInTheUI(): Boolean;

var

 Pane: TadxWordTaskPane1;

begin

 Pane :=

 adxWordTaskPanesManager1.Items[0].CurrentTaskPaneInstance

 as TadxWordTaskPane1;

 if Pane <> nil then

 Result := Pane.Visible

 else

 Result := false;

end;

If the form is not available in the UI, you can show such a form in one step:

100 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

• for Outlook, you call the ApplyTo method of the <Item>; the method accepts the parameter, which is

either Outlook2000._Explorer or Outlook2000._Inspector;

• for Excel, Word, and PowerPoint, you call the ShowTaskPane method of the <Item>

The methods above also transfer the region showing the form to the normal state.

If the Active property of your form is false, that is if your form is hidden by other forms in the region, then

you can call the Activate method of the <Form> to show the form on top of all other forms in that region.

Note that if the region is in either minimized or hidden state, calling Activate will also transfer it to the normal

state.

Note that your form does not restore its Active state in subsequent sessions of the host application in regions

showing several forms. In other words, if several add-ins show several forms in the same region and the current

session ends with a given form on top of all other forms in that region, the subsequent start of the host

application may show some other form as active. This is because events are given to add-ins in an

unpredictable order. When dealing with several forms of a given add-in, they are created in the order

determined by their locations in the <Items> collection of the <Manager>.

In Outlook, due to context-sensitivity features provided by the <Item>, an instance of your form will be created

whenever the current context matches that specified by the corresponding <Item>.

Resizing the Forms

There are two values of the Splitter property of the <Item>. The default one is sbStandard. This value

shows the splitter allowing the user to change the form size as required. The form size is stored in the registry

so that the size is restored whenever the user starts the host application.

You can only resize your form programmatically, if you set the Splitter property to sbNone. Of course, no

splitter will be shown in this case. Changing the Splitter property programmatically does not affect a form

currently loaded into its region (that is, having Visible = true). Instead, it will be applied to any newly

shown form.

If the form is shown in a given region for the first time and no forms were ever shown in this region, the form will

be shown using the appropriate dimensions that you set at design time. On subsequent host application

sessions, the form will be shown using the dimensions set by the user.

Coloring up the Form

By default, the background color of the form is set automatically to match the current Office 2007+ color

scheme. To use the background color of your own in these Office versions (as well as in Office 2003), you need

to set <Item>.UseOfficeThemeForBackground := true.

101 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

Tuning the Settings at Run-Time

To add/remove an <Item> to/from the collection and to customize the properties of an <Item> at add-in start-

up, you use the <Initialize> event of the <Manager>; the event's name is OnInitialize for Outlook and

OnADXInitalize for Excel, Word and PowerPoint.

Changing the Enable, Cached (Outlook only), <FormClassName> properties at run-time deletes all form

instances created by the <Item>.

Changing the InspectorItemTypes, ExplorerItemTypes, ExplorerMessageClasses,

ExplorerMessageClass, InspectorMessageClasses, InspectorMessageClass, FolderNames,

FolderName properties of the ADXOlFormsCollectionItem deletes all non-visible form instances.

Changing the <Position> property of the <Item> changes the position for all visible form instances.

Changing the Splitter and Tag properties of the <Item> does not do anything for the currently visible form

instances. You will see the change of the splitter when the <Manager> shows a new instance of the <Form>.

What Window the Pane is Shown for

To get an object corresponding to the host application's window that the form is shown for, use the following

members:

Table 4. Accessing the host application's window object from Add-in Express forms

Excel TadxExcelTaskPane.WindowObj – returns Excel.Window

Outlook TadxOlForm.InspectorObj – returns Outlook.Inspector, TadxOlForm.ExplorerObj

– returns Outlook.Explorer; these properties may also return null (Nothing in VB.NET)

PowerPoint TadxPowerPointTaskPane.WindowObj – returns PowerPoint.DocumentWindow

Word TadxWordTaskPane.WindowObj – returns Word.Window

Excel Task Panes

Please see The UI Mechanics above for the detailed description of how Add-in Express panes work. Below you

see the list containing some generic terms mentioned in An Absolute Must-Know and their Excel-specific

equivalents:

• <Manager> - TadxExcelTaskPanesManager, the Excel Task Panes Manager

• <Item> - TadxExcelTaskPanesCollectionItem

• <Form> - TadxExcelTaskPane

102 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

Application-specific features

TadxExcelTaskPane provides useful events that are unavailable in the Excel object model:

OnADXBeforeCellEdit and OnADXAfterCellEdit.

Keyboard and Focus

TadxExcelTaskPane provides the OnADXKeyFilter event. It deals with the feature of Excel that captures

the focus if a key combination handled by Excel is pressed. By default, Add-in Express panes do not pass key

combinations to Excel. Thus, you can be sure that the focus will not leave the pane unexpectedly.

Just to understand this Excel feature, imagine that you need to let the user press Ctrl+S and get the workbook

saved while your pane is focused. In such a scenario, you have two ways out:

• You process the key combination in the code of the pane and use the Excel object model to save the

workbook.

• Or you send this key combination to Excel using the OnADXKeyFilter event.

Besides the obvious difference between the two ways above, the former leaves the focus on your pane while

the latter effectively moves it to Excel because of the focus-capturing feature just mentioned.

The algorithm of key processing is as follows. Whenever a single key is pressed, it is sent to the pane. When a

key combination is pressed, TadxExcelTaskPane determines if the combination is a shortcut to the pane. If it

is, the keystroke is sent to the pane. If it is not, OnADXKeyFilter is fired and the key combination is passed to

the event handler. Then the event handler specifies whether to send the key press to Excel or to the pane. The

latter is the default behavior. Note that sending the key combination to Excel will result in moving the focus off

the pane. The above implies that the OnADXKeyFilter event never fires for shortcuts on the pane's controls.

In addition, OnADXKeyFilter is never fired for hot keys (Alt + an alphanumeric symbol). If

TadxExcelTaskPane determines that the pane cannot process the hot key, it sends the hot key to Excel,

which activates its main menu. After the user has navigated through the menu by pressing arrow buttons, Esc,

and other hot keys, opened and closed Excel dialogs, TadxExcelTaskPane will get focus again.

Wait a Little and Focus Again

The pane provides a simple infrastructure that allows implementing the Wait a Little schema - see the

ADXPostMessage method and the OnADXPostMessageReceived event.

Currently we know at least one situation when this trick is required. Imagine that you show a pane and you

need to set the focus on a control on the pane. It is not a problem to do this in, say the OnActivate event.

Nevertheless, it is useless because Excel, continuing its initialization, moves the focus off the pane. With the

above-mentioned method and event you can make your pane look like it never loses focus: in the OnActivate

103 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

event handler, you call the ADXPostMessage method and, in the OnADXPostMessageReceived event, you

set the focus on the control.

Advanced Outlook Regions

Please see The UI Mechanics above for the detailed description of how Add-in Express panes work. Below you

see the list containing some generic terms mentioned in An Absolute Must-Know and their Outlook-specific

equivalents:

• <Manager> - TadxOlFormsManager, the Outlook Forms Manager

• <Item> - TadxOlFormsCollectionItem

• <Form> - TadxOlForm

Context-Sensitivity of Your Outlook Form

Whenever the Outlook Forms Manager detects a context change in Outlook, it searches the

TadxOlFormsCollection collection for enabled items that match the current context and if any match is

found, it shows or creates the corresponding instances.

TadxOlFormsCollectionItem provides a number of properties that allow specifying the context settings for

your form. Say, you can specify item types for which your form will be shown. Note that in case of explorer, the

item types that you specify are compared with the default item type of the current folder. In addition, you can

specify the names of the folders for which your form will be shown in the FolderName and FolderNames

properties. These properties also work for Inspector windows – in this case, the parent folder of the Outlook

item is checked. An example of the folder path is "\\Personal Folders\Inbox".

A special value in FolderName is an empty string (''), which means "all folders". You can also specify

message class (es) for which your form will be shown. Note that all context-sensitivity properties of

TadxOlFormsCollectionItem are processed using the OR Boolean operation.

In advanced scenarios, you can also use the OnADXBeforeFormInstanceCreate event of

TadxOlFormsCollectionItem and the ADXBeforeFormShow event of TadxOlForm in order to prevent

your form from being shown (see also Accessing a Form Instance). In addition, you can use events provided by

TadxOlForm in order to check the current context. Say, you can use the OnADXBeforeFolderSwitch or

OnADXSelectionChange events of TadxOlForm.

Caching Forms

By default, whenever Add-in Express needs to show a form, it creates a new instance of that form. You can

change this behavior by choosing an appropriate value of the TadxOlFormsCollectionItem.Cached

property. The values of this property are:

104 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

• csNewInstanceForEachFolder – it shows the same form instance whenever the user navigates to the

same Outlook folder.

• csOneInstanceForAllFolders – it shows the same form instance for all Outlook folders.

• csNone – no form caching is used.

Caching works within the same Explorer window: when the user opens another Explorer window, Add-in

Express creates another set of cached forms. Forms shown in Inspector windows cannot be cached.

Is It Inspector or Explorer?

Check the InspectorObj and ExplorerObj properties of TadxOlForm. These properties return COM

objects that will be released when your form is removed from its region. This may occur several times in the

lifetime of a given form instance because Add-in Express may remove your form from a given region and then

embed the form to the same region in order to comply with Outlook windowing.

WebViewPane

When this value (see Introducing Advanced Outlook Form and View Regions) is chosen in the

ExplorerLayout property of TadxOlFormsCollectionItem, Add-in Express uses the WebViewUrl and

WebViewOn properties of Outlook.MAPIFolder (also Outlook.Folder in Outlook 2007) in order to show

your form as a home page for a given folder(s).

Unfortunately, due to a bug in Outlook 2002 , Add-in Express has to scan all folders in Outlook in order to set

and restore the WebViewUrl and WebViewOn properties. The first consequence is a delay at startup if the

current profile contains thousands of folders. A simple way to prevent the delay is to disable the corresponding

item(s) of the Items collection of the Forms Manager at design time and enable it in the

AddinStartupComplete event of the add-in module. Because PublicFolders usually contains many folders,

Add-in Express does not allow using WebViewPane for PublicFolders and all folders below it. Outbox and Sync

Issues and all folders below them are not supported as well when using WebViewPane.

Because of the need to scan Outlook folders, WebViewPane produces another delay when the user works in

the Cached Exchange Mode (see the properties of the Exchange account in Outlook) and the Internet

connection is slow or broken. To bypass this problem, Add-in Express allows reading EntryIDs of those folders

from the registry. Naturally, you are supposed to write appropriate values to the registry at add-in start-up. Here

is the code:

procedure TAddInModule.SaveDefaultFoldersEntryIDToRegistry(

 PublicFoldersEntryID, PublicFoldersAllPublicFoldersEntryID,

 FolderSyncIssuesEntryID: string);

var

 Reg: TRegistry;

begin

http://support.microsoft.com/kb/305093

105 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

 Reg := TRegistry.Create;

 try

 if Reg.OpenKey(self.RegistryKey

 + '\' + ADXXOL + '\'

 + 'FoldersForExcludingFromUseWebViewPaneLayout', true) then begin

 if (PublicFoldersEntryID <> EmptyStr) then begin

 Reg.WriteString('PublicFolders', PublicFoldersEntryID);

 end;

 if (PublicFoldersAllPublicFoldersEntryID <> EmptyStr) then begin

 Reg.WriteString('PublicFoldersAllPublicFolders',

 PublicFoldersAllPublicFoldersEntryID);

 end;

 if (FolderSyncIssuesEntryID <> EmptyStr) then begin

 Reg.WriteString('FolderSyncIssues', FolderSyncIssuesEntryID);

 end;

 end;

 finally

 Reg.CloseKey;

 Reg.Free;

 end;

end;

Form Region Instancing

The user may open multiple Explorer and Inspector windows. That is, the Outlook Forms Manager will create

multiple instances of your form region class now and then. How to retrieve the form instance shown in a

particular Outlook window? How to get all form instances?

TadxOlFormsCollectionItem.GetForm()

This method returns an instance of your form region in the specified Outlook window.

TadxOlFormsCollectionItem.GetCurrentForm()

This method returns an instance of your form region in the active Outlook window.

Consider the following scenarios:

• Calling GetCurrentForm() in the Click event of a Ribbon button is safe because the event can occur in

the active Outlook window only; accordingly, GetCurrentForm() returns the form instance embedded

into the Inspector (Explorer) window in which the button is clicked.

• GetCurrentForm() will never find e.g. an Inspector form region if an Explorer window is active;

106 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

• Some add-in or antivirus may cause the ExplorerSelectionChange event to fire in an inactive Explorer

window; that is, using GetCurrentForm() in an Explorer-related event may produce a wrong result. To

avoid this, use GetForm() or make sure that GetCurrentForm() is called in the active window.

TadxOlFormsCollectionItem.FormInstances[index]

This method allows enumerating all instances of your form region created for the specified

TadxOlFormCollectionItem. Use the FormInstanceCount property to get the total number of form

instances created for this TadxOlFormCollectionItem.

From a Form Instance to the Outlook Object Model

The Outlook Forms Manager creates an instance of your form when the Outlook context matches the settings

of the corresponding TadxOlFormsCollectionItem.

After creating the form instance, the manager sets a number of properties providing entry points to the Outlook

object model; note that these properties are not set when the form region's constructor is running. The

properties are listed below.

TadxOlForm.ExplorerObj If the form is embedded (TadxOlForm.Visible=true) into an Outlook

Explorer window, returns a reference to the corresponding

Outlook2000.Explorer object. Otherwise, returns nil.

TadxOlForm.InspectorObj If the form is embedded (TadxOlForm.Visible=true) into an Outlook

Inspector window, returns a reference to the corresponding

Outlook2000.Inspector object. Otherwise, returns nil.

TadxOlForm.FolderObj If the form is embedded into an Outlook Explorer window

(TadxOlForm.ExplorerObj is not nil), returns a reference to an

Outlook2000.MAPIFolder object representing the current folder in the

Explorer window.

If the form is embedded into an Outlook Inspector window

(TadxOlForm.InspectorObj is not nil), returns a reference to an

Outlook2000.MAPIFolder object representing the parent folder of the

Outlook item which is shown in the Inspector window.

TadxOlForm.FolderItemsObj If the form is embedded into an Outlook Explorer window

(TadxOlForm.ExplorerObj is not nil), returns a reference to an

Outlook2000.Items object representing the collection of items of the

current folder in the Explorer window.

If the form is embedded into an Outlook inspector window

(TadxOlForm.InspectorObj is not nil), returns a reference to an

Outlook2000.Items object representing the collection of items in the

107 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Add-in Express Components

parent folder of the Outlook item which is shown in the Inspector window.

TadxOlForm.OutlookAppObj Returns a reference to an Outlook2000.Application object

representing the Outlook application into which the add-in is loaded.

Smart Tag

The Kind property of the TadxSmartTag component allows you to choose from two text recognition strategies:

using a list of words in the RecognizedWords string collection, or implementing a custom recognition process

based on the Recognize event of the component. Use the ActionNeeded event to change the Actions

collection according to the current context. The component raises the PropertyPage event when the user

clicks the Property button in the Smart Tags tab (Tools | AutoCorrect Options menu) for your smart tag.

RTD Topic

Use the String## properties to identify the topic of your RTD server. To handle RTD server startup situations

nicely, specify the default value for the topic and using the UseStoredValue property, specify if the RTD

function in Excel returns the default value (UseStoredValue := false) or doesn't change the displayed value

(UseStoredValue := true). The RTD Topic component provides you with the Connect, Disconnect, and

RefreshData events. The last one occurs (for enabled topics only) whenever Excel calls the RTD function.

Host Application Events

Add-in Express provides event components for all Office applications on the Tool Palette: Just add appropriate

Add-in Express event components to the module, and use their event handlers to respond to the host

application events. However, we recommend you to make use of the events provided by the add-in module

before you start using event components.

MSForms Controls

Add-in Express provides MS Forms control components on the Tool Palette. These components are to be used

on the TadxExcelSheetModule and TadxWordDocumentModule. Add an the appropriate MS Forms

Control Connector to the module. Use the ControlName property of the connector to specify the underlying

control on the Excel worksheet or Word document. Respond to the events provided by the control connector.

108 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Tips and Notes

Tips and Notes

Terminology

In this document, on our site, and in all our texts we use the terminology suggested by Microsoft for all toolbars,

their controls, and for all interfaces of the Office Type Library. For example:

• Command bar is a toolbar, a menu bar, or a context menu.

• Command bar control is one of the following: a button, an edit box, a combo box, or a pop-up.

• Pop-up can stand for a pop-up menu, a pop-up button on a command bar or a submenu on a menu bar.

Add-in Express uses interfaces from the Office Type Library. We do not describe them here. Please refer to the

VBA help and to the application type libraries.

Getting Help on COM Objects, Properties and Methods

To get assistance with host applications’ objects, their properties, and methods as well as help info, use the

Object Browser. Go to the VBA environment (in the host application, choose menu Tools | Macro | Visual Basic

Editor or just press {Alt+F11}), press {F2}, select the host application in the topmost combo and/or specify a

search string in the search combo. Select a class /property /method and press {F1} to get the help topic that

relates to the object.

COM Add-ins Dialog

In Office 2010+ you click File Tab | Options and, on the Add-ins tab, choose COM Add-ins in the Manage

dropdown and click Go.

In Word, Excel, PowerPoint and Access 2007 you click the Office Menu button, then click {Office application}

options and choose the Add-ins tab. Now choose COM Add-ins in the Manage dropdown and click Go.

In all other Office applications, you need to add the COM Add-ins command to a toolbar or menu of your

choice. To do so, follow the steps below:

• Open the host application (Outlook, Excel, Word, etc.)

• On the Tools menu, click Customize.

• Click the Commands tab.

• In the Categories list, click the Tools category.

109 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Tips and Notes

• In the Commands list, click COM Add-Ins and drag it to a toolbar or menu of your choice.

In Office 2000-2003, the COM Add-ins dialog shows only add-ins registered in HKCU. In Office 2007+,

HKLM-registered add-ins are shown too. See also Registry Entries.

How to Get Access to the Add-in Host Applications

In the add-in module, Add-in Express wizards generate the <HostName>App properties. They return the

Application object (of the OleVariant type) of the host application in which the add-in is currently running.

To identify the host application, you can also use the HostType property of the module.

Registry Entries

COM Add-ins registry entries are located in the following registry branches:

{HKCU or HKLM}\Software\Microsoft\Office\<host>\AddIns\<your add-in’s ProgID>

HKEY_CLASSES_ROOT\CLSID\<Add-in Express Project GUID>

See also How to find if Office 64-bit is installed on the target machine.

ControlTag vs. Tag Property

Add-in Express identifies all its controls (command bar controls) by the ControlTag property (the Tag property

of the CommandBarControl interface). The value of this property is generated automatically and you do not

need to change it. For your own needs, use the Tag property instead.

Pop-ups

According to the Microsoft terminology, the term “pop-up” can be used for several controls: pop-up menu, pop-

up button, and submenu. With Add-in Express, you can create your own pop-up as an element of your controls

command bar collection and add any control to it via the Controls property.

However, pop-ups have an annoying feature: if an edit box or a combo box is added to a pop-up, their events

are fired very oddly. Please don’t regard this bug as that of Add-in Express.

Edits and Combo Boxes and the Change Event

The Change event occurs only when the value is changed and the focus is moved off the combobox. This is by

design.

110 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Tips and Notes

Built-in Controls and Command Bars

You can connect an Add-in Express command bar component to any built-in command bar. For example, you

can add your own controls to the "Standard" command bar or remove some controls from it. To do this just add

a new command bar component to the add-in module and specify the name of the built-in command bar you

need via the CommandBarName property.

In addition, you can add any built-in controls to your own command bars. To do this just add an

ADXCommandBarControl instance to the ADXCommandBar.Controls collection and specify the ID of the

built-in control you need via the Id property.

CommandBar.SupportedApps

Use this property to specify if the command bar is to appear in some or all host applications supported by the

add-in.

Outlook Command Bar Visibility Rules

You can use the FolderName, FolderNames and ItemTypes properties to bind your toolbars to certain

Outlook folders. Your toolbar is shown for a folder:

• If its full name (includes the folder path) is found in the FolderName or FolderNames properties.

• Or, if the folder type is found in the ItemTypes property.

Removing Custom Command Bars and Controls

Add-in Express removes custom command bars and controls when the add-in is uninstalled. However, this

does not apply to Outlook and Access add-ins. You should set the Temporary property of custom command

bars (and controls) to true to notify the host application that it can remove them itself. If you need to remove a

toolbar or button yourself, use the Tools | Customize dialog.

My Add-in Is Always Disconnected

If your add-in fires exceptions at the startup, the host application can block the add-in and move it to the

Disabled Items list. To find the list, go to "Help" in the host application and then click "About". At the bottom of

the About dialog, there is the Disabled Items button. Check it to see if the add-in is listed there (if so, select it

and click the enable button).

Update Speed for an RTD Server

Microsoft limits the minimal interval between updates to 2 seconds. There is a way to change this minimum

value but Microsoft doesn't recommend doing this.

111 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Tips and Notes

Sequence of Events When an Office Custom Task Pane Shows up

• AddinModule.OnTaskPaneBeforeCreate

• AddinModule.OnTaskPaneAfterCreate

• AddinModule.OnTaskPaneBeforeShow

• TaskPane.OnVisibleStateChange

• AddinModule.OnTaskPaneAfterShow

Adding an Office Custom Task Pane to an Existing Add-in Express Project

• Add an instance of ActiveForm to the project (File | New | Other | ActiveX | Active Form)

• Change its AxBorderStyle property to afbNone.

• Add the following declaration to the private section of the ActiveForm

procedure WMMouseActivate(var Message: TWMMouseActivate); message

WM_MOUSEACTIVATE;

• Change the method code to the following:

var

 FocusedWindow: HWND;

 CursorPos: TPoint;

begin

 inherited;

 FocusedWindow := Windows.GetFocus;

 if not SearchForHWND(Self, FocusedWindow) then begin

 Windows.GetCursorPos(CursorPos);

 FocusedWindow := WindowFromPoint(CursorPos);

 Windows.SetFocus(FocusedWindow);

 Message.Result := MA_ACTIVATE;

 end;

• Add the following function used by the WMMouseActivate method (place it before the method):

function SearchForHWND(const AControl: TWinControl; Focused: HWND): boolean;

var

 i: Integer;

begin

 Result := (AControl.Handle = Focused);

 if not Result then

 for i := 0 to AControl.ControlCount - 1 do

112 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Tips and Notes

 if AControl.Controls[i] is TWinControl then begin

 if TWinControl(AControl.Controls[i]).Handle = Focused then begin

 Result := True;

 Break;

 end

 else

 if TWinControl(AControl.Controls[i]).ControlCount > 0 then begin

 Result := SearchForHWND(TWinControl(AControl.Controls[i]), Focused);

 if Result then Break;

 end;

 end;

end;

• Add and override the ActiveForm destructor using the following code:

destructor TMyTaskPane.Destroy;

var

 ParkingHandle: HWND;

begin

 ParkingHandle := FindWindowEx(0, 0, 'DAXParkingWindow', nil);

 if ParkingHandle <> 0 then

 SendMessage(ParkingHandle, WM_CLOSE, 0, 0);

 inherited Destroy;

end;

• Now you add an item to the TaskPanes collection of TAddinModule and set its ControlProgID property

to the ProgID of the ActiveForm – just select it from the dropdown list.

• Remember about the Title property – the host application generates an exception if this property is left

empty.

• Clear the Target File Extension field in the project properties (Project | Options | Application).

Temporary or not?

According to the help reference for the Office object model contained within Office.DLL (see Getting Help on

COM Objects, Properties and Methods), temporary command bars and controls are removed by the host

application when it is closed.

Normally, the developer has the following alternative: if command bars and controls are temporary, they are

recreated whenever the add-in starts; if they are non-temporary, the installer removes those command bars and

controls from the host. Looking from another angle, you will see that the real alternative is the time required for

start-up against the time required for uninstalling the add-in (the host must be run to remove command bars).

113 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Tips and Notes

Outlook and Word are two exceptions. It is strongly recommended that you use temporary command bars and

controls in Outlook add-ins. If they are non-temporary, Add-in Express must run Outlook to remove them. Now

imagine password-protected PST and multiple-profile scenarios.

In Word add-ins, we strongly advise making both command bars and controls non-temporary. Word removes

temporary command bars. However, it does not remove temporary command bar controls, at least not all of

them. When the add-in starts for the second time, Add-in Express finds such controls and just connects to

them. In this way, it processes the user-moved-or-deleted-the-control scenario. Accordingly, the controls are

missing in the UI.

Note that main and context menus are command bars. That is, in Word add-ins, custom controls added to these

components must have Temporary = False as well. If you set Temporary to true for such controls, they will

not be removed when you uninstall your add-in. That happens because Word has another peculiarity: it saves

temporary controls when they are added to a built-in command bar. And all context menus are built-in

command bars. To remove such controls, you will have to write some code or use a simple way: set

Temporary to false for all controls, register the add-in on the affected PC, run Word. At this moment, the add-

in finds this control and traces it from this moment on. Accordingly, when you unregister the add-in, the control

is removed in a standard way.

Registering with User Privileges

When you use this option of the project wizard, all COM objects are registered in HKCU/Software/Classes

instead of HKLM/Software/Classes. This allows registering COM objects with non-admin privileges.

To support this option, Add-in Express modifies the code of the <project name>.dpr file and creates a special

<project name>.ini. When you deploy the project created with this option, you should place the <project

name>.ini and <project name>.dll files in the same location.

Restrictions:

• This works on Windows 2000+ only.

• The TAddinModule.RegisterForAllUsers property is ignored if you use the Register with User

Privileges option.

• RTD servers in EXE cannot be registered for the current user, so this option will be ignored if selected.

When modifying existing projects, you should do the following:

• Add the following code to the <project name>.dpr file:

...

uses

...

ComObj, Windows, adxAddIn,

...

114 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Tips and Notes

type

 TDummyComServer = class(TObject)

 private

 procedure FactoryRegister(Factory: TComObjectFactory);

 procedure FactoryUnRegister(Factory: TComObjectFactory);

 end;

procedure TDummyComServer.FactoryRegister(Factory: TComObjectFactory);

begin

 UpdateFactory(Factory, True);

end;

procedure TDummyComServer.FactoryUnRegister(Factory: TComObjectFactory);

begin

 UpdateFactory(Factory, False);

end;

function DllRegisterServer: HResult;

begin

 Result := E_FAIL;

 try

 if CheckConfigSection() then begin

 RegisterToHKCU := True;

 with TDummyComServer.Create do

 try

 ComClassManager.ForEachFactory(ComServer, FactoryRegister);

 finally

 Free;

 end;

 Result := S_OK;

 end;

 except

 end;

 if Result <> S_OK then Result := ComServ.DllRegisterServer();

end;

function DllUnregisterServer: HResult;

begin

 Result := E_FAIL;

 try

 if CheckConfigSection() then begin

 RegisterToHKCU := True;

 with TDummyComServer.Create do

 try

 ComClassManager.ForEachFactory(ComServer, FactoryUnRegister);

 finally

115 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Tips and Notes

 Free;

 end;

 Result := S_OK;

 end;

 except

 end;

 if Result <> S_OK then Result := ComServ.DllUnregisterServer();

end;

exports

...

• Create the <project name>.ini file in the project directory and modify its contents as follows:

[Config]

Privileges=User

Additional Files

GDIPLUS.DLL. This is the Microsoft Windows GDI+ library providing two-dimensional vector graphics, imaging,

typography, etc. GDI+ improves on the Windows Graphics Device Interface (GDI) by adding new features and

by optimizing existing features. It is required as a redistributable for COM Add-ins based on Add-in Express for

VCL that run on the following operating systems: Microsoft Windows NT 4.0 SP6, Windows 2000, Windows 98,

and Windows Millennium Edition (Windows Me). GDIPLUS.DLL must be located in the folder where your COM

add-in is registered.

IntResource.dll (IntResource64.dll). You can find this file in the Redistributables folder. This DLL ensures

compatibility between various Add-in Express based add-ins. If not available in the add-in folder, Add-in

Express unpacks it to the Temporary Files folder and loads into the host application.

116 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Tips and Notes

How to find if Office 64-bit is installed on the target machine

Remember that the 64-bit version of Office can be installed on Windows 64-bit only.

If Outlook is installed, then the value below exists in this registry key:

Outlook 2010-2021/365:

Registry view: both 32-bit and 64-bit

Key: HKLM\SOFTWARE\[WOW6432Node\]Microsoft\Office\{14, 15 or 16}.0\Outlook

Value name: Bitness

That value can be "x64" or "x86"; "x64" means Outlook 64-bit is installed.

If Outlook is not installed, you can check the following values in the following 64-bit registry key:

Excel, Word, PowerPoint 2010-2021/365:

Registry view: 64-bit

Key: HKLM\SOFTWARE\[WOW6432Node\]Microsoft\Office\{14, 15 or

16}.0\{application}\InstallRoot

Value name: Path

If that value exists, then the corresponding 64-bit application is installed.

Excel Workbooks

Sometimes you need to automate a given Excel workbook (template). You can do it with

TadxExcelSheetModule that represents one worksheet of the workbook. For the module to recognize the

workbook, you need to fill the following properties: Document, Worksheet, PropertyID, and

PropertyValue. When you fill the PropertyID and PropertyValue properties, the design-time code of the

module creates the property in the workbook and specifies its value.

A typical scenario of the module usage includes creating the workbook and designing it with MS Forms

controls. Accordingly, in the IDE, you set up the PropertyID and PropertyValue properties, add Add-in

Express MSForms control components to the module and bind them to the MS Forms controls on the

worksheet. The module provides a full set of events available for the Excel Workbook class.

For the Add-in Express components available for the module see the following chapters: Command Bars:

Toolbars, Menus, and Context Menus, Command Bar Controls, Built-in Control Connector, MSForms Controls,

and Host Application Events.

Word Documents

To automate a given Word document, you use the TadxWordDocumentModule. For the module to recognize

the document, you need to fill the following properties: Document, PropertyID, and PropertyValue. When

117 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Tips and Notes

you fill the PropertyID and PropertyValue properties, the design-time code of the module creates the

property in the document and specifies its value.

A typical scenario of the module usage includes creating a document and designing it with MS Forms controls.

Accordingly, in the IDE, you set up PropertyID and PropertyValue properties, add Add-in Express

MSForms control components to the module and bind them to the MS Forms controls on the document. The

module provides a full set of events available for the Word Document class.

For the Add-in Express components available for the module see the following chapters: Command Bars:

Toolbars, Menus, and Context Menus, Command Bar Controls, Built-in Control Connector, MSForms Controls,

and Host Application Events. The module provides a full set of events available for a Word document.

Don't use any Office object models in the OnCreate and OnDestroy events

Although the add-in module provides the OnCreate and OnDestroy events, using them is not recommended.

The reason is simple: an instance of the module is created when you register/unregister the add-in. And there is

no guarantee that the host application of your add-in will be loaded at that time.

OneNote Add-ins

Unlike COM add-ins for any other Office application, COM add-ins for OneNote are out-of-process. There are

two ramifications of this fact.

• To debug such an add-in you will have to attach to the add-in’s process. A widespread approach is to let the

add-in show a dialog window before the code to be debugged is executed, attach the debugger to the

process while the dialog window is still shown, and close the window close to let the code execute.

• The TadxKeyboardShortcut component and the OnKeyDown event of the add-in module do not work in

a OneNote add-in.

118 Add-in Express™

www.add-in-express.com

Add-in Express for Office and Delphi VCL Final Note

Final Note

If your questions are not answered here, please see the HOWTOs section on www.add-in-express.com . We

are adding sample projects to these pages. A number of sample projects are zipped and published at

http://www.add-in-express.com/downloads/adxvcl.php .

http://www.add-in-express.com/
http://www.add-in-express.com/downloads/adxvcl.php

	Add-in Express™ for Microsoft® Office and Delphi VCL
	Introduction
	Why Add-in Express?
	Add-in Express Products

	System Requirements
	Supported Delphi Versions
	Supported Office applications, versions and bitness
	COM Add-ins
	Real-Time Data Servers
	Smart Tags

	Technical Support
	Installing and Activating
	Activation Basics
	Setup Package Contents
	Solving Installation Problems

	Getting Started
	Your First Microsoft Office COM Add-in
	A Bit of Theory
	Per-user and per-machine COM add-ins

	Step #1 – Creating a COM Add-in Project
	Step #2 – COM Add-in Module
	Step #3 – COM Add-in Designer
	Step #4 – Adding a New Command Bar
	Step #5 – Adding a New Command Bar Button
	Step #6 – Accessing Host Application Objects
	Step #7 - Customizing Main Menus
	Step #8 – Customizing Context Menus
	Step #9 – Handling Host Application Events
	Step #10 – Customizing the Office Ribbon User Interface
	Step #11 –Advanced Task Panes in Excel 2000+
	Step #12 –Advanced Task Panes in PowerPoint 2000+
	Step #13 –Advanced Task Panes in Word 2000+
	Step #14 – Running the COM Add-in
	Step #15 – Debugging the COM Add-in
	Step #16 – Deploying the COM Add-in

	Your First Microsoft Outlook COM Add-in
	A Bit of Theory
	Per-user and per-machine COM add-ins

	Step #1 – Creating an Outlook COM Add-in Project
	Step #2 – COM Add-in Module
	Step #3 – COM Add-in Designer
	Step #4 – Adding a New Explorer Command Bar
	Step #5 – Adding a New Command Bar Button
	Step #6 – Accessing Outlook Objects
	Step #7 – Handling Outlook Events
	Step #8 – Adding a New Inspector Command Bar
	Step #9 – Customizing Main Menus in Outlook
	Step #10 – Customizing Context Menus in Outlook
	Step #11 – Handling Events of Outlook Items Object
	Step #12 – Adding Property Pages to the Folder Properties Dialogs
	Step #13 – Intercepting Keyboard Shortcuts
	Step #14 – Customizing the Outlook Ribbon User Interface
	Step #15 –Advanced Task Panes in Outlook 2000+
	Step #16 – Running the COM Add-in
	Step #17 – Debugging the COM Add-in
	Step #18 – Deploying the COM Add-in

	Your First Excel RTD Server
	A Bit of Theory
	Per-user and Per-machine RTD Servers

	Step #1 – Creating a New RTD Server Project
	Step #2 – RTD Server Module
	Step #3 – RTD Server Designer
	Step #4 – Adding and Handling a New Topic
	Step #5 – Running the RTD Server
	Step #6 – Debugging the RTD Server
	Step #7 – Deploying the RTD Server

	Your First Smart Tag
	A Bit of Theory
	Per-user Smart Tags

	Step #1 – Creating a New Smart Tag Library Project
	Step #2 – Smart Tag Module
	Step #3 – Smart Tag Designer
	Step #4 – Adding a New Smart Tag
	Step #6 - Running Your Smart Tag
	Step #7 – Debugging the Smart Tag
	Step #8 – Deploying the Smart Tag

	Your First Excel Automation Add-in
	A Bit of Theory
	Per-user Excel UDFs

	Step #1 – Creating a New COM Add-in Project
	Step #2 – Creating an Excel Automation Add-in
	Step #3– Creating User-Defined Functions
	Step #4 – Running the Excel Automation Add-in
	Step #5 – Debugging the Excel Automation Add-in
	Step #6 – Deploying the Excel Automation Add-in

	Add-in Express Components
	Office Ribbon Components
	How Ribbon Controls Are Created
	Referring to Built-in Ribbon Controls
	Intercepting Built-in Ribbon Controls
	Positioning Ribbon Controls
	Creating Ribbon Controls at Run-time
	Updating Ribbon Controls at Run-Time
	Determining a Ribbon Control's Context
	Sharing Ribbon Controls across Multiple Add-ins

	Custom Task Panes in Office 2007+
	Command Bars: Toolbars, Menus, and Context Menus
	Toolbar
	Main Menu
	Context Menu
	Outlook Toolbars and Main Menus
	Connecting to Existing Command Bars

	Command Bar Controls
	Command Bar Control Properties and Events
	Command Bar Control Types
	Using Built-in Command Bar Controls

	Built-in Control Connector
	Keyboard Shortcut
	Outlook Bar Shortcut Manager
	Outlook Property Page
	Advanced Outlook Regions and Advanced Office Task Panes
	Introducing Advanced Task Panes in Word, Excel and PowerPoint
	Introducing Advanced Outlook Form and View Regions
	Hello, World!
	The UI Mechanics
	An Absolute Must-Know
	Region States and UI-Related Properties and Events
	The Close Button and the Header
	Accessing a Form Instance
	Controlling Form Visibility
	Resizing the Forms
	Coloring up the Form
	Tuning the Settings at Run-Time
	What Window the Pane is Shown for

	Excel Task Panes
	Application-specific features
	Keyboard and Focus
	Wait a Little and Focus Again

	Advanced Outlook Regions
	Context-Sensitivity of Your Outlook Form
	Caching Forms
	Is It Inspector or Explorer?
	WebViewPane
	Form Region Instancing
	TadxOlFormsCollectionItem.GetForm()
	TadxOlFormsCollectionItem.GetCurrentForm()
	TadxOlFormsCollectionItem.FormInstances[index]

	From a Form Instance to the Outlook Object Model

	Smart Tag
	RTD Topic
	Host Application Events
	MSForms Controls

	Tips and Notes
	Terminology
	Getting Help on COM Objects, Properties and Methods
	COM Add-ins Dialog
	How to Get Access to the Add-in Host Applications
	Registry Entries
	ControlTag vs. Tag Property
	Pop-ups
	Edits and Combo Boxes and the Change Event
	Built-in Controls and Command Bars
	CommandBar.SupportedApps
	Outlook Command Bar Visibility Rules
	Removing Custom Command Bars and Controls
	My Add-in Is Always Disconnected
	Update Speed for an RTD Server
	Sequence of Events When an Office Custom Task Pane Shows up
	Adding an Office Custom Task Pane to an Existing Add-in Express Project
	Temporary or not?
	Registering with User Privileges
	Additional Files
	How to find if Office 64-bit is installed on the target machine
	Excel Workbooks
	Word Documents
	Don't use any Office object models in the OnCreate and OnDestroy events
	OneNote Add-ins

	Final Note

