

Direct Oracle Access 4.1

User’s Guide

Direct Oracle Access 4.1 - User's Guide 3

Contents
Contents ... 3
Direct Oracle Access.. 5
Installation .. 7
TOracleSession component ... 9
TOracleSession reference.. 11
TOracleLogon component.. 43
TOracleLogon reference... 44
TOracleQuery component .. 48
TOracleQuery reference... 59
TOracleDataSet component ... 88
TOracleDataSet reference.. 91
TQBEDefinition object.. 130
TQBEDefinition reference... 131
TQBEField object ... 134
TQBEField reference.. 135
TOracleNavigator component... 137
TOraclePackage component .. 138
TOraclePackage reference... 140
TOracleEvent component... 145
TOracleEvent reference.. 146
TLOBLocator.. 151
TLOBLocator reference.. 156
TOracleObject object.. 163
TOracleObject reference.. 165
TOracleReference object.. 179
TOracleReference reference.. 180
TOracleScript component... 183
TOracleScript reference.. 186
TOracleCommands object.. 194
TOracleCommands reference.. 195
TOracleCommand object.. 197
TOracleCommand reference.. 198
TOracleDirectPathLoader component .. 202
TOracleDirectPathLoader reference... 205
TDirectPathColumns object.. 210
TDirectPathColumns reference... 211
TDirectPathColumn object.. 212
TDirectPathColumn reference.. 213
TOracleQueue component ... 215
TOracleSessionPool component .. 228
TOracleTimestamp object... 234
TOracleTimestamp reference... 235
TXMLType object... 239
TXMLType reference.. 240
The Package Wizard .. 241
TOracleCustomPackage component.. 250
TOracleCustomPackage reference... 251
TPLSQLRecord object.. 253
TPLSQLRecord reference.. 254
TPLSQLTable object.. 255
TPLSQLTable reference... 256

4 Direct Oracle Access 4.1 - User's Guide

TOracleProvider component..259
TOracleProvider reference..260
Unit reference..261
Direct Oracle Access Preferences...265
Direct Oracle Access Designtime Property Defaults..267
Multi-threaded applications ...268
Dynamic Link Libraries ..269
Translating standard messages from English..271
Oracle Net compatibility issues ...273
Personal Oracle Lite compatibility issues..275
Index ...276

Direct Oracle Access 4.1 - User's Guide 5

Direct Oracle Access
VERSION 4.1, JUNE 2007

If you use Delphi or C++Builder to access an Oracle database, this component set can make
your life a lot easier. With the Direct Oracle Access components and objects you access an
Oracle database directly, skipping the Borland Database Engine, only using SQL*Net. This
gives you the following advantages:

w No distributing, installing and configuring the BDE. You can use any 32 bits Delphi or
C++Builder version to develop Client/Server applications

w No BDE overhead or tradeoffs: your queries will run up to five times faster

w Automatic Master/Detail configuration

w Automatically enforce server-constraints on the client

w Make use of server generated values (defaults, trigger modified columns)

w Query By Example mode for high performance queryable forms without any programming

w Use PL/SQL blocks for server logic in your application

w Increase batch performance with Array DML or Direct Path Loading

w Easily execute SQL scripts similar to SQL*Plus through the TOracleScript component

w Monitor database access information with the Oracle Monitor utility

w Access your stored packages easily through the TOraclePackage component or the
Package Wizard

w Encapsulation of standard Oracle packages (dbms_alert, dbms_job, utl_file, ...)

w Many Oracle specific features supported

w Compatible with SQL*Net 1 thru Oracle Net 9, and with Personal Oracle Lite thru Oracle9i

Component overview
Direct Oracle Access consists of the following components:

w You use the TOracleSession component to connect to an Oracle database and to control
transactions. You can use many sessions simultaneously, accessing different databases.

w The TOracleLogon component allows you to let a user specify a username, password and
database for a TOracleSession through a standard logon dialog.

w You can use a TOracleQuery to execute any SQL statement or PL/SQL block in a session.
This is a very low -level component that works directly on top of SQL*Net without any
overhead. It should therefore always be used when you don't need data-aware
components on the results of a query.

w The TOraclePackage provides a convenient interface to functions, procedures, variables
and constants in a stored package.

w The TOracleEvent component allows your application to react to dbms_alert signals and
dbms_pipe messages in a background execution thread.

6 Direct Oracle Access 4.1 - User's Guide

w The TOracleDataSet is the source for all your data-aware components. It internally uses a

TOracleQuery to retrieve and update the database.

w The TOracleDirectPathLoader allows you to load data at the highest possible speed by
using the Oracle Direct Load Engine.

w The TOracleQueue allows you to easily enqueue and dequeue messages through an
Oracle Advanced Queue .

w The TOracleSessionPool provides a session pooling mechanism for server applications.
w The TOracleScript component provides a convenient way to run SQL scripts.
w The TOracleNavigator is a component very similar to the standard TDBNavigator. It

provides additional buttons to support the QBE mode (Query By Example) and record-level
refreshing of a TOracleDataSet.

w The TOracleProvider is a component similar to the standard TProvider and can be used to
create multi-tiered applications that use the Direct Oracle Access components. This
component is obsolete for Delphi & C++Builder 5 and later.

To support Oracle8 and Oracle9 complex data types, Direct Oracle Access provides objects to
encapsulate the LOB Locator (TLOBLocator), Timestamp (TOracleTimestamp), Object
(TOracleObject), Reference (TOracleReference) and XMLType (TXMLType). The last three
objects are only available in the Object version of Direct Oracle Access.

Unit overview
w Oracle Unit containing TOracleSession, TOracleLogon, TOracleQuery,

TOraclePackage, TOracleEvent, TLOBLocator,
TOracleTimestamp, TOracleObject, TOracleReference,
TXMLType, TOracleDirectPathLoader, TOracleQueue,
TOracleSessionPool and TOracleScript

w OracleData Unit containing the TOracleDataSet component
w OracleNavigator Unit containing the TOracleNavigator component
w OracleProvider Unit containing the TOracleProvider component (Requires

Client/Server or Enterprise Edition)

w OracleCI The Oracle Call Interface

w OracleMonitor The interface to the Oracle Monitor utility

License terms for the registered version
See the License.rtf file in the Direct Oracle Access installation directory.

Contacting Allround Automations
If you have any technical questions or suggestions, email us at
support@allroundautomations.com. For sales information you can contact
sales@allroundautomations.com.

You can also visit our website at: http://www.allroundautomations.com.

Direct Oracle Access 4.1 - User's Guide 7

Installation
To install the Direct Oracle Access components into your development environment, run the
included setup.exe. This will install the design time package, units and on-line help file.
Depending on the programming language you are using, some additional steps may be
required:

Installing the TOraclewwDataSet component for Delphi
If you are using Woll2Woll's InfoPower 3.01 or later, you can install the TOraclwwDataSet
component to allow the InfoPower controls to use Direct Oracle Access. From the Delphi
Component menu select Install component. From the Unit file name you can browse to the
OraclewwData.pas file in Delphi's lib directory. You need to install this component into the
Direct Oracle Access package (doa.dpk), which is located in the same directory.

Installing the TOracleProvider component for Delphi 4 or later
If you are using the Client/Server or Enterprise edition of Delphi 4 or later, you can additionally
install the TOracleProvider component if you wish to create multi-tiered applications with
Direct Oracle Access. From the Delphi Component menu select Install component. From the
Unit file name you can browse to the OracleProviderReg.pas file in Delphi's lib directory. You
need to install this component into the Direct Oracle Access package (doa.dpk), which is
located in the same directory.

Note that in Delphi 5 and later the TOracleProvider is only supported for backward
compatibility. For new projects you should use the standard TDataSetProvider component
instead. After upgrading a multi-tiered application to Delphi 5 or later, you should consider
replacing the TOracleProvider components with TDataSetProvider components.

Installing the TOraclewwDataSet component for C++Builder
If you are using Woll2Woll's InfoPower 3.01 or later, you can install the TOraclwwDataSet
component to allow the InfoPower controls to use Direct Oracle Access. From the C++Builder
Component menu select Install component. From the Unit file name you can browse to the
OraclewwData.cpp file in C++Builder's lib directory.

Installing the TOracleProvider component for C++Builder 4 or later
If you are using the Enterprise edition of C++Builder 4 or later, you can additionally install the
TOracleProvider component if you wish to create multi-tiered applications with Direct Oracle
Access. From the C++Builder Component menu select Install component. From the Unit file
name you can browse to the OracleProviderReg.cpp file in C++Builder's lib directory.

Demos
In the Demos directory, you find the following subdirec tories with demo projects:

QueryGrid Allows the user to enter any SQL statement and view the results in a grid.

DeptGrid Queries and updates the dept table in a grid.

LongRaw Reads and writes long raw columns.

ThreadDemo A multi-threaded application.

ObjectGrid Manipulates persistent objects. Oracle8 only.

8 Direct Oracle Access 4.1 - User's Guide

DeptEmp An example of a master/detail update-form using data-aware

components.

PictureDemo An example using Blob fields.

3Tier Client/Server only. A 3 Tier application.

PkgApply An example using a stored package to select records and apply changes
for a dataset.

ExtProc An example of an external procedure in a DLL called from within SQL.

QueueDemo A demo that enqueues and dequeues messages through the
TOracleQueue component.

Direct Oracle Access 4.1 - User's Guide 9

TOracleSession component

Unit
Oracle

Description
This component is the link to the Oracle database. After setting the Logon properties
(LogonUsername, LogonPassword and LogonDatabase), you can establish a connection to
the database by calling the LogOn method or setting the Connected property to True. If you
want the end-user to specify these logon properties, you can simply use the TOracleLogon
component to allow him or her to make a connection.

The TOracleSession is equivalent to an Oracle database session, so it also needs to control
the transactions. The Commit and Rollback methods can be used for basic transaction control,
but you can also use the Savepoint and RollbackToSavepoint methods for more refined
transaction management. The SetTransaction method and IsolationLevel property affect which
database changes from other sessions are visible to a session.

You can set many properties at the session level that affect the default behavior of the other
database access components that are linked to it. The NullValue property dictates how null
values are returned, and the Preferences property contains many other settings that you may
want to set for each project.
Special considerations need to be taken into account when creating Multi-threaded
applications or working with Dynamic Link Libraries, as described in the respective sections.

Support for standard packages
The TOracleSession component provides a convenient interface to most of the standard
packages provided by Oracle: dbms_alert, dbms_application_info, dbms_job, dbms_output,
dbms_pipe and utl_file. You can call the functions and procedures within these packages by
using the properties that encapsulate them.

Microsoft Transaction Server support
The TOracleSession component provides support for the Oracle Services for MTS. This
service allows you to make use of 2 important concepts of MTS: resource pooling and
transaction control. By setting the Pooling property to spMTS, physical database sessions will
be pooled so that they can be shared between multiple MTS clients. This minimizes the
number of concurrent sessions, and prevents that each client request performs a new logon.
Furthermore, transactions are now controlled at a higher level by MTS, which even allows
distributed trans actions in a heterogeneous environment.

External Procedure support
The Oracle8 Server has an External Procedure Service that allows you to call your Object
Pascal or C++ functions from within SQL or PL/SQL. You need to make these functions
available through a DLL on the database server, which obviously should be an Intel / Windows
machine. This can be useful in the following situations:

w You have some application logic that needs to be executed both on the client and on the
server.

w You need to implement an algorithm that would be too slow in PL/SQL.

10 Direct Oracle Access 4.1 - User's Guide

w You need to access services on the server that are not accessible from within PL/SQL, e.g.

directory information, disk information, or other devices.

The TOracleSession has an ExtProcShare procedure that allows you to access the database
within the same session and transaction as the caller of the external procedure. This also
allows you to raise Oracle exceptions from within external procedures through the
ExtProcRaise procedure. Furthermore the TOracleSession provides functions to convert the
low -level parameter data types that are passed to or returned by the external procedure.

Example - Logging on
To log on to the database, you need to set the LogonUsername, LogonPassword and
(optionally) the LogonDatabase properties of the session. After this, you can call the LogOn
method. The following code is an example of this:

with MySession do
try
 LogonUsername := 'scott';
 LogonPassword := 'tiger';
 LogonDatabase := 'chicago';
 LogOn;
 ShowMessage('Logged on successfully.');
except
 on E:EOracleError do ShowMessage(E.Message);
end;

Instead of using TOracleSession.LogOn, you can use the TOracleLogon.Execute function.
This will handle the logon dialog, allowing the user to enter another username, password or
database. The return value of this function is False if the user only pressed the cancel button.
After using this method, you can test the Connected property of the session to check if the
logon was successful. You will typically call this method in an OnCreate event of the main form
of your application:
procedure TMainForm.FormCreate(Sender: TObject);
begin
 MainLogon.Execute;
 if not MainSession.Connected then Halt;
end;

At the first logon an attempt is made to find, load and initialize the Oracle Interface DLL
(something like ora73.dll, ora804.dll or oci.dll). If SQL*Net or Net8 is not properly installed, you
can expect an exception that describes the error situation in some detail.

Direct Oracle Access 4.1 - User's Guide 11

TOracleSession reference
This chapter describes all properties, methods and events of the TOracleSession component.

TOracleSession.AfterLogOn

Declaration
type TOracleSessionEvent = procedure(Sender: TOracleSession) of

Object;
property AfterLogOn: TOracleSessionEvent;
Description
This event gets called at the end of the LogOn call.

See also
BeforeLogOn

TOracleSession.ApplyUpdates

Declaration
procedure ApplyUpdates(const DataSets: array of TOracleDataSet;

Commit: Boolean);
Description
Applies the cached updates of the datasets to the database. If a dataset is a master in a
master/detail relation, the updates in all detail datasets will be applied as well. Each dataset
must have its CachedUpdates property set to True.

If the Commit parameter is True, the changes will also be committed. If the Commit parameter
is False, the updates will not be committed so that you can perform some additional actions
before calling CommitUpdates or Rollback:
procedure TDeptForm.ApplyButtonClick(Sender: TObject);
begin
 // Apply the changes and do not yet commit
 Session.ApplyUpdates([DeptDataSet], False);
 // Perform some checks and commit or rollback accordingly
 if DeptEmpValid then
 Session.CommitUpdates([DeptDataSet])
 else
 Session.Rollback;
end;

See also
CancelUpdates
CommitUpdates

12 Direct Oracle Access 4.1 - User's Guide

TOracleSession.AutoCommit

Declaration
property AutoCommit: Boolean;
Description
When true, each update, insert or delete statement is automatically committed by Oracle.
Updates in stored procedures and PL/SQL blocks are not committed automatically.

WARNING
This property is obsolete and will no longer be available in version 3.4!

See also
Commit

Rollback
Savepoint
RollbackToSavepoint

TOracleSession.BeforeLogOn

Declaration
type TOracleSessionEvent = procedure(Sender: TOracleSession) of

Object;
property BeforeLogOn: TOracleSessionEvent;
Description
This event gets called at the beginning of the LogOn call. If you want to show a "logging on..."
dialog, you can use this event to trigger it.

See also
AfterLogOn

TOracleSession.BreakExecution

Declaration
procedure BreakExecution;
Description
Breaks the execution of the currently running query in this session, resulting in error "ORA-
01013, user requested cancel of current operation". It can be used in multi-
threaded applications to abort long running queries on the server.

Direct Oracle Access 4.1 - User's Guide 13

TOracleSession.BytesPerCharacter

Declaration
type TBytesPerCharacterOption = (bc1Byte, bc2Bytes, bc3Bytes,

bc4Bytes, bcAutoDetect);
property BytesPerCharacter: TBytesPerCharacterOption;
Description
This property indicates to the session how many bytes is used to store 1 character. This
depends on the the character set that is used when creating the database. Setting this value
to bcAutodetect will cause the session to automatically query this information when necessary.

Warning: the default value of this property is bc1Byte, indicating that 1 character takes up 1
byte. For multi-byte character sets you must set this property to the correct value, or to
bcAutodetect. Otherwise, you may expect the following error:

ORA-01026: multiple buffers of size greater than 2000 in the bind list

TOracleSession.CancelUpdates

Declaration
procedure CancelUpdates(const DataSets: array of TOracleDataSet);
Description
Cancels the cached updates of the datasets by clearing the local change logs. If a dataset is a
master in a master/detail relation, the updates in all detail datasets will be cancelled as well.
Each dataset must have its CachedUpdates property set to True.

See also
ApplyUpdates
CommitUpdates

TOracleSession.CheckConnection

Declaration
function CheckConnection(Reconnect: Boolean): TCheckConnectionResult;
type TCheckConnectionResult = (ccOK, ccError, ccReconnected);
Description
When the server machine has gone down, the database has been shutdown, the network has
had a problem, or the database session has been killed, you may end up with a
TOracleSession that does not have a working connection with the database anymore. To
check if this is the case, and to possibly reconnect the session, you can use the
CheckConnection function. The result can have one of the following values:
ccOK The connection is still okay.

ccError There is an error with the connection.

ccReconnected There was an error with the connection, but it has been successfully
re-established.

14 Direct Oracle Access 4.1 - User's Guide

Use the Reconnect parameter to indicate if the function should attempt to re-establish the
connection in case of an error. Note that all TOracleDataSet and TOracleQuery components
will be closed after re-establishing a connection, so some additional actions will probably be
required to handle this situation.

TOracleSession.Commit

Declaration
procedure Commit;
Description
Commits the current transaction.

See also
Rollback
Savepoint
RollbackToSavepoint
AutoCommit

TOracleSession.CommitUpdates

Declaration
procedure CommitUpdates(const DataSets: array of TOracleDataSet);
Description
Commits the cached updates of the datasets after calling ApplyUpdates with the Commit
parameter set to False. The current database transaction will be committed and the change
logs of the datasets will be cleared. If a dataset is a master in a master/detail relation, the
updates in all detail datasets will be committed as well. Each dataset must have its
CachedUpdates property set to True.

See also
ApplyUpdates
CancelUpdates

TOracleSession.ConnectAs

Declaration
type TConnectAsOption = (caNormal, caSYSDBA, caSYSOPER);
property ConnectAs: TConnectAsOption;

Description
Indicates if the user should be logged on with SYSDBA, SYSOPER or a normally privileged
connection. The caSYSDBA and caSYSOPER options are only possible if you have been
granted the corresponding system privilege and if you know the corresponding password.
SYSOPER permits you to perform alter database open/mount, alter database backup, archive

Direct Oracle Access 4.1 - User's Guide 15

log, and recover, and includes the restricted session privilege.

SYSDBA contains all system privileges with admin option, and the sysoper system privilege;
permits create database and time-based recovery.

In both situations the default schema is now SYS instead of the schema of the username of
the session.

The TOracleLogon dialog supports this feature through the ldConnectAs option.

Note
This property will only work on Net8.

TOracleSession.Connected

Declaration
property Connected: Boolean;
Description
Indicates if the session is connected to a database. Setting this property is equivalent to
calling LogOn or LogOff, but allows you to establish a connection from within Delphi's IDE.

See also
LogOn

LogOff
RollbackOnDiconnect
LogonUsername
LogonPassword

LogonDatabase
TOracleLogon

TOracleSession.Cursor

Declaration
property Cursor: TCursor;
Description
Allows you to determine the shape of the mouse cursor during SQL*Net initialization, logon,
and when session properties are set that require database access.
TOracleSession.DBMS_Alert

16 Direct Oracle Access 4.1 - User's Guide

Declaration
TDBMS_Alert = class(TDBMSPackage)
 procedure Set_Defaults(const Sensitivity: Integer);
 procedure Register(const Name: string);
 procedure Remove(const Name: string);
 procedure RemoveAll;
 procedure WaitAny(out Name: string; out Message: string; out Status:

Integer; const TimeOut: Integer);
 procedure WaitOne(const Name: string; out Message: string; out

Status: Integer; const TimeOut: Integer);
 procedure Signal(const Name: string; const Message: string);
end;
property DBMS_Alert: TDBMS_Alert;
Description
The dbms_alert package prov ides support for the asynchronous notification of database
events. To wait for events in a background thread of your application, you can use the
TOracleEvent component instead. Detailed information about this package can be found in the
Server Application Developer's Guide.

The following constants have been defined for the dbms_alert package:
wsAlert Wait status: Alert occurred
wsTimeOut Wait status: TimeOut occurred
The following example signals alert 'SP' with message 'EXIT' and commits it:
with MainSession do
begin
 DBMS_Alert.Signal('SP', 'EXIT');
 Commit;
end;

TOracleSession.DBMS_Application_Info

Declaration
TDBMS_Application_Info = class(TDBMSPackage)
 procedure Set_Module(const Module_Name: string; const Action_Name:

string);
 procedure Set_Action(const Action_Name: string);
 procedure Read_Module(out Module_Name: string; out Action_Name:

string);
 procedure Set_Client_Info(const Client_Info: string);
 procedure Read_Client_Info(out Client_Info: string);
end;
property DBMS_Application_Info: TDBMS_Application_Info;
Description
The dbms_appilication_info package can be used with Oracle Trace and the SQL trace facility
to record the name of the executing module or transaction in the database for use later when
tracking the performance of various modules. Detailed information about this package can be
found in the Server Tuning Guide.

The following example registers the title of the application through the Set_Client_Info

Direct Oracle Access 4.1 - User's Guide 17

procedure af ter connecting the session in the OnCreate event handler of the main form. The
application title will be visible in the v$session table for this session.
procedure TMainForm.FormCreate(Sender: TObject);
begin
 with MainSession do
 begin
 Connected := True;
 DBMS_Application_Info.Set_Client_Info(Application.Title);
 end;
end;

TOracleSession.DBMS_Job (Oracle 7.2 or higher)

Declaration
TDBMS_Job = class(TDBMSPackage)
 procedure Submit(out Job: Integer; const what: string; const

Next_Date: TDateTime; const Interval: string; const No_Parse:
Boolean);

 procedure Remove(const Job: Integer);
 procedure Change(const Job: Integer; const What: string; const

Next_Date: TDateTime; const Interval: string);
 procedure What(const Job: Integer; const What: String);
 procedure Next_Date(const Job: Integer; const Next_Date: TDateTime);
 procedure Interval(const Job: Integer; const Interval: string);
 procedure Broken(const Job: Integer; const Broken: Boolean; const

Next_Date: TDateTime);
 procedure Run(const Job: Integer);
end;
property DBMS_Job: TDBMS_Job;
Description
You can use the procedures in the dbms_job package to schedule and manage jobs in the job
queue. Detailed information about this package can be found in the Server Administrator's
Guide.

The following example schedules a PL/SQL procedure Clean_Up('ALL') to be called every
other day at 4:00, starting tomorrow:
procedure TMainForm.ButtonClick(Sender: TObject);
var Job: Integer;
begin
 MainSession.DBMS_Job.Submit(Job, 'Clean_Up(''ALL'');', Date + 1 +

StrToTime('04:00'), 'sysdate + 2', True);
 ShowMessage('Job ' + IntToStr(Job) + ' scheduled');
end;

TOracleSession.DBMS_Output

18 Direct Oracle Access 4.1 - User's Guide

Declaration
TDBMS_Output = class(TDBMSPackage)
 procedure Enable(const Buffer_Size: Integer);
 procedure Disable;
 procedure Put(const a: Variant);
 procedure Put_Line(const a: Variant);
 procedure New_Line;
 procedure Get_Line(out Line: string; out Status: integer);
 procedure Get_Lines(out Lines: string; var NumLines: Integer);
end;
property DBMS_Output: TDBMS_Output;
Description
The dbms_output package can be used to send messages to or from stored procedures,
packages, and triggers. The Put and Put_Line procedures in this package allow you to place
information in a buffer that can later be read by the Get_Line or Get_Lines procedure within
the same session. Detailed information about this package can be found in the Server
Application Developer's Guide.

The following constants have been defined for the dbms_output package:
glSuccess Get line: Success
glNoMoreLines Get line: No more lines
The following example enables output, calls a stored procedure, and displays the output that
this stored procedure has produced in a Memo:
procedure TMainForm.ButtonClick(Sender: TObject);
var Status: Integer;
 Line: string;
begin
 // Enable output for a maximum of 100,000 bytes
 MainSession.DBMS_Output.Enable(100000);
 // Call the procedure
 MyProcedure.Execute;
 // Retrieve all lines and display them in a memo
 Memo.Clear;
 repeat
 MainSession.DBMS_Output.Get_Line(Line, Status);
 if Status <> glSuccess then Break;
 Memo.Lines.Add(Line);
 until False;
end;

TOracleSession.DBMS_Pipe

Direct Oracle Access 4.1 - User's Guide 19

Declaration
TDBMS_Pipe = class(TDBMSPackage)
 procedure Pack_Message(const Item: Variant);
 procedure Pack_Message_Raw(const Item: string);
 procedure Pack_Message_Rowid(const Item: string);
 procedure Unpack_Message(out Item: Variant);
 procedure Unpack_Message_Raw(out Item: string);
 procedure Unpack_Message_Rowid(out Item: string);
 function Next_Item_Type: Integer;
 function Create_Pipe(const PipeName: string; const MaxPipeSize:

Integer; const Private: Boolean): Integer;
 function Remove_Pipe(const PipeName: string): Integer;
 function Send_Message(const PipeName: string; const TimeOut:

Integer; const MaxPipeSize: Integer): Integer;
 function Receive_Message(const PipeName: string; const TimeOut:

Integer): Integer;
 procedure Reset_Buffer;
 procedure Purge(const PipeName: string);
 function Unique_Session_Name: string;
end;
property DBMS_Pipe: TDBMS_Pipe;
Description
The dbms_pipe package allows two or more sessions in the same instance to communicate.
Oracle pipes are similar in concept to the pipes used in UNIX, but Oracle pipes are not
implemented using the operating system pipe mechanisms. Information sent through Oracle
pipes is buffered in the systemglobal area (SGA). Detailed information about this package can
be found in the Server Application Developer's Guide.

The following constants have been defined for the dbms_pipe package:
cpSuccess Create pipe: Success
rpSuccess Remove pipe: Success
smSuccess Send message: Success
smTimedOut Send message: Timed out
smInterrupted Send message: Interrupted
rmSuccess Receive message: Success
rmTimedOut Receive message: Timed out
rmRecordTooBig Receive message: Record too big
rmInterrupted Receive message: Interrupted
niNoMoreItems Next item: No more items
niVarchar2 Next item: Varchar2
niNumber Next item: Number
niRowid Next item: Rowid
niDate Next item: Date
niRaw Next item: Raw
The following example sends a message to pipe 'MYPIPE' with the text 'Button pressed' and
the current date as information:

20 Direct Oracle Access 4.1 - User's Guide

procedure TMainForm.ButtonClick(Sender: TObject);
begin
 with MainSession.DBMS_Pipe do
 begin
 Pack_Message('Button pressed');
 Pack_Message(Now);
 if Send_Message('MYPIPE', 60, 8192) = smSuccess then
 ShowMessage('Message sent');
 end;
end;

TOracleSession.DesignConnection

Declaration
property DesignConnection: Boolean;
Description
A connection made at design-time during development is usually not very suitable when you
distribute you application to an end-user. By setting the DesignConnection property to True,
the design-time values of the following properties will be cleared at run-time:
w Connected

w LogonUsername

w LogonPassword

w LogonDatabase

This way you can distribute your applications unchanged, and always have a connection at
design-time during development.

TOracleSession.ErrorMessage

Declaration
function ErrorMessage(ErrorCode: Integer): string;
Description
Returns the message associated with the ErrorCode. The message corresponds to the
messages you can find in the "Oracle Server Messages Guide".

See also
ReturnCode

TOracleSession.ExpirationMessage

Direct Oracle Access 4.1 - User's Guide 21

Declaration
property ExpirationMessage: string;
Description
Runtime property that contains an error message after an attempt was made to logon with an
account that has expired.

See also
SetPassword

TOracleSession.ExternalAUT

Declaration
property ExternalAUT: Pointer;
Description
Runtime read-only property to obtain the Net8 authentication handle (also known as a user
handle) of the session. This property is only valid if the session is connected, and if it is in
OCI8 mode.

TOracleSession.ExternalENV

Declaration
property ExternalENV: Pointer;
Description
Runtime read-only property to obtain the Net8 environment handle for the session. This
property is only valid if the session is connected, and if it is in OCI8 mode.

TOracleSession.ExternalLDA

Declaration
property ExternalLDA: Pointer;
Description
Runtime property to attach the TOracleSession to an LDA (Logon Data Area) of another host
program, or to access the LDA of the session. When you set this property, it is equivalent to
calling the LogOn method. Setting ExternalLDA to nil is equivalent to calling LogOff.

This property may be useful when working with Dynamic Link Libraries, though it it usually
better and easier to use the Share procedure.

Warning
This property is not available if you are using Net8 in OCI8 mode. If you use ExternalLDA in
your application, it may be a good idea to set the UseOCI7 property to True. This way, your
application will func tion properly on SQL*Net and Net8 clients. Net8 specific features will not
be available however.

22 Direct Oracle Access 4.1 - User's Guide

TOracleSession.ExternalSRV

Declaration
property ExternalSRV: Pointer;
Description
Runtime read-only property to obtain the Net8 server handle for the session. This property is
only valid if the session is connected, and if it is in OCI8 mode.

TOracleSession.ExternalSVC

Declaration
property ExternalSVC: Pointer;
Description
Runtime property to attach the TOracleSession to a Net8 service context handle of another
host program, or to access the service context handle of the session. When you set this
property, it is equivalent to calling the LogOn method. Setting ExternalSVC to nil is equivalent
to calling LogOff.

This property may be useful when working with Dynamic Link Libraries, though it it usually
better and easier to use the Share procedure.

TOracleSession.ExtProcRaise

Declaration
procedure ExtProcRaise(ErrorNumber: Integer; const ErrorMessage:

string);
Description
If the session is shared from the context of an external procedure call, you can use this
procedure to raise an Oracle exception when the procedure returns to the caller. The Oracle
exception will have the given ErrorNumber and ErrorMessage. For example:
Session.ExtProcRaise(20000, 'Department number does not exist');

If you are trapping an EOracleError exception, you can propagate it to the caller like this:

try
 Query.Execute;
except
 on E: EoracleError do
 Session.ExtProcRaise(E.ErrorCode, E.Message);
end;

Note that processing continues after a call to ExtProcRaise, it merely sets a status for the call
that is translated to an Oracle exception later. Any output parameter or return value you may
have defined will be ignored though.

Direct Oracle Access 4.1 - User's Guide 23

TOracleSession.ExtProcShare

Declaration
procedure ExtProcShare(Context: Pointer);
Description
If you want to call Object Pascal or C++ functions from within SQL or PL/SQL, you can make
use of the Oracle8 External Procedure Service. This service can map PL/SQL calls to an
external procedure call in a DLL. The DLL must be defined through an Oracle library, and
each procedure within the DLL must be defined through a PL/SQL external procedure
definition.

As an example we assume that we have a DLL called dept.dll with a function EmpCount that
returns the number of employees in a department. Implementing this function in a DLL does
not make much sense in real life, but it serves quite well as a simple and complete
demonstration of an external procedure.

Create an Oracle library
First we need to create an Oracle library that encapsulates our DLL:

create or replace library DeptLib AS 'C:\ExtProc\dept.dll';

This library will be referenced in the external procedure definitions.

Create an external procedure definition
Next we need to create an external procedure definition for the EmpCount function in the
library:

create or replace
 function EmpCount(p_DeptNo in dept.deptno%type)
 return number
 as external language c
 name "EmpCount"
 library DeptLib
 with context;

Regardless whether the DLL is created in Delphi or C++Builder, we must always use the
"language c" option. The "calling standard pascal" option that Oracle provides seems
incompatible with Delphi functions, so we need to use the cdecl directive for our Delphi
functions if we want to get the right parameter mapping. The "with context" option adds an
implicit parameter to the external procedure that allows you to reuse the database session of
the caller. The "with context" option is required if you want to use the ExtProcShare procedure!

Note that you can also place these external function definitions in a package specification, so
that you can encapsulate related DLL functions in a single package if desired.

For additional information about external procedure definitions, see the Application
Developer's Guide.

Create a DLL with one or more external functions
This simple example DLL contains just one external function, EmpCount:

24 Direct Oracle Access 4.1 - User's Guide

library dept;

uses
 SysUtils,
 Oracle,
 DeptDataModuleUnit in 'DeptDataModuleUnit.pas';

var
 // The saved exit procedure
 SaveExit: Pointer;
 // The data module with a session and a query
 DataModule: TDeptDataModule = nil;
 // The OCI number result for the EmpCount function
 EmpCountResult: TOCINumber = nil;

// Count the number of employees in the given department
function EmpCount(Context: Pointer; p_DeptNo: TOCINumber):

TOCINumber; cdecl;
var
 DeptNo: Integer;
begin
 Result := nil;
 with DataModule do
 try
 // Share the session of the caller with the TOracleSession
 Session.ExtProcShare(Context);
 // Convert the OCI number to a plain integer and set the variable
 DeptNo := Session.OCINumberToInt(p_DeptNo);
 EmpCountQuery.SetVariable('deptno', DeptNo);
 // Execute the query that counts the employees
 EmpCountQuery.Execute;
 // Allocate an OCI number for the result if necessary
 if EmpCountResult = nil then
 EmpCountResult := Session.OCINumberCreate;
 Result := EmpCountResult;
 // Get the count from the result set
 Session.OCINumberFromInt(Result,

EmpCountQuery.Field('empcount'));
 except
 // Translate all Delphi exceptions to Oracle exceptions
 on E: EOracleError do
 Session.ExtProcRaise(E.ErrorCode, E.Message);
 on E: Exception do
 Session.ExtProcRaise(20000, E.Message);
 end;
end;

// Free all preserved resources when the DLL is unloaded
procedure LibExit;
begin
 if EmpCountResult <> nil then
 DataModule.Session.OCINumberFree(EmpCountResult);
 DataModule.Free;
 // Restore the exit procedure

Direct Oracle Access 4.1 - User's Guide 25

 ExitProc := SaveExit;
end;

// Export the EmpCount function
exports
 EmpCount;

begin
 // Create the data module when the DLL is loaded
 DataModule := TDeptDataModule.Create(nil);
 // Save and override the exit procedure
 SaveExit := ExitProc;
 ExitProc := @LibExit;
end.

This example can serve as a model for external procedure DLL's. It creates a data module
during initialization, which is destroyed when the DLL is unloaded. Each function first calls
ExtProcShare with the context of the session of the caller. The first call will suffer from an
initial delay as the DLL is loaded, Net8 initialization is performed, and the context session is
shared. Subsequent calls will have an immediate response, because the DLL will remain
loaded for the duration of the session and the data module will also remain instantiated.

Parameter mapping
The parameter and return value of the external procedure are of type TOCINumber. This is an
encapsulation of an OCI (Oracle Call Interface) number, but is in fact not more than a simple
pointer to an opaque data structure. The OCINumberToInt and OCINumberFromInt
procedures that are used in the function convert between an integer and an OCI number. The
OCINumberCreate function creates an OCI number for the return value. Similar functions exist
for float parameters (OCINumberToFloat and OCINumberFromFloat) and date parameters
(OCIDateToDateTime and OCIDateFromDateTime). String parameters (varchar2, char) are
mapped to zero-terminated strings (PChar), and binary integer parameters (pls_integer and
binary_integer) are mapped to standard 32 bit integers. See the Application Developer's Guide
for more details about default and explicit parameter type mapping.

For parameters that require that you allocate memory within the call (e.g. strings or OCI return
values), you must make sure that the data remains valid when the call returns. You must also
make sure that you do not introduce memory leaks for each call. In the example above we
reuse the same return value after it has been allocated once, and free it in the finalization
section. For OCI number or OCI date output parameters, there will already be an allocated
OCI number or OCI date instance.

Exception handling
If an external procedure raises an exception that propagates to the External Procedure
Service, the process will stop and an Unknown Software Exception will occur. You should
make sure that this never happens. You can use the ExtProcRaise procedure to raise a proper
Oracle exception for the caller. In the example above we handle all Delphi exceptions and
propagate them as an appropriate Oracle error to the caller.

TOracleSession.FlushObjects

26 Direct Oracle Access 4.1 - User's Guide

Declaration
procedure FlushObjects;
Description
Besides flushing each individual modified object instance in the cache, you can also flush all
modified instances at once in one single network roundtrip, thereby reducing network traffic.
You can do so by calling the Commit method of the session, in which case your transaction
will be ended. You can also call the FlushObjects method of the session to flush all objects
without committing the current transaction.

TOracleSession.InTransaction

Declaration
function InTransaction: Boolean;
Description
Indicates if the session has started a transaction.

TOracleSession.IsolationLevel

Declaration
type TIsolationLevelOption = (ilUnchanged, ilReadCommitted,

ilSerializable);
property IsolationLevel: TIsolationLevelOption;
Description
Determines how Oracle controls data concurrency for the session. Setting the IsolationLevel to
ilReadCommited causes your transaction to see all records committed at any time in other
sessions. Setting it to ilSerializable causes you to see only those records committed before
your transaction started.

When IsolationLevel is set to stUnchanged, the initialization parameter ISOLATION_LEVEL of
the Oracle instance determines data concurrency control.

See also
SetTransaction

TOracleSession.LogOff

Declaration
procedure LogOff;
Description
This procedure logs off from the database. LogOff is automatically called when a session is
destroyed (by calling the Free method or by destroying the component that owns the session).

See also
LogOn

Direct Oracle Access 4.1 - User's Guide 27

Connected

RollbackOnDisconnect

TOracleSession.LogOn

Declaration
procedure LogOn;
Description
Logs on to the database. If the session is already logged on, it is first logged off.

If an error occurs, an EOracleError exception is raised.

See also
LogOff

Connected
LogonUsername
LogonPassword

LogonDatabase
TOracleLogon

TOracleSession.LogonDatabase

Declaration
property LogonDatabase: string;
Description
Together with LogonUsername and LogonPassword this property is used by the LogOn
procedure to construct the connect-string Username/Password@Database.

See also
LogOn
LogOff
Connected

LogonUsername
LogonPassword
TOracleLogon
TOracleSession.LogonPassword

Declaration
property LogonPassword: string;
Description
Together with LogonUsername and LogonDatabase this property is used by the LogOn
procedure to construct the connect-string Username/Password@Database.

28 Direct Oracle Access 4.1 - User's Guide

See also
LogOn
LogOff

Connected
LogonUsername
LogonDatabase
TOracleLogon

TOracleSession.LogonUsername

Declaration
property LogonUsername: string;
Description
Together with LogonPassword and LogonDatabase this property is used by the LogOn
procedure to construct the connect-string Username/Password@Database.

You can also assign a complete connect string as above to LogonUsername. After connecting
to the database, the three properties will reflect the actual values.

See also
LogOn
LogOff
Connected

LogonPassword
LogonDatabase
TOracleLogon

TOracleSession.MessageTable

Declaration
property MessageTable: string;
Description
The TOracleDataSet component can translate error messages raised by primary key, unique
key, foreign key and check constraints through a message table. The name of this message
table is defined at the session level, and should be defined like this:
create table my_messages
(
 Constraint_Name varchar2(30) not null,
 Actions varchar2(3) not null,
 Parent_Child varchar2(1) not null,
 Error_Message varchar2(2000)
);

Constraint_Name the name of the constraint that is violated.

Direct Oracle Access 4.1 - User's Guide 29

Actions Indicates if the message is to be displayed for inserts ('I'), updates
('U') and deletes ('D'). You can combine the letters to indicate
multiple actions, e.g. 'IU' for insert and update. You can use '*' to
indicate all actions.

Parent_Child Indicates if the message is to be displayed when the constraint is
violated at the parent ('P') or child ('C') side. This column is only
useful for foreign key constraints, use a '*' for all other constraints.

Error_Message The actual message that is displayed.

Example
Table employees has a primary key emp_pk on column empno, and a foreign key
emp_dept_fk on the deptno column to the departments table. The following messages could
be defined:

Constr_Name Actions PC Message
EMP_PK * * Employee number already exists
EMP_DEPT_FK * C Department does not exist
EMP_DEPT_FK D P Cannot delete department while

employees exist
EMP_DEPT_FK U P Cannot change department number

while employees exist

See also
TOracleDataSet.EnforceConstraints
TOracleDataSet.UseMessageTable

TOracleSession.MonitorMessage

Declaration
procedure MonitorMessage(const Msg: string);
Description
Sends the given string to the Oracle Monitor, where it will be displayed as an activity with the
message as description. The message activity will have a different color than other activities,
so that they can easily be recognized.

This function is only useful if you have included the OracleMonitor unit in your project.

TOracleSession.MTSOptions

Declaration
type TMTSOptions = = set of (moImplicit, moUniqueServer);
property MTSOptions: TMTSOptions;
Description
If the Pooling property is set to spMTS, you can use this property to control how the database
session is obtained from the pool:
moImplicit When the TOracleSession is logged on, it is implicitly enlisted in any

30 Direct Oracle Access 4.1 - User's Guide

MTS transaction. If you disable this option, you will only make use of
the session pooling mechanism of the Oracle Service for MTS.

moUniqueServer Not yet used.

When a session is enlisted in an MTS transaction, you should never explicitly commit or
rollback your updates. The MTS Server will implicitly commit the Oracle transaction when the
MTS application commits the MTS transaction. The Oracle transaction will be rolled back
when the MTS transaction is aborted.

If you call TOracleSession.Commit or Rollback when the session is enlisted in an MTS
transaction, an exception will be raised. Component methods that would normally commit or
rollback a transaction (TOracleDataSet.Post, TOracleSession.ApplyUpdates), will not do so
when the session is enlisted in an MTS transaction but will rely on MTS transaction control
instead.

TOracleSession.NullValue

Declaration
type TNullValueOption = (nvNull, nvUnAssigned);
property NullValue: TNullValueOption;
Description
When you retrieve a null field or variable, the NullValue property of the session determines the
actual value you receive.

If NullValue = nvNull, you receive a Null variant, which behaves as follows:
w When Null is assigned to a non-variant variable, an EVariantError is raised

w To test for Null, use if VarIsNull(v) then
w If you use relational operators on Null, it will be treated as 'less' than other values

w If you use non-relational operators on Null, the result will be Null

If NullValue = nvUnAssigned, you receive an UnAssigned variant, which behaves as follows:
w When UnAssigned is assigned to a non-variant variable, it converts to 0, '' or zero date

w To test for UnAssigned, use if VarIsEmpty(v) then
w If you use relational operators on UnAssigned, an EvariantError is raised

w If you use non-relational operators on UnAssigned, an EvariantError is raised

TOracleSession.OCIDateCreate

Direct Oracle Access 4.1 - User's Guide 31

Declaration
function OCIDateCreate: TOCIDate;
Description
This support function for external procedures allocates an OCI date instance. This is only
useful if you need to return an OCI date from a function. To free the OCI date instance call
OCIDateFree.

TOracleSession.OCIDateFree

Declaration
procedure OCIDateFree(OCIDate: TOCIDate);
Description
This support function for external procedures frees an OCI date instance. This is only useful if
you have previously created an OCI date through OCIDateCreate and need to free it to
deallocate the memory.

TOracleSession.OCIDateFromDateTime

Declaration
procedure OCIDateFromDateTime(OCIDate: TOCIDate; DateValue:

TDateTime);
Description
This support function for external procedures converts a TDateTime to an OCI date. You can
use OCIDateToDateTime for the opposite conversion.

TOracleSession.OCIDateToDateTime

Declaration
function OCIDateToDateTime(OCIDate: TOCIDate): TDateTime;
Description
This support function for external procedures converts an OCI date to a TDateTime. You can
use OCIDateFromDateTime for the opposite conversion.

TOracleSession.OCINumberCreate

Declaration
function OCINumberCreate: TOCINumber;
Description
This support function for external procedures allocates an OCI number instance. This is only
useful if you need to return an OCI number from a function. To free the OCI number instance

32 Direct Oracle Access 4.1 - User's Guide

call OCINumberFree.

TOracleSession.OCINumberFree

Declaration
procedure OCINumberFree(OCINumber: TOCINumber);
Description
This support function for external procedures frees an OCI number instance. This is only
useful if you have previously created an OCI number through OCINumberCreate and need to
free it to deallocate the memory.

TOracleSession.OCINumberFromFloat

Declaration
procedure OCINumberFromFloat(OCINumber: TOCINumber; FloatValue:

Double);
Description
This support function for external procedures converts a Double to an OCI number. You can
use OCINumberToFloat for the opposite conversion.

TOracleSession.OCINumberFromInt

Declaration
procedure OCINumberFromInt(OCINumber: TOCINumber; IntValue: Integer);
Description
This support function for external procedures converts an Integer to an OCI number. You can
use OCINumberToInt for the opposite conversion.

TOracleSession.OCINumberToFloat

Declaration
function OCINumberToFloat(OCINumber: TOCINumber): Double;
Description
This support function for external procedures converts an OCI number to a Double. You can
use OCINumberFromFloat for the opposite conversion.

TOracleSession.OCINumberToInt

Direct Oracle Access 4.1 - User's Guide 33

Declaration
function OCINumberToInt(OCINumber: TOCINumber): Integer;
Description
This support function for external procedures converts an OCI number to an Integer. You can
use OCINumberFromInt for the opposite conversion.

TOracleSession.OnChange

Declaration
type TOracleSessionEvent = procedure(Sender: TOracleSession) of

Object;
property OnChange: TOracleSessionEvent;
Description
Called whenever the Session gets connected or disconnected. Could be used to enable
menu-items.

TOracleSession.OptimizerGoal

Declaration
type TOptimizerGoalOption = (ogUnchanged, ogChoose, ogFirstRows,

ogAllRows, ogRule)
property OptimizerGoal: TOptimizerGoalOption;
Description
Determines how the Oracle optimizer approaches to optimize a SQL statement. For more
information, see the "Oracle 7 Server Concepts" manual.
TOracleSession.POLite

Declaration
function POLite: Boolean;
Description
Returns true if connected to a Personal Oracle Lite database. Only valid if connected.
TOracleSession.Pool

Declaration
property Pool: TOracleSessionPool;
Description
Determines from which pool the session will obtain a connection when LogOn is called or
Connected is set to True. The connection is released into the pool when the session is
disconnected.

If this property is nil and the Pooling property is set to spInternal, the global SessionPool will
be used instead.

34 Direct Oracle Access 4.1 - User's Guide

TOracleSession.Pooling

Declaration
type TOracleSessionPooling = (spNone, spInternal, spMTS);
property Pooling: TOracleSessionPooling;
Description
This property indicates that a session should be obtained from a session pool. The session
pool will either be managed internally in the application, or it will be managed by the Oracle
Service for MTS. This can be useful if you need to frequently create and free TOracleSession
instances, but can't afford to make new database connections every time because of
performance consequences.

This option is most useful in an MTS (Microsoft Transaction Server) environment, because a
TMTSDataModule and TMTSAutoObject instances are continuously created and destroyed by
the MTS Server between client requests, and any TOracleSession that is owned by this
instance will also be created and destroyed. This would imply that each request would cause a
database logon and logoff. To prevent this, you can set the Pooling property to one of the
following values:
spInternal The database sessions will be pooled internally by Direct Oracle Access. The

Pool property determines which pool will be used.

spMTS The database session will be pooled by the Oracle Service for MTS. This
service is only available for Oracle8i and later, and is a requirement if you
want to use spMTS.

Each time a TOracleSession instance is logged on, it will attempt to reuse a database session
from the pool. If there are no sessions available, a new session will be created. When the
TOracleSession instance is logged off, the database session will be released into the pool.
Make sure that you commit or rollback your updates before logging off the session, unless it is
enlisted in an MTS transaction!

TOracleSession.Preferences

Declaration
property Preferences: TSessionPreferences;
Description
The Preferences property can be used to affect the behavior of other database access
components linked to the session. The following properties can be defined:
property FloatPrecision: Integer;
Maximum precision to be represented a floating point field (Double). Setting this property to 0
will cause all non-integer numbers to be represented as a floating point field, even though a
Double has a maximum precision of 15 digits. Setting it to a non-zero value will cause higher-
precision numbers to be represented as a string field. The number will be converted to a string
on the server, using the current NLS_LANG settings. This preference affects fields in
TOracleQuery and TOracleDataSet components.

Direct Oracle Access 4.1 - User's Guide 35

property IntegerPrecision: Integer;
Maximum precision to be represented an integer field. Setting this property to 0 will cause all
integer numbers with a precision of 9 digits or less to be represented as an integer, and all
other numbers as a floating point value, depending on the FloatPrecision preference. This
preference affects fields in TOracleQuery and TOracleDataSet components.

property SmallIntPrecision: Integer;
Maximum precision to be represented as a small integer field (SmallInt). Setting this property
to 0 will cause all integer numbers with a precision of 4 digits or less to be represented as a
small integer. This preference only affects fields in the TOracleDataSet component, since the
TOracleQuery component does not have small integer fields. The default value of this property
is -1, so that small integer fields will never occur.

property MaxStringFieldSize: Integer;
Maximum string size to be represented as a string field. Setting this property will cause all
larger string fields to be represented as a TMemoField. This preference only affects fields in
the TOracleDataSet component, since the TOracleQuery component does not have memo
fields. The default value of this property is 0, so that strings will never be represented by
memo fields.

Standard BDE DataSets such as TTable and TQuery always treat strings longer than 255
characters as memo fields. Compatibility with BDE datasets may be one reason to set this
property. Another reason may be the fact that DBRichEdit controls only support formatted text
on TMemoFields. For TOracleDataSet components in a remote datamodule in a multi-tiered
application in Delphi 5, it is required that this porperty is set to 255. This happens
automatically.

property UseOCI7: Boolean;
Use OCI7 on Net8 for this session. Setting this property to True will cause the session to use
the old, but more stable SQL*Net 2.3 functions in Net8. This can be helpful in case of Net8
problems, but can only be used if your application is not using any Net8 specific objects
(TLOBLocator, TOracleObject and TOracleReference).

property ConvertCRLF: Boolean;
Convert between CRLF pairs (Client) and LF (Server). In an Oracle Database, multiple lines of
text are separated by just a linefeed (#10) character. On the Windows Operating System, the
carriage return / linefeed (#13 / #10) combination is used. Direct Oracle Access will
automatically convert between these two conventions. Setting this preference to False will
disable this conversion. Use this preference with care.

property TrimStringFields: Boolean;
Remove trailing spaces from TOracleDataSet fields when fetching varchar2 and char columns
from the database. These trailing spaces usually just get in the w ay when modifying string
fields, so this property is True by default.

property ZeroDateIsNull: Boolean;
Determines if a TDateTime value of 0.0 is interpreted as Null. If you set this property to False,
TDateTime values cannot be Null as 0.0 would correspond to 30/12/1899. To use date
variables that can be Null you must use Variant values, which can of course be Null or
Unassigned.

property NullLOBIsEmpty: Boolean;
Determines if a null BLOB or CLOB posted through a TOracleDataSet should be treated as an
empty LOB (empty_blob() or empty_clob()) instead. It can be useful to prevent null LOB
columns, because you can now assume that a valid LOB Locator is present in each record.

36 Direct Oracle Access 4.1 - User's Guide

property TemporaryLOB: TTemporaryLOBOption;
type TTemporaryLOBOption = (tlNone, tlCache, tlNoCache);
Determines if a BLOB or CLOB posted through a TOracleDataSet should be passed as a
normal LOB (tlNone), a cached temporary LOB (tlCache), or an uncached temporary LOB
(tlNoCache).For more information about temporary LOB's, see the
TLOBLocator.CreateTemporary section. This property is ignored on Oracle Net 8.0 clients,
which do not support temprary LOB's.

property NullObjectIsEmpty: Boolean;
Determines if a null object posted through a TOracleDataSet should be treated as an empty
object (the default constructor with nulls for all non-object attributes) or as atomically null. It
can be useful to prevent null object columns, because you can now assume that a valid object
is present in each record.

TOracleSession.ReturnCode

Declaration
function ReturnCode: Integer;
Description
The result of the last executed session procedure. This number corresponds to the codes you
can find in the "Oracle Server Messages Guide".

See also
ErrorMessage

TOracleSession.Rollback

Declaration
procedure Rollback;
Description
Rolls back the current transaction.

See also
Commit
Savepoint

RollbackToSavepoint
AutoCommit

TOracleSession.RollbackOnDisconnect

Declaration
property RollbackOnDisconnect: Boolean;
Description
This property indicates if the session should rollback the current transaction if it is
disconnected. This applies to the LogOff procedure, the Connected property and to freeing a

Direct Oracle Access 4.1 - User's Guide 37

TOracleSession component. If an application crashes without freeing its TOracleSession
components, the Oracle Server will always rollback the current transaction.

TOracleSession.RollbackToSavepoint

Declaration
procedure RollbackToSavepoint(const ASavepoint: string);
Description
Rolls back the current transaction to a previously identified savepoint.

See also
Commit
Rollback

Savepoint
AutoCommit

TOracleSessi on.Savepoint

Declaration
procedure Savepoint(const ASavepoint: string);
Description
Identifies a point in a transaction to which you can later roll back. In the parameter, you can
pass any name to identify the savepoint.

See also
Commit
Rollback

RollbackToSavepoint
AutoCommit

TOracleSession.ServerVersion

Declaration
function ServerVersion: string;
Description
Returns a string containing the version of the database that the session is connected to
(something like 'Personal Oracle7 Release 7.2.2.3.1').

TOracleSession.SetPassword

38 Direct Oracle Access 4.1 - User's Guide

Declaration
procedure SetPassword(const NewPassword: string);
Description
Changes the password of the current user. For Oracle7, the session must already be
connected. For Oracle8, the password can be set without being connected to the server.

Password expiration
In an Oracle8 server you can enable password expiration as part of the us er authentication
process of your database. You can set the lifetime of a password, the grace period (the period
that a user only gets a warning that the password has expired), and a password history (to
make sure that a user does not reuse the same password for a specific amount of time).

The TOracleLogon component handles password expiration automatically. It issues a warning
during the grace period that the password will expire within a number of days and asks the
user if he or she wants to change the password now. After the grace period, the TOracleLogon
component will force the user to change the password, or the logon will fail.

To support this mechanism in your own application without using the TOracleLogon
component, the TOracleSession has an ExpirationMessage property and a SetPassword
method.

After a successful call to LogOn during the grace period, the ExpirationMessage property
contains the Oracle warning message that specifies the number of days left before the
password expires.

After an unsucces sful call to LogOn after the grace period, you need to change the password
without actually being logged on. The SetPassword method supports this. You need to set the
LogonUsername, LogonPassword (the old password) and the LogonDatabase properties and
call the SetPassword method with the new password. If the method completes successfully,
the password is changed but the session is not connected. You still need to call the LogOn
method afterwards.

The following example logs on to the database, issues a warning during the grace period, and
asks for a new password when it has expired:

Direct Oracle Access 4.1 - User's Guide 39

with MySession do
try
 LogonUsername := UsernameEdit.Text;
 LogonPassword := PasswordEdit.Text;
 LogonDatabase := DatabaseEdit.Text;
 LogOn;
 if ExpirationMessage <> '' then
 ShowMessage(ExpirationMessage)
 else
 ShowMessage('Logged on successfully.');
except
 on E:EOracleError do
 begin
 if E.ErrorCode <> 28001 then
 ShowMessage(E.Message);
 else try // ORA-28001, The account has expired
 SetPassword(GetNewPassword);
 Logon;
 except
 on E:EOracleError do ShowMessage(E.Message);
 end;
 end;
end;

You can also call SetPassword when the TOracleSession is already connected. After the call
to SetPassword, the session remains connected. For SQL*Net 1.x or 2.x, you can only use
SetPassword when the session is connected. Otherwise you will receive a "Not logged on"
exception.

TOracleSession.SetTransaction

Declaration
type TTransactionMode = (tmReadOnly, tmReadWrite, tmReadCommitted,

tmSerializable);
procedure SetTransaction(const ATransactionMode: TTransactionMode);
Description
Sets the transaction mode to tmReadOnly, tmReadWrite, tmReadCommitted or
tmSerializable. You can use this method to override the IsolationLevel property of the session
for an individual transaction. After the transaction is ended by a Commit or Rollback, the mode
of the next transaction will again be derived from the IsolationLevel of the s ession.

See also
IsolationLevel

40 Direct Oracle Access 4.1 - User's Guide

TOracleSession.Share

Declaration
procedure Share(ToSession: TOracleSession);
Description
Shares the physical database connection of the session with another session. The
TOracleSession instance for which this procedure is called must be connected. This
procedure is useful if you are using dynamic link libraries and want to share a session
between a host application and a DLL, if both are using Direct Oracle Access. For other
scenarios y ou need to use the ExternalLDA or ExternalSVC properties.

Warning: You must log off the session to which the host session is shared, before the host
session itself is logged off.

TOracleSession.SQLTrace

Declaration
type TSQLTraceOption = (stUnchanged, stTrue, stFalse);
property SQLTrace: TSQLTraceOption;
Description
This property can enable or disable the SQL trace option for the session. When set to stTrue,
you can analyze all executed SQL statements with Oracle's tkprof utility. It gives information
about CPU time, elapsed time, disk I/O, etc of each statement. See the "Oracle 7 Server
Tuning" manual for more information about tkprof.

When SQLTrace is set to stUnchanged, the initialization parameter SQL_TRACE of the Oracle
instance determines if SQL trace is enabled or disabled.

TOracleSession.StatementCache

Declaration
property StatementCache: Boolean;
Description
This property indicates whether or not the session will use a client side statement cache. It
requires Oracle Net 9.2 or later, and will be ignored for older Oracle versions. When enabled,
this feature provides and manages a cache of statements for the session. On the server
cursors are ready to be used without the need to parse the statement again, even if these
cursors are closed by the application on the client.

The StatementCacheSize property determines the maximum number of cached statements.
The least recently used statements will be removed from the cache when this maximum is
reached. This ensures that only the most frequently used statements remain in the cache, and
also ensures that the database will have a minimal number of open cursors.

If the StatementCache is enabled, the TOracleQuery.Optimize and TOracleDataSet.Optimize
settings will be overruled.
TOracleSession.StatementCacheSize

Direct Oracle Access 4.1 - User's Guide 41

Declaration
property StatementCacheSize: Integer;
Description
The StatementCacheSize property determines the maximum number of cached statements
when the StatementCache is enabled for the session.

TOracleSession.ThreadSafe

Declaration
property ThreadSafe: Boolean;
Description
When true, multiple threads can execute queries and datasets in this session. This is achieved
by serializing all thread access to the session. You can use threads to access different
sessions without setting this property to True.

For more information, read the Multi-threaded applications section.

TOracleSession.UTL_File (Oracle 7.3 or higher)

Declaration
TUTL_File = class(TDBMSPackage)
 function FOpen(const Location: string; const Filename: string;

const Open_Mode: string): TUTL_File_Type;
 function Is_Open(const AFile: TUTL_File_Type): Boolean;
 procedure FClose(var AFile: TUTL_File_Type);
 procedure FClose_All;
 procedure Get_Line(const AFile: TUTL_File_Type; out Buffer: string);
 procedure Put(const AFile: TUTL_File_Type; const Buffer: string);
 procedure New_Line(const AFile: TUTL_File_Type; const Lines:

Cardinal);
 procedure Put_Line(const AFile: TUTL_File_Type; const Buffer:

string);
 procedure Putf(const AFile: TUTL_File_Type; const Format: string;

const Args: array of string);
 procedure FFlush(const AFile: TUTL_File_Type);
end;
property UTL_File: TUTL_File;
Description
The utl_file package has been provided since version 7.3 of the Oracle Server. It adds file
input/output capabilities to PL/SQL for files that are located on the database server. Detailed
information about this package can be found in the Server Application Developer's Guide.

Most of the functions and procedures in the utl_file package make use of a file handle, w hich
is of type TUTL_File_Type. You can simply declare a variable of this type in your application to
identify a file. The following example creates a file on the database server in UNIX directory
/transfer/output and writes the contents of a memo to it:

42 Direct Oracle Access 4.1 - User's Guide

procedure TMainForm.ButtonClick(Sender: TObject);
var Handle: TUTL_File_type;
begin
 with MainSession do
 begin
 Handle := UTL_File.FOpen('/transfer/output', 'info.txt', 'w');
 for i := 0 to Memo.Lines.Count - 1 do
 UTL_File.Put_Line(Handle, Memo.Lines[i]);
 UTL_File.FClose(Handle);
 end;
end;

Unlike other standard packages, utl_file raises a user-defined exception in case of error
situations. These user-defined exceptions are translated to a specific exception type:
EUTL_File_Error. This exception contains an Error property that can have the following
values:
ufInvalidPath File location or filename is invalid
ufInvalidMode Open_Mode parameter in FOpen is invalid
ufInvalidFilehandle File handle is invalid
ufInvalidOperation File cannot be opened or operated on as requested
ufReadError OS error occurred during read operation
ufWriteError OS error occurred during write operation
ufInternalError Unspecified error in PL/SQL
By creating an exception block you can simply test for specific error situations:
procedure TMainForm.ButtonClick(Sender: TObject);
var Handle: TUTL_File_type;
begin
 with MainSession do
 try
 Handle := UTL_File.FOpen('/transfer/output', 'info.txt', 'w');
 for i := 0 to Memo.Lines.Count - 1 do
 UTL_File.Put_Line(Handle, Memo.Lines[i]);
 UTL_File.FClose(Handle);
 except
 on E: EUTL_File_Error do
 begin
 if E.Error = ufInvalidPath then
 ShowMessage('/transfer/output is not a valid file location');
 else
 ShowMessage(E.Message);
 end;
 end;
end;

Direct Oracle Access 4.1 - User's Guide 43

TOracleLogon component

Unit
Oracle

Description
This component provides a standard logon dialog and a set password dialog. When calling the
Execute method, the Logon properties of the Session are copied into the dialog as default.
The SetPassword method can be used to allow a user to set his or her password.

You can control the behavior and appearance of the logon dialog through the Options
property, such as the presence of a database list and a logon history.

The logon dialog automatically handles Oracle8's password expiration feature if Net8 is
installed. On SQL*Net 2 an expired password cannot be changed.

You can translate the texts of the logon dialog by setting the logon text string constants.

44 Direct Oracle Access 4.1 - User's Guide

TOracleLogon reference
This chapter describes all properties, methods and events of the TOracleLogon component.

TOracleLogon.AliasDropDownCount

Declaration
property AliasDropDownCount: Integer;
Description
Determines how many items are visible in the combo box list with database names. This is
only useful if the ldDatabaseList option is enabled.

TOracleLogon.Caption

Declaration
property Caption: string;
Description
The caption of the logon dialog window. If you leave this property empty, the default caption
will be 'Oracle Logon', unless you have changed the default messages.

TOracleLogon.Execute

Declaration
function Execute: Boolean;
Description
Executes the logon dialog, returns False if the user only pressed the cancel button. You can
examine the Connected property of the Session to check if the logon was successful.

TOracleLogon.HistoryIniFile

Declaration
property HistoryIniFile: string;
Description
Determines the name of the ini-file where the logon information is stored when the
ldLogonHistory option is enabled. If you have also defined the HistoryRegSection property,
this will take precedence.

TOracleLogon.HistoryRegSection

Direct Oracle Access 4.1 - User's Guide 45

Declaration
property HistoryRegSection: string;
Description
Determines the registry section in the hkey_current_user registry where the logon information
is stored when the ldLogonHistory option is enabled. A typical value for this property would be
Software\MyCompany\MyProduct\LogonHistory.

TOracleLogon.HistorySize

Declaration
property HistorySize: Integer;
Description
Determines how many entries will be saved for the logon history when the ldLogonHistory
option is enabled. The least recently used entry will be removed when this limit is reached.

TOracleLogon.HistoryWithPassword

Declaration
property HistoryWithPassword: Boolean;
Description
Determines if the password is stored for a logon history entry in the registry when the
ldLogonHistory option is enabled.

If you set this property to False, the password must be entered when a logon entry is selected
by an end-user. Only the username and database will be recalled.

If you set this property to True, an encrypted password will be stored in the registry for a logon
history entry. The username, password and database will be recalled, and the end-user
merely needs to press the OK button.

TOracleLogon.Options

Declaration
type TLogonOption = (ldAuto, ldDatabase, ldDatabaseList,

ldLogonHistory);
type TLogonOptions = set of TLogonOption;
property Options: TLogonOptions;
Description
The logon options allow you to control the following behavior of the logon dialog:
w ldAuto Causes the execute procedure to log on without showing a dialog if

both username and password are specified for the Session.

w ldConnectAs Displays a dropdown list that allows you to connect as SYSDBA or

46 Direct Oracle Access 4.1 - User's Guide

SYSOPER. The list will only be visible when using Net8.

w ldDatabase Allows the user to enter a database name in the logon dialog.

w ldDatabaseList Displays a combo box list with database names. These database
names are extracted from the SQL*Net / Net8 administration file
tnsnames.ora, and can programmatically be accessed through the
OracleAliasList. The size of the list is controlled by the
AliasDropDownCount property.

w ldLogonHistory Displays a dropdown list with previously entered logon information, so
that an end-user can quickly connect to a database. This logon history
is stored in the hkey_current_user registry or in an ini-file. This option
can further be controlled by the HistoryRegSection, HistoryIniFile,
HistorySize and HistoryWithPassword properties.

TOracleLogon.Picture

Declaration
property Picture: TPicture;
Description
An optional picture that will be displayed in the logon dialog window.

TOracleLogon.Retries

Declaration
property Retries: word;
Description
Determines how many times that a user can retry to specify a username and password.

TOracleLogon.Session

Declaration
property Session: TOracleSession;
Description
The session which will be logged on.

Direct Oracle Access 4.1 - User's Guide 47

TOracleLogon.SetPassword

Declaration
function SetPassword: Boolean;
Description
Executes a change-password dialog and changes the password of the user in the database of
the session. This function returns true if the password is changed successfully.

48 Direct Oracle Access 4.1 - User's Guide

TOracleQuery component

Unit
Oracle

Description
You use the TOracleQuery component to execute SQL statements or PL/SQL blocks. Set the
Session property to define the TOracleSession in which the query will execute. The text of the
query can be set in the SQL property and executed with Execute. If the query is a select
statement, you can access the fields of a record with the Field method, and call Next to
retrieve additional records until Eof indicates that no more records are available. Whenever an
error occurs during the execution of a query, an EOracleError exception is raised.

The Variables property allows you to declare input/output variables for the query at design or
run time. To assign a value to a variable at run time, use SetVariable. To use PL/SQL Tables
or perform array DML, you can pass an array of values to this method. To get the value of an
output variable, use GetVariable.

TOracleQuery can execute any SQL statement:
w Data Manipulation Language (select, update, insert, etc.)

w Data Definition Language (create table, create procedure, grant role, etc.)

w Transaction Control (commit, rollback, savepoint, etc.)

w Session Control (alter session, set role)

w System Control (alter system)
Besides that, it allows you to execute PL/SQL blocks on the server, enabling you to partition
your client/server application in the best possible way. A single PL/SQL block can do a lot of
work on the server in only one network roundtrip, which could otherwise generate a lot of
network traffic. A PL/SQL Block is also the basis for stored procedure calls.

A TOracleQuery can also be defined as a cursor variable. In this case, the SQL property can
be empty as the cursor on the server defines the actual select statement.

Example - Selecting data
This example selects all departments from the dept table. It uses a TOracleQuery with a
simple select statement. After calling the Execute method, the first row is automatically fetched
and accessible by using the Field methods. By calling the Next method until Eof, you can
retrieve all records. To fill a TStringGrid, the following loop could be used:

Direct Oracle Access 4.1 - User's Guide 49

// SelectQuery.SQL = select * from dept
// order by deptno
with SelectQuery do
try
 Execute;
 Row := 1;
 // Fill the grid
 while not Eof do
 begin
 DeptGrid.Cells[0, Row] := Field('DEPTNO');
 DeptGrid.Cells[1, Row] := Field('DNAME');
 DeptGrid.Cells[2, Row] := Field('LOC');
 Inc(Row);
 Next;
 end;
except
 on E:EOracleError do ShowMessage(E.Message);
end;

Remember that the Field function returns a variant of the type that resembles the type in the
database:
Varchar String
Number(s, p) Integer if scale and precision allow it, otherwise double
Date TDateTime
Char String
Rowid String
Raw String, converted to hex format
Long String
Long raw Variant array of bytes
The beauty of variants is that Delphi will try to convert these to the datatype needed in your
program. Therefore y ou don't need to typecast the integer expression Field('DEPTNO') to a
string. For more information on variants read the appropriate section in the Object Pascal
Language Guide.

Example - Using variables
The following example uses a PL/SQL block with input and output variables. When an
employee is inserted into the emp table, the name and salary are passed to the query as input
variables by using SetVariable. The query returns the number of the employee (empno) that
was generated by an Oracle sequence, which is retrieved by calling GetVariable.

50 Direct Oracle Access 4.1 - User's Guide

// InsertQuery.SQL =
// begin
// select empsequence.nextval into :empno from dual;
// insert into emp (empno, ename, sal)
// values (:empno, :ename, :sal);
// commit;
// end;
try
 with InsertQuery do
 begin
 SetVariable('ENAME', Emp.EName);
 SetVariable('SAL', Emp.Sal);
 Execute;
 Emp.EmpNo := GetVariable('EMPNO');
 end;
except
 on E:EOracleError do ShowMessage(E.Message);
end;

The easiest way to use variables is to declare them at design time through the Variables
property of the TOracleQuery component. It is also possible to declare them at run time by
using DeleteVariables to dispose of existing variables and DeclareVariable to declare new
ones:
with InsertQuery do
begin
 DeleteVariables;
 DeclareVariable('ENAME', otString);
 DeclareVariable('SAL', otFloat);
 DeclareVariable('EMPNO', otInteger);
 ...
end;

Example - Long & Long Raw
These two Oracle data types can get really big (up to 2GB). Therefore, a few restrictions have
been made regarding long values:

w Unlike other query-fields, long values are not buffered. Every time the Field function of a
long value is called, the value is fetched from the database. On the other hand, as long as
you do not call the field function, the value is not fetched.

w Whenever a query detects a long column in the select-list, only 1 record is buffered,
regardless of the query's ReadBuffer property.

w Output variables of a long data type are not really supported. Use a select statement
whenever possible. If you must use a long output variable, the maximum size it can contain
is equal to the size it has on input, so it is in fact an input/output variable. If a longer value
is assigned to the variable, you will get an "ORA-06502: PL/SQL: numeric or value
error", so you'll have to be sure that the allocated size is enough.

Long Raws are handled as strings or zero based variant arrays of bytes. To access the byte-
array with the highest possible performance, make use of the VarArrayLock and
VarArrayUnlock functions. To check for the size of the value, make use of

Direct Oracle Access 4.1 - User's Guide 51

VarArrayHighBound. The next example fetches a picture, determines the size, and saves the
binary data to disk:
// SelectEmpPictureQuery.SQL =
// select picture from emp
// where empno = :empno
try
 with SelectEmpPictureQuery do
 begin
 SetVariable('EMPNO', Emp.EmpNo);
 Execute;
 Picture := Field('PICTURE');
 Size := VarArrayHighBound(Picture, 1) + 1;
 Ptr := VarArrayLock(Picture);
 WriteFile('Employee.gif', Ptr^, Size);
 VarArrayUnlock(Picture);
 end;
except
 on E:EOracleError do ShowMessage(E.Message);
end;

Two low -level methods are provided to get easier and faster access to Long and Long Raw
data. The Field and SetVariable methods provide a consistent access to all data types, but
can lead to some overhead in memory usage, memory movement, and database access.

If you know the internal structure of a Long or Long Raw, you may also exactly know its size
and can fetch exactly what you need with a minimum of network roundtrips. The GetLongField
method can help you with this:
GetLongField(FieldId: Integer; Buffer: Pointer; Offset, Length:

Integer): Integer

If for example you know that a Long Raw column is a 16-color bitmap, you know the width and
height is stored at positions 18 and 22. If you first fetch these two integers, you can determine
the size of the bitmap and fetch the rest:
var wh: TPoint;
 Size: Integer;
 Bitmap: Pointer;
begin
 Query.GetLongField(BmpField, @wh, 18, SizeOf(wh));
 Size := ((wh.x * wh.y) div 2) + 70;
 GetMem(Bitmap, Size);
 Query.GetLongField(BmpField, Bitmap, 0, Size);
 ...
end;

If you use the SetVariable method to set the value of a Long or Long Raw variable, it is
necessary to pass a string (Long or Long Raw) or variant array of bytes (Long Raw) for the
value. It is probably more efficient to pass a pointer to the data that is to be used, instead of
converting and copying large amounts of memory. The SetLongVariable method allows you to
do just that:

52 Direct Oracle Access 4.1 - User's Guide

SetLongVariable(Name: String; Buffer: Pointer; Length: Integer)

The memory pointed to by the Buffer pointer is not copied, so it must remain valid until the
query is executed. The following example sets a variable to some recorded wav file in memory
and inserts a new record:
var WavBuffer: Pointer;
 WavLength: Integer;
begin
 RecordWavFile(WavBuffer, WavLength);
 Query.SetVariable('wavname', WavName.Text);
 Query.SetLongVariable('wavfile', WavBuffer, WavLength);
 Query.Execute;
 FreeMem(WavBuffer, WavLength);
end;

Note: Due to the low -level nature of the GetLongField and SetLongVariable methods, they do
not convert between LF and CR/LF combinations for Long values, unlike the Field and
SetVariable methods. For Long Raw values this is not an issue.

Example - Array DML
Array DML is an Oracle feature that allows an application to insert, update or delete multiple
records with one single statement in one single network roundtrip. This can increase
performance significantly for batch processing. In a WAN configuration, dramatic performance
gains can be achieved.

To make use of array DML, you need to supply arrays of variant values to the SetVariable
method of a TOracleQuery. All array s should be of equal length. The following example inserts
the four well-known departments into the dept table:

Direct Oracle Access 4.1 - User's Guide 53

var deptno, dname, loc: variant;
begin
 deptno := VarArrayCreate([0, 3], varVariant);
 dname := VarArrayCreate([0, 3], varVariant);
 loc := VarArrayCreate([0, 3], varVariant);
 deptno[0] := 10;
 dname[0] := 'Accounting';
 loc[0] := 'New York';
 deptno[1] := 20;
 dname[1] := 'Research';
 loc[1] := 'Dallas';
 deptno[2] := 30;
 dname[2] := 'Sales';
 loc[2] := 'Chicago';
 deptno[3] := 40;
 dname[3] := 'Operations';
 loc[3] := 'Boston';
 // insert into dept (deptno, dname, loc) values (:deptno, :dname,

:loc)
 with InsDeptQuery do
 begin
 SetVariable('deptno', deptno);
 SetVariable('dname', dname);
 SetVariable('loc', loc);
 Execute;
 end;
end;

Error handling may require some special attention when using array DML. If an exception
occurs, you will usually need to know which record caused it. The OnArrayError event can be
used to handle the errors of each individual record:
procedure TForm1.InsDeptQueryOnArrayError(Sender: TOracleQuery;

Index: Integer; ErrorCode: Integer; const ErrorMessage: string;
var Continue: Boolean);

var dname: Variant;
begin
 dname := Sender.GetVariable('dname');
 ShowMessage('Error inserting department ' + dname[Index] + #13#10 +

ErrorMessage);
end;

Use the zero-based Index parameter to access the record in the array that caused the error.
You can use the Continue parameter to cancel or continue (default) the processing of the
remainder of the array.

The Execute method will automatically execute all records in the declared array. If you need to
process only a certain part of the array, you can use the ExecuteArray method:
function TOracleQuery.ExecuteArray(Index, Count: Integer): Integer;

Index is the zero-based starting position in the array, and Count is the number of records to
process. The result indicates the number of records that were successfully processed.

54 Direct Oracle Access 4.1 - User's Guide

Example - Cursor variables
Since Version 7.2 Oracle supports cursor variables. These variables are a reference to a
cursor for a select statement that is defined and opened on the server. They offer the following
advantages:

w Cursors are defined and maintained on a central point on the server

w An end-user needs only execute privileges on the procedure, not on the underlying objects
of the cursors

Using a cursor variable as a TOracleQuery
Because a cursor variable is equivalent to a TOracleQuery with a select statement, DOA
implements the cursor variable type as a TOracleQuery. To use a cursor variable, you need at
least two TOracleQuery components: one with a PL/SQL block to call the procedure that
opens the cursor, and one f or the cursor itself:
begin
 with Query1 do
 begin
 Clear;
 SQL.Add('begin');
 SQL.Add(' employee.opencursor(:p_empcursor, :p_order)');
 SQL.Add('end;');
 DeclareVariable('p_empcursor', otCursor);
 DeclareVariable('p_order', otString);
 SetComplexVariable('p_empcursor', CursorQuery);
 SetVariable('p_order', 'ename');
 Execute;
 end;
 with CursorQuery do
 begin
 Execute;
 while not Eof do
 begin
 Memo.Items.Add(Field('ename'));
 Next;
 end;
 end;
end;

The packaged procedure employee.opencursor might look like this:

Direct Oracle Access 4.1 - User's Guide 55

type t_empcursor is ref cursor return emp%rowtype;

procedure getcursor(p_empcursor in out t_empcursor, p_order in

varchar2) is
begin
 if p_order = 'ename' then
 open p_empcursor for select * from emp order by ename;
 elsif p_order = 'empno'
 open p_empcursor for select * from emp order by empno;
 else
 open p_empcursor for select * from emp;
 end if;
end;

In this example, Query1 calls the packaged function employee.opencursor to open a cursor to
select all employees in a certain order. The CursorQuery is assigned to the p_empcursor
variable. You need to use the SetComplexVariable method for this. Next, all rows are fetched
and the employee names are displayed in a memo.

Using a cursor variable in a TOracleDataSet
To create a TOracleDataset based on a cursor variable, enter a PL/SQL block with a call to
the procedure that opens a cursor in the SQL property, for example:
begin
 employee.opencursor(:p_empcursor, :p_order);
end;

If you declare the :p_empcursor variable as otCursor, the dataset will detect the cursor
variable, and will retrieve the records from the cursor after executing the PL/SQL block when
the dataset is opened or refreshed.

To make the results of a cursor variable in a dataset updateable, you must include the rowid in
the cursor, just like with the select statement of a normal dataset. To do this, you can define a
cursor type and procedure in a package as follows:
cursor empcursor is select emp.*, rowid from emp;
type t_empcursor is ref cursor return empcursor%rowtype;
procedure opencursor(p_empcusor in out t_empcursor, p_order in

varchar2);

Now that the rowid is included, the dataset can use it to lock, refresh, update or delete
records. You also need to specify the updating table in the UpdatingTable property of the
dataset, in this case: emp. Normally the dataset would determine the updating table by
inspecting the select statement in the SQL property, but this is invisible in case of a cursor
variable.

PL/SQL Tables
PL/SQL Tables are array -like variables that can be used in PL/SQL. They can be declared like
this:

56 Direct Oracle Access 4.1 - User's Guide

type <type_name> is table of <data_type> index by binary_integer;

PL/SQL Tables can be used in PL/SQL blocks where they can be passed as parameters to
stored functions or procedures. This allows you to transfer large amounts of information in a
single call. In a client/server situation, this can reduce network traffic significantly. PL/SQL
Tables can be input, output and input/output variables, and can grow and shrink dynamically
as needed.

Declaring a PL/SQL Table
To declare a variable as a PL/SQL Table in a TOracleQuery or TOracleDataSet, check the
PL/SQL Table checkbox in the variables property editor. This checkbox is only enabled if the
data type of the variable is string, integer, float or date. PL/SQL Tables of other data types are
currently not supported.

After this, you can define the maximum size of the table. Even though a PL/SQL Table can
grow unlimited on the server, on the client it has a predefined maximum size beyond which it
cannot grow. If the variable is a PL/SQL Table of strings, you must also define the maximum
string size.

The amount of memory that a PL/SQL Table can occupy is limited to 32512 bytes for Oracle7.
For Oracle8 there is no practical limit. The variables property editor shows the memory that
the PL/SQL Table occupies. When it passes the Oracle7 limit, it will be displayed in red.

You can also declare a PL/SQL Table variable at runtime, which requires two steps. First you
must call DeclareVariable as usual, followed by a call to DimPLSQLTable.

For PL/SQL Tables that are used as parameters in a call to a procedure or function in a
package generated through the Package Wizard, you can use the TPLSQLTable object
instead.

Using a PL/SQL Table
Assigning values to a PL/SQL Table is very similar to array DML. You need to declare an
array of variants, and use this array with the SetVariable method. The following example
assigns a value to a PL/SQL Table named 'Numbers':
Table := VarArrayCreate([0, 2], varVariant);
Table[0] := 1.5;
Table[1] := 3.0;
Table[2] := 4.0;
MyQuery.SetVariable('Numbers', Table);

When a PL/SQL Table is an input/output or output variable, you need to retrieve the modified
table after executing a PL/SQL block. You can do so by using the GetVariable method. It
returns an array of variants with the same low bound that it had on input. When the PL/SQL
Table is an output variable (in other words, it has not been assigned a value before the
PL/SQL block was executed), the array will be zero-based.

PL/SQL Table example
The following example shows how to use a stored procedure that deletes employee records
based on a PL/SQL Table with employee numbers. As an output PL/SQL Table, it returns
each error message that occurred when deleting a record. It also returns the number of
successfully deleted records.

Direct Oracle Access 4.1 - User's Guide 57

Stored procedure definition
Package Employee defines two types for the PL/SQL Tables with employee numbers and
error messages. The DeleteEmployees procedure loops through the employee numbers and
attempts to delete these records. In case of an error, the error message table is updated.
type t_EmpNoTable is table of emp.empno%type index by binary_integer;
type t_ErrorTable is table of varchar2(200) index by binary_integer;

procedure DeleteEmployees(p_EmpNoTable in t_EmpNoTable,
 p_ErrorTable out t_ErrorTable,
 p_Deleted out integer) is
 l_Deleted integer;
 i integer;
begin
 i := 0;
 l_Deleted := 0;
 loop
 begin
 i := i + 1;
 delete emp where empno = p_EmpNoTable(i);
 p_ErrorTable(i) := 'Okay';
 l_Deleted := l_Deleted + 1;
 exception
 -- End of PL/SQL Table
 when no_data_found then exit;
 -- Error deleting record
 when others then p_ErrorTable(i) := sqlerrm;
 end;
 end loop;
 p_Deleted := l_Deleted;
end;

PL/SQL block to execute the procedure
The PL/SQL block that we need for a TOracleQuery merely contains a call to the
DeleteEmployees packaged procedure. The p_EmpNoTable variable is declared as a PL/SQL
Table of integers, p_ErrorTable is a PL/SQL Table of strings, and p_Deleted is an integer.
begin
 Employee.DeleteEmployees(:p_EmpNoTable, :p_ErrorTable, :p_Deleted);
end;

Delphi code to delete employees
The following Delphi code tries to delete employees 7839, 7369 and 7788. After executing the
procedure, it shows how many records were successfully deleted and what errors occurred for
each employee.

58 Direct Oracle Access 4.1 - User's Guide

with DeleteEmployeesQuery do
begin
 EmpNoTable := VarArrayCreate([0, 2], varVariant);
 EmpNoTable[0] := 7839;
 EmpNoTable[1] := 7369;
 EmpNoTable[2] := 7788;
 SetVariable('p_EmpNoTable', EmpNoTable);
 Execute;
 Session.Commit;
 ErrorTable := GetVariable('p_ErrorTable');
 s := string(GetVariable('p_Deleted')) + ' record(s) deleted'#13#10;
 for i := 0 to 2 do
 s := s + string(EmpNoTable[i]) + ' - ' + string(ErrorTable[i]) +

#13#10;
 ShowMessage(s);
end;

Direct Oracle Access 4.1 - User's Guide 59

TOracleQuery reference
This chapter describes all properties, methods and events of the TOracleQuery component.

TOracleQuery.AfterQuery

Declaration
type TOracleQueryEvent = procedure(Sender: TOracleQuery) of Object;
property AfterQuery: TOracleQueryEvent;
Description
Triggered when the query ends. For a select statement, this is when Eof is reached. For all
other statements, this is immediately after Execute ends.

See also
BeforeQuery

TOracleQuery.BeforeQuery

Declaration
type TOracleQueryEvent = procedure(Sender: TOracleQuery) of Object;
property BeforeQuery: TOracleQueryEvent;
Description
Triggered when the query begins, immediately before Execute starts.

See also
AfterQuery

TOracleQuery.BreakThread

Declaration
procedure BreakThread;
Description
Breaks the current operation in Threaded mode. This can either lead to an "ORA-01013: user
requested cancel of current operation" if the query is running on the server at the time, or can
simply lead to just an OnThreadFinished event.

See also
ThreadIsRunning

State

TOracleQuery.Cancel

60 Direct Oracle Access 4.1 - User's Guide

Declaration
procedure Cancel;
Description
You can use this procedure to cancel a select statement. Eof will become True and no more
records can be fetched. Note that this procedure does not break execution of a running query,
which can be accomplished by calling TOracleSession.BreakExecution.

TOracleQuery.Clear

Declaration
procedure Clear;
Description
Clears the SQL statement and deletes all declared Variables.

TOracleQuery.ClearVariables

Declaration
procedure ClearVariables;
Description
Assigns nulls to all declared variables.

See also
Variables
DeleteVariables
SetVariable

TOracleQuery.Close

Declaration
procedure Close;
Description
Closes the query, freeing resources on the server. If you don't have many queries, you don't
need to call close. Leaving them open increases performance.

Direct Oracle Access 4.1 - User's Guide 61

TOracleQuery.Cursor

Declaration
property Cursor: TCursor;
Description
Determines the shape of the mouse cursor while executing the query. Only crDef ault,
crHourGlass and crSQLWait are useful here.

TOracleQuery.Debug

Declaration
property Debug: Boolean;
Description
When set to true the SQL statement and all variable values will be displayed when executed.

TOracleQuery.DeclareAndSet

Declaration
procedure DeclareAndSet(Name: string; Type: Integer; Value: Variant);
Description
Declares a variable of a certain name and type, and sets its initial value. This procedure is
particularly handy if you have to declare and set many variables at runtime.

TOracleQuery.DeclareVariable

Declaration
procedure DeclareVariable(Name: string; Type: Integer);
Description
Declares a variable of a certain name and type.

See also
Variables
DeleteVariable

DeleteVariables

TOracleQuery.DeleteVariable

62 Direct Oracle Access 4.1 - User's Guide

Declaration
procedure DeleteVariable(AName: string);
Description
Deletes the specified variable.

See also
Variables
DeclareVariable

TOracleQuery.DeleteVariables

Declaration
procedure DeleteVariables;
Description
Deletes all declared variables.

See also
Variables
ClearVariables
DeclareVariable

TOracleQuery.Describe

Declaration
procedure Describe;
Description
Describe enables you to get the field descriptions of a query without actually executing it.

TOracleQuery.DimPLSQLTable

Declaration
procedure DimPLSQLTable(Name: string; TableSize, StringSize:

Integer);
Description
Defines a previously declared variable as a PL/SQL Table. The StringSize parameter must be
0 if the data type of the variable is anything other than string. The following example declares
a PL/SQL Table of floats, with a maximum size of 100:

Direct Oracle Access 4.1 - User's Guide 63

with MyQuery do
begin
 DeclareVariable('Numbers', otFloat);
 DimPLSQLTable('Numbers', 100, 0);
end;

For more information about PL/SQL Tables, see the PL/SQL Tables section.

TOracleQuery.Eof

Declaration
function Eof: Boolean;
Description
Indicates if there are any rows left to fetch. Eof will become True under the following
conditions:
w After calling Next when positioned on the last row of the result set.

w After calling Execute for a select statement, if no records were selected.

w After calling Execute, for all non-select statements.

w After calling Prior when positioned on the first row of the result set.

w After calling MoveTo or MoveBy for a row beyond the first or last row in the result set.

TOracleQuery.ErrorLine

Declaration
function ErrorLine: Integer;
Description
In case of a parse error, ErrorLine indicates the line where the error occurred (one-based).

Warning
This property is not available in Net8 8.0.x (on 8.1 it is present again). If your application
requires it, it may be a good idea to set the UseOCI7 preference of the session to True. This
way, your application will function properly on SQL*Net and Net8 clients. Oracle8 features will
not be available however.

See also
ErrorPosition
TOracleQuery.ErrorPosition

64 Direct Oracle Access 4.1 - User's Guide

Declaration
function ErrorPosition: Integer;
Description
In case of a parse error, ErrorPosition indicates the character position on the ErrorLine where
the error occurred (one-based).

Warning
This property is not available in Net8 8.0.x (on 8.1 it is present again). If your application
requires it, it may be a good idea to set the UseOCI7 preference of the session to True. This
way, your application will function properly on SQL*Net and Net8 clients. Oracle8 features will
not be available however.

See also
ErrorLine

TOracleQuery.Execute

Declaration
procedure Execute;
Description
Executes the query. If the query is a select statement the first record is immediately fetched
and can be accessed through the Field methods.

See also
SQL
Next
Eof

TOracleQuery.ExecuteArray

Declaration
function ExecuteArray(Index, Count: Integer): Integer;
Description
In case of an array DML statement, you can use this method if you need to process only a
certain part of the array. Index is the zero-based starting position in the array, and Count is the
number of records to process. The result indicates the number of records that were
successfully processed.

See also
Execute

OnArrayError
TOracleQuery.Field

Direct Oracle Access 4.1 - User's Guide 65

Declaration
function Field(FieldId: Variant): Variant;
Description
Returns the field value as a variant for simple data types. The FieldId can be specified as the
name or the index (zero based) of the field. The second is slightly faster, and can be used if
many records are retrieved with many columns. If the field is null, the NullValue property of the
session determines if it will be returned as a Null or Unassigned variant.

In Delphi 4 or later this function is overloaded and accepts the index or name of the field.

If the field is a Long or Long Raw, some restrictions apply.

For Oracle8 complex fields other than LOB's (otCursor, otObject or otReference), you cannot
use the Field method. Instead, you must use a specific method to obtain the corresponding
object:
Field Type Method Object Type
Cursor GetCursor TOracleQuery

LOB LOBField TLOBLocator

Object ObjField TOracleObject

Reference RefField TOracleReference

See also
FieldName
FieldIndex

FieldSize
FieldType
FieldIsNull
FieldOptional

FieldCount

TOracleQuery.FieldAsDate

Declaration
function FieldAsDate(FieldId: Integer): TDateTime;
Description
Returns a field value as a date (converted if necessary). If you don't want to use variants, use
the FieldAs... functions instead of the Field function.

In Delphi 4 or later this function is overloaded and accepts the index or name of the field.

See also
FieldAsString
FieldAsInteger
FieldAsFloat

66 Direct Oracle Access 4.1 - User's Guide

TOracleQuery.FieldAsFloat

Declaration
function FieldAsFloat(FieldId: Integer): Double;
Description
Returns a field value as a float (converted if necessary). If you don't want to use variants, use
the FieldAs... functions instead of the Field function.

In Delphi 4 or later this function is overloaded and accepts the index or name of the field.

See also
FieldAsString

FieldAsInteger
FieldAsDate

TOracleQuery.FieldAsInteger

Declaration
function FieldAsInteger(FieldId: Integer): Integer;
Description
Returns a field value as an integer (converted if necessary). If you don't want to use variants,
use the FieldAs... functions instead of the Field function.

In Delphi 4 or later this function is overloaded and accepts the index or name of the field.

See also
FieldAsString
FieldAsFloat
FieldAsDate

TOracleQuery.FieldAsString

Declaration
function FieldAsString(FieldId: Integer): string;
Description
Returns a field value as a string (converted if necessary). This function raises an exception
when called for object fields, except when the object is a SYS.XMLTYPE, in which case the
XML text is returned.

In Delphi 4 or later this function is overloaded and accepts the index or name of the field.

See also
FieldAsInteger

FieldAsFloat

Direct Oracle Access 4.1 - User's Guide 67

FieldAsDate

TOracleQuery.FieldCount

Declaration
function FieldCount: Integer;
Description
Returns the number of fields in the select list of the query.

See also
Field
FieldName

TOracleQuery.FieldIndex

Declaration
function FieldIndex(FieldId: string): Integer;
Description
Returns the index of the specified field.

See also
Field
FieldName

TOracleQuery.FieldIsNull

Declaration
function FieldIsNull(FieldId: Integer): Boolean;
Description
Indicates if the specified field contains a null value. You can also examine the value of the
Field function, but FieldIsNull is slightly faster and is independent of the setting of the
NullValue property of the Session.

In Delphi 4 or later this function is overloaded and accepts the index or name of the field.

See also
Field
FieldIndex
FieldOptional
TOracleQuery.FieldName

68 Direct Oracle Access 4.1 - User's Guide

Declaration
function FieldName(FieldId: Integer): string;
Description
Returns the name of the specified field.

See also
Field
FieldIndex

TOracleQuery.FieldOptional

Declaration
function FieldOptional(FieldId: Integer): Boolean;
Description
Indicates if the specified field can contain null values.

In Delphi 4 or later this function is overloaded and accepts the index or name of the field.

See also
Field
FieldIndex
FieldIsNull

TOracleQuery.FieldPrecision

Declaration
function FieldPrecision(FieldId: Integer): Integer;
Description
Returns the precision of the specified field. Only useful for number fields.

In Delphi 4 or later this function is overloaded and accepts the index or name of the field.

See also
Field

FieldIndex
FieldType
FieldScale
TOracleQuery.FieldScale

Declaration
function FieldScale(FieldId: Integer): Integer;
Description
Returns the scale of the specified field. Only useful for number fields.

Direct Oracle Access 4.1 - User's Guide 69

In Delphi 4 or later this function is overloaded and accepts the index or name of the field.

See also
Field

FieldIndex
FieldType
FieldPrecision

TOracleQuery.FieldSize

Declaration
function FieldSize(FieldId: Integer): Integer;
Description
Returns the size of the specified field. Only useful for varchar fields.

In Delphi 4 or later this function is overloaded and accepts the index or name of the field.

See also
Field
FieldIndex

FieldType
FieldScale
FieldPrecision

TOracleQuery.FieldType

Declaration
function FieldType(FieldId: Integer): Integer;
Description
Returns the type of the specified field (otInteger, otString, and so on).

In Delphi 4 or later this function is overloaded and accepts the index or name of the field.

See also
Field
FieldIndex
TOracleQuery.First

Declaration
procedure First;
Description
Closes the query, freeing

70 Direct Oracle Access 4.1 - User's Guide

TOracleQuery.FunctionType

Declaration
function FunctionType: Integer;
Description
The function type of the last Execute. This number corresponds to the numbers you can find in
the "Programmer's Guide to the Oracle Call Interface"

TOracleQuery.GetComplexVariable

Declaration
function GetComplexVariable(Name: string): TObject;
Description
Returns the object previously associated with the variable by using the SetComplexVariable
method.

TOracleQuery.GetCursor

Declaration
function GetCursor(const FieldId: Variant): TOracleQuery;
Description
For cursor fields (for sub-queries such as nested tables), this function creates and returns a
TOracleQuery object. After executing the returned sub-query you can select rows from it only
once. You cannot re-execute it a second time, or use the GetCursor function to obtain the sub-
query again.

You are responsible for freeing the returned TOracleQuery instance when it is no longer
needed.

In Delphi 4 or later this function is overloaded and accepts the index or name of the field.
TOracleQuery.GetLongField

Declaration
function GetLongField(FieldId: Integer; Buffer: Pointer; Offset,

Length: Integer): Integer;
Description
Low level function to retrieve <Length> bytes of the specified long or long raw field into a
<Buffer>, starting at position <Offset>. The function returns the number of bytes that were
actually retrieved. No LF => CR/LF conversion is performed for long fields.

In Delphi 4 or later this function is overloaded and accepts the index or name of the field.

Direct Oracle Access 4.1 - User's Guide 71

See also
SetLongVariable

TOracleQuery.GetVariable

Declaration
function GetVariable(Name: string): Variant;
Description
Retrieves the value of the specified variable after the query has been executed. In Delphi 4
and later you can also specify the variable by its zero-based index. If the variable is a Long or
Long Raw, some restrictions apply.

See also
Variables
DeclareVariable
SetVariable

TOracleQuery.Last

Declaration
procedure Last;
Description
Fetches the last row for a select statement. This function can only be called for a Scrollable
query.

TOracleQuery.LOBField

Declaration
function LOBField(const FieldId: Variant): TLOBLocator;
Description
For LOB fields, this function returns a TLOBLocator object that you can subsequently use to
access the LOB data.

In Delphi 4 or later this function is overloaded and accepts the index or name of the field.

TOracleQuery.MoveBy

Declaration
procedure MoveBy(Distance: Integer);
Description
Fetches a row relative to the current ScrollPosition for a select statement. The Distance

72 Direct Oracle Access 4.1 - User's Guide

parameter indicates the number of records that should be moved. A negative number will
move the ScrollPosition backwards. Moving beyond the first or last row will set Eof to True.
This function can only be called for a Scrollable query.

TOracleQuery.MoveTo

Declaration
procedure MoveTo(Position: Integer);
Description
Moves to a specific row in the result set of a select statement. The Position parameter is the 1-
based number of the row. Moving beyond the last row will set Eof to True. This function can
only be called for a Scrollable query.

TOracleQuery.Next

Declaration
procedure Next;
Description
Fetches the next row for a select statement.

See also
Execute
Eof

TOracleQuery.ObjField

Declaration
function ObjField(const FieldId: Variant): TOracleObject;
Description
For object fields, this function returns a TOracleObject that you can subsequently use to
access the object.

In Delphi 4 or later this function is overloaded and accepts the index or name of the field.

TOracleQuery.OnArrayError

Direct Oracle Access 4.1 - User's Guide 73

Declaration
type TOnArrayErrorEvent = procedure(Sender: TOracleQuery; Index:

Integer; ErrorCode: Integer; const ErrorMessage: string; var
Continue: Boolean) of Object;

property OnArrayError: TOnArrayErrorEvent;
Description
Triggered when an error occurs in an array DML statement. Index is the zero-based position of
the record in the array that caused the error. The Continue parameter can be used to cancel
or continue the processing of the remaining records .

See also
ExecuteArray

TOracleQuery.OnThreadError

Declaration
type TThreadErrorEvent = procedure(Sender: TOracleQuery; ErrorCode:

Integer; const ErrorMessage: string) of Object;
property OnThreadError: TThreadErrorEvent;
Description
Fires when an exception occurs in Threaded mode. It has 2 parameters:
ErrorCode Indicates the number of any Oracle error that might have occurred. If

another exception occurred, ErrorCode will be 0.

ErrorMessage The message of the exception.

See also
OnThreadFinished

TOracleQuery.OnThreadExecuted

Declaration
type TOracleQueryEvent = procedure(Sender: TOracleQuery) of Object;
property OnThreadExecuted: TOracleQueryEvent;
Description
If a query was executed in Threaded mode, this event will be fired when initial execution has
finished, but before any records are fetched.

See also
OnThreadRecord
OnThreadFinished
OnThreadError

TOracleQuery.OnThreadFinished

74 Direct Oracle Access 4.1 - User's Guide

Declaration
type TOracleQueryEvent = procedure(Sender: TOracleQuery) of Object;
property OnThreadFinished: TOracleQueryEvent;
Description
If a query has been executed in Threaded mode, this event will be fired after the query is
executed and, if applicable, all records have been fetched. If an exception occurs this event is
still called, so this is a good place to perform any clean-up code.

See also
OnThreadExecuted
OnThreadRecord

OnThreadError

TOracleQuery.OnThreadRecord

Declaration
type TOracleQueryEvent = procedure(Sender: TOracleQuery) of Object;
property OnThreadRecord: TOracleQueryEvent;
Description
If a query has been executed in Threaded mode, this ev ent will be fired after each record that
is fetched. After the last record has been fetched, the OnThreadFinished event will be fired.

See also
OnThreadExecuted

OnThreadFinished
OnThreadError

TOracleQuery.Optimize

Declaration
property Optimize: Boolean;
Description
When set to True, queries will not unnecessarily re-parse SQL when repeatedly executed.
Additional parse operations will only occur if you change the SQL text, add or remove
variables, or change the types of existing variables between calls. This setting when increase
performance when repeatedly executing the same SQL with different variable values.

If this property is set to False, the corresponding database cursor will be closed immediately
after executing a non-select statement, or when Eof is reached for select statements. This can
be useful if you want to minimize the number of open database cursors.

This property is overruled if you are using Oracle Net 9.2 and have enabled the
StatementCache of the corresponding session. In this situation the cursor will be released into
the cache after execution or after reaching Eof, regardless of the Optimize setting.

Direct Oracle Access 4.1 - User's Guide 75

TOracleQuery.Prior

Declaration
procedure Prior;
Description
Fetches the prior row for a select statement. Calling Prior when positioned on the first row will
set Eof to True. This function can only be called for a Scrollable query.

TOracleQuery.ReadBuffer

Declaration
property ReadBuffer: Integer;
Description
Number of rows that will be transferred across the network at once for select statements. This
property can have a great impact on performance.

If the query contains a Long or Long Raw field, a ReadBuffer of 1 will be used.

TOracleQuery.RefField

Declaration
function RefField(const FieldId: Variant): TOracleReference;
Description
For reference fields, this function returns a TOracleReference that you can subsequently use
to access the reference.

In Delphi 4 or later this function is overloaded and accepts the index or name of the field.

TOracleQuery.ReturnCode

Declaration
function ReturnCode: Integer;
Description
The result of the last Execute. This number corresponds to the codes you can find in the
"Oracle Server Messages Guide".
TOracleQuery.RowCount

Declaration
function RowCount: Integer;
Description
Returns the number of rows that have been fetched by the application for the query.
Immediately after executing the query, RowCount will return 1 if any records are fetched or will

76 Direct Oracle Access 4.1 - User's Guide

return 0 if no records are fetched.

See also
RowsProcessed

TOracleQuery.RowId

Declaration
function RowId: string;
Description
Returns the hexadecimal notation (or 64-based on Oracle8) of the rowid of the last insert,
update, delete or select for update statement. Note that RowId returns the value of the last
affected row. In case of a select for update, the last affected row is the last row in the
ReadBuffer.

TOracleQuery.RowsProcessed

Declaration
function RowsProcessed: Integer;
Description
Returns the number of rows processed by the query. Useful for select, update and delete
statements. In case of a select statement, RowsProcessed increments by ReadBuffer, and
indicates how many records have been transferred from the server.

See also
RowCount

TOracleQuery.Scrollable

Declaration
property Scrollable: Boolean;
Description
Oracle9 introduced the concept of scrollable queries. For a normal query you can only fetch
the Next record, but a scollable query allows you to navigate to any absolute (First, Last,
MoveTo) or relative (Prior, MoveBy) position in the result set. This does come at a
performance penalty, so you should preferably use a normal query if you do not need the
additional navigation functionality.

Note
This feature does not yet work properly on Oracle 9.0 and 9.2 due to Oracle Bugs 2286367
and 2478181, which may cause ORA -00600 exceptions.

Direct Oracle Access 4.1 - User's Guide 77

TOracleQuery.ScrollPosition

Declaration
property ScrollPosition: Boolean;
Description
The 1-based scroll position within the result set for a Scrollable query.

TOracleQuery.Session

Declaration
property Session: TOracleSession;
Description
The session in which the query will execute.

TOracleQuery.SetComplexVariable

Declaration
procedure SetComplexVariable(Name: string; const Value: TObject);
Description
Complex variables (variables of type otCursor, otCLOB, otBLOB, otBFile, otTimestamp,
otTimestampTZ, otTimestampLTZ, otObject or otReference) cannot be treated as simple
string, numeric, date or binary values. So, rather than setting the value of a variable with
SetVariable, you must use SetComplexVariable to associate a corresponding object instance
with it:
Variable type Object type
Cursor TOracleQuery
LOB TLOBLocator
Timestamp TOracleTimestamp
Object TOracleObject
Reference TOracleReference
If the variable is an OUT or IN/OUT variable, the changes are immediately visible in the
associated object after execution of the query. Therefore, you do not need to call
GetComplexVariable for these variables after execution of the query. The following example
creates a TLOBLocator object, associates it with variable 'lobvar', executes the query, and
indicates if it returned a null LOB:

78 Direct Oracle Access 4.1 - User's Guide

var
 LOB: TLOBLocator;
begin
 LOB := TLOBLocator.Create(Session, otBLOB);
 Query.SetComplexVariable('lobvar', LOB);
 Query.Execute;
 if LOB.IsNull then ShowMessage('Statement returned a null LOB');
 LOB.Free;
end;
Note
Timestamp variables can be accessed through GetVariable and SetVariable instead of the
SetComplexVariable procedure. The values will be of the TDateTime data type though, so you
are restricted to a maximum precision of a millisecond.

TOracleQuery.SetLongVariable

Declaration
procedure SetLongVariable(Name: string; Buffer: Pointer; Length:

Integer);
Description
Low level procedure to set the value of the specified long or long raw variable to the address
pointed to by <Buffer> with length <Length>. Memory is not copied to minimize overhead, so
the address must remain valid until the query is executed. No CR/LF => LF conversion is
performed for long variables.

See also
GetLongField

TOracleQuery.SetVariable

Declaration
procedure SetVariable(Name: string; Value: Variant);
Description
Sets the value of the specified variable. In Delphi 4 and later you can also specify the variable
by its zero-based index.If the variable is a Long or Long Raw, some restrictions apply. The
value can be an array of variants to perform array DML.

For complex variables (otCursor, otCLOB, otBLOB, otBFile, otObject or otReference), you
must use SetComplexVariable instead of SetVariable. For Timestamp variables you can
access the value as a TDateTime (maximum precision = 1 millisecond) or use the
SetComplexVariable method to access it as a TOracleTimestamp (maximum precision = 1
nanosecond).

See also
Variables
ClearVariables

Direct Oracle Access 4.1 - User's Guide 79

DeclareVariable

GetVariable

TOracleQuery.SQL

Declaration
property SQL: TStrings;
Description
The SQL text of the query. You can enter any valid SQL statement or PL/SQL block. When
using variable names in this text, precede them with a colon and declare them in the Variables
property.

When calling stored program units, you can place the call in a PL/SQL Block. For example, to
call the 'get_parameter_value' function in the 'dbms_utility' package, you can use the following
SQL:
begin
 :res := dbms_utility.get_parameter_value(parnam => :parnam,
 intval => :intval,
 strval => :strval);
end;

As you can see, parameters and return values are normal variables. You can pass parameters
by name or by position, use constants instead of variables, or omit them in case they have an
appropriate default value. In short, a stored program unit can be called in the same way as
you would call it from PL/SQL on the server.

TOracleQuery.State

Declaration
type TQueryState = (qsIdle, qsExecuting, qsFetching);
function State: TQueryState;
Description
Indicates if the query is idle (qsIdle), executing the statement (qsExecuting) or fetching records
(qsFetching).

See also
Threaded

TOracleQuery.StringFieldsOnly

Declaration
property StringFieldsOnly: Boolean;
Description
When defining fields for a select statement, the TOracleQuery component will use the
appropriate data types. A varchar2 field is defined as string, a number field is defined as

80 Direct Oracle Access 4.1 - User's Guide

integer or double, and a date is defined as TDateTime. When the StringFieldsOnly property is
set to True, all fields will be defined as strings. Numbers and dates will be converted to strings
on the server, as defined by the NLS_LANG settings of the current session.

TOracleQuery.SubstitutedSQL

Declaration
function SubstitutedSQL: string;
Description
If you are using substitution variables, you can retrieve the SQL text with substituted variables
by calling the SubstitutedSQL function.

See also
Variables

TOracleQuery.Threaded

Declaration
property Threaded: Boolean;
Description
When the Threaded property of a TOracleQuery is set to True, all processing will be
performed in a background thread, allowing your application to continue while the query is
running on the database server. Special considerations need to be taken into account when
creating multi-threaded applications.

When Threaded is set to True, you can execute the query and forget about it in the main
thread of your application. Executing the statement and fetching records is performed in a
background thread. When execution is finished, the OnThreadExecuted event is fired. Next,
for select statements, the OnThreadRecord event is fired for each record that is fetched.
Finally the OnThreadFinished event is fired. In case of an exception, the OnThreadError event
will be fired.
If ThreadSynchronized is set to True, the OnThread events will be synchronized with the main
thread of your application. In this case you don't need to be aware of any issues of multi-
threaded application programming. When ThreadSynchronized is set to False, the main thread
of your application and the thread events of the TOracleQuery run asynchronous.

In threaded mode the flow of your application is different than in non-threaded mode. Normally
you would execute a query, fetch results until Eof is reached, and handle any exception in an
exception handler. The following example fills a TListBox component with employee names in
a background thread and enables the listbox when all employees are fetched:

Direct Oracle Access 4.1 - User's Guide 81

procedure TMyForm.EmpButtonClick(Sender: TObject);
begin
 // Clear the list and disable it
 EmpList.Clear;
 EmpList.Enabled := False;
 // Select the employee names in a background thread
 EmpQuery.SQL.Text := 'select ename from emp order by ename';
 EmpQuery.Threaded := True;
 EmpQuery.Execute;
 // We're done, let the events handle it from here
end;

procedure TMyForm.EmpQueryThreadRecord(Sender: TOracleQuery);
begin
 // Add the fetched employee name to the list
 EmpList.Items.Add(Sender.Field('ename'));
end;

procedure TMyForm.EmpQueryThreadFinished(Sender: TOracleQuery);
begin
 // After fetching all employee names, enable the list
 EmpList.Enabled := True;
end;

See also
TOracleSession.ThreadSafe
BreakThread

ThreadIsRunning
State

TOracleQuery.ThreadIsRunning

Declaration
function ThreadIsRunning: Boolean;
Description
Indicates if the thread to which the query is associated is running. If this is the case you cannot
execute another query yet.

See also
Threaded

TOracleQuery.ThreadSynchronized

Declaration
property ThreadSynchronized: Boolean;
Description
If this property is set to True, all events associated with a TOracleQuery's Threaded mode will

82 Direct Oracle Access 4.1 - User's Guide

be synchronized with the main thread of your application. If it is set to False, these events and
the main thread of the application will run asynchronous.

See also
OnThreadExecuted
OnThreadRecord
OnThreadFinished
OnThreadError

TOracleQuery.TimestampField (Oracle8i only)

Declaration
function TimestampField(const FieldId: Variant): TOracleTimestamp;
Description
For Timestamp fields, this function returns a TOracleTimestamp object that you can
subsequently use to access the individual timestamp properties.

In Delphi 4 or later this function is overloaded and accepts the index or name of the field.

TOracleQuery.VariableCount

Declaration
function VariableCount: Integer;
Description
Returns the number of variables that are declared. Useful for iterating variables.

See also
VariableName
VariableType
VariableIndex

TOracleQuery.VariableIndex

Declaration
function VariableIndex(const AName: string): Integer;
Description
Use this function to determine the index of a variable by its name. The result is the zero based
index of the variable. If the variable does not exists, -1 is returned.

See also
VariableCount
VariableName

Direct Oracle Access 4.1 - User's Guide 83

VariableType

TOracleQuery.VariableName

Declaration
function VariableName(Index: Integer): string;
Description
Returns the name of the specified variable. Index is zero-based.

See also
VariableCount
VariableType
VariableIndex

TOracleQuery.Variables

Declaration
property Variables: TVariables;
Description
The variables property is only accessed at design time. It will invoke a property editor, which
enables you to declare variables manually, or scan for variables in the SQL text. At run time,
you access variables through the SetVariable, SetComplexVariable, GetVariable,
GetComplexVariable, DeclareVariable and DimPLSQLTable methods.

Whenever you want to use a SQL statement that needs some input or output, you can use
variables. In the SQL statement a variable is preceded by a colon. For example:
update emp
set sal = :new_sal
where empno = :empno_to_update

This update statement has two variables: new_sal and empno_to_update. One is needed to
identify the employee, the other supplies the new value for sal. When you execute this query,
you will get an error:
ORA-01008: not all variables bound

This is because Oracle has recognized the two variables in the SQL text, but finds no
variables declared in the query that supply a value. To declare the variables, use the Variables
property editor. New_sal should be declared as a Float, empno_to_update must be declared
as an Integer. By declaring them at design time, you can assign a value to them at run time by
using SetVariable:
Query.SetVariable('empno_to_update', 7894);
Query.SetVariable('new_sal', 3500.00);
Query.Execute;

84 Direct Oracle Access 4.1 - User's Guide

If you declare variables that are not included in the SQL text (as :variable), you will get the
following error:
ORA-01036: illegal variable name/number

The names of the variables and the number of variables in the SQL text must exactly
correspond to the variables in the Variables property editor, otherwise you get ORA-01008 or
ORA-01036.

Bind variables vs substitution variables
All variables except substitution variables are so called bind variables: the statement is sent to
the server unchanged, accompanied by a binary representation of the bind variables. Bind
variables have their limitations though, they can only be used where you could normally use a
variable in PL/SQL: in where clauses, select lists, update statements, insert statements,
PL/SQL statements, and so on. You cannot use a bind variable where its value could change
the meaning of the statement (eg. to identify a table or column).

Substitution variables remove this limitation, as they are substituted by their values in the text
of the statement before it is sent to the server. The following statement is only valid if the
:table_name and :order_by_clause variables are substitution variables:

select * from :table_name
order by :order_by_clause

If the variables would be declared as bind variables of type string, the statement would be
invalid, as you cannot use bind variables to identify table or column names.

If the value of the :table_name variable is 'emp' and the value of the :order_by_clause variable
is 'ename', the actual statement sent to the server would be:

select * from emp
order by ename

Why not always use substitution variables? There are 2 very good reasons:

w Because the SQL text changes each time you change the value of a substitution variable,
the server needs to parse the statement every time. Changing the value of a bind variable
does not require a new parse operation and is therefore faster.

w For substitution variables you need take care of any conversion issues. Just think about
quotes in strings, decimal points in numbers, date and time formats, and so on.

In short: always use bind variables, unless their limitations don't allow it.

Variable types
The following variable types can be declared. Between parenthesis you see the type identifiers
you can use for the DeclareVariable procedure:

w Integer (otInteger)

 A 32 bits integer, equivalent to a number(1) through number(9) value in Oracle

w Float (otFloat)

 Floating point values, equivalent to any number value in Oracle. Note however that a

Direct Oracle Access 4.1 - User's Guide 85

Delphi floating point number (double) has a precision of 15 digits, whereas an Oracle
number can have a precision of up to 38 digits.

w String (otString)

 Strings limited to 2000 (Oracle7) or 4000 (Oracle8) bytes. This variable type is equivalent
to Oracle's varchar2 SQL variable.

w Date (otDate)

 Date and date/time values. Note that a TDateTime in Delphi is more accurate than an
Oracle date, as its time fraction include tenths of a second.

w Long (otLong)

 A string of arbitrary size (2GB). Note that if you use a PL/SQL block in a TOracleQuery, all
your v ariables become PL/SQL variables that are limited to 32KB! Some restrictions apply
to using the Long and Long Raw data type, read the Long & Long Raw example for details.

 To set the value of a Long variable, you can either use the SetVariable procedure or the
SetLongVariable procedure. The last one gives you better performance.

w Long Raw (otLongRaw)

 This binary data type can also be up to 2GB, just like the Long data type. Unlike a Long
variable, Long Raw data is not subject to character set interpretation by SQL*Net or Net8.
Data is passed to or from the server as it is.

 To set the value of a Long Raw variable, you can pass a string or a variant array of bytes to
SetVariable procedure. Use the SetLongVariable for optimal performance. Read the Long
& Long Raw example for more details.

w Cursor (otCursor)

 A cursor variable is a representation of a PL/SQL cursor variable. Instead of passing data
to a cursor variable, you must associate a TOracleQuery instance to it by using the
SetComplexVariable procedure. This TOracleQuery instance can be used to fetch records
from the cursor after it has been opened in a stored procedure. Read the Cursor variables
example for more details.

w CLOB (otCLOB)

 A CLOB variable represents the Oracle8 CLOB data type. It can only be used when
connected to Oracle8 through Net8. Instead of passing data to a CLOB variable, you must
associate a TLOBLocator instance to it. After executing a statement that initializes the
TLOBLocator, you can subsequently use it to read or write data to it.

w BLOB (otBLOB)

 Similar to the CLOB variable type.

w BFile (otBFile)

 Similar to the CLOB variable type.

w Reference (otReference)

 A Reference variable represents a reference to an Oracle8 Object instance (or REF). It can
only be used when connected to Oracle8 through Net8. You can associate a
TOracleReference instance with the variable by using the SetComplexVariable procedure.

86 Direct Oracle Access 4.1 - User's Guide

w Object (otObject)

 An Object variable represents a an Oracle8 Object instance (or ADT). It can only be used
when connected to Oracle8 through Net8. You can associate a TOracleObject instance
with the variable by using the SetComplexVariable procedure.

w PL/SQL String (otPLSQLString)

 The string variable mentioned above is a representation of the SQL varchar2 variable in
Oracle: it is limited to 2000 (Oracle7) or 4000 (Oracle8) bytes. In PL/SQL you can use
varchar2 variables of up to 32KB though. If you are using large PL/SQL strings you can
use a PLSQL String variable which has a maximum size of 32512 bytes.

w Fixed length char (otChar)

 When a varchar2 variable value is compared with a char column in a where clause, trailing
spaces are significant. This can sometimes lead to unexpected results. To compare a char
column you can use a variable of type char, which uses blank-padded comparison
semantics.

w Substitution (otSubst)

 Unlike all other variables, the substitution variable is replaced by its value in the SQL text
before the statement is sent to the server. This way you can use the variable at any
position in the statement, but you must take care of any conversion issues for strings,
numbers and dates. The SubstitutedSQL function returns the SQL with all substitution
variables replaced by their values.

w Timestamp (otTimestamp)

 A Timestamp variable. You c an access a timestamp as a TDateTime value (maximum
precision = 1 millisecond) or use the SetComplexVariable method to access it as a
TOracleTimestamp value (maximum precision = 1 nanosecond).

w Timestamp with time zone (otTimestampTZ)

 A Timestamp with time zone variable (see above).

w Timestamp with local time zone (otTimestampLTZ)

 A Timestamp with local time zone variable (see above).

PL/SQL Tables
For string, integer, float and date data types you can declare PL/SQL Tables. These are array
like structures that you can pass to stored procedures, and can be used to transfer much
information in one network roundtrip. Read the separate section about PL/SQL Tables for
more details.

See also
DeleteVariables
VariableCount

VariableIndex
VariableName
VariableType

TOracleQuery.VariableType

Direct Oracle Access 4.1 - User's Guide 87

Declaration
function VariableType(Index: Integer): Integer;
Description
Returns the type (otString, otInteger, ...) of the specified variable. Index is zero-based.

See also
VariableCount
VariableName
VariableIndex

TOracleQuery.WarningFlags

Declaration
function WarningFlags: Integer;
Description
Warnings returned by the last Execute. The following bit values are defined:
1 There is a warning

2 Data was truncated during fetch

4 NULL encountered during aggregate function

16 UPDATE or DELETE without WHERE

32 PL/SQL with compilation errors

Note
For Net8, only the 'PL/SQL with compilation errors' flag will work.

TOracleQuery.XMLField

Declaration
function XMLField(const FieldId: Variant): TXMLType;
Description
For SYS.XMLTYPE fields, this function returns a TXMLType that you can subsequently use to
access the the object. If you access the Field or FieldAsString functions for a SYS.XMLTYPE
field, the XML text will bve returned.

In Delphi 4 or later this function is overloaded and accepts the index or name of the field.

88 Direct Oracle Access 4.1 - User's Guide

TOracleDataSet component

Unit
OracleData

Description
Use the TOracleDataSet component if you want to make use of data-aware components
(DBEdit, DBGrid, etc). TOracleDataSet is derived from the standard TDataSet component. It
inherits most of its properties, methods and events from it. In addition to this, you will find
properties and methods derived from the TOracleQuery component.

To use a TOracleDataSet, set the Session property to connect to a database. Enter a select
statement for the dataset in the SQL property. Any input variables in the select statement
should be declared in the Variables property and should be assigned a value at run-time
through the SetVariable method. If the Session is logged on, you can set Active to True in
order to open the dataset. Invoke the Fields editor of the dataset (by right clicking on the
dataset icon) to set individual field properties. After linking a standard datasource to the
dataset you are ready to use data-aware components.

Making a dataset updateable
To be able to update records, a dataset needs to know the 'rowid' of every retrieved record. A
rowid is an internal Oracle structure that uniquely identifies a record in the database. As long
as you do not include it in the query, the CanModify property of the dataset remains False. To
make an updateable dept dataset, the SQL property would be: select dept.*,
dept.rowid from dept

Furthermore, you should not use column aliases for the updateable table in the select
statement of an updateable dataset. These alias names would be used in subsequent insert or
updates to the updating table, and would therefore lead to an error.

If for some reason it is not possible to supply a rowid in the query, you can use the
OnApplyRecord event to make the dataset updateable.

Selecting derived fields in a dataset
Sometimes you need to select fields in a dataset that are not columns of one table. You can
do some calculations in the select statement, call stored functions, or join columns from other
tables.

Some rules apply to creating derived fields in a dataset:
w You should use an alias for a column that is a calculation or the result of a stored function.

Otherwise the name of the field is unpredictable.
w If the dataset is updateable, joined tables must be placed after the updating table in the

select statement. The first table in the from clause is assumed the updating table. You can
also set the UpdatingTable property to indicate which table in a join statement can be
updated.

w If the dataset is updateable, the FieldKind property of a derived field must be
fkInternalCalc. This indicates to the dataset that it should never be included in an insert or
update statement.

w The ReadOnly property of a derived field should normally be set to True.

Direct Oracle Access 4.1 - User's Guide 89

The following example selects two derived fields for the emp table:
select emp.*, emp.rowid, dept.dname, emp_max_sal(empno) max_sal
from emp, dept
where dept.deptno = emp.deptno

The department name (dname) is joined via the dept table, and a stored function
emp_max_sal is called. The dept table is placed after the updating table emp, and a column
alias max_sal is given to the result of the stored function.

Validating input
There are various ways to validate the input of a user in a dataset, like the Range properties of
a field, the OnValidate event of a field or the BeforePost event of a dataset.

However, one of the strengths of Oracle is its capability to assure data integrity within the
database. You can use primary key, unique key, foreign key and check constraints for
declarative integrity checking. If any procedural logic is required, you can use database
triggers. This way your data is secure, no matter how it is updated.

The easiest way for your Delphi application to validate user input is to rely on the integrity
constraints present inside the database. Why specify them redundantly in your applications
code? The EnforceConstraints property, MessageTable property and OnTranslateMessage
event enable you to fully exploit the integrity constraints of your Oracle database.

Making use of the Oracle Dictionary
The Oracle Dictionary contains, among other things, information about tables, columns, and
constraints. The previous section about validation is an example of how the TOracleDataSet
can use this information to provide an application that automatically picks up this inf ormation.
The OracleDictionary property allows you to specify which information in the Oracle Dictionary
should be used by the TOracleDataSet.

Record locking
The Oracle server is able to lock individual records in the database. You can make use of this
by setting the LockingMode property. You can control if records are locked when a user starts
to edit them, when a record is posted to the database, or not at all.

Regardless of the locking mode, the dataset will always check if the record in the dataset still
matches the record in the database. This prevents a user from making changes to an old
image of a record.

Refreshing records
Records in the database can sometimes differ from the records in the dataset. Other users
may have changed these records, or maybe there is some server side logic that modifies
records as the are posted to the database. To make sure that users always work with the
actual image of a database record, you can set the RefreshOptions property to a value that is
appropriate to your application.

Cached updates
By default the TOracleDataSet will immediately apply and commit each posted record to the
database. Sometimes this is not acceptable, in which case you can make use of
CachedUpdates. Records are initially posted to a local change log, and can later be applied to
the database by calling TOracleSession.ApplyUpdates.

90 Direct Oracle Access 4.1 - User's Guide

Cursor variables
To create a dataset that is based on a cursor variable, simply create a PL/SQL block in the
SQL property to call the procedure that opens the cursor. For more information about cursor
variables, see the example that explains this feature.

Updating complex query results
Sometimes your queries are too complex to allow them to be simply updated through a single
table. The TOracleDataSet has an OnApplyRecord event that allows you to program your own
lock, insert, update, delete and refresh actions. Several functions and procedures are provided
that support this feature.

Direct Oracle Access 4.1 - User's Guide 91

TOracleDataSet reference
This chapter describes all properties, methods and events of the TOracleDataSet component.

TOracleDataSet.AfterFetchRecord

Declaration
type TAfterFetchRecordEvent = procedure(Sender: TOracleDataSet;

FilterAccept: Boolean; var Action: TAfterFetchRecordAction) of
Object;

type TAfterFetchRecordAction = (afContinue, afPause, afStop,
afCancel);

property AfterFetchRecord = TAfterFetchRecordEvent;
Description
This event is called after fetching a record from the database. It can be used to display
progress information or limit the number of records that a dataset can contain.
The FilterAccept parameter indicates if the current record is accepted by the filter criteria as
defined by the OnFilterRecord event or the Filter expression. The Action parameter can be
used to indicate to the dataset what action is to be performed after fetching the record:
afContinue Continue fetching subsequent records for the dataset. This is the default

action.

afPause Don't fetch any additional records right now, but continue fetching when the
application requests more records.

afStop Stop fetching records, resulting in a truncated result set.

afCancel Stop fetching records and clear the result set. This results in an empty
dataset.

The following example asks the end-user if he or she wants to continue the query after 1000
records have been fetched:

92 Direct Oracle Access 4.1 - User's Guide

procedure TMyForm.EmpDataSetAfterFetchRecord(Sender: TOracleDataSet;
 FilterAccept: Boolean; var Action: TAfterFetchRecordAction);
var Msg: string;
 Btn: Integer;
begin
 if Sender.RecordCount = 1000 then
 begin
 Msg := Format('%d Records fetched', [Sender.RecordCount]));
 Btn := MessageBox(Handle,
 PChar(Msg + #13#10 + 'Continue?'),
 'Question',
 mb_IconQuestion + mb_YesNoCancel);
 case Btn of
 id_Yes: Action := afContinue;
 id_No: Action := afStop;
 id_Cancel: Action := afCancel;
 end;
 end;
end;

Note that you cannot access the field values in this event, because the record is not yet
available. If you need to know the field values of the currently fetched record, use the
NewValue of the fields instead.

TOracleDataSet.AfterQBE

Declaration
type TOracleDataSetEvent = procedure(Sender: TOracleDataSet) of

Object;
property AfterQBE: TOracleDataSetEvent;
Description
Fires when the dataset leaves QBE mode, but before the query is executed. You can perform
checks on the QBE values, modify QBE values, restore the appearance of queryable controls,
and so on. When an exception is raised in this event, the dataset will remain in QBE mode.

See also
BeforeQBE
OnCancelQBE

TOracleDataSet.AfterQuery

Declaration
type TOracleDataSetEvent = procedure(Sender: TOracleDataSet) of

Object;
property AfterQuery: TOracleDataSetEvent;
Description
Triggered when the last record of the dataset is retrieved. Therefore, BeforeQuery is only
useful if QueryAllRecords is set to True.

Direct Oracle Access 4.1 - User's Guide 93

See also
BeforeQuery

TOracleDataSet.AfterRefreshRecord

Declaration
type TOracleDataSetEvent = procedure(Sender: TOracleDataSet) of

Object;
property AfterRefreshRecord: TOracleDataSetEvent;
Description
Triggered when a record is refreshed by calling the RefreshRecord method or after a record is
edited or posted to the database and the RefreshOptions include roAfterInsert, roAfterUpdate
or roBeforeEdit.

TOracleDataSet.BeforeQBE

Declaration
type TOracleDataSetEvent = procedure(Sender: TOracleDataSet) of

Object;
property BeforeQBE: TOracleDataSetEvent;
Description
Fires when the dataset goes in QBE mode. You can use this event to preset query values or
to change the appearance of queryable controls on the form. Raising an exception in this
event has no effect.

See also
AfterQBE
OnCancelQBE

TOracleDataSet.BeforeQuery

Declaration
type TOracleDataSetEvent = procedure(Sender: TOracleDataSet) of

Object;
property BeforeQuery: TOracleDataSetEvent;
Description
Triggered when the select statement begins.

See also
AfterQuery
TOracleDataSet.CachedUpdates

94 Direct Oracle Access 4.1 - User's Guide

Declaration
property CachedUpdates: Boolean;
Description
Cached updates is a mechanism that causes all inserts, updates and deletes to be cached in
a local change log. When the ApplyUpdates method of the related TOracleSession is called,
all these changes will be applied to the database in one single transaction. When cached
updates are not used, each record that is posted in the dataset is immediately applied to the
database and committed.

There are two advantages to using cached updates:
1 You have more control over integrity rules that apply to multiple records and tables.

2 There is less network traffic involved in one call to ApplyUpdates than when many small
transactions are generated for each posted record.

The disadvantages are that other users will see the cached updates later, and that if you are
using the lmLockImmediate LockingMode, records will be locked longer. Also note that you
can only use cached updates if the query of the dataset includes a rowid.

See also
ApplyUpdates
CancelUpdates
CommitUpdates
UpdatesPending

UpdateStatus

TOracleDataSet.ClearQBE

Declaration
procedure ClearQBE;
Description
If a dataset is modified for QBE, then ClearQBE will remove these query criteria from the SQL
and will refresh the dataset with the complete result set.

TOracleDataSet.ClearVariables

Declaration
procedure ClearVariables;
Description
Assigns nulls to all declared variables.

See also
Variables
DeleteVariables

Direct Oracle Access 4.1 - User's Guide 95

TOracleDataSet.CloseAll

Declaration
procedure CloseAll;
Description
Closes the dataset, including all associated cursors. By default, the cursor of the select
statement of the dataset will remain open when you close the dataset, so that it does not need
to be parsed again when it is reopened.

TOracleDataSet.CommitOnPost

Declaration
property CommitOnPost: Boolean;
Description
Determines if posting a record is automatically followed by a commit. When set to False, the
application is responsible for transaction management.

Note
This property is overruled if CachedUpdates is set to True.

TOracleDataSet.CompareQueryVariables

Declaration
function CompareQueryVariables(AQuery: TOracleQuery): Boolean;
Description
This procedure can be used in an OnApplyRecord event handler to compare the current
dataset record with the values in the database. All old field values (the OldValue) in the
dataset will be compared to the corresponding variable values in the query. Variables and
fields are matched by their names. Fields that do not match any query variable will not be
compared.

If any of the fields do not match the corresponding variable value, the function result will be
False.

See also
OnApplyRecord

DeclareQueryVariables
SetQueryVariables
GetQueryVariables

TOracleDataSet.CompressBLOBs

96 Direct Oracle Access 4.1 - User's Guide

Declaration
property CompressBLOBs: Boolean;
Description
When True, BLOB fields (Long Raw columns or BLOB columns) will be stored compressed in
the database. When a record is fetched, the data is decompressed, and when it is posted as a
result of an Insert or Edit, the data will be compressed. This can significantly reduce database
storage size and network traffic, but increases memory and cpu usage when fetching and
posting BLOB field data on the client. The CompressionFactor property indicates the
compression factor of posted BLOB data.

There are 2 compression methods available. A built-in proprietary LZH compression method
(defined in the OracleCompress unit) will be used if you do not specify the OnCompressBLOB
and OnDecompressBLOB event handlers. This method achieves a reasonable compression
factor, and compresses with a speed of approximately 1MB/second and decompresses with a
speed of 10MB/second on a 1.5GHz CPU. Furthermore it recognizes whether or not a BLOB
field was not previously compressed, so that you can mix compressed and uncompressed
BLOB data in the same dataset. Since this is a proprietary method, you cannot use the BLOB
data with any other tools than a Direct Oracle Access application.

You can alternatively use your own compression method by implementing the
OnCompressBLOB and OnDecompressBLOB event handlers. The advantage of this method
may be that you can use non-proprietary method (e.g. zip), so that data is accessible from
other tools, or that you can use a compression method that is most suited for the type of BLOB
data that is stored in a spcific column.

TOracleDataSet.CompressionFactor

Declaration
property CompressionFactor: Double;
Description
This property indicates the compression factor (uncompressed size / compressed size) of
posted BLOB data when CompressBLOBs is True. When a BLOB field is inserted or updated,
this compression factor will be updated. The initial value of this property is 0, which indicates
that no compressed BLOB data has been written. The factor will be reset to 0 when the
dataset is closed.

TOracleDataSet.CountAllRecords

Declaration
property CountAllRecords: Boolean;
Description
When this property is set to True, the dataset will first count the number of records that the
query will return, before fetching the records. This is useful when you do not want to
immediately fetch all records when the dataset is opened, but still want the RecordCount to
reflect the total number of records. The scroll bar in a TDBGrid will display the correct position
if CountAllRecords is True, or if QueryAllRecords is set to True. Setting both properties to True
is not useful.

Direct Oracle Access 4.1 - User's Guide 97

Note that the records will be counted by calling the CountQueryHits func tion, which executes a
select count(*) SQL statement. When the count query cannot be efficiently executed, setting
CountAllRecords is not very useful as it will merely cause a long delay before the dataset is
opened. In this case you might consider setting QueryAllRecords to True.

TOracleDataSet.CountQueryHits

Declaration
function CountQueryHits: Integer;
Description
To determine how many records a dataset will retrieve before opening the dataset, you can
use the CountQueryHits function. This will execute a "select count(*)" for the select statement
of the dataset. It can also be used in an AfterQBE event handler to determine if the query
criteria do not return too many rows.

TOracleDataSet.CreateObject

Declaration
function CreateObject(const FieldName: string): TOracleObject;
Description
Creates a TOracleObject instance for the specified field name. The field name must
correspond to an object field in the result set. The application is responsible for freeing the
created object instance. Consider the following SQL statement:
select id, period from contracts

If period is an object field with 2 attributes start_date and end_date, the result set will display
these 2 indivudual attributes. The CreateObject function allows you to reassemble the object,
and call its methods or perform other actions with it. For example:

procedure TMainForm.ContractDataSetCalcFields(DataSet: TDataSet);
var Period: TOracleObject;
begin
 Period := ContractDataSet.CreateObject('period');
 try
 Duration.Value := Period.CallMethod('duration', parNone);
 finally
 Period.Free;
 end;
end;

TOracleDataSet.Cursor

Declaration
property Cursor: TCursor;
Description
Determines the shape of the mouse cursor while executing SQL statements. Only crDefault,

98 Direct Oracle Access 4.1 - User's Guide

crHourGlass and crSQLWait are useful here.

TOracleDataSet.Debug

Declaration
property Debug: Boolean;
Description
When set to true the select statement and all variable values will be displayed when executed.

Besides the select statement, Debug will also cause update, insert, delete and lock statements
to be shown, as well as statements executed to enf orce constraints when EnforceConstraints
is set to True.

TOracleDataSet.DeclareAndSet

Declaration
procedure DeclareAndSet(Name: string; Type: Integer; Value: Variant);
Description
Declares a variable of a certain name and type, and sets its initial value. This procedure is
particularly handy if you have to declare and set many variables at runtime.

TOracleDataSet.DeclareQueryVariables

Declaration
procedure DeclareQueryVariables(AQuery: TOracleQuery);;
Description
This procedure can be used in an OnApplyRecord event handler to declare all variables in a
query with a data type that corresponds to the fields in the dataset. Variables and fields are
matched by their names. You can also prefix a variable name with 'old_', in which case it will
also be declared. Variables that do not match any dataset field will not be declared.

See also
OnApplyRecord

SetQueryVariables
GetQueryVariables
CompareQueryVariables

TOracleDataSet.DeclareVariable

Direct Oracle Access 4.1 - User's Guide 99

Declaration
procedure DeclareVariable(Name: string; Type: Integer);
Description
Declares a variable of a certain name and type.

See also
Variables
DeleteVariable
DeleteVariables

TOracleDataSet.DeleteVariable

Declaration
procedure DeleteVariable(AName: string);
Description
Deletes the specified variable.

See also
Variables
DeclareVariable

TOracleDataSet.DeleteVariables

Declaration
procedure DeleteVariables;
Description
Deletes all declared variables

See also
Variables

ClearVariables
DeclareVariable

TOracleDataSet.DesignActivation

Declaration
property DesignActivation: Boolean;
Description
It can be very useful to always have datasets active at design time, but opening and closing a
dataset often occurs under control of the application. By setting the DesignActivation property
to True, the value of the Active property at design-time will be ignored at run time, and
prevents that your datasets are active by mistake when you run your application.

100 Direct Oracle Access 4.1 - User's Guide

TOracleDataSet.Detachable

Declaration
property Detachable: Boolean;
Description
When a session logs off, all datasets that are linked to that session and that are not
Detachable will be closed. When the Detachable property is set to True, the dataset will
remain open in this situation. You will no longer be able to perform any operation that requires
database access though, such as refreshing, inserting, updating, deleting, and so on.

Note
If the session logs on again, you will have to refresh a previously detached dataset before you
can perform any database access operations again.

TOracleDataSet.DetailFields

Declaration
property DetailFields: string;
Description
If the dataset is a detail in a master/detail relation, this property names the fields of the detail
that relate to the MasterFields. If more than one field is used, separate them with a semicolon.
The order of these fields must correspond to the order of the MasterFields. The query of the
dataset must contain variables in the where clause with exactly the same names as the
DetailFields. If you leave this property empty, the query of the dataset must contain variables
in the where clause with the same names as the MasterFields. For more information, see the
Master property.

See also
Master
MasterFields
TOracleDataSet.ErrorLine

Declaration
function ErrorLine: Integer;
Description
In case of a parse error, ErrorLine indicates the line where the error occurred (one-based).

See also
ErrorPosition

TOracleDataSet.ErrorPosition

Direct Oracle Access 4.1 - User's Guide 101

Declaration
function ErrorPosition: Integer;
Description
In case of a parse error, ErrorPosition indicates the character position on the ErrorLine where
the error occurred (one-based).

See also
ErrorLine

TOracleDataSet.ExecSQL

Declaration
procedure ExecSQL;
Description
You can use the ExecSQL procedure to execute other s tatements than the select statement,
for example insert, update, or delete statements, Data Definition Language statements (create
table, create procedure, grant role, etc.), Session Control statements (alter session, set role),
System Control statements (alter system) and PL/SQL Blocks.

For select statements you should use the Open procedure (or set the Active property to True),
so that the result set will be retrieved.

TOracleDataSet.ExecuteQBE

Declaration
procedure ExecuteQBE;
Description
When the dataset is in QBE mode, the query can be executed by calling the ExecuteQBE
method. After this, QBEMode will be set to False.
TOracleDataSet.ExternalCursor

Declaration
property ExternalCursor: TOracleQuery;
Description
If you want to use the result set of a TOracleQuery instance for data-aware controls or other
components that require a TDataSet as input, you can use the ExternalCursor of a
TOracleDataSet. This can be especially useful if the TOracleQuery instance is used as a
cursor parameter obtained through a call to a package generated by the Package Wizard.

Note
If the dataset is connected with an ExternalCursor, it cannot implicitly be refreshed. Use the
BeforeRefresh event handler of the dataset to reopen the cursor, or prevent refresh
operations.

102 Direct Oracle Access 4.1 - User's Guide

TOracleDataSet.Filter

Declaration
property Filter: string;
Description
Filtering in a TOracleDataSet basically behaves the same as described with the standard
TDataSet. Simply assign a string to the Filter property to define the filter conditions and set the
Filtered property to True to reduce the result set to the corresponing selection of records. Note
that all records selected by the SQL statement are transferred to the client, and filtering is
performed locally. This is a possible disadvantage of filtering, it might cause more network
traffic (and time) than needed to display a number of records. You should always consider if a
where clause in your SQL statement wouldn't do the same job more efficiently. However,
since all transferred records are buffered on the client, a change in the Filter property will very
quickly give you a result because the database will not be accessed again, all work is now
done locally.

If you want to display employees from department 20, you could use a filter like this:
 deptno = 20

Or, if you want to display employees from departments 20 to 40:

 (deptno >= 20) and (deptno <= 40)

Or, if you want to display all employees with a name starting with 'S', hired since 1-1-1980:

 (ename = 'S*') and (hiredate >= '1-1-1980')

Some general rules about the filtering syntax

w Don't place quotes around field names, quotes are only used for string and date literals.

w You may use square brackets around field names.

w You can use the * and ? wildcards in string comparisons.

w Always put quotes around a date literal. If you don't, it will be interpreted as a numeric
calculation (20-01-1967 = -1948).

w The format of a date literal depends on your local settings.

w You can perform calculations like 12 * sal + comm > 50000.

See also
Filtered
FilterOptions

TOracleDataSet.Filtered

Direct Oracle Access 4.1 - User's Guide 103

Declaration
property Filtered: Boolean;
Description
To apply filter conditions specified in the Filter property or the OnFilterRecord event handler,
set Filtered to True.

See also
Filter
FilterOptions

TOracleDataSet.FilterOptions

Declaration
type TFilterOption = (foCaseInsensitive, foNoPartialCompare);
type TFilterOptions = set of TFilterOption;
property FilterOptions: TFilterOptions;
Description
Set FilterOptions to specify whether or not filtering is case insensitive when filtering on string
or character fields, and whether or not partial comparisons for matching filter conditions is
allowed.

By default, FilterOptions is set to an empty set. For filters based on string fields, set
FilterOptions to foCaseInsensitive to catch all variations on a string regardless of
capitalization.

For filter conditions based on multiple conditions or fields, set FilterOptions to
foNoPartialCompare to force exact matches only on comparison.

See also
Filter
Filtered

TOracleDataSet.GetComplexVariable

Declaration
function GetComplexVariable(Name: string): TObject;
Description
Returns the object previously associated with the variable by using the SetComplexVariable
method.
This procedure is only useful if you are using the ExecSQL procedure.

TOracleDataSet.GetQueryVariables

104 Direct Oracle Access 4.1 - User's Guide

Declaration
procedure GetQueryVariables(AQuery: TOracleQuery);;
Description
This procedure can be used in an OnApplyRecord event handler to refresh the current dataset
record. All field values in the dataset will be set to the corresponding variable values in the
query. Variables and fields are matched by their names. Fields that do not match any query
variable will not be refreshed.

See also
OnApplyRecord

DeclareQueryVariables
SetQueryVariables
CompareQueryVariables

TOracleDataSet.GetUpdatingTable

Declaration
function GetUpdatingTable: string;
Description
Returns the name of the table that is going to be updated by the dataset, which is determined
by the UpdatingTable property or the first table name after the from-clause of the SQL text.

TOracleDataSet.GetVariable

Declaration
function GetVariable(Name: string): Variant;
Description
Retrieves the value of the specified variable. In Delphi 4 and later you can also specify the
variable by its zero-based index.

See also
Variables
DeclareVariable
SetVariable

TOracleDataSet.LockingMode

Declaration
type TLockingModeOption = (lmLockImmediate, lmCheckImmediate,

lmLockDelayed, lmNone);
property LockingMode: TLockingModeOption;
Description
If you are creating a multi-user application, the locking strategy needs some attention.

Direct Oracle Access 4.1 - User's Guide 105

TOracleDataSet has a LockingMode property that lets you define the locking behavior. When
a record is locked, it is important that the record in the database still contains the same values
as the record in the dataset. After all, since the dataset has queried these records, they might
have been changed by another user. The LockingMode property can be one of the following
values:
lmLockImmediate When the user starts editing a record, it is locked and a check is

performed to see if it has been changed. The lock remains until the
user posts or cancels the changes.

lmCheckImmediate When the user starts editing a record, a check is performed to see if
it has been changed, but the record is not locked. Therefore, when
the user posts the record, it is locked and checked again.

lmLockDelayed When the user posts an edited record, it is locked and a check is
performed to see if it has been changed. After this, the lock is
released.

lmNone No locking or checks are performed. This should only be used in
single user applications.

The default value for the LockingMode is lmCheckImmediate. This has the advantage that
there are no locks during editing, but the user is still notified immediately if the record has
been changed by another user. If you want to use lmLockImmediate, which guarantees that a
user locks a record during editing, you need to make sure that locks are not released by
commits and rollbacks in other parts of the application using the same session.

TOracleDataSet.Master

Declaration
property Master: TOracleDataSet;
Description
If the dataset is a detail in a master/detail relation, this property defines the master dataset.

To create a master/detail form, you need two datasets that preferably are related through a
foreign key constraint. You can link the detail dataset to the master dataset through the Master
property of the detail dataset. When you set this property, you are asked if you wish to modify
the query to add variables to the where clause. If you accept this, a where clause is added to
the SQL property, variables are created for the foreign key column(s) and the MasterFields
and DetailFields are set. The value of the variables is controlled by the master dataset.

Some basic rules need to be followed when creating a master/detail form:
w The where clause of the detail dataset must always contain a comparison between the

foreign key columns and a variable with the same name (where a = :a and b = :b). The
dataset requires this to restrict the records to the context of the master.

w The foreign key columns must be included in the field list of the detail dataset if new
records are to be inserted. The dataset copies the values of the MasterFields to the
DetailFields when a new record is created.

w Automatic Master/Detail configuration is invoked when setting the Master property of a
detail dataset, but only works when:

106 Direct Oracle Access 4.1 - User's Guide

w The SQL property of the master and detail are set correctly

w The Session of either the master or detail is connected

w One foreign key constraint exists from the detail to the master

Non-referential details
If a detail dataset is does not have a foreign key column to the master table, then you can omit
the DetailFields. Assume that a Master dataset contains a start_date and end_date column,
and you wnat to show all details with a creation_date column within the start_date and
end_date of the master. The where clause detail query could look like this:

where creation_date >= :start_date and creation_date <= :end_date

In this situation you do not have a 1 on 1 relation between master and detail fields. You can
leave the DetailFields property empty, and use variable names in the detail query that match
the names of the MasterFields (as shown in the example above).

Nested tables and varrays
If the table of the master dataset contains a collection column or attribute (nested table or
varray), you can create a detail dataset for this collection. At design time you do not need to
define the SQL for the detail dataset. Simply set the master property and select a collection
column or attribute from the selection screen. After doing so, the SQL of the detail dataset will
be something like this:

select d.*
from table(select m.lines
 from invoices m
 where m.id = :id) d

In this case the master table is invoices, the collection column is lines, and the primary key
column of the master table is id. The basic SQL that is generated by the Automatic
Master/Detaul configuration can of course be refined by specifying specific columns instead of
d.*, by adding an order by clause, and so on.

Note
You can only use TOracleDataSet components in a Master/Detail relation. You cannot mix
these with TOracleQuery, TQuery, TTable or other components.

See also
MasterFields
DetailFields

TOracleDataSet.MasterFields

Declaration
property MasterFields: string;
Description
If the dataset is a detail in a master/detail relation, this property names the fields of a master
that identify a master record. If more than one field is used, separate them with a semicolon. If

Direct Oracle Access 4.1 - User's Guide 107

you leave the DetailFields property empty, the query of the dataset must contain variables in
the where clause with the same names as the MasterFields.For more information, see the
Master property.

See also
Master
DetailFields

TOracleDataSet.OnApplyRecord

Declaration
type TApplyRecordEvent = procedure(Sender: TOracleDataSet; Action:

Char; var Applied: Boolean; var NewRowId: string) of object;
property OnApplyRecord: TApplyRecordEvent;
Description
The OnApplyRecord event provides a convenient way to overrule the default behavior of a
TOracleDataSet component when chec king, locking, inserting, updating, deleting and
refreshing records. Within this event, you can use TOracleQuery, TOraclePackage or custom
package components to perform the required actions. This is useful in one of the following
situations:
w You wish to access the table through stored procedures rather than through SQL. This is

often referred to as a 'table API', where the end-user does not need privileges on the table,
but all access is under control of stored procedures.

w The results of the dataset's query are not directly updateable, for example when you query
a non-updateable view or any other case where a rowid and updating table are not
available.

The Action parameter indicates which action should be performed:
'C' Check if the record in the dataset's buffer is still the same as in the database. You do

this by comparing the database values with the OldValue of the fields. This action will
only occur if the LockingMode property of the dataset is lmCheckImmediate. With all
other LockingModes, the chec k can be combined with the lock action.

'L' Lock the record. You can also use this action to check if another user has changed the
record in the database.

'I' Insert the record. If you are using a rowid in the dataset, return the rowid of the newly
inserted record in the NewRowId parameter.

'U' Update the record.

'D' Delete the record.

'R' Refresh the record. Note that you don't actually need this action to refresh a record after
an insert or update, because you can simply update the value of the fields during the
Insert and Delete action.

For all actions but Insert, it is required that you identify the record in the database. You can do
so by referring to the OldValue of the fields or the RowId function of the dataset. The
examples below demonstrate this.

108 Direct Oracle Access 4.1 - User's Guide

With the Applied parameter you indicate if the event handler has applied this action. This way
you can choose to overrule only some specific actions, and let other actions be handled by the
TOracleDataSet. If you overrule only some actions, you must set the NewRowId parameter
during inserts, because a rowid is required for the default dataset actions. Only when all
actions are overruled, the rowid can be skipped completely.

The following is an example of an OnApplyRecord event handler that overrules the delete
action by setting a deleted indicator column of the record to 'Y', rather than actually deleting it.
The dataset provides a rowid to identify the record. All other actions are performed by the
default processing of the dataset.
procedure TMainForm.DeptDataSetApplyRecord(Sender: TOracleDataSet;

Action: Char;
 var Applied: Boolean; var NewRowId: string);
begin
 if Action = 'D' then
 begin
 // DeptDelQuery.SQL = update dept set deleted = 'Y' where rowid =

:dept_rowid
 with DeptDelQuery do
 begin
 SetVariable('dept_rowid', Sender.RowId);
 Execute;
 end;
 // We handled the delete, but all other actions must be handled

by the dataset
 Applied := True;
 end;
end;

Most of the time things will be a little bit more complicated than the example mentioned above.
You will usually need to declare a lot of variables, set the value of each individual variable to
the corresponding dataset field value, and execute the query. To make this easier you can
declare the variables and set their values with a single call. Additionally you can also compare
query variables with the dataset fields to check if a record has changed, and set field values to
query variable values to refresh a dataset record.

Declaring variables
To declare the variables in a TOracleQuery component, you can use the
DeclareQueryVariables procedure:

procedure DeclareQueryVariables(AQuery: TOracleQuery);

All variables in the SQL property of the query will be declared for which a corresponding field
exists in the dataset. Variables and fields are matched by their names. The data type of the
declared variables will correspond to the data type of the fields. If the variable name is
'doa__rowid', it will be declared as a string. You can also prefix a variable name with 'old_', in
which case it will also be declared. This feature is useful when you need to pass the old value
of a field to the query, which will be explained below. Variables that do not match any dataset
field will not be declared. Consider a dataset with the following select statement:

Direct Oracle Access 4.1 - User's Guide 109

select deptno, dname, loc
 from dept
 order by deptno

To update a record, we want to call the DeptAPI package, which has an UpdateRecord
procedure:

begin
 DeptAPI.UpdateRecord(:old_deptno, :deptno, :dname, :loc);
end;

To declare the variables of this PL/SQL block, we can simply call DeclareQueryVariables and
pass the query with this SQL text. After that, the old_deptno and deptno variables will be
declared as integers, and dname and loc will be declared as strings.

Setting variable values
To set the values of the variables in a TOracleQuery component, use the SetQueryVariables
procedure:

procedure SetQueryVariables(AQuery: TOracleQuery);

The values of the fields will be copied to the variables in the query. If the variable name is
prefixed with 'old_', the OldValue of the field will be copied. If the variable name is
'doa__rowid', it will be set to the rowid of the current record. After setting the variable values
you can execute the query. The following code implements the update example from the
previous section:

DeptDataSet.DeclareQueryVariables(UpdateQuery);
DeptDataSet.SetQueryVariables(UpdateQuery);
UpdateQuery.Execute;

The DeptDataSet contains the select statement, and the UpdateQuery contains the call to
DeptAPI.UpdateRecord. This code can run inside an OnApplyRecord event handler to
overrule the default update action.

Refreshing a dataset record
To refresh a dataset record you can use the GetQueryVariables procedure:

procedure GetQueryVariables(AQuery: TOracleQuery);

This procedure copies the variable values of the query to the fields of the dataset. Let's
assume that the DeptAPI package contains a FetchRecord procedure that can be called like
this:

begin
 DeptAPI.FetchRecord(:old_deptno, :dname, :loc)';
end;

The department number identifies the dept record, and the dname and loc column values are
returned. To call this procedure you can use the following code inside an OnApplyRecord
event handler to refresh the current record:

110 Direct Oracle Access 4.1 - User's Guide

DeptDataSet.DeclareQueryVariables(FetchQuery);
DeptDataSet.SetQueryVariables(FetchQuery);
FetchQuery.Execute;
DeptDataSet.GetQueryVariables(FetchQuery);

The variables are declared, the value of the old_deptno variable is set, the procedure is called,
and the field values are updated with the current values in the database.

Checking a dataset record
To check of a record in the database has changed since it was fetched into the dataset, you
can use the CompareQueryVariables function:

function CompareQueryVariables(AQuery: TOracleQuery): Boolean;

This function compares the variable values of the query with the current values of the fields. It
can be called in a very similar way to GetQueryVariables:

DeptDataSet.DeclareQueryVariables(FetchQuery);
DeptDataSet.SetQueryVariables(FetchQuery);
FetchQuery.Execute;
if not DeptDataSet.CompareQueryVariables(FetchQuery) then
 raise Exception.Create('Department is changed by another user');

The variables are declared, the value of the old_deptno variable is set, the procedure is called,
and the field values are compared with the current values in the database.

Exception handling
If an exception occurs during an OnApplyRecord event, the TOracleDataSet will handle it
correctly. All previous changes will be rolled back (to a savepoint if necessary), and the error
will be translated by the OnTranslateMessage event handler or through the MessageTable.
There is no need to handle exceptions within the OnApplyRecord event, unless you want to
specifically react to it.

Restrictions
Two restrictions apply to what you can do in an OnApplyRecord event:

1 Don't commit or rollback. If you must rollback some of the actions you have performed, set
your own savepoint at the beginning of the event and rollback to this savepoint.

2 Don't navigate to other records in the same TOracleDataSet or in its master dataset.

TOracleDataSet.OnCancelQBE

Declaration
type TCancelQBEEvent = procedure(Sender: TOracleDataSet; var Requery:

Boolean) of Object;
property OnCancelQBE: TCancelQBEEvent;
Description
Fires when QBE mode is cancelled. You can restore the appearance of queryable controls in
this event. When an exception is raised, the dataset will remain in QBE mode.

The Requery boolean parameter can be used to specify whether the last result will be

Direct Oracle Access 4.1 - User's Guide 111

requeried or that no requery will take place and the dataset remains empty. By default, the
dataset will requery.

See also
AfterQBE
BeforeQBE

TOracleDataSet.OnCompressBLOB

Declaration
type TCompressionEvent = procedure(Sender: TOracleDataSet; Field:

TBLOBField; InStream, OutStream: TMemoryStream) of Object;
property OnCompressBLOB: TCompressionEvent;
Description
Fires when CompressBLOBs = True and a Long Raw or BLOB field is posted to the database
as a result of an Insert or Edit. The event handler must read all uncompressed bytes from the
InStream and write the compressed bytes to the OutStream. If the Size of the OutStream is 0
after this event, the dataset will post the original uncompressed data.

Example
The following example uses Delphi's ZLib functionality to compress a BLOB field:

procedure TMainForm.DataSetCompressBLOB(Sender: TOracleDataSet;
Field: TBlobField; InStream, OutStream: TMemoryStream);

var OutBuf: Pointer;
 OutSize: Integer;
begin
 // Compress the input stream into a buffer through ZLib
 CompressBuf(InStream.Memory, Instream.Size, OutBuf, OutSize);
 // Write the buffer into the output stream
 OutStream.Write(OutBuf^, OutSize);
 // Free the ZLib buffer
 FreeMem(OutBuf, OutSize);
end;

See also
OnDecompressBLOB

TOracleDataSet.OnDecompressBLOB

Declaration
type TCompressionEvent = procedure(Sender: TOracleDataSet; Field:

TBLOBField; InStream, OutStream: TMemoryStream) of Object;
property OnDecompressBLOB: TCompressionEvent;
Description
Fires when CompressBLOBs = True and a Long Raw or BLOB field is fetched from the
database. The event handler must read all compressed bytes f rom the InStream and write the
uncompressed bytes to the OutStream. If the Size of the OutStream is 0 after this event, the

112 Direct Oracle Access 4.1 - User's Guide

dataset will assume that the data was not compressed.

Example
The following example uses Delphi's ZLib functionality to decompress a BLOB field:

procedure TMainForm.DataSetDecompressBLOB(Sender: TOracleDataSet;
Field: TBlobField; InStream, OutStream: TMemoryStream);

var OutBuf: Pointer;
 OutSize: Integer;
begin
 // Decompress the input stream into a buffer through ZLib
 DecompressBuf(InStream.Memory, Instream.Size, 2 * InStream.Size,

OutBuf, OutSize);
 // Write the buffer into the output stream
 OutStream.Write(OutBuf^, OutSize);
 // Free the ZLib buffer
 FreeMem(OutBuf, OutSize);
end;

See also
OnCompressBLOB

TOracleDataSet.OnTranslateMessage

Declaration
type TTranslateMessageEvent = procedure(Sender: TOracleDataSet;

ErrorCode: Integer; ConstraintName: string; Action: Char; var Msg:
string) of Object;

property OnTranslateMessage: TTranslateMessageEvent;
Description
When an Oracle error occurs during an insert, update, delete or lock issued by the dataset,
this event is triggered. If EnforceConstraints is set to True, it is also triggered when a
constraint is checked and violated after a user has changed the corresponding field.

OnTranslateMessage enables you to translate a technical Oracle message into a user-friendly
message. The meaning of the parameters is as follows:
Sender The dataset that caused the error

ErrorCode The Oracle error number

ConstraintName The name of the primary key, unique key, foreign key or
checkconstraint that was violated (if applicable).

Action A character indicating that an insert ('I'), update ('U'), delete ('D') or
lock ('L') has taken place.

Msg The original message that you can modify.

See also
EnforceConstraints

Direct Oracle Access 4.1 - User's Guide 113

TOracleDataSet.Optimize

Declaration
property Optimize: Boolean;
Description
When set to True, queries will not unnecessarily re-parse SQL when repeatedly executed.
Additional parse operations will only occur if you change the SQL text, add or remove
variables, or change the types of existing variables between calls. This setting when increase
performance when repeatedly executing the same SQL with different variable values.

If this property is set to False, the corresponding database cursor will be closed immediately
after executing a non-select statement, or when Eof is reached for select statements. This can
be useful if you want to minimize the number of open database cursors.

This property is overruled if you are using Oracle Net 9.2 and have enabled the
StatementCache of the corresponding session. In this situation the cursor will be released into
the cache after execution or after reaching Eof, regardless of the Optimize setting.

TOracleDataSet.OracleDictionary

Declaration
property OracleDictionary: TOracleDictionary;
Description
The OracleDictionary property allows you to control which information in the Oracle dictionary
will automatically be used by the TOracleDataSet. Enabling OracleDictionary options allows
your application to pick up database changes dynamically and automatically, without any
modifications.
The OracleDictionary contains the following properties:
property EnforceConstraints: Boolean;
If your application relies on the constraints in the Oracle database, these constraints are
checked when the database is updated. You might still want single-column constraints to be
enforced immediately after the user has changed the corresponding field. After all, it could be
quite irritating to a user if he or she is notified that an employee already exists in the database
after entering a complete employee record. This could have been prevented by checking the
primary key constraint immediately.

Similarly, if CachedUpdates are used, all multi-column constraints should also be checked
when the record is posted to the local change log. This prevents a series of error messages
when a user attempts to apply the updates from the local change log to the database.

The dataset will enforce all constraints automatically if you set the EnforceConstraints property
to True. A primary key, unique key, foreign key or check constraint is enforced if:

w It is enabled

w It is a named constraint. Otherwise there is no way to identify the constraint, and it can
therefore not lead to a user-friendly message. Unnamed constraints can be created when
they are part of a 'create table' statement. This should be avoided.

To translate the standard constraint violation messages generated by the server to a more

114 Direct Oracle Access 4.1 - User's Guide

user-friendly and understandable messages, you can use the OnTranslateMessage event or
the UseMessageTable property.
Remember that extra database accesses are required when enforcing constraints. The
constraints need to be read from the Oracle dictionary when the dataset is first opened, and
need to be checked when fields or records are validated. This might lead to slight performance
degradation.
property DisabledConstraints: TDisabledConstraints;
This is a list of constraints that will not be enforced by the dataset, but are left to the server
instead. When you double-click this property, a list of constraints defined for the updating table
is displayed, and you can select constraints that should not be enforced. You can manipulate
this property at run-time as a normal TStringList.

property UseMessageTable: Boolean;
Use the MessageTable defined at the session level to translate error messages caused by
constraints. This way you don't need to write an OnTranslateMessage event handler, and are
able to add constraints to the database without the need to modify your application. Adding a
record to the message table is all that is required for your application to pick up the new
constraint.

property FieldKinds: Boolean;
Automatically check which fields belong to the updating table. These fields will become data
fields (FieldKind = fkData), and all other fields will become read-only InternalCalc fields
(FieldKind = fkInternalCalc).

property DefaultValues: Boolean;
Apply the default values defined for the columns of the updating table to the field values of
newly created records. These default values will be applied when the record is created locally
in the dataset.

property DynamicDefaults: Boolean;
Determine default values every time a new record is created. Normally the dataset will
determine these default values just once, but in case these defaults can change (e.g. an
expression that includes the sysdate function), you can let it determine the values every time.

property DisplayFormats: Boolean;
Determine the DisplayFormat for TFloatFields. The DisplayFormat and EditFormat will
correspond to the precision and scale of the column. If for example a column is defined as
number(7,2), the field's DisplayFormat will be ##,##0.00 and the EditFormat will be ####0.00
(so that the user is not bothered with the group separator when he or she modifies the value).

property RangeValues: Boolean;
Determine the MinValue and MaxValue for TIntegerFields and TFloatFields. If for example a
column is defined as number(7,2), the field's MinValue will be -99999.99 and the MaxValue
will be +99999.99.

property RequiredFields: Boolean;
When True, fields that are reported as not null by Oracle will have their TField.Required
property set to True. If you set RequiredFields to False, all TField.Required properties will be
set to False.

A note about performance
Querying the dictionary for this information can obviously degrade performance. This depends
on the efficiency of your Oracle dictionary views, and on the speed of the network. All queried
dictionary information is cached at the session level though, so an end-user should only

Direct Oracle Access 4.1 - User's Guide 115

experience a delay when this information is needed the first time during the lifetime of the
session. When the session is disconnected, the cached dictionary information is removed.

TOracleDataSet.ProviderOptions

Declaration
type TOracleProviderOption = (opNoKeyFields, opNoIndexDefs,

opNoDefaultOrder, opNoCommit);
type TOracleProviderOptions = set of TOracleProviderOption;
property ProviderOptions: TOracleProviderOptions;
Description
The ProviderOptions property controls the behavior of a TOracleDataSet when connected to a
TDataSetProvider:

opNoKeyFields The dataset will not attempt to determine the key fields.

opNoIndexDefs The dataset will not attempt to determine the index definitions.

opNoDefaultOrder The dataset will not determine the order by clause of the SQL
statement.

opNoCommit The dataset will not commit transactions. You will have to implement
your own transaction management in the server application.

TOracleDataSet.QBEDefinition

Declaration
property QBEDefinition: TQBEDefinition;
Description
To define the behavior of a TOracleDataSet during QBE mode, you can modify the
QBEDefinition property. This will bring up a property editor with the following fields:
w Save QBE Values

 When a query is executed, the QBE values are saved and restored the next time that the
dataset goes in QBE mode.

w Allow File Wildcards

 Besides the SQL wildcard characters (% and _), the familiar file wildcard characters (* and
?) are also accepted. These characters are converted to SQL wildcard characters when the
query is executed.

w Allow Operators

 When enabled, the user can enter operators in the QBE fields. These operators are
w not value (equivalent to <> value or != value)

w > value

116 Direct Oracle Access 4.1 - User's Guide

w < value

w = value

w (not) like value

w (not) between value-1 and value-2

w (not) in (value-1, value-2, ..., value-n)

w (not) value-1 or value-2 or ... or value-n

These operators can be used for string fields, number fields and date fields. As a result,
you can not access the values of the fields in QBE mode, becuase the user input does not
translate to a value of the actual type of the field. To access the data as a string, use the
QBEField.Value property instead, which is a string value that represents the actual
expression that the user has entered.

w QBE Font color

 Specifies the font color of data-aware controls linked to this dataset when it is in QBE
mode. Specify clNone to leave the font color unchanged. The dropdown list shows the
standard colors, and the button to the right of the list allows y ou to select custom colors.

w QBE Backgound color

 Specifies the background color of data-aware controls linked to this dataset when it is in
QBE mode. Specify clNone to leave the background color unchanged. The dropdown list
shows the standard colors, and the button to the right of the list allows you to select custom
colors.

w Queryable

 Defines if the selected field is queryable. If not, the field will be read-only in QBE mode.
BLOB fields cannot be queryable, and all options will be disabled for these f ields.

w Automatic Contains

 Defines if the selected field only needs to contain the QBE value. If for example the user
enters 'mi', both Smith and Jamison are selected. This option is only enabled for string
fields.

w Automatic Partial Match

 Defines if the selected field only needs to partially match the QBE value. If for example the
user enters 'Jo', both Jones and Johnson are selected. This option is only enabled for
string fields.

w Case Insensitive

 Defines that the selected field will be compared case insensitive. When this option is
enabled, query performance may decrease if the field is indexed, because this index can
only partially be used. This option is only enabled for string fields.

w Ignore Time

 Defines that for the selected field any time fraction in the database will be ignored. This is
particularly useful when querying timestamp columns where the user does not know the
exact time, but does know the date. If the user specifies a time fraction in the query field,
time fractions will not be ignored and the values must exactly match. This option is only

Direct Oracle Access 4.1 - User's Guide 117

enabled for date fields.

Besides these options you will find a test button on this property editor which lets you test the
QBE Definition by parsing a query for each queryable field. When your query passes this test,
you can safely assume that all queryable fields can indeed be queried. When an error occurs,
the field, error message, and possible solution are displayed.

TOracleDataSet.QBEMode

Declaration
property QBEMode: Boolean;
Description
The TOracleDataSet supports a Query By Example (QBE) mechanism. When a
TOracleDataSet is in QBE mode, query values can be entered in the data-aware controls of
that dataset. After that, the query can be executed and the dataset will leave QBE mode,
allowing the user to view or modify the result set.

To easily support QBE in your application, you can use the TOracleNavigator component. It is
derived from the standard TDBNavigator, and adds two buttons to it: Enter Query and Execute
Query. The Enter Query button will stay down when pressed, indicating that the dataset is in
QBE mode. When the Enter Query button is pressed again, QBE mode will be cancelled.

How does QBE work?
When QBEMode is set to True, the dataset is cleared and one query-record is created. When
the query is executed, the field values of this query-record are translated to an additional
expression for the where clause of the original SQL statement of the dataset. The SQL
statement is modified and new query variables will be added as needed. As a result, the SQL
statement and variables will dynamically change at run-time when QBE mode is being used.

Consider a dataset with the following SQL statement:
select empno, ename, deptno from emp
order by ename

When the user enters 10 in the deptno field during QBE mode, the SQL statement will be
modified as follows when it is executed:
select empno, ename, deptno from emp
where deptno = 10
order by ename

QBE and complex queries
For complex queries it may be neces sary to make some field modifications to get QBE to work
properly. As described in the previous section, the SQL statement is modified for QBE and this
can lead to errors in some situations. The test button on the QBE Definition property editor can
help you test your query to find and solve these errors.

Ambiguous column name when using joins
If a where clause is generated for a join select statement, this may result in ambiguous column

118 Direct Oracle Access 4.1 - User's Guide

names. Consider the following statement:
select empno, ename, deptno, dname
from emp, dept
where dept.deptno = emp.deptno
order by ename

When the user enters a value in the deptno field during QBE mode, the SQL statement will be
modified as follows when it is executed:
select empno, ename, deptno from emp
where (dept.deptno = emp.deptno)
and deptno = 10
order by ename

The generated deptno column name in the where clause is ambiguous, as it is not clear if it
belongs to the emp or dept table (both contain a deptno column). This will lead to an "ORA -
00914: column ambiguously defined" error message. To resolve this, you can set the Origin
property of the deptno field to 'emp.deptno'. This Origin property will be used during QBE to
name the column in the where clause. To set the Origin field property at design-time, you must
make the fields persistent. You can also set the Origin property at run-time to avoid persistent
fields.

Invalid column name when using aliases
When a column has an alias in a select statement, the fieldname will be based on that alias.
When this field is used in QBE mode, the following statement might be generated:
select empno employee_number, ename employee_name from emp
where employee_number = 7385
order by ename

The employee_number alias is used in the where clause, which unfortunately is not accepted
by Oracle and will result in an "ORA -00904: invalid column name" error message. To resolve
this situation, you must use the Origin property of the field as described in the previous
section.

It can also be that you are using an alias to name the result of an arithmetic expression or a
function call:
select empno, ename, salgrade(empno) salgrade from emp
order by ename

In this case the salgrade stored function is called to return the salary grade of an employee. If
the salgrade field is to be queryable, you must specify the complete expression
'salgrade(empno)' in the Origin property of the field instead of specifying a table and column
name.

QBE Limitations
The following limitations apply to QBE.
w In normal mode, wildcard characters are only allowed in string fields. This is a limitation of

the TField and data-aware components, which require that the text in the control must be

Direct Oracle Access 4.1 - User's Guide 119

converted to the internal representation of the field. If AllowOperators is enabled, wildcards
can be used for all field types.

w When cached updates are enabled for a dataset and there are pending updates, the
dataset cannot go in QBE mode. Various queries across cached updates can lead to
confusing situations for an end-user.

w QBE mode cannot be enabled on datasets that are based on a cursor variable.

w Select statements with set operations (union, intersect, minus) are currently not supported.
You must use a view instead.

TOracleDataSet.QBEModified

Declaration
property QBEModified: Boolean;
Description
Indicates that the SQL text of the dataset is modified for QBE. This will be True if the user or
the application has entered one or more QBE values in QBE Mode and has executed the
query. It will be false if no QBE values were entered, or if ClearQBE was called.

TOracleDataSet.QueryAllRecords

Declaration
property QueryAllRecords: Boolean;
Description
When set to True, all records will be retrieved from the database when the dataset is opened.
When set to False, records are retrieved when a data-aware component or a program
requests it. If a query can return many records, set this property to False if initial response
time is important.
TOracleDataSet.ReadBuffer

Declaration
property ReadBuffer: Integer;
Description
Number of rows that will be transferred across the network at once for select statements. This
property can have a great impact on performance.

If the query contains a Long or Long Raw field, a ReadBuffer of 1 will be used.

TOracleDataSet.ReadOnly

120 Direct Oracle Access 4.1 - User's Guide

Declaration
property ReadOnly: Boolean;
Description
Specifies if the data can be modified.

TOracleDataSet.RefreshOptions

Declaration
type TRefreshOption = (roBeforeEdit, roAfterInsert, roAfterUpdate,

roAllFields);
type TRefreshOptions = set of TRefreshOption;
property RefreshOptions: TReftreshOptions;
Description
The RefreshOptions property controls how and when the TOracleDataSet refreshes individual
records in the dataset. This way you can make sure that the dataset always reflects the
current status of the database when records are modified.

Refreshing server generated values
In a Delphi/Oracle application, values in the dataset fields may be changed on the server
during a post in three ways:

1. A column has a default value in the table definition, and the corresponding field is left blank
during insert. The dataset will not include this column in the insert statement, and the
server will apply the default value of the table definition.

2. A row level before update or insert trigger on the table modifies some columns. This is
frequently used to generate primary key values through a sequence, to set the values of
audit columns, or to apply complex default values.

3. The dataset field has a DefaultValue property. When the field is blank during an insert, the
dataset will send this string as part of the insert statement, which will be evaluated on the
server. The DefaultValue is not evaluated on the client, because you can enter any valid
SQL function here: add_months(trunc(sysdate), 3) is a valid DefaultValue.

You probably do not want to keep these server-generated values a secret to your application
user. To make a dataset reflect the actual values in the database after a post, set the following
options:
roAfterInsert The record is automatically re-fetched after the dataset has inserted a

record. Default values and columns modified in a row level before
insert trigger are immediately visible in the dataset.

roAfterUpdate The record is automatically re-fetched after the dataset has updated a
record. This is only useful if a row level before update trigger can
modify column values.

These options will generate one extra network roundtrip for each post. If there are no default
values for a table and there are no triggers that modify columns, you should not enable these
options.

Direct Oracle Access 4.1 - User's Guide 121

Refreshing outdated records
When a user starts to edit a rec ord in the dataset, the corresponding database record may
have been changed by another users since the record was fetched. If the LockingMode is set
to lmCheckImmediate or lmLockImmediate, the dataset will give an error message that the
record has been changed by another user. To prevent this, you can enable the roBeforeEdit
option. When the user starts to edit a record, it will be refreshed with the current values in the
database.

When this option is enabled, the LockingModes lmCheckImmediate and lmLockDelayed are
equivalent, as there is no need for any immediate check.

Refreshing derived fields
When a record is refreshed, by default only the fields belonging to the updating table will be
fetched from the database. Derived fields that result from joins, function calls, calculations,
and so on will therefore not be refreshed. If you want to refresh derived fields as well, enable
the roAllFields option.

This is accomplished by re-executing the SQL statement for just the current record. This
requires that the w here clause is extended with the rowid of the current record. Let's assume
the following SQL statement:

 select emp.*, dept.dname, dept.loc
 from emp, dept
 where dept.deptno = emp.deptno

Before editing or after inserting or updating a record, the f ollowing statement will be executed
to refresh all fields:

 select emp.*, dept.dname, dept.loc
 from emp, dept
 where dept.deptno = emp.deptno
 and emp.rowid = :doa__rowid

If however the statement is a little bit more complicated, problems can occur:

 select emp.*, dept.dname, dept.loc
 from emp, dept
 where dept.deptno = emp.deptno
 and emp.sal < 5000

If a record is inserted or updated that does not meet the criteria, it would not be fetched
anymore. Let's assume you update a record and set the 'sal' field to 6000. The following
statement would no longer retrieve a record because emp.sal < 5000 is no longer true:

 select emp.*, dept.dname, dept.loc
 from emp, dept
 where dept.deptno = emp.deptno
 and emp.sal < 5000
 and emp.rowid = :doa__rowid

To prevent this problem, you can add an /* END_REFRESH */ hint in the SQL statement that
tells the dataset which part of the where clause to exclude from the refresh statement:

122 Direct Oracle Access 4.1 - User's Guide

 select emp.*, dept.dname, dept.loc
 from emp, dept
 where dept.deptno = emp.deptno
 /* END_REFRESH */
 and emp.sal < 5000

Note that the hint must be literally /* END_REFRESH */, and may not differ in any way.

TOracleDataSet.RefreshRecord

Declaration
procedure RefreshRecord;
Description
Refreshes the current record in the dataset by fetching it from the database.

See also
AfterRefreshRecord

OnApplyRecord
RefreshOptions

TOracleDataSet.RowId

Declaration
function RowId: string;
Description
Returns the hexadecimal notation (or 64-based on Oracle8) of the rowid of the current record.
The RowId is used internally, and is therefore not available as a field.

TOracleDataSet.SearchRecord

Declaration
type TSearchRecordOption = (srForward, srBackward, srFromCurrent,

srFromBeginning, srFromEnd, srIgnoreCase, srIgnoreTime,
srPartialMatch);

type TSearchRecordOptions = set of TSearchRecordOption;
function SearchRecord(const FieldNames: string; const FieldValues:

Variant; Options: TSearchRecordOptions): Boolean;
Description
To search for a record in an active dataset you can use the SearchRecord function. The
parameters of this function have the following meaning:
FieldNames The names of the fields on which to search. If you want to search on more

than one field, separate the names with a semi-colon.

FieldValues A variant array containing the values to match with the fields. If one field is

Direct Oracle Access 4.1 - User's Guide 123

specified you can simply pass the single value to match. If more than one field
is specified, use the VarArrayOf constructor to specify the values, e.g.
VarArrayOf(['Smith', 20]).

Options A set of options that control various aspects of the search:

srForward Search in forward direction (Default)

srBackward Search in backward direction

srFromCurrent Start searching from the current record (Default)

srFromBeginning Start searching from the first record

srFromEnd Start searching from the last record. srBackward is
default if you do not specify a direction.

srIgnoreCase Ignore case when comparing string fields

srIgnoreTime Ignore the time fraction when comparing date fields

srWildcards Interpret wildcard characters * and ? when comparing
strings

srPartialMatch Search values only need to partially match the field
values (e.g. field value 'SMITH' matches search value
'SM')

Result True if a matching record was found, otherwise False. If a record is found, it
will become the current record in the dataset.

The following example searches for the last occurrence of an employee whose name starts
with 'A' in department 20:

Found := SearchRecord('ename;deptno',
 VarArrayOf(['A*', 20]),
 [srFromEnd, srWildCards]);

TOracleDataSet.SequenceField

Declaration
property SequenceField: TSequenceField;
Description
The SequenceField property can be used to assign an Oracle sequence to a field in the
dataset. When you double-click this property at design time, it brings up a property editor
where you can select the sequence, the field, and the moment when the sequence's next
value will be applied to the field:
w On New Record When the user creates a new empty record in the dataset.

w On Post When a new record is posted to the dataset.

w On Server The <sequence>.nextval expression will be part of the insert
statement that is executed on the server. This is the most
efficient moment if the RefreshOptions of the dataset includes
roAfterInsert, as it will require one less network roundtrip than
the other two moments.

124 Direct Oracle Access 4.1 - User's Guide

When the field is a master field, you cannot apply a sequence 'On Server', because the detail
dataset needs to know the master fields before that.

Note
In most cases a sequence is used for a primary key column, which by definition results in a
required field. If the ApplyMoment is 'On Post' or 'On Server', you must set the required
property of the field to False, because the user does not need to supply a value for the field
before it is posted.

TOracleDataSet.Session

Declaration
property Session: TOracleSession;
Description
The session in which the dataset will execute.

TOracleDataSet.SetComplexVariable

Declaration
procedure SetComplexVariable(Name: string; const Value: TObject);
Description
Assign an object instance to a complex variable. See TOracleQuery.SetComplexVariable for
details.

This procedure is only useful if you are using the ExecSQL procedure.

TOracleDataSet.SetLongVariable

Declaration
procedure SetLongVariable(Name: string; Buffer: Pointer; Length:

Integer);
Description
Low level procedure to set the value of the specified long or long raw variable to the address
pointed to by <Buffer> with length <Length>. Memory is not copied to minimize overhead, so
the address must remain valid until the query is executed. No CR/LF => LF conversion is
performed for long variables.

This procedure is only useful if you are using the ExecSQL procedure.

See also
TOracleQuery.SetLongVariable

TOracleDataSet.SetQueryVariables

Direct Oracle Access 4.1 - User's Guide 125

Declaration
procedure SetQueryVariables(AQuery: TOracleQuery);
Description
This procedure can be used in an OnApplyRecord event handler to set all variable values in a
query to the corresponding fields values in the dataset. Variables and fields are matched by
their names. You can also prefix a variable name with 'old_', in which case the field's OldValue
will be used. Variables that do not match any dataset field will not be set.

See also
OnApplyRecord

DeclareQueryVariables
GetQueryVariables
CompareQueryVariables

TOracleDataSet.SetVariable

Declaration
procedure SetVariable(Name: string; Value: Variant);
Description
Sets the value of the specified variable. In Delphi 4 and later you can also specify the variable
by its zero-based index.

See also
Variables
DeclareVariable
GetVariable
TOracleDataSet.SQL

Declaration
property SQL: TStrings;
Description
The SQL-text for the select statement. You can also specify a PL/SQL block to call a
procedure that opens a cursor variable.

See TOracleQuery.SQL for details.

TOracleDataSet.StringFieldsOnly

Declaration
property StringFieldsOnly: Boolean;
Description
When defining fields for a select statement, the TOracleDataSet component will use the
appropriate field data types. A varchar2 field is defined as TStringField, a number field is
defined as TIntegerField or TFloatField, and a date is defined as TDateField. When the

126 Direct Oracle Access 4.1 - User's Guide

StringFieldsOnly property is set to True, all fields will be defined as TStringFields. Numbers
and dates will be converted to strings on the server, as defined by the NLS_LANG settings of
the current session.

TOracleDataSet.SubstitutedSQL

Declaration
function SubstitutedSQL: string;
Description
If you are using substitution variables, you can retrieve the SQL text with substituted variables
by calling the SubstitutedSQL function.

See also
Variables

TOracleDataSet.UniDirectional

Declaration
property UniDirectional: Boolean;
Description
When True, the TOracleDataSet will no longer buffer previously fetched records. As a result
there will not be any memory overhead when processing large numbers of records, which can
be useful for batch processing or reporting functionality.

Note
A UniDirectional dataset can not be used for functions that require navigation to prior records
or to the first record, such as a TDBGrid or a TDBNavigator. When these navigation functions
are used, an exception will be raised.

TOracleDataSet.UniqueFields

Declaration
property UniqueFields: string;
Description
If you want to use an updateable dataset for a view with an "instead of" triggers, you must use
the UniqueFields property. The problem with "instead of" trigger is that the Oracle Server does
not return the RowId of a newly created record, and that there is no way to determine the
fields that identify a record of the underlying tables. Specifying the names of these fields in the
UniqueFields property allows the dataset to determine the RowId of the record. If more than
one field identifies a record in the view, separate their names with a semi-colon.

TOracleDataSet.UpdatesPending

Direct Oracle Access 4.1 - User's Guide 127

Declaration
property UpdatesPending: Boolean;
Description
Indicates if there are any cached updates that are not yet applied to the database.

TOracleDataSet.UpdateStatus

Declaration
type TUpdateStatus = (usUnmodified, usInserted, usModified,

usDeleted)
property UpdateStatus: TUpdateStatus;
Description
Returns the status of the current record in the dataset.

TOracleDataSet.UpdatingTable

Declaration
property UpdatingTable: string;
Description
Specifies the name of the updating table when the dataset is based on a cursor variable.

In case of a select statement that uses multiple tables, you can use this property to specify
which table will be updated. If left blank, the first table after the from clause will be used.
TOracleDataSet.VariableCount

Declaration
function VariableCount: Integer;
Description
Returns the number of variables that are declared. Useful for iterating variables.

See also
VariableName

VariableType
VariableIndex

TOracleDataSet.VariableIndex

Declaration
function VariableIndex(const AName: string): Integer;
Description
Use this function to determine the index of a variable by its name. The result is the zero based
index of the v ariable. If the variable does not exists, -1 is returned.

128 Direct Oracle Access 4.1 - User's Guide

See also
VariableCount
VariableName

VariableType

TOracleDataSet.VariableName

Declaration
function VariableName(Index: Integer): string;
Description
Returns the name of the specified variable. Index is zero-based.

See also
VariableCount
VariableType
VariableIndex

Direct Oracle Access 4.1 - User's Guide 129

TOracleDataSet.Variables

Declaration
property Variables: TVariables;
Description
The variables property is only accessed at design time. It will invoke a property editor, which
enables you to declare variables manually, or scan for variables in the SQL text. At run time,
you access variables through the SetVariable, GetVariable and DeclareVariable methods.

See TOracleQuery.Variables for details.

See also
DeclareVariable
SetVariable

GetVariable
DeleteVariable
DeleteVariables
ClearVariables

TOracleDataSet.VariableType

Declaration
function VariableType(Index: Integer): Integer;
Description
Returns the type (otString, otInteger, ...) of the specified variable. Index is zero-based.

See also
VariableCount
VariableName
VariableIndex

130 Direct Oracle Access 4.1 - User's Guide

TQBEDefinition object
The TQBEDefinition object controls the behavior of a TOracleDataSet during QBE mode. At
design time, you can use the QBEDefinition property editor to set the various properties. At
run time you can also use the QBEDefinition property to access the dataset and field level
QBE properties. The TQBEDefinition exposes all the necessary properties and methods.

The AllowFileWildCards, AllowOperators, and SaveQBEValues control QBE behavior at the
dataset level, whereas you can use the Fields property or FieldByName method to control
field-level QBE behavior.

The BackgroundColor and FontColor properties provide an easy way to present a visual clue
for the end-user that a dataset is in QBE mode.

Direct Oracle Access 4.1 - User's Guide 131

TQBEDefinition reference
This chapter describes all properties and methods of the TQBEDefinition object.

TQBEDefinition.AllowFileWildCards

Declaration
property AllowFileWildCards: Boolean;
Description
When True, the familiar file wildcard characters (* and ?) are accepted besides the SQL
wildcard characters (% and _). These characters are converted to SQL wildcard characters
when the query is executed.

TQBEDefinition.AllowOperators

Declaration
property AllowOperators: Boolean;
Description
When enabled, the user can enter operators in the QBE fields. These operators are
w not value (equivalent to <> value or != value)

w > value

w < value

w = value

w (not) like value

w (not) between value-1 and value-2

w (not) in (value-1, value-2, ..., value-n)

w (not) value-1 or value-2 or ... or value-n

These operators can be used for string fields, number fields and date fields. As a result, you
can not access the values of the fields in QBE mode, becuase the user input does not
translate to a value of the actual type of the field. To access the data as a string, use the
QBEField.Value property instead, which is a string value that represents the actual expression
that the user has entered.

TQBEDefinition.BackgroundColor

Declaration
property BackgroundColor: TColor;
Description
When the dataset enters QBEMode, the background color of all data-aware controls that are

132 Direct Oracle Access 4.1 - User's Guide

linked will change to the color specified in this property. The following 2 conditions must be
met before the background color of a control is changed:
w The BackgroundColor property must not be clNone (the default value).

w The current background color of a control must be clWindow.

Providing a visual clue that a dataset is in QBE Mode is important, because it prevents the
common mistake that you think you are inserting a new record, but are in fact entering QBE
criteria, or vice versa.

TQBEDefinition.DataSet

Declaration
property DataSet: TOracleDataSet;
Description
The dataset that the TQBEDefinition instance belongs to.

TQBEDefinition.FieldByName

Declaration
function FieldByName(const AName: string): TQBEField;
Description
Returns the QBE Field for the given field name. This allows you to control the QBE behavior
for individual fields. Note that the QBE Fields are instantiated when the FieldDefs of the
dataset are created. Therefore the dataset must be active, or you must have called
FieldDefs.Update.

If a field of the given name does not exist in the dataset, FieldByName will return nil.

TQBEDefinition.FieldCount

Declaration
property FieldCount: Integer;
Description
The number of QBE Fields.

TQBEDefinition.Fields

Declaration
property Fields[Index: Integer]: TQBEField;
Description
The zero-based array of QBE Fields. This allows you to control the QBE behavior for

Direct Oracle Access 4.1 - User's Guide 133

individual fields. Note that the QBE Fields are instantiated when the FieldDefs of the dataset
are created. Therefore the dataset must be active, or you must have called FieldDefs.Update.
Use the FieldCount property to determine the size of the Fields array.
The following example makes all fields of a dataset queryable:
for i := 0 to EmpDataSet.QBEDefinition.FieldCount - 1 do
 EmpDataSet.QBEDefinition.Fields[i].Queryable := True;

To modify a specific QBE Field, you can use the FieldByName method.

TQBEDefinition.FontColor

Declaration
property FontColor: TColor;
Description
When the dataset enters QBEMode, the font color of all data-aware controls that are linked will
change to the color specified in this property. The following 2 conditions must be met before
the font color of a control is changed:
w The FontColor property must not be clNone (the default value).

w The current font color of a control must be clWindowText.

Providing a visual clue that a dataset is in QBE Mode is important, because it prevents the
common mistake that you think you are inserting a new record, but are in fact entering QBE
criteria, or vice versa.

TQBEDefinition.SaveQBEValues

Declaration
property SaveQBEValues: Boolean;
Description
When a query is executed, the QBE values are saved and restored the next time that the
dataset goes in QBE mode. If this property is False, the fields will be empty after entering QBE
mode.

134 Direct Oracle Access 4.1 - User's Guide

TQBEField object
The TQBEField object allows you to control QBE behavior at the field level. For each field in
the dataset, there will be a corresponding TQBEField instance with the same FieldName. You
can access the TQBEField instances of a TOracleDataSet through the Fields property or
FieldByName method of the QBEDefinition property.

Direct Oracle Access 4.1 - User's Guide 135

TQBEField reference
This chapter describes all properties and methods of the TQBEField object.

TQBEField.AutoContains

Declaration
property AutoContains: Boolean;
Description
Defines if the database field only needs to contain the QBE Value. If for example the user
enters 'mi', both Smith and Jamison are selected. This option is only useful for string fields.

TQBEField.AutoPartialMatch

Declaration
property AutoPartialMatch: Boolean;
Description
Defines if the database field only needs to partially match the QBE value. If for example the
user enters 'Jo', both Jones and Johnson are selected. This option is only useful for string
fields.

TQBEField.CaseInsensitive

Declaration
property CaseInsensitive: Boolean;
Description
Defines that the field will be compared case insensitive. When this option is enabled, query
performance may decrease if the field is indexed, because this index can only partially be
used. This option is only useful for string fields.

TQBEField.FieldName

Declaration
property FieldName: string;
Description
The name of the dataset field that this QBE Field corresponds to.

TQBEField.IgnoreTime

136 Direct Oracle Access 4.1 - User's Guide

Declaration
property IgnoreTime: Boolean;
Description
Defines that for the database field any time fraction will be ignored. This is particularly useful
when querying timestamp columns where the user does not know the exact time, but does
know the date. If the user specifies a time fraction in the query field, time fractions will not be
ignored and the values must exactly match. This option is only useful for date fields.

TQBEField.LastValue

Declaration
property LastValue: Variant;
Description
Indicates the last QBE value that was used. If you have enabled the SaveQBEValues property
of the QBEDefinition, you can also set this value to control the values that are initially
presented when the dataset enters QBE Mode.

TQBEField.Queryable

Declaration
property Queryable: Boolean;
Description
Defines if the field is queryable. If not, the field will be read-only in QBE mode. BLOB fields
cannot be queryable, and this option will be ignored for these fields.

TQBEField.Value

Declaration
property Value: Variant;
Description
Contains the QBE value that has been entered by the user. Use this property to examine a
field value when AllowOperators is enabled, because the value of the fields will be empty in
this situation.

Direct Oracle Access 4.1 - User's Guide 137

TOracleNavigator component

Unit
OracleNavigator

Description
The TOracleNavigator component (a database navigator) is used to move through the data in
a TOracleDataSet and perform operations on the data, such as inserting a blank record or
posting a record. It is derived from the standard TDBNavgator, and adds three buttons to
support the QBE mode (Query By Example) of the TOracleDataSet component:

From left to right:
Enter Query The TOracleDataSet that is linked to the related DataSource will go in

QBE mode. The button will stay down to indicate that query values
can be entered in the data-aware controls that are related to this
DataSource. When the button is pressed again, QBE mode will be
cancelled.

Execute Query A query will be executed that returns those records that meet the QBE
query criteria. These records can subsequently be viewed or modified.

Refresh Record Reresh the current record by calling RefreshRecord.

Note that these three buttons are only enabled when the DataSource of the TOracleNavigator
is linked to a TOracleDataSet component. The standard refresh button can be used to switch
between an empty query record and a record with the previously used query values.

All properties, methods and events are exactly the same as with the standard TDBNavigator.
See the Delphi or C++Builder documentation for detailed information. The 3 additional QBE
buttons are named nbEnterQBE, nbExecuteQBE and nbRefreshRecord.

138 Direct Oracle Access 4.1 - User's Guide

TOraclePackage component

Unit
Oracle

Description
The package is probably the most valuable concept of the procedural extension of the Oracle
database. It allows a developer to encapsulate functions, procedures, type definitions,
variables and constants into a single program unit. Moreover, a package separates the
interface (specification) from the implementation (body), which allows for private and public
definitions and can prevent dependency problems. All of this is very appealing to Delphi
developers, who are used to the same concepts with Delphi's units.

To make access to functions, procedures, variables and constants in a package as easy as
possible, Direct Orac le Access offers the TOraclePackage component. You only need to set
the Session property, specify the name of the package in the database, and you are ready to
use it. No additional definitions are required for the objects inside the package. To call
procedures or functions, you can simply use the CallProcedure and Call...Function methods.
To access variables or constants, you can use the SetVariable and Get...Variable methods.

A TOraclePackage allows you to make use of boolean functions, parameters, constants and
variables. SQL*Net does not support this datatype, but booleans are automatically converted
to integers by the TOraclePackage component when passing them across the network.

As a result of this simplified interface, complex parameters such as LOB Locators, Objects
and Cursors cannot be used. You can use a TOracleQuery with an appropriate PL/SQL Block
and appripriate variables instead, or you can use the Package Wizard.

Note
If you make a lot of use of packages in your application, you should consider using the
Package Wizard instead of the TOraclePackage component. The effort to generate custom
package classes will easily be made up by the advantages.

Example - Using a package
To demonstrate the TOraclePackage component, this example uses the standard package
sys.dbms_pipe. This application reads a message pipe and displays all messages in a memo.

Declaring the package
To use the dbms_pipe package, we create a TOraclePackage component, set the Session
property to the appropriate session, set the PackageName property to 'dbms_pipe' (or
'sys.dbms_pipe' if a public synonym does not exist), and set the Name property to DbmsPipe.
In this example we want to use named parameters, so we set the ParameterMode property to
pmNamed.

Calling a function
To receive a message in pipe 'demo_pipe', we need to use the Call...Function method to call
dbms_pipe.receive_message and pass the name of the pipe and a timeout value of 60
seconds. The result of the function indicates if we received a message, a timeout, or some
error:

Direct Oracle Access 4.1 - User's Guide 139

with DbmsPipe do
try
 Status := CallIntegerFunction('receive_message', ['pipename',

'demo_pipe', 'timeout', 60]);
 case Status of
 0: AddMessageToMemo;
 1: ShowMessage('Timeout');
 2: ShowMessage('Record in pipe too big for buffer');
 3: ShowMessage('Interrupted');
 end;
except
 on E:EOracleError do ShowMessage(E.Message);
end;

The parameter names ('pipename' and 'timeout') and values ('demo_pipe' and 60) are passed
directly as an open array constructor. The type of the value implicitly declares the type of the
parameter. If a function has no parameters, you need to use the constant parNone, because
an empty open array constructor [] does not exist in Delphi:
s := DbmsPipe.CallStringFunction('unique_session_name', parNone);

Output parameters
Because the parameters are passed as an open array constructor, it might seem that out or
in/out parameters are not supported. Output parameters can be declared during the function
or procedure call by passing a parString, parInteger, parFloat, parDate or parBoolean constant
instead of a value. Values of output parameters can be retrieved after a function or procedure
call with the GetParameter method. In the example we need to call the
dbms_pipe.unpack_message procedure to retrieve a string item from the message:
with DbmsPipe do
try
 CallProcedure('unpack_message', ['item', parString]);
 Memo.Items.Add(GetParameter(0));
except
 on E:EOracleError do ShowMessage(E.Message);
end;

For an in/out parameter, the type of the value that is assigned to it on input implicitly declares
the type of the parameter. If you want to pass a null to an in/out parameter (which is untyped),
you must use a par... constant instead of Null.

Packaged variables and constants
To retrieve the value of a variable or constant, you can use the Get...Variable method:
MaxWait := DbmsPipe.GetIntegerVariable('maxwait');

To set the value of a variable, you can use the SetVariable method:
MyPackage.SetVariable('factor', 12.55);

140 Direct Oracle Access 4.1 - User's Guide

TOraclePackage reference
This chapter describes all properties, methods and events of the TOraclePackage component.

TOraclePackage.CallBooleanFunction

Declaration
function CallBooleanFunction(const FunctionName: string; const

Parameters: array of Variant): Variant;
Description
Calls the specified function and passes the parameters to it. The result of the function will be
converted to a boolean value on the server.

See also
ParameterMode

TOraclePackage.CallDateFunction

Declaration
function CallDateFunction(const FunctionName: string; const

Parameters: array of Variant): Variant;
Description
Calls the specified function and passes the parameters to it. The result of the function will be
converted to a date value on the server.

See also
ParameterMode

TOraclePackage.CallFloatFunction

Declaration
function CallFloatFunction(const FunctionName: string; const

Parameters: array of Variant): Variant;
Description
Calls the specified function and passes the parameters to it. The result of the function will be
converted to a floating-point value on the server.

See also
ParameterMode
TOraclePackage.CallIntegerFunction

Direct Oracle Access 4.1 - User's Guide 141

Declaration
function CallIntegerFunction(const FunctionName: string; const

Parameters: array of Variant): Variant;
Description
Calls the specified function and passes the parameters to it. The result of the function will be
converted to an integer value on the server.

See also
ParameterMode

TOraclePackage.CallProcedure

Declaration
procedure CallProcedure(const ProcedureName: string; const

Parameters: array of Variant);
Description
Calls the specified procedure and passes the parameters to it.

See also
GetParameter
ParameterMode

TOraclePackage.CallStringFunction

Declaration
function CallStringFunction(const FunctionName: string; const

Parameters: array of Variant): Variant;
Description
Calls the specified function and passes the parameters to it. The result of the function will be
converted to a string value on the server.

See also
ParameterMode

TOraclePackage.Cursor

Declaration
property Cursor: TCursor;
Description
Determines the shape of the mouse cursor when the package is accessed.
TOraclePackage.Debug

142 Direct Oracle Access 4.1 - User's Guide

Declaration
property Debug: Boolean;
Description
When set to true the PL/SQL block and all variable values will be displayed when the package
is accessed.

TOraclePackage.GetBooleanVariable

Declaration
function GetBooleanVariable(const VariableName: string): Variant
Description
Retrieves the value of the specified variable, which will be converted to a boolean value on the
server.

TOraclePackage.GetDateVariable

Declaration
function GetDateVariable(const VariableName: string): Variant
Description
Retrieves the value of the specified variable, which will be converted to a date v alue on the
server.

TOraclePackage.GetFloatVariable

Declaration
function GetFloatVariable(const VariableName: string): Variant
Description
Retrieves the value of the specified variable, which will be converted to a floating-point value
on the server.

TOraclePackage.GetIntegerVariable

Declaration
function GetIntegerVariable(const VariableName: string): Variant
Description
Retrieves the value of the specified variable, which will be converted to an integer value on the
server.
TOraclePackage.GetParameter

Direct Oracle Access 4.1 - User's Guide 143

Declaration
function GetParameter(const ParameterId: Variant): Variant;
Description
Retrieves the value of an out or in/out parameter after a procedure or function call. The index
is the zero-based position of the parameter. If you are using a named parameter mode, you
can also specify the name of the parameter.

In Delphi 4 or later this function is overloaded and accepts the index or name of the
parameter.

TOraclePackage.GetStringVariable

Declaration
function GetStringVariable(const VariableName: string): Variant
Description
Retrieves the value of the specified variable, which will be converted to a string value on the
server.

TOraclePackage.Optimize

Declaration
property Optimize: Boolean;
Description
When this property is set to True, multiple calls to the same procedure or function will only
cause a single parse on the server.

TOraclePackage.PackageName

Declaration
property PackageName: string;
Description
The name of the package in the database.
TOraclePackage.ParameterMode

Declaration
type TParameterModeOption = (pmNamed, pmPositional);
property ParameterMode: TParameterModeOption;
Description
The method to pass parameters to functions and procedures in the package: named or
positional. When this property is set to pmPositional, a string that specifies the name must
precede each parameter that is passed to a function or procedure.

ParameterMode = pmNamed

144 Direct Oracle Access 4.1 - User's Guide

IsDBA := dbms_session.CallBooleanFunction('is_role_enabled', ['role',

'DBA']);

ParameterMode = pmPositional
IsDBA := dbms_session.CallBooleanFunction('is_role_enabled',

['DBA']);

TOraclePackage.Session

Declaration
property Session: TOracleSession;
Description
The session in which the package will be accessed.

TOraclePackage.SetVariable

Declaration
procedure SetVariable(const VariableName: string; const Value:

Variant)
Description
Sets the packaged variable to the specified value. The type of the value variant will be
converted to the type of the variable on the server.

Direct Oracle Access 4.1 - User's Guide 145

TOracleEvent component

Unit
Oracle

Description
The TOracleEvent component can be used in an application that needs to react to dbms_alert
signals or dbms_pipe messages. These signals and messages are typically generated in
database triggers or server processes to pass information to other database sessions. The
TOracleEvent component works in a separate execution thread in the background, without
interfering with the normal program flow of your application. When an event occurs, the
OnEvent event handler is called, which is synchronized with the main thread of the application.

Declaring the TOracleEvent
After creating a TOracleEvent in your application, link it to a TOracleSession component by
setting the Session property. Note that this TOracleSession will be duplicated and will not be
used otherwise and that the original session does not even have to be connected. This way,
no interference will occur with other database access in your application. To wait for
dbms_pipe messages, set the ObjectType property to otPipe, and specify the name of the
pipe in the ObjectNames property. To wait for dbms_alert signals, set the ObjectType property
to otAlert, and specify one or more signal names in the ObjectNames property separated by
semicolons. Write an OnEvent event handler that reacts to the events. If you want to know that
no event has occurred in a certain amount of time, set the TimeOut property to a non-zero
value, and write an OnTimeOut event handler.

Using the TOracleEvent
After calling the Start method of the TOracleEvent, it will create a new execution thread, log on
with the duplicated session, and will start to wait for the event. Each time an event occurs, the
OnEvent event handler will be called. To stop a TOracleEvent, call the Stop method. When a
TOracleEvent component is destroyed (e.g. when a form or data module is destroyed), the
Stop method is automatically called. The stop method will also logoff the duplicated session.

Pipes or Alerts?
If you need to decide between using dbms_pipe messages and dbms_alert signals, you might
consider the following aspects:
w Signals are part of a transaction, messages are not. Therefore, a signal is visible in the

TOracleEvent component when the transaction is committed, whereas a message is
immediately visible and cannot be rolled back.

w A single signal can be received by multiple sessions, a single message will only be
received by one session. Therefore, it usually only makes sense to have only one session
receiving messages of a certain pipe.

w A message pipe can become full when no session is rec eiving messages, eventually
blocking the session that sends messages in this pipe.

146 Direct Oracle Access 4.1 - User's Guide

TOracleEvent reference
This chapter describes all properties, methods and events of the TOracleEvent component.

TOracleEvent.InternalSession

Declaration
property InternalSession: TOracleSession;
Description
When the TOracleEvent is started, it will create a new internal session that will be used to wait
for the database events. This run time property provides access to this internal session, which
can be used within the various event handlers.

TOracleEvent.KeepConnection

Declaration
property KeepConnection: Boolean;
Description
When true, the internal session of the TOracleEvent component will remain connected after
calling the Stop procedure. This can be useful if you frequently call Start and Stop, because
this will prevent frequent logon/logoff operations. To explicitly logoff the internal session, call
LogOff. Freeing the TOracleEvent will also implicitly logoff the internal session.

TOracleEvent.LogOff

Declaration
procedure LogOff;
Description
Calling this procedure will logoff the internal session. This is only useful if the KeepConnection
property is set to True. Freeing the TOracleEvent will also implicitly logoff the internal session.

TOracleEvent.ObjectNames

Declaration
property ObjectNames: string;
Description
The meaning of this property depends on the value of the ObjectType property:
w otPipe The ObjectNames property defines the name of the pipe.

w otAlert The ObjectNames property defines the name(s) of the signal(s). In case of
multiple signals, separate the names with semicolons. When one of multiple

Direct Oracle Access 4.1 - User's Guide 147

signals occurs, the OnEvent handler will provide the actual signal name.

TOracleEvent.ObjectType

Declaration
type TEventObjectType = (otPipe, otAlert);;
property ObjectType: TEventObjectType;
Description
Determines the object type of the event:
otPipe The object is a dbms_pipe, and the ObjectNames property contains the name of a

pipe.

otAlert The object is a dbms_alert, and the ObjectNames property contains the name of
one or more signals, separated by semicolons.

TOracleEvent.OnError

Declaration
type TOnEventErrorEvent = procedure(Sender: TOracleEvent; const

Error: Exception) of object;
property OnError: TOnEventErrorEvent;
Description
Triggered when an exception occurs during event handling.

TOracleEvent.OnEvent

Declaration
type TOnEventEvent = procedure(Sender: TOracleEvent; const

ObjectName: string; const Info: Variant) of Object;
property OnEvent: TOnEventEvent;
Description
Triggered when the specified event occurs. When Synchronized is True, this event handler will
be synchronized with the main thread of the application. When Synchronized is False, this
event handler must be thread-safe.

The ObjectName parameter contains the name of the pipe or signal. This information is only
relevant if you have entered multiple signal names in the ObjectNames property.

The Info parameter is a zero-based array of variants. In case of a dbms_pipe message it
contains all the items that were packed into the message when dbms_pipe.send_message
was called. You may expect strings, doubles and TDateTime elements in the array. If no items
were packed into the message, the Info parameter will be Null. In case of a dbms_alert signal,
the Info array always contains one string element that is the message that was passed with
the dbms_alert.signal call.

148 Direct Oracle Access 4.1 - User's Guide

The following is an example of a general event handler that will display all event info from any
TOracleEvent component in a memo:
procedure TMyForm.OnEvent(Sender: TOracleEvent; const ObjectName:

string; const Info: Variant);
var i: Integer;
begin
 Memo.Lines.Add('Event from ' + Sender.Name + ' on ' + ObjectName);
 if VarIsArray(Info) then
 for i := 0 to VarArrayHighBound(Info, 1) do

Memo.Lines.Add(Info[i]);
end;

TOracleEvent.OnStart

Declaration
type TEventEvent = procedure(Sender: TOracleEvent) of object;
property OnStart: TEventEvent;
Description
Triggered when the TOracleEvent instance starts.

TOracleEvent.OnStop

Declaration
type TEventEvent = procedure(Sender: TOracleEvent) of object;
property OnStop: TEventEvent;
Description
Triggered when the TOracleEvent instance stops, either because the Stop procedure is called,
the TOracleEvent instance is freed, or if some exception has occurred that stops event
handling.

TOracleEvent.OnTimeOut

Declaration
type TOnTimeOutEvent = procedure(Sender: TOracleEvent; var Continue:

Boolean) of Object;
property OnTimeOut: TOnTimeOutEvent;
Description
Triggered when the number of seconds specified by the TimeOut property have passed since
the last event occurred. When Synchronized is True, this event handler will be synchronized
with the main thread of the application. When Synchronized is False, this event handler must
be thread-safe.
The Continue boolean can be set to False by the event handler to stop the TOracleEvent
component.

Direct Oracle Access 4.1 - User's Guide 149

TOracleEvent.Session

Declaration
property Session: TOracleSession;
Description
The session that will be used to wait for the event to occur. Note that this session will be
duplicated to avoid any interference with database access in the rest of the application, and
that the original session does not have to be connected. The duplicated internal session can
be accessed in the event handlers through the InternalSession property.

TOracleEvent.Start

Declaration
procedure Start;
Description
Starts the TOracleEvent component. The Session will be duplicated and logged on, and the
component will start to wait for the specified event to occur.

TOracleEvent.Started

Declaration
property Started: Boolean;
Description
Indicates if the TOracleEvent component is currently waiting for an event.

TOracleEvent.Stop

Declaration
procedure Stop;
Description
Stops the TOracleEvent component. This method is automatically called when the component
is destroyed (e.g. when its parent form of module is destroyed). The internal session will be
logged off, unless you have set the KeepConnection property to True.

TOracleEvent.Synchronized

Declaration
property Synchronized: Boolean;
Description
Determines if the OnEvent and OnTimeOut event handlers are synchronized with the main
thread of the application.

150 Direct Oracle Access 4.1 - User's Guide

When the event handlers are synchronized, you don't need to worry about the fact if the code
in these event handlers is thread-safe. They will execute as if they were a normal part of the
message loop of your application.

When the event handlers are not synchronized, they will be executed immediately when the
event occurs, parallel with the main thread of the application. The event handlers must be
thread-safe, so you need to pay special attention to code that accesses global variables and
code that performs screen output.

TOracleEvent.TimeOut

Declaration
property TimeOut: Integer;
Description
Determines how many seconds can pass without the occurrence of an event before the
OnTimeOut event handler is called. If the value is 0, no OnTimeOut event will occur.

Direct Oracle Access 4.1 - User's Guide 151

TLOBLocator

Unit
Oracle

Description
Oracle8 has introduced a new and more flexible long datatype: the LOB (Large Object).
Currently, there are 3 different kinds of LOB's:
w CLOB Character LOB, analogous to a Long

w BLOB Binary LOB, analogous to a Long Raw

w BFile Binary File, to access files on the database server
You rarely access the data of a LOB column directly. Instead, you will use a LOB Locator to
read or write the data of such a column. A LOB Locator is stored in the record that contains a
LOB column and points to the actual data. When you include a LOB column in a select list,
you will actually just fetch the LOB Locator, not the data. The LOB Locator is encapsulated in
the TLOBLocator object, which gives you full access to all the powerful features of LOB's.

When a LOB column contains a null value, the record does not contain a LOB Locator.
Therefore, when selecting a null LOB, you cannot access the LOB data. When updating a null
LOB, you first need to update the column to contain an empty LOB (which is something
completely different than a null LOB) and use this newly created LOB Locator to write the
actual data. When inserting a new record with LOB columns, the same mechanism applies.
Temporary LOB's, created through the CreateTemporary constructor, do not have this
limitation. You can create the LOB, write data to it, and subsequently use it for Inserts,
Updates and PL/SQL calls.

You can obtain a TLOBlocator object in three ways:
w By creating one with TLOBLocator.Create or TLOBLocator.CreateTemporary

w By selecting a LOB column and using the TOracleQuery.LOBField method

w By accessing a LOB attribute of an object through the TOracleObject.LOBAttr method
Because the TLOBLocator is a descendant of the TStream object, you can use the familiar
Read, Write and Seek methods to access the data of the LOB, as well as the Size property.
Besides using the TLOBLocator object, Direct Oracle Access allows you to access the data of
a LOB in two more ways:
w Use the TOracleQuery.Field method after a select statement. This works identical to Long

and Long Raws. These methods use the LOB Locator that is fetched in the select
statement to retrieve the LOB data.

w The TOracleDataSet will transparently handle a LOB as a Delphi BLOB field. The
TemporaryLOB Preference defines at the session level if and how temporary LOB's will be
used when posting dataset records with LOB fields.

For additional information about LOB's, you can read Oracle's "Server Application Developer's
Guide".
Example - Selecting a LOB Locator

152 Direct Oracle Access 4.1 - User's Guide

After executing a select statement with one ore more LOB columns, you can use the Field
method to access the data. CLOB's will be returned as a string, BLOB's and BFiles will be
returned as a zero based variant array of bytes. You can access a specific piece of the LOB
data by using the GetLongField method. All of this is exactly the same as accessing a Long or
Long Raw column. Note that the actual data of the LOB is only fetched from the server at the
moment that you access it. The data is not pre-fetched or buffered on the client.

You can also obtain the LOB Locator of the selected LOB column. To do so, use the LOBField
method of the TOracleQuery. This method takes the name or index of the LOB field as a
parameter, and returns a TLOBLocator instance that you can subsequently use to access the
LOB. You can test if the LOB column is null by using the IsNull method of the TLOBLocator. If
it is null, you cannot access the LOB data.

The TLOBLocator object is a TStream descendant, so you can use the familiar Seek, Read,
and Size methods to retrieve the data of the LOB. The following is an example of how to
retrieve the last 100 bytes of a LOB:

var LOB: TLOBLocator;
 Buffer: array[0..99] of Byte;
begin
 // select lobcolumn from lobtable where id = 1
 with LOBQuery do
 begin
 Execute;
 LOB := LOBField('lobcolumn');
 if not LOB.IsNull then
 begin
 LOB.Seek(-100, soFromEnd);
 LOB.Read(Buffer, 100);
 end;
 end;
end;

Example - Updating LOB data
To update LOB data, you must obtain the TLOBLocator and use it to write the data. This is not
much different than selecting a LOB, except that you must now lock the record with the LOB.
You can do so by using a 'select ... for update'. After writing the data, you can use the Size
property or the Trim method to remove any remaining data that the LOB contained before the
update:

Direct Oracle Access 4.1 - User's Guide 153

var LOB: TLOBLocator;
 Buffer: array[0..99] of Byte;
begin
 // select id, lobcolumn from lobtable for update
 with LOBQuery do
 begin
 Execute;
 LOB := LOBField('LOBCOLUMN');
 LOB.Write(Buffer, 100);
 LOB.Trim; // Set the size to the current position, which is 100
 end;
end;

The TLOBLocator has 3 additional update methods:

w Copy(Source: TLOBLocator; Length: Integer)

 Copies <Length> bytes of the data from the current position of <Source> to the current
position of the TLOBLocator.

w Append(Source: TLOBLocator)

 Appends all the data of <Source> to the end of the TLOBLocator.

w Erase(Length: Integer)

 Fills <Length> bytes at the current position of the TLOBLocator with zeroes (BLOB) or
spaces (CLOB).

No LOB data is passed over the network for these methods, all work is done on the server.

Example - Inserting LOB data
You need to insert new LOB data into a table in two situations:

1. You are inserting a new record.

2. You are updating a record where the old value of the LOB column is null. In this case, the
record does not contain a LOB Locator that you can use to write data to.

If you are not using a temporary LOB, you must first insert/update an empty LOB Locator into
the record. To do so, you can use the SQL function empty_blob() or empty_clob() in an insert
or update statement. On the server, the LOB Locator will be initialized. The initialized LOB
Locator can then be returned to the client in a variable by using the new Oracle8 returning
clause. After this, you can start writing data to the LOB column. Note that you must use
SetComplexVariable to set a LOB variable.

The following is an example of an insert:

154 Direct Oracle Access 4.1 - User's Guide

var LOB: TLOBLocator;
 Buffer: array[0..99] of Byte;
begin
 // insert into lobtable (id, lobcolumn) values (:id, empty_blob())
 // returning lobcolumn into :lobcolumn
 with LOBQuery do
 begin
 SetVariable('id', 1);
 // Create a new BLOB (initially Null)
 LOB := TLOBLocator.Create(Session, otBLOB);
 // Assign it to the returning variable
 SetComplexVariable('lobcolumn', LOB);
 Execute;
 // After the insert, use the LOB Locator to write the data
 LOB.Write(Buffer, 100);
 LOB.Free;
 end;
end;

If you are using temporary LOB's, you can write the LOB data before executing the query, and
directly use this LOB data for an insert or update without a returning clause:
var LOB: TLOBLocator;
 Buffer: array[0..99] of Byte;
begin
 // insert into lobtable (id, lobcolumn) values (:id, :lobcolumn)
 with LOBQuery do
 begin
 SetVariable('id', 1);
 // Create a new temporary BLOB and write the data
 LOB := TLOBLocator.CreateTemporary(Session, otBLOB, True);
 LOB.Write(Buffer, 100);
 // Assign it to the returning variable
 SetComplexVariable('lobcolumn', LOB);
 // Insert it
 Execute;
 LOB.Free;
 end;
end;

Example - Using a BFile LOB Locator
The BFile LOB can be used to read files on the database server. The BFile LOB has a
directory and a filename property that specify the file on the server. Apart from selecting the
data, you can create a new TLOBLocator instance, assign a directory and filename to it, and
access the file without any SQL:

Direct Oracle Access 4.1 - User's Guide 155

var LOB: TLOBLocator;
 Buffer: array[0..99] of Byte;
begin
 // Create a new BFile
 LOB := TLOBLocator.Create(MainSession, otBFile);
 // Assign a directory alias and filename
 LOB.Directory := 'DATA_DIR';
 LOB.Filename := 'X100.DAT';
 // Read the first 100 bytes
 if LOB.FileExists then LOB.Read(Buffer, 100);
 LOB.Free;
end;

The directory is an alias (case sens itive!) that must first be created on the server by using a
'create directory' SQL statement. The FileExists method indicates if the file exists in the
directory on the server. If the directory alias does not exist, an exception will be raised.

To set the directory or filename of a BFile column in the database, you can use the BFilename
SQL function, for example:
update filetable set filecolumn = bfilename(:directory, :filename)

You can also create a BFile LOB Locator, set the directory and filename property, associate it
with a variable in an update or insert statement and execute it:
var LOB: TLOBLocator;
begin
 // Create a new BFile
 LOB := TLOBLocator.Create(MainSession, otBFile);
 // Assign a directory alias and filename
 LOB.Directory := 'DATA_DIR';
 LOB.Filename := 'X100.DAT';
 // Set the LOB variable
 LOBQuery.SetComplexVariable('filecolumn', LOB);
 // update filetable set filecolumn = :filecolumn
 LOBQuery.Execute;
 LOB.Free;
end;

156 Direct Oracle Access 4.1 - User's Guide

TLOBLocator reference
This chapter describes all properties and methods of the TLOBLocator object.

TLOBLocator.Append

Declaration
procedure Append(Source: TLOBLocator);
Description
Appends all the data of the source LOB Locator to the end of the TLOBLocator. All processing
is done one the server, so that no LOB data is transferred across the network. You cannot use
this function if Buffering is enabled.

TLOBLocator.Assign

Declaration
procedure Assign(Source: TLOBLocator);
Description
Assigns the Source LOB Locator to this LOB Locator, so that they point to the same LOB data.

TLOBLocator.AsString

Declaration
property AsString: string;
Description
Use this property to read the complete contents of a LOB column into a string variable. You
can also set this property to write a string to a LOB column.

TLOBLocator.Buffering

Declaration
property Buffering: Boolean;
Description
When your application performs many small reads or writes on CLOB's or BLOB's, you can
use buffering to increase performance. When you set the Buffering property of a TLOBLocator
to True, Net8 will buffer these reads and writes, thereby reducing the number of network
roundtrips.

When you use buffering for writes, the buffer will be flushed to the server in three situations:

1. You set the Buffering property back to False

2. You Free the TLOBLocator instance

Direct Oracle Access 4.1 - User's Guide 157

3. You call the FlushBuffer method

Note that before you commit a transaction with buffered LOB writes, you must make sure that
the buffers are flushed. Otherwise these writes will not be part of the committed transaction.

Also note that you cannot use other update methods than write when buffering is enabled.
This includes Trim, Erase, Copy, Append and setting the Size property.

TLOBLocator.Clear

Declaration
procedure Clear;
Description
Sets the LOB Locator to null.

See also
IsNull

TLOBLocator.Copy

Declaration
procedure Copy(Source: TLOBLocator; Length: Integer);
Description
Copies <Length> bytes of the data from the current position of the Source LOB Locator to the
current position of this LOB Locator. All processing is done one the server, so that no LOB
data is transferred across the network. You cannot use this function if Buffering is enabled.

TLOBLocator.Create

Declaration
constructor Create(ASession: TOracleSession; ALOBType: Integer);
Description
This constructor creates a TLOBLocator instance for the specified session and of the specified
type (otCLOB, otBLOB or otBFile). After you have created a LOB Locator, it will be null until
you assign a Directory and Filename (BFile), set it to empty with SetEmpty (CLOB and BLOB),
or receive an initialized LOB Locator from the server in a LOB variable.

158 Direct Oracle Access 4.1 - User's Guide

TLOBLocator.CreateTemporary

Declaration
constructor CreateTemporary(ASession: TOracleSession; ALOBType:

Integer; Cache: Boolean);
Description
This constructor creates a temporary TLOBLocator instance for the specified session and of
the specified type (otCLOB or otBLOB). The Cache parameter indicates whether the LOB data
should be cached on the client (True) or not (False). Uncached LOB data will be stored on the
server when written.

TLOBLocator.Directory

Declaration
property Directory: string;
Description
For BFile LOB Locators, this property defines the directory of the file on the server. This is an
alias (case sensitive!) that must first be created on the server by using a 'create directory' SQL
statement.

Together with the Filename property, it defines the full file specification of the BFile.

TLOBLocator.Erase

Declaration
function Erase(Length: Integer): Integer;
Description
Fills <Length> bytes at the current position of the LOB Locator with zeroes (BLOB) or spaces
(CLOB). All processing is done one the server, so that no LOB data is transferred across the
network. You cannot use this function if Buffering is enabled.

TLOBLocator.FileExists

Declaration
function FileExists: Boolean;
Description
Determines if the file indicated by the Filename property exists in the directory indicated by the
Directory property. If the directory alias does not exist in the database, an exception is raised.
TLOBLocator.Filename

Direct Oracle Access 4.1 - User's Guide 159

Declaration
property Filename: string;
Description
For BFile LOB Locators, this property defines the filename of the file on the server. You can
use the FileExists method to determine if the file exists in the directory on the server.

Together with the Directory property, it defines the full file specification of the BFile.

TLOBLocator.FlushBuffer

Declaration
procedure FlushBuffer;
Description
If Buffering is enabled for the LOB Locator, you can use this function to flush the buffer to the
server.

TLOBLocator.IsNull

Declaration
function IsNull: Boolean;
Description
Determines if the LOB Locator is null.

See also
Clear

TLOBLocator.LoadFromFile

Declaration
procedure LoadFromFile(const FileName: string);
Description
You can directly write the contents of a file to a CLOB or BLOB by using this procedure.

See also
SaveToFile

TLOBLocator.Name

Declaration
property Name: string;
Description
Use this property to provide a logical name for the LOB Locator. This property will be used by

160 Direct Oracle Access 4.1 - User's Guide

the Oracle Monitor in the object tree. If you do not provide a name, a default name will be
generated when the instance is sent to the monitor. This name will be 'LOBLocator' followed
by a monitor id number.

TLOBLocator.Position

Declaration
property Position: LongInt;
Description
Use this property the determine the current zero-based byte position of the LOB Locator as
used by the Read, Write, Seek, Copy, Erase and Trim methods. Position is a read-only
property, and can be modified by using the Seek method.

TLOBLocator.Read

Declaration
function Read(var Buffer; Count: Longint): Longint;
Description
The read method reads <Count> bytes from the current position of the LOB Locator into the
buffer variable. The result indicates the number of bytes that were actually read. The current
position can be set by using the Seek method.

TLOBLocator.SaveToFile

Declaration
procedure SaveToFile(const FileName: string);
Description
You can directly write the contents of a CLOB, BLOB or BFile to a file by using this procedure.

See also
LoadFromFile

TLOBLocator.Seek

Declaration
function Seek(Offset: Longint; Origin: Word): Longint;
Description
The seek method can be used to set the current position of the LOB Locator. This position can
then be used by subsequent calls to Read, Write, Trim, Copy or Erase. The Origin determines
how the seek is performed and how the Offset is interpreted:
Value Meaning

Direct Oracle Access 4.1 - User's Guide 161

soFromBeginning Offset is from the beginning. Seek moves to the position Offset.
Offset must be >= 0.

soFromCurrent Offset is from the current position. Seek moves to Position +
Offset.

soFromEnd Offset is from the end. Offset must be <= 0 to indicate a number of
bytes before the end of the TLOBLocator.

TLOBLocator.SetEmpty

Declaration
procedure SetEmpty;
Description
Sets the LOB Locator to emtpy. Only valid for CLOB's and BLOB's. An empty LOB Locator
can be initialized on the server and can subsequently be used to write data to.

TLOBlocator.Size

Declaration
property Size: LongInt;
Description
Use Size to get or set the size of the LOB. When you set Size to a larger value, the LOB will
be padded with zeroes (BLOB) or spaces (CLOB). You cannot set the Size property if
Buffering is enabled.

Note
In Delphi 2 this is a read-only property. Use the Trim method to set the size in Delphi 2.

TLOBLocator.Temporary

Declaration
property Temporary: Boolean;
Description
This property is True if the TLOBLocator instance is for a Temporary LOB (created through
CreateTemporary).

TLOBLocator.Trim

162 Direct Oracle Access 4.1 - User's Guide

Declaration
procedure Trim;
Description
Removes all data after the current position of the LOB Locator. All processing is done one the
server, so that no LOB data is transferred across the network. You cannot use this function if
Buffering is enabled.

TLOBLocator.Write

Declaration
function Write(const Buffer; Count: Longint): Longint;
Description
The write method writes Count bytes at the current position of the TLOBLocator from the
buffer variable. The result indicates the number of bytes that were actually written. The current
position can be set by using the Seek method.

Direct Oracle Access 4.1 - User's Guide 163

TOracleObject object

Unit
Oracle

Description
The most important new feature of Oracle8 for application development is the Object
Extension. It allows an application to access the database in an object-oriented way by
introducing object attributes, methods, persistence, and so on. The client-side cache of Net8
allows a programmer to create very efficient client/server applications, without compromising
the application with all kinds of optimization logic.

An Oracle8 object is encapsulated in the Delphi object TOracleObject. You can obtain a
TOracleObject instance by creating one with the Create constructor, by selecting an object in
a TOracleQuery and using the ObjField method, by pinning (also called dereferencing) a
TOracleReference, or by accessing an object's embedded object though
TOracleObject.ObjAttr.

An object can be atomically null, which means that the whole object is null rather than all its
attributes. To test for atomic nullness, use the IsNull method. To make an object atomically
null, use the Clear method. An object will become "not null" when one of its attributes is set.

Simple object attributes are manipulated by using the GetAttr and SetAttr methods. Complex
object attributes are accessed by using the LOBAttr (for LOB Locator attributes), ObjAttr (for
embedded object attributes) or RefAttr (for reference attributes) methods. Object methods
(member functions and procedures) can be called by using the CallMethod method.

Persistent standalone objects (those objects that are either created with an associated table or
pinned from a reference) can be flushed to the database server by using the Flush method.
Flushing is required after a persistent standalone object has been modified, or after it has
been deleted by using the Delete method. Furthermore, persistent standalone objects can be
locked by using the Lock method, and can be refreshed from the database by using the
Refresh method.

Objects can also be varray or nested table collections. A collection object does not have
attributes. Instead, it has elements that can be of a simple (string, integer, float, date) or
complex (reference, object) data type. To access an element of a collection, TOracleObject
provides 3 zero-based array properties: Elements (for simple element types), ObjElements (for
object element types) and RefElements (for reference element types). Use the ElementCount
method to determine the number of elements in the collection. You can delete an element by
using the DeleteElement method, which results in a "gap" in the collection. Use the
ElementExists method to determine if an element exists at a certain position in the collection.

Note
This object is only available in the Object version of Direct Oracle Access.

Example - Selecting an object
The following example selects an address object attribute from the Persons object table, tests
if it is null, and displays the City attribute of the address.

164 Direct Oracle Access 4.1 - User's Guide

 var Address: TOracleObject;
 begin
 Query.SQL.Text := 'select Name, Address from Persons';
 Query.Execute;
 while not Query.Eof do
 begin
 Address := Query.ObjField('Address');
 if not Address.IsNull then
 ShowMessage(Query.Field('Name') + ' lives in ' +

Address.GetAttr('City'));
 Query.Next;
 end;
 end;

Example - Updating an object
The following example selects a person object by reference, pins and locks the reference,
converts the address attributes to uppercase and flushes this modification to the database.

 var Person: TOracleObject;
 Street, City: string;
 begin
 Query.SQL.Text := 'select ref(P) Person from Persons P';
 Query.Execute;
 while not Query.Eof do
 begin
 Person := Query.RefField('Person').Pin(poLatest, plExclusive);
 Street := Person.GetAttr('Address.Street');
 if Street <> UpperCase(Street) then
 Person.SetAttr('Address.Street', UpperCase(Street));
 City := Person.GetAttr('Address.City');
 if City <> UpperCase(City) then
 Person.SetAttr('Address.City', UpperCase(City));
 if Person.Modified then
 Person.Flush;
 Person.Free;
 Query.Next;
 end;
 end;

Direct Oracle Access 4.1 - User's Guide 165

TOracleObject reference
This chapter describes all properties and methods of the TOracleObject object.

TOracleObject.Assign

Declaration
procedure Assign(Source: TOracleObject);
Description
Assigns the Source object to this object by making a "deep copy". Both objects must be of the
same type.

TOracleObject.AttrIsNull

Declaration
function AttrIsNull(const AName: string): Boolean;
Description
Determine if an attribute is null. If the attribute is part of an embedded object, use the dot-
notation (e.g. 'Person.Address.Zip') to specify its name.

See also
ClearAttr

TOracleObject.CallComplexMethod

Declaration
procedure CallComplexMethod(const AMethodName: string; const

Parameters: array of Variant; Result: TObject);
Description
When the return value of a method is of a complex data type, you must use
CallComplexMethod instead of CallMethod. This method has one extra TObject parameter
that is used to receive the return value. To call the method Parent, which returns a TPerson
reference, you could use the following code:
 // Create a new reference
 RefParent := TOracleReference.Create(Session, 'TPerson');
 // Get the reference to a parent
 Person.CallComplexMethod('Parent', parNone, RefParent);

TOracleObject.CallMethod

166 Direct Oracle Access 4.1 - User's Guide

Declaration
function CallMethod(const AMethodName: string; const Parameters:

array of Variant): Variant;
Description
You can call an object method by using CallMethod. The method is executed on the server.
Therefore, each method call results in a single network roundtrip. To determine the age of a
TPerson object, you could use the following statement:
 Age := Person.CallMethod('Age', ['p_AtDate', Now]);

The first parameter ('Age') specifies the name of the method. The second parameter is an
array of variants that specify the parameters of the method. The return value of CallMethod is
a variant that contains the return value of the executed method. For methods that do not return
a value ('member procedures'), a Null is returned.

You can use a named or positional notation for the parameters. In case of a named notation,
each parameter value must be preceded by the parameter name. The following statement
uses a positional notation:
 Age := Person.CallMethod('Age', [Now]);

Because the 'p_AtDate' parameter has a default value, it can also be omitted. Because Delphi
does not allow empty open array constructors, you can pass the parNone constant:
 Age := Person.CallMethod('Age', parNone);

You can also use GetAttr for methods that do not need parameters, thereby making it
transparent to the application if something is a method or an attribute (much like you are used
to in Delphi).

When a method has out or in/out parameters, you can retrieve their value with GetParameter
after calling the method. Out parameters do not need to be specified in the parameter list, as
they do not have a value on input. You can also omit in/out parameters, in which case they will
be null on input.

When a parameter is of a complex data type (LOB Locator, Reference or Object), you need to
pass an instance of the appropriate object type to the method. Because the parameters are
specified as variants, you must typecast the object instance to a LongInt. To call the method
IsParent, which takes a TPerson reference as parameter, you could use the following code:
 if Person.CallMethod('IsParent', ['p_Parent',

LongInt(AnotherPerson.Reference)]) then
 ShowMessage(AnotherPerson.GetAttr('Name') + ' is a parent of ' +

Person.GetAttr('Name'));

A parameter of a complex data type can never be omitted. Even if it is an out parameter, you
must still specify the object instance in which you wish to receive the value.

When the return value of a method is of a complex data type, you must use
CallComplexMethod instead of CallMethod.

Direct Oracle Access 4.1 - User's Guide 167

TOracleObject.Clear

Declaration
procedure Clear;
Description
Makes an object atomically null, and clears all its attributes.

See also
IsNull

TOracleObject.ClearAttr

Declaration
procedure ClearAttr(const AName: string);
Description
Sets an attribute to null. Can be used for simple and complex data types. If the attribute is part
of an embedded object, use the dot-notation (e.g. 'Person.Address.Zip') to specify its name.

See also
AttrIsNull

TOracleObject.Create

Declaration
constructor Create(ASession: TOracleSession; const ATypeName: string;

const ATable: string);
Description
When you create a new TOracleObject instance, you must specify the database session and
the name of the type in the Oracle database. When creating a persistent object, you must also
specify the table name. The following example creates a persistent TPerson object instance
that will be stored in the Persons table:
 Person := TOracleObject.Create(Session, 'TPerson', 'Persons');

If the object type or table is defined in a different schema and no synonyms are defined, you
should prefix them with the owner:
 Person := TOracleObject.Create(Session, 'Scott.TPerson',

'Scott.Persons');

After creating a new object instance, all attributes will be null and the object itself will be
atomically null.

TOracleObject.Delete

168 Direct Oracle Access 4.1 - User's Guide

Declaration
procedure Delete;
Description
To delete a persistent standalone object in the database, you can call the Delete method and
flush this modification to the database:
 Father := Person.RefAttr('Father').Pin(poAny, plNone);
 Person.ClearAttr('Father');
 Person.Flush;
 Father.Delete;
 Father.Flush;
 Father.Free;

If you access the object after it has been deleted, an exception will be raised that it has been
deleted or is marked for delete. Transient objects cannot be deleted.

TOracleObject.DeleteElement

Declaration
procedure DeleteElement(Index: Integer);
Description
To delete an element in a collection, you can use the DeleteElement method. DeleteElement
takes a zero-based index of the element that is to be deleted. The elements after this index
will not be moved by one position. Instead, the collection will have a non-existent element. You
can test for the existence of an element at a given index by using the ElementExists method.
The following example removes the last job from the Jobs collection of a person:
 Jobs := Person.ObjAttr('Jobs');
 if Jobs.ElementCount > 0 then

Jobs.DeleteElement(Jobs.ElementCount);
 Person.Flush;

Instead of DeleteElement you can also use TrimElements to remove elements from the end of
a collection.
TOracleObject.ElementCount

Declaration
function ElementCount: Integer;
Description
Returns the number of elements of a collection object, including any deleted elements.

TOracleObject.ElementExists

Direct Oracle Access 4.1 - User's Guide 169

Declaration
function ElementExists(Index: Integer): Boolean;
Description
Determines if an element exists at a certain Index in a collection object.

See also
DeleteElement

TOracleObject.Elements

Declaration
property Elements: array of Variant;
Description
For collection objects with elements of a simple type (string, integer, float or date), the
Elements array gives access to the variant values of the individual elements:
 // Get the PhoneList collection: varray of varchar2(12)
 PhoneList := Person.ObjAttr('PhoneList');
 // Put each phone number element in a memo
 for Index := 0 to PhoneList.ElementCount - 1 do
 begin
 if PhoneList.ElementExists(Index) then
 Memo.Lines.Add(PhoneList.Elements[Index]);
 end;

You can also use the Elements array to set the value of an individual element. If you assign a
value to the element after the last one, the collection will automatically expand, which will be
reflected by ElementCount.

TOracleObject.Flush

Declaration
procedure Flush;
Description
Flushes the changes of a standalone persistent object to the database. The object must be
Modified. Use this method after creating, modifying or deleting a persistent standalone object.

TOracleObject.GetAttr

Declaration
function GetAttr(const AName: string): Variant;
Description
Returns the variant value of an attribute of a simple data type (string, integer, float or date). If
the attribute is part of an embedded object, use the dot-notation (e.g. 'Person.Address.Zip') to

170 Direct Oracle Access 4.1 - User's Guide

specify its name. If the attribute is null, the NullValue property of the session determines if it
will be returned as a Null or Unassigned variant.

You can also access LOB attributes with GetAttr. CLOB's will be handled as strings, and
BLOB's and BFiles will be handled as zero-based variant arrays of bytes. You use GetAttr in
exactly the same way that you use the Field method for LOB fields in a TOracleQuery.
Embedded object attributes and reference attributes cannot be accessed through the GetAttr
method.

You can also use GetAttr for methods that do not need parameters, thereby making it
transparent to the application if something is a method or an attribute (much like you are used
to in Delphi).

See also
AttrIsNull
CallMethod
LOBAttr

ObjAttr
RefAttr

TOracleObject.GetParameter

Declaration
function GetParameter(const ParameterId: Variant): Variant;
Description
When a method has out or in/out parameters, you can retrieve their value with GetParameter
after calling the method with CallMethod:
 Person.CallMethod('DisplayInfo', parNone);
 Name := Person.GetParameter('p_Name');
 Addr := Person.GetParameter('p_Addr');

The parameter can be specified by its name or by its zero-based position.
TOracleObject.IsArray

Declaration
function IsArray: Boolean;
Description
Indicates if the object is an array collection.

See also
IsCollection
IsTable

TOracleObject.IsCollection

Direct Oracle Access 4.1 - User's Guide 171

Declaration
function IsCollection: Boolean;
Description
Indicates if the object is a collection.

See also
IsTable
IsArray

TOracleObject.IsLocked

Declaration
function IsLocked: Boolean;
Description
Indicates if the object is locked. Only valid for standalone persistent objects.

See also
Lock

TOracleObject.IsNull

Declaration
function IsNull: Boolean;
Description
Indicates if the object is atomically null.

See also
Clear
TOracleObject.IsTable

Declaration
function IsTable: Boolean;
Description
Indicates if the object is a table collection.

See also
IsCollection

IsArray

TOracleObject.LOBAttr

172 Direct Oracle Access 4.1 - User's Guide

Declaration
function LOBAttr(const AName: string): TLOBLocator;
Description
You can access a LOB Locator attribute by using the LOBAttr method, which returns a
TLOBLocator instance. When you modify the LOB Locator with the Clear, SetEmpty, Directory
or Filename methods and properties, this will affect the object instance, which will become
Modified:
 with PersonRef.Pin(poAny, plNone) do
 try
 LOBAttr('Picture').Directory := 'BMP_DIR';
 LOBAttr('Picture').Filename := 'scott.bmp';
 Flush;
 finally
 Free;
 end;

If you use an existing LOB Locator attribute to modify LOB data of a CLOB or BLOB, the
object instance will not become Modified. Instead, the data is written directly to the LOB
location.

If the LOB attribute is currently null, you must first set it to empty, flush the instance to the
server, and refresh it to retrieve an initialized LOB Locator.

Note that the object instance must be locked before you can modify its LOB data. This can be
achieved by using the Lock method, or by specifying a plExclusive PinLockOption when
calling the TOracleReference.Pin method:
 Person := PersonRef.Pin(poAny, plNone);
 // Get the notes LOB Locator attribute
 Notes := Person.LOBAttr('Notes');
 if Notes.IsNull then
 begin
 // Notes is null, set it to empty, flush the instance, and

refresh it
 Notes.SetEmpty;
 // Flushing it will also lock it
 Person.Flush;
 // Retrieve the initialized LOB Locator
 Person.Refresh;
 else begin
 Person.Lock;
 end;
 Notes.Write(Memo.Text, Length(Memo.Text));
 Notes.Trim;
 Person.Free;

See also
GetAttr
SetAttr

Direct Oracle Access 4.1 - User's Guide 173

TOracleObject.Lock

Declaration
procedure Lock;
Description
Locks the object in the database. Only valid for persistent standalone objects.

See also
IsLocked

TOracleObject.MaxElements

Declaration
function MaxElements: Integer;
Description
Returns the maximum number of elements for an array collection object.

174 Direct Oracle Access 4.1 - User's Guide

TOracleObject.Modified

Declaration
property Modified: Boolean;
Description
Indicates if the object is modified. Only valid for persistent standalone objects.

A persistent standalone object will become modified when:
w One of its attributes is changed
w The Delete method is called
w Modified is explicitly set to True

Modified will become False when:
w The object is flushed
w The FlushObjects method of the session is called
w The Commit method of the session is called
w It is explicitly set to False

TOracleObject.Name

Declaration
property Name: string;
Description
Use this property to provide a logical name for the Object. This property will be used by the
Oracle Monitor in the object tree. If you do not provide a name, a default name will be
generated when the instance is sent to the monitor. This name will be 'OracleObject' followed
by a monitor id number.

TOracleObject.ObjAttr

Declaration
function ObjAttr(const AName: string): TOracleObject;
Description
If you wish to access an embedded object attribute as a TOracleObject, you can use the
ObjAttr method. A TOracleObject instance is returned that accesses the same instance data
as the embedding object:
 Address := Person.ObjAttr('Address');
 Address.SetAttr('Street', 'Church road 78');
 // Will display 'Church road 78'
 ShowMessage(Person.GetAttr('Address.Street'));

You can set an embedded object attribute to null by using the ClearAttr method of the
embedding object, or by using the Clear method of the embedded object. Similarly, you can
test if an embedded object is Null with the AttrIsNull method of the embedding object, or by

Direct Oracle Access 4.1 - User's Guide 175

using the IsNull method of the embedded object.

TOracleObject.ObjElements

Declaration
property ObjElements: array of TOracleObject; default;
Description
For collection objects with elements of an object type, the ObjElements array gives access to
the TOracleObject instances of the individual elements. Because the ObjElements array is the
default array property of a TOracleObject, you can omit the ObjElements property name:
 // Get the Jobs collection: table of TJob
 Jobs := Person.ObjAttr('Jobs');
 // Put the company attribute of each TJob element in a memo
 for Index := 0 to Jobs.ElementCount - 1 do
 begin
 if Jobs.ElementExists(Index) then
 Memo.Lines.Add(Jobs[Index].GetAttr('Company');
 end;

You can also use the ObjElements array to set the value of an individual element. If you
assign a value to the element after the last one, the collection will automatically expand, which
will be reflected by ElementCount. Note that the source object is copied to the collection, no
reference is made to the original TOracleObject instance:
 // Create a new transient TJob instance
 Jobs := Person.ObjAttr('Jobs');
 Job := TOracleObject.Create(Session, 'TJob', '');
 Job.SetAttr('Company', 'Borland International');
 Job.SetAttr('StartDate', Date);
 // Assign it to the element after the last one
 Jobs[Jobs.ElementCount] := Job;
 // The TJob is copied, so it can safely be freed
 Job.Free;
 // Flush the embedding object
 Person.Flush;

TOracleObject.RefAttr

Declaration
function RefAttr(const AName: string): TOracleReference;
Description
Reference attributes can be accessed by using the RefAttr method. You can for example pin a
reference attribute in the same way as pinning a reference field in a query: by using the Pin
method of the TOracleReference object that is returned by the RefAttr method:

176 Direct Oracle Access 4.1 - User's Guide

 Mother := Person.RefAttr('Mother').Pin(poAny, plNone);
 ShowMessage(Mother.GetAttr('Name'));
 Mother.Free;

You can set a reference attribute by using the TOracleReference.Assign method:
 RefMother := Brother1.RefAttr('Mother');
 Brother2.RefAttr('Mother').Assign(RefMother);

TOracleObject.RefElements

Declaration
property RefElements: array of TOracleReference;
Description
For collection objects with elements of a reference type, the RefElements array gives access
to the TOracleReference instances of the individual elements:
 // Get the Jobs collection: table of ref TJob
 Jobs := Person.ObjAttr('Jobs');
 // Put the company attribute of each ref TJob element in a memo
 for Index := 0 to Jobs.ElementCount - 1 do
 begin
 if Jobs.ElementExists(Index) then
 begin
 Job := Jobs.RefElements[Index].Pin(poAny, plNone);
 Memo.Lines.Add(Job.GetAttr('Company');
 Job.Free;
 end;
 end;

You can also use the RefElements array to set the value of an individual element. If you
assign a value to the element after the last one, the collection will automatically expand, which
will be reflected by ElementCount. Note that the source reference is copied to the collection,
no reference is made to the original TOracleReference instance.

TOracleObject.Reference

Declaration
function Reference: TOracleReference;
Description
Returns the reference of this object. Only valid for persistent standalone objects.
TOracleObject.Refresh

Direct Oracle Access 4.1 - User's Guide 177

Declaration
procedure Refresh;
Description
Refreshes an object instance from the database. Only valid for persistent standalone objects.

TOracleObject.SetAttr

Declaration
procedure SetAttr(const AName: string; const Value: Variant);
Description
Sets the variant value of an attribute of a simple data type (string, integer, float or date). If the
attribute is part of an embedded object, use the dot-notation (e.g. 'Person.Address.Zip') to
specify its name. If the object is a standalone persistent object, it will be become modified, and
can subsequently be flushed to the database.

You can also use the SetAttr method to write data to a LOB Locator attribute:
 Person := PersonRef.Pin(poAny, plNone);
 Person.SetAttr('Notes', Memo.Text);

If the LOB attribute is currently null, the SetAttr method will automatically set it to empty, flush
the instance to the server, and refresh it to retrieve an initialized LOB Locator. After this, the
data will be written to the LOB location. SetAttr will also automatically lock the instance if
necessary.

Embedded object attributes and reference attributes cannot be accessed through the SetAttr
method.

See also
ClearAttr

LOBAttr
ObjAttr
RefAttr

TOracleObject.TimestampAttr

Declaration
function TimestampAttr(const AName: string): TOracleTimestamp;
Description
You can access a Timestamp attribute by using the TimestampAttr method, which returns a
TOracleTimestamp instance. When you modify the Timestamp through any of its methods or
properties, this will affect the object instance, which will become Modified.
TOracleObject.TrimElements

178 Direct Oracle Access 4.1 - User's Guide

Declaration
procedure TrimElements(Count: Integer);
Description
You can use the TrimElements method to remove elements from the end of the collection. The
following example removes the last element from the Jobs collection attribute of a TPerson
object:
 Jobs := Person.ObjAttr('Jobs');
 if Jobs.ElementCount > 0 then Jobs.TrimElements(Jobs.ElementCount -

1);
 Person.Flush;

TOracleObject.XMLAttr

Declaration
function XMLAttr(const AName: string): TXMLType;
Description
This function returns a TXMLType instance for a SYS.XMLTYPE attribute.

Direct Oracle Access 4.1 - User's Guide 179

TOracleReference object

Unit
Oracle

Description
The most important new feature of Oracle8 for application development is the Object
Extension. It allows an application to access the database in an object-oriented way by
introducing object attributes, methods, persistence, and so on. The client-side cache of Net8
allows a programmer to create very efficient client/server applications, without compromising
the application with all kinds of optimization logic.

An Oracle8 object reference plays an important role in an object application, and is
encapsulated in the TOracleReference object. You can obtain a TOracleReference instance
by creating one with the Create constructor, by selecting a reference in a TOracleQuery and
using the RefField method, or by accessing an object's RefAttr or Reference methods.

A reference can be pinned (also called dereferenced) by using the Pin method. The
referenced object is fetched from the client-side object cache or from the database server,
resulting in a new TOracleObject instance.

Note
This object is only available in the Object version of Direct Oracle Access.

Example - Selecting a reference
The following example selects a reference column ('Mother') from the Persons object table,
tests if the reference is null, Pins the reference, and displays the name of the referenced
TPerson object:

 var Mother: TOracleObject;
 RefMother: TOracleReference;
 begin
 Query.SQL.Text := 'select Name, Mother from Persons';
 Query.Execute;
 while not Query.Eof do
 begin
 RefMother := Query.RefField('Mother');
 if not RefMother.IsNull then
 begin
 Mother := RefMother.Pin(poAny, plNone);
 ShowMessage('The mother of ' + Query.Field('Name') + ' = ' +

Mother.GetAttr('Name'));
 Mother.Free;
 end;
 Query.Next;
 end;
 end;

180 Direct Oracle Access 4.1 - User's Guide

TOracleReference reference
This chapter describes all properties and methods of the TOracleReference object.

TOracleReference.Assign

Declaration
procedure Assign(Source: TOracleReference);
Description
Assigns the Source reference to this reference.

TOracleReference.Clear

Declaration
procedure Clear;
Description
Sets the reference to null.

See also
IsNull

TOracleReference.Create

Declaration
constructor Create(ASession: TOracleSession; const ATypeName:

string);
Description
Creates a new reference for the specified session and of the specified type. The typename
can be prefixed with the schema name if it resides in another schema and no synonyms are
defined.

TOracleReference.Hex

Declaration
property Hex: string;
Description
Property to get or set the hexadecimal representation of a reference.
TOracleReference.IsNull

Direct Oracle Access 4.1 - User's Guide 181

Declaration
function IsNull: Boolean;
Description
Indicates if the reference is null.

See also
Clear

TOracleReference.Name

Declaration
property Name: string;
Description
Use this property to provide a logical name for the Reference. This property will be used by
the Oracle Monitor in the object tree. If you do not provide a name, a default name will be
generated when the instance is sent to the monitor. This name will be 'OracleReference'
followed by a monitor id number.

TOracleReference.Pin

Declaration
type TPinOption = (poAny, poRecent, poLatest);
type TPinLockOption = (plNone, plExclusive);
function Pin(PinOption: TPinOption; PinLockOption: TPinLockOption):

TOracleObject;
Description
The Pin method (also known as 'dereference') can be used to fetch an object instance. A new
TOracleObject instance is created for the referenced object. If the reference is null, the Pin
method returns nil. The application is responsible for freeing the pinned TOracleObject
instance.

The PinOption parameter specifies which copy of the instance is required by the application
and thereby determines the consistency level:
Value Meaning
poAny Get any copy that may be available in the cache, otherwise fetch it from the

database

poRecent Get a copy from the cache if it was fetched in the current transaction,
otherwise fetch it

poLatest Get a copy from the cache if it is locked, otherwise fetch it

The PinLockOption specifies how to lock the instance in the database:

Value Meaning

182 Direct Oracle Access 4.1 - User's Guide

plNone Don't place a lock on the instance

plExclusive Place an exclusive lock on the instance

Direct Oracle Access 4.1 - User's Guide 183

TOracleScript component

Unit
Oracle

Description
The TOracleScript component allows you to define and execute a SQL script with multiple
SQL statements. This can be useful if you need to execute multiple statements that cannot be
used in a PL/SQL Block. This is very often the case for installation scripts, which typically
contain a lot of DDL (Data Definition Language) statements for the creation of tables,
sequences, view, program units, and so on.

Defining the script
The Lines property of the TOracleScript contains the plain text of the SQL script. This follows
the basic syntax rules of SQL*Plus. A semi-colon or a slash separates SQL statements,
unless they contain a PL/SQL section, in which case they need to be terminated by a slash
(the PL/SQL itself will contain semi-colons). The following example would create a table and a
procedure:

-- drop the dept table if it already exists
drop table dept;

-- create the dept table
create table dept
(
 deptno number(4) not null,
 dname varchar2(14) not null,
 loc varchar2(13)
);

-- create the deptcount function
create or replace function deptcount return integer as
 result integer;
begin
 select count(*) into result from dept;
 return(result);
end;
/

The easiest way to define a script is to use the component editor at design time. Just double-
click on the TOracleScript instance and type the text. You can immediately run it within the
editor to test it, and view the output (if applicable). You can switch between a script and a
commands page by selecting the corresponding tabs at the top of the editor. On the
commands page your view is limited to a single command from the script, and pressing the
execute button will execute just that command. On this page you can also add and delete
commands, and navigate through the commands. Making a change on the commands page
will be reflected on the script page, and vice versa.

Non-SQL commands
Besides all SQL commands the following non-SQL commands are supported:

CONNECT Username/Password@Database

184 Direct Oracle Access 4.1 - User's Guide

DEFINE Variable=Value
EXIT
PAUSE Message
PROMPT Message
QUIT
REMARK Comment
SET Option ON|OFF (Option = ECHO | EXITONERROR | FEEDBACK | SCAN | TERMOUT)
SET COLWIDTH Value
UNDEFINE Variable

These commands perform the same function as in SQL*Plus or set an equivalent property of
the TOracleScript instance. In the script they do not need to be separated by semi-colons. The
following script connects as scott and drops the dept table:

connect scott/tiger
pause About to drop table dept...
drop table dept;
prompt Table DEPT has been dropped

Output
The TOracleScript has an Output property, which is a TStrings containing the output lines that
were generated by the executed commands. The OutputOptions property lets you control
exactly what information will be written to the Output. This applies to the command text itself,
the feedback, errors, and the result data. You can also explicitly capture the output through the
OnOutput event.

Substitution variables
Just like in SQL*Plus you can use substitution variables to make your script customizable. You
can use the SetVariable procedure to set the value of the variable, and use it in the script by
preceding the variable name with an ampersand. For example, if you allow the end user to
specify the initial size of a table, then the script could look like this:

-- create the dept table
create table dept
(
 deptno number(4) not null,
 dname varchar2(14) not null,
 loc varchar2(13)
)
storage(initial &initial_size M);

The initial_size variable can be set through the SetVariable procedure:

MyScript.SetVariable('initial_size', '10');

Error handling
Individual SQL statements can lead to an error. You can control if such an error should stop
further execution of the script through the ExitOnError property.

An SQL error will also lead to an OnError event, which you can specifically handle. After
execution you can also check the ErrorCode and ErrorMessage property of each command.

Direct Oracle Access 4.1 - User's Guide 185

Extending the script functionality
If the standard functionality of the TOracleScript component is not sufficient for your
application, you can use the OnCommand, AfterCommand and OnData events to perform
your own processing for all or specific commands.

186 Direct Oracle Access 4.1 - User's Guide

TOracleScript reference
This chapter describes all properties, methods and events of the TOracleScript component.

TOracleScript.AddOutput

Declaration
procedure AddOutput(const S: string);
Description
Adds the given string to the Output.

TOracleScript.AfterCommand

Declaration
type TOracleScriptCommandEvent = procedure(Sender: TOracleScript; var

Handled: Boolean) of object;
property AfterCommand: TOracleScriptCommandEvent;
Description
This event is fired after execution of a command. You can use the CurrentCommand property
to access the properties of the command that was just executed. The Handled parameter
indicates if the command was handled internally or by the OnCommand event. If it was not
handled, this parameter will be False.

TOracleScript.AutoCommit

Declaration
property AutoCommit: Boolean;
Description
Determines if update, insert and delete statements are immediately committed after execution.

TOracleScript.ColWidth

Declaration
property ColWidth: Integer;
Description
Set the ColWidth property to control the maximum width of displayed columns in the Output.
This property can also be controlled from within the script by using the SET COLWIDTH
command.

Direct Oracle Access 4.1 - User's Guide 187

TOracleScript.CommandByName

Declaration
function CommandByName(const Name: string): TOracleCommand;
Description
Returns the command with the given name. A name can be specified in a comment line
preceding the command. Consider the following text in a script:
-- Name = dept_create
create table dept
(
 deptno number(4) not null,
 dname varchar2(14) not null,
 loc varchar2(13)
);

This comment can by found by using 'dept_create' for the Name parameter. If we want to
check if this command was executed successfully after executing the script, we can use the
following code:

MyScript.Execute;
if CommandByName('dept_create').ErrorCode <> 0 then
 ShowMessage('Table DEPT has not been created, installation

failed.');

Note that this will only work for comment lines that start with 2 hyphens.

TOracleScript.CommandIndex

Declaration
property CommandIndex: Integer;
Description
Returns the index of the currently executed command. You can set this index in the
OnCommand or AfterCommand event to control the next executed command.

TOracleScript.Commands

Declaration
property Commands: TOracleCommands;
Description
This property provides access to all individual commands of the script.

TOracleScript.CurrentCommand

188 Direct Oracle Access 4.1 - User's Guide

Declaration
property CurrentCommand: TOracleCommand;
Description
Returns the currently executed command, which is most useful in the various event handlers
of the script.

TOracleScript.Cursor

Declaration
property Cursor: TCursor;
Description
Determines the shape of the mouse cursor while executing the script. Only crDefault,
crHourGlass and crSQLWait are useful here.

TOracleScript.Debug

Declaration
property Debug: Boolean;
Description
If you set this property to True, the text of SQL and Non-SQL commands will be displayed in a
message box before execution.

TOracleScript.Execute

Declaration
procedure Execute;
Description
Executes the script.

TOracleScript.ExitOnError

Declaration
property ExitOnError: Boolean;
Description
If this property is set to True, script execution will stop whenever a SQL command fails. If this
property is set to False, the error message will be written to the output (if the OutputOptions
are set accordingly), and execution will continue with the next command.

This property can also be controlled from within the script by using the SET EXITONERROR
ON and SET EXITONERROR OFF commands.

Direct Oracle Access 4.1 - User's Guide 189

TOracleScript.Finished

Declaration
property Finished: Boolean;
Description
Indicates if the script is finished. If you set this property to True, execution of the script will
stop.

TOracleScript.GetVariable

Declaration
function GetVariable(const Name: string): string;
Description
Returns the value of the given substitution variable. If the variable does not exist, an empty
string will be returned.

TOracleScript.Lines

Declaration
property Lines: TStrings;
Description
This property contains the plain text of the commands of SQL script, which basically follows
the rules of the SQL*plus syntax. Individual SQL commands should be separated by a semi-
colon or a slash. SQL commands that contain PL/SQL (like the creation of a procedure) can
only be terminated by a slash. Non-SQL commands do not need to be separated by semi-
colons or slashes, but are always placed on a single line. Comment can be included as -
comment, /* comment */, or rem comment.

The following example demonstrates these basic syntax rules:

190 Direct Oracle Access 4.1 - User's Guide

/* drop the dept table if it already exists */
prompt Dropping table DEPT...
drop table dept;

/* create the dept table */
prompt Creating table DEPT...
create table dept
(
 deptno number(4) not null,
 dname varchar2(14) not null,
 loc varchar2(13)
);

/* create the deptcount function */
prompt Creating function DEPTCOUNT...
create or replace function deptcount return integer as
 result integer;
begin
 select count(*) into result from dept;
 return(result);
end;
/
prompt Finished.

Modifications made to the Lines property will immediately be reflected in the Commands
property, and vice versa. During and after execution of the script you will use the Commands
property instead of the Lines to access the individual commands.

TOracleScript.OnCommand

Declaration
type TOracleScriptCommandEvent = procedure(Sender: TOracleScript; var

Handled: Boolean) of object;
property OnCommand: TOracleScriptCommandEvent;
Description
This event fires just before a command would be executed. You can use the
CurrentCommand property to access the properties of the current command. If you set the
Handled parameter to True, you indicate that you have handled this command. As a result, the
command will subsequently not be processed internally.

The following example implements a 'beep' command:

Direct Oracle Access 4.1 - User's Guide 191

procedure TMainForm.ScriptOnCommand(Sender: TOracleScript; var
Handled: Boolean);

var FirstWord: string;
begin
 FirstWord := UpperCase(Sender.CurrentCommand.Words[0]);
 if FirstWord = 'BEEP' then
 begin
 MessageBeep(MB_OK);
 Handled := True;
 end;
end;

TOracleScript.OnData

Declaration
type TOracleScriptEvent = procedure(Sender: TOracleScript) of object;
property OnData: TOracleScriptEvent;
Description
This event fires for each row that is fetched for a select statement. You can use the
CurrentCommand property to access the properties of the current command. You can use the
Query property to access the field data of the current record.

TOracleScript.OnError

Declaration
type TOracleScriptEvent = procedure(Sender: TOracleScript) of object;
property OnError: TOracleScriptEvent;
Description
This event fires whenever an error occurs during execution of a SQL command. Use the
CurrentCommand property to access the ErrorCode and ErrorMessage properties of the
current command.

TOracleScript.OnOutput

Declaration
type TOracleScriptOutputEvent = procedure(Sender: TOracleScript;

const Msg: string) of object;
property OnOutput: TOracleScriptOutputEvent;
Description
This event fires for each line that is written to the Output. You can use it to capture the output
in real-time, line by line.

TOracleScript.Output

192 Direct Oracle Access 4.1 - User's Guide

Declaration
property Output: TStrings;
Description
This property contains the output lines that were generated by the executed commands. The
OutputOptions property controls which information will be written to the output.

TOracleScript.OutputOptions

Declaration
type TScriptOutputOptions = set of (ooSQL, ooNonSQL, ooData,

ooFeedback, ooError);
property OutputOptions: TScriptOutputOptions;
Description
This property controls which information should be written to the output (the equivalent
commands between parenthesis):
w ooSQL: The text of SQL commands (SET ECHO ON|OFF)

w ooNonSQL: The text of non-SQL commands (SET ECHO ON|OFF)

w ooData: The fromatted result data of SQL select statements (SET TERMOUT ON|OFF)

w ooFeedback: The feedback (e.g. "Table created") of SQL commands (SET FEEDBACK
ON|OFF)

w ooError: The error messages of failed SQL commands

TOracleScript.Query

Declaration
property Query: TOracleQuery;
Description
The TOracleQuery instance that is used internally to execute SQL statements. You can use it
to perform your own SQL processing in the OnCommand event, and you can use it in the
OnData event to access the field data of the current record.

TOracleScript.ScanVariables

Declaration
property ScanVariables: Boolean;
Description
If you set this property to False, substitution variables in the script will not be replaced. This
property can also be controlled from within the script by using the SET SCAN ON and SET
SCAN OFF commands.

Direct Oracle Access 4.1 - User's Guide 193

TOracleScript.Session

Declaration
property Session: TOracleSession;
Description
The session in which the script will run.

TOracleScript.SetVariable

Declaration
procedure SetVariable(const Name, Value: string);
Description
Sets the value of the given substitution variable. A substitution variable can be used in a script
by preceding it with an ampersand:
drop table &table_name;

If 'table_name' is set to 'dept', then the dept table will be dropped. A variable name can be
terminated with a period if they are part of an identifier:

drop table &app._codes;

If variable 'app' is set to 'sys', then the sys_codes table will be dropped. Another example:

drop table &owner..&table;

If 'owner' is set to 'scott', and 'table' is set to 'dept', then the scott.dept table will be dropped.
Note the double period.

Variables can also be set from within the script:

define table_name = dept
drop table &table_name;

194 Direct Oracle Access 4.1 - User's Guide

TOracleCommands object

Unit
Oracle

Description
This object provides access to the individual commands of a TOracleScript component. The
Items property is the default array property that can be used to access a single command. The
text of the commands can be declared at design time, and the other properties can be
accessed at run time after the commands have been executed.

The Count property indicates the number of commands. You can define commands at run
time by using the Add, Delete and Clear methods.

Direct Oracle Access 4.1 - User's Guide 195

TOracleCommands reference
This chapter describes all properties and methods of the TOracleCommands object.

TOracleCommands.Add

Declaration
function Add: TOracleCommand;
Description
Adds a command at the end of the array. Use the Index property of a newly added command
to move it to a specific position.

TOracleCommands.Clear

Declaration
procedure Clear;
Description
Deletes all commands.

TOracleCommands.Count

Declaration
property Count: Integer;
Description
Returns the number of commands.

TOracleCommands.Delete

Declaration
procedure Delete(Index: Integer);
Description
Deletes the command with the given Index.

TOracleCommands.Items

196 Direct Oracle Access 4.1 - User's Guide

Declaration
property Items[Index: Integer]: TOracleCommand; default;
Description
This default array property returns the TOracleCommand at the given index. Because it is the
default array property, the following 2 statements are equivalent:
Command := MyScript.Commands.Items[3];
Command := MyScript.Commands[3];

Direct Oracle Access 4.1 - User's Guide 197

TOracleCommand object

Unit
Oracle

Description
This object represents a single command in a TOracleScript component. The Text property is
the text from the script lines that make up this command. The Index property is the zero-based
position of the command in the script. The CommandType indicates if this is a SQL or Non-
SQL command.

After the command is executed you can use various properties that provide information about
the results. The ErrorCode and ErrorMessage indicate if a SQL command was executed
successfully. The RowsProcessed property can be used to find out how many rows were
processed by a select, update, delete or insert statement. The FunctionType property
indicates what type of SQL command was executed.

198 Direct Oracle Access 4.1 - User's Guide

TOracleCommand reference
This chapter describes all properties and methods of the TOracleCommand object.

TOracleCommand.CommandType

Declaration
type TScriptCommandType = (ctSQL, ctPLSQL, ctNonSQL);
property CommandType: TScriptCommandType;
Description
Indicates the type of the command:
w ctSQL: the command is a plain SQL statement

w ctPLSQL: the command is a SQL statement with a PL/SQL section (e.g. create procedure
or an anonymous PL/SQL Block)

w ctNonSQL: the command is a non-SQL command (e.g. prompt or define)

TOracleCommand.CommentProperty

Declaration
function CommentProperty(const Name: string): string;
Description
Returns a property value from the comment of a command. Consider the following command
text:
-- Create the DEPT table
-- Name = dept_create
-- Critical = Yes
create table dept
(
 deptno number(4) not null,
 dname varchar2(14) not null,
 loc varchar2(13)
);

This command contains 2 comment properties: Name and Critical. The 'Name' comment
property has a special meaning, as it is also used by the formal Name property and by the
CommandByName function. The value of the 'Critical' property can be obtained through the
CommentProperty function:

Critical := (MyScript.Commands[i].CommentProperty('Critical') =
'Yes');

if Critical and (MyScript.Commands[i].ErrorCode <> 0) then
 raise Exception.Create('Installation script failed!');

Note that this will only work for comment lines that start with 2 hyphens.

Direct Oracle Access 4.1 - User's Guide 199

TOracleCommand.ErrorCode

Declaration
property ErrorCode: Integer;
Description
The error code for a SQL command. For a successfully executed SQL command this will be 0.
For failed SQL commands this will be the error code you can find in the "Oracle Error
Messages Guide" (e.g. 942 for "Table or view does not exist").

TOracleCommand.ErrorMessage

Declaration
property ErrorMessage: string;
Description
The error message for a SQL command. For a successfully executed SQL command this will
be an empty string. For failed SQL commands this will be the error message you can find in
the "Oracle Error Messages Guide" (e.g. "ORA-00942: Table or view does not exist").

TOracleCommand.Execute

Declaration
function Execute: Boolean;
Description
You can use this function to execute a single command. Normally commands get executed by
calling the Execute procedure of the script. The result indicates if the command has been
handled.

TOracleCommand.FunctionType

Declaration
property FunctionType: Integer;
Description
Returns the function type for a SQL command after execution. This number corresponds to
the numbers you can find in the "Programmer's Guide to the Oracle Call Interface"

TOracleCommand.Index

200 Direct Oracle Access 4.1 - User's Guide

Declaration
property Index: Integer;
Description
Returns the zero-based index of the command in the commands array of the script. You can
also set the index to move a command to a specific position.

TOracleCommand.Name

Declaration
property Name: string;
Description
The Name property helps you identify specific command in your application. It is extracted
from the comment lines that precede the actual command in the text. Consider the following
text:
-- Name = dept_create
create table dept
(
 deptno number(4) not null,
 dname varchar2(14) not null,
 loc varchar2(13)
);

In this case the Name property would return 'dept_create'. You can also set the Name
property, in which case the comment mentioned above will not be modified. To find a
command by name you can use the CommandByName function of the TOracleScript.

Note that this will only work for comment lines that start with 2 hyphens.

TOracleCommand.RowsProcessed

Declaration
property RowsProcessed: Integer;
Description
After execution of a SQL command, this property will return the number of rows that were
processed by a select, update, delete or insert statement.

TOracleCommand.ScriptLine

Declaration
property ScriptLine: Integer;
Description
Returns the line in the script where this command is located.

Direct Oracle Access 4.1 - User's Guide 201

TOracleCommand.SubstitutedText

Declaration
property SubstitutedText: string;
Description
Returns the text of the command with replaced substitution variables.

See also
SetVariable

TOracleCommand.Text

Declaration
property Text: string;
Description
Returns the text of the command.

TOracleCommand.Words

Declaration
property Words: TStrings;
Description
Returns the words that make up the command text. Any comment in the text will not show up
in the words. This can be useful if you wish to parse the command text to process certain
commands the OnCommand event.

202 Direct Oracle Access 4.1 - User's Guide

TOracleDirectPathLoader component

Unit
Oracle

Description
The TOracleDirectPathLoader component allows an application to access the Direct Path
Load engine of the Oracle Server, which is also used by SQL*Loader. This provides the ability
to load external data from memory into the database at the highest possible speeds. Instead
of using Insert SQL statements to insert the individual records, the external data in memory is
converted in to a format that can immediately be written to the physical database blocks of a
table. This makes it even faster than Array DML, which basically still processes Insert
statements.

The drawback of this speed advantage is that there are several restrictions:
w Triggers are not allowed for the table. An attempt to load data into a table with triggers will

lead to "ORA -26086 direct path does not support triggers". You can temporarily disable the
triggers of the table.

w Check constraints and foreign key constraints are not allowed for the table. Loading data
into such a table will lead to "ORA-26087 direct path does not support referential or check
constraints". You can temporarily disable the constraints of the table. Primary and unique
key constraints are allowed.

w Remote tables cannot be loaded.

w User defined types not allowed for the table.

w The Direct Path Load interface is only available in Net8 8.1 (the Oracle8i client) and later.

w The load operation is not part of a "normal" transaction.

These drawbacks may be a reason to resort to Array DML, which does not suffer from any of
these restrictions and still provides excellent batch loading performance. However, the speed
advantage of the TOracleDirectPathLoader can be considerable. For example, loading 10,000
records into a table with 2 columns of 40 bytes without any indexes, on a local database
configuration on a Pentium III class server shows the following benchmark results:

Single Inserts: 1,500 records / second
Array Inserts: 15,000 records / second
Direct Path Loading: 60,000 records / second

Results will of course vary for different parameters. For example, if the table has one or more
indexes there will be more overhead for each inserted row, and results will be closer.

Using the TOracleDirectPathLoader component
To load external data into a table using the TOracleDirectPathLoader component, you need to
perform the following tasks:

1. Setup the TOracleDirectPathLoader component

After creating a TOracleDirectPathLoader instance at design time, you should link it to a
Session, and provide the TableName. Next you can define the columns that you want to load
through the Columns property editor. For each column you need to define the external data

Direct Oracle Access 4.1 - User's Guide 203

type and data size, and for dates you can also define the external date format.

2. Prepare the TOracleDirectPathLoader for loading

A call to the Prepare procedure will create an array for a batch of records. The number of
records that fit into this array depends on the BufferSize property and on the number and data
size of the Columns.

3. Fill and load data arrays

You need to divide your external data into batches that fit into the data array. After you have
called Prepare the size of the data array is defined by the MaxRows property. Each batch
must be completely read into memory, because the Direct Path Load engine can only load
data directly from the array in memory. Fill each element in the array by calling the
Columns[Index].SetData procedure. Now you can call the Load procedure to load the data
from the array into the table.

4. Finish the load process

After you have processed all external data as individual batches, you can call the Finish
procedure to commit the loaded data. To undo the load operation, call the Abort procedure
instead.

Example - Direct Path Loading
The following example dynamically creates a TOracleDirectPathLoader instance, sets the
necessary properties, creates default column definitions, and loads the data. This data is
located in a Records structure, and is left out of the example to keep it simple. Each record
consists of an integer value 'Line' and a string value 'Text'.

204 Direct Oracle Access 4.1 - User's Guide

// Perform the Direct Path Load
procedure LoadRecords;
var Loader: TOracleDirectPathLoader;
 i, Row: Integer;
begin
 // Create a Loader at run time
 Loader := TOracleDirectPathLoader.Create(nil);
 try
 // Set the session and table name
 Loader.Session := MainSession;
 Loader.TableName := 'record_data';
 // Get the default columns for the record_data table
 Loader.GetDefaultColumns(False);
 // Prepare the loader
 Loader.Prepare;
 // Process all data in batches of <MaxRows> records
 Row := 0;
 for i := 0 to Records.Count - 1 do
 begin
 // Copy one record to the array
 Loader.Columns[0].SetData(Row, @Records[i].Line, 0);
 loader.Columns[1].SetData(Row, @Records[i].Text[1],
 Length(Records[i].Text));
 Inc(Row);
 // The array is filled, or we have preocessed all records:
 // load this batch of records
 if (Row = Loader.MaxRows) or (i = Records.Count - 1) then
 begin
 try
 Loader.Load(Row);
 except
 // In case of an error: show where things went wrong
 // and abort the load operation
 on E:EOracleError do
 begin
 ShowMessage(E.Message + #13#10 +
 'Row = ' + IntToStr(Loader.LastRow) + #13#10

+
 'Col = ' + IntToStr(Loader.LastColumn));
 Loader.Abort;
 raise;
 end;
 end;
 Row := 0;
 end;
 end;
 // Commit the loaded data
 Loader.Finish;
 finally
 Loader.Free;
 end;
end;

Direct Oracle Access 4.1 - User's Guide 205

TOracleDirectPathLoader reference
This chapter describes all properties and methods of the TOracleDirectPathLoader
component.

TOracleDirectPathLoader.Abort

Declaration
procedure Abort;
Description
Aborts the load operation, and cancels any data that was loaded. Note that this is not the
same as a rollback, because the load operation is not part of a normal transaction.

TOracleDirectPathLoader.BufferSize

Declaration
property BufferSize: Integer;
Description
The size in bytes of the buffer that contains the formatted data that will be written to the
database blocks. This will determine the number of rows that can be transferred in one Load.
The MaxRows property reflects this value after calling the Prepare procedure. The default
buffer size is 64KB, but you must make sure that it can contain at least one record. Make sure
that you take the maximum size of any Long, Long Raw, CLOB or BLOB column into account.

TOracleDirectPathLoader.ColumnByName

Declaration
function ColumnByName(const ColumnName: string): TDirectPathColumn;
Description
Returns the column instance of the given name. If the column does not exists, this function
returns nil. The name is case insensitive. Note that you should not use this function to access
the columns to fill the data array (e.g. Loader.ColumnByName('ename').SetData(...), because
this will affect performance in a negative way.

TOracleDirectPathLoader.Columns

Declaration
property Columns: TDirectPathColumns;
Description
This property provides access to the column definitions and values of the data array. Instead
of accessing columns by index, you can alternatively use the ColumnByName function to

206 Direct Oracle Access 4.1 - User's Guide

access a column by name.

TOracleDirectPathLoader.DateFormat

Declaration
property DateFormat: string;
Description
Defines the default external date format for date columns. The date format can be overridden
at the column level. If you do not define a date format, then the NLS date format of the session
will be used.

TOracleDirectPathLoader.Finish

Declaration
procedure Finish;
Description
Finishes the load operation, and makes the loaded data permanent. Note that this is not the
same as a commit, because the load operation is not part of a normal transaction.

TOracleDirectPathLoader.GetDefaultColumns

Declaration
procedure GetDefaultColumns(StringsOnly: Boolean);
Description
Removes the current columns and defines default columns based on the column definition of
the table. The StringsOnly parameter determines if integer and float columns should be
defined with a DataSize of dpString or as dpInteger / dpFloat. If your external data contains
string representations for numeric values, you can set this parameter to True.

TOracleDirectPathLoader.LastColumn

Declaration
property LastColumn: Integer;
Description
The last column that was processed by the conversion of the data array to the load format
during the Load operation. In case of an exception, this property indicates the column that
failed.

See also
LastRow

Direct Oracle Access 4.1 - User's Guide 207

TOracleDirectPathLoader.LastRow

Declaration
property LastRow: Integer;
Description
The last row that was processed by the conversion of the data array to the load format during
the Load operation. In case of an exception, this property indicates the row that failed.

See also
LastColumn

TOracleDirectPathLoader.Load

Declaration
procedure Load(Rows: Integer);
Description
Load the specified number of rows from the data array into the table. This procedure can raise
an EOracleError exception, in which case the LastColumn and LastRow properties indicate
the column and row that lead to the error.

TOracleDirectPathLoader.LogMode

Declaration
type TDirectPathLogMode = (lmDefault, lmNoLogging);
property LogMode: TDirectPathLogMode;
Description
Determines whether redo log information is generated. Setting this property to lmDefault uses
the (NO)LOGGING property for the table. Setting it to lmNoLogging will not generate redo log
information for the load operation.

TOracleDirectPathLoader.MaxRows

Declaration
property MaxRows: Integer;
Description
The maximum number of rows in the data array. This read-only property is only valid after
calling the Prepare procedure, and depends on the BufferSize and the DataSize of the
columns.

TOracleDirectPathLoader.Parallel

208 Direct Oracle Access 4.1 - User's Guide

Declaration
property Parallel: Boolean;
Description
Setting this property to True will allow multiple sessions to load the same table simultaneously,
at the cost of a small performance trade-off.

TOracleDirectPathLoader.PartitionName

Declaration
property PartitionName: string;
Description
Name of the partition or subpartition to be loaded. If you don't specify this property, the entire
table can be loaded. The name must be a valid partition or subpartition that belongs to the
table.

TOracleDirectPathLoader.Prepare

Declaration
procedure Prepare;
Description
Prepare the TOracleDirectPathLoader to set and load data. You can call this procedure after
setting the Session, TableName and BufferSize properties, and after defining the Columns.
This procedure will allocate buffers for the array data and for the formatted data, so that you
can subsequently fill the data array and load the data.

TOracleDirectPathLoader.Prepared

Declaration
property Prepared: Boolean;
Description
Indicates if the Prepare procedure has been called.

TOracleDirectPathLoader.Session

Declaration
property Session: TOracleSession;
Description
The session in which the load operation will take place.

TOracleDirectPathLoader.TableName

Direct Oracle Access 4.1 - User's Guide 209

Declaration
property TableName: string;
Description
The name of the table to be loaded. You can specify the owner of the table in this property as
well, if it is not owned by the user of the session (e.g. SCOTT.EMP).

210 Direct Oracle Access 4.1 - User's Guide

TDirectPathColumns object

Unit
Oracle

Description
This object provides access to the column definitions and data of a TOracleDirectPathLoader
component. The Items property is the default array property that can be used to access a
single column. The definitions can be declared at design time, and the data can be set at run
time through the SetData procedure:
 Loader.Columns[3].SetData(RowIndex, DataPointer, DataLength);

The Count property indicates the number of columns. You can define the columns at run time
by using the Clear and Add methods.

Direct Oracle Access 4.1 - User's Guide 211

TDirectPathColumns reference
This chapter describes all properties and methods of the TDirectPathColumns object.

TDirectPathColumns.Add

Declaration
procedure Add(const ColumnName: string): TDirectPathColumn;
Description
Adds a new Direct Path Column with the given name at the end of the array. This can useful if
you want to define the columns at run time. To change the position of a newly added column,
set its Index property. To remove a column you can simply free it.

TDirectPathColumns.Clear

Declaration
procedure Clear;
Description
Deletes all items. This can useful if you want to define the columns at run time, in which case it
can be used together with the Add function. To remove a single column, you can simply free
the corresponding instance.

TDirectPathColumns.Count

Declaration
property Count: Integer;
Description
Returns the number of items.

TDirectPathColumns.Items

Declaration
property Items[Index]: TDirectPathColumn; default;
Description
This default array property returns the TDirectPathColumn at the given index. Because it is the
default array property, the following 2 statements are equivalent:
 Col := Loader.Columns.Items[3];
 Col := Loader.Columns[3];

212 Direct Oracle Access 4.1 - User's Guide

TDirectPathColumn object

Unit
Oracle

Description
This object defines the external format of a column of the TOracleDirectPathLoader
component. You can specify the name, data type, data size, and date format of the external
representation of the data.

The TDirectPathColumn object additionally provides access to the row data that is to be
loaded, by using the SetData procedure.

Direct Oracle Access 4.1 - User's Guide 213

TDirectPathColumn reference
This chapter describes all properties and methods of the TDirectPathColumn object.

TDirectPathColumn.DataSize

Declaration
property DataSize: Integer;
Description
Defines the maximum length of the external data. This can only be used for dpString and
dpBinary data types. The data size of the columns and the BufferSize of the
TOracleDirectPathLoader affects the maximum number of rows (MaxRows) of the data array.

TDirectPathColumn.DataType

Declaration
property DataType: Integer;
Description
The external data type of the column. This does not need to match the internal data type, but
the external and internal data type must obviously be compatible so that the Direct Load
Engine can convert it. The following values can be specified:
w dpString - This is the most common external data type. If you are loading data from a text

file, you can probably use this data type in most cases. Dates must always be loaded as
string values.

w dpInteger - Use this data type if the external data type is a 4 byte integer value.

w dpFLoat - Use this data type if the external data type is an 8 byte double precision floating
point value.

w dpBinary - Use this data type for binary values of Long Raw and BLOB columns. The most
important aspect of this data ty pe is that, unlike the dpString data type, no character set
conversion between client and server will take place.

For dpInteger or dpFloat data types you cannot specify a DataSize. It will always be 4 or 8
respectively. The dpString data type is the only one that allows a DateFormat.

TDirectPathColumn.DateFormat

Declaration
property DateFormat: string;
Description
Defines the external date format for date columns. The date format can also be globally
defined through the TOracleDirectPathLoader.DateFormat property. If you do not define a
date format, then the NLS date format of the session will be used.

214 Direct Oracle Access 4.1 - User's Guide

TDirectPathColumn.Index

Declaration
property Index: Integer;
Description
The index of the column in the array. You can set this property to move a column to a specific
position.

TDirectPathColumn.Name

Declaration
property Name: string;
Description
The name of the column in the table that is to be loaded.

TDirectPathColumn.SetData

Declaration
procedure SetData(Row: Integer; Data: Pointer; Size: Integer);
Description
Use the SetData procedure to associate an element in the data array with a piece of data in
memory. The Row parameter indicates the row position in the array, and must be between 0
and MaxRows - 1. The Data parameter points to the data in memory. The Size parameter
should contain the size of the string or binary data. For columns with a DataType of dpInteger
or dpFloat you do not need to specify the size, which is respectively 4 or 8 by definition.

To pass an integer value for a row of the Empno column, and a string value for the Ename
column, you could use the following code:
 EmpnoCol.SetData(RowIndex, @EmpRec.Empno, 0);
 EnameCol.SetData(RowIndex, @EmpRec.Ename[1], Length(EmpRec.Ename));

Direct Oracle Access 4.1 - User's Guide 215

TOracleQueue component

Unit
Oracle

Description
The TOracleQueue component encapsulates the basic functionality of the DBMS_AQ
package. It provides a convenient way to enqueue messages into a queue or to dequeue
messages from a queue.

Enqueueing a message
To enqueue a message, connect the TOracleQueue to a Session, set the QueueName
property to the name of the queue, set the message information through the Payload or the
RawPayload property, specify the EnqueueOptions, and call the Enqueue function.

Dequeuing a message
To dequeue a message, connect the TOracleQueue to a Session, set the QueueName
property to the name of the queue, specify the DequeueOptions, call the Dequeue function,
and obtain the message information through the Payload or the RawPayload property. To
dequeue messages in a background thread of your application, call the StartThread procedure
instead of the Dequeue function. In this case the OnThreadDequeued event handler will be
called when a message has been dequeued.

Queue Administration
The TOracleQueue does not encapsulate the Queue Management functionality from the
DBMS_AQADM package, such as queue creation, starting, stopping, and so on. This
functionality has to be explicitly programmed by calling the corresponding packaged functions
and procedures, and by creating the corresponding types.

Additional information
For more information about Oracle's Advanced Queueing, see the following Oracle
documentation:

w Application Developer's Guide - Advanced Queuing

w Supplied PL/SQL Packages and Types Reference

TOracleQueue reference
This chapter describes all properties, methods and events of the TOraclePackage component.

TOracleQueue.Cursor

Declaration
property Cursor: TCursor;
Description
Determines the shape of the mouse cursor while enqueuing or dequeueing messages. Only

216 Direct Oracle Access 4.1 - User's Guide

crDefault, crHourGlass and crSQLWait are useful here.

TOracleQueue.Debug

Declaration
property Debug: Boolean;
Description
When set to true all SQL statements that are executed by the TOracleQueue component will
be displayed.

TOracleQueue.Dequeue

Declaration
function Dequeue: string;
Description
Call the Dequeue function to dequeue a message from the queue.

Before calling this function you can set the DequeueOptions to control the dequeue operation.

The dequeue function returns the message identifier (MsgId) of the message. After the call
you can use the Payload property to inspect the message information for an object queue
(QueueType = qtObject), or you can inspect the RawPayload property in case of a raw queue
(QueueType = qtRaw). The MessageProperties contain additional information about the
dequeued message.

If the DequeueOptions.Wait property is set and as a result a time out has occurred before a
message was dequeued, the return value will be an empty string and
MessageProperties.TimeOut will be True.

If the Threaded property is set to True, the Dequeue function will immediately return with an
empty string as result, and dequeue processing will occur in a background thread as if
StartThread had been called.

TOracleQueue.DequeueOptions

Declaration
property DequeueOptions: TAQDequeueOptions;
Description
Specifies the options available for the Dequeue operation
property Condition: string;
A conditional expression based on the message properties, the pay load properties, and
PL/SQL functions. Only messages that match this condition will be dequeued.

A condition is specified as a Boolean expression using syntax similar to the where clause of a
SQL query. This Boolean expression can include conditions on MessageProperties, payload

Direct Oracle Access 4.1 - User's Guide 217

properties (object queues only), and PL/SQL or SQL functions (as specified in the where
clause of a SQL query). MessageProperties include priority, corrid and other columns in the
queue table.

To specify dequeue conditions on a message payload, use attributes of the object type. You
must prefix each attribute with tab.user_data as a qualifier to indicate the specific column of
the queue table that stores the payload. The Condition cannot exceed 4000 characters.

property ConsumerName: string;
Only those messages matching the ConsumerName are dequeued. If a queue is not set up for
multiple consumers, then this field should be set to an empty string.

property Correlation: string;
Specifies the correlation identifier of the message to be dequeued. Special pattern matching
characters, such as the percent sign (%) and the underscore (_) can be used. If more than
one message satisfies the pattern, then the order of dequeuing is undetermined.

property DequeueMode: TAQDequeueMode;
type TAQDequeueMode = (dmBrowse, dmLocked, dmRemove, dmRemoveNoData);
Specifies the locking behavior associated with the dequeue. The possible settings are:

dmBrowse Read the message without acquiring any lock on the message.
This specification is equivalent to a select statement.

dmLocked Read and obtain a write lock on the message. The lock lasts for
the duration of the transaction. This setting is equivalent to a
select for update statement.

dmRemove Read the message and update or delete it. This setting is the
default. The message can be retained in the queue table based
on the retention properties.

dmRemoveNoData Mark the message as updated or deleted. The message can be
retained in the queue table based on the retention properties.

property MsgId: string;
Specifies the message identifier of the message to be dequeued.

property Navigation: TAQDequeueNavigation;
type TAQDequeueNavigation = (dnNextMessage, dnNextTransaction,

dnFirstMessage);
Specifies the position of the message that will be retrieved. First, the position is determined.
Second, the search criteria are applied. Finally, the message is retrieved. The possible
settings are:

dnNextMessage Retrieve the next message that is available and matches the
search criteria. If the previous message belongs to a message
group, then AQ retrieves the next available message that
matches the search criteria and belongs to the message group.
This setting is the default.

dnNextTransaction Skip the remainder of the current transaction group (if any) and
retrieve the first message of the next transaction group. This
setting can only be used if message grouping is enabled for the
current queue.

dnFirstMessage Retrieves the first message which is available and matches the

218 Direct Oracle Access 4.1 - User's Guide

search criteria. This setting resets the position to the beginning of
the queue.

property Transformation: string;
Specifies a transformation that will be applied after dequeuing the message. The source type
of the transformation must match the type of the queue.

property Visibility: TAQDequeueVisibility;
type TAQDequeueVisibility = (dvImmediate, dvOnCommit);
Specifies whether the new message is dequeued as part of the current transaction.The
visibility parameter is ignored when using the dmBrowse DequeueMode. The possible settings
are:

dvOnCommit The dequeue will be part of the current transaction. This setting is the
default.

dvImmediate The dequeue is not part of the current transaction. It constitutes a
transaction on its own.

property Wait: Integer;
Specifies the wait time in seconds if there is currently no message available which matches
the search criteria. Specify -1 (AQForever) to wait forever. Specify 0 (AQNoWait) to return
immediately if there is no message. If the wait time expires before a message is dequeued,
MessageProperties.TimeOut will be set to True on dequeue.

TOracleQueue.Enqueue

Declaration
function Enqueue: string;
Description
Call this function to enqueue a message into the queue.

The enqueue function will enqueue the message information from the Payload property for an
object queue (QueueType = qtObject), or the RawPayload property in case of a raw queue
(QueueType = qtRaw). The MessageProperties contains additional information about the
enqueued message.
Before calling this function you can set the EnqueueOptions to control the enqueue operation.

The enqueue function returns the message identifier (MsgId) of the message.

TOracleQueue.EnqueueOptions

Declaration
property EnqueueOptions: TAQEnqueueOptions;
Description
Specifies the options available for the Enqueue operation.
property RelativeMsgId: string;
Specifies the message identifier of the message which is referenced in the

Direct Oracle Access 4.1 - User's Guide 219

SequenceDeviation. This property is valid only if esBefore is specified in SequenceDeviation.
This parameter is ignored if SequenceDeviation is esDefault or esTop.

property SequenceDeviation: TAQEnqueueSequence;
type TAQEnqueueSequence = (esDefault, esBefore, esTop);
Specifies whether the message being enqueued should be dequeued before other messages
already in the queue. The possible settings are:

esBefore The message is enqueued ahead of the message specified by
RelativeMsgId.

esTop The message is enqueued ahead of any other messages.

esDefault The message is enqueued as the last message.

property Transformation: string;
Specifies a transformation that will be applied before enqueuing the message. The return type
of the transformation function must match the type of the queue.

property Visibility: TAQEnqueueVisibility;
type TAQEnqueueVisibility = (evImmediate, evOnCommit);
Specifies the transactional behavior of the enqueue request. The possible settings are:

evOnCommit The enqueue is part of the current transaction. The operation is complete
when the transaction commits. This setting is the default.

evImmediate The enqueue is not part of the current transaction. The operation
constitutes a transaction on its own. This is the only value allowed when
enqueuing to a non-persistent queue.

TOracleQueue.MessageProperties

Declaration
property MessageProperties: TAQMessageProperties;
Description
Describes the information that is used to manage individual messages. These are set at
Enqueue time, and their values are returned at Dequeue time.
property Attempts: Integer;
The number of attempts that have been made to dequeue the message. This property cannot
be set at enqueue time.

property Correlation: string;
The identification supplied by the producer for a message at enqueue time

property Delay: Integer;
Specifies the delay of the enqueued message in seconds. Specify 0 (AQNoDelay) for no
delay. The delay represents the number of seconds after which a message is available for
dequeuing. Dequeuing by MsgId overrides the delay specification. A message enqueued with
delay set is in the dsWaiting State, and when the delay expires, the message goes to the
dsReady state. Delay processing requires the queue monitor to be started.

property EnqueueTime: TDateTime;
Specifies the time the message was enqueued. This value is determined by the system and
cannot be set at enqueue time.

220 Direct Oracle Access 4.1 - User's Guide

property ExceptionQueue: string;
Specifies the name of the queue into which the message is moved if it cannot be processed
successfully. Messages are moved automatically in the following cases:

w The number of unsuccessful dequeue attempts has exceeded the specification for the
max_retries parameter in the dbms_aqadm.create_queue procedure during queue
creation. You can view the max_retries for a queue in the all_queues data dictionary view.

w All messages in the exception queue are in the dsExpired State.

The default is the exception queue associated with the queue table. If the exception queue
specified does not exist at the time of the move, then the message is moved to the default
exception queue associated with the queue table, and a warning is logged in the alert file. If
the default exception queue is specified, then this property returns a empty string at dequeue
time.

property Expiration: Integer;
The value of this property specifies the number of seconds that the message remains in the
dsReady State. During this time the message is available for dequeuing. If the message is not
dequeued before it expires, then it is moved to the exception queue in the dsExpires State. If
you specify -1 (AQNever) then the message will never expire. This property is an offset from
the Delay. Expiration processing requires the queue monitor to be running.

property MsgId: string;
The message identifier at dequeue time.

property OriginalMsgId: string;
This property is used by Oracle AQ for propagating messages.

property Priority: Integer;
Specifies the priority of the message. A smaller number indicates higher priority. The priority
can be any number, including negative numbers.

property SenderId: TAQAgent;
Specifies the sender identification. You must specify SenderId to enqueue messages to
secure queues. The SenderId has the following properties:

Name (string) Name of a producer or consumer of a message. The name must
follow object name guidelines in the Oracle9i SQL Reference with
regard to reserved characters.

Address (string) Protocol-specific address of the recipient. If the protocol is 0, then the
address is of the form [schema.] queue[@ dblink]. For example, a
queue named emp_messages in the hr queue at the site dbs1.net has
the following address:

 hr.emp_messages@dbs1.net

Protocol (integer) Protocol to interpret the address and propagate the message.

property State: TAQDequeueState;
type TAQDequeueState = (dsReady, dsWaiting, dsProcessed, dsExpired);
Specifies the state of the message at the time of the dequeue. This property cannot be set at
enqueue time. The possible states are:

dsReady The message is ready to be processed.

dsWaiting The message delay has not yet been reached.

Direct Oracle Access 4.1 - User's Guide 221

dsProcessed The message has been processed and is retained.

dsExpired The message has been moved to the exception queue.

property TimeOut: Boolean;
This property indicates at dequeue time that the dequeue operation did not receive a message
that matches the search criteria within the Wait time.

See also
VariableName

TOracleQueue.OnThreadDequeued

Declaration
type TOracleQueueEvent = procedure(Sender: TOracleQueue) of Object;
property OnThreadDequeued: TOracleQueueEvent;
Description
If the queue is running in Threaded mode by calling the StartThread procedure, all dequeue
operations will trigger an OnThreadDequeued event. In this event handler you can inspect the
Payload or RawPayload properties to obtain the message information, and inspect the
MessageProperties to obtain additional information about the dequeued message.
You can call the StopThread procedure within this event handler if you do not want to continue
to wait for additional messages.

Example
The following example displays the message identifier, the enqueue time, and the
message_text attribute of the payload object type:

procedure TQueueDemoForm.ReceiveQueueThreadDequeued(Sender:
TOracleQueue);

begin
 Display('Message Identifier: ' + Sender.MessageProperties.Msgid);
 Display('Enqueue Time : ' + FormatDateTime('c',

Sender.MessageProperties.EnqueueTime));
 Display('Message Text : ' +

Sender.Payload.GetAttr('message_text'));
end;
Note
If ThreadSynchronized is True, this event will be synchronized with the main thread of your
application, which implicitly makes your application thread safe.

TOracleQueue.OnThreadError

222 Direct Oracle Access 4.1 - User's Guide

Declaration
type TOracleQueueErrorEvent = procedure(Sender: TOracleQueue;

ErrorCode: Integer; const ErrorMessage: string) of Object;
property OnThreadError: TOracleQueueErrorEvent;
Description
If the queue is running in Threaded mode by calling the StartThread procedure, the
OnThreadError event is triggered whenever an exception occurs during the dequeue
operation. If the exception is an EOracleError, the ErrorCode will be the Oracle error number.
For other exception classes the ErrorCode will be 0. The ErrorMessage is the Message of the
exception.
You can call the StopThread procedure within this event handler if you do not want to continue
to wait for additional messages.

Note
If ThreadSynchronized is True, this event will be synchronized with the main thread of your
application, which implicitly makes your application thread safe.

TOracleQueue.OnThreadStart

Declaration
type TOracleQueueEvent = procedure(Sender: TOracleQueue) of Object;
property OnThreadStart: TOracleQueueEvent;
Description
If the queue is running in Threaded mode by calling the StartThread procedure, the
OnThreadStart event is triggered when the background thread starts.

Note
If ThreadSynchronized is True, this event will be synchronized with the main thread of your
application, which implicitly makes your application thread safe.

TOracleQueue.OnThreadStop

Declaration
type TOracleQueueEvent = procedure(Sender: TOracleQueue) of Object;
property OnThreadStop: TOracleQueueEvent;
Description
If the queue is running in Threaded mode by calling the StartThread procedure, the
OnThreadStop event is triggered when the background thread stops.

Note
If ThreadSynchronized is True, this event will be synchronized with the main thread of your
application, which implicitly makes your application thread safe.

TOracleQueue.OnThreadTimeOut

Direct Oracle Access 4.1 - User's Guide 223

Declaration
type TOracleQueueEvent = procedure(Sender: TOracleQueue) of Object;
property OnThreadTimeOut: TOracleQueueEvent;
Description
If the queue is running in Threaded mode by calling the StartThread procedure, the
OnThreadTimeOut event is triggered when the dequeue operation dequeue operation does
not receive a message that matches the search criteria within the Wait time.
You can call the StopThread procedure within this event handler if you do not want to continue
to wait for messages.

Note
If ThreadSynchronized is True, this event will be synchronized with the main thread of your
application, which implicitly makes your application thread safe.

TOracleQueue.Payload

Declaration
property Payload: TOracleObject;
Description
Use the Payload run-time property to set the message information before an Enqueue
operation, or to get the message information after a Dequeue operation for object queues
(QueueType = qtObject). The Payload property is a TOracleObject instance, so you can use
the GetAttr and SetAttr methods to get and set the attribute values.

You must not free the Payload instance. The TOracleQueue is responsible for this.

The Payload property is nil for raw queues (QueueType = qtRaw). In that case you need to
use the RawPayload property instead.

Example
The following example sets the message_text and message_type attributes before
enqueueing a message and committing it:

procedure TQueueDemoForm.SendButtonClick(Sender: TObject);
begin
 // Create the message
 SendQueue.Payload.SetAttr('message_text', SendMessageEdit.Text);
 SendQueue.Payload.SetAttr('message_type', 'Info');
 // Enqueue the message
 SendQueue.Enqueue;
 // Commit the enqueue operation
 SendSession.Commit;
end;

Note
This property is only available in the Object version of Direct Oracle Access.
TOracleQueue.PayloadType

224 Direct Oracle Access 4.1 - User's Guide

Declaration
property PayloadType: string;
Description
This run-time property contains the name of the object type (owner.name) of the Payload of
the queue. This corresponds to the payload type that was specified when the queue table was
created through the dbms_aqadm.create_queue_table proceedure (the queue_payload_type
parameter).
For raw queues (QueueType = qtRaw) the value of this property will be 'RAW'.

TOracleQueue.QueueName

Declaration
property QueueName: string;
Description
Use this property to indicate the name of the queue. This must match the name that was used
when the queue was created through the dbms_aqadm.create_queue procedure (the
queue_name parameter).

Note
You must set the QueueName property and the Session propery and connect the session,
before you can use most of the other TOracleQueue methods and properties.

TOracleQueue.QueueType

Declaration
type TAQQueueType = (qtObject, qtRaw);
property QueueType: TAQQueueType;

Description
This run-time property indicates whether the queue is an object queue or a raw queue. For
object queues (QueueType = qtObject) you need to access the Payload property to get or set
the message information. For raw queues you need to access the RawPayload property.

TOracleQueue.RawPayload

Declaration
property RawPayload: string;
Description
Use the RawPayload run-time property to set the message information before an Enqueue
operation, or to get the message information after a Dequeue operation for raw queues
(QueueType = qtRaw). The RawPayload property is a string that contains the message
information in binary form.

Direct Oracle Access 4.1 - User's Guide 225

The RawPayload property cannot be used for object queues (QueueType = qtObject). In that
case you need to use the Payload property instead.

TOracleQueue.Session

Declaration
property Session: TOracleSession;
Description
Set the Session property to assign the TOracleQueue instance to a session. If you are using
the queue in Threaded mode, you should dedicate this session to just the queue instance it is
assigned to, because the session will be locked while the queue is waiting for messages. Only
during the OnThread events (OnThreadDequeued, OnThreadTimeOut, and so on) is the
session available for other database access operations.

Note
You must set the QueueName property and the Session propery and connect the session,
before you can use most of the other TOracleQueue methods and properties.

TOracleQueue.StartThread

Declaration
procedure StartThread;
Description
Use the StartThread procedure to dequeue messages in a background thread of your
application. Whenever a successful dequeue operation occurrs, the OnThreadDequeued even
handler will be called so that your application can process the message. If an error occurs
during the dequeue operation, the OnThreadError event handler will be called. In case of a
time out (as defined by the DequeueOptions.Wait property), the OnThreadTimeOut event
handler will be called.

To stop the background thread, call StopThread (requires that DequeueOptions.Wait > 0).

Note
If ThreadSynchronized is True, all OnThread event handler calls will be synchronized w ith the
main thread of your application, which implicitly makes your application thread safe.

TOracleQueue.StopThread

Declaration
procedure StopThread;
Description
To stop the background dequeueing thread that was started by calling StartThread or by
calling Dequeue while Threaded is True, you can call the StopThread procedure. Note that
this procedure cannot interrupt the current dequeue operation. It depends on a timeout

226 Direct Oracle Access 4.1 - User's Guide

(requires that DequeueOptions.Wait > 0) or the actual dequeueing of a message. If
DequeueOptions.Wait = 5, then it can take up to 5 seconds before the background thread is
actually terminated.

TOracleQueue.TableName

Declaration
property TableName: string;
Description
The name of the queue table, as defined through the dbms_aqadm.create_queue procedure
(the queue_table parameter). The name does not include the table owner.

TOracleQueue.TableOwner

Declaration
property TableOwner: string;
Description
The owner of the queue table, as defined through the dbms_aqadm.create_queue procedure
(the owner of the queue_table parameter).

TOracleQueue.Threaded

Declaration
property Threaded: Boolean;
Description
When set to True, subsequent calls to the Dequeue function will be processed in a
background thread. This is equivalent to calling StartThread.

TOracleQueue.ThreadIsRunning

Declaration
property ThreadIsRunning: Boolean;
Description
Indicates if the background thread for dequeueing is currently running, either by calling
StartThread or by calling Dequeue while Threaded is True.

Direct Oracle Access 4.1 - User's Guide 227

TOracleQueue.ThreadSynchronized

Declaration
property ThreadSynchronized: Boolean;
Description
When True, all OnThread event handler calls (OnThreadDequeued, OnThreadTimeOut, and
so on) will be synchronized with the main thread of your application, which implicitly makes
your application thread safe. When False, the event handlers will be called asynchronously,
and you have to take care of thread safety issues in your application.

228 Direct Oracle Access 4.1 - User's Guide

TOracleSessionPool component

Unit
Oracle

Description
In server applications that frequently need to create sessions to process requests from client
applications, it may be useful to use connection pooling. Without a pooling concept, each
request could lead to an actual database logon and logoff. By using the TOracleSessionPool
component, you can maintan a pool of database sessions that can be used and reused for
different requests. You can define the minumum an maximum number of sessions in the pool,
define the TimeOut behavior for idle sessions in the pool, and preset the username, password
and database.

Once you have created a pool, you can assign a TOracleSession to this pool by setting its
Pool property.

The global pool
Instead of creating a specific session pool and assigning sessions to it, you can alternatively
make use the global pool. The Oracle unit contains a global SessionPool variable that will be
used for pooled sessions that do not have their Pool property set. Using the global pool will be
sufficient for most applications. Note however that you need to set the SessionPool properties
before connecting any pooled sessions.

Default pooling vs Oracle pooling (Oracle 9.2 or later)

Oracle 9.2 introduced its own session pooling mechanism. You can make use of this
functionality by setting the PoolType property to ptOracle. Oracle 9.2 pooling is more efficient,
but also has the restriction that you cannot have sessions for more than one database in the
same pool. If this restriction is not a problem, you should use Oracle pooling.

TOracleSessionPool reference
This chapter describes all properties, methods and events of the TOracleSessionPool
component.

TOracleSessionPool.AfterReserve

Declaration
type TSessionPoolSessionEvent = procedure(Sender: TOracleSessionPool;

Session: TOracleSession) of Object;
property AfterReserve: TSessionPoolSessionEvent;
Description
This event is fired after a session reserves a connection from the pool.

TOracleSessionPool.BeforeRelease

Direct Oracle Access 4.1 - User's Guide 229

Declaration
type TSessionPoolSessionEvent = procedure(Sender: TOracleSessionPool;

Session: TOracleSession) of Object;
property BeforeRelease: TSessionPoolSessionEvent;
Description
This event is fired just before a session releases a connection back into the pool.

TOracleSessionPool.Compress

Declaration
procedure Compress;
Description
This procedure will remove all currently unused connections from the pool. The number of
connections will not sink beneath the value indicated by the Min property though.

TOracleSessionPool.CompressOld

Declaration
procedure CompressOld;
Description
This procedure will remove connections from the pool that have been unused longer than
indicated by the TimeOut value. The number of connections will not sink beneath the value
indicated by the Min property though.

TOracleSessionPool.Count

Declaration
property Count: Boolean;
Description
This property indicates the number of (used and unused) connections in the pool. You can use
this value to access the Sessions array.

TOracleSessionPool.Homogeneous

Declaration
property Homogeneous: Boolean;
Description
Indicates that all connections in the pool should use the same LogonUsername,
LogonPassword and LogonDatabase. If a session connects through a Homgeneous pool, its
logon properties will be overruled by the logon properties of the pool.

230 Direct Oracle Access 4.1 - User's Guide

TOracleSessionPool.Lock

Declaration
procedure Lock;
Description
This procedure will lock the pool. Until you call Unlock, other application threads cannot
connect or disconnect a session through the pool.

TOracleSessionPool.LogonDatabase

Declaration
property LogonDatabase: string;
Description
The logon database in case of a Homogeneous pool.

TOracleSessionPool.LogonPassword

Declaration
property LogonPassword: string;
Description
The logon password in case of a Homogeneous pool.

TOracleSessionPool.LogonUsername

Declaration
property LogonUsername: string;
Description
The logon username in case of a Homogeneous pool.

TOracleSessionPool.Max

Declaration
property Max: Integer;
Description
The maximum allowed number of sessions in the pool. If a session tries to connect through
the pool while this maximum has been reached, it will wait until another application thread
disconnects a session, thereby releasing its connection back into the pool.

Direct Oracle Access 4.1 - User's Guide 231

TOracleSessionPool.Min

Declaration
property Min: Integer;
Description
The minimum number of connections in the pool. When connections are removed from the
pool (due to calls to Compress, CompressOld, or due to the TimeOut value), this is the
minimum number of connections that will remain.

TOracleSessionPool.PoolName

Declaration
property PoolName: string;
Description
In case of an Oracle pool (PoolType = ptOracle), this property indicates the unique name of
the pool.

TOracleSessionPool.OnClose

Declaration
type TSessionPoolEvent = procedure(Sender: TOracleSessionPool) of

Object;
property OnClose: TSessionPoolEvent;
Description
This event is fired just before the pool closes. This occurs when the pool instance is freed.

TOracleSessionPool.OnOpen

Declaration
type TSessionPoolEvent = procedure(Sender: TOracleSessionPool) of

Object;
property OnOpen: TSessionPoolEvent;
Description
This event is fired after the pool has opened. This occurs when the first session tries to
reserve a connection from the pool.

TOracleSessionPool.PoolType

232 Direct Oracle Access 4.1 - User's Guide

Declaration
type TSessionPoolType = (ptDefault, ptOracle);
property PoolType: TSessionPoolType;
Description
Oracle 9.2 introduced its own session pooling mechanism. You can make use of this
functionality by setting this property to ptOracle. Oracle 9.2 pooling is more efficient, but also
has the restriction that you cannot have sessions for more than one database in the same
pool. If this restriction is not a problem, you should use Oracle pooling.

Note
If you set this property to ptOracle when using Oracle 9.0 or earlier, the pool will fall back to
ptDefault.

TOracleSessionPool.Sessions

Declaration
property Sessions: [Index: Integer]: TOracleSession;
Description
This array property contains a session for each connection index. If the connection at this
index is currently not being used by a session, the array element will be nil.

Note
If you want to make use of the Sessions array, make sure that you call Lock before accessing
it, and that you call Unlock afterwards. Otherwise the array elements may be changed by other
application threads while you are processing them.

TOracleSessionPool.StatementCache

Declaration
property StatementCache: Boolean;
Description
This property indicates whether or not sessions that connect through the pool will use a client
side statement cache. It requires Oracle 9.2 or later, and will be ignored for older Oracle
versions.

TOracleSessionPool.TimeOut

Declaration
property TimeOut: Integer;
Description
The TimeOut property defines how long (in seconds) an unused connection may remain in the
pool. If a connection has been unused longer, it will be removed from the pool, unless the
number of connections will sink below the value defined by the Min property.

Direct Oracle Access 4.1 - User's Guide 233

The actual process of removing unused sessions will occur when other sessions connect or
disconnect through the pool.

TOracleSessionPool.Unlock

Declaration
procedure Unlock;
Description
This procedure will unlock the pool after locking it with the Lock procedure.

234 Direct Oracle Access 4.1 - User's Guide

TOracleTimestamp object

Unit
Oracle

Description
This object encapsulates the Oracle8i Timestamp datatype. It contains properties for all
separate date and time elements, and also allows you to manipulate the value as a
TDateTime or string. The string can either be formatted in the Windows / Delphi format, or in
Oracle format.

A TOracleTimestamp instance can be used in the following ways:
w It will be returned by the TOracleQuery.TimestampField function.

w You can set a Timestamp SQL or PL/SQL variable by passing it to the SetComplexVariable
procedure, and get or set its properties before and after executing the SQL or PL/SQL.

w You can get a Timestamp attribute through the TOracleObject.TimestampAttr function, and
get or set its properties.

Direct Oracle Access 4.1 - User's Guide 235

TOracleTimestamp reference
This chapter describes all properties and methods of the TOracleTimestamp object.

TOracleTimestamp.AsDateTime

Declaration
property AsDateTime: TDateTime;
Description
Creates a new

TOracleTimestamp.AsOracleString

Declaration
property AsOracleString: string;
Description
Creates a new

TOracleTimestamp.Assign

Declaration
procedure Assign(Source: TOracleTimestamp);
Description
Creates a new

TOracleTimestamp.AsString

Declaration
property AsString: string;
Description
Creates a new

TOracleTimestamp.Clear

Declaration
procedure Clear;
Description
Creates a new

236 Direct Oracle Access 4.1 - User's Guide

TOracleTimestamp.Create

Declaration
constructor Create(ASession: TOracleSession; ADataType: Integer);
Description
Creates a new TOracleTimestamp instance for the given session and data type. The data type
can be one of the following values:
otTimestamp TIMESTAMP

otTimestampTZ TIMESTAMP WITH TIME ZONE

otTimestampLTZ TIMESTAMP WITH LOCAL TIME ZONE

This constructor is primarily useful when assigning a Timestamp variable through
SetComplexVariable.

TOracleTimestamp.DataType

Declaration
property DataType: Integer;
Description
The data type of a timestamp can be one of the following values:
otTimestamp TIMESTAMP

otTimestampTZ TIMESTAMP WITH TIME ZONE

otTimestampLTZ TIMESTAMP WITH LOCAL TIME ZONE

TOracleTimestamp.Day

Declaration
property Day: Byte;
Description
The Day (1..31) of the Month.

TOracleTimestamp.Hour

Declaration
property Hour: Byte;
Description
The Hour (0..23) of the Day.

Direct Oracle Access 4.1 - User's Guide 237

TOracleTimestamp.IsNull

Declaration
property IsNull: Boolean;
Description
Indicates that the timestamp value is null. A timestamp will be null after the instance is
created, after calling Clear, or after retrieving a timestamp field, variable or attribute that is set
to null on the server.

TOracleTimestamp.Minute

Declaration
property Minute: Byte;
Description
The Minute (0..59) of the Hour.

TOracleTimestamp.Month

Declaration
property Month: Byte;
Description
The Month (1..12) of the Year.

TOracleTimestamp.NanoSeconds

Declaration
property NanoSeconds: Cardinal;
Description
The NanoSeconds (0..999,999,999) of the Second.

TOracleTimestamp.Second

Declaration
property Second: Byte;
Description
The Second (0..59) of the Minute.

TOracleTimestamp.Session

238 Direct Oracle Access 4.1 - User's Guide

Declaration
property Session: TOracleSession;
Description
The Session for which the timestamp was created. This can explicitly be specified when
created, or is implicitly defined when the timestamp is obtained from a field or attribute.

TOracleTimestamp.SetValue s

Declaration
procedure SetValues(AYear: SmallInt; AMonth, ADay, AHour, AMinute,

ASecond: Byte; ANanoSeconds: Cardinal);
Description
Sets the Year, Month, Day, Hour, Minute, Second and NanoSeconds values of the timestamp.
If the date/time is invalid, an exception will be raised.

TOracleTimestamp.Year

Declaration
property Year: SmallInt;
Description
The Year (-9999..9999) of the timestamp.

Direct Oracle Access 4.1 - User's Guide 239

TXMLType object

Unit
Oracle

Description
The SYS.XMLTYPE object was introduced in Oracle9 to encapsulate XML in the Oracle
database. In Oracle9.2 this object type can be accessed from the Oracle Net 9.2 client. The
TXMLType provides an easy interface to the SYS.XMLTYPE object type. The TXMLType
object descends from TOracleObject, and can therefore be used anywhere that you can use a
TOracleObject (for example, when assigning an object instance to a variable through
SetComplexVariable).

The XML text of a TXMLType instance can be set during creation:
var
 XML: TXMLType;
begin
 XML := TXMLType.Create(MainSession, '<message>Hello

World</message>');
 try
 XMLQuery.SetComplexVariable('xmlvar', XML);
 XMLQuery.Execute;
 finally
 XML.Free;
 end;
end;

The XML text of a TXMLType instance can be retrieved through the XML read-only property.

The TOracleQuery.XMLField and TOracleObject.XMLAttr functions return a TXMLType
instance for a field or attribute.

Note
The XMLType object can only be used with Oracle9.2.

240 Direct Oracle Access 4.1 - User's Guide

TXMLType reference
This chapter describes all properties and methods of the TXMLType object.

TXMLType.Create

Declaration
constructor Create(ASession: TOracleSession; const AnXML: string);
Description
Creates a new TXMLType instance for the specified session and XML text.

TXMLType.XML

Declaration
property XML: string;
Description
Retrieves the XML Text for the TXMLType instance.

Direct Oracle Access 4.1 - User's Guide 241

The Package Wizard
The Package Wizard is a powerful and easy to use utility that generates Delphi classes that
encapsulate your Oracle Packages. Without the Package Wizard, you have to define a
TOracleQuery with the right PL/SQL Block, define variables for the parameters, set the
variable values, execute the query, and get the variable values for the output parameters or
function result. The TOraclePackage component has already made this process easier, as you
can simply call the program unit and pass the parameters in one call. However, this
component has some limitations because of its simplified interface.

The Package Wizards creates classes for a selection of Oracle Package that contain exactly
the procedures and functions of these packages. If the parameters are record types, it will also
generate classes to encapsulate these record types. Let's assume the following Department
package as an example:

create or replace package Department is
 function Employee_Count(Deptno in dept.deptno%type) return

binary_integer;
 procedure Select_Record(Dept_Record in out dept%rowtype);
 procedure Insert_Record(Dept_Record in dept%rowtype);
 procedure Update_Record(Dept_Record in dept%rowtype);
 procedure Delete_Record(Deptno in dept.deptno%type);
 procedure Get_Description(Deptno in dept.deptno%type, Description

out CLOB);
end Department;

By a simple press of a button, the Package Wizard will generate the following 2 classes for
this package:

type
 DeptRowtype = class(TPLSQLRecord)
 public
 Deptno: Integer;
 Dname: string;
 Loc: string;
 procedure Assign(Source: TPLSQLRecord); override;
 end;
 TDepartment = class(TOracleCustomPackage)
 public
 function EmployeeCount(Deptno: Integer): Integer;
 procedure SelectRecord(var DeptRecord: DeptRowtype);
 procedure InsertRecord(DeptRecord: DeptRowtype);
 procedure UpdateRecord(DeptRecord: DeptRowtype);
 procedure DeleteRecord(Deptno: Integer);
 procedure GetDescription(Deptno: Integer; out Description:

TLOBLocator);
 published
 property Name;
 property Session;
 property Cursor;
 property PackageSpecification;
 end;

The DeptRowType class encapsulates the dept%rowtype parameters used by the procedures.

242 Direct Oracle Access 4.1 - User's Guide

The TDepartment class encapsulates the Department package, and contains an exact
representation of the 6 program units. To call these stored program units, you merely need to
create an instance of the TDepartment class, set the Session property, and call the
corresponding functions or procedures:

Department := TDepartment.Create(nil);
Department.Session := MainSession;
EmpCount := Department.EmployeeCount(10);
Department.Free;

As you can see the TDepartment class descends from the TOracleCustomPackage class,
which in turn is a TComponent descendant. This implies that you can install these Oracle
Packages into a Delphi or C++Builder package and place them on a component palette. Now
you can conveniently place the TDepartment component on a data module or form at design
time, link it to a TOracleSession component at design time, and call the functions and
procedures at run time without any additional code to create, setup or free the TDepartment
instance:

EmpCount := MainDataModule.Department.EmployeeCount(10);

We can't possibly make it easier than this. The Oracle Server software has now become a
natural extension of your Delphi or C++Builder programming language!

Advantages
Using the Package Wizard has many advantages over the use of TOracleQuery or
TOraclePackage components. Some of these advantages are obvious, and some will occur to
you as you use the generated packages:

w No need to create and maintain components to call the packaged program units. You can
simply generate and regenerate your packages with the Package Wizard. This will be a
tremendous time-saver.

w Delphi and C++Builder's code completion will of course work for the packages. Have you
forgot the name of a program unit or parameter? Have you forgot if a parameter is input
and/or output? You can now find this information as easily as you would find information
about other Delphi or C++Builder classes.

w As you don't access any function, procedure or parameter by name, you can't possibly
make a mistake that wouldn't be reported at compile-time. If it can compile it can run. For
the TOracleQuery or TOraclePackage approach you would find these errors at run-time.

w The Package Wizard will generate classes that encapsulate PL/SQL Record types.
Program units that have record type parameters can now be used as easy as any other
program unit.

w The Package Wizard makes use of a special class that encapslates scalar PL/SQL table
types, which makes these parameter types easier to use.

w In Delphi or C++Builder 4 and later, you will see overloaded program units just like they
are.

w If you put some form of documentation into your Package Specifications, then you can see
this information in the generated classes. If you are using the packages as components,
the package specification is visible as a read-only PackageSpecification property.

w Calls to packaged functions and procedures are automatically thread safe without the need

Direct Oracle Access 4.1 - User's Guide 243

to explicitly program critical sections. This means that you can call a single package
instance from multiple threads simultaneously.

w Because the package classes are generated into separate units, you can automatically
reuse them in multiple projects.

w It's fun to generate code and to show your boss that you have 'produced' thousands of
lines of code in just 1 day.

Using the Package Wizard
To start the Package Wizard, you can select the 'File | New' menu item in the Delphi or
C++Builder IDE, and double click on the 'Oracle Package' icon. You can also go to the 'Oracle'
menu and select the 'Package Wizard' item. This will display the first of the 4 steps of the
package generation.

Step 1 - Select the packages
Connect to the database, using an Oracle account that has access to the Oracle Packages for
which you want to generate the classes. After you make a connection you will be presented
with a selection list of packages. The 'Show all packages' checkbox can be used to limit the
selection to just the packages that are owned by the current Oracle account.

Simply select one or more packages and press the 'Next' button.

Step 2 - Define interface translation rules
You can define the following translation rules for the packages:

Always use variants as parameters

Instead of string, integer, double, and TDateTime parameters you can alternatively generate
variant parameters. This has the advantage that the parameters can always represent null
values. For an integer or double parameter there is no difference betw een null and zero. The
disadvantage of this option is that you can't generate overloaded methods, which will now be
distinguished by adding an overload identifier to the name (1, 2, and so on). Another
disadvantage is that you can't quickly determine the parameter data types at design time, the
Code Completion will always show 'Variant' as the data type.

Generate overloaded methods

Enable this option to generate overloaded methods. This is only possible for Delphi or
C++Builder 4 and later. If this option is disabled, overloaded program units will be
distinguished by adding an overload identifier to the name (1, 2, and so on)

Case

This option controls the use of upper- and lowercase characters in object, method, and
parameter names. There are 4 choices:

w Unchanged - Use the names as they are defined in the Oracle Package. Note that this will
typically be all uppercase characters, unless you have used "quoted" identifiers!

w Capitalize - Starts each word with a capital, and makes rest of the word lowercase. Words
are separated by underscores, so INSERT_EMPLOYEE would become Insert_Employee.
This is the default setting, as it converts between typical Oracle naming conventions and
Delphi / C++Builder naming conventions, if you have also enabled the 'Remove
underscores' option.

244 Direct Oracle Access 4.1 - User's Guide

w Uppercase - Convert all characters to uppercase.

w Lowercase - Convert all characters to lowercase.

Remove underscores

If you enable this option, the underscores in Oracle identifiers are removed. This is typically
used in combination with the 'Capitalize' Case option. Using this combination would convert
INSERT_EMPLOYEE to InsertEmployee.

Prefix objects with T

In Delphi and C++Builder you expect class names to start with a T. If you enable this option,
then this prefix will be added to the Oracle package name. Package DEPARTMENT would
result in a TDepartment class if used in combination with the 'Capitalize' Case option.

Prefix parameters with A

You may have adopted the coding style to add 'A' to method parameters. Enabling this option
will apply this sty le to the generated parameter names. If, for example, a method has a
DEPTNO parameter, this will be translated to ADeptno. Using this option will also eliminate
most of the 'reserved word' conflicts for parameters (see below).

Some of these preferences affect the names of the generated classes. An example is
displayed at the bottom of the page.

Step 3 - View and rename elements
After you have defined the translation rules, you are presented with the resulting packages,
methods, and parameters. At this point you may choose to rename any of these names, and
to deselect individual methods. You can of course also modify the resulting source later.

If your packages contain program units that have PL/SQL Table of records as parameters,
then these program units will be deselected because they cannot be called by Direct Oracle
Access.

Some of the names may have been implicitly changed by the Package Wizard to avoid
'reserved word' conflicts. An identifier name like 'object', 'type' or 'program' is perfectly
legitimate in PL/SQL, but will lead to a compilation error for the generated class. When such a
reserved word is encountered, a '1' will be added to the name.

Step 4 - Generate the source file
Before generating the source file you can set the following options:

Prefix database objects with schema name

If you enable this option each database object will be prefixed with the schema name. If
database user SCOTT owns package DEPARTMENT, then a resulting call might look like this:

begin
 :result := scott.department.employee_count(deptno => :deptno);
end;

If the Oracle accounts of the end-users of your application do not have (private or public)
synonyms for these objects, and if in each database your packages are owned by SCOTT,
then this may be an appropriate setting. If you disable this option, the following code will be
generated:

Direct Oracle Access 4.1 - User's Guide 245

begin
 :result := department.employee_count(deptno => :deptno);
end;

Now you must make sure that either all users connect to the database using the SCOTT
account, or that the Oracle accounts of the end-users have (private or public) synonyms for
the SCOTT.DEPARTMENT package

Generate thread safe code

Enable this option to generate thread safe code. This will result in package classes that can be
called from multiple threads simultaneously without explicitly programming critical sections.
There is of course a (very small) performance trade-off involved with this option.

Include package specification

The source of a package specification will typically contain some documentation about the
program units and types that it contains. You can include the package specification in the
generated source file by enabling this option. If the packages are not generated as
components (see below), then it will be included as comment in the source file. If the
packages are generated as components, the specification will be included as a
PackageSpecification (read-only) property, which you can of course inspect at design-time.

Besides having some documentation about the package close by, there is a second
advantage to this option. You will always have an exact image of the package that the classes
were generated against. If your packages are changed with some frequency, this can be
useful information.

Generate as components

Enable this option to generate registration code for the package components. Doing so will
allow you to add them to a Delphi or C++Builder package and to add them to a component
palette. Treating packages as components can be very convenient, as it eliminates the need
to explicitly create and free package instances, and you can link them to a session at design-
time. It also has the advantage that you can view the PackageSpecification property at design
time.

Create component dcr file

Enable this option to generate a resource file with a default icon (green package symbol) for
each package class. You can use the Image Editor to make the icons visually represent the
functionality of the packages.

Component palette

If you want to add the package components to a component palette, you can make a selection
out of the existing palettes or enter the name of a new palette, which will automatically be
created during installation of the Delphi or C++Builder package.

Path

Enter or select the path of the source file you are about to generate. If you leave this field
empty, the source file will be placed in the directory of the project that is currently opened.

Filename

Enter the filename of the source file you are about to generate. The default extension is .pas.

246 Direct Oracle Access 4.1 - User's Guide

Add to project

Enable this option to automatically add the generated source file to the current project.

Open in IDE

Enable this option to automatically open the generated source file in the IDE.

Using the generated classes
Each Oracle package is implemented in a class that descends from a
TOracleCustomPackage. This base class does not contain any functionality that you would
typically use, except for the following 2 properties:

w Cursor - The shape of the mouse cursor during execution of a function or procedure

w Session - The TOracleSession instance that this package instance will use

The TOracleCustomPackage class descends from the TComponent class, so each package
inherits methods and properties from TComponent as well. To create a TDepartment instance,
link it to a session, call a function, and free the package instance again, you could use the
following code:

Department := TDepartment.Create(nil);
Department.Session := MainSession;
Department.Cursor := crSQLWait;
EmpCount := Department.EmployeeCount(10);
Department.Free;

During execution of the EmployeeCount function, the shape of the mouse cursor will be the
SQL hourglass.

Parameter types
Scalar PL/SQL parameter types are represented by string, integer, double and TDateTime
data types in the package class. If you have enabled the 'Always use variants for parameters'
option, scalar parameters will instead be represented by Variants. Complex PL/SQL
parameter types are represented by specific classes, and are discussed in the following
chapters.

For complex input or input/output parameters, you need to create an instance of the
corresponding class and pass it to the method. For output parameters the corresponding
instance will be created inside the method, so you should not create an instance in this
situation. This would just lead to memory leaks, as the instance will be overwritten. In all
situations the application is responsible for freeing the instance.

Ref Cursor
This parameter type is represented by the TOracleQuery class. After calling the method, you
need to execute the TOracleQuery before fetching the rows. If the GetEmployees procedure
returns a cursor for all employees with a department, then the code to call this method could
look like this:

Direct Oracle Access 4.1 - User's Guide 247

Department := TDepartment.Create(nil);
Department.Session := MainSession;
Department.GetEmployees(10, EmpQuery);
EmpQuery.Execute;
while not EmpQuery.Eof do
begin
 ShowMessage(EmpQuery.Field('ename'));
 EmpQuery.Next;
end;
EmpQuery.Free;
Department.Free;

CLOB, BLOB and BFILE
These 3 LOB data types are represented by the TLOBLocator class. For input or input/output
LOB parameters you must make sure that your create a TLOBLocator instance of the correct
type (otCLOB, otBLOB, otBFILE). Assuming that the Department package has a
GetDescription procedure that returns a description CLOB for a department, the code to
retrieve this CLOB could look like this:

Department := TDepartment.Create(nil);
Department.Session := MainSession;
Department.GetDescription(10, Description);
ShowMessage(Description.AsString);
Description.Free;
Department.Free;

Objects and References
Oracle8 object types and references are represented by the TOracleObject and
TOracleReference classes. For input or input/output objects and references, you must make
sure that the instance you created has the right type name:

Department := TDepartment.Create(nil);
Department.Session := MainSession;
Address := TOracleObject.Create(MainSession, 'TAddress', '');
Address.SetVariable('City', 'New York');
Department.SetAddress(10, Address);
Address.Free;
Department.Free;

PL/SQL Tables
The Package Wizard only supports PL/SQL Tables of scalar data types. The TPLSQLTable
class represents a PL/SQL Table for the TOracleCustomPackage.

248 Direct Oracle Access 4.1 - User's Guide

Department := TDepartment.Create(nil);
Department.Session := MainSession;
EmpTable := TPLSQLTable.Create(10, 0);
EmpTable.Count := 3;
EmpTable[0] := 7389;
EmpTable[1] := 6711;
EmpTable[2] := 8556;
Department.DeleteEmployees(EmpTable);
EmpTable.Free;
Department.Free;

In this example a PL/SQL Table is created for up to 10 elements, filled with 3 elements, and
passed to the DeleteEmployees procedure. Note that you do not explicitly create PL/SQL
Table instances for output parameters, so you cannot control the maximum size of the table.
The maximum string size is known within the package class, but the maximum table size
depends on the implementation. The unit of the package class contains a
DefaultPLSQLTableSize variable, which defines the table size for output parameters. The
default value is 100.

Note: the values of a PL/SQL Table will always be represented by Variants, even if you have
disabled the 'Always use variants for parameters' option.

Record types
For each record type that is used as a parameter within a package, a corresponding class is
created in the unit. The name of this class is derived from the package specification, and
descends from the abstract TPLSQLRecord class. This base class defines the Create
constructor and Assign method. If, for example, you use a dept%rowtype parameter, a
corresponding DeptRowtype class is declared that contains the necessary components:

DeptRowtype = class(TPLSQLRecord)
public
 Deptno: Integer;
 Dname: string;
 Loc: string;
 procedure Assign(Source: TPLSQLRecord); override;
end;

If you have enabled the 'Always use variants for parameters' option, scalar record components
will be represented by Variants. Complex record components are represented by the classes
discussed in this chapter. The Create constructor of the record type takes the session as a
parameter, so that it can automatically create TLOBLocator, TOracleObject and
TOracleReference instances within this record type instance. If it contains record type
components, the corresponding instances will be created as well. To call the SelectRecord
procedure, you could use the following code:

Direct Oracle Access 4.1 - User's Guide 249

Department := TDepartment.Create(nil);
Department.Session := MainSession;
DeptRecord := DeptRowtype.Create(MainSession);
DeptRecord.Deptno := 10;
Department.SelectRecord(DeptRecord);
ShowMessage(DeptRecord.Dname);
DeptRecord.Free;
Department.Free;

The DeptRecord.Free destructor will also destroy the instances that may have been created
for complex record components during the Create procedure.

250 Direct Oracle Access 4.1 - User's Guide

TOracleCustomPackage component

Unit
Oracle

Description
The TOracleCustomPackage component is the base class for packages generated with the
Package Wizard. These generated package components encapsulate the functions and
procedures within the Oracle package, so that you can simply call them as if they were
methods of normal Delphi or C++Builder classes. The TOracleCustomPackage is derived from
TComponent, and therefore inherits its methods and properties.
If you are using generated packages as design time components, you can simply place your
custom packages on a data module or main form, and link it to a TOracleSession instance
through the Session property. In this case you can simply call the functions and procedures at
run time without worrying about creating and freeing custom package instances.

If you are creating TOracleCustomPackage descendants at run time, you must use the
standard Create method inherited from TComponent. It has an Owner as parameter, which
can be nil or another TComponent like a form or data module. In the first case you need to
free the instance later, in the second case the Owner will free the instance.

After creating the instance you need to set the Session property before you can call any of the
functions or procedures.

The following example creates a custom package, assigns the session, calls a function, and
frees the instance.
Department := TDepartment.Create(nil);
try
 Department.Session := MainSession;
 EmpCount := Department.EmployeeCount(10);
finally
 Department.Free;
end;

During the process of generating the custom package, you can specify many options that
control several interface and implementation aspects of the resulting class.

Direct Oracle Access 4.1 - User's Guide 251

TOracleCustomPackage reference
This chapter describes all properties and methods of the TOracleCustomPackage component.

TOracleCustomPackage.Create

Declaration
constructor Create(AOwner: TComponent);
Description
Because the TOracleCustomPackage descends from the TComponent class, it has inherited
its constructor. The AOwner parameter can either be another component that will free the
TOracleCustomPackage instance when the owner itself is freed, or it can be nil, in which case
you have to explicitly free the instance yourself.

If you create custom package instances at design time by placing them on a form or data
module, you never need to create or free these instances.

Note: Before you can call any function or procedure of a dynamically created custom package,
you must set its Session property.

TOracleCustomPackage.Cursor

Declaration
property Cursor: TCursor;
Description
Determines the shape of the mouse cursor while calling the package's functions or
procedures. Only crDefault, crHourGlass and crSQLWait are useful here.

TOracleCustomPackage.Name

Declaration
property Name: string;
Description
Use the Name property to change the name of a custom package component at design time to
reflect the actual Oracle package it encapsulates. By default, Delphi or C++Builder assigns
sequential names based on the type of the component.

TOracleCustomPackage.PackageSpecification

252 Direct Oracle Access 4.1 - User's Guide

Declaration
property PackageSpecification: TStrings;
Description
If you have used the Package Wizard with both the 'Include package specification' option and
the 'Generate as components' option enabled, then this read-only property contains the source
of the specification of the package against which the custom package was generated.

If you have added some form of documentation to the package specification, then this property
can serve as reference information. You can also use this property to check if the package in
the database still matches the generated code, or if you need to regenerate it.

TOracleCustomPackage.Session

Declaration
property Session: TOracleSession;
Description
The session in which the package will execute. You must set this property before you can call
any of the package's functions or procedures.

Direct Oracle Access 4.1 - User's Guide 253

TPLSQLRecord object

Unit
Oracle

Description
The TPLSQLRecord object is the abstract base class for PL/SQL record type parameters for
the TOracleCustomPackage component, generated through the Package Wizard. If, for
example, the Oracle package contains a function with a dept%rowtype parameter, the
follow ing class would be generated:
type
 DeptRowtype = class(TPLSQLRecord)
 public
 Deptno: Integer;
 Dname: string;
 Loc: string;
 procedure Assign(Source: TPLSQLRecord); override;
 end;

The abstract TPLSQLRecord base class does not have any properties. All properties are
defined in the generated classes, and will exactly correspond to the components that make up
the PL/SQL record. The following example creates a DeptRowtype instance, sets the
component values, and passes it to the TDepartment.InsertRecord procedure:

var
 DeptRow: TDeptRowtype;
begin
 DeptRow := TDeptRowtype.Create(DataModule.MainSession);
 try
 DeptRow.Deptno := 40;
 DeptRow.Dname := 'OPERATIONS';
 DeptRow.Loc := 'BOSTON';
 DataModule.Department.InsertRecord(DeptRow);
 finally
 DeptRow.Free;
 end;
end;

254 Direct Oracle Access 4.1 - User's Guide

TPLSQLRecord reference
This chapter describes all properties and methods of the TPLSQLRecord object.

TPLSQLRecord.Assign

Declaration
procedure Assign(Source: TPLSQLRecord);
Description
Assigns the Source PL/SQL Record to this instance. This will perform a deep copy of all
components in the record, so that the source and destination are completely separate. If the
record type contains LOB's, Objects, References, PL/SQL Tables, or other PL/SQL Records,
these objects will be copied as well.

TPLSQLRecord.Create

Declaration
constructor Create(ASession: TOracleSession);
Description
Creates a new PL/SQL Record. If the record type contains complex components (LOB's,
Objects, References, PL/SQL Tables or other PL/SQL Records), then these instances will be
created as well. When the PL/SQL Record is freed, these complex component instances will
also be freed.

Direct Oracle Access 4.1 - User's Guide 255

TPLSQLTable object

Unit
Oracle

Description
The TPLSQLTable object encapsulates scalar PL/SQL Table parameters for the
TOracleCustomPackage component, generated through the Package Wizard. To create a
PL/SQL Table instance, call its Create constructor and define the TableSize and, optionally,
the StringSize. To access the individual PL/SQL Table elements, you can access the Values
array property.

256 Direct Oracle Access 4.1 - User's Guide

TPLSQLTable reference
This chapter describes all properties and methods of the TPLSQLTable object.

TPLSQLTable.Assign

Declaration
procedure Assign(Source: TPLSQLTable);
Description
Assigns the Source PL/SQL Table to this instance. This will effectively copy the StringSize,
TableSize and Values.

TPLSQLTable.Count

Declaration
property Count: Integer;
Description
The number of elements in the Values array. The following example will copy all PL/SQL
Table values to a memo:
for i := 0 to Table.Count - 1 do
 Memo.Lines.Add(Table[i]);

If you assign Values beyond the current count, the Values array will automatically extend. You
can however also explicitly set the Count property. It is faster to preset the Count to 100 and
subsequently assign 100 values, compared to implicitly extending the array. The following
example copies the contents of a memo to a PL/SQL Table:

Table.Count := Memo.Count;
for i := 0 to Memo.Count - 1 do
 Table[i] := Memo.Lines[i];

TPLSQLTable.AsString

Declaration
property AsString: string;
Description
Represents the Values of the PL/SQL Table as a multi line string. Each element of the table
will occupy a line. You can also assign a multi line string to the AsString property.

TPLSQLTable.Create

Direct Oracle Access 4.1 - User's Guide 257

Declaration
constructor Create(ATableSize, AStringSize: Integer);
Description
Creates a new PL/SQL Table with the TableSize and StringSize as specified.

TPLSQLTable.StringSize

Declaration
property StringSize: Integer;
Description
If a PL/SQL Table holds string elements, then you must specify the maximum length of the
strings. This equivalent to a PL/SQL Table on the server, which has the same requirement.
The size of a string is pre-allocated for each element in the table when it is passed to the
server. If the StringSize is 100, and the TableSize is 50, then a total of 100 x 50 = 5000 bytes
will be allocated.

If the PL/SQL Table holds integer, float or date elements, this property is ignored.

TPLSQLTable.TableSize

Declaration
property TableSize: Integer;
Description
This property determines the maximum number of elements that a PL/SQL Table can hold.
This is only important for input/output and output parameters, because you need to determine
how may table elements you can expect. For input parameters this property is not important,
because if you assign Values beyond the TableSize, it will automatically be adjusted.

TPLSQLTable.ValueArray

Declaration
property ValueArray: Variant;
Description
This property represents the PL/SQL Table as a Variant array of Variants. You should
normally not use this property.

TPLSQLTable.Values

258 Direct Oracle Access 4.1 - User's Guide

Declaration
property Values[Index: Integer]: Variant;
Description
The zero-based array of elements of the PL/SQL Table. The Count property indicates the
number of elements in the array. You can also set the Count property to extend or decrease
the array. If you set Count larger than the current value, the values array will be extended with
null values.

The Values property is the default array property of a PL/SQL Table. Therefore the following 2
statements are equivalent:
Table[3] := 'Hello';
Table.Values[3] := 'Hello';

Direct Oracle Access 4.1 - User's Guide 259

TOracleProvider component

Unit
OracleProvider

Description
The TOracleProvider component can be used in a server application of a multi-tiered
application. It descends from the abstract TCustomProvider and functions exactly the same as
Delphi's standard TProvider, except that you can only assign a TOracleDataSet to its DataSet
property. Furthermore, the UniqueFields property allows you to define the fields that the
TOracleProvider must use to identify a record. When a TClientDataSet sends records to the
TOracleProvider, it will use these fields to match the records. If the UniqueFields property is
empty, the TOracleProvider will automatically determine a primary or unique key for the
updating table.

Note that multi-tiered applications can only be developed with the Client/Server or Enterprise
edition of Delphi or C++Builder. For more information about multi-tiered applications, you can
read the Delphi / C++Builder manuals and help files. The 3Tier demo project can also provide
some information.

Note
In Delphi 5 the TOracleProvider component is only provided for backward compatibility. For
new projects you should use the standard TDataSetProvider component instead. After
upgrading a multi-tiered application to Delphi 5, you should consider replacing the
TOracleProvider components with TDataSetProvider components.

The UniqueFields property no longer works in the Delphi 5 version of the TOracleProvider.
You must convert this information to the ProviderFlags of the fields of the dataset.

260 Direct Oracle Access 4.1 - User's Guide

TOracleProvider reference
This chapter describes all properties, methods and events of the TOracleProvider component.

TOracleProvider.DataSet

Declaration
property DataSet: TOracleDataSet;
Description
The dataset is used by the provider to get data from the database to which the component is
connected, and to write client application updates to the database.

TOracleProvider.UniqueFields

Declaration
property UniqueFields: string;
Description
The UniqueFields will be used by the provider to identify a record as it is transferred between
client dataset and server application. You can separate multiple fields with semicolons.

Note
This property no longer works in the Delphi 5 version of the TOracleProvider. You must
convert this information to the ProviderFlags of the fields of the dataset.

Direct Oracle Access 4.1 - User's Guide 261

Unit reference
This chapter lists all relevant units in the Direct Oracle Access package, as well as the types,
variables, procedures and functions that are available.

Oracle Unit
The Oracle Unit contains the declarations of the DOA components that can be used in any
edition of Delphi and C++Builder. It is automatically added to the uses clause when you use
one of the components.

Components
TOracleSession
TOracleLogon
TOracleQuery

TOraclePackage
TOracleEvent
TOracleCustomPackage
TOracleDirectPathLoader

TOracleScript
TOracleQueue
TOracleSessionPool

Objects
TLOBLocator
TOracleObject

TOracleReference
TOracleTimestamp
TXMLType
TPLSQLTable

TPLSQLRecord
TDirectPathColumns
TDirectPathColumn
TOracleCommands

TOracleCommand

OracleData Unit
The OracleData Unit contains the declarations for the TOracleDataSet component. It is
automatically added to the uses clause when you use this component.

Components
TOracleDataSet

262 Direct Oracle Access 4.1 - User's Guide

Objects
TSequenceField
TOracleDictionary

TQBEDefinition
TQBEField

OracleNavigator Unit
The OracleNavigator Unit contains the declarations for the TOracleNavigator component. It is
automatically added to the uses clause when you use this component.

Components
TOracleNavigator

OracleProvider Unit
The OracleProvider Unit contains the declarations for the TOracleProvider component. It is
automatically added to the uses clause when you use this component.

Components
TOracleProvider

OracleCI Unit
The OracleCI unit contains the Oracle Call Interface (OCI). The OCI is part of SQL*Net or
Net8 and is provided as a DLL. This DLL is located in Oracle's bin directory and is named
something like ora73.dll (for SQL*Net 2.3), ora803.dll (for Net8 8.0.3), or oci.dll (for Net8 8.1
and later). The OCI DLL will be initialized (once) at the first attempt to logon to the database.

The following variables are related to the OCI DLL:

OCI70: Boolean = False; // OCI 7.0 functions detected
OCI72: Boolean = False; // OCI 7.2 functions detected
OCI73: Boolean = False; // OCI 7.3 functions detected
OCI80: Boolean = False; // OCI 8.0 functions detected
OCI81: Boolean = False; // OCI 8.1 functions detected
OCI90: Boolean = False; // OCI 9.0 functions detected
OCI92: Boolean = False; // OCI 9.2 functions detected
OracleHomeName: string = ''; // Name of Oracle Home
OCIDLL: string = ''; // Name of OCI DLL

Never set the OCI70..OCI81 booleans yourself! They are used internally to determine which
functions are available. The OCI80 boolean can be used to determine if you can use Oracle8
features (LOB's and Objects) in your application, you also have to know if you’re connected to
an Oracle8 database however.

The OracleHomeName variable can be set to the name of the Oracle Home you wish to use.
Note that this is not the registry path or the directory path of the Oracle Home, it is the value of
the ORACLE_HOME_NAME registry key. This is equivalent to the name that is used with

Direct Oracle Access 4.1 - User's Guide 263

Oracle's Home Selector utility. You can obtain a list of oracle home names through the
OracleHomeList function.

You can use the OCIDLL string to determine the exact filename of the OCI DLL file that is
being used. You can also use this variable to force a specific version of SQL*Net to be loaded.
Simply set it to the desired DLL filename before DLLInit is called. The OCIDLL string is to
Direct Oracle Access what the Vendor Init is to the BDE.

The following functions are related to the OCI DLL:

procedure InitOCI;
This function initializes the OCI by calling DLLInit, checking the result, and raising an
appropriate exception if it failed.
function DLLLoaded: Boolean;
Indicates if the OCI DLL is loaded and initialized.
function DLLInit: Integer;
Loads and initializes the OCI DLL. The following things will happen:
1. If already initialized then exit
2. Check if a OCIDLL= parameter is entered on the command line, skip to point 9
3. If the OCIDLL string has a value, skip to point 9
4. Check if a ORACLEHOME= parameter is entered on the command line, skip to point 7
5. If the OracleHomeName string has a value, skip to point 7
6. Determine the Primary Oracle Home
7. Check the registry to determine the ORACLE_HOME directory
8. Add ‘\bin\’ and search for ora*.dll or oci.dll
9. Set the OCIDLL string to the file with the highest number
10. Call LoadLibrary(OCIDLL)
11. If not successful then set the current path to Oracle's bin directory and try again.
12. Determine all functions by name
The DLLInit function returns an integer with the following possible values:
dllOK Everything went OK
dllNoRegistry The registry key was not found (SQL*Net not installed)
dllNoFile No files were found at step 5 or LoadLibrary() failed
dllMismatch No functions were found at step 9
procedure DLLExit;
Frees the OCI DLL that was initialized by DLLInit.
procedure OracleHomeList: TStringList;
Returns a TStringList instance with oracle home names. Before OCI is initialized, you can set
the OracleHomeName variable to one of these names.
function OracleAliasList: TStringList;
Returns a TStringList instance with database aliases as defined in the tnsnames.ora file. Don't
free this list, it is used internally by the TOracleSession.LogonDatabase property and the
TOracleLogon dialog. This function first initializes OCI by calling InitOCI, because it needs to
know if Net8 is used.
function TNSNames: string;
Returns the name of the tnsnames.ora file. This function first initializes OCI by calling InitOCI,
because it needs to know if Net8 is used.
OracleMonitor Unit

264 Direct Oracle Access 4.1 - User's Guide

The Oracle Monitor is a utility that allows you view all database activities generated by an
application that uses the Direct Oracle Access components. The main goals of the Oracle
Monitor are:

w Find performance bottlenecks in your application

w Measure the performance effects of changes in your application or database

w Find application errors (what SQL was executed? What were the variable values?)

The Oracle Monitor is a separate application that runs independently from the applications that
you want to monitor. It displays the currently running Direct Oracle Access applications, an
hierarchical view of the object instances that generate database activities (TOracleSession,
TOracleQuery, TOracleDataSet, and so on), and the activities themselves. For each activity it
displays a description, timestamp, duration, SQL, error message, variables values before and
after execution, database statistics, and the query plan. You can modify the SQL and
optimizer goal to quickly test the effects of these changes on the query plan.

Enabling the Oracle Monitor
Include the OracleMonitor unit in the uses clause in some main unit (e.g. the main form or data
module) of your application. As long as you do not include the OracleMonitor unit your
application cannot be monitored, as it takes care of the following tasks:

w Enlist the application with the Oracle Monitor when the application starts

w Send information about objects and activities to the Oracle Monitor when they occur

Including the OracleMonitor unit will affect the performance of your application, because
sending this information to the Oracle Monitor will obviously take some time. However, as long
as you do not run the OracleMonitor itself, performance degradation will be minimal. Therefore
you can decide to keep the OracleMonitor unit included during all test phases, and maybe
even in the production version of your application.

Direct Oracle Access 4.1 - User's Guide 265

Direct Oracle Access Preferences
The 'Preferences' item in the 'Oracle' main menu in the Delphi or C++Builder IDE, allows you
to specify several settings that affect the design-time behavior. None of these preferences
affect the generated executable. The Preferences dialog is also accessible by right-clicking on
a TOracleSession instance and selecting the 'Preferences' item.

General
w Oracle main menu enabled

The Oracle main menu contains items for the Package Wizard, Explorer, Monitor, PL/SQL
Developer, Help file, Documentation, Preferences and Info. If your main menu is getting too
crowded, you can disable it through this preference. If you want to enable it again, the
preferences can be accessed by right-clicking on a TOracleSession instance and selecting
the 'Preferences' item.

w Wizards enabled
The Direct Oracle Access Wizards are displayed after selecting the 'New' item from the
'File' menu. You can remove the Direct Oracle Access Wizards from this 'New items' dialog
through this preference. The Wizards will still be accessible through the 'Oracle' menu.

w Oracle Home
If you have multiple oracle home's installed, then Direct Oracle Access will select the
primary oracle home by default. This is the oracle home that is listed first in the PATH
environment variable. You can select a different primary oracle home through the Oracle
Home Selector. If you want to use a different oracle home at design time, then you can
select it from this list.

At run time you can set the OracleHomeName variable in the OracleCI unit before making
a connection to the database, or you can set the oraclehome run time parameter on (e.g.
oraclehome=ora815).

w OCIDLL
If the oracle home has multiple versions of SQL*Net or Net8 installed, you can select an
OCI (Oracle Call Interface) DLL from this list, which will be used for design time
connections. Direct Oracle Access will use the most recent version by default.

At run time you can set the OCIDLL variable in the OracleCI unit before making a
connection to the database, or you can specify the ocidll run time parameter (e.g.
ocidll=ora73.dll).

Logon Parameters
w Username, Password & Database

Specify these preferences for the preferred design time connection.

w Always use these parameters
If you enable this preference, the username, password and database will always be used
when making a connection to the database at design time in the Explorer, SQL Editor and
Command Editor.

w Only use these parameters as a preference
If you enable this preference, the username, password and database will only be presented
as a default, but can still be overridden.

266 Direct Oracle Access 4.1 - User's Guide

Logon History
w Enabled

If you enable logon history, the Explorer, SQL Editor and Command Editor will present a
history list of previous connections during logon.

w Store with password
If you enable this preference, the connection information will be stored with (encrypted)
password. When you recall such a connection, you will immediately be logged on without
specifying a password.

w History size
Determines the number of connections that will be remembered.

Exceptions
By default all Oracle Errors will be raised as EOracleError exceptions. On this tab page you
can specify which error numbers will be raised as an EOracleWarning exception, which is a
straight descendant from EOracleError (so it still is an EOracleError!).

Making this distinction is useful if you run your application from within the Delphi or C++Builder
IDE (version 4 or later), because you can use the Debugger Options to ignore these errors.
For example, if you add 54 to the list, all locking exceptions caused by a 'select for update' will
not bring you back into the IDE with an exception notification. Most likely you have handled
ORA-00054, but the IDE does not know this. By using this preference, you can tell the
debugger which exceptions you will always handle.

Making changes to the exception list will not immediately affect a running application. It must
be restarted before it knows about these changes. Also note that the EOracleError -
EOracleWarning distinction will only occur when running an application from within the IDE. It
is a design time preference that does not affect the generated application in its normal run
time environment. Never explicitly use EOracleWarning in your application!

Direct Oracle Access 4.1 - User's Guide 267

Direct Oracle Access Designtime Property Defaults
The 'Property Defaults' item in the 'Oracle' main menu in the Delphi or C++Builder IDE, allows
you to specify the default property values for the Direct Oracle Access components at
designtime. It additionally allows you to to specify that related components (such as a
TOracleSession instance for the Session property of a TOracleDataSet) are automatically
selected when dropped on a form or data module.

At the top of the Designtime Defaults screen you can select each Direct Oracle Access
component for which you want to define a default. Below the component set, you see all
designtime properties for the selected component. For each property you can set a default, or
leave it empty to indicate that you do not want to define your own default. For properties that
can have a restricted set of values (such as a boolean or an enumerated type), you can select
a specific value by pressing on the (...) button to the right of the property value. For properties
that link to a related component, you can only specify Autodetect as a default. In that case the
component will automatically select the closest component of the correct type for the property
when the component is dropped on a form or data module.

At the bottom of the form you can enable or disable the designtime default properties.

Note
None of these settings affect the default property values when components are created at
runtime.

268 Direct Oracle Access 4.1 - User's Guide

Multi-threaded applications
In multi-threaded applications, multiple threads might be accessing the database. Sometimes
this is necessary to perform tasks in the background while the user keeps on working with the
application. Multi-threading can also be used to optimize the application's use of resources of
client, network and server. Finally, multi-threading is necessary if an application needs to be
able to break long running queries on the server.

There are basically two configurations for a multi-threaded application:

Multi-threaded, single -session database access
In this case, multiple threads access one TOracleSession simultaneously. Because the
database server can only handle one request for a specific session at a time, all database
accesses must be serialized. This is achieved by setting the TOracleSession.ThreadSafe
property to true. As a result, all threads block each other when they are accessing the
database. This configuration only makes sense if the threads do a signific ant amount of client
processing relative to the sum of the network and server processing.

Session management needs some special attention in this configuration. The thread that logs
on and off, does transaction control or session control statements, must obviously also be in
control of the other thread(s) to synchronize these actions.

Multi-threaded, multi-session database access
In this case, each thread uses its own dedicated TOracleSession. The client, network and
server can do the processing for these threads parallel, which results in an optimized use of
resources and a non-blocking behavior of the application. No special properties need to be
set, and session management is clear. This is obviously the preferred configuration for a multi-
threaded application, but may not always be possible.

For both configurations, access to a TOracleQuery, TOraclePackage and TOracleDataSet
must always be restricted to a single thread.

Any executing query can be aborted by calling the TOracleSession.BreakExecution method.
This causes an "ORA-01013, user requested cancel of current operation"
exception for the currently executing query in that session. Beware that BreakExecution might
not work on all versions of Personal Oracle.

Direct Oracle Access 4.1 - User's Guide 269

Dynamic Link Libraries
When creating Dynamic Link Libraries that access the database, you can distinguish four
different situations:

DLL-only database access
In this case the host program does not do any database access, s o the DLL owns the session
and controls the log on and log off. There is no difference between such a DLL and a normal
DOA application.

DOA DLL sharing a session with a DOA host program
The host program owns the TOracleSession and can pass it to the DLL through an external
initialization procedure in the DLL. This DLL initialization procedure can call the Share
procedure to share the physical database session between the host session and a session in
a local data module, for example:
procedure InitSession(HostSession: TOracleSession);
begin
 DLLDataModule := TDLLDataModule.Create(nil);
 HostSession.Share(DLLDataModule.Session);
end;

There is a strict order in logging on and off in the host program and DLL:

1. Host program log on
2. Share the session with the DLL
3. (Application processing)
4. Log off or free the session in the DLL
5. Host program log off

DOA DLL sharing a session with a non-DOA host program
If you are writing a DLL that should share a session with a non-DOA host program (for
example, written in Pro*C), you cannot pass a TOracleSession because it does not exist in the
host program. To allow you to share a session, you can pass a pointer to the LDA (SQL*Net:
Logon Data Area) or SVC (Net8: Service Context) to a TOracleSession in the DLL. When you
assign this pointer to the TOracleSession.ExternalLDA or TOracleSession.ExternalSVC
property, the session is virtually logged on. All components linked to this session will now work
with this LDA or SVC. When you assign a nil pointer to ExternalLDA or ExternalSVC, the
session is considered logged off.

There is a strict order in logging on and off in the host program and DLL:
1. Host program log on
2. Assign a value to ExternalLDA or ExternalSVC
3. (Application processing)
4. Assign nil to ExternalLDA or ExternalSVC
5. Host program log off

If you log off in the host program before assigning a nil to ExternalLDA or ExternalSVC, the
components in the DLL will cause a "not logged on" error when freed, because the
TOracleSession.Connected property does not reflect the actual status.

270 Direct Oracle Access 4.1 - User's Guide

Non-DOA DLL sharing a session with a DOA host program
If you are writing an application that needs to share a session with a non-DOA DLL (for
example, written in Pro*C), you can get a pointer to the LDA (Logon Data Area) or SVC
(Service Context)of the TOracleSession through the ExternalLDA or ExternalSVC property.
The DLL needs to provide a procedure to pick up this LDA or SVC.

Direct Oracle Access 4.1 - User's Guide 271

Translating standard messages from English
Direct Oracle Access uses string constants for all messages that are generated. You can
overrule these messages in your application to translate them from English to your native
language if necessary.

TOracleDataSet messages
To allow translation of the standard messages generated by the TOracleDataSet, the following
string constants are defined in the OracleData unit:

const // Allow translation of dataset messages
 dmRecordLocked: string = 'Record is locked by another user';
 dmRecordChanged: string = 'Record has been changed by another

user';
 dmRecordDeleted: string = 'Record has been deleted by another

user';

To enforce the same translated messages in all your application, you can create a unit that
overrules the default messages in its initialization section and simply include it in all your
projects:

unit DOADutch;

interface

implementation

uses OracleData;

initialization
begin
 // Translate dataset messages to Dutch
 dmRecordLocked := 'Record is gereserveerd door een andere

gebruiker';
 dmRecordChanged := 'Record is gewijzigd door een andere gebruiker';
 dmRecordDeleted := 'Record is verwijderd door een andere

gebruiker';
end;

end.

TOracleLogon messages
The following string constants are defined in the OracleLogon unit and can be overruled to
translate the Logon dialog:

272 Direct Oracle Access 4.1 - User's Guide

const // Allow translation of the Logon dialog
 ltLogonTitle: string = 'Oracle Logon';
 ltPasswordTitle: string = 'Change password';
 ltConfirmTitle: string = 'Confirm';
 ltUsername: string = 'Username';
 ltPassword: string = 'Password';
 ltDatabase: string = 'Database';
 ltConnectAs: string = 'Connect as';
 ltNewPassword: string = 'New password';
 ltOldPassword: string = 'Old password';
 ltVerify: string = 'Verification';
 ltVerifyFail: string = 'Verification failed';
 ltChangePassword: string = 'Do you wish to change your password

now?';
 ltExpired: string = 'Your password has expired';
 ltOKButton: string = 'OK';
 ltCancelButton: string = 'Cancel';

The following code translates the logon dialog text to German and then executes a
TOracleLogon component. Note that you must add the OracleLogon unit to the uses clause of
the unit that performs this task.
begin
 ltLogonTitle := 'Anmeldung';
 ltUsername := 'Benutzer';
 ltPassword := 'Passwort';
 ltDatabase := 'Datenbank';
 ltOKButton := 'OK';
 ltCancelButton := 'Abbruch';
 MyLogonDialog.Execute;
end;

Direct Oracle Access 4.1 - User's Guide 273

Oracle Net compatibility issues
If Direct Oracle Access detects Oracle Net 8 or later, the new Net8 interface will be used. If
Oracle Net 8 or later is not detected, the old SQL*Net functions will be used to maintain full
compatibility with SQL*Net 1.x or 2.x, Oracle 7.x and all previous Direct Oracle Access
releases.

Theoretically, Oracle Net 8 is 100% compatible with previous versions of SQL*Net. However, if
an application wishes to use features such as LOB's and Objects, it needs to use the new
Oracle Net 8 interface. Because of this new interface, the following incompatibilities exist:

w Long and Long Raw columns can no longer be randomly and piecewise fetched from the
server using the TOracleQuery.GetLongField method. The method still works, but the
entire Long is immediately fetched after execution, and the GetLongField method retrieves
the requested piece from memory.

w The ErrorPosition and ErrorLine of a TOracleQuery and TOracleDataSet are not supported
on Net8 8.0.3 and 8.0.4, because this information is missing. They always return 0. In Net8
8.0.5 and later these functions perform correctly.

w The TOracleQuery.WarningFlags are not available for Net8, except for the "Compiled with
errors" bit ($20).

w TOracleSession.ExternalLDA is no longer available, because Net8 no longer uses an LDA
structure.

To force Direct Oracle Access to use the old SQL*Net interface on Net8 clients, thereby
removing the above incompatibilities, you can set the TOracleSession.Preferences.UseOCI7
boolean to True. This way, you achieve 100% compatibility for your application on SQL*Net
and Oracle Net 8 clients. Obviously, Oracle Net 8 specific features are not available to your
application. These features are:

w The TLOBLocator object

w The TOracleObject object

w The TOracleReference object

w Oracle8 password expiration

w MTS session pooling

The following functionality requires Oracle Net 8.1 or later

w The TOracleDirectPathLoader component

w Temporary LOB's

w Timestamps

Features that require Oracle Net 9.0 or later:

w Scrollable queries

Features that require Oracle Net 9.2 or later:

w The TXMLType object

w Oracle Session Pooling

274 Direct Oracle Access 4.1 - User's Guide

w Client side statement caching

Direct Oracle Access 4.1 - User's Guide 275

Personal Oracle Lite compatibility issues
Direct Oracle Access can be used to create applications that run on Personal Oracle Lite.
Features from Oracle 7 that are missing in POLITE (like PL/SQL) will not be discussed here.
Check your POLITE documentation for more info. The following chapters discuss compatibility
issues that arise when using Direct Oracle Access on a POLITE database.

SQL*Net / Net8 versions
POLITE ships with a specific version of SQL*Net or Net8 that needs to be used to connect to
the database. Version 3.0 requires that SQL*Net 2.3 is used, whereas version 3.5 can be
accessed though Net8. When Direct Oracle Access detects a POLITE connection, it implicitly
uses the required SQL*Net or Net8 version.

Connect strings
To access a POLITE database through a SQL*Net or Net8 client, you must specify an ODBC
datasource as the connect string. If, for example, the POLITE database is named MYLITEDB,
then you must specify ODBC:MYLITEDB as the connect string in the
TOracleSession.LogonDatabase property.

Error handling
The error codes that POLITE returns are different than those returned by an Oracle 7 or 8
server. The Oracle error code will usually be 30021, and the second line of the message text
will explain what went wrong. If, for example, you insert a duplicate key, you will get the
following error text:

 OCA-30021: error preparing/executing SQL statement

 [POL-3220] duplicate keys in primary/unique index

The error code that Oracle reports will always be 30021, so your application needs to analyze
the error text if it needs to respond to specific error situations.

The OnTranslateMessage event of a TOracleDataSet also suffers from this incompatibility.
Not only will you always receive error code 30021, but also will the constraint name always be
empty. If you wish to use this event handler than again you need to analyze the secondary
message in the error text.

The EnforceConstraints option of the TOracleDataSet will only work for primary, unique and
foreign key constraints. Check constraints cannot be evaluated due to the fact that PL/SQL
blocks are not supported by POLITE.

Updateable datasets
To make a TOracleDataSet updateable for an Oracle 7 database, you needed to include the
rowid in the SQL select statement. The support for rowid's in POLITE is not completely up to
Oracle 7 level, so that you also need to include all the primary key columns in the dataset.
Alternatively, you can include the columns from a unique key. If you do include the rowid, but
not the primary/unique key columns, the dataset will issue an error when you try to open it.

276 Direct Oracle Access 4.1 - User's Guide

Index

A

Abort, 206
Add, 196; 212
AddOutput, 187
AfterCommand, 187
AfterFetchRecord, 92
AfterLogOn, 11
AfterQBE, 93
AfterQuery, 60; 93
AfterRefreshRecord, 94
AfterReserve, 229
AliasDropDownCount, 45
AllowFileWildCards, 132
AllowOperators, 132
Append, 157
ApplyUpdates, 11
Array DML, 53
AsDateTime, 236
AsOracleString, 236
Assign, 157; 166; 181; 236; 255; 257
AsString, 157; 236; 257
Attempts, 220
AttrIsNull, 166
AutoCommit, 12; 187
AutoContains, 136
AutoPartialMatch, 136

B

BackgroundColor, 132
BeforeLogOn, 12
BeforeQBE, 94
BeforeQuery, 60; 94
BeforeRelease, 230
BreakExecution, 12
BreakThread, 60
Buffering, 157
BufferSize, 206
BytesPerCharacter, 13

C

CachedUpdates, 95

CallBooleanFunction, 141
CallComplexMethod, 166
CallDateFunction, 141
CallFloatFunction, 141
CallIntegerFunction, 142
CallMethod, 167
CallProcedure, 142
CallStringFunction, 142
Cancel, 61
CancelUpdates, 13
Caption, 45
CaseInsensitive, 136
CheckConnection, 13
Clear, 61; 158; 168; 181; 196; 212; 236
ClearAttr, 168
ClearQBE, 95
ClearVariables, 61; 95
Close, 61
CloseAll, 96
ColumnByName, 206
Columns, 206
ColWidth, 187
CommandByName, 188
CommandIndex, 188
Commands, 188
CommandType, 199
CommentProperty, 199
Commit, 14
CommitOnPost, 96
CompareQueryVariables, 96
Compress, 230
CompressBLOBs, 97
CompressionFactor, 97
CompressOld, 230
Condition, 217
ConnectAs, 14
Connected, 15
ConsumerName, 217
ConvertCRLF, 36
Copy, 158
Correlation, 217; 220
Count, 196; 212; 230; 257
CountQueryHits, 98
Create, 158; 168; 181; 237; 241; 252; 258
CreateObject, 98
CreateTemporary, 159
CurrentCommand, 189
Cursor, 15; 62; 99; 142; 189; 216; 252
Cursor variables, 55

Direct Oracle Access 4.1 - User's Guide 277

D

DataSet, 133; 261
DataSize, 214
DataType, 214; 237
DateFormat, 207; 214
Day, 237
DBMS_Alert, 16
DBMS_Application_Info, 16
DBMS_Job, 17
DBMS_Output, 18
DBMS_Pipe, 19
Debug, 62; 99; 143; 189; 217
DeclareAndSet, 62; 99
DeclareQueryVariables, 99
DeclareVariable, 62; 100
Defaults, 268
DefaultValues, 114
Delay, 220
Delete, 169; 196
DeleteElement, 169
DeleteVariable, 63; 100
DeleteVariables, 63; 100
Dequeue, 217
DequeueMode, 217
DequeueOptions, 217
Describe, 63
DesignActivation, 101
DesignConnection, 20
Designtime Property Defaults, 268
Detachable, 101
DetailFields, 101
DimPLSQLTable, 63
Direct Oracle Access, 5
Direct Oracle Access Designtime

Property Defaults, 268
Direct Oracle Access Installation, 7
Direct Oracle Access Preferences, 266
Direct Path Columns property editor, 213
Directory, 159
Disabled Constraints property editor, 114
DisabledConstraints, 114
DisplayFormats, 114
DOA, 5
Dynamic Link Libraries, 270
DynamicDefaults, 114

E

ElementCount, 170

ElementExists, 170
Elements, 170
EnforceConstraints, 114
Enqueue, 219
EnqueueOptions, 219
EnqueueTime, 220
Eof, 64
Erase, 159
ErrorCode, 200
ErrorLine, 64; 102
ErrorMessage, 21; 200
ErrorPosition, 65; 102
ExceptionQueue, 220
ExecSQL, 102
Execute, 45; 65; 189; 200
ExecuteArray, 65
ExecuteQBE, 102
ExitOnError, 189
Expiration, 220
ExpirationMessage, 21
ExternalAUT, 21
ExternalCursor, 103
ExternalENV, 21
ExternalLDA, 22; 270
ExternalSRV, 22
ExternalSVC, 22
ExtProcRaise, 23
ExtProcShare, 23

F

Field, 66
FieldAsDate, 66
FieldAsFloat, 67
FieldAsInteger, 67
FieldAsString, 67
FieldByName, 133
FieldCount, 68; 133
FieldIndex, 68
FieldIsNull, 68
FieldKinds, 114
FieldName, 69; 136
FieldOptional, 69
FieldPrecision, 69
Fields, 133
FieldScale, 70
FieldSize, 70
FieldType, 70
FileExists, 159
Filename, 160
Filter, 103

278 Direct Oracle Access 4.1 - User's Guide

Filtered, 104
FilterOptions, 104
Finish, 207
Finished, 190
First, 71
FloatPrecision, 36
Flush, 170
FlushBuffer, 160
FlushObjects, 27
FontColor, 134
FunctionType, 71; 200

G

GetAttr, 171
GetBooleanVariable, 143
GetComplexVariable, 71; 105
GetCursor, 71
GetDateVariable, 143
GetDefaultColumns, 207
GetFloatVariable, 143
GetIntegerVariable, 143
GetLongField, 72
GetParameter, 144; 171
GetQueryVariables, 105
GetStringVariable, 144
GetVariable, 72; 105; 190

H

Hex, 181
HistoryIniFile, 45
HistoryRegSection, 46
HistorySize, 46
HistoryWithPassword, 46
Homogeneous, 230
Hour, 237

I

IgnoreTime, 137
Index, 201; 215
IntegerPrecision, 36
InternalSession, 147
InTransaction, 27
IsArray, 172
IsCollection, 172

IsLocked, 172
IsNull, 160; 172; 182; 238
IsolationLevel, 27
IsTable, 173
Items, 197; 212

K

KeepConnection, 147

L

Last, 72
LastColumn, 207
LastRow, 208
LastValue, 137
Lines, 190
Load, 208
LoadFromFile, 160
LOBAttr, 173
LOBField, 72
Lock, 174; 231
LockingMode, 106
LogMode, 208
LogOff, 27; 147
LogOn, 28
LogonDatabase, 28; 231
LogonPassword, 29; 231
LogonUsername, 29; 231

M

Master, 106
MasterFields, 108
Max, 231
MaxElements, 174
MaxRows, 208
MaxStringFieldSize, 36
MessageProperties, 220
MessageTable, 29
Min, 232
Minute, 238
Modified, 175
MonitorMessage, 30
Month, 238
MoveBy, 73
MoveTo, 73

Direct Oracle Access 4.1 - User's Guide 279

MsgId, 217; 220
MTSOptions, 31
Multi-threaded applications, 269

N

Name, 161; 175; 182; 201; 215; 252
NanoSeconds, 238
Navigation, 217
Net8, 263
Next, 73
NullLOBIsEmpty, 36
NullObjectIsEmpty, 36
NullValue, 31

O

ObjAttr, 175
ObjectNames, 147
ObjectType, 148
ObjElements, 176
ObjField, 73
OCI, 263
OCIDateCreate, 32
OCIDateFree, 32
OCIDateFromDateTime, 32
OCIDateToDateTime, 32
OCIDLL, 263
OCINumberCreate, 33
OCINumberFree, 33
OCINumberFromFloat, 33
OCINumberFromInt, 33
OCINumberToFloat, 34
OCINumberToInt, 34
OnApplyRecord, 108
OnArrayError, 74
OnCancelQBE, 112
OnChange, 34
OnClose, 232
OnCommand, 191
OnCompressBLOB, 112
OnData, 192
OnDecompressBLOB, 113
OnError, 148; 192
OnEvent, 148
OnOpen, 232
OnOutput, 192
OnStart, 149
OnStop, 149

OnThreadDequeued, 222
OnThreadError, 74; 223
OnThreadExecuted, 74
OnThreadFinished, 75
OnThreadRecord, 75
OnThreadStart, 223
OnThreadStop, 223
OnThreadTimeOut, 224
OnTimeOut, 149
OnTranslateMessage, 113
Optimize, 75; 114; 144
OptimizerGoal, 34
Options, 46
Oracle, 262
Oracle Net compatibility issues, 274
ORACLE_HOME, 263
OracleAliasList, 263
OracleCI, 263
OracleDictionary, 114
OracleHomeList, 263
OracleHomeName, 263
OracleMonitor, 265
OriginalMsgId, 220
Output, 193
OutputOptions, 193

P

Package Wizard, 242
PackageName, 144
PackageSpecification, 253
Parallel, 209
ParameterMode, 144
PartitionName, 209
Payload, 224
PayloadType, 225
Personal Oracle Lite compatibility issues,

276
Picture, 47
Pin, 182
PL/SQL Tables, 56
POLite, 34
Pool, 35
Pooling, 35
PoolName, 232
PoolType, 233
Position, 161
Preferences, 36; 266
Prepare, 209
Prepared, 209
Prior, 76

280 Direct Oracle Access 4.1 - User's Guide

Priority, 220
Property Defaults, 268
ProviderOptions, 116

Q

QBE Definition property editor, 116
QBEDefinition, 116
QBEMode, 118
QBEModified, 120
Query, 193
Queryable, 137
QueryAllRecords, 120
QueueName, 225
QueueType, 225

R

RangeValues, 114
RawPayload, 225
Read, 161
ReadBuffer, 76; 121
ReadOnly, 121
RefAttr, 176
RefElements, 177
Reference, 177
RefField, 76
Refresh, 178
RefreshOptions, 121
RefreshRecord, 123
RelativeMsgid, 219
RequiredFields, 114
Retries, 47
ReturnCode, 37; 76
Rollback, 37
RollbackOnDisconnect, 38
RollbackToSavepoint, 38
RowCount, 77
RowId, 77; 123
RowsProcessed, 77; 201

S

Savepoint, 38
SaveQBEValues, 134
SaveToFile, 161
ScanVariables, 193

ScriptLine, 202
Scrollable, 77
ScrollPosition, 78
SearchRecord, 124
Second, 238
Seek, 162
SenderId, 220
SequenceDeviation, 219
SequenceField, 125
SequenceField property editor, 125
ServerVersion, 39
Session, 47; 78; 125; 145; 150; 194; 209;

226; 239; 253
Sessions, 233
SetAttr, 178
SetComplexVariable, 78; 125
SetData, 215
SetEmpty, 162
SetLongVariable, 79; 126
SetPassword, 39; 48
SetQueryVariables, 126
SetTransaction, 40
SetValues, 239
SetVariable, 79; 126; 145; 194
Share, 41
Size, 162
SmallIntPrecision, 36
SQL, 80; 127
SQL*Net, 263
SQLTrace, 41
Start, 150
Started, 150
StartThread, 226
State, 80; 220
StatementCache, 41; 233
StatementCacheSize, 42
Stop, 150
StopThread, 227
stored procedures, 80
stored program units, 80
StringFieldsOnly, 80; 127
StringSize, 258
SubstitutedSQL, 81; 127
SubstitutedText, 202
Synchronized, 150

T

TableName, 210; 227
TableOwner, 227
TableSize, 258

Direct Oracle Access 4.1 - User's Guide 281

TAfterFetchRecordAction, 92
TAQAgent, 220
TAQDequeueMode, 217
TAQDequeueNavigation, 217
TAQDequeueOptions, 217
TAQDequeueState, 220
TAQDequeueVisibility, 217
TAQEnqueueOptions, 219
TAQEnqueueSequence, 219
TAQEnqueueVisibility, 219
TAQMessageProperties, 220
TAQQueueType, 225
TBytesPerCharacterOption, 13
TCheckConnectionResult, 13
TCompressionEvent, 112; 113
TConnectAsOption, 14
TDirectPathColumn, 213
TDirectPathColumns, 211
Temporary, 163
TemporaryLOB, 36
TEventObjectType, 148
Text, 202
Threaded, 81; 227
ThreadIsRunning, 82; 228
ThreadSafe, 42; 269
ThreadSynchronized, 82; 228
TimeOut, 151; 220; 233
TimestampAttr, 178
TimestampField, 83
TIsolationLevelOption, 27
TLOBLocator, 152
TLockingModeOption, 106
TLogonOption, 46
TLogonOptions, 46
TNSNames, 263
TNullValueOption, 31
TOptimizerGoalOption, 34
TOracleCommand, 198
TOracleCommands, 195
TOracleCustomPackage, 242; 251
TOracleDataSet, 89
TOracleDictionary, 114
TOracleDirectPathLoader, 203
TOracleEvent, 146
TOracleLogon, 44
TOracleNavigator, 138
TOracleObject, 164
TOraclePackage, 139
TOracleProvider, 260
TOracleQuery, 49
TOracleQueue, 216
TOracleReference, 180
TOracleScript, 184

TOracleSession, 9
TOracleSessionPool, 229
TOracleTimestamp, 235
TParameterModeOption, 144
TPinLockOption, 182
TPinOption, 182
TPLSQLRecord, 242; 254
TPLSQLTable, 242; 256
TQBEDefinition, 131
TQBEField, 135
TQueryState, 80
Transformation, 217; 219
Trim, 163
TrimElements, 179
TrimStringFields, 36
TSearchRecordOptions, 124
TSessionPoolType, 233
TSessionPreferences, 36
TSQLTraceOption, 41
TTemporaryLOBOption, 36
TTransactionMode, 40
TXMLType, 240

U

UniDirectional, 127
UniqueFields, 128; 261
Unlock, 234
UpdatesPending, 128
UpdateStatus, 128
UpdatingTable, 105; 128
UseMessageTable, 114
UseOCI7, 36
UTL_File, 42

V

Value, 137
ValueArray, 258
Values, 259
VariableCount, 83; 129
VariableIndex, 83; 129
VariableName, 84; 129
Variables, 84; 130
Variables property editor, 84
VariableType, 88; 130
Visibility, 217; 219

282 Direct Oracle Access 4.1 - User's Guide

W

Wait, 217
WarningFlags, 88
Words, 202
Write, 163

X

XML, 241
XMLAttr, 179

XMLField, 88

Y

Year, 239

Z

ZeroDateIsNull, 36

