
AlteNET Scripter for WinForms v7

Contents
Introduction 1

What’s included 2

Installation 3

Getting Started 4

Under the bonnet 5

Setting up Script Source 5

Adding assembly references: 6

Registering objects to be used in script 6

Script Compilation and Execution 7

Script Debugging 8

Script Debugging best practices 11

Script Debugging Widgets 12

TypeScript/JavaScript support. 12

IronPython support 14

Integration with other AlterNET Studio components. 15

Licensing 16

Introduction

AlterNET Scripter is a component library designed to integrate C#/Visual Basic, TypeScript/JavaScript and

IronPython scripts into your .NET applications. It allows extending functionality of the application logic

without recompiling and redeploying the application. An example of such an application is MS Office

with ability to write and debug macros using Visual Basic for Application; Photoshop, SolidWorks and

many other software packages provide some sort of SDK so developers or end-users can write their own

scenarios to extend these platforms.

The AlterNET Scripter provides a framework to compile and execute user-defined scripts along with the

set of debugging tools enabling application developers to expose application internals to the script

writers so they can write user-defined scenarios for these applications.

What’s included
The main component in the package is ScriptRun, which encapsulates functionality of running standalone

script files or projects with forms and resources; it allows to reference third-party assemblies and

register application-defined objects to be accessible in the scripts.

ScriptDebugger provides a fully-featured script debugging engine; it supports Start, Stop, Break and

Continue commands, step by step execution, breakpoints, expression evaluation, viewing local variables

and watches, stack tracing and multiple thread debugging.

ScriptDebugger Widgets – set of debugging widgets (output, compiler errors, call stack, threads, locals

watches and breakpoints).

Script Debugger Demo and QuickStart projects – these projects show how to run scripts, execute specific

methods, reference application objects, execute scripts asynchronously, debug scripts and projects by

standalone debugger or embed Script debugging logic into your application.

TypeScript/JavaScript components – a separate set of ScriptRun implementation for execution of

TypeScript/JavaScript code; a TypeScript Debugger – a full features debugging engine for TypeScript;

TypeScript debugger demo and set of quick start projects.

IronPython components – a separate set of ScriptRun implementations for execution of IronPython code;

a IronPython Debugger – a full features debugging engine for IronPython; IronPython debugger demo

and set of quick start projects.

Full Source Code - which comes with Universal edition.

Installation
AlterNET Scripter is installed as part of the AlterNET Studio installer program. Advanced installation

options include platform selection (WinForms, WPF or both).

Installation requires .NET Framework 4.6.1 + and Visual Studio 2015, 2017 or 2019 to be installed on the

target machine. Installation program will register Visual Studio extensions and place ScriptRun and Script

Debugger Widgets on the AlterNET Scripter tab in Visual Studio toolbox.

Other versions of .NET Framework 4.5.2,.NET Core 3.0,+ and Net 5.0 are available via NuGet packages.

Complete list of NuGet packages can be found here:

https://alternetsoft.com/download

If you have a previous major version of AlterNET Studio, and decide to install the new one side-by-side,

you will have two sets of Visual Studio Extensions and two sets of tabs, each one clearly displaying

version number.

https://alternetsoft.com/download

Getting Started
Once the product is installed, it might be good idea to explore quick start projects and Script Debugger

demo first, either by compiling Alternet.Studio.AllDemos.sln solution or accessing these demos through

Demo Explorer tool which is added to Windows Start menu.

Below is brief overview of these projects:

AlterNET Studio– demonstrates how to run and debug script files and projects. Example files and projects

are located in the demo\resources\debugger folder.

CallMethod - demonstrates how to execute script methods and pass application objects to the script.

CustomAssembly – demonstrates how to use external assemblies in the scripts

EvaluateExpression – shows how ScriptRun can evaluate expression, which again can access some

objects defined in the application

Isolated Script - Shows how to load script in the separate AppDomain, so it can be unloaded afterwards

and execute methods in it.

Object Reference – shows how application-defined objects can be accessed by bane from the script.

Threading – shows how scripts can be run asynchronously.

DebugMyScript– demonstrates how scripts executed by application can be debugged by a separate Script

Debugger tool.

DebuggerIntegration – Shows how debugger logic can be integrated in the application to debug

application-independent scripts.

DebugRemoteScript – Shows how debugger logic can be embedded in the application to debug scripts

that access the application API indirectly.

Once you’ve done with demo projects, it’s time to run the Hello World script yourself.

Essential steps are: Place ScriptRun component on the form, and write the following code in Button click

event handler:

scriptRun1.ScriptSource.FromScriptCode("public class ScriptTest { public static void
Main() { System.Windows.Forms.MessageBox.Show(\"Hello World \");} }");
scriptRun1.ScriptSource.WithDefaultReferences();
scriptRun1.Run();

The first line of the code populates Script source, second line adds references to most common System

assemblies, and the third one runs the code.

Under the bonnet
The basic script execution workflow requires setting a script source, adding references to the assemblies

used in the script; registering application-defined objects accessible to the script; compiling script to

dynamically-linked library or standalone executable program and running some method in that dll or

executing the program.

Setting up Script Source

All properties and methods required to set a script source are encapsulated in ScriptSource property of

the ScriptRun class; below are the most essential ones:

Files - specifies collection of source files to be compiled and executed;

ScriptCode – specifies source in a form of text string;

ProjectName, ProjectFileName and RootNamespace - contain project-related information if ScriptSource

is loaded from the project.

Imports - contains global namespaces in case Visual Basic is used so you do not need to specify them in

the code;

Conditionals – contains lists conditional compilation symbols;

References - contains a list of assembly references for types used in the scripts; this can include reference

to the calling application.

SearchPaths – contains search paths to look for the third-party references in case they’re not supplied

with a full path.

Resources - contains list of resx files.

FromScriptFile – loads Script Source from the single source file;

FromScriptCode – loads script from code in a form of a text string;

FromExpression – sets ScriptSource to the string expression.

FromScriptProject – loads code from Visual Studio Project

Adding assembly references:

In order to use types in the script, assemblies where these types are declared need to be properly

referenced.

The following code populates references with most commonly used assemblies:

scriptRun1.ScriptSource.WithDefaultReferences();

For technology set to WinForms (which is default option) it contains the following assemblies:

System,System.Drawing System.WindowsForms;

You can reference additional assemblies by adding it to the References property:

scriptRun1.ScriptSource.References.Add("System.Data");

This method accepts full path, you can also add reference to third-party assemblies in case script uses

types from it.

Registering objects to be used in script

Application objects accessible by the script need to be added to the GlobalItems collection, along with

the object's name which will be used in the script and object’s type or object itself.

Object value itself is only required during script execution; for script compilation object name and type

are sufficient.

ScriptRun adds references to the assemblies which contain types of the objects being added to

GlobalItems automatically.

Please note that AssemblyKind property needs to be set to Dynamically Linked Library, for it to be loaded

in the running application process and be able to access application-defined objects.

Below is sample code which registers application-defined objects in the script.

public class MyItem
{

public MyItem(string text)
{

this.Text = text;
}
public string Text;

}
scriptRun1.GlobalItems.Add(new ScriptGlobalItem("MyItem", obj: new MyItem("hello")))

Script Compilation and Execution

Once ScriptSource is set, next step is Compile the script; this step is performed implicitly when the script

is run the first time, or when Script source is changed (this includes changes of script files externally)

Script compilation engine is implemented by ScriptHost; there are two implementations of ScriptHost

provided, a legacy engine based on CodeDOM wrapper around command-line C# or Visual Basic

compiler, or RoslynScriptHost based on new Microsoft Roslyn Code compiler technology – the last one is

used by default and it allows some nice features such as referencing to other script source dynamically

by using #load directive and gives more control on code parsing and compilation.

Script can be compiled into a dynamically-linked library or in a standalone executable; this is controlled

by the AssemblyKind property. ScriptHost.GenerateModulesOnDisk allows to control whether assembly

being compiled will reside in memory or on the disk; and ScriptHost .ModulesDirectoryPath specifies

location of compiled assembly where compiled modules will be stored. Platform target (AnyCPU,

AnyCpu32BitPreferred, x86, x64 or Auto) is controlled by Platform property (by default it’s set to Auto

and takes target platform from the application).

Once Compilation is executed, Compiled property will be set to true in case compilation was successful,

and ScriptHost’s ScriptAssembly property will point to the assembly being compiled from the script

source. Otherwise ScriptHost’s properties CompileFailed will be set to true and CompilerErrors will be

populated with compiler errors. Please note, CompilerErrors may contain compiler warnings even in

case of successful compilation.

Upon successful compilation you can subsequently call Run, RunMethod, or their asynchronous variants:

RunAsync and RunMethodAsync; in case of standalone executable RunProcess should be used instead.

Script Debugging
Script writing is not complete fun without ability to debug what you write. We provide tools to debug

script code and a set of UI widgets to build custom debugging interfaces.

Script Debugger engine is implemented in Alternet.Script.Debugger assembly and it is based on CLR

debugging COM interfaces low-level API to debug .NET applications.

https://msdn.microsoft.com/en-US/library/ms404484(v=vs.110).aspx

Main component of Script debugging is the ScriptDebugger class, which provides all commonly used

debugging features like step by step execution, stopping on breakpoints, examining local variables,

expression evaluations, etc.

Below is a summary of ScriptDebugger most essential properties, methods and events:

Methods:

StartDebugging – starts executing the program from the entry point.

AttachToProcess – attaches to the already started process which scripts are to be debugged.

StopDebugging – Stops debugging session.

Break – Causes the given process to pause its execution so that its current state can be analyzed.

Continue – Continues given process to the next breakpoint or until process finishes.

https://msdn.microsoft.com/en-US/library/ms404484(v=vs.110).aspx

StepInto – Executes one statement of code; steps into the next function call, if possible.

StepOver – Executes one statement of code; steps over the next function call, if possible.

StepOut – Executes remaining lines of the function; steps out of the function currently being executed.

ActivateThread – Switches debugging to the specified thread.

SwitchToStackFrame – switches debugging to the given stack frame.

SetRunToPositionBreakpoint - causes debugger to stop at the specified position.

Following methods may take considerable amount of time, therefore they’re implemented

asynchronously:

EvaluateExpressionAsync – evaluates expression in the current stack frame, with or without child

properties.

EvaluateCurrentExceptionAsync – evaluates exception being thrown by debugger.

GetStackFramesAsync – gets a list of method calls that are currently on a stack.

GetThreadsAsync – gets a list of active threads.

GetVariablesInScopeAsync – gets all local variables in the given stack frame.

TrySetNextStatementAsync – sets the execution point to the specified line.

GetExecutionPositionAsync – gets the current execution point.

Properties:

IsStarted – indicates whether the debug process has started.

State – gets current debugger state.

ScriptRun – in case Debugger used to debug standalone executable, contains all information required to

compile and run the script.

GeneratedModulesPath – Specifies directory where assemblies for the scripts being debugged are

located.

Breakpoints – returns collection of debugger breakpoints.

EventsSyncAction – A function which could be provided by the application to sync raised debugger events
if required (for example, perform Control.Invoke)

Events:

ActiveThreadChanged – occurs when thread to be debugged changes.

DebuggerErrorOccured – occurs when debugger encounters error during debugging session.

DebuggingStarted – occurs when debugging session is started.

DebuggingStopped – occurs when the debugging session is stopped.

ExecutionResumed – occurs when debugging is resumed after being paused.

ExecutionStopped – occurs when debugging is paused.

LogMessageReceived – occurs when a debug message is received.

StackFrameSwitched – occurs when the debugger is switched to the stack frame.

StateChanged – occurs when debugging state is changed (when debugger is started, stopped or paused)

Script Debugging best practices
The main issue that we’ve faced with debugging is that it’s not quite possible to embed debugging logic

in the same process where scripts are being executed, as the debugger process will need to freeze itself

when debugging. Please refer to the following blog for more details:

https://blogs.msdn.microsoft.com/jmstall/2005/11/05/you-cant-debug-yourself/

Therefore we see two main options for script debugging to work:

1. Script is compiled as a dynamically linked library and is linked to the calling application (which is

the most straightforward way of scripts to be able to access application-defined objects). In this

case Script debugger must be a separate process which attaches to the main application process

and allows to debug script code in it. The script debugger can be made look like it belongs to the

same application (which is outside of the scope of this tutorial), but it has to be in a separate

process.

In this mode Script Debugger does not compile or execute script itself; instead it relies on the

main application to do so. It receives the main application process id, source and project file

along with the name of assembly to be debugged via command-line arguments; attaches to the

main process and communicates with it by sending Start Debug or Stop Commands and

receiving a list of compilation errors or script completion events.

Please refer to DebugMyScript quickstart projects for more details.

Please note that you cannot debug the main application under Visual Studio and have Script

Debugger to attach to it at the same time, as Visual Studio will attach its own debugger.

Please also note that the target platform of debugger and debugee process need to be the same

(for AlterNET Studio demo it’s set to AnyCPU, 32-bit preferred).

2. Script to be compiled in the separate executable; and debugging logic is embedded in the

application itself. This option requires either the script to be application-independent (which is

not useful if scripts are intended to extend application logic), or access application-defined

objects via interprocess-communication. Please refer to our DebuggerIntegration/

DebugRemoteScript quickstart projects for more details.

Yet another option would be the one mentioned in the blog, which is not currently implemented, but

we’ve done some experiments in it. In essence Script Debugger UI can be embedded in the main

https://blogs.msdn.microsoft.com/jmstall/2005/11/05/you-cant-debug-yourself/

application, while script being debugged will be executed in the separate thread. This will also require

putting the debugger engine in a hidden proxy process and have debugger UI to communicate with this

process. We might bring this feature in the subsequent releases provided that we can make it work

reliably; however it will impose some limitations to the script writers (such as the script itself will need to

be thread-safe in order to be able to run in the separate application thread).

Script Debugging Widgets
We’ve developed a set of debugger widgets, with the intent to make it easier customizing the Script

Debugger tool appearance so it matches the theme of the application which scripts are to be debugged.

These widgets are implemented both for WinForms and WPF; these widgets and a set of demo projects

represent the difference between WinForms and WPF editions, as the ScriptRun and ScriptDebugger

themselves are non-visual and therefore platform-agnostic.

These widgets include:

Output – to log debugger events or application-specific messages

Errors – to display a list of compilation errors.

Breakpoints – to display and navigate through the list of breakpoints set in the source;

CallStack – to display and navigate through the list of method calls that are currently on stack.

Locals – to examine values of local variables once debugging code step-by-step.

Watches – to examine values of watch expressions when debugging

Threads – to display active threads and switch debugging between them.

DebuggerControlToolbar - a toolbar with buttons executing Run/Stop/StepInto/StepOver commands.

Demo projects include SyntaxEdit - based code editor with syntax highlighting and ability to display

breakpoints and tracing styles and auxiliary code for displaying project tree, code explorer and navigating

through methods and classes defined in the source.

TypeScript/JavaScript support.

Alongside with component libraries for .NET-based script compilation, execution and debugging, we

provide a very similar package for TypeScript/JavaScript.

These components are installed on the AlterNet Scripter.TypeScript tab in Visual Studio.

Script execution is based on Microsoft ClearScript which provides v8 high-performance open-source

JavaScript engine. It supports executing JavaScript code and accessing .NET types and objects of the host

application from the script.

TypeScript ScriptRun provides a very similar interface to .NET ScriptRun; the main difference is that it

does not create .NET assembly, and executes JavaScript code using ClearScript engine.

The main difference in API is that unlike .NET Script Runner, the collection of referenced objects, types

and .NET assemblies is specified via HostItemsConfiguration property; as opposed to

GlobalItems/References properties; RunMethod/RunMethodAsync are replaced with

RunFunction/RunFunctionAsync.

The following code adds references to most commonly used assemblies and registers RunButton to be

accessible from the script:

scriptRun.ScriptHost.HostItemsConfiguration.AddSystemAssemblies()
.AddObject("RunButton", btNETFromScript);

Like .NET ScriptRun, TypeScript ScriptRun can execute single files, typescript projects (which can be

loaded/saved to json file), or evaluate TypeScript/JavaScript expressions.

Note that order of TypeScript/JavaScript files in a project is important, as they get executed one by one.

TypeScript compilation service uses host configuration to automatically create all support files containing

typescript definitions. The following line needs to be placed on top of user’s script to access .NET types

and objects from host configuration:

///<reference path="clr.d.ts" />

TypeScript ScriptDebugger is based on Google Chrome debugging development tools; it does not have a

limitation of debugger and script to be debugged running in the separate application processes. It has

most of the functionality that .NET Script debugger provides; except for multi-threaded debugging and

automatic retrieval/evaluation of local variables.

IronPython support

Another package that implements script compilation, execution and debugging, is IronPython ScriptRun

and ScriptDebugger components.

These components are installed on the AlterNet Scripter.IronPython tab in Visual Studio.

Script execution is based on IronPython.net script engine which is an open-source implementation of the

Python programming language, tightly integrated with .NET. It supports executing Python code and

accessing .NET types and objects of the host application from the script.

IronPython ScriptRun provides a very similar interface to .NET ScriptRun; the main difference is that it

does not create .NET assembly, and executes Python code IronPython scripting engine.

Like .NET ScriptRun, IronPython ScriptRun can execute single files, typescript projects (which can be

loaded/saved to .pyproj file), or evaluate Python expressions.

IronPython Script Debugger is based on Microsoft.Scripting debugging engine; it does not have a

limitation of debugger and script to be debugged running in the separate application processes. It has

most of the functionality that .NET Script debugger provides; except for multi-threaded debugging..

Integration with other AlterNET Studio components.
Script writing requires an editor of some sort to allow users to write the script code. The AlterNET Studio

package includes Code Editor specialy tailored to edit C#, Visual Basic, TypeScript, JavaScript and Python

code.It also provides some additional features like expression evaluation when hovering mouse over

symbols in debug mode. However you’re not required to use it; you can choose any other external text

editing components instead. Our demos are written the way it should be relatively easy to integrate

them with other text editors by implementing IScriptEdit and IDebugEdit interfaces.

If you’d like to make the scripting engine in your application a bit more advanced, you might consider

giving users the ability to write simple UI for their scripts; such as design option dialog that would control

certain behaviors of the script itself. We have developed a Form designer product, which along with the

Scripter and Code Editor form our AlterNET Studio solution.

Please refer to our AlterNET Studio demo to see how Code Editor, Form Designer and Scripter/Debugger

work together.

Licensing
We require a valid license to be installed for developing with AlterNET software products. We supply

evaluation-licenses upon AlterNET Studio installation; these licenses are based on licx files technology

provided by Microsoft and are valid for 30 days since first use.

Upon ordering a paid version of our product, you will receive a License key and will be able to activate it

on your computer. This key will support a number of activations and it’s not transferable between

development machines otherwise.

Below is more information about Microsoft license compiler and some discussions related to intent and

purpose of licx files, using them with source code control systems, etc.

https://msdn.microsoft.com/en-us/library/ha0k3c9f(v=vs.110).aspx

http://stackoverflow.com/questions/5628969/how-licenses-licx-file-is-used

http://stackoverflow.com/questions/51363/how-does-the-licenses-licx-based-net-component-licensing-

model-work

In a nut-shell, once you drag ScriptRun component onto your Form, the licx file with the following

content will be added to your project under Properties folder:

Alternet.Scripter.ScriptRun, Alternet.Scripter.v7, Version=7.1.0.0, Culture=neutral,

PublicKeyToken=8032721e70924a63

In case you create a ScripRun or ScriptDebugger component from code, please make sure licx file with

such content is added to your project – you can use one from one of our demo projects if needed.

The design-time license is being checked when you work with this component at design-time, or when
you compile your project; and the nag screen reminding you about the evaluation mode will appear once
in a while. If you run a project compiled with an evaluation version of Code Editor (without launching it
from Microsoft Visual Studio debugger), you will see a screen suggesting that the application was
created with an evaluation version of Code Editor. Once you activate a paid license using
LicenseActivation tool, nag screen will no longer appear.

When the evaluation period expires, you will still be able to compile and run your application from
within Visual Studio, however applications created with expired license will not be run in standalone
mode.

https://msdn.microsoft.com/en-us/library/ha0k3c9f(v=vs.110).aspx
http://stackoverflow.com/questions/5628969/how-licenses-licx-file-is-used
http://stackoverflow.com/questions/51363/how-does-the-licenses-licx-based-net-component-licensing-model-work
http://stackoverflow.com/questions/51363/how-does-the-licenses-licx-based-net-component-licensing-model-work

