
Table of ContentsTable of Contents

 Introduction
 Getting Started
 Code Editor

 Overview
 Win Forms

 Basic Features
 Extended Features

 WPF
 Basic Features
 Extended Features

 Syntax Parsing
 Advanced Topics

 Scripter
 Overview
 C#/Visual Basic
 Python/IronPython
 TypeScript/JavaScript
 Script Debugging
 Debugger UI

 Form Designer
 Overview
 Win Forms
 WPF

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

Getting StartedGetting Started
AlterNET Studio allows you to extend WinForms and WPF .NET applications with code editing, scripting and user interface
designing capabilities.

Installation
AlterNET Studio requires .NET Framework 4.6.1+ and Visual Studio 2017, 2019 or 2022 to be installed on the target machine.

By default AlterNET Studio installation program installs AlterNET Studio binary files to Program Files (x86)\AlterNET
Software\AlterNET Studio\Bin\ folder and example projects with source code in \Users\Public\Documents\AlterNET
Software\AlterNET Studio folder. These settings can be changed if you select Customize in the installation wizard.

Advanced installation options include platform selection (WinForms, WPF or both), and inclusion of Python/IronPython,
TypeScript/JavaScript and LangServer/DAP features.

Installation program registers Visual Studio extensions and places controls and components on the AlterNET Code Editor,
AlterNET Scripter and AlterNET Form Designer tabs in the Visual Studio toolbox.

Code Editor
Scripter
Form Designer

Other versions of .NET Framework 4.5.2,.NET Core 3.0,+ Net 5.0 and .NET 6.0 are supported via NuGet packages. Complete list of
NuGet packages can be found here:

https://alternetsoft.com/download#nuget

If you have a previous major version of AlterNET Studio, and decide to install the new one side-by-side, you will have two sets of
Visual Studio Extensions and two sets of tabs, each one clearly displaying version number.

Demo and QuickStart projects
Once the product is installed, you can explore demos and quick start projects, either by compiling Alternet.Studio.AllDemos
solutions or accessing these demos through the Demo Explorer tool which is added to Windows Start menu.

https://alternetsoft.com/download#nuget

Core Components
AlterNET Studio includes the following core components:

Code EditorCode Editor

AlterNET Code Editor is a component library that brings efficient code editing functionality to the .NET applications. It provides
code editing capabilities such as syntax highlighting, intellisense (code completion), code outlining, visual indicators for
bookmarks, line styles, syntax errors and more.

AlterNET Code Editor matches most of the features of Visual Studio code editor and is specifically tailored for C#, Visual Basic,
TypeScript, JavaScript, Python and XML code editing.

ScripterScripter

AlterNET Scripter is a component library designed to integrate C#/Visual Basic, TypeScript/JavaScript and IronPython scripts into
the .NET applications. It allows extending functionality of the application logic without recompiling and redeploying the
application.

AlterNET Scripter provides a framework to compile and execute user-defined scripts along with the set of debugging tools
enabling application developers to make application objects available to the scripts so they can write user-defined scenarios for
these applications.

Form D esignerForm D esigner

AlterNET Form Designer is a component library providing a quick and convenient way for creating visual user interfaces. It allows
placing controls to the design surfaces, setting their initial properties and writing event handlers for their events.

AlterNET Form Designer includes WinForms and WPF designers, both supporting designing visual interfaces, serializing design
content and running forms being designed.

Integrating AlterNET Studio components.
AlterNET Code Editor, Scripter and Form Designer can work together in the applications that require text editing, scripting or ui
designing functionality. Code Editor is tailored for C#, Visual Basic, TypeScript, JavaScript, Python and XML code editing and can
be used in conjunction with Form Designer and Scripter packages to provide code editing functionality for code-behind files,
writing event handlers and script editing.

Refer to our AlterNET Studio demo project to see how Code Editor, Scripter and Form Designer work together.

Licensing
AlterNET Studio requires a valid license to be installed for developing .NET applications that use its components. Evaluation-
license is supplied upon AlterNET Studio installation and when consuming NuGet packages; these licenses are based on licx files
technology provided by Microsoft and are valid for 30 days since first use.

Upon ordering a paid version of our product, a customer is sent a License key and will be able to activate it on the target
computer. This key will support a number of activations but it is not transferable between development machines.

Oce you drag AlterNET Studio controls or components from the toolbox, such as SyntaxEdit, TextEditor, FormDesignerControl, or
ScriptRun on your form, the licx file will be added to your project under Properties folder with the content like this:

Alternet.Editor.SyntaxEdit, Alternet.Editor.v8, Version=8.0.0.0, Culture=neutral, PublicKeyToken=8032721e70924a63

Alternet.Scripter.ScriptRun, Alternet.Scripter.v8, Version=8.0.0.0, Culture=neutral, PublicKeyToken=8032721e70924a63

Alternet.FormDesigner.WinForms, Alternet.FormDesigner.v8, Version=8.0.0.0, Culture=neutral,
PublicKeyToken=8032721e70924a63

In case you these components are created from the code, such a licx file with above content should be added to your project. It
also can be copied from our demo projects if needed.

The design-time license is being checked when you work with this component at design-time, or when the project is compiled;
and the nag screen reminding about the evaluation mode will appear once in a while. If the project compiled with an evaluation
version of licensed components is run outside Microsoft Visual Studio debugger, a screen suggesting that the application was
created with an evaluation version of AlterNET Studio will be displayed. Once a paid license is activated using the
LicenseActivation tool, this nag screen will no longer appear.

When the evaluation period expires, you will still be able to compile and run your application from within Visual Studio, however
applications created with expired license will not be run in standalone mode.

Below is more information about Microsoft license compiler and some discussions related to intent and purpose of licx files, using
them with source code control systems, etc.

https://msdn.microsoft.com/en-us/library/ha0k3c9f(v=vs.110).aspx

http://stackoverflow.com/questions/5628969/how-licenses-licx-file-is-used

http://stackoverflow.com/questions/51363/how-does-the-licenses-licx-based-net-component-licensing-model-work

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.ScriptRun.html
https://msdn.microsoft.com/en-us/library/ha0k3c9f(v=vs.110).aspx
http://stackoverflow.com/questions/5628969/how-licenses-licx-file-is-used
http://stackoverflow.com/questions/51363/how-does-the-licenses-licx-based-net-component-licensing-model-work

Code Editor OverviewCode Editor Overview
AlterNET Code Editor is a .NET component library that brings efficient code editing functionality into your WinForms and WPF
.NET applications. It provides code editing capabilities such as syntax highlighting, code completion and code outlining, visual
indicators for bookmarks, line styles, syntax errors and much more.

The main components in the package are SyntaxEdit for WinForms and TextEditor for WPF. These controls provide text editing
functionality and support almost all the features that can be found in the Visual Studio.NET code Editor, including customizable
syntax highlighting, code outlining, code completion, unlimited undo/redo, bookmarks, word wrap, drag-n-drop, built-in
search/replace dialogs, multiple view of the same text, displaying gutter, margin, line numbers and many more.

Code Editor includes a set of quick start projects, each one designed to highlight specific features of the component.

Below is brief overview of these projects:

Scroll Bar Annotations - Shows how text edit control can display markers about current line, syntax errors, bookmarks, modified
lines and search results on the vertical scrollbar area.

Syntax Highlighting - Shows how text edit control can highlight syntax when working with different programming languages.

Code Completion - Shows how to display code completion while you type; either by getting code completion information from
parser, or programmatically.

Code Outlining - Shows how to use outlining; either provided by parser, or programmatically.

Selection - Shows how to use different options to control text selection appearance and behavior in the text editor.

Undo/Redo - Shows how to use various options to control undo/redo behavior.

Search and Replace - Shows how to use built-in Search and Replace dialogs, and how to implement search across multiple

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html

documents.

Gutter - Shows how to control the appearance of the gutter area and how to display various indicators on it.

Bookmarks - Shows how to set and navigate through numbered and though-loop bookmarks and how to set bookmarks
navigation across multiple documents.

Word Warp - Shows how to configure text edit control to wrap words at the right-edge of the visible area or at a given position.

Line Styles - Shows how to display line indicators on the text editor control area and associated images on the gutter.

Print and Preview - Shows how to print and preview text editor control content and how to set different printing options.

Code Snippets - Shows how to display and use predefined code templates to speed-up entering frequently used fragments of
code.

Multiple Views and Split View - Shows how to configure text editor windows to display and edit the same text content.

Margin - Shows how to use various options controlling the appearance and behavior of Margin line and UserMargin area next to
gutter.

HyperText - Shows how to highlight hyperlinks in the text.

Page Layout - Shows how to configure text edit control to display its content as if it was positioned on the printed page.

Miscellaneous - Shows how to display white-space symbols and background images, as well as highlight matching brackets.

Customize - Shows example of options dialog that allows changing display settings of text edit control.

Roslyn-Based Parsing - Shows how to link text edit control to Microsoft Roslyn-based parsers that perform full syntax and
semantic analysis of the C# or Visual Basic code and provide features like code completion, code outlining and syntax/semantic
error highlighting.

TypeScript Parsing - Shows how to link text edit control to Microsoft TypeScript-based parsers that perform full syntax and
semantic analysis of the TypeScript or JavaScript code and provide features like code completion, code outlining and
syntax/semantic error highlighting.

Advanced Syntax Parsing - Shows how to link text edit control to parsers that perform syntax analysis for a set of programming
languages and provide features like code completion, code outlining and syntax error highlighting.

Snippet Parsers - Shows how to implement C# or Visual Basic syntax and semantic analysis for sub-set of the code, like class or
method body.

SQL DOM Parser - Shows how to implement syntax analysis for Microsoft SQL.

XAML Parser - Shows how to implement syntax analysis for XAML.

Lsp-based parsers (C/C++, Java ,Python, Lua XML, and PowerShell) - Shows how to implement syntax analysis for these
languages using native servers.

Lsp Multiple Files - Shows how to combine multiple LSP documents into a single workspace.

Python Parsing - Shows how to implement syntax analysis for Python and IronPython.

Creating your first project
The first thing to do after creating a new WinForms or WPF application is to place the SyntaxEdit or TextEditor controls. These
controls are the central components in the package, and in many cases they are the only ones that need to be placed on the form.
These controls look similar to the standard multi-line text box, with the exception of having a gray band on the left of its client
area, used to display line numbers, bookmarks and other visual indicators.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html

The following example demonstrates how to load text into the editor, and then to save it. Use the LoadFile method to load text
from the file. The first parameter specifies the name of the file to be loaded into the control. The optional second parameter
specifies encoding.

edit.LoadFile(openFileDialog1.FileName);

Saving of the text is performed in a similar way:

edit.SaveFile(saveFileDialog1.FileName);

It is possible to load text from streams instead of files, by substituting the previous two functions by LoadStream and SaveStream.

Working with text
The Code Editor package includes a non-visual components: TextSource (or TextSource for WPF applications). For WindowsForms
applications TextSource is accessible through Microsoft Visual Studio toolbox. The SyntaxEdit and TextEditor controls do not store
the text being edited. This task is offloaded to the TextSource components, which provide a number of methods to manipulate the
text content. Text edit controls can have TextSource explicitly assigned, and use internally created one in case it's not set. It gives
clear separation between visualization and data layers, and also makes it possible to implement features like multiple views of the
same text, by assigning a single TextSource to the multiple text editors. Visually, these editors can be either placed in a single
window separated by a splitter control or in multiple windows. Most of the methods of TextSource components are also available
via the edit controls.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_LoadStream_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_SaveStream_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.TextSource.TextSource.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextSource.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.TextSource.TextSource.html

Code Editor Basic Features (WinForms)Code Editor Basic Features (WinForms)
Code Editor matches most of the features of Visual Studio code editor, such as Selection, Code Completion, Code Outlining,
Search/Replace, Navigation and Undo, and many more.

Editing features
Code Editor provides an extended set of methods and properties for the text modifications and navigating within the text content.
Most of these methods are called implicitly when the user edits the text in the edit control or presses the arrow andPageUp,
PageDown, End or Hope keys. The most commonly used methods and properties are listed below:

Position - gets or sets current position (Column, Row) within the text.

NewLine - inserts new line at the current position and number of spaces or tabs according to the indentation options.

Insert - inserts string at the current position.

DeleteRight - deletes a given number of characters to the right of the current position.

DeleteLeft - deletes a given number of characters to the right of the current position.

BreakLine - inserts a line break at the given position.

UnBreakLine - joins two lines at the end of a current line.

MoveCharLeft - moves the current position to one character left.

MoveCharRight - moves the current position to one character right.

MoveLineDown - moves the current position to one line below.

MoveLineUp - moves the current position to one line above.

.* MoveFileBegin - moves the current position to the beginning of the text.

.* MoveFileEnd - moves the current position to the end of the text.

All such modifications are translated to the underlying TextSource component, which also maintains the list of all edits so they can
be undone.

Selection
Just like almost any text editor, the SyntaxEdit supports a concept of text selection and a wide range of operations on it. All the
selection related aspects are controlled via the Selection property. Selections can be of two types: traditional stream-type
selection, and block-type selection. The latter can be created by navigating the text with navigation keys holding Shift and Alt keys
held together.

BackColor and ForeColor define the background and the foreground colors used to mark the currently selected text.
Selection.InActiveBackColor and Selection.InActiveForeColor are used when the editor is out of focus.

The Options controls different aspects of behavior of selections.

DisableSelection completely disables selection support in the editor.

DisableDragging disables drag-n-drop operations on selection.

SelectBeyondEol allows selection in the virtual space (if the NavigateOptions.BeyondEol is enabled)

UseColors instructs the editor to use the same foreground colors for selected text, as the ones used for unselected text (i.e.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_Position
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_NewLine_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_Insert_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_DeleteRight_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_DeleteLeft_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_BreakLine_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_UnBreakLine_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_MoveCharLeft_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_MoveCharRight_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_MoveLineDown_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_MoveLineUp_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_MoveFileBegin_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_MoveFileEnd_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.TextSource.TextSource.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_Selection
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ISelection.html#Alternet_Editor_ISelection_BackColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ISelection.html#Alternet_Editor_ISelection_ForeColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ISelection.html#Alternet_Editor_ISelection_Options
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SelectionOptions.html#Alternet_Editor_SelectionOptions_DisableSelection
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SelectionOptions.html#Alternet_Editor_SelectionOptions_DisableDragging
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SelectionOptions.html#Alternet_Editor_SelectionOptions_SelectBeyondEol
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SelectionOptions.html#Alternet_Editor_SelectionOptions_UseColors

any syntax highlighting will be visible). Note for this to be useful, the section background color must be in contrast with all
possible foreground colors.

HideSelection causes the selection to become invisible when the editor loses focus.

SelectLineOnDblClick allows the user to select the entire line by double-clicking on it.

DeselectOnCopy causes selection to be removed after the user performs copy selection to clipboard operation.

PersistentBlocks causes selection to be retained after the user has finished making it and has started other navigation.

OverwriteBlocks causes the new input to overwrite the currently selected text.

SmartFormat allows formatting blocks when pasting according to the rules defined by the syntax parser.

WordSelect causes whole words to be selected rather than individual characters when using mouse selection.

DrawBorder causes Edit control to draw border around selection

SelectLineOnTripleClick allows to select whole line rather than single word by triple clicking the mouse

DeselectOnDblClick causes selection to be cleared by dblclick.

ConvertToSpacesOnPaste specifies that selection should convert all tabs to spaces in the text being pasted when
Lines.UseSpaces is on.

RtfClipboard causes selection to copy its content in text and rtf formats.

ClearOnDrag causes selected text to be cleared after dragging from external source

CopyLineWhenEmpty allows to copy whole line when selection is empty

DisableCodeSnippetOnTab - disables code snippets insertion when pressing Tab key.

SelectWordOnCtrlClick causes word under cursor to be selected when user holds Ctrl key

ExtendedBlockMode causes text being typed to be inserted into the all selected lines within the rectangular block.

It is possible to programmatically select text by setting SelectionStart and SelectionLength properties, or with the help of
SetSelection method.

The selected text can be retrieved or set via the SelectedText property.

Various operations can be programmatically performed on the current selection. Some of them are:

IsEmpty checks whether there is any text selected.

SetSelection selects the specified rectangular area.

SelectAll() selects the whole document.

Cut()/Copy()/Paste() performs standard operations like copying text to the clipboard, cutting text to the clipboard and
pasting text from the clipboard.

IsPosInSelection checks if the specified position lies within selection.

Clear() clears selection (this does not affect the text itself).

Move moves or copies the currently selected text to a new location.

SmartFormat() formats the selected text according to the rules defined by the syntax parser.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SelectionOptions.html#Alternet_Editor_SelectionOptions_HideSelection
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SelectionOptions.html#Alternet_Editor_SelectionOptions_SelectLineOnDblClick
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SelectionOptions.html#Alternet_Editor_SelectionOptions_DeselectOnCopy
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SelectionOptions.html#Alternet_Editor_SelectionOptions_PersistentBlocks
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SelectionOptions.html#Alternet_Editor_SelectionOptions_OverwriteBlocks
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SelectionOptions.html#Alternet_Editor_SelectionOptions_SmartFormat
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SelectionOptions.html#Alternet_Editor_SelectionOptions_WordSelect
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SelectionOptions.html#Alternet_Editor_SelectionOptions_DrawBorder
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SelectionOptions.html#Alternet_Editor_SelectionOptions_SelectLineOnTripleClick
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SelectionOptions.html#Alternet_Editor_SelectionOptions_DeselectOnDblClick
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SelectionOptions.html#Alternet_Editor_SelectionOptions_ConvertToSpacesOnPaste
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SelectionOptions.html#Alternet_Editor_SelectionOptions_RtfClipboard
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SelectionOptions.html#Alternet_Editor_SelectionOptions_ClearOnDrag
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SelectionOptions.html#Alternet_Editor_SelectionOptions_CopyLineWhenEmpty
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SelectionOptions.html#Alternet_Editor_SelectionOptions_DisableCodeSnippetOnTab
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SelectionOptions.html#Alternet_Editor_SelectionOptions_SelectWordOnCtrlClick
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SelectionOptions.html#Alternet_Editor_SelectionOptions_ExtendedBlockMode
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ISelection.html#Alternet_Editor_ISelection_SelectionStart
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ISelection.html#Alternet_Editor_ISelection_SelectionLength
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ISelection.html#Alternet_Editor_ISelection_SetSelection_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ISelection.html#Alternet_Editor_ISelection_SelectedText
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ISelection.html#Alternet_Editor_ISelection_IsEmpty
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ISelection.html#Alternet_Editor_ISelection_SetSelection_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ISelection.html#Alternet_Editor_ISelection_SelectAll
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ISelection.html#Alternet_Editor_ISelection_Cut
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ISelection.html#Alternet_Editor_ISelection_Copy
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ISelection.html#Alternet_Editor_ISelection_Paste
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ISelection.html#Alternet_Editor_ISelection_IsPosInSelection_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ISelection.html#Alternet_Editor_ISelection_Clear
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ISelection.html#Alternet_Editor_ISelection_Move_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ISelection.html#Alternet_Editor_ISelection_SmartFormat

LowerCase()/UpperCase()/Capitalize() change the case of the currently selected text.

UnIndent()/UnIndent() change the indent of the currently selected text.

In fact, if some action can be performed by the user, it can also be performed programmatically:

 if(!edit.Selection.IsEmpty)
 edit.Selection.SelectedText =
 "(" + edit.Selection.SelectedText + ")";

This code encloses the currently selected text in brackets.

Searching and Replacing
Among the operations that can be performed upon the text, there are operations of searching and replacing text strings. Unlike
the standard multi-line text editor, which does not implement such a functionality, the SyntaxEdit control comes with the built-in
support for them. It's ready to use out-of-the-box: when the user presses Ctrl+F key combination, the search dialog box appears:

The text-replace dialog can be activated by pressing Ctrl+H. Besides using the UI to control the process, all the operations can be
executed programmatically by calling the corresponding methods of the SyntaxEdit.

For example, to find some string, you could use the following code:

 edit.Find("some string");

Or, with regular expressions:

 edit.Find(" ", SearchOptions.RegularExpressions, new
 System.Text.RegularExpressions.Regex("a.?z"));

To activate the Search Dialog:

 edit.DisplaySearchDialog();

Moreover, the Search and Replace dialog box functionality is not hardwired: you can replace the dialog box by your own, by
implementing the ISearchDialog interface, and assigning it to the editor by setting its SearchDialog property. The built-in dialog
can serve as a good example and a starting point.

If you need to perform the Search and Replace operation without any user interaction, you can use the ReplaceAll method.

I.e.:

 edit.ReplaceAll("bad", "good", SearchOptions.WholeWordsOnly |
 SearchOptions.EntireScope, out count);

After this, every occurrence of "bad" word in the entire text will be replaced by the "good".

Note, that this would move the cursor position to the place where the last replacement has been made, so if you need it to be

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ISelection.html#Alternet_Editor_ISelection_LowerCase
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ISelection.html#Alternet_Editor_ISelection_UpperCase
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ISelection.html#Alternet_Editor_ISelection_Capitalize
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ISelection.html#Alternet_Editor_ISelection_UnIndent
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ISelection.html#Alternet_Editor_ISelection_UnIndent
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Dialogs.ISearchDialog.html

truly unnoticeable for the user, you need to enclose this call in the code which saves and restores the current cursor position:

 System.Drawing.Point pos;
 pos = edit.Position;
 edit.ReplaceAll("bad", "good", SearchOptions.WholeWordsOnly |
 SearchOptions.EntireScope, out count);
 edit.Position = pos;

Search/Replace function can work across multiple documents. In order to allow search to find text in multiple editors, you will
need to set SearchManager.Shared to true and provide list of editors to perform search in its InitSearch event handlers and
return/navigate to the appropriate editor in GetSearch event handler:

 SearchManager.SharedSearch.Shared = true;
 SearchManager.SharedSearch.InitSearch +=
 new InitSearchEvent(DoInitSearch);
 SearchManager.SharedSearch.GetSearch +=
 new GetSearchEvent(DoGetSearch);

 private void DoInitSearch(object sender, InitSearchEventArgs e)
 {
 e.Search = GetActiveSyntaxEdit() as ISearch;
 foreach (var edit in editors.Values)
 {
 edit.SearchGlobal = true;
 e.SearchList.Add(edit.Source.FileName);
 }
 }

 private void DoGetSearch(object sender, GetSearchEventArgs e)
 {
 foreach (var edit in editors.Values)
 {
 if (edit.Source.FileName == e.FileName)
 {
 e.Search = edit as ISearch;
 break;
 }
 }
 }

Scroll Bars and Split View
The appearance and behavior of scrollbars is controlled by the Scrolling property.

The ScrollBars property determines which scrollbars and under what conditions appear on the SyntaxEdit. It can take one of the
following values:

None - neither horizontal, nor vertical scrollbar ever appear

Horizontal - horizontal scrollbar appears if necessary, vertical one never appears

Vertical - vertical scrollbar appears if necessary, horizontal one never appears

Both - both horizontal and vertical scrollbars appear if necessary

ForcedHorizontal - horizontal scrollbar is always visible, vertical one never appears

ForcedVertical - vertical scrollbar is always visible, horizontal one never appears

ForcedBoth - both horizontal and vertical scrollbars are always visible

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_Scrolling
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IScrolling.html#Alternet_Editor_IScrolling_ScrollBars
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
https://docs.microsoft.com/dotnet/api/system.windows.forms.richtextboxscrollbars#system-windows-forms-richtextboxscrollbars-none
https://docs.microsoft.com/dotnet/api/system.windows.forms.richtextboxscrollbars#system-windows-forms-richtextboxscrollbars-horizontal
https://docs.microsoft.com/dotnet/api/system.windows.forms.richtextboxscrollbars#system-windows-forms-richtextboxscrollbars-vertical
https://docs.microsoft.com/dotnet/api/system.windows.forms.richtextboxscrollbars#system-windows-forms-richtextboxscrollbars-both
https://docs.microsoft.com/dotnet/api/system.windows.forms.richtextboxscrollbars#system-windows-forms-richtextboxscrollbars-forcedhorizontal
https://docs.microsoft.com/dotnet/api/system.windows.forms.richtextboxscrollbars#system-windows-forms-richtextboxscrollbars-forcedvertical
https://docs.microsoft.com/dotnet/api/system.windows.forms.richtextboxscrollbars#system-windows-forms-richtextboxscrollbars-forcedboth

Behavior of the scrollbars is controlled by ScrollingOptions.

You can also use Scrolling.Options to allow SyntaxEdit to split its content. Note that SyntaxEdit's Dock must be set to DockStyle.Fill,
otherwise this feature will not work. Splitters are displayed in the left-bottom corner for vertical splitting and in the right-top
corner for horizontal splitting.

SmoothScroll - if set, the display is updated as the user drags the scrollbar, otherwise the display is updated only when the
user releases the scrollbar thumb. Disabling this option may improve performance on slow machines.

ShowScrollHint - if set, a hint window, showing the new number of the topmost string, is displayed whenever the user drags
the scrollbar.

UseScrollDelta - if set, editor window content is scrolled by several characters when caret becomes invisible rather than one
character

SystemScrollbars - if set, system scroll bars are displayed, otherwise custom scrollbars are used.

FlatScrollbars - if set, scroll bars are displayed in flat style. This option works only if SystemScrollBars is on.

AllowSplitHorz - allows displaying horizontal splitting buttons in the scroll area. This option works only if SystemScrollBars
is off and control has Dock property set to DockStyle.Fill.

AllowSplitVert - allows displaying a vertical splitting button in the scroll area. This option works only if SystemScrollBars is
off and control has Dock property set to DockStyle.Fill.

HorzButtons - allows displaying additional buttons in the horizontal scrolling area. This option works only if
SystemScrollBars is off.

VertButtons - allows displaying additional buttons in the vertical scrolling area. This option works only if SystemScrollBars is
off.

VerticalScrollBarAnnotations - allows displaying scroll bar annotations that show special items such as line modifications,
syntax errors, search results bookmarks and the caret position, throughout the entire document within the scroll bar.
Individual annotation kinds are controlled by Annotations property.

Visual Themes
Visual themes allow to change the appearance of all graphical elements in the editor by setting VisualThemeType or VisualTheme

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ScrollingOptions.html#Alternet_Editor_ScrollingOptions_SmoothScroll
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ScrollingOptions.html#Alternet_Editor_ScrollingOptions_ShowScrollHint
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ScrollingOptions.html#Alternet_Editor_ScrollingOptions_UseScrollDelta
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ScrollingOptions.html#Alternet_Editor_ScrollingOptions_SystemScrollbars
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ScrollingOptions.html#Alternet_Editor_ScrollingOptions_FlatScrollbars
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ScrollingOptions.html#Alternet_Editor_ScrollingOptions_AllowSplitHorz
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ScrollingOptions.html#Alternet_Editor_ScrollingOptions_AllowSplitVert
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ScrollingOptions.html#Alternet_Editor_ScrollingOptions_HorzButtons
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ScrollingOptions.html#Alternet_Editor_ScrollingOptions_VertButtons
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ScrollingOptions.html#Alternet_Editor_ScrollingOptions_VerticalScrollBarAnnotations
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IScrolling.html#Alternet_Editor_IScrolling_Annotations
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_VisualThemeType
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_VisualTheme

type properties. Light and Dark visual themes are included, and custom appearance can be configured via custom visual theme.

Gutter
The gutter is the area to the left of the text, the purpose of which is to display miscellaneous indicators for the corresponding lines
of text. Among these indicators are bookmark indicators, line wrapping indicators, line styles icons, line numbers, outlining
buttons and line modification markers.

All the images displayed in the gutter are contained in the gutters image list. The following code gives an example of how to add a
custom icon to this list from another image list (for example, the one dropped on the form during design-time):

 edit.Gutter.Images.Images.Add(imageList1.Images[0]);

The mechanism of the line styles icons allows you to define how certain lines of text will be displayed.

The most common use for this is the indication of breakpoint lines and of the current execution point.

For example, the following code defines the style to be used for breakpoints.

 style_id = edit.LineStyles.AddLineStyle("breakpoint",
 Color.White, Color.Red, Color.Gray, 11, LineStyleOptions.BeyondEol);

(Note, in the current version, image # 11 corresponds to the built-in breakpoint indicator image, and #12 corresponds to the
current execution point image.

Later on, some line of the text can be assigned the style:

 edit.Source.LineStyles.SetLineStyle(line_no, style_id);

(Note, that here and in the other places of this document line numbers start at 0.)

Note: at any given time, every line can have at most one style. If you need to remove line style for some particular line, call:

 edit.Source.LineStyles.RemoveLineStyle(line_no);

For SyntaxEdit control appearance of the gutter is controlled by the following properties: Width, BrushColor, PenColor and Visible.
Width property specifies width of the gutter area, BrushColor specifies background color of the gutter area, PenColor specifies
color of the gutter line, and Visible indicates whether or not to draw gutter. Note that gutter can adjust its width if line numbers or
outlining is on and painted on the gutter. SyntaxEdit allows drawing line numbers to visually indicate position of the visible lines
inside the document. To enable line numbers you need to set PaintLineNumbers to true. Turning PaintLinesOnGutter option on
enables drawing line numbers on the gutter area, turning it off causes line numbers to be painted immediately after the gutter
area. Appearance of line numbers are controlled by the IGutter's properties: LineNumbersStart, LineNumbersForeColor,
LineNumbersBackColor, LineNumbersAlignment, LineNumbersLeftIndent and LineNumbersRightIndent, which are intuitively
understandable.

Like Microsoft Visual Studio editor, SyntaxEdit provides the ability to visually track modified lines. To enable this feature you need
to turn PaintLineModificators on. When LineModificators are on they indicate lines that were changed since last saving. New
changes are marked with Yellow color; changes that were done before last saving are marked with Lime color. Colors can be
customized using LineModificatorChangedColor and LineModificatorSavedColor properties.

Reaction to mouse clicks and double-clicks on the gutter area can be implemented by assigning handlers to the GutterClick and
GutterDblClick events.

Bookmarks
Just as with often used reference books, the process of navigating the text can be made more efficient with the usage of
bookmarks. Two kinds of bookmarks are supported by the SyntaxEdit: plain and numbered. The former can be toggled for the
current line using the Ctrl+K Ctrl+K key combination sequence, and can be navigated in cyclical manner using the Ctrl+K Ctrl+N
(next bookmark) or Ctrl+K Ctrl+P (previous bookmark). The numbered bookmarks have a different flavor: there can be up to ten
bookmarks, each having a number associated with it.

Toggling the numbered bookmark is performed using the Ctrl+K Ctrl+#, and navigation to the specific bookmark is performed by
pressing the Ctrl+# key combination (where # is any of the digits from 0 to 9). There can be only one plain bookmark in any line.
Numbered bookmarks do not have such a limitation, however, only the indicator for the first bookmark in the line will be
displayed in the gutter area, if PaintBookMarks is set to true.

Like most other things in the editor, bookmarks can be manipulated programmatically. Note that the list of bookmarks belongs to
the text source, so multiple views of the same source share the same set of bookmarks.

The following code snippet sets the plain bookmark at the current position:

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IGutter.html#Alternet_Editor_IGutter_Width
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IGutter.html#Alternet_Editor_IGutter_BrushColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IGutter.html#Alternet_Editor_IGutter_PenColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IGutter.html#Alternet_Editor_IGutter_Visible
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IGutter.html#Alternet_Editor_IGutter_BrushColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IGutter.html#Alternet_Editor_IGutter_PenColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IGutter.html#Alternet_Editor_IGutter_Visible
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.GutterOptions.html#Alternet_Editor_GutterOptions_PaintLineNumbers
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.GutterOptions.html#Alternet_Editor_GutterOptions_PaintLinesOnGutter
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IGutter.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IGutter.html#Alternet_Editor_IGutter_LineNumbersStart
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IGutter.html#Alternet_Editor_IGutter_LineNumbersForeColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IGutter.html#Alternet_Editor_IGutter_LineNumbersBackColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IGutter.html#Alternet_Editor_IGutter_LineNumbersAlignment
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IGutter.html#Alternet_Editor_IGutter_LineNumbersLeftIndent
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IGutter.html#Alternet_Editor_IGutter_LineNumbersRightIndent
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.GutterOptions.html#Alternet_Editor_GutterOptions_PaintLineModificators
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IGutter.html#Alternet_Editor_IGutter_LineModificatorChangedColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IGutter.html#Alternet_Editor_IGutter_LineModificatorSavedColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_GutterClick
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_GutterDblClick
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.GutterOptions.html#Alternet_Editor_GutterOptions_PaintBookMarks

 System.Drawing.Point pos = edit.Position;
 edit.Source.BookMarks.SetBookMark(pos, int.MaxValue);

To set the numbered bookmark, replace int.MaxValue by the bookmark number (0..9).

To clear all the bookmarks set in the text source, call the ClearAllBookMarks() method:

 edit.Source.BookMarks.ClearAllBookMarks();

Navigating to the location defined by a particular bookmark can be performed as follows:

 edit.Source.BookMarks.GotoBookMark(index);

Code Editor supports named bookmarks with description and hyperlink. The user may see a description in a tooltip window when
moving the cursor over the bookmark, and load the browser with specified url when clicking on the bookmark. Such bookmarks
can be set using the following code:

 edit.Source.BookMarks.SetBookMark(edit.Position, 0,
 "Bookmark1", "This is Named Bookmark", "www.alternetsoft.net");

If you need to have custom images, you can change the bookmark indicator images by assigning custom image list:

 edit.Gutter.BookMarkImageIndex =
 edit.Gutter.Images.Images.Count;
 edit.Gutter.Images.Images.Add(imageList1.Images[0]);

(This code uses the first image from the imageList1, which you could, for example, create by just dropping a new Image List from
the toolbox on the form. For more examples on working with the gutter, refer to the corresponding section of this manual.)

You can configure bookmarks navigation to work across multiple documents. These documents should be added to the
BookMarkManager class, and every document should have the FileName property assigned.

 BookMarkManager.Register(edit.Source);
 BookMarkManager.SharedBookMarks.Activate += new
 EventHandler<ActivateEventArgs>(DoActivate);
 private void DoActivate(object sender, ActivateEventArgs e)
 {
 foreach (var edit in editors.Values)
 {
 if (edit.Source.FileName == e.FileName)
 {
 ActivateEditorTab(editor);
 break;
 }
 }
 }

In this mode all bookmarks will be stored in a global list inside BookmarkManager instead of every individual SyntaxEdit control
allowing global navigation through them.

Code Completion (Intellisense)
Although the main purpose of an editor is to be a convenient tool for the user to enter the text, quite often a guidance from the
editor can significantly improve the effectiveness of the work process. When editing a text which has some structure (i.e.
computer program in some language), there are often well-defined sets of input possibilities in certain contexts. For example, for
many programming languages, the sequence "someobject." should be followed by one of the existing field names. To assist the
user in such situations, the text editor can activate a popup list containing all the methods that can be accessed from the current

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.TextSource.IBookMarks.html#Alternet_Editor_TextSource_IBookMarks_ClearAllBookMarks

scope.

If there is a partial word immediately to the left of the current cursor position, the first entry that starts with that word is
highlighted. The user can then continue typing up until the method which he meant is selected or just use up and down arrow
keys to navigate the list, and then insert the complete method name by pressing the Enter key.

Automatic Code Completion I nvocationAutomatic Code Completion I nvocation

In most cases Code Completion list and Signature Help for method parameters are provided by parser, alongside with the list of
characters, such as period "." or open parens "(", which invoke code completion automatically as user types. The task of code
completion is to have the list of available choices to appear automatically as user types, for example after user types "someobject."
the list of class members for that object is expected to appear, and after they type "somemethod(" the tooltip showing the list of
parameters for that function is expected to appear. It can be customized to show those popups only if the user stops input for
some short period of time after typing the activating symbol ("." or "(").

The automatic code completion is implemented by Roslyn C# and Visual Basic parsers, TypeScript/JavaScript parsers, as well as
by Advanced C#, J#, Visual Basic, VBScript, JavaScript, C, XML and Python parsers.

For example, automatic code completion is attempted after typing a period ('.') following a member (member access expression),
typing an open brace ('(') following a member (invocation expression or object creation expression), typing a period ('.') inside
using section, typing less sign ('<') inside xml comments, etc. This feature is implemented as close as possible to the Visual Studio
.NET editor, so it works in an intuitively understandable way. On top of that Roslyn-based parsers are configured to invoke code
completion when the user starts typing identifiers.

When these parsers are used, you still can control some aspects of code completion, for example delay before code completion
window appears, using the NeedCodeCompletion event, which will be discussed later. Moreover, for advanced parsers you can
register your own types and objects, namespaces and assemblies for code completion using the CompletionRepository property
of SyntaxParser.

To make types from most commonly used assemblies such as System, System.Drawing, and System.Windows.Forms to be
available for code completion, you can call the following method

 csParser1.Repository.RegisterDefaultAssemblies();

If you need to provide code completion for assemblies declared in other assemblies, you need to register these assemblies this
way:

csParser1.Repository.RegisterAssembly("System.Xml");

You may need to register types for code completion that are not declared in the assembly, but present in the form of source code
somewhere else.

For Roslyn-based parsers you can rely on underlying solution/project/document object model:

csParser1.Repository.RegisterCodeFiles(new string[] { "MyFile.cs" });

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_NeedCodeCompletion
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Syntax.SyntaxParser.html

For one of advanced parsers you need first to create SyntaxParser, load this file into the Strings object, and then add parsed
SyntaxTree to the code completion repository. The following code demonstrates how it can be accomplished:

ISyntaxParser parser = new Alternet.Syntax.Parsers.Advanced.CsParser();
parser.Strings = new TextStrings();
parser.Strings.LoadFile("MyFile.cs")
parser.ReparseText();
csParser1.CompletionRepository.RegisterSyntaxTree(parser.SyntaxTree);

Code Outlining
The SyntaxEdit control supports outlining, which is a text navigation feature that can make navigation of large structured texts
more effective. The essence of outlining lies in defining sections of the text as structural units that once collapsed, can be visually
replaced by a shorter representation, i.e. by ellipsis ("..."). During the text navigation the user can dynamically switch between the
collapsed and complete representation of any particular section. Sections can be nested.

The section can be expanded by clicking on the "+" button, by double-clicking the proxy text, or by pressing the Ctrl+M Ctrl+M
key sequence (in the default key mapping). The section can be collapsed by clicking on the "-" button, or by pressing the Ctrl+M
Ctrl+M key sequence. All the sections can be globally collapsed or expanded using the Ctrl+M Ctrl+L key sequence.

Outlining is the property of the SyntaxEdit control itself, not of the TextSource, thus it is possible to have two views of the same
text one with outlining and another without, or even to have completely different structural parts defined.

All the aspects of the outlining are controlled via the Outlining property of the SyntaxEdit. The outlining can be enabled or
disabled using the AllowOutlining property either in design time or at runtime. The look of the outline is controlled by the
OutlineColor and OutlineOptions properties.

There are two approaches to defining outline sections.

D irect Defin it ion of Outline SectionsD irect Defin it ion of Outline Sections

Outline sections can be explicitly defined by calling the appropriate methods of the Outlining property, i.e.:

 edit.Outlining.Outline(new Point(0, 0), new Point(int.MaxValue, 0), 0, "...").Visible = false;`

This code snippet defines the section of the first level consisting of the entire first line of the text, using ellipsis ("...") as the proxy
text and being in a collapsed state.

While this approach is the simple one, it has one significant drawback: if sections represent structural units defined by the text
itself, and the text can be edited by the user, sections have to be somehow constantly kept in sync with the text, which can be a
non-trivial task.

Automatic Defin it ion of Outline Sections Using the Syntax P arserAutomatic Defin it ion of Outline Sections Using the Syntax P arser

To provide automatic code outlining, the syntax parsing framework has to be employed. This approach may seem to be more
complex at the first look, however it provides consistent results. To implement this approach, a class descending from the
SyntaxParser class needs to be defined, and the Outline method needs to be implemented. This method will be frequently called
by the SyntaxEdit whenever the text changes, so, to provide the user with a smooth editing experience, the implementation should

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Syntax.SyntaxParser.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Syntax.Parser.html#Alternet_Syntax_Parser_Strings
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Syntax.SyntaxTree.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.TextSource.TextSource.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_Outlining
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IOutlining.html#Alternet_Editor_IOutlining_AllowOutlining
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IOutlining.html#Alternet_Editor_IOutlining_OutlineColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IOutlining.html#Alternet_Editor_IOutlining_OutlineOptions
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_Outlining
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Syntax.SyntaxParser.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Syntax.SyntaxParser.html#Alternet_Syntax_SyntaxParser_Outline_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html

be relatively fast.

Code Editor includes parsers that support automatic outlining for C#, Visual Basic, J#, JavaScript, VBScript, Ansi-C, SQL, HTML, XML
and Python languages.

The following example demonstrates how to implement a parser the marks every line starting from the sharp ("#") sign as a
separate outline section.

 private void InitializeComponent()
 {
 ...
 this.parser1 = new XParser();
 ...
 }
 public class XParser: SyntaxParser
 {
 public XParser()
 {
 Options = SyntaxOptions.Outline;
 }
 public override int Outline(IList<IRange> Ranges)
 {
 Ranges.Clear();
 for(int i = 0; i < Strings.Count; i++)
 {
 if(Strings[i].ToString().StartsWith("#"))
 {
 Ranges.Add(new OutlineRange(
 new Point(0, i),
 new Point(int.MaxValue, i),
 0, "...", false));
 }
 }
 return Ranges.Count;
 }
 }

Code Editor Extended Features (WinForms)Code Editor Extended Features (WinForms)
Code Editor provides advanced text editing functionality such as customizable keyboard mapping, HyperText handling, spell-
checking integration, printing and exporting, macro recording and playback and miscellaneous display features.

Keyboard Mapping
While the SyntaxEdit closely mimics the key-mapping common to most of Microsoft's products, it is completely customizable: you
can add or change behavior of certain keys or even define an entirely different key-mapping.

To assign an action to some key combination, use the following code:

 private void edit_Action()
 {
 ...
 }
 ...
 edit.KeyList.Add(Keys.W | Keys.Control | Keys.Alt, new
 KeyEvent(edit_Action));

This would make the Ctrl+Alt+W key combination execute the edit_Action method.

Or, to pass some object to the key handler:

 private void edit_Action(object o)
 {
 ...
 }
 ...
 edit.KeyList.Add(Keys.W | Keys.Control | Keys.Alt, new
 KeyEventEx(edit_Action), some_object);

To remove some key handler, regardless of whether you have added it yourself, or it is the default one, call:

 edit.KeyList.Remove(Keys.A | Keys.Control);

The code described before is used to manage the key handling in the default state. In fact, the key handling is slightly more
complex than that: the SyntaxEdit's key handling mechanism can be in different states, other than the default one. Every state has
its own key mapping table. Key mapping for bookmark operations can serve as a good example: after the user presses the Ctrl+K
key combination, combinations Ctrl+K, Ctrl+N, Ctrl+P, Ctrl+L (the list is incomplete) obtain the new meaning. If a key
combination is pressed for which there is no assignment in some non-default state, then the state is changed to default, and the
combination is evaluated in the new context. SyntaxEdit defines four different non-default states, but you can implement your
own:

 edit.KeyList.Add(Keys.W | Keys.Control, null, 0, 5);
 edit.KeyList.Add(Keys.Tab, new KeyEvent(edit_Action), 5, 5);

This code creates a state that is activated by pressing the Ctrl+W key combination, and in which the Tab key causes the
edit_Action to be executed. The state is changed back to default when the user presses some key other than the Tab. Up until now
we have only examined the cases where you add some new functionality, or suppress some existing one. There also might be a
case, when you want to use an entirely different key mapping, for example, to simulate some other environment your users are
familiar with. To accomplish this, it is necessary to completely clear the current key mapping, and then to assign every function
performed by the editor to some key. Note, that this really means every function: even such trivial things as cursor navigation and
insertion of a new line are performed according to the key mapping.

For example, the following code assigns the editor's key-mapping to a single action defined: "Select All", which is assigned to the

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html

Ctrl+X key combination

 edit.KeyList.Clear();
 edit.KeyList.Add(Keys.X | Keys.Control,
 ((EventHandlers)edit.KeyList.Handlers)SelectAllEvent);

URL handling
The SyntaxEdit can be set up to handle pieces of text that look like some kind of an URL by setting the HighlightHyperText
property to true. The handling consists of highlighting those pieces of text, and of processing clicks on them. By default, clicking
the URL causes the operating system default action to be performed (i.e. launching a browser or an email client), however, you
can override this behavior by assigning the JumpToUrl event handler.

 private void edit_JumpToUrl(object sender, UrlJumpEventArgs e)
 {
 if(is_our_url(e.Text))
 {
 process_url(e.Text);
 e.Handled = true;
 }
 }

Spellchecker Interface
The SyntaxEdit supports the spell-as-you-type spell checker integration. To enable spelling for the editor, set its CheckSpelling
property to true and assign the WordSpell event handler.

The following artificial example considers any word longer than 3 characters to be correct:

 private void edit_WordSpell(object sender, WordSpellEventArgs e)
 {
 e.Correct = e.Text.Length > 3;
 }
 ...
 this.edit.WordSpell += new WordSpellEvent(this.edit_WordSpell);

Incorrect words are displayed with the wiggly underline (the default color is red, but it can be changed using the SpellColor
property). In real-life scenarios you would need to use some third-party software/dictionary to really check the text. Another
alternative would be using some word-list file, many of them, including Public Domain or free ones, can be found on the Internet.
Refer to a Miscellaneous quick start project, which has one of these dictionaries.

Another useful feature supported by SyntaxEdit is AutoCorrect, allowing you to auto correct words when typing. To enable this
feature you need to set property AutoCorrection to true and handle the AutoCorrect event to provide replacements for words that
were typed incorrectly.

Printing and Exporting
SyntaxEdit includes support for printing, print previewing, and exporting to RTF and HTML.

Exporting can be performed as simple as this:

 edit.SaveFile(FileName, new RtfExport());

Printing tasks are performed and configured via the Printing property of the SyntaxEdit.

For example, to show the print preview dialog, call:

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IEditHyperText.html#Alternet_Editor_IEditHyperText_HighlightHyperText
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_JumpToUrl
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IEditSpelling.html#Alternet_Editor_IEditSpelling_CheckSpelling
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IEditSpelling.html#Alternet_Editor_IEditSpelling_SpellColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html

 edit.Printing.ExecutePrintPreviewDialog();

SyntaxEdit control supports adding user-defined information while printing.

To add some text to the footer:

 edit.Printing.Footer.CenterText = "draft";

Text in headers and footers can contain substitution tags. The standard ones are: [page], [pages], [date], [time] and [username]. It
is possible to add custom tags by assigning a handler for the DrawHeader event, for example:

 private void edit_DrawHeader(object sender, Alternet.Editor.DrawHeaderEventArgs e)
 {
 if(e.Tag == "\\[tag]")
 {
 e.Text = "tag replacement text";
 e.Handled = true;
 }
 }

Page Layout mode
SyntaxEdit has different ways to get a good view of the editor content. Use normal mode for typing, editing, and formatting text.
Working in page layout mode making it easy to see how text will be positioned on the printed page. Page breaks mode is similar
to normal mode, but allows to visually separate pages by displaying dotted lines between individual pages. Current mode is
controlled by the PageType property. Use the DefaultPage property to change bounds and margins of the default page. In Page
Layout mode it may be useful to display horizontal and vertical rulers, which will allow users to visually change margins of the
current page or selected range of pages. Rulers can be turned on or off using Rulers property.

Marco Recording and PlayBack
SyntaxEdit has macro recording and playback capabilities. It allows recording sequences of keyboard commands and playing
them later. Note that mouse input is not recorded.

This feature enables you to store a set of frequently used editing commands. Set MacroRecording property to start/finish macro
recording. Use the PlayBack method to repeat the stored command sequence.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_DrawHeader
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IEditPages.html#Alternet_Editor_IEditPages_PageType
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IEditPages.html#Alternet_Editor_IEditPages_DefaultPage
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IEditPages.html#Alternet_Editor_IEditPages_Rulers
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html

White-space Display
It is sometimes desirable for the user to see the codes which influence the layout of the text and are normally invisible themselves.
These codes are space, tab, end-of-line, and the end-of-file (not really a code), and are often collectively referred to as the white-
space. The SyntaxEdit has the option to display them, and to control their appearance.

The display of the white-space is enabled using the Visible property. The color used to display white-space codes is determined by
the SymbolColor property, and the characters used to display those codes are determined by EofSymbol, EolSymbol,
SpaceSymbol, and TabSymbol properties.

Line Separator
It is possible to have lines of the editor to be separated by thin horizontal lines, and to have the current line highlighted. This
behavior is controlled by the LineSeparator property.

The following options are available:

HighlightCurrentLine specifies that the current line in the editor will be highlighted using the HighlightColor for
background.

HideHighlighting specifies that the highlighting of the current line should be hidden when the editor loses focus.

SeparateLines specifies that a thin horizontal line of LineColor should be drawn between each line of text.

SeparateWrapLines specifies that each visual line of text produced as a result of word-wrap should be separated in the same
manner as separate lines (works only if the SeparateLines option is also specified).

SeparateContent specifies that line separator will be drawn between sections of the code (for example between methods), if
SyntaxEdit control is associated with SyntaxParser supporting this feature.

Code snippets
The code snippets are the next code completion provider, allowing to insert frequently used fragments of code. Code snippets can
be inserted into the editor by pressing Tab key after snippet shortcut or by executing code snippet popup window with Ctrl + K +
X key sequence, or activated programmatically, by calling the CodeSnippets method of the SyntaxEdit.

The purpose of the code snippets is to permit the user to quickly enter one of the predefined fragments of text. If the code snippet
has fields declared, the editor allows modifying their values causing updating field values inside the whole snippet.

The following picture illustrates the usage of the code snippets.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IWhiteSpace.html#Alternet_Editor_IWhiteSpace_Visible
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.IWhiteSpace.html#Alternet_Editor_IWhiteSpace_SymbolColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_LineSeparator
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SeparatorOptions.html#Alternet_Editor_SeparatorOptions_HighlightCurrentLine
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SeparatorOptions.html#Alternet_Editor_SeparatorOptions_HideHighlighting
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SeparatorOptions.html#Alternet_Editor_SeparatorOptions_SeparateLines
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SeparatorOptions.html#Alternet_Editor_SeparatorOptions_SeparateWrapLines
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SeparatorOptions.html#Alternet_Editor_SeparatorOptions_SeparateContent
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html

Hidden and Read-Only Lines
SyntaxEdit control can mark certain lines to be readonly or hide them at all so the user can't see them. This can be achieved by
using SetLineHidden and SetLineReadonly methods. For hidden lines to take effect, the AllowHiddenLines property needs to be
set to true. Read-only lines can be made visually different from editable lines by setting ReadonlyBackColor property. Sometimes
it's required to mark certain lines to be both hidden and readonly, this way they can not be deleted if the user selects the outer
block containing them and tries to delete it.

Structure GuideLines
SyntaxEdit control can display dashed lines between syntax blocks for some parsers (Roslyn-based, TypeScript and some
advanced parsers), helping the user to better understand the structure of the document being edited. This behavior is controlled
by a Parser and can be switched off by the StructureGuideLines parser option.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_SetLineHidden_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_SetLineReadonly_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.DisplayStrings.html#Alternet_Editor_DisplayStrings_AllowHiddenLines
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.EditSyntaxPaint.html#Alternet_Editor_EditSyntaxPaint_ReadonlyBackColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html

Code Editor Basic Features (WPF)Code Editor Basic Features (WPF)
Code Editor matches most of the features of Visual Studio code editor, such as Selection, Code Completion, Code Outlining,
Search/Replace, Navigation and Undo, and many more.

Editing features
Code Editor provides an extended set of methods and properties for the text modifications and navigating within the text content.
Most of these methods are called implicitly when the user edits the text in the edit control or presses the arrow andPageUp,
PageDown, End or Hope keys. The most commonly used methods and properties are listed below:

Position - gets or sets current position (Column, Row) within the text.

NewLine - inserts new line at the current position and number of spaces or tabs according to the indentation options.

Insert - inserts string at the current position.

DeleteRight - deletes a given number of characters to the right of the current position.

DeleteLeft - deletes a given number of characters to the right of the current position.

BreakLine - inserts a line break at the given position.

UnBreakLine - joins two lines at the end of a current line.

MoveCharLeft - moves the current position to one character left.

MoveCharRight - moves the current position to one character right.

MoveLineDown - moves the current position to one line below.

MoveLineUp - moves the current position to one line above.

.* MoveFileBegin - moves the current position to the beginning of the text.

.* MoveFileEnd - moves the current position to the end of the text.

All such modifications are translated to the underlying TextSource component, which also maintains the list of all edits so they can
be undone.

Selection
Just like almost any text editor, the TextEditor supports a concept of text selection and a wide range of operations on it. All the
selection related aspects are controlled via the Selection property. Selections can be of two types: traditional stream-type
selection, and block-type selection. The latter can be created by navigating the text with navigation keys holding Shift and Alt keys
held together.

SelectionBrush and SelectionForeColor define the background and the foreground colors used to mark the currently selected text.
Selection.InActiveBackColor and Selection.InActiveForeColor are used when the editor is out of focus.

The Options controls different aspects of behavior of selections.

DisableSelection completely disables selection support in the editor.

DisableDragging disables drag-n-drop operations on selection.

SelectBeyondEol allows selection in the virtual space (if the NavigateOptions.BeyondEol is enabled)

UseColors instructs the editor to use the same foreground colors for selected text, as the ones used for unselected text (i.e.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html#Alternet_Editor_Wpf_TextEditor_Position
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextSource.html#Alternet_Editor_Wpf_TextSource_NewLine_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextSource.html#Alternet_Editor_Wpf_TextSource_Insert_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextSource.html#Alternet_Editor_Wpf_TextSource_DeleteRight_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextSource.html#Alternet_Editor_Wpf_TextSource_DeleteLeft_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextSource.html#Alternet_Editor_Wpf_TextSource_BreakLine_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextSource.html#Alternet_Editor_Wpf_TextSource_UnBreakLine_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html#Alternet_Editor_Wpf_TextEditor_MoveCharLeft_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html#Alternet_Editor_Wpf_TextEditor_MoveCharRight_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html#Alternet_Editor_Wpf_TextEditor_MoveLineDown_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html#Alternet_Editor_Wpf_TextEditor_MoveLineUp_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html#Alternet_Editor_Wpf_TextEditor_MoveFileBegin_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html#Alternet_Editor_Wpf_TextEditor_MoveFileEnd_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextSource.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html#Alternet_Editor_Wpf_TextEditor_Selection
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html#Alternet_Editor_Wpf_TextEditor_SelectionBrush
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html#Alternet_Editor_Wpf_TextEditor_SelectionForeColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ISelection.html#Alternet_Editor_Wpf_ISelection_Options
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SelectionOptions.html#Alternet_Editor_Wpf_SelectionOptions_DisableSelection
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SelectionOptions.html#Alternet_Editor_Wpf_SelectionOptions_DisableDragging
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SelectionOptions.html#Alternet_Editor_Wpf_SelectionOptions_SelectBeyondEol
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SelectionOptions.html#Alternet_Editor_Wpf_SelectionOptions_UseColors

any syntax highlighting will be visible). Note for this to be useful, the section background color must be in contrast with all
possible foreground colors.

HideSelection causes the selection to become invisible when the editor loses focus.

SelectLineOnDblClick allows the user to select the entire line by double-clicking on it.

DeselectOnCopy causes selection to be removed after the user performs copy selection to clipboard operation.

PersistentBlocks causes selection to be retained after the user has finished making it and has started other navigation.

OverwriteBlocks causes the new input to overwrite the currently selected text.

SmartFormat allows formatting blocks when pasting according to the rules defined by the syntax parser.

WordSelect causes whole words to be selected rather than individual characters when using mouse selection.

DrawBorder causes Edit control to draw border around selection

SelectLineOnTripleClick allows to select whole line rather than single word by triple clicking the mouse

DeselectOnDblClick causes selection to be cleared by dblclick.

ConvertToSpacesOnPaste specifies that selection should convert all tabs to spaces in the text being pasted when
Lines.UseSpaces is on.

RtfClipboard causes selection to copy its content in text and rtf formats.

ClearOnDrag causes selected text to be cleared after dragging from external source

CopyLineWhenEmpty allows to copy whole line when selection is empty

DisableCodeSnippetOnTab - disables code snippets insertion when pressing Tab key.

SelectWordOnCtrlClick causes word under cursor to be selected when user holds Ctrl key

ExtendedBlockMode causes text being typed to be inserted into the all selected lines within the rectangular block.

It is possible to programmatically select text by setting SelectionStart and SelectionLength properties, or with the help of
SetSelection method.

The selected text can be retrieved or set via the SelectedText property.

Various operations can be programmatically performed on the current selection. Some of them are:

IsEmpty checks whether there is any text selected.

SetSelection selects the specified rectangular area.

SelectAll() selects the whole document.

Cut()/Copy()/Paste() performs standard operations like copying text to the clipboard, cutting text to the clipboard and
pasting text from the clipboard.

IsPosInSelection checks if the specified position lies within selection.

Clear() clears selection (this does not affect the text itself).

Move moves or copies the currently selected text to a new location.

SmartFormat() formats the selected text according to the rules defined by the syntax parser.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SelectionOptions.html#Alternet_Editor_Wpf_SelectionOptions_HideSelection
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SelectionOptions.html#Alternet_Editor_Wpf_SelectionOptions_SelectLineOnDblClick
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SelectionOptions.html#Alternet_Editor_Wpf_SelectionOptions_DeselectOnCopy
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SelectionOptions.html#Alternet_Editor_Wpf_SelectionOptions_PersistentBlocks
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SelectionOptions.html#Alternet_Editor_Wpf_SelectionOptions_OverwriteBlocks
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SelectionOptions.html#Alternet_Editor_Wpf_SelectionOptions_SmartFormat
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SelectionOptions.html#Alternet_Editor_Wpf_SelectionOptions_WordSelect
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SelectionOptions.html#Alternet_Editor_Wpf_SelectionOptions_DrawBorder
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SelectionOptions.html#Alternet_Editor_Wpf_SelectionOptions_SelectLineOnTripleClick
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SelectionOptions.html#Alternet_Editor_Wpf_SelectionOptions_DeselectOnDblClick
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SelectionOptions.html#Alternet_Editor_Wpf_SelectionOptions_ConvertToSpacesOnPaste
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SelectionOptions.html#Alternet_Editor_Wpf_SelectionOptions_RtfClipboard
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SelectionOptions.html#Alternet_Editor_Wpf_SelectionOptions_ClearOnDrag
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SelectionOptions.html#Alternet_Editor_Wpf_SelectionOptions_CopyLineWhenEmpty
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SelectionOptions.html#Alternet_Editor_Wpf_SelectionOptions_DisableCodeSnippetOnTab
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SelectionOptions.html#Alternet_Editor_Wpf_SelectionOptions_SelectWordOnCtrlClick
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SelectionOptions.html#Alternet_Editor_Wpf_SelectionOptions_ExtendedBlockMode
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ISelection.html#Alternet_Editor_Wpf_ISelection_SelectionStart
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ISelection.html#Alternet_Editor_Wpf_ISelection_SelectionLength
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ISelection.html#Alternet_Editor_Wpf_ISelection_SetSelection_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.ISelection.html#Alternet_Editor_ISelection_SelectedText
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ISelection.html#Alternet_Editor_Wpf_ISelection_IsEmpty
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ISelection.html#Alternet_Editor_Wpf_ISelection_SetSelection_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ISelection.html#Alternet_Editor_Wpf_ISelection_SelectAll
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ISelection.html#Alternet_Editor_Wpf_ISelection_Cut
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ISelection.html#Alternet_Editor_Wpf_ISelection_Copy
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ISelection.html#Alternet_Editor_Wpf_ISelection_Paste
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ISelection.html#Alternet_Editor_Wpf_ISelection_IsPosInSelection_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ISelection.html#Alternet_Editor_Wpf_ISelection_Clear
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ISelection.html#Alternet_Editor_Wpf_ISelection_Move_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ISelection.html#Alternet_Editor_Wpf_ISelection_SmartFormat

LowerCase()/UpperCase()/Capitalize() change the case of the currently selected text.

UnIndent()/UnIndent() change the indent of the currently selected text.

In fact, if some action can be performed by the user, it can also be performed programmatically:

 if(!edit.Selection.IsEmpty)
 edit.Selection.SelectedText =
 "(" + edit.Selection.SelectedText + ")";

This code encloses the currently selected text in brackets.

Searching and Replacing
Among the operations that can be performed upon the text, there are operations of searching and replacing text strings. Unlike
the standard multi-line text editor, which does not implement such a functionality, the TextEditor control comes with the built-in
support for them. It's ready to use out-of-the-box: when the user presses Ctrl+F key combination, the search dialog box appears:

The text-replace dialog can be activated by pressing Ctrl+H. Besides using the UI to control the process, all the operations can be
executed programmatically by calling the corresponding methods of the TextEditor.

For example, to find some string, you could use the following code:

 edit.Find("some string");

Or, with regular expressions:

 edit.Find(" ", SearchOptions.RegularExpressions, new
 System.Text.RegularExpressions.Regex("a.?z"));

To activate the Search Dialog:

 edit.DisplaySearchDialog();

Moreover, the Search and Replace dialog box functionality is not hardwired: you can replace the dialog box by your own, by
implementing the ISearchDialog interface, and assigning it to the editor by setting its SearchDialog property. The built-in dialog
can serve as a good example and a starting point.

If you need to perform the Search and Replace operation without any user interaction, you can use the ReplaceAll method.

I.e.:

 edit.ReplaceAll("bad", "good", SearchOptions.WholeWordsOnly |
 SearchOptions.EntireScope, out count);

After this, every occurrence of "bad" word in the entire text will be replaced by the "good".

Note, that this would move the cursor position to the place where the last replacement has been made, so if you need it to be

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ISelection.html#Alternet_Editor_Wpf_ISelection_LowerCase
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ISelection.html#Alternet_Editor_Wpf_ISelection_UpperCase
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ISelection.html#Alternet_Editor_Wpf_ISelection_Capitalize
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ISelection.html#Alternet_Editor_Wpf_ISelection_UnIndent
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ISelection.html#Alternet_Editor_Wpf_ISelection_UnIndent
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ISearchDialog.html

truly unnoticeable for the user, you need to enclose this call in the code which saves and restores the current cursor position:

 System.Drawing.Point pos;
 pos = edit.Position;
 edit.ReplaceAll("bad", "good", SearchOptions.WholeWordsOnly |
 SearchOptions.EntireScope, out count);
 edit.Position = pos;

Search/Replace function can work across multiple documents. In order to allow search to find text in multiple editors, you will
need to set SearchManager.Shared to true and provide list of editors to perform search in its InitSearch event handlers and
return/navigate to the appropriate editor in GetSearch event handler:

 SearchManager.SharedSearch.Shared = true;
 SearchManager.SharedSearch.InitSearch +=
 new InitSearchEvent(DoInitSearch);
 SearchManager.SharedSearch.GetSearch +=
 new GetSearchEvent(DoGetSearch);

 private void DoInitSearch(object sender, InitSearchEventArgs e)
 {
 e.Search = GetActiveTextEditor() as ISearch;
 foreach (var edit in editors.Values)
 {
 edit.SearchGlobal = true;
 e.SearchList.Add(edit.Source.FileName);
 }
 }

 private void DoGetSearch(object sender, GetSearchEventArgs e)
 {
 foreach (var edit in editors.Values)
 {
 if (edit.Source.FileName == e.FileName)
 {
 e.Search = edit as ISearch;
 break;
 }
 }
 }

Scroll Bars and Split View
The appearance and behavior of scrollbars is controlled by the Scrolling property.

Behavior of the scrollbars is controlled by ScrollingOptions.

You can also use Scrolling.Options to allow TextEditor to split its content by setting AllowVerticalEditorSplit property. Splitter is
displayed in the left-bottom corner allowing splitting TextEditor's content vertically.

SmoothScroll - if set, the display is updated as the user drags the scrollbar, otherwise the display is updated only when the
user releases the scrollbar thumb. Disabling this option may improve performance on slow machines.

ShowScrollHint - if set, a hint window, showing the new number of the topmost string, is displayed whenever the user drags
the scrollbar.

UseScrollDelta - if set, editor window content is scrolled by several characters when caret becomes invisible rather than one
character

SystemScrollbars - if set, system scroll bars are displayed, otherwise custom scrollbars are used.

FlatScrollbars - if set, scroll bars are displayed in flat style. This option works only if SystemScrollBars is on.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html#Alternet_Editor_Wpf_TextEditor_Scrolling
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html#Alternet_Editor_Wpf_TextEditor_AllowVerticalEditorSplit
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ScrollingOptions.html#Alternet_Editor_Wpf_ScrollingOptions_SmoothScroll
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ScrollingOptions.html#Alternet_Editor_Wpf_ScrollingOptions_ShowScrollHint
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ScrollingOptions.html#Alternet_Editor_Wpf_ScrollingOptions_UseScrollDelta
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ScrollingOptions.html#Alternet_Editor_Wpf_ScrollingOptions_SystemScrollbars
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ScrollingOptions.html#Alternet_Editor_Wpf_ScrollingOptions_FlatScrollbars

AllowSplitHorz - allows displaying horizontal splitting buttons in the scroll area. This option works only if SystemScrollBars
is off and control has Dock property set to DockStyle.Fill.

AllowSplitVert - allows displaying a vertical splitting button in the scroll area. This option works only if SystemScrollBars is
off and control has Dock property set to DockStyle.Fill.

HorzButtons - allows displaying additional buttons in the horizontal scrolling area. This option works only if
SystemScrollBars is off.

VertButtons - allows displaying additional buttons in the vertical scrolling area. This option works only if SystemScrollBars is
off.

VerticalScrollBarAnnotations - allows displaying scroll bar annotations that show special items such as line modifications,
syntax errors, search results bookmarks and the caret position, throughout the entire document within the scroll bar.
Individual annotation kinds are controlled by Annotations property.

Visual ThemesV isual Themes

Visual themes allow to change the appearance of all graphical elements in the editor by setting VisualThemeType or VisualTheme
type properties. Light and Dark visual themes are included, and custom appearance can be configured via custom visual theme.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ScrollingOptions.html#Alternet_Editor_Wpf_ScrollingOptions_AllowSplitHorz
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ScrollingOptions.html#Alternet_Editor_Wpf_ScrollingOptions_AllowSplitVert
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ScrollingOptions.html#Alternet_Editor_Wpf_ScrollingOptions_HorzButtons
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.ScrollingOptions.html#Alternet_Editor_Wpf_ScrollingOptions_VertButtons
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.Scrolling.html#Alternet_Editor_Wpf_Scrolling_Annotations
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html#Alternet_Editor_Wpf_TextEditor_VisualThemeType
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html#Alternet_Editor_Wpf_TextEditor_VisualTheme

Gutter
The gutter is the area to the left of the text, the purpose of which is to display miscellaneous indicators for the corresponding lines
of text. Among these indicators are bookmark indicators, line wrapping indicators, line styles icons, line numbers, outlining
buttons and line modification markers.

All the images displayed in the gutter are contained in the gutters image list. The following code gives an example of how to add a
custom icon to this list from another image list (for example, the one dropped on the form during design-time):

 edit.Gutter.Images.Images.Add(imageList1.Images[0]);

The mechanism of the line styles icons allows you to define how certain lines of text will be displayed.

The most common use for this is the indication of breakpoint lines and of the current execution point.

For example, the following code defines the style to be used for breakpoints.

 style_id = edit.LineStyles.AddLineStyle("breakpoint",
 Color.White, Color.Red, Color.Gray, 11, LineStyleOptions.BeyondEol);

(Note, in the current version, image # 11 corresponds to the built-in breakpoint indicator image, and #12 corresponds to the
current execution point image.

Later on, some line of the text can be assigned the style:

 edit.Source.LineStyles.SetLineStyle(line_no, style_id);

(Note, that here and in the other places of this document line numbers start at 0.)

Note: at any given time, every line can have at most one style. If you need to remove line style for some particular line, call:

 edit.Source.LineStyles.RemoveLineStyle(line_no);

For TextEditor control appearance of the gutter is controlled by the following properties: Width, BrushColor, PenColor and Visible.
Width property specifies width of the gutter area, BrushColor specifies background color of the gutter area, PenColor specifies
color of the gutter line, and Visible indicates whether or not to draw gutter. Note that gutter can adjust its width if line numbers or
outlining is on and painted on the gutter. TextEditor allows drawing line numbers to visually indicate position of the visible lines
inside the document. To enable line numbers you need to set PaintLineNumbers to true. Turning PaintLinesOnGutter option on
enables drawing line numbers on gutter area, turning it off causes line numbers to be painted immediately after the gutter area.
Appearance of line numbers are controlled by the IGutter's properties: LineNumbersStart, LineNumbersForeColor,
LineNumbersBackColor, LineNumbersAlignment, LineNumbersLeftIndent and LineNumbersRightIndent, which are intuitively
understandable.

Like Microsoft Visual Studio editor, TextEditor provides the ability to visually track modified lines. To enable this feature you need
to turn PaintLineModificators on. When LineModificators are on they indicate lines that were changed since last saving. New
changes are marked with Yellow color; changes that were done before last saving are marked with Lime color. Colors can be
customized using LineModificatorChangedColor and LineModificatorSavedColor properties.

Reaction to mouse clicks and double-clicks on the gutter area can be implemented by assigning handlers to the GutterClick and
GutterDblClick events.

Bookmarks
Just as with often used reference books, the process of navigating the text can be made more efficient with the usage of
bookmarks. Two kinds of bookmarks are supported by the TextEditor: plain and numbered. The former can be toggled for the
current line using the Ctrl+K Ctrl+K key combination sequence, and can be navigated in cyclical manner using the Ctrl+K Ctrl+N
(next bookmark) or Ctrl+K Ctrl+P (previous bookmark). The numbered bookmarks have a different flavor: there can be up to ten
bookmarks, each having a number associated with it.

Toggling the numbered bookmark is performed using the Ctrl+K Ctrl+#, and navigation to the specific bookmark is performed by
pressing the Ctrl+# key combination (where # is any of the digits from 0 to 9). There can be only one plain bookmark in any line.
Numbered bookmarks do not have such a limitation, however, only the indicator for the first bookmark in the line will be
displayed in the gutter area, if PaintBookMarks is set to true.

Like most other things in the editor, bookmarks can be manipulated programmatically. Note that the list of bookmarks belongs to
the text source, so multiple views of the same source share the same set of bookmarks.

The following code snippet sets the plain bookmark at the current position:

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IGutter.html#Alternet_Editor_Wpf_IGutter_Width
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IGutter.html#Alternet_Editor_Wpf_IGutter_BrushColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IGutter.html#Alternet_Editor_Wpf_IGutter_PenColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IGutter.html#Alternet_Editor_Wpf_IGutter_Visible
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IGutter.html#Alternet_Editor_Wpf_IGutter_BrushColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IGutter.html#Alternet_Editor_Wpf_IGutter_PenColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IGutter.html#Alternet_Editor_Wpf_IGutter_Visible
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.GutterOptions.html#Alternet_Editor_Wpf_GutterOptions_PaintLineNumbers
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.GutterOptions.html#Alternet_Editor_Wpf_GutterOptions_PaintLinesOnGutter
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IGutter.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IGutter.html#Alternet_Editor_Wpf_IGutter_LineNumbersStart
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IGutter.html#Alternet_Editor_Wpf_IGutter_LineNumbersForeColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IGutter.html#Alternet_Editor_Wpf_IGutter_LineNumbersBackColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IGutter.html#Alternet_Editor_Wpf_IGutter_LineNumbersAlignment
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IGutter.html#Alternet_Editor_Wpf_IGutter_LineNumbersLeftIndent
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IGutter.html#Alternet_Editor_Wpf_IGutter_LineNumbersRightIndent
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.GutterOptions.html#Alternet_Editor_Wpf_GutterOptions_PaintLineModificators
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IGutter.html#Alternet_Editor_Wpf_IGutter_LineModificatorChangedColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IGutter.html#Alternet_Editor_Wpf_IGutter_LineModificatorSavedColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html#Alternet_Editor_Wpf_TextEditor_GutterClick
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html#Alternet_Editor_Wpf_TextEditor_GutterDblClick
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.GutterOptions.html#Alternet_Editor_Wpf_GutterOptions_PaintBookMarks

 System.Drawing.Point pos = edit.Position;
 edit.Source.BookMarks.SetBookMark(pos, int.MaxValue);

To set the numbered bookmark, replace int.MaxValue by the bookmark number (0..9).

To clear all the bookmarks set in the text source, call the ClearAllBookMarks() method:

 edit.Source.BookMarks.ClearAllBookMarks();

Navigating to the location defined by a particular bookmark can be performed as follows:

 edit.Source.BookMarks.GotoBookMark(index);

Code Editor supports named bookmarks with description and hyperlink. The user may see a description in a tooltip window when
moving the cursor over the bookmark, and load the browser with specified url when clicking on the bookmark. Such bookmarks
can be set using the following code:

 edit.Source.BookMarks.SetBookMark(edit.Position, 0,
 "Bookmark1", "This is Named Bookmark", "www.alternetsoft.net");

If you need to have custom images, you can change the bookmark indicator images by assigning custom image list:

 edit.Gutter.BookMarkImageIndex =
 edit.Gutter.Images.Images.Count;
 edit.Gutter.Images.Images.Add(imageList1.Images[0]);

(This code uses the first image from the imageList1, which you could, for example, create by just dropping a new Image List from
the toolbox on the form. For more examples on working with the gutter, refer to the corresponding section of this manual.)

You can configure bookmarks navigation to work across multiple documents. These documents should be added to the
BookMarkManager class, and every document should have the FileName property assigned.

 BookMarkManager.Register(edit.Source);
 BookMarkManager.SharedBookMarks.Activate += new
 EventHandler<ActivateEventArgs>(DoActivate);
 private void DoActivate(object sender, ActivateEventArgs e)
 {
 foreach (var edit in editors.Values)
 {
 if (edit.Source.FileName == e.FileName)
 {
 ActivateEditorTab(editor);
 break;
 }
 }
 }

In this mode all bookmarks will be stored in a global list inside BookmarkManager instead of every individual TextEditor control
allowing global navigation through them.

Code Completion (Intellisense)
Although the main purpose of an editor is to be a convenient tool for the user to enter the text, quite often a guidance from the
editor can significantly improve the effectiveness of the work process. When editing a text which has some structure (i.e.
computer program in some language), there are often well-defined sets of input possibilities in certain contexts. For example, for
many programming languages, the sequence "someobject." should be followed by one of the existing field names. To assist the
user in such situations, the text editor can activate a popup list containing all the methods that can be accessed from the current

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IBookMarks.html#Alternet_Editor_Wpf_IBookMarks_ClearAllBookMarks

scope.

If there is a partial word immediately to the left of the current cursor position, the first entry that starts with that word is
highlighted. The user can then continue typing up until the method which he meant is selected or just use up and down arrow
keys to navigate the list, and then insert the complete method name by pressing the Enter key.

Automatic Code Completion Invocation
In most cases Code Completion list and Signature Help for method parameters are provided by parser, alongside with the list of
characters, such as period "." or open parens "(", which invoke code completion automatically as user types. The task of code
completion is to have the list of available choices to appear automatically as user types, for example after user types "someobject."
the list of class members for that object is expected to appear, and after they type "somemethod(" the tooltip showing the list of
parameters for that function is expected to appear. It can be customized to show those popups only if the user stops input for
some short period of time after typing the activating symbol ("." or "(").

The automatic code completion is implemented by Roslyn C# and Visual Basic parsers, TypeScript/JavaScript parsers, as well as
by Advanced C#, J#, Visual Basic, VBScript, JavaScript, C, XML and Python parsers.

For example, automatic code completion is attempted after typing a period ('.') following a member (member access expression),
typing an open brace ('(') following a member (invocation expression or object creation expression), typing a period ('.') inside
using section, typing less sign ('<') inside xml comments, etc. This feature is implemented as close as possible to the Visual Studio
.NET editor, so it works in an intuitively understandable way. On top of that Roslyn-based parsers are configured to invoke code
completion when the user starts typing identifiers.

When these parsers are used, you still can control some aspects of code completion, for example delay before code completion
window appears, using the NeedCodeCompletion event, which will be discussed later. Moreover, for advanced parsers you can
register your own types and objects, namespaces and assemblies for code completion using the CompletionRepository property
of SyntaxParser.

To make types from most commonly used assemblies such as System, System.Drawing, and System.Windows.Forms to be
available for code completion, you can call the following method

 csParser1.Repository.RegisterDefaultAssemblies();

If you need to provide code completion for assemblies declared in other assemblies, you need to register these assemblies this
way:

 csParser1.Repository.RegisterAssembly("System.Xml");

You may need to register types for code completion that are not declared in the assembly, but present in the form of source code
somewhere else.

For Roslyn-based parsers you can rely on underlying solution/project/document object model:

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html#Alternet_Editor_Wpf_TextEditor_NeedCodeCompletion
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Syntax.SyntaxParser.html

 csParser1.Repository.RegisterCodeFiles(new string[] { "MyFile.cs" });

For one of advanced parsers you need first to create SyntaxParser, load this file into the Strings object, and then add parsed
SyntaxTree to the code completion repository. The following code demonstrates how it can be accomplished:

 ISyntaxParser parser = new Alternet.Syntax.Parsers.Advanced.CsParser();
 parser.Strings = new TextStrings();
 parser.Strings.LoadFile("MyFile.cs")
 parser.ReparseText();
 csParser1.CompletionRepository.RegisterSyntaxTree(parser.SyntaxTree);

Code Outlining
The TextEditor control supports outlining, which is a text navigation feature that can make navigation of large structured texts
more effective. The essence of outlining lies in defining sections of the text as structural units that once collapsed, can be visually
replaced by a shorter representation, i.e. by ellipsis ("..."). During the text navigation the user can dynamically switch between the
collapsed and complete representation of any particular section. Sections can be nested.

The section can be expanded by clicking on the "+" button, by double-clicking the proxy text, or by pressing the Ctrl+M Ctrl+M
key sequence (in the default key mapping). The section can be collapsed by clicking on the "-" button, or by pressing the Ctrl+M
Ctrl+M key sequence. All the sections can be globally collapsed or expanded using the Ctrl+M Ctrl+L key sequence.

Outlining is the property of the TextEditor control itself, not of the TextSource, thus it is possible to have two views of the same
text one with outlining and another without, or even to have completely different structural parts defined.

All the aspects of the outlining are controlled via the Outlining property of the TextEditor. The outlining can be enabled or disabled
using the AllowOutlining property either in design time or at runtime. The look of the outline is controlled by the OutlineColor
and OutlineOptions properties.

There are two approaches to defining outline sections.

D irect Defin it ion of Outline SectionsD irect Defin it ion of Outline Sections

Outline sections can be explicitly defined by calling the appropriate methods of the Outlining property, i.e.:

 edit.Outlining.Outline(new Point(0, 0), new Point(int.MaxValue, 0), 0, "...").Visible = false;`

This code snippet defines the section of the first level consisting of the entire first line of the text, using ellipsis ("...") as the proxy
text and being in a collapsed state.

While this approach is the simple one, it has one significant drawback: if sections represent structural units defined by the text
itself, and the text can be edited by the user, sections have to be somehow constantly kept in sync with the text, which can be a
non-trivial task.

Automatic Defin it ion of Outline Sections Using the Syntax P arserAutomatic Defin it ion of Outline Sections Using the Syntax P arser

To provide automatic code outlining, the syntax parsing framework has to be employed. This approach may seem to be more
complex at the first look, however it provides consistent results. To implement this approach, a class descending from the

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Syntax.SyntaxParser.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Syntax.Parser.html#Alternet_Syntax_Parser_Strings
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Syntax.SyntaxTree.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextSource.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html#Alternet_Editor_Wpf_TextEditor_Outlining
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IOutlining.html#Alternet_Editor_Wpf_IOutlining_AllowOutlining
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IOutlining.html#Alternet_Editor_Wpf_IOutlining_OutlineColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IOutlining.html#Alternet_Editor_Wpf_IOutlining_OutlineOptions
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html#Alternet_Editor_Wpf_TextEditor_Outlining

SyntaxParser class needs to be defined, and the Outline method needs to be implemented. This method will be frequently called
by the TextEditor whenever the text changes, so, to provide the user with a smooth editing experience, the implementation should
be relatively fast.

Code Editor includes parsers that support automatic outlining for C#, Visual Basic, J#, JavaScript, VBScript, Ansi-C, SQL, HTML, XML
and Python languages.

The following example demonstrates how to implement a parser the marks every line starting from the sharp ("#") sign as a
separate outline section.

 private void InitializeComponent()
 {
 ...
 this.parser1 = new XParser();
 ...
 }
 public class XParser: SyntaxParser
 {
 public XParser()
 {
 Options = SyntaxOptions.Outline;
 }
 public override int Outline(IList<IRange> Ranges)
 {
 Ranges.Clear();
 for(int i = 0; i < Strings.Count; i++)
 {
 if(Strings[i].ToString().StartsWith("#"))
 {
 Ranges.Add(new OutlineRange(
 new Point(0, i),
 new Point(int.MaxValue, i),
 0, "...", false));
 }
 }
 return Ranges.Count;
 }
 }

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Syntax.SyntaxParser.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Syntax.SyntaxParser.html#Alternet_Syntax_SyntaxParser_Outline_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html

Code Editor Extended Features (WPF)Code Editor Extended Features (WPF)
Code Editor provides advanced text editing functionality such as customizable keyboard mapping, HyperText handling, spell-
checking integration, printing and exporting, macro recording and playback and miscellaneous display features.

Keyboard Mapping
While the TextEditor closely mimics the key-mapping common to most of Microsoft's products, it is completely customizable: you
can add or change behavior of certain keys or even define an entirely different key-mapping.

To assign an action to some key combination, use the following code:

 private void edit_Action()
 {
 ...
 }
 ...
 edit.KeyList.Add(Keys.W | Keys.Control | Keys.Alt, new
 KeyEvent(edit_Action));

This would make the Ctrl+Alt+W key combination execute the edit_Action method.

Or, to pass some object to the key handler:

 private void edit_Action(object o)
 {
 ...
 }
 ...
 edit.KeyList.Add(Keys.W | Keys.Control | Keys.Alt, new
 KeyEventEx(edit_Action), some_object);

To remove some key handler, regardless of whether you have added it yourself, or it is the default one, call:

 edit.KeyList.Remove(Keys.A | Keys.Control);

The code described before is used to manage the key handling in the default state. In fact, the key handling is slightly more
complex than that: the TextEditor's key handling mechanism can be in different states, other than the default one. Every state has
its own key mapping table. Key mapping for bookmark operations can serve as a good example: after the user presses the Ctrl+K
key combination, combinations Ctrl+K, Ctrl+N, Ctrl+P, Ctrl+L (the list is incomplete) obtain the new meaning. If a key
combination is pressed for which there is no assignment in some non-default state, then the state is changed to default, and the
combination is evaluated in the new context. TextEditor defines four different non-default states, but you can implement your
own:

 edit.KeyList.Add(Keys.W | Keys.Control, null, 0, 5);
 edit.KeyList.Add(Keys.Tab, new KeyEvent(edit_Action), 5, 5);

This code creates a state that is activated by pressing the Ctrl+W key combination, and in which the Tab key causes the
edit_Action to be executed. The state is changed back to default when the user presses some key other than the Tab. Up until now
we have only examined the cases where you add some new functionality, or suppress some existing one. There also might be a
case, when you want to use an entirely different key mapping, for example, to simulate some other environment your users are
familiar with. To accomplish this, it is necessary to completely clear the current key mapping, and then to assign every function
performed by the editor to some key. Note, that this really means every function: even such trivial things as cursor navigation and
insertion of a new line are performed according to the key mapping.

For example, the following code assigns the editor's key-mapping to a single action defined: "Select All", which is assigned to the

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html

Ctrl+X key combination

 edit.KeyList.Clear();
 edit.KeyList.Add(Keys.X | Keys.Control,
 ((EventHandlers)edit.KeyList.Handlers)SelectAllEvent);

URL handling
The TextEditor can be set up to handle pieces of text that look like some kind of an URL by setting the HighlightHyperText
property to true. The handling consists of highlighting those pieces of text, and of processing clicks on them. By default, clicking
the URL causes the operating system default action to be performed (i.e. launching a browser or an email client), however, you
can override this behavior by assigning the JumpToUrl event handler.

 private void edit_JumpToUrl(object sender, UrlJumpEventArgs e)
 {
 if(is_our_url(e.Text))
 {
 process_url(e.Text);
 e.Handled = true;
 }
 }

Spellchecker Interface
The TextEditor supports the spell-as-you-type spell checker integration. To enable spelling for the editor, set its CheckSpelling
property to true and assign the WordSpell event handler.

The following artificial example considers any word longer than 3 characters to be correct:

 private void edit_WordSpell(object sender, WordSpellEventArgs e)
 {
 e.Correct = e.Text.Length > 3;
 }
 ...
 this.edit.WordSpell += new WordSpellEvent(this.edit_WordSpell);

Incorrect words are displayed with the wiggly underline (the default color is red, but it can be changed using the SpellColor
property). In real-life scenarios you would need to use some third-party software/dictionary to really check the text. Another
alternative would be using some word-list file, many of them, including Public Domain or free ones, can be found on the Internet.
Refer to a Miscellaneous quick start project, which has one of these dictionaries.

Another useful feature supported by TextEditor is AutoCorrect, allowing you to auto correct words when typing. To enable this
feature you need to set property AutoCorrection to true and handle the AutoCorrect event to provide replacements for words that
were typed incorrectly.

Printing and Exporting
TextEditor includes support for printing, print previewing, and exporting to RTF and HTML.

Exporting can be performed as simple as this:

 edit.SaveFile(FileName, new RtfExport());

Printing tasks are performed and configured via the Printing property of the TextEditor.

For example, to show the print preview dialog, call:

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IEditHyperText.html#Alternet_Editor_Wpf_IEditHyperText_HighlightHyperText
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html#Alternet_Editor_Wpf_TextEditor_JumpToUrl
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IEditSpelling.html#Alternet_Editor_Wpf_IEditSpelling_CheckSpelling
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IEditSpelling.html#Alternet_Editor_Wpf_IEditSpelling_SpellColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html

 edit.Printing.ExecutePrintPreviewDialog();

TextEditor control supports adding user-defined information while printing.

To add some text to the footer:

 edit.Printing.Footer.CenterText = "draft";

Text in headers and footers can contain substitution tags. The standard ones are: [page], [pages], [date], [time] and [username].

Marco Recording and PlayBack
TextEditor has macro recording and playback capabilities. It allows recording sequences of keyboard commands and playing them
later. Note that mouse input is not recorded.

This feature enables you to store a set of frequently used editing commands. Set MacroRecording property to start/finish macro
recording. Use the PlayBack method to repeat the stored command sequence.

White-space Display
It is sometimes desirable for the user to see the codes which influence the layout of the text and are normally invisible themselves.
These codes are space, tab, end-of-line, and the end-of-file (not really a code), and are often collectively referred to as the white-
space. The TextEditor has the option to display them, and to control their appearance.

The display of the white-space is enabled using the Visible property. The color used to display white-space codes is determined by
the SymbolColor property, and the characters used to display those codes are determined by EofSymbol, EolSymbol,
SpaceSymbol, and TabSymbol properties.

Line Separator
It is possible to have lines of the editor to be separated by thin horizontal lines, and to have the current line highlighted. This
behavior is controlled by the LineSeparator property.

The following options are available:

HighlightCurrentLine specifies that the current line in the editor will be highlighted using the HighlightColor for
background.

HideHighlighting specifies that the highlighting of the current line should be hidden when the editor loses focus.

SeparateLines specifies that a thin horizontal line of LineColor should be drawn between each line of text.

SeparateWrapLines specifies that each visual line of text produced as a result of word-wrap should be separated in the same
manner as separate lines (works only if the SeparateLines option is also specified).

SeparateContent specifies that line separator will be drawn between sections of the code (for example between methods), if
TextEditor control is associated with SyntaxParser supporting this feature.

Code snippets

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IWhiteSpace.html#Alternet_Editor_Wpf_IWhiteSpace_Visible
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.IWhiteSpace.html#Alternet_Editor_Wpf_IWhiteSpace_SymbolColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html#Alternet_Editor_Wpf_TextEditor_LineSeparator
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SeparatorOptions.html#Alternet_Editor_Wpf_SeparatorOptions_HighlightCurrentLine
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SeparatorOptions.html#Alternet_Editor_Wpf_SeparatorOptions_HideHighlighting
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SeparatorOptions.html#Alternet_Editor_Wpf_SeparatorOptions_SeparateLines
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SeparatorOptions.html#Alternet_Editor_Wpf_SeparatorOptions_SeparateWrapLines
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.SeparatorOptions.html#Alternet_Editor_Wpf_SeparatorOptions_SeparateContent

The code snippets are the next code completion provider, allowing to insert frequently used fragments of code. Code snippets can
be inserted into the editor by pressing Tab key after snippet shortcut or by executing code snippet popup window with Ctrl + K +
X key sequence, or activated programmatically, by calling the CodeSnippets method of the TextEditor.

The purpose of the code snippets is to permit the user to quickly enter one of the predefined fragments of text. If the code snippet
has fields declared, the editor allows modifying their values causing updating field values inside the whole snippet.

The following picture illustrates the usage of the code snippets.

Hidden and Read-Only Lines
TextEditor control can mark certain lines to be readonly or hide them at all so the user can't see them. This can be achieved by
using SetLineHidden and SetLineReadonly methods. For hidden lines to take effect, the AllowHiddenLines property needs to be
set to true. Read-only lines can be made visually different from editable lines by setting ReadonlyBackColor property. Sometimes
it's required to mark certain lines to be both hidden and readonly, this way they can not be deleted if the user selects the outer
block containing them and tries to delete it.

Structure GuideLines
TextEditor control can display dashed lines between syntax blocks for some parsers (Roslyn-based, TypeScript and some
advanced parsers), helping the user to better understand the structure of the document being edited. This behavior is controlled
by a Parser and can be switched off by the StructureGuideLines parser option.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextSource.html#Alternet_Editor_Wpf_TextSource_SetLineHidden_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextSource.html#Alternet_Editor_Wpf_TextSource_SetLineReadonly_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.DisplayStrings.html#Alternet_Editor_Wpf_DisplayStrings_AllowHiddenLines
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html#Alternet_Editor_Wpf_TextEditor_ReadonlyBackColor
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html

Syntax ParsingSyntax Parsing
Text parsing is performed by one of the Parser non-visual components. In the very basic version it controls the syntax
highlighting, and in case of using more advanced parsers it enables additional features such as code completion, code outlining,
code formatting and syntax error underlining.

If no parser is assigned, SyntaxEdit or TextEditor do not perform any parsing related functions. To be able to use those features
you need to explicitly create a Parser component and assign it via the Lexer property of either these controls directly, or their
TextSource.

C#/VisualBasic (Roslyn) and TypeScript/JavaScript parsers
The package includes parsers that are based on Microsoft Code Compiler technology (Roslyn) and Microsoft TypeScript compiler.

These parsers allows to have full syntax and semantic model of the text being edited by SyntaxEdit control, which enables
additional features such as code completion, code outlining, code formatting, highlighting types in a different colors and
underlying syntax and semantic errors and warnings to be identical to the ones found in Microsoft Visual Studio editor.

LSP Parsers
LangServer-based parsers rely on external servers to provide features like auto complete, go to definition, find all references and
alike. The Code Editor package includes parsers based on this technology for C/C++, Java ,Python, Lua XML, and PowerShell.
There are two variations of each parser - one that relies on the Language server to be installed on the target machine and one that
includes all required payload (such as clang libraries for c/c++ or embedded python distribution) in the form of embedded
resources. Java embedded parser contains LSP-server files, but not Java installation itself, which need to be installed on target
machines independently.

Advanced Parsers
The Code Editor package comes with several advanced parsers, each one designed to perform syntax highlighting for certain
languages. Each of these parsers is derived from the SyntaxParser class implementing ISyntaxParser interface and performs
syntax analysis of the text in a specific programming language in order to provide advanced code editing features discussed
above. These parsers use hard-coded parsing algorithms instead of generic regular-expression based rules, which makes them
significantly faster compared to generic parsers (these parsers will be explained further). Currently we have advanced parsers for
the following languages: Python, C#, J#, Visual Basic.NET, Ansi-C, VBScript, JavaScript, HTML, SQL, T4, XML and XAML. These
parsers perform complete syntax parsing of the source code to build the syntax tree, which is used to implement all mentioned
features. Please note that these parsers might not support full language specification, especially language constructs which were
added to these programming languages recently.

Python and XAML parsers are implemented in their own namespaces/assemblies, Alternet.Syntax.Parsers.Python and

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Syntax.Parser.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Syntax.Parser.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Syntax.SyntaxParser.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Syntax.ISyntaxParser.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Syntax.Parsers.Python.html

Alternet.Syntax.Parsers.XAML respectively.

For Python/IronPython we have implemented full semantic analysis of the text, which builds a semantic model of the whole text
displayed in the editor (and also processes included files). This approach was inspired by studying Microsoft Code Analysis
("Roslyn") implementation, which will be explained below. Semantic model is then used by Code Completion services and for
finding declarations and references.

Generic parsers
Writing your own parser to comply with a full specific programming language is non-trivial task, not to mention of keeping it up
to date with full language specifications as the language evolves, however for a simple task of syntax highlighting it's normally
not required. To perform syntax highlighting you can rely on a generic parsing engine, which is using finite-state automaton rules
driven by regular expressions matching the parsed text. Although creating good syntax-highlighting rules for some complex
language can still be tricky, you will rarely, if ever, have to do it yourself. The Code Editor is supplied with more than 30 ready-to-
use syntax schemes for the most commonly used modern programming languages. In a rare case you need to implement a
parser for some custom language, there is a big chance that one of these parsers can be a good starting point. Syntax schemes
are stored on disk as .xml files and the built-in visual design-time parser editor is provided to simplify the process of their
creation. In case you need most of these languages in your application, you can consider using one of the SchemeParser
descendants which contains appropriate language schemes in the form of an assembly resource.

Creating a new generic parser is described in the Advanced Topics section of the documentation.

Creating own G eneric Parser SchemaCreating own G eneric Parser Schema

Although the Code Editor is supplied with a collection of parsers, it may be sometimes necessary to create a new one. In this
chapter we will develop a completely new parser for some trivial fictitious language.

First, let us informally describe the language we are willing to parse. The valid text in this language consists of zero or more
groups, enclosed in curly brackets ("{", "}"), each containing zero or more numbers separated by commas. We want to distinctly
highlight punctuation symbols and numbers, and to highlight erroneous input.

The first step is to create a new Parser object by dropping it from the toolbox, and assigning it to some SyntaxEdit by picking the
newly created parser from the list of choices appearing for the Lexer property of the editor.

After having done this, we can start exploring the SyntaxBuilder. It is invoked by pressing the "..." button appearing for the Scheme
property of the parser object.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Syntax.Parsers.XAML.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Syntax.Parsers.Generic.SchemeParser.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html

Now you should see the SyntaxBuilder dialog box appears. If you wanted to use some existing scheme, you would have pressed
the Load button, however, this time we are going to create a new scheme completely from scratch. After completing it, you can
press the Save button to make it possible to use this new scheme in other projects.

The next thing to do, after entering optional information about the author and the copyright, is to define syntax highlighting styles
used in the scheme. This is accomplished by clicking the right mouse button on the Styles node to bring the context menu, and
choosing the Add Style command.

After creating a style you should give it a name and define its visual attributes. For this example we will need four three styles:
number, punctuation, whitespace, and error. Let us define numbers to have olive color and italic text style, punctuation symbols to
be blue, and errors to have red background and white foreground. The whitespace style is defined as having no distinct markup at
all.

Then we define the states of the parser. For our example language there will be two states: default and block. States are defined
similarly to styles, by choosing the Add State command in the context menu appearing to the States node. In turn, states contain
syntax blocks, created by the Add Syntax Block command from the context menu of a state.

The syntax parser is essentially a state machine, driven by the text. Transition conditions are expressed in terms of regular
expressions which are checked against the parsed text at the current position up to the next end of line. Expressions are tried in
the syntax block definition order. The first successful match determines the syntax block. The text position is advanced by the
length of the match, and the text is assigned the style specified for that syntax block. The matched text is additionally matched
against the list of the reserved words associated with this syntax block, and if a match occurs, the style defined by the ResWord
Style is used instead of the one defined by the Style property. The state of the state machine is changed according to the Leave
State property of the syntax block, which can specify any of the states, including the same state, in which the syntax block resides,
meaning no state transition is to take place.

The state machine for the language we are parsing is described in the following table, and deserves some comments.

The whitespace syntax block is only necessary because of the presence of a match all error syntax block. In the more common
case where no error highlighting is used, no style (which is the same as the whitespace style that we have defined) would be used
for the text that does not match any of the syntax blocks. The error syntax block is the last in the sequence and matches a single
character which has not been matched by any of the preceding rules. The block syntax block is matched when the opening curly
bracket is met. The bracket itself is assigned the punctuation style, and the state machine changes its state into the block state
(note that state name, style name and syntax block style name coincidences are not required).

In the block state, the whitespace, and error syntax blocks serve the same purpose as in the default state. Number and comma
syntax blocks cause numbers and commas to have the corresponding styles, and the end syntax block, which matches the closing
curly bracket, causes the transition back to the default state.

Automatic Code Completion for arbitrary programming language
If there is no SyntaxParser for your language, you can consider implementing automatic code completion using
NeedCodeCompletion event:

 private void edit_NeedCodeCompletion(object sender, Alternet.Syntax.CodeCompletionArgs e)
 {
 if ((e.CompletionType == CodeCompletionType.ListMembers) ||
 (e.CompletionType == CodeCompletionType.CompleteWord) ||
 ((e.CompletionType == CodeCompletionType.None) && (e.KeyChar == '.')))
 {
 // Look at Manual Code Completion, list members section
 ...
 e.Interval = (e.CompletionType != CodeCompletionType.None)
 ? 0 : 500;
 }
 if(e.CompletionType == CodeCompletionType.ParameterInfo ||
 e. CompletionType == CodeCompletionType.None &&
 e.KeyChar == '(')
 {
 // Look at Manual Code Completion, parameter info section
 ...
 e.Interval = (e.CompletionType != CodeCompletionType.None)
 ? 0 : 500;
 }
 }

Depending on the kind of the language you are working with, and whether you are using some complete library to work with that
language, or do everything yourself, the actual information on symbols will be retrieved in different ways:

if you are using some third party library, look for something that resembles the name "Symbolic Information API" or like in
the manual for that library;

if you are developing your own language, or at least your own engine for some existing language, you probably already
know what exactly to do to acquire the information necessary for code completion to work;

If you are working with the .NET family of languages, CLR Reflection API should probably be of use for this purpose. The
sample program supplied with the package provides a good starting point on working with it.

Manual Code Completion
If you use Code Editor with the parser that does not fully support automatic code completion, you can still provide some guidance
to the users as he types by implementing some of the code completion logic manually.

Global Settings
If the application contains more than one instance of the editor, it is quite often desired to share their UI settings, and to provide
the user with a centralized facility to manage them. Code Editor is shipped with Customize quick start project that demonstrates
how this can be accomplished.

It includes SyntaxSettings class which is a holder for the following set of settings:

The font used to display the text in the editor

Syntax highlighting styles (i.e. foreground and background colors, font style)

Whether the following features are enabled or not:

Show margin

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Syntax.SyntaxParser.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html#Alternet_Editor_SyntaxEdit_NeedCodeCompletion

Show gutter

URL highlighting

Outlining

Word wrapping

Use of spaces instead of tabs for indents

The width of the gutter area

The position of the margin

Tab-stop positions

Navigation options

Selection options

Outline options

Scrollbar options

Color Themes

To use this class, its instance must be created, i.e.:

 private SyntaxSettings GlobalSettings;
 ...
 GlobalSettings = new SyntaxSettings();

The settings can be retrieved from some particular SyntaxEdit controls as follows:

 GlobalSettings.LoadFromEdit(edit);

And then assigned to some other editor like this:

 GlobalSettings.ApplyToEdit(edit);

Settings can be easily stored to some file:

 GlobalSettings.SaveFile("GlobalSettings.xml");

And later on, loaded from that file:

 GlobalSettings.LoadFile("GlobalSettings.xml");

As the name of the file suggests, settings are stored in the XML format. Note, that in the real application you would check for the
existence of that file, and also, this file should probably be located somewhere down the user's Application Data folder.

To make the handling of the global settings even easier, the Customize demo project includes an example settings dialog.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html

All you need to do to use it, is to declare and construct its instance:

 using Alternet.Editor.Dialogs;
 using Alternet.Editor.Wpf.Dialogs; // for WPF edition
 ...
 private DlgSyntaxSettings Options;
 ...
 Options = new DlgSyntaxSettings();

And later on, when the user requests the editor settings dialog perform something similar to the following:

 Options.SyntaxSettings.Assign(GlobalSettings);
 if(Options.ShowDialog() == DialogResult.OK)
 {
 GlobalSettings.Assign(Options.SyntaxSettings);
 // for each syntaxEdit or TextEditor used in the application do
 GlobalSettings.ApplyToEdit(edit);
 }

Localization of dialogs
All string constants used in dialogs are localized to a few foreign languages. CodeEditor supports dialog localization to German,
French, Spanish, Russian and Ukrainian languages. The following code demonstrates how to switch to German language:

 Using Alternet.Common;
 ...
 CultureInfo oldcInfo = Thread.CurrentThread.CurrentUICulture;
 Thread.CurrentThread.CurrentUICulture = new CultureInfo("de");
 try
 {
 StringConsts.Localize();
 }
 finally
 {
 Thread.CurrentThread.CurrentUICulture = oldcInfo;
 }

Scripter OverviewScripter Overview
AlterNET Scripter is a component library designed to integrate C#, Visual Basic, TypeScript, JavaScript, Python and IronPython
scripts into your WinForms and WPF .NET desktop applications. It allows extending the application logic by implementing custom
functionality or automating custom tasks without recompiling and redeploying the application.

Script Execution
The main components that provide script executing functionality for supported programming languages are: ScriptRun for C#
and VisualBasic; ScriptRun for Python; ScriptRun for IronPython and ScriptRun for TypeScript and JavaScript. These components
encapsulate functionality of running standalone C#, Visual Basic, Python, IronPython, TypeScript and JavaScript script files or
projects with forms and resources; they allow referencing third-party assemblies and register application-defined objects to be
accessible in the scripts.

Script Debugging
The following components provide a fully-featured script debugging engine for the supported programming languages:
ScriptDebugger for C# and VisualBasic; ScriptDebugger for Python; ScriptDebugger for IronPython; ScriptDebugger for
TypeScript and JavaScript. ScriptDebugger for debugger that relies on Debugger Adapter Protocol.

These debuggers support Start, Stop, Break and Continue commands, step by step execution, breakpoints, expression evaluation,
viewing local variables and watches, stack tracing and and in case of C#/VisualBasic, multiple thread debugging.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.ScriptRun.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Python.ScriptRun.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IronPython.ScriptRun.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.TypeScript.ScriptRun.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.Python.ScriptDebugger.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.IronPython.ScriptDebugger.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.TypeScript.ScriptDebugger.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.Dap.ScriptDebugger.html

AlterNET Scripter includes a set of quick start projects, each one designed to highlight specific features of the component.

Below is brief overview of these projects, most of them available for C#/Visual Basic, Python, IronPython and TypeScript

AlterNET Studio - demonstrate how to run and debug script files and projects. Example files and projects are located in the
demo\resources\debugger folders.

CallMethod - a set of quick start projects for all supported languages which demonstrate how to execute script methods and pass
application objects to the script.

CustomAssembly - demonstrates how to use external assemblies in the scripts

EvaluateExpression - shows how ScriptRun can evaluate expression, which again can access some objects defined in the
application

Object Reference - shows how application-defined objects can be accessed by bane from the script.

Threading - shows how scripts can be run asynchronously.

DebuggerIntegration - Shows how debugger logic can be integrated in the application to debug scripts (application-independent
scripts in case of C#/Visual Basic).

For C#/Visual Basic only:

DebugMyScript - demonstrates how scripts executed by application can be debugged by a separate Script Debugger tool.

DebugRemoteScript - Shows how debugger logic can be embedded in the application to debug scripts that access the application
API indirectly.

Isolated Script - Shows how to load a script in the separate AppDomain, so it can be unloaded afterwards and execute methods in
it.

For Debugger Adapter Protocol (DAP):

CppLlvmDapDebugger - Shows how debugger logic can be integrated in the application to debug standalone C++ projects.

PythonDapDebugger - Shows how debugger logic can be integrated in the application to debug standalone Python projects.

Creating your first project

To see C# scripting in action, place the ScriptRun component on the form, and write the following code in Button click event
handler:

 scriptRun1.ScriptSource.FromScriptCode("public class ScriptTest { public static void Main() {
System.Windows.Forms.MessageBox.Show(\"Hello World \");} }");
 scriptRun1.ScriptSource.WithDefaultReferences();
 scriptRun1.Run();

The first line of the code populates the Script source, the second line adds references to most common System assemblies, and
the third one runs the code.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.ScriptRun.html

C# and Visual Basic Script executionC# and Visual Basic Script execution
The basic script execution workflow requires setting a script source, adding references to the assemblies used in the script;
registering application-defined objects accessible to the script; compiling script to dynamically-linked library or standalone
executable program and running some method in that dll or executing the program.

Setting up Script Source
All properties and methods required to set a script source are encapsulated in ScriptSource property of the ScriptRun class; below
are the most essential ones:

Files - specifies a collection of source files to be compiled and executed;

ScriptCode - specifies source in a form of text string;

ProjectName, ProjectFileName and RootNamespace - contain project-related information if ScriptSource is loaded from the
project.

Imports - contains global namespaces in case Visual Basic is used so you do not need to specify them in the code;

Conditionals - contains lists conditional compilation symbols;

References - contains a list of assembly references for types used in the scripts; this can include reference to the calling
application.

SearchPaths - contains search paths to look for the third-party references in case they're not supplied with a full path.

Resources - contains a list of resx files with resources.

FromScriptFile - loads Script Source from the single source file;

FromScriptCode - loads script from code in a form of a text string;

FromExpression - sets ScriptSource to the string expression.

FromScriptProject - loads code from Visual Studio Project

Adding assembly references:
In order to use types in the script, assemblies where these types are declared need to be properly referenced.

The following code populates references with most commonly used assemblies:

scriptRun1.ScriptSource.WithDefaultReferences();

For technology set to WinForms (which is default option) it contains the following assemblies:

System,System.Drawing System.WindowsForms;

Note that this list is different in case of .NET Core targets.

You can reference additional assemblies by adding it to the References property:

 scriptRun1.ScriptSource.References.Add("System.Data");

This method accepts full path, you can also add reference to third-party assemblies in case script uses types from it.

Registering objects to be used in script

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.ScriptRun.html#Alternet_Scripter_ScriptRun_ScriptSource
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.ScriptRun.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IScriptSource.html#Alternet_Scripter_IScriptSource_Files
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.ScriptSource.html#Alternet_Scripter_ScriptSource_ScriptCode
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.ScriptSource.html#Alternet_Scripter_ScriptSource_ProjectName
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.ScriptSource.html#Alternet_Scripter_ScriptSource_ProjectFileName
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IScriptSource.html#Alternet_Scripter_IScriptSource_RootNamespace
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IScriptSource.html#Alternet_Scripter_IScriptSource_Imports
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IScriptSource.html#Alternet_Scripter_IScriptSource_Conditionals
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IScriptSource.html#Alternet_Scripter_IScriptSource_References
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IScriptSource.html#Alternet_Scripter_IScriptSource_SearchPaths
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IScriptSource.html#Alternet_Scripter_IScriptSource_Resources
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IScriptSource.html#Alternet_Scripter_IScriptSource_FromScriptFile_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IScriptSource.html#Alternet_Scripter_IScriptSource_FromScriptCode_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IScriptSource.html#Alternet_Scripter_IScriptSource_FromExpression_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IScriptSource.html#Alternet_Scripter_IScriptSource_FromScriptProject_

Application objects accessible by the script need to be added to the GlobalItems collection, along with the object's name which
will be used in the script and object's type or object itself.

Object value itself is only required during script execution; for script compilation object name and type are sufficient.

ScriptRun adds references to the assemblies which contain types of the objects being added to GlobalItems automatically.

Note that AssemblyKind property needs to be set to Dynamically Linked Library, for it to be loaded in the running application
process and be able to access application-defined objects.

Below is sample code which registers application-defined objects in the script.

 public class MyItem
 {
 public MyItem(string text)
 {
 this.Text = text;
 }
 public string Text;
 }
 scriptRun1.GlobalItems.Add(new ScriptGlobalItem("MyItem", obj: new MyItem("hello")))

Script Compilation and Execution
Once ScriptSource is set, next step is Compile the script; this step is performed implicitly when the script is run the first time, or
when Script source is changed (this includes changes of script files externally)

Script compilation engine is implemented by IScriptHost; there are two implementations of IScriptHost provided, a legacy engine
based on CodeDOMScriptHost wrapper around command-line C# or Visual Basic compiler, or RoslynScriptHost based on new
Microsoft Roslyn Code compiler technology - the last one is used by default and it allows some nice features such as referencing
to other script source dynamically by using #load directive and gives more control on code parsing and compilation.

Script can be compiled into a dynamically-linked library or in a standalone executable; this is controlled by the AssemblyKind
property. GenerateModulesOnDisk allows to control whether assembly being compiled will reside in memory or on the disk; and
ModulesDirectoryPath specifies location of compiled assembly where compiled modules will be stored. Platform target (AnyCPU,
AnyCpu32BitPreferred, x86, x64 or Auto) is controlled by Platform property (by default it's set to Auto and takes target platform
from the application).

Once Compilation is executed, Compiled property will be set to true in case compilation was successful, and IScriptHost's
ScriptAssembly property will point to the assembly being compiled from the script source. Otherwise IScriptHost's properties
CompileFailed will be set to true and CompilerErrors will be populated with compiler errors. Please note, CompilerErrors may
contain compiler warnings even in case of successful compilation.

Upon successful compilation you can subsequently call Run, RunMethod, or their asynchronous variants: RunAsync and
RunMethodAsync; in case of standalone executable RunProcess should be used instead.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.ScriptRun.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.ScriptRun.html#Alternet_Scripter_ScriptRun_GlobalItems
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.ScriptRun.html#Alternet_Scripter_ScriptRun_AssemblyKind
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.ScriptRun.html#Alternet_Scripter_ScriptRun_ScriptSource
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IScriptHost.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IScriptHost.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.CodeDOM.CodeDOMScriptHost.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Roslyn.RoslynScriptHost.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.ScriptRun.html#Alternet_Scripter_ScriptRun_AssemblyKind
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IScriptHost.html#Alternet_Scripter_IScriptHost_GenerateModulesOnDisk
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IScriptHost.html#Alternet_Scripter_IScriptHost_ModulesDirectoryPath
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IScriptHost.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IScriptHost.html#Alternet_Scripter_IScriptHost_ScriptAssembly
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IScriptHost.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IScriptHost.html#Alternet_Scripter_IScriptHost_CompileFailed
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IScriptHost.html#Alternet_Scripter_IScriptHost_CompilerErrors
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IScriptHost.html#Alternet_Scripter_IScriptHost_CompilerErrors
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.ScriptRun.html#Alternet_Scripter_ScriptRun_Run_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.ScriptRun.html#Alternet_Scripter_ScriptRun_RunMethod_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.ScriptRun.html#Alternet_Scripter_ScriptRun_RunAsync_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.ScriptRun.html#Alternet_Scripter_ScriptRun_RunMethodAsync_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.ScriptRun.html#Alternet_Scripter_ScriptRun_RunProcess_

Python and IronPython Script Execution and DebuggingPython and IronPython Script Execution and Debugging
Scripter contains a set of components that implement python script compilation, execution and debugging. These components are
ScriptRun and ScriptDebugger for Python and ScriptRun and ScriptDebugger

These components are installed on the AlterNet Scripter.Python and AlterNet Scripter.IronPython tabs in the Visual Studio.

Script execution is based on the Python.NET and IronPython open-source scripting engines which gives Python programmers
seamless integration with .NET. These engines support executing Python code and accessing .NET types and objects of the host
application from the script.

ScriptRun and ScriptRun provides a very similar interface to .NET ScriptRun; former one uses Python itself to execute Python
scripts, while latter one creates in-memory .NET assembly out of Python code.

ScriptRun and ScriptRun can execute single files, Python projects (which can be loaded/saved to .pyproj file), or evaluate Python
expressions.

The main difference between Python.NET and IronPython scripting entine is that Python.NET supports up to Python 3.7 language
specification and can use most of the third-party libraries like numpy or pandas that rely on Python/Cython code, while
IronPython supports up to Python 2.7 language specification. It also provides multi-threading script execution capabilities, unlike
Python.NET which can not execute scripts in the multiple threads simultaneously.

ScriptDebugger and ScriptDebugger are based on Microsoft.Scripting debugging engine; they allow incorporating debugging
logic in the same application and do not have a limitation of .NET debugger, which requires debugger and script to be debugged
running in the separate application processes. It has most of the functionality that .NET Script debugger provides; except for multi-
threaded debugging.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Python.ScriptRun.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.Python.ScriptDebugger.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IronPython.ScriptRun.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.IronPython.ScriptDebugger.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Python.ScriptRun.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IronPython.ScriptRun.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.ScriptRun.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Python.ScriptRun.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IronPython.ScriptRun.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.Python.ScriptDebugger.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.IronPython.ScriptDebugger.html

TypeScript/JavaScript Script Execution and DebuggingTypeScript/JavaScript Script Execution and Debugging
Alongside with component libraries for .NET and Python-based script compilation, execution and debugging, we provide a very
similar components for TypeScript/JavaScript: ScriptRun and ScriptDebugger

These components are installed on the AlterNet Scripter.TypeScript tab in Visual Studio.

Script execution is based on Microsoft ClearScript which provides v8 high-performance open-source JavaScript engine. It
supports executing JavaScript code and accessing .NET types and objects of the host application from the script.

ScriptRun provides a very similar interface to .NET ScriptRun; the main difference is that it does not create .NET assembly, and
executes JavaScript code using ClearScript engine.

The main difference in API is that unlike .NET Script Runner, the collection of referenced objects, types and .NET assemblies is
specified via HostItemsConfiguration property; as opposed to GlobalItems/References properties; RunMethod/RunMethodAsync
are replaced with RunFunction/RunFunctionAsync.

The following code adds references to most commonly used assemblies and registers RunButton to be accessible from the script:

```csharp scriptRun.ScriptHost.HostItemsConfiguration.AddSystemAssemblies().AddObject("RunButton", btNETFromScript);

<xref:Alternet.Scripter.TypeScript.ScriptRun> can execute single files, typescript projects (which can be 
loaded/saved to json file), or evaluate TypeScript/JavaScript expressions. 

**Note** that order of TypeScript/JavaScript files in a project is important, as they get executed one by one.

TypeScript compilation service uses host configuration to automatically create all support files containing 
typescript definitions. The following line needs to be placed on top of user's script to access .NET types and 
objects from host configuration:

    ///<reference path="clr.d.ts" />

<xref:Alternet.Scripter.Debugger.TypeScript.ScriptDebugger> is based on Google Chrome debugging development 
tools; it allows incorporating debugging logic in the same application and does not have a limitation of .NET 
debugger, which requires debugger and script to be debugged running in the separate application processes. It 
has most of the functionality that .NET Script debugger provides; except for multi-threaded debugging and 
automatic retrieval/evaluation of local variables.

![TypeScriptDebugger](images/TypeScriptDebugger.png)

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.TypeScript.ScriptRun.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.TypeScript.ScriptDebugger.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.TypeScript.ScriptRun.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.ScriptRun.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.TypeScript.IScriptHost.html#Alternet_Scripter_TypeScript_IScriptHost_HostItemsConfiguration
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.ScriptRun.html#Alternet_Scripter_ScriptRun_GlobalItems
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.IScriptSource.html#Alternet_Scripter_IScriptSource_References
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.ScriptRun.html#Alternet_Scripter_ScriptRun_RunMethod_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.ScriptRun.html#Alternet_Scripter_ScriptRun_RunMethodAsync_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.TypeScript.ScriptRun.html#Alternet_Scripter_TypeScript_ScriptRun_RunFunction_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.TypeScript.ScriptRun.html#Alternet_Scripter_TypeScript_ScriptRun_RunFunctionAsync_


Script DebuggingScript Debugging
Lot of times script debugging is required for the script the users write. We provide tools to debug script code and a set of UI
widgets to build custom debugging interfaces.

C# and Visual Basic Script Debugging
Script Debugger engine is implemented in Alternet.Scripter.Debugger assembly and it is based on CLR debugging COM interfaces
low-level API to debug .NET applications.

https://msdn.microsoft.com/en-US/library/ms404484(v=vs.110).aspx

Main component of Script debugging is the ScriptDebugger class, which provides all commonly used debugging features like
step by step execution, stopping on breakpoints, examining local variables, expression evaluations, etc.

Below is a summary of ScriptDebugger most essential properties, methods and events:

Methods:Methods:

StartDebugging() - starts executing the program from the entry point.

AttachToProcessAsync - Attaches to the already started process which scripts are to be debugged.

StopDebuggingAsync - Stops the debugging session.

Break() - Causes the given process to pause its execution so that its current state can be analyzed.

Continue() - Continues given process to the next breakpoint or until process finishes.

StepInto() - Executes one statement of code; steps into the next function call, if possible.

StepOver() - Executes one statement of code; steps over the next function call, if possible.

StepOut() - Executes remaining lines of the function; steps out of the function currently being executed.

ActivateThread - Switches debugging to the specified thread.

SwitchToStackFrame - Switches debugging to the given stack frame.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.html
https://msdn.microsoft.com/en-US/library/ms404484(v=vs.110).aspx
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_StartDebugging
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_AttachToProcessAsync_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_StopDebuggingAsync_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_Break
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_Continue
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_StepInto
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_StepOver
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_StepOut
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_ActivateThread_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_SwitchToStackFrame_


SetRunToPositionBreakpoint - Causes the debugger to stop at the specified position.

Following methods may take considerable amount of time, therefore they're implemented asynchronously:

EvaluateExpressionAsync - Evaluates expression in the current stack frame, with or without child properties.

EvaluateCurrentExceptionAsync - Evaluates the exception being thrown by the debugger.

GetStackFramesAsync - Gets a list of method calls that are currently on a stack.

GetThreadsAsync - Gets a list of active threads.

GetVariablesInScopeAsync - Gets all local variables in the given stack frame.

TrySetNextStatementAsync - Sets the execution point to the specified line.

GetExecutionPositionAsync - Gets the current execution point.

P roper t ies:P roper t ies:

IsStarted - Indicates whether the debug process has started.

State - Gets current debugger state.

ScriptRun - in case Debugger used to debug standalone executable, contains all information required to compile and run the
script.

GeneratedModulesPath - Specifies directory where assemblies for the scripts being debugged are located.

Breakpoints - Returns collection of debugger breakpoints.

EventsSyncAction - A function which could be provided by the application to sync raised debugger events if required (for
example, perform Control.Invoke)

Events:Events:

ActiveThreadChanged - Occurs when thread to be debugged changes.

DebuggerErrorOccured - Occurs when debugger encounters error during debugging session.

DebuggingStarted - Occurs when the debugging session is started.

DebuggingStopped - Occurs when the debugging session is stopped.

ExecutionResumed - Occurs when debugging is resumed after being paused.

ExecutionStopped - Occurs when debugging is paused.

LogMessageReceived - Occurs when a debug message is received.

StackFrameSwitched - Occurs when the debugger is switched to the stack frame.

StateChanged - Occurs when debugging state is changed (when debugger is started, stopped or paused)

.NET Script Debugging best practices
The main issue that we've faced with debugging is that it's not quite possible to embed debugging logic in the same process
where scripts are being executed, as the debugger process will need to freeze itself when debugging. Refer to the following blog
for more details:

https://blogs.msdn.microsoft.com/jmstall/2005/11/05/you-cant-debug-yourself/

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_SetRunToPositionBreakpoint_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_EvaluateExpressionAsync_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_EvaluateCurrentExceptionAsync_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_GetStackFramesAsync_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_GetThreadsAsync_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_GetVariablesInScopeAsync_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_TrySetNextStatementAsync_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_GetExecutionPositionAsync_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_IsStarted
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_State
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_ScriptRun
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_GeneratedModulesPath
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_Breakpoints
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_EventsSyncAction
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_ActiveThreadChanged
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_DebuggerErrorOccured
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_DebuggingStarted
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_DebuggingStopped
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_ExecutionResumed
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_ExecutionStopped
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_LogMessageReceived
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_StackFrameSwitched
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.ScriptDebugger.html#Alternet_Scripter_Debugger_ScriptDebugger_StateChanged
https://blogs.msdn.microsoft.com/jmstall/2005/11/05/you-cant-debug-yourself/


Therefore we see two main options for script debugging to work:

1. Script is compiled as a dynamically linked library and is linked to the calling application (which is the most straightforward
way of scripts to be able to access application-defined objects). In this case Script debugger must be a separate process
which attaches to the main application process and allows to debug script code in it. The script debugger can be made look
like it belongs to the same application (which is outside of the scope of this tutorial), but it has to be in a separate process.

In this mode Script Debugger does not compile or execute script itself; instead it relies on the main application to do so. It receives
the main application process id, source and project file along with the name of assembly to be debugged via command-line
arguments; attaches to the main process and communicates with it by sending Start Debug or Stop Commands and receiving a
list of compilation errors or script completion events.

Refer to DebugMyScript quickstart projects for more details.

Note that you cannot debug the main application under Visual Studio and have Script Debugger to attach to it at the same time,
as Visual Studio will attach its own debugger.

Note that the target platform of debugger and debugee process need to be the same (for AlterNET Studio demo it's set to
AnyCPU, 32-bit preferred).

1. Script to be compiled in the separate executable; and debugging logic is embedded in the application itself. This option
requires either the script to be application-independent (which is not useful if scripts are intended to extend application
logic), or access application-defined objects via interprocess-communication. Please refer to our DebuggerIntegration/
DebugRemoteScript quickstart projects for more details.

These limitations do not apply to Python, IronPython and TypeScript script debuggers.



Script Debugging WidgetsScript Debugging Widgets
Scripter package includes a set of debugger widgets, toolbars, menus and code editors available both for WinForms and WPF and
can be linked to any Debugger components for C#/VisualBasic, Python/IronPython, TypeScript/JavaScript and Debug Server
Protocol-based debuggers.

These widgets include:

Output (Output) - to log debugger events or application-specific messages

Errors (Errors) - to display a list of compilation errors.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.UI.Output.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.UI.Wpf.Output.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.UI.Errors.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.UI.Wpf.Errors.html


Breakpoints (Breakpoints)- to display and navigate through the list of breakpoints set in the source;

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.UI.Breakpoints.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.UI.Wpf.Breakpoints.html


CallStack (CallStack)- to display and navigate through the list of method calls that are currently on stack.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.UI.CallStack.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.UI.Wpf.CallStack.html


Locals (Locals)- to examine values of local variables once debugging code step-by-step.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.UI.Locals.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.UI.Wpf.Locals.html


Watches (Watches)- to examine values of watch expressions when debugging

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.UI.Watches.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.UI.Wpf.Watches.html


Threads (Threads)- to display active threads and switch debugging between them.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.UI.Threads.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.UI.Wpf.Threads.html


DebuggerControlToolbar (DebuggerControlToolbar)- a toolbar with buttons executing Run/Stop/StepInto/StepOver commands.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.UI.DebuggerControlToolbar.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.UI.Wpf.DebuggerControlToolbar.html


DebugMenu (DebugMenu) - menu with menu items executing Run/Stop/StepInto/StepOver commands.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.UI.DebugMenu.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Debugger.UI.Wpf.DebugMenu.html


DebugCodeEdit (DebugCodeEdit) code-editing controls designed to work with the Script debugger; these controls allow user to
set or remove breakpoints and evaluate expressions by hovering mouse over the symbol during debugging.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Integration.DebugCodeEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Scripter.Integration.Wpf.DebugCodeEdit.html




Form Designer Overview
AlterNET Form Designer is a .NET component library providing a quick and convenient way for creating visual user interfaces. It
allows placing controls to the design surfaces, setting their initial properties and writing event handlers for their events.

The main components in the package are FormDesignerControl for WinForms and FormDesignerControl for WPF. These controls
represent a design surface allowing users to add controls to a form, arrange them, and write code for their events.

Form Designer supports all common editing operations such as dragging, selecting and deleting components and controls;
changing their size and z-order, align them horizontally or vertically, copy and paste controls. Like Visual Studio Form Designer, it
serializes its content into C#/VisualBasic or TypeScript/JavaScript source code.

Form Designer includes a set of demos and quick start projects that show how to place controls from the toolbox, load and save
forms being designed, write code in control's event handlers, and how to run these forms.

Below is brief overview of these projects:

FormDesigner - This project shows how to build visual interfaces by placing controls to the design surface, arrange them and
write code for their events.

LoadAndSave - demonstrates how to save/load forms being designed.

DesignAndRun - shows how to write event handlers code and run the form being designed.

CustomizeToolbox - shows how to rearrange toolbox tabs and install third-party assemblies on the toolbox.

Creating your first project
The first thing to do after creating a new WinForms or WPF application is to place the FormDesignerControl or
FormDesignerControl controls on your form. You would also need to place ToolboxControl or ToolboxControl controls and assign
their FormDesignerControl property so you can drag and drop controls and components from it to the design surface.

When you run the application, you will see a new empty form with the design surface, where you can drag controls from the
toolbox, resize, arrange them, etc.

If you'd like to examine and change properties of the selected controls, you will need to place PropertyGridControl or
PropertyGridControl controls, set their FormDesignerControl property so it displays a component or a control being currently
selected in the designer.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.FormDesignerControl.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.FormDesignerControl.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.ToolboxControl.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.PropertyGridControl.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.PropertyGrid.PropertyGridControl.html


Similarly, for navigation through form's control you can place OutlineControl or OutlineControl controls and set their
FormDesignerControl property.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.OutlineControl.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.Outline.OutlineControl.html


WinForms Form DesignerWinForms Form Designer
WinForms Form Designer provides a design-time surface, where the user can place controls from the toolbox, arrange them,
examine and change their properties and write event handlers for their events.

FormDesignerControl Control
FormDesignerControl is based on .NET Framework FormDesigner services, which are implemented in
System.ComponentModel.Design namespace and included in .NET framework. This allows AlterNET FormDesigner to look and
feel very similar to Visual Studio WinForms Form Designer.

Below are most essential properties, methods and events of FormDesignerControl class:

P roper t ies:P roper t ies:

DesignerCommands - provides an interface to Form Designer commands, such as Copy/Paste, Undo/Redo, Aligning and
Arranging controls, etc.

DesignerHost - Provides an interface for managing designer transactions and components.

IsModified - Indicates whether designer content has been modified since last save.

SelectedComponents - contains list of selected components or controls

PrimarySelection - gets the first selected component or control.

Source - gets or sets FormDesigner Source.

ToolboxControl - gets or sets toolbox control associated with the designer.

ReferencedAssemblies - gets a collection of assemblies where the controls and components used on the form being designed are
declared.

ImportedNamespaces - in the case of Visual Basic, gets a collection of globally available namespaces.

Options - allows to change Form Designer appearance by specifying whether to display snap lines, smart tags, form designer grid
and change grid size.

Events:Events:

DesignerHostChanged - occurs when the designer host changes, for example if a new form is loaded.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html#Alternet_FormDesigner_WinForms_FormDesignerControl_DesignerCommands
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html#Alternet_FormDesigner_WinForms_FormDesignerControl_DesignerHost
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html#Alternet_FormDesigner_WinForms_FormDesignerControl_IsModified
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html#Alternet_FormDesigner_WinForms_FormDesignerControl_SelectedComponents
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html#Alternet_FormDesigner_WinForms_FormDesignerControl_PrimarySelection
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html#Alternet_FormDesigner_WinForms_FormDesignerControl_Source
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html#Alternet_FormDesigner_WinForms_FormDesignerControl_ToolboxControl
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html#Alternet_FormDesigner_WinForms_FormDesignerControl_ReferencedAssemblies
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html#Alternet_FormDesigner_WinForms_FormDesignerControl_ImportedNamespaces
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html#Alternet_FormDesigner_WinForms_FormDesignerControl_Options
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html#Alternet_FormDesigner_WinForms_FormDesignerControl_DesignerHostChanged


NavigateToUserMethodRequested - occurs when form designer is requested to navigate to the event handler. For example, when
a user double clicks on the control.

SelectionChanged - occurs when a user selects a different control in the designer.

CommandStateChanged - occurs when state of designer commands changes (for example when undo stack becomes available)

DesignedContentChanged - occurs when a user modifies any aspect of the control being designed.

LoadingErrorOccured - occurs when there is a parse error of the design code during loading.

CompilerErrorClick - occurs when a user clicks on a compiler error on the Form Designer surface.

DesignSurfaceKeyDown - when a user presses a key when the design surface is focused.

Methods:Methods:

Reload() - reloads form to be designed from the source.

Save() - serializes designer to C# / Visual Basic file, Python or TypeScript / JavaScript code.

Form Designer works with three different source files simultaneously: one containing design-time code, another one containing
user-written event-handlers and resource file for saving/loading form's resources (such as images). Most often users will need to
edit at least a file containing event handlers, which will require setting up FormDesignerControl control's source to the one
supporting integration with the editor. Refer to FormDesignerTextSource class for the implementation of the source which
integrates with SyntaxEdit control included in our demo projects.

Error HandlingError Handling

WinForms FormDesigner loads and saves its content into C#/VisualBasic, Python or TypeScript/JavaScript code; this code needs
to be correct both from syntax and semantic point of view. In case FormDesigner loader encounters an error in the code, it
switches to error mode and displays a list of found errors, allowing a user to click and navigate to the error source by handling
CompilerErrorClick event.

Note: specific language assembly handling code serialization needs to be included in the project to save/load Form designer
content into the code.

C#/VisualBasic language services are implemented in Alternet.FormDesigner.Roslyn.v8 assembly;

Python language services are implemented in Alternet.FormDesigner.Python.v8 assembly.

TypeScript/JavaScript language services are implemented in Alternet.FormDesigner.TypeScript.v8 assembly.

ToolboxControl
The ToolboxControl control displays components and controls that you can place onto the design surface. It provides a set of
foldable tabs helping to organize controls by categories and allowing to specify which components and controls, including third-
party controls, appear on the toolbox, on which tabs and sort order.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html#Alternet_FormDesigner_WinForms_FormDesignerControl_NavigateToUserMethodRequested
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html#Alternet_FormDesigner_WinForms_FormDesignerControl_SelectionChanged
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html#Alternet_FormDesigner_WinForms_FormDesignerControl_CommandStateChanged
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html#Alternet_FormDesigner_WinForms_FormDesignerControl_DesignedContentChanged
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html#Alternet_FormDesigner_WinForms_FormDesignerControl_LoadingErrorOccured
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html#Alternet_FormDesigner_WinForms_FormDesignerControl_CompilerErrorClick
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html#Alternet_FormDesigner_WinForms_FormDesignerControl_DesignSurfaceKeyDown
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html#Alternet_FormDesigner_WinForms_FormDesignerControl_Reload
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html#Alternet_FormDesigner_WinForms_FormDesignerControl_Save
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Integration.FormDesignerTextSource.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.SyntaxEdit.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html#Alternet_FormDesigner_WinForms_FormDesignerControl_CompilerErrorClick
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.ToolboxControl.html


ToolBox control can be linked to FormDesignerControl by setting FormDesignerControl property which allows dragging
components and controls to the Form Designer.

Below are essential properties and methods to manipulate Toolbox control:

P roper t iesP roper t ies

CategoryNames - gets a collection of Categories (Tabs) displayed by the toolbox.

SelectedTool - returns currently selected toolbox item.

MethodsMethods

AddCategory - adds a new category to the toolbox.

AddItem - places a toolbox item onto the specified toolbox tab.

ClearItemsInCategory - clears items in the specified tab.

GetAllTools() - gets all toolbox items.

GetToolsFromCategory - gets toolbox items on the specific tab.

SelectPointer() - deselects currently selected toolbox item and selects pointer tool.

RemoveCategory - removes a specific tab.

RemoveItem - removes a toolbox item from the category.

SetSelectedItem - selects toolbox item.

AddItemForType - adds toolbox item from type name

AddItemsFromAssembly - add all types that can appear on the toolbox from the assembly.

ScrollToCategory - scrolls toolbox control to the specified category.

ScrollToItem - scrolls toolbox control to the specified item.

BeginUpdate() - prevents repainting of the toolbox until EndUpdate is called

EndUpdate() - re-enables toolbox repainting.

Save - saves the toolbox content to the specified stream.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.ToolboxControl.html#Alternet_FormDesigner_WinForms_ToolboxControl_FormDesignerControl
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.ToolboxControl.html#Alternet_FormDesigner_WinForms_ToolboxControl_CategoryNames
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.ToolboxControl.html#Alternet_FormDesigner_WinForms_ToolboxControl_SelectedTool
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.ToolboxControl.html#Alternet_FormDesigner_WinForms_ToolboxControl_AddCategory_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.ToolboxControl.html#Alternet_FormDesigner_WinForms_ToolboxControl_AddItem_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.ToolboxControl.html#Alternet_FormDesigner_WinForms_ToolboxControl_ClearItemsInCategory_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.ToolboxControl.html#Alternet_FormDesigner_WinForms_ToolboxControl_GetAllTools
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.ToolboxControl.html#Alternet_FormDesigner_WinForms_ToolboxControl_GetToolsFromCategory_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.ToolboxControl.html#Alternet_FormDesigner_WinForms_ToolboxControl_SelectPointer
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.ToolboxControl.html#Alternet_FormDesigner_WinForms_ToolboxControl_RemoveCategory_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.ToolboxControl.html#Alternet_FormDesigner_WinForms_ToolboxControl_RemoveItem_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.ToolboxControl.html#Alternet_FormDesigner_WinForms_ToolboxControl_SetSelectedItem_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.ToolboxControl.html#Alternet_FormDesigner_WinForms_ToolboxControl_AddItemForType_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.ToolboxControl.html#Alternet_FormDesigner_WinForms_ToolboxControl_AddItemsFromAssembly_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.ToolboxControl.html#Alternet_FormDesigner_WinForms_ToolboxControl_ScrollToCategory_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.ToolboxControl.html#Alternet_FormDesigner_WinForms_ToolboxControl_ScrollToItem_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.ToolboxControl.html#Alternet_FormDesigner_WinForms_ToolboxControl_BeginUpdate
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.ToolboxControl.html#Alternet_FormDesigner_WinForms_ToolboxControl_EndUpdate
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.ToolboxControl.html#Alternet_FormDesigner_WinForms_ToolboxControl_Save_


Load - loads the toolbox content from the specified stream.

PropertyGridControl
The PropertyGridControl control allows the user to view and change the design-time properties and events of the controls or
components selected in the designer.

PropertyGrid control can be linked to FormDesignerControl by setting FormDesignerControl property which allows to view and
change properties and events for the controls being selected in the Form Designer.

OutlineControl
OutlineControl displays Form's layout as a tree view, providing an easy way to navigate, show/hide and re-arrange controls on
the form.

OutlineControlcontrol can be linked to FormDesignerControl by setting FormDesignerControl property which allows navigating
through the controls displayed by the Form Designer.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.ToolboxControl.html#Alternet_FormDesigner_WinForms_ToolboxControl_Load_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.PropertyGridControl.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.PropertyGridControl.html#Alternet_FormDesigner_WinForms_PropertyGridControl_FormDesignerControl
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.OutlineControl.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.OutlineControl.html#Alternet_FormDesigner_WinForms_OutlineControl_FormDesignerControl


WPF Form DesignerWPF Form Designer
WPF Form Designer provides a design-time surface, where the user can place controls from the toolbox, arrange them, examine
and change their properties and write event handlers for their events.

FormDesignerControl Control
FormDesignerControl is based on SharpDevelop open-source FormDesigner package:
https://github.com/icsharpcode/WpfDesigner

Below are most essential properties, methods and events of FormDesignerControl class:

P roper t ies:P roper t ies:

DesignerCommands - provides an interface to Form Designer commands, such as Copy/Paste, Undo/Redo, Aligning and
Arranging controls, etc.

IsModified - Indicates whether designer content has been modified since last save.

SelectedItems - contains list of selected controls

Source - gets or sets FormDesigner Source.

ReferencedAssemblies - gets a collection of assemblies where the controls used on the form being designed are declared.

CurrentTool - gets or sets currently selected tool in the Form Designer.

Events:Events:

NavigateToUserMethodRequested - occurs when form designer is requested to navigate to the event handler. For example, when
a user double clicks on the control.

SelectionChanged - occurs when a user selects a different control in the designer.

DesignedContentChanged - occurs when a user modifies any aspect of the control being designed.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.FormDesignerControl.html
https://github.com/icsharpcode/WpfDesigner
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.FormDesignerControl.html#Alternet_FormDesigner_Wpf_FormDesignerControl_DesignerCommands
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.FormDesignerControl.html#Alternet_FormDesigner_Wpf_FormDesignerControl_IsModified
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.FormDesignerControl.html#Alternet_FormDesigner_Wpf_FormDesignerControl_SelectedItems
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.FormDesignerControl.html#Alternet_FormDesigner_Wpf_FormDesignerControl_Source
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.FormDesignerControl.html#Alternet_FormDesigner_Wpf_FormDesignerControl_ReferencedAssemblies
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.FormDesignerControl.html#Alternet_FormDesigner_Wpf_FormDesignerControl_CurrentTool
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.FormDesignerControl.html#Alternet_FormDesigner_Wpf_FormDesignerControl_NavigateToUserMethodRequested
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.FormDesignerControl.html#Alternet_FormDesigner_Wpf_FormDesignerControl_SelectionChanged
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.FormDesignerControl.html#Alternet_FormDesigner_Wpf_FormDesignerControl_DesignedContentChanged


Methods:Methods:

Reload() - reloads form to be designed from the source.

Save() - serializes designer content to the XAML code.

Form Designer works with two different source files simultaneously: XAML containing design-time code, and C# or Visual Basic
source containing user-written event-handlers. Most often users will need to edit a file containing event handlers, which will
require setting up FormDesignerControl control's source to the one supporting integration with the editor. Refer to
FormDesignerTextSource class for the implementation of the source which integrates with TextEditor control included in our
demo projects.

Error HandlingError Handling

WinForms FormDesigner loads and saves its content into C#/VisualBasic, Python or TypeScript/JavaScript code; this code needs
to be correct both from syntax and semantic point of view. In case FormDesigner loader encounters an error in the code, it
switches to error mode and displays a list of found errors, allowing a user to click and navigate to the error source by handling
CompilerErrorClick event.

ToolboxControl
The ToolboxControl control displays components and controls that you can place onto the design surface. It provides a set of
foldable tabs helping to organize controls by categories and allowing to specify which components and controls, including third-
party controls, appear on the toolbox, on which tabs and sort order.

ToolBox control can be linked to FormDesignerControl by setting FormDesigner property which allows dragging components and
controls to the Form Designer.

Below are essential properties and methods to manipulate Toolbox control:

P roper t iesP roper t ies

CategoryNames - gets a collection of Categories (Tabs) displayed by the toolbox.

SelectedToolboxItem - returns currently selected toolbox item.

MethodsMethods

AddCategory - adds a new category to the toolbox.

AddItem - places a toolbox item onto the specified toolbox tab.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.FormDesignerControl.html#Alternet_FormDesigner_Wpf_FormDesignerControl_Reload
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.FormDesignerControl.html#Alternet_FormDesigner_Wpf_FormDesignerControl_Save
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Integration.Wpf.FormDesignerTextSource.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.Editor.Wpf.TextEditor.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.FormDesignerControl.html#Alternet_FormDesigner_WinForms_FormDesignerControl_CompilerErrorClick
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.FormDesignerControl.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.html#Alternet_FormDesigner_Wpf_Toolbox_ToolboxControl_FormDesigner
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.html#Alternet_FormDesigner_Wpf_Toolbox_ToolboxControl_CategoryNames
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.html#Alternet_FormDesigner_Wpf_Toolbox_ToolboxControl_SelectedToolboxItem
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.html#Alternet_FormDesigner_Wpf_Toolbox_ToolboxControl_AddCategory_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.html#Alternet_FormDesigner_Wpf_Toolbox_ToolboxControl_AddItem_


ClearItemsInCategory - clears items in the specified tab.

GetAllTools() - gets all toolbox items.

GetToolsFromCategory - gets toolbox items on the specific tab.

SelectPointer() - deselects currently selected toolbox item and selects pointer tool.

RemoveCategory - removes a specific tab.

RemoveItem - removes a toolbox item from the category.

SetSelectedItem - selects toolbox item.

AddItemForType - adds toolbox item from type name

AddItemsFromAssembly - add all types that can appear on the toolbox from the assembly.

BeginUpdate() - prevents repainting of the toolbox until EndUpdate is called

EndUpdate() - re-enables toolbox repainting.

Save - saves the toolbox content to the specified stream.

Load - loads the toolbox content from the specified stream.

PropertyGridControl
The PropertyGridControl control allows the user to view and change the design-time properties and events of the controls or
components selected in the designer.

PropertyGrid control can be linked to FormDesignerControl by setting FormDesignerControl property which allows to view and
change properties and events for the controls being selected in the Form Designer.

OutlineControl
OutlineControl displays Form's layout as a tree view, providing an easy way to navigate, show/hide and re-arrange controls on
the form.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.html#Alternet_FormDesigner_Wpf_Toolbox_ToolboxControl_ClearItemsInCategory_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.html#Alternet_FormDesigner_Wpf_Toolbox_ToolboxControl_GetAllTools
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.html#Alternet_FormDesigner_Wpf_Toolbox_ToolboxControl_GetToolsFromCategory_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.html#Alternet_FormDesigner_Wpf_Toolbox_ToolboxControl_SelectPointer
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.html#Alternet_FormDesigner_Wpf_Toolbox_ToolboxControl_RemoveCategory_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.html#Alternet_FormDesigner_Wpf_Toolbox_ToolboxControl_RemoveItem_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.html#Alternet_FormDesigner_Wpf_Toolbox_ToolboxControl_SetSelectedItem_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.html#Alternet_FormDesigner_Wpf_Toolbox_ToolboxControl_AddItemForType_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.html#Alternet_FormDesigner_Wpf_Toolbox_ToolboxControl_AddItemsFromAssembly_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.html#Alternet_FormDesigner_Wpf_Toolbox_ToolboxControl_BeginUpdate
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.html#Alternet_FormDesigner_Wpf_Toolbox_ToolboxControl_EndUpdate
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.html#Alternet_FormDesigner_Wpf_Toolbox_ToolboxControl_Save_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.html#Alternet_FormDesigner_Wpf_Toolbox_ToolboxControl_Load_
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.PropertyGrid.PropertyGridControl.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.FormDesignerControl.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.PropertyGridControl.html#Alternet_FormDesigner_WinForms_PropertyGridControl_FormDesignerControl
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.WinForms.OutlineControl.html


OutlineControlcontrol can be linked to FormDesignerControl by setting FormDesigner property which allows navigating through
the controls displayed by the Form Designer.

file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.FormDesignerControl.html
file:///D:/Projects/Alternet/Documentation/Alternet.Studio.Documentation/site_pdf/_raw/site_pdf/api/Alternet.FormDesigner.Wpf.Outline.OutlineControl.html#Alternet_FormDesigner_Wpf_Outline_OutlineControl_FormDesigner

	Table of Contents
	Introduction
	Getting Started
	Code Editor
	Overview
	Win Forms
	Basic Features
	Extended Features

	WPF
	Basic Features
	Extended Features

	Syntax Parsing
	Advanced Topics

	Scripter
	Overview
	C#/Visual Basic
	Python/IronPython
	TypeScript/JavaScript
	Script Debugging
	Debugger UI

	Form Designer
	Overview
	Win Forms
	WPF



