

User's Guide

Last update: 2016.02.28

Copyright: © 2012, 2013, 2014, 2015, 2016 Anywhere Software Edition 1.7

Table of contents 2 B4A User's Guide

1 General information...5
2 Conditional compilation ..6

2.1 Build configurations ..6
2.1.1 Built-in symbols...6

2.2 Code Exclusion..7
2.2.1 Example from the forum ..7

2.3 Unsupported structure.. 10
3 Starter Service ... 11
4 Libraries .. 13

4.1 IME Input Methods Editor ... 13
4.1.1 Handling the screen size changed event.. 15
4.1.2 Showing and hiding the keyboard .. 16
4.1.3 Handle the action button .. 16
4.1.4 Custom filters .. 17

4.2 #AdditionalJar attribute.. 18
5 SQLite Database.. 22

5.1 SQLite Database basics.. 23
5.1.1 Database initialisation SQL1.Initialize .. 23
5.1.2 Table creation CREATE TABLE .. 23
5.1.3 INTEGER PRIMARY KEY rowID... 24
5.1.4 Adding data INSERT INTO.. 25
5.1.5 Updating data UPDATE.. 25
5.1.6 Reading data SELECT .. 25
5.1.7 Filtering WHERE... 27
5.1.8 Sorting ORDER BY... 28
5.1.9 Date / Time functions... 29
5.1.10 Other functions .. 30
5.1.11 Get Table information PRAGMA.. 31
5.1.12 Deleting data DELETE FROM.. 32
5.1.13 Rename a table ALTER TABLE Name ADD COLUMN 32
5.1.14 Add a column ALTER TABLE Name ADD COLUMN....................................... 32

5.1.14.1 Update the database after having added a column ... 32
5.1.15 Delete a table DROP TABLE... 32
5.1.16 Insert an image... 33
5.1.17 Read an image.. 33
5.1.18 ExecQuery vs ExecQuery2 / ExecNonQuery vs ExecNonQuery2......................... 34
5.1.19 Insert many rows SQL.BeginTransaction / SQL.EndTransaction........................... 35
5.1.20 Asynchronus queries .. 36
5.1.21 Batch inserts AddNonQueryToBatch / ExecNonQueryBatch................................. 36

5.2 Multiple tables ... 37
5.3 Transaction speed .. 38
5.4 First steps .. 39
5.5 SQLite Viewer... 41
5.6 SQLite Database first simple example program SQLiteLight1 42
5.7 SQLite Database second simple example program SQLiteLight2.................................. 48
5.8 SQLite Database third simple example program SQLiteLight3 54
5.9 SQLite Database forth example program SQLiteLight4 .. 55
5.10 SQLite Database fifth example program .. 57

5.10.1 Editing ... 59
5.10.2 Filtering ... 60
5.10.3 Code .. 61

5.10.3.1 Starter Service .. 62

Table of contents 3 B4A User's Guide

5.10.3.2 Main Activity ... 62
5.10.3.3 Edit activity.. 64
5.10.3.4 Filter Activity... 65

6 DBUtils ... 66
6.1 DBUtils functions .. 67
6.2 Examples ... 69

6.2.1 Example program Main module .. 69
6.2.2 Show the table in a WebView .. 71
6.2.3 Show FirstName and LastName in a ListView ... 75
6.2.4 Display database in Spinners.. 77
6.2.5 Edit database.. 79

7 GPS... 87
7.1 GPS Library... 87

7.1.1 GPS Object .. 87
7.1.2 GPS Satellite.. 88
7.1.3 GPS Location... 88
7.1.4 NMEA data sentences .. 89

7.2 GPS Program... 90
7.2.1 General explanations.. 93
7.2.2 Setup.. 94
7.2.3 GPS display ... 96
7.2.4 Satellites .. 97
7.2.5 Map display ... 98
7.2.6 GPS path.. 100
7.2.7 Save GPS path file / KML file.. 103

7.3 GPS Program Code.. 104
7.3.1 Initialization of the GPS... 105
7.3.2 Button with tooltip ... 106
7.3.3 Button with tooltip and additional buttons.. 109
7.3.4 GPS Calculate distance scales .. 112
7.3.5 Drawing GPS position ... 113

8 Widgets, home screen widgets... 116
8.1 Widgets Part I ... 116
8.2 Widgets Part II.. 119

9 okHttpUtils2.. 122
9.1 okHttpUtils2 Objects .. 122
9.2 HttpUtils2 Functions... 122
9.3 okHttpUtils Example1 .. 125
9.4 HttpUtils Example2 .. 126
9.5 The Flickr Viewer example.. 127

10 Network / AsyncStreams ... 128
11 Advanced drawings ... 132

11.1 View Drawables .. 132
11.1.1 ColorDrawable... 132
11.1.2 GradientDrawable .. 133
11.1.3 BitmapDrawable .. 134
11.1.4 StateListDrawable.. 135
11.1.5 NinePatchDrawable ... 138

11.2 Layers with Panels / ImageViews / Images .. 140
11.2.1 Source code.. 141

11.3 Diagrams / Charts .. 145
11.3.1 Diagrams / Graph example program... 145
11.3.2 Second Graph program... 154

Table of contents 4 B4A User's Guide

11.3.3 Charts Framework.. 155
11.3.3.1 Pie Chart .. 156
11.3.3.2 Bar Chart.. 159
11.3.3.3 Stacked Bar Chart... 162
11.3.3.4 Lines Chart... 164

11.4 Antialiasing filter ... 169
12 Class modules.. 170

12.1 Getting started ... 170
12.1.1 Adding a class module ... 171
12.1.2 Polymorphism.. 172
12.1.3 Self reference ... 173
12.1.4 Activity object.. 174

12.2 Standard class structure.. 175
12.3 Classes from the forum .. 177
12.4 Custom views .. 178

12.4.1 Custom view class structure ... 178
12.4.1.1 Event declaration.. 178
12.4.1.2 Designer properties declarations ... 179
12.4.1.3 Global variable declarations ... 179
12.4.1.4 Initialization routine ... 179
12.4.1.5 Designer support routine... 180
12.4.1.6 Routine to get the base Panel .. 180

12.4.2 Adding a custom view by code... 181
12.4.3 Add properties.. 182
12.4.4 Custom view in the Designer.. 183

12.5 First example LimitBar ... 186
12.6 Compile a class into a Library.. 192

12.6.1 Example with the LimitBar class example.. 194
12.6.2 Using the library in a program.. 196

12.7 Second example Wheel selection .. 197
12.7.1 Simple example.. 197
12.7.2 Show the selected entry centred in the middle window... 201
12.7.3 Return the selected value.. 203
12.7.4 Color properties ... 205
12.7.5 A more advanced example ... 209

Main contributors : Klaus Christl (klaus) Erel Uziel (Erel).

1 General information 5 B4A User's Guide

1 General information

This guide is dedicated for more advanced users and treats more specific topics.

It covers Basic4Android version 5.80.

All the source code and files needed (layouts, images etc) of the example projects in this guide are
included in the SourceCode folder.

Beginners should first read the Beginner's Guide.

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/9578-beginners-guide.html

2 Conditional Compilation 6 B4A User's Guide

2 Conditional compilation

In computer programming, conditional compilation is compilation implementing methods which
allow the compiler to produce differences in the executable produced controlled by parameters that
are provided during compilation.

2.1 Build configurations

The build configurations dialog is available in the IDE menu under
Project -> Build Configurations (Ctrl + B).

This dialog allows you to edit or add new configurations and to choose the current active
configuration.
A build configuration is made of a package name and a set of conditional symbols.
The package name replaces the previously global package field. This means that you can produce
APKs with different package names from the same project. Note that multiple configurations can
share the same package name.

The conditional symbols define the active compiler symbols. This allows you to exclude parts of the
code based on the chosen build configuration.
You can set multiple symbols separated with commas.

2.1.1 Built-in symbols

There are several built-in symbols:

 For B4A:
B4A, DEBUG and RELEASE.
Either DEBUG or RELEASE will be active based on the deployment mode.

 For B4J:
B4J, DEBUG, RELEASE, UI or NON_UI (based on the app type)

2 Conditional Compilation 7 B4A User's Guide

2.2 Code Exclusion

With the conditional compilation feature you can exclude any code you like from the code editor,
manifest editor and designer script (any text can be excluded, including complete subs and
attributes).
Excluded code will not be parsed and will be effectively removed before it reaches the compiler.

The code exclusion syntax:

Each build configuration holds a set of symbols. Multiple configurations can share all or some of
the symbols. This makes it possible to include or exclude code in several different configurations.

There is no support for #Else (it is related to the code editor lexer implementation). You can
however achieve the same result by adding the same symbol to all other build configurations.

2.2.1 Example from the forum

The example code is in the ConditionalCompiling project in the SourceCode folder.

Let’s create three configurations:

 FREE
 PAID
 AMAZON

In the IDE menu click on
Project / Build
Configuration.

Fill the in the fields.

Click on to confirm.

2 Conditional Compilation 8 B4A User's Guide

Select Project / Build
Configuration again you’ll
see this.
In the drop down list Default
is replaced by FREE.

Click on to
create a new configuration.

Fill in the new values.

Click on to
create the third
configuration.
Replace PAID by AMAZON

and click to finish.

2 Conditional Compilation 9 B4A User's Guide

Enter the code below: We see that the code after IF AMAZON is colored because the last selected
configuration is AMAZON.

Sub Globals
#If FREE
 Dim sRelease As String = "(Free)"
 Dim sDist As String = ""
#End If
#If PAID
 Dim sRelease As String = "(Paid)"
 Dim sDist As String = ""
#End If
#If AMAZON
 Dim sRelease As String = "(Free)"
 Dim sDist As String = "Amazon"
#End If
End Sub

Now select PAID in the BuildConfigurations window:

We see now the three configurations
in the list.

Sub Globals
 #If FREE
 Dim sRelease As String = "(Free)"
 Dim sDist As String = ""
 #End If
 #If PAID
 Dim sRelease As String = "(Paid)"
 Dim sDist As String = ""
 #End If
 #If AMAZON
 Dim sRelease As String = "(Free)"
 Dim sDist As String = "Amazon"
 #End If
End Sub

Note that now the code after IF PAID is colored showing that this code will be executed and the
other code will not be executed.

If you have a code like this, where the code for FREE and AMAZON is the same:

#If FREE
 #ApplicationLabel: Yahtzee! (Free)
 #VersionCode: 119
 #VersionName: 11.9
#End If
#If AMAZON
 #ApplicationLabel: Yahtzee! (Free)
 #VersionCode: 119
 #VersionName: 11.9
#End If
#If PAID
 #ApplicationLabel: Yahtzee! (Paid)
 #VersionCode: 89
 #VersionName: 8.9
#End If

2 Conditional Compilation 10 B4A User's Guide

You could add a new configuration FreeOrAmazon like this:

In Conditional Symbols we need to add also FREE and AMAZON to allow alse these
configurations.

In this case we need to add the FreeOrAmazon configuration to both FREE and AMAZON
configurations.

And replace the code by:

#If FreeOrAmazon
 #ApplicationLabel: Yahtzee! (Free)
 #VersionCode: 119
 #VersionName: 11.9
#End If
#If PAID
 #ApplicationLabel: Yahtzee! (Free)
 #VersionCode: 119
 #VersionName: 11.9
#End If

2.3 Unsupported structure

This structure is not supported, no Else nor Else If.

#If XXX
#Else
#End If

3 Starter Service 11 B4A User's Guide

3 Starter Service

One of the challenges that developers of any non-small Android app need to deal with, is the
multiple possible entry points.

During development in almost all cases the application will start from the Main activity.
Many programs start with code similar to:

Sub Process_Globals
 Public SQL1 As SQL
 Public SomeBitmap As Bitmap
End Sub

Sub Activity_Create(FirstTime As Boolean)
 If FirstTime Then
 SQL1.Initialize(...)
 SomeBitmap = LoadBitmap(...)
 'additional code that loads application-wide resources
 End If
End Sub

Everything seems to work fine during development. However the app "strangely" crashes from time
to time on the end user device.
The reason for those crashes is that the OS can start the process from a different activity or service.
For example if you use StartServiceAt and the OS kills the process while it is in the background.
Now the SQL object and the other resources will not be initialized.

Starting from B4A v5.20 there is a new feature named Starter service that provides a single and
consistent entry point. If the Starter service exists then the process will always start from this
service.

The Starter service will be created and started and only then the activity or service that were
supposed to be started will start.
This means that the Starter service is the best place to initialize all the application-wide resources.
Other modules can safely access these resources.
The Starter service should be the default location for all the public process global variables. SQL
objects, data read from files and bitmaps used by multiple activities should all be initialized in the
Service_Create sub of the Starter service.

Notes:

 The Starter service is identified by its name. You can add a new service named Starter to an
existing project and it will be the program entry point.

 This is an optional feature. You can remove the Starter service.
 You can call StopService(Me) in Service_Start if you don't want the service to keep on

running. However this means that the service will not be able to handle events (for example
you will not be able to use the asynchronous SQL methods).

 The starter service should be excluded from compiled libraries. Its #ExcludeFromLibrary
attribute is set to True by default.

3 Starter Service 12 B4A User's Guide

When you open the IDE you see a service module called Starter.

You should put the code from the previous example

Sub Process_Globals
 Public SQL1 As SQL
 Public SomeBitmap As Bitmap
End Sub

Sub Activity_Create(FirstTime As Boolean)
 If FirstTime Then
 SQL1.Initialize(...)
 SomeBitmap = LoadBitmap(...)
 'additional code that loads application-wide resources
 End If
End Sub

to the Starter service module.

Sub Process_Globals
 Public SQL1 As SQL
 Public SomeBitmap As Bitmap

 SQL1.Initialize(...)
 SomeBitmap = LoadBitmap(...)
 'additional code that loads application-wide resources
End Sub

When you open a project developed with an older version of B4A than 5.20, the Starter service
module will not be added, you need to add it yourself.

4 Libraries 13 B4A User's Guide

4 Libraries

In this chapter we will study some specific libraries.

4.1 IME Input Methods Editor

The IME library allows to modify the soft keyboard behaviour.

The library can be found here IME library.

The most part of this chapter has been taken over from Erels' IME Tutorial.
The example code has been changed a little bit.

Android has very good support for custom input method editors (IMEs).
The downside for this powerful feature is that interacting with the soft keyboard can be sometimes
quite complicated.

This library includes several utilities that will help you better handle the soft keyboard.

The methods are:

 AddHandleActionEvent (EditText As EditText)
Adds the HandleAction event to the given EditText.

 AddHeightChangedEvent
Enables the HeightChanged event.
This event is raised when the soft keyboard state changes.
You can use this event to resize other views to fit the new screen size.
Note that this event will not be raised in full screen activities (an Android limitation

 HideKeyboard
Hides the soft keyboard if it is visible.

 Initialize (EventName As String)
Initializes the object and sets the subs that will handle the events.

 SetCustomFilter (EditText As EditText, DefaultInputType As Int, AcceptedCharacters As
String)
Sets a custom filter.
EditText - The target EditText.
DefaultInputType - Sets the keyboard mode.
AcceptedCharacters - The accepted characters.

Example: Create a filter that will accept IP addresses (numbers with multiple dots)
IME.SetCustomFilter(EditText1, EditText1.INPUT_TYPE_NUMBERS, "0123456789.")

 ShowKeyboard (View As View)
Sets the focus to the given view and opens the soft keyboard.
The keyboard will only show if the view has received the focus.

http://www.basic4ppc.com/forum/additional-libraries-official-updates/14834-ime-library-soft-keyboard.html

4 Libraries 14 B4A User's Guide

The events are:
 HandleAction As Boolean

 HeightChanged (NewHeight As Int, OldHeight As Int)

Raised when the keyboard has changed, but only if the event has been activated with the
AddHeightChangedEvent method

The attached example demonstrates the available methods.
The example is an extended example of Erels' project from the IME library.

Note that the IME object should be initialized before it can be used.
IME.Initialize(EventName As String)

IME1.Initialize("IME1")

Shows the keyboard

Must start with 'a'

limited to an IP address

limited to an hex number

limited to an octal number

hides the keyboard

4 Libraries 15 B4A User's Guide

4.1.1 Handling the screen size changed event

When the keyboard opens the available screen size becomes much shorter. By default if the
EditText is located near the bottom of the screen, Android will "push" the whole activity and make
the EditText visible. This mode is named "adjustPan" mode.

By calling IME1.AddHeightChangedEvent you are changing the activity to "adjustSize" mode. In this
mode the activity will not be pushed automatically. Instead the HeightChanged event will be raised
when the keyboard is shown or hidden.
For example the following code makes sure that the button at the bottom is always visible and sets
the large EditText height to match the available height:

When the keyboard is displayed the left EditText views height is
adapted according to the keyboard size.

The Hide keyboard button is moved above the keyboard.

The code:

Sub IME1_HeightChanged(NewHeight As Int, OldHeight As Int)
 btnHideKeyboard.Top = NewHeight - btnHideKeyboard.Height
 edtTest.Height = btnHideKeyboard.Top - edtTest.Top
End Sub

Note that this method will not work if the activity is in full screen mode (Issue 5497 - android -
adjustResize windowSoftInputMode breaks when activity is fullscreen - Android).

http://code.google.com/p/android/issues/detail?id=5497

4 Libraries 16 B4A User's Guide

4.1.2 Showing and hiding the keyboard

IME1.ShowKeyboard(EditText) - Sets the focus to the given view and opens the soft keyboard.

Sub btnShowKeyboard_Click
 IME1.ShowKeyboard(edtStartWithA)
End Sub

IME1.HideKeyboard - Hides the keyboard (this method is the same as Phone.HideKeyboard).

Sub btnHideKeyboard_Click
 IME1.HideKeyboard
End Sub

4.1.3 Handle the action button
By calling IME1.AddHandleActionEvent you can override the default behaviour of the action button
(the button that shows Next or Done).
This event is similar to EditText_EnterPressed event. However it is more powerful. It also allows
you to handle the Next button and also to consume the message (and keep the keyboard opened and
the focus on the current EditText).

This can be useful in several cases.
For example in a chat application you can send the message when the user presses on the done
button and keep the keyboard open by consuming the message.

You can also use it to validate the input before jumping to the next view by pressing on the Next
button (note that the user will still be able to manually move to the next field).

You can use the Sender keyword to get the EditText that raised the event.

Sub IME1_HandleAction As Boolean
 Dim edt As EditText

 edt = Sender

 Select edt.Tag
 Case "edtStartWithA"
 If edt.Text.StartsWith("a") = False Then
 ToastMessageShow("Text must start with 'a'.", True)
 'Consume the event.
 'The keyboard will not be closed
 Return True
 Else
 Return False 'will close the keyboard
 End If
 End Select
End Sub

4 Libraries 17 B4A User's Guide

4.1.4 Custom filters
EditText.InputType allows you to set the keyboard mode and the allowed input.
However there are situations where you need to use a custom filter. For example if you want to
accept IP addresses (ex: 192.168.0.1). In this case none of the built-in types will work. Setting the
input type to INPUT_TYPE_DECIMAL_NUMBERS will get you close but it will not allow the
user to write more than a single dot.
IME1.SetCustomFilter allows you to both set the keyboard mode and also to set the accepted
characters.
In this case we will need a code such as:

IP address :

IME1.SetCustomFilter(edtIPAddress, edtIPAddress.INPUT_TYPE_NUMBERS, "0123456789.")

 edtIPAddress is the given EditText view
 edtIPAddress.INPUT_TYPE_NUMBERS is the keyboard type
 "0123456789." are the allowed characters, in our case we accept not only numbers as

with INPUT_TYPE_NUMBERS but we accept also dots.

Note that this is only a simple filter. It will accept the following input ...999 (which is not a valid IP
address):

Hex number input :

' 0x0080000 is the flag of NO_SUGGESTIONS.
 IME1.SetCustomFilter(edtHexNumber, Bit.Or(edtHexNumber.INPUT_TYPE_TEXT, _ 0x00080000),
"01234567890abcdef")

0x00080000 is the flag for NO_SUGGESTION
Bit.Or(edtHexNumber.INPUT_TYPE_TEXT, 0x00080000)
combines the INPUT_TYPE_TEXT flag with the _SUGGESTION flag

Octal number input :

IME1.SetCustomFilter(edtOctalNumber, Bit.Or(edtOctalNumber.INPUT_TYPE_NUMBERS, _
0x00080000), "01234567")

Note: With these filters the default keyboards is displayed but only the defined characters are
authorized all the other keys are disabled but still visible.

4 Libraries 18 B4A User's Guide

4.2 #AdditionalJar attribute

This is a copy of Erels tutorial in the forum.

The #AdditionalJar module attribute (introduced in B4A v3.80) allows us to reference external jars.
With the help of JavaObject it is now possible to integrate third party jars without a wrapper.

This solution is good for "simple" libraries. If the API is complicated with many interfaces then it
will be easier to create a wrapper.

As an example we will use Picasso image downloader to download images:
http://square.github.io/picasso/

The first step is to download the third party jar and put it in the additional libraries folder.
We then use #AdditionalJar to tell the compiler to add a reference to this jar:

#AdditionalJar: picasso-2.2.0

Note that the jar extension is omitted. You can call #AdditionalJar multiple times if multiple jars are
required.

http://square.github.io/picasso/

4 Libraries 19 B4A User's Guide

The following two subs will usually be required. They allow you to get the "context" (it will be an
android.app.Activity when called from an Activity module).

This code should be added to an activity or service directly.

Sub GetContext As JavaObject
 Return GetBA.GetField("context")
End Sub

Sub GetBA As JavaObject
 Dim jo As JavaObject
 Dim cls As String = Me
 cls = cls.SubString("class ".Length)
 jo.InitializeStatic(cls)
 Return jo.GetFieldJO("processBA")
End Sub

As you can see in their examples we always start by calling Picasso static method 'with'. It is more
clear in the JavaDocs page:
http://square.github.io/picasso/javadoc/com/squareup/picasso/Picasso.html

This sub will call the static method:

Sub GetPicasso As JavaObject
 Dim jo As JavaObject
 'com.squareup.picasso.Picasso.with(context)
 Return jo.InitializeStatic("com.squareup.picasso.Picasso").RunMethod("with",_ Array(
GetContext))
End Sub
Now we will implement the above Java code:

GetPicasso.RunMethodJO("load", Array(url)).RunMethodJO("into", Array(img1))

In the second example we call a more complex API:

'second example: Picasso.with(context).load(url).resize(50, 50).centerCrop().into(ImageView)
GetPicasso.RunMethodJO("load", Array(url)).RunMethodJO("resize", Array(50, 50)) _
 .RunMethodJO("centerCrop", Null).RunMethodJO("into", Array(img2))

The third example is more interesting. We download an image with a callback event that is raised
when download completes.

The first step it to create the interface. This is done with JavaObject.CreateEvent (or
CreateEventFromUI).
In this case we are implementing com.squareup.picasso.Callback:
http://square.github.io/picasso/javadoc/com/squareup/picasso/Callback.html

Dim callback As Object = jo.CreateEvent("com.squareup.picasso.Callback", _
"Callback", Null)

http://square.github.io/picasso/javadoc/com/squareup/picasso/Picasso.html
http://square.github.io/picasso/javadoc/com/squareup/picasso/Callback.html

4 Libraries 20 B4A User's Guide

The last parameter is the default return value. This value will be used if the event cannot be raised
(activity is paused for example). In this case we return Null.
The event sub:

Sub Callback_Event (MethodName As String, Args() As Object) As Object
 If MethodName = "onSuccess" Then
 ToastMessageShow("Success!!!", True)
 Else If MethodName = "onError" Then
 ToastMessageShow("Error downloading image.", True)
 End If
 Return Null
End Sub

MethodName - The interface method name (onSuccess or onError in this case).
Args - An array of parameters passed to this method. In this case there are no parameters.
All this information is from Picasso JavaDocs:
http://square.github.io/picasso/javadoc/index.html?com/squareup/picasso/Callback.html

The last step is to call the method that expects the callback:

GetPicasso.RunMethodJO("load", Array(url)).RunMethodJO("into", Array(img1, _
callback))

As this library requires the INTERNET permission we need to manually add it to the manifest
editor:

AddPermission(android.permission.INTERNET)

The complete code:

#Region Project Attributes
 #ApplicationLabel: B4A Example
 #VersionCode: 1
 #VersionName:
 'SupportedOrientations possible values: unspecified, landscape or portrait.
 #SupportedOrientations: unspecified
 #CanInstallToExternalStorage: False
#End Region

#Region Activity Attributes
 #FullScreen: False
 #IncludeTitle: True
#End Region

#AdditionalJar: picasso-2.2.0

Sub Process_Globals

End Sub

Sub Globals
 Dim img1, img2 As ImageView
End Sub

http://square.github.io/picasso/javadoc/index.html?com/squareup/picasso/Callback.html

4 Libraries 21 B4A User's Guide

Sub Activity_Create(FirstTime As Boolean)
 img1.Initialize("")
 Activity.AddView(img1, 0, 0, 100%x, 50%y)
 img2.Initialize("")
 Activity.AddView(img2, 0, 50%y, 100%x, 50%y)
 Dim url As String = "http://i.imgur.com/DvpvklR.png"
 'first example: Picasso.with(context).load(url).into(imageView);
 GetPicasso.RunMethodJO("load", Array(url)).RunMethodJO("into", Array(img1))

 'second example: Picasso.with(context).load(url).resize(50, 50).centerCrop().into(Im
ageView)
 GetPicasso.RunMethodJO("load", Array(url)).RunMethodJO("resize", Array(50, 50)) _
 .RunMethodJO("centerCrop", Null).RunMethodJO("into", Array(img2))

 'third example: download image with callback
 Dim jo As JavaObject = GetPicasso
 Dim callback As Object = jo.CreateEvent("com.squareup.picasso.Callback", "Callback",
 Null)
 GetPicasso.RunMethodJO("load", Array(url)).RunMethodJO("into", Array(img1, callback)
)
End Sub

Sub Callback_Event (MethodName As String, Args() As Object) As Object
 If MethodName = "onSuccess" Then
 ToastMessageShow("Success!!!", True)
 Else If MethodName = "onError" Then
 ToastMessageShow("Error downloading image.", True)
 End If
 Return Null
End Sub

Sub GetPicasso As JavaObject
 Dim jo As JavaObject
 'com.squareup.picasso.Picasso.with(context)
 Return jo.InitializeStatic("com.squareup.picasso.Picasso").RunMethod("with", Array(G
etContext))
End Sub

Sub GetContext As JavaObject
 Return GetBA.GetField("context")
End Sub

Sub GetBA As JavaObject
 Dim jo As JavaObject
 Dim cls As String = Me
 cls = cls.SubString("class ".Length)
 jo.InitializeStatic(cls)
 Return jo.GetFieldJO("processBA")
End Sub

Sub Activity_Resume

End Sub

Sub Activity_Pause (UserClosed As Boolean)

End Sub

5 SQLite Database 22 B4A User's Guide

5 SQLite Database

What is a database (source Wikipedia Database):
A database is an organized collection of data for one or more purposes, usually in digital form. The
data are typically organized to model relevant aspects of reality (for example, the availability of
rooms in hotels), in a way that supports processes requiring this information (for example, finding a
hotel with vacancies). The term "database" refers both to the way its users view it, and to the logical
and physical materialization of its data, content, in files, computer memory, and computer data
storage. This definition is very general, and is independent of the technology used. However, not
every collection of data is a database; the term database implies that the data is managed to some
level of quality (measured in terms of accuracy, availability, usability, and resilience) and this in
turn often implies the use of a general-purpose Database management system (DBMS). A general-
purpose DBMS is typically a complex software system that meets many usage requirements, and
the databases that it maintains are often large and complex.

The standard database system in Android is SQLite.

The interface between your program and the database is the SQL language.
The data is stored in tables, each table has a certain number of columns and rows.
Each row contains a data set and the different data of a given set are stored in the columns.

If you add a default database to your project in the files Tab it is located in the DirAssets
folder. Databases cannot be accessed in DirAssets even if it's only for reading.
Therefore you must copy it to another folder for example DirInternal or DirRootExternal.
With DirRootExternal you can also add a subdirectory.
For example: DirRootExternal & "/MyDatabase"
Don't forget to create the subdirectory : File.MakeDir(File.DirRootExternal, "MyDatabase")

Example code in the Starter module:
If File.Exists(File.DirRootExternal, "Database.db") = False Then
 File.Copy(File.DirAssets, "Database", File.DirRootExternal, "Database.db")
End If
SQL1.Initialize(File.DirRootExternal, "Database.db", True)

Or in Activity_Create if you have only one Activity:
If FirstTime Then
 If File.Exists(File.DirRootExternal, "Database.db") = False Then
 File.Copy(File.DirAssets, "Database", File.DirRootExternal, "Database.db")
 End If
 SQL1.Initialize(File.DirRootExternal, "Database.db", True)
End If

http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Database_management_system
http://sqlite.org/docs.html

5 SQLite Database 23 B4A User's Guide

5.1 SQLite Database basics

Some simple SQL instructions.

Here you find the SQLite site : SQLite
Here you find the SQLite syntax : SQLite syntax
A very intersting website to learn SQL is this one : W3Schools SQL.

5.1.1 Database initialisation SQL1.Initialize
To use a database you must first initialize it !
This is idealy done in the Starter service.

SQL1.Initialize(DBDirName, DBFileName, True)
DBDirName = Directory name of the database.
DBFileName = Database file name.
True = Create if necessary False don't create
SQL1.Initialize(DBDirName, DBFileName, True)

5.1.2 Table creation CREATE TABLE

You can create a database in a SQLite program on the PC or you can create it in the code like
below.

CREATE TABLE TableName (Col1 INTEGER, Col1 TEXT, Col2 REAL)
Creates a table with the name 'TableName' and three columns:
Column Index Name Variable Type
 1 Col1 INTEGER

2 Col2 TEXT
 3 Col3 REAL

SQL1.ExecNonQuery("CREATE TABLE TableName(Col1 INTEGER, Col2 TEXT, Col3 REAL")

Only these data types are available:
INTEGER is a 64-bit signed integer number.
REAL is a 64-bit IEEE floating point number.
TEXT is a string.
BLOB Binary Large OBject, the value is stored exactly as it was input.
NULL
INTEGER PRIMARY KEY is a special variable type used for identifiers ID's. It is a long integer
value beginning with 1 and it is incremented by one each time a new data set is added to the
database.

http://www.sqlite.org/
http://www.sqlite.org/lang.html
http://www.w3schools.com/sql/

5 SQLite Database 24 B4A User's Guide

5.1.3 INTEGER PRIMARY KEY rowID

INTEGER PRIMARY KEY is a special data type which is unique and will never change.
You can define a specific column dedicated to the PRIMARY KEY.
This is used in the SQLiteLight1, SQLiteLight2 and SQLiteLight3 examples.

But this is not mandatory, SQLite has an internal column named rowID which can be used.
This is used in the SQLiteLight4 example.
Each time you add a new record the PRIMARY KEY is incremented by 1.
When you delete a record the PRIMARY KEY of this record is lost.
When you load a database and display it in a table be aware that the row indexes in the table are not
the same as the database rowIDs. Therefore you must read and memorize the PRIMARY KEYs
somewhere to know which record is in which line.

Comparison:

 Creation.
o With a specific ID column.

"CREATE TABLE persons (ID INTEGER PRIMARY KEY, FirstName TEXT, LastName
TEXT, City TEXT)"

o With no specific column.
"CREATE TABLE persons (FirstName TEXT, LastName TEXT, City TEXT)"

 Reading.
o With a specific ID column.

"SELECT ID, FirstName AS [First name], LastName AS [Last name], City FROM
persons"

o With no specific column.
Reads the PRIMARY Key in the query.
"SELECT rowID AS ID, FirstName AS [First name], LastName AS [Last name],
City FROM persons"
Doesn’t read the PRIMARY Key in the query.
"SELECT FirstName AS [First name], LastName AS [Last name], City FROM
persons"

Note: If you use this query "SELECT * FROM persons" the rowID column is not
included. If you want it you must specify it like in the examples above, or read it in a
separate query.

 Inserting.
o With a specific ID column.

"INSERT INTO persons VALUES (NULL, ‘John’, ‘KERRY, ‘Boston’)"
You must use NULL for the PRIMARY KEY column.

o With no specific column.
"INSERT INTO persons VALUES (‘John’, ‘KERRY, ‘Boston’)"

5 SQLite Database 25 B4A User's Guide

5.1.4 Adding data INSERT INTO

INSERT INTO TableName VALUES (Val1, ‘Val2’ Val3)

SQL1.ExecNonQuery("INSERT INTO TableName VALUES (Val1, 'Val2', Val2")
Text variable must be between two quotes like 'Val2’, numbers not like Val1 and Val3.

5.1.5 Updating data UPDATE

UPDATE TableName Set Col1 = Val1, Col2 = ‘Val2’, Col3 = Val3 WHERE ID = idVal

SQL1.ExecNonQuery("UPDATE TableName Set Col1 = Val1, Col2 = 'Val2', Col3 = Val3 WHERE
ID = idVal")
Again, text variable must be between two quotes like 'Val2’, numbers not like Val1 and Val3.

5.1.6 Reading data SELECT

The SELECT statement is used to query the database. The result of a SELECT is zero or more rows
of data where each row has a fixed number of columns. A SELECT statement does not make any
changes to the database.

Examples:

 The whole database:
SELECT * FROM TableName
Cursor1 = SQL1.ExecQuery("SELECT * FROM TableName")

 A single column
SELECT Col1 FROM TableName
Cursor1 = SQL1.ExecQuery("SELECT Col1 FROM TableName")

 Distinct values from a column, no duplicate values
SELECT DISTINCT Col1 FROM TableName
Cursor1 = SQL1.ExecQuery("SELECT DISTINCT Col1 FROM TableName")

 Single entry (value)
SELECT Col1 FROM TableName WHERE rowID = idVal
Value = SQL1.ExecQuerySingleResult("SELECT Col1 FROM TableName WHERE rowID =
idVal")

 Max / min value in a column, in the examples the max and min values of the given column.
SELECT max(Col1) FROM TableName
SELECT min(Col1) FROM TableName
Max = SQL1.ExecQuerySingleResult("SELECT max(Col1) FROM TableName")
Min = SQL1.ExecQuerySingleResult("SELECT min(Col1) FROM TableName")

5 SQLite Database 26 B4A User's Guide

 Get the sum or average of a column
SELECT sum(Col1) FROM TableName
SELECT avg(Col1) FROM TableName
Sum = SQL1.ExecQuerySingleResult("SELECT sum(Col1) FROM TableName")
Avrage = SQL1.ExecQuerySingleResult("SELECT avg(Col1) FROM TableName")

 Get calculations of columns.
For example, in a database with a column Number of type INTEGER and another column
Price of type REAL we want to get the Cost = Number * Price.
SELECT Number, Price, Number * Price FROM TableName
Cursor1 = SQL1.ExecQuery("SELECT Number, Price, Number * Price FROM TableName”)
Number = Cursor1.GetInt2(0)
Price = Cursor1.GetDouble2(1)
Cost = Cursor1.GetDouble2(2)
Or giving the result a column name with Number * Price AS Cost.
Cursor1 = SQL1.ExecQuery("SELECT Number, Price, Number * Price AS Cost FROM
TableName”)
Number = Cursor1.GetInt(“Number”)
Price = Cursor1.GetDouble(“Price”)
Cost = Cursor1.GetDouble(“Cost”)

Some functions:
 sum() Calculates the sum of a column.
 avg() Calculates the average of a column.
 min() Calculates the min value of column.
 max() Calculates the min value of column.
 length() Calculates the number of characters of a string or the number of characters of

the string representation of a number.
 lower() Returns a string in lower case characters.
 upper() Returns a string in upper case characters.
 typeof() Returns the data type of a column.

More details can be found in the SQLite documentaion here: Core Functions

 and here : expressions
 and here : Date And Time Functions

https://www.sqlite.org/lang_corefunc.html
https://www.sqlite.org/lang_expr.html
https://www.sqlite.org/lang_datefunc.html

5 SQLite Database 27 B4A User's Guide

5.1.7 Filtering WHERE

After the SELECT expression you can add a WHERE expression for filtering.

The WHERE expression is evaluated for each row in the input data as a booleanexpression. Only
rows for which the WHERE clause expression evaluates to true are included from the dataset before
continuing. Rows are excluded from the result if the WHERE clause evaluates to either false or
NULL.

Some filtering functions:

 = > < >= <=
 AND OR BETWEEN
 LIKE

Examples:

 A single row.
Where the rowID has the value of the variable idVal
SELECT * FROM TableName WHERE rowID = idVal
Cursor1 = SQL1.ExecQuery("SELECT * FROM TableName WHERE rowID = “ & idVal)
Where an ID column has the value of the variable idVal
SELECT * FROM TableName WHERE ID = idVal
Cursor1 = SQL1.ExecQuery("SELECT * FROM TableName WHERE ID = “ & idVal)

 A single entry (value).
SELECT Col1 FROM TableName WHERE rowID = idVal
Value = SQL1.ExecQuerySingleResult("SELECT Col1 FROM TableName WHERE rowID =
idVal")

 The rows where columns have given values.
SELECT * FROM TableName WHERE Col1 LIKE 'abc' AND Col2 LIKE 123
Cursor1 = SQL1.ExecQuery("SELECT * FROM TableName WHERE Col1 LIKE 'abc%' AND Col2
LIKE 123")
The % character can be used as a wildcard:
abc means the exact sequence
%abc means beginning with any characters and ending with abc
abc% means beginning with abc and ending with any characters
%abc% means abc anywhere in the string

 The rows where a value in a column is between two given values.
SELECT * FROM TableName WHERE Col1 >= minVal AND Col1 <= maxVal
Cursor1 = SQL1.ExecQuery("SELECT * FROM TableName WHERE Col1 >= minVal AND Col1
<= maxVal")
Or with BETWEEN which is the same.
SELECT * FROM TableName WHERE Col1 BETWEEN minVal AND maxVal
Cursor1 = SQL1.ExecQuery("SELECT * FROM TableName WHERE Col1 BETWEEN minVal AND
maxVal")
Or with minVal and maxVal beeing variables:
Cursor1 = SQL1.ExecQuery("SELECT * FROM TableName WHERE Col1 BETWEEN " & minVal &
" AND " & maxVal)

5 SQLite Database 28 B4A User's Guide

5.1.8 Sorting ORDER BY

If a SELECT statement that returns more than one row does not have an ORDER BY clause, the
order in which the rows are returned is undefined.
Or, if a SELECT statement does have an ORDER BY clause, then the list of expressions attached to
the ORDER BY determine the order in which rows are returned to the user.

A query can be sorted either ascending or descending.
Add an ORDER BY expression at the end of the query.

 Read the whole database and ordering according to a given column:
SELECT * FROM TableName ORDER BY Col1 ASC ascending
Cursor1 = SQL1.ExecQuery("SELECT * FROM TableName ORDER BY Col1 ASC")

SELECT * FROM TableName ORDER BY 2 DESC descending
Cursor1 = SQL1.ExecQuery("SELECT * FROM TableName ORDER BY 2 DESC")

The column to order can be given either by its name Col1 or its number 2.
The column numbering begins with 1.

 Read the given columns and sort on two of them.
SELECT FirstName AS [First name], LastName AS [Last name], City FROM persons
ORDER BY LastName ASC, FirstName ASC
Cursor1 = SQL1.ExecQuery("SELECT FirstName AS [First name], LastName AS [Last
name], City FROM persons ORDER BY LastName ASC, FirstName")
The braquets [First name] are needed because of the spaces in the alias column names.

5 SQLite Database 29 B4A User's Guide

5.1.9 Date / Time functions

SQLite has several date / time functions.

Below the most useful for B4A:

 date(timestring, modifier, modifier, ...)
Returns a date.

 time(timestring, modifier, modifier, ...)
Returns a time.

 datetime(timestring, modifier, modifier, ...)
Returns a date and time.

For more details, examples and what timestring and modifiers are, please look at the SQLite
documentation.

In B4A the best way to store dates is to store them as ticks, which are the number of milliseconds
since January 1, 1970.
SQLite doesn’t have the same ticks but has "unixepoch" ticks which are the number of seconds
since January 1, 1970.

Examples of queries with Ticks = 1448795854111 (B4A ticks):

 SQL1.ExecQuerySingleResult("SELECT date(" & (Ticks / 1000) & " , 'unixepoch')")
Returns: 2015-11-29

 SQL1.ExecQuerySingleResult("SELECT time(" & (Ticks / 1000) & " , 'unixepoch')")
Returns: 11:17:34

 SQL1.ExecQuerySingleResult("SELECT datetime(" & (Ticks / 1000) & " ,
'unixepoch')")
Returns: 2015-11-29 11:17:34

In these examples (Ticks / 1000) is the imestring and 'unixepoch' a modifier.

The date() function is used in the SQLiteLight4 example.

https://www.sqlite.org/lang_datefunc.html

5 SQLite Database 30 B4A User's Guide

5.1.10 Other functions

 Get the data type of columns.
In a table with a column Part of type TEXT Number of type INTEGER and another column
Price of type REAL
SELECT typeof(Item), typeof(Number), typeof(Price) FROM TableName
Cursor1 = SQL1.ExecQuery("SELECT typeof(Part), typeof(Number), typeof(Price) FROM
TableName”)
Get the data type with:
Column request or other request > result
Part: Cursor1.GetString(“Part”) or Cursor1.GetString2(0) > text
Number: Cursor1.GetString(“Number”) or Cursor1.GetString2(1) > integer
Price: Cursor1.GetString(“Price”) or Cursor1.GetString2(2) > real

 Get the max length of the data in a column.
For a string, the returned value is the number of characters not the number of bytes.
For a number, the returned value is the number of characters of its string representation.
For a blob, the returned value is the number of bytes.
SELECT max(length(Col1)) FROM TableName
MaxChars = SQL1.ExecQuerySingleResult("SELECT max(length(Col1)) FROM
TableName")

 Get the total number of rows
SELECT count() FROM TableName
NumberOfRows = SQL1.ExecQuerySingleResult("SELECT count() FROM TableName")

 Get the tables in the database
SELECT name FROM sqlite_master WHERE Type='table'
Cursor1 = SQL1.ExecQuery("SELECT name FROM sqlite_master Where Type='table'")

 Get the column names of a table.
SELECT * FROM TableName
Cursor1 = SQL1.ExecQuery("SELECT * FROM TableName")
For i = 0 to Cursor1.ColumnCount - 1
 ColumnName(i) = Cursor1.GetColumnName(i)
Next

 Get the number of database rows that were changed or inserted or deleted by the most
recently completed INSERT, DELETE, or UPDATE.
SELECT changes() FROM TableName
NbChanges = SQL1.ExecQuerySingleResult("SELECT changes() FROM TableName")

 Get the PRIMARY KEYs from a table and save them in a List, rowid is a reserved column
name. This is valid even if there is no column defined with PRIMARY KEY.
This function throughs an error if the table is empty !
SELECT rowid FROM TableName
Dim IDList As List

IDList.Initialize
Cursor1 = SQL1.ExecQuery("SELECT rowid FROM TableName")
For i = 0 To Cursor1.RowCount - 1
 Cursor1.Position = i
 IDList.Add(Cursor1.GetLong2(0))
Next

5 SQLite Database 31 B4A User's Guide

5.1.11 Get Table information PRAGMA
It uses a special query PRAGMA.
This query returns one row per column with following data :
Column index name Explanation

 0 cid column index
 1 name column name
 2 type data type
 3 dflt_value default value
 4 notnull null if the database acccepts null values
 5 pk primary key = 1 if the column is a PRIMARY KEY otherwise = 0

 This is valid only if a column with a primary key was created.

 Cursor1 = SQL1.ExecQuery("PRAGMA table_info (TableName)")
 For i = 0 To Cursor1.RowCount - 1
 Cursor1.Position = i
 For j = 0 To Cursor1.ColumnCount - 1
 Log(i & " / " & j & " : " & Cursor1.GetString2(j))
 Next
 Log(" ")
 Next
Or this code:
 Cursor1 = SQL1.ExecQuery("PRAGMA table_info (TableName)")
 For i = 0 To Cursor1.RowCount - 1
 Cursor1.Position = i
 Log("ID : " & Cursor1.GetString("cid"))
 Log("Name : " & Cursor1.GetString("name"))
 Log("Type : " & Cursor1.GetString("type"))
 Log("Default value : " & Cursor1.GetString("dflt_value"))
 Log("Not null : " & Cursor1.GetString("notnull"))
 Log("Primaty key : " & Cursor1.GetString("pk"))
 Log(" ")
 Next

5 SQLite Database 32 B4A User's Guide

5.1.12 Deleting data DELETE FROM
DELETE FROM TableName WHERE ID = idVal
SQL1.ExecNonQuery("DELETE FROM TableName WHERE ID = idVal")

5.1.13 Rename a table ALTER TABLE Name ADD COLUMN
Renames a given table.
ALTER TABLE TableName RENAME TO NewTableName)
SQL1.ExecNonQuery("ALTER TABLE TableName RENAME TO NewTableName")

5.1.14 Add a column ALTER TABLE Name ADD COLUMN
Add a new column to the database.
ALTER TABLE TableName ADD COLUMN Colname ColType)
SQL1.ExecNonQuery("ALTER TABLE TableName ADD COLUMN ColN TEXT")

5.1.14.1 Update the database after having added a column
Update the database after having added a new column.

 Sets the values of all rows in the new column to an empty string.
UPDATE TableName SET ColName = ''
SQL1.ExecNonQuery("UPDATE TableName SET ColN = ''")

 Sets the values of the rows in a column to a given new value where the value is another old
value.
UPDATE TableName SET ColName = 'ValueNew' WHERE ColName = 'ValueOld'
SQL1.ExecNonQuery("UPDATE TableName SET ColN = 'ValueNew' WHERE ColN = 'ValueOld'")

5.1.15 Delete a table DROP TABLE

The DROP TABLE statement removes a table added with the CREATE TABLE statement. The
name specified is the table name. The dropped table is completely removed from the database
schema and the disk file. The table can not be recovered. All indices and triggers associated with
the table are also deleted.

The optional IF EXISTS clause suppresses the error that would normally result if the table does not
exist.

DROP TABLE IF EXITS TableName
SQL1.ExecNonQuery("DROP TABLE IF EXISTS TableName")

http://www.sqlite.org/lang_createtable.html

5 SQLite Database 33 B4A User's Guide

5.1.16 Insert an image

To insert an image we need a BLOB (Binary Large Object).
The column type in the database must be set to BLOB !

Sub InsertBlob
 'convert the image file to a bytes array
 Dim InputStream1 As InputStream
 InputStream1 = File.OpenInput(File.DirAssets, "smiley.gif")
 Dim OutputStream1 As OutputStream
 OutputStream1.InitializeToBytesArray(1000)
 File.Copy2(InputStream1, OutputStream1)
 Dim Buffer() As Byte 'declares an empty array
 Buffer = OutputStream1.ToBytesArray

 'write the image to the database
 SQL1.ExecNonQuery2("INSERT INTO table2 VALUES('smiley', ?)", Array As Object(Buffer))
End Sub

Here we are using a special type of OutputStream which writes to a dynamic bytes array.
File.Copy2 copies all available data from the input stream into the output stream.
Then the bytes array is written to the database.

5.1.17 Read an image

Using a Cursor.GetBlob we fetch the stored image.
Now we are using an input stream that reads from this array and load the image.

Sub ReadBlob
 Dim Cursor1 As Cursor
 'Using ExecQuery2 is safer as it escapes special characters automatically.
 'In this case it doesn't really matter.
 Cursor1 = SQL1.ExecQuery2("SELECT image FROM table2 WHERE name = ?", Array As
String("smiley"))
 Cursor1.Position = 0
 Dim Buffer() As Byte 'declare an empty byte array
 Buffer = Cursor1.GetBlob("image")
 Dim InputStream1 As InputStream
 InputStream1.InitializeFromBytesArray(Buffer, 0, Buffer.Length)

 Dim Bitmap1 As Bitmap
 Bitmap1.Initialize2(InputStream1)
 InputStream1.Close
End Sub

5 SQLite Database 34 B4A User's Guide

5.1.18 ExecQuery vs ExecQuery2 / ExecNonQuery vs ExecNonQuery2

The examples below supposes a table with three columns:
Col1 TEXT, Col2 INTEGER, Col3 INTEGER

There exist two mehtods to execute a query.

 ExecQuery(Query As String)
Executes the query, you must take care of the datatype.
Example:
Cursor1 = SQL1.ExecQuery("SELECT * FROM TableName WHERE Col1 = '" & MyText & "'
AND Col2 >= " & minVal & " AND Col2 <= " & maxVal)

Note that MyText is between two quotes because the data field is a TEXT field!

 ExecQuery2(Query As String, StringArgs As Object())
The query includes question marks which will be replaced with the values in the array.
Example:
Cursor1 = SQL1.ExecQuery("SELECT * FROM TableName WHERE Col1 = ? AND Col2 >= ?
AND Col2 <= ? ", Array As Object MyText, minVal, maxVal))

Note that ExecQuery2 is safer because it takes care of the column data type!

The same for ExecNonQuery.

 ExecNonQuery(Query As String)
Executes the query, you must take care of the datatype.
Example:
SQL1.ExecNonQuery("INSERT INTO table1 VALUES('abc', 1, 2)")

Note that abc is between two quotes because the data field is a TEXT field!

 ExecNonQuery2(Query As String, StringArgs As Object())
The query includes question marks which will be replaced with the values in the array.
Example:
SQL1.ExecNonQuery2("INSERT INTO table1 VALUES(?, ?, ?)", Array As Object("abc”,
3, 4))

Note that ExecQuery2 is safer because it takes care of the column data type!

The same exists for ExecQuerySingleResult and ExecQuerySingleResult2.

5 SQLite Database 35 B4A User's Guide

5.1.19 Insert many rows SQL.BeginTransaction / SQL.EndTransaction

Sub InsertManyRows
 SQL1.BeginTransaction
 Try
 For i = 1 To 500
 SQL1.ExecNonQuery2("INSERT INTO table1 VALUES ('def', ?, ?)", Array As Object(i,
i))
 Next
 SQL1.TransactionSuccessful
 Catch
 Log(LastException.Message)
 End Try
 SQL1.EndTransaction
End Sub

This code is an example of adding many rows. Internally a lock is acquired each time a "writing"
operation is done.
By explicitly creating a transaction the lock is acquired once.
The above code took less than half a second to run on a real device.
Without the BeginTransaction / EndTransaction block it took about 70 seconds.
A transaction block can also be used to guarantee that a set of changes were successfully done.
Either all changes are made or none are made.
By calling SQL.TransactionSuccessful we are marking this transaction as a successful transaction.
If you omit this line, all the 500 INSERTS will be ignored.
It is very important to call EndTransaction eventually.

Therefore the transaction block should usually look like:

SQL1.BeginTransaction
Try
 'Execute the sql statements.
SQL1.TransactionSuccessful
Catch
'the transaction will be cancelled
End Try
SQL1.EndTransaction

5 SQLite Database 36 B4A User's Guide

5.1.20 Asynchronus queries

The SQL library supports asynchronous select queries and asynchronous batch inserts.

Asynchronous means that the task will be processed in the background and an event will be raised
when the task completes. This is useful when you need to issue a slow query and keep your
application responsive.

The usage is quite simple:

sql1.ExecQueryAsync("SQL", "SELECT * FROM table1", Null)
...
Sub SQL_QueryComplete (Success As Boolean, Crsr As Cursor)
 If Success Then
 For i = 0 To Crsr.RowCount – 1

 Crsr.Position = i
 Log(Crsr.GetInt2(0))

 Next
 Else
 Log(LastException)
 End If
End Sub

The first parameter is the "event name". It determines which sub will handle the QueryComplete
event.

5.1.21 Batch inserts AddNonQueryToBatch / ExecNonQueryBatch

SQL.AddNonQueryToBatch / ExecNonQueryBatch allow you to asynchronously process a batch of
non-query statements (such as INSERT statements).
You should add the statements by calling AddNonQueryToBatch and eventually call
ExecNonQueryBatch.
The task will be processed in the background. The NonQueryComplete event will be raised after all
the statements execute.

For i = 1 To 10000
 SQL1.AddNonQueryToBatch("INSERT INTO table1 VALUES (?)", Array As Object(Rnd(0,
100000)))
Next
SQL1.ExecNonQueryBatch("SQL")
...
Sub SQL_NonQueryComplete (Success As Boolean)
 Log("NonQuery: " & Success)
 If Success = False Then Log(LastException)
End Sub

5 SQLite Database 37 B4A User's Guide

5.2 Multiple tables

A database can, of course, have more than one table.

Example: This is only a small simple example to demonstrate the principle.
Demo code example project SQLiteLight4.

Database with 3 tables:

 Stock Number INTEGER, ProductID INTEGER, Date INTEGER
 number of products product ID date in Ticks

 Products Name TEXT, Price REAL, SupplierID INTEGER
 product name product price supplier ID

 Suppliers Name TEXT, Address TEXT, City TEXT
 suppliers name suppliers address suppliers city

In the table Stock we use the ID of the product rather its name.
The same in the table Products for the Supplier.

Query example of a call for display:
Query = "SELECT Stock.Number, Products.Name AS Product, Suppliers.Name AS Supplier,
Products.Price AS Price, Stock.Number * Products.Price AS Value, date(Stock.Date /
1000, 'unixepoch') AS Date"
Query = Query & " FROM Stock, Products, Suppliers"
Query = Query & " WHERE Products.rowID = Stock.ProductID AND Suppliers.rowID =
Products.SupplierID"

We want to read following data:

 The number of items in stock Stock.Number.
The Number column in the Stock table.

 The product name Products.Name AS Product.
The Name column in the Products table and give this column the name ‘Product’.

 The supplier name Suppliers.Name AS Supplier.
The Name column in the Suppliers tabel and give this column the name ‘Supplier’.

 The product price Products.Price AS Price.
The Price column in the Products table and give this column the name ‘SPrice’.

 The value of these products in stock Stock.Number * Products.Price AS Value.
The multiplication of the number of items in stock with the product price and give this
column the name ‘Value’.

 The date when the product was entered date(Stock.Date / 1000, 'unixepoch') AS Date.
We use the SQLite date function where we give the Date column of the Stock table.
As the date is in B4A ticks we need to devide the value by 1000 to adapt it to ‘SQL ticks’
and we must add the parameter 'unixepoch' for ‘SQL ticks’.

The query concerns the three tables Stock, Products and Suppliers:
FROM Stock, Products, Suppliers

We must add a WHERE expression:

 To connect the Products table rowID to the Stock ProductID column value.
Products.rowID = Stock.ProductID

 To connect the Suppliers table rowID to the Products SupplierID column value.
Suppliers.rowID = Products.SupplierID

5 SQLite Database 38 B4A User's Guide

Example of the result:

For more details look at the SQLiteLight4 example program.

5.3 Transaction speed

If you have to do many inserts into a database you should BeginTransaction and EndTransaction
this will considerably speed up the process.

A transaction is a set of multiple "writing" statements that are atomically committed.

It is very important to handle transaction carefully and close them.
The transaction is considered successful only if TransactionSuccessful is called. Otherwise no
changes will be made.

Typical usage:

SQL1.BeginTransaction
Try
 'block of statements like:
 For i = 1 To 1000
 SQL1.ExecNonQuery("INSERT INTO table1 VALUES(...)
 Next
 SQL1.TransactionSuccessful
Catch
 Log(LastException.Message) 'no changes will be made
End Try
SQL1.EndTransaction

5 SQLite Database 39 B4A User's Guide

5.4 First steps

To use a database, we must:

 First reference the SQL library in the Libs Tab in the lower right corner in the IDE.

 Declare it with Public in the Process_Globals routine of the Starter Service module or in the
Process_Globals routine of the Main module if you don’t use the Starter Service.
I suggest to define two other variables for the database path and file name:

5 SQLite Database 40 B4A User's Guide

 Initialize it in the Service_Create routine in the Starter Service.

We give the two variables values, for example:

Sub Service_Create
 'initialize the variables
 SQLDataBasePath = File.DirRootExternal
 SQLDateBaseName = "stock.db"

o If you already have a database in the Files folder of the project you need to copy it
from File.DirAssets in another folder.
Databases are NOT accessible from File.DirAssets !

'check if the database already exists
If File.Exists(SQLDataBasePath, SQLDateBaseName) = True Then
 'if yes initialize it
 SQL1.Initialize(SQLDataBasePath, SQLDateBaseName, True)
Else
 'if no copy it
 File.Copy(File.DirAssets, SQLDateBaseName, SQLDataBasePath,
SQLDateBaseName)
 'and initialize it
 SQL1.Initialize(SQLDataBasePath, SQLDateBaseName, True)
End If

o If, at the beginning, you create the datebase in the code you can use the code below :

'check if the database already exists
If File.Exists(SQLDataBasePath, SQLDateBaseName) = True Then
 'if yes, initialize it
 SQL1.Initialize(SQLDataBasePath, SQLDateBaseName, True)
Else
 'if no, initialize it
 SQL1.Initialize(SQLDataBasePath, SQLDateBaseName, True)
 ' and create it
 SQLInit
End If

5 SQLite Database 41 B4A User's Guide

5.5 SQLite Viewer

There is a SQLiteViewer program in the forum, that allows you to load and display databases.
The program uses the DBUtils module and the table is shown in a WebView view.
The usage of the DBUtils module is explained in chapter 4 DBUtils.

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/9197-android-sqlite-viewer-2.html
http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/8475-dbutils-android-databases-now-simple-6.html

5 SQLite Database 42 B4A User's Guide

5.6 SQLite Database first simple example program SQLiteLight1

This example program is a very simple project with a very simple user interface.

The source code of this project is located in the SourceCode\SQL\SQLiteLight1 folder.

The database name, the table name and the column names are hard coded, to make the code better
readable. The user interface is kept very simple.

At the first run the database is empty and the user must add entries.

Following functions are implemented:

 Add an entry
 Edit an entry
 Update an entry
 Delete an entry
 Display next and previous entry

Source code
It is selfexplaining.

Program initialization:

Process_Globals

We dim the process global variables.

Sub Process_Globals
 Public SQL1 As SQL

 Public CurrentIndex = -1 As Int ' index of the current entry
 Public RowNumber = 0 As Int ' number of rows

 Public IDList As List ' list containing the IDs of the database
 ' we need it because the IDs can be different from the list indexes
 ' if we delete an entry its ID is lost
End Sub

5 SQLite Database 43 B4A User's Guide

Globals

We dim all the views of the layout.

Sub Globals
 Private edtID, edtFirstName, edtLastName, edtCity As EditText
 Private btnAdd, btnDelete, btnUpdate, btnPrevious, btnNext As Button
End Sub

Activity_Create

We check if the database already exists, initialize it, load it and show the first entry.

Sub Activity_Create(FirstTime As Boolean)
 If FirstTime Then
 ' File.Delete(File.DirInternal, "persons.db") ' only for testing, removes the
database

 'check if the database already exists
 If File.Exists(File.DirInternal, "persons.db") = False Then
 'if not, initialize it
 SQL1.Initialize(File.DirInternal, "persons.db", True)
 'and create it
 CreateDataBase
 End If
 End If

 Activity.LoadLayout("Main")
End Sub

Activity_Resume

If the database is not initialized we initialize it, initialize the IDList list, read the database and show
the first entry.

Sub Activity_Resume
 ' If the database is not initialized we initialize it
 If SQL1.IsInitialized = False Then
 SQL1.Initialize(File.DirInternal, "persons.db", True)
 End If

 IDList.Initialize 'initialize the ID list
 ReadDataBase 'read the database
 ShowEntry(0) 'show the first entry
End Sub

Program closing :

Activity_Pause

If the program is closed by the user we close the database.

Sub Activity_Pause (UserClosed As Boolean)
 If UserClosed Then
 SQL1.Close 'if the user closes the program we close the database
 End If
End Sub

5 SQLite Database 44 B4A User's Guide

Database handling :

Create the database

We create the database with the four following columns :

 ID INTEGER PRIMARY KEY the ID of the entry.
We use the INTEGER PRIMARY KEY data type, which is automatically invremented
when we add a new entry.

 FirstName the persons first name with TEXT data type.
 LastName the persons last name with TEXT data type.
 City the city where the person is living with TEXT data type.

Sub CreateDataBase
 Private Query As String

 Query = "CREATE TABLE persons (ID INTEGER PRIMARY KEY, FirstName TEXT, LastName TEXT,
City TEXT)"
 SQL1.ExecNonQuery(Query)
End Sub

ReadDataBase

We

- Define a Cursor and read IDs from the databse.
- Check if there database is not empty.
- Fill IDList with the IDs of all entries.
- Set the current index to 0
- Close the cursor

Why do we use a List with the IDs ?
We use for the ID the INTEGER PRIMARY KEY data type which is unique.
If we delete an entry its ID is lost, which means that the ID numbers are not simply the row indexes
but there can be ‘holes’ in the list.

Sub ReadDataBase
 Private Row As Int
 Private Cursor1 As Cursor

 'We read only the ID column and put them in a List
 Cursor1 = SQL1.ExecQuery("SELECT ID FROM persons")
 If Cursor1.RowCount > 0 Then 'check if entries exist
 RowNumber = Cursor1.RowCount 'set the row count variable
 IDList.Initialize 'initialize the ID list
 For Row = 0 To RowNumber - 1
 Cursor1.Position = Row 'set the Cursor to each row
 IDList.Add(Cursor1.GetInt("ID")) 'add the ID's to the ID list
 Next
 CurrentIndex = 0 'set the current index to 0
 End If
 Cursor1.Close 'close the cursor, we don't need it anymore
End Sub

5 SQLite Database 45 B4A User's Guide

ShowEntry

We get the selected entrys ID from IDList, read the entry from the database, fill the EditText views
and close the Cursor.

Sub ShowEntry(EntryIndex As Int)
 Private Cursor1 As Cursor
 Private ID As Int

 If IDList.Size = 0 Then 'check if the database is empty
 Return 'if yes leave the routine
 End If

 ID = IDList.Get(EntryIndex) 'get the ID for the given entry index
 'read the entry with the given ID
 Cursor1 = SQL1.ExecQuery("SELECT * FROM persons WHERE ID = " & ID)
 edtID.Text = ID 'display the ID
 Cursor1.Position = 0 'set the cursor
 edtFirstName.Text = Cursor1.GetString("FirstName") 'read the FirstName column
 edtLastName.Text = Cursor1.GetString("LastName") 'read the LasstName column
 edtCity.Text = Cursor1.GetString("City") 'read the value of the City column
 Cursor1.Close 'close the cursor, we don't it anymore
End Sub

5 SQLite Database 46 B4A User's Guide

AddEntry

We first check if an entry with the same data already exists.
If yes, we display a message.
If not, we add the new entry.
Display the new entrys ID.
Close the cursor.
We use ExecQuery2 instead of ExecQuery, it’s easier because we don’t need to take care of the data
type, the routine converts the data to the correct type.
The ? sign is a placeholder for the data which must be given in the array.

Sub AddEntry
 Private Query As String
 Private Cursor1 As Cursor
 Private ID As Int

 'first we check if the entry already does exist
 Query = "SELECT * FROM persons WHERE FirstName = ? AND LastName = ? AND City = ?"
 Cursor1 = SQL1.ExecQuery2(Query, Array As String (edtFirstName.Text, edtLastName.Text,
edtCity.Text))

 If Cursor1.RowCount > 0 Then
 'if it exists show a message and do nothing else
 ToastMessageShow("This entry already exists", False)
 Else
 'if not, add the entry
 'a NULL for the ID column increments the primary key automatically by one
 'we use ExecNonQuery2 because it's easier, we don't need to take care of the data types
 Query = "INSERT INTO persons VALUES (NULL, ?, ?, ?)"
 SQL1.ExecNonQuery2(Query, Array As String(edtFirstName.Text, edtLastName.Text,
edtCity.Text))

 ToastMessageShow("Entry added", False) ' confirmation for the user

 'to display the ID of the last entry we read the max value of the ID column
 ID = SQL1.ExecQuerySingleResult("SELECT max(ID) FROM persons")
 RowNumber = RowNumber + 1 'increase the row count
 IDList.Add(ID) 'add the last ID to the list
 CurrentIndex = IDList.Size - 1 'set the current index to the last one
 edtID.Text = ID 'display the last index
 End If
 Cursor1.Close 'close the cursor, we don't it anymore
End Sub

5 SQLite Database 47 B4A User's Guide

DeleteEntry

We ask the user if he really wants to delete the selected entry.
If the answer is yes then we delete it.
And set the new CurrentIndex.

Sub DeleteEntry
 Private Query As String
 Private Answ As Int

 'ask the user for confirmation

 Answ = Msgbox2("Do you really want to delete " & edtFirstName.Text & " " &
edtLastName.Text, "Delete entry", "Yes", "", "No", Null)

 If Answ = DialogResponse.POSITIVE Then 'if yes, delete the entry
 Query = "DELETE FROM persons WHERE ID = " & IDList.Get(CurrentIndex)
 SQL1.ExecNonQuery(Query) 'delete the entry
 IDList.RemoveAt(CurrentIndex) 'remove the ID from the list
 If CurrentIndex = RowNumber - 1 Then 'if the current index is the last one
 CurrentIndex = CurrentIndex - 1 'decrement it by 1
 End If
 RowNumber = RowNumber - 1 'decrement the row count by 1
 ShowEntry(CurrentIndex) 'show the next entry
 ToastMessageShow("Entry deleted", False) 'confirmation for the user
 End If
End Sub

UpdateEntry

We use ExecNonQuery2 instead of ExecNonQuery because it’s easier, we don’t need to take care
of the data type.
The ? sign is a placeholder for the data which must be given in the array.

Sub UpdateEntry
 Private Query As String

Query = "UPDATE persons Set FirstName = ?, LastName = ?, City = ? _
WHERE ID = " & IDList.Get(CurrentIndex)

 SQL1.ExecNonQuery2(Query, Array As String(edtFirstName.Text, _
 edtLastName.Text, edtCity.Text))
 ToastMessageShow("Entry updated", False)
End Sub

5 SQLite Database 48 B4A User's Guide

5.7 SQLite Database second simple example program SQLiteLight2

This example program is an evolution of the SQLiteLight1 project.

The source code of this project is located in the SourceCode\SQL\SQLiteLight2 folder.

The program generates a default database if there is none available.

Added an Activity displaying the database in a table, using a WebView.

 Main screen Edit screen Filter screen

Following functions are implemented:

 Add an entry
 Edit an entry

o Update an entry
o Delete an entry
o Go to First, Prev, Next and Last entry

 Filter
o AND / OR Boolean operator
o Filter

5 SQLite Database 49 B4A User's Guide

Parts of the source code

Not all the code will be explained here, only some more specific parts.

Since B4A version 5.2 the declarion of process global variabels should be done in the Starter Sevice
as explained in the Starter Service chapter.

Starter Service

Declaration of the Process global variables.
We declare all the process global variables in the Starter Service.

Sub Process_Globals
 Public SQL1 As SQL

 Public CurrentIndex = -1 As Int ' index of the current entry
 Public RowNumber = 0 As Int ' number of rows

 Public IDList As List ' list containing the IDs of the database

 ' we need it because the IDs can be different from the list indexes
 ' if we delete an entry its ID is lost

 ' Variables for Edit
 ' the Edit Activity has two modes "Add" and "Edit"
 Public EditMode = "Add" As String

 ' Variables for Filter
 ' variable for the filter query,
 ' defined in the btnFilter_Click routine
 ' and will be used In the DBWebView ShowTable routine
 Public FilterQuery = "" As String

 ' flag for the filter active or inactive
 Public flagFilterActive = False As Boolean

 ' Boolean operator used in the filter
 ' can be OR or AND
 Public BooleanOperator = "OR " As String

 ' Variables used to hold the selected indexes of the Spinners
 Public SelectedFirstName = 0 As Int
 Public SelectedLastName = 0 As Int
 Public SelectedCity = 0 As Int
End Sub

5 SQLite Database 50 B4A User's Guide

Starter Service

Initialization of the Process global variables.

Sub Service_Create
 File.Delete(File.DirInternal, "persons.db") ' only for testing, removes the database

 'check if the database already exists
 If File.Exists(File.DirInternal, "persons.db") = False Then
 'copy the default DB
 File.Copy(File.DirAssets, "persons.db", File.DirInternal, "persons.db")
 'if not, initialize it
 SQL1.Initialize(File.DirInternal, "persons.db", True)
 'and create it
 'CreateDataBase
 'copy the default DB
 File.Copy(File.DirAssets, "persons.db", File.DirInternal, "persons.db")
 Else
 'if yes, initialize it
 SQL1.Initialize(File.DirInternal, "persons.db", True)
 End If
End Sub

5 SQLite Database 51 B4A User's Guide

Main Activity

Declaration of the Global variables.

Sub Globals
 Private wbvTable As WebView
 Private btnAdd, btnEdit, btnFilter, btnSetFilter As Button
 Private lblSelectedItem As Label

 ' used in ExecuteHTML
 Private HtmlCSS As String
 HtmlCSS = "table {width: 100%;border: 1px solid #cef;text-align: left; }" _
 & " th { font-weight: bold; background-color: #acf; border-bottom: 1px
solid #cef; }" _
 & "td,th { padding: 4px 5px; }" _
 & ".odd {background-color: #def; } .odd td {border-bottom: 1px solid #cef; }" _
 & "a { text-decoration:none; color: #000;}"
End Sub

HtmlCSS is the string for the html call.

Show the database in a WebView.

We define the SQL query.
Depending if the filter is active we add the filter query and change the filter button text.
We load the databse query result in a WebView and read the database IDs.

'Shows the database in a table in a WebView
Sub ShowTable
 Dim Query As String

 Query = "SELECT ID, FirstName As [First name], LastName As [Last name], City FROM
persons"
 'depending if the filter is active or not we add the filter query at the end of the
query
 'the filter query is defined in the Filter Activity
 If Filter.flagFilterActive = False Then
 btnFilter.Text = "Filter" 'change the text in the Filter button
 Else
 Query = Query & Filter.Query
 btnFilter.Text = "UnFilter" 'change the text in the Filter button
 End If
 'displays the database in a table
 wbvTable.LoadHtml(ExecuteHtml(Starter.SQL1, Query, Null, 0, True))
 ReadDataBaseIDs
End Sub

5 SQLite Database 52 B4A User's Guide

Generate the html string used in wbvTable.LoadHtml.

'This routine is extracted from the DBUtils code module
'Creates a html text that displays the data in a table.
'The style of the table can be changed by modifying HtmlCSS variable.
Sub ExecuteHtml(SQL As SQL, Query As String, StringArgs() As String, Limit As Int,
Clickable As Boolean) As String
 Private cur As Cursor
 If StringArgs <> Null Then
 cur = SQL.ExecQuery2(Query, StringArgs)
 Else
 cur = SQL.ExecQuery(Query)
 End If
 Log("ExecuteHtml: " & Query)
 If Limit > 0 Then Limit = Min(Limit, cur.RowCount) Else Limit = cur.RowCount
 Private sb As StringBuilder
 sb.Initialize
 sb.Append("<html><body>").Append(CRLF)
 sb.Append("<style type='text/css'>").Append(HtmlCSS).Append("</style>").Append(CRLF)
 sb.Append("<table><tr>").Append(CRLF)
 For i = 0 To cur.ColumnCount - 1
 sb.Append("<th>").Append(cur.GetColumnName(i)).Append("</th>")
 Next

 sb.Append("</tr>").Append(CRLF)
 For row = 0 To Limit - 1
 cur.Position = row
 If row Mod 2 = 0 Then
 sb.Append("<tr>")
 Else
 sb.Append("<tr class='odd'>")
 End If
 For i = 0 To cur.ColumnCount - 1
 sb.Append("<td>")
 If Clickable Then
 sb.Append("<a href='http://").Append(i).Append(".")
 sb.Append(row)
 sb.Append(".com'>").Append(cur.GetString2(i)).Append("")
 Else
 sb.Append(cur.GetString2(i))
 End If
 sb.Append("</td>")
 Next
 sb.Append("</tr>").Append(CRLF)
 Next
 cur.Close
 sb.Append("</table></body></html>")
 Return sb.ToString
End Sub

5 SQLite Database 53 B4A User's Guide

Event handling of the WebView.

This routine is taken from the DBUtils module.
The URL variable hold the return value from the WebView event.
It could look like this http//2.7.com/ where 2 is the col index and 7 is the row index.
The col and row values are extracted in values = Regex.Split("[.]", Url.SubString(7))
values(0) holds the col value
values(1) holds the row value
values(2) holds the end of the string

'Routine from the DBUtils demo program
Sub wbvTable_OverrideUrl (Url As String) As Boolean
 'parse the row and column numbers from the URL
 Private values() As String
 values = Regex.Split("[.]", Url.SubString(7))
 Private col, row As Int
 col = values(0)
 row = values(1)
 CurrentIndex = row
 UpdateSelectedItem
 Return True 'Don't try to navigate to this URL
End Sub

Edit Activity.

In the Edit acrivity there is nothing really special.

Filter Activity.

Process global variables are initialized in the Starter Service.

Most of the code is self explanatory.

For the data selection in the filter we use Spinners, these are filled with the data from the database.
But as there can be multiple entries with the same data we fill them with ‘distinct’ data, one name is
shown only once.

The code is shown for one Spinner only, the principle is the same for the others.

'Initialize the Spinners
Sub InitSpinners
 Private i As Int
 Private Query1 As String
 Private Curs As Cursor

 'We execute a query for each column and fill the Spinner
 'We use SELECT DISTINCT to have each existing first name in the database only once
' Query1 = "SELECT DISTINCT FirstName FROM persons"
 Query1 = "SELECT DISTINCT FirstName FROM persons ORDER BY FirstName ASC"
 Curs = Main.SQL1.ExecQuery(Query1)
 'we add 'no filter' as no selection
 spnFirstName.Add("no filter")
 'we fill the Spinner with the data from the database
 For i = 0 To Curs.RowCount - 1
 Curs.Position = i
 spnFirstName.Add(Curs.GetString("FirstName"))
 Next

5 SQLite Database 54 B4A User's Guide

5.8 SQLite Database third simple example program SQLiteLight3

A third example program is in the SourceCode\SQL\SQLiteLight3 folder.

This program is almost the same as SQLiteLight2, all functions are the same.
The differences are the database path, database name, table name, columb number, column names,
column alias names and column data types are variables instead beeing hard coded.

It allows also to generate a new database by:
- changing in Globals the values of the variables listed above
- in Activity_Create
-- comment this line: 'File.Copy(File.DirAssets, SQLDateBaseName, SQLDataBasePath,
SQLDateBaseName)
-- uncomment this line: CreateDataBase

The code has comments and is, I hope, self explanatory.

One example to show the difference:

For the query to show the table.

In SQLiteLight2 the names are hard coded:

Sub ShowTable
 Private i As Int
 Private Query As String
 Query = "SELECT ID, FirstName As [First name], LastName As [Last name], _

City FROM persons"

In SQLiteLight3 the names are varaibles defined in Globals:

Sub ShowTable
 Private i As Int
 Private Query As String

 Query = "SELECT "
 For i = 0 To ColNumber - 1
 If i < ColNumber - 1 Then
 Query = Query & ColNames(i) & " As [" & ColAliasNames(i) & "], "
 Else
 Query = Query & ColNames(i) & " As [" & ColAliasNames(i) & "] "
 End If
 Next
 Query = Query & " FROM " & SQLTabelName

5 SQLite Database 55 B4A User's Guide

5.9 SQLite Database forth example program SQLiteLight4

This SQLite example program, SQLiteLight4, is a bit more elaborated than SQLiteLight2.
In SQLiteLight2 there is only one table, in this program there are three tables.
The purpose of this example is to show the principle of the management of several tables.
To make the code easier readable all names are hard coded and not in variables like in
SQLiteLight3.

The source code is in the SourceCode\SQL\SQLiteLight4 folder.

The program manages a spare part stock. The tables are intentionally very simple with just a few
columns and not all possible errors or mistakes a user can make are checked to keep the code simple
and easier to read and understand.

The database has three tables:

 Stock Number INTEGER, ProductID INTEGER, Date INTEGER
 number of products product ID date in Ticks

 Products Name TEXT, Price REAL, SupplierID INTEGER
 product name product price supplier ID

 Suppliers Name TEXT, Address TEXT, City TEXT
 suppliers name suppliers address suppliers city

In the table Stock we use the ID of the product rather its name. The same in the table Products for
the Supplier. The advantage is that we memorize a reference to the data in the original table instead
of copying the data into another table. If we change once the data in the original table all the data in
other tables are updated automatically.

Query example of a call for display:
Query = "SELECT Stock.Number, Products.Name AS Product, Suppliers.Name AS Supplier,
Products.Price AS Price, Stock.Number * Products.Price AS Value, date(Stock.Date /
1000, 'unixepoch') AS Date"
Query = Query & " FROM Stock, Products, Suppliers"
Query = Query & " WHERE Products.rowID = Stock.ProductID AND Suppliers.rowID =
Products.SupplierID"

We want to read following data:

 The number of items in stock Stock.Number.
The Number column in the Stock table.

 The product name Products.Name AS Product.
The Name column in the Products table and give this column the name ‘Product’.

 The supplier name Suppliers.Name AS Supplier.
The Name column in the Suppliers tabel and give this column the name ‘Supplier’.

 The product price Products.Price AS Price.
The Price column in the Products table and give this column the name ‘Price’.

 The value of these products in stock Stock.Number * Products.Price AS Value.
The multiplication of the number of items in stock with the product price and give this
column the name ‘Value’.

 The date when the product was entered date(Stock.Date / 1000, 'unixepoch') AS Date.
We use the SQLite date function where we give the Date column of the Stock table.
As the date is in B4A ticks we need to devide the value by 1000 to adapt it to ‘SQL ticks’
and we must add the parameter 'unixepoch' for ‘SQL ticks’.

5 SQLite Database 56 B4A User's Guide

The query concerns the three tables Stock, Products and Suppliers:

FROM Stock, Products, Suppliers

We must add a WHERE expression:

 To connect the Products table rowID to the Stock ProductID column value.
Products.rowID = Stock.ProductID

 To connect the Suppliers table rowID to the Products SupplierID column value.
Suppliers.rowID = Products.SupplierID

Example of the result:

5 SQLite Database 57 B4A User's Guide

5.10 SQLite Database fifth example program

This SQLite example program is a more elaborated application with a small database with persons,
with First name, Last name, Address and City as the persons’ parameters.

The source code of this example is in the SourceCode\SQL\SQLExample project.

 Database view Edit activity Filter activity

The layouts in the ScrollViews of the Edit and Filter activities are created automatically.

5 SQLite Database 58 B4A User's Guide

What we can do:

Ordering according to a given column

Clicking on a header sorts the database according to this column in ASC ascending mode.

 Default or click on Click on

Click on to delete the current data set.

Click on to filter the database.

Click on to show the Filter activity.

Click on to edit the data set.

5 SQLite Database 59 B4A User's Guide

5.10.1 Editing

Select a data set in the main activity and click on to display the Editor screen below.

Here we can: - Change values

 Move to the previous data set

 Move to the next data set.

 Add the data set to the database.

 Modify the current data set.

 Go back to the main screen.

5 SQLite Database 60 B4A User's Guide

5.10.2 Filtering

In the main view:

A click on filters the database according to the filter parameters.

A click on resets the database to unfiltered.

A click on displays the Filter activity.

What can we do :

Enter different filtering parameters.
Select for example:
- FirstName John
- City London

 Filtering AND function, green active function.

 Filtering OR function.

 Clear all parameters.

 Filters the database.

 Go back to the main screen.

There exist only one person
with the first name John AND living in London.

5 SQLite Database 61 B4A User's Guide

Click on to change the AND parameter to OR and

click on .

The active logical operator is displayed in green.

There are three persons with the first name of John
OR living in London.

5.10.3 Code

Not all the code is explained in detail, only some parts needing a more detailed explanation.
The code is, at least I hope so, well documented

The program has been updated taking advantage of recent features of Basic4Android.
Examaple: Usage of ‘anchors^in the layouts.

Let us define a simple database with persons. Each person has a certain number of parameters,
called a data set or a database entry.
Person:

 First name
 Last name
 Address
 City

It is good practice to add an additional column, called 'ID' with a unique number to differentiate the
data sets.
So the columns are: ID, FirstName, LastName, Address, City

Each column must be given a variable type: INTEGER, TEXT, REAL, BLOB .
In our database example we have following types:
ID INTEGER PRIMARY KEY
FirstName TEXT
LastName TEXT
Address TEXT
City TEXT

5 SQLite Database 62 B4A User's Guide

5.10.3.1 Starter Service
In Process_Global
We define the variables below:
 Public ColumnName(NumberOfColumns) As String ' names of the columns
 Public ColumnName(NumberOfColumns) As String ' names of the columns

And in Service_Create
We define their values:
 ColumnName(0) = "ID"
 ColumnName(1) = "FirstName"
 ColumnName(2) = "LastName"
 ColumnName(3) = "Address"
 ColumnName(4) = "City"

 ColumnAliasName(0) = "ID"
 ColumnAliasName(1) = "First name"
 ColumnAliasName(2) = "Last name"
 ColumnAliasName(3) = "Address"
 ColumnAliasName(4) = "City

ColumName is obvious, the ColumnAliasNames are used to display the table headers, this is useful
to give more meaningful names or to chage the name in multilangage programs.

5.10.3.2 Main Activity

In Activity_Create
We initialize the RowID List which holds the IDs of the datasets of each row.

 ' initialize the RowID
 If RowID.IsInitialized = False Then
 RowID.Initialize
 End If

In Activity_Resume
This code reads the table name of the database.
 ' gets the table name of the database
 Private curs As Cursor
 curs = SQL1.ExecQuery("SELECT name FROM sqlite_master WHERE Type='table'")
 curs.Position = 0
 DBTableName = curs.GetString("name")
 curs.Close

5 SQLite Database 63 B4A User's Guide

The column widths are calculated in this routine:

'Calculates the width of the given column
Sub CalculateColumnWidth(HeaderName As String, ColumName As String) As Int
 Private Curs As Cursor
 Private row, MaxNumberOfChars As Int

 ' reads the max number of characters in the column
 MaxNumberOfChars = SQL1.ExecQuerySingleResult("SELECT max(length(" & _ ColumName &
")) FROM " & DBTableName)
 ' gets all rows with the max number of characters
 Curs = SQL1.ExecQuery("SELECT " & ColumName & " FROM " & DBTableName & " _ WHERE
length(" & ColumName & ") = " & MaxNumberOfChars)
 Curs.Position = 0
 Private TextMaxWidth As Int
 ' measures the text width in pixels of the header name
 TextMaxWidth = cvs.MeasureStringWidth(HeaderName, Typeface.DEFAULT, FontSize)
 For row = 0 To Curs.RowCount - 1
 Curs.Position = row
 ' gets the max text width of the text
 TextMaxWidth = Max(TextMaxWidth, _
cvs.MeasureStringWidth(Curs.GetString(ColumName), Typeface.DEFAULT, FontSize))
 Next
 Curs.Close
 'returns the max text width + 10dip as margin
 Return TextMaxWidth + 10dip
End Sub

We :

 Read the maximum character of the data in each column.
 Read the rows with the longest content for each column.
 Calculate the width of header text.
 Calculate the width of the long column texts.
 Keep the maximum width value.
 Add a margin of 10dip.

5 SQLite Database 64 B4A User's Guide

5.10.3.3 Edit activity

Almost all the code is explained in the source file.

In the EditDispItem
We have this code:
 ' sets the Text properties
 For col = 0 To Main.NumberOfColumns - 1
 Private edt As EditText
 edt = scvEdit.Panel.GetView(col * 2 + 1)
 edt.Text = Cursor1.GetString(Main.ColumnName(edt.Tag))
 Next

What does this edt = scvEdit.Panel.GetView(col * 2 + 1) mean ?
We want to get the view with the given index (col * 2 + 1) from the
ScrollView.Panel scvEdit.Panel

In the ScrollView.Panel we have a Label and an EditText view per column.
The view index begins with 0 and is incremented by one each time we add a view.
So :
View Column Index
Label0 0 0
EditText0 0 1
Label1 1 2
EditText1 1 3
Label2 2 4
EditText2 2 5
Label3 3 6
EditText3 3 7

If we want to get the EditText view for column 3.
We calculate col * 2 + 1 = 3 * 2 + 1 = 7 which is the index of the EditText view for column 3.
Therefore :
edt = scvEdit.Panel.GetView(col * 2 + 1)

5 SQLite Database 65 B4A User's Guide

5.10.3.4 Filter Activity

Almost all the code is explained in the source file.

For the Filter we use a Spinner for each column except for the first one, the ID column.
The Spinners are filled with all DISTICT values from each column.

The query looks like this:
SELECT DISTINCT ColumnName FROM TableName ORDER BY ColumnName ASC

And the code filling the Spinners:
 ' We get all DISTINCT values for each column
 ' and fill the Spinners with these values
 Private txt As String
 txt = "SELECT DISTINCT " & Main.ColumnName(col) & " FROM " & _ Main.DBTableName & "
ORDER BY " & Main.ColumnName(col) & " ASC"
 Curs = Main.SQL1.ExecQuery(txt)
 spn.Clear
 spn.Add("ALL")
 For row = 0 To Curs.RowCount - 1
 Curs.Position = row
 spn.Add(Curs.GetString(Main.ColumnName(col)))
 Next

Another approach could have been to use EditText views, instead of the Spinners, to enter texts and
check if there exist data with the given text or containing the given text in the given column.

6 DBUtils 66 B4A User's Guide

6 DBUtils

For those who are not familiar with SQLite, Erel has written the DBUtils code module that should
make things easier.

Note: DBUtils is a code module and not a library!
To use it, you must load the file DBUtils .bas to your project in the IDE menu Project / Add
Existing Module. This will add the module to your project.

6 DBUtils 67 B4A User's Guide

6.1 DBUtils functions

 CopyDBFromAssets(FileName As String) As String
Copies a database file that was added in the Files tab. The database must be copied to a
writable location because it is not possible to access a database located in File.DirAssets.
This method copies the database to the storage card File.DirDefaultExternal. If the
storage card is not available the file is copied to the internal folder File.DirInternal.
The target folder is returned. If the database file already exists then no copying is done.

 CreateTable(SQL As SQL, TableName As String, FieldsAndTypes As Map, PrimaryKey As
String)
Creates a new table with the given name.
FieldsAndTypes - A map with the fields names as keys and the types as values.
You can use the DB_... constants for the types.
PrimaryKey - The column that will be the primary key. Pass empty string if not needed.

 DropTable(SQL As SQL, TableName As String)
Deletes the given table.

 InsertMaps(SQL As SQL, TableName As String, ListOfMaps As List)
Inserts the data to the table.
ListOfMaps - A list with maps as items. Each map represents a record where the map keys
are the columns names and the maps values are the values.
Note that you should create a new map for each record (this can be done by calling Dim to
redim the map).

 UpdateRecord(SQL As SQL, TableName As String, Field As String, NewValue As Object,
WhereFieldEquals As Map)
Updates a record in the database.
Field - Column name
NewValue - new value
WhereFieldEquals - Map where the map keys are the column names and the map values the
values to look for.

 ExecuteMemoryTable(SQL As SQL, Query As String, StringArgs() As String, Limit As
Int) As List
Executes the query and returns the result as a list of arrays.
Each item in the list is a strings array.
StringArgs() - Values to replace question marks in the query. Pass Null if not needed.
Limit - Limits the results. Pass 0 for all results.

6 DBUtils 68 B4A User's Guide

 ExecuteMap(SQL As SQL, Query As String, StringArgs() As String) As Map
Executes the query and returns a Map with the column names as the keys and the first record
values As the entries values.
StringArgs() - Values to replace question marks in the query. Pass Null if not needed.
The keys are lower cased.
Returns Null if no results found.

 ExecuteSpinner(SQL As SQL, Query As String, StringArgs() As String, Limit As Int,
Spinner1 As Spinner)
Executes the query and fills the Spinner with the values in the first column.
StringArgs() - Values to replace question marks in the query. Pass Null if not needed.
Limit - Limits the results. Pass 0 for all results.

 ExecuteListView(SQL As SQL, Query As String, StringArgs() As String, Limit As Int,
ListView1 As ListView, TwoLines As Boolean)
Executes the query and fills the ListView with the value.
StringArgs()- Values to replace question marks in the query. Pass Null if not needed.
Limit - Limits the results. Pass 0 for all results.
If TwoLines is true then the first column is mapped to the first line and the second column is
mapped to the second line.
In both cases the value set to the row is the array with all the records values.

 ExecuteJSON(SQL As SQL, Query As String, StringArgs() As String, Limit As Int,
DBTypes As List) As Map
Executes the given query and creates a Map that you can pass to JSONGenerator and
generate JSON text.
StringArgs()- Values to replace question marks in the query. Pass Null if not needed.
Limit - Limits the results. Pass 0 for all results.
DBTypes - Lists the type of each column in the result set.
Usage example: (don't forget to add a reference to the JSON library)
 Dim gen As JSONGenerator
 gen.Initialize(DBUtils.ExecuteJSON(SQL, "SELECT Id, Birthday FROM Students",
 Null, 0, Array As String(DBUtils.DB_TEXT, DBUtils.DB_INTEGER)))
 Dim JSONString As String
 JSONString = gen.ToPrettyString(4)
 Msgbox(JSONString, "")

 ExecuteHtml(SQL As SQL, Query As String, StringArgs() As String, Limit As Int,
Clickable As Boolean) As String
Creates a html text that displays the data in a table.
The style of the table can be changed by modifying HtmlCSS variable.
StringArgs() - Values to replace question marks in the query. Pass Null if not needed.
Limit - Limits the results. Pass 0 for all results.

 GetDBVersion(SQL As SQL) As Int
Gets the current version of the database.
If the DBVersion table does not exist it is created and the current version is set to version 1.

 SetDBVersion(SQL As SQL, Version As Int)
Sets the database version to the given version number.

6 DBUtils 69 B4A User's Guide

6.2 Examples

You find Erels' example in the Forum under DBUtils - Android databases are now simple.
This example will not be explained in this chapter.

6.2.1 Example program Main module

The example program in this chapter shows small examples of the DBUtils basics.
The database used is persons.db from the SQLExample in the previous chapter.

The project, SQLDBUtils, is in the SourceCode folder.

The program has different activities showing each some of the DBUtils functions.

DBUtils function used :

 DBUtils.CopyDBFromAssets

 Show the table in a WebView

 Show the FirstName and LastName in a ListView

 Show the table in Spinners

 Edit the database

The code:

Definition of the process global variables : there are no global variables

Sub Process_Globals
 Public DBFileName As String : DBFileName = "persons.db"
 Public DBFileDir As String ' : DBFileDir = File.DirDefaultExternal
 Public DBTableName As String : DBTableName = "persons"

 Dim SQL1 As SQL
End Sub

Sub Globals

End Sub

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/8475-dbutils-android-databases-now-simple-7.html

6 DBUtils 70 B4A User's Guide

Activity_Create routine :

Sub Activity_Create(FirstTime As Boolean)
 If FirstTime Then
 ' File.Delete(File.DirDefaultExternal, DBFileName) ' for testing

 If File.Exists(File.DirDefaultExternal, DBFileName) = False Then
 DBFileDir = DBUtils.CopyDBFromAssets(DBFileName)
 End If
 SQL1.Initialize(DBFileDir, DBFileName, True)
 End If

 Activity.LoadLayout("main")
End Sub

 If FirstTime = True, then we copy the database from the File.DirAssets directory to another
folder if it doesn't already exist.
For testing you could uncomment the line File.Delete... to delete the current database and
replace it by the original one.
By default, DBUtils tries to copy the database to File.DirDefaultExternal if this one is
writable, if not then the database is copied to File.DirInternal.
If the database already exists in the other folder nothing happens.

 Initialize the database.
 Load the main layout file for the main Activity.

btnSelect routine :

Sub btnSelect_Click
 Private btn As Button

 btn = Sender

 StartActivity(btn.Tag)
End Sub

All the Buttons have the same EventName btnSelect defined in the Designer.
The Button.Tag property, btn.Tag in the example, is the name of the Activity we want to start, also
defined in the Designer.
The advantage is that we can add a new button to call a new Activity without the need to modify the
code of the main module.

6 DBUtils 71 B4A User's Guide

6.2.2 Show the table in a WebView

This example is the minimum needed to display a database, extracted from Erels' code.

DBUtils function used :

 DBUtils.ExecuteHtml

Two different displays are shown:

 First and last name in a same column with Name as column name.
 First and last name in two separate columns.

The code:

Definition of the global variables : There are no process global variables.

Sub Globals
 Private WebView1 As WebView
 Private rbtFirstLastName, rbtFirstNameLastName As RadioButton
End Sub

Activity_Create routine :

Sub Activity_Create(FirstTime As Boolean)
 Activity.LoadLayout("webview")

 WebView1.Height=100%y-(rbtFirstNameLastName.Top+ rbtFirstNameLastName.Height)
 ShowTableInWebView(0)
End Sub

We

 Load the activity layout.
 Set the WebView height, adapts for different height/width ratios.
 Display the database in the WebView.

6 DBUtils 72 B4A User's Guide

ShowTableInWebView routine :

Sub ShowTableInWebView(Mode As Int)
 Private Query As String

 If Mode = 0 Then
 Query = "SELECT ID, [FirstName] || ' ' || [LastName] As Name, Address, City FROM "
& Main.DBTableName
 Else
 Query = "SELECT ID, FirstName As [First name], LastName As [Last name], Address,
City FROM " & Main.DBTableName
 End If
 WebView1.LoadHtml(DBUtils.ExecuteHtml(Main.SQL1, Query, Null, 0, True))
End Sub

This routine shows the database in a table in a WebView.

 Mode defines the display mode,
0 = FirstName and LastName in one column.
1 = FirstName and LastName in two separate columns.

The query texts need some explanations (second Query):

 SELECT SQL query keyword
 ID is the DB column name and the same column name is used in the header
 FirstName As [First name]
 FirstName is the DB column name
 As for alias, header name different from the column name
 [First name] is the header name, the [] are needed because of the space between

 First and name
 LastName As [Last name]
 LastName DB column name
 As for alias, header name different from the column name
 [Last name] header name

 Address DB column name and header name
 City DB column name and header name
 FROM SQL query keyword
 DBTableName table name, in this case a variable

Several DB columns can be combined to one table column, this is shown in this line :
txt = "SELECT ID, [FirstName] || ' ' || [LastName] As Name, Address As Address, City As
City FROM " & DBTableName

[FirstName] || ' ' || [LastName] As Name combines the values of the [FirstName] column with
the value of the [LastName] column with a space ' ' between them and Name as the header name.

Fist and last name in a same column. Fist and last name in two separate columns.

6 DBUtils 73 B4A User's Guide

The call of the WebView :

WebView1.LoadHtml(DBUtils.ExecuteHtml(SQL1, Query, Null, 0, True))

Where we call DBUtils.ExecuteHtml with :

 SQL1 SQL object
 Query the SQL query
 Null no array
 0 no limit
 True WebView clickable, if True the WebView1_OverrideUrl event will be raised.

The WebView event routine:

This routine is called when a cell in the table is selected and returns a ToastMessage with the row
and column index.

Sub WebView1_OverrideUrl (Url As String) As Boolean
 'parse the row and column numbers from the URL
 Private values() As String
 values = Regex.Split("[.]", Url.SubString(7))
 Private col, row As Int
 col = values(0)
 row = values(1)
 ToastMessageShow("User pressed on column: " & col & " and row: " & row, False)
 Return True 'Don't try to navigate to this URL
End Sub

The returned value of Utl = http://col.row.com/ Example : http://1.3.com/

We :

 Dim a string array values
 Split the Url string with values = Regex.Split("[.]", Url.SubString(7))

Url.SubString(7) = 1.3.com/ substring beginning with the 7th character till the end.
 Dim col and row as Integers
 col = values(0) and row = values(1)
 Display a ToastMessage with the two values.
 Return True to consume the event, to not transmit it to the operating system.

6 DBUtils 74 B4A User's Guide

RadioButton CheckedChange event routine :

Sub rbtSelectMode_CheckedChange(Checked As Boolean)
 Private rbt As RadioButton

 If Checked Then
 rbt = Sender
 ShowTableInWebView(rbt.Tag)
 End If
End Sub

The two RadioButtons have the same EventName rbtSelectMode defined in the Designer.
The Tag properties are :

 0 for First and last name in the same column.
 1 for First and last name in two separate columns.

We :

 Declare rbt as a local RadioButton.
 If Checked = True then we :
 Set rbt = Sender , the RadioButton that raised the event.
 Display the table according the selected display mode.

6 DBUtils 75 B4A User's Guide

6.2.3 Show FirstName and LastName in a ListView

This activity shows how to display the content of two columns side by side in a ListView.
The 'specialty' is that the two Labels for each item are side by side and not one on top the other.

DBUtils function used :

 DBUtils.ExecuteListView

The code:

Definition of the global variables: There are no process global variables.

Sub Globals
 Private ListView1 As ListView
End Sub

Activity_Create routine :

Sub Activity_Create(FirstTime As Boolean)
 Activity.LoadLayout("listview")

 ListView1.Height = 100%y

 ListViewInit
 ListViewFill
End Sub

We

 Load the activity layout.
 Set the ListView height.
 Initialize the ListView properties.
 Fill the ListView.

6 DBUtils 76 B4A User's Guide

The ListViewInit routine :

Sub ListViewInit
 ListView1.TwoLinesLayout.ItemHeight = 40dip
 ListView1.TwoLinesLayout.Label.Left = 0
 ListView1.TwoLinesLayout.Label.Width = 50%x
 ListView1.TwoLinesLayout.Label.Height = 40dip
 ListView1.TwoLinesLayout.Label.Gravity = Gravity.CENTER_VERTICAL
 ListView1.TwoLinesLayout.Label.Color = Colors.Red
 ListView1.TwoLinesLayout.Label.TextSize = 18

 ListView1.TwoLinesLayout.SecondLabel.Top = 0
 ListView1.TwoLinesLayout.SecondLabel.Left = 50%x
 ListView1.TwoLinesLayout.SecondLabel.Width = 50%x
 ListView1.TwoLinesLayout.SecondLabel.Height = 40dip
 ListView1.TwoLinesLayout.SecondLabel.Gravity = Gravity.CENTER_VERTICAL
 ListView1.TwoLinesLayout.SecondLabel.Color = Colors.Blue
 ListView1.TwoLinesLayout.SecondLabel.TextColor = Colors.Yellow
 ListView1.TwoLinesLayout.SecondLabel.TextSize = 18
End Sub

We :

 Set the ItemHeight = 40dip
 Set the Left, Width, Height, Gravity, Color and TextSize

properties for the first Label.
 Set the Top, Left, Width, Height, Gravity, Color, TextColor and TextSize

properties for the second Label.

The ListViewFill routine :

Sub ListViewFill
 Private Query As String

 Query = "SELECT FirstName, LastName FROM " & Main.DBTableName

 DBUtils.ExecuteListView(Main.SQL1, Query, Null, 0, ListView1, True)
End Sub

The Query :

 SELECT SQL keyword.
 FirstName LastName the two selected column names.
 FROM SQL keyword.
 Main.DBTableName the table name, in this case a process global variable

We call DBUtils.ExecuteListView with

 Main.SQL1 the database
 Query the SQL query
 Null no string array
 0 no limit
 ListView1 the ListView view
 True for two lines ListView (False = one line ListView)

6 DBUtils 77 B4A User's Guide

6.2.4 Display database in Spinners

In this activity we have one Spinner for each column.
Selecting an item in one of the Spinners sets the other Spinners to display the values of the same
record and shows all records with the same selected value.

DBUtils function used :

 DBUtils.ExecuteSpinner
 DBUtils.ExecuteHtml

SMITH selected. Las Vegas selected.

The code:

Definition of the global variables : There are no process global variables.

Sub Globals
 Private spnFirstName, spnLastName, spnAddress, spnCity As Spinner
 Private WebView1 As WebView
End Sub

Activity_Create routine :

Sub Activity_Create(FirstTime As Boolean)

 Activity.LoadLayout("Spinner")

 WebView1.Height = 100%y - (spnCity.Top + spnCity.Height + 8dip)
 FillSpinners
End Sub

We

 Load the activity layout.
 Set the WebView height, adapts for different height/width ratios.
 Fill the Spinners.

6 DBUtils 78 B4A User's Guide

The FillSpinners routine :

Sub FillSpinners
 Private Query As String

 Query = "SELECT FirstName FROM " & Main.DBTableName
 spnFirstName.Clear
 DBUtils.ExecuteSpinner(Main.SQL1, Query, Null, 0, spnFirstName)

 Query = "SELECT LastName FROM " & Main.DBTableName
 spnLastName.Clear
 DBUtils.ExecuteSpinner(Main.SQL1, Query, Null, 0, spnLastName)

 Query = "SELECT Address FROM " & Main.DBTableName
 spnAddress.Clear
 DBUtils.ExecuteSpinner(Main.SQL1, Query, Null, 0, spnAddress)

 Query = "SELECT City FROM " & Main.DBTableName
 spnCity.Clear
 DBUtils.ExecuteSpinner(Main.SQL1, Query, Null, 0, spnCity)
End Sub

We :

 Dim the Query variable.
 Define the Query for the spnFirstName Spinner.
 Call the DBUtils.ExecuteSpinner routine.
 Main.SQL1 the SQL database
 Query the SQL query
 Null no string array
 0 no limit
 spnFirstName the Spinner name

The Query for the FirstName Spinner :

 SELECT SQL keyword.
 FirstName the column name to read.
 FROM SQL keyword.
 Main.DBTableName the table name, in this case a process global variable.

The same principle is used for the other Spinners, the only differences are the column names and
the Spinners.

6 DBUtils 79 B4A User's Guide

6.2.5 Edit database

In this Activity we can modify a record and update the database.

DBUtils function used :

 DBUtils.ExecuteHtml
 DBUtils.UpdateRecord
 DBUtils.ExecuteMemoryTable
 DBUtils.InsertMaps
 DBUtils.DeleteRecord

We have four EditText views for the record values, a WebView to display the database and three
Buttons for updating, adding or deleting a record.

Following functions are available:

 Select a record in the WebView, the EditText views are updated.
 Update the selected record in the table with the new value in the EditText views.
 Add a new record to the table with the values in the EditText views.
 Delete the selected record.

Update a record

 Select a record in the WebView in the example SMITH .
All the EditText views are updated.

 Change the first name from John to John-John.

 Click to update the database, a message box asks for confirmation.
 The database in the WebView is updated.

6 DBUtils 80 B4A User's Guide

Add a new record

 Select a line, the first one in this example
 Enter the new values in the EditText views.

 Click to add the new record.
 The database in the WebView is updated.

Delete a record

 Select a record in the WebView in the example SMITH .

 Click to delete the record, a message box asks for confirmation.
 The database in the WebView is updated.
 The EditText views are empty.

6 DBUtils 81 B4A User's Guide

The code:

Definition of the global variables : There are no process global variables.

Sub Globals
 Private edtFirstName, edtLastName, edtAddress, edtCity As EditText
 Private btnUpdate As Button
 Private WebView1 As WebView
 Private lstTable As List
 Private pnlToolBox As Panel

 Private col, row, ID As Int
End Sub

Activity_Create routine :

Sub Activity_Create(FirstTime As Boolean)
 Activity.LoadLayout("edit")

 pnlToolBox.Top = 100%y - pnlToolBox.Height
 WebView1.Height = pnlToolBox.Top - (edtCity.Top + edtCity.Height + 4dip)

 FillWebView
 pnlToolBox.Visible = False
End Sub

We

 Load the activity layout.
 Set the btnUpdate Button Top property.
 Set the WebView height, adapts for different height/width ratios.
 Fill the WebView.
 Hide the buttons, ToolBox.

The FillWebView routine :

Sub FillWebView
 Private Query As String

 Query = "SELECT * FROM " & Main.DBTableName
 ' the line above does the same as the line below
 ' in bothe cases the WebView column names are the same as the DB column names
 ' Query = "SELECT ID, FirstName, LastName, Address, City FROM " & Main.DBTableName

 WebView1.LoadHtml(DBUtils.ExecuteHtml(Main.SQL1, Query, Null, 0, True))
 lstTable = DBUtils.ExecuteMemoryTable(Main.SQL1, Query, Null, 0)
End Sub

It's similar to the routine in chapter 4.2.2 Show the table in a WebView.

6 DBUtils 82 B4A User's Guide

The WebView event routine :

This routine is called when a cell in the table is selected and returns a ToastMessage with the row
and column index.

Sub WebView1_OverrideUrl (Url As String) As Boolean
 'parse the row and column numbers from the URL
 Private values() As String
 values = Regex.Split("[.]", Url.SubString(7))
 col = values(0)
 row = values(1)

 Dim val(5) As String
 val = lstTable.Get(row)
 ID = val(0)
 edtFirstName.Text = val(1)
 edtLastName.Text = val(2)
 edtAddress.Text = val(3)
 edtCity.Text = val(4)
 pnlToolBox.Visible = True
 Return True 'Don't try to navigate to this URL
End Sub

The returned value of Utl = http://col.row.com/ Example : http://1.3.com/

We :

 Dim a string array values
 Split the Url string with values = Regex.Split("[.]", Url.SubString(7))

Url.SubString(7) = 1.3.com/ substring beginning with the 7th character till the end.
 Dim col and row as Integers
 col = values(0) and row = values(1)
 Display a ToastMessage with the two values.
 Return True to consume the event, to not transmit it to the operating system.

6 DBUtils 83 B4A User's Guide

The btnUpdate_Click routine :

Sub btnUpdate_Click
 Private Answ As Int

 Answ = Msgbox2("Do you really want to update this entry ?", "ATTENTION", "Yes", "", "No",
Null)

 If Answ = DialogResponse.POSITIVE Then
 Private mp As Map
 mp.Initialize
 mp.Put("ID", ID)
 DBUtils.UpdateRecord(Main.SQL1, Main.DBTableName, "FirstName", edtFirstName.Text, mp)
 DBUtils.UpdateRecord(Main.SQL1, Main.DBTableName, "LastName", edtLastName.Text, mp)
 DBUtils.UpdateRecord(Main.SQL1, Main.DBTableName, "Address", edtAddress.Text, mp)
 DBUtils.UpdateRecord(Main.SQL1, Main.DBTableName, "City", edtCity.Text, mp)

 FillWebView
 End If
End Sub

We :

 Ask in a MessageBox if the user really wants to update the record.
 If Yes, we Dim a Map to hold the ID of the record
 Put the ID of the record into the Map
 Update the FirstName field.
 Update the LastName field.
 Update the Address field.
 Update the City field.
 Update the WebView table

In the DBUtils.UpdateRecord we have :

 Main.SQL1 the SQL reference of the database
 Main.DBTableName the table name, a variable in our case
 FirstName the column name
 edtFirstName.Text the new field value
 mp the Map representing theWHERE function of SQL,

 in our case WHERE ID = ID

6 DBUtils 84 B4A User's Guide

The btnAddNew_Click routine :

Sub btnAddNew_Click
 ' adds the new record
 If RecordExists = False Then
 Private maps As List
 Private mp As Map
 maps.Initialize
 mp.Initialize
 mp.Put("ID",Null)
 mp.Put("FirstName", edtFirstName.Text)
 mp.Put("LastName", edtLastName.Text)
 mp.Put("Address", edtAddress.Text)
 mp.Put("City", edtCity.Text)
 maps.Add(mp)
 DBUtils.InsertMaps(Main.SQL1, Main.DBTableName, maps)

 FillWebView
 End If
End Sub

We :

 Check if a record with the same data already exists.
 If No, we Dim a List of Maps maps and a Map mp.
 initialize maps and mp.
 put Null for the ID column, Null for autoincrement of the primary key.
 put edtFirstName.Text in the FirstName column.
 Same for LastName, Address and City.
 add the Map mp to the List maps.
 insert the new record in the database.
 update the WebView table.

6 DBUtils 85 B4A User's Guide

RecordExists routine :

Sub RecordExists As Boolean
 Private Query As String
 Private curs As Cursor

 ' checks if the record already exists
 Query = "SELECT * FROM " & Main.DBTableName & _
 " WHERE FirstName='" & edtFirstName.Text & _
 "' AND LastName='" & edtLastName.Text & _
 "' AND Address='" & edtAddress.Text & _
 "' AND City='" & edtCity.Text & "'"
 curs = Main.SQL1.ExecQuery(Query)
 If curs.RowCount > 0 Then
 Msgbox("This record already exists", "A T T E N T I O N")
 Return True
 Else
 Return False
 End If
End Sub

We :

 Dim the Query and cursor variables.
 Define the Query to check if the values in the four EditTexts already exist.

 SELECT * FROM Table WHERE
 FirstName = 'edtFirstName.Text' if 'edtFirstName.Text' exist in column FirstName.
 LastName = 'edtLastName.Text' if 'edtLastName.Text' exist in column LastName.
 etc.

 Execute the query.
 If the RowCount is heigher than 0 the record already exists and we Return True.
 If the RowCount is equal to 0 the record doen't exist and we Return False.

6 DBUtils 86 B4A User's Guide

The btnDelete_Click routine :

Sub btnDelete_Click
 Private Answ As Int

 Answ = Msgbox2("Do you really want to delete this record ?", "DELETE record", "Yes",
"", "No", Null)

 If Answ = DialogResponse.POSITIVE Then
 Private mp As Map
 Private val(5) As String
 mp.Initialize
 mp.Put("ID", ID)
 val = lstTable.Get(row)
 mp.Put("FirstName", val(1))
 mp.Put("LastName", val(2))
 mp.Put("Address", val(3))
 mp.Put("City", val(4))
 DBUtils.DeleteRecord(Main.SQL1, Main.DBTableName, mp)
 FillWebView
 edtFirstName.Text = ""
 edtLastName.Text = ""
 edtAddress.Text = ""
 edtCity.Text = ""
 row = -1
 col = -1
 pnlToolBox.Visible = False
 End If
End Sub

We :

 Dim the Answ variable
 Ask the user if he really wants to delete the record.
 If the answer is yes (DialogResponse.POSITIVE) then :
 Dim mp as a Map and val(5)as String.
 Initialize the Map mp .
 Put the ID value to the Map.
 Set the values of the current row lstTable.Get(row) to val.

The content of the current row is the string array lstTable.Get(row).
 Put the values of the columns to the Map.
 Execute the Query DBUtils.DeleteRecord(Main.SQL1, Main.DBTableName, mp).
 Run the FillWebView routine to update the table.
 Set the content of the EditText views to empty.
 Set row and col to -1 no row nor column selected.
 Hide the button toolbox, no function available.

7 GPS 87 B4A User's Guide

7 GPS

The GPS library has three objects:

 GPS
 GPSSatellite
 Location

The example program will show several functions of the GPS library and has following functions.

 Connecting the GPS
 Getting and displaying GPS information
 Saving a GPS path
 Display the available satellites
 Showing Google maps
 Show a GPS path on the map

7.1 GPS Library

The GPS LIbrary is part of the basic Basic4Android language.

7.1.1 GPS Object

The GPS object has:

 Members
o GPSEnabled as Boolean [read only]

Tests whether the user has enabled the GPS or not
o Initialize (EventName As String)

Initializes the GPS with its EventName
o LoacationSettingsIntent As android.contend.Intent [read only]

Returns the intent that is used to show the global location settings.

o Start(MinimumTime As Long, MinimumDistance As Float)
Starts listening for events.
MinimumTime The shortest period (in milliseconds) between events.
 Pass 0 for highest frequency
MinimumDistance The shortest change in distance (in meters) for which to raise
 events. Pass 0 for highest frequency.

o Stop
Stops listening to the GPS. You will usually want to call Stop inside Sub
Activity_Pause.

 Events
o LocationChanged (Location1 As Location)

Raised when a new 'fix' is ready.
o UserEnabled (Enabled As Boolean)
o GpsStatus (Satellites As List)
o NMEA (National Marine Electronics Association) returns NMEA data sentences.

http://www.gpsinformation.org/dale/nmea.htm

7 GPS 88 B4A User's Guide

7.1.2 GPS Satellite

The GPSSatellite object holds various information about a GPS satellite. A List with the available
satellites is passed to the GpsSatus event.

Satellite data:

 Azimuth 0 - 360 degrees
 Elevation 0 - 90 degrees
 Prn (Pseudo random number)
 Snr (Signal / noise ratio)
 UsedInFix True if the satellite is used to determine the current fix.

7.1.3 GPS Location

A Location object holds various information about a specific GPS fix (position).
In most cases you will work with locations that are passed to the GPS LocationChanged event.
The location object can also be used to calculate distance and bearing to other locations.

The most useful properties.

 Location1.Latitude latitude of the fix in [°]
 Location1.Longitude longitude of the fix in [°]
 Location1.Altitude altitude of the fix in [m]

This is the altitude above the WGS 84 reference ellipsoid not the altitude above sea level.
 Location1.Bearing bearing of the fix in [°]
 Location1.Speed speed of the fix in [m/s]
 Location1.Time time of the fix in in [ticks]

The most useful methods.

 Location1.Initialize
Initializes an empty location.

 Location1.Initialize2 (Latitude As String, Longitude As String)
Initializes a location with the two given values, all the other properties are 0.

 Location1.DistanceTo (TargetLocation As Location) in [m]
Location1.DistanceTo(Location2)
calculates the distance between Location1 and Location2.

 Location1.BearingTo (TargetLocation As Location) in [°]
Location1.BearingTo(Location2)
calculates the bearing from Location1 to Location2.

7 GPS 89 B4A User's Guide

7.1.4 NMEA data sentences

Unforunately the altitude given in the Location object in the LocationChanged event is not the
altitude above sea level but the altitude above the WGS 84 reference ellipsoid.
The difference can be up to 50 meters.

To get the altitude above sea level we can use the NMEA event.

Sub GPS1_NMEA (TimeStamp As Long, Sentence As String)

TimeStamp is
Sentence represents different data sentences returned by the event.
More detailed information about the different sentences in this LINK.

In the GGA sentence (Fix information) we get following information shown with a sentence
example:

$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47

Where:
 GGA Global Positioning System Fix Data
123519 Fix taken at 12:35:19 UTC
4807.038,N Latitude 48 deg 07.038' N
01131.000,E Longitude 11 deg 31.000' E
1 Fix quality: 0 = invalid
 1 = GPS fix (SPS)
 2 = DGPS fix
 3 = PPS fix
 4 = Real Time Kinematic
 5 = Float RTK
 6 = estimated (dead reckoning) (2.3 feature)
 7 = Manual input mode
 8 = Simulation mode
08 Number of satellites being tracked
0.9 Horizontal dilution of position
545.4,M Altitude, Meters, above mean sea level
46.9,M Height of geoid (mean sea level) above WGS84 ellipsoid
 (empty field) time in seconds since last DGPS update
 (empty field) DGPS station ID number
*47 the checksum data, always begins with *

You can use the code below to get the altitude above sea level.

Sub GPS1_NMEA (TimeStamp As Long, Sentence As String)
 If Sentence.SubString2(0, 6) = "$GPGGA" Then
 Private vals() As String
 vals = Regex.Split(",", Sentence)
 GPSAltitudeSeaLevel = vals(9)
 End If
End Sub

GPSAltitudeSeaLevel is a global variable : Dim GPSAltitudeSeaLevel As Double

http://www.gpsinformation.org/dale/nmea.htm
http://www.gpsinformation.org/dale/nmea.htm

7 GPS 90 B4A User's Guide

7.2 GPS Program

The GPS example program shows several possibilities of the GPS library and has the following
functions :

 Connect the GPS
 Get and display GPS information
 Save a GPS path
 Display the available satellites
 Display Google maps
 Display a GPS path on the map

Google map functions, user settable :
 Display zoom control
 Display scale control
 Display map type control
 Display a path
 Display markers
 Move a marker
 Display coordinates (touch the screen)
 Move the map / Display coordinates (touch the screen and move)

It is designed for smartphones and works only in portrait mode.
It is only available for users who bought Basic4Android, the program takes advantage of libraries
which are not part of the trial version.
The source code of this program is available in the users forum in the GPSExample project.
It is not in the SourceCode directory of this guide to guarantee the latest version of the program.

 Main screen Google Maps

http://www.basic4ppc.com/forum/basic4android-share-your-creations/13345-gps-example-3.html

7 GPS 91 B4A User's Guide

 GPS display GPS display plus map

 Setup Satellites

7 GPS 92 B4A User's Guide

 GPS path data Map with GPS path

7 GPS 93 B4A User's Guide

7.2.1 General explanations

Main screen buttons:

Displays Google maps centered on the default coordinates (defined in the setup).
If there is a GPS path, this one is displayed, centered and zoomed to show the whole path.

Displays the setup screen.

Activates the GPS and memorizes the fixes depending on the setup.

Shows the available satellites.

Displays the data of a GPS path.

For certain functions, the button color is red when they are activated .

Tooltips for the buttons.

When you touch a button the tooltip is displayed on top
of the screen.

When you release it, the tooltip is hidden.

The function is executed when you release the button
inside the buttons area.

If you release the button outsides its area the function is
not executed, this allows the user to look at the buttons
function without executing it.

7 GPS 94 B4A User's Guide

7.2.2 Setup

 The setup screen allows to define setup parameters for the program.

GPS
- min time between two fixes.
- min distance between two fixes.
Enable display of:
- Speed
- Bearing

- Windrose

GPS path units, for the display of the values.
- unit for Altitude m and ft
- unit for Speed m/s, km/h and mile/h

- unit for Distance m, km and mile

Map Default location
- Latitude
- Longitude
- Zoom level
- Draggable Checked means: the map can be moved
 Unchecked means: show the coordinates.
GPS
- Show the current GPS location on the map.
- Save the GPS path when the GPS is stopped.

- Draw the
GPS path online (not yet implemented)

Map show different controls, marker/line properties
- Display center marker
- Display GPS path markers
- Display the GPS path polyline

- Scale control

- Type control, map ROADMAP or SATELLITE

- Zoom control DEFAULT, SMALL, LARGE

GPS Polyline properties
- Width in pixels
- Color
- Opacity 0 = transparent

GPS Marker

properties

5 GPS 95 Basic4Android User's Guide

- Marker clickable (not yet implemented)
- Marker draggable

7 GPS 96 B4A User's Guide

7.2.3 GPS display

 GPS display.

When activated, the GPS displays following parameters:

 Latitude
 Longitude
 Altitude
 Speed user selectable in the setup
 Bearing user selectable in the setup
 Windrose user selectable in the setup

The minimum time and minimum distance to raise a fix change can be set in the setup screen.
Values of 0 for both parameters give the fastest acquisition frequency.
The number of memorized fixes is displayed in the titlebar.

The map can be displayed at the same time with the current GPS location.

After stopping the GPS the user is asked to save the path giving a file name and a comment.

7 GPS 97 B4A User's Guide

7.2.4 Satellites

The Satellites screen displays the information about the satellites currently received by the GPS.

The displayed data are:

 Azimuth
 Elevation
 Used
 Signal/Noise ratio

7 GPS 98 B4A User's Guide

7.2.5 Map display

 The Google map can be displayed on the main screen.

 with markers without markers

The following elements can either be displayed or hidden, set in the Setup screen :

 Type control MAP or SATELLITE
 Scale control
 Zoom control
 GPS path (polyline)
 Markers

7 GPS 99 B4A User's Guide

The map can be zoomed with a 'double click'.
Or with the zoom button.

 If the map is 'Draggable' then :
 touching and moving (dragging) moves the

map.

 If the map is NOT 'Draggable' then
 touching the screen shows the coordinates of

that position.
 touching and moving (dragging) shows the

coordinates

Changing settings directly when the map is displayed:

Touching the MAP button shows a second button on
top of it.
Moving up into the area of the second button, this one
becomes red, and releasing it changes the map mode

from draggable to coordinates and vice and versa.

Touching the PATH button shows three more
buttons on top of it.
Moving on one of these buttons allows to choose
either:

 Polyline of the path with the
markers.

 Polyline of the path without the
markers.

 No polyline and no markers.

7 GPS 100 B4A User's Guide

7.2.6 GPS path

 The data from the GPS can be memorized and saved in files.

General data for the file:

 The filename
 The number of points in the file
 A comment for the path

The variables of a GPS fix are:

 Latitude the latitude of the fix [°]
 Longitude the longitude of the fix [°]
 Altitude the altitude of the fix [m]
 Time the time when the fix was taken [tick]
 Bearing the bearing from the previous fix [°]
 Speed the speed between the two fixes [m/s]
 Distance the distance between the two fixes [m]
 Dist tot the total distance from the first fix [m]
 Marker flag if a marker should be shown [-]

The GPS path screen shows the data of the selected GPS path.

The data can be scrolled vertically, normal ScrollView scrolling, and horizontally with the slider.
The left column with the ID remains always visible.

7 GPS 101 B4A User's Guide

You can:

Delete the selected file.

Load a GPS path file.

Save the GPS path file.

Delete the selected row.

Filter a path

Clicking on a row selects it or unselects it.

When a row is selected :

 it is highlighted in red.
 a Delete button is displayed allowing to delete this fix.

When a fix is deleted the Speed, Bearing, Distance and Dist Tot values are updated.

Clicking on one of the headers below changes the unit of the displayed values.

 Altitude Speed Distance / Dist tot
 m ft m/s km/h mile/h m km mile

 check / uncheck
Clicking on a marker cell changes between checked and unchecked. Marker

7 GPS 102 B4A User's Guide

GPS path filtering.

When memorizing GPS paths it often happens that there are some point aligned along a straight
line. These points can be removed.
The principle of the program is the following.

 The program looks at 3 successive points.
 Calculates the distance of the midpoint out of the line between the the two outer points.
 If this distance is higher than the predefined value the point is selected and can be deleted.

With the file added by default Test2.GPP you can test it
yourself.

In this example, Test2.GPP, the number of original
points is 78.
The number of points to filter (delete), with a
distance of 5 m, is 46.

 before filtering after filtering

7 GPS 103 B4A User's Guide

7.2.7 Save GPS path file / KML file

A GPS path can be save either :

 in the program specific GPP format (GPS Path)

 in the Google Earth KML format.

Enter the filename.
The program adds automatically the correct suffix.

Enter a comment.

Reminder of the number of points.

The drawback of the kml format is that you loose the
time and speed information for each fix.
The advantage is, you can display the path in Google
Earth.

KML documentation.

http://code.google.com/intl/fr/apis/kml/documentation/kml_tut.html

7 GPS 104 B4A User's Guide

7.3 GPS Program Code

Not all the code of the program will be explained in this chapter but only some more special
features. Many functions are almost the same as explained in other examples.

The line numbers in the code snippets in this chapter can be somewhat different from the
latest project.

The program has following modules:

 Main activity module
main screen, GPS screen and GoogleMaps screen.

 Satellites activity module
display of the satellites data.

 Setup activity module
setup screen using a ScrollView with a panel higher than the screen.

 GPSPaths activity module
displays the GPS path data plus loading, saving and editing.

 GPSSave activity module
screen for saving a GPS path file with file name and comment entry.

 GPSModule code module
GPS code used in several activity modules

7 GPS 105 B4A User's Guide

7.3.1 Initialization of the GPS

Android doesn't allow a program to start the GPS automatically for security reasons, only the user
can enable it.

If the GPS is disabled, the program must ask the user to enable it, this is done with the following
code (in the btnGPS_Touch routine in the Main module) :

 If GPS1.GPSEnabled = False Then
 ToastMessageShow("Please enable the GPS device." & CRLF & "And press the BACK button",
True)
 StartActivity(GPS1.LocationSettingsIntent)
 End If

Here we check if the GPS is enabled.
If no, we show a ToastMessage asking the user to enable it and activate the LocationSettings screen
where the user must check the GPS.

Then we can start the GPS with:

GPS1.Start(GPSMinTime, GPSMinDistance)

Where:

 GPSMinTime = the minimum time before the next fix.
 GPSMinDistance = the minimum distance before the next fix.

To have the quickest sampling of the GPS enter zeros for both parameters : GPS1.Start(0,0)

7 GPS 106 B4A User's Guide

7.3.2 Button with tooltip

The buttons of the program show a tooltip on top of the screen when they are touched.
The views used for this are not Buttons but Panels, because Button don't have the Touch event and
Panels have it.

btnGPS button (panel), in the Main module:
This button acts as a toggle button, GPS ON or OFF with a color change.

Sub btnGPS_Touch(Action As Int, x As Float, y As Float)
 Private bmd As BitmapDrawable

 Select Action
 Case Activity.ACTION_DOWN
 If GPS_On = False Then
 ToolTip("Activates the GPS")
 bmd.Initialize(LoadBitmap(File.DirAssets, "btngps1.png"))
 Else
 ToolTip("Stops the GPS")
 bmd.Initialize(LoadBitmap(File.DirAssets, "btngps0.png"))
 End If
 btnGPS.Background = bmd

- First we dim a BitmapDrawable object that will contain the bitmap to display in the button.
- Select ACTION_DOWN,
 - Check if GPS is OFF (GPS_On = False) or ON (GPS_On = True)
 - Load the corresponding bitmap and set it to the buttons background.

 Case Activity.ACTION_UP
 If x > 0 AND x < btnGPS.Width AND y > 0 AND y < btnGPS.Height Then
 GPS_On = Not(GPS_On)
 If GPS_On = False Then
 bmd.Initialize(LoadBitmap(File.DirAssets, "btngps0.png"))
 GPS1.Stop
 PhoneAwake.ReleaseKeepAlive
 If GPSPath.Size > 0 Then
 cvsMap.DrawRect(rectMapPos, Colors.Transparent, True, 1)
 pnlMap.Invalidate2(rectMapPos)

 If SaveGPSPath = True Then
 StartActivity(GPSSave)
 End If
 Else
 Msgbox("There are no waypoints", "GPS path saving")
 GPSModule.LoadPath
 MapZoomLevel = MapZoomLevelOld
 MapCenter = MapOldCenter
 MapShow
 End If

- Select ACTION_UP
- Check if the touch coordinates are within the button area. If yes we execute the function.
 - Change the GPS_On variable
 - Check if GPS_On = False (GPS disabled) we
 - Load the corresponding bitmap (blue image)
 - Stop the GPS
 - Release the phone keep alive function

5 GPS 107 Basic4Android User's Guide

 - Check if there are GPS path data GPSPath.Size > 0
 - Check if saving GPS pata data is selected
 - Start the GPS path data saving Activity
 - If not
 - Display a MessageBox
 - Load the previous GPS path
 - Show the GoogleMap

 Else
 bmd.Initialize(LoadBitmap(File.DirAssets, "btngps1.png"))
 If GPS1.GPSEnabled = False Then
 ToastMessageShow("Please enable the GPS device." & CRLF & "And press the BACK
button", True)
 StartActivity(GPS1.LocationSettingsIntent)
 End If
 GPSPath.Initialize
 If Map_On Then
 MapZoomLevelOld = MapZoomLevel
 MapOldCenter = MapCenter
 MapZoomLevel = MapDefaultZoomLevel
 MapCenter.Latitude = MapDefaultLat
 MapCenter.Longitude = MapDefaultLng
 MapShow
 End If
 PhoneAwake.KeepAlive(False)
 lblLatitude.Text = "- - -"
 lblLongitude.Text = "- - -"
 lblAltitude.Text = "- - -"
 lblBearing.Text = "- - -"
 lblSpeed.Text = "- - -"

 GPS1.Start(GPSMinTime, GPSMinDistance)
 End If

 - If GPS_On = True (GPS enabled) we
 - Load the corresponding bitmap (red image)
 - Check if the GPS is not enabled on the phone
 - Display a ToastMessage inviting the user to enable the GPS
 - Call the phone setup to let the user enable the GPS
 - Initialize the GPSPath data list
 - Check if the Map_On = True, map displayed
 - Set the Zoom level, centre lat and long to the default values
 - Update the map the new parameters
 - Set the PhoneAwake function, the False parameter indicates no bright screen
 - set the different display labels to "- - -", no value
 - Start the GPS, GPSMinTime and GPSMinDistance are defined in the setup screen.

7 GPS 108 B4A User's Guide

 pnlDispGPSLatLng.Visible = GPS_On
 pnlDispGPSAltitude.Visible = GPS_On
 pnlDispGPSSpeed.Visible = GPS_On AND GPSDispSpeed
 pnlDispGPSBearing.Visible = GPS_On AND GPSDispBearing
 pnlDispGPSWindrose.Visible = GPS_On AND GPSDispWindrose
 pnlMainBackgound.Visible = Not(pnlDispGPSWindrose.Visible)
 btnGPS.Background = bmd
 End If
 ToolTip("")
 End Select
End Sub

- Then show the different display labels according to setup settings.
 - Set the background image
- Hide the tooltip.

7 GPS 109 B4A User's Guide

7.3.3 Button with tooltip and additional buttons

btnGPSPath button (panel), in the Main module:

This button starts the GPSPaths activity,
or if the map is displayed shows three more buttons that
allow to change the following map setup parameters:

 Display the markers and the polyline of the GPS
path on the map

 Display only the polyline, no markers, of the
GPS path on the map

 Display only the map
The three upper buttons are on a Panel,
pnlGPSPathToolbox.

Sub btnGPSPath_Touch(Action As Int, x As Float, y As Float)
 Private bmd, bmd1, bmd2, bmd3 As BitmapDrawable

 Select Action
 Case Activity.ACTION_DOWN
 ToolTip("Shows the GPS path points")
 bmd.Initialize(LoadBitmap(File.DirAssets, "btngpspath1.png"))
 btnGPSPath.Background = bmd
 If Map_On = True Then
 pnlGPSPathToolbox.Visible = True
 End If

- First we dim four BitmapDrawable objects for the background images.
- Select Activity ACTION_DOWN
 - Show the tooltip
 - Load the red image bitmap
 - Set the button background image
 - Check if the map is displayed
 - If yes, we show the pnlGPSPathToolbox panel with the three supplementary buttons.

7 GPS 110 B4A User's Guide

Case Activity.ACTION_MOVE
 If x > 0 AND x < btnGPSPath.Width AND y > -3 * btnGPSPath.Height AND y < -2 *
btnGPSPath.Height Then
 bmd3.Initialize(LoadBitmap(File.DirAssets, "btngpspathmarker1.png"))
 bmd2.Initialize(LoadBitmap(File.DirAssets, "btngpspathline0.png"))
 bmd1.Initialize(LoadBitmap(File.DirAssets, "btngpspath0.png"))
 ToolTip("Shows the polyline and the markers")
 Else If x > 0 AND x < btnGPSPath.Width AND y > -2 * btnGPSPath.Height AND y < -
btnGPSPath.Height Then
 bmd3.Initialize(LoadBitmap(File.DirAssets, "btngpspathmarker0.png"))
 bmd2.Initialize(LoadBitmap(File.DirAssets, "btngpspathline1.png"))
 bmd1.Initialize(LoadBitmap(File.DirAssets, "btngpspath0.png"))
 ToolTip("Shows the polyline without the markers")
 Else If x > 0 AND x < btnGPSPath.Width AND y > -btnGPSPath.Height AND y < 0 Then
 bmd3.Initialize(LoadBitmap(File.DirAssets, "btngpspathmarker0.png"))
 bmd2.Initialize(LoadBitmap(File.DirAssets, "btngpspathline0.png"))
 bmd1.Initialize(LoadBitmap(File.DirAssets, "btngpspath1.png"))
 ToolTip("Doesn't shows the polyline nor the markers")
 Else
 bmd3.Initialize(LoadBitmap(File.DirAssets, "btngpspathmarker0.png"))
 bmd2.Initialize(LoadBitmap(File.DirAssets, "btngpspathline0.png"))
 bmd1.Initialize(LoadBitmap(File.DirAssets, "btngpspath0.png"))
 ToolTip("Shows the GPS path points")
 End If
 btnGPSPath3.Background = bmd3
 btnGPSPath2.Background = bmd2
 btnGPSPath1.Background = bmd1

In this part we check if the move coordinates are in the area of a button and change the button
images, red in in the area and blue outsides.

- Select Activity ACTION_MOVE
 - Check if the move coordinates are in the area of the top most button, if yes
 - Load the corresponding images for the four buttons.
 - Check if the move coordinates are in the area of the second button from top, if yes
 - Load the corresponding images for the four buttons.
 - Check if the move coordinates are in the area of the third button from top, if yes
 - Load the corresponding images for the four buttons.
 - Check if the move coordinates are in the area of the lower button, if yes
 - Load the corresponding images for the four buttons.
 - Set the images for the three top buttons

7 GPS 111 B4A User's Guide

 Case Activity.ACTION_UP
 If x > 0 AND x < btnGPSPath.Width Then
 If y > -3 * btnGPSPath.Height AND y < -2 * btnGPSPath.Height Then
 DispMapMarkers = True
 DispMapPolylne = True
 MapShow
 Else If y > -2 * btnGPSPath.Height AND y < -btnGPSPath.Height Then
 DispMapMarkers = False
 DispMapPolylne = True
 MapShow
 Else If y > -btnGPSPath.Height AND y < 0 Then
 DispMapMarkers = False
 DispMapPolylne = False
 MapShow
 Else If y > 0 AND y < btnGPSPath.Height Then
 StartActivity("GPSPaths")
 End If
 End If
 If DispMapMarkers = True Then
 bmd.Initialize(LoadBitmap(File.DirAssets, "btngpspathmarker0.png"))
 Else If DispMapPolylne = True Then
 bmd.Initialize(LoadBitmap(File.DirAssets, "btngpspathline0.png"))
 Else
 bmd.Initialize(LoadBitmap(File.DirAssets, "btngpspath0.png"))
 End If

 ToolTip("")
 pnlGPSPathToolbox.Visible = False
 btnGPSPath.Background = bmd
 End Select
End Sub

In this part we check in what button area the UP coordinates are in and execute, or not, the
corresponding functions.

- Select Activity ACTION_UP
 - Check if the move coordinates are in the area of the top most button, if yes
 - Set the setup variables the given values, DispMapMarkers = True DispMapPolyline = True.
 - Update the map.
 - Check if the move coordinates are in the area of the second button from top, if yes
 - Set DispMapMarkers = False DispMapPolyline = True.
 - Update the map.
 - Check if the move coordinates are in the area of the third button from top, if yes
 - Set DispMapMarkers = False DispMapPolyline = False.
 - Update the map.
 - Check if the move coordinates are in the area of the lower button, if yes
 - Start the GPSPaths activity.
 - Depending on the setup variables we load the correct bitmap for the btnGPSPath button.
 - Hide the tooltip.
 - Hide the toolbox of the three upper buttons.
 - Set the correct bitmap to btnGPSPath.

7 GPS 112 B4A User's Guide

7.3.4 GPS Calculate distance scales

The two routines below calculate the latitude X and longitude Y coordinates, in km,
from coordinate 0, 0 (equator and Greenwich meridian) to the given lat and lng coordinates.

 lat and lng are in degrees, we need to transform them to radians
with lng / 180 * cPI and lat / 180 * cPI.

 for Y (lat) we multiply the angle (in radians) by the earth radius (6371 km)
 for X (lng) we multiply the angle (in radians) by the earth radius (6371 km)

and multiply by CosD(lat).

The EarthRadius variable is defined in the Process_Globals routine in the GPSPaths module.
The EarthRadius value used, 6371 km, is a mean value. In reality, the EarthRadius varies with the
latitude but for our calculations the assumption of a mean radius is enough accurate.

Sub GPSCalcX(lat As Double) As Double
 ' calculates the longitude distance in km from coordinates 0, 0
 Return lat * EarthRadius / 180 * cPI
End Sub

It's 'simply' the Earthradius multiplied by the angle lat, but the angle is in degrees so we need to
transform it into radians.

Sub GPSCalcY(lat As Double, lng As Double) As Double
 ' calculates the latitude distance in km from coordinates 0, 0
 Return lng * EarthRadius / 180 * cPI * CosD(lat)
End Sub

The calculation for the lng coordinate is similar to the lat calculation.
But, the radius of a circle of latitude depends on the latitude,
so we need to multiply the result by the cosine of lat CosD(lat).
We use CosD because the angle is in degrees.

http://en.wikipedia.org/wiki/Earth_radius
http://en.wikipedia.org/wiki/Circle_of_latitude

7 GPS 113 B4A User's Guide

7.3.5 Drawing GPS position

 The current GPS position is drawn on the map when:

 the GPS is active,

 a map is displayed.

'Show GPS on map' is selected in the setup.

The GoogleMap is drawn on the WebView MapViewer.
The position is drawn on the transparent panel pnlMap which is on top of the Activity and the
MapViewer WebView. The code below is in:

Sub GPS1_LocationChanged (Location1 As Location)
.
.
 If ShowGPSOnMap = True Then
 Private xc, yc As Float
 xc = (Location1.Longitude - MapCenter.Longitude)/ MapScaleLng + MapViewer.Width / 2
 yc = (MapCenter.Latitude - Location1.Latitude) / MapScaleLat + MapViewer.Height / 2
 If xc < 10%x OR xc > 90%x OR yc < 20%y OR yc > 80%y Then
 MapCenter.Latitude = Location1.Latitude
 MapCenter.Longitude = Location1.Longitude
 MapShow
 End If
 DrawGPSPosition(xc, yc)
 End If
End Sub

Where:

 Location1.Longitude, Location1.Latitude
are the current location coordinates in degrees.

 MapCenter.Longitude, MapCenter.Latitude
are the current map center coordinates in degrees

 MapScaleLng, MapScaleLat are the scales, degrees/pixel, of the current map.
 xc, yc are the coordinates of the current location in pixels.

Location1.Longitude and Location1.Latitude, the coordinates of the current position, are given
by the GPS.
In the equation.
xc = (Location1.Longitude - MapCenter.Longitude) / MapScaleLng + MapViewer.Width / 2

(Location1.Longitude - MapCenter.Longitude)
Is the x distance, in degrees, from the map center to the current location.

(Location1.Longitude - MapCenter.Longitude) / MapScaleLng
Is the x distance, in pixels, from the the map center to the current location.

(Location1.Longitude - MapCenter.Longitude) / MapScaleLng + MapViewer.Width / 2
Is the x distance, in pixels, from the left border to the current location.

The equation for yc is similar.

7 GPS 114 B4A User's Guide

 If xc < 10%x OR xc > 90%x OR yc < 20%y OR yc > 80%y Then
 MapCenter.Latitude = Location1.Latitude
 MapCenter.Longitude = Location1.Longitude
 MapShow
 End If

Here we check if the current location reaches one of the maps borders, and if true, we set the map
centre coordinates to the current location coordinates and redraw the map.

 DrawGPSPosition(xc, yc) Draws the location on the map.

Complementary calculation routines:

CalcMapScales: calculates the map pixel scales

Sub CalcMapScales
 ' Calculates the map scales
 MapScaleLng = 360 / Power(2, MapZoomLevel) / TileSize
 MapScaleLat = MapScaleLng * CosD(MapCenter.Latitude)
End Sub

Where:

 MapScaleLng = Longitude scale in degrees/pixel
 MapZoomLevel = Current map zoom level
 TileSize = Map tile size in pixels
 MapScaleLat = Latitude scale in degrees/pixel
 MapCenter.Latitude = Center lat coordinate of the current map in degrees.

360 is the earth circumference in degrees.
Power(2, MapZoomLevel) is the number of tiles for the given zoom level.
The default map tile size is 256 pixels defined in the Main module.

 Private TileSize As Int : TileSize = 256

But this tile size must be changed according to the device's density, because on different devices
with almost the same physical dimensions, but different densities, the size of the map is the same.
That means that the tile size is proportional to the device density.

 Private lv As LayoutValues
 lv = GetDeviceLayoutValues
 TileSize = TileSize * lv.Scale

7 GPS 115 B4A User's Guide

Drawing of the GPS position on the map :

Sub DrawGPSPosition(xc As Float, yc As Float)
 Private x1, y1, x2, y2 As Float
 Private dd1, dd2, r As Float

 cvsMap.DrawRect(rectMapPos, Colors.Transparent, True, 1)
 pnlMap.Invalidate2(rectMapPos)

 dd1 = 20dip
 dd2 = 20dip
 r = 10dip
 x1 = xc - dd1
 y1 = yc - dd1
 x2 = xc + dd2
 y2 = yc + dd2
 rectMapPos.Initialize(x1, y1, x2 + 1, y2 + 1)

 cvsMap.DrawLine(x1, yc, x2, yc, Colors.Red, 1dip)
 cvsMap.DrawLine(xc, y1, xc, y2, Colors.Red, 1dip)
 cvsMap.DrawCircle(xc, yc, r, Colors.Red, False, 3dip)
 pnlMap.Invalidate2(rectMapPos)
End Sub

We

 define local variables
 draw a transparent rectangle to erase the previous position
 update the drawing
 set the variables for the drawing
 define the new surrounding rectangle
 draw a horizontal line
 draw a vertical line
 draw a circle
 update the drawing

If there are code sections you would like to be developed here, please post the questions and
suggestions in the GPSExample thread on the users forum.

http://www.basic4ppc.com/forum/basic4android-share-your-creations/13345-gps-example-3.html

8 Widgets 116 B4A User's Guide

8 Widgets, home screen widgets

This chapter is a copy of Erels' two tutorials in the users forum.
Android home screen widgets tutorial - part I
Android home screen widgets tutorial - part II

8.1 Widgets Part I

Basic4android v1.6 adds support for home screen widgets. This tutorial will explain how to
implement your own home screen widgets (also named App Widgets).

It is important to understand that the widgets are created and managed in another process, different
than the process that your application is running in. The home screen application is hosting your
widgets.
This means that it is not possible to directly access the widgets views. Instead we are using a special
object named RemoteViews which gives us indirect access to the widget views.

Widgets do not support all views types. The following views are supported:

 Button (default drawable)
 Label (ColorDrawable or GradientDrawable)
 Panel (ColorDrawable or GradientDrawable)
 ImageView
 ProgressBar (both modes)

All views support the Click event and no other event.

The widget layout and configuration must be defined with XML files. During compilation
Basic4android reads the layout file created with the designer and generates the required XML files.

Each widget is tied to a Service module. The widget is created and updated through this module.

Creating a widget - step by step guide

 Add a Service module. Note that the service module handling the widget is a standard
service.

 Design the widget layout with the designer. First add a Panel and then add the other views to
this Panel.

The widget layout will be made from this panel.
 Add code similar to the following code the service module:

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/10166-android-home-screen-widgets-tutorial-part-i-8.html
http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/10356-android-home-screen-widgets-tutorial-part-ii.html

8 Widgets 117 B4A User's Guide

Sub Process_Globals
 Public rv As RemoteViews
End Sub

Sub Service_Create
 rv = ConfigureHomeWidget("LayoutFile", "rv", 0, "Widget Name")
End Sub

Sub Service_Start (StartingIntent As Intent)
 If rv.HandleWidgetEvents(StartingIntent) Then Return
End Sub

Sub rv_RequestUpdate
 rv.UpdateWidget
End Sub

Sub rv_Disabled
 StopService("")
End Sub

Sub Service_Destroy

End Sub

 Compile and run your application. Go to the home screen, long press on the screen and you
will see your widget listed on the widgets list.

ConfigureHomeWidget is a special keyword. At runtime it creates the RemoteViews object from
the layout and sets the events. At compile time the compiler generates the required files based on
the arguments of this keyword.
The four parameters are: layout file, event name, update interval and the widget name.
Event name sets the subs that will handle the RequestUpdate and Disabled events.
The widget can be configured to update itself automatically. The interval, measured in minutes,
defines how often will the widget request to update itself. Set to 0 to disable automatic updates.
Updating the widget too often will have a bad impact on the battery. The minimum value is 30
minutes.
Widget name - the name that will appear in the widgets list.

As these arguments are read by the compiler, only strings or numbers are accepted.

Events:

Sub Service_Start (StartingIntent As Intent)
 If rv.HandleWidgetEvents(StartingIntent) Then Return
End Sub

The above code checks the Intent message that caused this service to start and is responsible for
raising the events related to the widget. It returns true if an event was raised.
The widget raises two events. RequestUpdate is raised when the widget needs to update itself. It
will fire after adding the widget to the screen, after the device has booted, based on the scheduled
updating interval (if set) or after the application was updated.
The Disabled event is raised when the last instance of our widget is removed from the screen.

8 Widgets 118 B4A User's Guide

As mentioned above all views support the Click event. All that needs to be done in order to handle
the click event of a button named Button1 is to add a sub named Button1_Click (the sub name
should actually match the EventName property which is by default the same as the name).
For example if you want to show the main Activity when the user presses on Button1 you can use
this code:

Sub Button1_Click
 StartActivity(Main)
End Sub

Modifying the widget:
It is not possible to directly access the widget views. Instead we need to use one of the
RemoteView.Set methods.
If we want to change the text of a label named Label1 then we need to write the following code:

rv.SetText("Label1", "This is the new text.")
'do more changes if needed
rv.UpdateWidget

After writing all the changes we call rv.UpdateWidget to send the updates to the widget.

A simple example is available in the forum : HomeWidgets.

The example adds a simple widget. The widget doesn't do anything useful.

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/10166-android-home-screen-widgets-tutorial-part-i-8.html

8 Widgets 119 B4A User's Guide

8.2 Widgets Part II

In this part we will build a "quote of the day" widget.

We will start with the layout. The widget is made of a Label for the text and an ImageView for the
arrow button.

The layout in an emulator:

You can see in the above picture that we use two panels. The base panel named pnlBase is a
transparent panel (Alpha=0). The base panel contains another panel which is the grey panel.
The purpose of the transparent panel is to add some padding to the other views. The widget size is
determined by the base panel. Without the transparent panel there will be no margin between the
visible widget and the screen left edge.

8 Widgets 120 B4A User's Guide

We are setting the base panel size to 294x72.

This is the recommended size for a 4x1 cells widget.
Tip: in some cases when you change the layout and there is
already an existing widget in the device, the widget doesn't
get updated. Remove the widget and add it again to see the
change.

Now for the program logic.
Once a day the program fetches 20 quotes from 5 feeds available from Famous Quotes at
BrainyQuote
Then the first quote is displayed. Each time the user presses on the arrow button the next quote is
displayed.
While getting the quotes the first quote of each feed is added to the beginning of the quotes list.
Only the first quote on each feed is new, and we want to start with the new quotes.
Downloading the feeds is done with HttpUtils and parsing them is done with XmlSax library. See
the code for more information.

The widget is configured to be updated automatically every 24 hours. This is done in this line:

 'configure the widget and set it to update every 24 hours (1440 minutes).
rv = ConfigureHomeWidget("WidgetLayout", "rv", 1440, "Quote of the day")

After 24 hours or when the widget is first added or after a boot the RequestUpdate event is raised.

Sub rv_RequestUpdate
 quotes.Clear
 currentQuote = -1
 HttpUtils.DownloadList("Quotes", Array As
String("http://feeds.feedburner.com/brainyquote/QUOTEBR", _
 "http://feeds.feedburner.com/brainyquote/QUOTEAR",
"http://feeds.feedburner.com/brainyquote/QUOTEFU", _
 "http://feeds.feedburner.com/brainyquote/QUOTELO",
"http://feeds.feedburner.com/brainyquote/QUOTENA"))
End Sub

First we clear the current quotes and then we fetch the new ones. Note that if the device was
sleeping at this time then the calls are likely to fail as most devices turn off the wifi while sleeping.
In this case new quotes will arrive when the user presses on the arrow button.
In cases like this you should not count on the automatic update to succeed and make sure that there
is an alternative way to update the widget.

Persisting the data. The process running our widget code will not stay alive forever. It will be
killed by the OS at some point.
Therefore we cannot rely on global variables to store our data.
All of the "state" variables must be written to a file.
RandomAccessFile.WriteObject and ReadObject are very useful for such tasks.
Each time that the widget sends a request to our application, Service Start is called.
Not much is done in this sub:

Sub Service_Start (StartingIntent As Intent)
 If rv.HandleWidgetEvents(StartingIntent) Then Return
End Sub

http://www.brainyquote.com/

8 Widgets 121 B4A User's Guide

However if our process is not alive yet then Service_Create will be called before. Service_Create is
an important point, as it allows us to read the previously saved state to memory:

Sub Service_Create
 'configure the widget and set it to update every 24 hours (1440 minutes).
 rv = ConfigureHomeWidget("WidgetLayout", "rv", 1440, "Quote of the day")
 HttpUtils.CallbackActivity = "WidgetService"
 HttpUtils.CallbackUrlDoneSub = "UrlDone"
 HttpUtils.CallbackJobDoneSub = "JobDone"
 parser.Initialize

 'Load previous data if such is available.
 'This is relevant in case our process was killed and now the user pressed on the
widget.
 If File.Exists(File.DirInternalCache, QUOTES_FILE) Then
 raf.Initialize(File.DirInternalCache, QUOTES_FILE, True)
 quotes = raf.ReadObject(0)
 raf.Close
 Else
 quotes.Initialize
 End If
 If File.Exists(File.DirInternalCache, CURRENTQUOTE_FILE) Then
 currentQuote = File.ReadString(File.DirInternalCache, CURRENTQUOTE_FILE)
 End If
End Sub

The source code is available in the forum : Quotes.

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/10356-android-home-screen-widgets-tutorial-part-ii.html

9 Http / HttpUtils2 122 B4A User's Guide

9 OkHttpUtils2

OkHttpUtils2 is a standard library that helps with communicating with web services (Http servers).
It replaces the previous HttpUtils2 library.

The previous examples in the HttpUtilsExamples folder have been modified and saved in the
OkHttpUtilsExamples folder.
The only thing I had to do to adapt the programs to the new library was to replace the ‘old’ libraries
HTTP and HttpUtils2 by the new ones OkHTTP and OkHttpUtils2 in the IDE Libraries Manager
Tab.

9.1 OkHttpUtils2 Objects

The OkHttpUtils2 library contains thre objects:

 HttpJob.
How to define a job.
Example:
 Dim Job1 As HttpJob
 Job1.Initialize("Job1", Me)
 Job1.Download(b4a)

 HttpUtils2Service
Is used internally by HttpJob.

 MultipartFileData

9.2 HttpJob Functions

The HttpJob object has following methods:

 Complete(id As Int)
Called by the service when job completes.

 Download(Link As String)
Submits a HTTP GET request.
Consider using Download2 if the parameters should be escaped.

 Download2(JobName As String, Parameters As String)
Submits a HTTP GET request.
Encodes illegal parameter characters.
Example:
 job.Download2("http://www.example.com", Array As String("key1", _
 "value1", "key2", "value2"))

 GetBitmap As Bitmap
Returns the response as a bitmap

 GetBitmapSample As Bitmap
Returns the response as a bitmap loaded with LoadBitmapSample.

9 Http / HttpUtils2 123 B4A User's Guide

 GetInputStream As InputStream
Returns an InputStream

 GetRequest As InputStream
Returns an OkHttpRequest

 GetString As String
Returns the response as a string encoded with UTF8.

 GetString2 (Encoding As String) As String
Returns the response as a string with the specified encoded.

 Initialize (Name As String, TargetModule As Object)
Initializes the Job.
Name - The job's name. Note that the name doesn't need to be unique.
TargetModule - The activity or service that will handle the JobDone event.

 IsInitialized As Boolean
Tests whether the object has been initialized.

 JobName
Field containing the job name.
Example : If job1.JobName = "Job1") Then

 Password
Field containing a string with the job password.
Example : If job1.Password = "PassWord") Then

 PostBytes(Link As String, Data As Bytes())
Sends a POST request with the given Byte array as the post data.

 PostFile(Link As String, Dir As String, FileName As String)
Sends a POST request with the given file as the post data.
This method doesn't work with assets files.

 PostMultipart(Link As String, NameValues As Map, Files As List)
Sends a multipart POST request..
NameValues - A map with the keys and values. Pass Null if not needed.
Files - List of MultipartFileData items. Pass Null if not needed.

 PostString(Link As String, Text As String)
Sends a POST request with the given string as the post data.

 PutBytes(Link As String, Data As Byte())
Sends a POST request with the Byte array as the post data.

 PutString(Link As String, Text As String)
Sends a POST request with the given string as the post data.

 Release
Should be called to free resources held by this job.

9 Http / HttpUtils2 124 B4A User's Guide

 Success
Field containing a Boolean.
Example : If job1.Password = "PassWord") Then

 Tag
Field containing the job Tag.
Example : If job1.Tag = "something") Then

 UserName
Field containing a string with the job username.
Example : If job1.UserName = "UserName") Then

The calling module must contain a JobDone routine where you handle the results of the different
jobs.
Example :
Sub JobDone(Job As HttpJob)
 If Job.Success = True Then
 Dim s As String
 s = Job.GetString
 Log(s)
 End If
End Sub

Look at Example2 for more than one job.

9 Http / HttpUtils2 125 B4A User's Guide

9.3 OkHttpUtils2 Example1

A simple example of downloading a page and returning the page as string:

Source code : OkHttpUtilsExamples\OkHttpUtilsExample1.b4a

Sub Globals
 Dim b4a As String
 b4a = "http://www.b4x.com"
End Sub

Sub Activity_Create(FirstTime As Boolean)
 Dim Job1 As HttpJob
 Job1.Initialize("Job1", Me)
 Job1.Download(b4a)
End Sub

Sub JobDone(Job As HttpJob)
 If Job.Success = True Then
 Dim s As String
 s = Job.GetString
 Log(s)
 End If
End Sub

First we initialize the job.
"Job1" = job name
Me = current calling module

Then we call Job1.Download. This call submits a job request to HttpUtils.
HttpUtils raises an event Sub JobDone(Job As HttpJob) when the job is finished.

We have four ways to access a downloaded resource:

 HttpJob.GetString - Returns the resource as string
 HttpJob.GetString2(Encoding As String) - Returns the resource as string with a specific

encoding.
 HttpJob.GetBitmap - Returns the resource as bitmap
 HttpJob.GetInputStream - Returns an InputStream which allows you to manually read the

downloaded resource.

These four methods should only be called in the JobDone routine.
Inside the JobDone event sub you should check Job.Success = True to ensure that the job request
was successful.

9 Http / HttpUtils2 126 B4A User's Guide

9.4 OkHttpUtils2 Example2

Source code: OkHttpUtilsExamples\OkHttpUtilsExample2.b4a

In this example we first download an image and set it as the activity background. Then we
download another two Urls and print them as string.

Sub Activity_Create(FirstTime As Boolean)
 Dim job1, job2, job3 As HttpJob
 job1.Initialize("Job1", Me)

 'Send a GET request
 job1.Download2("http://www.b4x.com/print.php", _
 Array As String("first key", "first value :)", "second key", "value 2"))

 'Send a POST request
 job2.Initialize("Job2", Me)
 job2.PostString("http://www.b4x.com/print.php", "first key=first value&key2=value2")

 'Send a GET request
 job3.Initialize("Job3", Me)
 job3.Download("http://www.b4x.com/forum/images/categories/android.png")
End Sub

Sub JobDone (Job As HttpJob)
 Log("JobName = " & Job.JobName & ", Success = " & Job.Success)
 If Job.Success = True Then
 Select Job.JobName
 Case "Job1", "Job2"
 'print the result to the logs
 Log(Job.GetString)
 Case "Job3"
 'show the downloaded image
 Activity.SetBackgroundImage(Job.GetBitmap)
 End Select
 Else
 Log("Error: " & Job.ErrorMessage)
 ToastMessageShow("Error: " & Job.ErrorMessage, True)
 End If
 Job.Release
End Sub

In Activity_Create we :

 Dim the three jobs.
 send a Get request in job1
 send a Post request in job2
 send a Get request in job3

In JobDone we :

 Test if the current job was sucessful
 If yes, check the current job name and execute its code.
 If no, display a ToastMessage

9 Http / HttpUtils2 127 B4A User's Guide

9.5 The Flickr Viewer example

The FlickrViewer example uses the OkHttpUtils2 library.

Source code : okHttpUtilsExamples\FickrViewer.b4a

In this example we first go to the "main" page of this site
http://www.flickr.com/explore/interesting/7days/.

In this page we find 9 links to 9 images. We submit a second job with all these links.

We show each image as soon as it is ready in the by calling ImagesJobDone from the JobDone
event.

Clicking on an image shows in a second activity as the background image.

10 Network / AsyncStreams 128 B4A User's Guide

10 Network / AsyncStreams

The Network library allows you to communicate over TCP/IP with other computers or devices.
The Network library contains two objects. Socket and ServerSocket.
The Socket object is the communication endpoint. Reading and writing are done with
Socket.InputStream and Socket.OutputStream.

ServerSocket is an object that listens for incoming connections. Once a connection is established an
event is raised and a socket object is passed to the event sub. This socket will be used to handle the
new client.

Client application
Steps required:
- Create and initialize a Socket object.
- Call Socket.Connect with the server address.
- Connection is done in the background. The Connected event is raised when the connection is
ready or if it failed.
- Communicate with the other machine using Socket.InputStream to read data and
Socket.OutputStream to write data.

Server application
Steps required:
- Create and initialize a ServerSocket object.
- Call ServerSocket.Listen to listen for incoming connections. This happens in the background.
- Once a connection is established the NewConnection event is raised and a Socket object is passes.
- Call ServerSocket.Listen if you want to accept more connections.
- Using the Socket object received, communicate with the client.

10 Network / AsyncStreams 129 B4A User's Guide

We will see two examples.
The first example connects to a time server and displays the current date and time as received from
the server.

Sub Process_Globals
 Dim Socket1 As Socket
End Sub

Sub Globals

End Sub

Sub Activity_Create(FirstTime As Boolean)
 Socket1.Initialize("Socket1")
 Socket1.Connect("nist1-ny.ustiming.org" , 13, 20000)
End Sub

Sub Socket1_Connected (Successful As Boolean)
 If Successful = False Then
 Msgbox(LastException.Message, "Error connecting")
 Return
 End If
 Dim tr As TextReader
 tr.Initialize(Socket1.InputStream)
 Dim sb As StringBuilder
 sb.Initialize
 sb.Append(tr.ReadLine) 'read at least one line
 Do While tr.Ready
 sb.Append(CRLF).Append(tr.ReadLine)
 Loop
 Msgbox("Time received: " & CRLF & sb.ToString, "")
 Socket1.Close
End Sub

We are creating a new socket and trying to connect to the server which is listening on port 13.
The next step is to wait for the Connected event.
If the connection is successful we create a TextReader object and initialize it with
Socket1.InputStream. In this case we want to read characters and not bytes so a TextReader is used.
Calling tr.ReadLine may block. However we want to read at least a single line so it is fine.
Then we read all the other available lines (tr.Ready means that there is data in the buffer).

10 Network / AsyncStreams 130 B4A User's Guide

In the second application we will create a file transfer application, that will copy files from the
desktop to the device.
The device will use a ServerSocket to listen to incoming connections.
Once a connection has been made, we will enable a timer. This timer checks every 200ms whether
there is any data waiting to be read.
The file is sent in a specific protocol. First the file name is sent and then the actual file.
We are using a RandomAccessFile object to convert the bytes read to numeric values.
RandomAccessFile can work with files or arrays of bytes, we are using the later in this case.
RandomAccessFile can be set to use little endian byte order. This is important here as the desktop
uses this byte order as well.

The desktop example application was written with Basic4ppc.
Once connected the user selects a file and the file is sent to the device which saves it under
/sdcard/android.
Both applications are attached.

Some notes about the code:
- The server is set to listen on port 2222.
The server displays its IP when it starts. The desktop client should use this IP address when
connecting to a real device (this IP will not work with the emulator).
However if you work with the emulator or if your device is connected to the computer in debug
mode you can use 'adb' to forward a desktop localhost port to the device.
This is done by issuing "adb forward tcp:5007 tcp:2222"
Now in the client code we should connect to the localhost ip with port 5007.
Client.Connect("127.0.0.1", 5007)

Again if you are testing this application in the emulator you must first run this adb command. Adb
is part of the Android SDK.

- Listening to connections :

Sub Activity_Resume
 ServerSocket1.Listen
End Sub

Sub Activity_Pause (UserClosed As Boolean)
 If UserClosed Then
 Timer1.Enabled = False
 Socket1.Close
 ServerSocket1.Close 'stop listening
 End If
End Sub

Sub ServerSocket1_NewConnection (Successful As Boolean, NewSocket As Socket)
 Dim InputStream1, OutputStream1 As AsyncStreams
 If Successful Then
 Socket1 = NewSocket
 Timer1.Enabled = True
 InputStream1 = Socket1.InputStream
 OutputStream1 = Socket1.OutputStream
 ToastMessageShow("Connected", True)
 Else
 Msgbox(LastException.Message, "Error connecting")
 End If
 ServerSocket1.Listen 'Continue listening to new incoming connections
End Sub

10 Network / AsyncStreams 131 B4A User's Guide

In Sub Activity_Resume (which also called right after Activity_Create) we call ServerSocket.Listen
and start listening to connections. Note that you can call this method multiple times safely.
In Sub Activity_Pause we close the active connection (if there is such a connection) and also stop
listening. This only happens if the user pressed on the back key (UserClosed = True).
The ServerSocket will later be initialized in Activity_Create.

The server side application can handle new connections. It will just replace the previous connection
with the new one.
The desktop client example application doesn't handle broken connections. You will need to restart
it to reconnect.

11 Advanced drawings 132 B4A User's Guide

11 Advanced drawings

Three main chapters for advanced drawing:

 View Drawables

 Layers with Panels / ImageViews / Images

 Diagrams / Charts

11.1 View Drawables

The views have default backgrounds when they are defined either in the Designer or by code.
There do exist three other background objects.

 ColorDrawables
 GradientDrawables
 BitmapDrawables
 StateListDrawable

These can be defined in the Designer, but when we want to modify them in the code it needs some
code.

The source code is in the Background folder.

11.1.1 ColorDrawable

The ColorDrawable object has a solid single color, the corners can rounded or not.
The code below sets a ColorDrawable background to a panel.

Dim pnlColor As Panel

pnlColor.Initialize("")
Activity.AddView(pnlColor, 10%x, 40dip, 80%x, 80dip)
Dim cdwColor As ColorDrawable
cdwColor.Initialize(Colors.Red, 5dip)
pnlColor.Background = cdwColor

cdwColor.Initialize(Colors.Red, 5dip)

The Initialize method of the ColorDrawable object needs two properties :

 Color Colors.Red
 CornerRadius 5dip

11 Advanced drawings 133 B4A User's Guide

11.1.2 GradientDrawable

The GradientDrawable object has two colors with a gradient change from the first to the second
color.
The code below sets a GradientDrawable background to a panel.

Dim pnlGradient As Panel

pnlGradient.Initialize("")
Activity.AddView(pnlGradient, 10%x, 140dip, 80%x, 80dip)
Dim gdwGradient As GradientDrawable
Dim Cols(2) As Int
Cols(0) = Colors.Blue
Cols(1) = Colors.White
gdwGradient.Initialize("TOP_BOTTOM", Cols)
gdwGradient.CornerRadius = 10dip
pnlGradient.Background = gdwGradient

gdwGradient.Initialize("TOP_BOTTOM", Cols)

The GradientDrawable Initialize method needs two parameters :

 a string with the orientation "TOP_BOTTOM"
 a color array with two colors Cols

The possible orientations are:

 TOP_BOTTOM
 TR_BL (Top - Right to Bottom - Left)
 RIGHT_LEFT
 BR_TL (Bottom - Right to Top - Left
 BOTTOM_TOP
 BL_TR (Bottom - Left to Top - Left
 LEFT_RIGHT
 TL_BR (Top - Left to Bottom - Right)

The CornerRadius is another separate property.
gdwGradient.CornerRadius = 10dip

11 Advanced drawings 134 B4A User's Guide

11.1.3 BitmapDrawable

The BitmapDrawable object has two properties a Bitmap and a Gravity property.

The BitmapDrawable object has no rounded corner property, if you want rounded corners these
must be part of the bitmap.

The code below sets a BitmapDrawable background to a panel.

Dim pnlBitmap As Panel

pnlBitmap.Initialize("")
Activity.AddView(pnlBitmap, 10%x, 250dip, 80%x, 80dip)
Dim bdwBitmap As BitmapDrawable
bdwBitmap.Initialize(LoadBitmap(File.DirAssets, "background.png"))
bdwBitmap.Gravity = Gravity.FILL
pnlBitmap.Background = bdwBitmap

Aletsch glacier, picture taken from the Jungfraujoch.

bdwBitmap.Initialize(LoadBitmap(File.DirAssets, "background.png")
Sets the bitmap property, in this case a file loaded from the File.DirAssets folder.
But it could be any bitmap.

It is also possible to draw onto the panels background with a Canvas which has this Panel as the
target. The Canvas.Bitmap property points to the bdwBitmap.Bitmap property.

bdwBitmap.Gravity = Gravity.FILL
Sets the Gravity property.

The Gravity property values can be:

 BOTTOM
 CENTER
 CENTER_HORIZONTAL
 CENTER_VERTICAL
 FILL
 LEFT
 NO_GRAVITY
 BOTTOM
 TOP

The Gravity property can be a combination of above values.
Examples : bdwBitmap.Gravity = Gravity.TOP + Gravity.LEFT
 bdwBitmap.Gravity = Gravity.BOTTOM + Gravity.CENTER_HORIZONTAL

In the Designer there are only three values available: Fill, Center and Top-Left.

11 Advanced drawings 135 B4A User's Guide

11.1.4 StateListDrawable

The StateListDrawable is a drawable that holds other drawables and chooses the current one based
on the view's state.

The Background property of Buttons is a StatelistDrawable, it can be defined either in the Designer
(see chapter 3 in the Beginner's Guide) or in the code.

In the Designer there are two options:

 DefaultDrawable default colors set by default
 StatelistDrawable custom colors

The button StatelistDrawable has three states.

 Enabled Drawable
 Disabled Drawable
 Pressed Drawable

Each state has its own Drawable, that could be one of the three ColorDrawable, GradientDrawable
or BitmapDrawable.

Example code for a Button with a ColorDrawable :

The source code is the in the ButtonStateDrawables folder.

btnColor.Initialize("btnColor")
Activity.AddView(btnColor, 20dip, 100dip, 100dip, 60dip)
btnColor.Text = "Color"

' Define a color for Enabled state
Dim cdwGreenColorEnabled As ColorDrawable
cdwGreenColorEnabled.Initialize(Colors.Green,10)

' Define a color for Pessed state
Dim cdwGreenColorPressed As ColorDrawable
cdwGreenColorPressed.Initialize(Colors.RGB(255,182,18),10)

' Define a StateListDrawable
Dim stdGreenColor As StateListDrawable
stdGreenColor.Initialize
Dim states(2) As Int
states(0) = stdGreenColor.state_enabled
states(1) = -stdGreenColor.state_pressed
stdGreenColor.addState2(states, cdwGreenColorEnabled)
Dim states(1) As Int
states(0) = stdGreenColor.state_pressed
stdGreenColor.addState2(states, cdwGreenColorPressed)

' Set stdGreenColor to button background
btnColor.Background = stdGreenColor

11 Advanced drawings 136 B4A User's Guide

Example code for a Button with a GradientDrawable :

btnGradient.Initialize("btnGradient")
Activity.AddView(btnGradient, 20dip, 180dip, 100dip, 60dip)
btnGradient.Text = "Gradient"

' Define two gradient colors for Enabled state
Dim colsEnabled(2) As Int
colsEnabled(0) = Colors.RGB(255,196,196)
colsEnabled(1) = Colors.RGB(255,25,25)
' Define a GradientDrawable for Enabled state
Dim gdwEnabled As GradientDrawable
gdwEnabled.Initialize("TOP_BOTTOM",colsEnabled)
gdwEnabled.CornerRadius = 5
' Define two gradient colors for Pressed state
Dim colsPressed(2) As Int
colsPressed(0) = Colors.RGB(25,255,25)
colsPressed(1) = Colors.RGB(255,255,255)
' Define a GradientDrawable for Pressed state
Dim gdwPressed As GradientDrawable
gdwPressed.Initialize("TOP_BOTTOM",colsPressed)
gdwPressed.CornerRadius = 5
' Define a StateListDrawable
Dim stdGradient As StateListDrawable
stdGradient.Initialize
Dim states(2) As Int
states(0) = stdGradient.state_enabled
states(1) = -stdGradient.state_pressed
stdGradient.addState2(states, gdwEnabled)
Dim states(1) As Int
states(0) = stdGradient.state_pressed
stdGradient.addState2(states, gdwPressed)
' Set stdRedGradient to button background
btnGradient.Background = stdGradient

11 Advanced drawings 137 B4A User's Guide

Example code for a Button with a BitmapDrawable :

btnBitmap.Initialize("btnBitmap")
Activity.AddView(btnBitmap, 40dip, 260dip, 60dip, 60dip)

' Define a bitmap for Enabled state
Dim bdwEnabled As BitmapDrawable
bdwEnabled.Initialize(LoadBitmap(File.DirAssets, "btnArrowDown0.png"))
' Define a bitmap for Pressed state
Dim bdwPressed As BitmapDrawable
bdwPressed.Initialize(LoadBitmap(File.DirAssets, "btnArrowDown1.png"))
' Define a StateListDrawable
Dim stdBitmap As StateListDrawable
stdBitmap.Initialize
Dim states(2) As Int
states(0) = stdBitmap.state_enabled
states(1) = -stdBitmap.state_pressed
stdBitmap.addState2(states, bdwEnabled)
Dim states(1) As Int
states(0) = stdBitmap.state_enabled
stdBitmap.addState2(states, bdwPressed)
' Set stdBitmap to button btnBitmap
btnBitmap.Background = stdBitmap

11 Advanced drawings 138 B4A User's Guide

11.1.5 NinePatchDrawable

This is a copy of Erel's tutorial in the forum.

The example code is NinePatchExample in the SourceCode folder.

Android supports a special format of PNG images that can be resized by replicating specific parts of
the image.
These images also include padding information.
These images are named nine-patch images.

You can read more about this format here: Canvas and Drawables | Android Developers

In the example three labels use the same background
nine-patch image and three button using another nine-
patch image.

Android SDK includes a tool named draw9patch.bat that
can help you with building and modifying such images.
This tool is available under: <android>\Tools
You can read more about it here :
Draw 9-patch | Android Developers

The following steps are required to use a nine patch image as a view background:
- Copy the image to <project folder>\Objects\res\drawable
- Set the image to be read-only (otherwise it will be deleted during compilation).
- Add the following sub to your code (requires Reflection library):

Sub SetNinePatchDrawable(Control As View, ImageName As String)
 Dim r As Reflector
 Dim package As String
 Dim id As Int
 package = r.GetStaticField("anywheresoftware.b4a.BA", "packageName")
 id = r.GetStaticField(package & ".R$drawable", ImageName)
 r.Target = r.GetContext
 r.Target = r.RunMethod("getResources")
 Control.Background = r.RunMethod2("getDrawable", id, "java.lang.int")
End Sub

http://developer.android.com/intl/fr/guide/topics/graphics/2d-graphics.html
http://developer.android.com/intl/fr/guide/developing/tools/draw9patch.html

11 Advanced drawings 139 B4A User's Guide

For buttons you should use this sub which creates a StateListDrawable from two nine-patch images:

Sub SetNinePatchButton(Btn As Button, DefaultImage As String, PressedImage As String)
 Dim r As Reflector
 Dim package As String
 Dim idDefault, idPressed As Int
 package = r.GetStaticField("anywheresoftware.b4a.BA", "packageName")
 idDefault = r.GetStaticField(package & ".R$drawable", DefaultImage)
 idPressed = r.GetStaticField(package & ".R$drawable", PressedImage)
 r.Target = r.GetContext
 r.Target = r.RunMethod("getResources")
 Dim sd As StateListDrawable
 sd.Initialize
 sd.AddState(sd.State_Pressed, r.RunMethod2("getDrawable", idPressed, "java.lang.int"))
 sd.AddCatchAllState(r.RunMethod2("getDrawable", idDefault, "java.lang.int"))
 Btn.Background = sd
End Sub

Now you should use this sub to set the views backgrounds:

Sub Activity_Create(FirstTime As Boolean)
 Activity.LoadLayout("1")
 SetNinePatchDrawable(Label1, "label_bg")
 SetNinePatchDrawable(Label2, "label_bg")
 SetNinePatchDrawable(Label3, "label_bg")
End Sub

Tips
- Don't modify the image files located under res\drawable directly with the draw9patch tool. It
removes the read-only attribute and then the image will be deleted.
- The image name must be lower case (allowed characters a - z, 0 - 9, . , _).
- After adding a new image you should clean the project by choosing Tools - Clean Project. This
causes a generated file (R.java) to be recreated and include the new resources.

11 Advanced drawings 140 B4A User's Guide

11.2 Layers with Panels / ImageViews / Images

Let's make an example with a movable background, and an image in the foreground.
The source code is in the Layers folder.
The background is a landscape and the foreground is galloping horse.

We use:

 Two ImageViews, we could also have used Panels.
One with the background and the second transparent one for the galloping horse.

 Two Timers.
One to move the background and one to move the horse image.

 One image for the background.
 Two sets of 8 images for the horse, one set for galloping to the right and the second set for

galloping to the left.

 etc.

11 Advanced drawings 141 B4A User's Guide

11.2.1 Source code

Definition of process global variables :

Sub Process_Globals
 Dim ProgName As String : ProgName = "Layers"
 Dim ProgVersion As String : ProgVersion = "V 1.0"
 Dim TimerHorse As Timer
 Dim TimerBackground As Timer
 Dim TimerInterval As Long
End Sub

Definition of global variables :

Sub Globals
 Dim ImageI As Int ' index of the current horse image
 Dim ImageDir As Int ' direction of the horse image
 Dim ImageNumber As Int ' number of horse images
 ImageNumber = 8
 Dim imgHorse(2, ImageNumber) As Bitmap ' array horse image bitmaps
 Dim imvBackground As ImageView ' background ImageView
 Dim imvForeground As ImageView ' foreground ImageView
 Dim cvsForeground As Canvas ' canvas for the foreground image
 Dim rectHorse As Rect ' rectangle of the horse image
 Dim HorseWidth As Int ' horse image width
 Dim HorseHeight As Int ' horse image height
 Dim HorseTop As Int ' horse image top
 Dim HorseLeft As Float ' current left position of the horse image
 Dim HorseDelta As Float ' horse move per timer tick
 Dim BackgroundLeft As Float ' current left position of the background
 Dim BackgroundDelta As Float ' background move per timer tick
 Dim Scale As Float ' device scale
End Sub

11 Advanced drawings 142 B4A User's Guide

Initialization of the views and different variables :

Sub Activity_Create(FirstTime As Boolean)
 Dim i As Int

 ' get the device scale
 Dim lv As LayoutValues
 lv = GetDeviceLayoutValues
 Scale = lv.Scale

 ' load the horse images
 ' first index = 0 for galloping to the right
 ' first index = 1 for galloping to the left
 For i = 0 To ImageNumber - 1
 imgHorse(0, i).Initialize(File.DirAssets, "horse0" & i & ".png")
 imgHorse(1, i).Initialize(File.DirAssets, "horse1" & i & ".png")
 Next

 ' initialize variables depending on the device orientation
 If Activity.Width > Activity.Height Then
 HorseDelta = 4dip
 HorseHeight = 40%y
 TimerInterval = 50
 Else
 HorseDelta = 2dip
 HorseHeight = 25%y
 TimerInterval = 80
 End If

 ' initialize the background timer
 TimerBackground.Initialize("TimerBackground", TimerInterval)

 ' initialize the horse timer
 ' we use two times the background timer interval
 TimerHorse.Initialize("TimerHorse", TimerInterval * 2)

 ' calculate the horse images size and their vertical position
 HorseWidth = HorseHeight / imgHorse(0, 0).Height * imgHorse(0, 0).Width
 HorseTop = 65%y - HorseHeight / 2
 rectHorse.Initialize(0, HorseTop, HorseWidth, HorseTop + HorseHeight)

 ' initialize the background
 imvBackground.Initialize("")
 Activity.AddView(imvBackground, 0, 0, 400%y, 100%y)
 imvBackground.Gravity = Gravity.FILL
 imvBackground.Bitmap = LoadBitmap(File.DirAssets, "Wyoming.jpg")
 imvBackground.Left = 0

 ' calculate BackgroundDelta
 ' to have the same number of steps as for the horse
 i = (100%x - HorseWidth) / HorseDelta
 BackgroundDelta = -(imvBackground.Width - 100%x) / 2 / i

 ' initialize the foreground
 imvForeground.Initialize("")
 Activity.AddView(imvForeground, 0, 0, 100%x, 100%y)

 ' initialize the foreground canvas
 cvsForeground.Initialize(imvForeground)

 ' set the foreground to transparent
 Dim rect1 As Rect
 rect1.Initialize(0, 0, imvForeground.Width, imvForeground.Height)
 cvsForeground.DrawRect(rect1, Colors.Transparent, True, 1)
End Sub

11 Advanced drawings 143 B4A User's Guide

Initialization of different variables :

Sub Activity_Resume
 Activity.Title = ProgName & " " & ProgVersion

 ' initialize the timers
 TimerHorse.Enabled = True
 TimerBackground.Enabled = True

 ' set the initial values
 HorseLeft = 0
 BackgroundLeft = 0
 ImageI = 0
 ImageDir = 0

 ' draw the first horse image
 DrawHorse(ImageI, 10)
End Sub

Horse timer :

Sub TimerHorse_Tick
 ' increase the horse left position
 HorseLeft = HorseLeft + HorseDelta

 ' test if the horse reaches the right or left border
 If HorseLeft >= 100%x - HorseWidth - HorseDelta OR HorseLeft <= 0 Then
 BackgroundDelta = - BackgroundDelta
 HorseDelta = - HorseDelta
 HorseLeft = HorseLeft + HorseDelta
 If ImageDir = 0 Then
 ImageDir = 1
 Else
 ImageDir = 0
 imvBackground.Left = 0
 End If
 End If

 ' update the horse image index
 ImageI = ImageI + 1
 ' reset the image index
 If ImageI = ImageNumber Then
 ImageI = 0
 End If

 ' draw the new horse image
 DrawHorse(ImageI, HorseLeft)
End Sub

Background timer :

Sub TimerBackground_Tick
 ' set the background left position
 BackgroundLeft = BackgroundLeft + BackgroundDelta
 imvBackground.Left = BackgroundLeft
End Sub

11 Advanced drawings 144 B4A User's Guide

Drawing routine for the horse images :

Sub DrawHorse(i As Int, x As Float)
 ' drawing routine for the horse image

 ' erase the current horse image, draw a transparent rectangle
 cvsForeground.DrawRect(rectHorse, Colors.Transparent, True, 1)

 ' set the new horse image position
 rectHorse.Left = x
 rectHorse.Right = x + HorseWidth

 ' draw the new horse image
 cvsForeground.DrawBitmap(imgHorse(ImageDir, i), Null, rectHorse)

 ' invalidate (update) the foreground image
 imvForeground.Invalidate2(rectHorse)
End Sub

Stop of the timers when the Activity is paused :

Sub Activity_Pause (UserClosed As Boolean)
 ' stop the timers
 TimerHorse.Enabled = True
 TimerBackground.Enabled = True
End Sub

11 Advanced drawings 145 B4A User's Guide

11.3 Diagrams / Charts

In the first chapter we will draw diagrams to show curves.
In the second we analyze the Charts Framework.

One example program for
drawing curves can be found
in the forum : the
Oscilloscope project.

11.3.1 Diagrams / Graph example program

Two dimensional data can be drawn on a plane with a Cartesian coordinate system.

A Cartesian coordinate system in two dimensions (also called a rectangular coordinate system) is
defined by an ordered pair of perpendicular lines (axes), a single unit of length for both axes, and an
orientation for each axis. The point where the axes meet, is taken as the origin for both, thus turning
each axis into a number line.
In mathematical illustrations of two-dimensional Cartesian systems, the first coordinate
(traditionally called the abscissa or x - axis) is measured along a horizontal axis, oriented from left
to right. The second coordinate (the ordinate or y - axis) is then measured along a vertical axis,
usually oriented from bottom to top (source Wikipedia).

The source code of this example program, Graph, is joined in the SourceCode folder.

We use a Panel (we could also have used an ImageView) to draw the graphics, we call it the graph.
On the graph we have the grid, the surface where the curve is drawn.

6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 10

Title

y - scale

x - scale

Grid

Graph

Curve nb y divisions

nb x divisions

http://www.basic4ppc.com/forum/basic4android-share-your-creations/13759-oscilloscope-2.html

11 Advanced drawings 146 B4A User's Guide

The panel can be of different sizes :

 Full screen Smaller

Definition of the Graph variables :

Definition of the Grid variables :

GridX1

GridW GridX0

G
rid

Y
1

Grid

Graph

G
rid

Y
0

G
rid

H

GraphX1

GraphW GraphX0

G
ra

ph
Y

1

Screen

Graph

G
ra

ph
Y

0
G

ra
ph

H

11 Advanced drawings 147 B4A User's Guide

Source code.

The code is commented and I think (hope) enough self explanatory.
It should not be considered as a project for itself but more as a demonstrator.

The code could seem complicated but it really is not. You'll probably notice a lot of variables, but I
prefer working with variables rather than directly with numeric values. It's much easier to maintain
or modify a code.

Activity create.

Sub Activity_Create(FirstTime As Boolean)
 GraphInit
 CheckDeviceType

 pnlGraph.Initialize("pnlGraph")
 Activity.AddView(pnlGraph, GraphX0, GraphY0, GraphW, GraphH)

 cvsGraph.Initialize(pnlGraph)
 CurveInit
 GridInit
 If FirstTime Then
 CurveValInit
 End If
 ScaleInit
End Sub

Activity resume.

Sub Activity_Resume
 Private i As Int

 Activity.Title = ProgName & " " & ProgVersion
 GraphClear
 GridDraw
 For i = 0 To CurveNb - 1
 CurveDraw(i)
 Next
End Sub

The different dimensions for the graph are all expressed in percentage of the Activity height d%y ,
to fit the different device sizes.

Initialization of the Graph panel dimensions. (called from Activity_Create)

Sub GraphInit
 ' initialize the Graph variables
 ' all dimensions are expressed in % of height
 GraphX0 = 3%y
 GraphW = 100%x - 2 * GraphX0
 GraphX1 = GraphX0 + GraphW

 GraphY0 = 3%y
 GraphH = 100%y - 2 * GraphY0
 GraphY1 = GraphY0 + GraphH

 rectGraph.Initialize(0, 0, GraphW, GraphH)
 GraphColor = Colors.White
End Sub

11 Advanced drawings 148 B4A User's Guide

The text sizes are also adapted to the device sizes.

I have considered four different device sizes :

 Smartphone 3.5 smartphone with a 3.5 inch screen size
 Smartphone 5 smartphone with a 5 inch screen size
 Tablet 7 tablet with a 7 inch screen size
 Tablet 10 tablet with a 10 inch screen size

Code to check the device type. (called from Activity_Create)

Sub CheckDeviceType
 ' check device type, used to define text sizes
 ' should be completed if necessary

 Private lv As LayoutValues
 lv = GetDeviceLayoutValues

 Select lv.Scale
 Case 2
 DeviceType = "Smartphone 5"
 Case 1.5
 If lv.Width > 1100 Then
 DeviceType = "Tablet 7"
 Else
 DeviceType = "Smartphone 3.5"
 End If
 Case 1
 If lv.Width > 1100 Then
 DeviceType = "Tablet 10"
 Else If lv.Width < 600 Then
 DeviceType = "Smartphone 3.5"
 Else
 DeviceType = "Tablet 7"
 End If
 End Select
End Sub

11 Advanced drawings 149 B4A User's Guide

Initialization of the curves parameters. (called from Activity_Create)

Sub CurveInit
 ' set curve line color
 CurveLineColor(0) = Colors.Red
 CurveLineColor(1) = Colors.Blue
 CurveLineColor(2) = Colors.RGB(10, 140, 0)

 ' set curve line wisth (stroke)
 CurveLineStroke(0) = 3dip
 CurveLineStroke(1) = 2dip
 CurveLineStroke(2) = 1dip

 ' set curve text size according to the device type
 CurveTextSize = 14
 Select DeviceType
 Case "Smarphone 3.5"
 CurveTextSize = 14
 Case "Smarphone 5"
 CurveTextSize = 22
 Case "Tablet 7"
 CurveTextSize = 28
 Case "Tablet 10"
 CurveTextSize = 42
 End Select

 ' get the text height
 CurveTextHeight = cvsGraph.MeasureStringHeight("Ag", Typeface.DEFAULT, CurveTextSize)
+ 2dip
End Sub

11 Advanced drawings 150 B4A User's Guide

Initilization of the grid. (called from Activity_Create)

Sub GridInit
 ' initialize the Grid variables
 ' all dimensions are expressed proportional to the curves text height

 ' horzontal dimensions
 GridX0 = 2 * CurveTextHeight
 GridW = GraphW - GridX0 - 1.2 * CurveTextHeight
 GridX1 = GridX0 + GridW

 ' verical dimensions
 GridY0 = 3.2 * CurveTextHeight
 GridH = GraphH - GridY0 - 1.2 * CurveTextHeight
 GridY1 = GridY0 + GridH

 ' define the number of divisions for each axis
 If lv.Width > lv.Height Then
 GridNbDivX = 10
 GridNbDivY = 6
 Else
 GridNbDivX = 5
 GridNbDivY = 12
 End If

 ' calculate the division dimensions in pixels
 GridDeltaX = GridW / GridNbDivX
 GridDeltaY = GridH / GridNbDivY

 ' assign the grid rectangle
 rectGrid.Initialize(GridX0, GridY0, GridX1, GridY1)

 ' set the different colors
 GridColor = Colors.White
 GridLineColor = Colors.LightGray
 GridFrameColor = Colors.Black

 ScaleTextColor = Colors.Black

 ' set scale text size according to the device type
 ScaleTextSize = 12
 Select DeviceType
 Case "Smartphone 3.5"
 ScaleTextSize = 12
 Case "Smartphone 5"
 ScaleTextSize = 18
 Case "Tablet 7"
 ScaleTextSize = 24
 Case "Tablet 10"
 ScaleTextSize = 36
 End Select
 ScaleTextHeight = cvsGraph.MeasureStringHeight("Ag", Typeface.DEFAULT, ScaleTextSize)
+ 2dip

End Sub

11 Advanced drawings 151 B4A User's Guide

Initialization of the curve values. (called from Activity_Create)
These are sample curves, this routine can be adapted to each application.
This routine is called only when FirstTime = True.
Sub CurveValInit
 Private i, n As Int
 Private t As Double
 Private Amplitude(CurveNb) As Double
 Private Offset(CurveNb) As Double
 Private Omega(CurveNb) As Double

 ' set curve amplitude
 Amplitude(0) = 2.5
 Amplitude(1) = 1.5
 Amplitude(2) = .02

 ' set curve offset
 Offset(0) = 0
 Offset(1) = 1
 Offset(2) = -1

 ' set curve omega
 Omega(0)= 2.4 * cPI
 Omega(1)= 8 * cPI

 ' calculate curve point values
 For i = 0 To CurveNb - 1
 For n = 0 To CurveNbPoints
 t = n / 100
 If i = 2 Then
 Curve(i, n) = Offset(i) + Amplitude(i) * Rnd(-100, 100)
 Else
 Curve(i, n) = Offset(i) + Amplitude(i) * Sin(Omega(i) * t)
 End If
 Next
 Next

 ' set curve names and units
 CurveName(0) = "Voltage"
 CurveUnit(0) = "[V]"
 CurveName(1) = "Current"
 CurveUnit(1) = "[A]"
 CurveName(2) = "Acceleration"
 CurveUnit(2) = "[m/s2]"

 ' set scale values
 ScaleXMax = CurveNbPoints / 10
 ScaleXMin = 0

 ScaleYMax = 3
 ScaleYMin = -3
End Sub

Initialization of the scales according to the device orientation. (called from Activity_Create)

Sub ScaleInit
 ' initilize the scales according to the grid dimensions.
 ScaleXDelta = ScaleXMax / GridNbDivX
 ScaleX = GridW / (ScaleXMax - ScaleXMin)

 ScaleYDelta = (ScaleYMax - ScaleYMin) / GridNbDivY
 ScaleY = GridH / (ScaleYMax - ScaleYMin)
End Sub

11 Advanced drawings 152 B4A User's Guide

Drawing of the grid. (called from Activity_Resume)

Sub GridDraw
 ' draw the Grid
 Private i As Int
 Private x0, y0 As Float

 ' draw vertical lines
 For i = 1 To GridNbDivX - 1
 x0 = GridX0 + i * GridDeltaX
 cvsGraph.DrawLine(x0, GridY0, x0, GridY1, GridLineColor, 1)
 Next

 ' draw horizontal lines
 For i = 1 To GridNbDivY - 1
 y0 = GridY0 + i * GridDeltaY
 cvsGraph.DrawLine(GridX0, y0, GridX1, y0, GridLineColor, 1)
 Next

 ' draw the frame
 cvsGraph.DrawRect(rectGrid, GridFrameColor, False, 1)

 ' draw the scales
 ScaleYDraw
 ScaleXDraw

 ' invalidate (update) the Graph
 Activity.Invalidate
End Sub

Drawing the X scale. (called from GridDraw)

Sub ScaleXDraw
 ' draw X scale
 Private i As Int
 Private txt As String
 Private x, y As Float

 y = GridY1 + ScaleTextHeight
 For i = 0 To GridNbDivX
 txt = (ScaleXMin + i * ScaleXDelta)
 x = GridX0 + i * GridDeltaX
 cvsGraph.DrawText(txt, x, y, Typeface.DEFAULT, ScaleTextSize, ScaleTextColor,
"CENTER")
 Next
End Sub

11 Advanced drawings 153 B4A User's Guide

Drawing of the Y scale. (called from GridDraw)

Sub ScaleYDraw
 ' draw Y scale
 Private i As Int
 Private txt As String
 Private x, y As Float

 x = GridX0 - ScaleTextHeight / 3
 For i = 0 To GridNbDivY
 txt = (ScaleYMax - i * ScaleYDelta)
 y = GridY0 + ScaleTextHeight/3 + i * GridDeltaY
 cvsGraph.DrawText(txt, x, y, Typeface.DEFAULT, ScaleTextSize, ScaleTextColor,
"RIGHT")
 Next
End Sub

Drawing the curves. (called from Activity_Resume)

Sub CurveDraw(i As Int)
 ' draw the curve of index i
 Private n As Int
 Private d, th, x0, y0, x1, y1 As Float
 Private TextHeight As Float

 ' draw the curve
 x0 = GridX0
 y0 = GridY0 + (ScaleYMax - Curve(i, 0)) * ScaleY
 d = GridW / CurveNbPoints
 For n = 1 To CurveNbPoints
 x1 = GridX0 + n * d
 y1 = GridY0 + (ScaleYMax - Curve(i, n)) * ScaleY
 cvsGraph.DrawLine(x0, y0, x1, y1, CurveLineColor(i), CurveLineStroke(i))
 x0 = x1
 y0 = y1
 Next

 ' get the text height
 TextHeight = cvsGraph.MeasureStringHeight("Ag", Typeface.DEFAULT, CurveTextSize) +
2dip

 ' draw curve name
 y0 = GridY0 - TextHeight / 3
 cvsGraph.DrawText(CurveName(i) & " " & CurveUnit(i), GridX0, y0 - i * TextHeight,
Typeface.DEFAULT, CurveTextSize, CurveLineColor(i), "LEFT")
End Sub

11 Advanced drawings 154 B4A User's Guide

11.3.2 Second Graph program

Graph1 is a second diagram example program, it's an evolution of the previous one, that uses a
different scale for each curve.

The source code of this example program, Graph1, is joined in the SourceCode folder.

11 Advanced drawings 155 B4A User's Guide

11.3.3 Charts Framework

The Charts Framework module allows to draw several types of diagrams:

 Pie charts
 Bar charts
 Stacked Bar charts
 Curves

It can be downloaded here : Charts Framework

Attention : The Charts Framework is a code module and not a library.

The goal of this chapter is to show how to use the Charts Framework and not to explain how its
code is build. The joined source codes allows to play with each kind of chart type.

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/8260-android-charts-framework-3.html

11 Advanced drawings 156 B4A User's Guide

11.3.3.1 Pie Chart
Source code in the Charts\PieChart folder.

Sub Globals
 Private pnlPie As Panel
End Sub

Sub Activity_Create(FirstTime As Boolean)
 CreatePieTab
End Sub

Sub CreatePieTab
 ' initialze the panel to display the pie chart
 pnlPie.Initialize("pnlPie")
 Activity.AddView(pnlPie, 10%x, 10%y, 80%x, 80%y)

 ' initialize the pie data
 Private PD As PieData
 PD.Initialize
 PD.Target = pnlPie ' Set the target view

 ' Add the items.
 ' The last parameter Is the color. Passing 0 will make it a random color.
 Charts.AddPieItem(PD, "Item #1", 120, 0)
 Charts.AddPieItem(PD, "Item #2", 25, 0)
 Charts.AddPieItem(PD, "Item #3", 50, 0)
 Charts.AddPieItem(PD, "Item #4", 190, 0)
 Charts.AddPieItem(PD, "Item #5", 350, 0)

 ' Total size of gaps between slices. Set to 0 for no gaps.
 PD.GapDegrees = 20

 ' The background color of the legend bitmap.
 PD.LegendBackColor = Colors.ARGB(150, 100, 100, 100)
' PD.LegendBackColor = Colors.White

 ' This call draws the pie.
 ' PD - The pie data
 ' Colors.Gray - The view's background color
 ' True - Create a legend bitmap.
 Dim legend As Bitmap
 legend = Charts.DrawPie(PD, Colors.Gray, True)
' legend = Charts.DrawPie(PD, Colors.LightGray, True)
' legend = Charts.DrawPie(PD, Colors.White, True)

 If legend.IsInitialized Then
 ' Initialize the legend ImageView
 Private ImageView1 As ImageView
 ImageView1.Initialize("")
 ImageView1.SetBackgroundImage(legend)

 ' Add the legend ImageView to the Pie Panel
 pnlPie.AddView(ImageView1, 10dip, 10dip, legend.Width, legend.Height)
 End If
End Sub

11 Advanced drawings 157 B4A User's Guide

Initialize the Panel for the Pie Chart :
 ' initialze the panel to display the pie chart
 pnlPie.Initialize("pnlPie")
 Activity.AddView(pnlPie, 10%x, 10%y, 80%x, 80%y)

10%x, 10%y, 80%x, 80%y are the position and dimensions of the pie panel.

Initialize the Pie data :
 ' initialize the pie data
 Dim PD As PieData
 PD.Initialize
 PD.Target = pnlPie ' Set the target view

Add the pie chart data :
 ' Add the items.
 ' The last parameter Is the color. Passing 0 will make it a random color.
 Charts.AddPieItem(PD, "Item #1", 120, 0)
 Charts.AddPieItem(PD, "Item #2", 25, 0)
 Charts.AddPieItem(PD, "Item #3", 50, 0)
 Charts.AddPieItem(PD, "Item #4", 190, 0)
 Charts.AddPieItem(PD, "Item #5", 350, 0)

Drawing routine : Charts.AddPieItem(PD, "Item #1", 120, 0)
Where :

 PD is the PieData object
 "Item #1" is the item title
 120 is the item value
 0 is the color, enter 0 for random color

Set the gap value :
 ' Total size of gaps between slices. Set to 0 for no gaps.
 PD.GapDegrees = 20

This is the total gap between the pies in degrees. Enter 0 for no gap.

Set the legend background color :
 ' The background color of the legend bitmap.
 PD.LegendBackColor = Colors.ARGB(150, 100, 100, 100)
' PD.LegendBackColor = Colors.White

You can play with different colors, the original color is partially transparent to see the chart behind
the legend.

Calls the pie drawing routine :
 ' This call draws the pie.
 ' PD - The pie data
 ' Colors.Gray - The view's background color
 ' True - Create a legend bitmap.
 Dim legend As Bitmap
 legend = Charts.DrawPie(PD, Colors.Gray, True)
Drawing routine: legend = Charts.DrawPie(PD, Colors.Gray, True)
Where :

 legend Bitmap of the legend image returned by the routine
 PD PieData object
 Colors.Gray Background color of the pie chart.
 True Boolean variable defining whether a legend image should be drawn.

11 Advanced drawings 158 B4A User's Guide

Check if the legend bitmap does exist :
 If legend.IsInitialized Then

If True then:
Initialize the legend ImageView, set it's background image and add it to the pie panel :
 ' Initialize the legend ImageView
 Dim ImageView1 As ImageView
 ImageView1.Initialize("")
 ImageView1.SetBackgroundImage(legend)

 ' Add the legend ImageView to the Pie Panel
 pnlPie.AddView(ImageView1, 10dip, 10dip, legend.Width, legend.Height)
 End If
End Sub

11 Advanced drawings 159 B4A User's Guide

11.3.3.2 Bar Chart

Source code in the Charts\BarChart folder.

Sub Globals
 Private pnlBars As Panel
End Sub

Sub Activity_Create(FirstTime As Boolean)
 CreateBarsTab
End Sub

Sub CreateBarsTab
 ' initialze the panel to display the bar chart
 pnlBars.Initialize("pnlBars")
 Activity.AddView(pnlBars, 10%x, 10%y, 80%x, 80%y)

 ' initialize the bar data
 Private BD As BarData
 BD.Initialize
 BD.Target = pnlBars
 BD.BarsWidth = 15dip
 BD.Stacked = False

 ' set the bar colors
 Charts.AddBarColor(BD, MakeTransparent(Colors.Red, 230)) 'First bar color
 Charts.AddBarColor(BD, MakeTransparent(Colors.Blue, 230))
 Charts.AddBarColor(BD, MakeTransparent(Colors.Green, 230))

 ' Add the items.
 For i = 1 To 4
 Charts.AddBarPoint(BD, 2005 + i, Array As Float(Rnd(-1000, 1000), Rnd(-1000, 1000),
Rnd(-1000, 1000)))
' Charts.AddBarPoint(BD, 2005 + i, Array As Float(Rnd(0, 1000), Rnd(0, 1000), Rnd(0,
1000)))
 Next

 ' Initialize the graph object
 ' Set the bar chart parameters
 Private G As Graph
 G.Initialize
 G.Title = "Bars Chart"
 G.XAxis = "Year"
 G.YAxis = "Values"
 G.YStart = -1000 ' min vertical scale
' G.YStart = 0
 G.YEnd = 1000 ' max vertical scale
 G.YInterval = 200 ' vertical scale divisions
 G.AxisColor = Colors.Black
 Charts.DrawBarsChart(G, BD, Colors.White)
End Sub

Sub MakeTransparent(Color As Int, Alpha As Int) As Int
 Return Bit.And(Color, Bit.Or(0x00FFFFFF, Bit.ShiftLeft(Alpha, 24)))
End Sub

11 Advanced drawings 160 B4A User's Guide

Initialize the Panel for the Bar Chart :
 ' initialze the panel to display the bar chart
 pnlBars.Initialize("pnlBars")
 Activity.AddView(pnlBars, 10%x, 10%y, 80%x, 80%y)

10%x, 10%y, 80%x, 80%y are the position and dimensions of the bar panel.

Initialize the Bar data :
 ' initialize the bar data
 Private BD As BarData
 BD.Initialize
 BD.Target = pnlBars
 BD.BarsWidth = 15dip
 BD.Stacked = False

BD.Stacked = False indicates that it is a BarChart and not a StackedBarChart.

Set the bar colors :
 ' set the bar colors
 Charts.AddBarColor(BD, MakeTransparent(Colors.Red, 230)) 'First bar color
 Charts.AddBarColor(BD, MakeTransparent(Colors.Blue, 230))
 Charts.AddBarColor(BD, MakeTransparent(Colors.Green, 230))

Add the bar data :
 ' Add the items.
 For i = 1 To 4
 Charts.AddBarPoint(BD, 2005 + i, Array As Float(Rnd(-1000, 1000), Rnd(-1000, 1000),
Rnd(-1000, 1000)))
' Charts.AddBarPoint(BD, 2005 + i, Array As Float(Rnd(0, 1000), Rnd(0, 1000), Rnd(0,
1000)))
 Next

A bar chart can have n sets of m values.
Loop to add the sets, in the example n = 4.
For i = 1 To 4

Routine adding the bar values, in the example m = 3 :
Charts.AddBarPoint(BD, 2005 + i, Array As Float(Rnd(-1000, 1000), Rnd(-1000, 1000),
Rnd(-1000, 1000)))
Where :

 BD BarData object
 2005 + i Horizontal axis tag
 Array As Float Array of values the m values per set.

The bar chart can draw negative and positive values.
This is not the case for stacked bar charts.

11 Advanced drawings 161 B4A User's Guide

Initialize the graph object, set the bar chart parameters and draw the chart :
 ' Initialize the graph object
 ' Set the bar chart parameters and draw the chart
 Private G As Graph
 G.Initialize
 G.Title = "Bars Chart"
 G.XAxis = "Year"
 G.YAxis = "Values"
 G.YStart = -1000 ' min vertical scale
' G.YStart = 0
 G.YEnd = 1000 ' max vertical scale
 G.YInterval = 200 ' vertical scale divisions
 G.AxisColor = Colors.Black
 Charts.DrawBarsChart(G, BD, Colors.White)
End Sub

Drawing routine : Charts.DrawBarsChart(G, BD, Colors.White)
Where:

 G Graph object
 BD BarData object
 Colors.White Background color of the bar chart panel

Routine to set a color partially transparent :
Sub MakeTransparent(Color As Int, Alpha As Int) As Int
 Return Bit.And(Color, Bit.Or(0x00FFFFFF, Bit.ShiftLeft(Alpha, 24)))
End Sub

11 Advanced drawings 162 B4A User's Guide

11.3.3.3 Stacked Bar Chart

Source code in the Charts\StackedBarChart folder.

For details, look at the Bar Chart chapter.

Sub Globals
 Private pnlStackedBars As Panel
End Sub

Sub Activity_Create(FirstTime As Boolean)
 CreateStackedBarsTab
End Sub

Sub CreateStackedBarsTab
 ' initialze the panel to display the stacked bar chart
 pnlStackedBars.Initialize("pnlStackedBars")
 Activity.AddView(pnlStackedBars, 10%x, 10%y, 80%x, 80%y)

 ' initialize the bar data
 Private BD As BarData
 BD.Initialize
 BD.Target = pnlStackedBars
 BD.BarsWidth = 40dip
 BD.Stacked = True 'Makes it a stacked bars chart

 ' set the bar colors
 Charts.AddBarColor(BD, MakeTransparent(Colors.Red, 230)) 'First bar color
 Charts.AddBarColor(BD, MakeTransparent(Colors.Blue, 230))
 Charts.AddBarColor(BD, MakeTransparent(Colors.Green, 230))

 ' Add the items.
 For i = 1 To 4
 Charts.AddBarPoint(BD, 2005 + i, Array As Float(Rnd(0, 400), Rnd(0, 400), Rnd(0,
400)))
 Next

 ' Initialize the graph object
 ' Set the bar chart parameters
 Private G As Graph
 G.Initialize
 G.Title = "Stacked Bars Chart"
 G.XAxis = "Year"
 G.YAxis = "Values"
 G.YStart = 0
 G.YEnd = 1000
 G.YInterval = 100
 G.AxisColor = Colors.Black
 Charts.DrawBarsChart(G, BD, Colors.White)
End Sub

Sub MakeTransparent(Color As Int, Alpha As Int) As Int
 Return Bit.And(Color, Bit.Or(0x00FFFFFF, Bit.ShiftLeft(Alpha, 24)))
End Sub

The routine is exactly the same as for Bar Charts.
The only difference is the bar with that is wider and the BD.Stacked parameter is True.
 BD.BarsWidth = 40dip
 BD.Stacked = True 'Makes it a stacked bars chart

11 Advanced drawings 163 B4A User's Guide

11 Advanced drawings 164 B4A User's Guide

11.3.3.4 Lines Chart

Source code in the Charts\LinesChart folder.

The routine can draw one or more lines, the difference is explained below.

Sub Globals
 Private pnlLines As Panel
End Sub

Sub Activity_Create(FirstTime As Boolean)
 CreateLinesTab
End Sub

Sub CreateLinesTab
 ' Initialze the panel to display the lines chart
 pnlLines.Initialize("pnlLines")
 Activity.AddView(pnlLines, 10%x, 10%y, 80%x, 80%y)

 ' Initialize the line data
 Dim LD As LineData
 LD.Initialize
 LD.Target = pnlLines

 ' Set the line colors
 Charts.AddLineColor(LD, Colors.Red) 'First line color
 Charts.AddLineColor(LD, Colors.Blue) 'Second line color

 ' Add the line points.
 For i = 0 To 360 Step 10
 ' In the case of 2 lines or more we are adding an array of values.
 ' One for each line.
 ' Make sure to create an array for each point.
 ' You cannot reuse a single array for all points.
 Charts.AddLineMultiplePoints(LD, i, Array As Float(SinD(i), CosD(i)), i Mod 90 = 0)
 Next

 ' Initialize the graph object
 ' Set the line chart parameters and draw the line chart
 Private G As Graph
 G.Initialize
 G.Title = "2 Lines Chart (Sine & Cosine)"
 G.XAxis = "Degrees"
 G.YAxis = "Values"
 G.YStart = -1
 G.YEnd = 1
 G.YInterval = 0.2
 G.AxisColor = Colors.Black
 Charts.DrawLineChart(G, LD, Colors.White)
End Sub

11 Advanced drawings 165 B4A User's Guide

Initialize the Panel for the Lines Chart :
 ' Initialze the panel to display the lines chart
 pnlLines.Initialize("pnlLines")
 Activity.AddView(pnlLines, 10%x, 10%y, 80%x, 80%y)

10%x, 10%y, 80%x, 80%y are the position and dimensions of the lines panel.

Initialize the Lines data :
 ' Initialize the line data
 Private LD As LineData
 LD.Initialize
 LD.Target = pnlLines

Set the line colors :
 ' Set the line colors
 Charts.AddLineColor(LD, Colors.Red) 'First line color
 Charts.AddLineColor(LD, Colors.Blue) 'Second line color

Add the lines data :
 ' Add the line points.
 For i = 0 To 360 Step 10
 ' In this case we are adding an array of two values. One for each line.
 ' Make sure to create an array for each point.
 ' You cannot reuse a single Array For all points.
 Charts.AddLineMultiplePoints(LD, i, Array As Float(SinD(i), CosD(i)), i Mod 90 = 0)
 Next

In this part of the routine we generate the values for each line at each point.

Routine adding the line values :
Charts.AddLineMultiplePoints(LD, i, Array As Float(SinD(i), CosD(i)), i Mod 90 = 0)
Where :

 LD LineData object
 i X value of the horizontal axis, can be different than i.
 Array As Float(SinD(i), CosD(i))

Array of Y values for index i
In the example there are 2 lines : SinD(i) and CosD(i)
For a single line chart we could have this statement :
Charts.AddLineMultiplePoints(LD, i, SinD(i), i Mod 90 = 0)
For a three line chart we could have this statement :
Charts.AddLineMultiplePoints(LD, i, Array As Float(Val1, Val2, Val3), i Mod 90 = 0)

 i Mod 90 = 0 When true then a horizontal tag, with the value of i, is displayed on the
horizontal axis.
i Mod 90 = 0 is equal to the reminder of i / 90,
the reminder is true only when i = 0, 90, 180, 270 or 360.

The general routine would look like this:
Charts.AddLineMultiplePoints(LD, x, Array As Float(Val1, Val2, ... , ValN), TagFunction)

TagFunction is a function that is true when we want to have a tag on the horizontal axis.

11 Advanced drawings 166 B4A User's Guide

Initialize the graph object, set the lines chart parameters and draw the chart :
 ' Initialize the graph object
 ' Set the line chart parameters and draw the line chart
 Private G As Graph
 G.Initialize
 G.Title = "2 Lines Chart (Sine & Cosine)"
 G.XAxis = "Degrees"
 G.YAxis = "Values"
 G.YStart = -1
 G.YEnd = 1
 G.YInterval = 0.2
 G.AxisColor = Colors.Black
 Charts.DrawLineChart(G, LD, Colors.White)
End Sub

Drawing routine : Charts.DrawLineChart(G, LD, Colors.White)
Where :

 G Graph object
 LD LineData object
 Colors.White Chart background color

There is only one text and one scale for the vertical axis.

11 Advanced drawings 167 B4A User's Guide

Other example with 3 lines. Source code LinesChart1.

Sub CreateLinesTab
 ' Initialze the panel to display the lines chart
 pnlLines.Initialize("pnlLines")
 Activity.AddView(pnlLines, 10%x, 10%y, 80%x, 80%y)

 ' Initialize the line data
 Private LD As LineData
 LD.Initialize
 LD.Target = pnlLines

 ' Set the line colors
 Charts.AddLineColor(LD, Colors.Red) 'First line color
 Charts.AddLineColor(LD, Colors.Blue) 'Second line color
 Charts.AddLineColor(LD, Colors.Green) 'Third line color

 ' Add the line points.
 Private x As Float
 For i = 0 To 500 Step 10
 ' In the case of 2 lines or more we are adding an array of values.
 ' One for each line.
 ' Make sure to create an array for each point.
 ' You cannot reuse a single array for all points.
 x = i / 100
 Charts.AddLineMultiplePoints(LD, x, Array As Float(Rnd(-20,21) + 20, Rnd(-15,16) -
20, CosD(3 * i) * 35), i Mod 50 = 0)
 Next

 ' Initialize the graph object
 ' Set the line chart parameters and draw the line chart
 Private G As Graph
 G.Initialize
 G.Title = "3 Lines Chart (Rnd and Cos)"
 G.XAxis = "Time"
 G.YAxis = "Values"
 G.YStart = -50
 G.YEnd = 50
 G.YInterval = 10
 G.AxisColor = Colors.Black
 Charts.DrawLineChart(G, LD, Colors.White)
End Sub

Horizontal tags every 50
increments :
i Mod 50 = 0

The x values are (x = i / 100) :
0, 0.5, 1, 1.5, 2 etc.

Size :
10%x, 10%y, 80%x, 80%y

11 Advanced drawings 168 B4A User's Guide

The charts can be of different sizes, but it's up to you to adapt the scales.
In the example below the vertical scale tags are overlapping.

Size :
20%x, 20%y, 60%x, 60%y

Size :
0, 0, 100%x, 100%y

The margins and the text sizes remain the same, independent of the chart size.
If really you want a small size chart you could change the margins and the text sizes in the Charts
code, but be careful because in that case your code module becomes a custom one.

11 Advanced drawings 169 B4A User's Guide

11.4 Antialiasing filter

Erel posted the code to set the antialiasing filter in a thread where a user asked for that possibility.

Here is the code:

Sub SetAntiAlias (c As Canvas, Active As Int)
 ' Active = 0 filter OFF
 ' Active = 1 filter ON
 ' Active = 2 filter ON for Bitmaps
 Private r As Reflector
 Dim NativeCanvas As Object
 r.Target = c
 NativeCanvas = r.GetField("canvas")
 Private PaintFlagsDrawFilter As Object
 PaintFlagsDrawFilter = r.CreateObject2("android.graphics.PaintFlagsDrawFilter", _
 Array As Object(0, Active), Array As String("java.lang.int", "java.lang.int"))
 r.Target = NativeCanvas
 r.RunMethod4("setDrawFilter", Array As Object(PaintFlagsDrawFilter), _
 Array As String("android.graphics.DrawFilter"))
End Sub

An example program to test it with simple lines can be found on the forum : DrawLines

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/10746-drawing-lines-problem.html

12 Class modules 170 B4A User's Guide

12 Class modules

12.1 Getting started

Classes definition from Wikipedia:

In object-oriented programming, a class is a construct that is used to create instances of itself – referred to
as class instances, class objects, instance objects or simply objects. A class defines constituent members
which enable its instances to have state and behaviour. Data field members (member variables or instance
variables) enable a class instance to maintain state. Other kinds of members, especially methods, enable the
behaviour of a class instances. Classes define the type of their instances.

A class usually represents a noun, such as a person, place or thing, or something nominalized. For example,
a "Banana" class would represent the properties and functionality of bananas in general. A single, particular
banana would be an instance of the "Banana" class, an object of the type "Banana".

Let’s start with an example, the source code: Persons in the Classes/ Persons folder.

In the Person module

'Class Person module
Sub Class_Globals
 Private FirstName, LastName As String
 Private BirthDate As Long
End Sub

Sub Initialize (aFirstName As String, aLastName As String, aBirthDate As Long)
 FirstName = aFirstName
 LastName = aLastName
 BirthDate = aBirthDate
End Sub

Public Sub GetName As String
 Return FirstName & " " & LastName
End Sub

Public Sub GetCurrentAge As Int
 Return GetAgeAt(DateTime.Now)
End Sub

Public Sub GetAgeAt(Date As Long) As Int
 Private diff As Long
 diff = Date - BirthDate
 Return Floor(diff / DateTime.TicksPerDay / 365)
End Sub

Main module.

Sub Activity_Create(FirstTime As Boolean)
 Private p As Person
 p.Initialize("John", "Doe", DateTime.DateParse("05/12/1970"))
 Log(p.GetCurrentAge)
End Sub

http://en.wikipedia.org/wiki/Classes_%28computer_science%29

12 Class modules 171 B4A User's Guide

I will start by explaining the differences between classes, code modules and types.

Similar to types, classes are templates. From this template you can instantiate any number of
objects.
The type fields are similar to the classes global variables. However unlike types which only define
the data structure, classes also define the behaviour. The behaviour is defined in the classes’ subs.

Unlike classes which are a template for objects, code modules are collections of subs. Another
important difference between code modules and classes is that code modules always run in the
context of the calling sub (the activity or service that called the sub). The code module doesn't hold
a reference to any context. For that reason it is impossible to handle events or use CallSub with
code modules.
Classes store a reference to the context of the activity or service module that called the Initialize
sub. This means that classes objects share the same life cycle as the service or activity that
initialized them.

Code modules are somewhat similar to singleton or static classes.

12.1.1 Adding a class module

Adding a new or existing class module is done by choosing Project > Add New Module > Class
module or Add Existing module.
Like other modules, classes are saved as files with bas extension.

There are two class module types:
Standard Class
CustomView

12 Class modules 172 B4A User's Guide

12.1.2 Polymorphism

Polymorphism allows you to treat different types of objects that adhere to the same interface in the
same way.
Basic4android polymorphism is similar to the Duck typing concept.

As an example we will create two classes named: Square and Circle.
Each class has a sub named Draw that draws the object to a canvas:
Source code Draw in the Classes/Draw folder.

'Class Square module
Sub Class_Globals
 Private mx, my, mLength As Int
End Sub

'Initializes the object. You can add parameters to this method if needed.
Sub Initialize (x As Int, y As Int, length As Int)
 mx = x
 my = y
 mLength = length
End Sub

Sub Draw(c As Canvas)
 Private r As Rect
 r.Initialize(mx, my, mx + mLength, my + mLength)
 c.DrawRect(r, Colors.White, False, 1dip)
End Sub

'Class Circle module
Sub Class_Globals
 Private mx, my, mRadius As Int
End Sub

'Initializes the object. You can add parameters to this method if needed.
Sub Initialize (x As Int, y As Int, radius As Int)
 mx = x
 my = y
 mRadius = radius
End Sub

Sub Draw(cvs As Canvas)
 cvs.DrawCircle(mx, my, mRadius, Colors.Yellow, False, 1dip)
End Sub

http://en.wikipedia.org/wiki/Duck_typing

12 Class modules 173 B4A User's Guide

In the main module we create a list with Squares and Circles. We then go over the list and draw all
the objects:

Sub Process_Globals
 Public shapes As List
End Sub

Sub Globals
 Private cvs As Canvas
End Sub

Sub Activity_Create(FirstTime As Boolean)
 cvs.Initialize(Activity)
 Private sq1, sq2 As Square
 Private circle1 As Circle
 shapes.Initialize
 sq1.Initialize(shapes, 100dip, 100dip, 50dip)
 sq2.Initialize(shapes, 2dip, 2dip, 100dip)
 circle1.Initialize(shapes, 50%x, 50%y, 100dip)
 DrawAllShapes
End Sub

Sub DrawAllShapes
 For i = 0 To shapes.Size - 1
 Log(shapes.Get(i))
 CallSub2(shapes.Get(i), "Draw", cvs)
 Next
 Activity.Invalidate
End Sub

As you can see, we do not know the specific type of each object in the list. We just assume that it
has a Draw method that expects a single Canvas argument. Later we can easily add more types of
shapes.
You can use the SubExists keyword to check whether an object includes a specific sub.

You can also use the Is keyword to check if an object is of a specific type.

12.1.3 Self-reference

The Me keyword returns a reference to the current object. Me keyword can only be used inside a
class module.
Consider the above example. We could have passed the shapes list to the Initialize sub and then add
each object to the list from the Initialize sub:

Sub Initialize (Shapes As List, x As Int, y As Int, radius As Int)
 mx = x
 my = y
 mRadius = radius
 Shapes.Add(Me)
End Sub

12 Class modules 174 B4A User's Guide

12.1.4 Activity object

This point is related to the activities special life cycle.
Make sure to first read the activities and processes life-cycle tutorial.

Android UI elements hold a reference to the parent activity. As the OS is allowed to kill background
activities in order to free memory, UI elements cannot be declared as process global variables (these
variables live as long as the process lives). Such elements are named Activity objects. The same is
true for custom classes. If one or more of the class global variables is of a UI type (or any activity
object type) then the class will be treated as an "activity object". The meaning is that instances of
this class cannot be declared as process global variables.

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/6487-android-process-activities-life-cycle.html

12 Class modules 175 B4A User's Guide

12.2 Standard class structure

Default layout of a standard class:

Only two routines are predefined:

Sub Class_Globals - This sub is similar to the activity Globals sub. These variables will be the
class global variables (sometimes referred to instance variables or instance members).

Sub Initialize - A class object should be initialized before you can call any other sub.
Initializing an object is done by calling the Initialize sub. When you call Initialize you set the
object's context (the parent activity or service).
Note that you can modify this sub signature and add arguments as needed.

Example:

'Class Person module
Sub Class_Globals
 Private FirstName, LastName As String
 Private BirthDate As Long
End Sub

Sub Initialize (aFirstName As String, aLastName As String, aBirthDate As Long)
 FirstName = aFirstName
 LastName = aLastName
 BirthDate = aBirthDate
End Sub

Public Sub GetName As String
 Return FirstName & " " & LastName
End Sub

Public Sub GetCurrentAge As Int
 Return GetAgeAt(DateTime.Now)
End Sub

Public Sub GetAgeAt(Date As Long) As Int
 Dim diff As Long
 diff = Date - BirthDate
 Return Floor(diff / DateTime.TicksPerDay / 365)
End Sub

12 Class modules 176 B4A User's Guide

In the above code we created a class named Person and later instantiate an object of this type in the
main module:

 Private p As Person
 p.Initialize("John", "Doe", DateTime.DateParse("05/12/1970"))
 Log(p.GetCurrentAge)

Calling initialize is not required if the object itself was already initialized:

 Private p2 As Person
 p2 = p 'both variables now point to the same Person object.
 Log(p2.GetCurrentAge)

12 Class modules 177 B4A User's Guide

12.3 Classes from the forum

A certain number of examples exist in the forum.
Below a non exhaustive list with comments from the develppers.

 TableView - Supports tables of any size Erel
This class is a much improved version of the ScrollView based Table.

 CustomListView Erel
A flexible list based on ScrollView

 CameraEx Erel
CameraEx class wraps the Camera object and using reflection and other code it extends its
functionality.

 CheckList Informatix
I created a class to manage a list with checkboxes (but not only, you can use it for any kind
of list with rows). The layout is highly customizable and you can even extend a clicked item
with extra content. You can rearrange the items programmatically or manually (drag &
drop).

 SlideMenu corwin42
This is a class that implements a sliding menu as seen in many apps like Google+, Evernote,
Facebook etc.

 ScrollPanel Informatix
This class displays a small panel beside the vertical scrollbar in a scrollview. You can
display what you want in its label and drag it to quickly scroll.

 Floating Windows Informatix
With this class, you can create floating windows, move them with the finger, dock them,
stick them to an edge, maximize them, customize their action bar... You fill them as you fill
a panel.

 ActionBar Informatix
This class allows to create Action Bars.
There was already a good library to do that (AHActionBar) but I needed more features and
more flexibility.

 Animated Sliding Menu NJDude
This class will allow you to create animated sliding menus.

 ICS Like Horizontal and Vertical Seekbars mabool
This class implements ICS Like SeekBars.

 ClsWheel klaus
It allows to display different data input screens with wheels. What can be done ? You can
define five different types of Wheel input screens.

If you want to develop your own classes you should have a look at the classes above to see and
understand what has been done and how.

http://www.basic4ppc.com/forum/additional-libraries-classes-official-updates/19254-class-tableview-supports-tables-any-size-10.html
http://www.basic4ppc.com/forum/additional-libraries-classes-official-updates/19567-class-customlistview-flexible-list-based-scrollview-4.html
http://www.basic4ppc.com/forum/additional-libraries-classes-official-updates/23801-class-cameraex-extends-camera-library-functionality-5.html
http://www.basic4ppc.com/forum/additional-libraries-classes-official-updates/18853-class-checklist-3.html
http://www.basic4ppc.com/forum/additional-libraries-classes-official-updates/18810-class-slidemenu-2.html
http://www.basic4ppc.com/forum/additional-libraries-classes-official-updates/19668-class-scrollpanel-2.html
http://www.basic4ppc.com/forum/additional-libraries-classes-official-updates/20639-class-floating-windows-4.html
http://www.basic4ppc.com/forum/additional-libraries-classes-official-updates/20751-class-actionbar-2.html
http://developer.android.com/guide/topics/ui/actionbar.html
http://www.basic4ppc.com/forum/additional-libraries-classes-official-updates/23663-class-animated-sliding-menu-3.html
http://www.basic4ppc.com/forum/additional-libraries-classes-official-updates/23868-class-ics-like-horizontal-vertical-seekbars-2.html
http://www.basic4ppc.com/forum/additional-libraries-classes-official-updates/24319-class-clswheel-input-wheels-2.html

12 Class modules 178 B4A User's Guide

12.4 Custom views

With classes you can add your own custom views which can be based on standard views but with
more functions.

12.4.1 Custom view class structure

Default layout of a CustomView class:

Several declarations and routines are predefined:

12.4.1.1 Event declarations

You should add Event declarations if you compile the custom view into a library.
If the event routine has parameters these must also be declared.

#Event: ExampleEvent (Value As Int)

12 Class modules 179 B4A User's Guide

12.4.1.2 Designer properties declarations

#DesignerProperty: Key: BooleanExample, DisplayName: Boolean Example, FieldType:
Boolean, DefaultValue: True, Description: Example of a boolean property.

You can add custom properties for the Designer.

More details in the chapter Custum view in the Designer.

12.4.1.3 Global variable declarations

In this routine you should declare all global variables used in the class.

The variables below are mandatory.

Sub Class_Globals
 Private EventName As String 'ignore
 Private CallBack As Object 'ignore
 Private mBase As Panel
End Sub

EventName Event name used for the events in the code, same as for standard views.
CallBack Module where the class is declared, used for event calls.
mBase Main panel of the custom view.

You can, if you want, change the name of the base panel.

What is this for 'ignore ?
It avoids a warning of the compiler that these variables are unused.

Variables only used in the class should be declared as Private.
If you want to have access to variables from outsides you must declare them as Public.

12.4.1.4 Initialization routine

The initialize routine initiates a new instance of the custom view.

Public Sub Initialize (vCallback As Object, vEventName As String)
 EventName = vEventName
 CallBack = vCallback
End Sub

These two variables will be used to call event routines in the module where the custom view is
initialized.

Example:

' if a callback routine exists in the calling module we call it
If SubExists(Callback, EventName & "_ValuesChanged") Then
 CallSub3(Callback, EventName & "_ValuesChanged", cLimitLeft, cLimitRight)
End If

12 Class modules 180 B4A User's Guide

12.4.1.5 Designer support routine

This routine assures the support for the Designer, it is called directly after the Initialize routine of
the custom view class.

You should not modify its signature.

Public Sub DesignerCreateView (Base As Panel, Lbl As Label, Props As Map)
 mBase = Base
End Sub
Base Is the base panel defined in the Designer, it holds the Left, Top, Width and Height properties
 of the custom view. The Base panel can be used or not.

Lbl Is a Label which holds all the text properties defined in the Designer. This Label can be used
 or not.

Props Is a Map holding additional properties.

12.4.1.6 Routine to get the base Panel

You can use this routine if you want to access the base panel from outsides.

Public Sub GetBase As Panel
 Return mBase
End Sub

In the calling module:

Private pnlClass As Panel
pnlClass = clsTest.GetBase

12 Class modules 181 B4A User's Guide

12.4.2 Adding a custom view by code

To offer the possibility to add the custom view by code you must add a routine in the class which
adds the custom view onto a parent view which can be either an Activity or a Panel.

Example:
Public Sub AddToParent(Parent As Activity, Left As Int, Top As Int, Width As Int,
Height As Int)
 mBase.Initialize("mBase")
 Parent.AddView(mBase, Left, Top, Width, Height)
End Sub

Parent is the parent view which can be an Activity or a Panel.
Left is the Left property.
Top is the Top property.
Width is the Width property.
Height is the Height property.

You can add other parameters or properties to the routine if necessary.

And in the calling module:

Private clsTest2 As ClsCustomView

clsTest2.Initialize(Me, "clsTest2")
clsTest2.AddToParent(Activity, 10dip, 10dip, 200dip, 50dip)

12 Class modules 182 B4A User's Guide

12.4.3 Add properties

Property routines can be added which work like any property of the standard views.

These properties can be read and or set.

To read a property you must add a routine beginning with get, lower case and the property name.
Examples:
Get the Left Property.
'gets the Left value
Public Sub getLeft As Int
 Return ltbPanelBack.Left
End Sub

Get the custom Max property.
'gets the Max value
Public Sub getMax As Int
 Return MaxVal
End Sub

To set a property you must add a routine beginning with set, lower case and the property name.
Examples:
Set the Left Property.
'sets the Left value
Public Sub setLeft(Left As Int)
 ltbPanelBack.Left = Left
End Sub

Set the custom Max property.
'sets the Max value
Public Sub setMax(cMax As Int)
 MaxVal = cMax
 Scale = (x1 - x0) / MaxVal
End Sub

If you define only a get routine the property is read only.
If you define only a set routine the property is write only.
If you define both a set and a get routine, the property is write and read.

12 Class modules 183 B4A User's Guide

12.4.4 Custom view in the Designer

You can add code to make custom properties visible in the Designer.
The images below are from the TestClass project in the SourceCode\Classes folder.

On the top of the code you must include declaration lines. The default layout of a custom view class
includes these example declarations:

#DesignerProperty: Key: BooleanExample, DisplayName: Boolean Example, FieldType:
Boolean, DefaultValue: True, Description: Example of a boolean property.
#DesignerProperty: Key: IntExample, DisplayName: Int Example, FieldType: Int,
DefaultValue: 10, MinRange: 0, MaxRange: 100, Description: Note that MinRange and
MaxRange are optional.
#DesignerProperty: Key: StringWithListExample, DisplayName: String With List,
FieldType: String, DefaultValue: Sunday, List:
Sunday|Monday|Tuesday|Wednesday|Thursday|Friday|Saturday
#DesignerProperty: Key: StringExample, DisplayName: String Example, FieldType: String,
DefaultValue: Text
#DesignerProperty: Key: ColorExample, DisplayName: Color Example, FieldType: Color,
DefaultValue: 0xFFCFDCDC, Description: You can use the built-in color picker to find
the color values.

Each property declaration is made of several fields, the following fields are required:
Key Is the key value for the Map.
 This will be used to get the value from the Props map.
DisplayName Is the name displayed in the Designer property grid.
FieldType Is the type of the field.
 Possible values: String, Int, Double, Boolean or Color.
DefaultValue Is the default value which is set in the Designer.

Optional fields:
Description Is the explanation text displayed in the Designer.
MinRange / MaxRange Minimum and maximum numeric values allowed.
List A pipe (|) separated list of items from which the developer can choose

(should be used with string fields).

In the Designer you can add a CustumView like this:

Right click in the screen area, select Add View and select CustomView.
Select the custom from the list of available custom views ClsCustomView in the example.

12 Class modules 184 B4A User's Guide

In the Properties window you find all the properties
for the selected custom view.

Custom properties:

Here we see the five custom properties declared on
top of the Class code.

Example with the String With List property.

Common Properties:
The common properties like any view.

Text Style:
The properties are set to the Lbl Label of the class.

Base Background:
Background of the base panel mBase.

12 Class modules 185 B4A User's Guide

To recuperate the custum properties you must use the Props Map in the DesignerCreateView
routine.

Variable declaration :
 Private BooleanTest As Boolean
 Private IntTest As Int
 Private Day As String
 Private StringTest As String
 Private ColorTest As Int

And the DesignerCreateView routine:

Public Sub DesignerCreateView (Base As Panel, Lbl As Label, Props As Map)
 mBase = Base

 BooleanTest = Props.Get("BooleanExample")
 IntTest = Props.Get("IntExample")
 Day = Props.Get("StringWithListExample")
 StringTest = Props.Get("StringExample")
 ColorTest = Props.Get("ColorExample")
End Sub

You can get the text properties from the Lbl Label like:
TextSize = Lbl.TextSize

12 Class modules 186 B4A User's Guide

12.5 First example LimitBar

The first example is a LimitBar.

The source code is in the Classes\ClsLimitBar folder.
It supports adding it in the Designer or in the code.

The LimitBar looks like this:

Two cursors allow to define two limits.

In the demo program we add two labels one on each side to display the two limit values.

We'll use two panels:
 ltbPanelBack the background with the background color and the dark 'background' line.

 ltbPanelFront the foreground, transparent with the 'foreground' line and the two cursors.

and two canvases:
 cvsPanelBack to draw the background line onto ltbPanelBack.
 cvsPanelFront to draw the foreground line and the cursors onto ltbPanelFront.

First we declare several objects and variables in Sub Class_Globals :

Sub Class_Globals
 Private Callback As Object ' calling module
 Private ltbPanelBack As Panel ' the background panel
 Private ltbPanelFront As Panel ' the foreground panel
 Private cvsPanelBack As Canvas ' the background canvas
 Private cvsPanelFront As Canvas ' the foreground canvas
 Private rectPanelFront As Rect ' a rectangle for the foreground canvas

 Private BackLineColor As Int ' color for the background line
 BackLineColor = Colors.Black
 Private FrontLineColor As Int ' color for the foreground line
 FrontLineColor = Colors.RGB(51, 181, 229)
 Private LimitSliderColor As Int ' color for the cursors
 LimitSliderColor = Colors.ARGB(180, 51, 181, 229)
 Private Margin = 15dip As Float ' left and right margins for the line
 Private x0, y0, x1 As Int ' values used internaly
 Private MaxVal = 100 As Int ' value of the Max property
 Private Scale As Double ' scale between position value and pixels
 Private cLimitLeft As Int ' value of the left limit
 Private cLimitRight As Int ' value of the right limit
 Private PositionPixels(2) As Int ' left and right positions in pixels
 ' 0 = left 1 = right
 Private PosIndex As Int ' current index of the position
 Private EventName As String ' event name
 Private Paths(2) As Path ' two paths for the cursor shape
End Sub

12 Class modules 187 B4A User's Guide

Then we need the routine to initialize the LimitBar, the code is self explanatory.

'Initializes the object.
'CallbackModule = name of the calling module
'cEventName = event name
'Example if added in the code:
'<Code>ltbTest.Initialize(Me, "ltbTest")'</Code>
Public Sub Initialize(CallbackModule As Object, cEventName As String)
 Callback = CallbackModule
 EventName = cEventName
End Sub

Then we have the DesignerCreateView routine.

Public Sub DesignerCreateView(Base As Panel, Lbl As Label, Props As Map)
 ' we use the Base panel as the background panel
 ltbPanelBack = Base

 MaxVal = Props.Get("Max")
 cLimitLeft = Props.Get("LimitLeft")
 cLimitRight = Props.Get("LimitRight")
 cBackLineColor = Props.Get("BackLineColor")
 cFrontLineColor = Props.Get("FrontLineColor")

 Init
End Sub

We use the Base Panel with the name ltbPanelBack, and get the custom properties from the Props
Map object.

As the LimitBar custom view can also be added in the code we initialize the rest in the Init
routine.
The AddToParent routine.

'Adds the LimitBar to the Parent object
'Parent = parent view, the Activity or a Panel
'Left, Right, Width, Height = position and dimensions properties of the LimitBar
'Color = background color of the LimitBar
'Radius = corner radius of the LimitBar
Public Sub AddToParent(Parent As Activity, Left As Int, Top As Int, Width As Int,
Height As Int, Color As Int, Radius As Int)

 Height = Max(Height, 30dip) ' limits the height to min
30dip
 Radius = Min(Radius, Height / 2) ' limits the max radius to half the height

 ' initialize the background panel ltbPanelBack and add it onto the parent view
 ltbPanelBack.Initialize("")
 Parent.AddView(ltbPanelBack, Left, Top, Width, Height)

 ' initialize and set the ColorDrawable for the background panel
 Dim cdw As ColorDrawable
 cdw.Initialize(Color, Radius)
 ltbPanelBack.Background = cdw

 Init
End Sub

We initialize ltbPanelBack, add it onto the parent view and set its background and call Init.

12 Class modules 188 B4A User's Guide

The next routine is the Init routine where we initialize the rest.
This routine is called either from the DesignerCreateView when the custom view is added in the
Designer or from the AddToParent routine when the custom view is added in the code.

Private Sub Init
 ' initialize the foreground panel and add it onto the background panel
 ltbPanelFront.Initialize("ltbPanelFront")
 ltbPanelBack.AddView(ltbPanelFront, 0, 0, ltbPanelBack.Width, ltbPanelBack.Height)
 ' initialize the foreground panel rectangle used to erase ltbPanelFront
 rectPanelFront.Initialize(0, 0, ltbPanelFront.Width, ltbPanelFront.Height)
 ltbPanelFront.BringToFront

 ' set local variables
 x0 = Margin
 x1 = ltbPanelBack.Width - Margin
 y0 = 6dip
 setMax(100)

 ' initialize the background canvas and draw the background line
 cvsPanelBack.Initialize(ltbPanelBack)
 cvsPanelBack.DrawLine(x0, y0, x1, y0, cBackLineColor, 2)
 ltbPanelBack.Invalidate

 ' initialize the foreground canvas
 cvsPanelFront.Initialize(ltbPanelFront)

 ' set the left cursor parameters and draw it
 PosIndex = 0
 PositionPixels(0) = x0
 DrawPos(x0)

 ' set the right cursor parameters and draw it
 PosIndex = 1
 PositionPixels(1) = x1
 DrawPos(x1)
End Sub

The code is self explanatory.

12 Class modules 189 B4A User's Guide

The drawing routine for the cursors and the foreground line:

We:

 Erase the whole panel by drawing a transparent rectangle.
 Set the current position to the active cursor PositionPixels(PosIndex) = x

PosIndex is the index of the current cursor.
 Define both cursors according to the current position.

The cursor shapes are defined with two Paths.
 Draw the cursors.
 Draw the foreground line.

Private Sub DrawPos(x As Int)
 ' draw a transparent rectangle to erase the foreground panel
 cvsPanelFront.DrawRect(rectPanelFront, Colors.Transparent, True, 1)

 ' set the current cursor position
 PositionPixels(PosIndex) = x

 ' define the left cursor path according to its current position
 Paths(0).Initialize(PositionPixels(0), y0)
 Paths(0).LineTo(PositionPixels(0), y0 + 22dip)
 Paths(0).LineTo(PositionPixels(0) - 12dip, y0 + 22dip)
 Paths(0).LineTo(PositionPixels(0) - 12dip, y0 + 8dip)
 Paths(0).LineTo(PositionPixels(0), y0)

 ' define the right cursor path according to its current position
 Paths(1).Initialize(PositionPixels(1), y0)
 Paths(1).LineTo(PositionPixels(1), y0 + 22dip)
 Paths(1).LineTo(PositionPixels(1) + 12dip, y0 + 22dip)
 Paths(1).LineTo(PositionPixels(1) + 12dip, y0 + 8dip)
 Paths(1).LineTo(PositionPixels(1), y0)

 ' draw the two cursors and the foreground line
 cvsPanelFront.DrawPath(Paths(0), cFrontLineColor, True, 1)
 cvsPanelFront.DrawPath(Paths(1), cFrontLineColor, True, 1)
 cvsPanelFront.DrawLine(PositionPixels(0), y0, PositionPixels(1), y0, cFrontLineColor,
3dip)

 ' if Mode = 1 draw the current cursor with the FrontLineColor (highlighted)
 cvsPanelFront.DrawPath(Paths(PosIndex), cFrontLineColor, True, 1)
 ltbPanelFront.Invalidate ' update the foreground panel
End Sub

12 Class modules 190 B4A User's Guide

To detect cursor moves we use the touch event of the foreground panel:

Private Sub ltbPanelFront_Touch (Action As Int, X As Float, Y As Float)
 ' check if the cursor is outsides the limits
 X = Max(x0, X)
 X = Min(x1, X)

 ' select the Action type
 Select Action
 Case 0 'DOWN
 If X < Abs(PositionPixels(0) + PositionPixels(1)) / 2 Then
 ' if X is closer to the left cursor we choose it
 PosIndex = 0
 Else
 ' otherwise we choose the right cursor
 PosIndex = 1
 End If
 DrawPos(X) ' we draw the current cursor highlighted
 Case 2 ' MOVE
 DrawPos(X) ' we draw the current cursor highlighted
 Case 1 ' UP
' DrawPos(X) ' we draw the current cursor not highlighted
 End Select

 ' we calculate the current limit value from the X position in pixels
 If PosIndex = 0 Then
 cLimitLeft = Floor((X - x0) / Scale + .5)
 Else
 cLimitRight = Floor((X - x0) / Scale + .5)
 End If

 ' when Action is UP check if cLimitLeft > cLimitRight
 ' if yes we invert the limit values and redraw the cursors
 If Action = 1 And cLimitLeft > cLimitRight Then
 Private val As Int
 val = cLimitLeft
 cLimitLeft = cLimitRight
 cLimitRight = val
 PosIndex = 0
 X = cLimitLeft * Scale + x0
 DrawPos(X)
 PosIndex = 1
 X = cLimitRight * Scale + x0
 DrawPos(X)
 End If

 ' if a callback routine exists in the calling module we call it
 If SubExists(Callback, EventName & "_ValuesChanged") Then
 CallSub3(Callback, EventName & "_ValuesChanged", cLimitLeft, cLimitRight)
 End If
End Sub

12 Class modules 191 B4A User's Guide

Finaly we add a few properties:
To add properties see more details in Chapter Add properties to a class.

The Max property:
'gets or sets the max value
Sub setMax(cMax As Int)
 MaxVal = cMax
 Scale = (x1 - x0) / MaxVal
End Sub

Sub getMax As Int
 Return MaxVal
End Sub

The LimitLeft property:
'gets or sets the left limit
Sub setLimitLeft(Pos As Int)
 ' if Pos is lower than 0 set cLimitLeft to 0
 cLimitLeft = Max(0, Pos)
 PosIndex = 0
 DrawPos(x0 + cLimitLeft * Scale, 0)
End Sub

Sub getLimitLeft As Int
 Return cLimitLeft
End Sub

The LimitRight property:
'gets or sets the right limit
Sub setLimitRight(Pos As Int)
 ' if Pos is higher than MaxVal set cLimitRight to MaxVal
 cLimitRight = Min(MaxVal, Pos)
 PosIndex = 1
 DrawPos(x0 + cLimitRight * Scale, 0)
End Sub

Sub getLimitRight As Int
 Return cLimitRight
End Sub

The Visible property:
'gets or sets the Visible property
Sub setVisible(IsVisible As Boolean)
 ltbPanelBack.Visible = IsVisible
End Sub

Sub getVisible As Boolean
 Return ltbPanelBack.Visible
End Sub

I didn't add more properties to keep the example code 'simple'.
But other properties could easily be added.

12 Class modules 192 B4A User's Guide

12.6 Compile a class into a Library

In B4A you can compile your project, or part of it to a regular library.

Why should I compile a library?

 Break large projects into several smaller (more maintainable) projects.
 Build reusable components and use them from any number of projects.
 Share components with other developers without sharing the source code.
 Create different versions of your application (free, pro...) by referencing the same "core"

library.

The output of library compilation are two files: a jar file with the compiled code and a xml file that
includes the metadata that is required by the IDE.

These two files are automatically saved in the additional libraries folders.

Compiling to a library is quite simple. Under Project menu there is the compile option - "Compile
To Library (Alt + 5)". When you choose this option all the modules except of the main activity are
compiled into a library.

You can exclude other modules as well with the ExcludeFromLibrary attribute (see this tutorial for
more information about attributes).

The main activity and the other excluded modules can be used to test the library.

You can reference the library from other projects and access the same functionality as in the
original project.

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/24721-modules-attributes.html

12 Class modules 193 B4A User's Guide

Library specific attributes

The following attributes are specific for library compilation:

Project attributes (placed in the main activity):
LibraryVersion - A number that represents the library version. This number will appear next to the
library name in the libraries list.
LibraryAuthor - The library author. This value is added to the library xml file.
LibraryName (B4A v2.70) - The compiled library name. Sets the library name instead of showing
the save dialog.

All modules:
ExcludeFromLibrary - Whether to exclude this module during library compilation. Values: True or
False. Note that the Main activity is always excluded.

Classes:
Event - Adds an event to the list of events. This attribute can be used multiple times. Note that the
events list only affects the IDE events autocompletion feature.

Example:
In the Main module
#Region Project Attributes
 #ApplicationLabel: LimitBarDemo2
 #VersionCode: 1
 #VersionName:
 'SupportedOrientations possible values: unspecified, landscape or portrait.
 #SupportedOrientations: unspecified
 #CanInstallToExternalStorage: False

 #LibraryVersion: 1.0
 #LibraryName: LimitBar
 #LibraryAuthor: Klaus Christl
#End Region

In a code module:
 #ExcludeFromLibrary

Notes

- You should right click on the libraries list and choose Refresh after a library update.
- CallSub / CallSubDelayed - The first parameter for these keywords is a reference to the target
module. When working with modules that reside in a library you should pass the module reference
and not the module name as string (this is the better way to reference all modules in all cases).
- Code obfuscation - Libraries can be obfuscated during library compilation. Strings will not be
obfuscated in this mode.
- Services that host home screen widgets cannot be compiled into a library.

12 Class modules 194 B4A User's Guide

12.6.1 Example with the LimitBar class example

We take the LimtBar demo program to show the principle.
Source code in the Classes\ClsLimtBar folder.

In the Project Attributes Region in the Main module we add following new attributes:

#Region Project Attributes
 #ApplicationLabel: LimitBarDemo
 #VersionCode: 1
 #VersionName:
 'SupportedOrientations possible values: unspecified, landscape or portrait.
 #SupportedOrientations: unspecified
 #CanInstallToExternalStorage: False

 #LibraryVersion: 1.0
 #LibraryName: LimitBar
 #LibraryAuthor: Klaus Christl
#End Region

Then click on to compile the library.

A screen similar to this one
is displayed showing that the
library has been successfully
compiled.

Two files are automatically added in the additional library folder.
In our example:
LimitBar.xml
LimitBar.jar

Right click in the Libs tab and click on Refresh.

The new library is now available.

12 Class modules 195 B4A User's Guide

Then we add these two lines on top of the class code:
#Event: ValuesChanged(LimitLeft As Int, LimitRight As Int)
#RaisesSynchronousEvents: ValuesChanged

#Event: is used for the IDE events autocompletion feature, if the event routine has parameters they
should be declared. You need one for each event.

Once the class is compiled into a library you can use the events autocompletion feature in the IDE.

Example in the LblLimitBar project.

Write Sub, a blank character.

Press Tab, a list of views is displayed, you find the LimitBar view at the bottom.

A list of the available event is displayed, select one.

The routine is written,

Change the view name and the routine skeleton is ready.

#RaisesSynchronousEvents: Is used for the Rapid Debugger. You need one for each event.

12 Class modules 196 B4A User's Guide

12.6.2 Using the library in a program

To use the library we copy the LimtBarDemo to another folder and load it.

The resulting source code for this example is in the Classes\LblLimitBar1 folder.

We remove the LimitBar module.
We remove the three Project Attributes.
 #LibraryVersion: 1.0
 #LibraryName: LimitBar
 #LibraryAuthor: Klaus Christl

We check the LimitBar library in the Libs tab

Run the program that's it !

Open the Disigner we find the lbtTest custom view as defined previously.

Adding a LimitBar in the code.

In the example below we add one LimitBar in the Designer and another one in the code.

The source code is in the Classes\LblLimitBar2 folder.

We need to Dim the LimitBars
 Private ltbTest, ltbTest1 As LimitBar

We initialize ltbTest1 in the code and add it to the parent view (Activity in our example).
 'adds a second LimitBar in the code
 ltbTest1.Initialize(Me, "ltbTest1")
 ltbTest1.FrontLineColor = Colors.Blue
 ltbTest1.AddToParent(Activity, 40dip, 100dip, 240dip, 30dip, Colors.Red, 5dip)

Initialize : Me = CallModule, current module and "ltbTest2" = EventName

AddToParent parameters : Parent view, Left, Top, Width, Height, BackgroundColor, CornerRadius.

12 Class modules 197 B4A User's Guide

12.7 Second example Wheel selection

12.7.1 Simple example

We will develop a wheel selection class.

The source code is in the Classes/ClsWheelSimple1 folder.

The height of the views is automatically adjusted according to the text size.
The width of the views is automatically adjusted according to the longest
text.

To display the wheel we use:

 1 ScrollView to display the data and allow scrolling.
The entries in the ScrollView are Labels added in the code.

 4 Panels
o the background panel holding all views
o a top and a bottom panel for the shadows
o a center panel as the 'display window'

 Background Panel ScrollView Top, center bottom Panels Lines on top and
 bottom Panels

 ScrollView on All Views
 background Panel superimposed on
 background Panel

Cherry
Prune

Strawberry
Raspberry
Blueberry

Cherry
Prune

Strawberry
Raspberry
Blueberry

Cherry
Prune

Strawberry
Raspberry
Blueberry

12 Class modules 198 B4A User's Guide

The code:

In Class_Globals we define different variables.

Sub Class_Globals
 Private pnlBackground, pnlTop, pnlMiddle, pnlBottom As Panel
 Private Callback As Object ' calling module
 Private scv As ScrollView ' ScrollView for the data
 Private ColWidth As Int ' width of the column (ScrollView)
 Private FontSize As Float ' font size for the text in the ScrollView
 Private lblHeight As Int ' height of the ScrollView

 Private WheelContent As List ' content of the

 ' variables used to calculate the dimensions of pnlBackground
 Private Left, Top, Width, Height As Float

 Private lineWidth = 4dip As Int ' width of the lines

 ' colors
 Private colBackGround = Colors.Blue As Int ' background
 Private colShadow = Colors.Black As Int ' shadow of top and bottom panels
 Private colWindowLine = Colors.Red As Int ' lines of center window
 Private colWindow = Colors.ARGB(96, 255, 0, 0) As Int ' center window
End Sub

Initialization routine:
We define local variables to use them in other routines.

'Initializes the Wheel.
'CallbackModule = calling module
'Parent = parent activity or panel
'cWheelContent = List object with the content on the wheel
'cFontSize = font size of the text in the wheel
Public Sub Initialize(CallbackModule As Object, Parent As Object, _
 cWheelContent As List, cFontSize As Float)

 Callback = CallbackModule
 FontSize = cFontSize
 WheelContent = cWheelContent

We calculate the height of one Label in the ScrollView. We define a Canvas for the Parent object to
measure the height of the text in pixels for the given font size and add a top and bottom margin
depending on the font size.

 ' calculate the text height in pixels according to the text size
 Dim cvs As Canvas
 cvs.Initialize(Parent)
 lblHeight = cvs.MeasureStringHeight("Ag", Typeface.DEFAULT, FontSize) + _
 DipToCurrent(FontSize / 2)

With cvs.MeasureStringHeight we measure the height of the text according to the font size.
Then we add a small amount for margins depending also on the font size, FontSize / 2 is a good
value. But as the font size is independent of the screen density we need to transform this value into
a dip (density independent pixels) value with the DipToCurrent function.

12 Class modules 199 B4A User's Guide

We admit the height of the wheel (the ScrollView) and the background Panel equal to 5 Label
heights. We have 2 label heights above the center window and 2 label heights below it.
 ' we admit the total height to 5 times the label height
 Height = 5 * lblHeight

We calculate the max text length, add a margin and add two line widths for the border.
 ' calculate the width of the longest text in the ScrollView
 ' according to the text size
 ColWidth = 0
 For j = 0 To WheelContent.Size -1
 ColWidth = Max(ColWidth, cvs.MeasureStringWidth(WheelContent.Get(j), _
 Typeface.DEFAULT, FontSize))
 Next
 ColWidth = ColWidth + 20dip ' add a margin
 Width = ColWidth + 2 * lineWidth ' add two line widths for the total width

We set ColWidth = 0 (the ScrollView width) and with cvs.MeasureStringWidth we measure the
text length of each entry and memorize the bigger value in ColWidth.
Then we add 20dip for the margins.
The whole width of the background panel is the scrollview width plus two line widths.

We initialize the background panel, add it onto the parent object and set its background color.
 ' initialize pnlBackground and add it onto the parent object
 ' and set its color
 pnlBackground.Initialize("pnlBackground")
 If Parent Is Activity Then
 Private act As Activity
 act = Parent
 Left = (act.Width - Width) / 2 ' center pnlBackground in the parent object
 Top = (act.Height - Height) / 2
 act.AddView(pnlBackground, Left, Top, Width, Height)
 Else If IsPanel(Parent) Then
 Dim pnlp As Panel
 pnlp = Parent
 Left = (pnlp.Width - Width) / 2 ' center pnlBackground in the parent object
 Top = (pnlp.Height - Height) / 2
 pnlp.AddView(pnlBackground, Left, Top, Width, Height)
 Else
 Log("Parent must be an activity or a panel.")
 Return False
 End If
 pnlBackground.Color = colBackGround

We initialize pnlBackground calculate its Left and Top properties to centre it on the screen or on
the parent panel. If the parent view is not an activity nor a panel an error message is displayed.

12 Class modules 200 B4A User's Guide

We initialize the ScrollView and add it onto the background panel.
 ' initialize the ScrollView and add it onto the parent object
 scv.Initialize2(lblHeight * (WheelContent.Size + 4), "scv")
 pnlBackground.AddView(scv, lineWidth, 0, ColWidth, Height)

The internal panel height is equal to the size of the WheelContent plus 4 label heights for the two
empty labels on top and the two on the bottom.

We fill the ScrollView.
 ' fill the ScrollView
 For j = 0 To WheelContent.Size + 5
 Private lbl As Label
 lbl.Initialize("")
 scv.Panel.AddView(lbl, 0, j * lblHeight, ColWidth, lblHeight)
 lbl.Gravity = Gravity.CENTER_HORIZONTAL + Gravity.CENTER_VERTICAL
 lbl.Color = Colors.White
 lbl.TextColor = Colors.Black
 lbl.TextSize = FontSize
 If j >= 2 AND j <= WheelContent.Size + 2 - 1 Then
 lbl.Text = WheelContent.Get(j - 2)
 Else
 lbl.Text = ""
 End If
 Next

We need to dim the labels in the loop to have an independent instance for each.
No need to add an event name in the Initialize method, we don't use any Label event.
Add the Label onto the ScrollView.Panel.
Set Gravity of the Labels to centre the text vertically and horizontally.
Set the Label background and text color.
Fill the ScrollView, the first two Labels are empty to ensure that the first entry is shown in the
middle window. And we add two empty Labels at the end.

We initialize the top panel and set its background colors.
 ' initialize the top panel and set its background colors
 ' and set its color
 pnlTop.Initialize("")
 pnlBackground.AddView(pnlTop, 0, 0, Width, 2 * lblHeight)
 Private gdw As GradientDrawable
 Private Dim cols(2) As Int
 cols(0) = colShadow
 cols(1) = Colors.Transparent
 gdw.Initialize("TOP_BOTTOM", cols)
 gdw.CornerRadius = 0
 pnlTop.Background = gdw
 Private cvs1 As Canvas
 cvs1.Initialize(pnlTop) ' initialize a canvas and draw the line on the bottom
 cvs1.DrawLine(lineWidth, pnlTop.Height - lineWidth / 2, Width - lineWidth, _
 pnlTop.Height - lineWidth / 2, colWindowLine, lineWidth)

The background of the top panel is a GradientDrawable with two colors the colShadow color on
top and transparent on the bottom.
We dim a GradientDrawable object and an array of Int for the two colors, initialize the
GradientDrawable, set the color orientation "TOP_BOTTOM" and the colors, set the radius and set
the GradientDrawable as the panel background.
Then we initialize a Canvas and draw a line on the bottom border.

We initialize the centre panel and set its background color.
 ' initialize the middle panel and set its background color
 pnlMiddle.Initialize("")
 pnlBackground.AddView(pnlMiddle, 0, 2 * lblHeight, Width, lblHeight)
 pnlMiddle.Color = colWindow

12 Class modules 201 B4A User's Guide

We initialize the bottom panel and set its background colors.
 ' initialize the bottom panel and set its background
 pnlBottom.Initialize("")
 pnlBackground.AddView(pnlBottom, 0, (2 + 1) * lblHeight, Width, 2 * lblHeight)
 Private gdw As GradientDrawable
 Private cols(2) As Int
 cols(0) = colShadow
 cols(1) = Colors.Transparent
 gdw.Initialize("BOTTOM_TOP", cols)
 gdw.CornerRadius = 0
 pnlBottom.Background = gdw
 Private cvs2 As Canvas
 cvs2.Initialize(pnlBottom) ' initialize a canvas and draw the line on the top
 cvs2.DrawLine(lineWidth, lineWidth / 2, Width - lineWidth, lineWidth / 2, _
 colWindowLine, lineWidth)

The principle is the same as for the top panel.

The wheel at this state is not usable it has two major drawbacks.

 When we scroll the wheel the selected entry is not shown centred in the middle window.
 We need a method to return the selected value.

12.7.2 Show the selected entry centred in the middle window.

The source code is in the Classes\ClsWheelSimple2 folder.

To achieve this we calculate the scrolling speed and when the user releases the scrolling we
calculate an estimated time till the scroll end, set this time to a Timer and the Timer calls a routine
to finish the scrolling to show the selected entry centred in the middle window.

We add a Touch event for the ScrollView with the Reflection library and a Timer.
In the Touch event we calculate the scrolling speed and when the user releases the scrolling we
calculate an estimated time to finish the scrolling and set this time to the Timer

Code:
In the Class_Globals routine we add the variables below:
 Private TimerWheel As Timer

 Private ScrollPos As Int
 Private ScrollPosMax As Int
 Private y0 As Int
 Private t0 As Long
 Private speed As Double

Then, in the Sub Initialize routine just before the ScrollView filling we add the code below.
 ' add the Touch event to the ScrollView
 Private objWheel As Reflector
 objWheel.Target = scvWheel
 objWheel.SetOnTouchListener("scvWheel_Touch")
 objWheel.RunMethod2("setVerticalScrollBarEnabled", False,"java.lang.boolean")

 ' fill the ScrollView

We define a Reflector object, set its target to the ScrollView, add the ScrollView Touch event and
remove the vertical scrollbar.
And at the end of the Sub Initialize routine we add:
 TimerWheel.Initialize("TimerWheel", 200)

End Sub

12 Class modules 202 B4A User's Guide

Then we add the Sub scvWheel_Touch routine :

Private Sub scvWheel_Touch(ViewTag As Object, Action As Int, X As Float, _
 Y As Float, MotionEvent As Object) As Boolean
 Private dt As Long
 Private tt As Int

 Select Action
 Case 0 ' ACTION_DOWN
 t0 = DateTime.Now
 y0 = Y
 Case 1 ' ACTION_UP
 tt = Max(10, -Logarithm(1 / speed, cE) * 110)
 TimerWheel.Interval = tt
 TimerWheel.Enabled = True
 Case 2 ' ACTION_MOVE
 dt = (DateTime.Now - t0)
 speed = Abs((Y - y0) / dt * 250)
 t0 = DateTime.Now
 y0 = Y
 End Select

 Return False
End Sub

In ACTION_DOWN we set the variables t0 to the current time and y0 to the current y position.
In ACTION_MOVE we calculate the time difference dt between the current time and the previous
move. Then we calculate the moving speed, the value of 250 was determined by trials.
And we set the variables t0 to the current time and y0 to the current y position.
In ACTION_UP we calculate the estimated time tt till scroll end. The equation is based on a
logarithmic decay and the value of 110 was determined by trials.
Then we set this time to the Timer.Interval and enable the Timer.

The TimerWheel_Tick routine:
Private Sub TimerWheel_Tick
 TimerWheel.Enabled = False
 scvWheel.ScrollPosition = Floor(scvWheel.ScrollPosition / lblHeight + .5) * _
 lblHeight
End Sub
We disable the Timer and calculate the final ScrollPosition as a multiple of the lblHeight with the
current scroll position and set it to the scvWheel.ScrollPosition.

12 Class modules 203 B4A User's Guide

12.7.3 Return the selected value

The source code is in the Classes\ClsWheelSimple3 folder.

We add several new Views :
 Two Panels

o pnlScreen covers the whole
screen to consume the
 events of other views on
the screen.

o pnlMain holding the
wheel, a title and two
 Buttons.

 A title Label
o lblTitle

 Two Buttons
o btnOK returns the

selected value and hides
 pnlScreen.

o btnCancel hides pnlScreen.

To avoid that events of Views behind the wheel are raised we add a Panel pnlScreen covering the
whole screen with an empty pnlScreen_Click event.
Private Sub pnlScreen_Click
 ' empty to consume the pnlScreen events
End Sub

The same for pnlMain.
Private Sub pnlMain_Click
 ' empty to consume the pnlMain events
End Sub

We declare some new variables :
 Private btnSpace, btnHeight, btnWidth As Int ' button dimensions
 Private pnlMainWidth, pnlMainHeight As Int ' pnlMain dimensions
 Private Title As String
 Private CallBackView As Object

We modify the Initialization routine to add the Title variable:
'Initializes the Wheel.
'CallbackModule = calling module
'Parent = parent activity or panel
'cTitle = title for the input
'cWheelContent = List object with the content on the wheel
'cFontSize = font size of the text in the wheel
Public Sub Initialize(CallbackModule As Object, Parent As Object, cTitle As _
 String, cWheelContent As List, cFontSize As Float)

In the routine we set the dimensions of the buttons and calculate the dimensions of pnlMain. The
detail of this code is not explained here you can look at it in the provided source code.

12 Class modules 204 B4A User's Guide

We need to modify the Show routine and add an object for the returned value.
The return object can be a Label, an EditText, a Button or a String.
'show the wheel
'cCallBackView = view or string variable that gets the returned value
'Value = value to preset
Public Sub Show(cCallBackView As Object, Value As Object)
 Private index As Int

 CallBackView = cCallBackView

 pnlScreen.Visible = True

 index = WheelContent.IndexOf(Value)
 scvWheel.ScrollPosition = index * lblHeight
 DoEvents
 scvWheel.ScrollPosition = index * lblHeight
 DoEvents
End Sub

We get the selected value in this routine :
Private Sub GetSelection As String
 Private i As Int

 i = (Floor(scvWheel.ScrollPosition / lblHeight))
 Return WheelContent.Get(i)
End Sub

We return the selected value to the Text property of the given view in the Show routine or to the
given String variable.

Private Sub btnOK_Click
 If CallBackView Is Label Then
 Private lbl As Label
 lbl = CallBackView
 lbl.Text = GetSelection
 Else If CallBackView Is String Then
 CallBackView = GetSelection
 End If
 pnlScreen.Visible = False
End Sub

12 Class modules 205 B4A User's Guide

12.7.4 Color properties

Another improvement would be to add color properties to the wheels.
Since B4A version 2.70 it is possible to add properties to a class.
More details in chapter 1 Chapter 10.5 Add properties to a class.

The source code is in the Classes\ClsWheelSimple4 folder.
First we add a BackgroundColor property that changes the color of the lateral lines.

The color can be set with the setBackGroundColor.
The color can be read back with getBackGroundColor.

The code in the class module :

'Gets or sets the BackgroundColor property
Sub setBackGroundColor(col As Int)
 colBackGround = col
 pnlBackground.Color = colBackGround
End Sub

Sub getBackGroundColor As Int
 Return colBackGround
End Sub

The code in the main module.
 whlCustom.BackGroundColor = Colors.Green

When you write whlCustom. the different properties will be displayed.

As a reminder, a comment line added before the Sub declaration will be displayed in the inline help.
'Gets or sets the BackgroundColor property
Sub setBackGroundColor(col As Int)

12 Class modules 206 B4A User's Guide

The second color property is the ShadowColor property.

 default color : black new color : dark gray

The code in the class module :
'Gets or sets the ShadowColor property
Sub setShadowColor(col As Int)
 colShadow = col
 pnlMain.Color = colShadow
 lblTitle.Color = colShadow
 TopBackground
 BottomBackGround
End Sub

Sub getShadowColor As Int
 Return colShadow
End Sub

The code in the main module.
 whlCustom.ShadowColor = Colors.DarkGray

The code to set the colors of the top and the bottom panel has been moved to two separate routines
TopBackground and BottomBackGround. This code was previously in the Activity_Create routine.

Private Sub TopBackground
 Private gdw As GradientDrawable
 Private cols(2) As Int
 cols(0) = colShadow
 cols(1) = Colors.Transparent
 gdw.Initialize("TOP_BOTTOM", cols)
 gdw.CornerRadius = 0
 pnlTop.Background = gdw
 Private cvs1 As Canvas
 cvs1.Initialize(pnlTop)' initialize a canvas and draw the line on the bottom
 cvs1.DrawLine(lineWidth, pnlTop.Height - lineWidth / 2, Width - lineWidth,
pnlTop.Height - lineWidth / 2, colWindowLine, lineWidth)
End Sub

The BottomBackGround routine is similar to TopBackground.

12 Class modules 207 B4A User's Guide

The WindowColor property.

The code in the class module :
'Gets or sets the ShadowColor property
Sub setWindowColor(col As Int)
 colWindowLine = col

 ' get the color components
 Private res(4) As Int
 res(0) = Bit.UnsignedShiftRight(Bit.AND(colWindowLine, 0xff000000), 24)' alpha
 res(1) = Bit.UnsignedShiftRight(Bit.AND(colWindowLine, 0xff0000), 16)' red
 res(2) = Bit.UnsignedShiftRight(Bit.AND(colWindowLine, 0xff00), 8) ' green
 res(3) = Bit.AND(colWindowLine, 0xff) ' blue
 ' sets the alpha value to 96
 colWindow = Colors.ARGB(96, res(1), res(2), res(3))

 TopBackground
 BottomBackGround
 pnlMiddle.Color = colWindow
End Sub

In this routine we get the aplha, red, blue and green components from the colWindowLine color and
then set the alpha value to 96 for colWindow.

Sub getWindowColor As Int
 Return colWindowLine
End Sub

The code in the main module.
 whlCustom.WindowColor = Colors.Blue

12 Class modules 208 B4A User's Guide

The LabelTextColor property.

The code in the class module :
'Gets or sets the LabelTextColor property
Sub setLabelTextColor(col As Int)
 colLabelTextColor = col

 Dim i As Int

 For i = 0 To scvWheel.Panel.NumberOfViews - 1
 Private lbl As Label
 lbl = scvWheel.Panel.GetView(i) ' get the Label from the scrollView
 lbl.TextColor = colLabelTextColor ' set the new color
 Next
End Sub

In this routine we get each Label from the Scrollview and set it's TextColor property to the new
color.

Sub getLabelTextColor As Int
 Return colLabelTextColor
End Sub

The code in the main module.
 whlCustom.LabelTextColor = Colors.Red

12 Class modules 209 B4A User's Guide

12.7.5 A more advanced example

A more advanced Wheel Class can be found in on Forum here ClsWheel.
With several predefined wheels :

 DATE a date input : year / month / day
A default value can be defined or Now, the current date.
The returned value has the current DateFormat.

 TIME_HM a time input : hour / minute
A default value can be defined or Now, the current time.
The returned value has the current TimeFormat.

 TIME_HMS a time input : hour / minute / second
A default value can be defined or Now, the current time.
The returned value has the current TimeFormat.

 DATE_TIME a date + time input : year / month / day / hour / minute
A default value can be defined or Now, the current date and time.
The returned value has the current DateFormat and TimeFormat.

 CUSTOM a custom input with user defined input values.
The number of side by side wheels is user defined (max. 5 wheels).
A default value can be defined.
A specific separation character can be defined, a blank character is default.

 INTEGER positive and negative integers.
 INTEGER_POS only positive integers.
 NUMBER positive and negative numbers.
 NUMBER_POS only positive numbers.

 TIME_HMS CUSTOM a custom input
 with user defined input values.
The number of side by side wheels is user defined (max. 5 wheels).
A default value can be defined.
A specific separation character can be defined, a blanc character is default. CUSTOM

http://www.basic4ppc.com/forum/additional-libraries-classes-official-updates/24319-class-clswheel-input-wheels-2.html

	General information
	Conditional compilation
	Build configurations
	Built-in symbols

	Code Exclusion
	Example from the forum

	Unsupported structure

	Starter Service
	Libraries
	IME Input Methods Editor
	Handling the screen size changed event
	Showing and hiding the keyboard
	Handle the action button
	Custom filters

	#AdditionalJar attribute

	SQLite Database
	SQLite Database basics
	Database initialisation			SQL1.Initialize
	Table creation				CREATE TABLE
	INTEGER PRIMARY KEY		rowID
	Adding data				INSERT INTO
	Updating data				UPDATE
	Reading data				SELECT
	Filtering					WHERE
	Sorting					ORDER BY
	Date / Time functions
	Other functions
	Get Table information PRAGMA
	Deleting data			DELETE FROM
	Rename a table			ALTER TABLE Name ADD COLUMN
	Add a column			ALTER TABLE Name ADD COLUMN
	Delete a table					DROP TABLE
	Insert an image
	Read an image
	ExecQuery vs ExecQuery2 / ExecNonQuery vs ExecNonQuery2
	Insert many rows SQL.BeginTransaction / SQL.EndTransaction
	Asynchronus queries
	Batch inserts AddNonQueryToBatch / ExecNonQueryBatch

	Multiple tables
	Transaction speed
	First steps
	SQLite Viewer
	SQLite Database first simple example program SQLiteLight1
	SQLite Database second simple example program SQLiteLight2
	SQLite Database third simple example program SQLiteLight3
	SQLite Database forth example program SQLiteLight4
	SQLite Database fifth example program
	Editing	
	Filtering
	Code

	DBUtils
	DBUtils functions
	Examples
	Example program Main module
	Show the table in a WebView
	Show FirstName and LastName in a ListView
	Display database in Spinners
	Edit database

	GPS
	GPS Library
	GPS Object
	GPS Satellite
	GPS Location
	NMEA data sentences

	GPS Program
	General explanations
	Setup
	GPS display
	Satellites
	Map display
	GPS path
	Save GPS path file / KML file

	GPS Program Code
	Initialization of the GPS
	Button with tooltip
	Button with tooltip and additional buttons
	GPS Calculate distance scales
	Drawing GPS position

	Widgets, home screen widgets
	Widgets Part I
	Widgets Part II

	OkHttpUtils2
	OkHttpUtils2 Objects
	HttpJob Functions
	OkHttpUtils2 Example1
	OkHttpUtils2 Example2
	The Flickr Viewer example

	Network / AsyncStreams
	Advanced drawings
	View Drawables
	ColorDrawable
	GradientDrawable
	BitmapDrawable
	StateListDrawable
	NinePatchDrawable

	Layers with Panels / ImageViews / Images
	Source code

	Diagrams / Charts
	Diagrams / Graph example program
	Second Graph program
	Charts Framework

	Antialiasing filter

	Class modules
	Getting started
	Adding a class module
	Polymorphism
	Self-reference
	Activity object

	Standard class structure
	Classes from the forum
	Custom views
	Custom view class structure
	Adding a custom view by code
	Add properties
	Custom view in the Designer

	First example LimitBar
	Compile a class into a Library
	Example with the LimitBar class example
	Using the library in a program

	Second example Wheel selection
	Simple example
	Show the selected entry centred in the middle window.
	Return the selected value
	Color properties
	A more advanced example

