
 

B4X Booklets 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B4X   Basic Language 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

Copyright: © 2021 Anywhere Software       Edition 2.2 

 

Last update :  2021.07.12  



Table of contents 2 B4X  Basic language 

1 B4X platforms .............................................................................................................................. 8 

2 BASIC .......................................................................................................................................... 9 
3 Variables and objects ................................................................................................................. 10 

3.1 Variable Types ................................................................................................................... 10 
3.2 Names of variables ............................................................................................................. 13 

3.3 Declaring variables............................................................................................................. 13 
3.3.1 Simple variables ............................................................................................................. 13 
3.3.2 Array variables ............................................................................................................... 14 
3.3.3 Constant variables  Const keyword ................................................................................ 15 
3.3.4 Array of views / nodes (objects) .................................................................................... 16 

3.3.5 Type variables   B4A, B4i and B4J only ........................................................................ 19 
3.4 Casting ............................................................................................................................... 20 
3.5 Scope .................................................................................................................................. 21 

3.5.1 Process variables ............................................................................................................ 21 

3.5.2 Activity variables  B4A only ......................................................................................... 22 
3.5.3 Local variables ............................................................................................................... 22 

3.6 Tips ..................................................................................................................................... 22 

4 Program flow / Process life cycle .............................................................................................. 23 
4.1 B4A .................................................................................................................................... 23 

4.1.1 Program Start ................................................................................................................. 24 
4.1.2 Process global variables ................................................................................................. 25 

4.1.3 Activity variables ........................................................................................................... 25 
4.1.4 Starter service ................................................................................................................. 26 
4.1.5 Program flow .................................................................................................................. 27 

4.1.6 Sub Process_Globals / Sub Globals ............................................................................... 28 
4.1.7 Sub Activity_Create (FirstTime As Boolean) ................................................................ 28 

4.1.8 Variable declaration summary ....................................................................................... 29 
4.1.9 Sub Activity_Resume Sub Activity_Pause (UserClosed As Boolean) .......................... 30 

4.1.10 Activity.Finish  /  ExitApplication ............................................................................. 31 
4.2 Program flow B4i ............................................................................................................... 32 

4.3 Program flow B4J .............................................................................................................. 33 
4.4 Program flow B4R ............................................................................................................. 34 
4.5 Program flow comparison  B4A / B4i / B4J ...................................................................... 35 

4.5.1 Program start  B4A / B4i / B4J ...................................................................................... 35 
4.5.2 Rotating device  B4A / B4i ............................................................................................ 35 

4.6 B4XPages program flow .................................................................................................... 36 
5 Basic language ........................................................................................................................... 37 

5.1 Expressions ........................................................................................................................ 37 

5.1.1 Mathematical expressions .............................................................................................. 37 

5.1.2 Relational expressions .................................................................................................... 38 
5.1.3 Boolean expressions ....................................................................................................... 38 

5.2 Standard keywords ............................................................................................................. 39 

Abs (Number As Double) As Double .......................................................................... 41 

ACos (Value As Double) As Double ........................................................................... 41 

ACosD (Value As Double) As Double ........................................................................ 41 

Array ............................................................................................................................. 41 

Asc (Char As Char) As Int .......................................................................................... 41 

ASin (Value As Double) As Double ............................................................................ 41 

ASinD (Value As Double) As Double ......................................................................... 41 

ATan (Value As Double) As Double ........................................................................... 41 

ATan2 (Y As Double, X As Double) As Double ........................................................ 41 

ATan2D (Y As Double, X As Double) As Double ...................................................... 41 

ATanD (Value As Double) As Double ........................................................................ 41 



Table of contents 3 B4X  Basic language 

BytesToString (Data() As Byte, StartOffset As Int, Length As Int, CharSet As 

String) As String ............................................................................................................... 42 

CallSub (Component As Object, Sub As String) As Object..................................... 42 

CallSub2 (Component As Object, Sub As String, Argument As Object) As Object

 ............................................................................................................................................ 42 

CallSub3 (Component As Object, Sub As String, Argument1 As Object, 

Argument2 As Object) As Object ................................................................................... 42 

CallSubDelayed (Component As Object, Sub As String) ......................................... 42 

CallSubDelayed2 (Component As Object, Sub As String, Argument As Object) . 42 

CallSubDelayed3 (Component As Object, Sub As String, Argument1 As Object, 

Argument2 As Object) ..................................................................................................... 42 

Similar to CallSubDelayed. Calls a sub with two arguments. ........................................... 42 

Catch ............................................................................................................................. 43 

cE As Double ................................................................................................................. 43 

Ceil (Number As Double) As Double .......................................................................... 43 

Chr (UnicodeValue As Int) As Char .......................................................................... 43 

Continue ........................................................................................................................ 43 

Cos (Radians As Double) As Double .......................................................................... 43 

CosD (Degrees As Double) As Double ........................................................................ 43 

cPI As Double ............................................................................................................... 43 

CreateMap .................................................................................................................... 43 

CRLF As String ............................................................................................................ 44 

Dim ................................................................................................................................ 44 

Exit ................................................................................................................................. 44 

Floor (Number As Double) As Double ....................................................................... 44 

For.................................................................................................................................. 44 

GetType (object As Object) As String ........................................................................ 45 

If ..................................................................................................................................... 45 

IIf ................................................................................................................................... 45 

Is ..................................................................................................................................... 45 

IsNumber (Text As String) As Boolean ...................................................................... 45 

LoadBitmapSample (Dir As String, FileName As String, MaxWidth As Int, 

MaxHeight As Int) As Bitmap ........................................................................................ 46 

Log (Message As String) .............................................................................................. 46 

Logarithm (Number As Double, Base As Double) As Double ................................. 46 

LogColor (Message As String, Color As Int) ............................................................. 46 

Max (Number1 As Double, Number2 As Double) As Double .................................. 46 

Me As Object ................................................................................................................ 46 

Min (Number1 As Double, Number2 As Double) As Double .................................. 46 

Not (Value As Boolean) As Boolean ........................................................................... 47 

Null As Object .............................................................................................................. 47 

NumberFormat (Number As Double, MinimumIntegers As Int, 

MaximumFractions As Int) As String ............................................................................ 47 

NumberFormat2 (Number As Double, MinimumIntegers As Int, 

MaximumFractions As Int, MinimumFractions As Int, GroupingUsed As Boolean) 

As String ............................................................................................................................ 47 

Power (Base As Double, Exponent As Double) As Double ....................................... 47 

QUOTE As String ........................................................................................................ 47 

Regex As Regex ............................................................................................................ 47 

Return ........................................................................................................................... 47 

Rnd (Min As Int, Max As Int) As Int ......................................................................... 47 



Table of contents 4 B4X  Basic language 

RndSeed (Seed As Long) ............................................................................................. 47 

Round (Number As Double) As Long ........................................................................ 47 

Select .............................................................................................................................. 48 

Sender As Object .......................................................................................................... 48 

Sin (Radians As Double) As Double  Calculates the trigonometric sine function. 

Angle measured in radians. ................................................................................................ 48 

SinD (Degrees As Double) As Double ......................................................................... 48 
Calculates the trigonometric sine function. Angle measured in degrees. .......................... 48 

Sleep (Value As Double) As Double ............................................................................ 48 

Sqrt (Value As Double) As Double ............................................................................. 48 

Sub ................................................................................................................................. 49 

SubExists (Object As Object, Sub As String) As Boolean ........................................ 49 

TAB As String .............................................................................................................. 49 

Tan (Radians As Double) As Double .......................................................................... 49 

TanD (Degrees As Double) As Double ....................................................................... 49 

True As Boolean ........................................................................................................... 49 

Try ................................................................................................................................. 49 

Type ............................................................................................................................... 50 

Until ............................................................................................................................... 50 

While ............................................................................................................................. 50 
5.3 Conditional statements ....................................................................................................... 51 

5.3.1 If – Then – Else .............................................................................................................. 51 
5.3.1.1 Boolean evaluation order ....................................................................................... 52 

5.3.2 IIf     Inline If .................................................................................................................. 53 
5.3.3 Select – Case .................................................................................................................. 54 

5.4 Loop structures ................................................................................................................... 56 
5.4.1 For – Next ...................................................................................................................... 56 

5.4.2 For - Each ....................................................................................................................... 57 
5.4.3 Do - Loop ....................................................................................................................... 58 

5.5 Inline casting  As ................................................................................................................ 60 

5.6 Subs .................................................................................................................................... 61 
5.6.1 Declaring ........................................................................................................................ 61 

5.6.2 Calling a Sub .................................................................................................................. 61 
5.6.3 Calling a Sub from another module ............................................................................... 61 
5.6.4 Naming ........................................................................................................................... 62 

5.6.5 Parameters ...................................................................................................................... 62 
5.6.6 Returned value ............................................................................................................... 63 

5.7 Resumable Subs ................................................................................................................. 64 

5.7.1 Sleep ............................................................................................................................... 64 

5.7.2 Wait For ......................................................................................................................... 65 
5.7.3 Code Flow ...................................................................................................................... 67 
5.7.4 Waiting for a resumable sub to complete ....................................................................... 68 
5.7.5 Resumable Sub return value........................................................................................... 69 
5.7.6 DoEvents  deprecated ! .................................................................................................. 71 

5.7.7 Dialogs ........................................................................................................................... 72 
5.7.8 SQL with Wait For ......................................................................................................... 73 

5.7.8.1 Queries ................................................................................................................... 73 
5.7.8.2 B4J ......................................................................................................................... 74 

5.7.9 Notes & Tips .................................................................................................................. 74 
5.8 Events ................................................................................................................................. 75 

5.8.1 B4A ................................................................................................................................ 75 
5.8.2 B4i .................................................................................................................................. 78 



Table of contents 5 B4X  Basic language 

5.8.3 B4J ................................................................................................................................. 80 

5.8.4 B4R ................................................................................................................................ 84 
5.8.5 User interface summary ................................................................................................. 85 

5.9 Libraries ............................................................................................................................. 86 
5.9.1 Standard libraries ........................................................................................................... 87 

5.9.2 Additional libraries folder .............................................................................................. 87 
5.9.2.1 Paths configuration B4A ........................................................................................ 88 
5.9.2.2 Paths configuration B4i .......................................................................................... 88 
5.9.2.3 Paths configuration B4J ......................................................................................... 89 
5.9.2.4 Paths configuration B4R ........................................................................................ 89 

5.9.3 B4X Libraries  *.b4xlib.................................................................................................. 90 
5.9.4 Load and update a Library ............................................................................................. 91 
5.9.5 Error message "Are you missing a library reference?" .................................................. 91 

5.10 String manipulation ............................................................................................................ 92 

5.10.1 B4A, B4i, B4J  String ................................................................................................ 92 
5.10.2 String concatenation ................................................................................................... 93 
5.10.3 B4A, B4i, B4J  StringBuilder .................................................................................... 94 

5.10.3.1 StringBuilder Methods ....................................................................................... 95 
5.10.4 Smart String Literal .................................................................................................... 96 

5.10.4.1 String Interpolation ............................................................................................ 96 
5.10.4.2 Number Formatter .............................................................................................. 96 

5.10.4.3 Other Formatters ................................................................................................ 97 
5.10.5 B4A, B4i  CharSequence  CSBuilder ........................................................................ 98 

5.10.5.1 Text .................................................................................................................... 98 

5.10.5.2 With FontAwesome or MaterialIcons .............................................................. 100 
5.10.5.3 Images .............................................................................................................. 100 

5.10.5.4 Clickable text ................................................................................................... 101 
5.10.5.5 Highlight text ................................................................................................... 101 

5.10.5.6 Center aligned text ........................................................................................... 102 
5.10.5.7 CSBuilder Methods .......................................................................................... 103 

5.10.5.7.1 B4A / B4i ...................................................................................................... 103 
5.10.5.7.2 B4A only ...................................................................................................... 104 
5.10.5.7.3 B4i only ........................................................................................................ 105 

5.10.6 B4J  TextFlow class ................................................................................................. 106 
5.10.7 B4R .......................................................................................................................... 107 

5.11 Number formatting ........................................................................................................... 110 
5.11.1 B4A, B4i, B4J .......................................................................................................... 110 
5.11.2 B4X NumberFormatter ............................................................................................ 110 

5.11.3 B4R .......................................................................................................................... 110 

5.12 Timers .............................................................................................................................. 111 
5.13 Files  B4A, B4i, B4J ........................................................................................................ 113 

5.13.1 File object ................................................................................................................. 113 

5.13.1.1 File locations .................................................................................................... 113 
5.13.1.1.1 B4X .............................................................................................................. 113 
5.13.1.1.2 B4A only ...................................................................................................... 114 
5.13.1.1.3 B4i only ........................................................................................................ 116 
5.13.1.1.4 B4J only ........................................................................................................ 116 

5.13.1.2 File exists ?  B4A, B4i, B4J ............................................................................. 117 
5.13.1.3 Common methods   B4A, B4i, B4J .................................................................. 117 

5.13.2 Filenames ................................................................................................................. 119 
5.13.3 Subfolders ................................................................................................................ 119 

5.13.4 B4A, B4J  TextWriter .............................................................................................. 120 
5.13.5 B4A, B4J  TextReader ............................................................................................. 121 



Table of contents 6 B4X  Basic language 

5.13.6 Text encoding ........................................................................................................... 122 

5.14 Lists  B4A, B4i and B4J only .......................................................................................... 124 
5.15 Maps  B4A, B4i and B4J only ......................................................................................... 126 
5.16 Class modules .................................................................................................................. 128 

5.16.1 Getting started .......................................................................................................... 128 

5.16.1.1 Adding a Class module .................................................................................... 130 
5.16.1.2 Polymorphism .................................................................................................. 131 
5.16.1.3 Self-reference ................................................................................................... 133 
5.16.1.4 Activity object   B4A only ............................................................................... 133 

5.16.2 Standard Class module ............................................................................................. 134 

5.16.2.1 Structure ........................................................................................................... 134 
6 "Code smells" code to be avoided ............................................................................................ 136 

6.1 Initializing an object and then assigning a different object to the same variable ............ 136 
6.2 Deprecated methods - DoEvents, Msgbox ....................................................................... 136 

6.3 Deprecated methods - Map.GetKeyAt / GetValueAt ...................................................... 136 
6.4 Not using parameterized queries ...................................................................................... 137 
6.5 Using Cursor instead of ResultSet - Cursor ..................................................................... 137 

6.6 Building the complete layout programmatically .............................................................. 137 
6.7 Repeating the code ........................................................................................................... 138 
6.8 Long strings without using smart strings ......................................................................... 138 
6.9 Using global variables when not needed .......................................................................... 138 

6.10 Not using Wait For when possible ................................................................................... 138 
6.11 Using code modules instead of classes ............................................................................ 139 
6.12 Understanding booleans ................................................................................................... 139 

6.13 Converting "random" bytes to strings .............................................................................. 139 
7 Tips ........................................................................................................................................... 140 

7.1 Separate data from code ................................................................................................... 140 
7.2 Don't Repeat Yourself (DRY principle). .......................................................................... 140 

7.3 Map collection .................................................................................................................. 140 
7.4 New technologies and features......................................................................................... 140 

7.5 Logs .................................................................................................................................. 140 
7.6 B4A  Avoid calling DoEvents.......................................................................................... 141 
7.7 Strings are made of characters not bytes. ......................................................................... 141 

7.8 B4A  Use services, especially the Starter service ............................................................ 141 
7.9 UI Layouts ........................................................................................................................ 141 

7.10 B4J as a backend solution. ............................................................................................... 141 
7.11 Search. .............................................................................................................................. 142 
7.12 Notepad++. ....................................................................................................................... 142 

7.12.1 Encoding .................................................................................................................. 142 

 

 



Table of contents  7 B4X  Basic language 

Main contributors:  Klaus Christl  (klaus), Erel Uziel  (Erel) 

 

To search for a given word or sentence use the Search function in the Edit menu. 

 

Updated for following versions: 

B4A version 11.0 

B4i version 7.50 

B4J version 9.10 

B4R version 3.71 

 

 

B4X Booklets: 

B4X Getting Started 

B4X Basic Language 

B4X IDE Integrated Development Environment 

B4X Visual Designer 

B4X Help tools 

 

B4XPages Cross-platform projects 

B4X CustomViews 

B4X Graphics 

B4X XUI  B4X User Interface 

B4X SQLite Database 

B4X JavaObject NativeObject 

 

 

B4R Example Projects 

 

You can consult these booklets online in this link [B4X] Documentation Booklets. 

Be aware that external links don’t work in the online display. 

 

 

https://www.b4x.com/android/forum/threads/b4x-documentation-booklets.88985/#content
https://www.b4x.com/android/forum/threads/b4x-documentation-booklets.88985/


1  B4X platforms 8 B4X  Basic language 

1 B4X platforms 
 

B4X is a suite of BASIC programming languages for different platforms. 

 

B4X suite supports more platforms than any other tool 

ANDROID | IOS | WINDOWS | MAC | LINUX | ARDUINO | RASPBERRY PI | ESP8266 | AND 

MORE... 

 

• B4A    Android 

 

B4A is a 100% free development tool for Android applications, it includes all the features 

needed to quickly develop any type of Android app. 

 

• B4i   iOS 

 

B4i is a development tool for native iOS applications. 

B4i follows the same concepts as B4A, allowing you to reuse most of the code and build 

apps for both Android and iOS. 

 

• B4J   Java / Windows / Mac / Linux / Raspberry PI 

 

B4J is a 100% free development tool for desktop, server and IoT solutions. 

With B4J you can easily create desktop applications (UI), console programs (non-UI) and 

server solutions. 

The compiled apps can run on Windows, Mac, Linux and ARM boards (such as Raspberry 

Pi). 

 

• B4R    Arduino / ESP8266 

 

B4R is a 100% free development tool for native Arduino and ESP8266 programs. 

B4R follows the same concepts of the other B4X tools, providing a simple and powerful 

development tool. 

B4R, B4A, B4J and B4i together make the best development solution for the Internet of 

Things (IoT). 

 

• B4XPages 

 

B4XPages is an internal library for B4A, B4i and B4J allowing to develop easily cross-

platform programs. 

B4XPages is explained in detail in the B4XPages Cross-platform projects booklet. 

Even, if you want to develop only in one platform it is interesting to use the B4XPages 

library it makes the program flow simpler especially for B4A. 

 



2  BASIC 8 B4X  Basic language 

2 BASIC 
 

BASIC (an acronym for Beginner's All-purpose Symbolic Instruction Code) is a family of general-

purpose, high-level programming languages whose design philosophy emphasizes ease of use. In 

1964, John G. Kemeny and Thomas E. Kurtz designed the original BASIC language at Dartmouth 

College in the U.S. state of New Hampshire. They wanted to enable students in fields other than 

science and mathematics to use computers. At the time, nearly all use of computers required writing 

custom software, which was something only scientists and mathematicians tended to learn (source 

Wikipedia). 

 

 

https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language


3  Variables and objects 10 B4X  Basic language 

3 Variables and objects 
 

A variable is a symbolic name given to some known or unknown quantity or information, for the 

purpose of allowing the name to be used independently of the information it represents. A variable 

name in computer source code usually associated with a data storage location and thus also its 

contents, and these may change during the course of program execution (source Wikipedia). 

 

There are two types of variables: primitives and non-primitives types. 

Primitives include the numeric types: Byte, Short, Int, Long, Float and Double. 

Primitives also include: Boolean and Char. 

 

3.1 Variable Types 

 

B4A, B4i, B4J 

 

List of types with their ranges: 

 

B4X Type min value max value 

Boolean boolean False True 

Byte integer  8 bits 
- 2 7 2 7 - 1 

-128 127 

Short integer 16 bits 
- 2 15 2 15 -1 

- 32768 32767 

Int integer 32 bits 
- 2 31 2 31 -1 

-2147483648 2147483647 

Long long integer  64 bits 
- 2 63 2 63 -1 

-9223372036854775808 9223372036854775807 

Float 

floating point 

number 

32 bits 

- 2 -149 (2 -2 -23) * 2 127 

1.4E-45 3.4028235 E 38 

Double 

double precision 

number   

64 bits 

- 2 -1074 (2 -2 -52) * 2 1023 

2.2250738585072014 E -

308 
1.7976931348623157 E 

308 

Char character   

String array of characters   

 



3.1  Variable types 11 B4X  Basic language 

B4R 

 

List of types with their ranges: 

Numeric types: 

 

Byte 0 - 255 

Int (2 bytes) -32768 - 32768.  Similar to Short type in other B4X tools. 

UInt (2 bytes) 0 - 65535.  B4R specific. 

Long (4 bytes) -2,147,483,648 - 2,147,483,647. Similar to Int type in other B4X tools. 

ULong (4 bytes) 0 - 4,294,967,295 B4R specific. 

Double (4 bytes) 4 bytes floating point. Similar to Float in other B4X tools. 

Float is the same as Double. Short is the same as Int. 

 

The above is true on all boards, including the Arduino Due. 

 

Other types: 

Boolean True or False. Practically it is saved as a byte with the value of 1 or 0. 

String Strings are made from an array of bytes that end with a null byte (byte with the value of 0). 

Object Objects can hold other types of values. 

 

 

 

 



3.1  Variable types 12 B4X  Basic language 

Primitive types are always passed by value to other subs or when assigned to other variables. 

For example: 

 
Sub S1 
 Private A As Int 

 A = 12   The variable A = 12 

 S2(A)    It's passed by value to routine S2 

 Log(A) ' Prints 12 Variable A still equals 12, even though B was changed in routine S2. 
End Sub 
 

Sub S2(B As Int) Variable B = 12 

 B = 45   Its value is changed to B = 45 
End Sub 

 

All other types, including arrays of primitive types and strings are categorized as non-primitive 

types. 

When you pass a non-primitive to a sub or when you assign it to a different variable, a copy of the 

reference is passed. 

This means that the data itself isn't duplicated. 

It is slightly different than passing by reference as you cannot change the reference of the original 

variable. 

 

All types can be treated as Objects. 

Collections like lists and maps work with Objects and therefore can store any value. 

Here is an example of a common mistake, where the developer tries to add several arrays to a list: 

 
Private arr(3) As Int 
Private List1 As List 
List1.Initialize 
For I = 1 To 5 
 arr(0) = I * 2 
 arr(1) = I * 2 
 arr(2) = I * 2 
 List1.Add(arr)  'Add the whole array as a single item 
Next 
arr = List1.Get(0)  'get the first item from the list 
Log(arr(0)) 'What will be printed here??? 

 

You may expect it to print 2. However, it will print 10. 

We have created a single array and added 5 references of this array to the list. 

The values in the single array are the values set in the last iteration. 

To fix this we need to create a new array each iteration. 

This is done by calling Private each iteration: 

 
Private arr(3) As Int 'This call is redundant in this case. 
Private List1 As List 
List1.Initialize 
For i = 1 To 5 
  Private arr(3) As Int 
 arr(0) = i * 2 
 arr(1) = i * 2 
 arr(2) = i * 2 
 List1.Add(arr) 'Add the whole array as a single item 
Next 
arr = List1.Get(0) 'get the first item from the list 
Log(arr(0)) 'Will print 2



3.2  Names of variables 13 B4X  Basic language 

3.2 Names of variables 

 

It is up to you to give any name to a variable, except reserved words.  

A variable name must begin with a letter and must be composed by the following characters A-Z, a-

z, 0-9, and underscore "_", no spaces, no brackets etc. 

Variable names are case insensitive, that means that Index and index refer to the same variable. 

 

But it is good practice to give them meaningful names. 

Example:  

Interest = Capital * Rate / 100 is meaningful  

n1 = n2 * n3 / 100   not meaningful 

 

For Views (B4A, B4i), Nodes (B4J), it is useful to add to the name a three character prefix that 

defines its type. 

Examples: 

lblCapital lbl > Label  Capital > purpose 

edtInterest edt > EditText  Interest > purpose 

btnNext btn > Button  Next > purpose 

 

3.3  Declaring variables 

 

3.3.1 Simple variables 

 

Variables are declared with the Private or the Public keyword followed by the variable name and 

the  As  keyword and followed by the variable type. For details look at chapter Scope. 

There exist the Dim  keyword, this is maintained for compatibility. 

 

Examples: 

 

 Private Capital As Double Declares three variables as Double, 

 Private Interest As Double double precision numbers. 
 Private Rate As Double 
 

 Private i As Int Declares three variables as Int, integer numbers. 
 Private j As Int 
 Private k As Int 
 

 Private lblCapital As Label 

 Private lblInterest As Label Declares three variables as Label views. 
 Private lblRate As Label 
 

 Private btnNext As Button Declares two variables as Button views. 
 Private btnPrev As Button 

 

The same variables can also be declared in a short way. 

 
 Private Capital, Interest, Rate As Double 
 Private i, j, k As Int 
 Private lblCapital, lblInterest, lblRate As Label 
  Private btnNext, btnPrev As Button 

 

The names of the variables separated by commas and followed by the type declaration. 



3.3  Declaring variables 14 B4X  Basic language 

Following variable declarations are valid: 
 

Private i = 0, j = 2, k = 5 As Int 

 
Private txt = "test" As String, value = 1.05 As Double, flag = False As Boolean 

 

View names must be declared if we want to use them in the code. 

For example, if we want to change the text in a Label view in the code, like  

lblCapital.Text = "1200",   

we need to reference this Label view by its name lblCapital, this is done with the Private 

declaration.  

If we never make any reference to this Label view anywhere in the code no declaration is needed.  

Using an event routine for that view doesn't need a declaration either. 

 

To allocate a value to a variable write its name followed by the equal sign and followed by the 

value, like: 
Capital = 1200 
LastName = "SMITH" 

 

Note that for Capital we wrote just 1200 because Capital is a number. 

But for LastName we wrote "SMITH" because LastName is a string. 

Strings must always be written between double quotes. 

 

3.3.2 Array variables 

 

Arrays are collections of data or objects that can be selected by indices. Arrays can have multiple 

dimensions. 

The declaration contains the Private or the Public keyword followed by the variable name 

LastName, the number of items between brackets (50), the keyword As and the variable type String. 

For details look at chapter Scope. There exist the Dim  keyword, this is maintained for compatibility. 

 

Note: B4R supports only single dimension arrays ! 

 

Examples: 

Public LastName(50) As String One dimension array of strings, total number of items 50. 

 

Public Matrix(3, 3) As Double Two dimensions array of Doubles, total number of items 9. 

 

Public Data(3, 5, 10) As Int Three dimensions array of integers, total number of items 150. 

 

The first index of each dimension in an array is 0.   
LastName(0), Matrix(0,0), Data(0,0,0) 

 

The last index is equal to the number of items in each dimension minus 1. 
LastName(49), Matrix(2,2), Data(2,4,9) 
 
Public LastName(10) As String 
Public FirstName(10) As String 
Public Address(10) As String 
Public City(10) As String 

or 
Public LastName(10), FirstName(10), Address(10), City(10) As String 



3.3  Declaring variables 15 B4X  Basic language 

This example shows how to access all items in a three dimensional array. 

 
 Public Data(3, 5, 10) As Int 

 
 For i = 0 To 2 
  For j = 0 To 4 
   For k = 0 To 9 
    Data(i, j, k) = ... 
   Next 
  Next 
 Next 

 

A more versatile way to declare arrays is to use variables. 

 
 Public NbPers = 10 As Int 
 Public LastName(NbPers) As String 
 Public FirstName(NbPers) As String 
 Public Address(NbPers) As String 
 Public City(NbPers) As String 

 

We declare the variable Public NbPers = 10 As Int and set its value to 10. 

Then we declare the arrays with this variable instead of the number 10 as before. 
The big advantage is if at some point we need to change the number of items, we change only ONE 

value.   

 

For the Data array we could use the following code. 

 
 Public NbX = 2 As Int 
 Public NbY = 5 As Int 
 Public NbZ = 10 As Int 
 Public Data(NbX, NbY, NbZ) As Int 

 

And the access routine. 

 
 For i = 0 To NbX - 1 
  For j = 0 To NbY - 1 
   For k = 0 To NbZ - 1 
    Data(i, j, k) = ... 
   Next 
  Next 
 Next 

 

Filling an array with the Array keyword : 

 
 Public Name() As String 
 Name = Array As String("Miller", "Smith", "Johnson", "Jordan") 
 

3.3.3 Constant variables  Const keyword 

 

Const variables are constant variables which cannot be changed anywhere in the code. 

For this, we use the Const keyword after Private or Public like below, 

 
Private Const Size As Int = 10 
Public Const ItemNumber As Int = 100 

 



3.3  Declaring variables 16 B4X  Basic language 

3.3.4 Array of views / nodes (objects) 

 

Views / nodes or objects can also be in an Array. The following code shows an example: 

In B4A and B4i user interface objects are called views and called nodes in B4J. 

 

In the example below the Buttons are added to the parent view / node by code. 

 

B4A 

 
Sub Globals 
 Private Buttons(6) As Button 
End Sub 
 
Sub Activity_Create(FirstTime As Boolean) 
 Private i As Int 
  
 For i = 0 To 5 
  Buttons(i).Initialize("Buttons") 
  Activity.AddView(Buttons(i), 10dip, 10dip + i * 60dip, 150dip, 50dip) 
  Buttons(i).Tag = i + 1 
  Buttons(i).Text = "Test " & (i + 1) 
 Next 
End Sub 
 
Sub Buttons_Click 
 Private btn As Button 
 btn = Sender 
 Log("Button " & btn.Tag & " clicked") 
End Sub 

 

B4i 

 
Sub Process_Globals 
 
 Private Buttons(6) As Button 
End Sub 
 
Private Sub Application_Start (Nav As NavigationController) 
  
 Private i As Int 
 For i = 0 To 5 
  Buttons(i).Initialize("Buttons") 
  Page1.RootPanel.AddView(Buttons(i), 10dip, 10dip + i * 60dip, 150dip, 50dip) 
  Buttons(i).Tag = i + 1 
  Buttons(i).Text = "Test " & (i + 1) 
 Next 
End Sub 

 
Sub Buttons_Click 
 Private btn As Button 
 btn = Sender 
 Log("Button " & btn.Tag & " clicked") 
End Sub 

 



3.3  Declaring variables 17 B4X  Basic language 

B4J 

 
Sub Process_Globals 
  
 Private Buttons(6) As Button  
End Sub 
 
Sub AppStart (Form1 As Form, Args() As String) 
  
 Private i As Int 
 For i = 0 To 5 
  Buttons(i).Initialize("Buttons") 
  MainForm.RootPane.AddNode(Buttons(i), 10, 10 + i * 60, 150, 50) 
  Buttons(i).Tag = i + 1 
  Buttons(i).Text = "Test " & (i + 1) 
 Next 
End Sub 

 
Sub Buttons_MouseClicked (EventData As MouseEvent) 
 Private btn As Button 
 btn = Sender  
 Log("Button " & btn.Tag & " clicked")  
End Sub 

 

The Buttons could also have been added in a layout file, in that case they must neither be initialized, 

nor added to the parent view / node and the Text and Tag properties should also be set in the 

Designer. 

In that case the code would look like this: 

 

B4A 

 
Sub Globals 
 Private b1, b2, b3, b4, b5, b6, b7 As Button 
 Private Buttons() As Button 
End Sub 
 
Sub Activity_Create(FirstTime As Boolean) 
  
 Buttons = Array As Button(b1, b2, b3, b4, b5, b6, b7) 
End Sub 
 
Sub Buttons_Click 
 Private btn As Button  
 btn = Sender 
 Log("Button " & btn.Tag & " clicked") 
End Sub 

 



3.3  Declaring variables 18 B4X  Basic language 

B4i 

 
Sub Process_Globals 
 
 Private b1, b2, b3, b4, b5, b6, b7 As Button 
 Private Buttons(6) As Button 
End Sub 
 
Private Sub Application_Start (Nav As NavigationController) 
  
 Buttons = Array As Button(b1, b2, b3, b4, b5, b6, b7) 
End Sub 

 
Sub Buttons_Click 
 Private btn As Button 
 btn = Sender 
 Log("Button " & btn.Tag & " clicked") 
End Sub 

 

B4J 

 
Sub Process_Globals 
 
 Private b1, b2, b3, b4, b5, b6, b7 As Button  
 Private Buttons(6) As Button  
End Sub 
 
Sub AppStart (Form1 As Form, Args() As String) 
  
 Buttons = Array As Button(b1, b2, b3, b4, b5, b6, b7) 
End Sub 

 
Sub Buttons_MouseClicked (EventData As MouseEvent) 
 Private btn As Button 
 btn = Sender  
 Log("Button " & btn.Tag & " clicked")  
End Sub 

 
 
 



3.3  Declaring variables 19 B4X  Basic language 

3.3.5 Type variables   B4A, B4i and B4J only 

 

A Type cannot be private. Once declared it is available everywhere (similar to Class modules). 

The best place to declare them is in the Process_Globals routine in the Main module. 

 

Let us reuse the example with the data of a person. 

Instead of declaring each parameter separately, we can define a personal type variable with the 

Type keyword: 

 
Public NbUsers = 10 As Int 
Type Person(LastName As String, FirstName As String. Address As String, City As String) 
Public User(NbUsers) As Person 
Public CurrentUser As Person 

 

The new personal type is Person , then we declare either single variables or arrays of this personal 

type. 

To access a particular item use following code. 
CurrentUser.FirstName 
CurrentUser.LastName 
  

User(1).LastName 
User(1).FirstName 

 

The variable name, followed by a dot and the desired parameter. 

If the variable is an array then the name is followed by the desired index between brackets. 

  

It is possible to assign a typed variable to another variable of the same type, as shown below. 

 
CurrentUser = User(1) 
 

 

 

 

 



3.4  Casting 20 B4X  Basic language 

3.4  Casting 

 

B4X casts types automatically as needed. It also converts numbers to strings and vice versa 

automatically. 

In many cases you need to explicitly cast an Object to a specific type. 

This can be done by assigning the Object to a variable of the required type. 

For example, Sender keyword references an Object which is the object that raised the event. 

The following code changes the color of the pressed button.  

Note that there are multiple buttons that share the same event sub. 

 
Sub Globals 
 Private  Btn1, Btn2, Btn3 As Button 
End Sub 
 
Sub Activity_Create(FirstTime As Boolean) 
 Btn1.Initialize("Btn") 
 Btn2.Initialize("Btn") 
 Btn3.Initialize("Btn") 
 Activity.AddView(Btn1, 10dip, 10dip, 200dip, 50dip) 
 Activity.AddView(Btn2, 10dip, 70dip, 200dip, 50dip) 
 Activity.AddView(Btn3, 10dip, 130dip, 200dip, 50dip) 
End Sub 
 
Sub Btn_Click 
 Private  btn As Button 
 btn = Sender ' Cast the Object to Button 
 btn.Color = Colors.RGB(Rnd(0, 255), Rnd(0, 255), Rnd(0, 255)) 
End Sub 

 

The above code could also be written more elegantly: 

 
Sub Globals 
 
End Sub 
 
Sub Activity_Create(FirstTime As Boolean) 
 Private  i As Int 
 For i = 0 To 9 ' create 10 Buttons 
  Private  Btn As Button 
  Btn.Initialize("Btn") 
  Activity.AddView(Btn, 10dip, 10dip + 60dip * i, 200dip, 50dip) 
 Next 
End Sub 
 
Sub Btn_Click 
 Private  btn As Button 
 btn = Sender ' Cast the Object to Button 
 btn.Color = Colors.RGB(Rnd(0, 255), Rnd(0, 255), Rnd(0, 255)) 
End Sub 

 

 



3.5  Scope 21 B4X  Basic language 

3.5  Scope 

 

3.5.1 Process variables  

 

These variables live as long as the process lives. 

You should declare these variables inside Sub Process_Globals. 

This sub is called once when the process starts (this is true for all modules, not just the main 

module). 

These variables are the only "public" variables. Which means that they can be accessed from other 

modules as well. 

 

However, in B4A, not all types of objects can be declared as process variables. 

For example, views / nodes cannot be declared as process variables. 

The reason is that we do not want to hold a reference to objects that should be destroyed together 

with the activity. 

In other words, once the activity is being destroyed, all of the views which are contained in the 

activity are being destroyed as well. 

If we hold a reference to a view, the garbage collector would not be able to free the resource and we 

will have a memory leak. The compiler enforces this requirement. 

 

To access process global variables in other modules than the module where they were declared their 

names must have the module name they were declared as a prefix. 

Example: 

Variable defined in a module with the name : MyModule 
Sub Process_Globals 
 Public MyVar As String 
End Sub 

 

Accessing the variable in MyModule module: 
 MyVar = "Text" 

 

Accessing the variable in any other module: 
 MyModule.MyVar = "Text" 

 

Variables can be declared with: 
Dim MyVar As String 
In this case the variable is public same as Public.  

 

It is good practice to declare the variables like this: 
Public MyVar As String 
This variable is public. 

 

It is possible to declare private variables in Sub Process_Globals like this: 
Private MyVar As String 
The variable is private to the activity or the module where it is declared. 

For Activities it is better to declare them in Sub Globals. 

 

For variables declared in Class modules in Sub Class_Globals the same rules as above are valid. 
 Public MyVarPublic As String  ' public 
 Private MyVarPublic As String  ' private 
 Dim MyVar As String   ' public like Public 

 

Using Dim in Sub Class_Globals is not recommended !  



3.5  Scope 22 B4X  Basic language 

3.5.2 Activity variables  B4A only 

 

These variables are contained by the activity. 

You should declare these variables inside Sub Globals. 

These variables are "private" and can only be accessed from the current activity module. 

All object types can be declared as activity variables. 

Every time the activity is created, Sub Globals is called (before Activity_Create). 

These variables exist as long as the activity exists. 

 

3.5.3 Local variables 

 

Variables declared in a subroutine are local to this subroutine. 

They are "private" and can only be accessed from within the subroutine where they were declared. 

All objects types can be declared as local variables. 

At each call of the subroutine the local variables are initialized to their default value or to any other 

value you have defined in the code and are 'destroyed' when the subroutine is exited. 

 

3.6  Tips 

 

A view / node can be assigned to a variable so you can easily change the common properties of the 

view. 

 

For example, the following code disables all views that are direct children of a Panel / Pane: 

 
 For i = 0 To MyPanel.NumberOfViews - 1 
  Private  v As View 
  v = MyPanel.GetView(i) 
  v.Enabled = False 
 Next 

 

If we only want to disable buttons: 

 
 For i = 0 To MyPanel.NumberOfViews - 1 
  Private  v As View 
  v = MyPanel.GetView(i) 
  If v Is Button Then ' check whether it is a Button 
   v.Enabled = False 
  End If 
 Next 

 

Note: MyPanel is a Panel in B4A and B4i but it is a Pane in B4J. 

 

 



4  Program flow / Process life cycle 23 B4X  Basic language 

4 Program flow / Process life cycle 
 

Each platform has its own program flow. 

 

To make cross-platform projects it is now easier to do with B4XPages. 

B4XPages is explained in detatil in the B4XPages Cross-platform projects booklet.  

 

4.1 B4A 

 

Let's start simple: 

Each B4A program runs in its own process. 

A process has one main thread which is also named the UI thread which lives as long as the process 

lives. A process can also have more threads which are useful for background tasks. 

 

A process starts when the user launches your application, assuming that it is not running already in 

the background. 

 

The process end is less determinant. It will happen sometime after the user or system has closed all 

the activities. 

If for example you have one activity and the user pressed on the back key, the activity gets closed. 

Later when the phone gets low on memory (and eventually it will happen) the process will quit. 

If the user launches your program again and the process was not killed then the same process will 

be reused. 

 

A B4A application is made of one or more activities.  

 

Activities are somewhat similar to Windows Forms. 

 

One major difference is that, while an activity is not in the foreground it can be killed in order to 

preserve memory. Usually you will want to save the state of the activity before it gets lost. Either in 

a persistent storage or in memory that is associated with the process. 

Later this activity will be recreated when needed. 

 

Another delicate point happens when there is a major configuration change in the device. The most 

common is an orientation change (the user rotates the device). When such a change occurs the 

current activities are destroyed and then recreated. Now it is possible to create the activity according 

to the new configuration (for example, we now know the new screen dimensions). 



4.1  Program flow / Process life cycle  B4A 24 B4X  Basic language 

4.1.1 Program Start  

 

When we start a new program we get following template: 

 

 
 

 

On the top left we see two module Tabs :  

Main Activity 

Starter Service 

 

The Starter Service is used to declare all ProcessGlobal variables and these variables are accessible 

from any module in the project. 

The Main Activity is the starting activity, it cannot be removed. 

 

Variables can be either global or local. Local variables are variables that are declared inside a sub 

other than Process_Globals or Globals. 

Local variables are local to the containing sub or module. Once the sub ends, these variables no 

longer exist. 

Global variables can be accessed from all subs in the containing module. 

 

There are two types of global variables. 

Process variables (accessible from all modules) and activity variables (accessible from a single 

module). 

 



4.1  Program flow / Process life cycle  B4A 25 B4X  Basic language 

4.1.2 Process global variables  

 

These variables live as long as the process lives. 

You should declare these variables as Public inside Sub Process_Globals of the Starter Service like. 
Sub Process_Globals 
 'These global variables will be declared once when the application starts. 
 'These variables can be accessed from all modules. 
 Public MyVariable  = "Test" As String 

 

This sub is called once when the process starts. 

These variables are the only "public" variables. Which means that they can be accessed from other 

modules as well. 

 

There is also a Process_Globals routines in each Activity module. 

If you need variables, valid only in the Activity, which are initialized only once when the program 

is lauched you should put them in the Activity’s Process_Globals routine (this is true for all 

activities, not just the first activity). 

 

However, not all types of objects can be declared as process variables. 

All of the views for example cannot be declared as process variables. 

The reason is that we do not want to hold a reference to objects that should be destroyed together 

with the activity. 

In other words, when the activity is destroyed, all of the views that are contained in the activity are 

destroyed as well. If we didn't do this, and kept a reference to a view after the Activity was 

destroyed, the garbage collector would not be able to free the resource and we would have a 

memory leak.  

The compiler enforces this requirement. 

 

4.1.3 Activity variables  

 

These variables are owned by the activity. 

You should declare these variables inside Sub Globals. 

These variables are "Private" and can only be accessed from the current activity module. 

All object types can be declared as activity variables. 

Every time the activity is created, Sub Globals is called (before Activity_Create). 

These variables exist as long as the activity exists. 

 

 

 



4.1  Program flow / Process life cycle  B4A 26 B4X  Basic language 

4.1.4 Starter service 

 

One of the challenges that developers of any non-small Android app need to deal with, is the 

multiple possible entry points. 

 

During development in almost all cases the application will start from the Main activity. 

Many programs start with code similar to: 

 
Sub Activity_Create (FirstTime As Boolean) 
 If FirstTime Then 
  SQL.Initialize(...) 
  SomeBitmap = LoadBitmap(...) 
  'additional code that loads application-wide resources 
 End If 
End Sub 

 

Everything seems to work fine during development. However the app "strangely" crashes from time 

to time on the end user device. 

The reason for those crashes is that the OS can start the process from a different activity or service. 

For example if you use StartServiceAt and the OS kills the process while it is in the background. 

Now the SQL object and the other resources will not be initialized. 

 

Starting from B4A v5.20 there is a new feature named Starter service that provides a single and 

consistent entry point. If the Starter service exists then the process will always start from this 

service. 

 

The Starter service will be created and started, and only then, the activity or service that were 

supposed to be started will start. 

This means that the Starter service is the best place to initialize all the application-wide resources. 

Other modules can safely access these resources. 

The Starter service should be the default location for all the public process global variables. SQL 

objects, data read from files and bitmaps used by multiple activities should all be initialized in the 

Service_Create sub of the Starter service. 

 

Notes 

• The Starter service is identified by its name. You can add a new service named Starter to an 

existing project and it will be the program entry point. 

This is done by selecting Project > Add New Module > Service Module. 

• This is an optional feature. You can remove the Starter service. 

• You can call StopService(Me) in Service_Start if you don't want the service to keep on 

running. However this means that the service will not be able to handle events (for example 

you will not be able to use the asynchronous SQL methods). 

• The starter service should be excluded from compiled libraries. Its #ExcludeFromLibrary 

attribute is set to True by default in the Service Attributes region. 



4.1  Program flow / Process life cycle  B4A 27 B4X  Basic language 

4.1.5 Program flow 

 

The program flow is the following: 

 

• Main Process_Globals Process_Globals routines of the Main modules  

Here we declare all Private variables and objects for the Main module. 

 

• Starter Sevice Process_Globals If the service exists, it is run. 

Here we declare all Public Process Global variables and objects like SQL, Bitmaps etc. 

 

• Other Activity Main Process_Globals Process_Globals routines of other modules  

Here we declare all Private variables and objects for the given module. 

 

• Starter Service Service_Create If the service exists, it is run. 

Here we initialize all Public Process Global variables and objects like SQL, Bitmaps etc. 

 

• Starter Sevice Service_Start If the service exists, it is run. 

We can leave this routine empty. 

 

• Globals 

Here we declare all Private variables for the given Activity. 

 

• Sub Activity_Create 

Here we load layouts and initialize activity objects added by code 

 

• Activity_Resume 

This routine is run every time the activity changes its state. 

 

• Activity_Pause  

This routine is run when the Activity is paused, like orientation change, lauch of another 

activity etc. 

 

 

 

 



4.1  Program flow / Process life cycle  B4A 28 B4X  Basic language 

4.1.6 Sub Process_Globals / Sub Globals 

 

In any Activity, Process_Globals and Globals should be used to declare variables.  

You can also set the values of "simple" variables (numeric, strings and booleans). 

 

You should not put any other code there. 

You should instead put the code in Activity_Create. 

 

4.1.7 Sub Activity_Create (FirstTime As Boolean) 

 

This sub is called when the activity is created. 

The activity is created  

• when the user first launches the application 

• the device configuration has changed (user rotated the device) and the activity was 

destroyed 

• when the activity was in the background and the OS decided to destroy it in order to free 

memory. 

The primary purpose of this sub is to load or create the layout (among other uses). 

The FirstTime parameter tells us if this is the first time that this activity is created. First time relates 

to the current process. 

You can use FirstTime to run all kinds of initializations related to the process variables. 

For example if you have a file with a list of values that you need to read, you can read it if 

FirstTime is True and store the list as a process variable by declaring the list in Sub 

Process_Globals 

Now we know that this list will be available as long as the process lives and there is no need to 

reload it even when the activity is recreated. 

 

To summarize, you can test whether FirstTime is True and then initialize the process variables that 

are declared in the Activity’s Sub Process_Globals. 

 

 



4.1  Program flow / Process life cycle  B4A 29 B4X  Basic language 

4.1.8 Variable declaration summary 

 

Which variable should we declare where and where do we initialize our variables: 

• Variables and none user interface objects you want to access from several modules. 

Like SQL, Maps, Lists, Bitmaps etc. 

These must be declared as Public in Starter Process_Globals like: 

 
Sub Process_Globals 
  Public SQL1 As SQL 
  Public Origin = 0 As Int 
  Public MyBitmap As Bitmap 
End Sub 

 

And initialized in Starter Service_Create like: 

 
Sub Service_Create 
  SQL1.Initialize(...) 
  MyBitmap.Initialize(...) 
End Sub 

 

• Variables accessible from all Subs in an Activity which should be initialized only once. 

These must be declared as Private in Activity Process_Globals like: 

 
Sub Process_Globals 
  Private MyList As List 
  Private MyMap As Map 
End Sub 

 

And initialized in Activty_Create like: 

 
Sub Activity_Create 
  MyList.Initialize 
  MyMap.Initialize 
End Sub 

 

• Variables in a Class or Code module 

These are mostly declared as Private, you can declare them as Public if you want them 

being accessible from outsides the Class or Code module.  

Class modules are explained in detail in the B4X Booklet CustomViews Booklet. 

 

• User interface objects 

These must be declared in the Activity module where they are used in Globals like: 

 
Sub Globals 
  Private btnGoToAct2, btnChangeValues As Button 
  Private lblCapital, lblInterest, lblRate  As Label 
End Sub 

   

Simple variables like Int, Double String and Boolean can be initialized directly in the declaration 

line, even in Process_Globals routines.  

Example:  
Public Origin = 0 as Int 

 

No code should be written in Process_Globals routines ! 

https://www.b4x.com/guides/B4xCustomViews/?page=1


4.1  Program flow / Process life cycle  B4A 30 B4X  Basic language 

4.1.9 Sub Activity_Resume 
Sub Activity_Pause (UserClosed As Boolean) 

 

Activity_Resume is called right after Activity_Create finishes or after resuming a paused activity 

(activity moved to the background and now it returns to the foreground). 

Note that when you open a different activity (by calling StartActivity), the current activity is first 

paused and then the other activity will be created if needed and (always) resumed. 

 

Each time the activity moves from the foreground to the background Activity_Pause is called. 

Activity_Pause is also called when the activity is in the foreground and a configuration change 

occurs (which leads to the activity getting paused and then destroyed). 

Activity_Pause is the last place to save important information. 

Generally there are two types of mechanisms that allow you to save the activity state. 

Information that is only relevant to the current application instance can be stored in one or more 

process variables. 

Other information should be stored in a persistent storage (file or database). 

For example, if the user changed some settings you should save the changes to a persistent storage 

at this point. Otherwise the changes may be lost. 

 

Activity_Pause is called every time the activity moves from the foreground to the background. This 

can happen because: 

1. A different activity was started. 

2. The Home button was pressed. 

3. A configuration changed event was raised (orientation changed for example). 

4. The Back button was pressed. 

 

In scenarios 1 and 2, the activity will be paused and for now kept in memory as it is expected to be 

reused later. 

 

In scenario 3 the activity will be paused, destroyed and then created (and resumed) again. 

 

In scenario 4 the activity will be paused and destroyed. Pressing on the Back button is similar to 

closing the activity. In this case you do not need to save any instance specific information (the 

position of pacman in a PacMan game for example). 

 

The UserClosed parameter will be true in this scenario and false in all other. Note that it will also be 

true when you call Activity.Finish. This method pauses and destroys the current activity, similar to 

the Back button. 

 

You can use UserClosed parameter to decide which data to save and also whether to reset any 

related process variables to their initial state (move pacman position to the center if the position is a 

process variable). 



4.1  Program flow / Process life cycle  B4A 31 B4X  Basic language 

4.1.10 Activity.Finish  /  ExitApplication 

 

Some explanations on how and when to use Activity.Finish and ExitApplication. 

 

An interesting article about the functioning of Android can be found here:  

Multitasking the Android way. 

 

Most applications should not use ExitApplication but prefer Activity.Finish which lets the OS 

decide when the process is killed.  

You should use it only if you really need to fully kill the process. 

 

When should we use Activity.Finish and when not ? 

Let us consider following example without any Activity.Finish: 

• Main activity 

o StartActivity(SecondActivity) 

• SecondActivity activity 

o StartActivity(ThirdActivity) 

• ThirdActivity activity 

o Click on Back button 

o The OS goes back to previous activity, SecondActivity 

• SecondActivity activity 

o Click on Back button 

o The OS goes back to previous activity, Main 

• Main activity 

o Click on Back button 

o The OS leaves the program 

 

Let us now consider following example with Activity.Finish before each StartActivity: 

• Main activity 

o Activity.Finish 

o StartActivity(SecondActivity) 

• SecondActivity activity 

o Activity.Finish 

o StartActivity(ThirdActivity) 

• ThirdActivity activity 

o Click on Back button 

o The OS leaves the program 

 

We should use Activity.Finish before starting another activity only if we don't want to go back to 

this activity with the Back button. 

 

 

 

 

 

http://android-developers.blogspot.com/2010/04/multitasking-android-way.html


4.2  Program flow  B4i 32 B4X  Basic language 

4.2 Program flow B4i 

 

The program flow in B4i is much more simple than the B4A program flow. 

 

When we run a new project we get the template below: 

 
Sub Process_Globals 
 'These global variables will be declared once when the application starts. 
 'Public variables can be accessed from all modules. 
 Public App As Application 
 Public NavControl As NavigationController 
 Private Page1 As Page 
 
End Sub 
 
Private Sub Application_Start (Nav As NavigationController) 
 'SetDebugAutoFlushLogs(True) 'Uncomment if program crashes before all logs are 
printed. 
 NavControl = Nav 
 Page1.Initialize("Page1") 
 Page1.Title = "Page 1" 
 Page1.RootPanel.Color = Colors.White 
 NavControl.ShowPage(Page1) 
End Sub 
 
Private Sub Page1_Resize(Width As Int, Height As Int) 
  
End Sub 
 
Private Sub Application_Background 
  
End Sub 

 

When you start the program, the routines are executed in the order above. 

 

Be aware that the dimensions of Page1 are not known in Application_Start, they are only known in 

the Page1_Resize routine in the Width and Height parameters. 

If you want to adjust views you must do it here. 

 

 

 



4.3  Program flow  B4J 33 B4X  Basic language 

4.3 Program flow B4J 

 

The program flow in B4J is much more simple than the B4A program flow, similar to B4i. 

 

When we run a new project we get the template below: 

 
Sub Process_Globals 
 Private fx As JFX 
 Private MainForm As Form 
End Sub 
 
Sub AppStart (Form1 As Form, Args() As String) 
 MainForm = Form1 
 'MainForm.RootPane.LoadLayout("Layout1") 'Load the layout file. 
 MainForm.Show 
End Sub 
 
'Return true to allow the default exceptions handler to handle the uncaught exception. 
Sub Application_Error (Error As Exception, StackTrace As String) As Boolean 
 Return True 
End Sub 

 

When you start the program, the routines are executed in the order above. 

 

 

If you want to adjust Nodes when the user resizes a form you must add a Resize routine for this 

form, like:  

 
Private Sub MainForm_Resize (Width As Double, Height As Double) 
 ' Your code 
End Sub 

 

If you use anchors in the Designer, the Resize event will not be necessary in most cases.  

 



4.4  Program flow  B4R 34 B4X  Basic language 

4.4 Program flow B4R 

 

The program flow in B4R is straight forward. 

 

When we run a new project we find this code template: 

 
Sub Process_Globals 
 'These global variables will be declared once when the application starts. 
 'Public variables can be accessed from all modules. 
 Public Serial1 As Serial 
End Sub 
 
Private Sub AppStart 
 Serial1.Initialize(115200) 
 Log("AppStart") 
End Sub 

 

When you run the program, Process_Globals and then AppStart are executed. 

 

Serial1.Initialize(115200) Initializes the bit rate. 

Log("AppStart") Writes “AppStart” in the Logs. 

 

 

 



4.5  Program flow comparison 35 B4X  Basic language 

4.5 Program flow comparison  B4A / B4i / B4J 

 

4.5.1 Program start  B4A / B4i / B4J 

 

B4A B4i B4J 

 

Main Process_Globals Main Process_Globals  Main Process_Globals 

 

Starter Process_Globals  

 

Other modules Process_Globals Other modules Process_Globals Other modules Process_Globals 

 

Starter Service_Create Main Application_Start Main AppStart 

 

Starter Service_Start Main Page1_Resize Main MainForm_Resize 

 

Main Globals 

 

Main Activity_Create 

FirstTime = True 

 

Main Activity_Resume 

 

4.5.2 Rotating device  B4A / B4i 

 

B4A B4i  

 

Main Activity_Pause 

 

Main Globals Main Page1_Resize 

 

Main Activity_Create 

FirstTime = False 

 

Main Activity_Resume 

 

 



4.6  B4XPages program flow 36 B4X  Basic language 

4.6 B4XPages program flow 

 

For cross-platform projects with the B4XPages library the program flow is the same for all three 

platforms. All the platform specific code is hidden in the B4XPages library and transparent to the 

programmer. 

 

The B4XPagesThreePages project in the B4XPages Cross-platform projects booklet shows the 

program flow when navigating between Pages. 

 

Examples: 

Start of the project, the routines below are executed: 

• MainPage Create 

• MainPage Foreground 

• MainPage Appear 

• MainPage Resize 

 

Opening a Page, Page2 in the example: 

• Page2 Create 

• Page2 Foreground 

• Page2 Appear 

 

Closing a Page, Page2 in the example: 

• Page2 Disappear 

 

 



5  Basic language 37 B4X  Basic language 

5 Basic language 
 

5.1 Expressions 

 

An expression in a programming language is a combination of explicit values, constants, variables, 

operators, and functions that are interpreted according to the particular rules of precedence and of 

association for a particular programming language, which computes and then produces (returns) 

another value. This process, like for mathematical expressions, is called evaluation. The value can 

be of various types, such as numerical, string, and logical (source Wikipedia). 

 

For example, 2 + 3 is an arithmetic and programming expression which evaluates to 5. A variable is 

an expression because it is a pointer to a value in memory, so y + 6 is an expression. An example of 

a relational expression is 4 = 4 which evaluates to True (source Wikipedia). 

 

5.1.1 Mathematical expressions 

 

Operator Example 
Precedence 

level 
Operation 

+  x + y 3 Addition  

- x - y 3 Subtraction 

* x * y 2 Multiplication 

/ x / y 2 Division 

Mod x Mod y 2 Modulo 

Power Power(x,y) xy 1 Power of 

 

 

Precedence level: In an expression, operations with level 1 are evaluated before operations with 

level 2, which are evaluated before operations with level 3. 

 

Examples: 

 

4 + 5 * 3 + 2 = 21  >   4 + 15 + 2 
 

(4 + 5) * (3 + 2)  =  45 >   9 * 5 
 

(4 + 5)2 * (3 + 2)  =  405 >  92 * 5 >  81 * 5 
Power(4 + 5, 2) * (3 + 2) 

 

11 Mod 4 = 3   >   Mod is the remainder of 11 / 4  

 

233 Power(23, 3)  >   23 at the power of 3 

 
- 22 = - 4 
(-2)2 = 4 
 
 

 

http://en.wikipedia.org/wiki/Expression_(programming)


5.1 Expressions 38 B4X  Basic language 

5.1.2 Relational expressions 

 

In computer science in relational expressions an operator tests some kind of relation between two 

entities. These include numerical equality (e.g., 5 = 5) and inequalities (e.g., 4 >= 3).  

In B4X these operators return True or False, depending on whether the conditional relationship 

between the two operands holds or not. 

 

 

Operator Example Used to test 

= x = y the equivalence of two values 

<> x <> y the negated equivalence of two values 

> x > y if the value of the left expression is greater than that of the right 

< x < y if the value of the left expression is less than that of the right 

>= x >= y if the value of the left expression is greater than or equal to that of the right 

<= x <= y if the value of the left expression is less than or equal to that of the right 

 

 

5.1.3 Boolean expressions 

 

In computer science, a Boolean expression is an expression that produces a Boolean value when 

evaluated, i.e. one of True or False. A Boolean expression may be composed of a combination of 

the Boolean constants True or False, Boolean-typed variables, Boolean-valued operators, and 

Boolean-valued functions (source Wikipedia). 

 

Boolean operators are used in conditional statements such as IF-Then and Select-Case. 

 

Operator Comment 

Or Boolean Or       Z = X Or Y     Z = True if X or Y is equal to True or both are True 

And Boolean And    Z = X And Y   Z = True if X and Y are both equal to True 

Not ( ) Boolean Not     X = True    Y = Not(X)   >  Y = False 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Or And 

X Y Z Z 

False False False False 

True False True False 

False True True False 

True True True True 



5.2 Standard keywords 39 B4X  Basic language 

5.2 Standard keywords 

 

Not all keywords are available in B4R. 

 

  Abs (Number As Double) As Double 

  ACos (Value As Double) As Double 

  ACosD (Value As Double) As Double 

  Array 

  Asc (Char As Char) As Int 

  ASin (Value As Double) As Double 

  ASinD (Value As Double) As Double 

  ATan (Value As Double) As Double 

  ATan2 (Y As Double, X As Double) As Double 

  ATan2D (Y As Double, X As Double) As Double 

  ATanD (Value As Double) As Double 

  BytesToString (Data() As Byte, StartOffset As Int, Length As Int, CharSet As String) As String 

  CallSub (Component As Object, Sub As String) As Object 

  CallSub2 (Component As Object, Sub As String, Argument As Object) As Object 

  CallSub3 (Component As Object, Sub As String, Argument1 As Object, Argument2 As Object) 

As Object 

  CallSubDelayed (Component As Object, Sub As String)  

  CallSubDelayed 2 (Component As Object, Sub As String, Argument As Object)  

  CallSubDelayed 3 (Component As Object, Sub As String, Argument1 As Object, Argument2 

As Object) 

  Catch 

  cE As Double 

  Ceil (Number As Double) As Double 

  CharsToString (Chars() As Char, StartOffset As Int, Length As Int) As String 

  Chr (UnicodeValue As Int) As Char 

  Continue 

  Cos (Radians As Double) As Double 

  CosD (Degrees As Double) As Double 

  cPI As Double 

  CreateMap 

  CRLF As String 

  Dim 

  Exit 

  False As Boolean 

  Floor (Number As Double) As Double 

  For 

  GetType (object As Object) As String 

  If 

  Is 

  IsNumber (Text As String) As Boolean 

  LoadBitmap (Dir As String, FileName As String) As Bitmap 

  LoadBitmapResize (Dir As String, FileName As String, Width As Int, Height As Int, 

KeepAspectRatio As Boolean) As Bitmap 



5.2 Standard keywords 40 B4X  Basic language 

  LoadBitmapSample (Dir As String, FileName As String, MaxWidth As Int, MaxHeight As 

Int) As Bitmap 

  Log (Message As String) 

  Logarithm (Number As Double, Base As Double) As Double 

  LogColor (Message As String, Color As Int) 

  Max (Number1 As Double, Number2 As Double) As Double 

  Me As Object 

  Min (Number1 As Double, Number2 As Double) As Double 

  Not (Value As Boolean) As Boolean   Null As Object 

  NumberFormat (Number As Double, MinimumIntegers As Int, MaximumFractions As Int) As 

String 

  NumberFormat2 (Number As Double, MinimumIntegers As Int, MaximumFractions As Int, 

MinimumFractions As Int, GroupingUsed As Boolean) As String 

  Power (Base As Double, Exponent As Double) As Double 

  QUOTE As String 

  Regex As Regex 

  Return 

  Rnd (Min As Int, Max As Int) As Int 

  RndSeed (Seed As Long) 

  Round (Number As Double) As Long 

  Round2 (Number As Double, DecimalPlaces As Int) As Double 

  Select 

  Sender As Object 

  Sin (Radians As Double) As Double 

  SinD (Degrees As Double) As Double 

  Sleep (Milliseconds As Int) 

  SmartStringFormatter (Format As String, Value As Object) As String 

  Sqrt (Value As Double) As Double 

  Sub 

  SubExists (Object As Object, Sub As String) As Boolean 

  TAB As String 

  Tan (Radians As Double) As Double 

  TanD (Degrees As Double) As Double 

  True As Boolean 

  Try 

  Type 

  Until 

  While 

 

 

https://www.b4x.com/android/help/core.html#keywords_loadbitmapsample
https://www.b4x.com/android/help/core.html#keywords_logcolor


5.2 Standard keywords 41 B4X  Basic language 

Abs (Number As Double) As Double 

Returns the absolute value.  

ACos (Value As Double) As Double 

Calculates the trigonometric arccosine function. Returns the angle measured with radians.  

ACosD (Value As Double) As Double 

Calculates the trigonometric arccosine function. Returns the angle measured with degrees.  

Array 

Creates a single dimension array of the specified type. 

The syntax is: Array [As type] (list of values). 

If the type is ommitted then an array of objects will be created. 

Example:  
Dim Days() As String  
Days = Array As String("Sunday", "Monday", ...)  

Asc (Char As Char) As Int 

Returns the unicode code point of the given character or first character in string.  

ASin (Value As Double) As Double 

Calculates the trigonometric arcsine function. Returns the angle measured with radians.  

ASinD (Value As Double) As Double 

Calculates the trigonometric arcsine function. Returns the angle measured with degrees.  

ATan (Value As Double) As Double 

Calculates the trigonometric arctangent function. Returns the angle measured with radians.  

ATan2 (Y As Double, X As Double) As Double 

Calculates the trigonometric arctangent function. Returns the angle measured with radians.  

ATan2D (Y As Double, X As Double) As Double 

Calculates the trigonometric arctangent function. Returns the angle measured with degrees.  

ATanD (Value As Double) As Double 

Calculates the trigonometric arctangent function. Returns the angle measured with degrees. 



5.2 Standard keywords 42 B4X  Basic language 

BytesToString (Data() As Byte, StartOffset As Int, Length As Int, CharSet As String) As String 

Decodes the given bytes array as a string. 

Data - The bytes array. 

StartOffset - The first byte to read. 

Length - Number of bytes to read. 

CharSet - The name of the character set. 

Example:  
Dim s As String  
s = BytesToString(Buffer, 0, Buffer.Length, "UTF-8")  

CallSub (Component As Object, Sub As String) As Object 

Calls the given sub. CallSub can be used to call a sub which belongs to a different module. 

However the sub will only be called if the other module is not paused. In that case an empty string 

will be returned. 

You can use IsPaused to test whether a module is paused. 

This means that one activity cannot call a sub of a different activity. As the other activity will be 

paused for sure. 

CallSub allows an activity to call a service sub or a service to call an activity sub. 

Note that it is not possible to call subs of code modules. 

CallSub can also be used to call subs in the current module. Pass Me as the component in that case. 

Example:  
CallSub(Main, "RefreshData")  

CallSub2 (Component As Object, Sub As String, Argument As Object) As Object 

Similar to CallSub. Calls a sub with a single argument.  

CallSub3 (Component As Object, Sub As String, Argument1 As Object, Argument2 As Object) As Object 

CallSubDelayed (Component As Object, Sub As String)  

CallSubDelayed is a combination of StartActivity, StartService and CallSub. 

Unlike CallSub which only works with currently running components, CallSubDelayed will first 

start the target component if needed. 

CallSubDelayed can also be used to call subs in the current module. Instead of calling these subs 

directly, a message will be sent to the message queue. 

The sub will be called when the message is processed. This is useful in cases where you want to do 

something "right after" the current sub (usually related to UI events). 

Note that if you call an Activity while the whole application is in the background (no visible 

activities), the sub will be executed once the target activity is resumed.  

CallSubDelayed2 (Component As Object, Sub As String, Argument As Object) 

Similar to CallSubDelayed. Calls a sub with a single argument.  

CallSubDelayed3 (Component As Object, Sub As String, Argument1 As Object, Argument2 As Object) 

Similar to CallSubDelayed. Calls a sub with two arguments. 



5.2 Standard keywords 43 B4X  Basic language 

Catch 

Any exception thrown inside a try block will be caught in the catch block. 

Call LastException to get the caught exception. 

Syntax: 
Try 
  ... 
Catch 
  ... 
End Try  

cE As Double 

e (natural logarithm base) constant.  

Ceil (Number As Double) As Double 

Returns the smallest double that is greater or equal to the specified number and is equal to an 

integer.  

 

CharsToString (Chars() As Char, StartOffset As Int, Length As Int) As String 

Creates a new String by copying the characters from the array. 

Copying starts from StartOffset and the number of characters copied equals to Length.  

Chr (UnicodeValue As Int) As Char 

Returns the character that is represented by the given unicode value.  

Continue 

Stops executing the current iteration and continues with the next one.  

Cos (Radians As Double) As Double 

Calculates the trigonometric cosine function. Angle measured in radians.  

CosD (Degrees As Double) As Double 

Calculates the trigonometric cosine function. Angle measured in degrees.  

cPI As Double 

PI constant.  

CreateMap 

Creates a Map with the given key / value pairs. 

The syntax is: CreateMap (key1: value1, key2: value2, ...) 

Example:  

Dim m As Map = CreateMap("January": 1, "February": 2) 



5.2 Standard keywords 44 B4X  Basic language 

CRLF As String 

New line character. The value of Chr(10).  

Dim 

Declares a variable. 

Syntax: 

Declare a single variable: 

Dim variable name [As type] [= expression] 

The default type is String. 

 

Declare multiple variables. All variables will be of the specified type. 

Dim [Const] variable1 [= expression], variable2 [= expression], ..., [As type] 

Note that the shorthand syntax only applies to Dim keyword. 

Example: Dim a = 1, b = 2, c = 3 As Int 

 

Declare an array: 

Dim variable(Rank1, Rank2, ...) [As type] 

Example: Dim Days(7) As String 

The actual rank can be omitted for zero length arrays.  

Exit 

Exits the most inner loop. 

Note that Exit inside a Select block will exit the Select block.  

 

False As Boolean 

Floor (Number As Double) As Double 

Returns the largest double that is smaller or equal to the specified number and is equal to an integer.  

For 

Syntax: 
For variable = value1 To value2 [Step interval] 
  ... 
Next 

If the iterator variable was not declared before it will be of type Int. 

 

Or: 
For Each variable As type In collection 
  ... 
Next 

Examples:  
For i = 1 To 10  
  Log(i) 'Will print 1 to 10 (inclusive).  
Next  
For Each n As Int In Numbers 'an array  
  Sum = Sum + n  
Next  

 

Note that the loop limits will only be calculated once before the first iteration.  



5.2 Standard keywords 45 B4X  Basic language 

GetType (object As Object) As String 

Returns a string representing the object's java type.  

If 

Single line: 
If condition Then true-statement [Else false-statement] 

Multiline: 
If condition Then 
  statement 
Else If condition Then 
  statement 
  ... 
Else 
  statement 
End If  

IIf 

Inline If - returns TrueValue if Condition is True and False otherwise. Only the relevant expression 

is evaluated. 

 
IIf (Condition As BOOL, TrueValue As Object, FalseValue As Object)  

 

Is 

Tests whether the object is of the given type. 

Note that when a number is converted to object it might change its type to a different type of 

number 

(for example a Byte might be converted to an Int). 

Example: 
For Each v As View in Page1.RootPanel.GetAllViewsRecursive 
 If v Is Button Then 
  Dim b As Button = v 
  b.Color = Colors.Blue 
 End If 
Next 

 

IsNumber (Text As String) As Boolean 

Tests whether the specified string can be safely parsed as a number.  

 

LoadBitmap (Dir As String, FileName As String) As Bitmap 

Loads the bitmap. 

Note that the Android file system is case sensitive. 

You should consider using LoadBitmapSample if the image size is large. 

The actual file size is not relevant as images are usually stored compressed. 

Example:  

Activity.SetBackgroundImage(LoadBitmap(File.DirAssets, "SomeFile.jpg"))  

 



5.2 Standard keywords 46 B4X  Basic language 

LoadBitmapResize (Dir As String, FileName As String, Width As Int, Height As Int, KeepAspectRatio As 

Boolean) As Bitmap 

 

Loads the bitmap and sets its size. 

The bitmap scale will be the same as the device scale. 

Unlike LoadBitmapSample which requires the container Gravity to be set to FILL, 

LoadBitmapResize provides better results when the Gravity is set to CENTER.  

Example:  

Dim bd As BitmapDrawable = Activity.SetBackgroundImage(LoadBitmapResize(File.DirAssets, 

"SomeFile.jpg", 100%x, 100%y, True))  

bd.Gravity = Gravity.CENTER 

Or:  

Activity.SetBackgroundImage(LoadBitmapResize(File.DirAssets, "SomeFile.jpg", 100%x, 100%y, 

True)).Gravity = Gravity.CENTER 

LoadBitmapSample (Dir As String, FileName As String, MaxWidth As Int, MaxHeight As Int) As Bitmap 

Loads the bitmap. 

The decoder will subsample the bitmap if MaxWidth or MaxHeight are smaller than the bitmap 

dimensions. 

This can save a lot of memory when loading large images. 

Example:  
Panel1.SetBackgroundImage(LoadBitmapSample(File.DirAssets, "SomeFile.jpg", 
Panel1.Width, Panel1.Height))  
 

Log (Message As String) 

Logs a message. The log can be viewed in the Logs tab.  

Logarithm (Number As Double, Base As Double) As Double 

LogColor (Message As String, Color As Int) 

Logs a message. The message will be displayed in the IDE with the specified color.  

Max (Number1 As Double, Number2 As Double) As Double 

Returns the larger number between the two numbers.  

Me As Object 

For classes: returns a reference to the current instance. 

For activities and services: returns a reference to an object that can be used with CallSub, 

CallSubDelayed and SubExists keywords. 

Cannot be used in code modules.  

Min (Number1 As Double, Number2 As Double) As Double 

Returns the smaller number between the two numbers.  



5.2 Standard keywords 47 B4X  Basic language 

Not (Value As Boolean) As Boolean 

Inverts the value of the given boolean.  

Null As Object 

NumberFormat (Number As Double, MinimumIntegers As Int, MaximumFractions As Int) As String 

Converts the specified number to a string.  

The string will include at least Minimum Integers and at most Maximum Fractions digits. 

Example:  
Log(NumberFormat(12345.6789, 0, 2)) '"12,345.68"  
Log(NumberFormat(1, 3 ,0)) '"001"  

NumberFormat2 (Number As Double, MinimumIntegers As Int, MaximumFractions As Int, 

MinimumFractions As Int, GroupingUsed As Boolean) As String 

Converts the specified number to a string.  

The string will include at least Minimum Integers, at most Maximum Fractions digits and at least 

Minimum Fractions digits. 

GroupingUsed - Determines whether to group every three integers. 

Example:  
Log(NumberFormat2(12345.67, 0, 3, 3, false)) '"12345.670"  

Power (Base As Double, Exponent As Double) As Double 

Returns the Base value raised to the Exponent power.  

QUOTE As String 

Quote character ". The value of Chr(34).  

Regex As Regex 

Regular expressions related methods.  

Return 

Returns from the current sub and optionally returns the given value. 

Syntax: Return [value]  

Rnd (Min As Int, Max As Int) As Int 

Returns a random integer between Min (inclusive) and Max (exclusive).  

RndSeed (Seed As Long) 

Sets the random seed value.  

This method can be used for debugging as it allows you to get the same results each time.  

Round (Number As Double) As Long 

Returns the closest long number to the given number.  



5.2 Standard keywords 48 B4X  Basic language 

Round2 (Number As Double, DecimalPlaces As Int) As Double 

Rounds the given number and leaves up to the specified number of fractional digits.  

Select 

Compares a single value to multiple values. 

Example:  
Dim value As Int  
value = 7  
Select value  
  Case 1  
    Log("One")  
  Case 2, 4, 6, 8  
    Log("Even")  
  Case 3, 5, 7, 9  
    Log("Odd larger than one")  
  Case Else  
    Log("Larger than 9")  
End Select  

Sender As Object 

Returns the object that raised the event. 

Only valid while inside the event sub. 

Example:  
Sub Button_Click  
  Dim b As Button  
  b = Sender  
  b.Text = "I've been clicked"  
End Sub  

Sin (Radians As Double) As Double 

 

Calculates the trigonometric sine function. Angle measured in radians.  

SinD (Degrees As Double) As Double 

Calculates the trigonometric sine function. Angle measured in degrees.  

Sleep (Value As Double) As Double 

Pauses the current sub execution and resumes it after the specified time. 

 

SmartStringFormatter (Format As String, Value As Object) As String 

Internal keyword used by the Smart String literal.  

Sqrt (Value As Double) As Double 

Returns the positive square root.  



5.2 Standard keywords 49 B4X  Basic language 

Sub 

Declares a sub with the parameters and return type. 

Syntax: Sub name [(list of parameters)] [As return-type] 

Parameters include name and type. 

The lengths of arrays dimensions should not be included. 

Example:  
Sub MySub (FirstName As String, LastName As String, Age As Int, OtherValues() As 
Double) As Boolean  
  ...  
End Sub 

In this example OtherValues is a single dimension array. 

The return type declaration is different than other declarations as the array parenthesis follow the 

type and not 

the name (which does not exist in this case).  

SubExists (Object As Object, Sub As String) As Boolean 

Tests whether the object includes the specified method. 

Returns false if the object was not initialized or not an instance of a user class.  

TAB As String 

Tab character.  

Tan (Radians As Double) As Double 

Calculates the trigonometric tangent function. Angle measured in radians.  

TanD (Degrees As Double) As Double 

Calculates the trigonometric tangent function. Angle measured in degrees.  

True As Boolean 

Try 

Any exception thrown inside a try block will be caught in the catch block. 

Call LastException to get the caught exception. 

Syntax: 
Try 
... 
Catch 
... 
End Try  



5.2 Standard keywords 50 B4X  Basic language 

Type 

Declares a structure. 

Can only be used inside sub Globals or sub Process_Globals. 

Syntax: 

Type type-name (field1, field2, ...) 

Fields include name and type. 

Example:  
Type MyType (Name As String, Items(10) As Int)  
Dim a, b As MyType  
a.Initialize  
a.Items(2) = 123  

Until 

Loops until the condition is true. 

Syntax: 
Do Until condition 
  ... 
Loop  

While 

Loops while the condition is true. 

Syntax: 
Do While condition 
... 
Loop 

 

 



5.3 Conditional statements 51 B4X  Basic language 

5.3  Conditional statements 

 

Different conditional statements are available in Basic. 

5.3.1 If – Then – Else 

 

The If-Then-Else structure allows to operate conditional tests and execute different code sections 

according to the test result. 

General case: 

 
 If test1 Then 
  ' code1 
 Else If test2 Then 
  ' code2 
 Else 
  ' code3 
 End If 

 

The If-Then-Else structure works as follows: 

1. When reaching the line with the If keyword, test1 is executed. 

2. If the test result is True, then code1 is executed until the line with the Else If keyword. 

And jumps to the line following the End If keyword and continues. 

3. If the result is False, then test2 is executed. 

4. If the test result is True, then code2 is executed until the line with the Else keyword.  

And jumps to the line following the End If keyword and continues. 

5. If the result is False, then code3 is executed and continues at the line following the End If 

keyword. 

 

The tests can be any kind of conditional test with two possibilities True or False. 

Some examples: 

 
 If b = 0 Then 

  a = 0    The simplest If-Then structure. 
 End If 

 

 If b = 0 Then a = 0  The same but in one line. 

 
 If b = 0 Then 

  a = 0    The simplest If-Then-Else structure. 
 Else 
  a = 1 
 End If 

 
 If b = 0 Then a = 0 Else a = 1 The same but in one line. 

 

 

Personally, I prefer the structure on several lines, better readable. 

An old habit from HP Basic some decades ago, this Basic accepted only one instruction per line. 



5.3 Conditional statements 52 B4X  Basic language 

Note.  Difference between: 

B4X    VB 
Else If   ElseIf 

 

In B4X there is a blank character between Else and If. 

 

Some users try to use this notation: 

 
 If b = 0 Then a = 0 : c = 1 
 

There is a big difference between B4X and VB that gives errors : 

The above statements is equivalent to : 

 B4X VB 
 If b = 0 Then If b = 0 Then 
  a = 0  a = 0  
 End If  c = 1      
 c = 1 End If 
  

The colon character ' : ' in the line above is treated in B4X like a CarriageReturn CR character.  

 

 

This structure throws an error. 
Sub Plus1 : x = x + 1 : End Sub 

You cannot have a Sub declaration and End Sub on the same line. 

 

5.3.1.1 Boolean evaluation order 

 
In this example: 

 
If InitVar2(Var1) and Var1 > Var2 then .... 

 
If InitVar2(Var1) returns false does it stops evaluation or there is no rule ? 

 

It goes from left to right and stops immediately when the result is determined (short circuit 

evaluation). 

 

This is very important. 

It allows writing code such as: 

 
If i < List.Size And List.Get(i) = "abc" Then 

 



5.3 Conditional statements 53 B4X  Basic language 

5.3.2 IIf     Inline If 

 

IIf - Inline If, also called ternary if as it is an operator with three arguments. 

 
Label1.Text = IIf(EditText1.Text <> "", EditText1.Text, "Please enter value") 

 

IIf is mostly equivalent to this sub: 

 
Sub PseudoIIf (Condition As Boolean, TrueValue As Object, FalseValue As Object) As 
Object 
 If Condition = True Then Return TrueValue Else Return FalseValue 
End Sub 

 

Unlike this sub, the IIf keyword will only evaluate the relevant expression. This means that this 

code will work properly: 

 
Return IIf(List1.Size > 0, List1.Get(0), "List is empty") 
 

 

(There is another minor difference related to the return type. If it is set explicitly with the new As 

method, the compiler will avoid casting the values to Object and back to the target type. This is only 

significant in very tight and long loops). 

 

 

 

 



5.3 Conditional statements 54 B4X  Basic language 

5.3.3 Select – Case 

 

The Select - Case structure allows to compare a TestExpression with other Expressions and to 

execute different code sections according to the matches between the TestExpression and 

Expressions. 

 

General case: 

 

 Select TestExpression  TestExpression is the expression to test. 
 Case ExpressionList1 

  ' code1    ExpressionList1 is a list of expressions to compare 

 Case ExpressionList2  to TestExpression 

  ' code2    ExpressionList2 is another list of expressions to compare 

 Case Else    to TestExpression 
  ' code3 
 End Select 

 

The Select - Case structure works as follows: 

 

1. The TestExpression  is evaluated. 

2. If  one element in the  ExpressionList1  matches  TestExpression  then executes  code1  

and continues at the line following the End Select keyword. 

3. If one element in the  ExpressionList2  matches  TestExpression  then executes  

code2 and continues at the line following the End Select keyword. 

4. For no expression matches TestExpression executes code3   

and continues at the line following the End Select keyword. 

 

TestExpression can be any expression or value. 

ExpressionList1 is a list of any expressions or values. 

 

Examples: 

 
 Select Value 

 Case 1, 2, 3, 4  The Value variable is a numeric value. 

 

 Select a + b  The TestExpression  is the sum of a + b 
 Case 12, 24 

 

 Select Txt.CharAt The TestExpression  is a character at 
 Case "A", "B", "C" 

 

 
Sub Activity_Touch (Action As Int, X As Float, Y As Float) 
 Select Action 
 Case Activity.ACTION_DOWN 
  
 Case Activity.ACTION_MOVE 
  
 Case Activity.ACTION_UP 
  
 End Select 
End Sub 



5.3 Conditional statements 55 B4X  Basic language 

Note.  Differences between: 

B4X    VB 
Select Value   Select Case Value 
Case 1,2,3,4,8,9,10  Case 1 To 4 , 8 To 9 

 

In VB the keyword Case is added after the Select keyword. 

VB accepts Case 1 To 4 , this is not implemented in B4X. 

 

 



5.4  Loop structures 56 B4X  Basic language 

5.4  Loop structures 

 

Different loop structures are available in Basic. 

 

5.4.1 For – Next 

 

In a For–Next loop a same code will be executed a certain number of times. 

Example: 

 

 For i = n1 To n2 Step n3 i incremental variable 

   n1 initial value 

  ' Specific code n2 final value 

 n3 step 
 Next 
 

The For–Next loop works as below: 

1. At the beginning, the incremental variable i is equal to the initial value n1. 

i = n1 

2. The specific code between the For and Next  keywords is executed. 

3. When reaching Next, the incremental variable i is incremented by the step value n3. 

i = i + n3. 

4. The program jumps back to For, compares if the incremental variable i is lower or equal to 

the final value n2. 

test if  i <= n2 

5. If Yes, the program continues at step 2, the line following the For keyword. 

6. If No, the program continues at the line following the Next keyword. 

 

If the step value is equal to  '+1'  the step keyword is not needed. 

 
 For i = 0 To 10  For i = 0 To 10 Step 1 

  is the same as 
 Next  Next 

 

The step variable can be negative. 

 
 For i = n3 To 0 Step -1 
  
 Next 
 

It is possible to exit a For – Next loop with the Exit keyword. 

 

 For i = 0 To 10 In this example, if the variable a equals 0  

  ' code 

  If A = 0 Then Exit Then exit the loop. 
  ' code 
 Next 

 

 

 

 

 



5.4  Loop structures 57 B4X  Basic language 

Note :  Differences between 

 B4X    VB 
 Next    Next i 
 Exit    Exit For 

 

In VB : 

• The increment variable is added after the Next Keyword. 

• The loop type is specified after the Exit keyword. 

 

5.4.2 For - Each  

 

It is a variant of the For - Next loop. 

 

Example: 

 

 For Each n As Type In Array  n  variable any type or object 

    Type type of variable n 

  ' Specific code  Array Array of values or objects 

   
 Next 
 

The For–Each loop works as below: 

1. At the beginning, n gets the value of the first element in the Array. 

n = Array(0) 

2. The specific code between the For and Next  keywords is executed. 

3. When reaching Next, the program checks if n is the last element in the array. 

4. If No, the variable n gets the next value in the Array and continues at step 2, the line 

following the For keyword. 

n = Array(next) 

5. If Yes, the program continues at the line following the Next keyword. 

 

Example For - Each : 
 Private Numbers() As Int 
 Private Sum As Int 
 
 Numbers = Array As Int(1, 3, 5 , 2, 9) 
 
 Sum = 0 
 For Each n As Int In Numbers 
  Sum = Sum + n 
 Next 

 

Same example but with a For - Next loop : 
 Private Numbers() As Int 
 Private Sum As Int 
 Private i As Int 
 
 Numbers = Array As Int(1, 3, 5 , 2, 9) 
 
 Sum = 0 
 For i = 0 To Numbers.Length - 1 
  Sum = Sum + Numbers(i) 
 Next 



5.4  Loop structures 58 B4X  Basic language 

This example shows the power of the For - Each loop : 
 For Each lbl As Label In Activity 
  lbl.TextSize = 20 
 Next 

 

Same example with a For - Next loop : 
 For i = 0 To Activity.NumberOfViews - 1 
  Private v As View 
  v = Activity.GetView(i) 
  If v Is Label Then 
   Private lbl As Label 
   lbl = v 
   lbl.TextSize = 20 
  End If 
 Next 

 

5.4.3 Do - Loop 

 

Several configurations exist: 

 

 Do While test test  is any expression 

  ' code Executes the  code  while  test is True 
 Loop 

 

 Do Until test test  is any expression 

  ' code Executes the  code  until  test is True 
 Loop 

 

The Do While -Loop loop works as below : 

1. At the beginning, test  is evaluated. 

2. If  True, then executes code    

3. If  False continues at the line following the Loop keyword.  

 

The Do Until -Loop loop works as below : 

1. At the beginning, test  is evaluated. 

2. If  False, then executes code    

3. If  True continues at the line following the Loop keyword.  

 

It is possible to exit a Do-Loop structure with the Exit keyword. 

 
 Do While test 
  ' code 

  If a = 0 Then Exit  If  a = 0  then exit the loop 
  ' code 
 Loop 

 



5.4  Loop structures 59 B4X  Basic language 

Examples : 

 

Do Until Loop : 
 Private i, n As Int 
 
 i = 0 
 Do Until i = 10 
  ' code 
  i = i + 1 
 Loop 

 

Do While Loop : 
 Private i, n As Int 
 
 i = 0 
 Do While i < 10 
  ' code 
  i = i + 1 
 Loop 

 

Read a text file and fill a List : 
 Private lstText As List 
 Private line As String 
 Private tr As TextReader 
  
 tr.Initialize(File.OpenInput(File.DirInternal, "test.txt")) 
 lstText.Initialize 
 line = tr.ReadLine 
 Do While line <> Null 
  lstText.Add(line) 
  line = tr.ReadLine 
 Loop 
 
 tr.Close 

 

 

Note :  Difference between: 

 B4X    VB 
 Exit    Exit Loop 

 

In VB the loop type is specified after the Exit keyword. 

 

VB accepts also the following loops, which are not supported in B4X. 
Do    Do 
  ' code     ' code 
Loop While test  Loop Until test 

 



5.5  .As  inline casting 60 B4X  Basic language 

5.5 Inline casting  As 

 

As - Inline casting. Allows inline casting from one type to another. Some examples: 

 
 Dim Buttons As List = Array(Button1, Button2, Button3, Button4, Button5) 
 Dim s As String = Buttons.Get(2).As(B4XView).Text 
 Buttons.Get(2).As(B4XView).Text = "abc" 
 Dim j As String = $"{ 
data: { 
key1: value1, 
complex_key2: {key: value2} 
}, 
items: [0, 1, 2] 
}"$ 
 
 Dim parser As JSONParser 
 parser.Initialize(j) 
 Dim m As Map = parser.NextObject 
 Dim value1 As String = m.Get("data").As(Map).Get("key1") 
 Dim value2 As String = m.Get("data").As(Map).Get("complex_key2").As(Map).Get("key") 

 

 

And, for B4J: 

 
Button1.As(JavaObject).RunMethod("setMouseTransparent", Array(True)) 

 

It can also be used with numbers, which is especially useful when calling external APIs with 

JavaObject, as the types need to be exact (for B4J): 

 
 Log(Me.As(JavaObject).RunMethod("sum", Array((10).As(Float), (20).As(Double)))) 
 'equivalent to: 
 Dim jme As JavaObject = Me 
 Dim f As Float = 10 
 Dim d As Double = 20 
 Log(jme.RunMethod("sum", Array(f, d))) 
 
#if Java 
public double sum(float n1, double n2) { 
return n1 + n2; 
} 
#End If 

 

 



5.6  Subs 61 B4X  Basic language 

5.6 Subs 

 

A Subroutine (“Sub”) is a piece of code. It can be any length, and it has a distinctive name and a 

defined scope (in the means of variables scope discussed earlier). In B4X code, a subroutine is 

called “Sub”, and is equivalent to procedures, functions, methods and subs in other programming 

languages. The lines of code inside a Sub are executed from first to last, as described in the program 

flow chapter. 

It is not recommended to have Subs with a large amount of code, they get less readable. 

 

5.6.1 Declaring 

 

A Sub is declared in the following way: 

 
Sub CalcInterest(Capital As Double, Rate As Double) As Double 
 Return Capital * Rate / 100 
End Sub 

 

It starts with the keyword Sub, followed by the Sub’s name, followed by a parameter list, followed 

by the return type and ends with the keywords End Sub. 

Subs are always declared at the top level of the module, you cannot nest two Subs one inside the 

other. 

 

5.6.2 Calling a Sub 

 

When you want to execute the lines of code in a Sub, you simply write the Sub’s name.  

 

For example: 
 Interest = CalcInterest(1234, 5.2) 
 

Interest Value returned by the Sub. 

CalcInterest Sub name. 

1235  Capital  value transmitted to the Sub. 

5.25  Rate  value transmitted to the Sub. 

 

5.6.3 Calling a Sub from another module 

 

A subroutine declared in a code module can be accessed from any other module but the name of the 

routine must have the name of the module where it was declared as a prefix. 

 

Example: If the CalcInterest routine is declared in module MyModule then calling the routine 

must be : 
 Interest = MyModule.CalcInterest(1234, 5.2) 

 

instead of: 
 Interest = CalcInterest(1234, 5.2) 
 

 



5.6  Subs 62 B4X  Basic language 

5.6.4 Naming 

 

Basically, you can name a Sub any name that’s legal for a variable. It is recommended to name the 

Sub with a significant name, like CalcInterest in the example, so you can tell what it does from 

reading the code. 

There is no limit on the number of Subs you can add to your program, but it is not allowed to have 

two Subs with the same name in the same module. 

 

5.6.5 Parameters 

 

Parameters can be transmitted to the Sub. The list follows the sub name. The parameter list is put in 

brackets. 

The parameter types should be declared directly in the list.  

 
Sub CalcInterest(Capital As Double, Rate As Double) As Double 
 Return Capital * Rate / 100 
End Sub 

 

In B4X, the parameters are transmitted by value and not by reference. 

 



5.6  Subs 63 B4X  Basic language 

5.6.6 Returned value 

 

A sub can return a value, this can be any object. 

Returning a value is done with the Return keyword. 

The type of the return value is added after the parameter list. 

 
Sub CalcInterest(Capital As Double, Rate As Double) As Double 
 Return Capital * Rate / 100 
End Sub 

  

You can return any object. 

 
Sub InitList As List 
 Private MyList As List 
 MyList.Initialize 
  
 For i = 0 To 10 
  MyList.Add("Test" & i) 
 Next 
 Return MyList 
End Sub 

 

If you want to return an array then you need to add a parenthesis at the end os the object type. 

 
Sub StringArray As String () 
 Public strArr(2) As String 
 strArr(0) = "Hello" 
 strArr(1) = "world!" 
 Return strArr 
End Sub 

 

If you want to return a multidimentional array you need to add comma for supplematary diemsion. 

One comma for a two dimeansion array. 

 
Sub StringMatrix As String (,) 
 Public strMatrix(2,2) As String 
 strMatrix(1,1) = "Hello world!" 
 Return strMatrix 
End Sub 

 

 

 



5.7  Resumable Subs 64 B4X  Basic language 

5.7 Resumable Subs 

 

Resumable subs is a new feature added in B4A v7.00 / B4i v4.00 / B4J v5.50. It dramatically 

simplifies the handling of asynchronous tasks. 

(This feature is a variant of stackless coroutines.) 

 

You find more examples in the forum. 

 

The special feature of resumable subs is that they can be paused, without pausing the executing 

thread, and later be resumed. 

The program doesn't wait for the resumable sub to be continued. Other events will be raised as 

usual. 

 

Any sub with one or more calls to Sleep or Wait For is a resumable sub.  

The IDE shows this indicator  next to the sub declaration: 

 

Private Sub CountDown(Start As Int)  
 For i = Start To 0 Step -1 
  Label1.Text = i 
  Sleep(1000) 
 Next 
End Sub 

 

5.7.1 Sleep 

 

Pauses the current sub execution and resumes it after the specified time. 
 

Sleep (Milliseconds As Int) Milliseconds,  time delay in milliseconds. 

Example: 

Sleep(1000) 

 

Using Sleep is simple: 

 
Log(1) 
Sleep(1000) 
Log(2) 

 

The sub will be paused for 1000 milliseconds and then be resumed. 

 

You can call Sleep(0) for the shortest pause. This can be used to allow the UI to be refreshed. It is a 

good alternative to DoEvents (which doesn't exist in B4J and B4i and should be avoided in B4A). 

 

Sub VeryBusySub  
 For i = 1 To 10000000 
  'do something 
  If i Mod 1000 = 0 Then Sleep(0) 'allow the UI to refresh every 1000 iterations. 
 Next 
 Log("finished!") 
End Sub 

 

https://en.wikipedia.org/wiki/Coroutine
https://www.b4x.com/android/forum/threads/b4x-resumable-subs-sleep-wait-for.78601/#content


5.7  Resumable Subs 65 B4X  Basic language 

5.7.2 Wait For 

 

B4X programming languages are event driven. Asynchronous tasks run in the background and raise 

an event when the task completes. 

With the new Wait For keyword you can handle the event inside the current sub. 

 

For example, this code will wait for the GoogleMap Ready event (B4J example): 

 

Sub AppStart (Form1 As Form, Args() As String)  
 MainForm = Form1 
 MainForm.RootPane.LoadLayout("1") 'Load the layout file. 
  
 gmap.Initialize("gmap") 
 Pane1.AddNode(gmap.AsPane, 0, 0, Pane1.Width, Pane1.Height) 
 MainForm.Show 
 Wait For gmap_Ready '<---------------- 
 gmap.AddMarker(10, 10, "Marker") 
End Sub 

 

A bit more complicated example with FTP: 

Listing all files in a remote folder and then downloading all the files: 

 

Sub DownloadFolder (ServerFolder As String)  
  FTP.List(ServerFolder) 
  Wait For FTP_ListCompleted (ServerPath As String, Success As Boolean, Folders() As  
    FTPEntry, Files() As FTPEntry) '<---- 
  If Success Then 
    For Each f As FTPEntry In Files 
      FTP.DownloadFile(ServerPath & f.Name, False, File.DirApp, f.Name) 
      Wait For FTP_DownloadCompleted (ServerPath2 As String, Success As Boolean) '<---- 
      Log($"File ${ServerPath2} downloaded. Success = ${Success}"$) 
     Next 
  End If 
  Log("Finish") 
End Sub 

 

When the Wait For keyword is called, the sub is paused and the internal events dispatcher takes care 

to resume it when the event is raised. If the event is never raised then the sub will never be resumed. 

The program will still be completely responsive. 

If Wait For is later called with the same event then the new sub instance will replace the previous 

one. 



5.7  Resumable Subs 66 B4X  Basic language 

Lets say that we want to create a sub that downloads an image and sets it to an ImageView: 

 
'Bad example. Don't use. 

Sub DownloadImage(Link As String, iv As ImageView)  
 Dim job As HttpJob 
 job.Initialize("", Me) 'note that the name parameter is no longer needed. 
 job.Download(Link) 
 Wait For JobDone(job As HttpJob) 
 If job.Success Then 
  iv.SetImage (job.GetBitmap) 'replace with iv.Bitmap = job.GetBitmap in B4A / B4i 
 End If 
 job.Release 
End Sub 

 

It will work properly if we call it once (more correctly, if we don't call it again before the previous 

call completes). 

If we call it like this: 

 
 DownloadImage("https://www.b4x.com/images3/android.png", ImageView1) 
 DownloadImage("https://www.b4x.com/images3/apple.png", ImageView2) 

 

Then only the second image will show because the second call to Wait For JobDone will overwrite 

the previous one. 

This brings us to the second variant of Wait For. 

To solve this issue, Wait For can distinguish between events based on the event sender. 

This is done with an optional parameter: 

 

Wait For (<sender>) <event signature> 

 

Example: 

 
'Good example. Use. 

Sub DownloadImage(Link As String, iv As ImageView)  
   Dim job As HttpJob 
   job.Initialize("", Me) 'note that the name parameter is no longer needed. 
   job.Download(Link) 
   Wait For (job) JobDone(job As HttpJob) 
   If job.Success Then 
     iv.SetImage (job.GetBitmap) 'replace with iv.Bitmap = job.GetBitmap in B4A / B4i 
   End If 
   job.Release 
End Sub 
 

With the above code, each resumable sub instance will wait for a different event and will not be 

affected by other calls. 

 

The difference is in the Wait For lines: 

Bad: Wait For JobDone(job As HttpJob) 

Good: Wait For (job) JobDone(job As HttpJob) 
 
 



5.7  Resumable Subs 67 B4X  Basic language 

5.7.3 Code Flow 
 
Sub S1 
 Log("S1: A") 
 S2 
 Log("S1: B") 
End Sub 

 

Sub S2  
 Log("S2: A") 
 Sleep(0) 
 Log("S2: B") 
End Sub 
 

The output is: 

S1: A 

S2: A 

S1: B 

S2: B 

 

Whenever Sleep or Wait For are called, the current sub is paused. This is equivalent to calling 

Return. 
 



5.7  Resumable Subs 68 B4X  Basic language 

5.7.4 Waiting for a resumable sub to complete 
 

When one sub calls a second resumable sub, the code in the first sub will continue after the first 

Sleep or Wait For call (in the second sub). 

 

If you want to wait for the second sub to complete then you can raise an event from the second sub 

and wait for it in the first: 
 

Sub FirstSub  
 Log("FirstSub started") 
 SecondSub 
 Wait For SecondSub_Complete 
 Log("FirstSub completed") 
End Sub 
 

Sub SecondSub  
 Log("SecondSub started") 
 Sleep(1000) 
 Log("SecondSub completed") 
 CallSubDelayed(Me, "SecondSub_Complete") 
End Sub 

 

Logs: 

FirstSub started 

SecondSub started 

SecondSub completed 

FirstSub completed 

 

Notes: 

- It is safer to use CallSubDelayed than CallSub. CallSub will fail if the second sub is never paused 

(for example if the sleep is only called based on some condition). 

- There is an assumption here that FirstSub will not be called again until it is completed. 

 

 



5.7  Resumable Subs 69 B4X  Basic language 

5.7.5 Resumable Sub return value 

 

Resumable subs can return a ResumableSub value. 

 

Example: 
Sub Button1_Click 
 Sum(1, 2) 
 Log("after sum") 
End Sub 
 
Sub Sum(a As Int, b As Int) 
 Sleep(100) 'this will cause the code flow to return to the parent 
 Log(a + b) 
End Sub 
 
Output: 
after sum 
3 

 

This is the reason why it is not possible to simply return a value. 

 

Solution. 

 

Resumable subs can return a new type named ResumableSub. Other subs can use this value to wait 

for the sub to complete and get the desired return value. 

 
Sub Button1_Click 
   Wait For(Sum(1, 2)) Complete (Result As Int) 
   Log("result: " & Result) 
   Log("after sum") 
End Sub 
 
Sub Sum(a As Int, b As Int) As ResumableSub 
   Sleep(100) 
   Log(a + b) 
   Return a + b 
End Sub 

 

Output: 
3 
result: 3 
after sum 

 

The above Button1_Click code is equivalent to: 

 
Sub Button1_Click 
   Dim rs As ResumableSub = Sum(1, 2) 
   Wait For(rs) Complete (Result As Int) 
   Log("result: " & Result) 
   Log("after sum") 
End Sub 

 



5.7  Resumable Subs 70 B4X  Basic language 

The steps required are: 

 

1. Add As ResumableSub to the resumable sub signature. 

2. Call Return with the value you like to return. 

3. In the calling sub, call the resumable sub with Wait For (<sub here>) Complete (Result As 

<matching type>) 

 

Notes & Tips: 

• If you don't need to return a value but still want to wait for the resumable sub to complete 

then return Null from the resumable sub and set the type in the calling sub to Object. 

• Multiple subs can safely call the resumable sub. The complete event will reach the correct 

parent. 

• You can wait for resumable subs in other modules (in B4A it is relevant for classes only). 

• The Result parameter name can be changed. 

 

 



5.7  Resumable Subs 71 B4X  Basic language 

5.7.6 DoEvents  deprecated ! 

 

Starting from B4A v7.0 the following warning will appear for DoEvents calls: 

DoEvents is deprecated. It can lead to stability issues. Use Sleep(0) instead (if really needed). 

 

The purpose of DoEvents was to allow the UI to be updated while the main thread is busy. 

DoEvents which shares the same implementation as the modal dialogs implementation, is a low 

level implementation. It accesses the process message queue and runs some of the waiting 

messages. 

 

As Android evolved, the handling of the message queue became more sophisticated and fragile. 

The reasons for deprecating DoEvents are: 

 

1. It is a major source for instability issues. It can lead to hard to debug crashes or ANR (application 

not responding) dialogs. Note that this is also true for the modal dialogs (such as Msgbox and 

InputList). 

2. There are better ways to keep the main thread free. For example use the asynchronous SQL 

methods instead of the synchronous methods. 

3. It doesn't do what many developers expect it to do. As it only handles UI related messages, most 

events could not be raised from a DoEvents call. 

4. It is now possible to call Sleep to pause the current sub and resume it after the waiting messages 

are processed. Sleep implementation is completely different than DoEvents. It doesn't hold the 

thread. It instead releases it while preserving the sub state. 

Unlike DoEvents which only processed UI related messages, with Sleep all messages will be 

processed and other events will be raised. 

(Note that using Wait For to wait for an event is better than calling Sleep in a loop.) 

 

With that said, DoEvents is still there and existing applications will work exactly as before. 

 

https://www.b4x.com/android/forum/threads/79532/#content
https://www.b4x.com/android/forum/threads/79532/#content
https://www.b4x.com/android/forum/threads/78601/#content


5.7  Resumable Subs 72 B4X  Basic language 

5.7.7 Dialogs 

 

Modal dialogs = dialogs that hold the main thread until the dialog is dismissed. 

 

As written above, modal dialogs share the same implementation as DoEvents. It is therefore 

recommended to switch to the new async dialogs instead.  

Using Wait For, is really a simple change: 

 

Instead of: 

 
Dim res As Int = Msgbox2("Delete?", "Title", "Yes", "Cancel", "No", Null) 
If res = DialogResponse.POSITIVE Then 
 '... 
End If 

 

You should use : 

 
Msgbox2Async("Delete?", "Title", "Yes", "Cancel", "No", Null, False) 
Wait For Msgbox_Result (Result As Int) 
If Result = DialogResponse.POSITIVE Then 
 '... 
End If 

 

Wait For doesn't hold the main thread. It instead saves the current sub state and releases it. The 

code will resume when the user clicks on one of the dialog buttons. 

The other similar new methods are: MsgboxAsync, InputListAsync and InputMapAsync. 

 

With the exception of MsgboxAsync, the new methods also add a new cancelable parameter. If it is 

true then the dialog can be dismissed by clicking on the back key or outside the dialog. This is the 

default behavior of the older methods. 

 

As other code can run while the async dialog is visible, it is possible that multiple dialogs will 

appear at the same time. 

If this case is relevant for your app then you should set the sender filter parameter in the Wait For 

call: 

 
Dim sf As Object = Msgbox2Async("Delete?", "Title", "Yes", "Cancel", "No", Null, False) 
Wait For (sf) Msgbox_Result (Result As Int) 
If Result = DialogResponse.POSITIVE Then 
 '... 
End If 

 

This allows multiple messages to be displayed and the result events will be handled correctly. 

 

 

https://www.b4x.com/android/forum/threads/78601/#content


5.7  Resumable Subs 73 B4X  Basic language 

5.7.8 SQL with Wait For 

 

The new resumable subs feature, makes it simpler to work with large data sets with minimum effect 

on the program responsiveness. 

 

The new standard way to insert data is: 

 
For i = 1 To 1000 
 SQL1.AddNonQueryToBatch("INSERT INTO table1 VALUES (?)", Array(Rnd(0, 100000))) 
Next 
Dim SenderFilter As Object = SQL1.ExecNonQueryBatch("SQL") 
Wait For (SenderFilter) SQL_NonQueryComplete (Success As Boolean) 
Log("NonQuery: " & Success) 

 

The steps are: 

- Call AddNonQueryToBatch for each commands that should be issued.  

- Execute the commands with ExecNonQueryBatch. This is an asynchronous method. The 

commands will be executed in the background and the NonQueryComplete event will be raised 

when done. 

- This call returns an object that can be used as the sender filter parameter. This is important as there 

could be multiple background batch executions running. With the filter parameter the event will be 

caught by the correct Wait For call in all cases. 

- Note that SQL1.ExecNonQueryBatch begins and ends a transaction internally. 

 

5.7.8.1 Queries 

 

In most cases the queries will be fast and should therefore be issued synchronously with 

SQL1.ExecQuery2. However if there is a slow query then you should switch to 

SQL1.ExecQueryAsync: 

 
Dim SenderFilter As Object = SQL1.ExecQueryAsync("SQL", "SELECT * FROM table1", Null) 
Wait For (SenderFilter) SQL_QueryComplete (Success As Boolean, rs As ResultSet) 
If Success Then 
 Do While rs.NextRow 
  Log(rs.GetInt2(0)) 
 Loop 
 rs.Close 
Else 
 Log(LastException) 
End If 

 

As in the previous case, the ExecQueryAsync method returns an object that is used as the sender 

filter parameter. 

 

Tips: 

1. ResultSet type in B4A extends the Cursor type. You can change it to Cursor if you prefer. The 

advantage of using ResultSet is that it is compatible with B4J and B4i. 

2. If the number of rows returned from the query is large then the Do While loop will be slow in 

debug mode. You can make it faster by putting it in a different sub and cleaning the project (Ctrl + 

P): 

 

 



5.7  Resumable Subs 74 B4X  Basic language 

 Wait For (SenderFilter) SQL_QueryComplete (Success As Boolean, rs As ResultSet) 
 If Success Then 
  WorkWithResultSet(rs) 
 Else 
  Log(LastException) 
 End If 
End Sub 

 
Private Sub WorkWithResultSet(rs As ResultSet) 
 Do While rs.NextRow 
  Log(rs.GetInt2(0)) 
 Loop 
 rs.Close 
End Sub 

 

This is related to a debugger optimization that is currently disabled in resumable subs. 

The performance of both solutions will be the same in release mode. 

 

5.7.8.2 B4J 

 

- Requires jSQL v1.50+ (https://www.b4x.com/android/forum/threads/updates-to-internal-

libaries.48274/#post-503552). 

- Recommended to set the journal mode to WAL: https://www.b4x.com/android/forum/t...ent-

access-to-sqlite-databases.39904/#content 

 

 

5.7.9 Notes & Tips 
 

• The performance overhead of resumable subs in release mode should be insignificant in 

most cases. The overhead can be larger in debug mode. (If this becomes an issue then take 

the slow parts of the code and move them to other subs that are called from the resumable 

sub.) 

• Wait For events handlers precede the regular event handlers. 

• Resumable subs do not create additional threads. The code is executed by the main thread, 

or the handler thread in server solutions. 

 

 

 

 

 

 
 
 
 

https://www.b4x.com/android/forum/threads/updates-to-internal-libaries.48274/#post-503552
https://www.b4x.com/android/forum/threads/updates-to-internal-libaries.48274/#post-503552
https://www.b4x.com/android/forum/threads/webapp-concurrent-access-to-sqlite-databases.39904/#content
https://www.b4x.com/android/forum/threads/webapp-concurrent-access-to-sqlite-databases.39904/#content


5.8.1  Events  B4A 75 B4X  Basic language 

5.8 Events 

 

In Object-oriented programming we have objects which can react on different user actions called 

events. 

The number and the type of events an object can raise depend on the type of the object. 

 

5.8.1 B4A 

 

User interface objects are called  'Views'  in Android. 

 

Summary of the events for different views: 

 

 Events 

Views 

C
li

ck
 

L
o
n

g
C

li
ck

 

T
o
u
ch

 

D
o
w

n
 

U
p
 

K
ey

P
re

ss
 

K
ey

U
p

 

It
em

C
li

ck
 

It
em

L
o
n
g
C

li
ck

 

C
h
ec

k
ed

C
h
an

g
e 

E
n
te

rP
re

ss
ed

 

F
o
cu

sC
h
an

g
ed

 

T
ex

tC
h
an

g
ed

 

S
cr

o
ll

C
h
an

g
ed

 

V
al

u
eC

h
an

g
ed

 

T
ab

C
h
an

g
ed

 

O
v
er

ri
d
eU

rl
 

P
ag

eF
in

is
h
ed

 

Activity                   

Button                   

CheckBox                   

EditText                   

HorizontalScrollView                   

ImageView                   

Label                   

ListView                   

Panel                   

RadioButton                   

ScrollView                   

SeekBar                   

Spinner                   

TabHost                   

ToggleButton                   

WebView                   

 



5.8.1  Events  B4A 76 B4X  Basic language 

The most common events are: 

 

• Click  Event raised when the user clicks on the view. 

Example: 
Sub Button1_Click 
  ' Your code 
End Sub 

 

• LongClick Event raised when the user clicks on the view and holds it pressed for a while. 

Example: 
Sub Button1_LongClick 
  ' Your code 
End Sub 

 

• Touch (Action As Int, X As Float, Y As Float) 

Event raised when the user touches the screen.  

 

Three different actions are handled: 

-  Activity.ACTION_DOWN, the user touches the screen. 

-  Activity.ACTION_MOVE, the user moves the finger without leaving the screen. 

-  Activity.ACTION_UP,  the user leaves the screen. 

 

The X an Y coordinates of the finger position are given. 

 

Example: 
Sub Activity_Touch (Action As Int, X As Float, Y As Float) 
  Select Action 
  Case Activity.ACTION_DOWN 
    ' Your code for DOWN action 
  Case Activity.ACTION_MOVE 
    ' Your code for MOVE action 
  Case Activity.ACTION_UP 
    ' Your code for UP action 
  End Select 
End Sub 

 

• CheckChanged (Checked As Boolean) 

Event raised when the user clicks on a CheckBox or a RadioButton 

Checked is equal to True if the view is checked or False if not checked. 

 

Example: 
Sub CheckBox1_CheckedChange(Checked As Boolean) 
  If Checked = True Then 
    ' Your code if checked 
  Else 
    ' Your code if not checked 
  End If 
End Sub 

 

 

 



5.8.1  Events  B4A 77 B4X  Basic language 

• KeyPress (KeyCode As Int) As Boolean 

Event raised when the user presses a physical or virtual key. 

KeyCode is the code of the pressed key, you can get them with the KeyCodes keyword. 

 

 
 

The event can return either: 

-  True, the event is 'consumed', considered by the operating system as already executed and    

no further action is taken. 

-  False, the event is not consumed and transmitted to the system for further actions.  

 

Example: 

 
Sub Activity_KeyPress(KeyCode As Int) As Boolean 
  Private Answ As Int 
  Private Txt As String 
   
  If KeyCode = KeyCodes.KEYCODE_BACK Then ' Checks if KeyCode is BackKey 
    Txt = "Do you really want to quit the program ?" 
    Answ = Msgbox2(Txt,"A T T E N T I O N","Yes","","No",Null)' MessageBox 
    If Answ = DialogResponse.POSITIVE Then  ' If return value is Yes then 
      Return False    ' Return = False  the Event will not be consumed 
    Else     '       we leave the program 
      Return True    ' Return = True   the Event will be consumed to avoid 
    End If     '                 leaving the program 
  End If 
End Sub 

 

 



5.8.2  Events  B4i 78 B4X  Basic language 

5.8.2 B4i 

 

User interface objects are called  'Views'  in iOS. 

 

Summary of the events for different views: 

 

 Events 

Views 

C
li

ck
 

L
o
n
g
C

li
ck

 

B
eg

in
E

d
it

 

E
n
d
E

d
it

 

E
n
te

rP
re

ss
ed

 

T
ex

tC
h
an

g
ed

 

T
o
u
ch

 

R
es

iz
e 

S
cr

o
ll

C
h
an

g
ed

 

V
al

u
eC

h
an

g
ed

 

It
em

S
el

ec
te

d
 

In
d
ex

C
h
an

g
ed

 

O
v
er

ri
d
eU

rl
 

P
ag

eF
in

is
h
ed

 

Button               

TextField               

TextView               

ImageView               

Label               

Panel               

ScrollView               

Slider               

Picker               

Stepper               

Switch               

SegmentedControl               

Slider               

Stepper               

WebView               

 



5.8.2  Events  B4i 79 B4X  Basic language 

The most common events are: 

 

• Click  Event raised when the user clicks on the view. 

Example: 
Private Sub Button1_Click 
  ' Your code 
End Sub 

 

• LongClick Event raised when the user clicks on the view and holds it pressed for a while. 

Example: 
Private Sub Button1_LongClick 
  ' Your code 
End Sub 

 

• Touch (Action As Int, X As Float, Y As Float) 

Event raised when the user touches a Panel on the screen.  

 

Three different actions are handled: 

-  Panel.ACTION_DOWN, the user touches the screen. 

-  Panel.ACTION_MOVE, the user moves the finger without leaving the screen. 

-  Panel.ACTION_UP, the user leaves the screen. 

 

The X and Y coordinates of the finger positions are given in Points not in Pixels. 

 

Example: 
Private Sub Panel_Touch (Action As Int, X As Float, Y As Float) 
  Select Action 
  Case Panel.ACTION_DOWN 
    ' Your code for DOWN action 
  Case Panel.ACTION_MOVE 
    ' Your code for MOVE action 
  Case Panel.ACTION_UP 
    ' Your code for UP action 
  End Select 
End Sub 

 

 

 

 

 

 



5.8.3  Events  B4J 80 B4X  Basic language 

5.8.3 B4J 

 

User interface objects are called 'Nodes' in Java. 

 

Summary of the events for different nodes: 

 

 Events 

Nodes 

A
ct

io
n

 

F
o
cu

sC
h
an

g
ed

 

M
o
u
se

C
li

ck
ed

 

M
o
u
se

D
ra

g
g

ed
 

M
o
u
se

M
o
v
ed

 

M
o
u
se

E
n
te

re
d

 

M
o
u
se

E
x
it

ed
 

M
o
u
se

P
re

ss
ed

 

M
o
u
se

R
el

ea
se

d
 

R
es

iz
e 

C
h
ec

k
ed

C
h
an

g
e 

S
el

ec
te

d
In

d
ex

C
h

an
g
ed

d
 

V
al

u
eC

h
an

g
e 

S
el

ec
te

d
C

h
an

g
e 

H
 /

 V
S

cr
o
ll

C
h
an

g
ed

 

T
ab

C
h
an

g
ed

 

T
ex

tC
h
an

g
ed

 

P
ag

eF
in

is
h
ed

 

T
o
u
ch

 

Button                    

Canvas                    

CheckBox                    

ChoiceBox                    

ComboBox                    

ImageView                    

Label                    

ListView                    

Pane                    

RadioButton                    

ScrollPane                    

Slider                    

Spinner                    

TabPane                    

TextArea                    

TextField                    

ToggleButton                    

WebView                    

 



5.8.3  Events  B4J 81 B4X  Basic language 

The most common events are: 

 

• Action  Event raised when the user clicks on the node (Button or TextField). 

Example: 
Private Sub Button1_Action 
  ' Your code 
End Sub 

 

• FocusChanged (HasFocus As Boolean) Event raised when the node gets or looses focus. 

Example: 
Private Sub TextField1_FocusChanged (HasFocus As Boolean) 
  ' Your code 
End Sub 

 

• MouseClicked (EventData As MouseEvent) 

Event raised when the user clicks on the node.  

Example: 
Private Sub Pane1_MouseClicked (EventData As MouseEvent) 
  ' Your code 
End Sub 

 

• MouseDragged (EventData As MouseEvent) 

Event raised when the user draggs over the node (moves with a button pressed).  

Similar to ACTION_MOVE in B4A Touch events. 

Example: 
Private Sub Pane1_MouseDragged (EventData As MouseEvent) 
  ' Your code 
End Sub 

 

• MouseEntered (EventData As MouseEvent) 

Event raised when the user enters the node. 

Example: 
Private Sub Pane1_MouseEntered (EventData As MouseEvent) 
  ' Your code 
End Sub 

 

• MouseExited (EventData As MouseEvent) 

Event raised when the user exits the node. 

Example: 
Private Sub Pane1_MouseExited (EventData As MouseEvent) 
  ' Your code 
End Sub 

 

• MouseMoved (EventData As MouseEvent) 

Event raised when the user moves over the node (without a button pressed).  

Example: 
Private Sub Pane1_MouseMoved (EventData As MouseEvent) 
  ' Your code 
End Sub 

 



5.8.3  Events  B4J 82 B4X  Basic language 

• MousePressed (EventData As MouseEvent) 

Event raised when the user presses on the node.  

Similar to ACTION_DOWN in B4A Touch events. 

Example: 
Private Sub Pane1_MousePressed (EventData As MouseEvent) 
  ' Your code 
End Sub 

 

• MouseReleased (EventData As MouseEvent) 

Event raised when the user releases the node. 

Similar to ACTION_UP in B4A Touch events.  

Example: 
Private Sub Pane1_MouseReleased (EventData As MouseEvent) 
  ' Your code 
End Sub 

 

• MouseEvent 

Data includes in the MouseEvent object: 

 

• ClickCount Returns the number of clicks associated with this event. 

• Consume Consumes the current event and prevent it from being 

handled by the nodes parent. 

• MiddleButtonDown Returns true if the middle button is currently down. 

• MiddleButtonPressed Returns true if the middle button was responsible for raising 

the current click event. 

• PrimaryButtonDown Returns true if the primary button is currently down. 

• PrimaryButtonPressed Returns true if the primary button was responsible for raising 

the current click event. 

• SecondaryButtonDown Returns true if the secondary button is currently down. 

• SecondaryButtonPressed Returns true if the secondary button was responsible for 

raising the current click event. 

• X Returns the X coordinate related to the node bounds. 

• Y Returns the Y coordinate related to the node bounds. 

 



5.8.3  Events  B4J 83 B4X  Basic language 

• Touch (Action As Int, X As Float, Y As Float) 

Event raised when the user ‘touches’ the screen.  

This event is similar to the Touch events in B4A and B4i. 

 

Three different actions are handled: 

-  Pane1.TOUCH_ACTION_DOWN, the user touches the screen. 

-  Pane1.TOUCH_ACTION_MOVE, the user moves the finger without leaving the screen. 

-  Pane1.TOUCH_ACTION_UP,   the user leaves the screen. 

 

The X an Y coordinates of the mouse cursor position are given. 

 

Example: 
Sub Pane1_Touch (Action As Int, X As Float, Y As Float) 
  Select Action 
  Case Pane1.TOUCH_ACTION_DOWN 
    ' Your code for DOWN action 
  Case Pane1.TOUCH_ACTION_MOVE 
    ' Your code for MOVE action 
  Case Pane1.TOUCH_ACTION_UP 
    ' Your code for UP action 
  End Select 
End Sub 

 

or 

 
Sub Pane1_Touch (Action As Int, X As Float, Y As Float) 
  Select Action 
  Case 0  'DOWN 
    ' Your code for DOWN action 
  Case 2  'MOVE 
    ' Your code for MOVE action 
  Case 1  'UP 
    ' Your code for UP action 
  End Select 
End Sub 

 

 

 

 

 

 

 

 



5.8.4  Events  B4R 84 B4X  Basic language 

5.8.4 B4R 

 

In B4R, the Pin and Timer objects are the only ones raising an event: 

• Pin 

StateChanged (State As Boolean)   Event raised when the pin changes its state. 

 

Example: 
Sub Pin1_StateChanged(State As Boolean) 
  ' Your code 
End Sub 

 

• Timer 

Tick Event raised at every given interval 

 

Example: 
Private Timer1 As Timer 
 
Timer1.Initialize("Timer1_Tick",1000) 
 
Sub Timer1_Tick 
  ' Your code 
End Sub 

 

Be aware that in B4R the initialize method is different from the other B4X products. 

You must declare the full sub name like "Timer1_Tick", and not "Timer1" like in the other 

products. 

 

 

 



5.8.5  User interface summary 85 B4X  Basic language 

5.8.5 User interface summary 

 

The ‘standard’ user interface objects. 

This shows the difference between the three operating systems. 

Some views / nodes which don’t exist as standard objects can exis as CustomViews in other 

operating systems. You should look in the forums. 

 

View / node B4A B4i B4J 

Activity    

Button    

CheckBox    

EditText    

HorizontalScrollView    

ImageView    

Label    

ListView    

Panel    

RadioButton    

ScrollView    

SeekBar    

Spinner    

TabHost    

ToggleButton    

WebView    

TextField    

TextView    

ScrollView different from B4A  2D    

Slider    

Picker    

Stepper    

Switch    

SegmentedControl    

Canvas  a node on its own    

ChoiceBox    

ComboBox    

Pane  similar to Panel in B4A and B4i    

ScrollPane  similar to ScrollView    

TabPane    

TextArea    

 

For cross-platform projects you might look at the B4X Cross-platform projects booklet and more 

specific chapter 4. Compatibilities  B4A  B4i  B4J  XUI. 

 

 

 

https://www.b4x.com/guides/B4XPagesCrossPlatformProjects/?page=1
https://www.b4x.com/guides/B4XPagesCrossPlatformProjects/?page=20


5.9  Libraries 86 B4X  Basic language 

5.9  Libraries 

 

Libraries add more objects and functionalities to B4X. 

Some of these libraries are shipped with the B4X products and are part of the standard development 

system. 

Other, often developed by users, can be downloaded (by registered users only) to add 

supplementary functionalities to the B4X development environments.  

 

When you need a library, you have to: 

- Check it in the Libs Tab, if you already have the library. 

- For additional libraries, check if it's the latest version. 

You can check the versions in the documentation page B4A, B4i, B4J, B4R 

Or in the Libraries Google sheet in the forum. 

To find the library files use a query like 

http://www.b4x.com/search?query=betterdialogs+library  

in your internet browser. 

- If yes, then check the library in the list to select it. 

 

 
 

- If no, download the library, unzip it and copy the 

<LibraryName>.jar and <LibraryName>.xml files to the additional libraries folder for the 

give product. 

If it’s a B4XLibrary, copy the <LibraryName>.b4xlib file To AdditionalLibraries\B4X 

folder. 

- Right click in the Lib area and click on  and check the library in the list to select it. 

 

 

https://www.b4x.com/android/documentation.html
https://www.b4x.com/b4i/documentation.html
https://www.b4x.com/b4j/documentation.html
https://www.b4x.com/b4r/documentation.html
https://docs.google.com/spreadsheets/d/1qFvc3Q70RriJS3m_ywBoJvZ47gSTVAuN_X04SI0_XBw/edit#gid=0
http://www.b4x.com/search?query=betterdialogs+library


5.9  Libraries 87 B4X  Basic language 

5.9.1 Standard libraries 

 

The standard B4X libraries are saved in the Libraries folder in the B4X program folder. 

Normally in:  

C:\Program Files\Anywhere Software\B4A\Libraries 

C:\Program Files\Anywhere Software\B4i\Libraries 

C:\Program Files\Anywhere Software\B4J\Libraries 

C:\Program Files\Anywhere Software\B4R\Libraries 

 

 

5.9.2 Additional libraries folder 

 

Additional Libraries are composed of two files: an xxx.jar and an xxx.xml file. 

B4X libraries have only one file xxx.b4xlib. 

 

For the additional libraries it is necessary to setup a special folder to save them somewhere else.  

This folder must have the following structure: 

 

 

Folder for B4A additional libraries. 

Folder for B4i additional libraries. 

Folder for B4J additional libraries. 

Folder for B4R additional libraries. 

Folder for B4X libraries. 

Folder for B4X libraries XML files. 

 

One subfolder for each product: B4A, B4i, B4J, B4R and another B4X for B4X libraries. 

 

When you install a new version of a B4X product, all standard libraries are automatically updated, 

but the additional libraries are not included. The advantage of the special folder is that you don't 

need to care about them because this folder is not affected when you install the new version of B4X. 

The additional libraries are not systematically updated with new version of B4X. 

 

When the IDE starts, it looks first for the available 

libraries in the Libraries folder of B4X and then in the 

additional libraries folders. 

 

 

To setup the special additional libraries folder, click in 

the IDE menu on Tools / Configure Paths. 

 

 

In my system, I added a B4XlibXMLFiles folder for XML help files. 

The standard and additional libraries have an XML file. B4X Libraries do not. 

 

But, if you use the B4X Help Viewer you would be interested in having these help files if they are 

available. The B4X Help Viewer is explained in the B4X Help tools booklet. 

 

You can create xml files for b4xlib libraries with this tool: b4xlib – XML generation. 

https://www.b4x.com/guides/B4XBasicLanguage/?page=87
https://www.b4x.com/android/forum/threads/b4x-help-viewer.46969/#content
https://www.b4x.com/guides/B4XHelpTools/?page=16
https://www.b4x.com/android/forum/threads/tool-b4xlib-xml-generation.101450/#content


5.9  Libraries 88 B4X  Basic language 

5.9.2.1 Paths configuration B4A 

 

 
 

Enter the folder names and click on  . 

 

 

5.9.2.2 Paths configuration B4i 

 

 
 



5.9  Libraries 89 B4X  Basic language 

5.9.2.3 Paths configuration B4J 

 

 
 

 

5.9.2.4 Paths configuration B4R 

 

 
 



5.9  Libraries 90 B4X  Basic language 

5.9.3 B4X Libraries  *.b4xlib 

 

B4X libraries are cross platform libraries introduced in B4A 8.80, B4i 5.50 and B4J 7.00. 

 

These libraries contain cross platform classes which don’t need to be compiled as libraries. 

 

A B4X library is a simple zip file with the following structure: 

• Code modules. All types are supported including Activities and Services. 

• Files, including layout files. 

• Optional manifest file with the following fields: 

o Version 

o Author 

o DependsOn (list of required libraries), Supported Platforms. Fields can be shared 

between the platforms or be platform specific. 

 

Files and code modules can also be platform specific. 

 

Creating a b4x library is very simple. You just need to create a zip file with these resources. The zip 

file extension should be b4xlib. That's all. 

 

Note that the source code can be extracted from a b4x library. 

 

b4x libraries appear like all other libraries in the Libraries tab. 

 

Example: the AnotherDatePicker.b4xlib 

 

The zip file structure: 

 

        
Files contains all the needed files, the three layout files in the example. 

 
AnotherDatePicker.bas is the crossplatform Custom View file. 

Manifest.txt contains: 

Version=2.00    version number.  

B4J.DependsOn=jXUI, jDateUtils libraries used for B4J. 

B4A.DependsOn=XUI, DateUtils  libraries used for B4A. 

B4i.DependsOn=iXUI, iDateUtils libraries used for B4i. 

 

Copy the xxx.b4xlib file to the AdditionalLibaries\B4X folder. 

If there is an xxx.xml file, you must not save it there but in another folder.  

 

B4XLibraries are explained in the B4X Custom Views Booklet. 

 

 

https://www.b4x.com/guides/B4XCustomViews/?page=1


5.9  Libraries 91 B4X  Basic language 

5.9.4 Load and update a Library 

 

A list of the official and additional libraries with links to the relevant help documentation can be 

found on the B4X site in the: 

B4A Documentation page: List of Libraries. 

B4i Documentation page: List of Libraries. 

B4J Documentation page: List of Libraries. 

B4R Documentation page: List of Libraries. 

Or in the B4X Libraries Google sheet. 

 

To find the library files use a query like http://www.b4x.com/search?query=betterdialogs+library  

in your internet browser. 

 

To load or update a library follow the steps below: 

• Download the library zip file somewhere. 

• Unzip it. 

• Copy the xxx.jar and xxx.xml files to the  

o B4X Library folder for a standard B4X library 

o Additional libraries folder for an additional library. 

• Right click in the libraries list in the Lib Tab and click on  and select the library. 

 

 
 

5.9.5 Error message "Are you missing a library reference?" 

 

If you get a message similar to this, it means that you forgot to check the specified library in the Lib 

Tab list ! 

 

 

https://www.b4x.com/android/documentation.html
https://www.b4x.com/android/documentation.html
https://www.b4x.com/android/documentation.html
https://www.b4x.com/android/documentation.html
https://docs.google.com/spreadsheets/d/1qFvc3Q70RriJS3m_ywBoJvZ47gSTVAuN_X04SI0_XBw/edit#gid=0
http://www.b4x.com/search?query=betterdialogs+library


5.10  String manuipulation 92 B4X  Basic language 

5.10 String manipulation 

 

5.10.1 B4A, B4i, B4J  String 

 

B4A, B4i and B4J allow string manipulations like other Basic languages but with some differences. 

 

These manipulations can be done directly on a string. 

Example: 
 txt = "123,234,45,23" 
 txt = txt.Replace(",", ";") 

Result: 123;234;45;23 

 

The different functions are: 

• CharAt(Index)  Returns the character at the given index. 

• CompareTo(Other)  Lexicographically compares the string with the Other string. 

• Contains(SearchFor) Tests whether the string contains the given SearchFor string. 

• EndsWith(Suffix)  Returns True if the string ends with the given Suffix substring. 

• EqualsIgnoreCase(Other) Returns True if both strings are equal ignoring their case. 

• GetBytes(Charset)  Encodes the Charset string into a new array of bytes. 

• IndexOf(SearchFor)  Returns the index of the first occurrence of SearchFor in the    

string. The index is 0 based. Returns -1 if no occurrence is found. 

• IndexOf2(SearchFor, Index) Returns the index of the first occurrence of SearchFor 

in the string. Starts searching from the given index.  

The index is 0 based. Returns -1 if no occurrence is found. 

• LastIndexOf(SearchFor) Returns the index of the first occurrence of SearchFor in the 

string. The search starts at the end of the string and advances to the beginning.  

The index is 0 based. Returns -1 if no occurrence is found. 

• LastIndexOf2(SearchFor) Returns the index of the first occurrence of SearchFor in the 

string. The search starts at the given index and advances to the beginning.  

The index is 0 based. Returns -1 if no occurrence is found. 

• Length   Returns the length, number of characters, of the string. 

• Replace(Target, Replacement) Returns a new string resulting from the replacement of 

all the occurrences of Target with Replacement. 

• StartsWith(Prefix)  Returns True if this string starts with the given Prefix. 

• Substring(BeginIndex) Returns a new string which is a substring of the original string. 

The new string will include the character at BeginIndex and will extend to the end of the 

string. 

• Substring2(BeginIndex, EndIndex) Returns a new string which is a substring of the 

original string. The new string will include the character at BeginIndex and will extend to 

the character at EndIndex, not including the last character. 

Note that EndIndex is the end index and not the length like in other languages. 

• ToLowerCase Returns a new string which is the result of lower casing this string. 

• ToUpperCase Returns a new string which is the result of upper casing this string. 

• Trim   Returns a copy of the original string without any leading or trailing 

white spaces. 

 

Note: The string functions are case sensitive. 

If you want to use case insensitive functions you should use either ToLowerCase or ToUpperCase. 

 

Example: NewString = OriginalString.ToLowerCase.StartsWith("pre")



5.10  String manuipulation 93 B4X  Basic language 

5.10.2 String concatenation 

 

The concatenation character to join Strings is: & 

 

Examples: 

• Strings 
Private MyString As String 

MyString = "aaa" & "bbb" & "ccc"     result: aaabbbccc 

 

• String and number 

MyString = "$: " & 1.25     result: $: 1.25 

 

• String and variable, it can be either another string or a number. 
Private Val As Double 
Val = 1.25 

MyString = "$: " & Val  result: $: 1.25 

 

 

 

Don’t confuse with VB syntax: 

 
MyString = "aaa" + "bbb" + "ccc"   

 

This doesn’t work! 

 



5.10  String manuipulation 94 B4X  Basic language 

5.10.3 B4A, B4i, B4J  StringBuilder 

 

StringBuilder is a mutable string, unlike regular strings which are immutable. 

StringBuilder is especially useful when you need to concatenate many strings. 

 

The following code demonstrates the performance boosting of StringBuilder:  

 
Dim start As Long  
start = DateTime.Now  
'Regular string  
Dim s As String  
For i = 1 To 5000  
  s = s & i  
Next  
Log(DateTime.Now - start)  
'StringBuilder  
start = DateTime.Now  
Dim sb As StringBuilder  
sb.Initialize  
For i = 1 To 5000  
  sb.Append(i)  
Next  
Log(DateTime.Now - start) 

 

Tested on a real device, the first 'for loop' took about 20 seconds and the second took less then a 

tenth of a second. 

The reason is that the code: s = s & i creates a new string each iteration (strings are immutable). 

The method StringBuilder.ToString converts the object to a string. 

 



5.10  String manuipulation 95 B4X  Basic language 

5.10.3.1 StringBuilder Methods 

 

Append (Text As String) As StringBuilder 

Appends the specified text at the end. 

Returns the same object, so you can chain methods. 

Example:  
sb.Append("First line").Append(CRLF).Append("Second line")  

 

Initialize 

Initializes the object. 

Example:  
Dim sb As StringBuilder  
sb.Initialize  
sb.Append("The value is: ").Append(SomeOtherVariable).Append(CRLF)  

 

Insert (Offset As Int, Text As String) As StringBuilder 

Inserts the specified text at the specified offset.  

 

IsInitialized As Boolean 

 

Length As Int [read only] 

Returns the number of characters.  

 

Remove (StartOffset As Int, EndOffset As Int) As StringBuilder 

Removes the specified characters. 

StartOffset - The first character to remove. 

EndOffset - The ending index. This character will not be removed.  

 

ToString As String 

Converts the object to a string. 

 



5.10  String manuipulation 96 B4X  Basic language 

5.10.4 Smart String Literal 

 

The "smart string" literal is a more powerful version of the standard string literal. 

It has three advantages: 

1. Supports multi-line strings. 

2. No need to escape quotes. 

3. Supports string interpolation. 

The smart string literal starts with $" and ends with "$. 

 

Example: 
Dim s As String = $"Hello world"$ 
Dim query As String = $" 
SELECT value_id FROM table3 
WHERE rowid >= random()%(SELECT max(rowid)FROM table3) 
AND second_value ISNOTNULL 
LIMIT 1"$ 
Log($"No need to escape "quotes"! "$) 

 

 

5.10.4.1 String Interpolation 

 

Smart strings can hold zero or more placeholders with code. The placeholders can be easily 

formatted. 

A placeholder starts with $[optional formatter]{ and ends with }: 

 
Log($"5 * 3 = ${5 * 3}"$) '5 * 3 = 15 

 

You can put any code you like inside the placeholders. 

 
Dim x = 1, y = 2, z = 4 As Int 
Log($"x = ${x}, y = ${y}, z = ${Sin(z)}"$) 'x = 1, y = 2, z = -0.7568024953079282 

 

This is a compile time feature. You cannot load the strings from a file for example. 

 

5.10.4.2 Number Formatter 

 

The number formatter allows you to set the minimum number of integers and the maximum number 

of fractions digits. It is similar to NumberFormat keyword. 

 

The number formatter structure: MinIntegers.MaxFractions. MaxFractions component is optional. 

Examples: 

 
Dim h = 2, m = 15, s = 7 As Int 
Log($"Remaining time $2{h}:$2{m}:$2{s}"$) 'Remaining time 02:15:07 
Log($"10 / 7 = $0.3{10 / 7}"$) '10 / 7 = 1.429 
Log($"$1.2{"The value is not a number!"}"$) 'NaN 

 



5.10  String manuipulation 97 B4X  Basic language 

5.10.4.3 Other Formatters 

 

Note that the formatters are case insensitive. 

Date - Equivalent to DateTime.Date: 

 
Log($"Current date is $date{DateTime.Now}"$) 'Current date is 02/02/2015 

 

Time - Equivalent to DateTime.Time: 

 
Log($"Current time is $time{DateTime.Now}"$) 'Current time is 11:17:45 

 

DateTime - Equivalent to DateTime.Date & " " & DateTime.Time: 

 
Log($"Current time is $DateTime{DateTime.Now}"$) 'Current time is 02/02/2015 11:18:36 

 

XML - Escapes the five XML entities (", ', <, >, &): 

 
Dim UserString As String = $"will it break your parser ><'"&?"$ 
Log($"User input is: $xml{UserString}"$) 
'User input is: will it break your parser &gt;&lt;&#39;&quot;&amp;? 

 

This is also useful for html content. 

 



5.10  String manuipulation 98 B4X  Basic language 

5.10.5 B4A, B4i  CharSequence  CSBuilder 

 

CharSequence is a native interface in Android SDK.  

A String is one implementation of CharSequence. 

There are other implementations of CharSequence that provide more features and allow us to format 

the string, add images and even make parts of the text clickable. 

 

Starting from B4A v6.80 many methods accept CharSequence instead of String. Existing code will 

work properly as you can pass regular strings. However you can now also pass more interesting 

CharSequences. 

 

Note to library developers, if your library makes calls to APIs that work with CharSequences then 

you should change your method signatures to expect CharSequence instead of String. This will 

allow developers to format the text. 

 

This tutorial covers the CSBuilder object. 

CSBuilder is similar to StringBuilder. Instead of building strings, it builds CharSequences that 

include style information. 

 

The examples are made with B4A, but the principles are the same for B4i 

 

Using it is quite simple. 

 

5.10.5.1 Text 

 
Private cs As CSBuilder 
cs = cs.Initialize.Color(Colors.Red).Append("Hello World!").PopAll 
Label1.Text = cs 

 

 The default background color can be different depending on the Android 

version. 

 

Almost all methods of CSBuilder return the object itself. This allows us to chain the method calls. 

Text is always appended with the Append method. 

There are various attributes that can be set. Setting an attribute marks the beginning of a style span. 

Calling Pop ends the last span that was added (and not ended yet). 

Calling PopAll ends all open spans. It is convenient to always call PopAll at the end to ensure that 

all spans are closed. 

 
'example of explicitly popping an attribute: 
Label1.Text = cs.Initialize.Color(Colors.Red).Append("Hello 
").Pop.Append("World!").PopAll 

 

 
 



5.10  String manuipulation 99 B4X  Basic language 

'It doesn't matter whether the methods are chained or split into several lines: 
Private cs As CSBuilder 
cs.Initialize.Color(Colors.Red).Append("Hello ") 
cs.Bold.Color(Colors.Green).Append("Colorful ").Pop.Pop  
'two pops: the first removes the green color and the second removes the bold style 
cs.Append("World!").PopAll 
Label1.Text = cs 
'can also be set as the activity title 
Activity.Title = cs 
'and Toast messages and in other places... 
ToastMessageShow(cs, True) 

 

 
 



5.10  String manuipulation 100 B4X  Basic language 

5.10.5.2 With FontAwesome or MaterialIcons 

 
Private  cs As CSBuilder 
Label1.Text = cs.Initialize.Append("Text with FontAwesome: 
").Typeface(Typeface.FONTAWESOME).Append(Chr(0xF209)).PopAll 
'Using the same builder multiple times. Note that it is initialized each time. 
'Note that we vertically align the material icon character. 
cs.Initialize.Append("Text with MaterialIcons: 
").Typeface(Typeface.MATERIALICONS).VerticalAlign(5dip).Append(Chr(0xE531)).PopAll 
Activity.Title = cs 

 

 
 

Note: The hex values of Materialicons characters begin with 0xE and FontAwesome charactes 

begins with 0xF 

 

 

5.10.5.3 Images 

 
Private  cs As CSBuilder 
cs.Initialize.Size(18).Typeface(Typeface.MONOSPACE) 
cs.Image(LoadBitmap(File.DirAssets, "edelweiss.jpg"), 60dip, 40dip, False).Append(" 
Edelweiss").Append(CRLF) 
cs.Image(LoadBitmap(File.DirAssets, "gentiane.jpg"), 60dip, 40dip, False).Append(" 
Gentiane").Append(CRLF) 
cs.Image(LoadBitmap(File.DirAssets, "lys_martagon.jpg"), 60dip, 40dip, False).Append(" 
Lys martagon").Append(CRLF) 
cs.Image(LoadBitmap(File.DirAssets, "rose.jpg"), 60dip, 40dip, False).Append(" 
Rose").Append(CRLF) 
cs.PopAll 
Label1.Text = cs 

 

 
 

 

 



5.10  String manuipulation 101 B4X  Basic language 

5.10.5.4 Clickable text 

 

The Clickable method creates clickable text. For the event to be raised you must call 

cs.EnableClickEvents. 

The Append method accepts a CharSequence. In the following code the CreateClickableWord sub 

returns a CharSequence that is then appended to the other CharSqeuence. 

 

 
 

 

5.10.5.5 Highlight text 

 

Example from the SearchView class. 

 
Private Sub AddItemsToList(li As List, full As String) 
 If li.IsInitialized = False Then Return 
 Dim cs As CSBuilder 
 For i = 0 To li.Size - 1 
  Dim item As String = li.Get(i) 
  Dim x As Int = item.ToLowerCase.IndexOf(full) 
  If x = -1 Then 
   Continue 
  End If 
  cs.Initialize.Append(item.SubString2(0, 
x)).Color(highlightColor).Append(item.SubString2(x, x + full.Length)).Pop 
  cs.Append(item.SubString(x + full.Length)) 
  lv.AddSingleLine(cs) 
 Next 
End Sub 

 

 
 

 

 

 

https://www.b4x.com/android/forum/threads/class-searchview-more-powerful-alternative-to-autocompleteedittext.19379/#content


5.10  String manuipulation 102 B4X  Basic language 

5.10.5.6 Center aligned text 

 
Msgbox(cs.Initialize.Alignment("ALIGN_CENTER").Append($"Lorem ipsum dolor sit am

et, consectetur adipiscing elit. 

Nam tristique metus eget sem sollicitudin, vel pulvinar nisl interdum. In sed ul

lamcorper lacus. 

Duis ultricies urna eget faucibus ullamcorper. Donec maximus egestas tortor, vit

ae suscipit est varius in 

Donec at arcu ut odio hendrerit molestie. Curabitur molestie felis enim, ac soda

les sapien posuere sit amet."$).PopAll, _ 

cs.Initialize.Typeface(Typeface.FONTAWESOME).Color(0xFF01FF20).Size(40).Append(C

hr(0xF17B) & " " & Chr(0xF17B) & " "& Chr(0xF17B)).PopAll) 

 

 
 



5.10  String manuipulation 103 B4X  Basic language 

5.10.5.7 CSBuilder Methods 

 

5.10.5.7.1 B4A / B4i 

• Alignement (Alignment As Alignment Enum) 

Starts an alignment span. 

Alignment - One of the following strings:  

ALIGN_NORMAL, ALIGN_OPPOSITE or ALIGN_CENTER 

 

• Append (Text As CharSequence) 

Appends the provided String or CharSequence. 

 

• BackgroundColor (Color As Int) 

Starts a background color span. 

 

• Color (Color As Int) 

Starts a foreground color span. 

 

• Initialize 

Initializes the builder. You can call this method multiple times to create new 

CharSequences. 

Note that like most other methods it returns the current object. 

 

• IsInitialized 

Tests whether this object was initialized. Returns a Boolean. 

 

• Pop 

Closes the most recent span. All spans must be closed. You can call PopAll to close all open 

spans. 

 

• PopAll 

Closes all open spans. 

It is convenient to always call PopAll at the end to ensure that all spans are closed. 

 

• Strikethrough 

Starts a strikethrough span. 

 

• ToString 

Returns a string with the characters. 

 

• Underline 

Starts an underline span. 

 

• VerticalAlign (Shift As Int) 

Starts a vertical alignment span (positive = downwards). 

 

 



5.10  String manuipulation 104 B4X  Basic language 

5.10.5.7.2 B4A only 

 

• Bold 

Starts a bold span. 

 

• Clickable (EventName As String, Tag As Object) 

Starts a clickable span. For the event to be raised you need to call the EnableClickEvents 

method. 

Example: 
Sub Activity_Create(FirstTime As Boolean) 
   Activity.LoadLayout("1") 
   Dim cs As CSBuilder 
   cs.Initialize.Size(30).Append("Some ").Append(CreateClickableWord("words")) 
   cs.Append(" are ").Append(CreateClickableWord("clickable")).Append(".").PopAll 
   Label1.Text = cs 
   cs.EnableClickEvents(Label1) 
End Sub 
 
Sub CreateClickableWord(Text As String) As CSBuilder 
   Dim cs As CSBuilder 
   Return cs.Initialize.Underline.Color(0xFF00D0FF).Clickable("word", Text).Appen
d(Text).PopAll 
End Sub 
 
Sub Word_Click (Tag As Object) 
   Log($"You have clicked on word: ${Tag}"$) 
End Sub 

 

• EnableClickEvents (Label As TextView) 

This method should be called when using clickable spans. 

 

• Image (Bitmap As Bitmap, Width As Int, Height As Int, Baseline As Boolean) 

Adds an image span. This method will add a space character as a placeholder for the image. 

Unlike the other methods you do not need to call Pop to close this span as it is closed 

automatically. 

Bitmap - The image. 

Width / Height - Image dimensions, use ‘dip’ units. 

Baseline - If true then the image will be aligned based on the baseline. Otherwise it will be 

aligned based on the lowest descender in the text. 

 

• RelativeSize (Proportion As Float) 

Starts a relative size span. The actual text size will be multiplied with the set Proportion. 

 

• ScaleX (Proportion As Float) 

Starts a scale X span. It horizontally scales the text. 

 

• Size (Size As Int) 

Starts a text size span. Note that you should not use 'dip' units with text size dimensions. 

 

• TypeFace (Typeface As Typeface) 

Starts a custom typeface span. 

Similar to Font for B4i. 

 

 

 



5.10  String manuipulation 105 B4X  Basic language 

5.10.5.7.3 B4i only 

•  Font (Font As B4IFontWrapper) 

Starts a font span.  

Note that when AutoScaleAll is called the font is reset. 

You should change the font in the parent Resize event or remove the call to AutoScaleAll 

from the layout designer script. 

Similar to TypeFace for B4A. 

 

• KerningScale (Scale As Float) 

Sets the kerning (horizontal spacing) scale. 

 

• Link (URL As NSString) 

Creates a link. Links will be clickable in non-editable TextViews. 

 

 



5.10  String manuipulation 106 B4X  Basic language 

5.10.6 B4J  TextFlow class 

 

The TextFlow Class uses JavaObject to create a TextFlow node. With a TextFlow you can display 

rich text with different colors, fonts and other attributes. 

 

Usage: 

- Add the TextFlow class module to your project (Tools - Add Existing Module). 

- Create a TextFlow object. 

- Call AddText to add a text section and set its attributes. 

- Eventually you should call CreateTextFlow to create the node that will be added to the layout. 

 

Note that the set attributes return the class instance which allows chaining the calls. 

 

Example code: 
Dim tf As TextFlow 
tf.Initialize 
tf.AddText("1 2 3").SetColor(fx.Colors.Red).SetUnderline(True) 
tf.AddText(" 4 5 6 ").SetColor(fx.Colors.Green).SetFont(fx.CreateFont("", 17, True, Tru
e)) 
tf.AddText("7 8 9").SetColor(fx.Colors.Blue).SetStrikethrough(True).SetFont(fx.DefaultF
ont(20)) 
Dim pane As Pane = tf.CreateTextFlow 
MainForm.RootPane.AddNode(pane, 10, 10, 200, 100) 

 

 

 

 

 

 

 

https://www.b4x.com/android/forum/threads/class-textflow-similar-to-b4a-b4i-richstring.61237/#content


5.10  String manuipulation 107 B4X  Basic language 

5.10.7 B4R 

 

B4R doesn’t support string manipulations like other Basic languages. 

 

These kind of manipulations can be done with the ByteConverter object in the rRandomAccesFile 

library. 

 

B4R strings are different than in other B4X tools. The reasons for these differences are: 

• Very limited memory. 

• Lack of Unicode encoders. 

 

A String object in B4R is the same as a C language char* string. It is an array of bytes with an 

additional zero byte at the end. 

The requirement of the last zero byte makes it impossible to create a substring without copying the 

memory to a new address.  

For that reason, arrays of bytes are preferable over Strings.  

The various string related methods work with arrays of bytes. 

 

Converting a string to an array of bytes is very simple and doesn't involve any memory copying. 

The compiler will do it automatically when needed: 
Private b() As Byte = "abc" 'equivalent to Private b() As Byte = "abc".GetBytes 

 

 

Only two functions are supported: 

 

These functions are: 

• GetBytes(Charset)  Returns the string content as an array of bytes. 

         Note that the array and string share the same memory 

• Length   Returns the length, number of characters, of the string. 

 

 

 

 



5.10  String manuipulation 108 B4X  Basic language 

String Methods 

 

The standard string methods are available in ByteConverter type (rRandomAccessFile library). 

 

They are similar to the string methods in other B4X tools: 

 
Private Sub AppStart 
   Serial1.Initialize(115200) 
   Log("AppStart")    
   Dim bc As ByteConverter 
   Log("IndexOf: ", bc.IndexOf("0123456", "3")) 'IndexOf: 3 
   Dim b() As Byte = " abc,def,ghijkl " 
   Log("Substring: ", bc.SubString(b, 3)) 'Substring: c,def,ghijkl 
   Log("Trim: ", bc.Trim(b)) 'Trim: abc,def,ghijkl 
   For Each s() As Byte In bc.Split(b, ",") 
     Log("Split: ", s) 
     'Split: abc 
     'Split: def 
     'Split: ghijkl 
   Next 
   Dim c As String = JoinStrings(Array As String("Number of millis: ", Millis, CRLF, "N
umber of micros: ", Micros)) 
   Log("c = ", c) 
   Dim b() As Byte = bc.SubString2(c, 0, 5) 
   b(0) = Asc("X") 
   Log("b = ", b) 
   Log("c = ", c) 'first character will be X 
End Sub 

 

Note how both strings and array of bytes can be used as the compiler converts strings to arrays of 

bytes automatically. 

 

With the exception of JoinStrings, none of the above methods make a copy of the original string / 

bytes. 

This means that modifying the returned array as in the last three lines will also modify the original 

array. 

 

It will also happen with string literals that all share the same memory block: 

 
Private Sub AppStart 
 Serial1.Initialize(115200) 
 Log("AppStart") 
 Dim bc As ByteConverter 
 Dim b() As Byte = bc.Trim("abcdef ") 
 b(0) = Asc("M") 'this line will change the value of the literal string 
 Dim s as String = "abcdef " 
 Log(s) 'Mbcdef 
End Sub 

 

 



5.10  String manuipulation 109 B4X  Basic language 

String manipulations in the ByteConverter object in the rRandomAccessFile library: 

 

• EndsWith(Source As Byte(), Suffix As Byte())   

Returns True if the string ends with the given Suffix substring. 

• IndexOf(Source As Byte(), SearchFor As Byte())   

Returns the index of the first occurrence of SearchFor in the    string. 

• IndexOf2(Source As Byte(), SearchFor As Byte(), Index As UInt)  

Returns the index of the first occurrence of SearchFor in the string. Starts searching from the 

given index. 

• LastIndexOf(Source As Byte(), SearchFor As Byte())  

Returns the index of the first occurrence of SearchFor in the Source string. Starts searching 

from the end of the string. 

• LastIndexOf2(Source As Byte(), SearchFor As Byte(), Index As UInt)  

Returns the index of the first occurrence of SearchFor in the Source string. Starts searching 

from the given index and advances to the beginning. 

• StartsWith(Source As Byte(), Prefix As Byte())   

Returns True if this string starts with the given Prefix. 

• Substring(Source As Byte(), BeginIndex As UInt)  

Returns a new string which is a substring of the original string. 

The new string will include the character at BeginIndex and will extend to the end of the 

string. 

• Substring2(Source As Byte(), BeginIndex As UInt, EndIndex As UInt)   

Returns a new string which is a substring of the original string. The new string will include 

the character at BeginIndex and will extend to the character at EndIndex, not including the 

last character. 

• Trim(Source As Byte())  

Returns a copy of the original string without any leading or trailing white spaces. 

 

 

 



5.11  Number formatting 110 B4X  Basic language 

5.11 Number formatting 

 

5.11.1 B4A, B4i, B4J 

 

Number formatting, display numbers as strings with different formats, there are two keywords: 

• NumberFormat(Number As Double, MinimumIntegers As Int, MaximumFractions As Int) 

NumberFormat(12345.6789, 0, 2) =  12,345.68 

NumberFormat(1, 3 ,0)   =   001 

NumberFormat(Value, 3 ,0)  variables can be used. 

NumberFormat(Value + 10, 3 ,0) arithmetic operations can be used. 

NumberFormat((lblscore.Text + 10), 0, 0) if one variable is a string add parentheses. 

 

• NumberFormat2(Number As Double, MinimumIntegers As Int, MaximumFractions As 

Int, MinimumFractions As Int, GroupingUsed As Boolean) 

NumberFormat2(12345.67, 0, 3, 3, True)  =  12,345.670 

NumberFormat2(12345.67, 0, 3, 3, False)  =  12345.670 

 

 

5.11.2 B4X NumberFormatter 

 

B4XFormatter is an alternative to NumberFormat / NumberFormat2 keywords. It is implemented in 

B4X as a b4xlib and it is cross platform. 

 

There are two types in the library: 

 

B4XFormatter - The main class. 

B4XFormatData - A type with various configurable fields. 

 

The formatter holds a list of format data objects. A new formatter starts with a single format data 

which acts as the default format. 

 

5.11.3 B4R 

 

Number formatting, display numbers as strings with different formats: 

• NumberFormat(Number As Double, MinimumIntegers As Int, MaximumFractions As Int) 

NumberFormat(12345.6789, 0, 2) =  12,345.68 

NumberFormat(1, 3 ,0)   =   001 

NumberFormat(Value, 3 ,0)  variables can be used. 

NumberFormat(Value + 10, 3 ,0) arithmetic operations can be used. 

NumberFormat((lblscore.Text + 10), 0, 0) if one variable is a string add parentheses. 

 

 

 

https://www.b4x.com/android/forum/threads/b4x-b4xformatter-advanced-number-formatter.102055/


5.12  Timers 111 B4X  Basic language 

5.12  Timers 

 

A Timer object generates Tick events at specified intervals. Using a timer is a good alternative to a 

long loop, as it allows the UI thread to handle other events and messages. 

Note that the timer events will not fire while the UI thread is busy running other code. 

Timer events will not fire when the activity is paused, or if a blocking dialog (like Msgbox) is 

visible. 

It is also important, in B4A, to disable the timer when the activity is pausing and then enable it 

when it resumes. This will save CPU and battery. 

 

A timer has: 

• Three parameters. 

o Initialize Initializes the timer with two parameters, the EventName and the 

interval.  

Timer1.Initialize(EventName As String, Interval As Long) 

Ex:  Timer1.Initialize("Timer1", 1000) 

 

o Interval Sets the timer interval in milli-seconds. 

Timer1. Interval = Interval  

Ex:  Timer1.Interval = 1000, 1 second 

 

o Enabled Enables or disables the timer. It is False by default. 

Ex:  Timer1.Enabled = True 

 

• One Event 

o Tick  The Tick routine is called every time interval. 

Ex:  Sub Timer1_Tick 

 

 

The Timer must be declared in a Process_Global routine. 

 
Sub Process_Globals 
 Public Timer1 As Timer 

 



5.12  Timers 112 B4X  Basic language 

But it must be initialized in one of the following routines in the module where the timer tick 

event routine is used. 

 

B4A:  Activity_Create routine 

 
Sub Activity_Create(FirstTime As Boolean) 
 If FirstTime = True Then 
  Timer1.Initialize("Timer1", 1000) 
 End If 

 

B4i:  Application_Start routine 

 
Private Sub Application_Start (Nav As NavigationController) 
 Timer1.Initialize("Timer1", 1000) 

 

B4J:  AppStart routine  

 
Sub AppStart (Form1 As Form, Args() As String) 
 Timer1.Initialize("Timer1_Tick", 1000) 

 

B4R:  AppStart routine  

 
Private Sub AppStart 
 Timer1.Initialize("Timer1", 1000) 

 

 

And the Timer Tick event routine.  

This routine will be called every second (1000 milli-seconds) by the operating system. 

 
Private Sub Timer1_Tick 
 ' Do something 
End Sub 

 



5.13  Files 113 B4X  Basic language 

5.13   Files  B4A, B4i, B4J 

 

Many applications require access to a persistent storage. The two most common storage types are 

files and databases. 

 

Android and iOS have their own file system. B4A nor B4i programs have access to files in the 

Windows system. 

 

To add files to your project you must add those in the IDE in the Files Tab. These files will be 

added to the project Files folder. 

5.13.1 File object    

 

The predefined object File has a number of functions for working with files. 

 

5.13.1.1 File locations 

There are several important locations where you can read or write files. 

 

File.DirAssets 

The assets folder includes the files that were added with the file manager in the IDE.  

It's the Files folder in the project folder. 

These files are read-only !  

You can not create new files in this folder (which is actually located inside the apk file). 

If you have a database file in the Dir.Assets folder you need to copy it to another folder before you 

can use it. 

 

5.13.1.1.1   B4X 

To save data generated by the application and used only by the application you might use the xui, 

(jxui or ixui) library get the default folder. 

 

xui.DefaultFolder 

This folder is the same as: 

• B4A - Same as File.DirInternal. 

• B4i  - Same as File.DirDocuments. 

• B4J  - Same as File.DirData.  

You must first call SetDataFolder once before you can use this folder. 

xui.SetDataFolder(AppName As String) 

 

 

 



5.13  Files 114 B4X  Basic language 

 

 

5.13.1.1.2   B4A only 

File.DirInternal / File.DirInternalCache 

These two folders are stored in the main memory of the device and are private to your application. 

Other applications cannot access these files. 

The cache folder may get deleted by the OS if it needs more space. 

 

File.DirRootExternal  Use this folder only if you really need it. 

The storage card root folder. In most cases this is an internal storage card and not an external SD 

card. 

 

File.DirDefaultExternal 

The default folder for your application in the SD card. 

The folder is: <storage card>/Android/data/<package>/files/ 

It will be created if required. 

 

Note that calling any of the two above properties will add the EXTERNAL_STORAGE permission 

to your application. 

 

Tip: You can check if there is a storage card and whether it is available with 

File.ExternalReadable and File.ExternalWritable. 

 

External storage. 

You should use the RuntimePermissions library to get the best folder with: 
MyFolder = RuntimePermissions.GetSafeDirDefaultExternal(SubFolder As String) 

 

Returns the path to the app's default folder on the secondary storage device. 

The path to File.DirInternal will be returned if there is no secondary storage available. 

It is a better alternative to File.DirDefaultExternal.  

On Android 4.4+ no permission is required to access this folder. 

SubFolder - A sub folder that will be created for your app. Pass an empty string if not needed. 

 

Acces a file in external stroge devices has become cumbersome in Android. 

Erel has written a Class ExternalStorage - Access SD cards and USB sticks to ‘simplify’ the access. 

 

Extract from Erels thread: 

 

Before we start: 

 

1. External storage means a real sd card or a connected mass storage USB device. 

2. It has nothing to do with File.DirRootExternal / DirDefaultExternal which actually point to an 

internal storage. 

3. It has nothing to do with runtime permissions. 

4. You can use RuntimePermissions.GetAllSafeDirsExternal to directly access a specific folder on 

the SD card. 

5. The minimum version for this class is Android 5. It might work with Android 4.4 (change 

minSdkVersion if you like to try it). 

 

https://www.b4x.com/android/forum/threads/externalstorage-access-sd-cards-and-usb-sticks.90238/#content


5.13  Files 115 B4X  Basic language 

Starting from Android 4.4 it is no longer possible to directly access external storages. 

The only way to access these storages is through the Storage Access Framework (SAF), which is a 

quite complex and under-documented framework. 

 

The ExternalStorage class makes it simpler to work with SAF. 

 

Usage: 

 

1. Call ExternalStorage.SelectDir. This will open a dialog that will allow the user to select the root 

folder. Once selected the uri of the root folder is stored and can be later used without requiring the 

user to select the folder again. Even after the device is booted. 

 

2. Wait For the ExternalFolderAvailable event. 

Now you can access the files under Storage.Root, including inside subfolders. 

 

3. Files are represented as a custom type named ExternalFile. 

 

4. The following operations are supported: ListFiles, Delete, CreateNewFile, FindFile, 

OpenInputStream and OpenOutputStream. 

 

See the attached example. 

 

Depends on: ContentResolver and JavaObject libraries. 

Add: 
#AdditionalJar: com.android.support:support-core-utils 

 

 

 



5.13  Files 116 B4X  Basic language 

5.13.1.1.3   B4i only 

File.DirDocuments 

The documents folder should only be used to store user generated content. It is possible to make this 

folder sharable through iTunes. 

This folder is backed up by iTunes automatically. 

 

File.DirLibrary 

The place for any non-user generated persistent files. This folder is backed up by iTunes 

automatically. 

You can create a subfolder named Caches. Files under that folder will not be backed up. 

 

File.DirTemp 

A temporary folder. Files in this folder are not backed up by iTunes and may be deleted from time 

to time. 

 

B4i Methods to access external resources or share to external apps. 

 

This thread in the forum shows some methods to share files: 

List of methods to access external resources or share to external apps. 

 

5.13.1.1.4    B4J only 

File.DirApp 

Returns the application folder. 

 

File.DirData 

Returns the path to a folder that is suitable for writing files. 

On Windows, folders under Program Files are read-only. Therefore File.DirApp will be read-only 

as well. 

This method returns the same path as File.DirApp on non-Windows computers. 

On Windows it returns the path to the user data folder. For example: 

C:\Users\[user name]\AppData\Roaming\[AppName] 

 

File.DirTemp 

Returns the temporary folder. 

 

https://www.b4x.com/android/forum/threads/list-of-methods-to-access-external-resources-or-share-to-external-apps.99368/


5.13  Files 117 B4X  Basic language 

5.13.1.2 File exists ?  B4A, B4i, B4J 

 

To check if a file already exists use: 

File.Exists ( Dir As String, FileName As String) 

Returns True if the file exists and False if not. 

 

Note: File.Exists does not work with File.DirAssets !!! 

 

5.13.1.3 Common methods   B4A, B4i, B4J 

 

The File object includes several methods for writing to files and reading from files. 

To be able to write to a file or to read from a file, it must be opened. 

 

File.OpenOutput (Dir As String, FileName As String, Append As Boolean) 

- Opens the given file for output, the Append parameter tells whether the text will be added at the 

end of the existing file or not. If the file doesn't exist it will be created. 

 

File.OpenInput (Dir As String, FileName As String) 

- Opens the file for reading. 

 

File.WriteString (Dir As String, FileName As String, Text As String) 

- Writes the given text to a new file. 

 

File.ReadString (Dir As String, FileName As String) As String 

- Reads a file and returns its content as a string. 

 

File.WriteList (Dir As String, FileName As String, List As List) 

- Writes all values stored in a list to a file. All values are converted to string type if required. Each 

value will be stored in a separare line. 

Note that if a value contains the new line character it will saved over more than one line and when 

you read it, it will be read as multiple items. 

 

File.ReadList (Dir As String, FileName As String) As List 

- Reads a file and stores each line as an item in a list. 

 

File.WriteMap (Dir As String, FileName As String, Map As Map) 

- Takes a map object which holds pairs of key and value elements and stores it in a text file. The file 

format is known as Java Properties file: .properties - Wikipedia, the free encyclopedia 

The file format is not too important unless the file is supposed to be edited manually. This format 

makes it easy to edit it manually. 

One common usage of File.WriteMap is to save a map of "settings" to a file. 

 

File.ReadMap (Dir As String, FileName As String) As Map 

- Reads a properties file and returns its key/value pairs as a Map object. Note that the order of 

entries returned might be different than the original order.  

 

File.WriteBytes (Dir As String, FileName As String, Data As Byte()) 

- Writes the given text to a new file. 

 

http://en.wikipedia.org/wiki/.properties


5.13  Files 118 B4X  Basic language 

File.ReadBytes (Dir As String, FileName As String) 

- Reads the data from the given file. 

Returns: Byte() 

 

File.Copy (DirSource As String, FileSource As String, DirTarget As String, FileTarget As String) 

- Copies the source file from the source directory to the target file in the target directory. 

Note that it is not possible to copy files to the Assets folder. 

 

File.Copy2 (In As InputStream, Out As OutputStream) 

- Copies all the available data from the input stream into the output stream. 

The input stream is automatically closed at the end. 

 

File.Delete (Dir As String, FileName As String) 

- Deletes the given file from the given directory. 

 

File.ListFiles (Dir As String) As List 

- Lists the files and subdirectories in the diven directory. 

Example: 
Private List1 As List 
List1 = File.ListFiles(File.DirInternal) 

List1 can be declared in Sub Globals 

 

File.Size (Dir As String, FileName As String) 

- Returns the size in bytes of the specified file. 

This method does not support files in the assets folder. 

 

File.MakeDir (Parent As String, Dir) 

- Creates the given folder (creates all folders as needed). 

Example: 
File.MakeDir(File.DirInternal, "music/90") 

 

 

 

 

 

 

 



5.13  Files 119 B4X  Basic language 

5.13.2 Filenames 

 

B4X file names allow following characters : 

a to z, A to Z, 0 to 9 dot . underscore _ and even following characters + - % &  

Spaces and following characters * ? are not allowed. 

 

Example : MyFile.txt 

 

Note that B4X file names are case sensitive ! 

MyFile.txt  is different from   myfile.txt 

 

 

5.13.3 Subfolders 

 

You can define subfolders in B4X with. 
 

File.MakeDir(File.DirInternal, "Pictures") 

 

To access the subfolder you should add the subfoldername to the foldername with "/" inbetween. 
ImageView1.Bitmap = LoadBitmap(File.DirInternal & "/Pictures", "test1.png") 

 

Or add the subfoldername before the filename with "/" inbetween. 
ImageView1.Bitmap = LoadBitmap(File.DirInternal, "Pictures/test1.png") 

 

Both possibilities work. 

 

 



5.13  Files 120 B4X  Basic language 

5.13.4 B4A, B4J  TextWriter 

 

There are two other useful functions for text files: TextWriter and TextReader: 

 

TextWriter.Initialize (OutputStream As OutputStream) 

- Initializes a TextWriter object as an output stream. 

 

Example: 
Private Writer As TextWriter 
Writer.Initialize(File.OpenOutput(File.DirInternal, "Test.txt" , False)) 

 

Writer could be declared in Sub Globals. 

 

TextWriter.Initialize2 (OutputStream As OutputStream , Encoding As String) 

- Initializes a TextWriter object as as output stream. 

- Encoding indicates the CodePage (also called CharacterSet) for text encoding (see next chapter). 

 

Example: 
Private Writer As TextWriter 
Writer.Initialize2(File.OpenOutput(File.DirInternal,"Test.txt" ,False)," ISO-8859-1") 

 

Writer could be declared in Sub Globals. 

See : Text encoding 

 

TextWriter.Write (Text As String) 

- Writes the given Text to the stream. 

 

TextWriter.WriteLine (Text As String) 

- Writes the given Text to the stream followed by a new line character LF Chr(10). 

 

TextWriter.WriteList (List As List) 

- Writes each item in the list as a single line. 

Note that a value containing CRLF will be saved as two lines (which will return two items when 

reading with ReadList). 

All values will be converted to strings. 

 

TextWriter.Close 

- Closes the stream. 

 

Example: 

 
Private Writer As TextWriter 
Writer.Initialize(File.OpenOutput(File.DirInternal, "Text.txt", False)) 
Writer.WriteLine("This is the first line") 
Writer.WriteLine("This is the second line") 
Writer.Close 

 

 



5.13  Files 121 B4X  Basic language 

5.13.5 B4A, B4J  TextReader 

 

There are two other useful functions for text files: TextWriter and TextReader: 

 

TextReader.Initialize (InputStream As InputStream) 

- Initializes a TextReader as an input stream. 

 

Example: 
Private Reader  TextReader 
Reader.Initialize(File.OpenInput(File.DirInternal, "Test.txt")) 

 

Reader could be declared in Sub Globals. 

 

TextReader.Initialize2 (InputStream As InputStream, Encoding As String) 

- Initializes a TextReader as an input stream. 

- Encoding indicates the CodePage (also called CharacterSet), the text encoding. 

 

Example: 
Private Reader  TextReader 
Reader.Initialize2(File.OpenInput(File.DirInternal, "Test.txt", "ISO-8859-1") 

 

Reader could be declared in Sub Globals. 

See : Text encoding 

 

TextReader.ReadAll As String 

- Reads all of the remaining text and closes the stream. 

 

Example: 
txt = Reader.ReadAll 
 

TextReader.ReadLine As String 

- Reads the next line from the stream.  

The new line characters are not returned. 

Returns Null if there are no more characters to read. 

 

Example: 

 
Private Reader As TextReader 
Reader.Initialize(File.OpenInput(File.DirInternal, "Text.txt")) 
Private line As String 
line = Reader.ReadLine 
Do While line <> Null 
 Log(line) 
 line = Reader.ReadLine 
Loop 
Reader.Close 

 

TextReader.ReadList As List 

- Reads the remaining text and returns a List object filled with the lines. 

Closes the stream when done. 

 

Example: 
List1 = Reader.ReadList  
 



5.13  Files 122 B4X  Basic language 

5.13.6 Text encoding 

 

Text encoding or character encoding consists of a code that pairs each character from a given 

repertoire with something else. Other terms like character set (charset), and sometimes character 

map or code page are used almost interchangeably (source Wikipedia). 

 

The default character set in Android is Unicode UTF-8. 

 

In Windows the most common character sets are ASCII and ANSI. 

• ASCII includes definitions for 128 characters, 33 are non-printing control characters (now 

mostly obsolete) that affect how text and space is processed. 

• ANSI, Windows-1252 or CP-1252 is a character encoding of the Latin alphabet, used by 

default in the legacy components of Microsoft Windows in English and some other Western 

languages with 256 definitions (one byte). The first 128 characters are the same as in the 

ASCII encoding. 

 

Many files generated by Windows programs are encoded with the ANSI character-set in western 

countries. For example: Excel csv files, Notepad files by default. 

But with Notepad, files can be saved with UTF-8 encoding. 

 

B4X can use following character sets: 

• UTF-8  default character-set 

• UTF -16 

• UTF - 16 BE 

• UTF - LE 

• US-ASCII  ASCII character set 

• ISO-8859-1  almost equivalent to the ANSI character-set 

• Windows-1251 cyrillic characters 

• Windows-1252 latin alphabet 

 

To read Windows files encoded with ANSI you should use the Windows-1252 character-set. 

If you need to write files for use with Windows you should also use the Windows-1252 character-

set. 

 

Another difference between Windows and B4X is the end of line character: 

• B4X, only the LF (Line Feed) character Chr(10) is added at the end of a line. 

• Windows, two characters CR (Carriage Return Chr(13)) and  LF Chr(10) are added at the 

end of a line. If you need to write files for Windows you must add CR yourself. 

 

The symbol for the end of line is : 

• B4X   CRLF  Chr(10) 

• Basic4PPC  CRLF  Chr(13) & Chr(10) 

 

To read or write files with a different encoding you must use the TextReader or TextWriter objects 

with the Initialize2 methods. Even for reading csv files. 

 



5.13  Files 123 B4X  Basic language 

Tip for reading Excel csv files: 

You can either: 

• On the desktop, load the csv file in a text editor like NotePad or Notepad++ 

• Save the file with UTF-8 encoding 

With Notepad++ use Encode in UTF-8 without BOM, see below. 

  

Or  

• Read the whole file with TextReader.Initialize2 and "Windows-1252" encoding. 

• Save it back with TextWriter.Initialize with the standard Android encoding. 

• Read the file with LoadCSV or LoadCSV2 from the StringUtils library. 

 
Private txt As String 
Private tr As TextReader 
tr.Initialize2(File.OpenInput(File.DirAssets, "TestCSV1_W.csv"), "Windows-1252") 
txt = tr.ReadAll 
tr.Close 
  
Private tw As TextWriter 
tw.Initialize(File.OpenOutput(File.DirInternal, "TestCSV1_W.csv", False)) 
tw.Write(txt) 
tw.Close 
  
lstTest = StrUtil.LoadCSV2(File.DirInternal, "TestCSV1_W.csv", ";", lstHead) 

 

When you save a file with NotePad three additional bytes are added . 

These bytes are called BOM characters (Byte Order Mark). 

In UTF-8 they are represented by this byte sequence : 0xEF,0xBB,0xBF. 

A text editor or web browser interpreting the text as Windows-1252 will display the characters  

ï»¿. 

 

To avoid this you can use Notepad++ instead of NotePad and use Encode in UTF-8 without BOM. 

 

 
 

 

Another possibility to change a text from Windows-1252 to UTF-8 is to use the code below. 

 
Private var, result As String 
var = "Gestió" 
Private arrByte() As Byte 
arrByte = var.GetBytes("Windows-1252") 
result = BytesToString(arrByte, 0, arrByte.Length, "UTF8") 



5.14  Lists  B4A, B4i and B4J only 124 B4X  Basic language 

5.14 Lists  B4A, B4i and B4J only 

 

Lists are similar to dynamic arrays. 

 

A List must be initialized before it can be used. 

• Initialize Initializes an empty List. 
Private List1 As List 
List1.Initialize 
List1.AddAll(Array As Int(1, 2, 3, 4, 5))  

 

• Initialize2 (SomeArray) 

Initializes a list with the given values. This method should be used to convert arrays to lists. 

Note that if you pass a list to this method then both objects will share the same list, and if 

you pass an array the list will be of a fixed size.    

Meaning that you cannot later add or remove items. 

Example 1: 
Private List1 As List 
List1.Initialize2(Array As Int(1, 2, 3, 4, 5)) 

Example 2: 
Private List1 As List 
Private SomeArray(10) As String 
' Fill the array 
List1.Initialize2(SomeArray) 

 

You can add and remove items from a list and it will change its size accordingly. 

With either: 

• Add (item As Object)   

Adds a value at the end of the list. 
List1.Add(Value) 

 

• AddAll (Array As String("value1", "value2")) 

Adds all elements of an array at the end of the list. 
List1.AddAll(List2) 
List1.AddAll(Array As Int(1, 2, 3, 4, 5)) 

 

• AddAllAt (Index As Int, List As List) 

Inserts all elements of an array in the list starting at the given position. 
List1.AddAll(12, List2) 
List1.AddAllAt(12, Array As Int(1, 2, 3, 4, 5)) 

 

• InsertAt (Index As Int, Item As Object) 

Inserts the specified element in the specified index.  

As a result all items with index larger than or equal to the specified index are shifted. 
List1.InsertAt(12, Value) 

 

• RemoveAt (Index As Int) 

Removes the specified element at the given position from the list. 
List1.RemoveAt(12) 



5.14  Lists  B4A, B4i and B4J only 125 B4X  Basic language 

A list can hold any type of object. However if a list is declared as a process global object it cannot 

hold activity objects (like views). 

B4X automatically converts regular arrays to lists. So when a List parameter is expected you can 

pass an array instead. 

 

Get the size of a List: 

• List1.Size 

 
Use the Get method to get an item from the list with (List indexes are 0 based): 

To get the first item use Get(0). 

To get the last item use Get(List1.Size - 1). 

• Get(Index As Int) 
number = List1.Get(i) 
 

You can use a For loop to iterate over all the values: 
For i = 0 To List1.Size - 1 
 Private number As Int 
 number = List1.Get(i) 
 ... 
Next 

 

Lists can be saved and loaded from files with: 

• File.WriteList(Dir As String, FileName As String, List As List) 
File.WriteList(File.DirRootExternal, "Test.txt", List1) 

• File.ReadList (Dir As String, FileName As String) 
List1 = File.ReadList(File.DirRootExternal, "Test.txt") 

 

A single item can be changed with : 

• List1. Set(Index As Int, Item As Object) 
List1.Set(12, Value) 

 

A List can be sorted (the items must all be numbers or strings) with : 

• Sort(Ascending As Boolean) 

List1.Sort(True)  sort ascending 

List1.Sort(False)  sort descending 

• SortCaseInsensitive(Ascending As Boolean) 

 

Clear a List with : 

•  List1.Clear 

 
 

 



5.15  Maps  B4A, B4i and B4J only 126 B4X  Basic language 

5.15 Maps  B4A, B4i and B4J only 

 

A Map is a collection that holds pairs of keys and values. 

 

The keys are unique. Which means that if you add a key/value pair (entry) and the collection 

already holds an entry with the same key, the previous entry will be removed from the map. 

 

The key should be a string or a number. The value can be any type of object. 

 

Similar to a list, a map can hold any object, however if it is a process global variable then it cannot 

hold activity objects (like views). 

 

Maps are very useful for storing applications settings. 

 

Maps are used in this example: 

• DBUtils module  

used for database entries, keys are the column names and values the column values. 

 

A Map must be initialized before it can be used. 

• Initialize Initializes an empty Map. 
Private Map1 As Map 
Map1.Initialize 

 

Add a new entry : 

• Put(Key As Object, Value As Object) 
Map1.Put("Language", "English") 

 

Get an entry : 

• Get(Key As Object) 
Language = Map1.Get("Language") 

 

Get a key or a value at a given index (only B4A and B4J): 

 Returns the value of the item at the given index. 

 GetKeyAt and GetValueAt should be used to iterate over all the items. 

 These methods are optimized for iterating over the items in ascending order. 

• GetKeyAt(Index As Int) 
Key = Map1.GetKeyAt(12) 

 

Get a value at a given index (only B4A and B4J): 

• GetValueAt(Index As Int) 
Value = Map1.GetValueAt(12) 

 

Check if a Map contains an entry, tests whether there is an entry with the given key : 

• ContainsKey(Key As Object) 
If Map1.ContainsKey("Language") Then 
 Msgbox("There is already an entry with this key !", "ATTENTION") 
 Return 
End If 

 



5.15  Maps  B4A, B4i and B4J only 127 B4X  Basic language 

Remove an entry : 

• Remove(Key As Object) 
Map1.Remove("Language") 

 

Clear, clears all items from the map : 

• Clear 
Map1.Clear 

 

Maps can be saved and loaded with : 

• File.WriteMap(Dir As String, FileName As String, Map As Map) 
File.WriteMap(File.DirInternal, "settings.txt", mapSettings) 

 

• ReadMap(Dir As String, FileName As String) 

Reads the file and parses each line as a key-value pair (of strings). 

Note that the order of items in the map may not be the same as the order in the file. 
mapSettings = File.ReadMap(File.DirInternal, "settings.txt") 

 

• File.ReadMap2(Dir As String, FileName As String, Map As Map) 

Similar to ReadMap. ReadMap2 adds the items to the given Map. 

By using ReadMap2 with a populated map you can force the items order as needed. 
mapSettings = File.ReadMap2(File.DirInternal, "settings1.txt", mapSettings) 

 

 



5.16  Class modules 128 B4X  Basic language 

5.16 Class modules 

 

In B4X, you can use three types of Class Modules: 

• Standard Class modules  standard classes 

• B4XPages    B4XPages 

• CustomView Class Modules   specialized for custom views 

 

 

In this chapter we will see only Standard Class modules. 

 

B4XPages are explained in the B4XPages Cross-platform projects booklet. 

 

CustomView Class Modules are explained in the B4X CustomViews booklet. 

 

5.16.1 Getting started 

 

Classes definition from Wikipedia: 

 
In object-oriented programming, a class is a construct that is used to create instances of itself – referred to 
as class instances, class objects, instance objects or simply objects. A class defines constituent members 
which enable its instances to have state and behaviour. Data field members (member variables or instance 
variables) enable a class instance to maintain state. Other kinds of members, especially methods, enable the 
behaviour of a class instances. Classes define the type of their instances. 
 
A class usually represents a noun, such as a person, place or thing, or something nominalized. For example, 
a "Banana" class would represent the properties and functionality of bananas in general. A single, particular 
banana would be an instance of the "Banana" class, an object of the type "Banana". 
 

 

 

https://www.b4x.com/android/forum/threads/b4x-documentation-booklets.88985/#content
https://www.b4x.com/android/forum/threads/b4x-documentation-booklets.88985/#content
http://en.wikipedia.org/wiki/Classes_%28computer_science%29


5.16  Class modules 129 B4X  Basic language 

Let us start with an example, the source code: SourceCode\Person in the / Person folder. 

 

In the Person module 

 
'Class Person module 
Sub Class_Globals 
 Private FirstName, LastName As String 
 Private BirthDate As Long 
End Sub 
 
Sub Initialize (aFirstName As String, aLastName As String, aBirthDate As Long) 
 FirstName = aFirstName 
 LastName = aLastName 
 BirthDate = aBirthDate 
End Sub 
 
Public Sub GetName As String 
 Return FirstName & " " & LastName 
End Sub 
 
Public Sub GetCurrentAge As Int 
 Return GetAgeAt(DateTime.Now) 
End Sub 
 
Public Sub GetAgeAt(Date As Long) As Int 
 Private diff As Long 
 diff = Date - BirthDate 
 Return Floor(diff / DateTime.TicksPerDay / 365) 
End Sub 

 

Main module. 

 
Sub Activity_Create(FirstTime As Boolean) 
 Private p As Person 
 p.Initialize("John", "Doe", DateTime.DateParse("05/12/1970")) 
 Log(p.GetCurrentAge) 
End Sub 

 

I will start by explaining the differences between classes, code modules and types. 

 

Similar to types, classes are templates. From this template, you can instantiate any number of 

objects.  

The type fields are similar to the classes global variables. However, unlike types which only define 

the data structure, classes also define the behaviour. The behaviour is defined in the classes’ subs. 

 

Unlike classes which are a template for objects, code modules are collections of subs. Another 

important difference between code modules and classes is that code modules always run in the 

context of the calling sub. The code module doesn't hold a reference to any context. For that reason, 

it is impossible to handle events or use CallSub with code modules. 

Classes store a reference to the context of the module that called the Initialize sub. This means that 

classes objects share the same life cycle as the module that initialized them. 

 



5.16  Class modules 130 B4X  Basic language 

5.16.1.1 Adding a Class module 

 

Adding a new or existing class module is done by choosing Project > Add New Module > Class 

module or Add Existing module. 

Like other modules, classes are saved as files with bas extension. 

 

 
 

 
 

 
 

There are two class module types:     

Standard Class 

CustomView 

CustomView (XUI) 

 

The CustomView (XUI) is shown only when the XUI library is selected!    

      

If you use the B4XPages template you can select B4XPage to create a B4XPage class. 

 

 
 



5.16  Class modules 131 B4X  Basic language 

5.16.1.2 Polymorphism 

 

Polymorphism allows you to treat different types of objects that adhere to the same interface in the 

same way. 

B4X polymorphism is similar to the Duck typing concept. 

 

As an example we will create two classes named: Square and Circle. 

Each class has a sub named Draw that draws the object to a canvas: 

Source code Draw in the Draw folder.  

 

The code below is the B4A code. 

 
'Class Square module 
Sub Class_Globals 
 Private mx, my, mWidth As Int 
End Sub 
 
'Initializes the object. You can add parameters to this method if needed. 
Sub Initialize (Shapes As List, x As Int, y As Int, length As Int) 
 mx = x 
 my = y 
 mLength = length 
 Shapes.Add(Me) 
End Sub 
 
Sub Draw(c As Canvas) 
 Private r As Rect 
 r.Initialize(mx, my, mx + mLength, my + mLength) 
 c.DrawRect(r, Colors.Red, False, 1dip) 
End Sub 
 

 
'Class Circle module 
Sub Class_Globals 
 Private mx, my, mRadius As Int 
End Sub 
 
'Initializes the object. You can add parameters to this method if needed. 
Sub Initialize (Shapes As List, x As Int, y As Int, radius As Int) 
 mx = x 
 my = y 
 mRadius = radius 
 Shapes.Add(Me) 
End Sub 
 
Sub Draw(cvs As Canvas) 
 cvs.DrawCircle(mx, my, mRadius, Colors.Blue, False, 1dip) 
End Sub 

http://en.wikipedia.org/wiki/Duck_typing


5.16  Class modules 132 B4X  Basic language 

In the main module, we create a list Shapes with Squares and Circles. We then go over the list and 

draw all the objects: 

 
Sub Process_Globals 
 Public Shapes As List 
End Sub 
 
Sub Globals 
 Private cvs As Canvas  
End Sub 
 
Sub Activity_Create(FirstTime As Boolean) 
 cvs.Initialize(Activity) 
 Private Square1, Square 2 As Square 
 Private Circle1 As Circle 
 Shapes.Initialize 
 Square1.Initialize(Shapes, 110dip, 110dip, 50dip) 
 Square2.Initialize(Shapes, 10dip, 10dip, 100dip) 
 Circle1.Initialize(Shapes, 50%x, 50%y, 100dip) 
 
 DrawAllShapes 
End Sub 
 
Sub DrawAllShapes 
 For i = 0 To Shapes.Size - 1 
  CallSub2(Shapes.Get(i), "Draw", cvs) 
 Next 
 Activity.Invalidate 
End Sub 

 

As you can see, we do not know the specific type of each object in the list. We just assume that it 

has a Draw method that expects a single Canvas argument. Later we can easily add more types of 

shapes. 

You can use the SubExists keyword to check whether an object includes a specific sub. 

 

You can also use the Is keyword to check if an object is of a specific type. 

 

 

 

 



5.16  Class modules 133 B4X  Basic language 

5.16.1.3 Self-reference 

 

The Me keyword returns a reference to the current object. Me keyword can only be used inside a 

class module. 

Consider the above example. We have passed the Shapes list to the Initialize sub and then add each 

object to the list from the Initialize sub: 

 
Sub Initialize (Shapes As List, x As Int, y As Int, radius As Int) 
 mx = x 
 my = y 
 mRadius = radius 
 Shapes.Add(Me) 
End Sub 

 

 

5.16.1.4 Activity object   B4A only 

 

This point is related to the Android Activities special life cycle.  

Make sure to first read the activities and processes life-cycle tutorial. 

 

Android UI elements hold a reference to the parent activity. As the OS is allowed to kill background 

activities in order to free memory, UI elements cannot be declared as process global variables (these 

variables live as long as the process lives). Such elements are named Activity objects. The same is 

true for custom classes. If one or more of the class global variables is of a UI type (or any activity 

object type) then the class will be treated as an "activity object". The meaning is that instances of 

this class cannot be declared as process global variables. 

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/6487-android-process-activities-life-cycle.html


5.16  Class modules 134 B4X  Basic language 

5.16.2 Standard Class module 

 

5.16.2.1 Structure 

 

Default template of a standard class: 

 

B4A and B4i 

 
Sub Class_Globals 
  
End Sub 
 
'Initializes the object. You can add parameters to this method if needed. 
Public Sub Initialize 
 
End Sub 

 

B4J 

 
Sub Class_Globals 
 Private fx As JFX 
End Sub 
 
'Initializes the object. You can add parameters to this method if needed. 
Public Sub Initialize 
 
End Sub 

 

Only two routines are predefined: 

 

Sub Class_Globals - This sub is similar to the Main Globals sub. These variables will be the class 

global variables (sometimes referred to instance variables or instance members). 

In B4J, the fx library library is declared by default. You can remove it if not needed. 

 

Sub Initialize - A class object must be initialized before you can call any other sub. Initializing 

an object is done by calling the Initialize sub. When you call Initialize you set the object's context 

(the parent object or service). 

Note that you can modify this sub signature and add arguments as needed. 

 



5.16  Class modules 135 B4X  Basic language 

Example: Person class module 

The source codes are in the Person folder. 

 

The code is the same for all three B4X platforms (B4A. B4i, B4J). 

 
'Class Person module 
Sub Class_Globals 
 Private mFirstName, mLastName As String 
 Private mBirthDate As Long 
End Sub 
 
Sub Initialize (FirstName As String, LastName As String, BirthDate As Long) 
 mFirstName = FirstName 
 mLastName = LastName 
 mBirthDate = BirthDate 
End Sub 
 
Public Sub GetName As String 
  Return mFirstName & " " & mLastName 
End Sub 
 
Public Sub GetCurrentAge As Int 
  Return GetAgeAt(DateTime.Now) 
End Sub 
 
Public Sub GetAgeAt(Date As Long) As Int 
 Dim diff As Long 
 diff = Date - mBirthDate 
 Return Floor(diff / DateTime.TicksPerDay / 365) 
End Sub 

 

 

In the above code, we created a class named Person and later instantiate an object of this type in the 

main module: 

 
 Private p As Person 
 p.Initialize("John", "Doe", DateTime.DateParse("05/12/1970")) 
 Log(p.GetCurrentAge) 

 

Calling initialize is not required if the object itself was already initialized: 

 
 Private p2 As Person 
 p2 = p 'both variables now point to the same Person object. 
 Log(p2.GetCurrentAge) 

 

 

 

 

 

 

 

 

 



6  "Code smells" code to be avoided 136 B4X  Basic language 

6 "Code smells" code to be avoided 
 

"Code smells" are common patterns that can indicate that there is a problem in the code. A problem 

doesn't mean that the code doesn't work, it might be that it will be difficult to maintain it or that 

there are more elegant ways to implement the same thing. 

Remember that not everything is clear cut and there are exceptions for any rule. 

 

6.1 Initializing an object and then assigning a different object to the 
same variable 

 
'bad 
Dim List1 As List 
List1.Initialize '<-- a new list was created here 
List1 = SomeOtherList '<--- previous list was replaced 
 
'good 
Dim List1 As List = SomeOtherList 

 

6.2 Deprecated methods - DoEvents, Msgbox 

 

These methods are deprecated, so you should not these anymore. 

More information here: 

https://www.b4x.com/android/forum/t...cated-and-async-dialogs-msgbox.79578/#content 

 

 

6.3 Deprecated methods - Map.GetKeyAt / GetValueAt 

 

Deprecated methods - Map.GetKeyAt / GetValueAt - these methods were added before the For 

Each loop was available. They are not cross platform and are not the correct way to work with 

maps. 

 
'bad 
For i = 0 To Map1.Size - 1 
   Dim key As String = Map1.GetKeyAt(i) 
   Dim value As String = Map1.GetValueAt(i) 
Next 
 
'good 
For Each key As String In Map1.Keys 
 Dim value As String = Map1.Get(key) 
 
Next 

 

https://www.b4x.com/android/forum/threads/doevents-deprecated-and-async-dialogs-msgbox.79578/#content


6  "Code smells" code to be avoided 137 B4X  Basic language 

6.4 Not using parameterized queries 

 

For database queries, use parametrized queries. 

 
'very bad 
SQL.ExecNonQuery("INSERT INTO table1 VALUES ('" & EditText1.Text & "'") 'ugly, will 
break if there is an apostrophe in the text and vulnerable to SQL injections. 
 
'very good 
SQL.ExecNonQuery2("INSERT INTO table1 VALUES (?)", Array(EditText1.Text)) 

 

6.5 Using Cursor instead of ResultSet - Cursor 

 

For database queries, use ResultSet instead of Cursor. 

Cursor is a B4A only object. ResultSet is a bit simpler to use and is cross platform. 

 
'good 
Dim rs As ResultSet = SQL.ExecQuery2(...) 
Do While rs.NextRow 
 ... 
Loop 
rs.Close 

 

6.6 Building the complete layout programmatically 

 

Building the complete layout programmatically. This is especially a mistake in B4J and B4i because 

of the resize event and also if you want to build a cross platform solution. Layouts can be ported 

very easily. 

 



6  "Code smells" code to be avoided 138 B4X  Basic language 

6.7 Repeating the code 

 

There are many patterns to this one and all of them are bad. 

 
'bad 
If b = False Then 
 Button1.Text = "disabled" 
 Button2.Text = "disabled" 
 Button3.Text = "disabled" 
 Button1.Enabled = False 
 Button2.Enabled = False 
 Button3.Enabled = False 
Else 
 Button1.Text = "enabled" 
 Button2.Text = "enabled" 
 Button3.Text = "enabled" 
 Button1.Enabled = True 
 Button2.Enabled = True 
 Button3.Enabled = True 
End If 
 
'good 
For Each btn As Button In Array(Button1, Button2, Button3) 
 btn.Enabled = b 
 If b Then btn.Text = "enabled" Else btn.Text = "disable" 
Next 

 

6.8 Long strings without using smart strings 

 

More information: https://www.b4x.com/android/forum/threads/50135/#content 

 
'bad 
Dim s As String = "This is the " & QUOTE & "first" & QUOTE & "line" & CRLF & _ 
 "and this is the second one. The time is " & DateTime.Time(DateTime.Now) & "." 
 
'good 
Dim s As String = $"This is the "first" line 
and this is the second one. The time is $Time{DateTime.Now}."$ 

 

6.9 Using global variables when not needed 

 
'bad 
Job.Initialize(Me, "") 'global variable 
... 
 
'good 
Dim job As HttpJob 
job.Initialize(Me, "") 

 

6.10 Not using Wait For when possible 

 

Not using Wait For when possible. JobDone is a good example: [B4X] OkHttpUtils2 with Wait For 

 

https://www.b4x.com/android/forum/threads/50135/#content


6  "Code smells" code to be avoided 139 B4X  Basic language 

6.11 Using code modules instead of classes 

 

Code modules are very limited in B4A. In most cases you should use classes instead of code 

modules. A code module is a single instance of a class. 

 

6.12 Understanding booleans 

 
'not elegant 
Dim result As Boolean = DoingSomethingThatReturnTrueOrFalse 
If result = True Then 
 Return True 
Else 
 Return False 
End If 
 
' elegant 
Return DoingSomethingThatReturnTrueOrFalse 

 

6.13 Converting "random" bytes to strings 

 

The only valid raw bytes that should be converted to a string, with BytesToString, are bytes that 

represent text. In all other cases it is a mistake to convert to string. Even if it seems to work it will 

later fail in other cases. 

If you think that it is more complicated to work with raw bytes then you are not familiar with the 

useful B4XBytesBuilder object: https://www.b4x.com/android/forum/threads/b4x-b4xcollections-

more-collections.101071/#content 

 

 

https://www.b4x.com/android/forum/threads/b4x-b4xcollections-more-collections.101071/#content
https://www.b4x.com/android/forum/threads/b4x-b4xcollections-more-collections.101071/#content


7  Tips 140 B4X  Basic language 

7 Tips 
 

These are Erels’ tips for B4X developers ([B4X] Tips for B4X developers). 

7.1 Separate data from code 

 

Putting the data directly into the code makes your program unreadable and less maintainable.  

There are many simple ways to deal with data. For example you can add a text file to the Files tab 

and read it to a List with: 

 
Dim data As List = File.ReadList(File.DirAssets, "SomeFile.txt") 

 

7.2 Don't Repeat Yourself (DRY principle). 

 

If you find yourself copying and pasting the same code snippet multiple times and then making a 

small change then it is a good idea to stop and try to find a more elegant solution. 

Repeated code is difficult to maintain and update. The Sender keyword can help in many cases (old 

and still relevant tutorial: Tick-Tack-Toe: working with arrays of views). 

 

7.3 Map collection 

 

All developers should know how to use a Map collection. This is by far the most useful collection. 

Tutorial: https://www.b4x.com/android/forum/threads/map-collection-the-most-useful-

collection.60304/ 

 

7.4 New technologies and features. 

 

Don't be afraid to learn new things. As developers we always need to learn new things. Everything 

is evolving whether we want it or not. I will give MQTT as a good example. I wasn't familiar with 

this technology. When I started learning about it I was a amazed to see how easy and powerful this 

solution is. 

B4X specific features that all developers should be aware of: 

- Smart strings literal: https://www.b4x.com/android/forum/threads/50135/#content 

- For Each iterator: https://www.b4x.com/android/forum/threads/loops.57877/ 

- Classes: https://www.b4x.com/android/forum/threads/18626/#content 

 

7.5 Logs 

 

You should monitor the logs while your app is running. Especially if there is any error. If you are 

unable to see the logs for some reason then take the time to solve it. Specifically with B4A-Bridge 

the logs will only appear in Debug mode. If you encounter an issue that only happens in release 

mode then you need to switch to usb debug mode. 

 

 

https://www.b4x.com/android/forum/threads/b4x-tips-for-b4x-developers.62121/#post-510240
https://www.b4x.com/android/forum/threads/8506/#content
https://www.b4x.com/android/forum/threads/map-collection-the-most-useful-collection.60304/
https://www.b4x.com/android/forum/threads/map-collection-the-most-useful-collection.60304/
https://www.b4x.com/android/forum/threads/59471/#content
https://www.b4x.com/android/forum/threads/50135/#content
https://www.b4x.com/android/forum/threads/loops.57877/
https://www.b4x.com/android/forum/threads/18626/#content


7  Tips 141 B4X  Basic language 

7.6 B4A  Avoid calling DoEvents. 

 

DoEvents interferes with the internal message queue. It can cause unexpected issues. There are very 

few cases where it is required. This was not the case when B4A v1.0 was released. Since then the 

libraries have evolved and now offer better solutions. For example if the database operations are too 

slow (and you are correctly using transactions) then you should switch to the asynchronous 

methods. Or you should use Sleep or Wait For. 

 

7.7 Strings are made of characters not bytes. 

 

Don't try to store raw bytes as strings. It doesn't work. Use arrays of bytes instead. The proper way 

to convert bytes to strings is with base 64 encoding or ByteConverter.HexFromBytes. 

 

7.8 B4A  Use services, especially the Starter service 

 

Services are simpler than Activities. They are not paused and are almost always accessible.  

Three general rules about global variables: 

1. All non-UI related variables should be declared in Process_Globals.  

2. Public (process_global) variables should be declared and set / initialized in Service_Create of the 

Starter service. 

3. Activity process globals should only be initialized if FirstTime is true. 

 

This is only relevant to B4A. It is simpler in B4J and B4i as there is no special life cycle and the 

modules are never paused. 

 

7.9 UI Layouts 

 

B4X provides several tools to help you implement flexible layouts that adapt to all screen sizes. The 

main tools are: anchors and designer script. Avoid adding multiple variants (two are fine). Variants 

were introduced in v1.00, before the other features. Variants are difficult to maintain and can be 

replaced with scripts. 

Anchors are very simple and powerful. 

Don't overuse percentage units (unless you are building a game). 

http://www.basic4ppc.com/forum/basi...ing-multiple-screens-tips-best-practices.html 

 

 

7.10 B4J as a backend solution. 

 

B4A, B4i, B4J share the same language, same concepts and mostly the same APIs. It is also simple 

to exchange data between the different platforms with B4XSerializator.  

It is easy to implement powerful server solutions with B4J. Especially when the clients are 

implemented with B4A, B4i or B4J. 

 

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/17647-supporting-multiple-screens-tips-best-practices.html


7  Tips 142 B4X  Basic language 

7.11 Search. 

 

Use the forum search feature. You can filter results by adding the platform(b4a for example) to the 

query or by clicking on one of the filters in the results page. 

Most of the questions asked in the forum can be solved with a few searches. 

 

 
 

7.12 Notepad++. 

 

At one point or another we need to work with text files. I highly recommend all developers to use a 

good text editor that shows the encoding, the end of line characters and other important features. 

https://notepad-plus-plus.org/ 

 

7.12.1 Encoding 

 

To show the current encoding of a text file, you can load it and then chlick in the menu on 

Encoding. The current encoding is checked. 

You can select another encoding and save the file. 

 

 
 

https://notepad-plus-plus.org/


7  Tips 143 B4X  Basic language 

This can be useful when you have csv files generated with Excel, which are encoded with ANSI 

encoding, but, B4X uses UTF-8 encoding. 

 

Original file: 

 

 
 

Change the encoding and save the file with another file name. 

 

 
 

When you reload this file and check the encoding, you will see this: 

 

 


	1 B4X platforms
	2 BASIC
	3 Variables and objects
	3.1 Variable Types
	3.2 Names of variables
	3.3  Declaring variables
	3.3.1 Simple variables
	3.3.2 Array variables
	3.3.3 Constant variables  Const keyword
	3.3.4 Array of views / nodes (objects)
	3.3.5 Type variables   B4A, B4i and B4J only

	3.4  Casting
	3.5  Scope
	3.5.1 Process variables
	3.5.2 Activity variables  B4A only
	3.5.3 Local variables

	3.6  Tips

	4 Program flow / Process life cycle
	4.1 B4A
	4.1.1 Program Start
	4.1.2 Process global variables
	4.1.3 Activity variables
	4.1.4 Starter service
	4.1.5 Program flow
	4.1.6 Sub Process_Globals / Sub Globals
	4.1.7 Sub Activity_Create (FirstTime As Boolean)
	4.1.8 Variable declaration summary
	4.1.9 Sub Activity_Resume Sub Activity_Pause (UserClosed As Boolean)
	4.1.10 Activity.Finish  /  ExitApplication

	4.2 Program flow B4i
	4.3 Program flow B4J
	4.4 Program flow B4R
	4.5 Program flow comparison  B4A / B4i / B4J
	4.5.1 Program start  B4A / B4i / B4J
	4.5.2 Rotating device  B4A / B4i

	4.6 B4XPages program flow

	5 Basic language
	5.1 Expressions
	5.1.1 Mathematical expressions
	5.1.2 Relational expressions
	5.1.3 Boolean expressions

	5.2 Standard keywords
	Abs (Number As Double) As Double
	ACos (Value As Double) As Double
	ACosD (Value As Double) As Double
	Array
	Asc (Char As Char) As Int
	ASin (Value As Double) As Double
	ASinD (Value As Double) As Double
	ATan (Value As Double) As Double
	ATan2 (Y As Double, X As Double) As Double
	ATan2D (Y As Double, X As Double) As Double
	ATanD (Value As Double) As Double
	BytesToString (Data() As Byte, StartOffset As Int, Length As Int, CharSet As String) As String
	CallSub (Component As Object, Sub As String) As Object
	CallSub2 (Component As Object, Sub As String, Argument As Object) As Object
	CallSub3 (Component As Object, Sub As String, Argument1 As Object, Argument2 As Object) As Object
	CallSubDelayed (Component As Object, Sub As String)
	CallSubDelayed2 (Component As Object, Sub As String, Argument As Object)
	CallSubDelayed3 (Component As Object, Sub As String, Argument1 As Object, Argument2 As Object)
	Similar to CallSubDelayed. Calls a sub with two arguments.
	Similar to CallSubDelayed. Calls a sub with two arguments.
	Catch
	cE As Double
	Ceil (Number As Double) As Double
	Chr (UnicodeValue As Int) As Char
	Continue
	Cos (Radians As Double) As Double
	CosD (Degrees As Double) As Double
	cPI As Double
	CreateMap
	CRLF As String
	Dim
	Exit
	Floor (Number As Double) As Double
	For
	GetType (object As Object) As String
	If
	IIf
	Is
	IsNumber (Text As String) As Boolean
	LoadBitmapSample (Dir As String, FileName As String, MaxWidth As Int, MaxHeight As Int) As Bitmap
	Log (Message As String)
	Logarithm (Number As Double, Base As Double) As Double
	LogColor (Message As String, Color As Int)
	Max (Number1 As Double, Number2 As Double) As Double
	Me As Object
	Min (Number1 As Double, Number2 As Double) As Double
	Not (Value As Boolean) As Boolean
	Null As Object
	NumberFormat (Number As Double, MinimumIntegers As Int, MaximumFractions As Int) As String
	NumberFormat2 (Number As Double, MinimumIntegers As Int, MaximumFractions As Int, MinimumFractions As Int, GroupingUsed As Boolean) As String
	NumberFormat2 (Number As Double, MinimumIntegers As Int, MaximumFractions As Int, MinimumFractions As Int, GroupingUsed As Boolean) As String
	Power (Base As Double, Exponent As Double) As Double
	QUOTE As String
	Regex As Regex
	Return
	Rnd (Min As Int, Max As Int) As Int
	RndSeed (Seed As Long)
	Round (Number As Double) As Long
	Select
	Sender As Object
	Sin (Radians As Double) As Double  Calculates the trigonometric sine function. Angle measured in radians.
	Sin (Radians As Double) As Double  Calculates the trigonometric sine function. Angle measured in radians.
	SinD (Degrees As Double) As Double
	Calculates the trigonometric sine function. Angle measured in degrees.
	Sleep (Value As Double) As Double
	Sqrt (Value As Double) As Double
	Sub
	SubExists (Object As Object, Sub As String) As Boolean
	TAB As String
	Tan (Radians As Double) As Double
	TanD (Degrees As Double) As Double
	True As Boolean
	Try
	Type
	Until
	While

	5.3  Conditional statements
	5.3.1 If – Then – Else
	5.3.1.1 Boolean evaluation order

	5.3.2 IIf     Inline If
	5.3.3 Select – Case

	5.4  Loop structures
	5.4.1 For – Next
	5.4.2 For - Each
	5.4.3 Do - Loop

	5.5 Inline casting  As
	5.6 Subs
	5.6.1 Declaring
	5.6.2 Calling a Sub
	5.6.3 Calling a Sub from another module
	5.6.4 Naming
	5.6.5 Parameters
	5.6.6 Returned value

	5.7 Resumable Subs
	5.7.1 Sleep
	5.7.2 Wait For
	5.7.3 Code Flow
	5.7.4 Waiting for a resumable sub to complete
	5.7.5 Resumable Sub return value
	5.7.6 DoEvents  deprecated !
	5.7.7 Dialogs
	5.7.8 SQL with Wait For
	5.7.8.1 Queries
	5.7.8.2 B4J

	5.7.9 Notes & Tips

	5.8 Events
	5.8.1 B4A
	5.8.2 B4i
	5.8.3 B4J
	5.8.4 B4R
	5.8.5 User interface summary

	5.9  Libraries
	5.9.1 Standard libraries
	5.9.2 Additional libraries folder
	5.9.2.1 Paths configuration B4A
	5.9.2.2 Paths configuration B4i
	5.9.2.3 Paths configuration B4J
	5.9.2.4 Paths configuration B4R

	5.9.3 B4X Libraries  *.b4xlib
	5.9.4 Load and update a Library
	5.9.5 Error message "Are you missing a library reference?"

	5.10 String manipulation
	5.10.1 B4A, B4i, B4J  String
	5.10.2 String concatenation
	5.10.3 B4A, B4i, B4J  StringBuilder
	5.10.3.1 StringBuilder Methods

	5.10.4 Smart String Literal
	5.10.4.1 String Interpolation
	5.10.4.2 Number Formatter
	5.10.4.3 Other Formatters

	5.10.5 B4A, B4i  CharSequence  CSBuilder
	5.10.5.1 Text
	5.10.5.2 With FontAwesome or MaterialIcons
	5.10.5.3 Images
	5.10.5.4 Clickable text
	5.10.5.5 Highlight text
	5.10.5.6 Center aligned text
	5.10.5.7 CSBuilder Methods
	5.10.5.7.1 B4A / B4i
	5.10.5.7.2 B4A only
	5.10.5.7.3 B4i only


	5.10.6 B4J  TextFlow class
	5.10.7 B4R

	5.11 Number formatting
	5.11.1 B4A, B4i, B4J
	5.11.2 B4X NumberFormatter
	5.11.3 B4R

	5.12  Timers
	5.13   Files  B4A, B4i, B4J
	5.13.1 File object
	5.13.1.1 File locations
	5.13.1.1.1   B4X
	5.13.1.1.2   B4A only
	5.13.1.1.3   B4i only
	5.13.1.1.4    B4J only

	5.13.1.2 File exists ?  B4A, B4i, B4J
	5.13.1.3 Common methods   B4A, B4i, B4J

	5.13.2 Filenames
	5.13.3 Subfolders
	5.13.4 B4A, B4J  TextWriter
	5.13.5 B4A, B4J  TextReader
	5.13.6 Text encoding

	5.14 Lists  B4A, B4i and B4J only
	5.15 Maps  B4A, B4i and B4J only
	5.16 Class modules
	5.16.1 Getting started
	5.16.1.1 Adding a Class module
	5.16.1.2 Polymorphism
	5.16.1.3 Self-reference
	5.16.1.4 Activity object   B4A only

	5.16.2 Standard Class module
	5.16.2.1 Structure



	6 "Code smells" code to be avoided
	6.1 Initializing an object and then assigning a different object to the same variable
	6.2 Deprecated methods - DoEvents, Msgbox
	6.3 Deprecated methods - Map.GetKeyAt / GetValueAt
	6.4 Not using parameterized queries
	6.5 Using Cursor instead of ResultSet - Cursor
	6.6 Building the complete layout programmatically
	6.7 Repeating the code
	6.8 Long strings without using smart strings
	6.9 Using global variables when not needed
	6.10 Not using Wait For when possible
	6.11 Using code modules instead of classes
	6.12 Understanding booleans
	6.13 Converting "random" bytes to strings

	7 Tips
	7.1 Separate data from code
	7.2 Don't Repeat Yourself (DRY principle).
	7.3 Map collection
	7.4 New technologies and features.
	7.5 Logs
	7.6 B4A  Avoid calling DoEvents.
	7.7 Strings are made of characters not bytes.
	7.8 B4A  Use services, especially the Starter service
	7.9 UI Layouts
	7.10 B4J as a backend solution.
	7.11 Search.
	7.12 Notepad++.
	7.12.1 Encoding



