

B4X Booklets

B4X CustomViews

Copyright: © 2021 Anywhere Software Edition 2.2

Last update: 2021.07.12

Table of contents 2 B4X CustomViews

1 General information ... 5

2 Class modules .. 6
2.1 Getting started .. 6

2.1.1 Adding a class module ... 8
2.1.2 Polymorphism .. 9

2.1.3 Self-reference ... 10
2.1.4 Activity object B4A only ... 11

3 Standard class ... 12
3.1 Standard class structure .. 12

4 CustomViews ... 14

4.1 CustomView types ... 14
4.2 CustomView class structure ... 15

4.2.1 Event declarations .. 16
4.2.2 Designer properties declarations .. 16

4.2.3 Global variable declarations ... 16
4.2.4 Initialization routine ... 17
4.2.5 Designer support routine .. 18

4.2.6 Routine to get the base Panel ... 19
4.3 Adding a custom view by code .. 20
4.4 Add properties .. 21
4.5 Add Events ... 22

4.5.1 Code in the Class .. 23
4.5.2 Event declaration in the class ... 24
4.5.3 Code in the calling module .. 24

4.6 Custom view and custom properties in the Designer ... 25
4.7 Add layouts to a CusomView .. 29

4.8 Libraries ... 30
4.8.1 Generate a B4X Library *.b4xlib .. 31

4.8.1.1 AdditionalLibraries folder .. 32
4.8.1.2 Xml help files for B4X Libraries ... 32

4.8.2 Complie to a product specific library ... 34
4.8.2.1 Library specific attributes .. 36
4.8.2.2 Tip for MaterialIcons and Fontawesome fonts .. 38

4.9 Program flow .. 39
4.10 Intellisense help .. 40

4.10.1 Comments before Sub Class_Globals ... 40
4.10.2 Comments before a routine .. 40
4.10.3 Comments before an event routine .. 41

4.11 CustomViews (XUI) .. 42

4.11.1 CustomViews (XUI) class structue .. 42
4.12 GetView ... 43
4.13 Add many CustomViews in the code ... 44

5 First example CustomButton .. 46
5.1 Event declarations .. 46
5.2 Custom properties for the Designer ... 46
5.3 Class help header.. 47
5.4 Global variables ... 48

5.5 Initialize routine ... 49
5.6 DesignerCreateView routine .. 50
5.7 Base_Resize routine B4i / B4J only .. 51
5.8 AddToParent routine .. 52

5.9 InitClass routine ... 53
5.10 Click / LongClick event routines ... 55

Table of contents 3 B4X CustomViews

5.11 Property routines .. 56

5.12 Main code ... 57
5.12.1 Globals ... 57
5.12.2 Program start .. 58

5.13 Click event routine ... 59

5.14 Compile to Library ... 60
5.15 Use the library in a program... 61

6 XUI xCustomButton .. 62
7 XUI xLimitBar ... 63

7.1 Event declaration .. 63

7.2 Custom properties for the Designer ... 64
7.3 Class help header.. 64
7.4 Global variables ... 65
7.5 Initialize routine ... 66

7.6 DesignerCreateView routine .. 67
7.7 Base_Resize routine B4i / B4J only .. 68
7.8 AddToParent routine .. 69

7.9 InitClass routine ... 70
7.10 InitCursors routine ... 70
7.11 Draw the background and background line ... 71
7.12 DrawCursors routine .. 71

7.13 Cursor moving .. 72
7.14 Properties ... 73
7.15 Make a B4X Library .. 75

7.16 Compile to a platform specific Library .. 76
7.16.1 Using the library in a program ... 77

Table of contents 4 B4X CustomViews

Main contributors: Klaus Christl (klaus) Erel Uziel (Erel).

To search for a given word or sentence use the Search function in the Edit menu.

All the source code and files needed (layouts, images etc.) of the example projects in this guide are

included in the SourceCode folder.

Updated for:

B4A version 11.0

B4i version 7.50

B4J version 9.10

B4X Booklets:

B4X Getting Started

B4X Basic Language

B4X IDE Integrated Development Environment

B4X Visual Designer

B4X Help tools

B4X CustomViews

B4X Graphics

B4X XUI B4X User Interface

B4X SQLite Database

B4X JavaObject NativeObject

B4XPages Cross-platform projects

B4R Example Projects

You can consult these booklets online in this link [B4X] Documentation Booklets.

Be aware that external links don’t work in the online display.

https://www.b4x.com/android/forum/threads/b4x-documentation-booklets.88985/#content
https://www.b4x.com/android/forum/threads/b4x-documentation-booklets.88985/

1 General information 5 B4X CustomViews

1 General information

This guide is dedicated for more advanced users and treats the CustomView topic.

It covers B4A, B4i, B4J and XUI.

All the source code and files needed (layouts, images etc) for the example projects in this guide are

included in the SourceCode folder.

For each project, there are three subfolders, one for each operating system.

2 Class modules 6 B4X CustomViews

2 Class modules

In B4X, you can use two types of Class Modules:

• Standard Class modules standard classes.

• CustomView Class Modules specialized for custom views.

2.1 Getting started

Classes definition from Wikipedia:

In object-oriented programming, a class is a construct that is used to create instances of itself – referred to
as class instances, class objects, instance objects or simply objects. A class defines constituent members
which enable its instances to have state and behaviour. Data field members (member variables or instance
variables) enable a class instance to maintain state. Other kinds of members, especially methods, enable the
behaviour of a class instances. Classes define the type of their instances.

A class usually represents a noun, such as a person, place or thing, or something nominalized. For example,
a "Banana" class would represent the properties and functionality of bananas in general. A single, particular
banana would be an instance of the "Banana" class, an object of the type "Banana".

Let us start with an example, the source code: Person in the / Person folder.

In the Person module

'Class Person module
Sub Class_Globals
 Private FirstName, LastName As String
 Private BirthDate As Long
End Sub

Sub Initialize (aFirstName As String, aLastName As String, aBirthDate As Long)
 FirstName = aFirstName
 LastName = aLastName
 BirthDate = aBirthDate
End Sub

Public Sub GetName As String
 Return FirstName & " " & LastName
End Sub

Public Sub GetCurrentAge As Int
 Return GetAgeAt(DateTime.Now)
End Sub

Public Sub GetAgeAt(Date As Long) As Int
 Private diff As Long
 diff = Date - BirthDate
 Return Floor(diff / DateTime.TicksPerDay / 365)
End Sub

Main module.

Sub Activity_Create(FirstTime As Boolean)
 Private p As Person
 p.Initialize("John", "Doe", DateTime.DateParse("05/12/1970"))
 Log(p.GetCurrentAge)
End Sub

http://en.wikipedia.org/wiki/Classes_%28computer_science%29

2 Class modules 7 B4X CustomViews

I will start by explaining the differences between classes, code modules and types.

Similar to types, classes are templates. From this template, you can instantiate any number of

objects.

The type fields are similar to the classes’ global variables. However, unlike types which only define

the data structure, classes also define the behaviour. The behaviour is defined in the classes’ subs.

Unlike classes which are a template for objects, code modules are collections of subs. Another

important difference between code modules and classes is that code modules always run in the

context of the calling sub. The code module does not hold a reference to any context. For that

reason, it is impossible to handle events or use CallSub with code modules.

Classes store a reference to the context of the module that called the Initialize sub. This means that

classes objects share the same life cycle as the module that initialized them.

2 Class modules 8 B4X CustomViews

2.1.1 Adding a class module

Adding a new or existing class module is done by choosing Project > Add New Module > Class

module or Add Existing module.

Like other modules, classes are saved as files with bas extension.

There are two class module types:

Standard Class

CustomView

CustomView (XUI)

The CustomView (XUI) is shown only when the XUI library is selected!

If you use the B4XPages template, you can select B4XPage to create a B4XPage class.

2 Class modules 9 B4X CustomViews

2.1.2 Polymorphism

Polymorphism allows you to treat different types of objects that adhere to the same interface in the

same way.

B4X polymorphism is similar to the Duck typing concept.

As an example we will create two classes named: Square and Circle.

Each class has a sub named Draw that draws the object to a canvas:

Source code Draw in the Draw folder.

The code below is the B4A code.

'Class Square module
Sub Class_Globals
 Private mx, my, mWidth As Int
End Sub

'Initializes the object. You can add parameters to this method if needed.
Sub Initialize (Shapes As List, x As Int, y As Int, length As Int)
 mx = x
 my = y
 mLength = length
 Shapes.Add(Me)
End Sub

Sub Draw(c As Canvas)
 Private r As Rect
 r.Initialize(mx, my, mx + mLength, my + mLength)
 c.DrawRect(r, Colors.Red, False, 1dip)
End Sub

'Class Circle module
Sub Class_Globals
 Private mx, my, mRadius As Int
End Sub

'Initializes the object. You can add parameters to this method if needed.
Sub Initialize (Shapes As List, x As Int, y As Int, radius As Int)
 mx = x
 my = y
 mRadius = radius
 Shapes.Add(Me)
End Sub

Sub Draw(cvs As Canvas)
 cvs.DrawCircle(mx, my, mRadius, Colors.Blue, False, 1dip)
End Sub

http://en.wikipedia.org/wiki/Duck_typing

2 Class modules 10 B4X CustomViews

In the main module, we create a list Shapes with Squares and Circles. We then go over the list and

draw all the objects:

Sub Process_Globals
 Public Shapes As List
End Sub

Sub Globals
 Private cvs As Canvas
End Sub

Sub Activity_Create(FirstTime As Boolean)
 cvs.Initialize(Activity)
 Private Square1, Square 2 As Square
 Private Circle1 As Circle
 Shapes.Initialize
 Square1.Initialize(Shapes, 110dip, 110dip, 50dip)
 Square2.Initialize(Shapes, 10dip, 10dip, 100dip)
 Circle1.Initialize(Shapes, 50%x, 50%y, 100dip)

 DrawAllShapes
End Sub

Sub DrawAllShapes
 For i = 0 To Shapes.Size - 1
 CallSub2(Shapes.Get(i), "Draw", cvs)
 Next
 Activity.Invalidate
End Sub

As you can see, we do not know the specific type of each object in the list. We just assume that it

has a Draw method that expects a single Canvas argument. Later we can easily add more types of

shapes.

You can use the SubExists keyword to check whether an object includes a specific sub.

You can also use the Is keyword to check if an object is of a specific type.

2.1.3 Self-reference

The Me keyword returns a reference to the current object. Me keyword can only be used inside a

class module.

Consider the above example. We have passed the Shapes list to the Initialize sub and then add each

object to the list from the Initialize sub:

Sub Initialize (Shapes As List, x As Int, y As Int, radius As Int)
 mx = x
 my = y
 mRadius = radius
 Shapes.Add(Me)
End Sub

2 Class modules 11 B4X CustomViews

2.1.4 Activity object B4A only

This point is related to the Android Activities special life cycle.

Make sure to first read the activities and processes life-cycle tutorial.

Android UI elements hold a reference to the parent activity. As the OS is allowed to kill background

activities in order to free memory, UI elements cannot be declared as process global variables (these

variables live as long as the process lives). Such elements are named Activity objects. The same is

true for custom classes. If one or more of the class global variables is of a UI type (or any activity

object type) then the class will be treated as an "activity object". The meaning is that instances of

this class cannot be declared as process global variables.

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/6487-android-process-activities-life-cycle.html

3 Standard class 12 B4X CustomViews

3 Standard class

3.1 Standard class structure

Default template of a standard class:

B4A and B4i

Sub Class_Globals

End Sub

'Initializes the object. You can add parameters to this method if needed.
Public Sub Initialize

End Sub

B4J

Sub Class_Globals
 Private fx As JFX
End Sub

'Initializes the object. You can add parameters to this method if needed.
Public Sub Initialize

End Sub

Only two routines are predefined:

Sub Class_Globals - This sub is similar to the Main Globals sub. These variables will be the class

global variables (sometimes referred to instance variables or instance members).

In B4J, the fx library library is declared by default. You can remove it if not needed.

Sub Initialize - A class object must be initialized before you can call any other sub. Initializing

an object is done by calling the Initialize sub. When you call Initialize you set the object's context

(the parent object or service).

Note that you can modify this sub signature and add arguments as needed.

3 Standard class 13 B4X CustomViews

Example: Person class module

The source codes are in the Person folder.

The code is the same for all three B4X platforms (B4A. B4i, B4J).

'Class Person module
Sub Class_Globals
 Private mFirstName, mLastName As String
 Private mBirthDate As Long
End Sub

Sub Initialize (FirstName As String, LastName As String, BirthDate As Long)
 mFirstName = FirstName
 mLastName = LastName
 mBirthDate = BirthDate
End Sub

Public Sub GetName As String
 Return mFirstName & " " & mLastName
End Sub

Public Sub GetCurrentAge As Int
 Return GetAgeAt(DateTime.Now)
End Sub

Public Sub GetAgeAt(Date As Long) As Int
 Dim diff As Long
 diff = Date - mBirthDate
 Return Floor(diff / DateTime.TicksPerDay / 365)
End Sub

In the above code, we created a class named Person and later instantiate an object of this type in the

main module:

 Private p As Person
 p.Initialize("John", "Doe", DateTime.DateParse("05/12/1970"))
 Log(p.GetCurrentAge)

Calling initialize is not required if the object itself was already initialized:

 Private p2 As Person
 p2 = p 'both variables now point to the same Person object.
 Log(p2.GetCurrentAge)

4 CustomViews 14 B4X CustomViews

4 CustomViews

With custom view classes, you can create your own custom views which can be based on other

standard or custom views, with more functions.

4.1 CustomView types

There are two CustomView types:

• CustomView

• CustomView (XUI)

To show the CustomView (XUI) option you must first add the XUI library.

The only differences between CustomView and CustomView (XUI) templates are the declarations.

• Standard
Private mBase As Panel 'ignore

Public Sub DesignerCreateView (Base As Panel, Lbl As Label, Props As Map)

• XUI
Private mBase As B4XView 'ignore

Public Sub DesignerCreateView (Base As Object, Lbl As Label, Props As Map)

Advice: Use directly XUI and B4XViews even for a mono platform project.

4 CustomViews 15 B4X CustomViews

4.2 CustomView class structure

Several declarations and routines are predefined:

Default template of a CustomView class:

'Custom View class
#Event: ExampleEvent (Value As Int)
#DesignerProperty: Key: BooleanExample, DisplayName: Boolean Example, FieldType:
Boolean, DefaultValue: True, Description: Example of a boolean property.
#DesignerProperty: Key: IntExample, DisplayName: Int Example, FieldType: Int,
DefaultValue: 10, MinRange: 0, MaxRange: 100, Description: Note that MinRange and
MaxRange are optional.
#DesignerProperty: Key: StringWithListExample, DisplayName: String With List,
FieldType: String, DefaultValue: Sunday, List:
Sunday|Monday|Tuesday|Wednesday|Thursday|Friday|Saturday
#DesignerProperty: Key: StringExample, DisplayName: String Example, FieldType: String,
DefaultValue: Text
#DesignerProperty: Key: ColorExample, DisplayName: Color Example, FieldType: Color,
DefaultValue: 0xFFCFDCDC, Description: You can use the built-in color picker to find
the color values.
#DesignerProperty: Key: DefaultColorExample, DisplayName: Default Color Example,
FieldType: Color, DefaultValue: Null, Description: Setting the default value to Null
means that a nullable field will be displayed.

Sub Class_Globals
 Private mEventName As String 'ignore
 Private mCallBack As Object 'ignore
 Public mBase As Panel
 Public Tag As Object
 Private Const DefaultColorConstant As Int = -984833 'ignore
End Sub

Public Sub Initialize (Callback As Object, EventName As String)
 mEventName = EventName
 mCallBack = Callback
End Sub

Public Sub DesignerCreateView (Base As Panel, Lbl As Label, Props As Map)
 mBase = Base

End Sub

Public Sub GetBase As Panel
 Return mBase
End Sub

Additional routine in B4i and B4J:

Private Sub Base_Resize (Width As Double, Height As Double)

End Sub

This event routine is raised every time a resize occurs, device rotation in B4i or Form resize in B4J.

4 CustomViews 16 B4X CustomViews

4.2.1 Event declarations

You should add Event declarations. If the event routine has parameters, these must also be declared.

#Event: ExampleEvent (Value As Int) important for intellisense.

#RaisesSynchronousEvents: ExampleEvent important for libraries.

4.2.2 Designer properties declarations

#DesignerProperty: Key: BooleanExample, DisplayName: Boolean Example, FieldType:
Boolean, DefaultValue: True, Description: Example of a boolean property.

You can add custom properties for the Designer.

More details in the chapter Custom view in the Designer.

4.2.3 Global variable declarations

In this routine, you should declare all global variables used in the class.

The variables below are mandatory.

Sub Class_Globals
 Private EventName As String 'ignore
 Private CallBack As Object 'ignore
 Private mBase As B4XView
End Sub

EventName Event name used for the events in the code, same as for standard views.

CallBack Module where the class is declared, used for event calls.

mBase Main panel of the custom view.

You can, if you want, change the name of the base panel.

What is this for 'ignore ?

It avoids a warning of the compiler that these variables are unused.

Variables only used in the class should be declared as Private.

If you want to have access to variables from other modules you must declare them as Public.

4 CustomViews 17 B4X CustomViews

4.2.4 Initialization routine

The initialize routine initiates a new instance of the custom view.

You should not modify its signature.

Public Sub Initialize (Callback As Object, EventName As String)
 mCallBack = Callback
 mEventName = EventName
End Sub

The two variables will be used to call event routines in the module where the custom view is

initialized.

Example:

' if a callback routine exists in the calling module we call it
If SubExists(mCallback, mEventName & "_ValuesChanged") Then
 CallSub3(mCallback, mEventName & "_ValuesChanged", mLimit(0), mLimit(1))
End If

4 CustomViews 18 B4X CustomViews

4.2.5 Designer support routine DesignerCreateView

This routine assures the support for the Designer, it is called directly after the Initialize routine of

the custom view class.

You should not modify its signature.

• Standard

B4A and B4i
Public Sub DesignerCreateView (Base As Panel, Lbl As Label, Props As Map)
 mBase = Base
End Sub

B4J
Public Sub DesignerCreateView (Base As Pane, Lbl As Label, Props As Map)
 mBase = Base
End Sub

• XUI
Public Sub DesignerCreateView (Base As Object, Lbl As Label, Props As Map)
 mBase = Base
End Sub

Base Is the base Panel / Pane / Object defined in the Designer, it holds the Left, Top, Width,

Height and Parent properties of the custom view. The Base object can be used or not.

Lbl Is a Label which holds all the text properties defined in the Designer.

 This Label can be used or not.

Props Is a Map holding additional properties.

 The ones you defined yourself in the designer properties definition.

 Default properties:

 ‘activity’ gets the parent view/node
 mParent = Props.Get("activity")

Advice: Use directly XUI and B4XViews even for a mono platform project.

4 CustomViews 19 B4X CustomViews

4.2.6 Routine to get the base Panel

You can use this routine if you want to access the base panel / pane from other modules.

B4A / B4i B4J XUI

Public Sub GetBase As Panel Public Sub GetBase As Pane Public Sub GetBase As Object
 Return mBase Return mBase Return mBase
End Sub End Sub End Sub

In the calling module:

Private pnlClass As Panel Private pnlClass As Pane Private pnlClass As B4XView
pnlClass = clsTest.GetBase pnlClass = clsTest.GetBase pnlClass = clsTest.GetBase

Advice: Use directly XUI and B4XViews even for a mono platform project.

4 CustomViews 20 B4X CustomViews

4.3 Adding a custom view by code

To offer the possibility to add the custom view by code you must add a routine in the class which

adds the custom view onto a parent view which can be either for:

B4A an Activity or a Panel. Public Sub AddToParent(Parent As Activity,

B4i a Panel. Public Sub AddToParent(Parent As Panel,

B4J a Pane. Public Sub AddToParent(Parent As Pane,

XUI a B4XView Public Sub AddToParent(Parent As Object,

Example:
Public Sub AddToParent(Parent As B4XView, Left As Int, Top As Int, Width As Int, Height
As Int)
 mBase.Initialize("mBase")
 Parent.AddView(mBase, Left, Top, Width, Height)
End Sub

Parent is the parent view which can be an Activity, Panel or a Pane.

Left is the Left property.

Top is the Top property.

Width is the Width property.

Height is the Height property.

You can add other parameters or properties to the routine if necessary.

And in the calling module:

B4A / B4i

Private clsTest2 As ClsCustomView

clsTest2.Initialize(Me, "clsTest2")
clsTest2.AddToParent(MyPanel, 10dip, 10dip, 200dip, 50dip)

B4J Pane instead of Panel and no dip values.

Private clsTest2 As ClsCustomView

clsTest2.Initialize(Me, "clsTest2")
clsTest2.AddToParent(MyPane, 10, 10, 200, 50)

XUI Panel, with dip values (the dip values have no effect in B4J).

Private clsTest2 As ClsCustomView

clsTest2.Initialize(Me, "clsTest2")
clsTest2.AddToParent(MyPanel, 10dip, 10dip, 200dip, 50dip)

4 CustomViews 21 B4X CustomViews

4.4 Add properties

Property routines can be added, which work like any property of the standard views.

These properties can be read and or set.

To read a property you must add a routine beginning with get, lower case and the property name.

Examples:

Get the Left Property.
'gets the Left property
Public Sub getLeft As Int
 Return ltbPanelBack.Left
End Sub

Get the custom Max property.
'gets the Max value
Public Sub getMax As Int
 Return MaxValue
End Sub

To set a property you must add a routine beginning with set, lower case and the property name.

Examples:

Set the Left Property.
'sets the Left property
Public Sub setLeft(Left As Int)
 ltbPanelBack.Left = Left
End Sub

Set the custom Max property.
'sets the Max value
Public Sub setMax(MaxValue As Int)
 mMaxValue = MaxValue
 Scale = (x1 - x0) / mMaxValue
End Sub

If you define only a get routine the property is read only.

If you define only a set routine the property is write only.

If you define both a set and a get routine, the property is write and read.

Note:

Public Sub setMax and Public Sub SetMax are not the same!

Public Sub setMax is considered as a Property.

 Usage: xxx.Max = 100

Public Sub SetMax is considered as a Public Subroutine.

 Usage: xxx.SetMax(100)

4 CustomViews 22 B4X CustomViews

4.5 Add Events

You can add events seen from outsides the class.

In the class you can add event routines like in any other interface module.

From the internal event routines, you can call external routines generating external events.

Example: TheTouch event of the xClsLimitBar project.

4 CustomViews 23 B4X CustomViews

4.5.1 Code in the Class

Code in the class, Touch event of the front panel, which is a B4XView (Panel / Pane), Unrelevant

code has been removed, for simplification:

Private Sub ltbPanelFront_Touch (Action As Int, X As Double, Y As Double)
 ' check if the cursor is outsides the limits
 Private xx As Double
 xx = X
 xx = Max(x0, xx)
 xx = Min(x1, xx)

 ' select the Action type
 Select Action
 Case ltbPanelFront.TOUCH_ACTION_DOWN
 If xx < Abs(PositionPixels(0) + PositionPixels(1)) / 2 Then
 ' if X is closer to the left cursor we choose it
 PosIndex = 0
 Else
 ' otherwise we choose the right cursor
 PosIndex = 1
 End If
 Case ltbPanelFront.TOUCH_ACTION_MOVE
 If xui.SubExists(mCallback, mEventName & "_ValuesChanged", 2) Then
 CallSub3(mCallback, mEventName & "_ValuesChanged", mLimit(0), mLimit(1))
 End If

 Case ltbPanelFront.TOUCH_ACTION_UP
 'call the ValuesChanged routine if it exists
 If xui.SubExists(mCallback, mEventName & "_ValuesChanged", 2) Then
 CallSub3(mCallback, mEventName & "_ValuesChanged", mLimit(0), mLimit(1))
 End If
 End Select
End Sub

We use the CallSub keyword to generate the ‘external’ event.

There are different routines depending on the number of parameters to transmit.

• CallSub(Component As Object, Sub As String)

• CallSub2(Component As Object, Sub As String , Argument As Object)

• CallSub3(Component As Object, Sub As String , Argument1 As Object, Argument2 As

Object)

Component = the calling object.

In the example : mCallBack which is initialized in the Initialize routine.

Sub = sub name. Composed of EventName and event type.

In the example : mEventName & "_ValuesChanged"

 mEventName Event name, initialized in the Initialize routine.

 "_ValuesChanged" Event type.

Argument = prarameter(s) to transmit.

mCallback and mEventName initialization:
Public Sub Initialize(Callback As Object, EventName As String)
 mCallback = Callback
 mEventName = EventName

You can use Objects like List, Map, Type variable or Array to transmit more arguments.

4 CustomViews 24 B4X CustomViews

4.5.2 Event declaration in the class

These declarations are added at the top of the class.

'Events declaration

• #Event: ValuesChanged(LimitLeft As Int, LimitRight As Int)

Important for intellisense to show properties and methods.

• #RaisesSynchronousEvents: ValuesChanged

Important to show the intellisence for event routines.

4.5.3 Code in the calling module

Event routine in the calling module.

In the example: ltbTest_ValuesChanged with two parameters.

Private ltbTest As xLimitBar

Private Sub ltbTest_ValuesChanged(LimitLeft As Int, LimitRight As Int)
 lblLimitLeft.Text = LimitLeft
 lblLimitRight.Text = LimitRight
End Sub

4 CustomViews 25 B4X CustomViews

4.6 Custom view and custom properties in the Designer

You can add code to make custom properties visible in the Designer.

The images below are from the DefaultLayout project in the

CustomViews\CustomViewsSourceCode\DefaultLayout folder.

Only the B4A version.

On the top of the code you must include declaration lines. The default layout of a custom view class

includes these example declarations:

#DesignerProperty: Key: BooleanExample, DisplayName: Boolean Example, FieldType:
Boolean, DefaultValue: True, Description: Example of a boolean property.
#DesignerProperty: Key: IntExample, DisplayName: Int Example, FieldType: Int,
DefaultValue: 10, MinRange: 0, MaxRange: 100, Description: Note that MinRange and
MaxRange are optional.
#DesignerProperty: Key: StringWithListExample, DisplayName: String With List,
FieldType: String, DefaultValue: Sunday, List:
Sunday|Monday|Tuesday|Wednesday|Thursday|Friday|Saturday
#DesignerProperty: Key: StringExample, DisplayName: String Example, FieldType: String,
DefaultValue: Text
#DesignerProperty: Key: ColorExample, DisplayName: Color Example, FieldType: Color,
DefaultValue: 0xFFCFDCDC, Description: You can use the built-in color picker to find

the color values.
#DesignerProperty: Key: DefaultColorExample, DisplayName: Default Color Example,
FieldType: Color, DefaultValue: Null, Description: Setting the default value to Null
means that a nullable field will be displayed.

Each property declaration is made of several fields, the following fields are required:

Key Is the key value for the Map.

 This will be used to get the value from the Props map.

DisplayName Is the name displayed in the Designer property grid.

FieldType Is the type of the field.

 Possible values: String, Int, Double, Boolean or Color.

DefaultValue Is the default value which is set in the Designer.

Optional fields:

Description Is the explanation text displayed in the Designer.

MinRange / MaxRange Minimum and maximum numeric values allowed.

List A pipe (|) separated list of items from which the developer can choose

(should be used with string fields).

In the Designer, you can add a CustomView like this:

Right click in the screen area, select Add View and select CustomView.

Select the custom from the list of available custom views Test in the example.

4 CustomViews 26 B4X CustomViews

In the Properties window, you find all the properties for the

selected custom view.

Images B4A.

Custom properties:

Here we see the six custom properties declared on top of the

Class code.

Example with the String With List property.

Common Properties:

The common properties like any view.

Text Style:

The properties are set to the Lbl Label of the class.

v

Base Background:

Background of the base panel Base.

4 CustomViews 27 B4X CustomViews

To access the custom properties you must use the Props Map in the DesignerCreateView routine.

Variable declaration:
 Private BooleanTest As Boolean
 Private IntTest As Int
 Private Day As String
 Private StringTest As String
 Private ColorTest As Int
 Private DefaultColorTest As Int

And the DesignerCreateView routine:

Public Sub DesignerCreateView (Base As Object, Lbl As Label, Props As Map)
 mBase = Base

 BooleanTest = Props.Get("BooleanExample")
 IntTest = Props.Get("IntExample")
 Day = Props.Get("StringWithListExample")
 StringTest = Props.Get("StringExample")
 ColorTest = xui.PaintOrColorToColor(Props.Get("ColorExample"))
 DefaultColorTest = Props.Get("DefaultColorExample")
End Sub

You can also get properties with default values with Props.GetDefault, like this:

BooleanTest = Props.GetDefault("BooleanExample", True)

This is useful especially when you add new Designer properties later on.

Then, if you do not open and close the Designer with an ‘old’ layout you will get an error because

the new property is unknown in the old layout.

4 CustomViews 28 B4X CustomViews

The declarations of the DesignerCreateView routine are different depending on the product.

B4A / B4i
Public Sub DesignerCreateView (Base As Panel, Lbl As Label, Props As Map)

B4J the Base declaration is different, Pane instead of Panel.
Public Sub DesignerCreateView (Base As Pane, Lbl As Label, Props As Map)

XUI the Base declaration is different, Object instead of Panel or Pane.
Public Sub DesignerCreateView (Base As Object, Lbl As Label, Props As Map)

You can get properties of the Base Panel / Pane like:

B4A / B4i / B4J
Private mWidth As Int
mWidth = Base.Width

Private mHeight As Int
mHeight = Base.Height

You can get text properties from the Lbl Label like:

B4A B4i B4J
Private mText As String Private mText As String Private mText As String
mText = Lbl.Text mText = Lbl.Text mText = Lbl.Text

Private mTextColor As Int Private mTextColor As Int Private mTextColor As Paint
mTextColor = Lbl.TextColor mTextColor = Lbl.TextColor mTextColor = Lbl.TextColor

Private mTextSize As Float Private fnt As Font Private mTextSize As Double
mTextSize = Lbl.TextSize Private mTextSize As Float mTextSize = Lbl.TextSize
 fnt = Lbl.Font
 mTextSize = fnt.Size

XUI
Private mText As String
mText = Lbl.Text

Private mTextColor As Int

mTextColor = xui.PaintOrColorToColor(Lbl.TextColor) we must convert the color.

Private mTextSize As Double
mTextSize = Lbl.TextSize

4 CustomViews 29 B4X CustomViews

4.7 Add layouts to a CusomView

You can add specific layouts to a CustomView.

Code to load a layout.

Public Sub DesignerCreateView (Base As Object, Lbl As Label, Props As Map)
 mBase = Base

 Sleep(0)
 mBase.LoadLayout("CustomViewLayout")
End Sub

This code loads the CustomViewLayout onto mBase.

Note: Sleep(0) before loading the layout.

This is necessary to make sure that the dimensions of mBase are OK.

You need one layout file for each product!

If you create a B4X Libary you must add the layout files in the Files folder of the library.

See more details in chapter Generate a B4X Library *.b4xlib.

4 CustomViews 30 B4X CustomViews

4.8 Libraries

Why should we create a library?

• Break large projects into several smaller (more maintainable) projects.

• Build reusable components and use them from any number of projects.

• Share components with other developers without sharing the source code.

• Create different versions of your application (free, pro...) by referencing the same "core"

library.

• Share cross platform libraries (B4X Libraries).

4 CustomViews 31 B4X CustomViews

4.8.1 Generate a B4X Library *.b4xlib

You can also create XUI cross platform libraries: xxx.b4xlib.

B4X libraries were introduced in B4A 8.80, B4i 5.50 and B4J 7.00

These libraries contain cross platform classes which don’t need to be compiled as libraries.

A B4X library is a simple zip file with the following structure:

• Code modules. All types are supported including Activities and Services.

• Files, including layout files.

• Optional manifest file with the following fields:

o Version

o Author

o DependsOn (list of required libraries), Supported Platforms. Fields can be shared

between the platforms or be platform specific.

o Comment: adds a comment to the library.

This comment will be shown in the Libaries Manager Tab.

Files and code modules can also be platform specific.

Creating a b4x library is simple. You just need to create a zip file with these resources. The zip file

extension should be b4xlib. That is all.

Note that the source code can be extracted from a b4x library.

B4X libraries appear like all other libraries in the Libraries Manager tab.

Example: AnotherDatePicker.b4xlib

The zip file structure:

• Files contains all the needed files, the three layout files in the example.

• AnotherDatePicker.bas is the Custom View file.

• manifest.txt contains:

Version=2.00 version number.

Author=Erel version number.

B4J.DependsOn=jXUI, jDateUtils libraries used for B4J.

B4A.DependsOn=XUI, DateUtils libraries used for B4A.

B4i.DependsOn=iXUI, iDateUtils libraries used for B4i.

IDE Comment= Test version 12 IDE comment, optional

Be careful, no empty character between Comment and =.

IDE Comment = will not be displayed.

Copy the xxx.b4xlib file to the AdditionalLibaries\B4X folder.

4 CustomViews 32 B4X CustomViews

4.8.1.1 AdditionalLibraries folder

Structure of the AdditionalLibraries folder:

4.8.1.2 Xml help files for B4X Libraries

Erel has written an application to create xml help files for B4X Libraries.

You can download it from the forum

HERE.

It looks like this:

Simply, drag and drop a xxx.b4xlib

file into the from.

The xml file will be created, and you

will be asked where you want to save

it.

Tip:

Save all the b4xlib xml files into a specific folder.

Example: \AdditionalLibraries\B4XlibXMLFiles.

The xml files are useful for the HelpViewer applications like:

B4X Help Viewer

B4X Object Browser

https://www.b4x.com/android/forum/threads/tool-b4xlib-xml-generation.101450/#content
https://www.b4x.com/android/forum/threads/b4x-help-viewer.46969/#content
https://www.b4x.com/android/forum/threads/b4a-b4i-b4j-and-b4r-api-documentation-b4x-object-browser.25682/

4 CustomViews 33 B4X CustomViews

If you have the B4X Help Viewer you can look at the help for the library.

Example with the B4A LimitBar library.

Select and click on and load xLimitBar.xml.

And the result.

https://www.b4x.com/android/forum/threads/b4x-help-viewer.46969/#content

4 CustomViews 34 B4X CustomViews

4.8.2 Complie to a product specific library

In B4A, B4i and B4J you can compile your project, or part of it to a regular library.

For cross platform libtaries you should use B4XLibraies!

You can use B4XLibs even for mono platform projects.

The output of library compilation is:

• Two files for B4A and B4J:

A jar file with the compiled code and a xml file that includes the metadata that is required by

the IDE.

These two files are automatically saved in the additional libraries folders.

• Three files for B4i:

The xml file like above which is copied to the additional libraries folders.

And, an xxx.a and a xxx.h file are created in the Mac Libs folder.

You can exclude other modules as well with the ExcludeFromLibrary attribute.
#ExcludeFromLibrary: True

The Main module ia always excluded from the library!

The Main module and the other excluded modules can be used to test the library.

You can reference the library from other projects and access the same functionality as in the

original project.

XUI:

With XUI, a cross platform CustomView class code module can be a unique module shared

between the projects for the three products. You can make a B4XLibrary with it.

But, if you want to compile the CustomView to a library, you must compile three libraries, one for

each product, because the library code is product specific.

4 CustomViews 35 B4X CustomViews

Compiling to a platform specific library is quite simple.

Under Project menu there is the compile option - "Compile To Library (Alt + 5)".

When you choose this option all the modules except of the main activity are compiled into a library.

 B4A B4J

 B4i

Note: If you are using the hosted builder then you need to first receive a permission to compile a

specific library. Please contact support@basic4ppc.com and send your hosted builder id and the

library name.

You find the hosted builder id in Tools / Build Server / Server Settings.

mailto:support@basic4ppc.com

4 CustomViews 36 B4X CustomViews

4.8.2.1 Library specific attributes

The following attributes are specific for library compilation:

Main module:

Project attributes (placed on top of the code in the Main module):
#LibraryName

 - The compiled library name. Sets the library name.
#LibraryAuthor

 - The library author. This value is added to the library xml file.
#LibraryVersion

- A number that represents the library version. This number will appear next to the library name in

the libraries list.

Example, LimitBar projects.

 B4A B4i B4J
#LibraryName: xLimitBar #LibraryName: ixLimitBar #LibraryName: jxLimitBar
#LibraryAuthor: Klaus Christl #LibraryAuthor: Klaus Christl #LibraryAuthor: Klaus Christl
#LibraryVersion: 1.0 #LibraryVersion: 1.0 #LibraryVersion: 1.0

All modules:

#ExcludeFromLibrary - Whether to exclude this module during library compilation. Values: True or

False. Note that the Main activity is always excluded.

CustomView classes:

#Event - Adds an event to the list of events. This attribute can be used multiple times.

The parameters must be included.

Note that the events list only affects the IDE events autocompletion feature.

#RaisesSynchronousEvents - Needed if you compile the CustomView into a library.

It is used for the Rapid Debugger. You need one for each event.

Details in the LimitBar project here.

Example, xLimitBar projects.
 #Event: ValuesChanged(LimitLeft As Int, LimitRight As Int)
 #RaisesSynchronousEvents: ValuesChanged

ValuesChanged is the name of the event for its call.

If you have other modules in the same project which should not be in the library, you must add
 #ExcludeFromLibrary: True

Notes

- You should right click on the libraries list and choose Refresh after a library update.

- CallSub / CallSubDelayed - The first parameter for these keywords is a reference to the target

module. When working with modules that reside in a library you should pass the module reference

and not the module name as string (this is the better way to reference all modules in all cases).

- Code obfuscation - Libraries can be obfuscated during library compilation. Strings will not be

obfuscated in this mode.

- Services that host home screen widgets cannot be compiled into a library.

4 CustomViews 37 B4X CustomViews

The library files are automatically saved in the Additional Libraries folder.

You can see it in the Libraries Manager Tab.

Right click somewhere in the Libraries Manager Tab and click on .

Example with the B4i LimitBar project.

The library name is the name you entered in #LibraryName: jxLimitBar.

When you select the library, it moves on top of the list and shows the version number.

You should not have the modules and the library in the same project!

When you declare a custom view, you must use the Module/Object name:

Library: jxLimitBar Object: xLimitBar
Private ltbTest, ltbTest1 As xLimitBar

4 CustomViews 38 B4X CustomViews

4.8.2.2 Tip for MaterialIcons and Fontawesome fonts

If you use FontAwesome or MaterialIcons fonts in a class which is compiled into a library, you may

get an error like this one:

Error occurred on line: 25 (Main)
java.lang.RuntimeException: Font asset not found b4x_fontawesome.otf
 at android.graphics.Typeface.createFromAsset(Typeface.java:879)

To avoid this, add the line below in the Main module where you use the library, not in the code

where you compile the library.

B4A:
If False Then Log(Typeface.MATERIALICONS)

and/or
If False Then Log(Typeface.FONTAWESOME)

B4i:
If False Then Log(Typeface.MATERIALICONS)

and/or
If False Then Log(Typeface.FONTAWESOME)

B4J:
If False Then Log(Typeface.MATERIALICONS)

and/or
If False Then Log(Typeface.FONTAWESOME)

4 CustomViews 39 B4X CustomViews

4.9 Program flow

Below, a comparison of the program flow with two custom views, one added in the Designer and

the other in the code.

B4A B4i B4J

0 Process_Globals 0 Process_Globals 0 Process_Globals

0 Globals 0 Application_Start 0 AppStart

0 Activity_Create 1 Class_Globals 1 Class_Globals

1 Class_Globals 1 Class Initialize 1 Class Initialize

1 Class Initialize 1 DesignerCreateView 1 DesignerCreateView

1 DesignerCreateView 1 Base_Resize 1 Base_Resize

2 Class_Globals 2 Class_Globals 2 Class_Globals

2 Class Initialize 2 Class Initialize 2 Class Initialize

2 AddToParent 2 AddToParent 2 AddToParent

0 Activity_Resume 0 Page1_Resize 0 MainForm_Resize

Turn device Turn device Resize Main Form

0 Activity_Pause 0 Page1_Resize 0 MainForm_Resize

1 Class_Globals 1 Base_Resize 1 Base_Resize

1 Class Initialize

1 DesignerCreateView

2 Class_Globals

2 Class Initialize

2 AddToParent

0 Activity_Resume

0 = Main

1 = CustomView Designer

2 = CustomView code

Note: The B4A example project above has no Starter service module.

We notice that when we start the program the flow is the same in B4i and B4J but in B4A it is a bit

different.

When we turn the B4i device or resize the B4J form the program flow is the same.

In B4A it is quite different.

In B4A, the Activity is destroyed and recreated.

In B4i and B4J, the layout remains and a Resize event is raised.

The advantage of adding custom views in the Designer, in B4i and B4J, is that it handles the resize

event and reapplies the anchors and designer script (and variant changes).

In B4A this is also executed because the Activity is recreated at every change.

This is shown in the LimitBar projects.

4 CustomViews 40 B4X CustomViews

4.10 Intellisense help

It is adviced to add help comments in the code for the users of your library.

4.10.1 Comments before Sub Class_Globals

Comments before Sub Class_Globals are considered as the help header when the class is compiled

to a Library.

'LimitBar CustomView class.
'This CustomView allows the user to set two limits with two cursors.
'The Min value is 0 and the Max value is 100.
'The Max value can be changed by the programmer.
Sub Class_Globals

Example with the B4X Help Viewer and the LimitBar library.

4.10.2 Comments before a routine

Comments before a routine are considered as intellisense help.

'Initializes the object.
'Callback = name of the calling module
'EventName = event name
'Example if added in the code:
'<code>ltbTest.Initialize(Me, "ltbTest")'</code>
Public Sub Initialize(Callback As Object, EventName As String)

Type ‘lbtTest.’ , the method and property list is displayed.

4 CustomViews 41 B4X CustomViews

4.10.3 Comments before an event routine

Events declared on top of the code in the class module with #Event: are displayed as intellisense

when the class is compiled to a Library.

'Custom View class LimitBar
'Events declaration
#Event: ValuesChanged(LimitLeft As Int, LimitRight As Int)

When you use the library in another project, type ‘Public Sub ‘ (with a space at the end) and press

on Tab to show the objects list.

Select .

Select .

The sub frame is added.

Enter the LimitBar name and press Return, and the sub frame is finished.

4 CustomViews 42 B4X CustomViews

4.11 CustomViews (XUI)

XUI CustomViews are like ‘standard’ CustomViews but cross platform.

4.11.1 CustomViews (XUI) class structue

Several declarations and routines are predefined:

Default template of a CustomView (XUI) class:

#DesignerProperty: Key: BooleanExample, DisplayName: Show Seconds, FieldType: Boolean,
DefaultValue: True
#DesignerProperty: Key: TextColor, DisplayName: Text Color, FieldType: Color,
DefaultValue: 0xFFFFFFFF, Description: Text color

Sub Class_Globals
 Private mEventName As String 'ignore
 Private mCallBack As Object 'ignore
 Public mBase As B4XView 'ignore
 Private xui As XUI 'ignore
End Sub

Public Sub Initialize (Callback As Object, EventName As String)
 mEventName = EventName
 mCallBack = Callback
End Sub

'Base type must be Object
Public Sub DesignerCreateView (Base As Object, Lbl As Label, Props As Map)
 mBase = Base
 Tag = mBase.Tag
 mBase.Tag = Me
 Dim clr As Int = xui.PaintOrColorToColor(Props.Get("TextColor")) 'Example of getting
a color value from Props
End Sub

Public Sub Base_Resize (Width As Double, Height As Double)

End Sub

It is similar to the ‘standard’ CustomView class.

The main differences are:

• Declaration of the XUI library.

• In the DesignerCreateView routine, the type of Base is Object and not a Panel or Pane.

• Example on how to get a color property.

All the other principles are the same, exept that you might use B4X objects instead of ‘standard’

objects.

4 CustomViews 43 B4X CustomViews

4.12 GetView

To be able to get CustumView from a parent view, you can use the code below.

In the CustomView class add the code below in the DesignerCreateView routine, mBase is the base

view of the CustomView:

mBase.Tag = Me

And in the main code, MyCustomView is the CustomView name:

Private MyView As MyCustoView = Parent.GetView(0).Tag

4 CustomViews 44 B4X CustomViews

4.13 Add many CustomViews in the code

Custom views are designed to be added with the designer.

It is however very simple to create a layout file with the custom view and load it multiple times.

Tip: remove the call to AutoScaleAll from the designer script.

4 CustomViews 45 B4X CustomViews

Complete example:

Sub Globals
 Private B4XSwitch1 As B4XSwitch
End Sub

Sub Activity_Create(FirstTime As Boolean)

For i = 1 To 20
 AddSwitch(50dip, 40dip * i, i)
 Next
End Sub

Sub AddSwitch (Left As Int, Top As Int, Tag As Object) As B4XSwitch
 Activity.LoadLayout("B4XSwitch")
 B4XSwitch1.mBase.Left = Left 'B4XSwitch1 global variable will point to the last one
added
 B4XSwitch1.mBase.Top = Top
 B4XSwitch1.Tag = Tag
 Return B4XSwitch1
End Sub

Sub B4XSwitch1_ValueChanged (Value As Boolean)
 Dim switch As B4XSwitch = Sender
 Log(switch.Tag)
End Sub

5 First example CustomButton 46 B4X CustomViews

5 First example CustomButton

We will make a simple CustumButton.

B4A B4i B4J

The button has a transparent base Panel (B4A, B4i) / Pane (B4J) plus one Label with a

Material Icon and a second Label with text.

The CustumButton can be added in the Designer or in the code.

For B4A, in the Designer, you must set the Alpha property to 0 to make sure that the base Panel is

transparent.

The CustumButton has two events Click and LongClick.

B4J has no Click nor LongClick event, Click is called Action or MouseClicked.

I kept the Click name and added the LongClick event.

The code is kept simple and minimalistic, the main goal here is to show the principle.

Feel free to add more properties and functionalities.

There are three different projects, one for each product.

In chapter 6 you find the same project but XUI cross platform.

You can look at the differences in the different projects to see the power of XUI.

5.1 Event declarations

First, we declare the events on top of the code.

Needed when the class is compiled to a library.

'CustomButton Class
#Event: Click
#Event: LongClick
#RaisesSynchronousEvents: Click
#RaisesSynchronousEvents: LongClick

5.2 Custom properties for the Designer

We have only one custom property: Text.

This is the text below the icon.

The other properties, like icon character and text color, are defined in the Designer or in the

AddToParent routine.

The icon and text sizes are calculated in the class code acording to the button height.

#DesignerProperty: Key: Text, DisplayName: Text, FieldType: String, DefaultValue: Text,
Description: Text at the bottom of the button.

5 First example CustomButton 47 B4X CustomViews

5.3 Class help header

We add a header text, just before Sub Class_Globals, explaining the purpose of the button as a help

for the user.

'CustomButton is a button based on a Panel with two Labels
'one with a Material Icon and the other with text.
'It has two events: Click and LongClick.
Sub Class_Globals

5 First example CustomButton 48 B4X CustomViews

5.4 Global variables

We define the global variables below. There are some differences between the three operating

systems.

B4A
Sub Class_Globals
 Private mEventName As String
 Private mCallBack As Object
 Private mBase As Panel

 Private mLeft, mTop, mWidth, mHeight As Int
 Private mText, mIcon As String
 Private mIconTypeface As Typeface
 Private mTextColor As Int
 Private mIconTextSize, mTextSize As Float
 Private mTag As Object

 Private mLabel, mIconLabel As Label
 Private mParent As Panel
End Sub

B4i Typeface is replaced by Font.
Private mIconTypeface As Font

B4J Typeface is replaced by Font. For the color Int is replaced by Paint.

 We add another variable for the LongClick event timing
Private mIconTypeface As Font
Private mTextColor As Paint
Private mClickTime As Long 'used to distinguish Click and LongClick
Private mParent As Pane

XUI
Sub Class_Globals
#If B4J
 Private fx As JFX
 Private mClickTime As Long 'used to distinguish Click and LongClick
#End If
 Private mEventName As String
 Private mCallBack As Object
 Private xBase As B4XView ‘B4XView instead of Panel or Pane

 Private mLeft, mTop, mWidth, mHeight As Int
 Private mText, mIcon As String

 Private xLabelFont, xIconFont As B4XFont ‘B4XFont instead of Typeface or Font

 Private mTextColor As Object ‘Object instead of Int
 Private mIconTextSize, mLabelTextSize As Double ‘Double instead of Float
 Private mTag As Object

 Private mLabel, mIconLabel As Label
 Private xLabel, xIconLabel As B4XView ‘Added
 Private mParent As B4XView ‘B4XView instead of Panel or Pane

 Private xui As XUI
End Sub

5 First example CustomButton 49 B4X CustomViews

5.5 Initialize routine

We get the CallBack module and EventName and initialize three default values.

B4A / B4i

Public Sub Initialize (Callback As Object, EventName As String)
 mEventName = EventName
 mCallBack = Callback

 mIcon = Chr(0xE859)
 mText = "Test"
 mTextColor = Colors.Black
End Sub

B4J the color is fx.Colors.Black instead of Colors.Black.

mTextColor = fx.Colors.Black

XUI

mTextColor = xui.Color_Black

5 First example CustomButton 50 B4X CustomViews

5.6 DesignerCreateView routine

Here we get the properties from the Designer.

We initialize mBase and add it to the parent view.

We need this because we use event routines of the base panel / pane.

Just setting mBase = Base does not enable to use events.

B4A

Public Sub DesignerCreateView (Base As Panel, Lbl As Label, Props As Map)
 mLeft = Base.Left
 mTop = Base.Top
 mWidth = Base.Width
 mHeight = Base.Height
 mIcon = Lbl.Text
 mText = Props.Get("Text")
 mBase.Initialize("mBase")
 mParent = Base.Parent
 Base.AddView(mBase, 0, 0, mWidth, mHeight)

 mTextColor = Lbl.TextColor
 mIconTypeface = Lbl.Typeface
 mTag = Base.Tag

 InitClass
End Sub

B4i Typeface is replaced by Font.

mIconTypeface = Lbl.Font

Plus, the Base_Resize routine.

B4J Typeface is replaced by Font. Base.AddView is replaced by Base.AddNode

mIconTypeface = Lbl.Font
Base.AddNode(mBase, 0, 0, mWidth, mHeight)

mHeight = Base.Height

Plus, the Base_Resize routine.

The InitClass routine, mWidth = Base.Width and mHeight = Base.Height are moved to the

Base_Resize routine.

XUI Typeface is replaced by Font.

5 First example CustomButton 51 B4X CustomViews

5.7 Base_Resize routine B4i / B4J only

The Base_Resize routine is called every time a resize is done.

Device orientation change in B4i or a Form resize in B4J.

B4i

Private Sub Base_Resize (Width As Double, Height As Double)
 mHeight = Height
 mWidth = Width
End Sub

B4J

Private Sub Base_Resize (Width As Double, Height As Double)
 mWidth = Width
 mHeight = Height
 mBase.PrefWidth = mWidth
 mBase.PrefHeight = mHeight

 InitClass
End Sub

5 First example CustomButton 52 B4X CustomViews

5.8 AddToParent routine

This routine is needed when we add the CustomButton in the code.

We memorize the position, dimensions and properties.

And call InitClass

B4A / B4i

Public Sub AddToParent(Parent As Panel, Left As Int, Top As Int, Width As Int, Height
As Int, TextColor As Int, Icon As String, Text As String)
 mLeft = Left
 mTop = Top
 mWidth = Width
 mHeight = Height
 mParent = Parent

 mBase.Initialize("mBase")
 Parent.AddView(mBase, mLeft, mTop, mWidth, mHeight)

 mIcon = Icon
 mText = Text
 mTextColor = TextColor

 InitClass
End Sub

B4J Parent.AddView is relaced by Parent.AddNode.

Parent.AddNode(mBase, mLeft, mTop, mWidth, mHeight)

5 First example CustomButton 53 B4X CustomViews

5.9 InitClass routine

Here we initialize the common part independent if the CustomButton is added in the Designer or in

the code.

B4A

Private Sub InitClass
 'calculate the dimensions of the internal Labels
 Private lblLeft, lblWidth As Int
 lblWidth = 2 * mHeight / 3 'icon Label width and height = 2/3 of button height
 lblLeft = (mWidth - lblWidth) / 2

 'initialize and add the icon Label
 mIconLabel.Initialize("")
 mIconTextSize = mHeight / 2 / GetDeviceLayoutValues.Scale 'B4A, B4i
 mIconLabel.Typeface = mIconTypeface 'B4A
 mIconLabel.TextSize = mIconTextSize 'B4A, B4J
 mIconLabel.Gravity = Gravity.CENTER 'B4A
 mIconLabel.TextColor = mTextColor
 mBase.AddView(mIconLabel, lblLeft, 0, lblWidth, lblWidth) 'B4A, B4i
 mIconLabel.Text = mIcon

 'initialize and add the text Label
 mLabel.Initialize("")
 mTextSize = lblWidth / 3 / GetDeviceLayoutValues.Scale 'B4A, B4i
 mLabel.TextSize = mTextSize 'B4A, B4J
 mLabel.TextColor = mTextColor
 mLabel.Gravity = Bit.Or(Gravity.CENTER_HORIZONTAL, Gravity.TOP) 'B4A
 mBase.AddView(mLabel, 0, 2 * mHeight / 3, mWidth, mHeight / 3) 'B4A, B4i
 mLabel.Text = mText
End Sub

'B4A means that this line is only for B4A and different from B4i and B4J.

'B4A, B4i means that this line is the same for B4A and B4i, but is different in B4J.

5 First example CustomButton 54 B4X CustomViews

B4i

Private Sub InitClass
 'calculate the dimensions of the internal Labels
 Private lblLeft, lblWidth As Int
 lblWidth = 2 * mHeight / 3 'icon Label width and height = 2/3 of button height
 lblLeft = (mWidth - lblWidth) / 2

 'initialize and add the icon Label
 mIconLabel.Initialize("")
 mIconTextSize = mHeight / 2 / GetDeviceLayoutValues.Scale 'B4i, B4A
 mIconFont = Font.CreateNew2(mIconFont.Name, mIconTextSize) 'B4i
 mIconLabel.Font = mIconFont 'B4i, B4J
 mIconLabel.TextAlignment = mIconLabel.ALIGNMENT_CENTER 'B4i
 mIconLabel.TextColor = mTextColor
 mBase.AddView(mIconLabel, lblLeft, 0, lblWidth, lblWidth) 'B4i, B4A
 mIconLabel.Text = mIcon

 'initialize and add the text Label
 mLabel.Initialize("")
 mTextSize = lblWidth / 3 / GetDeviceLayoutValues.Scale 'B4i, B4A
 mLabel.Font = Font.CreateNew(mTextSize) 'B4i
 mLabel.TextColor = mTextColor
 mLabel.TextAlignment = mIconLabel.ALIGNMENT_CENTER 'B4i
 mBase.AddView(mLabel, 0, 2 * mHeight / 3, mWidth, mHeight / 3) 'B4i, B4A
 mLabel.Text = mText
End Sub

B4J

Private Sub InitClass
 'calculate the dimensions of the internal Labels
 Private lblLeft, lblWidth As Int
 lblWidth = 2 * mHeight / 3 'icon Label width and height = 2/3 of button height
 lblLeft = (mWidth - lblWidth) / 2

 'initialize and add the icon Label
 mIconLabel.Initialize("")
 mIconTextSize = mHeight / 2 'B4J
 mIconLabel.Font = mIconFont 'B4J, B4i
 mIconLabel.TextSize = mIconTextSize 'B4J, B4A
 mIconLabel.Alignment = "CENTER" 'B4J
 mIconLabel.TextColor = mTextColor
 mBase.AddNode(mIconLabel, lblLeft, 0, lblWidth, lblWidth) 'B4J
 mIconLabel.Text = mIcon

 'initialize and add the text Label
 mLabel.Initialize("")
 mTextSize = lblWidth / 3 'B4J
 mLabel.TextSize = mTextSize 'B4J, B4A
 mLabel.TextColor = mTextColor
 mLabel.Alignment = "TOP_CENTER" 'B4J
 mBase.AddNode(mLabel, 0, 2 * mHeight / 3, mWidth, mHeight / 3) 'B4J
 mLabel.Text = mText
End Sub

5 First example CustomButton 55 B4X CustomViews

5.10 Click / LongClick event routines

The two event routines.

B4A / B4i

Private Sub mBase_Click
 If SubExists(mCallBack, mEventName & "_Click") = True Then
 CallSub(mCallBack, mEventName & "_Click")
 End If
End Sub

Private Sub mBase_LongClick
 If SubExists(mCallBack, mEventName & "_LongClick") = True Then
 CallSub(mCallBack, mEventName & "_LongClick")
 End If
End Sub

B4J

Very different, because the LongClick event doesn’t exist in B4J.

Private Sub mBase_MousePressed (EventData As MouseEvent)
 mClickTime = DateTime.Now
End Sub

Private Sub mBase_MouseReleased (EventData As MouseEvent)
 If DateTime.Now - mClickTime < 500 Then
 If SubExists(mCallBack, mEventName & "_Click") = True Then
 CallSub(mCallBack, mEventName & "_Click")
 End If
 Else
 If SubExists(mCallBack, mEventName & "_LongClick") = True Then
 CallSub(mCallBack, mEventName & "_LongClick")
 End If
 End If
End Sub

In mBase_MousePressed, we memorize the time when the mouse is pressed.

In mBase_MousePressed, we check the time elapsed between press and release.

If the time is less than 500 milli-seconds, then we admid a Click and if time is longer we admit a

LongClick event.

5 First example CustomButton 56 B4X CustomViews

5.11 Property routines

Below the routine to set the IconTypeFace / IconFont property.

B4A

'set the icon typeface
'must be FontAwsome or Material Icons
Public Sub setIconTypeface(IconTypeface As Typeface)
 mIconTypeface = IconTypeface
End Sub

B4i / B4J

'set the icon typeface
'must be FontAwsome or Material Icons
Public Sub setIconFont(IconFont As Font)
 mIconFont = IconFont
End Sub

And the Tag property.

B4A / B4i / B4J

'get or set the Tag property
Public Sub setTag(Tag As Object)
 mTag = Tag
 mBase.Tag = Tag
End Sub

Public Sub getTag As Object
 Return mTag
End Sub

I haven’t added other properties to not overload the code.

5 First example CustomButton 57 B4X CustomViews

5.12 Main code

5.12.1 Globals

Only two variables, in addition to the default declarations in B4i and B4J.

B4A / B4i B4J

Sub Globals
 Private cbtTest10 As CustomButton
 Private lblDummy As Label
End Sub

We need a dummy invisible Label to get the Material Icons TypeFace / Font for the icon Label

when the CustomButton is added in the code.

 B4A B4i / B4J

5 First example CustomButton 58 B4X CustomViews

5.12.2 Program start

B4A

Sub Activity_Create(FirstTime As Boolean)
 Activity.LoadLayout("Main")

 cbtTest10.Initialize(Me, "cbtTest")
 cbtTest10.IconTypeface = lblDummy.Typeface
 cbtTest10.AddToParent(Activity, 20dip, 200dip, 60dip, 60dip, Colors.RGB(0, 0, 139),
Chr(0xE149), "Test 10")
 cbtTest10.Tag = 10
End Sub

B4i

Private Sub Application_Start (Nav As NavigationController)
 NavControl = Nav
 Page1.Initialize("Page1")
 Page1.Title = "Page 1"
 Page1.RootPanel.Color = Colors.White
 Page1.RootPanel.LoadLayout("Main")
 NavControl.ShowPage(Page1)

 cbtTest10.Initialize(Me, "cbtTest")
 cbtTest10.IconFont = lblDummy.Font
 cbtTest10.AddToParent(Page1.RootPanel, 30, 100, 60, 60, Colors.RGB(0, 0, 139),
Chr(0xE05C), "Test 10")
 cbtTest10.Tag = 10
End Sub

B4J

Sub AppStart (Form1 As Form, Args() As String)
 MainForm = Form1
 MainForm.RootPane.LoadLayout("Main") 'Load the layout file.
 MainForm.Show

 MainForm.Title = "jClsCustomButton"

 cbtTest10.Initialize(Me, "cbtTest")
 cbtTest10.IconFont = lblDummy.Font
 cbtTest10.AddToParent(MainForm.RootPane, 100, 100, 60, 60, fx.Colors.RGB(0, 0, 139),
Chr(0xE05C), "Test 10")
 cbtTest10.Tag = 10
End Sub

Besides the default operating system methods, the CustomButton declaration is also a bit different.

• Parent object: B4A Activity (Panel), B4i Page1.RootPanel, B4J MainForm.RootPane.

• Font type:

B4A TypeFace
cbtTest10.IconTypeface = lblDummy.Typeface

B4i / B4J Font
cbtTest10.IconFont = lblDummy.Font

5 First example CustomButton 59 B4X CustomViews

5.13 Click event routine

The Click event routine is the same for all three operating systems:

Private Sub cbtTest_Click
 Private cbt As CustomButton
 Private Index As Int

 cbt = Sender
 Index = cbt.Tag

 Select Index
 Case 1
 Log("cbtTest1_Click")
 Case 2
 Log("cbtTest2_Click")
 Case 10
 Log("cbtTest10_Click")
 Case Else
 Log("cbtTest" & Index & "_Click")
 End Select
End Sub

I set the same event name for all CustomButtons and use the Tag property of the Sender object to

know which button raised the event.

The LongClick event routine is almost the same, LongClick replaces Click.

5 First example CustomButton 60 B4X CustomViews

5.14 Compile to Library

We add the library declarations on top of the code in the Main module.

B4A

#LibraryName: CustomButton
#LibraryAuthor: Klaus CHRISTL
#LibraryVersion: 1.0

B4i

#LibraryName: iCustomButton
#LibraryAuthor: Klaus CHRISTL
#LibraryVersion: 1.0

B4J

#LibraryName: jCustomButton
#LibraryAuthor: Klaus CHRISTL
#LibraryVersion: 1.0

And we compile the CustomButton module to a Library.

The Library files are automatically copied to the AdditionalLibraries folder.

If you use the hosted compiler for B4i, you must ask Erel for permission to be able to compile a

library.

5 First example CustomButton 61 B4X CustomViews

5.15 Use the library in a program

Copy the projects to new folders where you replace Cls by Lib.

The source codes are in the LibCustomButton folders

Then:

• Load the projects in the IDE.

• Rename the package name.

• Rename the #ApplicationLabel: LblCustomButton (B4A and B4i only)

• Remove the three lines:
#LibraryName: CustomButton
#LibraryAuthor: Klaus CHRISTL
#LibraryVersion: 1.0

• Remove the CustomButton class module.

Select the CustomButton module and remove it.

• Select the CustomButton library in the Labaraies Manager Tab.

• Run the program.

The rest of the code in the Main module remains the same.

The layout file remains the same.

6 XUI CustomButton 62 B4X CustomViews

6 XUI xCustomButton

This project is the same as the previous one, but a cross platform XUI project.

Again, one project for each product, but only one common CustomView module file saved in the

B4J project and a relative link to it in B4A and B4i.

The projects source codes are in the xCustomButton folder.

7 XUI xLimitBar 63 B4X CustomViews

7 XUI xLimitBar

Another concrete example, a LimitBar, which is a XUI CustomView.

The LimitBar looks like this, images from the B4J project:

Two cursors allow to define two limits between 0 and a max value.

In the demo program, we add two labels, one on each side, to display the two limit values these are

not part of the custom view.

There are two projects for each operating system:

• ClsLimitBarDemo, project with the custom view class module.

• LibLimitBarDemo, project with the custom view as a library (class module compiled to a

library), only for B4J, the principle is the same for the two other products .

It supports adding a xLimiBar in the Designer or in the code.

In the demo projects two xLimitBars are added, one in the Designer and one in the code.

The source codes are in the \ClsLimitBar folder, one folder for each operating system.

There is only one xLimitBar.bas file in the B4J project. The same file is used in B4A and B4i with a

relative link to it.

We use two B4XView panels:

• ltbPanelBack the background with the background color and the red 'background' line.

• ltbPanelFront the foreground, transparent with the 'foreground' line and the two cursors.

and two B4XCanavas objects:

• cvsPanelBack to draw the background and background line onto ltbPanelBack.

• cvsPanelFront to draw the foreground line and the cursors onto ltbPanelFront.

7.1 Event declaration

On top of the code we declare the event:

'Events declaration
#Event: ValuesChanged(LimitLeft As Int, LimitRight As Int)
#RaisesSynchronousEvents: ValuesChanged

We need this for the intellisense system when the class module is compiled to a library.

7 XUI xLimitBar 64 B4X CustomViews

7.2 Custom properties for the Designer

The xLimitBar has following custom properties:

• Max

Sets or gets the max limit value when the curser is at the most right position.

The default value is 100.

• LimitLeft

Sets or gets the left limit value. The default value is 0.

• LimitRight

Sets or gets the right limit value. The default value is 100.

• BackgroundColor

Sets or gets the background. The default value is blue (0xFF0000FF).

• BackLineColor

Sets or gets the back-line color. The default value is red (0xFFFF0000).

• FrontLineColor

Sets or gets the front-line color. The default value is light blue (0x FF33B5E5).

To support setting these properties in the Designer we must declare them:

'Designer property declarations
#DesignerProperty: Key: Max, DisplayName: Max, FieldType: Int, DefaultValue: 100,
Description: Sets the max value.
#DesignerProperty: Key: LimitLeft, DisplayName: Left limit, FieldType: Int,
DefaultValue: 10, Description: Sets the left limit value.
#DesignerProperty: Key: LimitRight, DisplayName: Right limit, FieldType: Int,
DefaultValue: 100, Description: Sets the right limit value.
#DesignerProperty: Key: Radius, DisplayName: Radius, FieldType: Int, DefaultValue: 5,
Description: Sets the corner radius.
#DesignerProperty: Key: BackgroundColor, DisplayName: BackgroundColor, FieldType:
Color, DefaultValue: 0xFF0000FF, Description: Sets the background color.
#DesignerProperty: Key: BackLineColor, DisplayName: BackLineColor, FieldType: Color,
DefaultValue: 0xFFFF0000, Description: Sets the back line color.
#DesignerProperty: Key: FrontLineColor, DisplayName: FrontLineColor, FieldType: Color,
DefaultValue: 0xFF33B5E5, Description: Sets the front line color.

We will add also code to set or get these properties in the code.

7.3 Class help header

Class header help text, just before Sub Class_Globals.
'xLimitBar CustomView class cross platform.
'This CustomView allows the user to set two limits with two cursors.
'The Min value is 0 and the Max value is 100.
'The Max value can be changed by the programmer.
Sub Class_Globals

If you use the B4X Help Viewer you’ll see this text when you load the library.

7 XUI xLimitBar 65 B4X CustomViews

7.4 Global variables

In Sub Class_Globals we declare the objects and variables.

Sub Class_Globals
 Private xui As XUI
 Private mCallback As Object ' calling module
 Private mEventName As String ' event name
 Private xBase As B4XView
 Private xParent As B4XView

 Private mLeft, mTop, mWidth, mHeight, mRadius As Double

 Private ltbPanelBack As B4XView ' the background panel
 Private ltbPanelFront As B4XView ' the background panel
 Private cvsPanelBack As B4XCanvas ' the background canvas
 Private cvsPanelFront As B4XCanvas ' the foreground canvas
 Private rectPanelFront As B4XRect ' a rectangle for the foreground canvas

 Private mBackgroundColor As Int ' color for the background
 Private mBackLineColor As Int ' color for the background line
 Private mFrontLineColor As Int ' color for the foreground line
 Private mMargin As Double ' left and right margins for the line
 Private x0, y0, x1, y1, y2 As Double ' backline and cursor coordinates
 Private mMaxValue As Int ' value of the Max property
 Private mScale As Double ' scale between position value and pixels
 Private mLimit(2) As Int ' value of the limits
 Private PositionPixels(2) As Double ' left and right positions in pixels
 Private PosIndex As Int
 ‘ two paths for the cursor shape and the background
 Private CursorPaths(2), BackgroundPath As B4XPath
End Sub

7 XUI xLimitBar 66 B4X CustomViews

7.5 Initialize routine

Then we need the routine to initialize the xLimitBar, the code is self explanatory.

This routine is automatically called if you add the LimitBar in the Designer.

If you add the LimitBar in the code, you must call this routine first.

You should not modify the signature of this routine

'Initializes the object.
'Callback = name of the calling module
'EventName = event name
'Example if added in the code:
'<Code>ltbTest.Initialize(Me, "ltbTest")'</Code>
Public Sub Initialize(Callback As Object, EventName As String)
 mCallback = Callback
 mEventName = EventName

 ' initialize default values
 mBackgroundColor = xui.Color_Blue
 mBackLineColor = xui.Color_Black
 mFrontLineColor = xui.Color_RGB(51, 181, 229)
 mRadius = 10dip
 mMargin = 15dip
 mMaxValue = 100
 mLimit(0) = 0
 mLimit(1) = mMaxValue
End Sub

7 XUI xLimitBar 67 B4X CustomViews

7.6 DesignerCreateView routine

Then we have the DesignerCreateView routine.

This routine is called automatically after Initialize when the xLimitBar is added in the Designer.

It is NOT used when you add the LimitBar in the code.

Public Sub DesignerCreateView(Base As Object, Lbl As Label, Props As Map)
 ' we use the Base panel as the background panel
 xBase = Base

 ' we memorize the Base Width and Height properties
 mLeft = xBase.Left
 mTop = xBase.Top
 mWidth = xBase.Width
 mHeight = xBase.Height

 ' we memorize the custom properties
 mMaxValue = Props.Get("Max")
 mLimit(0) = Props.Get("LimitLeft")
 mLimit(0) = Max(0, mLimit(0)) ' we check the min value, not less than 0

 'we set the two limit values
 mLimit(1) = Props.Get("LimitRight")
 mLimit(1) = Min(mMaxValue, mLimit(1)) ' we check the max value, not higher than Max

 'we get the Radius and color properties
 mRadius = DipToCurrent(Props.Get("Radius"))
 mBackgroundColor = xui.PaintOrColorToColor(Props.Get("BackgroundColor"))
 mBackLineColor = xui.PaintOrColorToColor(Props.Get("BackLineColor"))
 mFrontLineColor = xui.PaintOrColorToColor(Props.Get("FrontLineColor"))

 #If B4A
 InitClass ' initializes the common parts for Designer and code
 #End If
End Sub

We use the Base Panel with the name ltbPanelBack, and get the custom properties from the Props

Map object.

As the xLimitBar custom view can also be added in the code we initialize the rest in the InitClass

routine.

In B4A, the InitClass routine is called from the DesignerCreateView routine.

In B4i and B4J it is called from the Base_Resize routine to make sure that the width and height are

known!

#If B4A
 InitClass ' initializes the common parts for Designer and code
#End If

7 XUI xLimitBar 68 B4X CustomViews

7.7 Base_Resize routine B4i / B4J only

In B4i and B4J there is a specific routine Private Sub Base_Resize.

This routine is executed every time a resize is operated.

Private Sub Base_Resize (Width As Double, Height As Double)
 mWidth = Width
 mHeight = Height

 If ltbPanelBack.IsInitialized = False Then
 InitClass ' initializes the common parts for Designer and code
 Else
 rectPanelFront.Width = mWidth
 rectPanelFront.Height = mHeight

 ltbPanelBack.Width = mWidth
 ltbPanelBack.Height = mHeight

 ltbPanelFront.Width = mWidth
 ltbPanelFront.Height = mHeight

 cvsPanelBack.Resize(mWidth, mHeight)
 cvsPanelFront.Resize(mWidth, mHeight)

 InitCursors
 DrawBackGround
 DrawCursors
 End If
End Sub

In B4J the width and height of the Base pane is known only in the Base_Resize routine.

This routine is called directly after DesignerCreateView when the xLimitBar is added in the

Designer.

It is not called when the xLimitBar is added in the code.

7 XUI xLimitBar 69 B4X CustomViews

7.8 AddToParent routine

The AddToParent routine.

This routine must be called when you add the LimitBar in the code.

It is not used when the LimitBar is added in the Designer.

'Adds the LimitBar to the Parent object
'Parent = parent view, the Activity or a Panel
'Left, Right, Width, Height = position and dimensions properties of the LimitBar
'Height min = 30, Height min = 60
'BackgroundColor = background color of the LimitBar
'Radius = corner radius of the LimitBar
Public Sub AddToParent(Parent As Object, Left As Int, Top As Int, Width As Int, Height
As Int, BackgroundColor As Int, Radius As Int)
 mLeft = Left
 mTop = Top
 mWidth = Width
 mHeight = Max(Height, 30dip) ' limits the height to min 30 pixels
 mHeight = Min(Height, 60dip) ' limits the height to max 60 pixels
 mRadius = Min(Radius, Height / 2) ' limits the max radius to half the height
 mBackgroundColor = BackgroundColor
 xParent = Parent

 ' initialize the background panel ltbPanelBack and add it onto the parent view
 xBase = xui.CreatePanel("")
 xParent.AddView(xBase, Left, Top, Width, Height)

 InitClass ' initializes the common parts for Designer and code
End Sub

We memorize several properties, initialize ltbPanelBack and add it onto the parent view and set its

background and call InitClass.

Example:
 'adds a second xLimitBar in the code
 ltbTest1.Initialize(Me, "ltbTest1")
 ltbTest1.FrontLineColor = Colors.Blue
 ltbTest1.AddToParent(Activity, 30dip, 100dip, 200dip, 30dip, Colors.Red, 10dip)

7 XUI xLimitBar 70 B4X CustomViews

7.9 InitClass routine

In this routine, we initialize the common code parts independent if the LimitBar is added in the

Designer or in the code.

This routine is called either from the DesignerCreateView when the LimitBar is added in the

Designer or from the AddToParent routine when the custom view is added in the code.

Private Sub InitClass
 ltbPanelBack = xui.CreatePanel("ltbPanelBack")
 xBase.AddView(ltbPanelBack, 0, 0, mWidth, mHeight)

 ' set the background color and the radius for the background panel
 ltbPanelBack.SetColorAndBorder(mBackgroundColor, 0, mBackgroundColor, mRadius)

 ' initialize the background canvas and draw the background line
 cvsPanelBack.Initialize(ltbPanelBack)

 ' initialize the foreground panel and canvas
 ltbPanelFront = xui.CreatePanel("ltbPanelFront")
 xBase.AddView(ltbPanelFront, 0, 0, mWidth, mHeight)
 cvsPanelFront.Initialize(ltbPanelFront)

 ' initialize the foreground panel rectangle used to erase ltbPanelFront
 rectPanelFront.Initialize(0, 0, ltbPanelFront.Width, ltbPanelFront.Height)

 ' set the limit max value, which calculates also the scale limit values <> pixels
 setMax(mMaxValue)

 DrawBackGround
End Sub

The code is self explanatory.

7.10 InitCursors routine

In this routine, we initialize the variables used for the background line and the cursors drawing.

Private Sub InitCursors
 x0 = mMargin
 x1 = mWidth - mMargin
 mScale = (x1 - x0) / mMaxValue
 PositionPixels(0) = mLimit(0) * mScale + x0
 PositionPixels(1) = mLimit(1) * mScale + x0

 y0 = 0.2 * mHeight
 y1 = y0 + 8dip + 0.05 * mHeight
 y2 = 0.9 * mHeight

 'initialize a path for the background with rounded corners
 BackgroundPath.InitializeRoundedRect(rectPanelFront, mRadius)
End Sub

7 XUI xLimitBar 71 B4X CustomViews

7.11 Draw the background and background line

We need to draw the background color and background line from several places in the code so we

use a routine.

Private Sub DrawBackGround
 ' set the background color and the radius for the background panel
 cvsPanelBack.ClipPath(BackgroundPath)
 cvsPanelBack.DrawRect(rectPanelFront, mBackgroundColor, True, 1dip)
 cvsPanelBack.RemoveClip
 'draw the background line
 cvsPanelBack.DrawLine(x0, y0, x1, y0, mBackLineColor, 2dip)
 cvsPanelBack.Invalidate
End Sub

We draw the background with: cvsPanelBack.DrawRect.

And the background line, with: cvsPanelBack.DrawLine

7.12 DrawCursors routine

The drawing routine for the cursors and the foreground line:

We use two Path objects to draw the cursor shapes.

Private Sub DrawCursors
 ' draw a transparent rectangle to erase the foreground panel
 cvsPanelFront.ClearRect(rectPanelFront)

 ' define the left cursor path according to its current position
 Paths(0).Initialize(PositionPixels(0), y0)
 Paths(0).LineTo(PositionPixels(0), y2)
 Paths(0).LineTo(PositionPixels(0) - 12dip, y2)
 Paths(0).LineTo(PositionPixels(0) - 12dip, y1)
 Paths(0).LineTo(PositionPixels(0), y0)

 ' define the right cursor path according to its current position
 Paths(1).Initialize(PositionPixels(1), y0)
 Paths(1).LineTo(PositionPixels(1), y2)
 Paths(1).LineTo(PositionPixels(1) + 12dip, y2)
 Paths(1).LineTo(PositionPixels(1) + 12dip, y1)
 Paths(1).LineTo(PositionPixels(1), y0)

 ' draw the two cursors and the front line
 cvsPanelFront.DrawPath(Paths(0), mFrontLineColor, True, 1)
 cvsPanelFront.DrawPath(Paths(1), mFrontLineColor, True, 1)
 cvsPanelFront.DrawLine(PositionPixels(0), y0, PositionPixels(1), y0, mFrontLineColor,
3dip)
 cvsPanelFront.Invalidate
End Sub

We:

• Erase the whole foreground panel with ClearRect.

• Define both cursors according to the current position.

The cursor shapes are defined with two Paths.

• Draw the cursors.

• Draw the foreground line.

7 XUI xLimitBar 72 B4X CustomViews

7.13 Cursor moving

To detect cursor moves we use the touch event of the foreground panel:

Private Sub ltbPanelFront_Touch (Action As Int, X As Double, Y As Double)
 ' check if the cursor is outsides the limits
 Private xx As Double
 xx = X
 xx = Max(x0, xx)
 xx = Min(x1, xx)

 ' select the Action type
 Select Action
 Case ltbPanelFront.TOUCH_ACTION_DOWN
 If xx < Abs(PositionPixels(0) + PositionPixels(1)) / 2 Then
 ' if X is closer to the left cursor we choose it
 PosIndex = 0
 Else
 ' otherwise we choose the right cursor
 PosIndex = 1
 End If
 mLimit(PosIndex) = Floor((xx - x0) / mScale + .5)
 PositionPixels(PosIndex) = xx
 DrawCursors
 Case ltbPanelFront.TOUCH_ACTION_MOVE
 If SubExists(mCallback, mEventName & "_ValuesChanged") Then
 CallSub3(mCallback, mEventName & "_ValuesChanged", mLimit(0), mLimit(1))
 End If

 mLimit(PosIndex) = Floor((xx - x0) / mScale + .5)
 PositionPixels(PosIndex) = xx
 DrawCursors
 Case ltbPanelFront.TOUCH_ACTION_UP
 'call the ValuesChanged routine if it exists
 If SubExists(mCallback, mEventName & "_ValuesChanged") Then
 CallSub3(mCallback, mEventName & "_ValuesChanged", mLimit(0), mLimit(1))
 End If

 ' when Action is UP (mouse released) check if mLimit(0) > mLimit(1)
 ' if yes we invert the limit values and redraw the cursors
 ' if a callback routine exists in the calling module we call it
 If mLimit(0) > mLimit(1) Then
 Private val As Int
 val = mLimit(0)
 mLimit(0) = mLimit(1)
 mLimit(1) = val
 PositionPixels(0) = mLimit(0) * mScale + x0
 PositionPixels(1) = mLimit(1) * mScale + x0
 DrawCursors
 End If
 End Select
End Sub

7 XUI xLimitBar 73 B4X CustomViews

7.14 Properties

Finally, we add a few properties:

To add properties, see more details in Add properties.

The Max property:
'gets or sets the max value
Public Sub setMax(MaxValue As Int)
 mMaxValue = MaxValue
 InitCursors
 DrawCursors
End Sub

Public Sub getMax As Int
 Return mMaxValue
End Sub

The LimitLeft property:
'gets or sets the left limit
Public Sub setLimitLeft(Pos As Int)
 ' if Pos is lower than 0 set cLimitLeft to 0
 mLimit(0) = Max(0, Pos)
 InitCursors
 DrawCursors
End Sub

Public Sub getLimitLeft As Int
 Return mLimit(0)
End Sub

The LimitRight property:
'gets or sets the right limit
Public Sub setLimitRight(Pos As Int)
 ' if Pos is higher than mMaxValue set mLimitRight to mMaxValue
 mLimit(1) = Min(mMaxValue, Pos)
 InitCursors
 DrawCursors
End Sub

Public Sub getLimitRight As Int
 Return mLimit(1)
End Sub

The Visible property:
'gets or sets the Visible property
Sub setVisible(IsVisible As Boolean)
 ltbPanelBack.Visible = IsVisible
End Sub

Sub getVisible As Boolean
 Return ltbPanelBack.Visible
End Sub

7 XUI xLimitBar 74 B4X CustomViews

The Width property:

'gets or sets the Width property
Public Sub setWidth(Width As Int)
 mWidth = Width

 ' set the new widths
 xBase.Width = mWidth
 ltbPanelBack.Width = mWidth
 ltbPanelFront.Width = mWidth

 ' resize the two Canvases
 cvsPanelBack.Resize(mWidth, mHeight)
 cvsPanelFront.Resize(mWidth, mHeight)

 ' adjust the width of rectPanelFront
 rectPanelFront.Width = mWidth

 InitCursors
 DrawBackGround
 DrawCursors
End Sub

Public Sub getWidth As Int
 Return mWidth
End Sub

In this routine, as the width of the CustomView has changed, we need to:

• set the Width of all three B4XPanels xBase, ltbPanelBack and ltbPanelFront.

• resize the two B4XCanvases cvsPanelBack and cvsPanelFront.

• set the Width of the B4XRect rectPanelFront.

• and InitCursors, initialize the cursors.

• DrawBackGround draw the background

• DrawCursors draw the cursors.

The Height property routine is similar to the Width property routine.

There are other properties not explained here.

7 XUI xLimitBar 75 B4X CustomViews

7.15 Make a B4X Library

We make a B4X Library for the xLimitBar CustomView.

We generate the manifest file, it’s a text file with the content below,

Version=1.0
Author=Klaus CHRISTL (klaus)
B4J.DependsOn=jXUI
B4A.DependsOn=XUI
B4i.DependsOn=iXUI

Version: the version number

Author: the author name

B4J.DependsOn: the list of all B4J libraries the custom view depends on.

B4A.DependsOn: the list of all B4A libraries the custom view depends on.

B4i.DependsOn: the list of all B4iJ libraries the custom view depends on.

And save it with the name: manifest.txt.

In our case xLimitBar depends only on the xui libraries.

Then we zip the manifest.txt file and the xLimitBar.bas file to generate the xLimitBar.b4xlib file.

The extension must be b4xlib.

Copy this file into the \AdditionalLibraries\B4X folder.

Remember the subfolder structure of the AdditionalLibraries folder.

More information in chapter Generate a B4XLibrary.

7 XUI xLimitBar 76 B4X CustomViews

7.16 Compile to a platform specific Library

In the Project Attributes Region in the Main module we add following new attributes:

Example, LimitBar projects.

 B4A B4i B4J
#LibraryName: xLimitBar #LibraryName: ixLimitBar #LibraryName: jxLimitBar
#LibraryAuthor: Klaus Christl #LibraryAuthor: Klaus Christl #LibraryAuthor: Klaus Christl
#LibraryVersion: 1.0 #LibraryVersion: 1.0 #LibraryVersion: 1.0

And we compile the Limitbar module to a Library.

The Library files are automatically copied to the AdditionalLibraries folder.

If you use the hosted compiler for B4i, you must ask Erel for permission to be able to compile a

library. You will get this message.

7 XUI xLimitBar 77 B4X CustomViews

7.16.1 Using the library in a program

Copy the projects to new folders where you replace Cls by Lib.

The source codes are in the xLibLimitBar folders.

The example below is based on the B4J project.

Then:

• Load the projects in the IDE.

• Rename the package name.

• Rename the #ApplicationLabel: LblLimitBar (B4A and B4i only)

• Remove the three lines:
#LibraryName: xLimitBar
#LibraryAuthor: Klaus CHRISTL
#LibraryVersion: 1.0

• Remove the xLimitBar class module.

Select the xLimitBar module and remove it.

• Select the jxLimitBar library in the Labaraies Manager Tab.

• Run the program.

The rest of the code in the Main module remains the same.

The layout file remains the same.

	1 General information
	2 Class modules
	2.1 Getting started
	2.1.1 Adding a class module
	2.1.2 Polymorphism
	2.1.3 Self-reference
	2.1.4 Activity object B4A only

	3 Standard class
	3.1 Standard class structure

	4 CustomViews
	4.1 CustomView types
	4.2 CustomView class structure
	4.2.1 Event declarations
	4.2.2 Designer properties declarations
	4.2.3 Global variable declarations
	4.2.4 Initialization routine
	4.2.5 Designer support routine DesignerCreateView
	4.2.6 Routine to get the base Panel

	4.3 Adding a custom view by code
	4.4 Add properties
	4.5 Add Events
	4.5.1 Code in the Class
	4.5.2 Event declaration in the class
	4.5.3 Code in the calling module

	4.6 Custom view and custom properties in the Designer
	4.7 Add layouts to a CusomView
	4.8 Libraries
	4.8.1 Generate a B4X Library *.b4xlib
	4.8.1.1 AdditionalLibraries folder
	4.8.1.2 Xml help files for B4X Libraries

	4.8.2 Complie to a product specific library
	4.8.2.1 Library specific attributes
	4.8.2.2 Tip for MaterialIcons and Fontawesome fonts

	4.9 Program flow
	4.10 Intellisense help
	4.10.1 Comments before Sub Class_Globals
	4.10.2 Comments before a routine
	4.10.3 Comments before an event routine

	4.11 CustomViews (XUI)
	4.11.1 CustomViews (XUI) class structue

	4.12 GetView
	4.13 Add many CustomViews in the code

	5 First example CustomButton
	5.1 Event declarations
	5.2 Custom properties for the Designer
	5.3 Class help header
	5.4 Global variables
	5.5 Initialize routine
	5.6 DesignerCreateView routine
	5.7 Base_Resize routine B4i / B4J only
	5.8 AddToParent routine
	5.9 InitClass routine
	5.10 Click / LongClick event routines
	5.11 Property routines
	5.12 Main code
	5.12.1 Globals
	5.12.2 Program start

	5.13 Click event routine
	5.14 Compile to Library
	5.15 Use the library in a program

	6 XUI xCustomButton
	7 XUI xLimitBar
	7.1 Event declaration
	7.2 Custom properties for the Designer
	7.3 Class help header
	7.4 Global variables
	7.5 Initialize routine
	7.6 DesignerCreateView routine
	7.7 Base_Resize routine B4i / B4J only
	7.8 AddToParent routine
	7.9 InitClass routine
	7.10 InitCursors routine
	7.11 Draw the background and background line
	7.12 DrawCursors routine
	7.13 Cursor moving
	7.14 Properties
	7.15 Make a B4X Library
	7.16 Compile to a platform specific Library
	7.16.1 Using the library in a program

