

B4X Booklets

B4X SQLite Database

Copyright: © 2021 Anywhere Software Edition 2.2

Last update: 2021.07.12

Table of content 2 B4X SQLite Database

1 B4X platforms .. 5

2 SQLite Database... 6
2.1 General information ... 6
2.2 SQLite Database basics .. 8

2.2.1 Database initialization SQL1.Initialize / SQL1.InitializeSQLite 8

2.2.2 Table creation CREATE TABLE .. 9
2.2.3 INTEGER PRIMARY KEY rowid .. 10
2.2.4 Adding data INSERT INTO.. 11
2.2.5 Updating data UPDATE ... 11
2.2.6 Reading data SELECT .. 11

2.2.7 Filtering WHERE ... 13
2.2.8 Sorting ORDER BY ... 14
2.2.9 Date / Time functions ... 15
2.2.10 Other functions ... 17

2.2.10.1 Get the data type of columns typeof() .. 17
2.2.10.2 Get the max length of the data in a column length() ... 17
2.2.10.3 Get a sub string substr() .. 17

2.2.10.4 Replace parts of a string replace() .. 18
2.2.10.5 Find a substring in a string instr() ... 18
2.2.10.6 Round a number round() ... 18
2.2.10.7 Get the total number of rows count() .. 18

2.2.10.8 Get the tables in the database sqlite_master .. 18
2.2.10.9 Get the column names of a table TableName .. 18
2.2.10.10 Get the number of database rows that were changed changes() 19

2.2.10.11 Get the PRIMARY KEYs from a table rowid .. 19
2.2.11 ResultSet GetInt, GetInt2 etc B4A, B4i, B4J ... 20

2.2.12 Cursor GetInt, GetInt2 etc B4A only .. 21
2.2.13 Get Table information PRAGMA ... 22

2.2.14 Deleting data DELETE FROM ... 23
2.2.15 Rename a table ALTER TABLE Name RENAME TO... 23

2.2.16 Add a column ALTER TABLE Name ADD COLUMN ... 23
2.2.16.1 Update the database after having added a column ... 23

2.2.17 Delete a table DROP TABLE .. 23

2.2.18 Insert an image ... 24
2.2.19 Read an image .. 24

2.2.20 ExecQuery vs ExecQuery2 / ExecNonQuery vs ExecNonQuery2 25
2.2.21 Insert many rows SQL.BeginTransaction / SQL.EndTransaction 26
2.2.22 Asynchronus queries .. 27

2.2.23 Batch inserts AddNonQueryToBatch / ExecNonQueryBatch 28

2.3 Multiple tables .. 29
2.4 Transaction speed ... 31
2.5 First steps ... 32

2.5.1 Reference the SQLite library ... 32
2.5.2 Declare the SQLite library ... 32
2.5.3 Initialize the SQLite library and the variables ... 33

2.6 SQLite Database first simple example program SQLiteLight1 .. 36
2.6.1 Source code .. 37

2.6.1.1 B4A Program initialization .. 37
2.6.1.2 B4i Program initialisation .. 39
2.6.1.3 B4J Program initialisation .. 40

2.6.2 Database handling .. 41

2.6.2.1 Create database... 41
2.6.2.2 ReadDataBase .. 41

Table of content 3 B4X SQLite Database

2.6.2.3 ShowEntry .. 42

2.6.2.4 AddEntry .. 43
2.6.2.5 DeleteEntry .. 44
2.6.2.6 UpdateEntry ... 44

2.7 SQLite Database second simple example program SQLiteLight2 45

2.7.1 Main module source code parts.. 47
2.7.1.1 Declaration of the Process global variables ... 47
2.7.1.2 Show table .. 48
2.7.1.3 ExecuteHtml show a table in a WebView... 49
2.7.1.4 ReadDatabaseRowIDs.. 50

2.7.1.5 UpdateSelectedEntryDisplay ... 50
2.7.1.6 WebView events _ OverrideUrl / _LocationChanged .. 51

2.7.2 Edit Module source code parts ... 52
2.7.3 Filter Module source code parts ... 52

2.7.3.1 B4A .. 52
2.7.3.2 B4i .. 53
2.7.3.3 B4J ... 53

2.8 SQLite Database third simple example program SQLiteLight3 54
2.9 SQLite Database 3rd example with B4XTable ... 55
2.10 SQLite Database 3rd example XUI version SQLiteLight3X .. 56
2.11 SQLite Database fourth example program SQLiteLight4 .. 57

2.12 SQLite Viewer ... 59
3 DBUtils version 2 ... 60

3.1 DBUtil functions .. 61

3.1.1 CopyDBFormAssets B4A, B4 ... 62
3.1.2 CopyDBFormAssets B4J ... 62

3.1.3 CreateTable B4A, B4i, B4J .. 62
3.1.4 DeleteRecord B4A, B4i, B4J ... 62

3.1.5 DropTable B4A, B4i, B4J .. 63
3.1.6 ExecuteHtml B4A, B4i, B4J .. 63

3.1.7 ExecuteJSON B4A, B4i, B4J ... 63
3.1.8 ExecuteList B4A, B4i, B4J ... 63
3.1.9 ExecuteListView B4A ... 64

3.1.10 ExecuteMap B4A, B4i, B4J ... 64
3.1.11 ExecuteMemoryTable B4A, B4i, B4J ... 64

3.1.12 ExecuteTableView B4J .. 64
3.1.13 ExecuteSpinner B4A .. 64
3.1.14 GetDBFolder B4A, B4i, B4J ... 65

3.1.15 GetDBVersion B4A, B4i, B4J .. 65

3.1.16 GetFieldInfo B4A, B4i, B4J ... 65
3.1.17 GetTables B4A, B4i, B4J .. 65
3.1.18 InsertMaps B4A, B4i, B4J ... 65

3.1.19 SetDBVersion B4A, B4i, B4J .. 65
3.1.20 TableExists B4A, B4i, B4J .. 65
3.1.21 UpdateRecord B4A, B4i, B4J .. 66
3.1.22 UpdateRecord2 B4A, B4i, B4J .. 66

3.2 Examples .. 66

3.3 DBUtilsDemo example program .. 67
3.3.1 Code differences... 69

Table of content 4 B4X SQLite Database

Main contributors: Klaus Christl (klaus), Erel Uziel (Erel)

To search for a given word or sentence use the Search function in the Edit menu.

All the source code and files needed (layouts, images etc.) of the example projects in this guide are

included in the SQLiteDatabase_SourceCode folder.

Updated for following versions:

B4A version 11.0

B4i version 7.50

B4J version 9.10

B4X Booklets:

B4X Getting Started

B4X Baisc Language

B4X IDE Integrated Development Environment

B4X Visual Designer

B4X Help tools

B4XPages Cross-platform projects

B4X CustomViews

B4X Graphics

B4X XUI B4X User Interface

B4X SQLite Database

B4X JavaObject NativeObject

B4R Example Projects

You can consult these booklets online in this link [B4X] Documentation Booklets.

Be aware that external links don’t work in the online display.

https://www.b4x.com/android/forum/threads/b4x-documentation-booklets.88985/#content
https://www.b4x.com/android/forum/threads/b4x-documentation-booklets.88985/

1 General information 5 B4X SQLite Database

1 B4X platforms

B4X is a suite of BASIC programming languages for different platforms.

B4X suite supports more platforms than any other tool

ANDROID | IOS | WINDOWS | MAC | LINUX | ARDUINO | RASPBERRY PI | ESP8266 | AND

MORE...

• B4A Android

B4A is a 100% free development tool for Android applications, it includes all the features

needed to quickly develop any type of Android app.

• B4i iOS

B4i is a development tool for native iOS applications.

B4i follows the same concepts as B4A, allowing you to reuse most of the code and build

apps for both Android and iOS.

• B4J Java / Windows / Mac / Linux / Raspberry PI

B4J is a 100% free development tool for desktop, server and IoT solutions.

With B4J you can easily create desktop applications (UI), console programs (non-UI) and

server solutions.

The compiled apps can run on Windows, Mac, Linux and ARM boards (such as Raspberry

Pi).

• B4R Arduino / ESP8266

B4R is a 100% free development tool for native Arduino and ESP8266 programs.

B4R follows the same concepts of the other B4X tools, providing a simple and powerful

development tool.

B4R, B4A, B4J and B4i together make the best development solution for the Internet of

Things (IoT).

• B4XPages

B4XPages is an internal library for B4A, B4i and B4J allowing to develop easily cross-

platform programs.

B4XPages is explained in detail in the B4XPages Cross-platform projects booklet.

Even, if you want to develop only in one platform it is interesting to use the B4XPages

library it makes the program flow simpler especially for B4A.

2 SQLite Database 6 B4X SQLite database

2 SQLite Database

2.1 General information

This guide covers the use of SQLite Databases in the B4X languages (B4A, B4i, B4J).

All the source code and files needed (layouts, images etc) of the example projects in this guide are

included in the SQLiteDatabase_SourceCode folder.

There are three folders for each project, one for each platform B4A, B4i and B4J.

What is a database (source Wikipedia Database):

A database is an organized collection of data for one or more purposes, usually in digital form. The

data are typically organized to model relevant aspects of reality (for example, the availability of

rooms in hotels), in a way that supports processes requiring this information (for example, finding a

hotel with vacancies). The term "database" refers both to the way its users view it, and to the logical

and physical materialization of its data, content, in files, computer memory, and computer data

storage. This definition is very general, and is independent of the technology used. However, not

every collection of data is a database; the term database implies that the data is managed to some

level of quality (measured in terms of accuracy, availability, usability, and resilience) and this in

turn often implies the use of a general-purpose Database management system (DBMS). A general-

purpose DBMS is typically a complex software system that meets many usage requirements, and

the databases that it maintains are often large and complex.

The interface between your program and the database is the SQL language.

The data is stored in tables, each table has a certain number of columns and rows.

Each row contains a data set and the different data of a given set are stored in the columns.

Simple example programs are included in the SourceCode\SQL folder.

http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Database_management_system

2 SQLite Database 7 B4X SQLite database

If you add a default database to your project in the files Tab, it is in the DirAssets folder.

Databases cannot be accessed in DirAssets even if it is only for reading.

Therefore, you must copy it to another folder.

Example in the SQLiteLight1 programs.

B4A

With DirInternal.

For example: DirInternal

Example code in the Starter module:
If File.Exists(File.DirInternal, "Database.db") = False Then
 File.Copy(File.DirAssets, "Database", File.DirInternal, "Database.db")
End If
SQL1.Initialize(File.DirInternal, "Database.db", True)

Or in Activity_Create if you have only one Activity:
If FirstTime Then
 If File.Exists(File.DirInternal, "Database.db") = False Then
 File.Copy(File.DirAssets, "Database", File.DirInternal, "Database.db")
 End If
 SQL1.Initialize(File.DirInternal, "Database.db", True)
End If

B4i

In Application_Start. We use the default directory for the application.

'check if the database already exists
If File.Exists(File.DirDocuments, "persons.db") = False Then
 'copy the default DB
 File.Copy(File.DirAssets, "persons.db", File.DirDocuments, "persons.db")
End If
SQL1.Initialize(File.DirDocuments, "persons.db", True)

B4J

In App_Start. We use the default directory for the application.

'check if the database already exists
If File.Exists(File.DirData("jSQLiteLight2"), "persons.db") = False Then
 'copy the default DB
 File.Copy(File.DirAssets, "persons.db", File.DirData("jSQLiteLight2"), "persons.db")
End If
SQL1.InitializeSQLite(File.DirData("jSQLiteLight2"), "persons.db", True)

2.2 SQLite Database basics 8 B4X SQLite database

2.2 SQLite Database basics

Some simple SQL instructions.

Here you find the SQLite site: SQLite

Here you find the SQLite syntax: SQLite syntax

A very interesting website to learn SQL is this one: W3Schools SQL.

And another one: SQLiteTutorial.

2.2.1 Database initialization SQL1.Initialize / SQL1.InitializeSQLite

To use a database, you must first initialize it!

This is ideally done in the Starter service for B4A, in Application_Start for B4i and in App_Start

for B4J.

B4A, B4i

 SQL1.Initialize(DBDirName, DBFileName, True)

 DBDirName = Directory name of the database.

 DBFileName = Database file name.

 True = Create if necessary False don't create the database.
 SQL1.Initialize(DBDirName, DBFileName, True)

B4J

 Add the line below in Main module #Region Project Attributes.
 #AdditionalJar: sqlite-jdbc-3.7.2

 And:

 SQL1.InitializeSQLite(DBDirName, DBFileName, True)

 DBDirName = Directory name of the database.

 DBFileName = Database file name.

 True = Create if necessary False don't create the database.
 SQL1.InitializeSQLite(DBDirName, DBFileName, True)

 In B4J, SQL1.Initialize is used to initialize SQL drivers.

 To use SQLite, you must initialize it with SQL1.InitializeSQLite.

B4A, B4i, B4J

If you want to use a database only in the current instance of the program without saving somewhere

else, you can initialize it like this:

#If B4J
 SQL1.InitializeSQLite("", ":memory:", True)
#Else If B4A OR B4I
 sql1.Initialize("", ":memory:", True)
#End If

http://www.sqlite.org/
http://www.sqlite.org/lang.html
http://www.w3schools.com/sql/
http://www.sqlitetutorial.net/

2.2 SQLite Database basics 9 B4X SQLite database

2.2.2 Table creation CREATE TABLE

You can create a database in a SQLite program on the PC or you can create it in the code like

below.

CREATE TABLE TableName (Col1 INTEGER, Col1 TEXT, Col2 REAL)

Creates a table with the name 'TableName' and three columns:

Column Index Name Variable Type

 1 Col1 INTEGER

2 Col2 TEXT

 3 Col3 REAL

SQL1.ExecNonQuery("CREATE TABLE TableName(Col1 INTEGER, Col2 TEXT, Col3 REAL")

Only these data types are available:

INTEGER is a 64-bit signed integer number.

REAL is a 64-bit IEEE floating point number.

TEXT is a string.

BLOB Binary Large OBject, the value is stored exactly as it was input.

NULL

INTEGER PRIMARY KEY is a special variable type used for identifier ID's. It is a long integer

value beginning with 1 and it is incremented by one each time a new data set is added to the

database.

SQL identifiers are case insensitive. You could use for example:
SQL1.ExecNonQuery("CREATE TABLE TableName(col1 integer, col2 text, col3 Real")

But in B4A, SQL.GetString(ColumnName), ColumnName is case sensitive!

The column names must be spelled exactly the same name as in the table creation.

With the example above, col1 works but Col1 will throw an error.

2.2 SQLite Database basics 10 B4X SQLite database

2.2.3 INTEGER PRIMARY KEY rowid

INTEGER PRIMARY KEY is a special data type which is unique and will never change.

You can define a specific column dedicated to the PRIMARY KEY.

But this is not mandatory, SQLite has an internal column named rowid which can be used.

This is used in the SQLiteLight examples.

Each time you add a new record the PRIMARY KEY is incremented by 1.

When you delete a record the PRIMARY KEY of this record is lost.

When you load a database and display it in a table be aware that the row indexes in the table are not

the same as the database rowids. Therefore, you must read and memorize the PRIMARY KEYs

somewhere to know which record is in which line.

Comparison:

• Creation.

o With a specific ID column.
"CREATE TABLE persons (ID INTEGER PRIMARY KEY, FirstName TEXT, LastName
TEXT, City TEXT)"

o With no specific ID column.
"CREATE TABLE persons (FirstName TEXT, LastName TEXT, City TEXT)"

• Reading.

o With a specific ID column.
"SELECT ID, FirstName AS [First name], LastName AS [Last name], City FROM
persons"

o With no specific ID column.

Reads the PRIMARY Key in the query.
"SELECT rowid AS ID, FirstName AS [First name], LastName AS [Last name],
City FROM persons"

Doesn’t read the PRIMARY Key in the query.
"SELECT FirstName AS [First name], LastName AS [Last name], City FROM
persons"

Note: If you use this query "SELECT * FROM persons" the rowid column is not

included. If you want it, you must specify it like in the examples above.

Read it like this "SELECT rowid, * FROM persons" or read it in a separate query.

You can use alias column names with the As keyword like:
"SELECT LastName AS Name, City FROM persons"

or
"SELECT FirstName AS [First name], LastName AS [Last name] FROM persons"

If there are spaces in the text you need to add square brackets like in the line above.

• Inserting.

o With a specific ID column.
"INSERT INTO persons VALUES (NULL, ‘John’, ‘KERRY’, ‘Boston’)"

You must use NULL for the PRIMARY KEY column.

o With no specific ID column.
"INSERT INTO persons VALUES (‘John’, ‘KERRY’, ‘Boston’)"

2.2 SQLite Database basics 11 B4X SQLite database

2.2.4 Adding data INSERT INTO

INSERT INTO TableName VALUES (Val1, Val2, Val3)

SQL1.ExecNonQuery("INSERT INTO TableName VALUES (Val1, Val2, Val2)")

If you enter values like this:
SQL1.ExecNonQuery("INSERT INTO TableName VALUES (12, ‘John’, 235)”)

In this case, texts must be between two quotes like 'John’, numbers not like 12 and 235.

Or
SQL1.ExecNonQuery2("INSERT INTO TableName VALUES (?, ?, ?)" Array As String(Val1, Val2,
Val2))
SQL1.ExecNonQuery2("INSERT INTO TableName VALUES (?, ?, ?)" Array As String(12, “John”,
235))

2.2.5 Updating data UPDATE

UPDATE TableName Set Col1 = Val1, Col2 = ‘Val2’, Col3 = Val3 WHERE ID = idVal

SQL1.ExecNonQuery("UPDATE TableName Set Col1 = Val1, Col2 = 'Val2', Col3 = Val3 WHERE
ID = idVal")

Again, a text variable must be between two quotes like 'Val2’, numbers not like Val1 and Val3.

Or
SQL1.ExecNonQuery2("UPDATE TableName Set Col1 = ?, Col2 = ?, Col3 = ? WHERE ID = ?"
Array As String(Val1, Val2, Val3, idVal))
Here no need to care with the quotes for text variables!

2.2.6 Reading data SELECT

The SELECT statement is used to query the database. The result of a SELECT is zero or more rows

of data where each row has a fixed number of columns.

A SELECT statement does not make any changes to the database.

Examples:

• The entire database:

SELECT * FROM TableName
ResultSet1 = SQL1.ExecQuery("SELECT * FROM TableName")

• A single column

SELECT Col1 FROM TableName
ResultSet1 = SQL1.ExecQuery("SELECT Col1 FROM TableName")

• Distinct values from a column, no duplicate values

SELECT DISTINCT Col1 FROM TableName
ResultSet1 = SQL1.ExecQuery("SELECT DISTINCT Col1 FROM TableName")

• Single entry (value)

SELECT Col1 FROM TableName WHERE rowid = idVal
Value = SQL1.ExecQuerySingleResult("SELECT Col1 FROM TableName WHERE rowid =
idVal")

Table of content 12 B4X SQLite Database

• Max / min value in a column, in the examples the max and min values of the given column.

SELECT max(Col1) FROM TableName

SELECT min(Col1) FROM TableName
Max = SQL1.ExecQuerySingleResult("SELECT max(Col1) FROM TableName")
Min = SQL1.ExecQuerySingleResult("SELECT min(Col1) FROM TableName")

• Get the sum or average of a column

SELECT total(Col1) FROM TableName

SELECT avg(Col1) FROM TableName
Sum = SQL1.ExecQuerySingleResult("SELECT total(Col1) FROM TableName")
Average = SQL1.ExecQuerySingleResult("SELECT avg(Col1) FROM TableName")

There exist also a sum() function, but it’s better to use total().

If there is a row with a Null value, sum() returns Null, but Total() returns 0!

• Get calculations of columns.

For example, in a database with a column Number of type INTEGER and another column

Price of type REAL we want to get the Cost = Number * Price.

SELECT Number, Price, Number * Price FROM TableName
ResultSet1 = SQL1.ExecQuery("SELECT Number, Price, Number * Price FROM
TableName”)
Number = ResultSet1.GetInt2(0)
Price = ResultSet1.GetDouble2(1)
Cost = ResultSet1.GetDouble2(2)

Or giving the result a column name with Number * Price AS Cost.
ResultSet1 = SQL1.ExecQuery("SELECT Number, Price, Number * Price AS Cost FROM
TableName”)
Number = ResultSet1.GetInt(“Number”)
Price = ResultSet1.GetDouble(“Price”)
Cost = ResultSet1.GetDouble(“Cost”)

Some functions:

• sum() Calculates the sum of a column.

• avg() Calculates the average of a column.

• min() Calculates the min value of column.

• max() Calculates the min value of column.

• length() Calculates the number of characters of a string or the number of characters of

the string representation of a number.

• lower() Returns a string in lower case characters.

• upper() Returns a string in upper case characters.

• substr() Returns a sub string.

• typeof() Returns the data type of a column.

More details can be found in the SQLite documentation here: Core Functions

 and here: Expressions

 and here: Date And Time Functions

https://www.sqlite.org/lang_corefunc.html
https://www.sqlite.org/lang_expr.html
https://www.sqlite.org/lang_datefunc.html

2.2 SQLite Database basics 13 B4X SQLite database

2.2.7 Filtering WHERE

After the SELECT expression you can add a WHERE expression for filtering.

The WHERE expression is evaluated for each row in the input data as a Boolean expression. Only

rows for which the WHERE clause expression evaluates to true are included from the dataset before

continuing. Rows are excluded from the result if the WHERE clause evaluates to either false or

NULL.

Some operators used for filtering data:

• = > < >= <=

• AND OR BETWEEN

• LIKE

Examples:

• A single row.

Where the rowid has the value of the numeric variable idVal

SELECT * FROM TableName WHERE rowid = idVal
ResultSet1 = SQL1.ExecQuery("SELECT * FROM TableName WHERE rowid = “ & idVal)

Where an ID column has the value of the variable idVal

SELECT * FROM TableName WHERE ID = idVal
ResultSet1 = SQL1.ExecQuery("SELECT * FROM TableName WHERE ID = “ & idVal)

• A single entry (value).

SELECT Col1 FROM TableName WHERE rowid = idVal
Value = SQL1.ExecQuerySingleResult("SELECT Col1 FROM TableName WHERE rowid =
idVal")

• The rows where columns have given values.

SELECT * FROM TableName WHERE Col1 LIKE 'abc' AND Col2 LIKE 123
ResultSet1 = SQL1.ExecQuery("SELECT * FROM TableName WHERE Col1 LIKE 'abc%' AND
Col2 LIKE 123")

The % character can be used as a wildcard:

abc means the exact sequence

%abc means beginning with any characters and ending with abc

abc% means beginning with abc and ending with any characters

%abc% means abc anywhere in the string

• The rows where a value in a column is between two given values.

SELECT * FROM TableName WHERE Col1 >= minVal AND Col1 <= maxVal
ResultSet1 = SQL1.ExecQuery("SELECT * FROM TableName WHERE Col1 >= minVal AND
Col1 <= maxVal")

Or with BETWEEN which is the same.

SELECT * FROM TableName WHERE Col1 BETWEEN minVal AND maxVal
Cursor1 = SQL1.ExecQuery("SELECT * FROM TableName WHERE Col1 BETWEEN minVal AND
maxVal")

Or with minVal and maxVal beeing variables:
ResultSet1 = SQL1.ExecQuery("SELECT * FROM TableName WHERE Col1 BETWEEN " &
minVal & " AND " & maxVal)

2.2 SQLite Database basics 14 B4X SQLite database

2.2.8 Sorting ORDER BY

If a SELECT statement that returns more than one row does not have an ORDER BY clause, the

order in which the rows are returned is undefined.

Or, if a SELECT statement does have an ORDER BY clause, then the list of expressions attached to

the ORDER BY determine the order in which rows are returned to the user.

A query can be sorted either ascending or descending.

Add an ORDER BY expression at the end of the query.

• Read the entire database and ordering according to a given column:

SELECT * FROM TableName ORDER BY Col1 ASC ascending
ResultSet1 = SQL1.ExecQuery("SELECT * FROM TableName ORDER BY Col1 ASC")

SELECT * FROM TableName ORDER BY 2 DESC descending
ResultSet1 = SQL1.ExecQuery("SELECT * FROM TableName ORDER BY 2 DESC")

The column to order can be given either by its name Col1 or its number 2.

The column numbering begins with 1.

• Read the given columns and sort on two of them.

SELECT FirstName AS [First name], LastName AS [Last name], City FROM persons

ORDER BY LastName ASC, FirstName ASC
ResultSet1 = SQL1.ExecQuery("SELECT FirstName AS [First name], LastName AS [Last
name], City FROM persons ORDER BY LastName ASC, FirstName")

The brackets [First name] are needed because of the spaces in the alias column names.

2.2 SQLite Database basics 15 B4X SQLite database

2.2.9 Date / Time functions

SQLite has no specific Date/Time data type but has several Date/Time functions.

Below the most useful for B4X:

• date(timestring, modifier, modifier, ...)

Returns a date.

• time(timestring, modifier, modifier, ...)

Returns a time.

• datetime(timestring, modifier, modifier, ...)

Returns a date and time.

For more details, examples and what timestring and modifiers are, please look at the SQLite

documentation.

In B4X the best way to store dates is to store them as ticks, which are the number of milliseconds

since January 1, 1970.

SQLite doesn’t have the same ticks but has "unixepoch" ticks which are the number of seconds

since January 1, 1970.

Examples of queries with Ticks in the DateTicks column:

DateTicks = 1448795854111 (B4A ticks):

• ResultSet1 = SQL1.ExecQuery("SELECT date(DateTicks / 1000, 'unixepoch') ...")

Returns: 2015-11-29

• ResultSet1 = SQL1.ExecQuery("SELECT time(DateTicks / 1000, 'unixepoch') ...")

Returns: 11:17:34

• ResultSet1 = SQL1.ExecQuery("SELECT datetime(DateTicks / 1000, 'unixepoch') ...")

Returns: 2015-11-29 11:17:34

In these examples DateTicks / 1000 is the timestring and 'unixepoch' a modifier.

The date format of the data() function is yyyy-MM-dd there is no possibility to change this format

with ‘unixepoch’

The date() function is used in the SQLiteLight4 example.

https://www.sqlite.org/lang_datefunc.html
https://www.sqlite.org/lang_datefunc.html

2.2 SQLite Database basics 16 B4X SQLite database

Another solution could be to store the date as a String with yyyy-MM-dd or yyyy-MM-dd HH.mm

format.

Only these formats must be used if you want tu use the functions below.

And when you read the data, you can return it with a format with the strftime function.

strftime(format, timestring, modifier, modifier, ...)

format can be:

%d day of month: 00

%f fractional seconds: SS.SSS

%H hour: 00-24

%j day of year: 001-366

%J Julian day number

%m month: 01-12

%M minute: 00-59

%s seconds since 1970-01-01

%S seconds: 00-59

%w day of week 0-6 with Sunday==0

%W week of year: 00-53

%Y year: 0000-9999

Examples with Date = ‘2017-03-09’

• ResultSet1 = SQL1.ExecQuery("SELECT strftime(‘%d-%m-%Y’, Date) ...")

Returns: 09-03-2017

• ResultSet1 = SQL1.ExecQuery("SELECT strftime(‘%m-%d-%Y’, Date) ...")

Returns: 03-09-2017

2.2 SQLite Database basics 17 B4X SQLite database

2.2.10 Other functions

2.2.10.1 Get the data type of columns typeof()

In a table with a column Part of type TEXT Number of type INTEGER and another column Price

of type REAL

SELECT typeof(Part), typeof(Number), typeof(Price) FROM TableName
ResultSet1 = SQL1.ExecQuery("SELECT typeof(Part), typeof(Number), typeof(Price) FROM
TableName”)

Get the data type with:

Column request or other request > result

Part: Cursor1.GetString(“Part”) or Cursor1.GetString2(0) > text

Number: Cursor1.GetString(“Number”) or Cursor1.GetString2(1) > integer

Price: Cursor1.GetString(“Price”) or Cursor1.GetString2(2) > real

2.2.10.2 Get the max length of the data in a column length()

For a string, the returned value is the number of characters not the number of bytes.

For a number, the returned value is the number of characters of its string representation.

For a blob, the returned value is the number of bytes.

SELECT max(length(Col1)) FROM TableName
MaxChars = SQL1.ExecQuerySingleResult("SELECT max(length(Col1)) FROM
TableName")

2.2.10.3 Get a sub string substr()

The substr(String, BeginIndex, Lenght) function returns a sub sting of String beginning with the

character at the BeginIndex position and with the number of characters given in Lenght.

If Lenght is omitted, substr returns the sub string from BeginIndex to the end of the string.

The index of the first character is 1.

Example:

Get the year from a date string ‘31/11/2016’

SELECT substr(Date, 7, 4) AS Year FROM TableName
ResultSet1 = SQL1.ExecQuery("SELECT substr(Date,7,4) AS Year FROM TableName")

Retrieve a date into another format:

Change a date from YYYY-MM-DD format to DD.MM.YYYY format:
ResultSet1 = SQL1.ExecQuery("SELECT substr(Date,9,2) || ‘.’ || substr(Date,6,2) || ‘.’
|| substr(Date,1,4) AS Date FROM TableName")

 Is || the concatenate operator.

|| ‘.’ || concatenates two strings with a dot . inbetween.

2.2 SQLite Database basics 18 B4X SQLite database

2.2.10.4 Replace parts of a string replace()

The replace(String, Target, Replace) function returns a string formed by substituting string Replace

for every occurrence of string Target in String. The replace function is case sensitive.

Equivalent to MyText.Replace(SubString) in B4X.

Example:

In a date like 2016-12-31 replace ‘–‘ by ‘/’ to get 2016/12/31
ResultSet1 = SQL1.ExecQuery("SELECT replace(Date,’-’,’/’) AS Date FROM TableName")

2.2.10.5 Find a substring in a string instr()

The instr(String, SubString) function finds the first occurrence of SubString within String and

returns the number of prior characters plus 1, or 0 if SubString is nowhere found within String.

Equivalent to MyText.IndexOf(SubString) in B4X.

Example:

ResultSet1 = SQL1.ExecQuery("SELECT instr(Date,’2016’) AS New FROM TableName")

2.2.10.6 Round a number round()

The round(Number, Digits) function returns a floating-point value Number rounded to Digits digits

to the right of the decimal point. If the Digits argument is omitted, it is assumed to be 0.

Equivalent to Round2(Number, Digits) in B4X.

Example:

Gets the value in the column Number and rounds it to two decimals and sets the column alias to

Value.
ResultSet1 = SQL1.ExecQuery("SELECT round(Number,2) AS Value FROM TableName")

2.2.10.7 Get the total number of rows count()

SELECT count() FROM TableName
NumberOfRows = SQL1.ExecQuerySingleResult("SELECT count() FROM TableName")

2.2.10.8 Get the tables in the database sqlite_master

SELECT name FROM sqlite_master WHERE Type='table'
ResultSet1 = SQL1.ExecQuery("SELECT name FROM sqlite_master Where Type='table'")

2.2.10.9 Get the column names of a table TableName

SELECT * FROM TableName
ResultSet1 = SQL1.ExecQuery("SELECT * FROM TableName")
Do While ResultSet1.NextRow
 ColumnName(i) = ResultSet1.GetColumnName(i)
Loop

2.2 SQLite Database basics 19 B4X SQLite database

2.2.10.10 Get the number of database rows that were changed changes()

Get the number of database rows that were changed or inserted or deleted by the most recently

completed INSERT, DELETE, or UPDATE.

SELECT changes() FROM TableName
NbChanges = SQL1.ExecQuerySingleResult("SELECT changes() FROM TableName")

2.2.10.11 Get the PRIMARY KEYs from a table rowid

Get the PRIMARY KEYs from a table and save them in a List, rowid is a reserved column name.

This is valid even if there is no column defined with PRIMARY KEY.

This function throws an error if the table is empty!

SELECT rowid FROM TableName
Private IDList As List
Private ResultSet1 As ResultSet

IDList.Initialize
ResultSet1 = SQL1.ExecQuery("SELECT rowid FROM TableName")
Do While ResultSet1.NextRow
 IDList.Add(Cursor1.GetLong2(0))
Loop

2.2.10.12 Get the last insert rowid from a table last_insert_rowid

Get the rowid of the last insert data set.

SELECT last_insert_rowid FROM TableName

Private LastRowID As Long

LastRowID = SQL1.ExecQuerySingleResult("SELECT last_insert_rowid() FROM TableName")

2.2 SQLite Database basics 20 B4X SQLite database

2.2.11 ResultSet GetInt, GetInt2 etc B4A, B4i, B4J

To read data from a database we use the ResultSet object.

We use a While / Do loop and ResultSet1.NextRow to go through the rows.

Examples:

Reads the rowids into a List:

 Private ResultSet1 As ResultSet
 ResultSet1 = SQL1.ExecQuery("SELECT rowid FROM persons")
 RowIDList.Initialize

 Do While ResultSet1.NextRow
 RowIDList.Add(ResultSet1.GetInt2(0))
 Loop

Fills three ListViews with data:

 Private ResultSet1 As ResultSet
 ResultSet1 = SQL1.ExecQuery("SELECT FirstName, LastName, City FROM persons")
 ltvFirstName.Clear
 ltvLastName.Clear
 ltvCity.Clear

 Do While ResultSet1.NextRow
 ltvFirstName.Add(ResultSet1.GetString2(0))
 ltvLastName.Add(ResultSet1.GetString2(1))
 ltvCity.Add(ResultSet1.GetString2(2))
 Loop

The following methods extract the different data from the Cursor.

• ResultSet.GetInt returns an Integer value.

• ResultSet.GeLong returns a Long value.

• ResultSet.GetDouble returns a Double value.

• ResultSet.GetString returns a String value.

• ResultSet.GetBlob returns a Binary Large Object, used for images.

For each method two version exist:

ResultSet.GetXXX(ColumnName) / ResultSet.GetXXX2(ColumnIndex)

ColumnName must be either:

• The name as defined in the table creation (case sensitive).

• The alias name defined in the query.

ColumnIndex is the column index in the query (beginning with 0).

From the example:

ResultSet.GetString(FirstName) ResultSet.GetString2(0)

2.2 SQLite Database basics 21 B4X SQLite database

2.2.12 Cursor GetInt, GetInt2 etc B4A only

The Cursor object exists only in B4A.

I suggest to not use it !

The Cursor object holds the result data form a query.

The data is organized in rows each row contains the data for each column defined in the query.

Example:
Cursor1 = Starter.SQL1.ExecQuery("SELECT FirstName As [First name], LastName As [Last
name], City FROM persons")

Each row holds 3 values, one for each column.

First, we need to set the index of the row with:

Cursor.Position = RowIndex sets the row index, the row count begins with 0.
Cursor1.Position = 0

We get the number of rows with:

Cursor.RowCount returns the number of rows, Cursor.RowCount = 0 if no result is found.
RowNb = Cursor1.RowCount

We get the number of columns with:

Cursor.ColumnCount returns the number of columns.
ColNb = Cursor1.ColumnCount

The following methods extract the different data from the Cursor.

• Cursor.GetInt returns an Integer value.

• Cursor.GeLong returns a Long value.

• Cursor.GetDouble returns a Double value.

• Cursor.GetString returns a String value.

• Cursor.GetBlob returns a Binary Large Object, used for images.

For each method two version exist:

Cursor.GetXXX(ColumnName) / GetXXX2(ColumnIndex)

ColumnName must be either:

• The name as defined in the table creation.

• The alias name defined in the query.

ColumnIndex is the column index in the query.

From the example:

Cursor.GetString(FirstName) Cursor.GetString2(0)

2.2 SQLite Database basics 22 B4X SQLite database

2.2.13 Get Table information PRAGMA

It uses a special query PRAGMA.

This query returns one row per column with following data :

Column index name Explanation

• 0 cid column index

• 1 name column name

• 2 type data type

• 3 dflt_value default value

• 4 notnull null if the database acccepts null values

• 5 pk primary key = 1 if the column is a PRIMARY KEY otherwise = 0

 This is valid only if a column with a primary key was created.

Example using the column indexes:
 ResultSet1 = SQL1.ExecQuery("PRAGMA table_info (TableName)")
 Do While ResultSet1.NextRow
 For j = 0 To ResultSet1.ColumnCount - 1
 Log(i & " / " & j & " : " & ResultSet1.GetString2(j))
 Next
 Log(" ")
 Loop

Or this code, using the column names:
 ResultSet1= SQL1.ExecQuery("PRAGMA table_info (TableName)")
 Do While ResultSet1.NextRow
 Log("ID : " & ResultSet1.GetString("cid"))
 Log("Name : " & ResultSet1.GetString("name"))
 Log("Type : " & ResultSet1.GetString("type"))
 Log("Default value : " & ResultSet1.GetString("dflt_value"))
 Log("Not null : " & ResultSet1.GetString("notnull"))
 Log("Primary key : " & ResultSet1.GetString("pk"))
 Log(" ")
 Loop

2.2 SQLite Database basics 23 B4X SQLite database

2.2.14 Deleting data DELETE FROM

DELETE FROM TableName WHERE ID = idVal
SQL1.ExecNonQuery("DELETE FROM TableName WHERE ID = idVal")

2.2.15 Rename a table ALTER TABLE Name RENAME TO

Renames a given table.

ALTER TABLE TableName RENAME TO NewTableName)
SQL1.ExecNonQuery("ALTER TABLE TableName RENAME TO NewTableName")

2.2.16 Add a column ALTER TABLE Name ADD COLUMN

Add a new column to the database.

ALTER TABLE TableName ADD COLUMN Colname ColType)
SQL1.ExecNonQuery("ALTER TABLE TableName ADD COLUMN ColN TEXT")

2.2.16.1 Update the database after having added a column

Update the database after having added a new column.

• Sets the values of all rows in the new column to an empty string.

UPDATE TableName SET ColName = ''
SQL1.ExecNonQuery("UPDATE TableName SET ColN = ''")

• Sets the values of the rows in a column to a given new value where the value is another old

value.

UPDATE TableName SET ColName = 'ValueNew' WHERE ColName = 'ValueOld'
SQL1.ExecNonQuery("UPDATE TableName SET ColN = 'ValueNew' WHERE ColN = 'ValueOld'")

2.2.17 Delete a table DROP TABLE

The DROP TABLE statement removes a table added with the CREATE TABLE statement. The

name specified is the table name. The dropped table is completely removed from the database

schema and the disk file. The table cannot be recovered. All indices and triggers associated with the

table are also deleted.

The optional IF EXISTS clause suppresses the error that would normally result if the table does not

exist.

DROP TABLE IF EXITS TableName
SQL1.ExecNonQuery("DROP TABLE IF EXISTS TableName")

http://www.sqlite.org/lang_createtable.html

2.2 SQLite Database basics 24 B4X SQLite database

2.2.18 Insert an image

To insert an image, we need a BLOB (Binary Large Object).

The column type in the database must be set to BLOB !

Sub InsertBlob
 'convert the image file to a bytes array
 Private InputStream1 As InputStream
 InputStream1 = File.OpenInput(File.DirAssets, "smiley.gif")
 Private OutputStream1 As OutputStream
 OutputStream1.InitializeToBytesArray(1000)
 File.Copy2(InputStream1, OutputStream1)
 Private Buffer() As Byte 'declares an empty array
 Buffer = OutputStream1.ToBytesArray

 'write the image to the database
 SQL1.ExecNonQuery2("INSERT INTO table2 VALUES('smiley', ?)", Array As String(Buffer))
End Sub

Here we are using a special type of OutputStream which writes to a dynamic byte array.

File.Copy2 copies all available data from the input stream into the output stream.

Then the bytes array is written to the database.

2.2.19 Read an image

Using a ResultSet.GetBlob we fetch the stored image.

Now we are using an input stream that reads from this array and load the image.

Sub ReadBlob
 Private ResultSet1 As ResutlSetr
 'Using ExecQuery2 is safer as it escapes special characters automatically.
 'In this case it doesn't really matter.
 ResultSet1 = SQL1.ExecQuery2("SELECT image FROM table2 WHERE name = ?", Array As
String("smiley"))
 ResultSet1.NextRow
 Private Buffer() As Byte 'declare an empty byte array
 Buffer = ResultSet1.GetBlob("image")
 Private InputStream1 As InputStream
 InputStream1.InitializeFromBytesArray(Buffer, 0, Buffer.Length)

 Private Bitmap1 As Bitmap
 Bitmap1.Initialize2(InputStream1)
 InputStream1.Close
End Sub

2.2 SQLite Database basics 25 B4X SQLite database

2.2.20 ExecQuery vs ExecQuery2 / ExecNonQuery vs ExecNonQuery2

The examples below suppose a table with three columns:

Col1 TEXT, Col2 INTEGER, Col3 INTEGER

There are two ways to execute a query.

• ExecQuery(Query As String)

Executes the query, you must take care of the datatype.

Example:
ResultSet1 = SQL1.ExecQuery("SELECT * FROM TableName WHERE Col1 = '" & MyText &
"' AND Col2 >= " & minVal & " AND Col2 <= " & maxVal)

Note that MyText is between two quotes because the data field is a TEXT field!

• ExecQuery2(Query As String, StringArgs As String())

The query includes question marks which will be replaced with the values in the array.

Example:
ResultSet1 = SQL1.ExecQuery2("SELECT * FROM TableName WHERE Col1 = ? AND Col2 >=
? AND Col2 <= ? ", Array As String (MyText, minVal, maxVal))

Note that ExecQuery2 is safer because it takes care of the column data type!

Note that with ExecQuery and text, you need to put the text between quotes like ‘text’.

With ExecQuery2 and text, you must not use the quotes, ExecQuery2 takes care of it.

The same for ExecNonQuery.

• ExecNonQuery(Query As String)

Executes the query, you must take care of the datatype.

Example:
SQL1.ExecNonQuery("INSERT INTO table1 VALUES('abc', 1, 2)")

Note that abc is between two quotes because the data field is a TEXT field!

• ExecNonQuery2(Query As String, StringArgs As String())

The query includes question marks which will be replaced with the values in the array.

Example:
SQL1.ExecNonQuery2("INSERT INTO table1 VALUES(?, ?, ?)", Array As String("abc”,
3, 4))

Note that ExecQuery2 is safer because it takes care of the column data type!

The same exists for ExecQuerySingleResult and ExecQuerySingleResult2.

2.2 SQLite Database basics 26 B4X SQLite database

2.2.21 Insert many rows SQL.BeginTransaction / SQL.EndTransaction

Sub InsertManyRows
 SQL1.BeginTransaction
 Try
 For i = 1 To 500
 SQL1.ExecNonQuery2("INSERT INTO table1 VALUES ('def', ?, ?)", Array As String(i,
i))
 Next
 SQL1.TransactionSuccessful
 Catch
 Log(LastException.Message)
 End Try
 SQL1.EndTransaction
End Sub

This code is an example of adding many rows. Internally a lock is acquired each time a "writing"

operation is done.

By explicitly creating a transaction the lock is acquired once.

The above code took less than half a second to run on a real device.

Without the BeginTransaction / EndTransaction block it took about 70 seconds.

A transaction block can also be used to guarantee that a set of changes were successfully done.

Either all changes are made, or none are made.

By calling SQL.TransactionSuccessful we are marking this transaction as a successful transaction.

If you omit this line, all the 500 INSERTS will be ignored.

It is very important to call EndTransaction eventually.

Therefore, the transaction block should usually look like:

SQL1.BeginTransaction
Try
 'Execute the sql statements.
SQL1.TransactionSuccessful
Catch
'the transaction will be cancelled
End Try
SQL1.EndTransaction

2.2 SQLite Database basics 27 B4X SQLite database

2.2.22 Asynchronus queries

The SQL library supports asynchronous select queries and asynchronous batch inserts.

Asynchronous means that the task will be processed in the background and an event will be raised

when the task completes. This is useful when you need to issue a slow query and keep your

application responsive.

The usage is quite simple:

SQL1.ExecQueryAsync("SQL1", "SELECT * FROM table1", Null)
...
Sub SQL1_QueryComplete (Success As Boolean, ResultSet1 As ResultSet)
 If Success Then
 Do While ResultSet1.NextRow

 Log(ResultSet1.GetInt2(0))
 Loop
 Else
 Log(LastException)
 End If
End Sub

The first parameter is the "event name". It determines which sub will handle the QueryComplete

event.

Since B4A 7.00, B4i 4.00 and B4J 5.50

you could use this code using a resumable sub and Wait For.

Dim rs as ResultSet
Dim SenderFilter As Object = SQL1.ExecQueryAsync("SQL", "SELECT * FROM table1", Null)
Wait For (SenderFilter) SQL_QueryComplete (Success As Boolean, rs As ResultSet)
If Success Then
 Do While rs.NextRow
 Log(rs.GetInt2(0))
 Loop
 rs.Close
Else
 Log(LastException)
End If

2.2 SQLite Database basics 28 B4X SQLite database

2.2.23 Batch inserts AddNonQueryToBatch / ExecNonQueryBatch

SQL.AddNonQueryToBatch / ExecNonQueryBatch allow you to asynchronously process a batch of

non-query statements (such as INSERT statements).

You should add the statements by calling AddNonQueryToBatch and eventually call

ExecNonQueryBatch.

The task will be processed in the background. The NonQueryComplete event will be raised after all

the statements execute.

For i = 1 To 10000
 SQL1.AddNonQueryToBatch("INSERT INTO table1 VALUES (?)", Array As String(Rnd(0,
100000)))
Next
SQL1.ExecNonQueryBatch("SQL")

...
Sub SQL_NonQueryComplete (Success As Boolean)
 Log("NonQuery: " & Success)
 If Success = False Then Log(LastException)
End Sub

Since B4A 7.00, B4i 4.00 and B4J 5.50 you should use this code using a resumable sub.

For i = 1 To 1000
 SQL1.AddNonQueryToBatch("INSERT INTO table1 VALUES (?)", Array(Rnd(0, 100000)))
Next
Dim SenderFilter As Object = SQL1.ExecNonQueryBatch("SQL")
Wait For (SenderFilter) SQL_NonQueryComplete (Success As Boolean)
Log("NonQuery: " & Success)

2.2 SQLite Database Multiple tables 29 B4X SQLite database

2.3 Multiple tables

A database can, of course, have more than one table.

Example: This is only a small simple example to demonstrate the principle.

Demo code example project SQLiteLight4.

Database with 3 tables:

• Stock Number INTEGER, ProductID INTEGER, Date INTEGER

 number of products product ID date in Ticks

• Products Name TEXT, Price REAL, SupplierID INTEGER

 product name product price supplier ID

• Suppliers Name TEXT, Address TEXT, City TEXT

 suppliers name suppliers address suppliers city

In the table Stock we use the ID of the product rather than its name.

The same for the Supplier in the Products table.

Query example of a call for display:
Query = "SELECT Stock.Number, Products.Name AS Product, Suppliers.Name AS Supplier,
Products.Price AS Price, Stock.Number * Products.Price AS Value, date(Stock.Date /
1000, 'unixepoch') AS Date"
Query = Query & " FROM Stock, Products, Suppliers"
Query = Query & " WHERE Products.rowid = Stock.ProductID AND Suppliers.rowid =
Products.SupplierID"

We want to read following data:

• The number of items in stock Stock.Number.

The Number column in the Stock table.

• The product name Products.Name AS Product.

The Name column in the Products table and give this column the name ‘Product’.

• The supplier name Suppliers.Name AS Supplier.

The Name column in the Suppliers tabel and give this column the name ‘Supplier’.

• The product price Products.Price AS Price.

The Price column in the Products table and give this column the name ‘SPrice’.

• The value of these products in stock Stock.Number * Products.Price AS Value.

The multiplication of the number of items in stock with the product price and give this

column the name ‘Value’.

• The date when the product was entered date(Stock.Date / 1000, 'unixepoch') AS Date.

We use the SQLite date function where we give the Date column of the Stock table.

As the date is in B4A ticks we need to devide the value by 1000 to adapt it to ‘SQL ticks’

and we must add the parameter 'unixepoch' for ‘SQL ticks’.

The query involves the three tables Stock, Products and Suppliers:
FROM Stock, Products, Suppliers

We must add a WHERE expression:

• To connect the Products table rowid to the Stock ProductID column value.
Products.rowid = Stock.ProductID

• To connect the Suppliers table rowid to the Products SupplierID column value.
Suppliers.rowid = Products.SupplierID

2.2 SQLite Database Multiple tables 30 B4X SQLite database

Example of the result:

For more details, look at the SQLiteLight4 example program.

2.4 SQLite Database Transaction speed 31 B4X SQLite database

2.4 Transaction speed

If you have to do many inserts into a database, you should use BeginTransaction and

EndTransaction this will considerably speed up the process.

A transaction is a set of multiple "writing" statements that are automatically committed.

It is particularly important to handle transactions carefully and close them.

The transaction is considered successful only if TransactionSuccessful is called. Otherwise no

changes will be made.

Typical usage:

SQL1.BeginTransaction
Try
 'block of statements like:
 For i = 1 To 1000
 SQL1.ExecNonQuery("INSERT INTO table1 VALUES(...)
 Next
 SQL1.TransactionSuccessful
Catch
 Log(LastException.Message) 'no changes will be made
End Try
SQL1.EndTransaction

2.5 SQLite Database First steps 32 B4X SQLite database

2.5 First steps

To use a database, we must:

2.5.1 Reference the SQLite library

First reference the SQL library in the Libs Tab in the lower right corner in the IDE.

 B4A B4i B4J

2.5.2 Declare the SQLite library

Declare it with Public in the Process_Globals routine of the Main module or for B4A in the

Process_Globals routine of the Starter Service module.

I suggest, to define two other variables for the database path and file name:

Sub Process_Globals
 Public SQL1 As SQL
 Public SQLDataBasePath As String
 Public SQLDataBaseName As String

B4A: In the Starter Module or in the Main module if you use only one Activity.

B4i and B4J: In the Main module.

2.5 SQLite Database First steps 33 B4X SQLite database

2.5.3 Initialize the SQLite library and the variables

Set values to the variables and initialize the SQLite library.

The value of SQLDataBasePath will be different on the three operating systems.

Then it depends on if you generate a database in the code or if you copy a database from

File.DirAssets if it doesn’t exist.

Example for B4A.

 SQLDataBasePath = File.DirInternal
 SQLDataBaseName = "persons.db"

 ' File.Delete(SQLDataBasePath, SQLDataBaseName) ' for testing, removes the database

 'check if the database already exists
 If File.Exists(File.DirInternal, SQLDataBaseName) = False Then
 'if not, initialize it
 'copy the default DB
 File.Copy(File.DirAssets, SQLDataBaseName, SQLDataBasePath, SQLDataBaseName)
 'initialize it
 SQL1.Initialize(SQLDataBasePath, SQLDataBaseName, True)
 'or create it
 'CreateDataBase
 Else
 'if yes, initialize it
 SQL1.Initialize(File.DirInternal, "persons.db", True)
 End If

B4A

Initialize it in the Service_Create routine in the Starter Service.

Or in the Main module with If FirstTime Then / End If

If you already have a database in the Files folder of the project you need to copy it from

File.DirAssets in another folder.

Databases are NOT accessible from File.DirAssets even for reading only!

Sub Starter_Create(FirstTime As Boolean)
 SQLDataBasePath = File.DirInternal
 SQLDataBaseName = "persons.db"

 ' File.Delete(File.DirInternal, "persons.db") ' only for testing, removes the
database

 'check if the database already exists
 If File.Exists(SQLDataBasePath, SQLDataBaseName) = False Then
 'if not, initialize it
 SQL1.Initialize(SQLDataBasePath, SQLDataBaseName, True)
 'and create it
 CreateDataBase
 Else
 'if yes, initialize it
 SQL1.Initialize(SQLDataBasePath, SQLDataBaseName, True)
 End If

2.5 SQLite Database First steps 34 B4X SQLite database

B4i

In the Application_Start routine:

Private Sub Application_Start (Nav As NavigationController)
 NavControl = Nav
 Page1.Initialize("Page1")
 Page1.RootPanel.LoadLayout("main")
 NavControl.ShowPage(Page1)

 SQLDataBasePath = File.DirDocuments
 SQLDataBaseName = "persons.db"

' File.Delete(SQLDataBasePath, "persons.db") ' only for testing, removes the database

 'check if the database already exists
 If File.Exists(SQLDataBasePath, SQLDataBaseName) = False Then
 'if not, initialize it
 SQL1.Initialize(SQLDataBasePath, SQLDataBaseName, True)
 'and create it
 CreateDataBase
 Else
 SQL1.Initialize(SQLDataBasePath, SQLDataBaseName, True)
 End If

2.5 SQLite Database First steps 35 B4X SQLite database

B4J

In the #Region Project Attributes you must reference the SQLite jar file :

#Region Project Attributes
 #MainFormWidth: 600
 #MainFormHeight: 800
 #AdditionalJar: sqlite-jdbc-3.7.2
#End Region

In the AppStart routine:

Sub AppStart (Form1 As Form, Args() As String)
 MainForm = Form1
 MainForm.RootPane.LoadLayout("Main") 'Load the layout file.
 MainForm.Show

 SQLDataBasePath = File.DirData("jSQLiteLight1")
 SQLDataBaseName = "persons.db"

 ' File.Delete(File.DirData("jSQLiteLight1"), "persons.db") ' only for testing,
removes the database

 'check if the database already exists
 If File.Exists(SQLDataBasePath, SQLDataBaseName) = False Then
 'if not, initialize it
 SQL1.InitializeSQLite(SQLDataBasePath, SQLDataBaseName, True)
 'and create it
 CreateDataBase
 Else
 'if yes, initialize it
 SQL1.InitializeSQLite(SQLDataBasePath, SQLDataBaseName, True)
 End If

2.6 First example program 36 B4X SQLite database

2.6 SQLite Database first simple example program SQLiteLight1

There are three projects, one for each operating system.

This example programs are very simple projects with a very simple user interface.

The goal is to show how to use SQLite with as much as possible the same code for the three

operating systems and not optimizing the layouts nor use operating system specific layouts.

The source codes are located in these folders:

SQLiteDatabase_SourceCode\SQLiteLight1\B4A

SQLiteDatabase_SourceCode\SQLiteLight1\B4i

SQLiteDatabase_SourceCode\SQLiteLight1\B4J.

The database name, the table name and the column names are hard coded, to make the code better

readable.

At the first run the program generates a new example database.

Following functions are implemented:

• Add / Edit an entry

• Delete an entry

• Update an entry

• Display first, previous, next and last entry.

 B4A B4i B4J

2.6 First example program 37 B4X SQLite database

2.6.1 Source code

It is self-explanatory.

2.6.1.1 B4A Program initialization

2.6.1.1.1 Process_Global

We dim the process global variables.

Sub Process_Globals
 Public SQL1 As SQL

 Public CurrentIndex = -1 As Int ' index of the current entry

 Public RowIDList As List ' list containing the IDs of the database
 ' we need it because the rowids can be different from the list indexes
 ' if we delete an entry its rowid is lost
End Sub

2.6.1.1.2 Globals

We dim all the views of the layout.

Sub Globals
 Private lblRowID As Label
 Private edtFirstName, edtLastName, edtCity As EditText
End Sub

2.6.1.1.3 Activity_Create

We check if the database already exists, initialize it, load it, and show the first entry.

Sub Activity_Create(FirstTime As Boolean)
 '**** opreating system specific code
 Activity.LoadLayout("Main")
 Activity.Title = "SQLiteLight1"

 '**** program specific code
 If FirstTime Then
 ' File.Delete(File.DirInternal, "persons.db") ' for testing, removes the database

 'check if the database already exists
 If File.Exists(File.DirInternal, "persons.db") = False Then
 'if not, initialize it
 SQL1.Initialize(File.DirInternal, "persons.db", True)
 'and create it
 CreateDataBase
 Else
 'if yes, initialize it
 SQL1.Initialize(File.DirInternal, "persons.db", True)
 End If
 End If
End Sub

2.6 First example program 38 B4X SQLite database

2.6.1.1.4 Activity_Resume

If the database is not initialized, we initialize it, initialize the IDList list, read the database and show

the first entry.

Sub Activity_Resume
 RowIDList.Initialize 'initialize the ID list
 ReadDataBase 'read the database
 ShowEntry(0) 'show the first entry
End Sub

2.6.1.1.5 Activity_Pause

Program closing:

If the program is closed by the user, we close the database.

Sub Activity_Pause (UserClosed As Boolean)
 If UserClosed Then
 SQL1.Close 'if the user closes the program we close the database
 End If
End Sub

2.6 First example program 39 B4X SQLite database

2.6.1.2 B4i Program initialisation

2.6.1.2.1 Process_Globas

We dim the process global variables.

Sub Process_Globals
 Public App As Application
 Public NavControl As NavigationController
 Private Page1 As Page
 Private HUD1 As HUD ' HUD library, used to display Toastmessages

 Public lblRowID As Label
 Public edtFirstName, edtLastName, edtCity As TextField

 Public SQL1 As SQL

 Private CurrentIndex As Int ' index of the current entry

 Public RowIDList As List ' list containing the RowIDs of the database
 ' we need it because the IDs can be different from the list indexes
 ' if we delete an entry its ID is lost
End Sub

2.6.1.2.2 Application_Start

Private Sub Application_Start (Nav As NavigationController)
 '**** opreating system specific code
 NavControl = Nav
 Page1.Initialize("Page1")
 Page1.Title = "iSQLiteLight1"
 Page1.RootPanel.Color = Colors.White
 Page1.RootPanel.LoadLayout("main")
 NavControl.ShowPage(Page1)

 '**** program specific code
 ' File.Delete(File.DirDocuments, "persons.db") ' for testing, removes the database

 'check if the database already exists
 If File.Exists(File.DirDocuments, "persons.db") = False Then
 'if not, initialize it
 SQL1.Initialize(File.DirDocuments, "persons.db", True)
 'and create it
 CreateDataBase
 Else
 SQL1.Initialize(File.DirDocuments, "persons.db", True)
 End If

 RowIDList.Initialize 'initialize the RowID list
End Sub

2.6.1.2.3 Page_Resize

Private Sub Page1_Resize(Width As Int, Height As Int)
 ' read the database
 ReadDataBase
 CurrentIndex = 0
 ShowEntry(CurrentIndex)
End Sub

2.6 First example program 40 B4X SQLite database

2.6.1.3 B4J Program initialisation

2.6.1.3.1 Process_Globals

We dim the process global variables.

Sub Process_Globals
 'operating system object
 Private fx As JFX
 Private MainForm As Form
 Private lblToastMessage As Label
 Public ToastMessageTimer As Timer

 'program specific objects and variables
 Public lblRowID As Label
 Public edtFirstName, edtLastName, edtCity As TextField
 Public SQL1 As SQL

 Private CurrentIndex = 0 As Int ' index of the current entry

 Public RowIDList As List ' list containing the RowIDs of the database
 ' we need it because the IDs can be different from the list indexes
 ' if we delete an entry its ID is lost
End Sub

2.6.1.3.2 AppStart

Sub AppStart (Form1 As Form, Args() As String)
 '**** opreating system specific code
 MainForm = Form1
 MainForm.RootPane.LoadLayout("Main") 'Load the layout file.
 MainForm.Show
 MainForm.Title = "jSQLiteLight1"

 ToastMessageTimer.Initialize("ToastMessageTimer", 1000)

 '**** program specific code
 ' File.Delete(File.DirData("jSQLiteLight1"), "persons.db") ' for testing, removes the
database

 'check if the database already exists
 If File.Exists(File.DirData("jSQLiteLight1"), "persons.db") = False Then
 'if not, initialize it
 SQL1.InitializeSQLite(File.DirData("jSQLiteLight1"), "persons.db", True)
 'and create it
 CreateDataBase
 Else
 'if yes, initialize it
 SQL1.InitializeSQLite(File.DirData("jSQLiteLight1"), "persons.db", True)
 End If

 RowIDList.Initialize
 'initialize the ID list

 ' read the databes
 ReadDataBase
 CurrentIndex = 0
 ShowEntry(CurrentIndex)
End Sub

2.6 First example program 41 B4X SQLite database

2.6.2 Database handling

2.6.2.1 Create database

We create the ‘persons’ table with the three following columns:

• FirstName the persons first name with TEXT data type.

• LastName the persons last name with TEXT data type.

• City the city where the person is living with TEXT data type.

Same code for all three operating systems!

Private Sub CreateDataBase
 Private Query As String

 'create the database with 3 columns
 Query = "CREATE TABLE persons (FirstName TEXT, LastName TEXT, City TEXT)"
 SQL1.ExecNonQuery(Query)

 'Fill a few entries
 Query = "INSERT INTO persons VALUES (?, ?, ?)"
 SQL1.ExecNonQuery2(Query, Array As String ("John", "KENNEDY", "New York"))
 SQL1.ExecNonQuery2(Query, Array As String ("Peter", "FALK", "Los Angeles"))
 SQL1.ExecNonQuery2(Query, Array As String ("Jack", "LONDON", "Seattle"))
 SQL1.ExecNonQuery2(Query, Array As String ("Ronald", "REGAN", "Los Angeles"))
End Sub

2.6.2.2 ReadDataBase

We

- Define a ResultSet and read the rowids from the database.

- Check if the database is not empty.

- Fill IDList with the rowids of all entries.

- Set the current index to 0

- Close the ResultSet

Why do we use a List with the rowids?

We use for the ID the rowid which is unique.

If we delete an entry its rowid is lost, which means that the rowid numbers are not simply the row

indexes but there can be ‘holes’ in the list.

Same code for all three operating systems!

Private Sub ReadDataBase
 Private ResultSet1 As ResultSet

 RowIDList.Clear 'initialize the RowID list
 'We read only the internal 'rowid' column and put rowids in a List
 ResultSet1 = SQL1.ExecQuery("SELECT rowid FROM persons")
 Do While ResultSet1.NextRow
 RowIDList.Add(ResultSet1.GetInt2(0)) 'add the rowid's to the RowID list
 Loop
 CurrentIndex = 0 'set the current index to 0
 ResultSet1.Close 'close the ResultSet, we don't need it anymore
End Sub

2.6 First example program 42 B4X SQLite database

2.6.2.3 ShowEntry

We get the selected entries rowid from IDList, read the entry from the database, fill the EditText

views and close the ResultSet.

Same code for all three operating systems!

Private Sub ShowEntry(EntryIndex As Int)
 Private ResultSet1 As ResultSet
 Private RowID As Int

 If RowIDList.Size = 0 Then 'check if the database is empty
 Return 'if yes leave the routine
 End If

 RowID = RowIDList.Get(EntryIndex) 'get the RowID for the given entry index
 'read the entry with the given RowID
 ResultSet1 = SQL1.ExecQuery("SELECT * FROM persons WHERE rowid = " & RowID)
 lblRowID.Text = RowID 'display the RowID
 ResultSet1.NextRow 'set the next row
 edtFirstName.Text = ResultSet1.GetString("FirstName") 'read the FirstName column
 edtLastName.Text = ResultSet1.GetString("LastName") 'read the LasstName column
 edtCity.Text = ResultSet1.GetString("City") 'read the City column
 ResultSet1.Close 'close the ResultSet, we don't it anymore
End Sub

2.6 First example program 43 B4X SQLite database

2.6.2.4 AddEntry

We first check if an entry with the same name already exists.

If yes, we display a message.

If not, we add the new entry.

Display the new entries ID.

Close the ResultSet.

We use ExecQuery2 instead of ExecQuery, it’s easier because we don’t need to take care of the data

type, the routine converts the data to the correct SQLite type.

The ? sign is a placeholder for the data which must be given in the array.

Private Sub AddEntry
 Private Query As String
 Private ResultSet1 As ResultSet
 Private RowID As Int

 'we check if all fields are filled
 If edtFirstName.Text = "" Or edtLastName.Text = "" Or edtCity.Text = "" Then
 Msgbox("One or more data is missing", "Missing data")
 Return
 End If

 'we check if an entry with the same name already exists
 Query = "SELECT * FROM persons WHERE FirstName = ? AND LastName = ? AND City = ?"
 ResultSet1 = SQL1.ExecQuery2(Query, Array As String(edtFirstName.Text, edtLastName.Text,
edtCity.Text))

 If ResultSet1.NextRow = True Then
 'if it exists show a message and do nothing else
 ToastMessageShow("This entry already exists", False)
 Else
 'if not, add the entry
 'we use ExecNonQuery2 because it's easier, we don't need to take care of the data types
 Query = "INSERT INTO persons VALUES (?, ?, ?)"
 SQL1.ExecNonQuery2(Query, Array As String(edtFirstName.Text, edtLastName.Text,
edtCity.Text))

 ToastMessageShow("Entry added", False) ' confirmation message for the user

 'to display the ID of the last entry we read the max value of the internal 'rowid' column
 RowID = SQL1.ExecQuerySingleResult("SELECT max(rowid) FROM persons")
 RowIDList.Add(RowID) 'add the last ID to the list
 CurrentIndex = RowIDList.Size - 1 'set the current index to the last one
 lblRowID.Text = RowID 'display the last index
 End If
 ResultSet1.Close 'close the ResultSet, we don't it anymore
End Sub

Small differences for the three operating systems:

• B4A
Msgbox("One or more data is missing", "Missing data")
ToastMessageShow("This entry already exists", False)

• B4i
Msgbox("One or more data is missing", "Missing data")
HUD1.ToastMessageShow("Entry added", False) ' confirmation for the user

• B4J the ToastMessageShow function is a routine in the program.
fx.Msgbox(MainForm, "One or more data is missing", "Missing data")
ToastMessageShow("This entry already exists", False)

2.6 First example program 44 B4X SQLite database

2.6.2.5 DeleteEntry

We ask the user if he really wants to delete the selected entry.

If the answer is yes, then we delete it.

And set the new CurrentIndex.

Sub DeleteEntry
 Private Query As String
 Private Answ As Int

 'ask the user for confirmation

 Answ = Msgbox2("Do you really want to delete " & edtFirstName.Text & " " &
edtLastName.Text, "Delete entry", "Yes", "", "No", Null)

 If Answ = DialogResponse.POSITIVE Then 'if yes, delete the entry
 Query = "DELETE FROM persons WHERE ID = " & IDList.Get(CurrentIndex)
 SQL1.ExecNonQuery(Query) 'delete the entry
 IDList.RemoveAt(CurrentIndex) 'remove the ID from the list
 If CurrentIndex = RowNumber - 1 Then 'if the current index is the last one
 CurrentIndex = CurrentIndex - 1 'decrement it by 1
 End If
 RowNumber = RowNumber - 1 'decrement the row count by 1
 ShowEntry(CurrentIndex) 'show the next entry
 ToastMessageShow("Entry deleted", False) 'confirmation for the user
 End If
End Sub

Small differences for the three operating systems:

• B4A / B4J
ToastMessageShow("This entry already exists", False)

• B4i
HUD1.ToastMessageShow("Entry added", False) ' confirmation for the user

2.6.2.6 UpdateEntry

We use ExecNonQuery2 instead of ExecNonQuery because it’s easier, we don’t need to take care

of the data type.

The ? sign is a placeholder for the data which must be given in the array.

Sub UpdateEntry
 Private Query As String

Query = "UPDATE persons Set FirstName = ?, LastName = ?, City = ? _
WHERE ID = " & IDList.Get(CurrentIndex)

 SQL1.ExecNonQuery2(Query, Array As String(edtFirstName.Text, _
 edtLastName.Text, edtCity.Text))
 ToastMessageShow("Entry updated", False)
End Sub

Small differences for the three operating systems:

• B4A / B4J
ToastMessageShow("This entry already exists", False)

• B4i
HUD1.ToastMessageShow("Entry added", False) ' confirmation for the user

2.7 SQLiteLight2 Second program 45 B4X SQLite database

2.7 SQLite Database second simple example program SQLiteLight2

This example program is an evolution of the SQLiteLight1 project.

The source codes are located in these folders:

SQLiteDatabase_SourceCode\SQLiteLight2\B4A

SQLiteDatabase_SourceCode\SQLiteLight2\B4i

SQLiteDatabase_SourceCode\SQLiteLight2\B4J.

The program generates a default database if there is none available.

Added a screen displaying the database in a table, using a WebView.

Following functions are implemented:

• Add an entry

• Edit an entry

o First, Previous, Next and Last entry

o Update an entry

o Delete an entry

o Go to First, Prev, Next and Last entry

• Filter

o AND / OR Boolean operator

o Filter

The user interfaces are somewhat different between the three operating systems.

I preferred making the user interfaces more operation system like with specific objects, rather than

making them almost the same, especially for B4A and B4i

This project does also exist as a B4XPages cross-platform project in the

B4XPages Cross-platform projects booklet.

This project is cross-platform oriented with the same interface for all three platforms.

It uses the B4XTable library and XUI Views instead of the WebView and platform specific views.

2.7 SQLiteLight2 Second program 46 B4X SQLite database

 B4A Main screen Edit screen Filter screen

B4i Main screen Edit screen Filter screen

B4J Main screen Edit screen Filter screen

2.7 SQLiteLight2 Second program 47 B4X SQLite database

2.7.1 Main module source code parts

Only the SQLite related routines are shown. Operating system routines are not shown.

2.7.1.1 Declaration of the Process global variables

We declare operating system dependent variables either in Process_Globals (B4i, B4J) or Globals

in B4A.

Sub Process_Globals
 ' different operating system variables
 '
 '
 'operating system independent variables
 Public SQL1 As SQL

 Public CurrentIndex = -1 As Int 'index of the current entry

 Public RowIDList As List 'list containing the IDs of the database
 'we need it because the IDs can be different from the list indexes
 'if we delete an entry its ID is lost

 ' used in ExecuteHTML
 Private HtmlCSS As String
 HtmlCSS = "table {font-family:helvetica;width: 100%;border: 1px solid #cef;text-
align: left; }" _
 & " th { font-weight: bold; background-color: #acf; border-bottom: 1px solid
#cef; }" _
 & "td,th { padding: 4px 5px; }" _
 & ".odd {background-color: #def; } .odd td {border-bottom: 1px solid #cef; }" _
 & "a { text-decoration:none; color: #000;}"
End Sub

2.7 SQLiteLight2 Second program 48 B4X SQLite database

2.7.1.2 Show table

We define the SQL query.

Depending if the filter is active, we add the filter query and change the filter button text.

We load the database query result in a WebView and read the database IDs.

'Shows the database in a table in a WebView
Private Sub ShowTable
 Private Query As String

 Query = "SELECT FirstName As [First name], LastName As [Last name], City FROM
persons"
 'depending if the filter is active or not we add the filter query at the end of the
query
 'the filter query is defined in the Filter Activity
 If Filter.flagFilterActive = False Then
 btnFilter.Text = "Filter" 'change the text in the Filter button
 Else
 Query = Query & Filter.Query
 btnFilter.Text = "UnFilter" 'change the text in the Filter button
 End If
 'displays the database in a table
 wbvTable.LoadHtml(ExecuteHtml(SQL1, Query, Null, True))
 ReadDataBaseIDs
End Sub

2.7 SQLiteLight2 Second program 49 B4X SQLite database

2.7.1.3 ExecuteHtml show a table in a WebView

This routine generates the Html string for the LoadHtml method.

It is extracted from the DBUtils class.

It is the same for all three operating systems.

'This routine is extracted from the DBUtils code module
'Creates a html text that displays the data in a table.
'The style of the table can be changed by modifying HtmlCSS variable.
Private Sub ExecuteHtml(SQL As SQL, Query As String, StringArgs() As String, Clickable
As Boolean) As String
 Private ResultSet1 As ResultSet
 If StringArgs <> Null Then
 ResultSet1 = SQL.ExecQuery2(Query, StringArgs)
 Else
 ResultSet1 = SQL.ExecQuery(Query)
 End If
 Private sb As StringBuilder
 sb.Initialize
 sb.Append("<html><body>").Append(CRLF)
 sb.Append("<style type='text/css'>").Append(HtmlCSS).Append("</style>").Append(CRLF)
 sb.Append("<table><tr>").Append(CRLF)
 For i = 0 To ResultSet1.ColumnCount - 1
 sb.Append("<th>").Append(ResultSet1.GetColumnName(i)).Append("</th>")
 Next

 sb.Append("</tr>").Append(CRLF)

 Private row As Int
 row = 0
 Do While ResultSet1.NextRow
 If row Mod 2 = 0 Then
 sb.Append("<tr>")
 Else
 sb.Append("<tr class='odd'>")
 End If
 For i = 0 To ResultSet1.ColumnCount - 1
 sb.Append("<td>")
 If Clickable Then
 sb.Append("<a href='http://").Append(i).Append(".")
 sb.Append(row)
 sb.Append(".stub'>").Append(ResultSet1.GetString2(i)).Append("")
 Else
 sb.Append(ResultSet1.GetString2(i))
 End If
 sb.Append("</td>")
 Next
 sb.Append("</tr>").Append(CRLF)
 row = row + 1
 Loop
 ResultSet1.Close
 sb.Append("</table></body></html>")
 Return sb.ToString
End Sub

2.7 SQLiteLight2 Second program 50 B4X SQLite database

2.7.1.4 ReadDatabaseRowIDs

We read the rowids from the database. We need this because the entry numbering is not

straightforward. If we delete an entry with a given rowid this one is lost to maintain all the other

rowids the same.

The routine is the same for all three operating systems.

'Reads the database rowids in RowIDList
Private Sub ReadDataBaseRowIDs
 Private ResultSet1 As ResultSet

 If Filter.flagFilterActive = False Then
 ResultSet1 = SQL1.ExecQuery("SELECT rowid FROM persons")
 Else
 ResultSet1 = SQL1.ExecQuery("SELECT rowid FROM persons" & Filter.Query)
 End If

 'We read only the ID column and put them in the IDList
 RowIDList.Initialize 'initialize the
ID list
 Do While ResultSet1.NextRow
 RowIDList.Add(ResultSet1.GetInt2(0)) 'add the rowid's to the RowID list
 Loop
 If RowIDList.Size > 0 Then
 CurrentIndex = 0 'set the current index
to 0
 Else
 CurrentIndex = -1 'set the current index
to -1, no selected item
 ToastMessageShow("No items found", False)
 End If
 ResultSet1.Close
 'close the ResultSet, we don't need it anymore
End Sub

2.7.1.5 UpdateSelectedEntryDisplay

When the user selects an entry, we display it in a Label.

The routine is the same for all three operating systems.

Private Sub UpdateSelectedEntryDisplay
 Private Query As String
 Private ResultSet1 As ResultSet

 Query = "SELECT FirstName, LastName, City FROM persons WHERE rowid = " &
RowIDList.Get(CurrentIndex)
 ResultSet1 = SQL1.ExecQuery(Query)
 ResultSet1.NextRow
 lblSelectedItem.Text = ResultSet1.GetString("FirstName") & " " &
ResultSet1.GetString("LastName") & " " & ResultSet1.GetString("City")
 ResultSet1.Close
End Sub

2.7 SQLiteLight2 Second program 51 B4X SQLite database

2.7.1.6 WebView events _ OverrideUrl / _LocationChanged

We use a WebView event when the user selects an entry.

The content of the routine is the same, only the event name changes in B4J.

B4A and B4i:

'Routine from the DBUtils demo program
Private Sub wbvTable_OverrideUrl (Url As String) As Boolean
 'parse the row and column numbers from the URL
 Log(Url)
 Private values() As String
 values = Regex.Split("[.]", Url.SubString(7))
 Private row As Int
 row = values(1)
 CurrentIndex = row
 UpdateSelectedItem
 Return True 'Don't try to navigate to this URL
End Sub

The URL variable holds the return value from the WebView event.

It could look like this http//2.7.stub/ where 2 is the col index and 7 is the row index.

The col and row values are extracted in values = Regex.Split("[.]", Url.SubString(7))

values(0) holds the col value

values(1) holds the row value

values(2) holds the end of the string

B4J: the OverrideURL event doesn’t exist in B4J so we use LocationChanged.

Private Sub wbvTable_LocationChanged (Location As String)
 'parse the row and column numbers from the Location string

 Private values() As String
 values = Regex.Split("[.]", Location.SubString(7))

 Private row As Int
 row = values(1)
 CurrentIndex = row
 UpdateSelectedItem
End Sub

The Location string holds the return value from the WebView event.

2.7 SQLiteLight2 Second program 52 B4X SQLite database

2.7.2 Edit Module source code parts

In the Edit module, there is nothing special.

2.7.3 Filter Module source code parts

Most of the code is self-explanatory.

For the filter data selection, we use for:

• B4A Spinners

• B4i Pickers

• B4J ComboBoxes

These are filled with the data from the database.

The first item in each object is “no filter”, which means that this column is not filtered.

But as there can be multiple entries with the same data we fill them with ‘distinct’ data, one name is

shown only once.

The code is shown for one object only, the principle is the same for the others.

2.7.3.1 B4A

'Initialize the Spinners
Private Sub UpdateFilters
 Private Query1 As String
 Private ResultSet1 As ResultSet

 'We execute a query for each column and fill the Spinner
 'We use SELECT DISTINCT to have each existing first name in the database only once
 Query1 = "SELECT DISTINCT FirstName FROM persons ORDER BY FirstName ASC"

 'fill the FirstName Spinner
 ResultSet1 = Main.SQL1.ExecQuery(Query1)
 'we add 'no filter' as no selection
 spnFirstName.Add("no filter")
 'we fill the Spinner with the data from the database
 Do While ResultSet1.NextRow
 spnFirstName.Add(ResultSet1.GetString("FirstName"))
 Loop

2.7 SQLiteLight2 Second program 53 B4X SQLite database

2.7.3.2 B4i

We use Pickers.

'Initialize the Pickers
Private Sub UpdateFilters
 Private Query1 As String
 Private ResultSet1 As ResultSet

 'We execute a query for each column and fill the Spinner
 'We use SELECT DISTINCT to have each existing first name in the database only once

 'fill FirstName Picker
 Query1 = "SELECT DISTINCT FirstName FROM persons ORDER BY FirstName ASC"

 Private lst As List
 lst.Initialize

 'we add 'no filter' as no selection
 lst.Add("no filter")
 ResultSet1 = Main.SQL1.ExecQuery(Query1)

 'we fill the Picker with the data from the database
 Do While ResultSet1.NextRow
 lst.Add(ResultSet1.GetString("FirstName"))
 Loop
 picFirstName.SetItems(0, lst)

2.7.3.3 B4J

We use ComboBoxes.

'Initialize the ComboBoxes
Private Sub UpdateFilters
 Private Query1 As String
 Private ResultSet1 As ResultSet

 'We execute a query for each column and fill the ComboBox
 'We use SELECT DISTINCT to have each existing first name in the database only once
 Query1 = "SELECT DISTINCT FirstName FROM persons ORDER BY FirstName ASC"

 'fill the FirstName ComboBox
 ResultSet1 = Main.SQL1.ExecQuery(Query1)
 'we add 'no filter' as no selection
 cbxFirstName.Items.Clear
 cbxFirstName.Items.Add("no filter")
 'we fill the Spinner with the data from the database
 Do While ResultSet1.NextRow
 cbxFirstName.Items.Add(ResultSet1.GetString("FirstName"))
 Loop

2.8 SQLiteLight3 Third program 54 B4X SQLite database

2.8 SQLite Database third simple example program SQLiteLight3

A third example program is in the SQLiteLight3 program.

The source codes are located in these folders:

SQLiteDatabase_SourceCode\SQLiteLight3\B4A

SQLiteDatabase_SourceCode\SQLiteLight3\B4i

SQLiteDatabase_SourceCode\SQLiteLight3\B4J.

This program is almost the same as SQLiteLight2, all functions are the same.

The differences are the database path, database name, table name, column number, column names,

column alias names and column data types are variables instead being hard coded.

It allows also to generate a new database by:

- changing in Globals the values of the variables listed above

- in Activity_Create

-- comment this line: 'File.Copy(File.DirAssets, SQLDateBaseName, SQLDataBasePath,

SQLDateBaseName)

-- uncomment this line: CreateDataBase

The code has comments and is, I hope, self explanatory.

One example to show the difference:

For the query to show the table.

In SQLiteLight2 the names are hard coded:

Sub ShowTable
 Private i As Int
 Private Query As String
 Query = "SELECT FirstName As [First name], LastName As [Last name], _

City FROM persons"

In SQLiteLight3 the names are variables defined in Globals:

Sub ShowTable
 Private i As Int
 Private Query As String

 Query = "SELECT "
 For i = 0 To ColNumber - 1
 If i < ColNumber - 1 Then
 Query = Query & ColNames(i) & " As [" & ColAliasNames(i) & "], "
 Else
 Query = Query & ColNames(i) & " As [" & ColAliasNames(i) & "] "
 End If
 Next
 Query = Query & " FROM " & SQLTabelName

2.9 SQLiteLight3 with B4XTable 55 B4X SQLite database

2.9 SQLite Database 3rd example with B4XTable

This project is the same as the previous one, but it uses B4XTable to display the database instead of

a WebView.

2.10 SQLiteLight3 XUI version 56 B4X SQLite database

2.10 SQLite Database 3rd example XUI version SQLiteLight3X

This program is the still the third SQLite Database example project, but a XUI cross platform

version.

Most of the code is in common modules!

The project uses:

• A common Starter module.

The Starter service module is the best entry point for B4A. To share most of the code

between the three platforms we use also the same Starter module in B4i and B4J.

• A B4XTable table to display the data.

• XUI Views for the interfaces.

2.11 SQLiteLight4 Fourth program 57 B4X SQLite database

2.11 SQLite Database fourth example program SQLiteLight4

This SQLite example program, SQLiteLight4, is a bit more elaborated than SQLiteLight2.

In SQLiteLight2 there is only one table, in this program there are three tables.

The purpose of this example is to show the principle of managing several tables.

To make the code more readable, all names are hard coded and not stored in variables like in

SQLiteLight3.

The source codes are located in these folders:

SQLiteDatabase_SourceCode\SQLiteLight4\B4A

SQLiteDatabase_SourceCode\SQLiteLight4\B4i

SQLiteDatabase_SourceCode\SQLiteLight4\B4J.

The program manages a spare part stock. The tables are intentionally very simple with just a few

columns and not all possible errors or mistakes a user can make are checked to keep the code simple

and easier to read and understand.

The database has three tables:

• Stock Number INTEGER, ProductID INTEGER, Date INTEGER

 number of products product ID date in Ticks

• Products Name TEXT, Price REAL, SupplierID INTEGER

 product name product price supplier ID

• Suppliers Name TEXT, Address TEXT, City TEXT

 suppliers’ name suppliers’ address suppliers’ city

In the table Stock we use the ID of the product rather its name. The same in the table Products for

the Supplier. The advantage is that we memorize a reference to the data in the original table instead

of copying the data into another table. If we change once the data in the original table all the data in

other tables are updated automatically.

Query example of a call for display:
Query = "SELECT Stock.Number, Products.Name AS Product, Suppliers.Name AS Supplier,
Products.Price AS Price, Stock.Number * Products.Price AS Value, date(Stock.Date /
1000, 'unixepoch') AS Date"
Query = Query & " FROM Stock, Products, Suppliers"
Query = Query & " WHERE Products.rowid = Stock.ProductID AND Suppliers.rowid =
Products.SupplierID"

2.11 SQLiteLight4 Fourth program 58 B4X SQLite database

We want to read following data:

• The number of items in stock Stock.Number.

The Number column in the Stock table.

• The product name Products.Name AS Product.

The Name column in the Products table and give this column the name ‘Product’.

• The supplier name Suppliers.Name AS Supplier.

The Name column in the Suppliers table and give this column the name ‘Supplier’.

• The product price Products.Price AS Price.

The Price column in the Products table and give this column the name ‘Price’.

• The value of these products in stock Stock.Number * Products.Price AS Value.

The multiplication of the number of items in stock with the product price and give this

column the name ‘Value’.

• The date when the product was entered date(Stock.Date / 1000, 'unixepoch') AS Date.

We use the SQLite date function where we give the Date column of the Stock table.

As the date is in B4A ticks we need to devide the value by 1000 to adapt it to ‘SQL ticks’

and we must add the parameter 'unixepoch' for ‘SQL ticks’.

The query concerns the three tables Stock, Products and Suppliers:
FROM Stock, Products, Suppliers

We must add a WHERE expression:

• To connect the Products table rowid to the Stock ProductID column value.
Products.rowid = Stock.ProductID

• To connect the Suppliers table rowid to the Products SupplierID column value.
Suppliers.rowid = Products.SupplierID

Example of the result:

2.12 SQLite Viewer 59 B4X SQLite database

2.12 SQLite Viewer

There is a B4A SQLiteViewer program in the forum, that allows you to load and display databases.

The program uses the DBUtils module and the table is shown in a WebView view.

The usage of the DBUtils module is explained in the DBUtils chapter.

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/9197-android-sqlite-viewer-2.html#post51050
http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/8475-dbutils-android-databases-now-simple-6.html#post47359

3 DBUtils 2 60 B4X SQLite database

3 DBUtils version 2

For those who are not familiar with SQLite, Erel has written DBUtils, a B4X Library, that should

make things easier.

To use it, check it in the Libraries Manager Tab.

If you don’t have it yet, download it from the forum and save the DBUtils.b4xlib file into the

\AdditionalLibraries\B4X folder.

If have not yet defined the AdditionalLibraries folder with the structure below, it’s time to do it.

Folder for B4A additional libraries.

Folder for B4i additional libraries.

Folder for B4J additional libraries.

Folder for B4R additional libraries.

Folder for B4X libraries.

Folder for B4X libraries XML files.

One subfolder for each product: B4A, B4i, B4J, B4R and another B4X for B4X libraries.

B4X Libraries are explained in chapter B4X libraries x.b4xlib in the B4X Basic Language booklet.

https://www.b4x.com/guides/B4xBasicLanguage/?page=83

3 DBUtils 2 61 B4X SQLite database

3.1 DBUtil functions

Following functions are available:

Methods B4A B4i B4J

CopyDBFromAssets x x x

CreateTable x x x

DeleteRecord x x x

DropTable x x x

ExecuteHtml x x x

ExecuteJSON x x x

ExecuteList x x x

ExecuteList2 x x x

ExecuteListView x

ExecuteMap x x x

ExecuteMemoryTable x x x

ExecuteTableView x

ExecuteSpinner x

GetDBFolder x x x

GetDBVersion x x x

GetFieldsInfo x x x

GetTables x x x

InsertMaps x x x

SetDBVersion x x x

TableExists x x x

UpdateRecord x x x

UpdateRecord2 x x x

3 DBUtils 2 62 B4X SQLite database

3.1.1 CopyDBFormAssets B4A, B4

CopyDBFromAssets(FileName As String) As String

Copies a database file that was added in the project Files tab. The database must be copied to a

writable location because it is not possible to access a database located in File.DirAssets.

This method copies the database in:

• B4A, to the storage card with rp.GetSafeDirDefaultExternal. If the storage card is not

available, the file is copied to the internal folder File.DirInternal.

• B4i, to File.DirDocumemts.

The target folder is returned. If the database file already exists, then no copying is done.

3.1.2 CopyDBFormAssets B4J

CopyDBFromAssets (FileName As String, AppName As String) As String

Copies a database file that was added in the project Files tab. The database must be copied to a

writable location because it is not possible to access a database located in File.DirAssets.

This method copies the database in:

• B4J, to C:\Users\UserName\AppData\Roaming\AppName

UserName your user name

AppName the given App name

The target folder is returned. If the database file already exists, then no copying is done.

3.1.3 CreateTable B4A, B4i, B4J

CreateTable(SQL As SQL, TableName As String, FieldsAndTypes As Map, PrimaryKey As
String)

Creates a new table with the given name.

FieldsAndTypes - A map with the fields names as keys and the types as values.

You can use the DB_... constants for the types.

PrimaryKey - The column that will be the primary key. Pass empty string if not needed.

3.1.4 DeleteRecord B4A, B4i, B4J

DeleteRecord(SQL As SQL, TableName As String, WhereFieldEquals As Map)

Deletes records.

WhereFieldEquals, Map with the WHERE conditions.

Map Key = Column,

Map Value = WHERE condition value

3 DBUtils 2 63 B4X SQLite database

3.1.5 DropTable B4A, B4i, B4J

DropTable(SQL As SQL, TableName As String)

Deletes the given table.

3.1.6 ExecuteHtml B4A, B4i, B4J

ExecuteHtml(SQL As SQL, Query As String, StringArgs() As String, Limit As Int,
Clickable As Boolean) As String

Creates an html text that displays the data in a table in a WebView.

The style of the table can be changed by modifying the HtmlCSS variable.

StringArgs() - Values to replace question marks in the query. Pass Null if not needed.

Limit - Limits the results. Pass 0 for all results.

3.1.7 ExecuteJSON B4A, B4i, B4J

ExecuteJSON(SQL As SQL, Query As String, StringArgs() As String, Limit As Int, DBTypes
As List) As Map

Executes the given query and creates a Map that you can pass to JSONGenerator and generate

JSON text.

StringArgs()- Values to replace question marks in the query. Pass Null if not needed.

Limit - Limits the results. Pass 0 for all results.

DBTypes - Lists the type of each column in the result set.

Usage example: (don't forget to add a reference to the JSON library)
 Dim gen As JSONGenerator
 gen.Initialize(DBUtils.ExecuteJSON(SQL, "SELECT Id, Birthday FROM Students",
 Null, 0, Array As String(DBUtils.DB_TEXT, DBUtils.DB_INTEGER)))
 Dim JSONString As String
 JSONString = gen.ToPrettyString(4)
 Msgbox(JSONString, "")

3.1.8 ExecuteList B4A, B4i, B4J

ExecuteList(SQL As SQL, Query As String, StringArgs() As String, Limit As Int, List1 As
List)

Executes the query and fills the List with the values.

StringArgs()- Values to replace question marks in the query. Pass Null if not needed.

Limit - Limits the results. Pass 0 for all results.

3 DBUtils 2 64 B4X SQLite database

3.1.9 ExecuteListView B4A

ExecuteListView(SQL As SQL, Query As String, StringArgs() As String, Limit As Int,
ListView1 As ListView, TwoLines As Boolean)

Executes the query and fills the ListView with the values.

StringArgs()- Values to replace question marks in the query. Pass Null if not needed.

Limit - Limits the results. Pass 0 for all results.

If TwoLines is true then the first column is mapped to the first line and the second column is mapped

to the second line.

In both cases the value set to the row is the array with all the records values.

3.1.10 ExecuteMap B4A, B4i, B4J

ExecuteMap(SQL As SQL, Query As String, StringArgs() As String) As Map

Executes the query and returns a Map with the column names as the keys and the first record values

As the entries values.

StringArgs() - Values to replace question marks in the query. Pass Null if not needed.

The keys are lower cased.

Returns Null if no results found.

3.1.11 ExecuteMemoryTable B4A, B4i, B4J

ExecuteMemoryTable(SQL As SQL, Query As String, StringArgs() As String, Limit As Int)
As List

Executes the query and returns the result as a list of arrays.

Each item in the list is a strings array.

StringArgs() - Values to replace question marks in the query. Pass Null if not needed.

Limit - Limits the results. Pass 0 for all results.

3.1.12 ExecuteTableView B4J

ExecuteTableView(SQL As SQL, Query As String, StringArgs() As String, Limit As Int, _
 TableView1 As TableView)

Executes the query and fills the TableView with the values.

StringArgs()- Values to replace question marks in the query. Pass Null if not needed.

Limit - Limits the results. Pass 0 for all results.

3.1.13 ExecuteSpinner B4A

ExecuteSpinner(SQL As SQL, Query As String, StringArgs() As String, Limit As Int,
Spinner1 As Spinner)

Executes the query and fills the Spinner with the values.

StringArgs()- Values to replace question marks in the query. Pass Null if not needed.

Limit - Limits the results. Pass 0 for all results.

3 DBUtils 2 65 B4X SQLite database

3.1.14 GetDBFolder B4A, B4i, B4J

GetDBFolder As String

Returns the path to a folder where you can create a database, preferably on the secondary storage.

3.1.15 GetDBVersion B4A, B4i, B4J

GetDBVersion(SQL As SQL) As Int

Gets the current version of the database.

If the DBVersion table does not exist it is created and the current version is set to version 1.

3.1.16 GetFieldInfo B4A, B4i, B4J

GetFieldInfo(SQL As SQL, TableName As String)

Gets information about each field in a table.

Returns a list of DBFieldInfo

3.1.17 GetTables B4A, B4i, B4J

GetTables(SQL As SQL)

Get all tables names as list.

Returns: List

3.1.18 InsertMaps B4A, B4i, B4J

InsertMaps(SQL As SQL, TableName As String, ListOfMaps As List)

Inserts the data to the table.

ListOfMaps - A list with maps as items. Each map represents a record where the map keys are the

columns names and the maps values are the values. Note that you should create a new map for each

record (this can be done by calling Dim to redim the map).

3.1.19 SetDBVersion B4A, B4i, B4J

SetDBVersion(SQL As SQL, Version As Int)

Sets the database version to the given version number.

3.1.20 TableExists B4A, B4i, B4J

TableExists(SQL As SQL, TableName As String) As Boolean

Tests whether the given table exists.

3 DBUtils 2 66 B4X SQLite database

3.1.21 UpdateRecord B4A, B4i, B4J

UpdateRecord(SQL As SQL, TableName As String, Field As String, NewValue As Object,
WhereFieldEquals As Map)

Updates a single record in the database.

Field - Column name

NewValue - new value

WhereFieldEquals - Map where the map keys are the column names and the map values the values

to update.

3.1.22 UpdateRecord2 B4A, B4i, B4J

UpdateRecord2(SQL As SQL, TableName As String, Fields As Map, WhereFieldEquals As Map)

Updates multiple records in the database.

Fields – Map where the map keys are the column names and the map values the new value.

WhereFieldEquals - Map where the map keys are the column names and the map values the values

to update.

3.2 Examples

You find Erels’ examples in the Forum under: [B4X] DBUtils 2.

These examples are not explained in this chapter.

https://www.b4x.com/android/forum/threads/b4x-dbutils-2.81280/#content

3 DBUtils 2 67 B4X SQLite database

3.3 DBUtilsDemo example program

This example program shows the use of some DBUtils features.

The database used is personsflca.db, which contains persons data:

• FirstName

• LastName

• Address

• City

The source codes are located in these folders:

SQLiteDatabase_SourceCode\DBUtilsDemo\B4A

SQLiteDatabase_SourceCode\DBUtilsDemo \B4i

SQLiteDatabase_SourceCode\DBUtilsDemo \B4J.

They need following libraries:

• SQL

• XUI

Most of the code is the same for all three products B4A, B4i and B4J.

DBUtils functions used:

• DBUtils.CopyDBFromAssets

• DBUtils.ExecuteHTML

• DBUtils.ExecuteMemoryTable

• DBUtils.ExecuteList

• DBUtils.UpdateRecors2

• DBUtils.InsertMaps

• DBUtils.DeleteRecord

The code is not explained in detail, I think that it is enough self-explanatory.

3 DBUtils 2 68 B4X SQLite database

B4J

 B4A B4i

3 DBUtils 2 69 B4X SQLite database

3.3.1 Code differences

The main code differences between the three products are the start of the program which are

operating system specific and the WebView event routines.

The WebView event routines are the same in B4A and B4i but different in B4J.

B4A and B4i, the event is called OverrideUrl.

Private Sub WebView1_OverrideUrl (Url As String) As Boolean
 'parse the row and column numbers from the URL
 Private values() As String
 values = Regex.Split("[.]", Url.SubString(7))
 SelectedCol = values(0)
 SelectedRow = values(1)

 UpdateSelectedData 'updates the selected entry

 Return True 'Don't try to navigate to this URL
End Sub

B4J the event is called LocationChanged.

Private Sub WebView1_LocationChanged (Location As String)
 'parse the row and column numbers from the URL
 Private values() As String
 If Location.Contains("stub") Then
 values = Regex.Split("[.]", Location.SubString(7))
 SelectedCol = values(0)
 SelectedRow = values(1)

 UpdateSelectedData 'updates the selected entry
 End If
End Sub

	1 B4X platforms
	2 SQLite Database
	2.1 General information
	2.2 SQLite Database basics
	2.2.1 Database initialization SQL1.Initialize / SQL1.InitializeSQLite
	2.2.2 Table creation CREATE TABLE
	2.2.3 INTEGER PRIMARY KEY rowid
	2.2.4 Adding data INSERT INTO
	2.2.5 Updating data UPDATE
	2.2.6 Reading data SELECT
	2.2.7 Filtering WHERE
	2.2.8 Sorting ORDER BY
	2.2.9 Date / Time functions
	2.2.10 Other functions
	2.2.10.1 Get the data type of columns typeof()
	2.2.10.2 Get the max length of the data in a column length()
	2.2.10.3 Get a sub string substr()
	2.2.10.4 Replace parts of a string replace()
	2.2.10.5 Find a substring in a string instr()
	2.2.10.6 Round a number round()
	2.2.10.7 Get the total number of rows count()
	2.2.10.8 Get the tables in the database sqlite_master
	2.2.10.9 Get the column names of a table TableName
	2.2.10.10 Get the number of database rows that were changed changes()
	2.2.10.11 Get the PRIMARY KEYs from a table rowid
	2.2.10.12 Get the last insert rowid from a table last_insert_rowid

	2.2.11 ResultSet GetInt, GetInt2 etc B4A, B4i, B4J
	2.2.12 Cursor GetInt, GetInt2 etc B4A only
	2.2.13 Get Table information PRAGMA
	2.2.14 Deleting data DELETE FROM
	2.2.15 Rename a table ALTER TABLE Name RENAME TO
	2.2.16 Add a column ALTER TABLE Name ADD COLUMN
	2.2.16.1 Update the database after having added a column

	2.2.17 Delete a table DROP TABLE
	2.2.18 Insert an image
	2.2.19 Read an image
	2.2.20 ExecQuery vs ExecQuery2 / ExecNonQuery vs ExecNonQuery2
	2.2.21 Insert many rows SQL.BeginTransaction / SQL.EndTransaction
	2.2.22 Asynchronus queries
	2.2.23 Batch inserts AddNonQueryToBatch / ExecNonQueryBatch

	2.3 Multiple tables
	2.4 Transaction speed
	2.5 First steps
	2.5.1 Reference the SQLite library
	2.5.2 Declare the SQLite library
	2.5.3 Initialize the SQLite library and the variables

	2.6 SQLite Database first simple example program SQLiteLight1
	2.6.1 Source code
	2.6.1.1 B4A Program initialization
	2.6.1.1.1 Process_Global
	2.6.1.1.2 Globals
	2.6.1.1.3 Activity_Create
	2.6.1.1.4 Activity_Resume
	2.6.1.1.5 Activity_Pause

	2.6.1.2 B4i Program initialisation
	2.6.1.2.1 Process_Globas
	2.6.1.2.2 Application_Start
	2.6.1.2.3 Page_Resize

	2.6.1.3 B4J Program initialisation
	2.6.1.3.1 Process_Globals
	2.6.1.3.2 AppStart

	2.6.2 Database handling
	2.6.2.1 Create database
	2.6.2.2 ReadDataBase
	2.6.2.3 ShowEntry
	2.6.2.4 AddEntry
	2.6.2.5 DeleteEntry
	2.6.2.6 UpdateEntry

	2.7 SQLite Database second simple example program SQLiteLight2
	2.7.1 Main module source code parts
	2.7.1.1 Declaration of the Process global variables
	2.7.1.2 Show table
	2.7.1.3 ExecuteHtml show a table in a WebView
	2.7.1.4 ReadDatabaseRowIDs
	2.7.1.5 UpdateSelectedEntryDisplay
	2.7.1.6 WebView events _ OverrideUrl / _LocationChanged

	2.7.2 Edit Module source code parts
	2.7.3 Filter Module source code parts
	2.7.3.1 B4A
	2.7.3.2 B4i
	2.7.3.3 B4J

	2.8 SQLite Database third simple example program SQLiteLight3
	2.9 SQLite Database 3rd example with B4XTable
	2.10 SQLite Database 3rd example XUI version SQLiteLight3X
	2.11 SQLite Database fourth example program SQLiteLight4
	2.12 SQLite Viewer

	3 DBUtils version 2
	3.1 DBUtil functions
	3.1.1 CopyDBFormAssets B4A, B4
	3.1.2 CopyDBFormAssets B4J
	3.1.3 CreateTable B4A, B4i, B4J
	3.1.4 DeleteRecord B4A, B4i, B4J
	3.1.5 DropTable B4A, B4i, B4J
	3.1.6 ExecuteHtml B4A, B4i, B4J
	3.1.7 ExecuteJSON B4A, B4i, B4J
	3.1.8 ExecuteList B4A, B4i, B4J
	3.1.9 ExecuteListView B4A
	3.1.10 ExecuteMap B4A, B4i, B4J
	3.1.11 ExecuteMemoryTable B4A, B4i, B4J
	3.1.12 ExecuteTableView B4J
	3.1.13 ExecuteSpinner B4A
	3.1.14 GetDBFolder B4A, B4i, B4J
	3.1.15 GetDBVersion B4A, B4i, B4J
	3.1.16 GetFieldInfo B4A, B4i, B4J
	3.1.17 GetTables B4A, B4i, B4J
	3.1.18 InsertMaps B4A, B4i, B4J
	3.1.19 SetDBVersion B4A, B4i, B4J
	3.1.20 TableExists B4A, B4i, B4J
	3.1.21 UpdateRecord B4A, B4i, B4J
	3.1.22 UpdateRecord2 B4A, B4i, B4J

	3.2 Examples
	3.3 DBUtilsDemo example program
	3.3.1 Code differences

