
ECO - EcoModeler Quick 
start

Copyright (c) 2007-2008. All rights reserved.



Table of Contents

Getting started 1

Layout 2

Creating a class diagram 3
Adding a class 4

Adding a method 5

Adding a property 6

Inheritance 8

Adding class associations 9

Self referencing associations 11

Adding association classes 11

Adding a state machine diagram 14
States 14

Transitions 15

Composite states 16

Defining interfaces and realization 18

Tidying up diagrams 20

Advanced modeling techniques 22
External references 22

Migrating Together models 24

Generated source code 25

Deleting model elements 28

Setting project options 30

Index a

ECO - EcoModeler Quick start

ii



1 Getting started 

To launch EcoModeler  from VisualStudio  right-click  the model  file  (*.mmcseco)  and select  "Open in  EcoModeler"  from the
context menu.

1 ECO - EcoModeler Quick start

1

1



2 Layout 

EcoModeler  supports  layout  customization.  Areas of  the user  interface may be dragged and docked to  edges of  the main
window or within other areas to form tabbed controls, these custom layouts may then be saved under a specified name and
then selected via a combo box at the top of the application. The default layout is as follows:

1. The combo box that selects which layout to use.

2. A selection of diagram types that may be created. The elements displayed here change when a diagram is selected.

3. A list of diagrams created within this project file (bottom half), these may be categorized into folders and sub folders (top 
half). Note that these are not folders on disk but merely a form of categorization within the project. The tab at the top of 
this area allows you to switch between a view of diagrams within the project and a hierarchical tree of all classes in the 
project.

4. The client area in which the selected diagram will appear.

5. A list of members belonging to the most recently selected class in the project.

2 ECO - EcoModeler Quick start

2

2



3 Creating a class diagram 

Diagrams are added to the project by clicking the Add Diagram button.

A dialog will appear asking for a name for the new class diagram. Once created the diagram will appear in the diagram list,
this diagram may be drag/dropped into different categories if you have added any.

3.1 Adding a class ECO - EcoModeler Quick start

3

3



3.1 Adding a class 
Select the newly created class diagram and the client area in the middle of the application will show the design surface for
the diagram. Right-click the design surface and select the Add menu, and then the Class sub menu. A dialog will now appear
showing the properties of the new class to create.

Class tab

• Class name: The name of the class.

• Ancestor: The class from which this class will descend. It is also possible to specify the ancestor class via the diagram 
design surface.

• Style: Specifies whether the class is Concrete or Abstract.

• Persistency: By default this will contain the value "Auto detect" which is equal to specifying that the class is persistent. 
You may optionally specify that a class is Transient here.

ECO tab

This tab contains the various ECO specific settings for the class including:

• Default string represention: The Object Constraint Language (OCL) expression to evaluate in order to produce a string 
that should be returned when the object is evaluated with the OCL expression AsString.

• Optimistic locking: The locking strategy to use for this class.

• Table mapping: Whether this class should have its own table in the database, or merge its columns into its parent/child 
class's table. This is only applicable when you allow ECO to automatically generate the database structure on your behalf.

• TableName: You may specify a specific table name to use when generating the database. The constant string <NAME> 
will be replaced with the name of the class, so T_<Name> on a class named "User" would result in a table named T_User.

• Database: When the ECO application works with more than one database to persist objects this value specifies which 
database alias should be used to persist instances of this class to.

• Former names: Whenever you rename this class you may specify the original name here. When you evolve the database 
structure the data from the original table will then be copied over to the new table.

• Constraints: Invokes an editor to specify OCL constraints for this class.

• Derivation expressions: Invokes an editor allowing you to specify OCL expressions which will override the expression to 
use for any OCL derived members defined on any of this class's superclasses.

• Tagged values: Invokes an editor allowing you to specify additional meta data for this class, these tagged values may be 
read by your application at runtime.

Symbol style tab

These settings apply to the diagram element and not the class itself. The same class may be added to the diagram multiple
times and each element on the diagram for the same class could have different settings within this tab.

• Auto member compartments style:

• Diagram defined style: Uses the same setting as on the diagram.

• Auto maintained member list: Allows you to set which types of members to appear, properties, methods, exposure 
level, etc.

3.1 Adding a class ECO - EcoModeler Quick start

4

3



• Custom auto member list: Creates an addition tab "Custom members" in which you may specify exactly which 
members to display.

• Custom negated auto member list: Shows all members of the class except for the members specified in the Custom 
members tab.

• Auto size Width/Height: By default these are checked, as a result the element on the diagram representing the class will 
auto size to accommodate its members. Unchecking them will allow you to manually resize the element on the diagram. 
This can be useful when you wish to display many associations between two classes.

Documentation tab

This tab allows you to enter a one-liner and full description for the class. It is possible to emit this documentation by setting
the documentation setting in the project options dialog.

Hyperlinks tab

This  tab  allows  you  to  add  hot  links  to  your  diagram element.  These  links  can  link  you  to  any  diagram in  the  project  and
appear as a small icon in the top of the element on the diagram.

Attributes tab

This tab allows you to specify additional .NET attributes to attach to the class during code generation.

3.1.1 Adding a method 

Methods may be added to your class, during code generation an empty method stub will be created. These methods may be
executed  as  usual  by  invoking  them  from  compiled  code.  In  addition  it  is  possible  to  invoke  these  methods  from  an
expression  by  using  the  Action  Object  Constraint  Language  (Action  OCL),  and  also  as  a  result  of  state  changes  within  a
state machine attached to an ECO class.

To add a method first select the class by single-clicking it on the class diagram surface, or select the [Classes] tab and select
it by single-clicking it in the tree view control.

Once selected you may now add a method by either clicking the M+ icon above the list of class Members, or by clicking the
quick menu next to the class on the diagram surface and selecting Add Method.

3.1 Adding a class ECO - EcoModeler Quick start Adding a method

5

3



Method tab

• Name: The name of the method.

• Method type: This should be set to "method".

• Parameters: This is a list of parameters the method signature should consist of. You may add/remove/modify parameters 
individually in the area directly beneath, or toggle the button directly beneath the label to edit the parameters as a single 
string.

• Return type name: Specifies the type of the object the method should return. Note that to return instances of modeled 
ECO classes you should use a derived (calculated) association instead of a method, otherwise the method will not be 
compatible with the OCL evaluator.

• Visibility: Specifies the encapsulation level to apply to the method signature.

• Binding kind: Specifies whether the method should be marked override, virtual, etc. Binding kind is nothing to do with 
.NET data binding.

• Inheritance restricted: If this method overrides a method in an ancestor class then checking this check box will bind the 
method signature to that of the ancestor's method, any changes made to the ancestor's method's signature will also 
change this method signature.

ECO tab

• Query method: If this check box is checked it indicates that this method does not affect the state of its parent object when 
executed, meaning that no property values are modified etc. This exposes the method to the OCL expression evaluator 
and is therefore accessible from more places within ECO (such as handles, derived member expressions, and so on). 
This is unlike non-query methods which are only available to the Action OCL evaluator.

• Trigger method: This check box indicates that when invoked this method will trigger a change of state in the object's state 
machine. If a method is a trigger then no custom source code may be implemented within the method's implementation.

• Non-ECO method: This check box indicates that the method should not be available to any of the OCL evaluators. This 
allows you, for example, to have overloaded methods with the same name, which is not permitted by the ECO OCL 
evaluator. You may wish to add such methods to the class's source code directly, this feature exists for those who wish to 
show the method for illustrative purposes.

• Pre-condition: This should be empty, or contain an OCL expression that returns a boolean. If present on a trigger this 
expression is evaluated before permitting the trigger to execute. The result of the expression may additionally be 
evaluated with the expresion "self.MethodName?" or "self.MethodName?(parameters)".

• Post-condition: This item is obsolete.

• Body: If not present then the method must be implemented in source code. If an expression is present it will be executed 
with the Action OCL evaluator whenever the method is invoked, in which case no custom source code may be 
implemented within the method.

• Tagged values: The Edit button invokes an editor in which you may attach tagged values to the method which may be 
read during runtime.

3.1.2 Adding a property 

To  add  a  property  (UML  Attribute)  first  select  the  class  by  single-clicking  it  on  the  class  diagram  surface,  or  select  the
[Classes] tab and select it by single-clicking it in the tree view control.

3.1 Adding a class ECO - EcoModeler Quick start Adding a property

6

3



Once selected you may now add a property by either clicking the P+ icon above the list of class Members, or by clicking the
quick menu next to the class on the diagram surface and selecting Add Property.

• Name: The name of the property, this must be unique.

• Visibility: Specifies the encapsulation level of the property when code is generated.

• Type name: The .NET type of the value this property will hold. You may type in the name directly or choose from the pick 
list directly beneath. In addition you may also select a type from the ECO Type Presets button to the very right of the 
control. Selecting a type from this list will not only set the property type but will in addition set various other settings, such 
as in the illustration where the SaveAction and PMapper values are set so that the property will act as an auto 
incrementing value assigned by the RDBMS.

• Attribute type:

• Persistent: The value will be saved to and retrieved from the data storage when an instance of this class is persisted or 
retrieved.

• Transient: The value will not be saved or retrieved with the object instance.

• Derived (read-only): The value is calculated on demand via an OCL expression or a specially named method in the 
class.

• Derived (read / write): In addition to being derived, it is also possible to set the calculated value. ECO will look for a 
specially named method which will be executed in order to set the value, this method is responsible for parsing the 
value and acting appropriately. For example, a derived FullName property might parse "Mr/Peter/Morris" and update 
Title, FirstName, and LastName.

• Derivation OCL: If the property is marked as Derived then you may enter an OCL expression to be evaluated when 
determining the value of the property at runtime. You may invoke the OCL editor window by clicking the "OCL" button 
to the right of this text box. If no OCL expression is entered ECO will look for a method with the following signature at 
runtime in order to determine the value of the property.

private object PropertyName_DeriveAndSubscribe(ISubscriber reevaluateSubscriber, 
ISubscriber resubscribeSubscriber)

3.1 Adding a class ECO - EcoModeler Quick start Adding a property

7

3



• Column name: If the property is persistent this will determine what column name to use in the database to store its value. 
<Name> will evaluate as the property name. For example, X_<Name> on a property named "FirstName" would result in a 
column named X_FirstName.

• Initial value: Specifies the initial value to be assigned to this property whenever a new instance of the class is created. 
This does not affect instances recreated as a result of retrieving it from the data storage.

• Default DB value: Specifies the "DEFAULT" value clause to use when creating the column in an RDBMS data storage.

• Length: When the property is a type that has variable lengths (such as strings) this value identifies the maximum length 
permissable. This value is used to specify column sizes when using an RDBMS data storage.

• Persistence mapper: If the property is of a custom type (such as System.Drawing.Font) then a custom persistence 
handler is required in order to:

1. Create a column of the appropriate type in the class's table.

2. Save the value to the column.

3. Recreate the .NET value based on data retrieved by ECO from a DB column value.

• Save action:

• None: The default behavior.

• Freeze: The property is read/write when created, but becomes read only once the instance has been persisted.

• DbAssign: The property is read only because it is assigned by the persistent storage. An example of this is when you 
select the ECO pre-defined data type AutoInc which creates an auto-incrementing column. Once the object has been 
persisted ECO will set the value of the property according to the value generated by the data storage.

• Tagged values: The Edit button invokes an editor allowing you to add named meta-data values to the property. These 
values may be read at runtime.

• Former names: The Edit button invokes an editor allowing you to specify a list of string values. If your model consists of a 
Person class that has amongst its members a property named "ChristianName", at some later point you may wish to 
rename this to a more generic "FirstName". When you then invoke the database "Evolve" feature on the ECO space to 
synchronize your database structure with your model you will find that the ChristianName column is dropped and a new 
column named "FirstName" is created without any values in any of the rows. In order to keep the data you would specify 
ChristianName as a Former Name so that when ECO evolves the database structure it ensures the old values in the 
ChristianName column are copied across to the new column before the old column is dropped.

• ECO Options:

• Allow Null: If this ticked then the property may be assigned a null value, this includes via the Action OCL evaluator.

• Generate as Nullable: If ticked then the property is created as a Nullable<T> property so that it may easily be assigned 
the value "null" in code. Allow Null must be ticked in order to enable this check box.

• Delayed fetch: If ticked then the value of the property will not be fetched from the data storage when the object 
instance is retrieved. Any attempt to read the value of the property will first retrieve the value from the data storage. 
This feature is useful for large property values such as Images or other BLOB type columns where the property isn't 
always used by the application. For example, the Signature property on a DeliveryNote might only be displayed when 
the user clicks a "View Signature" button on a form. This feature saves network bandwidth and memory consumption.

• State attribute: This check box indicates that the property is used to store the state of a state machine attached to the 
class, or a logical region within the state machine.

• Has User Code: Ordinarily property values read via OCL expressions will bypass the object instance and go directly to 
the internal cache of the EcoSpace. If the property has specialized code in the getter or setter of the property then tick 
this check box to ensure that ECO directs all property operations through the property on the object rather than going 
straight its internal cache.

3.1.3 Inheritance 

There are two ways of specifying the base class of a class within the model.

3.1 Adding a class ECO - EcoModeler Quick start Inheritance

8

3



1. Double-click the class and specify a class in its Ancestor combo box.

2. Select the "Generalization" item in the tool palette. Then click the descendant class, hold the mouse button down, move 
the mouse cursor over the base class, and then release the mouse button.

3.2 Adding class associations 
Class associations are a way of holding a property reference to an instance of another modeled ECO class. A an association
may be one-way where a property is added only to one of the two classes involved, or two-way where a reciprocal property
is added to the target class. To add an association between two classes:

1. First select a diagram on which you wish to visualize the association.

2. Select "Class Association" from the tool palette.

3. Click the class on the diagram and hold the mouse button down. As you move the mouse you will see a dotted line drawn 
from the source class to the mouse cursor. Keep the mouse button held down, move the mouse cursor over the target 
class and then release the mouse button.

4. A dialog window will now appear allowing you to enter details about the association before it is finally added to the model.

Association

• Name: The name of the association. This must be unique within the model and is not the name of either of the properties 
generated. I like to use the pattern [Child class name][Property name to parent class], for example 
PurchaseOrderLineOrder.

• Association class: This is explained later.

• Embedding: When the association is persistent (Association type is "Persistent" and the classes at both ends of the 
association are also persistent) ECO will need to know which table in an ECO generated database will contain a column 
referencing the other table.

• None: Neither table will have a reference column added, instead a table with the same name as the association 
"PurchaseOrderLineOrder" will be created with a column for the ID of each end of the association; PurchaseOrder and 
PurchaseOrderLine.

• End 1 - Store EmployeeID in Department table: The table created for the Department class will contain a column 
referencing the other table.

3.2 Adding class associations ECO - EcoModeler Quick start

9

3



• End 2 - Store DepartmentID in Employee table: The table created for the class at the other end of the association will 
contain the referencing column.

• Association type

• Persistent: The association information is read from and written to the persistent storage.

• Transient: The association information exists in memory only and does not exist beyond the life of the EcoSpace.

• Derived: The object(s) at the end of the association are deduced by either evaluating an OCL expression or by 
executing a specially named method on the class.

• Former names: Whenever the name of the association is changed it is possible to record a list of former names. When an 
existing database structure is "evolved" to accommodate the new model structure an existing link table will be renamed.

Note:

• For multi---multi associations no embedding is possible, a link table will always be required.

• For single---multi associations the only valid choices are None or to embed the single end into the class on the multi end 
of the association.

• For single---single associations all combinations are valid.

End 1

• Source class / End point class: These read only items identify which class the current association end is attached to. For 
example, if the Source class = "Department" and the End point class = "Employee" then changes to the settings on this 
tab will be reflected on the property Department.Employees.

• Visibility: Specifies the encapsulation level to apply to the property's signature.

• Column name: Specifies the name of the column to generate in the persistent storage. <Name> will be replaced with the 
role name, so X<Name> would evaluate as XDepartment.

• Style: This specifies how this end of the association line should be drawn on the diagram. In addition to being a visual aid 
it also specifies how to act when deleting an object that has associated objects. See "Delete action".

Image Description

Undefined: Objects will be unlinked.

Aggregation: Deletion will be prohibited if there are any object instances at the other end of the
association.

Composition: Any object instances at the other end of the association will also be deleted.

Navigable:  The association is  navigable in  this  direction,  a property  will  be added to the class
on the other end of the association.

Non navigable:  The association is  not  navigable in  this  direction,  no property  will  be added to
the class on the other end of the association.

Note: Not specifying a navigability will imply that navigation is possible. The exception to this is when only one end is marked
as navigable, this implies that the association may only be navigated in one direction.

• Default region mode: TODO

• Role: The name of the property to add to the class when generating source code. This may be left empty if this end of the 
association cannot be navigated to from the opposite end of the association.

• Delete action: Specifies how to act when an object at the other end of the association is deleted. When "Default" the 
behavior is inferred from the "Style" setting. Setting it to any other value will perform the following actions:

• Allow: The objects will be unlinked.

• Prohibit: The object at the other end of the association will not be allowed to be deleted.

• Cascade: The object at the current end of the association will be deleted along with the parent object at the other end 
of the association.

3.2 Adding class associations ECO - EcoModeler Quick start

10

3



• Multiplicity: Specifies how many object instances may be referenced at this end of the association. Anything with an upper 
bound of "*" will result in a list property being added to the class at the opposite end of the association.

• Save action:

• None: The default behavior.

• Freeze: The property is read/write when created, but becomes read only once the instance has been persisted.

• DbAssign: The property is read only because it is assigned by the persistent storage.

• Ordered: This option is only valid when the current end of the association has an upper bound that is greater than 1 (a list 
of objects / a multi role). When checked it will cause an additional column to be added to the persistence storage so that 
the order of the objects within the list may also be persisted. This is useful for recording the order in which items are 
stored in a list where there is no property on the class to order by. It is not intended to be used for example on a 
PurchaseOrderLine which does have an OrderLine property which may be used to visually order the collection in a GUI.

• Has user code: If this checkbox is checked ECO knows that you intend to write code in the property that should be 
executed whenever the property is accessed via an OCL evaluation.

• Derivation OCL: If the association is marked as Derived this input will allow an OCL expression to be entered which 
should be evaluated in order to determine the list of objects that should be included in the list when the value of the 
property is read. If the association is Derived and no OCL is entered ECO will look for a specially named method in order 
to determine the list of objects.

• Former names: As with the Association Name this allows you to record name changes so that values in the persistent 
storage may be kept when "evolving" the data structure.

• Tagged values: The Edit button invokes an editor allowing you to add named meta-data values to the property. These 
values may be read at runtime.

End 2

This is exactly the same as End 1, except the Source class is the class at the other end of the association.

3.2.1 Self referencing associations 

A self referencing association is an association where both ends originate and end on the same class.

To add a self referencing association click the "Class Association" item on the tool palette, and then single-click the relevant
class on the diagram without holding down the mouse button. This will add an association where both ends are attached to
the same class.

3.2.2 Adding association classes 

An association class is a special kind of ECO class that holds additional information about associated classes without having
to store that information in either of the classes in question. For example an association between Company (Employer : 1)

3.2 Adding class associations ECO - EcoModeler Quick start Adding association classes

11

3



and Employee (Employees : 0..*) you may wish to add additional information in a class EmploymentContract.

In this case any additional  properties such as EmploymentStartDate /  EmploymentEndDate could quite easily  be added to
the Employee class,  however if  the same person were to be employed more than once over the years you would need to
create more than once instance of  the Employee class for  the same person.  Instead you may wish to  record employment
history details via an association class.

To specify an association class you have two options:

1. Double-click the association and then select a class in the "Association class" drop down list.

3.2 Adding class associations ECO - EcoModeler Quick start Adding association classes

12

3



2. Select the Association Class item in the tool palette

1. Click the class to become the association class and hold the mouse button down.

2. Move the mouse cursor over the association line.

3. Release the mouse button to complete the line.

3.2 Adding class associations ECO - EcoModeler Quick start Adding association classes

13

3



4 Adding a state machine diagram 

To add a state machine diagram right-click the class in question and select "Associated State Diagram" on the context menu
and  then  select  "Create  State  Diagram".  This  will  create  a  state  diagram  that  is  associated  with  this  class  in  the  model.
Selecting the "Associated State Diagram" again will enable "Edit State Diagram" instead.

Note: State diagrams do not create entities in the model. This means that, unlike classes, if you delete a state from a state
diagram it is also deleted from the model.

1. Delete the elements on the diagram (initial state, transition, final state).

2. Add an initial state to the diagram from the tool palette.

3. Now select Transition & State from the tool palette. Click the mouse on the Initial state on the diagram, hold the mouse 
button down, then move the mouse cursor to an empty space on the diagram and release the mouse button.

4. You may change the name of the state by single clicking its name label and changing via the in-place editor.

State machine rules:

• There must be exactly one Initial state.

• The state machine diagram must have a transition that enables ECO to immediately leave the initial state.

• The state machine may have zero or many Final states. If a final state is entered the object instance is deleted.

4.1 States 
Double-click a state to bring up its property dialog.

State symbol

• Name: This is the name of the state. The format of the name is restricted in the same way a variable name would be. E.g. 
it must start with an alpha character, must not contain spaces, and so on.

• Representation: This free text value can be used to provide a more human readable value such as "In progress".

4.1 States ECO - EcoModeler Quick start

14

4



• State type: See composite states (  see page 16).

• Internal transactions: This lists which actions (Entry / Exit) have been assigned.

To add an internal  transition click the "Add internal  transition"  button above the "Internal  Transitions" list,  or  press the INS
key.

You  may  select  the  transition  type  using  the  "Event"  combo  box,  and  then  enter  the  ActionLanguage  expression  in  the
"Effect" text box. You may invoke the ActionLanguage editor dialog by clicking the "OCL" button to the right of the text box.

You may enter multiple lines of action language script which will be executed when the state is entered or exited, depending
on which Event you link the script to.

State rules:

• The name of the state must be unique within its container. A container may either be the diagram itself or a region within 
another state (sub state machine).

4.2 Transitions 
To add transitions  select  "Transition"  from the  tool  palette.  Then click  the  source  state,  hold  down the  mouse button,  and
drag the mouse cursor onto the destination state before releasing the mouse button. If  you wish to add a new state and a

4.2 Transitions ECO - EcoModeler Quick start

15

4



transition to the state you may wish to use "Transition & State" in the tool palette instead. Double-click the transition to bring
up its property dialog.

• Trigger: If the transition is to be invoked from a method on the class the name of the method should be selected here. 
Only methods with "Trigger Method" checked will be displayed in the list. You may add a trigger method without any 
parameters by entering the name of a method that does not exist, when you click the "OK" button you will be asked if you 
wish to create a trigger method.

• Guard: This optional OCL expression, if entered, should result in a boolean value. The transition is considered to be 
available only if this expression is blank or if the expression result evaluates to True.

• Effect: This ActionLanguage expression is executed when the transition is taken, and before the target state is entered.

Transition rules:

• When multiple transitions lead out of a state either all of the transitions must have a trigger or none of them must. There is 
an exception to this rule when working with composite states (  see page 16).

• When multiple transitions leading out of a state have the same trigger you must add a Guard expression to each, where 
exactly one of those expressions must evaluate as True.

4.3 Composite states 
A composite state is a state with one or more state machine diagrams within it. To create a composite state add a standard
State to the diagram, and in its property dialog set its State type to "Concurrent Composite". I recommend unselecting "Auto
size width" and "Auto size height" so that the state may be manually resized to make space for your embedded diagrams.
You will now have a state with a single embedded state machine.

The "P" icon next to the region's name may be clicked to invoke the property dialog for the new region. Within this dialog you
may set the following properties:

4.3 Composite states ECO - EcoModeler Quick start

16

4



• Name : This must be a unique region name within the owning state.

• State attribute: This identifies the property (UML attribute) that will hold the state for this region when the instance is 
persisted. This property should have its "State Attribute" check box checked. A new state attribute property is added to 
the class automatically whenever you add a new region.

Concurrent states

To add an additional  concurrent  state choose the "Region"  item in  the tool  palette  and then click  on the client  area of  the
state,  a  new region will  be added.  You may now add another  state diagram which will  execute concurrently  alongside the
one in the first region.

• In the example diagram the Initial state is located and the transition into MainState is taken immediately.

• When the Next() method on the class is executed the transition into SecondState will be taken.

• Once this composite state is entered both of its concurrent regions will activate.

• MainRegion will immediately move to MainState.

• SecondRegion will immediately move to MainState.

• When Next() is executed the MainRegion will move to its final state and therefore be completed, SecondRegion will 
move into AnotherState.

• If Next() were executed again the SecondRegion would also move into its final state, at which point ECO will find a 
transition with no trigger either with no guard or a guard that evaluates to True and then take that transition; in this 
case into the "Finished" state.

• If at any point Delete() or Abort() is executed whilst the main state machine is SecondState the correct transition will be 
taken.

4.3 Composite states ECO - EcoModeler Quick start

17

4



5 Defining interfaces and realization 

EcoModeler  allows  you  to  both  define  interfaces  and  also  specify  which  classes  realize  them.  To  add  an  interface  select
"Interface" from the tool palette and then click the diagram surface to add it.

On the dialog that appears give the interface a unique name such as IDoSomething. If you tick the "Placeholder" check box
then no source code will  be generated for this interface, instead it  is assumed to have been defined elsewhere such as in
another  assembly.  If  you  do  not  check  this  box  then  the  interface  will  generate  source  code  into  a  single  file  named
ModelInterfaces.cs.

Once you have finished adding methods etc to the interface definition you may wish to get a class to "realize" the interface
you have defined. Select the "Realization" item in the tool palette.

Now  click  the  class  which  will  implement  the  interface,  hold  the  mouse  button  down,  move  the  mouse  over  the  interface
element on the diagram, and then release the mouse button. At this point a wizard dialog will appear:

This wizard shows a list  of  members belonging to the interface first,  showing whether or  not  they are currently  mapped to
any existing member within the class. Beneath this list there is a list of members that exist within the class that are unrelated

5 ECO - EcoModeler Quick start

18

5



to the interface. To implement the members required to satisfy the interface click the wand button at the top left of the dialog,
or click the drop down arrow to the side of it and select "Perform suggested action" from the context menu.

Performing the suggested actions will create the necessary members on the target class:

Additionally  it  is  possible  to  specify  which  interfaces  a  class  implements  (or  remove  a  declaration)  by  double-clicking  the
class to bring up its property dialog, and then modifying the comma delimited list in the Interfaces text box.

5 ECO - EcoModeler Quick start

19

5



6 Tidying up diagrams 

To improve the appearance of your diagrams there are a number of things you can do.

Way points

A way point (anchor) is a way of specifying points in a diagram line (associations, transitions, realizations, etc) along which
the line must be drawn. This makes it possible to have lines avoid other diagram elements for example.

To add an anchor to a line hold down the CTRL key, then click the line at any point and hold the mouse button down. Move
the mouse cursor to the desired anchor point and then release the mouse button. To remove an anchor point click the line to
reveal  all  points,  then right-click the point  in  question.  On the context  menu select  "Association"  and then "Remove shape
node".

Self referencing associations

When your model has an association where both ends are connected to the same class you are able to modify the path of
the Bezier curve by moving the anchor points after clicking the line to select it.

Alternatively you can double-click the line and on the main Association table unselect  the "Use Bezier  recurrent  line style"
check box.

6 ECO - EcoModeler Quick start

20

6



Color

EcoModeler will automatically change the color of properties that have been marked as Derived.

In  addition to  this  you may wish to  add color  to  various other  parts  of  your  diagram.  For  example,  you may use Black for
persistence associations, Green for transient associations, and Red for derived associations. To change the color of a line
on  a  diagram first  select  the  line  by  single-clicking  it  with  the  mouse,  and  then  select  a  new color  by  clicking  the  "Assign
custom color" icon at the top of the diagram surface.

The  same  operation  may  be  performed  on  classes  too.  This  is  a  common  practise  known  as  "Modeling  in  color",  see
http://en.wikipedia.org/wiki/UML_colors for details.

Default appearance

On the main menu select Options and then Project Options. On the dialog that appears select Diagrams/Classifiers on the
tree view on the left  hand side. This dialog contains various ways to modify the default  appearance for diagrams including
which type of members to display (properties / methods, visibility) and also how to arrange the members (member grouping,
and member sorting).

These settings may be overridden on individual  diagrams by double-clicking a diagram and then selecting the [Classifiers]
tab  on  the  dialog  that  appears.  On  this  dialog  you  will  see  a  number  of  settings  that  have  been  repeated  from  the  main
project settings. In addition to explicitly setting these values you may also specify that you wish to default the value to that
specified in the project settings.

6 ECO - EcoModeler Quick start

21

6



7 Advanced modeling techniques 

7.1 External references 
EcoModeler  allows  your  package  to  reference  classes  defined  in  other  packages.  This  approach  allows  you  to  create
separate  packages  with  smaller  collections  of  classes  and  then  reuse  them.  For  example  you  might  consider  creating
packages such as

• CustomerPackage

• EmployeePackage

• OrderingPackage

• StockPackage

and so on. When a new application is required it is then possible to create a package for your application which references
one or more of the classes within these external packages.

1. From the View menu select References.

2. Right-click the References window and select "Add Reference".

3. Next you will be prompted with the following form:

• No alias: This will use a full path to reference the target file.

• Relative to model directory: This will use a path that is relative to the current project.

• Any other value is an alias to a path. These may be defined in the Options->Source Aliases menu.

4. Select the choice most appropriate for your needs, for example the relative option.

5. Now a list of files in that folder will be displayed, click the project file for the package and click OK.

6. Now the selected project will appear in the References tab, expanding the tree view node for that item will reveal the 
classes in the package.

7.1 External references ECO - EcoModeler Quick start

22

7



7. To use one of the referenced classes in your model simply drag it and drop it onto a class diagram.

This will create a "Place holder" class in your project. A place holder is a class which is not actually part of the project but a
definition of  a class that is known to exist  elsewhere. If  you double-click the Employee class on your diagram you will  see
that all of the GUI controls for changing the class are disabled.

Just  as  the  available  classes  were  not  automatically  added  to  the  project  the  members  of  the  place  holder  are  not
automatically added either. To add the members tick the "Auto import members" check box, you will now see the members
of the employee class appear in the class diagram.

It  is  now  possible  to  descend  classes  from  the  place  holder  class,  or  add  one-way  associations  to  this  referenced  class.
When source code is generated you will need to add a "using ......" (C#) or "uses ....." (Delphi) declaration at the top of your
source file, and also ensure that the project in the IDE has a reference to the correct DLL for the referenced class.

7.2 Migrating Together models ECO - EcoModeler Quick start

23

7



7.2 Migrating Together models 
It  is  possible  to  migrate  Delphi  ECO  models  created  using  Together  over  to  EcoModeler.  This  is  not  a  fully  automated
process however, a number a manual steps are involved.

In Delphi it is possible to create multiple packages (*.EcoPkg) within the same project whereas EcoModeler allows only one
package  in  each  modeler  project  file.  In  Delphi  it  is  common  to  add  multiple  packages  in  order  to  organize  classes  and
diagrams  so  that  the  model  is  easier  to  browser.  As  EcoModeler  allows  you  to  add  any  number  of  categories  for  class
diagrams this technique is not necessary. As a consequence you must first rearrange your project so that all classes belong
to a single ECO Package before importing into EcoModeler.

1. Ensure that you have moved all of your model's classes into a single ECO Package.

Note:  This is  only necessary for  classes within the same model,  i.e.  will  have code generated when you click the "Update
ECO source code" button on the [Model view] tab. Any classes in referenced packages need not be changed.

2. Save your Delphi project.

3. In a new EcoModeler project file select the Tools->Convert EcoPackage file menu.

4. Select the EcoPkg file to convert.

5. Click the "Open" button.

The contents of this EcoPkg will now be imported. There are now two manual steps to undertake.

1. State machine diagrams are not imported, you must recreate any diagrams you may have created in your original model.

2. You should generate code to a folder with no source code in it, and then copy any method implementations and custom 
methods from your original source code and paste them into the empty method stubs in the newly generated code. This is 
because EcoModeler generates code in a slightly different way than Together and is unable to merge into Together 
generated code.

Together models with references

To successfully migrate a Together model that has references to external EcoPkg files you must first add suitable references
to your model. The referenced file may be either (in order of preference):

• The filename of an EcoModeler project which contains the migrated model information for the referenced Together model.

• The EcoPkg file of the referenced package.

• The DLL produced when the referenced project was compiled. Note that this will also expose the package class as an 
available class to add to your model, this class should be ignored.

7.2 Migrating Together models ECO - EcoModeler Quick start

24

7



8 Generated source code 

Generating source code

Source  code  is  generated  or  updated  by  clicking  the  Generate  ECO  Model  button  on  the  toolbar,  by  selecting  the  menu
Tools->Generate ECO Model, or by pressing the shortcut key CTRL+F12.

In addition to generating the source code a support file will also be generated named MergeData.ecoxml. This file contains
merge information, it enables EcoModeler to find parts of your generated source code so that it can perform operations such
as renaming methods etc. Do not delete or modify this file! This file should be considered part of your source code, and
as such it should be checked in and out of any source control system along with the source code if you intend to generate
source code from EcoModeler.

Note:  The name of  this file  has recently  been changed. If  you have an existing EcoModeler  project  with source generated
you will need to manually rename your existing ecoxml file before you will be permitted to generate source code. This also
restricts you to generating no more than one project source into a single folder.

Package class

The name of this class is specified in the menu Options->Project Options->ECO settings. The source code generated for this
class has no operational purpose, its purpose is merely to identify which modeled classes belong to the package. The code
generator will completely replace this class so you are advised not to add any custom code here at all.

Modeled classes

The source  code generated  by  EcoModeler  consists  of  a  number  of  specially  named code folding  regions.  These regions
should  not  be  deleted  or  renamed,  they  are  used  by  the  EcoModeler  code  generator  to  differentiate  between  locate
auto-generated code and manually entered code.

• MM_ECO_Generated : All lines within regions with this name are completely removed and regenerated by the code 
generator, do not modify this part of the source code.

• MM_ECO AutoGenerated ECO code: This is the same as the MM_ECO_Generated region.

• MM_ECO Model owned attributes: Contains properties for modeled class members such as UML attributes and class 
associations. Do not remove any properties within this region or change their signatures.

• MM_ECO owned methods: Contains modeled methods and also class constructors. Do not remove any methods within 
this region or change their signatures.

Example source code

A  typical  CS  source  code  would  look  something  like  the  following  example.  The  source  has  been  indented  to  show  the
logical regions rather than how a CS file would actually be formatted.

using ...;
 
namespace .....
{
  //First some information on the class

8 ECO - EcoModeler Quick start

25

8



  #region MM_ECO_Generated
    #region Attributes
      Contains important model information about the class, persistent / transient, OCL 
constraints, state machine definition XML, etc.
    #endregion
 
    #region Documentation
      Only present if you added documentation in the model
    #endregion
  #endregion
 
  public class MyModeledClass : object, ILoopback {You may add additional interface 
declarations here too}
  {
    #region MM_ECO AutoGenerated ECO code
      //Some support code that is of no interest
      ...
      //Sequential indexes for the class's members, useful for 
this.AsIObject().Properties.GetByLoopbackIndex(....)
      public struct Eco_LoopbackIndices
      {
        ...
      }
    #endregion
 
    //Now all modeled UML attributes and associations
    #region MM_ECO Model owned attributes
      //Note: Do not remove any property within this region, nor change its signature
 
      //An example of a UML attribute
      #region MM_ECO_Generated
        #region Attributes
          Contains important model information
        #endregion
 
        #region Documentation
          Only present if you added documentation to the model
        #endregion
      #endregion
      public string Description
      {
        get
        {
          //You may add user code here
 
          #region MM_ECO_Generated
          //Code to get the actual value from the EcoSpace cache, do not write code in 
this region.
          #endregion
        }
        set
        {
          //You may add user code here
 
          #region MM_ECO_Generated
          //Code to set the value in the EcoSpace cache, do not write code in this 
region.
          #endregion
 
          //You may add user code here
        }
      }
    #endregion
 
    //Now all modeled methods, triggers, and 2 required constructors
    #region MM_ECO Model owned methods
 
      //Constructor used when recreating the object from the data storage
      public MyModeledClass(IContent content)
      {
        //You may add user code here

8 ECO - EcoModeler Quick start

26

8



 
        #region MM_ECO_Generated
        //Do not change code here
        #endregion
 
        //You may add user code here
      }
 
      //Constructor used when creating an entirely new instance of a modeled class
      public MyModeledClass (IEcoServiceProvider serviceProvider)
      {
        try
        {
          // Place user code ONLY here
          This is the only part of this method that will survive a subsequent code 
generation
        }
        catch
        {
          ..
        }
      }
    #endregion
 
    You may add non modeled properties / methods etc here, such as interface 
implementations and so on.
 
  }
}

8 ECO - EcoModeler Quick start

27

8



9 Deleting model elements 

When you delete an element on a class diagram, such as a class or association, you are in fact only removing it  from the
view and not from the model itself. To clarify; when you see a class on a class diagram you are seeing a diagram element
which represents the class in the model and not the class itself, which is why it is possible to show the same class more than
once on the same diagram, each showing different properties / methods / associations.

Deleting a class

There are two ways you can delete a class from the model itself (which will remove it from all diagrams.)

1. On a class diagram.

1. Right-click the diagram element for the class.

2. On the context menu select Edit->Delete Symbol and Entity.

2. From the Classes tab.

1. If the classes tab is not visible select the menu View->Classes.

2. Locate the class in the class hierarchy.

3. Right-click the class and select Delete.

Deleting a property or method

There is only one way to delete a property or method.

1. Select the class in the Classes tab, or single-click a diagram element representing the class.

2. Ensure the Members view is visible by selecting the menu View->Members.

3. Right-click the property or method in the methods view and select Delete.

Deleting a class association

If  you  wish  to  change  your  generated  code  so  that  only  one  of  the  classes  has  a  reference  to  the  other  you  need  to
double-click the association and set only one end to navigable or set one end as non-navigable.

If you wish to delete the association entirely you can either

1. On a class diagram.

1. Right-click the association line.

2. On the context menu select Edit->Delete Symbol and Entity.

2. Select the class via a diagram or the Classes tab

1. Ensure the Members view is visible by selecting the menu View->Members.

2. Right-click the association in the list at the bottom of the members view.

3. On the context menu select Delete Association.

Note that if you do not see a separator at the bottom of the members view with your associations in then follow these steps

9 ECO - EcoModeler Quick start

28

9



1. Right-click the members view.

2. On the context menu select the Properties->Members View item.

3. Ensure the Show Class Associations check box is checked, and then click OK.

Deleting a state machine

Unlike other diagram types elements on a state machine diagram do not have any elements within the model, the generated
code for the class's state machine is generated entirely from the diagram itself. As a consequence deleting an element on a
state machine diagram does in fact delete it entirely. To delete the entire state machine you can right-click the diagram in the
Diagrams view and select Delete Diagram, any properties in the class for holding states will need to be deleted manually as
they are not deleted along with the diagram.

Affects on generated source code

When  deleting  a  property,  association,  or  method  the  member  will  be  deleted  from  the  generated  source.  That  is  unless
there is some custom code within it, in which case it will instead be commented out and marked with a TODO reminding you
to delete it manually. This is to prevent potentially useful source code from being deleted, just in case you wish to copy/paste
the implementation into a new method.

Note: If your intention is to implement the same code using a different name or signature you may simply modify the name
etc within the modeler, the next code generation will rename classes / properties etc within your source code.

9 ECO - EcoModeler Quick start

29

9



10 Setting project options 

If you want to reconfigure your project options select the Options menu, and then the Project Options sub menu.

The  Output  Folder  specifies  where  to  generate  the  source  code  for  the  modeled  business  classes.  By  default  the  output
folder is set to .\, so the source files are generated to the same directory as the .ecommcs file. If you for some reason want
to change this, make sure to move all files, including the ModelMergeInfo.ecoxml to the new location.

It is also possible to change the Package Name and specify another Namespace, it is recommended that you keep the suffix
"Package" to the end of your package name. However,  If  you want to rename the package you need to take the following
addtional steps:

1. You may rename the .mmcecocs-file, but it is not required. EcoModeler should be closed when renaming this file.

2. Rename the file PageName.cs in the project. If you don't do this, the file will be removed from the project, and a new one
with the new package name created

3. Tools|Generate Eco Model in EcoModeler.

4. Recompile the project (F6)

5.  Open  the  EcoSpace  designer  in  the  EcoSpace  project,  and  use  the  package  selector  tool  to  remove  the  old  package
name, and add the new one.

When  EcoModeler  is  used  with  the  VS  integration  the  project  file  is  updated  automatically  when  code  is  generated.
Therefore the options for this are grayed out in the version of EcoModeler that ships with ECO for Visual Studio.

10 ECO - EcoModeler Quick start

30

10



• Emit EcoModeler version: This option emits a comment at the top of each generated source file indicating the EcoModeler 
version number and the date/time the source was generated. Users utilizing a version control system for their source 
code may wish to disable this option.

• Default Length: This is the length that will be used whenever a new UML attribute (.NET property) is added to a class. As 
a consequence the Length value on UML attributes is used to determine column sizes when modifying a database 
structure.

• Update project file: This option should remain checked, and the path to the project file should be specified so that the 
project is updated whenever the model is modified and code is generated.

10 ECO - EcoModeler Quick start

31

10



Index

A
Adding a class 4

Adding a method 5

Adding a property 6

Adding a state machine diagram 14

Adding association classes 11

Adding class associations 9

Advanced modeling techniques 22

C
Composite states 16

Creating a class diagram 3

D
Defining interfaces and realization 18

Deleting model elements 28

E
External references 22

G
Generated source code 25

Getting started 1

I
Inheritance 8

L
Layout 2

M
Migrating Together models 24

S
Self referencing associations 11

Setting project options 30

States 14

T
Tidying up diagrams 20

Transitions 15

11 ECO - EcoModeler Quick start

a


	ECO - EcoModeler Quick start
	Table of Contents
	Getting started
	Layout
	Creating a class diagram
	Adding a class
	Adding a method
	Adding a property
	Inheritance

	Adding class associations
	Self referencing associations
	Adding association classes


	Adding a state machine diagram
	States
	Transitions
	Composite states

	Defining interfaces and realization
	Tidying up diagrams
	Advanced modeling techniques
	External references
	Migrating Together models

	Generated source code
	Deleting model elements
	Setting project options
	Index


