

CryptoXpress ™ LT

An affordable, commercial grade, “strong” encryption solution
intended for users who need a ready-to-run solution.

Installation and User Guide

Software Version 9.0
Document CryptoXpressLT.pdf
Release Date 07/14/2007

CFXWorks, Inc.
5365 Chelsen Wood Drive, Duluth, Georgia 30097

Email: sales@cfxworks.com http://www.CFXWorks-Enterprise.com

Printed in the United States of America.

© 2005 CFXWorks, Inc. All Rights Reserved 1

mailto:sales@cfxworks.com
http://www.cfxworks-enterprise.com/

Minimum System Requirements
The CryptoXpress™ family of offerings have been tested on IBM server platforms as well as Windows, Linux (Red Hat
and SUSE), HPUX 10.0 and Solaris 8.0 platforms. The Windows version should function properly on all Win32
platforms. The Linux version should function on all versions of Linux. The HPUX version should function on HPUX
10.0 and all subsequent versions. The Solaris version should function on Solaris 8 and all subsequent versions. On all the
above systems Java Version 1.4.0 or a more current version of Java is required. On IBM’s iSeries running OS/400, Java
Version 1.4.2, or a more current version of Java, is required.

Software License
Demonstration copies of CryptoXpress LT are available. Demo copies contain expiration dates. Purchased copies of
CryptoXpress LT have no expiration date.

Technical Limitations
The AES and 3DES algorithms have not been modified in any way from those published by the NIST.

There is no limitation imposed by CFXWoek’s software on the size of files or message strings that can be processed.
CryptoXpress LT has been tested extensively on message strings from 0-65536 characters in length and for file sizes up
to 2 Mbytes in size. Messages or files exceeding these values may function properly however, CryptoXpress LT has not
been tested beyond these limitations.

Export Limitations
CryptoXpress LT contains encryption technology that is subject to the U.S. Export Administration Regulations and
other U.S. laws and may not be exported or re-exported to certain countries (currently Afghanistan (Taliban-controlled
areas), Cuba, Iran, Iraq, Libya, North Korea, Serbia (except Kosovo), Sudan and Syria) or to persons or entities
prohibited from receiving U.S. exports (including Denied Parties, entities on the Bureau of Export Administration Entity
List, and Specially Designated Nationals). For more information on the U.S. Export Administration Regulations
http://www.bxa.doc.gov/Encryption/regs.htm, 15 C.F.R. Parts 730-774, and the Bureau of Export Administration U. S.
Department of Commerce. Please see the home page www.bxa.doc.gov

Support
Support is provided for this offering via email addressed to support@cfxworks.com.

Warranty
Please read the license file “license_CryptoXpressLT.pdf” in the distribution zip file.

Trademarks and Copyrights
© Copyright 2007 CFXWorks, Inc. All rights reserved.
CryptoXpress™ is a registered trademark of CFXWorks, Inc.

IBM® is the trademark of International Business Machines Corporation in the United States, other countries, or both.
Java® and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.
Microsoft®, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United
States, other countries, or both.
Intel®, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep,
Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.
UNIX® is a registered trademark of The Open Group in the United States and other countries.
Linux® is a trademark of Linus Torvalds in the United States, other countries, or both.
Other company, product, or service names may be trademarks or service marks of others.

© 2005 CFXWorks, Inc. All Rights Reserved 2

http://www.bxa.doc.gov/Encryption/regs.htm
http://www.bxa.doc.gov/
mailto:support@eServerWorks.com

1. INTRODUCTION ... 4

1.1. THANK YOU! .. 4
1.2. GENERAL DESCRIPTION.. 5
1.3. DATA CONFIDENTIALITY (ENCRYPTION) .. 5
1.4. DATA INTEGRITY (MESSAGE DIGESTS).. 6
1.5. COMMON USES FOR ENCRYPTION... 6
1.6. COMMON USES FOR MESSAGE DIGESTS ... 7

2. ENCRYPTION/DECRYPTION .. 7

2.1. ENCRYPTION ALGORITHMS SUPPORTED ... 7
2.2. WHY USE AES ENCRYPTION?... 8
2.3. HOW SECURE IS AES? .. 8
2.4. WHAT IF I FORGET MY ENCRYPTION KEY? .. 9
2.5. DO ALL AES SOLUTIONS PRODUCE COMPATIBLE RESULTS? ... 9
2.6. WHEN SHOULD I USE 3DES? .. 10
2.7. WHAT ABOUT ASCII VERSUS EBCDIC?.. 10
2.8. MODES OF OPERATION.. 10
2.9. PADDING .. 11
2.10. INITIALIZATION VECTORS (SALT)... 11
2.11. KEY SIZE .. 11
2.12. LENGTH OF ENCRYPTED DATA .. 11
2.13. BEST PRACTICES... 12

3. MESSAGE DIGESTS ... 12

3.1. MESSAGE DIGESTS ... 12
3.2. USING MESSAGE DIGESTS .. 13
3.3. HOW SECURE ARE MESSAGE DIGESTS? ... 13
3.4. WHICH MESSAGE DIGEST ALGORITHM SHOULD I USE?... 13

4. PRODUCT INSTALLATION.. 14

4.1. MINIMUM SYSTEM REQUIREMENTS.. 14
4.2. CRYPTOXPRESS LT COMPONENTS ... 14
4.3. CRYPTOXPRESS LT SAMPLE SCRIPTS... 14
4.4. CRYPTOXPRESS LT PROGRAMS.. 16
4.5. DOCUMENTATION... 20
4.6. ASCII AND EBCDIC CONVERSIONS .. 20
4.7. COMMAND LINE PARAMETERS ... 20
4.8. ERROR CODES .. 21
4.9. WINDOWS, LINUX & UNIX INSTALLATION.. 22
4.10. ISERIES SPECIAL INSTALLATION INSTRUCTIONS... 24

© 2005 CFXWorks, Inc. All Rights Reserved 3

1. INTRODUCTION

1.1. Thank You!

Thank you for purchasing CryptoXpress™ LT offering. Our intent is to
provide an easy to use offering that supports “strong encryption”
capabilities as defined by the National Institute of Standards and
Technology (NIST). Please address questions and feedback via email to
support@cfxworks.com.

CFXWorks intends to provide a family of cryptography offerings that
includes:

• CryptoXpress™ SDK – This is the core toolkit from which we
build all of our crypto offerings. We make it available as a
Software Development Toolkit (SDK). It is intended for use by
skilled Java programmers. Note that prior to Release 9.0, this
product was called CRYPTOeServer.

• CryptoXpress™ LT – This is a collection of ready to run Java
programs that support “strong encryption” and message
digests. This product is currently available.

• CryptoXpress™ SOA– This is a SOA implementation that
supports “strong encryption” and message digests. It is intended to
[provide cryptography services to any program or user using
HTTP/HTTPS protocols as the interface. One of the major
advantages of using an SOA service to deliver cryptography
services is that it provides a solution that gurantees compatibility
and consistency across any program residing on any system that
has HTTP/HTTPS access to the service. Note that prior to Release
9.0, the SOA capability was included in CRYPTOeServer. The
new version of this product will be available 3rd quarter 2007.

• CryptoXpress™ ColdFusion– This is ColdFusion tag (a plugin)
that provides a collection of ready to run cryptography functions
that can be used by ColdFusion programmers. This product is
planned for availability 3th quarter 2007.

• CryptoXpress™ .Net– This is a collection of ready to run C/C++
cryptography programs that target .Net users. It will also provide a
(C/C++) interface to CryptoXpress™ SOA. This product is
planned for availability 4th quarter 2007.

• CryptoXpress™ DMZ – This solution address many of the
security concerns related to securing data that resides within a

© 2005 CFXWorks, Inc. All Rights Reserved 4

mailto:support@cfxworks.com.

DMZ and the secure transport of data to and from a DMZ from
within the Intranet. Custom versions of this product have been
delivered to several government agencies over the past several
years. This version of the product is planned for availability 1st
quarter 2008.

• CryptoXpress™ 400– This is a collection of ready to run C/C++
cryptography programs that target IBM’s iSeries (AS/400). It will
also provide a (C/C++) interface to CryptoXpress™ SOA. This
product is a variation of our current DataQueueCrypto400 product.
The new version will not require data queues. It is planned for
availability 1st quarter 2008.

1.2. General Description

CryptoXpress LT provides several Java programs that can be used to
encrypt/decrypt text or files. It also provides Java programs that can
digest, sometimes referred to as signing, either text or files.
CryproXpress LT produces compatible results across many platforms
including Windows, Linux (Red Hat), HPUX, Solaris, and IBM’s iSeries
running OS/400. CryptoXpress LT should run successfully on any Java
enabled platform using either Sun’s or IBM’s JVM. Java Version 1.4, or a
more current version of Java, is required.

1.3. Data Confidentiality (encryption)

CryptoXpress LT can be used to encrypt and decrypt text or files. It
supports both the AES and 3DES (TripleDES) encryption algorithms.
AES is a block cipher (symmetric key) encryption algorithm that supports
128-bit, 192-bit and 256-bit key sizes. CryptoXpress LT supports 128-bit
and 256-bit key sizes

On May 19, 2005, NIST announced the withdrawal of the (single) Data
Encryption Standard (DES) as specified in FIPS 46-3. DES no longer
provides the security that is needed to protect Federal government
information. Federal government organizations are now encouraged to use
FIPS 197, Advanced Encryption Standard (AES), which specifies a faster
and stronger algorithm. For some applications, Federal government
departments and agencies may use the Triple Data Encryption Algorithm
(3DES or TripleDES) as specified in NIST Special Publication 800-67.
3DES is also supported by CryptoXpress LT. Although thought to be
considerably less secure than AES 128-bit encryption, 3DES is still
commonly used in some industries.

© 2005 CFXWorks, Inc. All Rights Reserved 5

http://csrc.nist.gov/publications/fips/05-9945-DES-Withdrawl.pdf
http://csrc.nist.gov/publications/fips/index.html#fips197
http://csrc.nist.gov/publications/nistpubs/index.html#sp800-67

1.4. Data Integrity (message digests)

CryptoXpress LT can be used to calculate a message digest for data or
files. The act of calculating a message digest is sometimes referred to as
“digesting” the information. The result of a message digest is sometimes
referred to as a digital signature.

A message digest (also sometimes referred to as a one-way hash function)
is a fixed length, computationally unique identifier corresponding to a set
of data. The result of the algorithm is that each file or data string digested
will map to a particular block of information called a message digest. The
digest is not random; digesting the same unit of data with the same
algorithm will always produce the same message digest.

Most users prefer to use the MD5 message digest algorithm. MD5 belongs
to a family of one-way hash functions called message digest algorithms.
The MD5 system is defined in RFC 1321. MD5 takes a message of
arbitrary length and produces as output a 128-bit message digest. It is
conjectured that it is computationally infeasible to produce two different
messages having the same message digest, or to produce any message
having a given message digest. RFC 1321 also defines a certification suite
to validate correct implementation of the algorithm. CryptoXpress LT is
validated against this suite.

1.5. Common Uses for Encryption

The following list defines some of the current regulations and legislation
either requiring or suggesting the use of “strong encryption”.

• Cardholder Information Security Program (CISP) (very important
for merchants conducting e-Commerce transactions over the web)

• Payment Card Industry Data Security Standard (PCI) (very
important for merchants conducting e-Commerce transactions
over the web)

• The Sarbanes Oxley Act (SOX)
• The Gramm-Leach-Bliley Act, the Safeguards Rule (GLBS)
• Health Insurance Portability and Accountability Act (HIPPA)
• California Assembly Bill 1950 (AB 1950)
• Title 21 of the Federal Regulations Part 11 (21 CFR part 11)
• California Information Practice Act or Senate Bill 1386
• North American Electric Reliability Council (NERC)
• Federal Information Security Management Act (FISMA)
• USA PATRIOT Act

© 2005 CFXWorks, Inc. All Rights Reserved 6

• Cardholder Information Security Program (CISP)
• Payment Card Industry Data Security Standard (PCI)
• Federal Information Processing Standards (FIPS)
• National Association of Securities Dealers Rule 2711
• SEC 17a-4

Encryption is commonly used where it is necessary to transmit or store
sensitive information. The following includes examples of data that is
commonly encrypted.

Credit Card Information Personal Information
Card number Address information
Name on credit card Phone numbers
CVV2 data on card Service numbers
Card expiration date Social security numbers

Employee Data Medical information
Contact information Age
Salary data Medical history
Performance data Medication

1.6. Common Uses for Message Digests

Message digests have many uses. In particular, they are used to
authenticate data. For example, to create a digest for authentication, data
can be digested and the digest saved. Later, to validate that the data has
not been altered, the data is digested again and the result is compared
against the original digest. If they differ, the data has been altered. This is
very different from encryption because the actual data is not modified
when it is digested. Encryption is intended to protect the confidentiality of
data. A message digest is used to assure data integrity.

2. ENCRYPTION/DECRYPTION

2.1. Encryption Algorithms Supported

For ease of use, CryptoXpress LT simplified the selection process by
reducing thousands of possible combinations of encryption algorithms,
key sizes, modes of operation, and paddings to the following “preferred”
combination:

© 2005 CFXWorks, Inc. All Rights Reserved 7

1. 128-bit encryption AES128/PKCS5Padding/CBC
2. 128-bit encryption AES256/PKCS5Padding/CBC
3. TripleDES encryption 3DES/PKCS5Padding/CBC

These combination are ones for which the NIST has published test
vectors. CFXWorks has tested the results of our implementation using
these test vectors.

2.2. Why use AES Encryption?

There are several good reasons to use AES encryption versus other
encryption algorithms:

• The Federal Government has defined a new standard for
encrypting electronic documents and messages, a code so secure
that federal officials predict that its encoded material will remain
secure for 20 to 30 years. This code, the Advanced Encryption
Standard (AES), received formal approval from Commerce
Secretary Donald Evans on December 4, 2001. AES (formally
called Rijndael) replaces the Data Encryption Standard (DES).
DES, originally adopted in 1977, can now be deciphered with
modern computers and decryption methodologies. The Federal
Government now requires all agencies within, suppliers to, and
contractors and sub-contractors to the federal government use
the AES encryption algorithm.

• The performance characteristics and form factor (code size) of

AES is superior to most other 128-bit algorithms.

• The security level of AES is thought to be superior to other

commercially available encryption algorithms.

• Most of the more secure encryption algorithms have historically

been patented technologies. Therefore, they tend to be very
expensive. License fees in excess of over $200,000 per system are
not uncommon. Negotiating licenses for products from some
vendors have been historically near impossible for small
businesses. AES is not patented.

2.3. How secure is AES?

© 2005 CFXWorks, Inc. All Rights Reserved 8

To put this issue in perspective, here are some statistics presented by the
National Institute of Standards and Technology (NIST) relative to the
possibility that someone could crack a 128-bit Rijndael encryption key.

http://www.nist.gov/public_affairs/releases/aesq&a.htm

"In the late 1990s, specialized "DES Cracker" machines were built that
could recover a DES key after a few hours. In other words, by trying
possible key values, the hardware could determine which key was used to
encrypt a message. Assuming that one could build a machine that could
recover a DES key in a second (i.e., try 255 keys per second), then it
would take that machine approximately 149 thousand billion (149 trillion)
years to crack a 128-bit AES key. To put that into perspective, the
universe is believed to be less than 20 billion years old."

2.4. What if I forget my encryption key?

 If you forget you encryption key, you should assume that your data is
irretrievably lost.

AES is a very serious encryption algorithm. In our lifetime, hackers are
not likely to be able to compromise this algorithm. Also, there are no
known back doors to this algorithm. If you forget your encryption key,
there is absolutely no way that our organization, or any other organization
known to exist, can retrieve it.

Although 3DES is somewhat less secure than AES 128-bit encryption, it is
still secure enough that if you forget you encryption key, you should also
assume that your data is irretrievably lost.

2.5. Do all AES solutions produce compatible
results?

The answer is emphatically no! The specifications for nearly all
encryption algorithms allow the implementer to choose from many
options, such as key size, block size, mode of operation, packing and key
manipulation techniques. The result is that there are several thousand
different combinations that can be deployed, each yielding different
results. To produce compatible results you have to know precisely what
options and techniques the vendor implemented and duplicate those
options and techniques. That is why it is wise to select a vendor who
specifically supports all ot the platforms you need a solution for.

© 2005 CFXWorks, Inc. All Rights Reserved 9

http://www.nist.gov/public_affairs/releases/aesq&a.htm

2.6. When should I use 3DES?

3DES is considerably slower and significantly less secure than even 128-
bit AES encryption. 3DES is thought to be equivalent to approximately
112-bit encryption. However, some institutions are heavily invested in
equipment that uses 3DES (for example, the banking and credit card
industry are heavy users of 3DES.)

 For compatibility purposes, CryptoXpress LT supports 3DES. But if the
decision is yours, always use AES.

2.7. What about ASCII versus EBCDIC?

Encryption algorithms treat data as binary. Therefore it makes no
difference to the algorithm what encoding scheme was used to capture or
display the data. Data captured and encrypted on an ASCII machine can
be decrypted on an EBCDIC machine and vice versa. The binary values
should compare exactly. However, as you might expect, binary data is
likely to display different on an ASCII machine then it would on an
EBCDIC machine.

2.8. Modes of operation

When encrypting data, there are two popular modes of modes of
operation: ECB (Electronic Block Mode) and CBC (Cipher Block
Chaining) mode. With ECB mode, the cipher takes a single block of
plaintext and produces a single block of ciphertext. Data streams are
broken into blocks that are individually processed. Each block is 16 bytes
long.

 CryptoXpress LT supports the CBC mode. The CBC mode is
considered more secure than the ECB mode for encrypting messages over
one block long (16 bytes). In CBC mode, the plaintext is XORed with the
previous ciphertext block before it is encrypted. After a plaintext block is
encrypted, the resulting ciphertext is stored in a feedback register. Before
the next plaintext block is encrypted, it is XORed with the feedback
register to become the next input to the encrypting routine. The resulting
ciphertext is again stored in the feedback register, to be XORed with the
next plaintext block, and so on until the end of the message. The
encryption of each block depends on all previous blocks. Each block is 16
bytes long.

© 2005 CFXWorks, Inc. All Rights Reserved 10

2.9. Padding

 The length of data to be decrypted may not be an even multiple of the
block size. Therefore the cipher pads short blocks. Padding is added when
the data is encrypted. Padding is removed when the data is decrypted.
There are several padding techniques. CryptoXpress LT uses a very
common technique called PKS5Padding.

2.10. Initialization Vectors (Salt)

When using CBC, you must supply both a key and an initialization vector
(sometimes called a salt). The initialization vector (IV) is used to seed the
feedback register prior to encrypting the first block of data. The IV has no
meaning; it is just there to make each message unique. The IV value must
be supplied to both the encryption and decryption routine. The IV need
not be secret, however, you must remember the IV value, just as you must
remember you encryption key.

 The IV value for AES is 16 bytes long. The IV value for 3DES is 8 bytes
long. If you supply a value shorter than the required length,
CryptoXpress LT fills out the IV to the required length with 0x00. If
you supply a value over the required length, CryptoXpress LT
truncates the right most excess bytes.

2.11. Key Size

The AES algorithm requires a 16 byte key for 128-bit encryption and a 32-
byte key for 256-bit encryption. 3DES requires a 24-byte key.

 If you supply a value shorter than the required key size, CryptoXpress
LT fills out the key to the required length with 0x00. If you supply a
value over the required length, CryptoXpress LT truncates the right
most excess bytes.

2.12. Length of encrypted data

AES is a block cipher. Therefore encrypted data will generally be longer
that unencrypted data. If encrypted data is to be stored in a database, the
column within the database must support the length of the encrypted data.

© 2005 CFXWorks, Inc. All Rights Reserved 11

Encryption algorithms generally round the length of data up to a block
boundary. For AES this means that encrypted data will be rounded up to a
16 byte boundary. Data that is an even multiple of 16 bytes long will have
an additional 16 bytes added to the data.

For example, data 12 bytes long when encrypted using AES will be 16
bytes long. Data 16 bytes long when encrypted will be 32 bytes long. Data
20 bytes long when encrypted will be 32 bytes long.

3DES uses a block size of 8. Therefore it rounds data up to an 8 byte
boundary. Therefore, data 6 bytes long when encrypted using 3DES will
be 8 bytes long. Data 12 bytes long when encrypted will be 16 bytes long.
Data 16 bytes long when encrypted will be 24 bytes long.

2.13. Best Practices

The probability that anyone would be capable of directly compromising
the integrity of the AES algorithm is thought to be next to zero. Please
refer to the comments in Section 2.3 of this document. However, the
integrity of any encryption algorithm relies on the user to protect the
confidentially of the encryption key and to select keys that are not easily
guessed. For example, if user “John Doe” selects as his encryption key
“john”, it isn’t going to take long to guess the password.

 As a rule of thumb, select a key that is the maximum length allowed. For
example, for 128-bit encryption, select a key that is 16 characters long.
The safest key would be a key containing a mix of upper case alpha, lower
case alpha, numeric and special characters. This combination makes the
key very difficult to guess.

3. MESSAGE DIGESTS

3.1. Message Digests

Encryption is intended to protect the confidentiality of data. However,
how do you determine if a black hat (bad guy) has changed the contents of
an encrypted data string or data file? Changing data content relates to data
integrity, not data confidentiality. The solution to this issue is what
cryptologist call a message digest .A message digest is sometimes called a
digital signature.

© 2005 CFXWorks, Inc. All Rights Reserved 12

CryptoXpress LT supports the following message digest algorithms:

• MD5 – MD5 digests either a data string or a file and creates a 16
byte message digest. CryptoXpress LT returns the digest in
binary and as a hex string. The binary value is 16 bytes long. The
hex string is 32 bytes long.

• SHA1 – SHA1 digests a string and creates a 20 byte message
digest. CryptoXpress LT returns the digest in binary and as a hex
string. The binary value is 20 bytes long. The hex string is 40 bytes
long.

3.2. Using Message Digests

A common use of a message digest is to construct a digital envelope. A
digital envelope is constructed as follows:

A message digest is calculated for a string of data and then concatenated
to the string. Then, the total string is encrypted. This forms a digital
envelope. When the data is decrypted, the message digest is recalculated
and compared to the original value. If even a single bit within the
encrypted string or file has been modified, the comparison fails. There are
many variations to this theme but cryptologists commonly use this
technique to transport data since it is considered the most secure way
known to transport information form one point to another.

3.3. How Secure Are Message Digests?

It is said that the difficulty of coming up with two messages having the
same MD5 message digest is in the order of 2^64. The difficulty in
defining a message with a specific message digest is in the order of 2^128.

SHA1 is believed to be significantly more secure than MD5, but it is much
slower.

3.4. Which Message Digest Algorithm Should I
Use?

MD5 is probably the most popular message digest algorithm in use today
because it offers a reasonable balance between performance and security.
If you are doing work for the DOD, they will probably require you to use
SHA1.

© 2005 CFXWorks, Inc. All Rights Reserved 13

You can learn more about MD5 at http://www.nic.mil/ftp/rfc/rfc1321.txt.
You can learn more about SHA1 at www.itl.nist.gov/fipspubs/fip180-
1.htm.

Note that to use the SHA1 digest routines you must have the strong
encryption policy files installed on your system. See Section 4.8 paragraph
number 3 for details.

4. PRODUCT INSTALLATION

4.1. Minimum System Requirements

CryptoXpress LT has been tested on all IBM eServer platforms as well
as Windows 2000, Linux (Red Hat), HPUX 10.0 and Solaris 8.0
platforms. The Windows version should function properly on all Win32
platforms. The Linux version should function on all versions of Linux.
The HPUX version should function on HPUX 10.0 and all subsequent
versions. The Solaris version should function on Solaris 8 and all
subsequent versions.

On all the above systems Java Version 1.4.0 or a more current version of
Java is required. On IBM’s iSeries running OS/400 Java 1.4, or a more
current version of Java, is required.

4.2. CryptoXpress LT Components

The following jar files are included in the distribution zip file
(“CryptoXpress.zip”):

File Description
CryptoXpressLT.jar Required jar file that contains all the

CryptoXpress java code.
log4j-1.2.14.jar Required jar file that contains the log4j code.
log4j.properties Configuration file used for logging.

local_policy.jar IBM version of the strong encryption version
of this jar file (1)

US_export_policy.jar IBM version of the strong encryption version
of this jar file (1)

4.3. CryptoXpress LT Sample Scripts

© 2005 CFXWorks, Inc. All Rights Reserved 14

http://www.nic.mil/ftp/rfc/rfc1321.txt
http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://www.itl.nist.gov/fipspubs/fip180-1.htm

The following script files are included in the distribution zip file
(“CryptoXpress.zip”):

Script File Description

t1.bat or xt1 – sample program (2)

This script reads the command line
arguments passed to CFXCMD and pipes
them to CFX103TF. CFX103TF encrypts the
data passed and writes the encrypted data to
a file. CFXF2D is used to display the
encrypted file in HEX.

t2.bat or xt2 – sample program (2)

This script reads an input file using
CFX103FF, encrypts it, and writes the output
to a file. CFXF2D is used to display the
encrypted file in HEX.

t3.bat or xt3 – sample program (2)

This script reads the command line
arguments passed to CFXCMD and pipes
them to CFXT2F which creates an output file.
CFXF2D is use to display the output file in
HEX. CFX103FF is then used to encrypt the
file and write the encrypted data to another
output file. CFXF2D is used to display the
encrypted file. CFX103FF is then used to
decrypt the file. CFXF2D is used to display
the unencrypted file in HEX.

t4.bat or xt4 – sample program (2)

This script uses CFX103FF to encrypt a file
and write the encrypted data to another output
file. CFXF2D is used to display the encrypted
file. CFX103FF is then used to decrypt the
file. CFXF2D is used to display the
unencrypted file in HEX.

t5.bat or xt5 – sample program (2)

This script reads the command line
arguments passed to CFXCMD and pipes
them to CFXT2F which creates an output file.
It then uses CFXConvert to convert this file
from binary to ASCII. It then uses CFXF2D to
display the output file in HEX. Next, it
attempts to convert the file from ASCII to
EBCDIC. Finally it uses CFXF2D to display
the final file in HEX.

t6.bat or xt6 – sample program (2)

This script reads the command line
arguments passed to CFXCMD and pipes
them to CFX104TF. CFX104TF encrypts the
data passed and writes the encrypted data to
a file. CFXF2D is used to display the
encrypted file in HEX.

t7.bat or xt7 – sample program (2)

This script reads the command line
arguments passed to CFXCMD and pipes
them to CFX112TF. CFX112TF encrypts the
data passed and writes the encrypted data to
a file. CFXF2D is used to display the
encrypted file in HEX.

t8.bat or xt8 – sample program (2)

This script reads the command line
arguments passed to CFXCMD and pipes
them to CFX401T. CFX401T digests the data
using MD5 and writes the digest in HEX to the
standard output device.

t9.bat or xt9 – sample program (2)

This script reads the command line
arguments passed to CFXCMD and pipes
them to CFX402T. CFX402T digests the data
using SHA1 and writes the digest in HEX to

© 2005 CFXWorks, Inc. All Rights Reserved 15

Script File Description
the standard output device.

(1) These files are required when using 128-bit or 256-bit encryption. They are

also required to use SHA1. If you are running Sun’s Java Virtual Machine you
will require Sun’s version of these files. If you are running IBM’s Java Virtual
Machine you will require IBM’s version of these files.

If you are running Sun’s Java 1.4 implementation, you generally need Sun’s
strong encryption policy files for 1.4. A copy of Sun’s policy files can be
downloaded from the Sun web site at http://java.sun.com/products/jce/index-
14.html

If you are running Sun’s Java 1.5 iimplementation, you generally need Sun’s
strong encryption For example, you can download Java 5.0 and the strong
encryption policy files at
http://java.sun.com/javase/downloads/index_jdk5.jsp. To download the
runtime version of Java download ”Java Runtime Environment (JRE) 5.0
Update 12. files from 1.5. To download the strong encryption files download
under “Other Downloads”… Java Cryptography Extension (JCE) Unlimited
Strength Jurisdiction Policy Files 5.0.

If you are running Sun’s Java 1.6 implementation, you generally need Sun’s
strong encryption policy files for 1.6. A copy of Sun’s policy files can be
downloaded from the Sun web site at
http://java.sun.com/javase/downloads/index.jsp.

If you are running IBM’s Java Virtual Machine you will need IBM’s strong
encryption policy files. IBM’s site for Java downloads is at
http://www.ibm.com/developerworks/java/jdk/.

(2) The .bat version is for Windows. The x version is for Linux, UNIX or the

OS/400.

4.4. CryptoXpress LT Programs

The CryptoXpress LT programs documented in this section of the
manual are of the following form.

1. The programs read input from a file and write output to a file:

© 2005 CFXWorks, Inc. All Rights Reserved 16

http://java.sun.com/products/jce/index-14.html
http://java.sun.com/products/jce/index-14.html
http://java.sun.com/javase/downloads/index_jdk5.jsp
http://java.sun.com/javase/downloads/index.jsp
http://www.ibm.com/developerworks/java/jdk/

2. The programs read input from the standard input device (sysin)

and write output to a file. This capability is especially useful when
one wants to pipe output from one programs standard output and
read it as input by the program performing the crypto task:

3. The program reads a command line argument and writes them to

standard output:

4. The program simply displays output to the standard output device:

The following Java programs are included in CryptoXpress:

Java Application Examples Description

CFXCMD

This program can be used to read command
line arguments and pipe them to programs
that read data from the standard input device
(sysin).

CFXCMD reads command line arguments
and writes them to the standard output device
(sysout). Note that this program outputs data
exactly as it is interpreted by the operating
system‘s command line parser. Depending on
the operating system, it is impossible to pass
some characters within command line

© 2005 CFXWorks, Inc. All Rights Reserved 17

Java Application Examples Description
arguments. Some characters are likely to be
ignored and some are interpreted differently
than you might expect. Therefore test your
input carefully if you intend to use this
program.

CFX103FF

A Java program that can be used to encrypt
or decrypt a file using 128-bit
AES/PKCS5Padding/CBC and writes the
output to a file.

CFX103TF (1)

A Java program reads data from the standard
input device (sysin), encrypts it using 128-bit
AES/PKCS5Padding/CBC and writes the
output to an encrypted file.

CFX104FF

A Java program that can be used to encrypt
or decrypt a file using 256-bit
AES/PKCS5Padding/CBC and writes the
output to a file.

CFX104TF (1)

A Java program reads data from the standard
input device (sysin), encrypts it using 256-bit
AES/PKCS5Padding/CBC and writes the
output to an encrypted file.

CFX112FF
A Java program that can be used to encrypt
or decrypt a file using 3DES and writes the
output to a file.

CFX112TF (1)
A Java program reads data from the standard
input device (sysin), encrypts it using 3DES
and writes the output to an encrypted file.

CFX401F
A Java program that reads an input file,
digests it using MD5, and writes the output to
the standard output device (sysout).

CFX401T (1)

A Java program reads data from the standard
input device (sysin), digests it using MD5, and
writes the output to the standard output
device (sysout).

CFX402F
A Java program that reads an input file,
digests it using SHA1, and writes the output to
the standard output device (sysout).

CFX402T (1)

A Java program reads data from the standard
input device (sysin), digests it using SHA1
and writes the output to the standard output
device (sysout).

CFXF2D
A Java program that reads a file and displays
if in HEX to the standard output device
(sysout).

CFXT2F (1)
A Java program reads data from the standard
input device (sysin) and writes the output to
the standard output device (sysout).

CFXDisplayLicense Displays the CryptoXpress license information
to the standard output device (sysout).

CFXConvert Converts a file from ASCII to EBCDIC or from
EBCDIC to ASCII.

(1) Programs that read data from the standard input device (sysin) need to
know when end of file (end of input) is reached. How this is done is
platform dependent. On some systems Ctrl-D when entered from the
keyboard is used. On Windows 2000 the “Enter” is used to trigger end of
file. A Line Feed (Decimal 10, 0x0a) or a Carriage Return (Decimal 13,
0x0d) in the input stream also causes end of file. Other than 0x0a and

© 2005 CFXWorks, Inc. All Rights Reserved 18

0x0d, all other binary characters from 0x00 – 0xff are read by the standard
input device without change or interpretation.

© 2005 CFXWorks, Inc. All Rights Reserved 19

4.5. Documentation

The following documentation ships with CryptoXpress:

File Description
CryptoXpress.pdf This document
License_CryptoXpress.pdf License file.

4.6. ASCII and EBCDIC Conversions

Data captured and recorded on different platforms may be stored in
different encoding formats. Depending on what you intend to do with the
data you may have to translate it from one format to another. For example,
if you capture data on a machine that records it in ASCII format, the data
will not display correctly on a machine that records data internally in
EBCDIC format. For display purposes you will have to translate it from
ASCII to EBCDIC before you display it.

The CFXConvert sample program is provided to convert file encoded in
one format to another. The following command will convert the file
named input.txt from ASCII to EBCDIC:

CFXConvert /f126 /iinput.txt /ooutput.txt

The following command will convert the file named input.txt from
EBCDIC to ASCII:

CFXConvert /f127 /iinput.txt /ooutput.txt

Note that these programs will not run on a system using Sun’s Java Virtual
Machine. They require IBM’s Java Virtual machine.

4.7. Command Line Parameters

The input parameters supported for the sample Java programs are
illustrated in the following table.

Parameter Description Sample

/a Encrypt or decrypt data (1) /ae encrypt
/ad – decrypt

/i The fully qualified name of the
input file (1) /iinput.txt

© 2005 CFXWorks, Inc. All Rights Reserved 20

/o The fully qualified name of the
output file (1) /ioutput.txt

/k The key to use for
encryption/decryption. (1) /k123

/v The initialization vector to use for
encryption.decryption. (1) /v456

/f Data fomats or conversions.

/f126 convert ASCII to
EBCDIC (3)
/f127 convert EBCDIC
to ASCII (3)

/b Name of key file. Not currently supported.
/p Password for key file. Not currently supported.
text Input text. (2) 1234567890123456

(1) No defaults are assumed for any of these values.
(2) If a text value contains blanks, enclose the text in quotes as follows:

“This is the text that I want to encrypt”
(3) These options are not available on the Sun Java Virtual machine. They

are supported on the IBM Virtual machine.

The following parameters are supported for each sample program:

Parameter /a /i /o /k /v /f Text
CFXCMD
CFX103FF X X X X X
CFX103TF X X X X X
CFX104FF X X X X X
CFX104TF X X X X X
CFX112FF X X X X X
CFX112FF X X X X X
CFX401F X
CFX401T X
CFX402F X
CFX402T X
CFXF2D X
CFXT2F X X
CFXDisplayLicense
CFXConvert X X X

4.8. Error Codes

RC - description
0 - OK
-4 - Invalid padding
-5 - Zero length input
-6 - Invalid key
-7 - Illegal block exception
-8 - Bad padding exception
-9 - Invalid algorithm parameter exception (1) (2)
-10 - Missing filename

© 2005 CFXWorks, Inc. All Rights Reserved 21

-14 - File not found
-18 - Invalid IV length
-19 - Invalid Base64 encoding
-90 - License error... invalid digital signature
-92 - License error... time expired
-93 - License error... error creating license file
-97 - Zero length input.
-98 - Invalid command line option
-99 - Encryption/Decryption error (trying to decrypt an clear input)

(1) The CFXConvert program will display this error message if run using

the Sun’s Java Virtual Machine because Sun does not support the
EBCDIC conversion algorithms.

(2) If the encryption programs are run on a PC that does not have the
correct strong encryption policy files installed (see Section 4.8), this
error code will be displayed.

4.9. Windows, Linux & UNIX Installation

The process is outlined below. Note that Java, UNIX and Linux are case
sensitive when using class and jar file names. Failure to honor this
requirement is most common cause of installation failure.

1. The first step in the installation process is to install java on the
system on which these CryptoXpress LT programs will
execute. CryptoXpress LT requires either java 1.4.1 or a more
recent version of Java. If your system is a Windows. Linux or
UNIX system we suggest that you install either the run-time
version of Java 1.5 or the SDK. If you are running OS/400 we
suggest that you install java 1.4.2.

You can verify that you have installed Java correctly by
running the following command:

Java -Version

The system should respond with a message similar to the
following:

Java version “1.4.2”

2. CryptoXpress LT is distributed in a zip file
(“CryptoXpress.zip”) that contains several Java jar files and
several sample Java programs and this document. Unzip these
files into a directory of your choice.

© 2005 CFXWorks, Inc. All Rights Reserved 22

Note that the sample scripts assume that they are being
executed with the current working directory being the
CryptoXpress LT installation directory. The scripts can be
changed to point to any directory.

3. You must copy the “strong encryption” jar files available
from either Sun or IBM to the appropriate directory on the
host system (see discussion in section 4.2). These files,
(local_policy.jar and US_export_policy.jar) must be installed
in the %JAVA_HOME%/jre/lib/security directory. They
replace files of the same name that are distributed in the
standard Java SDK. The standard distribution files that come
with Java do not allow the use of strong encryption. On an
iSeries platform the installation directory for these policy
files is generally /QIBM/Proddata/Java/jdk14/lib/security.

Note that the DQAim400 zip file contains only the IBM
version of these policy files. The Sun versions of these files
must be downloaded from Sun. See comment (1) in Section 4.2
of this manual.

On a Windows system “JAVA_HOME” can be found by
entering the command:

Echo %JAVA_HOME%

On a Solaris or Linux system “JAVA_HOME” can be found by
entering the command:

Echo $JAVA_HOME$

© 2005 CFXWorks, Inc. All Rights Reserved 23

4.10. iSeries Special Installation Instructions

Some versions of the OS/400 system have backlevel or multiple levels of
Java installed. This may make installation of CryptoXpress LT
confusing. CryptoXpress LT requires Version 1.4.x, or a more current
version of Java.

To run the Java programs you can use the RUNJVA command or execute
the program from the Qshell. The scripts assume that the Java programs
are being run under qshell. Qshell is accessed by running the following
command:

qsh

© 2005 CFXWorks, Inc. All Rights Reserved 24

	1. Introduction
	1.1. Thank You!
	1.2. General Description
	1.3. Data Confidentiality (encryption)
	1.4. Data Integrity (message digests)
	1.5. Common Uses for Encryption
	1.6. Common Uses for Message Digests

	2. Encryption/Decryption
	2.1. Encryption Algorithms Supported
	2.2. Why use AES Encryption?
	2.3. How secure is AES?
	2.4. What if I forget my encryption key?
	2.5. Do all AES solutions produce compatible results?
	2.6. When should I use 3DES?
	2.7. What about ASCII versus EBCDIC?
	2.8. Modes of operation
	2.9. Padding
	2.10. Initialization Vectors (Salt)
	2.11. Key Size
	2.12. Length of encrypted data
	2.13. Best Practices

	3. Message Digests
	3.1. Message Digests
	3.2. Using Message Digests
	3.3. How Secure Are Message Digests?
	3.4. Which Message Digest Algorithm Should I Use?

	4. Product Installation
	4.1. Minimum System Requirements
	4.2. CryptoXpress LT Components
	4.3. CryptoXpress LT Sample Scripts
	4.4. CryptoXpress LT Programs
	4.5. Documentation
	4.6. ASCII and EBCDIC Conversions
	4.7. Command Line Parameters
	4.8. Error Codes
	4.9. Windows, Linux & UNIX Installation
	4.10. iSeries Special Installation Instructions

