
Copyright © ComponentSpace Pty Ltd 2004-2016. All rights reserved.

www.componentspace.com

SAML v2.0 for.NET

Developer Guide

ComponentSpace SAML v2.0 for .NET Developer Guide

i

Contents

1 Introduction ... 1

1.1 Features .. 1
1.2 Benefits... 1
1.3 Prerequisites ... 2

2 Getting Started .. 2

3 An Introduction to SAML SSO .. 2
3.1 IdP-Initiated SSO ... 2
3.2 SP-Initiated SSO .. 3
3.3 IdP-Initiated SLO ... 4
3.4 SP-Initiated SLO .. 5

3.5 Security Considerations.. 6

3.5.1 Transport Level Security... 6

3.5.2 XML Signatures .. 6
3.5.3 XML Encryption ... 7

4 Using the Class Library .. 8
4.1 Adding a Reference .. 8
4.2 Distribution... 9

5 SAML High Level API ... 9
5.1 SAML Identity Provider APIs.. 9

5.1.1 SAMLIdentityProvider.InitiateSSO.. 9
5.1.2 SAMLIdentityProvider.ReceiveSSO .. 10
5.1.3 SAMLIdentityProvider.SendSSO ... 10

5.1.4 SAMLIdentityProvider.InitiateSLO ... 10
5.1.5 SAMLIdentityProvider.ReceiveSLO .. 10

5.1.6 SAMLIdentityProvider.SendSLO ... 11
5.2 SAML Service Provider APIs .. 11

5.2.1 SAMLServiceProvider.InitiateSSO .. 11
5.2.2 SAMLServiceProvider.ReceiveSSO .. 12

5.2.3 SAMLServiceProvider.InitiateSLO .. 12

5.2.4 SAMLServiceProvider.ReceiveSLO .. 13
5.2.5 SAMLServiceProvider.SendSLO ... 13

5.3 Configuration Management.. 13
5.4 ICertificateManager Interface .. 14

5.4.1 CertificateManager ... 14

5.4.2 Custom ICertificateManager ... 14
5.5 IIDCache Interface ... 16

5.5.1 InMemoryIDCache ... 16

5.5.2 DatabaseIDCache .. 16
5.5.3 Custom IDCache ... 18

5.6 ISSOSessionStore Interface ... 18
5.6.1 HttpSSOSessionStore ... 18

5.6.2 DatabaseSSOSessionStore .. 18
5.6.3 Custom ISSOSessionStore .. 20

6 SAML High Level API Configuration ... 20

ComponentSpace SAML v2.0 for .NET Developer Guide

ii

6.1 SAML Configurations .. 27

6.2 SAML Configuration ... 28
6.3 Identity Provider Configuration ... 28
6.4 Service Provider Configuration .. 28

6.5 Partner Identity Provider Configuration ... 29
6.6 Partner Service Provider Configuration ... 30
6.7 Partner Provider Configuration .. 31
6.8 Provider Configuration ... 34
6.9 Miscellaneous Configuration ... 35

6.9.1 Name ID Format Types .. 35
6.9.2 Authentication Contexts.. 35
6.9.3 Binding Types ... 36
6.9.4 Key Encryption Methods .. 36
6.9.5 Data Encryption Methods ... 36

6.9.6 Digest Methods ... 37

6.9.7 Signature Methods .. 37
6.10 Specifying Configuration Programmatically .. 37

7 SAML High Level API Certificate Configuration.. 38
7.1 Local Provider Certificate File ... 39
7.2 Partner Provider Certificate File .. 39

7.3 Encrypting the Certificate File Password ... 39
7.4 Managing the Windows Certificate Store .. 40

7.4.1 Running the MMC Certificates Snap-in ... 40
7.4.2 Importing a PFX File .. 40
7.4.3 Private Key Security ... 50

7.4.4 Importing a CER File .. 52

7.5 Local Provider Certificate Store ... 60
7.6 Partner Provider Certificate Store .. 61

8 Selecting the Most Applicable Example ... 61

8.1 High Level APIs ... 62
8.2 Low Level APIs ... 63

9 Building the Example Applications .. 64
10 Example Applications – High Level APIs .. 64

10.1 Web Forms Identity Provider and Service Provider 64
10.1.1 Installing the Web Forms Identity Provider .. 64
10.1.2 Installing the Web Forms Service Provider .. 65
10.1.3 Configuring the Web Forms Identity Provider ... 66
10.1.4 Configuring the Web Forms Service Provider.. 66

10.1.5 IdP-Initiated SSO from the Web Forms Identity Provider 67

10.1.6 SP-Initiated SSO from the Web Forms Service Provider 68

10.1.7 Code Walkthrough - IdP-Initiated SSO .. 70
10.1.8 Code Walkthrough - SP-Initiated SSO ... 70

10.2 MVC Identity Provider and Service Provider ... 71
10.2.1 Installing the MVC Identity Provider ... 71
10.2.2 Installing the MVC Service Provider .. 72
10.2.3 Configuring the MVC Identity Provider ... 73

ComponentSpace SAML v2.0 for .NET Developer Guide

iii

10.2.4 Configuring the MVC Service Provider ... 73

10.2.5 IdP-Initiated SSO from the MVC Identity Provider 74
10.2.6 SP-Initiated SSO from the MVC Service Provider..................................... 75
10.2.7 Code Walkthrough - IdP-Initiated SSO .. 76

10.2.8 Code Walkthrough - SP-Initiated SSO ... 77
10.3 OWIN Identity Provider and Service Provider ... 77

10.3.1 Installing the OWIN Identity Provider ... 77
10.3.2 Installing the OWIN Service Provider .. 78
10.3.3 Configuring the OWIN Identity Provider ... 79

10.3.4 Configuring the OWIN Service Provider ... 79
10.3.5 IdP-Initiated SSO from the OWIN Identity Provider 80
10.3.6 SP-Initiated SSO from the OWIN Service Provider 81
10.3.7 Code Walkthrough - IdP-Initiated SSO .. 82
10.3.8 Code Walkthrough - SP-Initiated SSO ... 83

10.4 ADFS Interoperability .. 83

10.4.1 Miscellaneous Configuration .. 83
10.4.2 Configuring the Service Provider ... 84

10.4.3 Configuring ADFS – Adding a Relying Party .. 85
10.4.4 Running the Service Provider with SP-Initiated SSO............................... 100
10.4.5 Running the Service Provider with IdP-Initiated SSO 102

10.4.6 Configuring the Identity Provider ... 104
10.4.7 Configuring ADFS – Adding a Claims Provider 104

10.4.8 Running the Identity Provider with IdP-Initiated SSO 115
10.4.9 Troubleshooting ADFS SSO... 117

10.5 Office 365 Interoperability ... 117

10.5.1 Configuring the Identity Provider ... 117

10.5.2 Configuring Office 365 ... 118
10.5.3 Adding a User ... 127
10.5.4 Deleting a User ... 128

10.5.5 Running the Identity Provider with SP-Initiated SSO 128
10.5.6 Running the Identity Provider with IdP-Initiated SSO 131

10.5.7 Email Client Support... 132
10.5.8 Configuring an Email Client ... 133

10.5.9 Running the Email Client.. 141
10.5.10 Troubleshooting Office 365 SSO .. 142

10.6 Google Apps Interoperability ... 142
10.6.1 Configuring the Identity Provider ... 142
10.6.2 Configuring Google Apps ... 143

10.6.3 Running Google Apps with SSO .. 144

10.6.4 Troubleshooting Google Apps SSO.. 145

10.7 Salesforce Interoperability .. 145
10.7.1 Configuring the Identity Provider ... 145
10.7.2 Configuring Salesforce as a Service Provider .. 145
10.7.3 Running the Example Identity Provider – IdP-Initiated SSO 147
10.7.4 Running the Example Identity Provider – SP-Initiated SSO 148
10.7.5 Configuring the Service Provider ... 148

ComponentSpace SAML v2.0 for .NET Developer Guide

iv

10.7.6 Configuring Salesforce as an Identity Provider .. 148

10.7.7 Running the Example Service Provider – IdP-Initiated SSO 150
10.7.8 Running the Example Service Provider – SP-Initiated SSO 151
10.7.9 Troubleshooting Salesforce SSO .. 152

10.8 Shibboleth Interoperability ... 153
10.8.1 Configuring the Identity Provider ... 153
10.8.2 Configuring the Service Provider ... 153
10.8.3 Configuring Shibboleth ... 154
10.8.4 Running Shibboleth with SSO – Example Identity Provider.................... 155

10.8.5 Running Shibboleth with SSO – Example Service Provider 157
10.8.6 Troubleshooting Shibboleth SSO ... 159

11 Example Applications - Low Level APIs ... 159
11.1 SP-Initiated SSO – Identity Provider .. 160

11.1.1 Installing the Identity Provider ... 160

11.1.2 Configuring the Identity Provider ... 160

11.1.3 Running the Identity Provider ... 160
11.1.4 Running the Identity Provider in Visual Studio .. 161

11.2 SP-Initiated SSO – Service Provider .. 162
11.2.1 Installing the Service Provider .. 162
11.2.2 Configuring the Service Provider ... 162

11.2.3 Running the Service Provider without SSO.. 162
11.2.4 Running the Service Provider with SSO ... 163

11.2.5 Running the Service Provider in Visual Studio .. 166
11.2.6 Service Provider SSO Execution Flow ... 166

11.3 IdP-Initiated SSO – Service Provider ... 167

11.3.1 Installing the Service Provider .. 167

11.3.2 Configuring the Service Provider ... 167
11.3.3 Running the Service Provider ... 167
11.3.4 Running the Service Provider in Visual Studio .. 168

11.4 IdP-Initiated SSO – Identity Provider ... 168
11.4.1 Installing the Identity Provider ... 168

11.4.2 Configuring the Identity Provider ... 168
11.4.3 Running the Identity Provider ... 168

11.4.4 Running the Identity Provider in Visual Studio .. 169
11.5 ADFS Interoperability – Service Provider .. 169

11.5.1 Installing the Service Provider .. 169
11.5.2 Configuring the Service Provider ... 169
11.5.3 Miscellaneous Configuration .. 170

11.5.4 Configuring ADFS .. 170

11.5.5 Running the Service Provider without SSO.. 180

11.5.6 Running the Service Provider with SSO ... 181
11.6 Google Apps Interoperability – Identity Provider 182

11.6.1 Installing the Identity Provider ... 182
11.6.2 Configuring the Identity Provider ... 182
11.6.3 Configuring Google Apps ... 182
11.6.4 Running Google Apps... 183

ComponentSpace SAML v2.0 for .NET Developer Guide

v

11.7 Salesforce Interoperability – Identity Provider ... 183

11.7.1 Installing the Identity Provider ... 183
11.7.2 Configuring the Identity Provider ... 183
11.7.3 Configuring Salesforce ... 183

11.7.4 Running Salesforce ... 184
11.7.5 Validating SAML Responses in Salesforce .. 184

11.8 Shibboleth Interoperability – Identity Provider .. 184
11.8.1 Installing the Identity Provider ... 184
11.8.2 Configuring the Identity Provider ... 185

11.8.3 Running the Identity Provider ... 185
11.8.4 Running the Identity Provider in Visual Studio .. 185

11.9 Shibboleth Interoperability – Service Provider... 185
11.9.1 Installing the Service Provider .. 186
11.9.2 Configuring the Service Provider ... 186

11.9.3 Running the Service Provider without SSO.. 186

11.9.4 Running the Service Provider with SSO ... 187
11.9.5 Running the Service Provider in Visual Studio .. 187

11.10 Assertion Examples .. 187
11.10.1 SAML Assertion Example Application .. 187

11.11 Metadata Examples ... 188

11.11.1 Import Metadata Example Application ... 188
11.11.2 Export Metadata Example Application ... 188

11.11.3 SAML Metadata Example Application ... 189
11.11.4 ReadMetadata .. 189

11.12 Signature Examples .. 189

11.12.1 SHA-256 Signature Example Application .. 189

11.12.2 SignSAML .. 189
11.12.3 VerifySAML ... 190

11.13 Utility Applications ... 190

11.13.1 ValidateConfig .. 190
11.13.2 ValidateXML .. 190

11.13.3 EncryptSAML ... 191
11.13.4 DecryptSAML ... 191

11.13.5 ParseHttpRedirectUrl .. 191
11.13.6 Java Utilities .. 191

12 Creating your own SSO Application .. 192
12.1 Considerations... 192

12.1.1 Error Handling .. 192

12.1.2 Configuration .. 192

12.1.3 Key Management .. 193

12.1.4 Security ... 193
13 Test Certificates and Keys .. 193

13.1 Makecert ... 193
13.1.1 Makecert and SHA-256 XML Signatures ... 194

13.2 Microsoft Certificate Server ... 194
13.3 Keytool .. 195

ComponentSpace SAML v2.0 for .NET Developer Guide

vi

14 SAML Metadata.. 195

14.1 Metadata Production ... 195
14.2 Metadata Consumption ... 196
14.3 Importing and Exporting Metadata ... 196

15 Troubleshooting .. 196
15.1 Tracing .. 196

15.1.1 Diagnostic Tracing in Web Applications .. 196
15.1.2 Diagnostic Tracing in Non-Web Applications ... 198

15.2 Troubleshooting XML Signatures .. 199

15.2.1 VerifySAML ... 199
15.2.2 VerifySAML Log File .. 199
15.2.3 Java VerifyXMLSignature .. 200
15.2.4 XML Signatures and Prefixes ... 200

15.3 Troubleshooting Loading Certificates .. 201

15.3.1 Certificates Stored in Files .. 201

15.3.2 Certificates Stored in the Windows Certificate Store 204
16 Generating and Verifying Signatures .. 205

16.1 Signature Generation .. 205
16.2 Signature Verification ... 206
16.3 SHA-256, SHA-384 and SHA-512 Support ... 207

16.3.1 .NET 4.0 Framework Support ... 207
16.3.2 CLR Security Update .. 207

17 Extracting SAML Assertions from SAML Responses ... 209
17.1 Extracting a SAML Assertion ... 210
17.2 Extracting a Signed SAML Assertion... 210

17.3 Extracting an Encrypted Assertion ... 210

18 Encrypted Assertions .. 210
19 Extracting Statements from SAML Assertions... 211
20 Extracting SAML Attributes ... 211

21 Class Library Reference .. 212
22 Class Library Version ... 212

23 Frequently Asked Questions ... 214
24 Support .. 217

ComponentSpace SAML v2.0 for .NET Developer Guide

 1

1 Introduction
The ComponentSpace SAML v2.0 component is a .NET class library that provides

SAML v2.0 assertions, protocol messages, bindings and profiles functionality.

You can use this functionality to easily enable your ASP.NET applications to participate

in SAML v2.0 federated single sign-on (SSO) either as an Identity Provider (IdP) or

Service Provider (SP). Samples applications with full source code are included.

If you’re looking for SAML v1.1 support, please refer to the separate ComponentSpace

SAML v1.1 component.

1.1 Features

The class library supports the SAML v2.0 Assertions, Protocol, Bindings and Profiles as

defined by the OASIS standard (www.oasis-open.org) including:

 SAML 2.0 assertions and all protocol messages

 SAML 2.0 metadata

 All bindings (SOAP, PAOS, HTTP Redirect, HTTP POST, HTTP Artifact and

SAML URI)

 Web browser single sign-on profile

 Single logout profile

 Artifact resolution profile

 Identity provider discovery profile

 Authentication, attribute, assertion query profiles

 Name identifier management and mapping profiles

 Generation and verification of XML signatures

 XML encryption

The library features classes for:

 Creating, modifying and accessing SAML assertions and protocol messages

 Sending and receiving SAML protocol messages across the various SAML

bindings.

 Supporting the SAML profiles

1.2 Benefits

 Easy to use class library enabling single sign-on support to be quickly added to

your ASP.NET applications

 Developer based licensing with no runtime royalties meaning you don’t pay per

deployment or end user

 Developed in C# with full source code available for purchase

http://www.oasis-open.org/

ComponentSpace SAML v2.0 for .NET Developer Guide

 2

 Includes class library reference and example applications with full source code

1.3 Prerequisites

The class library requires the .NET v2.0 framework or above and is for use with Visual

Studio 2005 or above.

It has been tested with .NET framework versions 2.0, 3.0, 3.5, 4.0, 4.5 and 4.6, using

Visual Studio 2005, 2008, 2010, 2012, 2013 and 2015, on 32-bit and 64-bit Windows

Server 2003, 2008, and 2012, as well as Windows 7, 8 and 10.

2 Getting Started
1. If you haven't already done so, install this product by double clicking the

Microsoft Installer (MSI) file and following the installation steps.

A free evaluation copy is available from our web site.

2. If you’re not familiar with SAML single sign-on, refer to section 3 for a brief

introduction to SAML.

3. See section 5 for assistance in determining the most applicable example project to

review.

4. Compile and run the example applications (see section 9).

5. See section 12 for assistance in enabling single sign-on in your own applications.

Please feel free to contact us if you need any assistance (see section 24).

3 An Introduction to SAML SSO
This is a brief introduction to SAML single sign-on (SSO). For more detailed information

you should contact us or refer to the SAML v2.0 specification documents at www.oasis-

open.org.

SAML single sign-on’s goal is to minimize the number of times a user has to login at

various web sites. It does this by having the user manually login at one site (called the

identity provider or IdP) and then automatically logging in, without having to provide

credentials, at one or more other sites (called the service providers or SPs).

A trust relationship must exist between the identity provider and service providers.

Service providers trust that the identity provider has authenticated the user.

SAML supports two single sign-on flows – IdP-initiated SSO and SP-initiated SSO.

3.1 IdP-Initiated SSO

In IdP-initiated SSO, the user starts at the IdP site, logs in and clicks a link to the SP site

which initiates SSO.

http://www.oasis-open.org/
http://www.oasis-open.org/

ComponentSpace SAML v2.0 for .NET Developer Guide

 3

The following diagram outlines the IdP-initiated SSO flow.

Browser Identity Provider Service Provider

1. Browse to IdP site

2. User is authenticated and logged in at IdP

3. Clicks link to SSO to SP site

4. <SAML Response> message sent to SP’s assertion consumer service

5. User is automatically logged in at SP

Figure 1 IdP-initiated SSO

1. The user browses to the IdP site.

2. If the user is not already authenticated at the IdP, the user must present their

credentials and login.

3. The user clicks a link to the SP site.

4. The IdP sends a SAML response containing a SAML assertion to the SP.

5. The SP uses the information contained in the SAML assertion, including the

user’s name and any associated attributes, and performs an automatic login.

Note that steps 2 and 3 may be in reverse order.

3.2 SP-Initiated SSO

In SP-initiated SSO, the user starts at the SP site and, instead of logging in at the SP site,

SSO is initiated with the IdP.

The following diagram outlines the SP-initiated SSO flow.

ComponentSpace SAML v2.0 for .NET Developer Guide

 4

Browser Service Provider Identity Provider

1. Browse to SP site

2. User not logged in

3. <AuthnRequest> message sent to IdP’s SSO service

4. User is authenticated and logged in at IdP

5. <SAML Response> message sent to SP’s assertion consumer service

6. User is automatically logged in at the SP

Figure 2 SP-initiated SSO

1. The user browses to the SP site.

2. The user attempts to access a protected page requiring the user to be

authenticated.

3. The SP sends an authentication request to the IdP’s SSO service endpoint.

4. If the user is not already authenticated at the IdP, the user must present their

credentials and login.

5. The IdP sends a SAML response containing a SAML assertion to the SP.

6. The SP uses the information contained in the SAML assertion, including the

user’s name and any associated attributes, and performs an automatic login.

3.3 IdP-Initiated SLO

In IdP-initiated single logout (SLO), the user starts at the IdP site, and clicks a link to

logout out of the IdP site and every SP site to which there is an SSO session.

The following diagram outlines the IdP-initiated SLO flow.

ComponentSpace SAML v2.0 for .NET Developer Guide

 5

Browser Identity Provider Service Provider

1. Browse to IdP site

2. User clicks link to initiate SLO

4. Logout request sent to SP’s SLO service

6. Logout response sent to IdP’s SLO service

3. User logged out of IdP site

5. User logged out of SP site

Figure 3 IdP-initiated SLO

1. The user has already SSO’d to one or more service providers.

2. The user clicks a link at the IdP site to initiate SLO.

3. The user is logged out of the IdP site.

4. A logout request is sent to the SP site.

5. The user is logged out of the SP site.

6. A logout response is sent to the IdP site.

Note that steps 4 through 6 are repeated for each service provider.

3.4 SP-Initiated SLO

In SP-initiated single logout (SLO), the user starts at the SP site, and clicks a link to

logout out of the IdP site and every SP site to which there is an SSO session.

The following diagram outlines the SP-initiated SLO flow.

ComponentSpace SAML v2.0 for .NET Developer Guide

 6

Browser Service Provider Identity Provider

1. Browse to SP site

2. User clicks link to initiate SLO

4. Logout request sent to IdP’s SLO service

6. Logout response sent to SP’s SLO service

3. User logged out of SP site

5. User logged out of IdP site

Figure 4 SP-initiated SLO

1. The user has already SSO’d to one or more service providers.

2. The user clicks a link at the SP site to initiate SLO.

3. The user is logged out of the SP site.

4. A logout request is sent to the IdP site.

5. The user is logged out of the IdP site.

6. A logout response is sent to the SP site.

Note that the identity provider sends a logout request and expects a logout response from

every other service provider apart from the initiating service provider. This occurs

between steps 5 and 6.

3.5 Security Considerations

3.5.1 Transport Level Security

The SAML specification recommends that all communications are over HTTPS.

3.5.2 XML Signatures

XML signatures may be used to sign SAML messages, assertions and metadata. For

example, a SAML response containing a SAML assertion may be signed. Alternatively,

just the SAML assertion may be signed.

ComponentSpace SAML v2.0 for .NET Developer Guide

 7

An XML signature is contained within a <Signature> element.

An XML signature ensures any changes to the signed XML may be detected and it

identifies who signed the XML.

For example, when an SP receives a signed SAML response from an IdP, if the signature

verification performed by the SP is successful, then the SP is assured that the SAML

response came from the IdP and that it hasn’t been modified after signing. Therefore,

having previously established a trust relationship with the IdP, the SP can safely consume

the SAML response sent by the IdP.

The following is an example of a signed SAML response.

Figure 5 Signed SAML Response

A signer signs with their private key and the verifier verifies with the signer’s public key.

For example, the IdP signs the SAML response using the IdP’s private key. The SP

verifies the SAML response signature using the IdP’s public key or certificate.

3.5.3 XML Encryption

XML encryption may be used to encrypt SAML assertion, attributes and certain

identifiers.

XML encryption ensures the privacy of any confidential data contained within the XML.

For example, an encrypted assertion is contained within an <EncryptedAssertion>

element. The SAML assertion may be encrypted because it contains sensitive user

information.

ComponentSpace SAML v2.0 for .NET Developer Guide

 8

Note that, in some circumstances, HTTPS transport level security may be considered

sufficient for the protection of any confidential data.

The following is an example of an encrypted SAML assertion.

Figure 6 Encrypted Assertion

An encrypter encrypts with the decrypter’s public key and the decrypter decrypts with

their private key. For example, the IdP encrypts the SAML assertion using the SP’s

public key or certificate. The SP decrypts the SAML assertion using the SP’s private key.

XML encryption involves the creation of a random symmetric key which is used to

encrypt the data. The symmetric key is then encrypted using the public asymmetric key.

To decrypt, the private asymmetric key is used to decrypt the random symmetric key

which in turn is used to decrypt the data. A symmetric key is used for performance

reasons.

4 Using the Class Library

4.1 Adding a Reference

To use the class library in Visual Studio, you need to add a reference to the class library

DLL from within your project.

With your project open, in the Solution Explorer right click the project and click Add

Reference.... Click the Browse button and browse to the class library DLL.

You will find the DLL in the bin directory under the installation directory (e.g. under

C:\Program Files (x86)\ComponentSpace SAML v2.0 for .NET\Bin\dotNET20 or

C:\Program Files (x86)\ComponentSpace SAML v2.0 for .NET\Bin\dotNET40).

There are minor differences between the .NET 2.0 and .NET 4.0 versions of the DLL

which make the class library easier to use for the specific version of the .NET framework.

If you are using the .NET framework v2.0 or above, use the DLL in the Bin\dotNET20

directory.

If you are using the .NET framework v4.0 or above, use the DLL in the Bin\dotNET40

directory.

ComponentSpace SAML v2.0 for .NET Developer Guide

 9

Once the reference has been added you can refer to the various SAML v2.0 classes from

within your project.

4.2 Distribution

The class library's runtime is royalty free which means it may be freely distributed with

your application. The only file that should be distributed is the class library DLL.

5 SAML High Level API
The class library includes both high level and low level APIs. For the majority of use

cases, it’s recommend the high level APIs are used as these provide the greatest ease of

use. The low level APIs are available for when maximum flexibility is required.

The following sub-sections outline the high level API.

Refer to the class library reference (see section 21) for more information on the high level

and low level APIs.

5.1 SAML Identity Provider APIs

The following APIs may be called when acting as an identity provider.

5.1.1 SAMLIdentityProvider.InitiateSSO

The InitiateSSO method sends a SAML response to the specified service provider as part

of IdP-initiated SSO.

For example:

 SAMLIdentityProvider.InitiateSSO(
 Response,

 “testuser”,

 new Dictionary<string, string>() {

 { “membership-level”, “platinum” },

 { “membership-number”, “12345678” } },

 null,

 null);

The Response is used to send the SAML response to the service provider via the browser.

The second parameter is the name of the user.

The third parameter is the user’s optional attribute names and values.

The fourth parameter is the target service provider URL or null if the default page should

be displayed.

The fifth parameter is the partner service provider’s name or null if there’s only one

configured partner service provider.

ComponentSpace SAML v2.0 for .NET Developer Guide

 10

5.1.2 SAMLIdentityProvider.ReceiveSSO

The ReceiveSSO method receives an authn request from a service provider as part of SP-

initiated SSO.

For example:

 SAMLIdentityProvider.ReceiveSSO(
 Request,

 out partnerSP);

The Request is used to receive the authn request.

The partnerSP receives the name of the service provider that sent the authn request.

5.1.3 SAMLIdentityProvider.SendSSO

The SendSSO method sends a SAML response to the service provider as part of SP-

initiated SSO.

For example:

 SAMLIdentityProvider.SendSSO(
 Response,

 “testuser”,

 new Dictionary<string, string>() {

 { “membership-level”, “platinum” },

 { “membership-number”, “12345678” } });

The Response is used to send the SAML response to the service provider via the browser.

The second parameter is the name of the user.

The third parameter is the user’s optional attribute names and values.

5.1.4 SAMLIdentityProvider.InitiateSLO

The InitiateSLO method sends a logout request to each service provider in session as part

of IdP-initiated SLO.

For example:

 SAMLIdentityProvider.InitiateSLO(
 Response,

 null);

The Response is used to send the logout request to the service provider via the browser.

The second parameter is the logout reason or null if none.

5.1.5 SAMLIdentityProvider.ReceiveSLO

The ReceiveSLO method receives a logout request from a service provider as part of SP-

initiated SLO or a logout response from a service provider as part of IdP-initiated SLO.

ComponentSpace SAML v2.0 for .NET Developer Guide

 11

For example:

 SAMLIdentityProvider.ReceiveSLO(
 Request,

 Response,

 out isRequest,

 out hasCompleted,

 out logoutReason,

 out partnerSP);

The Request is used to receive the logout message.

The Response is used to send a logout message.

The isRequest receives the flag indicating whether a logout request or response has been

received.

The hasCompleted receives the flag indicating whether the IdP-initiated SLO has

completed.

The logoutReason receives the logout reason.

The partnerSP receives the name of the service provider that sent the logout message.

5.1.6 SAMLIdentityProvider.SendSLO

The SendSLO method sends a logout message to the service provider.

For example:

 SAMLIdentityProvider.SendSLO(
 Response,

 null);

The Response is used to send the logout message to the service provider via the browser.

The second parameter is the error message or null if none.

5.2 SAML Service Provider APIs

The following APIs may be called when acting as a service provider.

5.2.1 SAMLServiceProvider.InitiateSSO

The InitiateSSO method sends an authn request to the specified identity provider as part

of SP-initiated SSO.

For example:

 SAMLServiceProvider.InitiateSSO(
 Response,

 null,

 null);

ComponentSpace SAML v2.0 for .NET Developer Guide

 12

The Response object is used to send the authn request to the identity provider via the

browser.

The second parameter is the relay state (e.g. target URL) or null if not required.

The third parameter is the partner identity provider’s name or null if there’s only one

configured partner identity provider.

5.2.2 SAMLServiceProvider.ReceiveSSO

The ReceiveSSO method receives a SAML response from an identity provider as part of

either IdP-initiated SSO or SP-initiated SSO.

For example:

 SAMLServiceProvider.ReceiveSSO(
 Request,

 out isInResponseTo,

 out partnerIdP,

 out userName,

 out attributes,

 out targetUrl);

The Request is used to receive the SAML response.

The isInResponseTo receives the flag indicating whether SAML response is in response

to an authn request (i.e. SP-initiated SSO) or not (i.e. IdP-initiated SSO).

The partnerIdP receives the name of the identity provider.

The userName receives the name of the user.

The attributes receives the user’s optional attribute names and values.

The targetUrl receives the target service provider URL or null if the default page should

be displayed.

5.2.3 SAMLServiceProvider.InitiateSLO

The InitiateSLO method sends a logout request to the identity provider as part of SP-

initiated SLO.

For example:

 SAMLServiceProvider.InitiateSLO(
 Response,

 null,

 null);

The Response is used to send the logout request to the service provider via the browser.

The second parameter is the logout reason or null if none.

The third parameter is the partner identity provider’s name or null if there’s only one

configured partner identity provider.

ComponentSpace SAML v2.0 for .NET Developer Guide

 13

5.2.4 SAMLServiceProvider.ReceiveSLO

The ReceiveSLO method receives a logout request from a service provider as part of SP-

initiated SLO or a logout response from a service provider as part of IdP-initiated SLO.

For example:

 SAMLServiceProvider.ReceiveSLO(
 Request,

 out isRequest,

 out logoutReason,

 out partnerIdP);

The Request is used to receive the logout message.

The isRequest receives the flag indicating whether a logout request or response has been

received.

The logoutReason receives the logout reason.

The partnerIdP receives the name of the identity provider that sent the logout message.

5.2.5 SAMLServiceProvider.SendSLO

The SendSLO method sends a logout message to the identity provider.

For example:

 SAMLServiceProvider.SendSLO(
 Response,

 null);

The Response is used to send the logout message to the identity provider via the browser.

The second parameter is the error message or null if none.

5.3 Configuration Management

The SAML configuration is defined in section 6.

For the majority of use cases, maintaining the SAML configuration in the saml.config

configuration file, located in the application directory, is the simplest strategy.

The SAMLConfigFile application setting in web.config may be used to specify an

alternative SAML configuration file. For example, this may be useful to distinguish

between test and production builds.

 <appSettings>

 <!-- The relative or absolute path of the SAML configuration file.

 It defaults to saml.config. -->

 <add key="SAMLConfigFile" value="prod-saml.config"/>

 </appSettings>

SAML configuration files are loaded automatically.

ComponentSpace SAML v2.0 for .NET Developer Guide

 14

Alternatively, configuration may be specified programmatically if, for example, it’s

stored in a database rather than the saml.config file. Refer to section 6.10 for more

details.

5.4 ICertificateManager Interface

Both local and partner X.509 certificates may be specified by configuration. See section 6

for more details. For most uses cases, this is the preferred method. However, if required,

certificates may be managed programmatically through the ICertificateManager interface.

The ICertificateManager interface permits retrieval of X.509 certificates required as part

of the single sign-on process.

The GetLocalIdentityProviderCertificate method returns the local identity provider

certificate associated with the specified partner service provider.

The GetLocalServiceProviderCertificate method returns the local service provider

certificate associated with the specified partner identity provider.

The GetPartnerIdentityProviderCertificate method returns the specified partner identity

provider’s certificate.

The GetPartnerServiceProviderCertificate method returns the specified partner service

provider’s certificate.

5.4.1 CertificateManager

A default implementation, CertificateManager, is included which supports X.509

certificates specified by configuration.

5.4.2 Custom ICertificateManager

If required, a custom ICertificateManager may be implemented.

The following example code outlines a custom certificate manager which retrieves

certificates that are stored in a database.

public class DatabaseCertificateManager : ICertificateManager

{

 public IList<X509Certificate2>

GetLocalIdentityProviderSignatureCertificates(string configurationID,

string partnerServiceProviderName)

 {

 // Load the certificate from the database - details not shown.

 byte[] certificateBytes = null;

 return new List<X509Certificate2>()

 {

 new X509Certificate2(certificateBytes)

 };

 }

ComponentSpace SAML v2.0 for .NET Developer Guide

 15

 public IList<X509Certificate2>

GetLocalServiceProviderEncryptionCertificates(string configurationID,

string partnerIdentityProviderName)

 {

 // Load the certificate from the database - details not shown.

 byte[] certificateBytes = null;

 return new List<X509Certificate2>()

 {

 new X509Certificate2(certificateBytes)

 };

 }

 public IList<X509Certificate2>

GetLocalServiceProviderSignatureCertificates(string configurationID,

string partnerIdentityProviderName)

 {

 // Load the certificate from the database - details not shown.

 byte[] certificateBytes = null;

 return new List<X509Certificate2>()

 {

 new X509Certificate2(certificateBytes)

 };

 }

 public IList<X509Certificate2>

GetPartnerIdentityProviderSignatureCertificates(string configurationID,

string partnerIdentityProviderName)

 {

 // Load the certificate from the database - details not shown.

 // The partnerIdentityProviderName is used as a key to retrieve

 // the certificate.

 byte[] certificateBytes = null;

 return new List<X509Certificate2>()

 {

 new X509Certificate2(certificateBytes)

 };

 }

 public IList<X509Certificate2>

GetPartnerServiceProviderEncryptionCertificates(string configurationID,

string partnerServiceProviderName)

 {

 // Load the certificate from the database - details not shown.

 // The partnerServiceProviderName is used as a key to retrieve

 // the certificate.

 byte[] certificateBytes = null;

 return new List<X509Certificate2>()

 {

 new X509Certificate2(certificateBytes)

 };

 }

ComponentSpace SAML v2.0 for .NET Developer Guide

 16

 public IList<X509Certificate2>

GetPartnerServiceProviderSignatureCertificates(string configurationID,

string partnerServiceProviderName)

 {

 // Load the certificate from the database - details not shown.

 // The partnerServiceProviderName is used as a key to retrieve

 // the certificate.

 byte[] certificateBytes = null;

 return new List<X509Certificate2>()

 {

 new X509Certificate2(certificateBytes)

 };

 }

}

The following code assume a DatabaseCertificateManager class has been implemented

and configures this as the certificate manager.

SAMLController.CertificateManager = new DatabaseCertificateManager();

5.5 IIDCache Interface

The IIDCache interface manages identifiers used as part of the single sign-on process.

This includes checking SAML assertion identifiers as part of replay attack detection at

the service provider.

5.5.1 InMemoryIDCache

A default implementation, InMemoryIDCache, is included.

The InMemoryIDCache stores identifiers in an in-memory cache which is suitable in a

single server configuration but is not suitable in a web farm.

5.5.2 DatabaseIDCache

In a web farm, an IIDCache implementation backed by a database, for example, is

required.

The DatabaseIDCache stores identifiers in a database table which is suitable in a web

farm.

The following code configures the database ID cache.

SAMLController.IDCache = new DatabaseIDCache();

The IDCache property should be set before any other SAML API calls (eg in the

application’s Global.asax).

The ID cache is stored in a single table, SAMLIdentifiers, with the following schema.

ComponentSpace SAML v2.0 for .NET Developer Guide

 17

The ID column is the SAML identifier e.g. the SAML assertion ID. The

ExpirationDateTime is the UTC date/time when the SAML identifier expires.

The following SQL script creates the SAMLIdentifiers table in a SQL Server 2014

database.

USE [SAML]

GO

DROP TABLE [dbo].[SAMLIdentifiers]

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

CREATE TABLE [dbo].[SAMLIdentifiers](

 [ID] [nvarchar](256) NOT NULL,

 [ExpirationDateTime] [datetime] NOT NULL,

 CONSTRAINT [PK_SAMLIdentifiers] PRIMARY KEY CLUSTERED

(

 [ID] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY =

OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]

GO

The default DatabaseIDCache constructor assumes a web.config connection string named

SAML and that the table name is SAMLIdentifiers.

The high-level API MVC and web forms example service providers include a connection

string in web.config for the example database.

It’s anticipated that, in many instances, the SAMLIdentifiers table would be added to an

application’s existing database.

Alternatively, a separate database deployed to SQL Server or some other DBMS may be

used.

The only requirement is that the table includes the specified columns.

ComponentSpace SAML v2.0 for .NET Developer Guide

 18

Additional DatabaseIDCache constructors are available to specify the connection string

name and table name.

The DatabaseIDCache class includes a DeleteExpired method that removes any expired

IDs from the table. This method should be called periodically to maintain the table.

The StartDeletingExpired method may be called to schedule the removal of expired IDs

on a regular basis as a background task.

Alternatively, the DeleteExpiredPriorToAdd property may be set to true to have the

removal of expired IDs occur prior to adding a new ID.

There is also the option to maintain this table independently as part of general database

maintenance.

However it is done, care should be taken to ensure this table doesn’t grow too large with

expired rows.

5.5.3 Custom IDCache

If required, a custom IIDCache may be implemented.

The following code assume a CustomIDCache class has been implemented and

configures this as the ID cache.

SAMLController.IDCache = new CustomIDCache();

5.6 ISSOSessionStore Interface

The ISSOSessionStore interface manages the storage of SSO session state information

used as part of the single sign-on process.

5.6.1 HttpSSOSessionStore

A default implementation, HttpSSOSessionStore, is included.

The HttpSSOSessionStore stores SSO session state information as part of the ASP.NET

HTTP session state.

The HttpSSOSessionStore is suitable in a single server configuration using the ASP.NET

InProc session mode or in a web farm using the StateServer, SQLServer or equivalent

Custom mode.

5.6.2 DatabaseSSOSessionStore

In a web farm, an ISSOSessionStore implementation backed by a database, for example,

is required.

The DatabaseSSOSessionStore stores SSO session data in a database table which is

suitable in a web farm.

The following code configures the database SSO session store.

SAMLController.SSOSessionStore = new DatabaseSSOSessionStore();

The SSOSessionStore property should be set before any other SAML API calls (eg in the

application’s Global.asax).

ComponentSpace SAML v2.0 for .NET Developer Guide

 19

The SSO session data is stored in a single table, SSOSessions, with the following

schema.

The SessionID column is the unique identifier for the SSO session data. The

UpdateDateTime is the UTC date/time when the SSO session data was last updated. The

SessionObject is the opaque session data stored as a byte array.

The following SQL script creates the SAMLIdentifiers table in a SQL Server 2014

database.

USE [SAML]

GO

DROP TABLE [dbo].[SSOSessions]

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI_PADDING ON

GO

CREATE TABLE [dbo].[SSOSessions](

 [SessionID] [nvarchar](64) NOT NULL,

 [UpdateDateTime] [datetime] NOT NULL,

 [SessionObject] [varbinary](max) NOT NULL,

 CONSTRAINT [PK_SSOSessions] PRIMARY KEY CLUSTERED

(

 [SessionID] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY =

OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

GO

SET ANSI_PADDING OFF

ComponentSpace SAML v2.0 for .NET Developer Guide

 20

GO

The default DatabaseSSOSessionStore constructor assumes a web.config connection

string named SAML and that the table name is SSOSessions.

The high-level API MVC and web forms example service providers include a connection

string in web.config for the example database.

It’s anticipated that, in many instances, the SSOSessions table would be added to an

application’s existing database.

Alternatively, a separate database deployed to SQL Server or some other DBMS may be

used.

The only requirement is that the table includes the specified columns.

Additional DatabaseSSOSessionStore constructors are available to specify the connection

string name and table name.

The DatabaseSSOSessionStore class includes a DeleteExpired method that removes any

expired SSO session data from the table. This method should be called periodically to

maintain the table. Alternatively, the Delete method may be called to delete specific SSO

session data from the table.

There is also the option to maintain this table independently as part of general database

maintenance.

However it is done, care should be taken to ensure this table doesn’t grow too large with

expired rows.

5.6.3 Custom ISSOSessionStore

If required, a custom ISSOSessionStore may be implemented.

The following code assume a CustomSSOSessionStore class has been implemented and

configures this as the SSO session store.

SAMLController.SSOSessionStore = new CustomSSOSessionStore();

6 SAML High Level API Configuration
Configuration information associated with the high level API is found within the

saml.config file in the application’s root directory.

The following XML schema defines the saml.config syntax.

Any errors in the configuration will be reported when the configuration is loaded.

The utility application, ValidateConfig.exe, which is described in section 11.13.1, may be

used to validate the configuration.

ComponentSpace SAML v2.0 for .NET Developer Guide

 21

<?xml version="1.0" encoding="utf-8"?>

<!-- This schema defines the SAML configuration syntax. -->

<schema targetNamespace="urn:componentspace:SAML:2.0:configuration"

 xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:saml="urn:componentspace:SAML:2.0:configuration"

 elementFormDefault="qualified">

 <!-- SAML configurations -->

 <element name="SAMLConfigurations"

 type="saml:SAMLConfigurationsType"/>

 <complexType name="SAMLConfigurationsType">

 <sequence>

 <element name="SAMLConfiguration"

 type="saml:SAMLConfigurationType"

 minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 <attribute name="ReloadOnConfigurationChange" type="boolean"

 default="true"/>

 <attribute name="TraceLevel" type="saml:TraceLevelType"/>

 <attribute name="ValidateMessagesAgainstSchema" type="boolean"

 default="false"/>

 </complexType>

 <!-- SAML configuration -->

 <element name="SAMLConfiguration"

 type="saml:SAMLConfigurationType"/>

 <complexType name="SAMLConfigurationType">

 <all>

 <element name="IdentityProvider"

 type="saml:IdentityProviderType" minOccurs="0"/>

 <element name="ServiceProvider" type="saml:ServiceProviderType"

 minOccurs="0"/>

 <element name="PartnerIdentityProviders"

 type="saml:PartnerIdentityProvidersType" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="PartnerServiceProviders"

 type="saml:PartnerServiceProvidersType" minOccurs="0"

 maxOccurs="unbounded"/>

 </all>

 <attribute name="ReloadOnConfigurationChange" type="boolean"

 default="true"/>

 <attribute name="TraceLevel" type="saml:TraceLevelType"/>

 </complexType>

 <!-- Identity Provider -->

 <complexType name="IdentityProviderType">

 <complexContent>

 <extension base="saml:LocalProviderType">

 <attribute name="SingleSignOnServiceUrl" type="string"/>

 </extension>

 </complexContent>

 </complexType>

ComponentSpace SAML v2.0 for .NET Developer Guide

 22

 <!-- Service Provider -->

 <complexType name="ServiceProviderType">

 <complexContent>

 <extension base="saml:LocalProviderType">

 <attribute name="AssertionConsumerServiceUrl" type="string"/>

 </extension>

 </complexContent>

 </complexType>

 <!-- Partner Identity Providers -->

 <complexType name="PartnerIdentityProvidersType">

 <sequence>

 <element name="PartnerIdentityProvider"

 type="saml:PartnerIdentityProviderType"

 minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <!-- Partner Service Providers -->

 <complexType name="PartnerServiceProvidersType">

 <sequence>

 <element name="PartnerServiceProvider"

 type="saml:PartnerServiceProviderType"

 minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <!-- Partner Identity Provider -->

 <complexType name="PartnerIdentityProviderType">

 <complexContent>

 <extension base="saml:PartnerProviderType">

 <attribute name="SingleSignOnServiceUrl" type="string"

 use="required"/>

 <attribute name="SingleSignOnServiceBinding"

 type="saml:SAMLBindingType"

 default="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-

Redirect"/>

 <attribute name="SignAuthnRequest" type="boolean"

 default="false"/>

 <attribute name="ForceAuthn" type="boolean"

 default="false"/>

 <attribute name="WantSAMLResponseSigned" type="boolean"

 default="false"/>

 <attribute name="WantAssertionSigned" type="boolean"

 default="false"/>

 <attribute name="WantAssertionEncrypted" type="boolean"

 default="false"/>

 <attribute name="DisableAssertionReplayCheck"

 type="boolean" default="false"/>

 <attribute name="DisableRecipientCheck"

 type="boolean" default="false"/>

 <attribute name="DisableTimePeriodCheck"

 type="boolean" default="false"/>

 <attribute name="DisableAudienceRestrictionCheck"

 type="boolean" default="false"/>

 <attribute name="DisableAuthnContextCheck"

 type="boolean" default="false"/>

ComponentSpace SAML v2.0 for .NET Developer Guide

 23

 <attribute name="OverridePendingAuthnRequest"

 type="boolean" default="false"/>

 <attribute name="ProviderName" type="string"/>

 </extension>

 </complexContent>

 </complexType>

 <!-- Partner Service Provider -->

 <complexType name="PartnerServiceProviderType">

 <complexContent>

 <extension base="saml:PartnerProviderType">

 <attribute name="AssertionConsumerServiceUrl" type="string"/>

 <attribute name="WantAuthnRequestSigned" type="boolean"

 default="false"/>

 <attribute name="SignSAMLResponse" type="boolean"

 default="false"/>

 <attribute name="SignAssertion" type="boolean"

 default="false"/>

 <attribute name="EncryptAssertion" type="boolean"

 default="false"/>

 <attribute name="AssertionLifeTime" type="string"

 default="00:03:00"/>

 </extension>

 </complexContent>

 </complexType>

 <!-- Local and partner provider types -->

 <complexType name="LocalProviderType" abstract="true">

 <complexContent>

 <extension base="saml:ProviderType"/>

 </complexContent>

 </complexType>

 <complexType name="PartnerProviderType" abstract="true">

 <complexContent>

 <extension base="saml:ProviderType">

 <attribute name="PartnerCertificateFile" type="string"/>

 <attribute name="PartnerCertificateStoreLocation"

 type="saml:CertificateStoreLocationType"

 default="LocalMachine"/>

 <attribute name="PartnerCertificateSerialNumber"

 type="string"/>

 <attribute name="PartnerCertificateThumbprint" type="string"/>

 <attribute name="PartnerCertificateSubject" type="string"/>

 <attribute name="SingleLogoutServiceUrl" type="string"/>

 <attribute name="SingleLogoutServiceResponseUrl"

 type="string"/>

 <attribute name="SingleLogoutServiceBinding"

 type="saml:SAMLBindingType"

 default="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"/>

 <attribute name="LogoutRequestLifeTime" type="string"

 default="00:03:00"/>

 <attribute name="DisableDestinationCheck" type="boolean"

 default="false"/>

 <attribute name="DisableInboundLogout" type="boolean"

 default="false"/>

ComponentSpace SAML v2.0 for .NET Developer Guide

 24

 <attribute name="DisableOutboundLogout" type="boolean"

 default="false"/>

 <attribute name="DisableInResponseToCheck" type="boolean"

 default="false"/>

 <attribute name="DisablePendingLogoutCheck" type="boolean"

 default="false"/>

 <attribute name="SignLogoutRequest" type="boolean"

 default="false"/>

 <attribute name="SignLogoutResponse" type="boolean"

 default="false"/>

 <attribute name="WantLogoutRequestSigned" type="boolean"

 default="false"/>

 <attribute name="WantLogoutResponseSigned" type="boolean"

 default="false"/>

 <attribute name="UseEmbeddedCertificate" type="boolean"

 default="false"/>

 <attribute name="IssuerFormat" type="saml:NameIDFormatType"/>

 <attribute name="NameIDFormat" type="saml:NameIDFormatType"

 default="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified"/>

 <attribute name="DigestMethod"

 type="saml:DigestMethodType"

 default="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <attribute name="SignatureMethod"

 type="saml:SignatureMethodType"

 default="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <attribute name="KeyEncryptionMethod"

 type="saml:KeyEncryptionMethodType"

 default="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

 <attribute name="DataEncryptionMethod"

 type="saml:DataEncryptionMethodType"

 default="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>

 <attribute name="ClockSkew" type="string" default="00:00:00"/>

 <attribute name="AuthnContext" type="saml:AuthnContextType"/>

 </extension>

 </complexContent>

 <complexType name="ProviderType" abstract="true">

 <attribute name="Name" type="string" use="required"/>

 <attribute name="LocalCertificateFile" type="string"/>

 <attribute name="LocalCertificatePassword" type="string"/>

 <attribute name="LocalCertificatePasswordKey" type="string"/>

 <attribute name="LocalCertificateStoreLocation"

 type="saml:CertificateStoreLocationType"

 default="LocalMachine"/>

 <attribute name="LocalCertificateSerialNumber" type="string"/>

 <attribute name="LocalCertificateThumbprint" type="string"/>

 <attribute name="LocalCertificateSubject" type="string"/>

 </complexType>

 <!-- Name ID Formats -->

 <simpleType name="NameIDFormatType">

 <restriction base="string">

 <enumeration value="urn:oasis:names:tc:SAML:1.1:nameid-

format:unspecified"/>

 <enumeration value="urn:oasis:names:tc:SAML:1.1:nameid-

format:emailAddress"/>

ComponentSpace SAML v2.0 for .NET Developer Guide

 25

 <enumeration value="urn:oasis:names:tc:SAML:1.1:nameid-

format:X509SubjectName"/>

 <enumeration value="urn:oasis:names:tc:SAML:1.1:nameid-

format:WindowsDomainQualifiedName"/>

 <enumeration value="urn:oasis:names:tc:SAML:2.0:nameid-

format:kerberos"/>

 <enumeration value="urn:oasis:names:tc:SAML:2.0:nameid-

format:entity"/>

 <enumeration value="urn:oasis:names:tc:SAML:2.0:nameid-

format:persistent"/>

 <enumeration value="urn:oasis:names:tc:SAML:2.0:nameid-

format:transient"/>

 </restriction>

 </simpleType>

 <!-- Authn contexts -->

 <simpleType name="AuthnContextType">

 <restriction base="string">

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:InternetProtocol"/>

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:InternetProtocolPassword

"/>

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:Kerberos"/>

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:MobileOneFactorUnregiste

red"/>

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:MobileTwoFactorUnregiste

red"/>

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:MobileOneFactorContract"

/>

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:MobileTwoFactorContract"

/>

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:Password"/>

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTranspo

rt"/>

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:PreviousSession"/>

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:X509"/>

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:PGP"/>

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:SPKI"/>

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:XMLDSig"/>

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:Smartcard"/>

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:SmartcardPKI"/>

ComponentSpace SAML v2.0 for .NET Developer Guide

 26

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:SoftwarePKI"/>

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:Telephony"/>

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:NomadTelephony"/>

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:PersonalTelephony"/>

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:AuthenticatedTelephony"/

>

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:SecureRemotePassword"/>

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:TLSClient"/>

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:TimeSyncToken"/>

 <enumeration

value="urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified"/>

 </restriction>

 </simpleType>

 <!-- Bindings -->

 <simpleType name="SAMLBindingType">

 <restriction base="string">

 <enumeration value="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-

POST"/>

 <enumeration value="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-

Redirect"/>

 </restriction>

 </simpleType>

 <!-- Security -->

 <simpleType name="KeyEncryptionMethodType">

 <restriction base="string">

 <enumeration value="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

 <enumeration value="http://www.w3.org/2001/04/xmlenc#rsa-oaep-

mgf1p"/>

 </restriction>

 </simpleType>

 <simpleType name="DataEncryptionMethodType">

 <restriction base="string">

 <enumeration value="http://www.w3.org/2001/04/xmlenc#tripledes-

cbc"/>

 <enumeration value="http://www.w3.org/2001/04/xmlenc#aes128-

cbc"/>

 <enumeration value="http://www.w3.org/2001/04/xmlenc#aes192-

cbc"/>

 <enumeration value="http://www.w3.org/2001/04/xmlenc#aes256-

cbc"/>

 </restriction>

 </simpleType>

 <simpleType name="DigestMethodType">

 <restriction base="string">

 <enumeration value="http://www.w3.org/2000/09/xmldsig#sha1"/>

ComponentSpace SAML v2.0 for .NET Developer Guide

 27

 <enumeration value="http://www.w3.org/2001/04/xmlenc#sha256"/>

 </restriction>

 </simpleType>

 <simpleType name="SignatureMethodType">

 <restriction base="string">

 <enumeration value="http://www.w3.org/2000/09/xmldsig#rsa-

sha1"/>

 <enumeration value="http://www.w3.org/2001/04/xmldsig-more#rsa-

sha256"/>

 </restriction>

 </simpleType>

 <!-- Trace -->

 <simpleType name="TraceLevelType">

 <restriction base="string">

 <enumeration value="Off"/>

 <enumeration value="Verbose"/>

 </restriction>

 </simpleType>

</schema>
Figure 7 Saml.config XML Schema

6.1 SAML Configurations

SAMLConfiguration

The SAMLConfiguration element specifies one or more SAML configurations

when configured in a multi-tenanted environment.

ReloadOnConfigurationChange

The optional ReloadOnConfigurationChange attribute specifies whether the

application should be reloaded if the configuration changes. The default is true.

TraceLevel

The optional TraceLevel attribute specifies the trace level for logging.

Tracing configuration is specified in the application’s web.config. Refer to section

15.1 for more details. The trace switch value in the <system.diagnostics> section

specifies whether verbose trace is enabled or not.

The trace switch may be overridden by specifying a trace level. For example, if the

trace switch value in <system.diagnostics> is Off, the trace level may be set to

Verbose to enable trace without modifying web.config.

In most scenarios, it’s preferable to modify the trace switch value in

<system.diagnostics>.

By default, the trace level is not specified and therefore the trace switch value in

<system.diagnostics> applies.

ValidateMessagesAgainstSchema

ComponentSpace SAML v2.0 for .NET Developer Guide

 28

The optional ValidateMessagesAgainstSchema attribute specifies whether received

SAML messages should be validated against the SAML XML schemas. The

default is false.

6.2 SAML Configuration

IdentityProvider

The optional IdentityProvider element specifies the configuration for the

application when acting as an identity provider.

ServiceProvider

The optional ServiceProvider element specifies the configuration for the

application when acting as a service provider.

PartnerIdentityProviders

The optional PartnerIdentityProviders element specifies the configuration for the

partner identity providers.

PartnerServiceProviders

The optional PartnerServiceProviders element specifies the configuration for the

partner service providers.

PartnerIdentityProvider

The optional PartnerIdentityProvider element specifies the configuration for a

partner identity provider.

PartnerServiceProvider

The optional PartnerServiceProvider element specifies the configuration for a

partner service provider.

ID

The optional ID attribute specifies the SAML configuration identifier in a multi-

tenanted environment. If there is a single SAML configuration only, no identifier

needs to be specified.

6.3 Identity Provider Configuration

SingleSignOnServiceUrl

The optional SingleSignOnServiceUrl attribute specifies the application’s single

sign-on service URL. SAML authn requests will be received at this URL.

6.4 Service Provider Configuration

AssertionConsumerServiceUrl

The optional AssertionConsumerServiceUrl attribute specifies the application’s

assertion consumer service (ACS) URL. SAML responses will be received at the

ACS.

ComponentSpace SAML v2.0 for .NET Developer Guide

 29

6.5 Partner Identity Provider Configuration

SingleSignOnServiceUrl

The optional SingleSignOnServiceUrl attribute specifies the partner identity

provider’s single sign-on (SSO) service URL. Authentication requests will be sent

to the SSO service. This is only required for SP-initiated SSO.

SingleSignOnServiceBinding

The optional SingleSignOnServiceBinding attribute specifies the transport binding

to use when sending authentication requests to the partner identity provider’s SSO

service. The default is to use the HTTP-Redirect binding.

SignAuthnRequest

The optional SignAuthnRequest attribute specifies whether authentication requests

sent to the partner identity provider should be signed. The default is false.

ForceAuthn

The optional ForceAuthn attribute specifies whether to set the force authentication

attribute in authentication requests. The default is false.

WantSAMLResponseSigned

The optional WantSAMLResponseSigned attribute specifies whether the SAML

response from the partner identity provider should be signed. The default is false.

WantAssertionSigned

The optional WantAssertionSigned attribute specifies whether the SAML assertion

from the partner identity provider should be signed. The default is false.

WantAssertionEncrypted

The optional WantAssertionEncrypted attribute specifies whether the SAML

assertion from the partner identity provider should be encrypted. The default is

false.

DisableAssertionReplayCheck

The optional DisableAssertionReplayCheck attribute specifies whether the check

for SAML assertion replay should be made. This attribute should only be set to true

in test environments or to work around limitations in the partner identity provider.

The default is false.

DisableRecipientCheck

The optional DisableRecipientCheck attribute specifies whether the check SAML

recipient URI in the SAML assertion chould be checked. This attribute should only

be set to true in test environments or to work around limitations in the partner

identity provider. The default is false.

DisableTimePeriodCheck

The optional DisableTimePeriodCheck attribute specifies whether the SAML

assertion’s not-before/not-on-or-after time period should be checked. This attribute

ComponentSpace SAML v2.0 for .NET Developer Guide

 30

should only be set to true in test environments or to work around limitations in the

partner identity provider. The default is false.

DisableAudienceRestrictionCheck

The optional DisableAudienceRestrictionCheck attribute specifies whether the

audience restriction condition in the SAML assertion should be checked. This

attribute should only be set to true in test environments or to work around

limitations in the partner identity provider. The default is false.

DisableAuthnContextCheck

The optional DisableAuthnContextCheck attribute specifies whether the

authentication context in the authentication statement in the SAML assertion

should be checked against the AuthnContext configuration attribute. This attribute

should only be set to true in test environments or to work around limitations in the

partner identity provider. The default is false.

OverridePendingAuthnRequest

The optional OverridePendingAuthnRequest attribute specifies whether a pending

authentication request may be overridden and an IdP-initiated SAML response

received. Setting this flag to true supports an SP-initiated SSO flow being

supplanted by an IdP-initiated SSO. The default is false.

ProviderName

The optional ProviderName attribute specifies the provider name to include in

authentication requests sent to the partner identity provider. The default is none.

6.6 Partner Service Provider Configuration

AssertionConsumerServiceUrl

The optional AssertionConsumerServiceUrl attribute specifies the partner service

provider’s assertion consumer service (ACS) URL. SAML responses will be sent to

the ACS.

An AssertionConsumerServiceUrl must be configured for IdP-initiated SSO.

For SP-initiated SSO, the assertion consumer service URL included in the authn

request from the service provider will be used. If no assertion consumer service

URL is included in the authn request then the AssertionConsumerServiceUrl must

be configured for SP-initiated SSO.

WantAuthnRequestSigned

The optional WantAuthnRequestSigned attribute specifies whether the

authentication request from the partner service provider should be signed. The

default is false.

SignSAMLResponse

The optional SignSAMLResponse attribute specifies whether SAML responses

sent to the partner service provider should be signed. The default is false.

ComponentSpace SAML v2.0 for .NET Developer Guide

 31

SignAssertion

The optional SignAssertion attribute specifies whether SAML assertions sent to the

partner service provider should be signed. The default is false.

EncryptAssertion

The optional EncryptAssertion attribute specifies whether SAML assertions sent to

the partner service provider should be encrypted. The default is false.

AssertionLifeTime

The optional AssertionLifeTime attribute specifies the NotBefore/NotOnOrAfter

time interval for the SAML assertion. The format is hh:mm:ss. The default is 3

minutes.

6.7 Partner Provider Configuration

PartnerCertificateFile

The optional PartnerCertificateFile attribute specifies the X.509 certificate file for

this provider. The certificate file name may be an absolute path or a path relative to

the application folder.

PartnerCertificateStoreLocation

The optional PartnerCertificateStoreLocation attribute specifies the X.509

certificate store (LocalMachine or CurrentUser). The default is local machine.

PartnerCertificateSerialNumber

The optional PartnerCertificateSerialNumber attribute specifies the X.509

certificate by serial number for this provider. The certificate is retrieved from the

local computer’s X.509 certificate store.

PartnerCertificateThumbprint

The optional PartnerCertificateThumbprint attribute specifies the X.509 certificate

by thumbprint for this provider. The certificate is retrieved from the local

computer’s X.509 certificate store.

PartnerCertificateSubject

The optional PartnerCertificateSubject attribute specifies the X.509 certificate by

subject name for this provider. The certificate is retrieved from the local

computer’s X.509 certificate store.

SingleLogoutServiceUrl

The SingleLogoutServiceUrl attribute specifies the partner provider’s single logout

(SLO) service URL. Logout requests will be sent to the SLO service.

SingleLogoutServiceResponseUrl

The SingleLogoutServiceResponseUrl attribute specifies the partner provider’s

single logout (SLO) service response URL. Logout responses will be sent to the

ComponentSpace SAML v2.0 for .NET Developer Guide

 32

SLO response service. If not specified then logout responses are sent to the same

URL as logout requests.

SingleLogoutServiceBinding

The optional SingleLogoutServiceBinding attribute specifies the transport binding

to use when sending logout messages to the partner provider’s SLO service. The

default is to use the HTTP-Redirect binding.

LogoutRequestLifeTime

The optional LogoutRequestLifeTime attribute specifies the NotOnOrAfter time

interval for the logout request. The format is hh:mm:ss. The default is 3 minutes.

DisableDestinationCheck

The optional DisableDestinationCheck attribute specifies whether the SAML

message’s Destination should be checked. This attribute should only be set to true

in test environments or to work around limitations in the partner provider. The

default is false.

DisableInboundLogout

The optional DisableInboundLogout attribute specifies whether logout requests

sent by the partner provider are not supported. The default is false.

DisableOutboundLogout

The optional DisableOutboundLogout attribute specifies whether logout requests

sent to the partner provider are not supported. The default is false.

DisableInResponseToCheck

The optional DisableInResponseToCheck attribute specifies whether the SAML

message’s InResponseTo should be checked. This attribute should only be set to

true in test environments or to work around limitations in the partner provider. The

default is false.

DisablePendingLogoutCheck

The optional DisablePendingLogoutCheck attribute specifies whether a check for a

pending SAML response should be performed. This attribute should only be set to

true in test environments or to work around limitations in the partner provider. The

default is false.

SignLogoutRequest

The optional SignLogoutRequest attribute specifies whether logout requests sent to

the partner provider should be signed. The default is false.

SignLogoutResponse

The optional SignLogoutResponse attribute specifies whether logout responses sent

to the partner provider should be signed. The default is false.

WantLogoutRequestSigned

ComponentSpace SAML v2.0 for .NET Developer Guide

 33

The optional WantLogoutRequestSigned attribute specifies whether the logout

request from the partner provider should be signed. The default is false.

WantLogoutResponseSigned

The optional WantLogoutResponseSigned attribute specifies whether the logout

response from the partner provider should be signed. The default is false.

UseEmbeddedCertificate

The optional UseEmbeddedCertificate attribute specifies whether the certificate

embedded in the XML signature should be used when verifying the signature. If

false then a configured certificate retrieved from the certificate manager is used.

The default is false.

IssuerFormat

The optional IssuerFormat attribute specifies the issuer format to include in SAML

messages and assertions sent to the partner provider.

The default is to not include a format attribute with the issuer.

Refer to section 6.9.1 for a list of name ID formats.

NameIDFormat

The optional NameIDFormat attribute specifies the name identifier format to

include in SAML assertions sent to the partner service provider or in authn requests

sent to the partner identity provider.

The default is urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified.

Refer to section 6.9.1 for a list of name ID formats.

DigestMethod

The optional DigestMethod attribute specifies the XML signature digest method.

The default is http://www.w3.org/2000/09/xmldsig#sha1.

Refer to section 6.9.6 for a list of digest methods.

SignatureMethod

The optional SignatureMethod attribute specifies the XML signature method.

The default is "http://www.w3.org/2000/09/xmldsig#rsa-sha1.

Refer to section 6.9.7 for a list of signature methods.

KeyEncryptionMethod

The optional KeyEncryptionMethod attribute specifies the XML encryption key

encryption method.

The default is http://www.w3.org/2001/04/xmlenc#rsa-1_5.

Refer to section 6.9.4 for a list of key encryption methods.

DataEncryptionMethod

ComponentSpace SAML v2.0 for .NET Developer Guide

 34

The optional DataEncryptionMethod attribute specifies the XML encryption data

encryption method.

The default is http://www.w3.org/2001/04/xmlenc#aes128-cbc.

Refer to section 6.9.5 for a list of data encryption methods.

ClockSkew

The optional ClockSkew attribute specifies the time span to allow for differences

between local and partner computer clocks when checking time intervals. The

default is no clock skew.

AuthnContext

For a partner identity provider, the optional AuthnContext attribute specifies the

requested authentication context to include in authentication requests and the

expected authentication context returned in SAML assertions.

For a partner service provider, the optional AuthnContext attribute specifies the

authentication context to include in SAML assertions.

The default is none.

Refer to section 6.9.2 for a list of authentication contexts.

6.8 Provider Configuration

Name

The Name attribute specifies the name of the provider.

LocalCertificateFile

The optional LocalCertificateFile attribute specifies the X.509 certificate file for

this provider. The certificate file name may be an absolute path or a path relative to

the application folder.

LocalCertificatePassword

The optional LocalCertificatePassword attribute specifies the password associated

with the X.509 certificate file for this provider.

Certificate files (*.pfx) that include the private key should be protected by a

password.

Certificate files (*.cer) that do not include a private key are not password protected.

The certificate password must be kept secure. In a test environment using a test

certificate, specifying the password using the LocalCertificatePassword attribute is

acceptable.

For a production certificate, the password should be stored encrypted in

web.config. Refer to the LocalCertificatePasswordKey attribute for more details.

LocalCertificatePasswordKey

The optional LocalCertificatePasswordKey attribute specifies the web.config’s

appSettings key for the certificate file password.

ComponentSpace SAML v2.0 for .NET Developer Guide

 35

For example, if the LocalCertificatePasswordKey attribute value is

localCertificatePassword, then under the web.config’s appSettings section, an entry

with the key name localCertificatePassword is expected and the entry value is used

as the password.

By encrypting the appSettings section using the aspnet_regiis utility, the certificate

file password is secured.

LocalCertificateStoreLocation

The optional LocalCertificateStoreLocation attribute specifies the X.509 certificate

store (LocalMachine or CurrentUser). The default is local machine.

LocalCertificateSerialNumber

The optional LocalCertificateSerialNumber attribute specifies the X.509 certificate

by serial number for this provider. The certificate is retrieved from the local

computer’s X.509 certificate store.

LocalCertificateThumbprint

The optional LocalCertificateThumbprint attribute specifies the X.509 certificate

by thumbprint for this provider. The certificate is retrieved from the local

computer’s X.509 certificate store.

LocalCertificateSubject

The optional LocalCertificateSubject attribute specifies the X.509 certificate by

subject name for this provider. The certificate is retrieved from the local

computer’s X.509 certificate store.

6.9 Miscellaneous Configuration

6.9.1 Name ID Format Types

The supported name ID format types are:

 urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified

 urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress

 urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName

 urn:oasis:names:tc:SAML:1.1:nameid-format:WindowsDomainQualifiedName

 urn:oasis:names:tc:SAML:2.0:nameid-format:Kerberos

 urn:oasis:names:tc:SAML:2.0:nameid-format:entity

 urn:oasis:names:tc:SAML:2.0:nameid-format:persistent

 urn:oasis:names:tc:SAML:2.0:nameid-format:transient

6.9.2 Authentication Contexts

The supported authentication contexts are:

 urn:oasis:names:tc:SAML:2.0:ac:classes:InternetProtocol

 urn:oasis:names:tc:SAML:2.0:ac:classes:InternetProtocolPassword

ComponentSpace SAML v2.0 for .NET Developer Guide

 36

 urn:oasis:names:tc:SAML:2.0:ac:classes:Kerberos

 urn:oasis:names:tc:SAML:2.0:ac:classes:MobileOneFactorUnregistered

 urn:oasis:names:tc:SAML:2.0:ac:classes:MobileTwoFactorUnregistered

 urn:oasis:names:tc:SAML:2.0:ac:classes:MobileOneFactorContract

 urn:oasis:names:tc:SAML:2.0:ac:classes:MobileTwoFactorContract

 urn:oasis:names:tc:SAML:2.0:ac:classes:Password

 urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport

 urn:oasis:names:tc:SAML:2.0:ac:classes:PreviousSession

 urn:oasis:names:tc:SAML:2.0:ac:classes:X509

 urn:oasis:names:tc:SAML:2.0:ac:classes:PGP

 urn:oasis:names:tc:SAML:2.0:ac:classes:SPKI

 urn:oasis:names:tc:SAML:2.0:ac:classes:XMLDSig

 urn:oasis:names:tc:SAML:2.0:ac:classes:Smartcard

 urn:oasis:names:tc:SAML:2.0:ac:classes:SmartcardPKI

 urn:oasis:names:tc:SAML:2.0:ac:classes:SoftwarePKI

 urn:oasis:names:tc:SAML:2.0:ac:classes:Telephony

 urn:oasis:names:tc:SAML:2.0:ac:classes:NomadTelephony

 urn:oasis:names:tc:SAML:2.0:ac:classes:PersonalTelephony

 urn:oasis:names:tc:SAML:2.0:ac:classes:AuthenticatedTelephony

 urn:oasis:names:tc:SAML:2.0:ac:classes:SecureRemotePassword

 urn:oasis:names:tc:SAML:2.0:ac:classes:TLSClient

 urn:oasis:names:tc:SAML:2.0:ac:classes:TimeSyncToken

 urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified

6.9.3 Binding Types

The supported binding types are:

 urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST

 urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect

6.9.4 Key Encryption Methods

The supported key encryption methods are:

 http://www.w3.org/2001/04/xmlenc#rsa-1_5

 http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

6.9.5 Data Encryption Methods

The supported data encryption methods are:

 http://www.w3.org/2001/04/xmlenc#tripledes-cbc

 http://www.w3.org/2001/04/xmlenc#aes128-cbc

 http://www.w3.org/2001/04/xmlenc#aes192-cbc

ComponentSpace SAML v2.0 for .NET Developer Guide

 37

 http://www.w3.org/2001/04/xmlenc#aes256-cbc

6.9.6 Digest Methods

The supported digest methods are:

 http://www.w3.org/2000/09/xmldsig#sha1

 http://www.w3.org/2001/04/xmlenc#sha256

 http://www.w3.org/2001/04/xmldsig-more#sha384

 http://www.w3.org/2001/04/xmlenc#sha512

See section 16.3 for SHA-256, SHA-384 and SHA-512 support requirements.

6.9.7 Signature Methods

The supported signature methods are:

 http://www.w3.org/2000/09/xmldsig#rsa-sha1

 http://www.w3.org/2001/04/xmldsig-more#rsa-sha256

 http://www.w3.org/2001/04/xmldsig-more#rsa-sha384

 http://www.w3.org/2001/04/xmldsig-more#rsa-sha512

See section 16.3 for SHA-256, SHA-384 and SHA-512 support requirements.

6.10 Specifying Configuration Programmatically

For the majority of use cases, maintaining the SAML configuration in the saml.config

configuration file is the simplest strategy.

However, there may be circumstances where configuration must be stored elsewhere (e.g.

in a database).

Rather than defining configuration in the saml.config configuration file, the configuration

may be specified programmatically. A good place to do this is in the

Global.Application_Start method.

For example, the following code configures the local service provider and one partner

identity provider.

SAMLConfiguration samlConfiguration = new SAMLConfiguration();

samlConfiguration.LocalServiceProviderConfiguration = new

LocalServiceProviderConfiguration() {

 Name = "urn:componentspace:ExampleServiceProvider",

 AssertionConsumerServiceUrl =

"~/SAML/AssertionConsumerService.aspx",

 LocalCertificateFile = "sp.pfx",

 LocalCertificatePassword = "password"

};

samlConfiguration.AddPartnerIdentityProvider(

ComponentSpace SAML v2.0 for .NET Developer Guide

 38

 new PartnerIdentityProviderConfiguration() {

 Name = "urn:componentspace:ExampleIdentityProvider",

 SignAuthnRequest = false,

 WantSAMLResponseSigned = true,

 WantAssertionSigned = false,

 WantAssertionEncrypted = false,

 SingleSignOnServiceUrl =

"http://localhost/ExampleIdentityProvider/SAML/SSOService.aspx",

 SingleLogoutServiceUrl =

"http://localhost/ExampleIdentityProvider/SAML/SLOService.aspx",

 PartnerCertificateFile = "idp.cer"

 });

SAMLController.Configuration = samlConfiguration;

And the following code configures the local identity provider and one partner service

provider.

SAMLConfiguration samlConfiguration = new SAMLConfiguration();

samlConfiguration.LocalIdentityProviderConfiguration =

 new LocalIdentityProviderConfiguration() {

 Name = "urn:componentspace:ExampleIdentityProvider",

 LocalCertificateFile = "idp.pfx",

 LocalCertificatePassword = "password"

 };

samlConfiguration.AddPartnerServiceProvider(

 new PartnerServiceProviderConfiguration() {

 Name = "urn:componentspace:ExampleServiceProvider",

 WantAuthnRequestSigned = false,

 SignSAMLResponse = true,

 SignAssertion = false,

 EncryptAssertion = false,

 AssertionConsumerServiceUrl =

"http://localhost/ExampleServiceProvider/SAML/AssertionConsumerService.

aspx",

 SingleLogoutServiceUrl =

"http://localhost/ExampleServiceProvider/SAML/SLOService.aspx",

 PartnerCertificateFile = "sp.cer"

 });

SAMLController.Configuration = samlConfiguration;

7 SAML High Level API Certificate Configuration
X.509 certificates are used for XML signatures (see section 3.5.2) and XML encryption

(see section 3.5.3).

Certificates may be specified either programmatically (see section 5.2.3) or through

configuration (see section 6). For most use cases it’s simpler to specify certificates

through configuration.

ComponentSpace SAML v2.0 for .NET Developer Guide

 39

A certificate may be stored in a file or in the Windows certificate store.

The following sections provide instructions of configuring X.509 certificates.

7.1 Local Provider Certificate File

The following configuration entry specifies the local provider’s certificate is contained in

the file idp.pfx which is protected by password.

<IdentityProvider Name="ExampleIdentityProvider"

 LocalCertificateFile="idp.pfx"

 LocalCertificatePassword="password"/>

The certificate file path is not an absolute path and therefore is assumed to be relative to

the application’s folder.

The following configuration entry specifies an absolute file path.

<IdentityProvider Name="ExampleIdentityProvider"

 LocalCertificateFile="C:\\Certificates\\idp.pfx"

 LocalCertificatePassword="password"/>

7.2 Partner Provider Certificate File

The following configuration entry specifies the partner provider’s certificate is contained

in the file sp.cer.

<PartnerServiceProvider Name="ExampleServiceProvider"

 PartnerCertificateFile="sp.cer"/>

The certificate file path is not an absolute path and therefore is assumed to be relative to

the application’s folder.

No password is required with a partner certificate file as the file does not contain the

private key.

The following configuration entry specifies an absolute file path.

<PartnerServiceProvider Name=" ExampleServiceProvider"

 PartnerCertificateFile=

 "C:\\Certificates\\sp.cer"/>

7.3 Encrypting the Certificate File Password

When using production certificate files the password should be encrypted. To do this, the

ability to encrypt sections of web.config is employed.

The following configuration entry specifies the local provider’s certificate is contained in

the file idp.pfx which is protected by an encrypted password.

<IdentityProvider Name="ExampleIdentityProvider"

 LocalCertificateFile="idp.pfx"

 LocalCertificatePasswordKey=

 "certificateFilePassword"/>

The application’s web.config appSettings section must include the certificate password

key.

ComponentSpace SAML v2.0 for .NET Developer Guide

 40

<appSettings>

 <add key="certificateFilePassword" value="password"/>

</appSettings>

The .NET framework’s aspnet_regiis utility application is used to encrypt the

appSettings section. You must be run this utility as an administrator.

aspnet_regiis –pef appSettings

C:\inetpub\wwwroot\ExampleIdentityProvider

The aspnet_regiis utility also is used to decrypt the section.

aspnet_regiis –pdf appSettings

C:\inetpub\wwwroot\ExampleIdentityProvider

The IIS account under which the application runs must be granted permission to decrypt

web.config.

aspnet_regiis -pa NetFrameworkConfigurationKey "IIS_IUSRS"

7.4 Managing the Windows Certificate Store

The Microsoft Management Console may be used to install and manage certificates in the

Windows certificate store.

7.4.1 Running the MMC Certificates Snap-in

To run the MMC Certificates snap-in:

1. Run the Microsoft Management Console (MMC) as an administrator.

2. From the menu, click File > Add/Remove Snap-in…

3. Select Certificates from the list of available snap-ins.

4. Specify that the computer account for the local computer is to be managed.

7.4.2 Importing a PFX File

To import a certificate and private key contained in a pfx file into the Windows

certificate store:

1. Select the Personal folder in the certificates tree.

ComponentSpace SAML v2.0 for .NET Developer Guide

 41

2. From the menu, click Action > All Tasks > Import…

ComponentSpace SAML v2.0 for .NET Developer Guide

 42

3. Browse to the pfx file to import.

ComponentSpace SAML v2.0 for .NET Developer Guide

 43

4. Supply the password and optionally check the check box to mark the key as

exportable.

ComponentSpace SAML v2.0 for .NET Developer Guide

 44

5. Place the certificate in the Personal certificate store.

ComponentSpace SAML v2.0 for .NET Developer Guide

 45

6. Click Finish to complete the import.

ComponentSpace SAML v2.0 for .NET Developer Guide

 46

7. Confirm the certificate is listed and open it to review its details.

ComponentSpace SAML v2.0 for .NET Developer Guide

 47

8. Note the certificate’s serial number.

ComponentSpace SAML v2.0 for .NET Developer Guide

 48

9. Note the certificate’s thumbprint.

ComponentSpace SAML v2.0 for .NET Developer Guide

 49

10. Note the certificate’s subject name.

ComponentSpace SAML v2.0 for .NET Developer Guide

 50

7.4.3 Private Key Security

If your application will be accessing the private key (e.g. signature generation or

decryption) then the account under which it runs must have read access to the private key.

To add read permission for the private key:

1. Right click on the certificate to bring up the context menu and select All Tasks >

Manage Private Keys…

ComponentSpace SAML v2.0 for .NET Developer Guide

 51

2. Add permissions for the application account. For example, give the IIS_IUSRS

group read permission. The user or group to permit is dependent on the version of

IIS and its configuration.

ComponentSpace SAML v2.0 for .NET Developer Guide

 52

7.4.4 Importing a CER File

To import a certificate contained in a cer file into the Windows certificate store:

1. Select the Personal folder in the certificates tree.

2. From the menu, click Action > All Tasks > Import…

ComponentSpace SAML v2.0 for .NET Developer Guide

 53

3. Browse to the cer file to import.

ComponentSpace SAML v2.0 for .NET Developer Guide

 54

4. Place the certificate in the Personal certificate store.

ComponentSpace SAML v2.0 for .NET Developer Guide

 55

5. Click Finish to complete the import.

ComponentSpace SAML v2.0 for .NET Developer Guide

 56

6. Confirm the certificate is listed and open it to review its details.

ComponentSpace SAML v2.0 for .NET Developer Guide

 57

7. Note the certificate’s serial number.

ComponentSpace SAML v2.0 for .NET Developer Guide

 58

8. Note the certificate’s thumbprint.

ComponentSpace SAML v2.0 for .NET Developer Guide

 59

9. Note the certificate’s subject name.

ComponentSpace SAML v2.0 for .NET Developer Guide

 60

7.5 Local Provider Certificate Store

Refer to sections 7.4.1, 7.4.2 and 7.4.3 for instructions on importing a PFX file into the

Windows certificate store.

The following configuration entry specifies the local provider’s certificate is contained in

the Windows certificate store and is identified by the certificate’s serial number.

Serial numbers optionally may include separating space characters for readability.

If copying/pasting from the Windows certificate store, invisible Unicode characters may

be included. It’s best to first paste to Notepad etc. to avoid these issues.

<IdentityProvider Name="ExampleIdentityProvider"

 LocalCertificateSerialNumber=

 "5896b16b7fcc9c9d4ef3ca1a9b2653bb"/>

The following configuration entry specifies the local provider’s certificate is contained in

the Windows certificate store and is identified by the certificate’s thumbprint.

Thumbprints optionally may include separating space characters for readability.

ComponentSpace SAML v2.0 for .NET Developer Guide

 61

If copying/pasting from the Windows certificate store, invisible Unicode characters may

be included. It’s best to first paste to Notepad etc. to avoid these issues.

<IdentityProvider Name="ExampleIdentityProvider"

 LocalCertificateThumbprint=

 "371629967909a351de5017d6a3a51c6c15f3505c"/>

The following configuration entry specifies the local provider’s certificate is contained in

the Windows certificate store and is identified by the certificate subject’s distinguished

name.

<IdentityProvider Name="ExampleIdentityProvider"

 LocalCertificateSubject="CN=www.idp.com"/>

Alternatively, some subset of the subject’s distinguished name that uniquely identifies the

certificate may be used.

<IdentityProvider Name="ExampleIdentityProvider"

 LocalCertificateSubject="www.idp.com"/>

7.6 Partner Provider Certificate Store

Refer to sections 7.4.1 and 7.4.27.4.4 for instructions on importing a CER file into the

Windows certificate store.

The following configuration entry specifies the partner provider’s certificate is contained

in the Windows certificate store and is identified by the certificate’s serial number.

<PartnerServiceProvider Name="ExampleServiceProvider"

 PartnerCertificateSerialNumber=

 "44d1779d8c4c32ad4e8f8999e7891c59"/>

The following configuration entry specifies the partner provider’s certificate is contained

in the Windows certificate store and is identified by the certificate’s thumbprint.

<PartnerServiceProvider Name="ExampleServiceProvider"

 PartnerCertificateThumbprint=

 "2d7b862dcbb6103207cdd75138c04ad2f1fb844c"/>

The following configuration entry specifies the partner provider’s certificate is contained

in the Windows certificate store and is identified by the certificate subject’s distinguished

name.

<PartnerServiceProvider Name="ExampleServiceProvider"

 PartnerCertificateSubject="CN=www.sp.com"/>

Alternatively, some subset of the subject’s distinguished name that uniquely identifies the

certificate may be used.

<PartnerServiceProvider Name="ExampleServiceProvider"

 PartnerCertificateSubject="www.sp.com "/>

8 Selecting the Most Applicable Example
For the majority of use cases, it’s recommended the high level APIs are used as these

provide the greatest ease of use.

ComponentSpace SAML v2.0 for .NET Developer Guide

 62

8.1 High Level APIs

Use the following flow chart to determine the most suitable high level API example

project to review.

Is my site the Identity
Provider or Service

Provider?

Which example
project is right for

me?

Is my site the Identity
Provider or Service

Provider?
IdP ExampleIdentityProvider project.

Web Forms or MVC
Application?

IdP

SP

MVCExampleIdentityProvider
project.

MVCExampleServiceProvider
project.

Web Forms

ExampleServiceProvider
project.

SP

MVC

Figure 8 High Level API Project Selection Flow Chart

If your application is an ASP.NET web forms application then refer to the

ExampleIdentityProvider or ExampleServiceProvider project depending on whether your

site is the identity provider or service provider. See section 10.1 for more information.

If your application is an ASP.NET MVC application then refer to the

MvcExampleIdentityProvider or MvcExampleServiceProvider project depending on

ComponentSpace SAML v2.0 for .NET Developer Guide

 63

whether your site is the identity provider or service provider. See section 10.1.7 for more

information.

8.2 Low Level APIs

Use the following flow chart to determine the most suitable low level API example

project to review.

Note that the high level API examples include support for Google Apps, Salesforce,

ADFS and Shibboleth, as well as IdP-initiated and SP-initiated SSO.

Is my site the Identity
Provider or Service

Provider?

Which example
project is right for

me?

Google Apps? No Salesforce?

SalesforceIdP project.

Yes

ADFS?

ADFSSP project.

ShibbolethIdP project.

ShibbolethSP project.

Connecting to a specific
provider?

IdP

SP

SAML2IdP project.

SAML2SP project.

Yes

GoogleIdP project.

Yes

No

Yes

IdP-initiated or SP-
initiated SSO?

No

IdP-initiated SSO

SP-initiated SSO

Is my site the Identity
Provider or Service

Provider?

No Shibboleth?

No

Yes

SP

IdP

Figure 9 Low Level API Project Selection Flow Chart

If you’re connecting to a specific provider such as Google Apps etc then refer to the

corresponding example project. If the provider is not listed then use one of the generic

projects or contact us for assistance.

ComponentSpace SAML v2.0 for .NET Developer Guide

 64

For IdP-initiated SSO, refer to the SAML2IdP or SAML2SP project depending on

whether your site is the identity provider or service provider.

For SP-initiated SSO, refer to the ShibbolethIdP or ShibbolethSP project depending on

whether your site is the identity provider or service provider.

The ShibbolethIdP and ShibbolethSP projects have been tested against the Shibboleth test

servers at https://www.testshib.org/testshib-two/.

9 Building the Example Applications
Solution files for Visual Studio 2005, 2008, 2010, 2012 and 2013 may be found in the

root folder (e.g. C:\Program Files (x86)\ComponentSpace SAML v2.0 for .NET).

 SAMLExamplesVS2013.sln – Visual Studio 2013

 SAMLExamplesVS2012.sln – Visual Studio 2012

 SAMLExamplesVS2010.sln – Visual Studio 2010

 SAMLExamplesVS2008.sln – Visual Studio 2008

 SAMLExamplesVS2005.sln – Visual Studio 2005

Select the appropriate solution file to build the example projects.

The Visual Studio 2013 solution includes publish definitions for publishing to the default

web site on the local host.

The projects should build and run without error.

10 Example Applications – High Level APIs
The class library ships with a number of example applications. They are a good way to

become familiar with the SAML v2.0 web browser SSO profile and using the class

library. You may use the examples solution to build these projects.

The example applications must be built and published prior to their use.

The following sections describe the installation and execution of these example

applications.

The example web forms applications described in section 10.1 demonstrate IdP-initiated

and SP-initiated SSO. These applications are written in C#.

The example MVC applications described in sections 10.1.7 demonstrate IdP-initiated

and SP-initiated SSO. These applications are written in C#.

10.1 Web Forms Identity Provider and Service Provider

The ExampleIdentityProvider and ExampleServiceProvider web applications demonstrate

IdP-initiated and SP-initiated single sign-on.

10.1.1 Installing the Web Forms Identity Provider

1. Using Visual Studio, build and publish the web application.

https://www.testshib.org/testshib-two/

ComponentSpace SAML v2.0 for .NET Developer Guide

 65

2. Open the Internet Information Services management console.

3. Under the default web site for the local computer, create an application with an

alias of ExampleIdentityProvider.

4. For the physical path, browse to the directory where ExampleIdentityProvider

was built and published.

5. Ensure the web application has been successfully installed by browsing to

http://localhost/ ExampleIdentityProvider.

Figure 10 ExampleIdentityProvider Installation

10.1.2 Installing the Web Forms Service Provider

1. Using Visual Studio, build and publish the web application.

2. Open the Internet Information Services management console.

3. Under the default web site for the local computer, create an application with an

alias of ExampleServiceProvider.

4. For the physical path, browse to the directory where ExampleServiceProvider was

built and published.

5. Ensure the web application has been successfully installed by browsing to

http://localhost/ ExampleServiceProvider.

ComponentSpace SAML v2.0 for .NET Developer Guide

 66

Figure 11 ExampleServiceProvider Installation

10.1.3 Configuring the Web Forms Identity Provider

The identity provider configuration is contained within its web.config file’s

<appSettings> section and the saml.config file.

The saml.config includes the local identity provider configuration as well as partner

service provider configuration.

The web.config’s PartnerSP setting specifies the partner service provider for IdP-

initiated SSO.

The default configuration supports single sign-on with the ExampleServiceProvider.

10.1.4 Configuring the Web Forms Service Provider

The service provider configuration is contained within its web.config file’s

<appSettings> section and the saml.config file.

The saml.config includes the local service provider configuration as well as partner

identity provider configuration.

The web.config’s PartnerIdP setting specifies the partner identity provider for SP-

initiated SSO.

The default configuration supports single sign-on with the ExampleIdentityProvider.

ComponentSpace SAML v2.0 for .NET Developer Guide

 67

10.1.5 IdP-Initiated SSO from the Web Forms Identity Provider

In this example, the user starts at the identity provider site and is attempting to access a

protected resource on the service provider. Rather than performing a local login at the

service provider, SSO is initiated with a local login occurring at the identity provider and

the asserted identity, passed to the service provider in a SAML assertion, is used to

perform an automatic login at the service provider.

1. Browse to http://localhost/ExampleIdentityProvider.

2. You should be presented with the form shown in Figure 12.

If you are not then you must already have logged in at the identity provider. To

force a login, close the browser and start again.

3. Login using the user name idp-user and a password of password.

4. You should then be presented with the identity provider’s default page (see Figure

13).

5. Click the link to single sign-on to the service provider.

6. You should then be presented with the service provider’s default page (see Figure

14).

This means you’ve successfully completed a SAML v2.0 SSO and are logged in

at the service provider with your identity provider user name.

Figure 12 Web Forms Example Identity Provider Login Page

ComponentSpace SAML v2.0 for .NET Developer Guide

 68

Figure 13 Web Forms Example Identity Provider Default Page

Figure 14 Web Forms Example Service Provider Home Page

10.1.6 SP-Initiated SSO from the Web Forms Service Provider

In this example, the user starts at the service provider site and is attempting to access a

protected resource on the service provider. Rather than performing a local login at the

service provider, SSO is initiated with a local login occurring at the identity provider and

the asserted identity, passed to the service provider in a SAML assertion, is used to

perform an automatic login at the service provider.

1. Browse to http://localhost/ExampleServiceProvider.

2. You should then be presented with the service provider’s login page.

3. Click the link to single sign-on to the identity provider.

4. You should be presented with the form shown in Figure 16.

If you are not then you must already have logged in at the identity provider. To

force a login, close the browser and start again.

http://localhost/ExampleServiceProvider

ComponentSpace SAML v2.0 for .NET Developer Guide

 69

5. Login using the user name idp-user and a password of password.

6. You should then be presented with the service provider’s default page (see Figure

17).

This means you’ve successfully completed a SAML v2.0 SSO and are logged in

at the service provider with your identity provider user name.

Figure 15 Web Forms Example Service Provider Login Page

Figure 16 Web Forms Example Identity Provider Login Page

ComponentSpace SAML v2.0 for .NET Developer Guide

 70

Figure 17 Web Forms Example Service Provider Home Page

10.1.7 Code Walkthrough - IdP-Initiated SSO

The following section follows the flow of IdP-initiated SSO between the

ExampleIdentityProvider and ExampleServiceProvider.

1. The user clicks the link on the ExampleIdentityProvider’s Default.aspx page and

the SAMLIdentityProvider.InitiateSSO method is called to initiate SSO.

2. A SAML response containing a SAML assertion is constructed and sent to the

service provider’s assertion consumer service URL.

3. The ExampleServiceProvider’s SAML/AssertionConsumerService.aspx page

calls the SAMLServiceProvider.ReceiveSSO method to receive and process the

SAML response.

4. The user is logged in automatically at the ExampleServiceProvider.

10.1.8 Code Walkthrough - SP-Initiated SSO

The following section follows the flow of SP-initiated SSO between the

ExampleIdentityProvider and ExampleServiceProvider.

1. The user browses to the ExampleServiceProvider’s Default.aspx page and the

SAMLServiceProvider.InitiateSSO method is called to initiate SSO.

2. An authentication request is constructed and sent to the identity provider’s SSO

service URL.

3. The ExampleIdentityProvider’s SAML/SSOService.aspx page calls the

SAMLIdentityProvider.ReceiveSSO method to receive and process the

authentication request.

4. The user is prompted to login at the ExampleIdentityProvider if not already

logged in.

ComponentSpace SAML v2.0 for .NET Developer Guide

 71

5. The ExampleIdentityProvider’s SAML/SSOService.aspx page calls the

SAMLIdentityProvider.SendSSO method.

6. A SAML response containing a SAML assertion is constructed and sent to the

service provider’s assertion consumer service URL.

7. The ExampleServiceProvider’s SAML/AssertionConsumerService.aspx page

calls the SAMLServiceProvider.ReceiveSSO method to receive and process the

SAML response.

8. The user is logged in automatically at the ExampleServiceProvider.

10.2 MVC Identity Provider and Service Provider

The MvcExampleIdentityProvider and MvcExampleServiceProvider web applications

demonstrate IdP-initiated and SP-initiated single sign-on.

The applications use MVC4 but the SAML v2.0 component may be used with earlier

versions of MVC.

The MVC examples require Visual Studio 2012 or later, or Visual Studio 2010 with the

MVC4 upgrade.

10.2.1 Installing the MVC Identity Provider

1. Using Visual Studio, build and publish the web application.

2. Open the Internet Information Services management console.

3. Under the default web site for the local computer, create an application with an

alias of MvcExampleIdentityProvider.

4. For the physical path, browse to the directory where

MvcExampleIdentityProvider was built and published.

5. Ensure the web application has been successfully installed by browsing to

http://localhost/ MvcExampleIdentityProvider.

ComponentSpace SAML v2.0 for .NET Developer Guide

 72

Figure 18 MvcExampleIdentityProvider Installation

10.2.2 Installing the MVC Service Provider

1. Using Visual Studio, build and publish the web application.

2. Open the Internet Information Services management console.

3. Under the default web site for the local computer, create an application with an

alias of MvcExampleServiceProvider.

4. For the physical path, browse to the directory where MvcExampleServiceProvider

was built and published.

5. Ensure the web application has been successfully installed by browsing to

http://localhost/ MvcExampleServiceProvider.

ComponentSpace SAML v2.0 for .NET Developer Guide

 73

Figure 19 MvcExampleServiceProvider Installation

10.2.3 Configuring the MVC Identity Provider

The identity provider configuration is contained within its web.config file’s

<appSettings> section and the saml.config file.

The saml.config includes the local identity provider configuration as well as partner

service provider configuration.

The web.config’s PartnerSP setting specifies the partner service provider for IdP-

initiated SSO.

The default configuration supports single sign-on with the MvcExampleServiceProvider.

10.2.4 Configuring the MVC Service Provider

The service provider configuration is contained within its web.config file’s

<appSettings> section and the saml.config file.

The saml.config includes the local service provider configuration as well as partner

identity provider configuration.

The web.config’s PartnerIdP setting specifies the partner identity provider for SP-

initiated SSO.

The default configuration supports single sign-on with the MvcExampleIdentityProvider.

ComponentSpace SAML v2.0 for .NET Developer Guide

 74

10.2.5 IdP-Initiated SSO from the MVC Identity Provider

In this example, the user starts at the identity provider site and is attempting to access a

protected resource on the service provider. Rather than performing a local login at the

service provider, SSO is initiated with a local login occurring at the identity provider and

the asserted identity, passed to the service provider in a SAML assertion, is used to

perform an automatic login at the service provider.

1. Browse to http://localhost/MvcExampleIdentityProvider.

2. You should be presented with the form shown in Figure 20.

If you are not then you must already have logged in at the identity provider. To

force a login, close the browser and start again.

3. Login using the user name idp-user and a password of password.

4. You should then be presented with the identity provider’s default page (see Figure

21).

5. Click the link to single sign-on to the service provider.

6. You should then be presented with the service provider’s default page (see Figure

22).

This means you’ve successfully completed a SAML v2.0 SSO and are logged in

at the service provider with your identity provider user name.

Figure 20 MVC Example Identity Provider Login Page

ComponentSpace SAML v2.0 for .NET Developer Guide

 75

Figure 21 MVC Example Identity Provider Default Page

Figure 22 MVC Example Service Provider Home Page

10.2.6 SP-Initiated SSO from the MVC Service Provider

In this example, the user starts at the service provider site and is attempting to access a

protected resource on the service provider. Rather than performing a local login at the

service provider, SSO is initiated with a local login occurring at the identity provider and

the asserted identity, passed to the service provider in a SAML assertion, is used to

perform an automatic login at the service provider.

1. Browse to http://localhost/MvcExampleServiceProvider.

2. You should then be presented with the service provider’s login.

3. Click the link to single sign-on to the identity provider.

4. You should be presented with the form shown in Figure 23.

If you are not then you must already have logged in at the identity provider. To

force a login, close the browser and start again.

5. Login using the user name idp-user and a password of password.

http://localhost/MvcExampleServiceProvider

ComponentSpace SAML v2.0 for .NET Developer Guide

 76

6. You should then be presented with the service provider’s default page (see Figure

24).

This means you’ve successfully completed a SAML v2.0 SSO and are logged in

at the service provider with your identity provider user name.

Figure 23 MVC Example Identity Provider Login Page

Figure 24 MVC Example Service Provider Home Page

10.2.7 Code Walkthrough - IdP-Initiated SSO

The following section follows the flow of IdP-initiated SSO between the

MvcExampleIdentityProvider and MvcExampleServiceProvider.

1. The user clicks the link on the MvcExampleIdentityProvider’s home page and the

HomeController calls the SAMLIdentityProvider.InitiateSSO method to initiate

SSO.

2. A SAML response containing a SAML assertion is constructed and sent to the

service provider’s assertion consumer service URL.

ComponentSpace SAML v2.0 for .NET Developer Guide

 77

3. The MvcExampleServiceProvider’s SAMLController calls the

SAMLServiceProvider.ReceiveSSO method to receive and process the SAML

response.

4. The user is logged in automatically at the MvcExampleServiceProvider.

10.2.8 Code Walkthrough - SP-Initiated SSO

The following section follows the flow of SP-initiated SSO between the

MvcExampleIdentityProvider and MvcExampleServiceProvider.

1. The user browses to the MvcExampleServiceProvider’s home page and the

AccountController calls the SAMLServiceProvider.InitiateSSO method to initiate

SSO.

2. An authentication request is constructed and sent to the identity provider’s SSO

service URL.

3. The MvcExampleIdentityProvider’s SAMLController calls the

SAMLIdentityProvider.ReceiveSSO method to receive and process the

authentication request.

4. The user is prompted to login at the MvcExampleIdentityProvider if not already

logged in.

5. The MvcExampleIdentityProvider’s SAMLController calls the

SAMLIdentityProvider.SendSSO method.

6. A SAML response containing a SAML assertion is constructed and sent to the

service provider’s assertion consumer service URL.

7. The MvcExampleServiceProvider’s SAMLController calls the

SAMLServiceProvider.ReceiveSSO method to receive and process the SAML

response.

8. The user is logged in automatically at the MvcExampleServiceProvider.

10.3 OWIN Identity Provider and Service Provider

The OwinExampleIdentityProvider and OwinExampleServiceProvider web applications

demonstrate IdP-initiated and SP-initiated single sign-on.

The applications use OWIN and ASP.NET Identity v2.0.

The MVC examples require Visual Studio 2015 or later.

10.3.1 Installing the OWIN Identity Provider

1. Using Visual Studio, build and publish the web application.

2. Open the Internet Information Services management console.

3. Under the default web site for the local computer, create an application with an

alias of OwinExampleIdentityProvider.

4. For the physical path, browse to the directory where

OwinExampleIdentityProvider was built and published.

ComponentSpace SAML v2.0 for .NET Developer Guide

 78

5. Ensure the web application has been successfully installed by browsing to

http://localhost/OwinExampleIdentityProvider.

Figure 25 OwinExampleIdentityProvider Installation

10.3.2 Installing the OWIN Service Provider

1. Using Visual Studio, build and publish the web application.

2. Open the Internet Information Services management console.

3. Under the default web site for the local computer, create an application with an

alias of OwinExampleServiceProvider.

4. For the physical path, browse to the directory where

OwinExampleServiceProvider was built and published.

5. Ensure the web application has been successfully installed by browsing to

http://localhost/OwinExampleServiceProvider.

ComponentSpace SAML v2.0 for .NET Developer Guide

 79

Figure 26 OwinExampleServiceProvider Installation

10.3.3 Configuring the OWIN Identity Provider

The identity provider configuration is contained within its web.config file’s

<appSettings> section and the saml.config file.

The saml.config includes the local identity provider configuration as well as partner

service provider configuration.

The web.config’s PartnerSP setting specifies the partner service provider for IdP-

initiated SSO.

The default configuration supports single sign-on with the OwinExampleServiceProvider.

10.3.4 Configuring the OWIN Service Provider

The service provider configuration is contained within its web.config file’s

<appSettings> section and the saml.config file.

The saml.config includes the local service provider configuration as well as partner

identity provider configuration.

The web.config’s PartnerIdP setting specifies the partner identity provider for SP-

initiated SSO.

The default configuration supports single sign-on with the

OwinExampleIdentityProvider.

ComponentSpace SAML v2.0 for .NET Developer Guide

 80

10.3.5 IdP-Initiated SSO from the OWIN Identity Provider

In this example, the user starts at the identity provider site and is attempting to access a

protected resource on the service provider. Rather than performing a local login at the

service provider, SSO is initiated with a local login occurring at the identity provider and

the asserted identity, passed to the service provider in a SAML assertion, is used to

perform an automatic login at the service provider.

1. Browse to http://localhost/OwinExampleIdentityProvider.

2. If you haven’t registered a user account previously, click the Register link to

register a new user in the local database. Otherwise, click the Login link.

3. Once logged in, click the link to single sign-on to the service provider (see Figure

27).

4. You should then be presented with the service provider’s home page (see Figure

28).

This means you’ve successfully completed a SAML v2.0 SSO and are logged in

at the service provider with your identity provider user name.

Figure 27 OWIN Example Identity Provider Home Page

http://localhost/OwinExampleIdentityProvider

ComponentSpace SAML v2.0 for .NET Developer Guide

 81

Figure 28 OWIN Example Service Provider Home Page

10.3.6 SP-Initiated SSO from the OWIN Service Provider

In this example, the user starts at the service provider site and is attempting to access a

protected resource on the service provider. Rather than performing a local login at the

service provider, SSO is initiated with a local login occurring at the identity provider and

the asserted identity, passed to the service provider in a SAML assertion, is used to

perform an automatic login at the service provider.

1. Browse to http://localhost/OwinExampleServiceProvider.

2. Click the Login link.

3. You should then be presented with the service provider’s login.

4. Click the link to single sign-on to the identity provider (see Figure 29).

5. You should be presented with the identity provider’s login page (see Figure 30).

If you are not then you must already have logged in at the identity provider. To

force a login, close the browser and start again.

6. Login or register if you don’t have an account at the identity provider.

7. You should then be presented with the service provider’s home page.

This means you’ve successfully completed a SAML v2.0 SSO and are logged in

at the service provider with your identity provider user name.

http://localhost/OwinExampleServiceProvider

ComponentSpace SAML v2.0 for .NET Developer Guide

 82

Figure 29 OWIN Example Service Provider Login Page

Figure 30 OWIN Example Identity Provider Login Page

10.3.7 Code Walkthrough - IdP-Initiated SSO

The following section follows the flow of IdP-initiated SSO between the

OwinExampleIdentityProvider and OwinExampleServiceProvider.

1. The user clicks the link on the OwinExampleIdentityProvider’s home page and

the HomeController calls the SAMLIdentityProvider.InitiateSSO method to

initiate SSO.

ComponentSpace SAML v2.0 for .NET Developer Guide

 83

2. A SAML response containing a SAML assertion is constructed and sent to the

service provider’s assertion consumer service URL.

3. The OwinExampleServiceProvider’s SAMLController calls the

SAMLServiceProvider.ReceiveSSO method to receive and process the SAML

response.

4. The user is logged in automatically at the OwinExampleServiceProvider.

10.3.8 Code Walkthrough - SP-Initiated SSO

The following section follows the flow of SP-initiated SSO between the

OwinExampleIdentityProvider and OwinExampleServiceProvider.

1. The user clicks the link on the OwinExampleServiceProvider’s login page and the

AccountController calls the SAMLServiceProvider.InitiateSSO method to initiate

SSO.

2. An authentication request is constructed and sent to the identity provider’s SSO

service URL.

3. The OwinExampleIdentityProvider’s SAMLController calls the

SAMLIdentityProvider.ReceiveSSO method to receive and process the

authentication request.

4. The user is prompted to login at the OwinExampleIdentityProvider if not already

logged in.

5. The OwinExampleIdentityProvider’s SAMLController calls the

SAMLIdentityProvider.SendSSO method.

6. A SAML response containing a SAML assertion is constructed and sent to the

service provider’s assertion consumer service URL.

7. The OwinExampleServiceProvider’s SAMLController calls the

SAMLServiceProvider.ReceiveSSO method to receive and process the SAML

response.

8. The user is logged in automatically at the OwinExampleServiceProvider.

10.4 ADFS Interoperability

The Web Forms and MVC example identity and service providers demonstrate single

sign-on with Windows Active Directory Federation Services (ADFS).

The following sections describe the configuration for the Web Forms example identity

provider and service provider but, with the appropriate changes, apply equally to the

MVC examples.

Refer to sections 10.1 and 10.2 for instructions on installing and configuring the Web

Forms and MVC example identity and service providers.

10.4.1 Miscellaneous Configuration

For the purposes of these examples, the host name of the ComponentSpace example

applications is cs.test and the host name of the ADFS server is adfs.test.

http://cs.test/
http://www.idp.com/

ComponentSpace SAML v2.0 for .NET Developer Guide

 84

If using these host names, update the Windows\System32\drivers\etc\hosts file on the test

and ADFS servers to include entries for cs.test and adfs.test. For example:

192.168.1.20 cs.test

192.168.1.21 adfs.test

10.4.2 Configuring the Service Provider

The following sections describe interoperability between the example service provider

and ADFS acting as the claims provider (i.e. identity provider).

The saml.config file includes the following entry for the ADFS partner identity provider.

<PartnerIdentityProvider Name="http://adfs.test/adfs/services/trust"

 SignAuthnRequest="true"

 WantSAMLResponseSigned="false"

 WantAssertionSigned="true"

 WantAssertionEncrypted="true"

 UseEmbeddedCertificate="true"

 SingleSignOnServiceUrl=

 "https://adfs.test/adfs/ls/"/>

The name must match with the issuer name ADFS uses in the returned SAML response.

For example, if ADFS is deployed to the myadfs server then the name must be

http://myadfs/adfs/services/trust.

The ADFS federation services properties lists the federation service identifier.

http://adfs.test/adfs/services/trust
http://myadfs/adfs/services/trust

ComponentSpace SAML v2.0 for .NET Developer Guide

 85

The UseEmbeddedCertificate flag is set to simplify the configuration. If not set then the

ADFS signature certificate needs to be imported to the service provider and configured in

the SAML configuration certificate manager.

The web.config’s PartnerIdP setting specifies the partner identity provider for SP-

initiated SSO and should be set to http://www.idp.com/adfs/services/trust.

<add key="PartnerIdP" value="http://adfs.test/adfs/services/trust"/>

10.4.3 Configuring ADFS – Adding a Relying Party

In the ADFS terminology, the service provider is a relying party. Using the ADFS

management console, add a relying party trust for the service provider.

Note that strings in ADFS, including URLs, are case sensitive.

Confirm that the /adfs/ls endpoint for SAML v2.0 exists. If it doesn’t, refer to the ADFS

documentation.

ComponentSpace SAML v2.0 for .NET Developer Guide

 86

Confirm that the service communications, token decrypting and token encrypting

certificates exist. If they don’t, refer to the ADFS documentation.

Add a relying party trust and select the option to enter the relying party information

manually.

ComponentSpace SAML v2.0 for .NET Developer Guide

 87

Specify a display name. The display name does not have to match with any other

configuration.

ComponentSpace SAML v2.0 for .NET Developer Guide

 88

Choose the ADFS profile.

ComponentSpace SAML v2.0 for .NET Developer Guide

 89

Browse to sp.cer to specify it as the token encryption certificate. Ignore any warnings

about the key length.

The token encryption certificate is used to encrypt the SAML assertion. The service

provider decrypts the SAML assertion using the associated private key.

ComponentSpace SAML v2.0 for .NET Developer Guide

 90

Enable support for SAML v2.0 and specify the service provider’s assertion consumer

service URL. ADFS sends the SAML response to this URL. For example:

https://cs.test/ExampleServiceProvider/SAML/AssertionConsumerService.aspx

ComponentSpace SAML v2.0 for .NET Developer Guide

 91

Specify the relying party trust identifier. This identifier must match the issuer field in the

authn request sent by the service provider. The ServiceProvider name attribute in the

saml.config configuration file is used as the issuer and so this name and the relying party

trust identifier must match.

For example, if the saml.config includes:

<ServiceProvider Name="urn:componentspace:ExampleServiceProvider"

 AssertionConsumerServiceUrl=

 "~/SAML/AssertionConsumerService.aspx"/>

Then the relying party trust identifier must be:

urn:componentspace:ExampleServiceProvider.

ComponentSpace SAML v2.0 for .NET Developer Guide

 92

Permit all users access to this relying party.

ComponentSpace SAML v2.0 for .NET Developer Guide

 93

Review the configuration and close the wizard.

ComponentSpace SAML v2.0 for .NET Developer Guide

 94

The service provider should be included in the list of relying party trusts.

The authn request sent by the service provider is signed. To specify the certificate to use

to verify the signature, open the relying party trusts’ properties and, under the Signature

tab, add the service provider certificate.

ComponentSpace SAML v2.0 for .NET Developer Guide

 95

Although the SAML v2.0 component supports SHA-256 signatures, for this example

SHA-1 is used. To specify this, under the Advanced tab, select SHA-1.

ComponentSpace SAML v2.0 for .NET Developer Guide

 96

To support SAML logout, specify the logout endpoint.

ComponentSpace SAML v2.0 for .NET Developer Guide

 97

Note that even after logout, ADFS may persist the authentication session depending on

which local authentication type is used. For example, if Integrated authentication is used

then after logout the next login, in the same browser session, uses the persisted

authentication session and the user doesn’t have to re-enter their credentials. If Forms

authentication is used then a login is required after logout. The following section from the

adfs/ls web.config shows the Forms authentication taking precedence over the Integrated

authentication.

 <localAuthenticationTypes>

 <add name="Forms" page="FormsSignIn.aspx" />

 <add name="Integrated" page="auth/integrated/" />

 <add name="TlsClient" page="auth/sslclient/" />

 <add name="Basic" page="auth/basic/" />

 </localAuthenticationTypes>

Edit the claim rules and add a rule.

ComponentSpace SAML v2.0 for .NET Developer Guide

 98

Map the Active Directory user principal name to the outgoing Name ID. Map additional

Active Directory attributes to include in the SAML assertion as SAML attributes.

ComponentSpace SAML v2.0 for .NET Developer Guide

 99

ComponentSpace SAML v2.0 for .NET Developer Guide

 100

ADFS should now be ready to communicate with the example service provider.

To review the metadata published by ADFS browse to:

https:/adfs.test/FederationMetadata/2007-06/FederationMetadata.xml

10.4.4 Running the Service Provider with SP-Initiated SSO

In this example, the user is attempting to access a protected resource on the service

provider and, rather than performing a local login at the service provider, SSO is initiated

with a local login occurring at the ADFS identity provider and the asserted identity,

passed to the service provider in a SAML assertion, is used to perform an automatic login

at the service provider.

1. Browse to https://cs.test/ExampleServiceProvider, ignoring any browser

certificate warnings.

2. If more than one claim provider is configured on ADFS, you will be presented

with the following page. Select the appropriate claim provider for authentication

against Active Directory. For example, adfs.test.

https://www.idp.com/FederationMetadata/2007-06/FederationMetadata.xml
https://cs.test/ExampleServiceProvider

ComponentSpace SAML v2.0 for .NET Developer Guide

 101

3. You should then be presented with the identity provider login prompt.

4. Login using the user name and password of a user defined in Active Directory.

5. You should then be presented with the service provider’s default page.

This means you’ve successfully completed a SAML v2.0 SSO and are logged in

at the service provider with your identity provider user name.

ComponentSpace SAML v2.0 for .NET Developer Guide

 102

10.4.5 Running the Service Provider with IdP-Initiated SSO

In this example, the user logs in at ADFS and initiates SSO to the service provider. The

asserted identity, passed to the service provider in a SAML assertion, is used to perform

an automatic login at the service provider.

1. Browse to https://adfs.test/adfs/ls/IdpInitiatedSignon.aspx, ignoring any browser

certificate warnings.

2. You should then be presented with the identity provider sign-in page.

3. Select the “sign in to this site” radio button and click the continue button.

Alternatively, selecting the “sign in to one of the following sites” radio button

performs SSO to the selected service provider immediately after login.

You should then be presented with the identity provider login prompt.

https://adfs.test/adfs/ls/IdpInitiatedSignon.aspx

ComponentSpace SAML v2.0 for .NET Developer Guide

 103

4. Login using the user name and password of a user defined in Active Directory.

5. Select the service provider and click Go to initiate SSO.

6. You should then be presented with the service provider’s default page.

This means you’ve successfully completed a SAML v2.0 SSO and are logged in

at the service provider with your identity provider user name.

ComponentSpace SAML v2.0 for .NET Developer Guide

 104

10.4.6 Configuring the Identity Provider

The following sections describe interoperability between the example identity provider

and ADFS acting as the relying party (i.e. service provider).

The saml.config file includes the following entry for the ADFS partner service provider.

<PartnerServiceProvider Name="http://adfs.test/adfs/services/trust"

 WantAuthnRequestSigned="false"

 SignSAMLResponse="false"

 SignAssertion="true"

 EncryptAssertion="false"

 AssertionConsumerServiceUrl=

 "https://adfs.test/adfs/ls/"/>

The name must match with the issuer name ADFS uses in the authn request. For

example, if ADFS is deployed to the myadfs server then the name must be

http://myadfs/adfs/services/trust.

The web.config’s PartnerSP setting specifies the partner service provider for IdP-

initiated SSO and should be set to http://adfs.test/adfs/services/trust.

<add key="PartnerSP" value="http://adfs.test/adfs/services/trust"/>

The web.config’s TargetUrl setting specifies, for IdP-initiated SSO, the relying party

configured in ADFS and should be set to RPID=ExampleServiceProvider.

The RPID syntax is specific to ADFS. If not specified then ADFS will convert the IdP-

initiated SSO into SP-initiated SSO.

<add key="TargetUrl" value="RPID=ExampleServiceProvider"/>

10.4.7 Configuring ADFS – Adding a Claims Provider

To support IdP-initiated SSO, edit the ADFS web.config at C:\inetpub\adfs\ls. In the

microsoft.identityServer.web, add the following entry:

<useRelayStateForIdpInitiatedSignOn enabled="true" />

If not enabled, ADFS will convert IdP-initiated SSO into SP-initiated SSO.

http://adfs.test/adfs/services/trust
http://adfs.test/adfs/services/trust%22/

ComponentSpace SAML v2.0 for .NET Developer Guide

 105

In the ADFS terminology, the identity provider is a claims provider. Using the ADFS

management console, add a claims provider trust for the identity provider.

Note that strings in ADFS, including URLs, are case sensitive.

Confirm that the /adfs/ls endpoint for SAML v2.0 exists. If it doesn’t, refer to the ADFS

documentation.

Confirm that the service communications, token decrypting and token encrypting

certificates exist. If they don’t, refer to the ADFS documentation.

Add a claims provider trust and select the option to enter the claims provider information

manually.

ComponentSpace SAML v2.0 for .NET Developer Guide

 106

Specify a display name. The display name does not have to match with any other

configuration.

ComponentSpace SAML v2.0 for .NET Developer Guide

 107

Choose the ADFS profile.

ComponentSpace SAML v2.0 for .NET Developer Guide

 108

Enable support for SAML v2.0 and specify the identity provider’s SSO service URL.

ADFS sends the authn request to this URL. For example:

https://cs.test/ExampleIdentityProvider/SAML/SSOService.aspx

ComponentSpace SAML v2.0 for .NET Developer Guide

 109

Specify the claims provider trust identifier. This identifier must match the issuer field in

the authn request sent by the service provider. The IdentityProvider name attribute in the

saml.config configuration file is used as the issuer and so this name and the claims

provider trust identifier must match.

For example, if the saml.config includes:

<IdentityProvider Name="urn:componentspace:ExampleIdentityProvider"/>

Then the claims provider trust identifier must be:

urn:componentspace:ExampleIdentityProvider.

ComponentSpace SAML v2.0 for .NET Developer Guide

 110

Browse to idp.cer to specify it as the token signing certificate. Ignore any warnings about

the key length.

ADFS uses the token signing certificate to verify the SAML assertion signature.

ComponentSpace SAML v2.0 for .NET Developer Guide

 111

Review the configuration and close the wizard.

ComponentSpace SAML v2.0 for .NET Developer Guide

 112

The identity provider should be included in the list of claims provider trusts.

Although the SAML v2.0 component supports SHA-256 signatures, for this example

SHA-1 is used. To specify this, open the claims provider trusts’ properties and, under the

Advanced tab, select SHA-1.

ComponentSpace SAML v2.0 for .NET Developer Guide

 113

Edit the claim rules and add a rule. Use the pass through template.

ComponentSpace SAML v2.0 for .NET Developer Guide

 114

Add a rule to pass through the Name ID. Ignore any warning.

ComponentSpace SAML v2.0 for .NET Developer Guide

 115

10.4.8 Running the Identity Provider with IdP-Initiated SSO

In this example, the user logs in at the identity provider and initiates SSO to ADFS.

ADFS forwards this to the specified service provider. The asserted identity, passed to the

service provider in a SAML assertion, is used to perform an automatic login at the service

provider.

1. Browse to https://cs.test/ExampleIdentityProvider, ignoring any browser

certificate warnings.

https://cs.test/ExampleIdentityProvider

ComponentSpace SAML v2.0 for .NET Developer Guide

 116

2. Click the link to single sign-on to the service provider.

3. You should then be presented with the service provider’s default page.

ComponentSpace SAML v2.0 for .NET Developer Guide

 117

10.4.9 Troubleshooting ADFS SSO

Configuration errors will result in a cryptic message displayed in the browser by ADFS.

To troubleshoot configuration and other problems, refer to the ADFS event log.

ADFS metadata may be viewed at the FederationMetadata/2007-

06/FederationMetadata.xml endpoint. For example:

https://adfs.test/FederationMetadata/2007-06/FederationMetadata.xml

10.5 Office 365 Interoperability

The Web Forms and MVC example identity providers demonstrate single sign-on with

Office 365.

The following sections describe the configuration for the Web Forms example identity

provider but, with the appropriate changes, apply equally to the MVC examples.

Refer to sections 10.1 and 10.2 for instructions on installing and configuring the Web

Forms and MVC example identity providers.

10.5.1 Configuring the Identity Provider

The saml.config file includes the following entry for the Office 365 partner service

provider.

https://adfs.test/FederationMetadata/2007-06/FederationMetadata.xml

ComponentSpace SAML v2.0 for .NET Developer Guide

 118

<PartnerServiceProvider Name="urn:federation:MicrosoftOnline"

 WantAuthnRequestSigned="false"

 SignSAMLResponse="false"

 SignAssertion="true"

 EncryptAssertion="false"

 NameIDFormat=

 "urn:oasis:names:tc:SAML:2.0:nameid-format:persistent"

 AuthnContext=

 "urn:oasis:names:tc:SAML:2.0:ac:classes:Password"

 AssertionConsumerServiceUrl=

 "https://login.microsoftonline.com/login.srf"

 SingleLogoutServiceUrl=

 "https://login.microsoftonline.com/login.srf"/>

The web.config’s PartnerSP setting specifies the partner service provider for IdP-

initiated SSO and should be set to urn:federation:MicrosoftOnline.

<add key="PartnerSP" value="urn:federation:MicrosoftOnline"/>

The web.config’s SubjectName setting specifies the subject’s name identifier. This must

match with the user’s immutable identifier configured in Office 365. In this example, a

fixed immutable identifier is used. Refer to section 10.5.3.1.

<add key="SubjectName" value="12345678"/>

The web.config specifies the SAML attributes. The IDPEmail attribute must match with

the user’s principal name configured in Office 365. In this example, a fixed principal

name is used.

<add key="Attribute_IDPEmail" value="test@componentspace.com"/>

To keep the example identity provider simple, fixed values are used for the user’s

immutable identifier and principal name. In a production application, these values would

be retrieved from the user store (e.g. Active Directory or a user database).

10.5.2 Configuring Office 365

Login, as an administrator, to the Office 365 administration center at:

https://portal.microsoftonline.com/

http://adfs.test/adfs/services/trust%22/
https://portal.microsoftonline.com/

ComponentSpace SAML v2.0 for .NET Developer Guide

 119

10.5.2.1 Add a Domain

Add a domain that will be used for single sign on.

ComponentSpace SAML v2.0 for .NET Developer Guide

 120

ComponentSpace SAML v2.0 for .NET Developer Guide

 121

ComponentSpace SAML v2.0 for .NET Developer Guide

 122

Don’t add any users at this stage.

ComponentSpace SAML v2.0 for .NET Developer Guide

 123

Unless DNS entries are to be updated, uncheck the Exchange Online and Lync Online

check boxes.

ComponentSpace SAML v2.0 for .NET Developer Guide

 124

ComponentSpace SAML v2.0 for .NET Developer Guide

 125

10.5.2.2 Set the Default Domain

Ensure the newly added domain is not the default domain.

Click the organization’s name in the top right corner.

Change the default domain to the onmicrosoft.com domain (e.g.

componentspaceau.onmicrosoft.com instead of componentspace.com).

10.5.2.3 Install the Azure PowerShell Cmdlets

Single sign on cannot be configured using the Office 365 administration center. Instead,

the Windows Azure Active Directory Module for Windows PowerShell cmdlets are used

to configure Office 365 for single sign on.

Download and install the cmdlets from:

http://technet.microsoft.com/en-us/library/jj151815.aspx

More information about these cmdlets and using them to configure single sign on may be

found at:

http://technet.microsoft.com/en-us/library/jj151815.aspx

and

http://technet.microsoft.com/en-us/library/hh967628.aspx

http://technet.microsoft.com/en-us/library/jj151815.aspx
http://technet.microsoft.com/en-us/library/jj151815.aspx
http://technet.microsoft.com/en-us/library/hh967628.aspx

ComponentSpace SAML v2.0 for .NET Developer Guide

 126

10.5.2.4 Configuring the Domain for Single Sign On

Run the Set-MsolDomainAuthentication cmdlet to configure single sign on.

The following PowerShell script configures the componentspace.com domain.

For convenience, it’s recommended this is included in a PowerShell .ps1 script file.

Configure Office 365 SSO

Prompt for the administrator’s credentials

$cred=Get-Credential

Connect-MsolService -Credential $cred

$domain = "componentspace.com"

$issuer = "urn:componentspace:ExampleIdentityProvider"

$ssoUrl =

"https://test.componentspace.com/ExampleIdentityProvider/SAML/SSOServic

e.aspx"

$ecpUrl =

"https://test.componentspace.com/ExampleIdentityProvider/SAML/ECP.aspx"

$logoffUrl =

"https://test.componentspace.com/ExampleIdentityProvider/SAML/SLOServic

e.aspx"

$cert =

"MIIBrzCCARigAwIBAgIQWJaxa3/MnJ1O88oamyZTuzANBgkqhkiG9w0BAQUFADAWMRQwEg

YDVQQDEwt3d3cuaWRwLmNvbTAeFw0xMzAyMTIyMzIyNDRaFw00OTEyMzExNDAwMDBaMBYxF

DASBgNVBAMTC3d3dy5pZHAuY29tMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDEruhL

B9LyKJsuuXTl39vEYMYUg+/o+SoOLfuRH7g/o/FJV6QT0gFDL70uN/YDdDnC8zDza8WZbDl

eA0W7ot76Uq71vFwf69fV4VnhxsQOmDAGlmQDeZtbWWbJEmnX9oAwkqQEOd8sBZnyYrbwPy

zgnWM3HLOu2vVvNtXUmWJ6owIDAQABMA0GCSqGSIb3DQEBBQUAA4GBAKN1MWb8ug6TLiqDw

XcYqfbsFDfPoI04pH2Pzu19NBs6v9P0G+SF2tRlZ4NVQ/ADQkUPuWM0GKiluJwS898R+RF6

znCvW93rl4FdQli66OJO2PnDlSViBfc07hj0atOYo1weFFtBLinAYIZL6P/S1IcHTYpo3Mg

oQGVInCMMyTUW"

Set-MsolDomainAuthentication -FederationBrandName $domain -DomainName

$domain -Authentication federated -PreferredAuthenticationProtocol

SAMLP -IssuerUri $issuer -SigningCertificate $cert -PassiveLogOnUri

$ssoUrl -ActiveLogOnUri $ecpUrl -LogOffUri $logoffUrl –Verbose

The following is a template for configuring a domain.

Configure Office 365 SSO

Prompt for the administrator’s credentials

$cred=Get-Credential

Connect-MsolService -Credential $cred

$domain = "TODO: specify domain name"

$issuer = "TODO: specify issuer"

$ssoUrl = "TODO: specify SSO service URL"

$ecpUrl = "TODO: specify ECP service URL"

$logoffUrl = "TODO: specify the SLO service URL"

$cert = "TODO: specify the identity provider’s certificate"

ComponentSpace SAML v2.0 for .NET Developer Guide

 127

Set-MsolDomainAuthentication -FederationBrandName $domain -DomainName

$domain -Authentication federated -PreferredAuthenticationProtocol

SAMLP -IssuerUri $issuer -SigningCertificate $cert -PassiveLogOnUri

$ssoUrl -ActiveLogOnUri $ecpUrl -LogOffUri $logoffUrl –Verbose

The $domain is the domain name previously configured in Office 365 for single sign on.

The $issuer is the identity provider name. This name must match with the

IdentityProvider name configured in the identity provider’s saml.config. For example, if

the identity provider name is urn:componentspace:ExampleIdentityProvider then the

$issuer must be set to the same value.

The $ssoUrl is the identity provider’s SSO service URL. In browser-based SP-initiated

SSO, Office 365 will send an authentication request to this endpoint.

The $ecpUrl is the identity provider’s Enhanced Client or Proxy URL. In non-browser-

based SP-initiated SSO, Office 365 will send an authentication request to this endpoint.

The $logoffUrl is the identity provider’s SLO service URL.

The $cert is the identity provider’s certificate. Office 365 will use this certificate to verify

signed SAML assertions from the identity provider.

The Set-MsolDomainAuthentication cmdlet configures authentication for the domain.

The “-Authentication federated” parameter specifies to use single sign on. The “-

PreferredAuthenticationProtocol SAMLP” parameter specifies to use the SAML protocol

rather than WS-Federation.

10.5.2.5 Confirming the Domain’s SSO Settings

Run the Get-MsolDomainFederationSettings cmdlet to confirm the single sign on

settings. For example:

$domain = "componentspace.com"

Get-MsolDomainFederationSettings -DomainName $domain

10.5.3 Adding a User

Run the New-MsolUser cmdlet to add a user to the domain. For example:

New-MsolUser -UserPrincipalName test@componentspace.com -ImmutableId

12345678 -FirstName Test -LastName User -DisplayName "Test User" -

LicenseAssignment "componentspaceau:ENTERPRISEPACK" -usageLocation US

The UserPrincipalName is the user ID.

The ImmutableId is a unique ID that identifies the user. See section 10.5.3.1.

The LicenseAssignment assigns licenses to the user. Use the Get-MsolAccountSku

cmdlet to get the value for the license assignment.

ComponentSpace SAML v2.0 for .NET Developer Guide

 128

10.5.3.1 User Immutable Identifier

The immutable identifier uniquely and permanently identifies the user.

The SAML response sent by the identity provider includes the immutable identifier as the

subject name identifier in the SAML assertion. The user principal name is included as the

IDPEmail SAML attribute. Both these values must match with the Office 365

configuration for single sign on to be successful.

For user information stored in Active Directory, the user’s object GUID (objectGUID

attribute) may be used as the immutable identifier.

For user information stored in a database or some other user registry, some other unique

identifier must be assigned as the immutable identifier.

In the example identity provider, a fixed immutable identifier is used.

10.5.4 Deleting a User

During testing, it may be necessary to delete and reconfigure users in Office 365.

Users may be deleted using the Office 365 administration center or by using the

PowerShell Remove-MsolUser cmdlet. For example:

Remove-MsolUser -UserPrincipalName test@componentspace.com

Deleting the user moves the user to the Office 365 recycle bin. To create a user with the

same name, the user first must be removed from the recycle bin. This requires the object

identifier associated with the user.

The Get-MsolUser cmdlet is used to retrieve the object identifier. For example:

Get-MsolUser -ReturnDeletedUsers -SearchString test@componentspace.com

| select UserPrincipalName, ObjectId

The Remove-MsolUser cmdlet is used to delete the user from the recycle bin. For

example:

Remove-MsolUser -RemoveFromRecycleBin –ObjectId [objectID value]

10.5.5 Running the Identity Provider with SP-Initiated SSO

In this example, the user is attempting to login at Office 365 and, rather than performing

a local login at Office 365, SSO is initiated with a local login occurring at the example

identity provider and the asserted identity, passed to the service provider in a SAML

assertion, is used to perform an automatic login at the Office 365.

1. Browse to https://portal.microsoftonline.com/.

https://portal.microsoftonline.com/

ComponentSpace SAML v2.0 for .NET Developer Guide

 129

2. Specify the user e.g. test@componentspace.com. Although a prompt for a

password is initially displayed, Office 365 determines the domain is federated and

automatically redirects to the identity provider for login.

mailto:test@componentspace.com

ComponentSpace SAML v2.0 for .NET Developer Guide

 130

3. Login at the example identity provider.

ComponentSpace SAML v2.0 for .NET Developer Guide

 131

4. You should now be logged in at Office 365.

10.5.6 Running the Identity Provider with IdP-Initiated SSO

In this example, the user is logged in at the identity provider and clicks a link to SSO to

Office 365.

1. Browse to the example identity provider.

For example: https://test.componentspace.com/ExampleIdentityProvider.

2. Login at the example identity provider.

3. Click the link to SSO to Office 365.

https://test.componentspace.com/ExampleIdentityProvider

ComponentSpace SAML v2.0 for .NET Developer Guide

 132

4. You should now be logged in at Office 365.

10.5.7 Email Client Support

Office 365 supports users of email clients, such as Microsoft Outlook, logging in through

an identity provider.

The user’s name and password are sent by the email client to Office 365 which delegates

user authentication to the identity provider.

The SAML Enhanced Client or Proxy (ECP) profile is used for the exchange of SAML

messages between Office 365 and the identity provider.

Along with the SAML authentication request sent to the identity provider, Office 365

includes the user’s name and password in the HTTP authorization header.

ComponentSpace SAML v2.0 for .NET Developer Guide

 133

The identity provider uses these credentials to authenticate the user. If authenticated, the

identity provider returns a SAML response to Office 365.

10.5.8 Configuring an Email Client

Login as the Office 365 administrator and click the Outlook link at the top of the page.

This applies regardless of whether Outlook or some other email client is used.

Click the settings cog at the top right and select Options.

ComponentSpace SAML v2.0 for .NET Developer Guide

 134

Click Settings for POP or IMAP access and take note of these settings.

ComponentSpace SAML v2.0 for .NET Developer Guide

 135

Open the Microsoft Outlook client and configure a new account.

ComponentSpace SAML v2.0 for .NET Developer Guide

 136

ComponentSpace SAML v2.0 for .NET Developer Guide

 137

Specify the settings from Office 365.

ComponentSpace SAML v2.0 for .NET Developer Guide

 138

ComponentSpace SAML v2.0 for .NET Developer Guide

 139

ComponentSpace SAML v2.0 for .NET Developer Guide

 140

ComponentSpace SAML v2.0 for .NET Developer Guide

 141

10.5.9 Running the Email Client

Running the email client will cause user authentication to occur at the identity provider.

ComponentSpace SAML v2.0 for .NET Developer Guide

 142

10.5.10 Troubleshooting Office 365 SSO

Refer to the Office 365 documentation pages. The following article lists error codes and

recommended actions.

http://support.microsoft.com/kb/2615736

Office 365 SAML metadata may be retrieved from:

https://nexus.microsoftonline-p.com/federationmetadata/saml20/federationmetadata.xml

10.6 Google Apps Interoperability

The Web Forms and MVC example identity providers demonstrate SP initiated single

sign-on with Google Apps.

The following sections describe the configuration for the Web Forms identity service

provider but, with the appropriate changes, apply equally to the MVC example identity

provider.

Refer to sections 10.1 and 10.1.7 for installing and configuring the Web Forms and MVC

example identity providers.

10.6.1 Configuring the Identity Provider

The saml.config file includes the following entry for the Google Apps partner service

provider.

<PartnerServiceProvider Name="google.com"

 WantAuthnRequestSigned="false"

 SignSAMLResponse="true"

 SignAssertion="false"

 EncryptAssertion="false"/>

The name matches with the issuer name Google Apps uses in the authn request.

http://support.microsoft.com/kb/2615736
https://nexus.microsoftonline-p.com/federationmetadata/saml20/federationmetadata.xml

ComponentSpace SAML v2.0 for .NET Developer Guide

 143

The assertion consumer service URL specified in the authn request is used rather than

configuring this URL. Alternatively, the assertion consumer service URL may be

configured (e.g. https://www.google.com/a/<domain-name>/acs).

10.6.2 Configuring Google Apps

Login as an administrator to the Google Admin Control Panel at:

https://www.google.com/a/<domain-name>

For example:

https://www.google.com/a/componentspace.com

Select the Advanced tools tab and under the Authentication section, click the Set up

single sign-on (SSO) link.

Specify the sign-in page URL. This is the identity provider’s single sign-on service where

the authn request is sent.

For example:

https://test.componentspace.com/ExampleIdentityProvider/SAML/SSOService.aspx

Specify the sign-out page URL. When the user signs out of Google Apps they are

redirected to the sign-out page. Google Apps does not send a SAML logout request.

https://www.google.com/a/%3cdomain-name%3e
https://www.google.com/a/componentspace.com

ComponentSpace SAML v2.0 for .NET Developer Guide

 144

Specify the change password URL. The user is redirected to this page when they wish to

change their password. This does not involve SAML.

Upload the identity provider's certificate.

For example: idp.cer.

10.6.3 Running Google Apps with SSO

In this example, the user is attempting to access a protected resource on the service

provider and, rather than performing a local login at the service provider, SSO is initiated

with a local login occurring at the identity provider and the asserted identity, passed to

the service provider in a SAML assertion, is used to perform an automatic login at the

service provider.

1. Browse to:

https://mail.google.com/a/<domain-name>

For example:

https://mail.google.com/a/componentspace

2. You should then be presented with the identity provider login prompt.

3. Login using the user name and password of a user known to the identity provider.

The user account should also exist in Google Apps.

https://mail.google.com/a/%3cdomain-name%3e
https://mail.google.com/a/componentspace

ComponentSpace SAML v2.0 for .NET Developer Guide

 145

4. You should then be presented with the Google Mail default page.

This means you’ve successfully completed a SAML v2.0 SSO and are logged in

at Google Apps with your identity provider user name.

10.6.4 Troubleshooting Google Apps SSO

Refer to the Troubleshooting Single Sign-On (SSO) article in the Google Apps

documentation.

10.7 Salesforce Interoperability

The Web Forms and MVC example identity providers demonstrate both IdP and SP

initiated single sign-on with Salesforce.

The following sections describe the configuration for the Web Forms identity and service

providers but, with the appropriate changes, apply equally to the MVC example identity

and service providers.

Refer to sections 10.1 and 10.1.7 for installing and configuring the Web Forms and MVC

example identity providers.

10.7.1 Configuring the Identity Provider

The saml.config file includes the following entry for the Salesforce partner service

provider.

<PartnerServiceProvider Name="https://saml.salesforce.com"

 WantAuthnRequestSigned="false"

 SignSAMLResponse="true"

 SignAssertion="false"

 EncryptAssertion="false"

 AssertionConsumerServiceURL=

 "https://login.salesforce.com"/>

The web.config file identifies the partner service provider. This must specify the

Saleforce service provider.

<add key="PartnerSP" value="https://saml.salesforce.com"/>

10.7.2 Configuring Salesforce as a Service Provider

Login as an administrator to Salesforce at:

https://login.salesforce.com

Select Setup > Security Controls > Single Sign-On Settings.

Enable SAML.

Specify the issuer, upload the identity provider's certificate and specify the login URL.

For example, the issuer is urn:componentspace:ExampleIdentityProvider, upload the

idp.cer file, and specify

https://login.salesforce.com/

ComponentSpace SAML v2.0 for .NET Developer Guide

 146

http://test.componentspace.com/ExampleIdentityProvider/SAML/SSOService.aspx as the

login URL.

For SP-initiated SSO, select Setup > Domain Management > My Domain.

Ensure the Authentication Service is set to My SAML IDP.

ComponentSpace SAML v2.0 for .NET Developer Guide

 147

Take note of the domain name. Browsing to this domain name will start SP-initiated

SSO.

10.7.3 Running the Example Identity Provider – IdP-Initiated SSO

1. Browse to:

http://localhost/ExampleIdentityProvider

You should then be presented with the identity provider login prompt.

2. Login using the user name and password of a user known to the identity provider.

The user account must also exist in Salesforce.

You may have to update the credentials section of the example identity provider’s

web.config to include the user name.

3. Click the link to SSO to Salesforce.

The Saleforce main page should be displayed.

This means you’ve successfully completed a SAML v2.0 SSO and are logged in

at Salesforce with your identity provider user name.

http://localhost/ExampleIdentityProvider

ComponentSpace SAML v2.0 for .NET Developer Guide

 148

10.7.4 Running the Example Identity Provider – SP-Initiated SSO

4. Browse to the domain name configured in Salesforce:

 http://componentspace-dev-ed.my.salesforce.com/

Refer to section 10.7.2 for information on determining the domain name.

You should then be presented with the identity provider login prompt.

5. Login using the user name and password of a user known to the identity provider.

The user account must also exist in Salesforce.

You may have to update the credentials section of the example identity provider’s

web.config to include the user name.

6. The Saleforce main page should be displayed.

This means you’ve successfully completed a SAML v2.0 SSO and are logged in

at Salesforce with your identity provider user name.

10.7.5 Configuring the Service Provider

The saml.config file includes the following entry for the Salesforce partner identity

provider.

 <PartnerIdentityProvider

 Name="https://componentspace-dev-ed.my.salesforce.com"

 SignAuthnRequest="false"

 WantSAMLResponseSigned="true"

 WantAssertionSigned="false"

 WantAssertionEncrypted="false"

 UseEmbeddedCertificate="true"

 SingleSignOnServiceUrl=

"https://componentspace-dev-

ed.my.salesforce.com/idp/endpoint/HttpRedirect"/>

The partner identity provider name must match with the issuer name generated by

Salesforce. See section 10.7.6.

The web.config file identifies the partner identity provider. This must specify the

Saleforce identity provider.

<add key="PartnerIdP"

 value=" https://componentspace-dev-ed.my.salesforce.com "/>

10.7.6 Configuring Salesforce as an Identity Provider

Login as an administrator to Salesforce at:

https://login.salesforce.com

http://componentspace-dev-ed.my.salesforce.com/
https://login.salesforce.com/

ComponentSpace SAML v2.0 for .NET Developer Guide

 149

Select Setup > Security Controls > Identity Provider.

Enable the Identity Provider. The generated self-signed certificate is okay to use.

Add a service provider.

Specify the name as ExampleServiceProvider and the entity ID as

urn:componentspace:ExampleServiceProvider.

Specify the ACS URL. For example:

http://test.componentspace.com/ExampleServiceProvider/SAML/AssertionConsumerSer

vice.aspx

A start URL is not required.

Select user name as the subject type.

Select the user profiles which will have access to the service provider.

Note that if SAML is enabled as described in section 10.7.2, the identity provider role is

delegated to the configured identity provider. To have Salesforce act as the identity

provider, disable SAML.

http://test.componentspace.com/ExampleServiceProvider/SAML/AssertionConsumerService.aspx
http://test.componentspace.com/ExampleServiceProvider/SAML/AssertionConsumerService.aspx

ComponentSpace SAML v2.0 for .NET Developer Guide

 150

10.7.7 Running the Example Service Provider – IdP-Initiated SSO

1. Browse to the IdP-Initiated login URL specified under the login information for

the service provider in the Salesforce configuration. For example:

https://ap1.salesforce.com/idp/login?app=0sp90000000Kyvb

You should then be presented with the Salesforce login prompt.

2. Login using the user name and password of a user known to Salesforce.

https://ap1.salesforce.com/idp/login?app=0sp90000000Kyvb

ComponentSpace SAML v2.0 for .NET Developer Guide

 151

3. The example service provider page should be displayed.

This means you’ve successfully completed a SAML v2.0 SSO and are logged in

at the example service provider with your Salesforce user name.

10.7.8 Running the Example Service Provider – SP-Initiated SSO

1. Browse to the example service provider. For example:

http://test.componentspace.com/ExampleServiceProvider

You should then be presented with the Salesforce login prompt.

2. Login using the user name and password of a user known to Salesforce.

http://test.componentspace.com/ExampleServiceProvider

ComponentSpace SAML v2.0 for .NET Developer Guide

 152

3. The example service provider page should be displayed.

This means you’ve successfully completed a SAML v2.0 SSO and are logged in

at the example service provider with your Salesforce user name.

10.7.9 Troubleshooting Salesforce SSO

Use Setup > Security Controls > Single Sign-On Settings > SAML Assertion Validator to

debug problems with the SAML response.

View the Login History under Setup > Manage Users > Login History.

Salesforce documentation may be found at:

https://help.salesforce.com/help/pdfs/en/salesforce_single_sign_on.pdf

http://www.salesforce.com/us/developer/docs/sso/index.htm

https://help.salesforce.com/help/pdfs/en/salesforce_single_sign_on.pdf
http://www.salesforce.com/us/developer/docs/sso/index.htm

ComponentSpace SAML v2.0 for .NET Developer Guide

 153

10.8 Shibboleth Interoperability

The Web Forms and MVC example identity providers demonstrate SP initiated single

sign-on with Shibboleth.

The following sections describe the configuration for the Web Forms identity service

provider but, with the appropriate changes, apply equally to the MVC example identity

provider.

Refer to sections 10.1 and 10.1.7 for installing and configuring the Web Forms and MVC

example identity providers.

10.8.1 Configuring the Identity Provider

The saml.config file identifies the local identity provider. This must match with the entity

ID specified in the metadata uploaded to Shibboleth.

<IdentityProvider Name="https://test.componentspace.com"/>

The saml.config file includes the following entry for the Shibboleth partner service

provider.

<PartnerServiceProvider Name="https://sp.testshib.org/shibboleth-sp"

 WantAuthnRequestSigned="false"

 SignSAMLResponse="true"

 SignAssertion="false"

 EncryptAssertion="false"

 AssertionConsumerServiceURL=

 "https://sp.testshib.org/Shibboleth.sso/SAML2/POST"/>

10.8.2 Configuring the Service Provider

The saml.config file identifies the local service provider. This must match with the entity

ID specified in the metadata uploaded to Shibboleth.

<ServiceProvider Name="https://test.componentspace.com"/>

The saml.config file includes the following entry for the Shibboleth partner service

provider.

<PartnerIdentityProvider Name="https://idp.testshib.org/idp/shibboleth"

 SignAuthnRequest="true"

 WantSAMLResponseSigned="true"

 WantAssertionSigned="false"

 WantAssertionEncrypted="false"

 UseEmbeddedCertificate="true"

 SingleSignOnServiceUrl=

 "https://idp.testshib.org/idp/profile/SAML2/Redirect/SSO"/>

The web.config file identifies the partner identity provider. This must specify the

Shibboleth identity provider.

<add key="PartnerIdP" value="https://idp.testshib.org/idp/shibboleth"/>

https://idp.testshib.org/idp/shibboleth

ComponentSpace SAML v2.0 for .NET Developer Guide

 154

10.8.3 Configuring Shibboleth

The supplied ComponentSpaceMetadata.xml includes metadata for the example identity

provider and the example service provider. The entity ID must uniquely identify your

organization. The URLs must be modified to match your configuration.

The metadata to modify may be found at C:\Program Files (x86)\ComponentSpace

SAML v2.0 for .NET\Examples\Metadata\Template.

Once the metadata has been updated, navigate to:

https://www.testshib.org/

Click the Register button and upload your SAML metadata.

Confirm that the metadata has been uploaded successfully.

https://www.testshib.org/

ComponentSpace SAML v2.0 for .NET Developer Guide

 155

Metadata for Shibboleth and other entities may be found at:

http://www.testshib.org/metadata/testshib-two-metadata.xml

10.8.4 Running Shibboleth with SSO – Example Identity Provider

1. Browse to:

https://sp.testshib.org/

Specify the entity ID you defined in your metadata. This entity ID is used as a key

by Shibboleth to retrieve the correct metadata.

http://www.testshib.org/metadata/testshib-two-metadata.xml
https://sp.testshib.org/

ComponentSpace SAML v2.0 for .NET Developer Guide

 156

2. You should then be presented with the identity provider login prompt.

3. Login and you should be returned to Shibboleth.

https://sp.testshib.org/testing/sample.jsp

This means you’ve successfully completed a SAML v2.0 SSO and are logged in

at Shibboleth with your identity provider user name.

https://sp.testshib.org/testing/sample.jsp

ComponentSpace SAML v2.0 for .NET Developer Guide

 157

10.8.5 Running Shibboleth with SSO – Example Service Provider

1. Browse to the example service provider URL:

For example:

https://test.componentspace.com/ExampleServiceProvider

2. You should then be presented with the identity provider login prompt.

https://test.componentspace.com/ExampleServiceProvider

ComponentSpace SAML v2.0 for .NET Developer Guide

 158

3. Login using one of the listed user names and passwords.

4. The example service provider main page should be displayed.

This means you’ve successfully completed a SAML v2.0 SSO and are logged in

at the example service provider with your Shibboleth user name.

ComponentSpace SAML v2.0 for .NET Developer Guide

 159

10.8.6 Troubleshooting Shibboleth SSO

The Shibboleth identity provider logs may be viewed at:

https://idp.testshib.org/cgi-bin/idplog.cgi?lines=300&logname=shibd.log.

The Shibboleth service provider logs may be viewed at:

https://sp.testshib.org/cgi-bin/splog.cgi?lines=300&logname=shibd.log.

11 Example Applications - Low Level APIs
The example applications must be built and published prior to their use.

The following sections describe the installation and execution of these example

applications.

The example applications described in sections 10.1 and 11.2 demonstrate SP initiated

SSO and logout using a number of different bindings. These applications are written in

VB.NET.

The example applications described in sections 11.3 and 11.4 demonstrate IdP initiated

SSO and logout using a number of different bindings. These applications are written in

C#.

The example application described in section 11.5 and 11.5 demonstrates interoperability

with Active Directory Federation Services (ADFS). This application is written in C#.

The example application described in section 11.6 demonstrates interoperability with

Google Apps. This application is written in C#.

The example application described in section 11.7 demonstrates interoperability with

Salesforce. This application is written in C#.

https://idp.testshib.org/cgi-bin/idplog.cgi?lines=300&logname=shibd.log
https://sp.testshib.org/cgi-bin/splog.cgi?lines=300&logname=shibd.log

ComponentSpace SAML v2.0 for .NET Developer Guide

 160

The example applications in sections 11.8 and 11.9 demonstrate interoperability with the

Shibboleth open source SSO software package. These applications are written in C#.

The example application in section 11.10 demonstrates creating and manipulating SAML

assertions. This application is written in VB.NET.

The example applications in section 11.11 demonstrate creating and manipulating SAML

metadata. These applications are written in C#.

The example applications in section 11.12 demonstrate generating and verifying XML

signatures. These applications are written in C#.

Section 11.13 includes various utility applications.

11.1 SP-Initiated SSO – Identity Provider

The SAML2IdentityProvider web application, in conjunction with the

SAML2ServiceProvider web application, demonstrates SP initiated single sign-on and

logout.

11.1.1 Installing the Identity Provider

6. Using Visual Studio, build and publish the web application.

7. Open the Internet Information Services management console.

8. Under the default web site for the local computer, create an application with an

alias of SAML2IdentityProvider.

9. For the physical path, browse to the directory where SAML2IdentityProvider was

built and published.

10. Ensure the web application has been successfully installed and configured by

browsing to http://localhost/SAML2IdentityProvider.

11.1.2 Configuring the Identity Provider

The identity provider configuration is contained within its web.config file’s

<appSettings> section and contains the spArtifactResponderURL and spLogoutURL.

The spArtifactResponderURL specifies the URL of the service provider’s artifact

responder. Its default value is

http://localhost/SAML2ServiceProvider/SAML/ArtifactResponder.aspx.

The spLogoutURL specifies the URL of the service provider’s logout service. Its default

value is http://localhost/SAML2ServiceProvider/SAML/SingleLogoutService.aspx.

Modifying web.config does not require an application restart.

If you use the default installation you won’t need to modify this configuration.

11.1.3 Running the Identity Provider

As this is SP initiated SSO, you need to run the service provider application rather than

the identity provider to initiate SSO.

ComponentSpace SAML v2.0 for .NET Developer Guide

 161

In this example SSO is not being used. Instead, you should simply perform a local login

at the identity provider to ensure it is functioning correctly.

1. Browse to http://localhost/SAML2IdentityProvider.

2. Login using the user name idp-user and a password of password (see Figure 31).

3. Verify that you’ve been redirected to the identity provider’s default page (see

Figure 32).

Figure 31 Identity Provider Login Page

Figure 32 Identity Provider Default Page

11.1.4 Running the Identity Provider in Visual Studio

You may run the identity provider in Visual Studio. The one additional step is to note the

port number being used by Visual Studio to run the application. You then need to update

the service provider’s configuration as described in section 11.2.2 to account for the

different port number being used by Visual Studio.

ComponentSpace SAML v2.0 for .NET Developer Guide

 162

11.2 SP-Initiated SSO – Service Provider

The SAML2ServiceProvider web application, in conjunction with the

SAML2IdentityProvider web application, demonstrates SP initiated single sign-on and

logout.

11.2.1 Installing the Service Provider

1. Using Visual Studio, build and publish the web application.

2. Open the Internet Information Services management console.

3. Under the default web site for the local computer, create an application with an

alias of SAML2ServiceProvider.

4. For the physical path, browse to the directory where SAML2ServiceProvider was

built and published.

5. Ensure the web application has been successfully installed and configured by

browsing to http://localhost/SAML2ServiceProvider.

11.2.2 Configuring the Service Provider

The service provider configuration is contained within its web.config file’s

<appSettings> section and contains the idpssoURL, idpArtifactResponderURL and

idpLogoutURL.

The idpssoURL specifies the URL of the identity provider’s SSO service. Its default

value is http://localhost/SAML2IdentityProvider/SAML/SSOService.aspx.

The idpArtifactResponderURL specifies the URL of the identity provider’s artifact

responder. Its default value is

http://localhost/SAML2IdentityProvider/SAML/ArtifactResponder.aspx.

The idpLogoutURL specifies the URL of the identity provider’s logout service. Its default

value is http://localhost/SAML2IdentityProvider/SAML/SingleLogoutService.aspx.

Modifying web.config does not require an application restart.

If you use the default installation you won’t need to modify this configuration.

11.2.3 Running the Service Provider without SSO

In this example SSO is not being used. Instead, you should simply perform a local login

at the service provider to ensure it is functioning correctly.

1. Browse to http://localhost/SAML2ServiceProvider.

2. You should be presented with the form shown in Figure 35.

3. Select the service provider as the location where login will occur.

4. Login using the user name sp-user and a password of password (see Figure 33).

5. Verify that you’ve been redirected to the service provider’s default page (see

Figure 34).

ComponentSpace SAML v2.0 for .NET Developer Guide

 163

Figure 33 Service Provider Login Page

Figure 34 Service Provider Default Page – Logged in as sp-user

11.2.4 Running the Service Provider with SSO

In this example, the user is attempting to access a protected resource on the service

provider and, rather than performing a local login at the service provider, SSO is initiated

with a local login occurring at the identity provider and the asserted identity, passed to

the service provider in a SAML assertion, is used to perform an automatic login at the

service provider.

8. Browse to http://localhost/SAML2ServiceProvider.

9. You should be presented with the form shown in Figure 35.

10. Select the identity provider as the location where login will occur.

Selecting the identity provider will initiate a SAML v2.0 SSO. Selecting the

service provider will initiate a local login at the service provider.

11. Select the binding to use when communicating between the service provider and

identity provider.

The user experience should be the same regardless of the binding selected. The

ComponentSpace SAML v2.0 for .NET Developer Guide

 164

only time when this isn’t the case is if the HTTP POST binding is selected and

Javascript is disabled in which case the user will be presented with an

intermediate form and a button they need to click.

12. Select the binding to use when communicating between the identity provider and

service provider.

The user experience should be the same regardless of the binding selected. The

only time when this isn’t the case is if the HTTP POST binding is selected and

Javascript is disabled in which case the user will be presented with an

intermediate form and a button they need to click.

13. Click the Continue button.

14. You should then be presented with the identity provider login page (see Figure

31) as you will be logging in at the identity provider, not the service provider.

If you are not then you must already have logged in at the identity provider. To

force a login, close the browser and start again.

15. Login using the user name idp-user and a password of password.

16. You should then be presented with the service provider’s default page (see Figure

36).

This means you’ve successfully completed a SAML v2.0 SSO and are logged in

at the service provider with your identity provider user name.

ComponentSpace SAML v2.0 for .NET Developer Guide

 165

Figure 35 Service Provider Login Selection Page

Figure 36 Service Provider Default Page – Logged in as idp-user

The service provider is coded so as not to force authentication at the identity provider. To

demonstrate this login at the identity provider and, using the same browser session,

browse to the service provider and select the login location as the identity provider. No

login at the identity provider will be required as you have already logged in.

1. Login at the identity provider by following the steps described in section 11.1.3.

ComponentSpace SAML v2.0 for .NET Developer Guide

 166

2. Using the same browser session, follow the steps described in section 11.2.4.

You should not have to login again at the identity provider.

11.2.5 Running the Service Provider in Visual Studio

You may run the service provider in Visual Studio. The one additional step is to note the

port number being used by Visual Studio to run the application. You then need to update

the identity provider’s configuration as described in section 11.1.2 to account for the

different port number being used by Visual Studio.

11.2.6 Service Provider SSO Execution Flow

Figure 37 illustrates the execution flow between the example service provider and

identity provider.

Browser Service Provider Identity Provider

1. Browse to SP’s Default.aspx

2. SP’s LoginChoice.aspx

3. <AuthnRequest> message sent by SP’s LoginChoice.aspx to IdP’s SSOService.aspx

4. IdP’s Login.aspx

5. <Response> message sent by IdP’s SSOService.aspx to SP’s AssertionConsumerService.aspx

6. SP’s Default.aspx

Figure 37 SSO Execution Flow

1. The user browses to http://localhost/SAML2ServiceProvider.aspx.

2. As this is configured in web.config as a protected page, the user is redirected by

ASP.NET to the configured login page, LoginChoice.aspx.

3. The user selects from the LoginChoice.aspx to login at the identity provider.

ComponentSpace SAML v2.0 for .NET Developer Guide

 167

The LoginChoice.aspx page sends a SAML v2.0 AuthnRequest protocol message

to the identity provider’s SSOService.aspx using the selected SP to IdP binding.

4. If the user isn’t logged in at the identity provider, the identity provider redirects

the user to the identity provider’s Login.aspx page.

Once logged in, ASP.NET redirects the user back to the SSOService.aspx page.

5. The SSOService.aspx page returns the asserted identity in a SAML assertion

contained in a SAML v2.0 Request protocol message that’s sent to the service

provider’s AssertionConsumerService.aspx page using the specified IdP to SP

binding.

6. The service provider performs an automatic login using the asserted identity and

redirects the user to the original service provider page (Default.aspx).

11.3 IdP-Initiated SSO – Service Provider

The SAML2SP web application, in conjunction with the SAML2IdP web application,

demonstrates IdP initiated single sign-on.

11.3.1 Installing the Service Provider

1. Using Visual Studio, build and publish the web application.

2. Open the Internet Information Services management console.

3. Under the default web site for the local computer, create an application with an

alias of SAML2SP.

4. For the physical path, browse to the directory where SAML2SP was built and

published.

5. Ensure the web application has been successfully installed and configured by

browsing to http://localhost/SAML2SP.

11.3.2 Configuring the Service Provider

There is no service provider configuration.

11.3.3 Running the Service Provider

As this is IdP initiated SSO, you need to run the identity provider application rather than

the service provider to initiate SSO.

In this example SSO is not being used. Instead, you should simply perform a local login

at the service provider to ensure it is functioning correctly.

1. Browse to http://localhost/SAML2SP.

2. Login using the user name sp-user and a password of password.

3. Verify that you’ve been redirected to the service provider’s default page.

ComponentSpace SAML v2.0 for .NET Developer Guide

 168

11.3.4 Running the Service Provider in Visual Studio

You may run the identity provider in Visual Studio. No configuration changes are

required.

11.4 IdP-Initiated SSO – Identity Provider

The SAML2IdP web application, in conjunction with the SAML2SP web application,

demonstrates IdP initiated single sign-on.

11.4.1 Installing the Identity Provider

1. Using Visual Studio, build and publish the web application.

2. Open the Internet Information Services management console.

3. Under the default web site for the local computer, create an application with an

alias of SAML2IdP.

4. For the physical path, browse to the directory where SAML2IdP was built and

published.

5. Ensure the web application has been successfully installed and configured by

browsing to http://localhost/SAML2IdP.

11.4.2 Configuring the Identity Provider

The identity provider configuration is contained within its web.config file’s

<appSettings> section.

The AssertionConsumerServiceURL specifies the URL of the service provider’s assertion

consumer service.

The SPTargetURL specifies the target URL of the service provider.

Modifying web.config does not require an application restart.

If you use the default installation you won’t need to modify this configuration.

11.4.3 Running the Identity Provider

In this example, the user is attempting to access a protected resource on the service

provider and, rather than performing a local login at the service provider, SSO is initiated

with a local login occurring at the identity provider and the asserted identity, passed to

the service provider in a SAML assertion, is used to perform an automatic login at the

service provider.

1. Browse to http://localhost/SAML2IdP.

2. You should be presented with the identity provider login page as you will be

logging in at the identity provider, not the service provider.

If you are not then you must already have logged in at the identity provider. To

force a login, close the browser and start again.

3. Login using the user name idp-user and a password of password.

ComponentSpace SAML v2.0 for .NET Developer Guide

 169

4. You should then be presented with the identity provider’s default page.

5. Click the link to access the service provider.

6. You should then be presented with the service provider’s default page.

This means you’ve successfully completed a SAML v2.0 SSO and are logged in

at the service provider with your identity provider user name.

11.4.4 Running the Identity Provider in Visual Studio

You may run the service provider in Visual Studio. The one additional step is to note the

port number being used by Visual Studio to run the application. You then need to update

the identity provider’s configuration as described in section 11.4.2 to account for the

different port number being used by Visual Studio.

11.5 ADFS Interoperability – Service Provider

The ADFSSP web application demonstrates SP initiated single sign-on with Windows

Active Directory Federation Services (ADFS).

11.5.1 Installing the Service Provider

1. Using Visual Studio, build and publish the web application.

2. Open the Internet Information Services management console.

3. Under the default web site for the local computer, create an application with an

alias of ADFSSP.

4. For the physical path, browse to the directory where ADFSSP was built and

published.

5. Ensure the web application has been successfully installed and configured by

browsing to http://localhost/ADFSSP.

11.5.2 Configuring the Service Provider

The service provider configuration is contained within its web.config file’s

<appSettings> section.

The SingleSignOnServiceBinding specifies the binding to use when communicating to the

identity provider. The options are:

 urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST

 urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect

The HttpPostSingleSignOnServiceURL specifies the URL of the identity provider’s

single sign-on service when using the HTTP POST binding.

The HttpRedirectSingleSignOnServiceURL specifies the URL of the identity provider’s

single sign-on service when using the HTTP Redirect binding.

Modifying web.config does not require an application restart.

If you use the default installation you won’t need to modify this configuration.

ComponentSpace SAML v2.0 for .NET Developer Guide

 170

11.5.3 Miscellaneous Configuration

For the purposes of this example, the host name of the service provider is www.sp.com

and the host name of the ADFS identity provider is www.idp.com.

Update the Windows\System32\drivers\etc\hosts file on the identity provider and server

provider to include entries for www.idp.com and www.sp.com. For example:

192.168.1.20 www.idp.com

192.168.1.21 www.sp.com

11.5.4 Configuring ADFS

In the ADFS terminology, the service provider is a relying party. Using the ADFS

management console, add a relying party trust for the service provider.

Select the option to enter the relying party information manually.

Specify a display name.

http://www.sp.com/
http://www.idp.com/
http://www.idp.com/
http://www.sp.com/
http://www.idp.com/
http://www.sp.com/

ComponentSpace SAML v2.0 for .NET Developer Guide

 171

Choose the ADFS profile.

ComponentSpace SAML v2.0 for .NET Developer Guide

 172

If you wish to have the SAML assertion returned by ADFS encrypted, browse to sp.cer to

specify it as the token encryption certificate.

ComponentSpace SAML v2.0 for .NET Developer Guide

 173

Enable support for SAML v2.0 and specify the service provider’s assertion consumer

service URL.

ComponentSpace SAML v2.0 for .NET Developer Guide

 174

Specify the relying party trust identifier.

ComponentSpace SAML v2.0 for .NET Developer Guide

 175

Permit all users access to this relying party.

ComponentSpace SAML v2.0 for .NET Developer Guide

 176

Review the configuration and click Finish. The service provider should be included in the

list of relying party trusts.

The authn request sent by the service provider is signed. To specify the certificate to use

to verify the signature, bring up the reply party trusts properties and under the Signature

tab add the service provider certificate.

ComponentSpace SAML v2.0 for .NET Developer Guide

 177

Although the SAML v2.0 component supports SHA-256 signatures, for this example

SHA-1 is used. To specify this, under the Advanced tab select SHA-1.

ComponentSpace SAML v2.0 for .NET Developer Guide

 178

Edit the claim rules and add a rule.

Map the Active Directory user principal name to the outgoing Name ID.

ComponentSpace SAML v2.0 for .NET Developer Guide

 179

ComponentSpace SAML v2.0 for .NET Developer Guide

 180

ADFS should now be ready to communicate with the example service provider.

To review the metadata published by ADFS browse to:

https://www.idp.com/FederationMetadata/2007-06/FederationMetadata.xml

11.5.5 Running the Service Provider without SSO

In this example SSO is not being used. Instead, you should simply perform a local login

at the service provider to ensure it is functioning correctly.

1. Browse to https://www.sp.com/ADFSSP, ignoring any browser certificate

warnings.

2. Select the service provider as the location where login will occur.

3. Login using the user name sp-user and a password of password.

4. Verify that you’ve been redirected to the service provider’s default page.

https://www.idp.com/FederationMetadata/2007-06/FederationMetadata.xml
https://www.sp.com/ADFSSP

ComponentSpace SAML v2.0 for .NET Developer Guide

 181

11.5.6 Running the Service Provider with SSO

In this example, the user is attempting to access a protected resource on the service

provider and, rather than performing a local login at the service provider, SSO is initiated

with a local login occurring at the ADFS identity provider and the asserted identity,

passed to the service provider in a SAML assertion, is used to perform an automatic login

at the service provider.

1. Browse to http://www.sp.com/ADFSSP, ignoring any browser certificate

warnings.

2. Select the identity provider as the location where login will occur.

Selecting the identity provider will initiate a SAML v2.0 SSO to ADFS. Selecting

the service provider will initiate a local login at the service provider.

3. You should then be presented with the identity provider login prompt as you will

be logging in at the identity provider, not the service provider.

4. Login using the user name and password of a user defined in Active Directory.

http://www.sp.com/ADFSSP

ComponentSpace SAML v2.0 for .NET Developer Guide

 182

5. You should then be presented with the service provider’s default page.

This means you’ve successfully completed a SAML v2.0 SSO and are logged in

at the service provider with your identity provider user name.

11.6 Google Apps Interoperability – Identity Provider

The GoogleIdP web application demonstrates single sign-on with Google Apps. Google

Apps is the service provider and GoogleIdP acts as the identity provider in an SP-initiated

single sign-on. This allows single sign-on to Google web applications such as Gmail.

11.6.1 Installing the Identity Provider

1. Using Visual Studio, build and publish the web application.

2. Open the Internet Information Services management console.

3. Under the default web site for the local computer, create an application with an

alias of GoogleIdP.

4. For the physical path, browse to the directory where GoogleIdP was built and

published.

5. Ensure the web application has been successfully installed and configured by

browsing to http://localhost/GoogleIdP.

11.6.2 Configuring the Identity Provider

The only identity provider configuration you may need to change is the list of user

credentials specified in web.config. The user name that you log into at the identity

provider must match with an account name in Google Apps.

Modifying web.config does not require an application restart.

11.6.3 Configuring Google Apps

Refer to the Google Apps documentation for instructions on enabling and configuring

single sign-on.

When using the GoogleIdP application, the following URLs should be specified. Replace

the example host name with the appropriate host name or IP address.

The sign-in page is: http://www.yourdomain.com/GoogleIdP/SAML/SSOService.aspx.

http://www.yourdomain.com/GoogleIdP/SAML/SSOService.aspx

ComponentSpace SAML v2.0 for .NET Developer Guide

 183

The sign-out page is: http://www.yourdomain.com/GoogleIdP/SAML/Logout.aspx.

The change password page is:

http://www.yourdomain.com/GoogleIdP/ChangePassword.aspx.

Upload the certificate contained in the idp.cer file in the project’s directory.

11.6.4 Running Google Apps

1. Browse to a Google application (e.g. http://mail.google.com/a/yourdomain.com).

2. Login using the user name google and a password of password. This assumes

there’s a Google App user called google. You may have to modify the user

credentials in the GoogleIdP web.config to include a Google App user name.

3. Verify that you’ve been redirected and signed into the Google app.

4. Sign out from the Google App.

5. Verify that you’ve been redirected to the GoogleIdP logout page.

11.7 Salesforce Interoperability – Identity Provider

The SalesforceIdP web application demonstrates single sign-on with Salesforce.

Salesforce is the service provider and SalesforceIdP acts as the identity provider in an

IdP-initiated single sign-on. This allows single sign-on to Salesforce.

11.7.1 Installing the Identity Provider

1. Using Visual Studio, build and publish the web application.

2. Open the Internet Information Services management console.

3. Under the default web site for the local computer, create an application with an

alias of SalesforceIdP.

4. For the physical path, browse to the directory where SalesforceIdP was built and

published.

5. Ensure the web application has been successfully installed and configured by

browsing to http://localhost/SalesforceIdP.

11.7.2 Configuring the Identity Provider

The only identity provider configuration you may need to change is specified in

web.config. The Issuer setting must match with the issuer specified in the Salesforce SSO

configuration. The SalesforceLoginID is the Salesforce user name used to single sign-on

to Salesforce.

Modifying web.config does not require an application restart.

11.7.3 Configuring Salesforce

Refer to the Salesforce documentation for instructions on enabling and configuring single

sign-on.

http://www.yourdomain.com/GoogleIdP/SAML/Logout.aspx
http://www.yourdomain.com/GoogleIdP/ChangePassword.aspx
http://mail.google.com/a/yourdomain.com

ComponentSpace SAML v2.0 for .NET Developer Guide

 184

The SAML version is 2.0. The issuer is www.idp.com. This must match the Issuer setting

specified in web.config. Upload the certificate contained in the idp.cer file in the project’s

directory.

The user ID type should be set to specify that the assertion contains the user’s Salesforce

user name and the user ID is in the subject’s name identifier. The Salesforce user name is

configured with the SalesforceLoginID setting in web.config.

The Salesforce Login History under Manage Users provides a useful log for debugging

single sign-on problems.

11.7.4 Running Salesforce

1. Browse to SalesforceIdP (e.g. http://localhost/SalesforceIdP).

2. Login using the user name idp-user and a password of password.

3. Click the link to navigate to Salesforce.

11.7.5 Validating SAML Responses in Salesforce

The Salesforce SAML Assertion Validator may be used to track down SAML assertion

validation errors.

1. Capture and copy the SAML response XML making sure not to modify it in any

way. For example, turn on trace within web.config and copy the SAML response

XML from the generated log file.

2. Paste the SAML response XML into the Salesforce SAML Assertion Validator

screen and click Validate.

3. Review the validation check list.

11.8 Shibboleth Interoperability – Identity Provider

The ShibbolethIdP web application, in conjunction with the ShibbolethSP web

application, demonstrates SP initiated single sign-on.

These applications may also be used to demonstrate interoperability with Shibboleth.

Shibboleth (shibboleth.internet2.edu) is an open source SSO software package using Java

and C++ technologies. Installation and configuration of the Shibboleth software is

beyond the scope of this document and is not required for this demonstration.

11.8.1 Installing the Identity Provider

1. Using Visual Studio, build and publish the web application.

2. Open the Internet Information Services management console.

3. Under the default web site for the local computer, create an application with an

alias of ShibbolethIdP.

4. For the physical path, browse to the directory where ShibbolethIdP was built and

published.

http://www.idp.com/
http://localhost/SalesforceIdP
http://shibboleth.internet2.edu/

ComponentSpace SAML v2.0 for .NET Developer Guide

 185

5. Ensure the web application has been successfully installed and configured by

browsing to http://localhost/ShibbolethIdP.

11.8.2 Configuring the Identity Provider

The identity provider configuration is contained within its web.config file’s

<appSettings> section.

The AssertionConsumerServiceBinding specifies the binding to use when communicating

to the service provider. The options are:

 urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST

 urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Artifact.

The HttpPostAssertionConsumerServiceURL specifies the URL of the service provider’s

assertion consumer service when using the HTTP POST binding.

The HttpArtifactAssertionConsumerServiceURL specifies the URL of the service

provider’s assertion consumer service when using the HTTP Artifact binding.

The ArtifactResolutionServiceURL specifies the URL of the service provider’s artifact

resolution service.

Modifying web.config does not require an application restart.

If you use the default installation you won’t need to modify this configuration.

11.8.3 Running the Identity Provider

As this is SP initiated SSO, you need to run the service provider application rather than

the identity provider to initiate SSO.

In this example SSO is not being used. Instead, you should simply perform a local login

at the identity provider to ensure it is functioning correctly.

1. Browse to http://localhost/ShibbolethIdP.

2. Login using the user name idp-user and a password of password.

3. Verify that you’ve been redirected to the identity provider’s default page.

11.8.4 Running the Identity Provider in Visual Studio

You may run the identity provider in Visual Studio. The one additional step is to note the

port number being used by Visual Studio to run the application. You then need to update

the service provider’s configuration as described in section 11.8.2 to account for the

different port number being used by Visual Studio.

11.9 Shibboleth Interoperability – Service Provider

The ShibbolethSP web application, in conjunction with the ShibbolethIdP web

application, demonstrates SP initiated single sign-on.

These applications may also be used to demonstrate interoperability with Shibboleth.

Shibboleth (shibboleth.internet2.edu) is an open source SSO software package using Java

http://shibboleth.internet2.edu/

ComponentSpace SAML v2.0 for .NET Developer Guide

 186

and C++ technologies. Installation and configuration of the Shibboleth software is

beyond the scope of this document and is not required for this demonstration.

11.9.1 Installing the Service Provider

6. Using Visual Studio, build and publish the web application.

7. Open the Internet Information Services management console.

8. Under the default web site for the local computer, create an application with an

alias of ShibbolethSP.

9. For the physical path, browse to the directory where ShibbolethSP was built and

published.

10. Ensure the web application has been successfully installed and configured by

browsing to http://localhost/ShibbolethSP.

11.9.2 Configuring the Service Provider

The service provider configuration is contained within its web.config file’s

<appSettings> section.

The SingleSignOnServiceBinding specifies the binding to use when communicating to the

identity provider. The options are:

 urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST

 urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect

 urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Artifact.

The HttpPostSingleSignOnServiceURL specifies the URL of the identity provider’s

single sign-on service when using the HTTP POST binding.

The HttpRedirectSingleSignOnServiceURL specifies the URL of the identity provider’s

single sign-on service when using the HTTP Redirect binding.

The HttpArtifactSingleSignOnServiceURL specifies the URL of the identity provider’s

single sign-on service when using the HTTP Artifact binding.

The ArtifactResolutionServiceURL specifies the URL of the identity provider’s artifact

resolution service.

Modifying web.config does not require an application restart.

If you use the default installation you won’t need to modify this configuration.

11.9.3 Running the Service Provider without SSO

In this example SSO is not being used. Instead, you should simply perform a local login

at the service provider to ensure it is functioning correctly.

5. Browse to http://localhost/ShibbolethSP

6. Select the service provider as the location where login will occur.

7. Login using the user name sp-user and a password of password.

ComponentSpace SAML v2.0 for .NET Developer Guide

 187

8. Verify that you’ve been redirected to the service provider’s default page.

11.9.4 Running the Service Provider with SSO

In this example, the user is attempting to access a protected resource on the service

provider and, rather than performing a local login at the service provider, SSO is initiated

with a local login occurring at the identity provider and the asserted identity, passed to

the service provider in a SAML assertion, is used to perform an automatic login at the

service provider.

6. Browse to http://localhost/ShibbolethSP.

7. Select the identity provider as the location where login will occur.

Selecting the identity provider will initiate a SAML v2.0 SSO. Selecting the

service provider will initiate a local login at the service provider.

8. You should then be presented with the identity provider login page as you will be

logging in at the identity provider, not the service provider.

If you are not then you must already have logged in at the identity provider. To

force a login, close the browser and start again.

9. Login using the user name idp-user and a password of password.

10. You should then be presented with the service provider’s default page.

This means you’ve successfully completed a SAML v2.0 SSO and are logged in

at the service provider with your identity provider user name.

11.9.5 Running the Service Provider in Visual Studio

You may run the service provider in Visual Studio. The one additional step is to note the

port number being used by Visual Studio to run the application. You then need to update

the identity provider’s configuration as described in section 11.9.2 to account for the

different port number being used by Visual Studio.

11.10 Assertion Examples

Assertion examples may be found under the examples directory (e.g. C:\Program Files

(x86)\ComponentSpace\SAML2\Examples\Assertion).

11.10.1 SAML Assertion Example Application

The AssertionExample application demonstrates:

 Creating a SAML response message and accessing its contents

 Converting a SAML response message to and from XML

 Signing a SAML response message and verifying the signature

 Creating a SAML assertion and accessing its contents

 Converting a SAML assertion to and from XML

 Signing a SAML assertion and verifying the signature

ComponentSpace SAML v2.0 for .NET Developer Guide

 188

 Encrypting and decrypting a SAML assertion

 Encrypting and decrypting a SAML attribute

11.11 Metadata Examples

Metadata examples may be found under the examples directory (e.g. C:\Program Files

(x86)\ComponentSpace\SAML2\Examples\Metadata).

See section 14 for SAML metadata templates and examples.

11.11.1 Import Metadata Example Application

The ImportMetadata application imports a SAML metadata file into the high-level API

SAML configuration (saml.config).

Usage:

ImportMetadata.exe <metadata-filename>

where the file contains the SAML entities descriptor or entity descriptor metadata to be

imported into saml.config.

For example, the following imports IdP metadata into saml.config:

ImportMetadata.exe idp-metadata.xml

The saml.config file, if any, is assumed to be in the current directory.

If it doesn’t exist, a saml.config file is created. Otherwise, metadata is merged into the

existing saml.config.

A saml.config partner provider entry is created for each entity descriptor in the metadata.

The updated saml.config includes “TODO” instructions where additional information is

required or needs review.

11.11.2 Export Metadata Example Application

The ExportMetadata application exports the high-level API SAML configuration

(saml.config) to SAML metadata.

Usage:

ExportMetadata.exe <partner-name> [<certificate-filename>] <metadata-filename>

where the partner name specifies the partner provider in the SAML configuration, the

certificate file contains the local provider’s X.509 certificate, and a metadata file

containing the SAML entity descriptor metadata is created.

For example, the following exports saml.config to a metadata file:

ExportMetadata.exe urn:componentspace:ExampleIdentityProvider sp.cer sp-

metadata.xml

The saml.config file is assumed to be in the current directory.

ComponentSpace SAML v2.0 for .NET Developer Guide

 189

A single metadata entity descriptor is created for the local provider configured in

saml.config.

The generated metadata includes “TODO” instructions where additional information is

required or needs review.

11.11.3 SAML Metadata Example Application

The MetadataExample application demonstrates creating and manipulating SAML

metadata including:

 Creating and reading an IdP entity descriptor

 Creating and reading an SP entity descriptor

11.11.4 ReadMetadata

ReadMetadata reads SAML metadata. It is a useful utility for confirming the metadata

syntax is valid.

Usage:

ReadMetadata.exe <filename>

where the file contains the SAML entities descriptor or entity descriptor metadata.

For example, the following parses IdP metadata:

ReadMetadata.exe idp-metadata.xml

11.12 Signature Examples

XML signature examples may be found under the examples directory (e.g. C:\Program

Files (x86)\ComponentSpace\SAML2\Examples\Signature).

11.12.1 SHA-256 Signature Example Application

The SHA256Signature application demonstrates generating and verifying XML

signatures using the SHA-256, SHA-384 and SHA-512 digest and signature algorithms.

SHA-256, SHA-384 and SHA-512 XML signature support requires a .NET CLR security

update or the use of .NET 4.5 or above. Refer to section 16.3 for more details.

11.12.2 SignSAML

SignSAML demonstrates signing SAML assertions and protocol messages. It is also a

useful utility for debugging signature verification errors.

Usage:

SignSaml.exe –k <keystore> -p <password> <filename>

where the keystore is a PFX file containing a key, the password is the password to the

keystore, and the file contains the XML to be signed.

For example, the following signs a SAML response:

ComponentSpace SAML v2.0 for .NET Developer Guide

 190

SignSaml.exe –k test.pfx –p password SAMLResponse.xml

11.12.3 VerifySAML

VerifySAML demonstrates verifying signatures on SAML assertions and protocol

messages. It is also a useful utility for debugging signature verification errors.

Usage:

VerifySaml.exe [–c <certificateFileName>] <filename>

where the certificateFileName is a CER file containing the certificate to use to verify the

signature, and the file contains the signed XML to be verified.

If no certificateFileName is specified then the certificate contained in the signed XML is

used.

For example, the following verifies a SAML response:

VerifySaml.exe –c test.cer SAMLResponse.xml

11.13 Utility Applications

Utility applications may be found under the examples directory (e.g. C:\Program Files

(x86)\ComponentSpace\SAML2\Examples\Utility).

11.13.1 ValidateConfig

ValidateConfig validates the SAML configuration file against its schema. See section 6

for a description of the SAML configuration schema.

ValidateConfig is a useful utility for debugging SAML configuration file errors.

Usage:

ValidateConfig.exe <filename >

where the file contains the SAML configuration.

For example, the following validates a SAML response:

ValidateConfig.exe saml.config

11.13.2 ValidateXML

ValidateXML demonstrates validating SAML assertions, protocol messages and

metadata against the SAML, XML signature and XML encryption schemas. It is also a

useful utility for debugging invalid SAML XML errors.

Usage:

ValidateXml.exe <filename>

where the file contains the SAML assertion, protocol or metadata XML to be validated.

For example, the following validates a SAML response:

ValidateXml.exe SAMLResponse.xml

ComponentSpace SAML v2.0 for .NET Developer Guide

 191

11.13.3 EncryptSAML

EncryptSAML demonstrates encrypting SAML assertions. It is also a useful utility for

debugging encryption errors.

Usage:

EncryptSaml.exe –c < certificateFileName> <filename>

where the certificateFileName is a CER file containing the certificate to use to encrypt

the assertion, and the file contains the SAML assertion XML to be encrypted.

For example, the following encrypts a SAML assertion:

EncryptSaml.exe –c test.cer SAMLAssertion.xml

11.13.4 DecryptSAML

DecryptSAML demonstrates decrypting encrypted SAML assertions. It is also a useful

utility for debugging decryption errors.

Usage:

DecryptSaml.exe –k <keystore> -p <password> <filename>

where the keystore is a PFX file containing a key, the password is the password to the

keystore, and the file contains the encrypted SAML assertion XML to decrypt.

For example, the following decrypts an encrypted SAML assertion:

DecryptSaml.exe –k test.pfx –p password EncryptedAssertion.xml

11.13.5 ParseHttpRedirectUrl

ParseHttpRedirectUrl decodes the query string parameters in an HTTP redirect URL and

verifies their signature. It is a useful utility for debugging signature errors.

Usage:

ParseHttpRedirectUrl.exe –c < certificateFileName> <filename>

where the certificateFileName is a CER file containing the certificate to use to verify the

signature, and the file contains the redirect URL including query string.

For example, the following parses a redirect URL:

ParseHttpRedirectUrl.exe –c test.cer RedirectURL.txt

11.13.6 Java Utilities

A Java application may be found under the examples directory (e.g. C:\Program Files

(x86)\ComponentSpace\SAML2\Examples\Java).

This application may be used to independently generate and verify signatures.

Refer to the readme.txt in the Examples\Java directory for instructions on running this

application.

ComponentSpace SAML v2.0 for .NET Developer Guide

 192

12 Creating your own SSO Application
The following steps describe the process for enabling SAML single sign-on in your

application. Refer to section 3 if you are not familiar with SAML single sign-on.

1. Determine whether your application will be an identity provider (IdP) or service

provider (SP).

2. Determine whether your application will support IdP-initiated SSO and/or SP-

initiated SSO.

3. Exchange SAML configuration information (e.g. X.509 certificates, URLs) with

the partner organization or site (see section 14).

4. Add a reference to the SAML class library in your application (see section 4.1).

5. Add endpoint pages to your application to receive SAML protocols messages, if

required.

6. Call into the SAML class library API to enable SAML single sign-on.

The example applications described in section 5 are a good starting point for

understanding the SAML class library API.

Refer to the class library reference for help using the API (see section 21).

7. Once completed, distribute the SAML class library DLL with your application

(see section 4.2).

12.1 Considerations

The example applications described in section 5 are a good starting point for adding SSO

support to your application.

However, these are only example applications and have been kept as simple as possible

to assist you in understanding them.

For production applications you will need to consider a number of requirements not

covered by the example applications.

12.1.1 Error Handling

The example applications include minimal error handling.

The example applications display the specific error on the browser.

In a production environment you should not display specific error information but instead

should log this information and display a generic error message or error page.

12.1.2 Configuration

Some of the example applications allow the user to select the SAML bindings.

The bindings to use should be negotiated between the identity provider and service

provider and not exposed to the user.

ComponentSpace SAML v2.0 for .NET Developer Guide

 193

12.1.3 Key Management

SAML assertions and protocol message may be signed to ensure their integrity and

origin.

Also, SAML assertions may be encrypted to ensure the privacy of their data.

The example applications sign messages using private keys stored in PFX files and verify

signatures using public keys stored in CER files.

You may wish to store keys and certificates in one of the Windows certificate stores and

access them using the .NET framework’s X509Store class.

12.1.4 Security

Some of the example applications do not use HTTPS.

You should follow the security recommendations described in the SAML specification.

Typically this means using HTTPS.

13 Test Certificates and Keys
Test certificate and key files are supplied that may also be used during the development

of your identity provider or service provider applications.

For example, the SP initiated identity provider includes an idp.pfx and sp.cer in its root

directory. The SP initiated service provider includes an sp.pfx and idp.cer in its root

directory. The password for these PFX files is password.

The identity provider uses the secret key stored in idp.pfx to sign messages. The service

provider uses the public key contained in idp.cer to verify signatures in messages

received from the identity provider.

Similarly, the service provider uses the secret key stored in sp.pfx to sign messages. The

identity provider uses the public key contained in sp.cer to verify signatures in messages

received from the service provider.

Certificates may also be embedded in the XML signature that’s included with the signed

message. These certificates may be used rather than separately stored certificates

although you need to consider any security ramifications.

The following sections outline a number of alternatives for generating your own test

certificates and keys.

Test certificate and keys should not be used in a production environment. You should

purchase these from a certificate issuing service. Standard SSL certificates may be used.

13.1 Makecert

Use the makecert and pvk2pfx tools that ships with Visual Studio (e.g. C:\Program

Files\Microsoft Visual Studio 8\Common7\Tools\Bin\makecert.exe) to create certificate

files and private key files.

makecert -r -pe -sky exchange -n "cn=www.idp.com" -sv idp.pvk idp.cer

ComponentSpace SAML v2.0 for .NET Developer Guide

 194

You then need to convert the PVK file to a PFX file so it can be loaded with the .NET

framework classes.

pvk2pfx -pvk idp.pvk -spc idp.cer -pfx idp.pfx -po password -f

Refer to the Microsoft help for additional options.

13.1.1 Makecert and SHA-256 XML Signatures

When using makecert to create a self-signed certificate to generate SHA-256, SHA-384

and SHA-512 XML signatures (see section 16.3), the correct cryptographic provider type

must be specified.

The Microsoft Enhanced RSA and AES Cryptographic Provider is required to support

SHA-256, SHA-384 and SHA-512 signatures. This provider’s type is twenty-four.

For example:

makecert -r -pe -sky exchange -n "cn=www.idp.com" -ss My -sy 24

Rather than saving the certificate and private key to files, they’re saved to the Windows

certificate store. This is required to work around an issue in makecert or pvk2pfx where

the provider type information is lost if the certificate and private key are directly saved to

files.

The Microsoft Management Console’s Windows Certificate snap-in should be used to

export the certificate and private key to a PFX file.

The default 1024 bit key length may be used for SHA-256, SHA-384 and SHA-512 XML

signature generation.

If you wish to create a 2048 bit key, specify the length parameter.

For example:

makecert -r -pe -sky exchange -n "cn=www.idp.com" -ss My -sy 24 -len 2048

The default signature algorithm used to sign the certificate using the issuer’s private key

is SHA-1. This is independent of the certificate’s support for SHA-256, SHA-384 and

SHA-512 XML signatures. For example, a SHA-1 signed certificate may be used to

generate SHA-256 XML signatures.

If you wish to sign the certificate using SHA-256, specify the algorithm parameter.

For example:

makecert -r -pe -sky exchange -n "cn=www.idp.com" -ss My -sy 24 -len 2048 -a sha256

13.2 Microsoft Certificate Server

1. If not already done, install the Windows 2003 Certificate Services Windows

component. This installs a certification authority (CA) to issue certificates.

2. Navigate to the certificate service (e.g. http://localhost/certsrv) and request a

certificate. Select the "advanced certificate request" and then "Create and submit a

request to this CA". Fill in the certificate request details, specifying the certificate

ComponentSpace SAML v2.0 for .NET Developer Guide

 195

type as server authentication certificate and make sure "Mark keys as exportable"

is checked.

3. Using the Certification Authority MMC snap-in, view the pending requests and

issue a certificate.

4. Back at the certificate service click, view the status of the pending certificate

request and click the link to install the certificate.

5. Using the Certificates MMC snap-in, view the certificate to confirm that it has

been installed. If required you can export the certificate and private key to a PFX

file but make sure to check "Include all certificates in the certification path if

possible". You can also export the certificate only if required.

13.3 Keytool

Use the Java keytool that comes with the JDK to create certificate files and private key

files.

keytool -genkey -dname "cn=www.idp.com" -alias idp -keypass password -keyalg RSA

-validity 3650 -keystore idp.pfx -storepass password -storetype pkcs12

You then need to generate a certificate file.

keytool.exe -export -alias idp -keystore idp.pfx -storepass password -storetype pkcs12

-rfc -file idp.cer

14 SAML Metadata
The “Metadata for the OASIS Security Assertion Markup Language (SAML) V2.0”

specification defines a format for exchanging SAML configuration information. This

exchange occurs out-of-band (e.g. by downloading from web sites or by email) between

partner organizations as part of establishing a single sign-on environment.

The use of SAML metadata is entirely optional. Information, including endpoint URLs

etc, may be exchanged in any manner convenient to the partner organizations.

14.1 Metadata Production

The SAML library supports the generation of SAML metadata programmatically. Section

11.11 outlines example projects demonstrating how to generate identity provider and

service provider metadata.

Alternatively, metadata may be created using your preferred XML editor and some

knowledge of the SAML metadata XML schema. Templates and examples are included

in C:\Program Files (x86)\ComponentSpace SAML v2.0 for

.NET\Examples\Metadata\Templates.

The IdP-template.xml is a suitable starting point for creating identity provider metadata

and includes comments outlining what has to be edited. The IdP-example.xml is an

example of identity provider metadata.

ComponentSpace SAML v2.0 for .NET Developer Guide

 196

The SP-template.xml is a suitable starting point for creating service provider metadata

and includes comments outlining what has to be edited. The SP-example.xml is an

example of identity provider metadata.

14.2 Metadata Consumption

The SAML library supports the consumption of SAML metadata programmatically.

Section 11.11 outlines example projects demonstrating how to read identity provider and

service provider metadata.

Alternatively, metadata may be read using your preferred XML editor and with some

knowledge of the SAML metadata XML schema. Information including URLs etc may

then be extracted and included with your application’s configuration.

14.3 Importing and Exporting Metadata

Section 11.11 describes example applications for importing and exporting SAML

metadata to and from SAML configuration (saml.config).

15 Troubleshooting

15.1 Tracing

To help resolve problems, tracing internal to the product may be enabled. If you are

experiencing a problem you may be asked to enable tracing.

15.1.1 Diagnostic Tracing in Web Applications

To enable diagnostic tracing, update your application’s web.config to include a

<system.diagnostics> section as shown in the example configuration below.

 <system.diagnostics>

 <trace autoflush="true">

 <listeners>

 <add name="TextWriter"/>

 </listeners>

 </trace>

 <sources>

 <source name="ComponentSpace.SAML2" switchValue="Verbose">

 <listeners>

 <add name="TextWriter"/>

 </listeners>

 </source>

 </sources>

 <sharedListeners>

 <add name="TextWriter"

 type="System.Diagnostics.TextWriterTraceListener"

 initializeData="c:\temp\logs\saml\idp.log"/>

 </sharedListeners>

 </system.diagnostics>

ComponentSpace SAML v2.0 for .NET Developer Guide

 197

Most of the example applications include a diagnostic tracing section in their web.config

files.

15.1.1.1 Setting Log File Permissions

You must ensure the directory where the log file will be written exists. In this example,

the directory c:\temp must exist in order for the SAML2.log file to be created.

The user account running the web application must have write permission to this

directory. For example, give the IIS_USERS group write permission to the directory.

Alternatively, in a development environment you may give the Everyone group write

permission to the directory. This should not be done in a production environment.

ComponentSpace SAML v2.0 for .NET Developer Guide

 198

15.1.2 Diagnostic Tracing in Non-Web Applications

Create a standard .NET configuration file for your application, if one doesn't already

exist. The configuration file name consists of your application file name and .config.

For example, if your application is called myapplication.exe then its configuration file

should be named myapplication.exe.config. The configuration file must be located in the

same directory as the application executable.

Include in the <system.diagnostics> section a switch and listeners as shown in the

example configuration below.

 <system.diagnostics>

 <trace autoflush="true">

 <listeners>

 <add name="TextWriter"/>

 </listeners>

 </trace>

 <sources>

 <source name="ComponentSpace.SAML2" switchValue="Verbose">

 <listeners>

 <add name="TextWriter"/>

 </listeners>

 </source>

 </sources>

 <sharedListeners>

 <add name="TextWriter"

 type="System.Diagnostics.TextWriterTraceListener"

 initializeData="c:\temp\logs\idp.log"/>

ComponentSpace SAML v2.0 for .NET Developer Guide

 199

 </sharedListeners>

 </system.diagnostics>

15.2 Troubleshooting XML Signatures

SAML assertions and protocol messages may include an XML signature. If a signature

fails to verify then either the signed XML has been altered in some way or the wrong

certificate has been used to perform the verification.

One common problem when manipulating signed XML is to be careful to preserve white-

space characters as these characters are significant when generating signatures. Internally,

the SAML v2.0 class library ensures white-space is preserved. If you load or manipulate

the signed XML ensure the XML is not modified prior to verifying its signature and

specifically ensure white-spaces are preserved.

If signature verification is failing ensure the correct certificate is being used. The

certificate is either contained in the XML signature or is loaded from a certificate file or

store. If you are using a separately loaded certificate rather than a certificate contained

within the XML signature, ensure the certificate is the correct one.

15.2.1 VerifySAML

If you believe the correct certificate is being used you can run a supplied utility,

VerifySAML, to see whether the signature can be verified (see section 11.11.4).

For example, to verify the signature on a SAML protocol response you would capture the

response to file, ensuring the XML is not altered in any way, and run:

VerifySaml.exe [–c <certificateFileName>] <filename>

The certificateFileName is a CER file containing the certificate to use to verify the

signature. Only specify this parameter if the certificate is being loaded from a certificate

file or store. If the certificate is included in the XML signature, then do not specify this

parameter.

The filename is the file containing the SAML protocol response as XML.

This utility may be used to verify signatures on SAML requests, responses and assertions.

15.2.2 VerifySAML Log File

The VerifySAML utility generates a VerifySAML.log0020file in the working directory.

This includes log entries generated by the .NET framework during signature verification.

If signature verification is successful, the log will include entries like:

System.Security.Cryptography.Xml.SignedXml Verbose: 13 : [SignedMessage#00245fb7,

VerifyReference] Reference Reference#003917f2 hashed with

"http://www.w3.org/2000/09/xmldsig#sha1" (SHA1CryptoServiceProvider) has hash value

a3503180ce819de2efc3a66f9b29b7d2687033ec, expected hash value

a3503180ce819de2efc3a66f9b29b7d2687033ec.

ComponentSpace SAML v2.0 for .NET Developer Guide

 200

System.Security.Cryptography.Xml.SignedXml Information: 9 : [SignedMessage#00245fb7,

SignatureVerificationResult] Verification with key RSACryptoServiceProvider#039490e2 was

successful

This shows that the calculated hash of the canonicalized XML matches the hash or digest

value contained in the XML signature. This confirms that the XML has not been

modified.

It also shows that the calculated signature value matches the signature value in the XML

signature. This confirms that the XML was signed by the owner or subject of the

certificate.

If the XML has been modified after signing, the log will include entries like:

System.Security.Cryptography.Xml.SignedXml Verbose: 13 : [SignedMessage#00245fb7,

VerifyReference] Reference Reference#003917f2 hashed with

"http://www.w3.org/2000/09/xmldsig#sha1" (SHA1CryptoServiceProvider) has hash value

604bfa74922eb89c25d061a0e9eda3d3f1967d9c, expected hash value

a3503180ce819de2efc3a66f9b29b7d2687033ec.

System.Security.Cryptography.Xml.SignedXml Information: 12 : [SignedMessage#00245fb7,

VerificationFailure] Verification failed checking references.

This shows that the calculated hash of the canonicalized XML does not match the hash or

digest value contained in the XML signature. This means that the XML has been

modified.

If the wrong certificate is used to verify the signature, the log will include entries like:

System.Security.Cryptography.Xml.SignedXml Information: 12 : [SignedMessage#00245fb7,

VerificationFailure] Verification failed checking SignedInfo.

15.2.3 Java VerifyXMLSignature

A Java application is supplied for independently checking XML signatures. This

application may be run using the provided VerifyXMLSignature.bat script file.

The VerifyXMLSignature.bat uses Java 1.6 or better to verify XML signatures.

15.2.4 XML Signatures and Prefixes

Consider the following section of XML:

<samlp:Response xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol/>

The element name is Response; it’s prefixed with samlp; and it’s declared in the

urn:oasis:names:tc:SAML:2.0:protocol namespace.

ComponentSpace SAML v2.0 for .NET Developer Guide

 201

What uniquely identifies this element is its name and namespace. The prefix is a

mechanism for linking an element with its namespace declaration.

By conventions samlp is used for the urn:oasis:names:tc:SAML:2.0:protocol namespace

although any other prefix would be equally valid.

Java and some other implementations often use the ds prefix for the XML signature

namespace. For example:

<ds:Signature xmlns="http://www.w3.org/2000/09/xmldsig#/">

The .NET framework treats the XML signature namespace as the default namespace and

consequently doesn’t use a prefix. For example:

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

Both forms, with and without a prefix, are equally valid.

The class library supports verifying XML signatures that use no prefix, the ds prefix or

some other prefix.

XML signatures generated by the class library will no include a prefix.

When confronted with XML signature verification issues, some third parties who are

familiar with the use of the ds prefix will assume that the missing prefix is the issue. This

is not the case and, if it ever were the case, this would indicate poorly implemented XML

signature verification at the third party.

15.3 Troubleshooting Loading Certificates

When loading X.509 certificates using the .NET X509Certificate2 class, always specify

the X509KeyStorageFlags.MachineKeySet flag. This ensures the certificate may be

accessed from within IIS. For example:

X509Certificate2 x509Certificate = new X509Certificate2(“idp.pfx”, “password”,

 X509KeyStorageFlags.MachineKeySet);

15.3.1 Certificates Stored in Files

When loading a certificate from file, if an access denied exception occurs, this generally

indicates a file permissions error.

Firstly, make sure the process the application is running under has permission to read the

certificate file. For example, ensure the IIS_USERS group has read permission to the

idp.pfx file.

If the permissions are correct for the pfx file, then the issue lies with the private key.

ComponentSpace SAML v2.0 for .NET Developer Guide

 202

Private keys are stored in containers on the file system. The location of the private key

container on Windows 7/Windows 8/Windows 2008 and Windows 2012 is:

C:\ProgramData\Microsoft\Crypto\RSA\MachineKeys

The FindPrivateKey.exe Windows SDK utility may be run to locate the private key

container.

http://msdn.microsoft.com/en-us/library/aa717039.aspx

The application process must have permission to create a file in the private key container

folder.

The following code dumps out a certificate:

X509Certificate2 x509Certificate = new X509Certificate2(“idp.pfx”, “password”,

 X509KeyStorageFlags.MachineKeySet);

Trace.Write(x509Certificate.ToString(true));

Its output is:

[Version]

V1

[Subject]

CN=www.idp.com

Simple Name: www.idp.com

DNS Name: www.idp.com

[Issuer]

CN=www.idp.com

Simple Name: www.idp.com

DNS Name: www.idp.com

[Serial Number]

46D399D0

[Not Before]

8/28/2007 1:43:12 PM

[Not After]

8/25/2017 1:43:12 PM

[Thumbprint]

4E387A0C0B695DB05F5DFD70D2572BB0FEBB98BA

[Signature Algorithm]

http://msdn.microsoft.com/en-us/library/aa717039.aspx

ComponentSpace SAML v2.0 for .NET Developer Guide

 203

md5RSA(1.2.840.113549.1.1.4)

[Public Key]

Algorithm: RSA

Length: 1024

Key Blob: 30 81 89 02 81 81 00 a3 7d 6a de 62 59 6b 25 df 66 42 c3 b8 b7 27 6a 77 3f 28 6f 91

0c 55 be 3a 56 03 3f e4 6e 6e f5 a7 b7 c5 f9 8e d8 94 4d ca 7c 21 0e 3a 4c d1 14 16 c9 26 b2 89

d4 6f 90 27 1b ec ce 09 c6 b0 6f 67 49 af c9 01 b4 23 61 7e 2f d3 b9 f6 46 05 03 63 b8 0c 4d 32

2d f8 c8 88 11 74 68 a7 6b 39 c7 81 c9 6b 00 82 19 4f 22 9e ad 0a 98 8c f2 f5 c5 10 ec 14 6a 73

a8 61 a2 ff 6a 29 cc df 27 57 99 02 03 01 00 01

Parameters: 05 00

[Private Key]

Key Store: Machine

Provider Name: Microsoft Base Cryptographic Provider v1.0

Provider type: 1

Key Spec: Exchange

Key Container Name: {7D7021F3-C4E9-44C2-BB68-ECD0517EF5FE}

Unique Key Container Name: 1cff1ca21ad134bb7e6e87ee27ff71d3_cddd8d16-473b-40eb-8c9f-

9cb4b8d44d33

Hardware Device: False

Removable: False

Protected: False

Note the unique key container name. This name is different each time the certificate is

loaded.

At the time the certificate is loaded, a file with the private key container name is created

in the private key container (e.g.

C:\ProgramData\Microsoft\Crypto\RSA\MachineKeys\7D7021F3-C4E9-44C2-BB68-

ECD0517EF5FE).

The application process must have permission to create files in this container.

ComponentSpace SAML v2.0 for .NET Developer Guide

 204

15.3.2 Certificates Stored in the Windows Certificate Store

When loading a certificate from the Windows Certificate Store, if an access denied

exception occurs, this generally indicates a permissions error.

Firstly, make sure the certificate is stored in the local computer store rather than the

current user’s store. This ensures the certificate may be accessed from within IIS.

Select the certificate, and click the menu Action > All Tasks > Manage Private Keys.

Make sure the application process (e.g the IIS_IUSRS group) has read access.

ComponentSpace SAML v2.0 for .NET Developer Guide

 205

16 Generating and Verifying Signatures
The following data types may be signed:

 SAML request and response messages

 SAML assertions

 SAML metadata

To generate or verify signatures on SAML request or response messages use the methods

contained in the ComponentSpace.SAML2.Protocols.SAMLMessageSignature class.

To generate or verify signatures on SAML assertions use the methods contained in the

ComponentSpace.SAML2.Assertions.SAMLAssertionSignature class.

To generate or verify signatures on SAML metadata use the methods contained in the

ComponentSpace.SAML2.Metadata.SAMLMetadataSignature class.

Supplying the wrong data type to a signature class will result in errors. For example,

trying to verify the signature on a SAML assertion using the SAMLMessageSignature

class is an error.

Refer to the class library documentation described in section 21 for details regarding

these classes and their methods. Also, review the example code which demonstrates

signing and verifying SAML messages, assertions and metadata.

16.1 Signature Generation

To generate a signature on an object it must first be converted to XML. For example, to

sign a SAMLResponse object it must first be converted to XML by calling its ToXml

ComponentSpace SAML v2.0 for .NET Developer Guide

 206

method. Similarly, to sign a SAMLAssertion object it must first be converted to XML by

calling its ToXml method. The returned XmlElement may then be passed into

SAMLMessageSignature.Generate, in the case of a SAML response, or

SAMLAssertionSignature.Generate, in the case of a SAML assertion, to generate the

signature and store it in the XML.

The sequence for constructing and signing a SAML response is:

1. Construct the SAMLResponse object and use its properties and methods to create

the SAML response.

2. Call SAMLResponse.ToXml to convert the SAML response to an XmlElement.

3. Call SAMLMessageSignature.Generate, passing in the SAML response

XmlElement, to generate a signature.

The sequence for constructing and signing a SAML assertion is:

1. Construct the SAMLAssertion object and use its properties and methods to create

the SAML assertion.

2. Call SAMLAssertion.ToXml to convert the SAML assertion to an XmlElement.

3. Call SAMLAssertionSignature.Generate, passing in the SAML assertion

XmlElement, to generate a signature.

16.2 Signature Verification

Signature verification must occur on the XML prior to converting it to a SAML object.

For example, given a SAML response as an XmlElement, call

SAMLMessageSignature.Verify to verify the signature. Once verified, construct as

SAMLResponse object using the XmlElement. Similarly, given a SAML assertion as an

XmlElement object, call SAMLAssertionSignature.Verify to verify the signature. Once

verified, construct a SAMLAssertion object using the XmlElement.

Constructing a SAML object from an XmlElement and then converting it back to XML

using the ToXml method will cause the signature verification to fail.

The sequence for constructing and verifying a SAML response is:

1. Call SAMLMessageSignature.Verify, passing in the SAML response

XmlElement, to verify the signature.

2. Construct the SAMLResponse object from the SAML response XmlElement.

3. Call the SAMLResponse properties and methods to access the contents of the

SAML response.

The sequence for constructing and verifying a SAML assertion is:

1. Call SAMLAssertionSignature.Verify, passing in the SAML assertion

XmlElement, to verify the signature.

2. Construct the SAMLAssertion object from the SAML assertion XmlElement.

3. Call the SAMLAssertion properties and methods to access the contents of the

SAML assertion.

ComponentSpace SAML v2.0 for .NET Developer Guide

 207

16.3 SHA-256, SHA-384 and SHA-512 Support

By default, SHA-1 signatures are supported and are perfectly suitable for the majority of

use cases. However, SHA-256, SHA-384 and SHA-512 (also referred to as SHA-2)

signatures are also supported for those use cases requiring additional security.

The SHA256Signature example project demonstrates SHA-256, SHA-384 and SHA-512

signature generation and verification. Successfully running this example project confirms

that SHA-256, SHA-384 and SHA-512 support is enabled.

There are a number of options for supporting SHA-256, SHA-384 and SHA-512 XML

signatures depending on the target .NET framework level.

16.3.1 .NET 4.0 Framework Support

For .NET 4.0 and above, SHA-256, SHA-384 and SHA-512 support is, for the most part,

built into the .NET framework. The only requirement is to register the cryptographic

algorithm. This is done automatically when using the .NET 4.0 version of the

ComponentSpace.SAML2 DLL.

16.3.2 CLR Security Update

For .NET 3.5 and above, 256, SHA-384 and SHA-512 support in XML signatures

requires the use of the CLR security update.

Version 1.6.0.0 of the CLR security update is recommended as a strong named version of

the CLR security update DLL is required for installation into the GAC.

Download the CLR security update from:

http://clrsecurity.codeplex.com/releases/view/47764

Installation instructions may be found at:

http://clrsecurity.codeplex.com/wikipage?title=Security.Cryptography.RSAPKCS1SHA2

56SignatureDescription&referringTitle=Home&ProjectName=clrsecurity

1. Extract the Security.Cryptography DLL from the CLR security zip.

2. Run gacutil.exe /i Security.Cryptography.dll to add the assembly to the GAC.

3. View the assembly (e.g. C:\Windows\assembly) and note the version number (e.g

1.6.0.0). Alternatively, the version number may be found by running:

gacutil.exe /l Security.Cryptography

4. Update machine.config (e.g. in

C:\Windows\Microsoft.NET\Framework\v4.0.30319\Config and

http://clrsecurity.codeplex.com/releases/view/47764
http://clrsecurity.codeplex.com/wikipage?title=Security.Cryptography.RSAPKCS1SHA256SignatureDescription&referringTitle=Home&ProjectName=clrsecurity
http://clrsecurity.codeplex.com/wikipage?title=Security.Cryptography.RSAPKCS1SHA256SignatureDescription&referringTitle=Home&ProjectName=clrsecurity

ComponentSpace SAML v2.0 for .NET Developer Guide

 208

C:\Windows\Microsoft.NET\Framework64\v4.0.30319\Config) ensuring the

version number of the assembly is correct. The <mscorlib> should be inserted

after the <system.web> section in <configuration>. See below for an example

configuration.

5. Certificates and keys should be generated using the “Microsoft Enhanced RSA

and AES Cryptographic Provider”.

The following is an example SHA-256 configuration for insertion into machine.config.

<mscorlib>

 <!-- ... -->

 <cryptographySettings>

 <cryptoNameMapping>

 <cryptoClasses>

 <cryptoClass

RSASHA256SignatureDescription="Security.Cryptography.RSAPKCS1SHA256Sign

atureDescription, Security.Cryptography, Version=1.6.0.0,

Culture=neutral, PublicKeyToken=31bf3856ad364e35" />

 </cryptoClasses>

 <nameEntry name="http://www.w3.org/2001/04/xmldsig-more#rsa-

sha256" class="RSASHA256SignatureDescription" />

 </cryptoNameMapping>

 </cryptographySettings>

</mscorlib>

To generate SHA-256 signatures, use one of the overloaded signature Generate methods

that take as parameters the digest and signature methods.

The default digest method is http://www.w3.org/2000/09/xmldsig#sha1.

The default signature method is http://www.w3.org/2000/09/xmldsig#rsa-sha1.

Instead of the defaults, specify http://www.w3.org/2001/04/xmlenc#sha256 as the digest

method and http://www.w3.org/2001/04/xmldsig-more#rsa-sha256 as the signature

method.

For example:

SAMLMessageSignature.Generate(

 samlResponseElement,

 x509Certificate.PrivateKey,

 x509Certificate,

 null,

 "http://www.w3.org/2001/04/xmlenc#sha256",

 "http://www.w3.org/2001/04/xmldsig-more#rsa-sha256");

No code changes are required to verify SHA-256 signatures.

http://www.w3.org/2000/09/xmldsig#sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2001/04/xmlenc#sha256
http://www.w3.org/2001/04/xmldsig-more#rsa-sha256

ComponentSpace SAML v2.0 for .NET Developer Guide

 209

17 Extracting SAML Assertions from SAML Responses
SAML responses may contain one or more of the following:

 Encrypted SAML assertions

 Signed SAML assertions

 SAML assertions that are neither encrypted nor signed

The ComponentSpace.SAML2.Protocols.SAMLResponse class encapsulates a SAML

response message. To access the various types of SAML assertions contained within it

use of the following properties or methods from this class:

 Assertions

 GetEncryptedAssertion

 GetSignedAssertion

 GetAssertion

 GetEncryptedAssertions

 GetSignedAssertions

 GetAssertions

The Assertions property returns all assertions including encrypted and signed assertions.

Encrypted assertions are returned as EncryptedAssertion objects. Signed assertions are

returned as XmlElement objects. Unencrypted, unsigned assertions are returned as

SAMLAssertion objects.

The GetEncryptedAssertion method returns the encrypted assertion as an

EncryptedAssertion object. Section 18 describes how to process encrypted assertions.

The GetSignedAssertion method returns the signed assertion as a SAMLAssertion object

after verifying the signature.

The GetAssertion method returns the unencrypted and unsigned assertion as a

SAMLAssertion object.

Typically a SAML response contains one SAML assertion. The following methods

support retrieving multiple SAML assertions.

The GetEncryptedAssertions method only returns the encrypted assertions as

EncryptedAssertion objects. Section 18 describes how to process encrypted assertions.

The GetSignedAssertions method only returns the signed assertions as XmlElement

objects. Signed assertions are returned as XmlElement objects as this is the format

required for signature verification. Section 15.3.2 describes how to verify a signature.

Once the signature is verified a SAMLAssertion object may be constructed from the

XmlElement.

The GetAssertions method only returns the unencrypted and unsigned assertions as

SAMLAssertion objects.

ComponentSpace SAML v2.0 for .NET Developer Guide

 210

The list of objects returned by the Assertions property is equivalent to combining the

three lists returned by the GetEncryptedAssertions, GetSignedAssertions and

GetAssertions methods.

17.1 Extracting a SAML Assertion

The following section of code returns the unsigned and unencrypted SAML assertion

from the SAML response.

SAMLAssertion samlAssertion = samlResponse.GetAssertion();

17.2 Extracting a Signed SAML Assertion

The following section of code returns the signed SAML assertion from the SAML

response after having verified its signature. The supplied X.509 certificate is used to

perform the signature verification.

SAMLAssertion samlAssertion =

 samlResponse.GetSignedAssertion(x509Certificate);

17.3 Extracting an Encrypted Assertion

The following section of code extracts encrypted SAML assertion from the SAML

response. The supplied X.509 certificate is used to perform the decryption.

EncryptedAssertion encryptedAssertion =

 samlResponse.GetEncryptedAssertion();

SAMLAssertion samlAssertion =

 encryptedAssertion.Decrypt(x509Certificate);

18 Encrypted Assertions
For additional security, SAML assertions may be encrypted.

To encrypt a SAML assertion construct an EncryptedAssertion object supplying the

SAMLAssertion to be encrypted, an X.509 certificate, and specifying the type of

encryption to perform.

A random symmetric session key is generated from the public key contained within the

X.509 certificate. The symmetric key is used to encrypt the data. The encryption method

for the encrypted symmetric key is http://www.w3.org/2001/04/xmlenc#rsa-1_5. The

encryption method for the data is that specified in the EncryptedAssertion constructor

(e.g. http://www.w3.org/2001/04/xmlenc#aes256-cbc).

To decrypt an EncryptedAssertion call either the Decrypt or DecryptToXml method. The

decrypt method returns a SAMLAssertion object. The DecryptToXml method returns an

XmlElement and should be used if the encrypted assertion is also signed. Both methods

accept an asymmetric key decrypting key and an optional data encryption method.

http://www.w3.org/2001/04/xmlenc#rsa-1_5
http://www.w3.org/2001/04/xmlenc#aes256-cbc

ComponentSpace SAML v2.0 for .NET Developer Guide

 211

The asymmetric key is used to decrypt the symmetric key contained within the encrypted

data. The symmetric key is used to decrypt the data.

The encryption method for the encrypted symmetric key is expected to be

http://www.w3.org/2001/04/xmlenc#rsa-1_5 or http://www.w3.org/2001/04/xmlenc#rsa-

oaep-mgf1p.

If the optional data encryption method is not specified then the encryption method for the

data supplied in the encrypted data is used.

The example project described in section 11.10 demonstrates encrypting and decrypting

SAML assertions.

19 Extracting Statements from SAML Assertions
SAML assertions may contain one or more of the following:

 Authentication statements

 Authorization decision statements

 Attribute statements

The ComponentSpace.SAML2.Assertions.SAMLAssertion class encapsulates a SAML

assertion. To access the various types of statements contained within it use of the

following properties or methods from this class:

 Statements

 GetAuthenticationStatements

 GetAuthorizationDecisionStatements

 GetAttributeStatements

The Statements property returns all statements including authentication, authorization

decision and attribute statements. Authentication statements are returned as

AuthnStatement objects. Authorization decision statements are returned as

AuthzDecisionStatement objects. Attribute statements are returned as AttributeStatement

objects.

The GetAuthenticationStatements method only returns the AuthnStatement objects. The

GetAuthorizationDecisionStatements method only returns the AuthzDecisionStatement

objects. The GetAttributeStatements method only returns the AttributeStatement objects.

The list of objects returned by the Statements property is equivalent to combining the

three lists returned by the GetAuthenticationStatements,

GetAuthorizationDecisionStatements and GetAttributeStatements methods.

20 Extracting SAML Attributes
As well as the methods described in section 19 for accessing attribute statements

contained in SAML assertions, the

ComponentSpace.SAML2.Assertions.SAMLAssertion class includes the following

convenience methods to access SAML attributes:

http://www.w3.org/2001/04/xmlenc#rsa-1_5
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

ComponentSpace SAML v2.0 for .NET Developer Guide

 212

 GetAttributes

 GetAttributeValue

The GetAttributes method returns the list of all unencrypted SAML attributes with the

specified name.

The GetAttributeValue method returns the value of the SAML attribute with the specified

name. This method assumes that only one attribute exists with the specified name, the

attribute only has one value, and the value is a string. If this isn't the case then use one of

the other attribute related methods.

21 Class Library Reference
The reference section is contained within a separate help file. You can find the reference

help file in the documentation directory or navigate to it using the Start menu.

22 Class Library Version
The License.IsLicensed method may be used to determine whether the class library is a

licensed or evaluation version. The version information may be retrieved by calling the

License.GetVersion method.

Alternatively, using Windows Explorer, select the class library DLL and bring up its file

properties. Under the Details tab the version number may be found. If the DLL is an

evaluation version then this also will be indicated.

The following properties are for the evaluation version of the DLL.

ComponentSpace SAML v2.0 for .NET Developer Guide

 213

The following properties are for the licensed version of the DLL.

ComponentSpace SAML v2.0 for .NET Developer Guide

 214

23 Frequently Asked Questions
1. What is SAML?

The Security Assertion Markup Language (SAML) consists of a set of standards

published by the OASIS organization (www.oasis-open.org). Refer to their web

site for more details.

2. What version of SAML is supported?

We support SAML v1.1 and v2.0. Please note that these are packaged as separate

products.

3. I can't build the examples. Why can't the ComponentSpace namespace be found?

The assembly containing the namespace or the project referencing it has been

moved. The simplest way to fix this is to re-add the reference to the project by

browsing to where the DLL is located (typically the installation directory).

http://www.oasis-open.org/

ComponentSpace SAML v2.0 for .NET Developer Guide

 215

4. I keep receiving an error message saying the trial period has expired. What does

this mean?

You are using an evaluation version of the component and the trial period has

ended. If you need to extend the evaluation period, please contact us.

5. How do I tell if I'm using an evaluation version?

Navigate to the component DLL and right click it to bring up the file properties.

Under the Version tab, the description will specify whether or not it's an

evaluation version.

6. I'm not sure how to use the product. What can I do?

Whether you're evaluating the product or are an existing customer, please feel free

to contact us with any questions you might have.

7. The product is missing a feature I really need. What can I do?

Please contact us if there's additional functionality you would like to see. Your

feedback is most welcome and will be given careful consideration.

8. Does the product support SAML single sign-on?

Yes. The product includes the necessary functionality for enabling SAML single

sign-on at either the identity provider or service provider web site. You need to

integrate this functionality with your existing web applications.

9. Can I generate and verify XML digital signatures on SAML assertions and

protocol messages?

Yes. Refer to the Reference section and the Examples for more information.

10. Is the product compatible with Product X?

It should be but if you have any questions please contact us. A simple test is to

integrate the example identity provider or service provider application with the

product in question.

11. How do I create a SAML assertion?

Use the ComponentSpace.SAML2.Assertions.SAMLAssertion class to create a

SAML assertion.

The example applications demonstrate creating and manipulating SAML

assertions.

12. How do I convert a SAML assertion to and from XML?

The ComponentSpace.SAML2.Assertions.SAMLAssertion class includes a

mailto:support@componentspace.com
mailto:support@componentspace.com
mailto:support@componentspace.com
mailto:support@componentspace.com

ComponentSpace SAML v2.0 for .NET Developer Guide

 216

constructor that creates a SAML assertion from an XML element. This class also

includes a ToXml method that converts the SAML assertion object to XML.

13. How do I sign a SAML assertion?

The ComponentSpace.SAML2.Assertions.SAMLAssertionSignature class has

methods for generating and verifying signatures on SAML assertions that are

serialized to XML.

Typically you create a SAML assertion using the

ComponentSpace.SAML2.Assertions.SAMLAssertion class. Once complete, you

convert it to XML using the ToXml method of this class. Then you pass this XML

to the Generate method of the SAMLAssertionSignature class.

14. How do I verify a signed SAML assertion?

The ComponentSpace.SAML2.Assertions.AssertionSignature class has methods

for generating and verifying signatures on SAML assertions that are serialized to

XML.

Typically you verify the signature by passing the XML to the Verify method of

the SAMLAssertionSignature class. Once verified, you create a SAML assertion

from the XML using the ComponentSpace.SAML2.Assertions.Assertion class.

15. How do I create a SAML protocol message?

Use the classes under the ComponentSpace.SAML2.Protocols namespace for

creating protocol messages. For example, to create an authentication request you

would use the AuthnRequest class.

16. How do I convert a SAML protocol message to and from XML?

The protocol message classes include a constructor that creates a SAML protocol

message from an XML element. These classes also include a ToXml method that

converts the SAML protocol message to XML.

17. How do I sign a SAML protocol message?

The ComponentSpace.SAML2.Protocols.SAMLMessageSignature class has

methods for generating and verifying signatures on SAML protocol messages that

are serialized to XML.

Typically you create a SAML message using the corresponding class in the

ComponentSpace.SAML2.Protocols namespace. Once complete, you convert it to

XML using the ToXml method of this class. Then you pass this XML to the

Generate method of the SAMLMessageSignature class.

18. How do I verify a signed SAML protocol message?

The ComponentSpace.SAML2.Protocols. SAMLMessageSignature class has

ComponentSpace SAML v2.0 for .NET Developer Guide

 217

methods for generating and verifying signatures on SAML protocol messages that

are serialized to XML.

Typically you verify the signature by passing the XML to the Verify method of

the SAMLMessageSignature class. Once verified, you create a SAML protocol

message from the XML using the appropriate constructor for the protocol

message’s corresponding class in the ComponentSpace.SAML2.Protocol

namespace.|

19. What’s the difference between CurrentUser and LocalMachine when referring to

certificate store locations?

Please refer to the Microsoft knowledge base article Q322371. If running in an

ASP.NET application then keys may need to be loaded from LocalMachine key

stores.

20. How do I use HTTPS to secure the connection between identity provider and the

service provider?

The MSDN has numerous articles on configuring HTTPS within an ASP.NET

environment. A good starting point is the article Building Secure ASP.NET

Applications: Authentication, Authorization, and Secure.

24 Support
For further information, visit us at www.componentspace.com or send email to

info@componentspace.com.

If you need assistance, have a bug to report, or a product enhancement request, send

email to support@componentspace.com.

http://www.componentspace.com/
mailto:info@componentspace.com
mailto:support@componentspace.com

