

The Desaware Event Log Toolkit

Desaware Inc.
1100 E. Hamilton Ave #4
Campbell, CA 95008

www.desaware.com

(408) 377-4770
Copyright 2000 by Desaware Inc. All Rights Reserved

http://www.desaware.com/

Information in this document is subject to change without notice and does not represent a commitment on the part of
Desaware, Inc. The software described in this document is furnished under a license agreement. The software may be
used or copied only in accordance with the terms of the agreement. It is against the law to copy the software on any
medium except as specifically allowed in the license.
No part of this manual may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, for any purpose without the express written permission
of Desaware, Inc.

License Agreement & Warranty

Desaware, Inc.
Software License

Please read this agreement. If you do not agree to the terms of this license, promptly return the product and all
accompanying items to the place from which you obtained them.

This software is protected by United States copyright laws and international treaty provisions.

This program will be licensed for use on a single computer. If you wish to transfer the license from one computer to
another, you must uninstall it from one computer before installing it on the next. You may (and should) make archival
copies of the software for backup purposes.

You may transfer this software and license as long as you include this license, the software and all other materials and
retain no copies, and the recipient agrees to the terms of this agreement.

You may not make copies of this software for other people. Companies or schools interested in multiple copy licenses
or site licenses should contact Desaware, Inc. directly at (408) 377-4770.

Should your intent be to purchase this product for use in developing a compiled Visual Basic program that you will
distribute as an executable (.exe or .dll) file, review the listing of which files (located below and in the File Description
section of the product manual) can be distributed and or modified. If Desaware files are included in your executable
program, you must include a valid copyright notice on all copies of the program. This can be either your own
copyright notice, or “Copyright © 2000 Desaware, Inc. All rights reserved.”.

Files: You may distribute event source DLL files created using the Desaware event source utility. You may not modify
the files listed above in any way.

Source Files: Source code for portions of the Desaware EventLog Toolkit are included for educational purposes only.
You may use this source code in your own applications only if they provide primary and significant functionality
beyond that included in the toolkit package. You may not use this source code to develop or distribute components and
tools that provide functionality similar to all or part of the functionality provided by any of the components or tools
included in the Event Log Toolkit package.

Please consult the on-line Help file under the topic File Descriptions for additional information.

Microsoft is a registered trademark of Microsoft Corporation. Visual Basic, Windows, Windows 95 and Windows 98 are trademarks of Microsoft Corporation.
Desaware NT Service Toolkit, Desaware Event Log Toolkit, SpyWorks, VersionStamper, StorageTools, ActiveX Gallimaufry, Custom Control Factory, and
SpyNotes #2, The Common Dialog Toolkit are trademarks of Desaware, Inc.

Limited Warranty
Desaware, Inc. warrants the physical diskettes or CDs and physical documentation enclosed herein to be
free of defects in materials and workmanship for a period of sixty days from the date of purchase.

The entire and exclusive liability and remedy for breach of this Limited Warranty shall be limited to
replacement of defective diskette(s) or documentation and shall not include or extend to any claim for or
right to recover any other damages, including but not limited to, loss of profit, data or use of the software,
or special, incidental or consequential damages or other similar claims, even if Desaware, Inc. has been
specifically advised of the possibility of such damages. In no event will Desaware, Inc.'s liability for any
damages to you or any other person ever exceed the suggested list price or actual price paid for the license
to use the software, regardless of any form of the claim.

DESAWARE, INC. SPECIFICALLY DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Specifically, Desaware, Inc.
makes no representation or warranty that the software is fit for any particular purpose and any implied
warranty of merchantability is limited to the sixty-day duration of the Limited Warranty covering the
physical diskettes and documentation only (not the software) and is otherwise expressly and specifically
disclaimed.

This limited warranty gives you specific legal rights. You may have others, which vary from state to state.

This License and Limited Warranty shall be construed, interpreted and governed by the laws of the State of
California, and any action hereunder shall be brought only in California. If any provision is found void,
invalid or unenforceable it will not affect the validity of the balance of this License and Limited Warranty,
which shall remain valid and enforceable according to its terms.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical
Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1)
and (2) of Commercial Computer Software - Restricted Rights at 48 CFR 52.227-19, as
applicable. Contractor/Manufacturer is Desaware, Inc., 1100 East Hamilton Avenue,
Suite 4, Campbell, California 95008.

The Desaware Event Log Toolkit ... 1
License Agreement & Warranty ... 3
Introduction ... 6

The wrong way to use the Event Log with Visual Basic .. 6
What about Event Log API Functions?... 8
The right way to use the Event Log from Visual Basic .. 8

Inside the Windows NT/2000 Event Log.. 9
Inside a Message ... 10

Using the Desaware Event Source Utility... 14
The Desaware Event Log API Class ... 19

The dwEventLogTypes Enumeration.. 19
ReportEvent... 19
GetNumberOfEventLogRecords... 20
GetOldestEventLogRecord ... 20
ReadEventLog... 20
BackupEventLog... 22
ClearEventLog .. 22
IsEventLogFull.. 23

Using the Desaware Event Viewer and Reporter Utility .. 23
Redistributable Components ... 26
Technical Support ... 26

Introduction
The NT Event log is the preferred way for services and server components to log errors,
warnings and other information. Typical uses of the event log include:

• Reporting information in cases where it is not possible or advisable to bring up a
message to the current logged on user.

• Reporting information that does not require immediate response.
• Reporting information that you wish to archive for later evaluation or for auditing

purposes.
The event log allows you to classify events in several ways, by severity of the error, by
source of the error, and by categories that you define. Event viewing tools can then sort
or filter event information based on these classifications. The event log system also
makes it easy to define events in a manner that is language independent – so events show
up correctly in the language of the local system.

The wrong way to use the Event Log with Visual Basic
When Visual Basic added the App.LogEvent method, VB programmers were thrilled to
have the ability to easily log events to the event log. The App.LogEvent method could be
called easily as shown in this example called from a VB application called
“MyVBProject:

App.LogEvent "Here is an event logged by VB", vbLogEventTypeError

Figure 1 shows the event in the event log entry that results from this call:

Figure 1 – Typical VB event resulting from a call to the App.LogEvent method.

What’s wrong with this picture?

• The Source is VBRuntime – not MyVBProject. So it is impossible to distinguish
between events logged by your application and those by any other VB application
(See Figure 2).

• The event description is the same for all VB applications. You have to read the
description to find the application name and the string used in the LogEvent
method.

• The string used in the LogEvent application is language dependent – it will
always appear in the event log in the language in which it was written.

• There is no ability to define or report categories, making it impossible to classify
event.

In other words, it is impossible to use the event log correctly with the App.LogEvent
method.

Figure 2 – This image of the Event Log viewer shows that it is impossible to distinguish
between events logged by two different VB projects using the App.LogEvent method.
Note how VB projects that use event sources (EventSmp) created with this toolkit can be
easily identified.

What about Event Log API Functions?
The solution is to use either the event log API functions, or components that wrap those
functions. However, as you will soon see, just calling the API functions is not enough.
You see, in order to create custom events, you need the ability to create an event source –
a special kind of file that contains message and category definitions in the languages that
you wish to support. Creating event sources has always been rather complicated and
poorly documented. It has also been historically difficult to distribute event sources, as
they require specialized registry entries in order to work correctly.

The Right way to use the Event Log from Visual Basic
The Desaware Event Log Toolkit is the first product that not only makes it easy to log
events from Visual Basic, it makes it easy to create and distribute custom event sources.
In fact, it’s so easy to create event sources with our toolkit that even Visual C++
programmers will find it a superior approach to Microsoft’s tools.
The Desaware Event Log Toolkit supports the following features:

• Create custom event sources with an interactive Windows application – no
complex file formats to learn and edit.

• Event sources support unlimited languages.
• Define custom categories for your event sources.
• Messages are defined by combining identifiers, facilities, and severity information

as recommended by Microsoft (you’ll read more about this later).
• Automatic generation of VB module and C++ header files with constant

definitions.
• Event sources are self-registering – all necessary registry entries can be added

automatically using regsvr32.

• Event sources have no component or DLL dependencies – just ship and register.
• Event log class allows access to the event log API – all VB source code included:

just drop the class into your project and use it.
• Event log class allows reporting events with all possible parameters – including

the difficult to implement ability to specify user accounts with events.

In order to understand how to use the event log, your first step should be to understand
exactly what the event log is, and why it works the way it does.

Inside the Windows NT/2000 Event Log
To understand the rather convoluted architecture of the NT/2000 event log, it is necessary
to understand the purpose behind its design. First and foremost, the event log was
designed to log information produced by system components such as drivers and
services. That means that much of the information would have one or more of the
following characteristics:

• It would be generated before a user logged on to the system – meaning that
notifying a user through a message box was not an alternative.

• It would contain information that was not of immediate interest to a user, but that
could be useful to system administrators in evaluating the performance of a
system or diagnosing system errors – including errors that did not prevent the
system from being used (for example: those that impacted only one subsystem).

• It would contain information that needs to be localized. Since Windows itself is
localized to many different languages, and many events are generated by
Windows operating system components, localization became an important design
factor from the beginning. What’s more – it was important to be able to add new
languages without modifying each of the system components to support the new
language, or having a different version of system components for each language.

To address these issues, Microsoft adopted the event log architecture shown in figure 3.

Figure 3 – Event log architecture

The event log itself does not contain any text that needs to be localized. Instead, it
contains information identifying an event source, an event identifier, and any language
independent text or binary data that it wishes to report. The event source contains the
actual message text for every language supported by the event source. Thus, if you
support English, French and Japanese, you would find message #1 available in the event
source in all three languages.
When the event log is displayed, the event log viewer reads this information from the
event log. It opens the event source and looks up the message identifier for the current
language being used by the system (the current locale), then displays the correct text. The
event log viewer can also merge language independent text in the event log into the
messages (you’ll read more about this next).

Inside a Message
Because the event log was designed to log events to be viewed at a later time, it was also
designed to make it easy to categorize and filter events. And while it is easy for system
managers to filter and search for events with the event log viewer, the way those
categories are defined from a developer’s perspective are less clear (to put it kindly).
When you log an event, the parameters to the ReportEvent method include the following:

• The event source
• The event category
• The severity of the event (error, warning, information, auditing).
• The event identifier
• The user that logged the event (optional)
• Other language independent text
• Binary data.

Let’s look at these one at a time.

The Event Source
Each event source has a name and is registered in the system under the registry key

HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/Services/EventLog

There are three subkeys under this key: Application, Security and System.

The name of the event source appears as a subkey under these three keys, thus if you
create an event source named MyEventSource, it would appear in the registry under:

HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/Services/EventLog/Applicati
on/MyEventSource

An event will appear in the event log under the Application, Security or System event
logs depending on where the event source is registered.
The Desaware Event Log Toolkit always registers event sources under the Application
key, because the vast majority of people using the toolkit will be creating event sources
for applications, components and services – all of whose events should appear in the

Application event log. The System event log is intended for system components and
drivers. The Security event log is intended for security audit information.
The MyEventSource registry key contains multiple named values.
Required registry values:

• EventMessageFile – The full path to the event source file.
• TypesSupported – Severity types supported by this event source.

Optional registry values:
• CategoryMessageFile – The full path to the file containing message categories.
• CategoryCount – The number of categories in the file.

The Desaware Event Log Toolkit automatically enters these values in the registry,
including the category entries if categories are defined.
The automatic registration built into event log sources created by this toolkit should suit
the needs for virtually all situations. However, you always have the option of doing your
own event source registration. Thus it is possible, for example, to manually register an
event source created with this toolkit for use with the system event log if you are creating
a device driver.

The Event Category
An event source may define categories of events. These are always specific to an event
source. Categories are numbered from 1 through the number of categories. Each one has
a category name (which is also language independent – so each category has a text string
for each supported language).

The Event Severity
Events fall into five possible types (or severities):

• Error – Use to indicate a major failure in an application or component.
• Warning – Use to indicate a condition that is not immediately fatal, but that could

cause problems if ignored.
• Information – Use to indicate significant events.
• Success Audit – Use to log successful operations that are being audited by the

security system.
• Failure Audit – Use to log operations that fail due to security considerations.

Generally speaking, you will only use the first three event types, as security audit
information is logged by the operating system depending on the security settings and
system policies.

The Event Identifier
Here is where things begin to get tricky.
An event identifier is made up of three different values that are combined using the
logical OR operator – the event code, the facility, and the severity. These are laid out in
the event identifier as shown here:

// Values are 32 bit values laid out as follows:
//
// 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
// 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
// +---+-+-+-----------------------+-------------------------------+
// |Sev|C|R| Facility | Code |
// +---+-+-+-----------------------+-------------------------------+
//

The severity value can be one of the following values

• 0 = Success
• 1 = Information
• 2 = Warning
• 3 = Error

The Facility values can be any values you wish to help you to categorize messages. Most
will use the default facility code of &HFFF which corresponds to “Application”. Facility
codes smaller than 256 are reserved by the system. The “C” and “R” bits are reserved and
can be left as zero.
At this point you are probably very confused: If the severity is determined when reporting
the event (as described earlier), and the event log (Application, System or Security) is
determined by the location of the event source in the registry, what is the relation
between the severity and log as reported, and the severity and facility in the event
identifier?
There is no relation.
The severity and facility codes in the event identifier are intended to help developers to
manage events – especially when there are large numbers of events. Consider the
following events that one might specify when creating a service.

ServiceStarted = 1
ServiceStopped = 2
ServiceTCPError = 3
ServiceDNSError = 4
ServiceDied=5
TooManyClients=6

Which of these are serious? Which of them relate to the service itself and which to
network connectivity?

Now imagine that the events were reported as follows:

ServiceStarted = SEVERITY_INFORMATION Or Application Or 1
ServiceStopped = SEVERITY_INFORMATION Or Application Or 2
ServiceTCPError = SEVERITY_ERROR Or Network Or 3
ServiceDNSError = SEVERITY_ERROR Or Network Or 4
ServiceDied= SEVERITY_ERROR Or Application Or 5
TooManyClients= SEVERITY_WARNING Or Application Or 6

A programmer reading this code can instantly determine which events are severe, and
whether events are associated with the service itself (Application) or a network operation.
Obviously, it is in your interest to use the same severity values in the event identifier as
you do when reporting the event – doing otherwise could lead to confusion.

The Logging User
You can specify a user account when logging an event. The event logging classes
included with the Desaware Event Log toolkit allow you to do so. In most cases users
information is not included in the event log (especially services, which typically run
under the local system account).

Language Independent Text
The message text in the event source can contain parameters which allow you to merge in
additional text provided when reporting the event. Text that you merge in using
ReportEvent should be language independent (file names, for example).
The parameter locations are identified by escape sequences that are indicated by the %
character. The following escape sequences are supported:

%0 – Ends the text without a newline (crlf) character.
%n – Merges in string #n specified by the ReportEvent function. Thus if you pass three
strings to ReportEvent, %2 will merge the second of these strings into the message text at
the location of the %2.
%n!printformat! – Like %n, except that the data is formatted according to the printformat
characters. These characters are the same as those used by the printf command in the C
language (refer to your online documentation or MSDN for a complete list of print format
specifiers).
%% - Replaced by the ‘%’ character.
%n - Add line break.
%r – Adds return (without a newline character).
%space – Adds a space character.
%. – Adds a period (without terminating the message).
%! – Adds an exclamation point.

Examples:

Message String Parameters Result
Operation %1 Succeeds Operation Succeeds
Operation %1 %n %2 %! Succeeds, Reboot Operation Succeeds

Reboot!
Function %1 %% Complete 90 Function 90 % complete

Binary Data
You can attach any arbitrary binary data to an event when reporting the event. The binary
data will be displayed in hexadecimal by the event viewer.

Using the Desaware Event Source Utility
The Desaware Event Source utility creates an Event Source file based on the event source
name, messages, severity, categories, facilities and languages specified. The resulting
Event Source file is compiled as a self-registering DLL file that does not require any
additional dependency files.

Creating an Event Source file - Quick Start

To create an Event Source file, you need to specify the Application (or Event Source)
name, version information for the Event Source, and at least one event message.

Select the Event Source utility’s Edit – Version Resources menu and enter the version
resource strings for your compiled Event Source file. At a minimum, you must enter the
File Version Number and Company Name. Select the Ok button when finished.

Select the Event Source utility’s Edit – Registry Settings menu and enter the
Application (Event Source) name. This will typically be the name of the application using
the event source, but can be any name you wish. Select the Ok button when finished.

Select the Add button to add an event message. Select a Severity, Facility, and Message
ID number for your message. Enter the message string, then select the Ok button when
finished. Repeat this step until you have finished adding all the event messages you need.

You can save your Event Source Project file before building the Event Source file by
selecting the File – Save As menu command.

Select the File – Build Source menu to build the Event Source file. Enter the destination
path and file name for the Event Source or select the Browse button to select the
destination path and file name. Select the Ok button when finished.

Event Source main Form
The main Event Source utility form displays the current Application name for the Event
Source, the currently select Language for the Event Messages, and the current Event
Messages. Selecting the Add button allows you to add a new Event Message for the
selected language. The Edit button allows you to edit the selected Event Message for the
selected Language. The Delete button deletes the selected Event Message for the selected
language.

Registry Settings Form
The Registry Settings form holds the information to be written into the registry when the
event source file is registered. Enter the Event Source name in the Application text box.
Select from Application, System, or Security as the Log type of your Event Source file
(you should use the Application log for all applications and services). Check the
appropriate Events check boxes to select the types of severity your event source will
support. Select the Ok button to save the changes, or the Cancel button to cancel the
changes.

Version Resources Form
The Version Resources form is used to hold the version resources that are written to the
Event Source file. The Company Name and File Version Number fields are required. All
of the other version fields are optional but recommended. The File Version Number and
Product Version Number fields should be formatted as “#.#.#.#” (for example 1.2.3.4).
Select an entry from the Version Resource Type list box, then enter the value for that

field in the Version Resource Value text box. Select the Ok button to save the changes, or
the Cancel button to cancel the changes.

Categories Form
The Categories form allows you to specify custom categories for your Event Source file.
The list box displays the existing Categories. The Categories are automatically assigned a
Category number when they are added. The Category numbers begin with 1 and
increment by 1 for each additional category. Select a Category in the list box and the Up
or Down arrow buttons to rearrange the Categories. Select the Add button to add a new
Category to the list. The Category name is limited to 20 characters. Select the Edit button
to change the name of the selected Category. Select the Delete button to delete the
selected Category. Select the Ok button to save the changes, or the Cancel button to
cancel the changes.

Facilities Form
The Facilities form allows you to specify custom facilities for your Event Source file.
The list box displays the existing Facilities and their values. Select the Add button to add
a new Facility to the list. Select the Edit button to change the name or value of the
selected Facility. The Facility name is limited to 20 characters. The Facilities values must
be between 256 and 4095. The value 4095 is normally used for the Application Facility.

Select the Delete button to delete the selected Facility. Select the Ok button to save the
changes, or the Cancel button to cancel the changes.

Select Languages form
The Select Languages form allows you to add or remove support for additional languages
in your Event Source. Each language includes its own list of Event Messages, Categories,
and Facilities. Select the Add button to add a new Language to the list. When you add a
new language, a copy of the existing Event Messages, Categories, and Facilities for the
current language is made and added to the new language (you should then edit each of
these entries, translating them into the new language). Select the Delete button to delete
the selected language. When you delete a language, all of the language’s Event Messages,
Categories, and Facilities are deleted. Select the Ok button to close the form.

Tip: If you will be adding multiple language support, you should complete the Event
Messages, Categories, and Facilities for one language first. Then you can add another
language which will be created with a copy of the same Messages, Categories, and
Facilities numbers as the first language.

Build Event Source form
The Build Event Source form allows you to compile your Event Source file. It also
includes options to output the defined Message numbers, Category numbers, and Facility
numbers to a Visual Basic Module file or a Visual C++ header file. Specify a destination
path and file name for your Event Source file or use the Browse button to select a path
and file name. Select the Generate Visual Basic Module File or Generate Visual C++
Include File check boxes to output the Message numbers, Category numbers, and Facility
numbers. Similarly, specify a destination path and file name for the Visual Basic or
Visual C++ output files or use the Browse button to select a path and file name. Select
the Ok button to build the Event Source file and output files. Select the Cancel button to
cancel the build.

Event Source Project file
The information you enter using the Event Source utility can be saved into an Event
Source Project file. Event Source Project files can be opened, saved, and created using
the Event Source utility.

Event Source menu commands
• File

• New – Creates a new Event Source Project file.
• Open – Opens an Event Source Project file.
• Save – Saves the current Event Source information into the Event Source Project

file.
• Save As – Saves the current Event Source information into the specified Event

Source Project file.
• Build Source – Displays the Build Event Source form.
• Exit – Closes the Event Source utility.

• Edit
• Version Resource - Displays the Version Resources form.
• Registry Settings - Displays the Registry Settings form.
• Categories - Displays the Categories form.
• Facilities - Displays the Facilities form.
• Languages - Displays the Languages form.

• Language
• Contains one or more Languages for the current Event Source. Select a language

from this list to select the current working language for the Event Source.
• Help

• Help Topics – Displays the Desaware Event Log Toolkit help file.
• About – Displays version information for the Event Source utility.

The Desaware Event Log API Class
The Event Log API functions can be tricky to call from Visual Basic. Therefore the
Desaware Event Log Toolkit includes the dwEventLog class which provides wrappers for
most of the event log API functions. This class is provided as source code so you can
simply add it to any project.
To use the class, simply create a new object of type dwEventLog thus:

Dim el as New dwEventLog

The dwEventLogTypes Enumeration
The dwEventLogTypes public enumerated value is used to specify the severity of an
event.

Public Enum dwEventLogTypes

EVENTLOG_ERROR_TYPE = &H1
EVENTLOG_WARNING_TYPE = &H2
EVENTLOG_INFORMATION_TYPE = &H4
EVENTLOG_AUDIT_SUCCESS = &H8
EVENTLOG_AUDIT_FAILURE = &H10

End Enum

ReportEvent
Use this method to log an event into the event log.

Public Sub ReportEvent(ByVal Source As String, _

ByVal SourceMachine As String, ByVal EventType As dwEventLogTypes, _
ByVal Category As Integer, ByVal EventID As Long, _
Optional MergeStringsArray As Variant, _
Optional BinaryDataArray As Variant, Optional UserName As String, _
Optional UserMachine As String)

The parameters are as follows:

• Source – The name of the event source
• SourceMachine – The name of the server containing the event source. Use an

empty string for the current machine.
• EventType – The severity of the event. Select from the dwEventLogTypes

enumerator.
• Category – The category number in the source. Zero for no category.
• EventID – The event identifier.
• MergeStringsArray – A zero based variant containing an array of strings (strings

are numbered from 1 to N – leave array index zero empty)
• BinaryDataArray – A variant containing a byte array (from 0 to N – position 0 in

the array is valid).
• UserName – The name of the user to associate with the event.
• UserMachine – The server on which the user is valid.

GetNumberOfEventLogRecords
Retrieve the number of records in the specified event log.

Public Function GetNumberOfEventLogRecords(ByVal Source As String,_

ByVal SourceMachine As String) As Long

The parameters are as follows:

• Source – The name of the event source whose corresponding event log is to be
read.

• SourceMachine – The name of the server containing the event source. Use an
empty string for the current machine.

GetOldestEventLogRecord
Retrieves the record number of the oldest record in the event log.

Public Function GetOldestEventLogRecord(ByVal Source As String,

ByVal SourceMachine As String) As Long

The parameters are as follows:

• Source – The name of the event source whose corresponding event log is to be
read.

• SourceMachine – The name of the server containing the event source. Use an
empty string for the current machine.

ReadEventLog
This method reads an entry in the event log into the dwEventLog object.

Public Sub ReadEventLog(ByVal Source As String, _

ByVal SourceMachine As String, ByVal EventIndex As Long)

The parameters are as follows:

• Source – The name of the event source whose corresponding event log is to be
read.

• SourceMachine – The name of the server containing the event source. Use an
empty string for the current machine.

• EventIndex – The number of the event in the event log (starting from zero).

Once an event has been loaded into the object using this method, you can retrieve
information about the event using the following methods:

EventSource
The event source for this event.

EventComputer
The computer containing the event source for this event.

EventID
The event identifier for the event

EventString
The formatted message for the event (with parameter strings merged in, as it would be
displayed by the event log viewer).

EventCategory
The category number for this event

EventCategoryString
The name of the category for this event.

EventType
The severity of the event.

EventBinary
Any binary data associated with this event

EventUser
The user (if any) that recorded this event.

EventDomain
The domain for the user that recorded this event.

EventGenerated
The date and time at which the event occurred.

EventWritten
The date and time at which the event was recorded in the event log.

EventRecordNumber
The absolute record number of this event.

InsertionStringCount
The number of insertion strings found for this event.

InsertionString(ByVal stringindex As Long)
The insertion string as specified by stringindex. stringindex begins at zero.

WasEventSourceFound
True if the Event Source file was found, False otherwise.

Note:
The ReadEventLog function uses the EVENTLOG_SEQUENTIAL_READ flag to move
to the specified EventIndex to read. This is due to a Microsoft bug where for large Event
Log files (Microsoft mentions 2MB but our testing showed that this fails on smaller Log
files), the EVENTLOG_SEEK_READ method fails. We have found that the speed
differences between the two methods are insignificant. Also note that this function is not
optimized for reading all records in a log file since it opens and closes the log file for
each read operation.

BackupEventLog
Backs up an event log into a file.

Public Sub BackupEventLog(ByVal Source As String, ByVal SourceMachine
As String, ByVal BackupFileName As String)

The parameters are as follows:

• Source – The name of the event source whose corresponding event log is to be
backed up.

• SourceMachine – The name of the server containing the event source. Use an
empty string for the current machine.

• BackupFileName – The full path and name of the file in which to save the event
log. This function will fail if the file already exists.

ClearEventLog
Clears the specified event log.

Public Sub ClearEventLog(ByVal Source As String, ByVal SourceMachine As
String, ByVal BackupFileName As String)

The parameters are as follows:

• Source – The name of the event source whose corresponding event log is to be
cleared.

• SourceMachine – The name of the server containing the event source. Use an
empty string for the current machine.

• BackupFileName – The full path and name of the file in which to save the event
log before clearing it.

IsEventLogFull
Determines if the event log is full. This function is valid in Windows 2000 or later only.
An error will be raised if this function is called outside of Windows 2000.

Public Function IsEventLogFull(ByVal Source As String, ByVal
SourceMachine As String) As Boolean

The parameters are as follows:

• Source – The name of the event source whose corresponding event log is to be
tested.

• SourceMachine – The name of the server containing the event source. Use an
empty string for the current machine.

Using the Desaware Event Viewer and Reporter Utility
The Desaware Event Viewer project demonstrates how to use the Desaware Event Log
class. It displays a list of the Events in the Event Viewer tab of the main form. You can
double click on an entry to retrieve additional detailed information for each event – such
as the event message and additional binary data. The Desaware Event Viewer displays
similar information as the Microsoft Event Viewer included with Windows NT.

Note that displaying all the entries for a Log file may take some time depending on how
large the Log file is.

Event Viewer
The icons displayed in each event entry identifies the severity of the events as follows:

 Information
 Error
 Warning
 Audit Failure
 Audit Success

The following columns in the listview control displays the following information:

Date The date and time that the events were generated.
Source The name of the Event Source for the events.
Category The name of the Category for the events.
Event The event number for the events.
User The user name for the events, empty if no users were specified with the
particular event.
Computer The computer name for the events.

You can double click on a particular entry to view the message string or binary data for
that event. Doing so will display the Event Detail form.

Event Detail Form
The Event Detail form displays the same information as presented in the listview control,
with the addition of the message string and binary data for the selected event. Select the
next button to view the detail event information for the next event record. Select the
Previous button to view the detail event information for the previous event record. The
string and binary data are presented as read-only. Select the Close button to exit this
form.

Log Menu
The Log menu allows you to specify which type of Event to display. You can choose
among the Application, Security, or System events. You may also select to view the
events for another computer. The Select Computer menu command displays a list of
computers on your network that you may select from. The Refresh menu command
causes the Event Viewer to read the event log file again and update the information
displayed.

Report Event
The Report Event tab allows you to report an event to the event log. The code
demonstrates how to use the Desaware Event Log object’s ReportEvent function.

Source Machine – Specify the name of the server containing the event source. Use an
empty string for the current machine.
Source Name – Specify the name of the event source.
User Machine – Specify the server on which the user is valid.
User Name - Specify the name of the user to associate with the event.
Message number – Specify the message number in the event source.
Category – Specify the category number in the event source. Zero for no category.
Facility – Specify the facility value in the event source. To specify the facility in
hexadecimal, precede the number with “&H”.
Event Type – Select the severity of the event.
Severity Value – Select the severity value.
Insertion Strings List – Specify insertion strings for the event source. Insertion strings
may be added by entering a string in the Insertion String text box, then selecting the Add
button. Insertion strings values must begin with 1 and increment by 1 for each additional
insertion string. You may delete an insertion string by selecting it and then selecting the
Delete button.

The Facility, Message number, and Severity value are combined together to form the
Event ID for the ReportEvent function.

The Report Event button calls the ReportEvent function to log the event.

Redistributable Components

Event sources that you create with this toolkit are redistributable with no royalty fees.

You may incorporate the event log class into your applications and modify it as you wish,
however you must include Desaware’s copyright notice in the source code everywhere it
appears. If you use this source code in a component that you wish to distribute or sell,
you must add significant and primary functionality to the component (in other words –
under this license you cannot market your own component whose primary task is
reporting events into the event log using this source code).

No other files or components of this toolkit may be redistributed.

Technical Support
Desaware prides itself on providing excellent technical support at no charge.
At the same time, while we are glad to address any problems with our software, we know
from experience that our software is often used in ways that we never imagined. As
enabling technologies (i.e. technologies that allow VB programmers to do things that are
beyond the typical VB application), we cannot characterize any of our components or
tools for every possible application.

In other words, while we will do our best to address any bugs in our products or issues
that look like they have the potential of being bugs, we cannot write your code for you, or
debug your program for you. Nor can we provide one on one consulting on particular
applications.

When you contact us, we will assume that you are familiar with the material in this
manual. We ask that you reduce any problems to the smallest set of code that duplicates
the problem.

	The Desaware Event Log Toolkit
	License Agreement & Warranty
	The Desaware Event Log Toolkit	1
	The wrong way to use the Event Log with Visual Basic
	What about Event Log API Functions?
	The Right way to use the Event Log from Visual Basic

	Inside the Windows NT/2000 Event Log
	Inside a Message
	The Event Source
	The Event Category
	The Event Severity
	The Event Identifier
	The Logging User
	Language Independent Text
	Binary Data

	Using the Desaware Event Source Utility
	
	Creating an Event Source file - Quick Start
	Event Source main Form
	Registry Settings Form
	Version Resources Form
	Categories Form
	Facilities Form
	Select Languages form
	Build Event Source form
	Event Source Project file
	Event Source menu commands

	The Desaware Event Log API Class
	The dwEventLogTypes Enumeration
	ReportEvent
	GetNumberOfEventLogRecords
	GetOldestEventLogRecord
	ReadEventLog
	EventSource
	EventComputer
	EventID
	EventString
	EventCategory
	EventCategoryString
	EventType
	EventBinary
	EventUser
	EventDomain
	EventGenerated
	EventWritten
	EventRecordNumber
	InsertionStringCount
	InsertionString(ByVal stringindex As Long)
	WasEventSourceFound
	Note:

	BackupEventLog
	ClearEventLog
	IsEventLogFull

	Using the Desaware Event Viewer and Reporter Utility
	
	Event Viewer
	Event Detail Form
	Log Menu
	Report Event

	Redistributable Components
	Technical Support

