Contents |

Table of Contents

Part |
Part ll

© 00 N OO g b~ ON -

-—
- 0

Partlll

© 00 N O g b~ ON -

Part IV

© 00 N OO g b~ ON -

-
o

What's New 1
General Information 6
L0 T V- N 7
= 1 L= 9
Lo 1T = 4 = o . 13
L0051 o Y= 1] o1 11 /S 13
Using Several DAC Products in One IDE ..........c.ccoiiiiiiiiiieeirecrrec s e s s s s s s ra s ransnannnans 17
L0 o5 0 o Y01 1= o 1 A I N 18
Hierarchy Chart ........ccceiiiiiiiiii s e e 19
T T 3 N 21
LI o= 1= oV S 24
Getting SUPPOIt ... e s r s r s e s e rn e nnaaanaen 27
£ O N 28
Getting Started 35
T 11 N o S 40
Logging on to PoStgreSQL ........ccuciiiiiuiiiiiiiiiiri s 42
Creating Database ODbjJecCtS .........cccuiiiiiiiiiiiiic s e e s s s s e s e s e s e emnssnnsen 48
Deleting Data From TablesS ........cuoiiiiiiiii s crr s s s s s s s s s s s s s s s s ra s nanrnannnnns 53
Inserting Data Into Tables ... 56
Retrieving Data ..o e 61
Modifying Data .......c.ccouiiiiiii s e s e e s s rarnnnrnnnrnnns 63
[ 1= 4 o T o oY =Y e £ S 67
DePloYMENt ...... e e e ren 72
Using PgDAC 73
Updating Data with PgDAC Dataset COmMPONENLS .........ccoveireiireiirnsrec e s s s rearrasennns 73
Master/Detail Relationships .........covuiiiiiiii s e s r e rns 74
Automatic Key Field Value Generation ..........c.coceiimieiiiieiiiiiinccrr e 76
Data TYPe Mapping ...ccuceiieiieiiiiii s rra s rr s s s s s s rasna s e s a s sas s sassnassnassnnsnnnss 77
[ T 7= T = Lo T/ o (o o RN 83
Working in an Unstable NetwWOrk ... s s s e s rr s e s e s e s e e enas 85
SeCUre CONNECHIONS .....icuiiiiiiii s s s s r s s s s sra s sra s rna s rn s rassaasseansnassnnssnssnnnsen 86
ConNNECtiNg Via SSL ...uiiiiiiiiiiiii i e 88
Connecting Via SSH ... e s r e n e raneen 92
LV L=Y ATV o QN T 4T 1= 15 T S 98

© 2019 Devart



1l PostgreSQL Data Access Components

11 Disconnected MOdEe .........cciiuiiiuiiiiiiii i s s s raa 101
12 Batch Operations......cccccoiveiiieiiiiirr s s s s r s rn s rn s sra s srasrr s rn s rnassmsssnssnnnsensrnnssnnsnnnns 102
13 Increasing PerformancCe ...........ooiieuiiiiiiiiiiiir s e 106
L 1 - U o T 108
15 DataSet ManAger ..o iieiieiiiei s r s s s e s n s re s rn s ra s rra s e s e e n e nneean s e rrarnnnrnnrrnnns 109
16 TPgLoader COMPONENt .......ccciiuiiieiiiiiciirccrr s e rn s rna s rnssrasrarrasrn s rn s smsssnssnnnsenssnnssnnsennns 114
17 Large ODbjJECES ....cuuuiiiiiiiii e e e 115
18 REFCURSOR Data TYPEe ...cccuuiiieuiiriuiiiiairiaiirnssrnnsenasseasssrasssrmnssennssenasssensssrnsssennssennssennnses 117
19 National and Unicode Characters...........cccoiiuiiimiiiiiiiiir i ire e s s s e s s e e 118
b I 0o 0 T4 U= o2 4o 4 T 2o T |1 ' 119
20 T = 1o T o 121
22 Writing GUI Applications with PGDAC ..........ccoocieiiiimiiiir e s s e 121
23 Compatibility with Previous Versions ...........ccouceiieiiieiiii s s e se s snsensese e eeas 122
24 64-bit Development with Embarcadero RAD Studio XE2 ..........ccccoviiiiiieeircevrec e s ee e 123
25 Database Specific Aspects of 64-bit Development ..o 128

Part V Reference

T 0 3L o= L
Classes  sorreerrermrmsneincanne.
TCRCursor Class
Members
Types ..........................................................................................................................................................
TBeforeFetchProc Procedure Reference . 133
Enumerations -« s s s s sns s nnaan ...133
TCRIsolationLevel Enumeration ... 134
TCRTransactioNACHON ENUMEIATION. -+« -teeeteteiiieiiie ettt eteeeee e st e e st e steeesteeesbeesseaessseesnbeesnseaeasseesnseeenseaenes 134
RO TR o 8o F=1 (=Y = 0181010 = =10 o PP PPPPPPPPPTP
2 CRBAtChMOVE .....cocuviiiiiiiiiiiie e e e e e e a s era e ra s
(08 - Yo = XL LT T T T T T T
TCORBALCNIMOVE ClaSS. - uuuuutttteteeeteeeeeeeee ettt e et e e e e e e e sa e e e e e et e eeaeeaaa e nnaneeee e e e eeeeeeeeaa s snnnnnnnneeneseeeeeaens
11772012 7= =N
PrOPEITIES oo s
AbortOnKeyViol Property
AbortOnProblem Property
ChangedCount Property.......ouu i
ComMItCOUNE PrOPEItY.....ccveeiieiiie s
Destination Property..................
FieldMappingMode Property.........ve e ... 143
G AYATe] (0o TU T 1 o] o= o RSO RR ... 143
LYo o Yo o] o= Y2 144
Y oY T30 0] o= o R 144
MOVEACOUNE PrOPEITY .. eoveveeeiiietcsiccstcete ettt . 145
ProblemCouNt PrOPerty.......coveeeiiaiieiei e . 145
[ oTo o [T U a1 = o] o= g OO ... 146
Lo TN o= = o] =Y /ORI 146
MEENOAS oo bbb s 147
| Yo L= YL =] 1 oo PSP URRROUPNE 147

© 2019 Devart



Contents 1

Y=Y 21 (= 148
ONBatchMOVEPIOGreSS EVENL . ..eoveueiieieiiicieicete et e 148
TYPES  coeereerecnsnesrenian AR 149
TCRBatchMoveProgressEvent Procedure Reference... .. 149
ENUM ETratiONS »eecrentimmmimiimmmenmomintetmnsnimmenmocenmonesmennesensesntsesnseeensamsememsesemsenseesesamsnisesmsiemstissetissntsmentssentarsstatassanss 149
TCRBAtCHMOAE ENUMEIAtION -+ttt ettt ettt ettt ettt et e et e e st e e st e e e be e e sabeesateeebneenabeesteeenne 150
TCRFieldMappingMode ENUMETIation.........coveveeieriieieieseicsic ettt 150
BB 07 3§ o7 o 1o o N 151
ClASS@S rerrerresreermatmaticiritittatarerne et ra st na ettt st aa e et aa e aanaaRaaE R e RN EaRaARREREEaNSRARRSEREEARTENRRSERSTRaRtaRTRTnnnnanan 152
TORENCIYPLOT ClASS - veuveueteiietiitee ettt b e s b e b e b b se e b e b n s be 152
010 o= =PRSS 152
0T oY= 1 =Y OSSR 153
DataHEAAET PrOPEItY .. .. vevereieieitiietectei ettt 154
ENcryptionAIGOrithm Property........coveeeieiiiiieiisicceiee e 154
HashAIGOTthm ProPerty ......cveveiiiiieieiciee e 155
InvalidHashAction Property. ... 165
PaSSW OFA PrOPEItY.....ceiveuiitiieiiitcete et 156
12 o Yo L= PRSP 156
SEKEY MENOD. -+ - vveveieietcie sttt 157
ENUM @TatiONS =oreerrmtmimimiiaitieiiietienaieaeiaaera sttt st st ae s astatsstatassatsssatssssastsstatastasassstsssssassssssssansasassasannasnn 157
TCRENCDAtaHEAAEr ENUMEIAtION. «- -+ teeeurteetieeeiiieiiteeestieeeteeeteeesteeesabeesteeassseesbeesseeaasseesnseesaseaensseesnseesnseaennes 158
TCRENCryptionAIgorithm ENUMETation. ... ...c.veueueiiieicicciietcc et 158
TCRHashAIGOrithm ENUMETAtioN. .. .....eviueieiiieiiiieiete e 159
TCRINVAlIAHAShA CHON ENUMEIAtION -+ et tavteetieeeiieeeiee ettt et e et e et e e et e steeessaeesabeesseaessseesnseesseeensseesnseesnseaennes 160
A CRVIO w.eoveeeeeeeeeeeeeeee e esesestesessseseseasasssesesestasasssssese et s essessessasassesseseasssssesseeeasnsseseseasansnenens 160
ENUM ErationNs - s e e e e e e n e a e e a e R ananarasnaanannnnnnnnnnanns 160
BN YL Y (o Al = 0100 = - Lo) 4 PSSRSO URPRURPPURNt 160
LT LY £ =Y o =
Classes
TDA ALCTEET ClASS - veeeuteeeureerutea ettt e et testeeateeeauteesabeeaateeesabeesabeeeaseeesabeesabeeeasseeaabeesabeeenteeenabeesabeeesneesnbeesnseeennne 162
Members
Properties
Active Property
AULOREGISTEr PrOPEITY . v evveveietiitcicie et sa s 164
CONNECHON PrOPEITY «ouvveieuiiteiciecietes ettt b e e ae e 165
Y= 13T T =TT 165
ST o | =YL= g 101V, = {3 To o PO PRSPPI 166
StArt MEthOd .veeieeiec s 166
SEOP MEENOT - 167
Y=Y 01O PO OT OO 167
(03] = Tl =YL= o | ST OTI 168
Types
TAlerterErrorEvent Procedure Reference
L N 11T 4T o
ClaS S @S eecemtocenmananmanmesennennnsennseesnssnsssensessnsessssessesssssnsssssnssssssssssssssssentstesisssimeiieseissstsessesetatsiatsesatserssernsacans 170
LA R T o T =TSRSS 170
Y=Y o= 171
PrOPEItIES coeieiieie e 172
Connection Property ... 173
=Y oYU T o o) o113 174
OPONS PrOPEItY . ..ooveeuieeieiieieie s 174
SQL PrOPEILY «vevevetietieieiee s 175
TableNAMES PrOPEItY.....ccciveiieiiiiiiiti i 176

© 2019 Devart



PostgreSQL Data Access Components

Y=g o PP 176
2 P Tod 0T o T =1 oY 177
BacKUPQUETY MEtOT ... . eueeeeieieicietc ettt 177
BackupToFile Method
BackupToStream Method. ... .. .coviveiriiiieieiiete e 179
[ Y (o =Y =] 2T o PP 179
RestoreFromFile MEthod ... ..ooeivriiiiiiiiiicicic s 180
RestoreFromStream Method. ... ...ov i 181
BV ENES e 181
ONBacKUPPIrOgresSs EVENT ..cueiv ittt 182
(0701 = oYl Y=Y | PPN 183
OnRestoreProgress Event.. ... 183
TDADUMPOPLONS ClASS . -rveveueteeeteiietisieieetis ettt b s b e st a e b e s s be e s s e 184
MEIMDEIS oottt 184
PrOPEItIES cveieieie e 185
PN L[ Yol = e o1 2RO 186
Completelnsert Property...... ... 186
GenerateHEadEr PrOPEItY.......cciviveririerieieitiiet ettt 187
QUOLENAMES PrOPEITY.....eeuveieiieitiiti ettt 187
TYPES  reecereeserresenresaensnn e A A AR R AR A A AR s s s 187
TDABackupProgressEvent Procedure REfErenCe........oovuveirieiieiiiiice e 188
TDARestoreProgressEvent Procedure RefErenCe . ......covuveieueiieiiiiicc et 188
T DALOAAEr .....coeuiiiiie i e e e raas 189
[0 o o = L LT e LTt PPN 190
TDA COIUMN ClASS: -ttt utteentrteruttaette ettt st e ettt e ea e et e eete e e eae e e et e e e be e e sas e e st e e e abe e e sab e e sat e e ents e e saneesabeeebneenareesteeenne 190
=100 0= =TSO P OO PO PP UPPTUOPPTRPI 191
0T oY= 1 =Y OO 191
FIeldTYPE PrOPEItY .. cveoveeeetiieteiteiet ettt 192
Name Property ... 192
TDA COIUMNS ClIAS S+t -tteeuttterutte ettt ettt ettt ettt ettt ettt ettt ettt e ea bt e st eebe e e sab e e st e e e ts e e naneesteeebneenareesteeenne 193
=100 0= =TSO P OO PO PP UPPTUOPPTRPI 193
0T oY= 1 =Y OO 193
temMS Property (INAEXEI) - ...eoveuiieieiiieiieiiei e 194
TDALoader Class
Members
Properties
COlUMNS PrOPEITY. c.eveueeteieiietee ettt bbb sa e b 197
CONNECHON PrOPEITY «ouvvieeiiteeetitete et 197
TabIENAME PrOPEItY....ccveeeuiieiitiieie e 198
Y= {3 To T < PO P PO U PP P PTUOPPTRPI 198
(@=L C=1070) T g TR =Y 1 Lo PR SRR 199
[0 T= T 1Y, 7=1 1 T Yo IR PO PUP PP OU ROV R URPROPPROE 199
LOadFromDataSet IMEINOM- .-« ccvreeruree ittt ettt ettt ettt s e et et e e 200
o) U0 ] =1 2= LY =] 13T Lo F PSSR 201
o) U0 ] =1 2= LY =] 13T Lo F PSSR 201
PUtCOIUMNDEALA IMETNOM - -+ttt ettt sttt ettt st e et e e san e nreesteeeane 202
Events
ONGEtCOIUMNDALA BVENL -+ttt ettt et e e sae e sareesaneeeas 203
ONPrOgreSS BVENt . ccviuiiiiieie s 204
(0012 V=] = T Y=Y o | TSP P PR OPTI 204
TDALOAAErOPtONS ClaSS. .- veeueeueeieiiienieite ettt ettt sttt s r e ea e ea e eae e e seeee e e e e aeeneen 205
=100 0= =TSO P OO PO PP UPPTUOPPTRPI 206
0T oY= 1 =Y OSSOSO 206
UsEBIankV alues Property........coviveieiiiieiiiiiieiiitei ettt 207

© 2019 Devart



Contents \"/

Types ..........................................................................................................................................................
TDAPutDataEvent Procedure REfErENCE ... . uuurrriieieiee e e e
TGetColumnDataEvent Procedure REefEIENCE. .« . it
TLoaderProgressEvent Procedure Reference.

LS 7N T o

ClASS@S rerrerresreermatmaticiritittatarerne et ra st na ettt st aa e et aa e aanaaRaaE R e RN EaRaARREREEaNSRARRSEREEARTENRRSERSTRaRtaRTRTnnnnanan
IS Yo o A= TPt
1YY 012 1= U
e 0] =T 11 N
CONNECHON PrOPEITY - ovveuieuieieiit it s
DataSet PrOPeIrty. .« e eeeeeiieieei s
DEDUQG PrOpPerty - e
DEliMItEr PrOPErty -« e eeeeeeiieee s
ENALING PrOPeIty- e eeeeeeiiee e s
ENAOFfSEt PrOperty .. eoeeeeieieeii e s
EndPos Property
Macros Property
ES @ I = oY o =Y OO RROORPROR
StArtLING PrOPEItY .. veeueeieieieie s
StartOffSEt ProPerty - . e oveeeieie e
SHArtPOS PrOPEItY. ... veeuieieieie s
StatemMENtS ProPEItY - o eveieieii e
177271 (o Yo £ TN
BreakEXeC MEthOd. .. .o e v
ErrorOffset Method. . ..covveeeeeeee e
EXECULE MBENOM .o
EXECULEFIlE MEtNOM. .. e e
ExecuteNext Method........coor e
ExecuteStream Method. ...
MaCTrOBYNAME MENOG. ... cueeveieiiiiiietiiei et
BV ENES e e a e
ATEEIEXECULE EVENT -+ttt e et e b et e et e nbe e e neeeaenees 226
BEfOrEEXECULE EVENT. .ttt itie ettt ettt et sb e et e st s e et e 226
OnError Event
BTN = 1= 0= L A= 1 PP
1YY 012 1= SN
e 0] =T 11 N
ENALING PrOPEItY. . e veeueeiieiititiste et 230
ENAOFfSEt PrOPEIty ..o eeeeieiiiiitieti s 230
ENAPOS PrOPEItY «oueeveieiiiiietiiete ettt 231
Ot PrOPEILY «veveeeiteieete ettt 231
Params PrOPEItY «...oeoieeiiiieiiieetee et 231
oot = o) o =Y 2O OO RO 232
ES @ I = oY o =Y OO RROR PR 232
StArtLING PrOPEItY .. vveuieieieieie s 233
StartOffSEt PrOPerty - . veoveieieiie e 233
StartPos Property.
731 o Yo L= OO U UPTRRN 234
| = o T L (=YY, =] 1T Yo PO PPN 234
TDASEAEMENTS ClASS - uvreeeieteiie ettt e e e s e e s e e e e e s s s b e e e e s b e s e e s s bbe e e e s e br e e e e e s rene e e nannes 235
=Y 1 o= =P OO UPTRPN 235
0T oY= 1 =Y OO 236
temMS Property (INAEXEI) .. ..eoveuiieieiiieiieicet e 236

© 2019 Devart



Vi

PostgreSQL Data Access Components

TAfterStatementExecuteEvent Procedure ReferenCe.......oovveevieeiiiiiiicie s 237
TBeforeStatementExecuteEvent Procedure REfErenCe........covvevviriiiiiiiciiiicc e 238
TONErrorEvent Procedure REfEIrENCE. ......coii i 238
ENUM ETratiONS »eecrentimmmimiimmmenmomintetmnsnimmenmocenmonesmennesensesntsesnseeensamsememsesemsenseesesamsnisesmsiemstissetissntsmentssentarsstatassanss 239
TErrorACtion ENUMEration ......couiiiiiiiiicii s 239
9 DASQLMONILOr ..ciiiiiiiiiiiiiccic it ———————— 240
ClASS@S rerrerresreermatmaticiritittatarerne et ra st na ettt st aa e et aa e aanaaRaaE R e RN EaRaARREREEaNSRARRSEREEARTENRRSERSTRaRtaRTRTnnnnanan 241
TCUSTOMDA SQLMONEOT ClASS: -+ veeveeteeteenttanterteautesteaseesteesseesteesseenteeseanseasseaneesseeaseesseesseenseenseeseansesneeaneens 241
=100 0= =T O O P OO PR P PP PTOOPPTRPI 242
0T oY= 1 =Y OSSR 242
ACHVE PrOPEITY - ve ettt 243
DBMONItOrOPtioNS PrOPEITY. ... cuviveuietiieiiitiietiitei ettt 243
OPLONS PrOPEItY . .oveveeeetiieiietee et 244
TraCeFIags PrOPeItY . .oe ettt 244
BV ENES e e a e e
OnSQL Event ...........
TDBMonitorOptions Class
1Y 012 1= TN
e 0] =T 112 N
HOST ProP Ity - eeeieeeee e
POrt Property - eeeeeee
ReconNectTIMEOUL PrOPEItY.......coeeieiiiieiitiieiec et 248
SeNATIMEOUL PrOPEItY. ..  veveieiieiiiiiieie ettt 249
TYPES e s 249
TDATIACEFIAGS St viviiiiiieiieiiiiitee et 250
TMONIOrOPHONS SEL..veeueeeiieiiieeiieet et 250
TONSQLEVENt ProCedUIre REFEIENCE. - -ttt itteeiiie ettt ettt ettt et nreesteeeane 250
ENUM @TatiONS =oreerrmtmimimiiaitieiiietienaieaeiaaera sttt st st ae s astatsstatassatsssatssssastsstatastasassstsssssassssssssansasassasannasnn 251
TDATraceFlag Enumeration. ... ... 251
TMONItOrOPtON ENUMEIAtION. .....cveeueeieiite ittt ae e aeeaeen 252
LT 0 = Yo oS
ClaSS @S  rrrrerrrrmsrmarrssrsismrmasresrssrnrns st rns s e ra st s s na e ra st s e naane R EaERaERa R RREEEESEEEREESERSEESSTERTRSTESTREESETRSERTRaTen
EDAError Class
Members
Properties
(00 00T TaT=Y 0T B o o =Y YOO 259
o L 0o T [N o] o= o 1 O 260
TORDAIASOUICE ClASS: -+ -veureruretterteeateeste et e et ettt et e ase e bt e ahe e st e e ab e e bt eabeea bt ea s e eae e ebeeebeesbeenbeebeebeenteennesaneeanens 260
Y=Y oY= = PO U PP PR S RPRTR 261
TCustomConNECtDIalog ClassS. ... . vuverureiriitiieiiieiei et 261
Y=Y oY= = PO U PP PR S RPRTR 261
o 0= 7= OO 263
CaNCEIBULION PrOPEIY.....cviuiiiiiieiiiiicicc bbb 264
(075 0T 110 (T = oY o =Y o OO 264
CONNECIBULION PrOPEIY.....cviiiiiieiiiiiciet it 264
DialogClass Property
LIS T ST 1) o =Y /O
PassW OrdLabel PrOperty........ccoviuiiriiiiciitiicic et 266
LS L= Yol o] =Y Y OO 266
SAVEPASSW OFd PrOPEItY.....coveeveicieiieiitcsieic ettt 267
ServerLabel Property.... ... 267
StOreLOGINFO PrOPEITY......cviviiiiiciiiiicicc b 267
UsernameLabel Property.........ccoviuririiiciiiiieec et 268

© 2019 Devart



Contents Vil

Y=g o PP 268
=YLV (= 30, 2T o PP 269
L€ T=y T2 RV I EY 01, =3 (oo PP 269
TCustomDA Connection Class ... 270
Y=Y o= 271
PrOPEItIES coeieiieie e 273
ConNECtDIAIOG PrOPEItY .. .ceeveeeiiiciesieeetes ettt e 274
(0o T Yo 6] oo T o)=Y 2R 274
CONVEIEOL PrOPEItY .. .ceeieieieiie ettt 276
INTraNSACHON PrOPEItY.. . v eeieeeiteietiriete ettt 277
LOGINPrOMPt PrOPEItY... . coveoviiiiiitiiti ettt 277
Options Property...........
Passw ord Property.
POONNG PrOPEItY .. e eveeueeiieieieie s
L oY o) 1o o0 oy 7o) d TR = o] 1= 280
SEIVET PrOPEITY .o vevieiieiieieie it 281
Username Property ... .. 281
Y 7= g o PP 282
ApplyUpdates Method........coouiiiiiiiiii e 283
ApplyUpdates Method........coouiiiiiiiiii e 284
ApplyUpdates Method........coouiiiiiiiiii e 284
(00714100 101, =3 {1 T o PP 285
(070310 T=Y 0117 7=1 1T o PP TR 286
(0= 1 (=SS @] IR 1Y =] g Yo o PP R 286
[T oo AT T o3 B, =14 PP 287
=Y e Yo Y L=Y 1 T Yo PP 287
=Y oY =l 1Y =1 1T Yo PP 289
EXECSQL MENOM - v eveiieiieicicic e 290
EXECSQLEX MEthOG ... vttt 291
GetDatabaseNames Method.... ... 292
GetKeyFieldNames Method. ... .ovivewrrrieiitieee s 293
GetStoredProCNaMES METNOM. .« - e iueeeeeeeee e e 294
GetTableNAMES MEtHOG- ..+« ve et 294
MONItOrMesSage MEtNOd. ... cueveuriieiciiieieetcete e 295
Ping Method
REMOVEFTOMPOOI MEINOM. -t s nne e 296
ROIDACK METNOM. « -+t 297
StartTranSaction MEEHOG. ... .. veeeeeeree et s sn e 297
Y=Y (= 298
(701078 T e =Yo3 1100 ]I oY= A =V7=Y o [ PP 299
(@701 = oYl Y=Y | PP TR 299
TCUSTOMDADAIASEE ClaSS. -+ -veruverurrrreerieeateesreesteesre et ere s e st e s e s e e s e e sreesaeeare e eesn e e e e saeesmeesreesmeesreenneenne e reennes 300
Members
Properties
BaSESQL PrOPEITY ...evcueterieteieiestcete ettt 312
(0o To 1 ToT TR = oY 1= RS 312
CONNECHON PrOPEITY - cvveuieeieieiie ittt 313
DataTypeMap Property ... 313
=Y oYU T o o) o113 314
[T 1= o K o e o= 314
DiSCONNECEA PrOPEItY....cveviiiiiitiiti ittt 315
o od g oY T . 1T o =Y 315
oY ST I = T oT=T Y 316
T RS @ T o oY Y2 316

© 2019 Devart



Vil

PostgreSQL Data Access Components

ISQUETY PrOPEITY. .. ueeuieuieieitiiti ittt 317
LGV 1= o 3 o] o= 318
MaCTOCOUNt PrOPEItY .. ..veviiiiiiiiti ettt 318
Yot o TRl o o o =Y 319
MaStErFIRIdS PrOPEITY ...e veeeeeiciestciete et 320
MasterSource Property ... 320
(@0 o Ta TSI = T 1= RS 321
ParamChECK PrOPeItY ... .eoveueieeiiteieicsic ettt 323
ParamCouNt PrOPEItY ... ..coeoviiiiiiiiiiiti et 324
Params PrOPEItY ...oeoueeiieieteieie ettt 324
o= To [0 1V = oY =T 325
RefreshOptioNs Property.......couoiiiiiiiiieiiiicie i 325
oY A =Ye3 (=Yoo o)=Y £ 326
LT . 7o =Y OO 326
SQLDelete Property.... .. 327
SQLINSEIt PrOPeItY ... cueeuieieieiie ittt s 328
SQLLOCK PrOPEItY. . eeeveeetiieeete sttt ettt 329
SQLRECCOUNE PrOPEItY. .. cveveieitiitiite ettt 329
SQLREFIESN PrOPerty . cveveieiiiiiiiiieiecie s 330
SQLUPAALE ProPerty . ...coveieieie ittt 331
L8011 o 1o T= I T o= 332

Methods .o,

AddWhere Method
BreakExec Method

CreateBloDSIrEam IMETNO -+ - ee ettt e et s e e nne et e e anee s 338
DEleteVWNEre IMEENOM. -« et ettt ettt ettt ettt e st e st e e e san e e nbeesteeeane 338
[T oU L= =1 1 o Yo PSPPSR VRUPPOPPN 339
[ Yo U L= =1 1 o Yo S PPOURVRUPPOPPN 339
[ Yo U L= =1 1 o Yo S PPOURVRUPPOPPN 340
EXECULING MEINOG. .- vttt 340

Fetched Method
Fetching Method
FetchinGAll MEthO. .....c.eoeeie e
FINAKEY MEtNOT ... v vt
[0 |AY,7= 1o o JH =1 1 oY PO
FINANEArest MethOd. -« .« ceeee e r e e e e e e
[T L= 1= 0 0 1Y 7= 1 oY OO PRSP
GetDataType Method........

GetFieldObject Method
GetFieldPreCiSioN METNOM: . -« e vttt ettt ettt et e st e e sin e s e steeeane 346
GEtFIeldSCale IMETNOM -« - et ettt ettt ettt bttt e sab e st e et e e san e e sbeeeteeeane 347
GetKeyFieldNames MEthod. ... .ovivevreieiticiee e 348
GetOrderBy Method. ... ve i

(€703 (oL@ T =Y 0 4117/ = 1 o Yo X PP PPPPRPR

[ Yo 9817 7=1 1 oY PP
MacroByName Method
ParamByName Method
Prepare Method. .. oo
REfrESNRECOIT MEENOM. -+ttt ettt ettt ettt ettt e et e s e s e steeeane 353
RESTOrESQL IMEENOM. -+ttt ettt ettt ettt ettt ettt e sab e st e e et e e e nan e s e e steeeane 353
SAVESQL IMEENOM- -+ttt ettt ettt sh ettt e b e e bt s st e e e et e ehe e e eat e e e bt e nne e nate e anee s 354
SetOrderBy MEtNOG .. ..veveueieeeiecicies ettt 354
SQLSAVEA MEthOT. «. e e 355
UnLock Method

© 2019 Devart



Contents IX

BV NES e 356
ATLEIEXECULE BVENT vttt s r e e esne e e 357
F N =Tz (e AT Y=Y ] PSPPI 357
AfterUpdateExecute Event ... 358
Ty = R 1o)== 2| PP 358
BeforeUpdateEXECUE EVENL ...cviveieiiieeiiietee e 359

TCUSTOMDASQL ClASS +--vevveeurreueerueieieeseesteesreesreesreeereaee s e aseesaeesseesreesreesaeeane e nesaneenesanesmnesseeareesreenneeneenneennes 359

MEIMDEIS oottt 360

PrOPEItIES cveieieie e 362
[0 =Tl LT O T gl o o =Y 2RSS 363
CONNECHON PrOPEITY - vveuieiieieiii ittt 364
Debug Property.........
FinalSQL Property
MaCTOCOUNt PrOPEItY .. ..veviiiiiiiiti ettt 365
MACTOS PrOPEItY - vecveeiieiiiiitit s 366
ParamCheck Property .. ...cooviiiiiiiiiiiiieiieiec s 366
ParamCount Property.... ... 367
Params PrOPerty .. .oeo e 367
ParamValues Property (INAEXEI) ... ..coveueeiuiiriiiieeiteieie st 368
Prepared PrOPerty......ccoviiieiice sttt 369
oY A 4 =Ye3 (=Yoo o)=Y £ 370
SQL PrOPEILY «vevevetieiieieieie s

Y Y T Yo £
EXECULE MEthOd .. eeeeiiieiei e
EXECULE MEthOd .. eeeeiiieiei e
EXECULE MEthOd .. eeeeiiieiei e
EXeCUtiNG MEENOM. - v
100 =TT o TN 1Y, =1 oY Y
FINdParam Method........veereiiiiie e

MacroByName Method
ParamByName Method

Prepare Method. .. oo
UNPrepare Method .. ...eo i
WaitEXeCUting MEthOD: -« eveeeieeiie e
Events
AFEIEXECULE EVENT ..veiviviiicicicic e 379
TCUStOMDAUPAALESQL ClASS .-+ v evevererreiersisieieeie ittt et b e a e b a e eae s 379
MEIMDEIS oot 380
PrOPEItIES oo 381
DAtaSEt PrOPEITY. .. cveveueteietistcte sttt e 382
DeleteObjeCt Property......cooviiiiiiiiiiii e 383
DElete@SQL ProPEIty. . ..covereiiiiitiiti ittt 383
InsertObject Property.... ... 384
L TST =T €T I T o= 384
LOCKODIECE PrOPEItY . eeuveutetitiiiiti ettt 385
(oY o3 e @ I = o o =Y o 385
Modify ODJECE PrOPEItY ... eveveiiiiitiiti et 386
ModifySQL Property......... .... 386
RefreshODJECE PrOPEItY .. .oveueieeeiteieiisicicet ettt 387
RefreSNSQL ProPerty - ..coveoveeiiiiitiiti i 387
SQL Property (INAEXEI)- .. .cveiveiiiiiiiieie et 388
Y=Y T Yo £ 388
APPIY MEINOT .o 389
EXECSQL MEthOd .. veveeiieiiiieici s 390

© 2019 Devart



PostgreSQL Data Access Components

QI NI T =T P 390
MEIMDEIS oottt 391
PrOPEItIES coeieiieie e 391

Enabled Property. e 392
NAME PrOPEILY. . e eveeie ettt 392
VAIUE PrOPEITY .o veveeiieieete e 392
1Y 7= T T £SO 393
DISADIE MEENOM. .-+ v s 393
ENable MEthOG. .. .o oveeiieiiiieie s 394

TDACONAIIONS ClASS: . +eveveiriimiiiiiieiie ittt e b e bbb e srenne s 394
Members
Properties

Condition Property (INAEXEI). ... veuereueieiiieieieieies ettt 396
L E=T o1 Yo = o oY Y 397
eMS Property (INAEXEI) - . veoveueiueietiieieetceie et 397
TEXE PrOPEITY veveieeieeteee e 398
WhereSQL Property.. ... 398
1Y 7= T T £SO 398
a1 817 =3 T T RO 399
a1 817 =3 T T RO 400
a1 817 =3 T T RO 400
Delete MEthO ... .veeeeeiieieee s 401
DISADIE MEENOG. .+ v vt 401
ENable MEthOG. .. .o v 402
T T Y77 o T T [ 402
L= 1Y =3 3o 402
0T L=y 1Y, =3 (T o PP 403
REMOVE MEENOM. . v 403

TDACONNECHONOPLONS ClASS -+  veueveueereieeiiiteieeie sttt b et es 403
Members
Properties

Allow ImplicitCONNECE ProPerty.......eoveivieiieiieiieiieieie i 406
DefaultSOrtTyPe PrOPerty - ... ceeiiuieiiiiieiieieei s 406
DisconNECtedMOdE PrOPEITY....cviveirieietiitiieteseie et 407
KeepDesignConnected Property... ... 407
(oY o= Tl o =l o] =Y o £ 408

TDADAtaSEtOPLONS ClASS - vruvrvevererreieieieeii ittt b et b e ae s 408
MEIMDEIS oot 409
PrOPEItIES oo 411

F AT (o] o =Y 0Tz LY o] o =Y o 4 RO 414
(072 To] o 1= 07 o] 1= o S = o o= R 414
CompressBIODMOTE PrOPEItY.......ccvivrreuisiciesieietes ettt 415
DefaultValues Property

DetailDelay Property.......coeouiiiiiiiiiiiiiiiciec

FieldS Origin Property. ... o ee et

FlatBUffers Property ... .ccoe et

INSErtAIISEtFIEldS Property......c.ocoiiiiieiiiiieiiie 417
LocalMasterDetail Property 7
LONGSErNGS PrOPEItY .. cveveiiiiiiiti ettt 418
MasterFieldSNUlADIE Property.......coceviieiiiiieiesiee et 418
NUMDEIRANGE PrOPEItY ... cveveieieitiieticteie ettt 419
QUETYRECCOUNE PrOPEItY. .. cveieiiitietieie et e 419
QUOLENAMES PrOPEITY. . ueeuveieitiitiiti ittt 420
RemOVEONRETESH PrOPEItY....coviveeeieieiiitiieti e 420

© 2019 Devart



Contents Xl

LYo U1 =Y | 1=y Lo S o] 1= 421
RetUrNParams ProPeItY.......coveueriiiieieiieic ettt 421
SetFieldsREadONIY Property........occoviueieeiiieiisieieies ettt 422
StrictUpdate Property.... ..o oo

TrimFIXEdChAr PrOperty «vooueeeeiieieei et
UpdateAllFields Property......
UpdateBatchSize Property.

I 3 T o1 g T =
MEIMDEIS oottt
PrOPEItIES cveieieie e

ENCIry PtOr PrOPEItY. . eeeeeiieie et
FIEIAS PrOPEItY ... veeueeuieieieite ittt

TDAMAPRUIE ClaSS: e -uvveurerstrautieiriiisie s e e e e e s s s e s s et e e ne et e e ne e
Members
Properties

DBLengthMax Property
DBLENGNMIN Property -« e veeveeiieiieiiee s
DBSCaleMax Property......ccoiiiiiiiiiiiiiiiicieieiee s
DBSCAIEMIN PrOPEItY. .. vevetitiitiitiiti ettt
DBTYPE PrOPEItY. . eeseeteeiieiiei e
FieldLength Property . ... e i
FieldName Property
FieldScale Property
FIeldTYPE PrOPerty  ee et
IgNOrEEITOrS PrOPEItY . uveveieiiiiicie it

TDAMAPRUIES ClaSS. -+ eeueeertratiasiiiiiiie et r et
MEIMDEIS oottt
PrOPEItIES coeieie e

IgNOrelNValidRUIES PrOPEItY - ... veoveieieieitiieie sttt 434

B =3 2= 7= = TP T P 435
Members
Properties

(0o T Yol o o T o o =Y RS 440
MetaDataKind Property.......cooeoeiuiiiiiiiiiiiieicei s 441
RESTIHCHONS PrOPEItY... o vevetiiiiiiti ittt 442
MELNOOS oo 442
GetMetaDataKinds Method........cuoiuiiuiiiiiiiiiii s 445
GetRestrictions Method ... 445

QI = = T 41O T 446
MEIMDEIS oot 447
PrOPEItIES coeieie e 448

ASBIOD PrOPEItY. . .veeveeiieiieiiiiitt i 450
ASBIODRET PrOPerty....oveeueeieiiiitiiit 450
F =] 1 o] =Y g 4 RO 451
F =] 1 (=Yo =Tl T =Y RO 451
ASLArgelnt ProPerty.....eeeeeeiiiiiiiit e 452

AsMemo Property.
AsMemoRef Property.

AsSQLTIMESLAMP PrOPEItY . vcueeveeeieieeiisieeete et 453
ASSHIING PrOPEItY. . e cveeiieiieieee e 453
ASWIAESENG PrOPEIty. ... ecveieiiiiiiiti it 454
DataTyPe ProPeIty .. eeeeeiieieet e
ISNUIL PrOPEITY - et

ParamType Property

© 2019 Devart



Xl PostgreSQL Data Access Components

SIZE PrOPEILY «veveiieitieiieie s
VAIUE PrOPEITY .o veviteeieeieee e
Y=Y 1T o =P P T
AssignField Method
AsSIgNFIeldValue Method . ......cvoveieiriieiieiecie et 458
LOAAFTOMEIIE IMEENOM: -+ -+ttt ettt ettt ettt ettt e et e e e st e nbeeeteeenne 458
[ T=To [ Te 4] (== 117 =Y 1T o PR PP 459
oY== 0] o0 = 1 P= Y=Y o Yo [PPSR P SRR 460
oY== 0] o0 = 1 P= Y=Y o Yo [PPSR P SRR 460
oY== 0] o0 = 1 P= Y=Y o Yo [PPSR P SRR 460
TDAParams Class
Members
Properties
teMS Property (INAEXEI) - . veoveueiveietiieieetceie et 463
Y=Y 1T o =P P T 463
[T =T = T Y =1 1 o Yo [ PP ROPPPP 464
ParamByName Method ... 464
TDATIANSACHON ClASS -+t eureteteeeauteeetet ettt e aitee ettt e aaee e et e e a et e aae e e aase e e aae e e st e e eabe e e aae e e aa b e e eabe e e aaeeeanteeanneeenneeeanneeans 465
Y=Y o= 465
PrOPEItIES coeieieie e 467
F o3 1173 T o)=Y RO 467
DefaultCloSEACHON PrOPEItY....coviveeeieieiietiete et 468
Y=Y 1T o =P P T 468
(070020 11081, PP 469
[0 [0 T=To S =] 12T o PP 469
StartTranSaction MEEHOG. ... .. voeeeieeieeeee e s sne e 470
Y=Y (= 470
(03107011 001181 V7= 0| PSPPSRI 471
ONCOMMItRELAINING EVENT.c.evereetiieieieeete ettt e 472
OnError Event..cocoooveveiennene
OnRollback Event
ONROIIbACKREtAINING EVENL...veviviieiiieeetiieie ettt 474
TMacro Class
Members
Properties
F o3 1173 T o)=Y RO 476
ASDAETIME PrOPEItY ... eeueeueiiiiiiiiit et 477
F =] 1 o] =Y g 4 RO 477
F A=Y 1 (=Yo =Tl T =Y RO 478
ASSHIING PrOPEItY. . e cveeiieiieiee e 478
N2 S T o =Y O 479
VAIUE PrOPEITY .o veveieei it 479
TMacros Class
Members
Properties
teMS Property (INAEXEI) .. veoveueveieiiieie ettt 481
Y=Y 1T o =P P PR P 482
AssignValues Method... ... 482
EXPaNd MEthOd . ....eceeeieiicc s 483
[T LY = Yo Lo T Y =1 1 T Yo [ PP OPROPPPT 483
ISEQUAI MEENOM. -+t eeeeveeieet et 484
Yot o) 1Y =T =1 1Y =3 1 T T 484
FS 1= 01T =Y 1 T 485
1 oTe][1gTe @] o] o) g TR =T N 486

© 2019 Devart



Contents X1

MEIMDEIS oot 486
PrOPEItIES coeieiieie e 486
ConNeCtioNLIfetime ProPerty........ocviieeeiiieiesiestcs e e 487
MaxPoolSize Property... ... 488
MINPOOISIZE PrOPEItY. .. vevetitiitiitiiti et 488
Validate PrOPEIty . ..ooveeeeeieieciete ettt 489
TSMArtFEtChOPLONS ClaSS. .. eueveeeteieiesieee ettt s 489
MEIMDEIS oot 490
PrOPEItIES cveieieie e 490
L E=T o1 =Y = o oY Y 491

[ VZCY oo Q= oY oT=T 5 Y2 491

PrefetchedFields Property...

SQLGetKeyValues Property... ... 492
TYPES s ... 492
TAfterExecUteEVeNnt ProCedUrE REFEIENCE -«  te ettt ettt e 493
TAfterFetchEvent ProCcedUre RefEIrENCE .« i ettt ettt ettt e e 494
TBeforeFetchEvent Procedure Reference........ ... 494
TConnectioNnLOStEVENt ProCedUIe REfEIENCE. ..t vttt ettt e 495
TDAConnectionErrorEvent ProCedUre REfEIrENCE. -« i i ettt ettt et e 495
TDATransactionErrorEvent ProCedUre REfEIENCE: .« . t ittt e e 496
LR ] 11 ] (o] TSR =Y ARSI 496
TUpdateExecuteEvent Procedure REfErENCE . ....oivevrrieiiiiicieciciectc e 497
ENUM ETratiONS eecrenttmmmmmiimmmmenmemitetnnmnimmenmocenmonenmemmesetsesstsesnseeessensememsesemsenneeeinentisnisesisiemstistetissnismentssenmarsstatassanss 497
R o= L= A = 1O 100/ =110 o PP PO PRPURPPPPNE 498
TRefreshOpPtion ENUMEIatioN .......ovoveveuiiieeciiieicsteee ettt 498
LR A oo o = U4 =Y = 1o OO OR 499
Variables
BaseSQLOIABENAVIOr Vari@bIe........cc oot e e e e e e e e e e e e e nnnee

ChangeCursor Variable. ... .o eeeiieeee e
SQLGeneratorCompatibility Variable....
B T 11 L= 4010 7 1 - PPN

ClASSE@S rerrerrermsrmarmaticiritiiratatnrse et na et ta st s s e et aa e aanaaEaa R R RaEeaRaAEEEEEEaNSRARASERSEERTRNRRSTRTRRtaRTaTnnTnanan
TAttribute Class
Members

Properties
AHFHDULENO Property - ee e
DataSize PropertY - e eeeeeeiieieei s
DataTy P PrOPEItY - eeeeeieeiee e
LeNGth PrOpPEIrtY o e s
ODJECITYPE PrOPEITY . cveeieveeeietetcte ettt e b et eae e
OFf St PrOPEITY e eeeieett et s
[T L= . 0T 0= o
SCAIE PrOPEIY.  eeseeiee et
SIZE PrOPEITY «eeetieteii e

QLIS o] o T =TSRt

Members

Properties
AsString Property.
ASWIAESEING PrOPeIty. eoeeeeeiieie e
ISUNICOAE PrOPEITY- -« e eeeteeieeie et
SIZE PrOPEITY «eeetieteii e

=Y (T LN
ASSIGN MEENOA- -+
[0 1=T = 1YY { 5T o R

© 2019 Devart



XIv PostgreSQL Data Access Components

LoadFromFile MEtNOD. ... .ocveveieieiii i 516
LoadFromStream MEthod. . ....couvririiiiiiiccir e 517
ReAd MENOA i
SaveToFile Method
SaveToStreamM MEthOT. ... ..o et s 519
TruNCate MEtNOM. ... vevieiicieie s 519
WIS MEENOT et 520
TCOMPresSSEABIOD ClassS ...  ueurrieeiuiieiisie et e 521
MEIMDEIS oottt 522
PrOPEItIES cveieieie e 523
(000 o YSToT =Y I T =Y 2R 524
CompressedSize Property .. ... 524
L1210 =T =TRSO 525
MEIMDEIS oottt 525
QLY 100172 = T = TN 526
MEIMDEIS oottt 526
TObjectType Class.... ... 527
MEIMDEIS oottt 527
PrOPEItIES coeieieie e 528
F o0 L= @ oYU g o) o =Y o £ RO 529
Attributes Property(INAEXEr).....oeweurieeeiiieieeie et 529
(1= Y] oY o o] oT=T o Y 2 530
SHZE PrOPEILY veveeiiieiieie s 530
Y 7= g o PP 531
FINdARIIDULE MENOD. ..o eeeee e 531
LIS = 1= [0 o)=Y ol A =TRSO 532
MEIMDEIS oottt 533
PrOPEItIES coeieie e 533
REfCOUNE PrOPEITY «vouveeeieiiete ettt 534
Methods .o
AddRef Method
RelEaSE MEthOM. ... veveiiiiiicie e 535

TYPES  reecereeserresenresaensnn e A A AR R AR A A AR s s s 536
TLOCAEEXOPHONS SEL..veueveeeuiieeiticictise ettt be e 536
TUpdateRecKinds Set..

ENUM ETratiONS eecrenttmmmmmiimmmmenmemitetnnmnimmenmocenmonenmemmesetsesstsesnseeessensememsesemsenneeeinentisnisesisiemstistetissnismentssenmarsstatassanss
TCompressBIObMOdE ENUMEIAtION. ... cviueeetiieieiteietes ettt 537
TCoNNLOStCAUSE ENUMEIALION. ... cveeeiiiiiti ittt 538
TDANUMETICTYPE ENUMEIAtION... o v veeeeteieieetiicie ettt e 539
LI To= 1 (= S @ o Te T = U 4 =Y = e SRS 540
LS LT T2l = 1000 =Y - 1111 OO 540
TUpdateRecKiNd ENUMEIAtIoN. ... .ovoveveiieieeeieieescee et 541

12 MemDS ...
Classes
TIMEMDALASEE ClaSS -+ +eeeeuurreeieiieiie ettt e e e e et e e e e s et e e s e ae e e e e e s b b e e e e ssr e e e e e s bae e e e s e aar e e e e e s reneeenannes 542
Members
Properties
CachedUpdates ProPerty.......cocoiiueiiieieiiicic et 547
INAEXFIEIANAMES PrOPEItY. . .cveiveietiietietcieie e 548
KEYEXCIUSIVE PrOPEItY-....oveveieiiiiietiiei ettt 549
LoCalCoNSraints ProPerty.......coviveieiiiiciiitiietie e 550
Localupdate Property -« . oeoiriiriiiiiiieiieieie s 550
Prepared PrOPeIty. ..ot 551
RANGEA PrOPEITY .. v cveieieitiiete e e 551

© 2019 Devart



Contents XV

UpdateRecordTypPes Property.......ooiiieieiiiiie it 552
UpdatesPending PrOPErtY ... oocviveeruesieeitiieie ettt 552

Y Y T Yo £

APPIYRANGE MENOT. ..
ApplyUpdates Method........coouiiiiiiiiiii e
ApplyUpdates Method...
ApplyUpdates Method........coouiiiiiiiiiiic e
CancelRanNge Method. ......ooveiiiiiiiii
CancelUpdates Method. .. ... v
CommitUpdates MEthod. .. ..eevreieiiiee e
DeferredPost MEthOd. ......c.ooviiiiiiiii i
EditRaNgeENd MEthOd .......veviiiiiiii
EditRangeStart Method. ... .ocvveiieier
GEtBIOD MEEhOT. ... veeveeieieiee s
GetBlob Method...
GEtBIOD MEEhOT. ... veeveeieieiee s
o o= (=111, =1 1 o o Y
o o= (=111, =1 1 o o Y
o o= (=111, =1 1 o o Y
LoCateEX Method ... cve i
LoCateEX Method. ... cve i
LocateEx Method...
Prepare Method. ... oo

RestoreUpdates Method . ......ooveviveiriiicicieiete et 569
RevertRecord Method........oo i

S T= V=Y o) 1Y I =1 1 o T R

S T= V=Y o) 1Y I =1 1 o T R

S T= V=Y o) 1Y I =1 1 o T R

SetRANGE MEthOd. . o veeiieiiei

SetRaNGEENT MELhOD. ... o veeiiieiieii e

SetRangeStart Method
UNPrepare Method .. ...eo i
UpdateResult Method. .. .ovveieeiieie
UpdateStatus Method. ..o

oY =Y 0] (= PPN

ONUPateErTor EVENT. . v eieeiieiee s
ONUPAtERECOIT EVENL....oueieeiiiciiieeeie ettt 577

DoNotRaiseExcetionONUAFEIl VariabI ... ... voveieireeieeiieiieeie s 578
SendDataSetChangeEventAfterOpen Variable.........ocoeviueiciiiiiiiice et 579

13 PgAccess

TCUSIOMPYDAtASET ClasSS. - veeueeureiitiiiitiiti et
=T 00T N
PropPErtiES oo s

[T =T 0Tl . o o =Y P
DMLREFIESN PrOPEItY - ceveeieeiieieei s
FRICHAI PropertY - eeee e
KEY SEQUENCE PrOPEITY. .. veviiiiiitiitiitieiieii e
LastiNSErtOID PrOPEIrtY-« . e ueetiaieeiieie et
OPHONS PrOPEItY .. e evieeieiieieie it
Params PrOPEIty - co  eeeeiee s
SequenceMode Property...
UpdateODJECt PrOPEItY. ... oveviiiitiiiieii s

© 2019 Devart



Xvi

PostgreSQL Data Access Components

Y=g o PP 604
CreateProCCall MEthOT. ... ..oiveiee it s 608
FINAPAram MEEROG. .-« eeureeeeee e n e e e e enee s 609
GetPgCursor Method ... 610
GetPgDate Method .. ..coveuiiiiiiiicii i 610
GetPGINtErvVal MEtNO. ... . eueeeeicieicete et 611
GetPgLargeObject MEtNOd. ... . cviveeeieieiictcetc et 611
GEtPGROW MEtNOM. - eveevenietiicie sttt 612
GEtPGTIME MEthOM ... - cveeeeieieicie et 613
GetPgTimeStamp Method ......c.oouiiiiiiiii 613
(@] o= 01N L= 1Y = T T RS 614
ParamByName Method ... 614

TCUSOMPYSIOrEAPIOC ClASS - veuveverereereieeieiteieete sttt et b e a e b a e s s 615

MEIMDEIS oottt 616

PrOPEItIES cveieieie e 625
(@ V7= o= o I T oY= RS 629

Methods
ExecProc Method
Prepar@SQL MEthOd. .. .. veveveieieiicieie et 634

TCUSLOMPYTADIE ClASS. - veveuerteeeueiteieie ittt b et b a e ae s 635

MEIMDEIS oottt 636

PrOPEItIES oo 645
LiMit PrOPEItY «oveeveeieeiieiiieee s 649
(0§ Y=Y B o o =Y 2SR 650

TCustomPTIMEStAMPFIEId ClasS. .. v veueruerrieieeieieeiee et 650

MEIMDEIS oottt 651

PrOPEItIES coeieie e 651
ASPGTIMESTAMP PrOPErty . . coveoviiiiiitiiie e 651

TPgConnection Class

Members

Properties
ConNECtioNTIMEOUL PrOPEItY ... e overeieeeii ettt e 658
DAtabase PrOPEITY ......coviverieuiicieiteiete ettt 659
OPONS PrOPEItY . ..o cveeuieiieieie it 659
Passw ord Property... .... 660
POt PrOPEItY «oveoieeieeiieie s 661
ProCESSID PrOPEItY .. eueveseeteieteiteiste ettt e 661
ProtoCOIVErsion PrOPEIty.......ccooiiuiiiiiiiiiiiiiiieie i 662
o] 0110 I oY YOS 662
SEIVET PrOPEIY .o veviitieiieieie it 663
SEIrVErVErsion PrOPEIY....ccvoeeetiiciisieectes ettt 664
ServerVersionNFUll PrOPEITY ... .ccououcrieeeiisciesectc et 664
SSLOptions Property
USEINAME PrOPEItY . eereeiieie ettt

Y 7= g o PP
BreakEXeC Method.......coveiiiiieeece s
CreateDataSet Method. .......ooviuriiii s 668
CreateMetaData Method... .... 669
(0= 1 (=SS @ IR 1Y =] g Yo o PPN 669
CreateTransaction MEtho.........ov i s 670
GEtROW TYPE MENOM. .-+ vttt e 670
GEtROW TYPE MENOM. .-+ vttt e 671
GEtROW TYPE MENOM. .-+ vttt e 671
ReleaseSavepoint MEtNOG ... ..coviviiriiiciitiieie e 672

© 2019 Devart



Contents XVII

RollbackToSavepoint Method........covviieiiiieiiee e 672
SavepPOINt MEtNOA -« v

StartTransaction Method
StartTransaction Method
StartTransaction Method

Y=Y (=
ONNOLICE BEVENL - eeeeeeieeeee e
ONNOLIfICAtION BVENT «.eiiiieeiiie e

I @0 T =T o 1o T T o i) E =T

Y=Y o=

PrOPEItIES cveieieie e
ApplicationName Property... ... 682
[0 =T Y=Y B o o =Y RS 682
L E=T o1 =Y 07 I o o oY Y 683
EnableCompoSteS PrOPErty .. ....cuervererieiitiietisieic sttt 683
EnableDomains Property
EnableFMTBCD Property
EnableGeometrics Property
EnablePgTimeStamps Property .......coooieieiiiiiiiciii 685
IMMediateNOtICES PropeIty......cooviviiuiiiiiiiiiieieie e 686
Y=Yy Te o o] 1= 686
MeSSagESCharset PrOPErty .. ...ooerueuerieiitiieti ettt 687
USEUNICOAE PrOPEItY .. c.viuviiiiiiiiti ettt 687

TPGCoNNECtONSSLOPLONS ClasSS. .. veeeuererurrieieeiiiteisie ittt a e eae s 688

Y=Y o= 688

PrOPEItIES oo 689
CACEIT PrOPEITY. . cve vt 689
CErt PrOPEItY «vooveeiiieieiieie e 690
[070) 1= Y = o o= YOS 690

Key Property
Mode Property

I [T o T o =T
MEIMDEIS oot
PrOPEItIES cveieieie e

AsCursor Property.... ... 693

TPGDAtaSEetOPtONS ClASS .. vruvrveeereitereiie ittt sttt er et b e s ae s 693
MEIMDEIS oot 693
PrOPEItIES oo 697

AUtODEIEtEBIOD PrOPEItY. ... v oveeeiteeeie ettt 701
CacheBIODS PrOPEItY....ccciveiieiiiiiiiii e 702
CUrSOrWIthHOIA PrOPerty. . .oveoveveieeesieeeies ettt e 702
DeferredBIODREAd Property.........ovovrieiieiiiiieicsiee et 703
DistinctParams Property.
EN@DIEBCD PrOperty. .. .o veoveiiiiiiiti ittt
L T ol Y = T Yo=Y 704
ExtendedFieldSINfo Property........ocoeiiieiiiieiescc et 704
O]y =Y (T o] o =Y o £ 705
OIDASsINt Property........c.ovveeene ... 705
PrepareUpdateSQL PrOPErty .. ....voveerieieiiieiesieie sttt 706
SetEMPLY SrTONUI PrOPEItY .. cveveiereiieeetesieiesee sttt 706
UNKNOW NASSHIING PrOPEItY .. cveiveeetesieieitiiete ettt 707
Unprepar@dEXECULE PrOPErty.......covruerieeeiiieicsieie ettt 707
[0 Y= o= =T 0] 7o T=T R o] 1= 708
QL0122 e= 1 LT o= =T O N 708

© 2019 Devart



XVill

PostgreSQL Data Access Components

Y=Y o= 709
Q022 (=Y =Y o =T N 709
Y=Y o= 710
PrOPEItIES coeieiieie e 710
ASPGDAE PrOPEItY....cueiveuecteieetiiteceis sttt 711
TPgEncryptor Class
Y=Y o= 711
TPGGEOMELICHIEIA ClASS. -  veuerreeeueiteeeie ittt ettt a e eae s 712
Y=Y o= 713
PrOPEItIES cveieieie e 713
ASPGGEOMELIIC PrOPEItY. .. eevetititiitiiiet et 713
TPGINtErVAIFIEId Class -  veevreerririiisie e
Y=Y o=
PrOPEItIES cveieieie e
AsPginterval Property...
I = T 1= o)1= o 0 T
Y=Y o=
PrOPEItIES coeieieie e
CONNECHON PrOPEITY - vveuieiieieiii ittt
TPgLargeODbJECtFIEld Class .. t urriiririiesie i
Y=Y o=
Properties .o
AsLargeObject Property
I = = 1= e T T
Y=Y o=
I = = 0T
Y=Y o=
PrOPEItIES coeieie e
ASPGDALE PrOPEItY . e seetiestieiieitei e
ASPGINtErVal PrOperty....cceveiiiiiiiii i
AsPgTime Property
AsPgTimeStamp Property
I = = 100 ST O T
Y=Y o=
PrOPEItIES oo
teMS Property (INAEXEI) .. veoveueveieiiieie ettt 733
TPGQUETY ClASS --veuveueteeeteitiiieteitete sttt sttt e b s e b e e b e st e e b s e b e b e e e se s e eb e e ne e eaeeen 733
Members
Properties
= od gV AN [ o] =Y o 748
(oo 1Y oY [Y1 = o] o= o £ 749
UpdatingTable ProPerty.......coveveriiiieiesieie ettt 749
TPGSQL ClASS - veuveuerteieteitiuiete ittt sttt st sttt s bbb e b e b b e bt e s e b e b e e Rt b e a e e s 750
Y=Y o= 751
PrOPEItIES coeieie e 753
CommandTiIMEOUL Property ... ..ooveiiiiiiiiiiiieee 755
Connection Property
LastinsertOID Property.
Params ProPerty .. .oeoeeieiiiiieie s
Unprepar@dEXECULE ProOPerty.......ocovrerieeeiiieiisiec et 757
[0 Y= o= =T 0] 7o T=T R o] 1= 758
Y73 g o PP
[T |e= 1= 0 0 1Y 7=Y 1 oY OO P PRSP
ParamByName Method

© 2019 Devart



Contents XIX

L TS =Y [ o To =TT SRR 760
MEIMDEIS oottt 761
PrOPEItIES coeieiieie e 770

CommandTimeout Property e 775
(oo 1Y oY 1Y o] o= o £ 775
StoredProCNaME PrOPEItY .. ..cieiviiiiiiiiieciieic 776

L L= ] (=3 =TT OO 776
MEIMDEIS oottt 7
PrOPEItIES cveieieie e 786

= od gV AN [ o] o =Y 791
(oo 1Y oY 1Y o] o= o £ 792
OrderFields Property. e 192
TabIENAME PrOPEItY.. e cveeeueieeeieeicie ettt 793

L L= 1= (o O TSR 793
MEIMDEIS oottt 794
PrOPEItIES coeieieie e 794

AsPgTime Property.... ... 795

TPGTIMESAMPFIEIA CIASS. - v veueveeeteieieste ettt s 795
MEIMDEIS oottt 796
PrOPEItIES coeieieie e 796

ASPGTIMESTAMP PrOPErtY ... o oveoveiiiiiii e 796

L L= L4 T2 T3 (1o T =TRSO 797
MEIMDEIS oottt 797
PrOPEItIES oo 799

ISOIAtIONLEVEl PrOPEITY.. . it eeeeeieeictiiete et 799

TPGUPAALESQL ClasS . veueeveeeueieeiteiieiesie ettt ettt a e s st b e s ae e be e s b e be et 800

MEIMDEIS oottt 800

TYPES  reecereeserresenresaensnn e A A AR R AR A A AR s s s 802
TPgNoticeEvent Procedure REFErENCE. ... .vouvivrieiteieii ettt 802
TPgNotificationEvent Procedure Reference... . 802

ENUM ETratiONS eecrenttmmmmmiimmmmenmemitetnnmnimmenmocenmonenmemmesetsesstsesnseeessensememsesemsenneeeinentisnisesisiemstistetissnismentssenmarsstatassanss 803
TPgIsolationLevel ENUMEIatioN. ........coveriieeeiiiciesieete ettt s 803

CONSLANES  crcentecemmuiunmanictemmenmmennmecenmemaemensesenneneeenneesnenssnmsseemstioeeesneetienietenmeremeiiesetsseiteatecentatesmatsesatsernsaernsacans 804

[ o1 Y=Y Yo T €T 3 - 1| R 804

L T o Y= (- 805
ClASSE@S rerrerrermsrmarmaticiritiiratatnrse et na et ta st s s e et aa e aanaaEaa R R RaEeaRaAEEEEEEaNSRARASERSEERTRNRRSTRTRRtaRTaTnnTnanan 805

L oA (=T LT TN 805
=100 0= =TSO P OO PO PP UPPTUOPPTRPI 806
PrOPEILIES eoeeeeieeie bbb 807

EVENES PrOPEItY . o eeveeiieiieiitiie s 808

731 o Yo L= OO U UPTRRN 808

SENAEVENT MEINOM. -+ et e e ee s 809

SENAEVENT MEINOM. -+ et e e ee s 809

SENAEVENT IMENO- ettt ettt ettt e eae e e et e e sne e st e e sneeean 810

(=YL= 1= TN 810

ONEVENT BVENL -+ttt ettt s et e et e e bt e e eae e e e ate e e nbe e e sareeaaneeeas 811

BT o 104 - Tt Y Y 811
ClaSS @S  rerrerrrsrmsrmamrasrcrmrmasrasrasrnsnssnasras s rna s rassnasna et ras s naanaarasraERaERaRRRREREERRERRRRSERSEESSTERERSERSTREESRTRSERSTRaTEn 812

L LT =T =R 812
Members
Properties

£ =1 L= o] 0111 2O 814
ENUM erationNs - s s s s e e e e e n e a e e a e R ananararnaanannnnnnnnnnnanns 814

© 2019 Devart



XX PostgreSQL Data Access Components

TProtocolVersion ENUMEIAtioN. .......cocviuriiiiiiiiiiicc st 815
SIS Yoo [ = T T2 = = 11 o OO PRSP 815
BT e T0To 4 T 7= e3 4 T o 2o T IS 816
ClASS@S rerrerresreermatmaticiritittatarerne et ra st na ettt st aa e et aa e aanaaRaaE R e RN EaRaARREREEaNSRARRSEREEARTENRRSERSTRaRtaRTRTnnnnanan 816
TPgConnectionPoolManager Class....
1Y/ 12 1= TN
A7 PODACVC ... e e aaaa
ClaSS @S  rerrrerrrrmsrmsrmasreirmsmasrasrssrnsne st rssrna s ra s s s s e ra s aaane R ERERaERaRERREEEEaEERRRESERSEESSTERERSERSTREESRTRSERsTRaTen
TPGCONNECIDIAIOY ClASS ... vevveuietieitieti et
7= 00T N
Properties
Connection Property
Databaselabel PrOPErtY....... .o s 822
POrLADEI PrOPEITY .. oveveieiietcicicctcete et 823
ShOW DatabasSe ProOPErty........cccueririiieiiiiiiiccitcistc ettt 823
SNOW POt PrOPEITY .. cueveeetiiteeitc ettt 824
R T o 10T T 1«
CIASS @S -cvrrsuncnnnsauansssssnnssnsansnssnsnssastssnsnsssnssnsnsssnnsnsssnnnsssnssssnssssnsnnsnssnsnnsnsssnnstssssssssssssnsnsnnsnnnnsnstssnnsnsnnnsnnnnnnnnann
TPgDump Class
Members
Properties
Y 0T T30 o] o= o R 829
ODJECITYPES PrOPEITY . .vvveueieieiticieteste sttt s 829
(@] 0] 0 g ToTl = 1] o T=Y o 2O 830
SCheMANAMES PrOPEITY .. cvoveeitiiieteite ettt 830
TPgDumpOptions Class ... 831
Y=Y oY= =SSOSR PRSPPSO 831
o 0T =Y o 7= OOt 832
CreateConstraints ProPertY........ovvriieiieinccscees e 833
Types .......................................................................................................................................................... 833
TPGDUMPODJECES SO+ veuvveiietiiieiiticieies et e a s b s a e b ae 833
ENUM E@TratioNS «reerererrriiiiiiiiiii s e e s s s s e s r e s r e s s s e s e Ea s N AR raE R raERrarRRsaraR e ranarannn 834
TPGDUMPMOAE ENUMETALION. 1+-+rveveveieteiteeetesiet sttt a b st ae e ae et 834
TPgDUMPODJECT ENUMETALION ... v evveviieteiceetctet sttt 834
L T o |
ClaS S @S eecemtocenmananmanmesennennnsennseesnssnsssensessnsessssessesssssnsssssnssssssssssssssssentstesisssimeiieseissstsessesetatsiatsesatserssernsacans
o o0 5 = L
MEIMDEIS oot
PrOPEItIES coeieie e
CallStaCK Property.. . ueuieieeiieie e
DetailMsg Property.....
ErrorCode Property
FIENAME PropPeIty .. ee i
HINE PrOPEILY oo
LINENUMDET PrOPEItY. .. vevetiiiiiiti ittt 840
POSHION PrOPEItY .. coveeueeiiiiiiee s 841
ProcedureName PrOpEIty...... .ottt 841
Severity Property
ENUM ETratiONS eecrenttmmmmmiimmmmenmemitetnnmnimmenmocenmonenmemmesetsesstsesnseeessensememsesemsenneeeinentisnisesisiemstistetissnismentssenmarsstatassanss
TPgSeverity ENUMEIAtioN ... vo veieeiieiei e
I e 1 e - e - SRR
ClASSE@S rerrerrermsrmarmaticiritiiratatnrse et na et ta st s s e et aa e aanaaEaa R R RaEeaRaAEEEEEEaNSRARASERSEERTRNRRSTRTRRtaRTaTnnTnanan

© 2019 Devart



Contents XXI1

Lo T2 =Y =TRSO 844
MEIMDEIS oottt 845
PrOPEItIES coeieiieie e 846

BufferSize Property .. ... 847
[0 0] 800 0T = e o= RS 847
CONNECHON PrOPEITY - vveuieiieieiii ittt 847
OPtONS PrOPEItY . .o cveeuieiieieie s 848
TableNAME PrOPEItY......ccveiieiiiiiiiiiiti e 848
B3 G 1Y T (=N o o =Y YRS 849
BV ENES e 849
ONGetColumMNDAta EVENT .. .coveiiiieiii it s 850
OnPutData Event

0|0 T= o LT o 13 g N O T
MEIMDEIS oottt
PrOPEItIES cveieieie e

ROW TYPENAME PrOPEItY.....cveveeeitiietisicieetiete ettt 852

TPgLoaderOptions Class
MEIMDEIS oottt
PrOPEItIES coeieieie e

BUFfErSIZE PrOPEItY ... cviveietiieiesicete et 854

QUOLENAMES PrOPEITY. . ueeuveieiiitiiii ittt 855

B3 Q 1Y T (=N o =Y YRS 855

USEBIANKV aIUES PrOPErtY .. ..coveueivesieiesieiiitiiete ettt 856

21 PODJECHS ... e 856
[0 o o = L LT e LTt PPN 857

TCUStOMPGTIMESIAMD ClaSS - +eveueviieieiteieti ettt 859
=Y 1 o= =P U P UPTRTN 859
0T oY= 1 =Y OO 861

AsDateTime Property.... .... 862
ASSQLTIMESLAMD PrOPEItY...ceoviveiesiiiietcie ittt e 863
ASSHNG PrOPEITY v eeveueieeieiiiee et 863
[T Eo . o] o= 4 OO 863
HaSTIMEZONE PrOPEItY.....coveviieiiitiieteiei ettt 864

Isinfinity Property
IsNeglnfinity Property

ISPOSINFINItY PrOPEItY...veeesiietiiteietie e 865

TICKS PrOPEITY - veveutiteieete ettt 866

TIMEZONEOFTSEE PrOPEItY <. eueveveteieieietce ettt 866

11 o Yo LS PTRRN 867

ASSIGN MEENOM. .+ vt s 868

(00T 4'oT=T =301 =3 (T Yo SRR 868

[0 =Yoo 10 [=1 D= | (=117 L4 0 USSR 869

DecOdeDateTIME METNOMT - veeureemteeieieiie ettt ettt ettt ettt ettt e se e e e ene e e e snee st eenneenaeeneenees 869

DECOAETIME IMEENOM: -ttt et e ettt e e ettt e e e e e e e e s e s et s ea e e e e e e aeeeeeeeasannenenenneeeees 870

[ gTeTe o L2121 (=1, = L4 2o USSR 871

ENcodeDateTime MEEHOM: -« - eeeeree ittt sttt et sr e et e et esteeeane 872
EncodeTime Method..
TPGAIDULE Clas S« - veeueeeneeaiieeie sttt
1YY 000 =) =Y
0120 T
1YY 000 =) =Y
e 0] =T 1= N
LOW ErLEFt PrOPEItY . ceoeeeieeieeii s
UPPErRIGNE PrOPEITY. .. cueveeietiieiiiiete et

© 2019 Devart



XXl PostgreSQL Data Access Components

10T o] Y =TS 877
Y=Y o= 878
PrOPEItIES coeieiieie e 879

(0= (=Yl = o oY YRS 879
RAIUS PrOPEITY .. cveeveeuieiiiicieiei s 880

TPgDate Class
Members

Q101 7= o0 =1 g o = TN 882
Y=Y o= 883
PrOPEItIES cveieieie e 883

ASSEING PrOPEITY..veveeeiteeieieceei ettt 884
Y731 a o PP 884
ASSIGN MEENOM. ++n ettt 885

TPginterval Class
Members
Properties

ASSEING PrOPEITY...veveeeiteeieieciei et 888
[ Y2 o] =Y £ 888
Yo g g ToY T T =Y 889
SECONASFUI PrOPEIty. .. cveieieieiii ittt 889
Y 7= g o PP 889
Assign Method.... ... 890
(00T 0o T= [t =Y0 1V =1 1 3o e 1SRRI 891
=Yool [=1 101 0= Y= LY =1 1 T Lo PP 891
ENCOAEINIEIVAl IMEBINOM. -+ttt ettt ettt ettt et e e s e nb e ete e 892

10 =Y T 0 =TT 893
Y=Y o= 894
PrOPEItIES coeieie e 894

oL oY g1 o] o= o 895
RS (T 0T B o o= 2R 895

TPgPath Class
Members
Properties

COUNE PrOPEITY - vevieti e 898
[0 o TT =T o= T o] =Y o 898
POINES PrOPEItY. . e veeveeiieiieieieee s 899

TPGPOINE CIASS. 1+ -veuveuerteieteiteaiete sttt sttt sttt e a e bbb bt s e bt e e se s b e a e e nn 899
Members
Properties

D o] o =Y OSSO PO 901
Y PrOPEITY oot 901
Y 7= g o PP 902
ASSIGN MEENOT. 1 +v ettt 902

Q10| o CoY AN = VA =T O N 903
Members

TPgPolygon Class
Members
Properties

COUNE PrOPEITY - vevieeieiiei e
POINES PrOPEItY. .. veeveeuieiieiit it

I O =T T O
Y=Y o=
PrOPEItIES cieieiieie e

CursorName Property

© 2019 Devart



Contents XX

I 0T 0o T e
MEIMDEIS oottt
PrOPEItIES coeieiieie e

ASSEING PrOPEItY. e
AttrASPgBOX Property (INAEXEI).....cveivieviiiieiiiieieii i
AttrAsPgCircle Property(Indexer)......
AttrAsPgCursor Property(Indexer)
AttrAsPgDate Property (INEXEr). . e uiieriiiiiiei e
AttrAsPginterval Property (INdeXEer)........coveieieiiiiiiiii 916
AttrAsPglLargeObject Property (INAEXEr)......ccevieiiiiiiiiiiiiiiiiice e 916
AttrASPgLSEg Property (INAEXEI).......oveveieieeieiieiesieieeie sttt 917
AttrAsPgPath Property (INAEXEr) .. cviveeeieiiieieeiesieceeie et 917
AttrAsPgPoint Property (INAEXEr) ... v veerieeeieieeiesieieeie st 918
AttrAsPgPolygon Property (INAEXEr) ... .o ettt 918
AttrAsPgRow Property(Indexer)... .. 919
AttrASPgTIME Property (INAEXEr)-. . v iveueeieieieiieiesieeeie s 919
AttrAsPgTimeStamp Property (INAEXEr)-....covuvivereieieeiisicesecee et 920
ALrISNUIl Property (INAEXEI) . veueeveeeieieeiesieieeie sttt 920
AttrValue Property (INAEXEI) .. ..ceveurieeiiieeeie st 921
Lo Y7 0T o] o= R 921
Y 7= g o PP 922
Assign Method.... ... 922

L 0o 77 L= =TT OO 923
MEIMDEIS oottt 923
Y 7= g o PP 924

[T ] 0= =L o o P PP 924
[T ] 0= =L o o P PP 924
[T ] 0= =L o o PSP 925

TPGSQLLArgEODJECE ClasS. . v uveureuritiiiitiitiiti ettt 925
Members
Properties

Cached Property
CONNECHON PrOPEITY - vveuieuieiiiii ittt 929
(@10 = oY oT=Y 5 YOS 930
Y 7= g o PP 930
(0210 TS1=Y0 o)=Y 1V =Y 1 3 To e 1SR 931
CreateODbJECt MEtNOM ... v eueieeeie ettt e 932
OpenObject Method ... 932
ReadBIOD MEHOT. .. .cveieeiiiiicic b 933
UNIiNKODJECE MEENOT. .-+ v-veveteieiestceie e 933
WIEBIOD METNOM. « -+ vttt 933

L L= = OSSO RSS 934
MEIMDEIS oot 934
PrOPEItIES coeieie e 936

TIMeZOoNEOFfSEt PrOPErty .. coeiveiieiiiiticieeie e 937

TPgTimeStamp Class

Members
272 o o 1T o2 1 o
ClASSE@S rerrerrermsrmarmaticiritiiratatnrse et na et ta st s s e et aa e aanaaEaa R R RaEeaRaAEEEEEEaNSRARASERSEERTRNRRSTRTRRtaRTaTnnTnanan

TPGSCIIPE ClASS +-veuvnvtetereietetee ettt e b ettt b e e b et b et s et 940

=100 0= =TSO P OO PO PP UPPTUOPPTRPI 941
22 N o 15T O ]I oo 11 o T 943
ClaSS @S  rerrerrrsrmsrmamrasrcrmrmasrasrasrnsnssnasras s rna s rassnasna et ras s naanaarasraERaERaRRRREREERRERRRRSERSEESSTERERSERSTREESRTRSERSTRaTEn 943

© 2019 Devart



XXIV PostgreSQL Data Access Components

L TS T o o) @ =TRSO 943
=100 =Y =P 944
24 VirtualDataSet ......c..ooeuiiieiiieiie e e e e e e s ra e e n s rnaas 945
ClASS@S rerrerresreermatmaticiritittatarerne et ra st na ettt st aa e et aa e aanaaRaaE R e RN EaRaARREREEaNSRARRSEREEARTENRRSERSTRaRtaRTRTnnnnanan 946
TCustomVirtualDataSet Class ... 946
=Y 000 Y=Y = P EPPTPPRPN 947
TV IrUBIDATASET ClaSS - uuuunerertteeeeeee et ettt e e e e e e e e e e s et e e et et e eeae s e s e s babaee e et et eeeeeeeesa s nnnneneeeeeeeeeeeeeeenn 950
=Y 000 Y=Y = P PPPPPRPN 950
TYPES e s 953
TONDeleteRecordEvent ProCeaUIre REfEIrENCE -« e i teiieeeitiee ettt et e st e e et e e e s neae e e e steeeeesannees 954
TONGetFieldValueEvent ProCeaUre RefEIENCE. .« e reeieeiiiieeeetiee ettt e et e e st e e e s seeeeeesnneeeeeeesneeeesannees 954
TONGetRecordCountEveNnt ProcedUre REfEIrENCE . i eeieeeieieeeeitiee ettt et e e e et e e e s neee e e e eeneeeeeannees 955
TOnModifyRecordEvent Procedure REfErENCE........cviveiiiiiciiiiieiice 955
B2 I T (1T T I 1 = 956
ClaSS@S rrrrerrrsrmsrmarrasinirmrmssesresrnsns s rasrnsrna s ra s s s na e et a e naanea R raERaERaERERREREESREEREESERSEESRTERERSERSERSEEaRTRsERTRaTen 956
TVIFUAITADIE ClaSS «eenvveeurteauteaaieeeaitee et ee ettt e et ee e tee e et e e eabeeaateaaseeesabeesabeaesseesabeeaaseaassaeeabeesnseeaasseesnsaeaseaannn 956
=100 0= = T U RSO UP 957
o 0= 7= OO 960
DefaultSOrtTYPE PrOPEItY <. o voveeireieie ettt 961

Methods ~ ........

Assign Method
[0 Y=Y o0 0 w1 (=31 =L [0 o PR SURT USSR OUPNE 965

© 2019 Devart



What's New 1

1 What's New

26-Nov-2019 New Features in PgDAC 6.1:

e Android 64-bit is supported

e PostgreSQL 12 is supported

e OpenSSL 1.1 library is supported

¢ Now Trial edition for macOS and Linux is fully functional

22-Jul-2019 New Features in PgDAC 6.0:

e macOS 64-bit is supported

¢ Release 2 for RAD Studio 10.3 Rio, Delphi 10.3 Rio, and C++Builder 10.3 Rio is now
required

e TPgConnectionSSLOptions.lgnoreServerCertificatelnsecurity property is added

24-Jun-2019 New Features in PgDAC 5.4:

e Lazarus 2.0.2 is supported

e The pmAuto value for the ProtocolVersion property is added

¢ Now ProtocolVersion is set to pmAuto by default, which significantly improved performance

e Possibility to use function calls in batch operations is added

e The mVerifyCA and smVerifyFull options for the SSLOptions.Mode property of the
TPgConnection component are added

e The DefaultSortType property for TVirtualTable is added

¢ Performance of the SaveToFile/LoadFromFile methods of TVirtualTable is significantly
increased

26-Nov-2018 New Features in PgDAC 5.3:

¢ RAD Studio 10.3 Rio is supported
e PostgreSQL 11 is supported
e Support of UPPER and LOWER functions for Unified SQL is added

09-Jul-2018 New Features in PgDAC 5.2:

e Lazarus 1.8.4 is supported

¢ Performance of batch operations is improved
e Support for HTTP/HTTPS tunnel is added

e Demo projects for IntraWeb 14 are added

© 2019 Devart



PostgreSQL Data Access Components

19-Sep-2017 New Features in PgDAC 5.1:

e SSPI authentication is supported
¢ Processing GUID data type for the TGuidField class is improved

05-Apr-2017 New Features in PgDAC 5.0:

e RAD Studio 10.2 Tokyo is supported
e Linux in RAD Studio 10.2 Tokyo is supported
e Lazarus 1.6.4 and Free Pascal 3.0.2 is supported

25-Apr-16 New Features in PgDAC 4.7

e RAD Studio 10.1 Berlin is supported

e L azarus 1.6 and FPC 3.0.0 is supported

e PostgreSQL 9.5 is supported

e Support for the BETWEEN statement in TDADataSet.Filter is added

¢ A MessageCharset option in connection options is added

e Data Type Mapping performance is improved

¢ RepeatableRead and ReadUncommitted transaction isolation levels are added
¢ Performance of TDALoader on loading data from TDataSet is improved

09-Sep-15 New Features in PgDAC 4.6:

e RAD Studio 10 Seattle is supported

¢ INSERT, UPDATE and DELETE batch operations are supported
e Support of bit and bit varying data types is improved

e Now Trial for Win64 is a fully functional Professional Edition

14-Apr-15 New Features in PgDAC 4.5:

e RAD Studio XES8 is supported
e AppMethod is supported
e PostgreSQL 9.4 is supported

15-Sep-14 New Features in PgDAC 4.4:

e RAD Studio XE7 is supported

e Lazarus 1.2.4 is supported

e Demo projects for FastReport 5 are added

¢ The TCustomDADataSet.GetKeyFieldNames method is added

© 2019 Devart



What's New 3

e The ConstraintColumns metadata kind for the TDAMetadata component is added

29-Apr-14 New Features in PgDAC 4.3:

e Delphi XEG6 is supported

e Android in C++Builder XE6 is supported

e Lazarus 1.2.2 and FPC 2.6.4 is supported

e SmartFetch mode for TDataSet descendants is added

¢ Now update queries inside TDataSet descendants have correct owner
e The TPgDataSetOptions.MasterDetailNullable property is added

25-Dec-13 New Features in PgDAC 4.2:

¢ iOS in C++Builder XE5 is supported

e RAD Studio XE5 Update 2 is now required

¢ Now .obj and .o files are supplied for C++Builder

¢ Alist of available Charsets in TPgConnection at design-time is added

e Default charset detecting for Windows is added

e Compatibility of migrating floating-point fields from other components is improved

18-Sep-13 New Features in PgDAC 4.1:

e RAD Studio XE5 is supported

e Application development for Android is supported

e Lazarus 1.0.12 is supported

e Performance is improved

¢ Automatic checking for new versions is added

¢ Flexible management of conditions in the WHERE clause is added

¢ The possibility to use conditions is added

e PostgreSQL 9.3 is supported

¢ |Pv6 protocol support is added

e Support of the IN keyword in the TDataSet.Filter property is added

e |ike operator behaviour when used in the Filter property is now similar to TClientDataSet
¢ The possibility to use ranges is added

¢ The Ping method for the Connection component is added

¢ The AllowlmplicitConnect option for the Connection component is added

e The SQLRecCount property for the Query and StoredProc components is added
e The ScanParams property for the Script component is added

¢ The RowsAffected property for the Script component is added

© 2019 Devart



PostgreSQL Data Access Components

e The EnableDomains option is added for TPgConnection

e ConnectionTimeout is now used when disconnecting after connection loss

e The TPgTable.TableName and TPgStoredProc.StoredProcName property editors are
improved

25-Apr-13 New Features in PgDAC 4.0:

e Rad Studio XE4 is supported

e NEXTGEN compiler is supported

e Application development for iOS is supported

e FPC 2.6.2 and Lazarus 1.0.8 are supported

e Connection string support is added

e Possibility to encrypt entire tables and datasets is added

e Possibility to determine if data in a field is encrypted is added

e Support of TimeStamp, Single and Extended fields in VirtualTable is added

e Support for custom mapping of numeric fields with BCD and FmtBCD types is added

12-Dec-12 New Features in PgDAC 3.6:

¢ Rad Studio XE3 Update 1 is now required
e C++Builder 64-bit for Windows is supported

05-Sep-12 New Features in PgDAC 3.5:

e Rad Studio XE3 is supported
e Windows 8 is supported

23-Nov-11 New Features in PgDAC 3.1:

e Update 2 for RAD Studio XE2, Delphi XE2, and C++Builder XE2 is now required
e Mac OS X and iOS in RAD Studio XE2 is supported

FireMonkey support is improved

Lazarus 0.9.30.2 and FPC 2.4.4 are supported

Mac OS Xin Lazarus is supported

Linux x64 in Lazarus is supported

FreeBSD in Lazarus is supported

PostgreSQL 9.1 is supported

15-Sep-11 New Features in PostgreSQL Data Access
Components 3.00:

© 2019 Devart



What's New 5

e Embarcadero RAD Studio XE2 is supported

¢ Application development for 64-bit Windows is supported

¢ FireMonkey application development platform is supported

e Support of master/detail relationship for TVirtualTable is added

® OnProgress event in TVirtualTable is added

e TDADataSetOptions.SetEmptyStrToNull property that allows inserting NULL value instead
of empty string is added

28-Apr-11 New Features in PostgreSQL Data Access

Components 2.20:

e Lazarus 0.9.30 and FPC 2.4.2 is supported

e Application Name connection option is supported

¢ Payload parameter for PostgreSQL notification is supported (TPgNotificationEvent
changed: EventMessage parameter is added)

26-Jan-11 New Features in PostgreSQL Data Access
Components 2.10:

e PostgreSQL 9.0 supported

¢ Improved performance

¢ Improved table names detecting inside SQL queries for the UpdatingTable property

e Case sensitive schema name

e Checking that dataset is open on calling the TDataSet.Locate method

13-Sep-10 New Features in PostgreSQL Data Access

Components 2.00:

e Embarcadero RAD Studio XE suppored

e Support of ONLY lexeme in the FROM statement

e Support for dbMonitor 3

e Added OnStart, OnCommit, OnRollback events to TDATransaction

e Ability to lock records in the CachedUpdate mode

e Ability to send call stack information to the dbMonitor component

e Changed the LocateEx method behavior: now LocateEx centers records equal to Locate

e CursorWithHold option for TCustomPgDataSet to use FetchAll=False mode without
transaction

¢ Now Required flag is set for UpdatingTable fields only

© 2019 Devart



PostgreSQL Data Access Components

¢ Now the AssignConnect method copies transaction state

10-Sep-09 New Features in PostgreSQL Data Access

Components 1.20:

e Embarcadero RAD Studio 2010 supported

e Support for automatic starting a transaction when FetchAll=False

¢ FullRefresh option for TCustomPgDataSet

¢ The Disconnected property to TCustomDADataSet

e Distinction between empty string and null value when saving/loading string fields in
TVirtualTable

e The UseParamTypes option used to disable automatic detection of parameter types

¢ Now the value from the master dataset has priority over the DefaultExpression value

02-Apr-09 New Features in PostgreSQL Data Access

Components 1.10:

¢ Free Pascal under Linux supported

¢ DMLRefresh supported

¢ Added NoPreconnect property to TPgScript for executing CONNECT and CREATE
DATABASE commands

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

General Information

This section contains general information about PostgreSQL Server Data Access
Components

e Overview

e Features

e Requirements

e Compatibility

¢ Using Several DAC Products in One IDE
e Component List

e Hierarchy Chart

e Editions

¢ Licensing and Subscriptions

e Getting Support

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

General Information 7

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

2.1 Overview

PostgreSQL Data Access Components (PgDAC) is a library of components that provides
direct access to PostgreSQL database servers from Delphi, C++Builder and Lazarus (Free
Pascal). PgDAC is designed to help programmers develop really lightweight, faster and
cleaner PostgreSQL database applications without deploying any additional libraries.
PgDAC is a complete replacement for standard PostgreSQL connectivity solutions and
presents an efficient alternative to the Borland Database Engine for access to PostgreSQL.
The PgDAC library is actively developed and supported by the Devart Team. If you have
questions about PgDAC, email the developers at pgdac@devart.com or visit PgDAC online
at https://www.devart.com/pgdac/.

Advantages of PgDAC Technology

PgDAC works directly through TCP/IP protocol and does not use the PostgreSQL client
library. As data is transferred from socket to storage without additional buffers, the PgDAC
performance is kept on the highest level. Such technology helps to avoid restrictions and slips
of the pqlib library, use features of PostgreSQL backend protocol that are not implemented in
it. Also Devart PgDAC offers wide coverage of the PostgreSQL feature set and emphasizes
optimized data access strategies.

Wide Coverage of PostgreSQL Features

By providing access to the most advanced database functionality, PgDAC allows developers
to harness the full capabilities of the PostgreSQL server and optimize their database
applications. PgDAC features complete support of fast record insertion, Asynchronous
Notification, PostgreSQL sequences, the possibility to retrieve the last inserted OID value,
notices, and more. Get a full list of supported SQL Server features in the Features topic.

Native Connection Options

PgDAC does not require PostgreSQL client software installed what heightens its
performance. PgDAC-based database applications are easy to deploy, do not require
installation of other data provider layers (such as BDE), and tend to be faster than those that
use standard data connectivity solutions.

Optimized Code

The goal of PgDAC is to enable developers to write efficient and flexible database

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
mailto:pgdac@devart.com
https://www.devart.com/pgdac/

PostgreSQL Data Access Components

applications. The PgDAC library is implemented using advanced data access algorithms and
optimization techniques. Classes and components undergo comprehensive performance
tests and are designed to help you write high-performance, lightweight data access layers.

Compatibility with other Connectivity Methods

The PgDAC interface retains compatibility with standard VCL data access components, like
BDE.

Development and Support

PgDAC is a PostgreSQL connectivity solution that is actively developed and supported.
PgDAC comes with full documentation, demo projects, and fast (usually within two business
days) technical support by the PgDAC development team. Find out more about getting help or
submitting feedback and suggestions to PgDAC Development Team in the Getting Support
topic.

A description of the PgDAC components is provided in the Component List.

Key Features

The following list describes the main features of PostgreSQL Data Access Components.

¢ Direct access to server data without using client library. Does not require installation of
other data provider layers (such as BDE and ODBC)

e Full support of the latest versions of PostgreSQL Server

e Support for all PostgreSQL Server data types

¢ Disconnected Model with automatic connection control for working with data offline

¢ | ocal Failover for detecting connection loss and implicitly reexecuting certain operations
¢ All types of local sorting and filtering, including by calculated and lookup fields

e Automatic data updating with TPgQuery, TPgTable, and TPgStoredProc components

¢ Unicode and national charset support

e Supports many PostgreSQL-specific features, such as notifications, notices, and
sequences

¢ Advanced script execution functionality with the TPgScript component

e Support for using macros in SQL

e Lets you use Professional Edition of Delphi and C++Builder to develop client/server

applications
¢ Includes annual PgDAC Subscription with Priority Support

e Licensed royalty-free per developer, per team, or per site

The full list of PgDAC features are available in the Features topic.

© 2019 Devart



General Information 9

How does PgDAC work?

PgDAC connects to PostgreSQL directly without using client software.

In comparison, the Borland Database Engine (BDE) uses several layers to access
PostgreSQL, and requires additional data access software to be installed on client machines.
The BDE data transfer protocol is shown below.

Application BDE SOL Links 201 "Mat PasigreScL

BDE Connection Protocol
PgDAC optimal transfer route:

Application

PgDAC Connection Flow
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

2.2 Features
In this topic you will find the complete PgDAC feature list sorted by categories.

General usability:

e Direct access to server data. Does not require installation of other data provider layers
(such as BDE and ODBC)

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

10

PostgreSQL Data Access Components

¢ Interface compatible with standard data access methods, such as BDE and ADO

e VVCL, LCL and FMX versions of library available

e Separated run-time and GUI specific parts allow you to create pure console applications
such as CGl

e Unicode and national charset support

Network and connectivity:

e Does not require PostgreSQL client software and works directly through TCP/IP
e Disconnected Model with automatic connection control for working with data offline

e |Local Failover for detecting connection loss and implicitly reexecuting certain operations
e Connection timeout and command timeout management

e SSL encrypted connection support with OpenSSL and Devart SecureBridge

¢ Ability to search for installed PostgreSQL Server databases in a local network

Compatibility:

e Full support of the latest versions of PostgreSQL

e Support for all PostgreSQL data types
e Compatible with all IDE versions starting with Delphi 6, C++Builder 6, Free Pascal

¢ Includes provider for UniDAC Express Edition

e Wide reporting component support, including support for InfoPower, ReportBuilder,
FastReport

e Support of all standard and third-party visual data-aware controls

¢ Allows you to use Professional Edition of Delphi and C++Builder to develop client/server
applications

PostgreSQL Server technology support:

e Support for fast record insertion with the TPgLoader component

e Support for PostgreSQL Asynchronous Notification with the TPgAlerter component

e PostgreSQL sequences support

e Supports the possibility of retrieving last inserted OID value
e Advanced errors support

e Support for the PostgreSQL notices

PostgreSQL DataTypes:

e Support for PostgreSQL Protocol 2 and Protocol 3
e PostgreSQL Composite types support

© 2019 Devart



General Information 1

e PostgreSQL domain types support

e Full support of the DATE , TIME , TIMESTAMP , and INTERVAL data types
e Advanced LARGE OBJECT support

e Advanced support of the REFCURSOR type

e Wrapper classes for geometic types support

Performance:

¢ High overall performance

¢ Fast controlled fetch of large data blocks
e Optimized string data storing

¢ Advanced connection pooling

¢ High performance of applying cached updates with batches

e Caching of calculated and lookup fields

e Fast Locate in a sorted DataSet
¢ Preparing of user-defined update statements

Local data storage operations:

e Database-independent data storage with TVirtualTable component
e CachedUpdates operation mode

¢ Local sorting and filtering, including by calculated and lookup fields
¢ Local master/detail relationship

¢ Master/detail relationship in CachedUpdates mode

Data access and data management automation:
¢ Automatic data updating with TPgQuery , TPgTable , and TPgStoredProc components

e Automatic record refreshing and locking

e Automatic query preparing

e Automatic checking for row modifications by another user
e Support for ftWideMemo field type in Delphi 2006 and higher

Extended data access functionality:

e Separate component for executing SQL statements

¢ Simplified access to table data with TPgTable component

e Ability to retrieve metadata information with TPgMetaData component
e BLOB compression support

e Support for using macros in SQL

© 2019 Devart



12

PostgreSQL Data Access Components

e FmtBCD fields support

¢ Ability to customize update commands by attaching external components to
TPgUpdateSQL objects

e Retrieval of output parameters from stored procedures and functions

¢ Automatic retrieval of default field values
e Deferred detail DataSet refresh in master/detail relationships
e MIDAS technology support

Data exchange:
¢ Transferring data between all types of TDataSet descendants with TCRBatchMove

component
e Data export and import to/from XML (ADO format)
¢ Ability to synchronize positions in different DataSets

e Extended data management with TPgDump component

Script execution:
¢ Advanced script execution features with the TPgScript component

e Support for executing individual statements in scripts

e Support for executing huge scripts stored in files with dynamic loading

¢ Ability to break long-running query execution

SQL Execution monitoring:
e Extended SQL tracing capabilities provided by TPgSQLMonitor component and DBMonitor

e Borland SQL Monitor support
¢ Ability to send messages to DBMonitor from any point in your program

e Ability to retrieve information about the last query execution

Visual extensions:

¢ Includes source code of enhanced TCRDBGrid data-aware grid control
e Customizable connection dialog

e Cursor changes during non-blocking execution

Design-time enhancements:

e DataSet Manager tool to control DataSet instances in the project

¢ Advanced design-time component and property editors
¢ Automatic design-time component linking

© 2019 Devart



General Information 13

¢ More convenient data source setup with the TPgDataSource component

e Syntax highlighting in design-time editors

Product clarity:

e Complete documentation sets
¢ Printable documentation in PDF format
¢ Alarge amount of helpful demo projects

Licensing and support:
¢ Included annual PgDAC Subscription with Priority Support

e Licensed royalty-free per developer, per team, or per site

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

2.3 Requirements

PgDAC works directly through TCP/IP protocol and does not use the PostgreSQL client
library.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

24 Compatibility

PostgreSQL Compatibility
PgDAC supports PostgreSQL server versions since 8.0 up to 12.

Azure Database for PostgreSQL Compatibility
PgDAC also supports Azure Database for PostgreSQL.

Amazon Aurora Compatibility
PgDAC additionally supports Amazon Aurora.

Google Cloud for PostgreSQL Compatibility
Furthermore, PgDAC supports Google Cloud for PostgreSQL.

IDE Compatibility

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

14

PostgreSQL Data Access Components

PgDAC is compatible with the following IDEs:
e Embarcadero RAD Studio 10.3 Rio (Requires Release 2)
o Embarcadero Delphi 10.3 Rio for Windows 32-bit & 64-bit
o Embarcadero Delphi 10.3 Rio for macOS 32-bit & 64-bit
o Embarcadero Delphi 10.3 Rio for Linux 64-bit
o Embarcadero Delphi 10.3 Rio for iOS 32-bit & 64-bit
o Embarcadero Delphi 10.3 Rio for Android 32-bit & 64-bit
o Embarcadero C++Builder 10.3 Rio for Windows 32-bit & 64-bit
o Embarcadero C++Builder 10.3 Rio for macOS
o Embarcadero C++Builder 10.3 Rio for iOS 32-bit & 64-bit
o Embarcadero C++Builder 10.3 Rio for Android
e Embarcadero RAD Studio 10.2 Tokyo
o Embarcadero Delphi 10.2 Tokyo for Windows 32-bit & 64-bit
o Embarcadero Delphi 10.2 Tokyo for macOS
o Embarcadero Delphi 10.2 Tokyo for Linux 64-bit
o Embarcadero Delphi 10.2 Tokyo for iOS 32-bit & 64-bit
o Embarcadero Delphi 10.2 Tokyo for Android

o Embarcadero C++Builder 10.2 Tokyo for Windows 32-bit & 64-bit

o Embarcadero C++Builder 10.2 Tokyo for macOS
o Embarcadero C++Builder 10.2 Tokyo for iOS 32-bit & 64-bit
o Embarcadero C++Builder 10.2 Tokyo for Android
e Embarcadero RAD Studio 10.1 Berlin
o Embarcadero Delphi 10.1 Berlin for Windows 32-bit & 64-bit
o Embarcadero Delphi 10.1 Berlin for macOS
o Embarcadero Delphi 10.1 Berlin for iOS 32-bit & 64-bit
o Embarcadero Delphi 10.1 Berlin for Android

o Embarcadero C++Builder 10.1 Berlin for Windows 32-bit & 64-bit

o Embarcadero C++Builder 10.1 Berlin for macOS
o Embarcadero C++Builder 10.1 Berlin for iOS 32-bit & 64-bit
o Embarcadero C++Builder 10.1 Berlin for Android
e Embarcadero RAD Studio 10 Seattle
o Embarcadero Delphi 10 Seattle for Windows 32-bit & 64-bit
o Embarcadero Delphi 10 Seattle for macOS
o Embarcadero Delphi 10 Seattle for iOS 32-bit & 64-bit
o Embarcadero Delphi 10 Seattle for Android
o Embarcadero C++Builder 10 Seattle for Windows 32-bit & 64-bit

© 2019 Devart


https://cc.embarcadero.com/item/30883

General Information

o Embarcadero C++Builder 10 Seattle for macOS

o Embarcadero C++Builder 10 Seattle for iOS 32-bit & 64-bit
o Embarcadero C++Builder 10 Seattle for Android
Embarcadero RAD Studio XE8

o Embarcadero Delphi XE8 for Windows 32-bit & 64-bit

o Embarcadero Delphi XE8 for macOS

o Embarcadero Delphi XE8 for iOS 32-bit & 64-bit

o Embarcadero Delphi XE8 for Android

o Embarcadero C++Builder XE8 for Windows 32-bit & 64-bit
o Embarcadero C++Builder XE8 for macOS

o Embarcadero C++Builder XE8 for iOS 32-bit & 64-bit

o Embarcadero C++Builder XE8 for Android

Embarcadero RAD Studio XE7

o Embarcadero Delphi XE7 for Windows 32-bit & 64-bit

o Embarcadero Delphi XE7 for macOS

o Embarcadero Delphi XE7 for iOS

o Embarcadero Delphi XE7 for Android

o Embarcadero C++Builder XE7 for Windows 32-bit & 64-bit
o Embarcadero C++Builder XE7 for macOS

o Embarcadero C++Builder XE7 for iOS

o Embarcadero C++Builder XE7 for Android

Embarcadero RAD Studio XE6

o Embarcadero Delphi XE6 for Windows 32-bit & 64-bit

o Embarcadero Delphi XE6 for macOS

o Embarcadero Delphi XE6 for iOS

o Embarcadero Delphi XE6 for Android

o Embarcadero C++Builder XEG6 for Windows 32-bit & 64-bit
o Embarcadero C++Builder XE6 for macOS

o Embarcadero C++Builder XEG6 for iOS

o Embarcadero C++Builder XE6 for Android

Embarcadero RAD Studio XE5 (Requires Update 2)

o Embarcadero Delphi XE5 for Windows 32-bit & 64-bit

o Embarcadero Delphi XE5 for macOS

o Embarcadero Delphi XE5 for iOS

o Embarcadero Delphi XE5 for Android

o Embarcadero C++Builder XE5 for Windows 32-bit & 64-bit
o Embarcadero C++Builder XE5 for macOS

15

© 2019 Devart



http://cc.embarcadero.com/item/29662

PostgreSQL Data Access Components

o Embarcadero C++Builder XE5 for iOS
e Embarcadero RAD Studio XE4
o Embarcadero Delphi XE4 for Windows 32-bit & 64-bit
o Embarcadero Delphi XE4 for macOS
o Embarcadero Delphi XE4 for iOS
o Embarcadero C++Builder XE4 for Windows 32-bit & 64-bit
o Embarcadero C++Builder XE4 for macOS
e Embarcadero RAD Studio XE3 (Requires Update 2)
o Embarcadero Delphi XE3 for Windows 32-bit & 64-bit
o Embarcadero Delphi XE3 for macOS
o Embarcadero C++Builder XE3 for Windows 32-bit & 64-bit
o Embarcadero C++Builder XE3 for macOS
e Embarcadero RAD Studio XE2 (Requires Update 4 Hotfix 1)
o Embarcadero Delphi XE2 for Windows 32-bit & 64-bit
o Embarcadero Delphi XE2 for macOS
o Embarcadero C++Builder XE2 for Windows 32-bit
o Embarcadero C++Builder XE2 for macOS
e Embarcadero RAD Studio XE
o Embarcadero Delphi XE
o Embarcadero C++Builder XE
e Embarcadero RAD Studio 2010
o Embarcadero Delphi 2010
o Embarcadero C++Builder 2010
¢ CodeGear RAD Studio 2009 (Requires Update 3)
o CodeGear Delphi 2009
o CodeGear C++Builder 2009
e CodeGear RAD Studio 2007
o CodeGear Delphi 2007
o CodeGear C++Builder 2007
e CodeGear RAD Studio 2006
o CodeGear Delphi 2006
o CodeGear C++Builder 2006
e Borland Delphi 7
e Borland Delphi 6 (Requires Update Pack 2 — Delphi 6 Build 6.240)
e Borland C++Builder 6 (Requires Update Pack 4 — C++Builder 6 Build 10.166)
e Lazarus 2.0.6 and Free Pascal 3.0.4 for Windows, Linux, macOS, FreeBSD for 32-bit and

© 2019 Devart


http://cc.embarcadero.com/item/29294
http://edn.embarcadero.com/article/42282
http://cc.embarcadero.com/item/26921
http://edn.embarcadero.com/article/29791
http://edn.embarcadero.com/article/29793
http://www.lazarus.freepascal.org/
http://www.freepascal.org/

General Information 17

64-bit platforms

All the existing Delphi and C++Builder editions are supported: Architect, Enterprise,

Professional, Community, and Starter.

Lazarus and Free Pascal are supported only in Trial Edition and Professional Edition with

source code.

Supported Target Platforms
e Windows, 32-bit and 64-bit

e macOS, 32-bit and 64-bit

e Linux, 32-bit (only in Lazarus and Free Pascal) and 64-bit

e iOS, 32-bit and 64-bit

e Android, 32-bit and 64-bit

e FreeBSD (only in Lazarus and Free Pascal) 32-bit and 64-bit

Note that support for 64-bit Windows and macOS was introduced in RAD Studio XE2, and is
not available in older versions of RAD Studio. Support for iOS is available since RAD Studio
XE4, but support for iOS 64-bit is available since RAD Studio XE8. Support for Android is
available since RAD Studio XE5. Support for Linux 64-bit is available since RAD Studio 10.2
Tokyo. Support for macOS 64-bit is available since RAD Studio 10.3 Rio. Support for Android
64-bit is available since RAD Studio 10.3.3 Rio.

Devart Data Access Components Compatibility

All DAC products are compatible with each other.

But, to install several DAC products to the same IDE, it is necessary to make sure that all
DAC products have the same common engine (BPL files) version. The latest versions of
DAC products or versions with the same release date always have the same version of the
common engine and can be installed to the same IDE.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

2.5 Using Several DAC Products in One IDE

UniDAC, ODAC, SDAC, MyDAC, IBDAC, PgDAC, LiteDAC and VirtualDAC components use
common base packages listed below:
Packages:

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

18

PostgreSQL Data Access Components

2.6

e dacXX.bpl
e dacvclXX.bpl
e dcldacXX.bpl

Note that product compatibility is provided for the current build only. In other words, if you
upgrade one of the installed products, it may conflict with older builds of other products. In
order to continue using the products simultaneously, you should upgrade all of them at the

same time.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Component List

This topic presents a brief description of the components included in the PostgreSQL Data
Access Components library. Click on the name of each component for more information.
These components are added to the PgDAC page of the Component palette except for
TCRBatchMove and TVirtualTable components. TCRBatchMove and TVirtualTable

components are added to the Data Access page of the Component palette. Basic PgDAC
components are included in all PgDAC editions. PgDAC Professional Edition components are
not included in PgDAC Standard Edition.

Basic PgDAC components

:G‘g- TPgConnection |Represents an open connection to a PostgreSQL database.

Executes queries and Operates record sets. It also provides

.2 TPgQuery flexible way to update data.

Executes SQL statements and stored procedures, which do not

¥
P TPgSQL return rowsets.

Lets you retrieve and update data in a single table without writing

nj TPgTable SQL statements.

fﬁ"g TPgStoredProc Has access to and executes stored procedures and functions.

pj TPgUpdateSQL |Lets you tune update operations for the DataSet component.

Provides an interface between PgDAC dataset components and

» TPgDataSource data-aware controls on a form.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

General Information 19

—» TPgScript Executes sequences of SQL statements.
Interface for monitoring dynamic SQL executionin PgDAC-

DGJ TPgSQLMonitor based applications.

—= | TPgConnectDial \Used to build custom prompts for username, password and
= 0g server name.

. Dataset that stores data in memory. This component is placed
Rﬁj TVirtualTable on the Data Access page of the Component palette.

RE TVirtualDataSet |Dataset that processes arbitrary non-tabular data.

PgDAC Professional Edition components

=~ | TPgEncryptor Represents data encryption and decryption in client application.

f 4 |TPgLoader Provides quick loading of external data into the server database.
i ' TPgDump Serves to store a database or its parts as a script and also to

restore database from received script.

—:'J} TPgMetaData | Retrieves metadata on specified SQL object.

.:_: = [ TCRBatchMove |Retrieves metadata on database objects from the server.

See Also

e Hierarchy chart

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

2.7 Hierarchy Chart

Many PgDAC classes are inherited from standard VCL/LCL classes. The inheritance
hierarchy chart for PgDAC is shown below. The PgDAC classes are represented by
hyperlinks that point to their description in this documentation. A description of the standard
classes can be found in the documentation of your IDE.

TObject

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

20 PostgreSQL Data Access Components

TPersistent
TComponent
TCustomConnection

TCustomDAConnection

TPgConnection
TDataSet
TMemDataSet

TCustomDADataSet
TCustomPgDataSet

TPgQuery
TCustomPgTable
TPgTable

TCustomPgStoredProc

TPgStoredProc

TDAMetaData

TPgMetaData
TVirtualTable
TDataSource

TCRDataSource

TPgDataSource

TCRBatchMove

TCustomConnectDialog

TPgConnectDialog
TCustomDASQL

TPgSQL
TCustomDASQLMonitor

TPgSQLMonitor
TDALoader

TPgLoader
TDAScript

TPgScript
TDADump

TPgDump

TDATransaction

TPgTransaction

© 2019 Devart



General Information 21

TDAAlerter
TPgAlerter
TCREncryptor

TPgEncryptor
TSharedObject
TBlob
TCompressedBlob
TPgSQLLargeObject

TPgLargeObject

TObjectType

TPgRowType
TDBObject
TPgRow
TCRCursor
TPgCursor
TPgRefCursor

TCustomPgTimeStamp

TPgTimeStamp

TPgDate
TPgTime
TPgInterval

TPgGeometric
TPgPoint

TPgCircle

PgPointsArray
TPgLSeqg
TPgBox
TPgPath

TPgPolygon

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

2.8 Editions

PostgreSQL Data Access Components comes in three editions: PgDAC Standard Edition,
PgDAC Professional Edition, and PgDAC Trial Edition.
PgDAC Standard Edition includes the PgDAC basic connectivity components. PgDAC

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

22

PostgreSQL Data Access Components

Standard Edition is a cost-effective solution for database application developers who are
looking for overall high performance connectivity to PostgreSQL.

PgDAC Professional Edition shows off the full power of PgDAC, enhancing PgDAC
Standard Edition with support for PostgreSQL-specific functionality and advanced dataset
management features.

PgDAC Trial Edition is the evaluation version of PgDAC. It includes all the functionality of
PgDAC Professional Edition with a trial limitation of 60 days. C++Builder has additional trial
limitations.

You can get Source Access to the PgDAC Standard and PgDAC Professional Editions by
purchasing the special PgDAC Standard Edition with Source Code or PgDAC Professional
Edition with Source Code. The Standard and Professional editions include the source code
for all component classes. The source code of DataSet Manager is not distributed.
FreePascal support is available in Editions with Source Code and Trial Edition.

PgDAC Edition Matrix

Feature Standard Professional
Direct connectivity

Connection without PostgreSQL client library A" 4 A" 4

Desktop Application Development

Windows WV WV
macOS w v
Linux w 4
Mobile Application Development

iOS % Vv
Android w 4

Data Access Components

© 2019 Devart



General Information

Base Components:
TPgConnection
TPgQuery
TPgSQL

TPgTable
TPgStoredProc
TPgUpdateSQL
TPgDataSource

Script executing
TPgScript

Fast data loading into the server
TPglLoader

PostgreSQL Specific Components

Messaging between sessions and applications
TPgAlerter

Obtaining metainformation about database objects
TPgMetaData

Storing a database as a script
TPgDump

DataBase Activity Monitoring

Monitoring of per-component SQL execution
TPgSQLMonitor

Additional components

Advanced connection dialog
TPgConnectDialog

Data encryption and decryption
TPgEncryptor

Data storing in memory table
TVirtualTable

Advanced DBGrid with extended functionality
TCRDBGrid

Records transferring between datasets
TCRBatchMove

Design-Time Features

X V
X V
X V
X V
X V
X V
X V
X V

23

© 2019 Devart



http://devart.com/crgrid/

24

PostgreSQL Data Access Components

29

Enhanced component and property editors

<
<

DataSet Manager )4 \"4

Cross IDE Support

Lazarus and Free Pascal Support * % W

* Available only in editions with source code.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

Licensing

PLEASE READ THIS LICENSE AGREEMENT CAREFULLY. BY INSTALLING OR USING
THIS SOFTWARE, YOU INDICATE ACCEPTANCE OF AND AGREE TO BECOME BOUND
BY THE TERMS AND CONDITIONS OF THIS LICENSE. IF YOU DO NOT AGREE TO THE
TERMS OF THIS LICENSE, DO NOT INSTALL OR USE THIS SOFTWARE AND
PROMPTLY RETURN IT TO DEVART.

INTRODUCTION

This Devart end-user license agreement ("Agreement”) is a legal agreement between you
(either an individual person or a single legal entity) and Devart, for the use of PgDAC software
application, source code, demos, intermediate files, printed materials, and online or electronic
documentation contained in this installation file. For the purpose of this Agreement, the
software program(s) and supporting documentation will be referred to as the "Software".

LICENSE
1. GRANT OF LICENSE

The enclosed Software is licensed, not sold. You have the following rights and privileges,
subject to all limitations, restrictions, and policies specified in this Agreement.

1.1. If you are a legally licensed user, depending on the license type specified in the
registration letter you have received from Devart upon purchase of the Software, you are
entitled to either:

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

General Information 25

e install and use the Software on one or more computers, provided it is used by 1 (one) for
the sole purposes of developing, testing, and deploying applications in accordance with this
Agreement (the "Single Developer License"); or

e install and use the Software on one or more computers, provided it is used by up to 4 (four)
developers within a single company at one physical address for the sole purposes of
developing, testing, and deploying applications in accordance with this Agreement (the
"Team Developer License"); or

¢ install and use the Software on one or more computers, provided it is used by developers in
a single company at one physical address for the sole purposes of developing, testing, and
deploying applications in accordance with this Agreement (the "Site License").

1.2. If you are a legally licensed user of the Software, you are also entitled to:

¢ make one copy of the Software for archival purposes only, or copy the Software onto the
hard disk of your computer and retain the original for archival purposes;

¢ develop and test applications with the Software, subject to the Limitations below;

e create libraries, components, and frameworks derived from the Software for personal use
only;

¢ deploy and register run-time libraries and packages of the Software, subject to the
Redistribution policy defined below.

1.3. You are allowed to use evaluation versions of the Software as specified in the Evaluation
section.
No other rights or privileges are granted in this Agreement.

2. LIMITATIONS

Only legally registered users are licensed to use the Software, subject to all of the conditions
of this Agreement. Usage of the Software is subject to the following restrictions.

2.1. You may not reverse engineer, decompile, or disassemble the Software.

2.2. You may not build any other components through inheritance for public distribution or
commercial sale.

2.3. You may not use any part of the source code of the Software (original or modified) to
build any other components for public distribution or commercial sale.

2.4. You may not reproduce or distribute any Software documentation without express written
permission from Devart.

2.5. You may not distribute and sell any portion of the Software without integrating it into your
Applications as Executable Code, except Trial edition that can be distributed for free as
original Devart's PgDAC Trial package.

2.6. You may not transfer, assign, or modify the Software in whole or in part. In particular, the

© 2019 Devart



26

PostgreSQL Data Access Components

Software license is non-transferable, and you may not transfer the Software installation
package.

2.7. You may not remove or alter any Devart's copyright, trademark, or other proprietary rights
notice contained in any portion of Devart units, source code, or other files that bear such a
notice.

3. REDISTRIBUTION

The license grants you a non-exclusive right to compile, reproduce, and distribute any new
software programs created using PgDAC. You can distribute PgDAC only in compiled
Executable Programs or Dynamic-Link Libraries with required run-time libraries and
packages.

All Devart's units, source code, and other files remain Devart's exclusive property.

4. TRANSFER

You may not transfer the Software to any individual or entity without express written
permission from Devart. In particular, you may not share copies of the Software under “Single
Developer License” and “Team License” with other co-developers without obtaining proper
license of these copies for each individual.

5. TERMINATION

Devart may immediately terminate this Agreement without notice or judicial resolution in the
event of any failure to comply with any provision of this Agreement. Upon such termination
you must destroy the Software, all accompanying written materials, and all copies.

6. EVALUATION

Devart may provide evaluation ("Trial") versions of the Software. You may transfer or
distribute Trial versions of the Software as an original installation package only. If the Software
you have obtained is marked as a "Trial" version, you may install and use the Software for a
period of up to 60 calendar days from the date of installation (the "Trial Period"), subject to the
additional restriction that it is used solely for evaluation of the Software and not in conjunction
with the development or deployment of any application in production. You may not use
applications developed using Trial versions of the Software for any commercial purposes.
Upon expiration of the Trial Period, the Software must be uninstalled, all its copies and all
accompanying written materials must be destroyed.

7. WARRANTY

The Software and documentation are provided "AS IS" without warranty of any kind. Devart
makes no warranties, expressed or implied, including, but not limited to, the implied

© 2019 Devart



General Information 27

warranties of merchantability and fithness for a particular purpose or use.

8. SUBSCRIPTION AND SUPPORT

The Software is sold on a subscription basis. The Software subscription entitles you to
download improvements and enhancement from Devart’'s web site as they become available,
during the active subscription period. The initial subscription period is one year from the date
of purchase of the license. The subscription is automatically activated upon purchase, and
may be subsequently renewed by Devart, subject to receipt applicable fees. Licensed users
of the Software with an active subscription may request technical assistance with using the
Software over email from the Software development. Devart shall use its reasonable
endeavours to answer queries raised, but does not guarantee that your queries or problems
will be fixed or solved.

Devart reserves the right to cease offering and providing support for legacy IDE versions.

9. COPYRIGHT

The Software is confidential and proprietary copyrighted work of Devart and is protected by
international copyright laws and treaty provisions. You may not remove the copyright notice
from any copy of the Software or any copy of the written materials, accompanying the
Software.

This Agreement contains the total agreement between the two parties and supersedes any
other agreements, written, oral, expressed, or implied.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

210 Getting Support

This page lists several ways you can find help with using PgDAC and describes the PgDAC
Priority Support program.

Support Options

There are a number of resources for finding help on installing and using PgDAC.

¢ You can find out more about PgDAC installation or licensing by consulting the Licensing
section.

* You can get community assistance and technical support on the PgDAC Community

Forum.

¢ You can get advanced technical assistance by PgDAC developers through the PgDAC
Priority Support program.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
http://forums.devart.com/
http://forums.devart.com/

28 PostgreSQL Data Access Components

If you have a question about ordering PgDAC or any other Devart product, please contact
sales@devart.com.

PgDAC Priority Support

PgDAC Priority Support is an advanced product support service for getting expedited
individual assistance with PgDAC-related questions from the PgDAC developers themselves.
Priority Support is carried out over email and has two business days response policy. Priority
Support is available for users with an active PgDAC Subscription.

To get help through the PgDAC Priority Support program, please send an email to
support@devart.com describing the problem you are having. Make sure to include the
following information in your message:

¢ The version of Delphi or C++Builder you are using.

¢ Your PgDAC Registration number.

¢ Full PgDAC edition name and version number. You can find both of these from the PgDAC |
PgDAC About menu in the IDE.

¢ Versions of the PostgreSQL server and client you are using.

e A detailed problem description.

e |f possible, a small test project that reproduces the problem. Please include definitions for
all database objects and avoid using third-party components.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

211 FAQ

This page contains a list of Frequently Asked Questions for PostgreSQL Data Access
Components.

If you have encounter a question with using PgDAC, please browse through this list first. If
this page does not answer your question, refer to the Getting Support topic in PgDAC help.

Installation and De ployment
1. 1 am having a problem installing PgDAC or compiling PgDAC-based projects...

You may be having a compatibility issue that shows up in one or more of the following forms:
o Get a "Setup has detected already installed DAC packages which are incompatible with
current version" message during PgDAC installation.

o Get a "Procedure entry point ... not found in ... " message when starting IDE.

o Geta"Unit ... was compiled with a different version of ..." message on compilation.

© 2019 Devart


mailto:sales@devart.com
mailto:support@devart.com
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

General Information 29

You can have such problems if you installed incompatible PgDAC, SDAC, ODAC or IBDAC
versions. All these products use common base packages. The easiest way to avoid the
problem is to uninstall all installed DAC products and then download from our site and install
the last builds.

2. What software should be installed on a client computer for PgDAC-based
applications to work?

Usually, you do not need any additional files. The only exceptions to this rule are listed below:
o If you are connecting in Client mode, (TPgConnection.Options.Direct = False), you need
PostgreSQL client library.

o If you are using SSL (TPgConnection.Options.Protocol = mpSSL), you need the
OpenSSL library files - ssleay32.dll and libeay32.dll.

3. When | try to connect to the server, | get an error "PostgreSQL client library
couldn’t be loaded."

You are using TPgConnection.Options.Direct := False mode and the client library is not
available for your application.

Windows: You should copy client file PostgreSQL client library to a folder available to the
executable unit of your program. For example, to the folder containing the executable or to the
Windows system folder. For more details, see the description of LoadLibrary and the PATH
environment variable.

Linux: You should copy the client file libPostgreSQLclient.so.X to the folder available to the
executable unit of your program. For more details, see the description of the dlopen function
and the LD_LIBRARY_PATH environment variable.

Licensing and Subscriptions
1. Am| entitled to distribute applications written with PgDAC?

If you have purchased a full version of PgDAC, you are entitled to distribute pre-compiled
programs created with its use. You are not entitled to propagate any components inherited
from PgDAC or using PgDAC source code. For more information see the License.rtffile in
your PgDAC installation directory.

2. Can | create components using PgDAC?

You can create your own components that are inherited from PgDAC or that use the PgDAC
source code. You are entitled to sell and distribute compiled application executables that use
such components, but not their source code and not the components themselves.

3.1 have aregistered version of PgDAC. Will | need to pay to upgrade to future

© 2019 Devart



30

PostgreSQL Data Access Components

versions?

All upgrades to future versions are free to users with an active PgDAC Subscription.

4. What are the benefits of the PgDAC Subscription Program?

The PgDAC Subscription Program is an annual maintenance and support service for
PgDAC users.

Users with a valid PgDAC Subscription get the following benefits:
o Access to new versions of PgDAC when they are released

o Access to all PgDAC updates and bug fixes
o Product support through the PgDAC Priority Support program
o Notification of new product versions
Priority Support is an advanced product support program which offers you expedited

individual assistance with PgDAC-related questions from the PgDAC developers themselves.
Priority Support is carried out over email and has a two business day response policy.

5. Can | use my version of PgDAC after my Subscription expires?

Yes, you can. PgDAC version licenses are perpetual.

6. | want a PgDAC Subscription! How can | get one?

An annual PgDAC Subscription is included when ordering or upgrading to any registered
(non-Trial) edition of PgDAC.

You can renew your PgDAC Subscription on the PgDAC Ordering Page. For more
information, please contact sales@devart.com.

7. How do | upgrade?

To upgrade to new PgDAC versions, you can get a Version Update from the PgDAC Ordering
Page. For more information, please contact sales@devart.com.

Performance
1. How productive is PgDAC?

PgDAC uses a low-level protocol to access the database server. This allows PgDAC to
achieve high performance. From time to time we compare PgDAC with other products, and
PgDAC always takes first place.

2. Why does the Locate function work so slowly the first time | use it?

© 2019 Devart


https://www.devart.com/PgDAC/ordering.html
mailto:sales@devart.com
https://www.devart.com/PgDAC/ordering.html
https://www.devart.com/PgDAC/ordering.html
mailto:sales@devart.com

General Information 31

Locate is performed on the client. So if you had set FetchAll to False when opening your
dataset, cached only some of the rows on the client, and then invoked Locate, PgDAC will
have to fetch all the remaining rows from the server before performing the operation. On
subsequent calls, Locate should work much faster.

If the Locate method keeps working slowly on subsequent calls or you are working with
FetchAll=True, try the following. Perform local sorting by a field that is used in the Locate
method. Just assign corresponding field name to the IndexFieldNames property.

How To
1. How can | determine which version of PgDAC | am using?

You can determine your PgDAC version number in several ways:
o During installation of PgDAC, consult the PgDAC Installer screen.

o After installation, see the history.html file in your PgDAC installation directiory.
o At design-time, select PostgreSQL | About PgDAC from the main menu of your IDE.

o At run-time, check the value of the PgDACVersion and DACVersion constants.
2. How can | stop the cursor from changing to an hour glass during query execution?

Just set the DBAccess.ChangeCursor variable to False anywhere in your program. The
cursor will stop changing after this command is executed.

3. How can | execute a query saved in the SQLInsert, SQLUpdate, SQLDelete, or
SQLRefresh properties of a PgDAC dataset?

The values of these properties are templates for query statements, and they cannot be
manually executed. Usually there is no need to fill these properties because the text of the
query is generated automatically.

In special cases, you can set these properties to perform more complicated processing
during a query. These properties are automatically processed by PgDAC during the execution
of the Post, Delete, or RefreshRecord methods, and are used to construct the query to the
server. Their values can contain parameters with names of fields in the underlying data
source, which will be later replaced by appropriate data values.

For example, you can use the SQLInsert template to insert a row into a query instance as
follows.
o Fill the SQLInsert property with the parameterized query template you want to use.

o Call Insert.

o Initialize field values of the row to insert.

© 2019 Devart



32

PostgreSQL Data Access Components

o Call Post.

The value of the SQLInsert property will then be used by PgDAC to perform the last step.

Setting these properties is optional and allows you to automatically execute additional SQL
statements, add calls to stored procedures and functions, check input parameters, and/or
store comments during query execution. If these properties are not set, the PgDAC dataset
object will generate the query itself using the appropriate insert, update, delete, or refresh
record syntax.

4. How can | get a list of the databases on the server?

Use the TPgConnection.GetDatabaseNames method.

5. How can | get a list of the tables list in a database?
Use the TPgConnection.GetTableNames method.

6. Some questions about the visual part of PgDAC

The following situations usually arise from the same problem:
o | set the Debug property to True but nothing happens!

o While executing a query, the screen cursor does not change to an hour-glass.

o Even if | have LoginPromp set to True, the connect dialog does not appear.

To fix this, you should add the PgDACVcl (for Windows) or PgDACCIx (for Linux) unit to the
uses clause of your project.

General Questions
1. 1 would like to develop an application that works with PostgreSQL Server. Should |

use PgDAC or DbxMda?

DbxMda is our dbExpress driver for PostgreSQL. dbExpress technology serves for providing
a more or less uniform way to access different servers (SQL Server, PostgreSQL, Oracle
and so on). It is based on drivers that include server-specific features. Like any universal tool,
in many specialized cases dbExpress providers lose some functionality. For example, the
dbExpress design-time is quite poor and cannot be expanded.

PgDAC is a specialized set of components for PostgreSQL, which has advanced server-
specific design-time and a component interface similar to that of BDE.

We tried to include maximal support of PostgreSQL-specific features in both DbxMda and
PgDAC. However, the nature of dbExpress technology has some insurmountable restrictions.
For example, Unicode fields cannot be passed from a driver to dbExpress.

© 2019 Devart


https://www.devart.com/dbx/

General Information 33

PgDAC and DbxMda use the same kernel and thus have similar performance. In some cases
dbExpress is slower because data undergoes additional conversion to correspond to
dbExpress standards.

To summarise, if it is important for you to be able to quickly adapt your application to a
database server other than PostgreSQL, it is probably better to use DbxMda. In other cases,
especially when migrating from BDE or ADO, you should use PgDAC.

2. Are the PgDAC connection components thread-safe?

Yes, PgDAC is thread-safe but there is a restriction. The same TPgConnection object cannot
be used in several threads. So if you have a multithreaded application, you should have a
TPgConnection object for each thread that uses PgDAC.

3. Behaviour of my application has changed when | upgraded PgDAC. How can |
restore the old behaviour with the new version?

We always try to keep PgDAC compatible with previous versions, but sometimes we have to
change behaviour of PgDAC in order to enhance its functionality, or avoid bugs. If either of
changes is undesirable for your application, and you want to save the old behaviour, please
refer to the "Compatibility with previous versions" topic in PgDAC help. This topic describes
such changes, and how to revert to the old PgDAC behaviour.

4. When editing a DataSet, | get an exception with the message 'Update failed. Found
%d records.' or 'Refresh failed. Found %d records.’

This error occurs when the database server is unable to determine which record to modify or
delete. In other words, there are either more than one record or no records that suit the
UPDATE criteria. Such situation can happen when you omit the unique field in a SELECT
statement (TCustomDADataSet.SQL) or when another user modifies the table
simultaneously. This exception can be suppressed. Refer to
TCustomPgDataSet.Options.StrictUpdate topic in PGDAC help for more information.

5.1 have problems using BIGINT and INT UNSIGNED fields as key fields in master/
detail relationships, and accessing values of such fields through the Field.Value
property.

Fields of this type are represented in Delphi by TLargelntField objects. In some versions of
Delphi, you cannot access these fields through the Value property (for more information see
the SetVarValue protected method of TLargeintField in the DB unit). To avoid this problem,
you can change the field type to INT, which is usually sufficient for key fields. Alternatively, you
can avoid using Value.

© 2019 Devart



34

PostgreSQL Data Access Components

For master/detail relationships the problem can be avoided only by changing type of the key
field to INT, as Delphi's master/detail mechanism works through Field.Value.

6. On accessing server | get a 'PostgreSQL server has gone away' or 'Lost
connection to PostgreSQL server during query' error.

First of all, you should find out what causes the problem. The list of most frequent reasons for
this error to occur is below.

o Client side: The value of TPgConnection.ConnectionTimeout or
TCustomPgDataSet. CommandTimeout is too small. To check this hypothesis, try
setting TCustomPgDataSet.CommandTimeout to O (infinitive) and
TPgConnection.ConnectionTimeout to 300.

o Server side: PostgreSQL server has closed the connection. Aimost always it is because
the value of wait_timeout variable is too small. Try increasing it. If this solution is not
possible (for example, because you don't have enough rights), you should invoke
PgConnection.Ping with an interval less than wait_timeout. Use TTimer in
TPgConnection thread to accomplish this task.

o Unstable connection (GPRS etc). In case of unstable connection you can adapt PgDAC
to work in such conditions by changing some of its settings. For more information please
see the "Working in Unstable Networks" article in the PgDAC help documentation.

If the connection is lost, PgDAC tries to reconnect to server. However, your last command will
probably not be executed, and you should repeat it again. PgDAC does not try to reconnect if
a transaction has started or if at least one of statements is prepared.

7. Some problems using TCustomDADataSet.FetchAll=False mode

The following problems may appear when using FetchAll=False mode:
o | have problems working with temporary tables.

o | have problems working with transactions.

o Sometimes my application hangs on applying changes to the database.

Usage of FetchAll=False mode has many advantages; however, it also has some restrictions
since it requires an additional connection to server for data fetching to be created. The
additional connection is created to prevent the main connection from blocking.

These problems can be avoided by setting the FetchAll property. Please see description of
the FetchAll propery and the CreateConnection option in PGDAC help for more information.

© 2019 Devart



General Information 35

8.1 get an error when opening a Stored Procedure that returns a result set.
Probably this is a bug of the PostgreSQL Server protocol with prepared stored procedures
that return record sets. It occurs in the following cases:
o After a call to the Prepare method of PgStoredProc, if the latter had already prepared and
opened. The following piece of code demonstrates the problem:
PgStoredProc.Prepare;
PgStoredProc.0Open;
PgStoredProc.uUnPrepare;
PgStoredProc.Prepare;
o After a call to the PgStoredProc.Execute method, if the stored procedure returns more
than one record set.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

3 Getting Started

This page contains a quick introduction to setting up and using the PostgreSQL Data Access
Components library. It gives a walkthrough for each part of the PgDAC usage process and
points out the most relevant related topics in the documentation.

e What is PgDAC?

e Installing PgDAC.

e Working with the PgDAC demo projects.

e Compiling and deploying your PgDAC project.

¢ Using the PgDAC documentation.
e How to get help with PgDAC.

What is PgDAC?

PostgreSQL Data Access Components (PgDAC) is a component library which provides
direct connectivity to PostgreSQL for Delphi, C++Builder and Lazarus (FPC), and helps you
develop fast PostgreSQL-based database applications with these environments.

Many PgDAC classes are based on VCL, LCL and FMX classes and interfaces. PgDAC is a
replacement for the Borland Database Engine, it provides native database connectivity, and is
specifically designed as an interface to the PostgreSQL database.

An introduction to PgDAC is provided in the Overview section.

A list of the PgDAC features you may find useful is listed in the Features section.

An overview of the PGDAC component classes is provided in the Components List section.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
http://docwiki.embarcadero.com/RADStudio/Tokyo/en/BDE

36

PostgreSQL Data Access Components

Installing PgDAC

To install PgDAC, complete the following steps.

1. Choose and download the version of the PgDAC installation program that is compatible
with your IDE. For instance, if you are installing PgDAC 1.00, you should use the following
files:

For BDS 2006 and Turbo - pgdac100d10*.exe
For Delphi 7 - pgdac1100d7*.exe

For more information, visit the PgDAC download page.

2. Close all running Borland applications.
3. Launch the PgDAC installation program you downloaded in the first step and follow the
instructions to install PgDAC.

By default, the PgDAC installation program should install compiled PgDAC libraries
automatically on all IDEs.

To check if PgDAC has been installed properly, launch your IDE and make sure that the
PgDAC page has been added to the Component palette and that a PgDAC menu was added
to the Menu bar.

If you have bought PgDAC Professional Edition with Source Code with Source Code, you will
be able to download both the compiled version of PgDAC and the PgDAC source code. The
installation process for the compiled version is standard, as described above.The PgDAC
source code must be compiled and installed manually. Consult the supplied ReadmeSrc.html
file for more details.

To find out what gets installed with PgDAC or to troubleshoot your PgDAC installation, visit
the Installation topic.

Working with the PgDAC demo projects

The PgDAC installation package includes a number of demo projects that demonstrate
PgDAC capabilities and use patterns. The PgDAC demo projects are automatically installed
in the PgDAC installation folder.

To quickly get started working with PgDAC, launch and explore the introductory PgDAC demo
project, PgDacDemo, from your IDE. This demo project is a collection of demos that show
how PgDAC can be used. The project creates a form which contains an explorer panel for
browsing the included demos and a view panel for launching and viewing the selected demo.

PgDACDemo Walkthrough
1. Launch your IDE.

© 2019 Devart


https://www.devart.com/pgdac/download.html

Getting Started 37

2. Choose File | Open Project from the menu bar
3. Find the PgDAC directory and open the PgDacDemo project. This project should be
located in the Demos\PgDacDemo folder.

For example, if you are using Borland Developer Studio 2006, the demo project may be found at

\Program Files\Devart\PgDac for Delphi 2006\Demos\Win32\PgDacDemo
\PgDacDemo.bdsproj

4. Select Run | Run or press F9 to compile and launch the demo project. PgDacDemo should
start, and a full-screen PgDAC Demo window with a toolbar, an explorer panel, and a view
panel will open. The explorer panel will contain the list of all demo sub-projects included in
PgDACDemo, and the view panel will contain an overview of each included demo.

At this point, you will be able to browse through the available demos, read their descriptions,
view their source code, and see the functionality provided by each demo for interacting with
PostgreSQL. However, you will not be able to actually retrieve data from PostgreSQL or execute
commands until you connect to the database.

5. Click on the "Connect" button on the PgDacDemo toolbar. A Connect dialog box will open.
Enter the connection parameters you use to connect to your PostgreSQL server and click
"Connect" in the dialog box.

Now you have a fully functional interface to your PostgreSQL server. You will be able to go

through the different demos, to browse tables, create and drop objects, and execute SQL
commands.

Warning! All changes you make to the database you are connected to, including creating
and dropping objects used by the demo, will be permanent. Make sure you specify a test
database in the connection step.

6. Click on the "Create" button to create all objects that will be used by PgDacDemo. If some

of these objects already exist in the database you have connected to, the following error
message will appear.

An error has occurred:
#42S01Table 'dept’ already exists
You can manually create objects required for demo by using the following file: %PgDAC%
\Demos\InstallDemoObjects.sql
%PgDAC% is the PgDAC installation path on your computer.
Ignore this exception?
This is a standard warning from the object execution script. Click "Yes to All" to ignore this

message. PgDacDemo will create the PgDacDemo objects on the server you have connected
to.

© 2019 Devart



38

PostgreSQL Data Access Components

7. Choose a demo that demonstrates an aspect of working with PostgreSQL that you are
interested in, and play with the demo frame in the view window on the right. For example, to
find out more about how to work with PostgreSQL tables, select the Table demo from the
"Working with Components" folder. A simple PostgreSQL table browser will open in the
view panel which will let you open a table in your database by specifying its name and
clicking on the Open button.

8. Click on the "Demo source" button in the PgDacDemo toolbar to find out how the demo you
selected was implemented. The source code behind the demo project will appear in the
view panel. Try to find the places where PgDAC components are used to connect to the
database.

9. Click on the "Form as text" button in the PgDacDemo toolbar to view the code behind the
interface to the demo. Try to find the places where PgDAC components are created on the
demo form.

10.Repeat these steps for other demos listed in the explorer window. The available demos
are organized in three folders.

Working with components
A collection of projects that show how to work with basic PgDAC components.
General demos
A collection of projects that show off the PgDAC technology and demonstrate some ways of
working with data.
PostgreSQL-specific demos
A collection of projects that demonstrate how to incorporate PostgreSQL features in
database applications.
11.When you are finished working with the project, click on the "Drop" button in the
PgDacDemo toolbar to remove all schema objects added in Step 6.

Other PgDAC demo projects

PgDAC is accompanied by a number of other demo projects. A description of all PgDAC
demos is located in the Demo Projects topic.

Compiling and deploying your PgDAC project

Compiling PgDAC-based projects

By default, to compile a project that uses PgDAC classes, your IDE compiler needs to have
access to the PgDAC dcu (obj) files. If you are compiling with runtime packages, the compiler
will also need to have access to the PgDAC bpl files. All the appropriate settings for both
these scenarios should take place automatically during installation of PgDAC. You
should only need to modify your environment manually if you are using one of the PgDAC

© 2019 Devart



Getting Started 39

editions that comes with source code - PgDAC Professional Edition with Source Code or
PgDAC Developer Edition with Source Code.

You can check that your environment is properly configured by trying to compile one of the
PgDAC demo projects. If you have no problems compiling and launching the PgDAC demos,
your environment has been properly configured.

For more information about which library files and environment changes are needed for
compiling PgDAC-based projects, consult the Installation topic.

Deploying PgDAC-based projects

To deploy an application that uses PgDAC, you will need to make sure the target workstation
has access to the following files.

e The PostgreSQL client library, if connecting using PostgreSQL client.

e The PgDAC bpl files, if compiling with runtime packages.

If you are evaluating deploying projects with PGDAC Trial Edition, you will also need to deploy
some additional bpl files with your application even if you are compiling without runtime
packages. As another trial limitation for C++Builder, applications written with PgDAC Trial
Edition for C++Builder will only work if the C++Builder IDE is launched. More information
about PgDAC Trial Edition limitations is provided here.

A list of the files which may need to be deployed with PgDAC-based applications is included
in the Deployment topic.

Using the PgDAC documentation

The PgDAC documentation describes how to install and configure PgDAC, how to use
PgDAC Demo Projects, and how to use the PgDAC libraries.

The PgDAC documentation includes a detailed reference of all PgDAC components and
classes. Many of the PgDAC components and classes inherit or implement members from
other VCL, LCL and FMX classes and interfaces. The product documentation also includes a
summary of all members within each of these classes. To view a detailed description of a
particular component, look it up in the Components List section. To find out more about a
specific standard VCL/LCL class a PgDAC component is inherited from, see the
corresponding topic in your IDE documentation.

At install time, the PgDAC documentation is integrated into your IDE. It can be invoked from
the PgDAC menu added to the Menu Bar, or by pressing F1 in an object inspector or on a
selected code segment.

How to get help with PgDAC

© 2019 Devart



40

PostgreSQL Data Access Components

3.1

There are a number of resources for finding help on using PgDAC classes in your project.
e If you have a question about PgDAC installation or licensing, consult the Licensing section.
¢ You can get community assistance and PgDAC technical support on the PgDAC Support

Forum.
¢ To get help through the PgDAC Priority Support program, send an email to the PgDAC

development team at pgdac@devart.com.

e |f you have a question about ordering PgDAC or any other Devart product, contact
sales@devart.com.

For more information, consult the Getting Support topic.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Installation

This topic contains the environment changes made by the PgDAC installer. If you are having
problems using PgDAC or compiling PgDAC-based products, check this list to make sure
your system is properly configured.

Compiled versions of PgDAC are installed automatically by PgDAC Installer for all supported
IDEs except for Lazarus. Version of PgDAC with Source Code must be installed manually.
Installation of PgDAC from sources is described in the supplied ReadmeSrc.html file.

Before installing PgDAC ...

Two versions of PgDAC cannot be installed in parallel for the same IDE, and, since the
Devart Data Access Components products have some shared bpl files, newer versions of
PgDAC may be incompatible with older versions of ODAC, IBDAC, SDAC, and UniDAC.
So before installing a new version of PgDAC, uninstall all previous versions of PgDAC you
may have, and check if your new install is compatible with other Devart Data Access
Components products you have installed. For more information please see Using several
products in one IDE. If you run into problems or have any compatibility questions, please

email pgdac@devart.com

Note: You can avoid performing PgDAC uninstallation manually when upgrading to a new
version by directing the PgDAC installation program to overwrite previous versions. To do
this, execute the installation program from the command line with a / f or ce parameter

(Start | Run and type pgdacXX. exe /force, specifying the full path to the appropriate

version of the installation program) .

© 2019 Devart


https://forums.devart.com/viewforum.php?f=34
https://forums.devart.com/viewforum.php?f=34
mailto:pgdac@devart.com
mailto:sales@devart.com
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
mailto:pgdac@devart.com

Getting Started 41

Installed packages
Note: %°gDAC%denotes the path to your PgDAC installation directory.

Delphi/C++Builder Win32 project packages

Name Description Location
dacXX.bpl DAC run-time package |(Windows\System32
deldacXX.bpl DAC design-time Delphi\Bin
package
dacvelXX bpl* DAC VCL support Delphi\Bin
package
ogdacXX bpl PGDAC run-ime Windows\System32
package
PgDAC design-time o
dclpgdacXX.bpl package Delphi\Bin
TPgSQLMonitor o
dclpgsqglmonXX.bpl component Delphi\Bin

pgdacvclXX.bpl* VCL support package Delphi\Bin
crcontrolsXX.bpl TCRDBGrid component Delphi\Bin

Additional packages for using PgDAC managers and wizards

Name Description Location
datasetmanagerXX. DataSet Manager Delphi\Bin
bpl package

Environment Changes

To compile PgDAC-based applications, your environment must be configured to have access
to the PgDAC libraries. Environment changes are IDE-dependent.
For all instructions, replace YPgDAC%with the path to your PgDAC installation directory

Delphi
e %°gDAC% Li b should be included in the Library Path accessible from Tools | Enviroment

options | Library.

The PgDAC Installer performs Delphi environment changes automatically for compiled
versions of PgDAC.

C++Builder

© 2019 Devart



42

PostgreSQL Data Access Components

3.2

C++Builder 6:

e $( BCB)\ PgDAC\ Li b should be included in the Library Path of the Default Project Options
accessible from Project | Options | Directories/Conditionals.

e $( BCB)\ PgDAC\ | ncl ude should be included in the Include Path of the Default Project

Options accessible from Project | Options | Directories/Conditionals.

C++Builder 2006, 2007:

e $( BCB)\ PgDAC\ Li b should be included in the Library search path of the Default Project
Options accessible from Project | Default Options | C++Builder | Linker | Paths and Defines.

e $( BCB)\ PgDAC\ | ncl ude should be included in the Include search path of the Default
Project Options accessible from Project | Default Options | C++Builder | C++ Compiler |
Paths and Defines.

The PgDAC Installer performs C++Builder environment changes automatically for compiled
versions of PgDAC.

Lazarus

The PgDAC installation program only copies PgDAC files. You need to install PgDAC
packages to the Lazarus IDE manually. Open %PgDAC%\Source\Lazarus 1\dclpgdac10.Ipk
(for Trial version %PgDAC%\Packages\dclpgdac10.Ipk) file in Lazarus and press the Install
button. After that Lazarus IDE will be rebuilded with PgDAC packages.

Do not press the the Compile button for the package. Compiling will fail because there are no
PgDAC sources.

To check that your environment has been properly configured, try to compile one of the demo
projects included with PgDAC. The PgDAC demo projects are located in %PgDAC%/Demos.

DBMonitor

DBMonitor is an easy-to-use tool to provide visual monitoring of your database applications. It
is provided as an alternative to Borland SQL Monitor which is also supported by PgDAC.
DBMonitor is intended to hamper application being monitored as little as possible. For more
information, visit the DBMonitor page online.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Logging on to PostgreSQL

This tutorial describes how to connect to PostgreSQL.
Contents

© 2019 Devart


https://www.devart.com/dbmonitor/
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Getting Started 43

—_—

. Requirements
. General information
. Creating Connection

N

w

¢ 3.1 Design time creation

e 3.1.1 Using TPgConnection Editor

e 3.1.2 Using Object Inspector

e 3.2 Run time creation

4. Opening connection
5. Closing connection
6. Modifying connection
7. Additional information
8. See Also

Requirements

In order to connect to PostgreSQL, you need the server itself running, PgDAC installed, and
IDE running. Also, you need to know the server name (if the server is run on the remote
computer), the port that the server listens to (if you use not the 5432 standard port), and the
database name.

General information

To establish connection to the server, you have to provide some connection parameters to
PgDAC. This information is used by the TPgConnection component to establish connection
to the server. The parameters are represented by the properties of the TPgConnection
component (Server, Port, Username, Password, Database, Schema).

Note: All these options can be specified at once using the ConnectString property.

Creating Connection

Design time creation

The following assumes that you have the IDE running, and you are currently focused on the

form designer.

1. Open the Tool Palette and find the TPgConnection component in the PgDAC category.

2. Double-click on the component. Note that the new object appears on the form. If this is the
first time you create TPgConnection in this application, it is named PgConnection1.

After you have done these steps, you should set up the newly created PgConnection1

© 2019 Devart



44

PostgreSQL Data Access Components

component. You can do as follows:

Usmg TPgConnection Editor

. Double-click on the PgConnection1 object.

2. In the Server edit box specify a DNS name or IP address of the computer, where
PostgreSQL resides (for example, localhost). If not the 5432 standard port must be used,
it can be specified in the Port edit box in the following format: Port (for example, 5432).

3. Specify a login (for example, postgres in the Username edit box.

4. Specify a password (for example, password) in the Password edit box. If a login does not

have a password, leave the Password edit box blank.

5. In the Database edit box specify the database name (for example, postgres). If Database

is not specified, the postgres system database is used.
6. In the Schema edit box specify the schema name (for example, public).

Usmg Object Inspector

1. Click on the PgConnection1 object and press F11 to focus on object's properties.
2. Set the Server property to a DNS name or IP address of the computer, where
PostgreSQL resides(for example, localhost). If not the 5432 standard port must

be used, it

can be specified in the Port edit box in the following format: Port (for example, 5432).

3. Specify a login (for example, postgres in the Username edit box.

4. Specify a password (for example, password) in the Password edit box. If a login does not

have a password, leave the Password edit box blank.

5. In the Database edit box specify the database name (for example, postgres). If Database

is not specified, the postgres system database is used.
6. In the Schema edit box specify the schema name (for example, public).

Run time creation

The same operations performed in runtime look as follows:

[Delphi]
var _
con: TPgConnection;
begin _ _
con := TPgConnection.Create(nil);
try
con.Server := 'localhost';

con.Port := 5432;

con.Username := 'postgres'
con.Password := 'password';
con.Database := 'postgres'
con.Schema :="public';
con.LoginPrompt := False; // to prevent showing of the connection dialog

© 2019 Devart



Getting Started 45

con.open;
finally
con.Free;
end;
end;

Note: To run this code, you have to add the PgAccess unit to the USES clause of your unit.

[C++Builder]
TPgConnection®* con = new TPgConnection(NULL);
try
{
con->Server = "localhost";
con->Port = 5432;

con->Username = '"postgres";
con->Password = "password";
con->Database = "postgres";

con->Schema = "public";

con->LoginPrompt = False; // to prevent showing of the connection dialog
con->0pen();

finally

con->Free();

‘-v-'r-*-\l‘-v-‘

-

Note: To run this code, you have to include the PgAccess.hpp header file to your unit.

And using the ConnectString property:

[Delphi]

var
con: TPgConnection;

begin
con := TPgConnection.Create(nil);

try
con.ConnectString := 'Data Source=localhost;Port=5432;Database=postgres;

con.LoginPrompt := False; // to prevent showing of the connection dialog
con.open;
finally
con.Free;
end;
end;

Note: To run this code, you have to add the PgAccess units to the USES clause of your unit.

[C++ Builder]

© 2019 Devart



46

PostgreSQL Data Access Components

TPgConnection®* con = new TPgConnection(NULL);
try
{

con->ConnectsString = "Data Source=localhost;Port=5432;Database=postgres;
con->LoginPrompt = False; // to prevent showing of the connection dialog
con->0pen();

__finally

con->Free();

-

Note: To run this code, you have to include the PgAccess.hpp header file to your unit.

Opening connection

As you can see above, opening a connection at run-time is as simple as calling of the Open
method:

[Delphi]

con.oOpen;

[C++ Builder]

con->0pen();

Another way to open a connection at run-time is to set the Connected property to True:
[Delphi]
con.Connected :
[C++ Builder]

True;

con->Connected = True;

This way can be used at design-time as well. Of course, PgConnection1 must have valid
connection options assigned earlier. When you call Open, PgDAC tries to find the host and
connect to the server. If any problem occurs, it raises an exception with brief explanation on
what is wrong. If no problem is encountered, PgDAC tries to establish connection. Finally,
when connection is established, the Open method returns and the Connected property is
changed to True.

Closing connection

To close a connection, call its Close method, or set its Connected property to False:
[Delphi]

con.Close;

© 2019 Devart



Getting Started 47

[C++ Builder]

con.Close();

or:

[Delphi]

con.Connected := False;
[C++ Builder]

con.Connected = False;

Modifying connection

You can modify connection by changing properties of the TPgConnection object. Keep in
mind that while some of the properties can be altered freely, most of them close connection
when the a value is assigned. For example, if you change Server property, it is closed
immediately, and you have to reopen it manually.

Additional information

PgDAC has a wide set of features you can take advantage of. The following list enumerates
some of them, so you can explore the advanced techniques to achieve better performance,
balance network load or enable additional capabilities:

e Connection Pooling

¢ Disconnected Mode

e Data Type Mapping

¢ Notice

See Also

e TPgConnection

* Server

* Port

e Database
e Username
e Password
e Schema

¢ LoginPrompt

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

48

PostgreSQL Data Access Components

3.3

Creating Database Objects

This tutorial describes how to create tables, stored procedures and other objects on
PostgreSQL.
1. Requirements
2. General information
3. Creating tables
o 3.1 Design-time creation

o 3.2 Run-time creation

4. Creating Stored Procedures
o 4.1 Design Time Creation

o 4.2 Run Time Creation
5. Additional information

Requirements

In order to create database objects you have to connect to PostgreSQL. This process is
described in details in the tutorial "Connecting To PostgreSQL".

General information

Database objects are created using Data Definition Language (DDL), which is a part of SQL.
The DDL statements can be executed on server by an account that has the necessary
privileges. There are two ways to create database objects. You can build DDL statements
manually and execute them using a component like TPgSQL. Another way is to use visual
database tools like pgAdmin. This topic covers the first way - using components.

There are two ways to execute DDL statements in components like TPgSQL: in design-time
and in run-time. Both these ways are described below.

Note: The following assumes that you have the IDE running, you are currently focused on the

form designer, and you have already set up the TPgConnection component on the form.

Creating tables

To create tables, the TPgSQL component is used here.

Design-time creation
¢ Open the Tool Palette and find the TPgSQL component in the PgDAC category.

¢ Double-click on the component. Note that a new object appears on the form. If this is the
first time you create TPgSQL in this application, it is named PgSQL1. Note that the

© 2019 Devart



Getting Started 49

PgSQL1.Connection property is already set to an existent (on the form) connection.
e Double-click on the PgSQL1 object.
¢ Type the following lines:

CREATE TABLE dept (
deptno serial not null,
dname varchar(14),

Toc varchar(13),
primary key (deptno)

);

CREATE TABLE emp (
empno serial not null,
ename varchar(10),

job varchar(9),

mgr integer,

hiredate timestamp,

sal real,

comm real,

deptno int references dept,
primary key (empno)

)

® Click on the Execute button. This will create two tables that we will use for tutorial purposes.

Run-time creation

Same operations performed in runtime look as follows:

[Delphi]
var
sql: TPgSQL;
begin
sql := TPgSQL.Create(nil);
try
sql.Connection := con; // con is TPgConnection already set up

sgl.sQL.Clear;

sql.sQL.Add('CREATE TABLE dept (');
sql.sQL.Add(' deptno serial not null,"');
sql.sQL.Add(' dname varchar(14),');
sql.sQL.Add("' Tloc varchar(13),');
sql.sQL.Add("' primary key (deptno)');
sgl.sQL.Add(");"');

sql.sSQL.Add('CREATE TABLE emp (');
sgl.sQL.Add(' empno serial not null,');
sql.sQL.Add(' ename varchar(10),');
sql.sqQL.Add(" job varchar(9),');
sql.sQL.Add(' mgr 1integer,');
sql.SQL.Add("' hiredate timestamp,');
sql.sqQL.Add("' sal real,');
sgl.sQL.Add('" comm real,');

© 2019 Devart



50

PostgreSQL Data Access Components

sql.SQL.Add("' deptno int references dept,');
sql.sQL.Add("' primary key (empno)');
sgl.sQL.Add(");"');
sql.Execute;

finally
sql.Free;

end;

end;

[C++Builder]

TPgSQL* sql = new TPgSQL(NULL);
try

sgql->Connection = con; // con 1is TPgConnection already set up
sql->sSQL->Clear();

sq1->SQL->Add (""CREATE TABLE dept (");
sql->SQL->Add(" deptno serial not null,");
sql->SQL->Add(" dname varchar(14),");
sql->SQL->Add(" Toc varchar(13),");
sgql->SQL->Add(" primary key (deptno)");
sql->SQL->Add(");");

sql->SQL->Add("CREATE TABLE emp (");
sql->SQL->Add(" empno serial not null,");
sql->SQL->Add(" ename varchar(10),");
sql->SQL->Add(" job varchar(9),");
sql->SQL->Add(" mgr 1integer,");
sql->SQL->Add(" hiredate timestamp,");
sql->SQL->Add(" sal real,");

sql->sqQL->Add(" comm real,");

sql->SQL->Add(" deptno int references dept,");
sql->sQL->Add (" rimary key (empno)");
sql->sQL->Add(");");

sql->Execute();

He)

__finally

sé1—>Free();

Creating Stored Procedures

To create tables, the TPgScript component is used here.

Design-time creation
¢ Open the Tool Palette and find the TPgScript component in the PgDAC category.

¢ Double-click on the component. Note that a new object appears on the form. If this is the
first time you create TPgScript in this application, it is named PgScript1. Note that the
PgScript1.Connection property is already set to existent (on the form) connection.

e Double-click on the PgScript1 object.

© 2019 Devart



Getting Started 51

* Type the following lines:

CREATE FUNCTION "Ten Most High-Paid Employees" ()
RETURNS SETOF Emp AS $$

SELECT * FROM emp ORDER BY emp.sal DESC LIMIT 10
$$ LANGUAGE 'sql';
CREATE FUNCTION "GetEmpNumberInDept" (

IN pdeptno integer,

OUT pempnumb integer)
RETURNS 1integer AS
$BODY$
BEGIN

pempnumb := (SELECT count(*) FROM emp WHERE deptno = pdeptno);
END;
$BODY$

LANGUAGE plpgsql VOLATILE

® Click on the Execute button. This will create five stored procedures that we will use for
tutorial purposes.

Run-time creation

The same operations performed in runtime look as follows:

[Delphi]
var _
script: TPgScript;
begin _ _
script := TPgScript.Create(nil);
try
script.Connection := con; // con is TPgConnection already set up

script.sQL.Clear;
script.sQL.Add('CREATE FUNCTION "Ten Most High-Paid Employees"()');
script.sQL.Add('RETURNS SETOF Emp AS $$');
script.sQL.Add(' SELECT * FROM emp ORDER BY emp.sal DESC LIMIT 10');
script.sQL.Add('$$ LANGUAGE ''sql'';');
script.sqQL.Add("'");
script.SQL.Add('CREATE FUNCTION "GetEmpNumberInDept"(');
script.sQL.Add(' 1IN pdeptno integer,');
script.sQL.Add(' OUT pempnumb integer)');
script.SQL.Add("'RETURNS integer AS');
script.sqQL.Add('$BoODYS$');
script.sQL.Add('BEGIN');
script.sQL.Add(' pempnumb := (SELECT count(*) FROM emp WHERE deptno = p
script.sSQL.Add('END; ") ;
script.sqQL.Add('$BoDYS$ ') ;
script.sqQL.Add("' LANGUAGE plpgsql VOLATILE');
script.Execute;

finally
script.Free;

end;

end;

© 2019 Devart



52

PostgreSQL Data Access Components

Note: To run this code, you have to add the PgScript unit to the USES clause of your unit.

[C++Builder]

TPgSQL* sqgl = new TPgSQL(NULL);

£

sql->Connection = con; // con is TPgConnection already set up
sgql->sqQL->Clear();

sgl->SQL->Add ("CREATE TABLE dept (");
sql->SQL->Add(" deptno serial not null,");
sql->SQL->Add(" dname varchar(14),");
sql->sQL->Add(" Tloc varchar(13),");
sql->SQL->Add(" primary key (deptno)");
sql->sQL->Add(");");

sql->SQL->Add("CREATE TABLE emp (");
sgl->SQL->Add(" empno serial not null,");
sql->SQL->Add(" ename varchar(10),");
sql->SQL->Add(" job varchar(9),");
sql->SQL->Add(" mgr 1integer,");
sql->SQL->Add(" hiredate timestamp,");
sql->SQL->Add(" sal real,");
sql->sQL->Add(" comm real,");
sgl->SQL->Add(" deptno int references dept,");
sgql->SQL->Add(" primary key (empno)");
sql->sqQL->Add(");");

sql->Execute();

__finally
sql->Free();
X

Note: To run this code, you have to include the PgScript.hpp header file to your unit.

Additional information

Actually, there are lots of ways to create database objects on server. Any tool or component
that is capable of running an SQL query, can be used to manage database objects. For
example, TPgSQL suits fine for creating objects one by one, while TPgScript is designed for
executing series of DDL/DML statements. For information on DDL statements syntax refer to
the PostgreSQL documentation.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Getting Started 53

3.4 Deleting Data From Tables

This tutorial describes how to delete data from tables using the TPgQuery and TPgTable
components.
1. Requirements
2. General information
3. Using DataSet Functionality
4. Building DML Statements Manually
o 4.1 DML Statements With Parameters
o 4.2 DML Statements As Plain Text
5. Additional Information

Requirements

This walkthrough supposes that you know how to connect to server (tutorial "Connecting To
PostgreSQL", how to create necessary objects on the server (tutorial "Creating Database
Objects"), and how to insert data to created tables (tutorial "Inserting Data Into Tables").

General information

Data on server can be deleted using Data Manipulation Language (DML), which is a part of
SQL. DML statements can be executed on server by an account that has necessary
privileges. There are two ways to manipulate a database. You can build DML statements
manually and run them within some component like TPgQuery. Another way is to use the
dataset functionality (the Delete method) of the TPgQuery and TPgTable components. We
will discuss both ways. The goal of this tutorial is to delete a record in the table dept.

Using DataSet Functionality

The Delete method of the TPgQuery and TPgTable components allows deleting data without
using DML statements. DML statements are generated by PgDAC components internally.
The code below demonstrates using this method:

[Delphi]
var
g: TPgQuery;
begin
g := TPgQuery.Create(nil);
try
// con is TPgConnection already set up
g.Connection := con;
// retrieve data
g.SQL.Text := 'SELECT * FROM dept';
g.0pen;

// delete the current record

© 2019 Devart



54

PostgreSQL Data Access Components

g.Delete;
finally
g.Free;
end;
end;

[C++Builder]

{
TPgQuery* g = new TPgQuery(NULL);
try

// con 1is either TPgConnection already set up
g->Connection = con;

// retrieve data

g->SQL->Text = "SELECT * FROM dept";
q->0pen() ;

// delete the current record

g->Delete();

finally

g->Free();

‘-v-'r-“-«l\-v-‘

Building DML Statements Manually

DML Statements can contain plain text and text with parameters. This section describes both
ways.

DML Statements With Parameters

[Delphi]
var
g: TPgQuery;
begin
g := TPgQuery.Create(nil);
try
// con is either TPgConnection already set up
g.Connection := con;
// set SQL query for delete record
g.SQL.Clear;

g.SQL.Add('DELETE FROM dept WHERE deptno = :deptno;');
// set parameters
g.ParamByName('deptno') .AsInteger := 10;
// execute query
g.Execute;

finally
g.Free;

end;

end;

[C++Builder]

© 2019 Devart



Getting Started

{
TPgQuery* g = new TPgQuery(NULL);
£
// con is either TPgConnection already set up
g->Connection = con;
// set SQL query for delete record
g->SQL->Clear();
g->SQL->Add("DELETE FROM dept WHERE deptno = :deptno;");
// set parameters
g->ParamByName('deptno")->AsInteger = 10;
// execute query
y g->Execute();
T_ﬁ'naﬂy
g->Free();
}
ks

DML Statements As Plain Text

[Delphi]
var
g: TPgQuery;
begin
g := TPgQuery.Create(nil);
try
// con is either TPgConnection already set up
g.Connection := con;
// set SQL query for delete record
g.SQL.Clear;

g.SQL.Add('DELETE FROM dept WHERE deptno = 10;');
// execute query
g.Execute;
finally
g.Free;
end;
end;

[C++Builder]

{

TPgQuery* g = new TPgQuery(NULL);

£
// con 1s either TPgConnection already set up
g->Connection = con;
// set SQL query for delete record
g->SQL->Clear();
g->SQL->Add("DELETE FROM dept WHERE deptno = 10;");
// execute query
g->Execute();

—

__finally

© 2019 Devart



56

PostgreSQL Data Access Components

3.5

g->Free();

Additional Information

It is also possible to use stored procedures for deleting data. In this case, all data
manipulation logic is defined on the server.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Inserting Data Into Tables

This tutorial describes how to insert data into tables using the TPgQuery and TPgTable
components.
1. Requirements
2. General information
3. Design Time
4. Run Time
o 4.1 Using DataSet Functionality
o 4.2 Building DML Statements Manually
= 4.2.1 DML Statements With Parameters
» 4.2.2 DML Statements As Plain Text
5. Additional Information

Requirements

This walkthrough supposes that you know how to connect to server (tutorial "Connecting To

PostgreSQL") and that necessary objects are already created on the server (tutorial "Creating

Database Objects").

General information

Data on server can be inserted using Data Manipulation Language (DML), which is a part of
SQL. DML statements can be executed on server by an account that has necessary
privileges. There are two ways to manipulate a database. You can build DML statements
manually and run them within some component like TPgQuery. Another way is to use the
dataset functionality (the Insert, Append, and Post methods) of the TPgQuery and TPgTable
components. We will discuss both ways.

The goal of this tutorial is to insert the following data into tables dept and emp:

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Getting Started 57

Table dept

deptno dname loc

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

Table emp

empno ename |job mgr hiredate sal comm deptno

7369  |SMITH |CLERK 7902 ];;;02' 800 NULL 20
SALESM 20-02-

7499 ALLEN 3% 7698 200° 1600 300 30
SALESM 22-02-

7521 WARD ;A 7698 200¢ 1250 500 30

7566  |JONES 'I\Q"ANAGE 7839 ?sg’f‘ 2075  INULL 20
SALESM 28-00-

7654 MARTN |20 7698 20097 1250 1400 130

7698 | BLAKE ';{"ANAGE 7839 ?;éof' 2850  NULL 30

7782  |CLARK MANAGE  gq4q  109-06- 1500 NULL 10
R 1981

7788  |SCOTT |ANALYST 7566 ] 3;3077' 3000 NULL |20
PRESIDE 17-11-

7839 KNG |\~ NuLL 32T ls000  NULL (10
SALESM 08-00-

7844 TURNER 3o 7698 90097 11500 |0 30

7876  |ADAMS |CLERK 7788 13;3077' 1100 INULL |20

7900  |JAMES |CLERK 7698 ?3;12' 950 NULL 30

7902 |FORD |ANALYST 7566 ?35112' 3000 NULL |20

7934  |MILLER |CLERK 7782 fgéo;' 1300 INULL |10

Design time

© 2019 Devart



58

PostgreSQL Data Access Components

¢ Open the Tool palette and find the TPgQuery component in the PgDAC category.

¢ Double-click on the component. Note that a new object appears on the form. If this is the
first time you create TPgQuery in this application, it is named PgQuery1. Note that the
PgQuery1.Connection property is already set to an existent (on the form) connection.

e Double-click on the PgQuery1 object.

¢ Type the following lines:

INSERT INTO dept VALUES (10, 'ACCOUNTING','NEW YORK');

® Press the Execute button.

Performing these steps adds a new record to the dept table.

Run time

Using DataSet Functionality

The Insert, Append, and Post methods of the TPgQuery and TPgTable components allow
inserting data not using DML statements. DML statements are generated by Pgdac
components internally. The difference between the Append and Insert methods is that Append
creates a new empty record in the end of a dataset, when Insert creates it in the position of
the current record of a dataset. The code below demonstrates using these methods:

[Delphi]

var
g: TPgQuery;
begin
g := TPgQuery.Create(nil);
try
g.Connection := con; // con is TPgConnection already set up
g.SQL.Text := 'SELECT * FROM dept';
g.0pen;
g.Append;
g.FieldByName('deptno') .AsInteger := 10;
g.FieldByName('dname') .AsString := 'ACCOUNTING';
g.FieldByName('loc').AsString := 'NEW YORK';
g.Post;
finally
g.Free;
end;
end;
[C++Builder]
{
TPgQuery* g = new TPgQuery(NULL);
i

g->Connection = con; // con is TPgConnection already set up
q->SQL->Text = "SELECT * FROM dept";

© 2019 Devart



Getting Started

q_
q_

>0pen();
>Append () ;

g->FieldByName(''deptno")->AsInteger = 10;
g->FieldByName("dname")->AsString = "ACCOUNTING";

g->FieldByName("loc")->AsString = "NEW YORK";
q_

\-v-‘r-*-\|‘-v-’

q_

>Post();

finally

>Free();

Building DML Statements Manually

DML Statements can contain plain text and text with parameters. This section describes both

ways.

DML Statements With Parameters

[Delphi]
var
g: TPgQuery;
begin
g := TPgQuery.Create(nil);
try
g.Connection := con; // con is TPgConnection set up
g.SQL.Clear;
g.SQL.Add('INSERT INTO dept(deptno, dname, loc) VALUES (:deptno,
g.ParamByName( 'deptno') .AsInteger := 10;
g.ParamByName('dname') .AsString := 'ACCOUNTING';
g.ParamByName('loc').AsString := 'NEW YORK';
g.Execute;
finally
g.Free;
end;
end;

[C++Builder]

{

TPgQuery* g = new TPgQuery(NULL);

try
{

g->Connection = con; // con is TPgConnection already set up

g->SQL->Clear();

g->SQL->Add ("INSERT INTO dept(deptno, dname, loc) VALUES (:deptno,

q->ParamByName(''deptno”)->AsInteger = 10;
g->ParamByName(''dname")->AsString = "ACCOUNTING";

g->ParamByName("loc")->AsString = "NEW YORK";

g->Execute();

}
[

finally

59

© 2019 Devart

:dname,

:dnam



60 PostgreSQL Data Access Components

g->Free();

DML Statements As Plain Text
[Delphi]

var
g: TPgQuery;
begin
g := TPgQuery.Create(nil);
try
g.Connection := con; // con is TPgConnection already set up
g.SQL.Clear;
g.SQL.Add('INSERT INTO dept(deptno, dname, loc) VALUES (10, ''ACCOUNTING'
g.Execute;
finally
g.Free;
end;
end;

[C++Builder]

{
TPgQuery* q = new TPgQuery(NULL);
i
g->Connection = con; // con is TPgConnection already set up
g->SQL->Clear();
g->SQL->Add ("INSERT INTO dept(deptno, dname, loc) VALUES (10, 'ACCOUNTING
g->Execute();

finally

g->Free();

‘-v-‘r-‘-\|‘-v-'

Additional Information

Actually, there are lots of ways to insert data into tables. Any tool or component capable of
running a SQL query can be used to manage data. Some components are better for
performing certain tasks. For example, TPgLoader is the fastest way to insert data, TPgScript
is designed for executing series of statements one by one.

It is also possible to use stored procedures for inserting data. In this case, all data
manipulation logic is defined on the server. You can find more about using stored procedures
in the tutorial "Stored Procedures".

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Getting Started 61

3.6 Retrieving Data

1. Requirements

2. General Information
3. TPgQuery

4. TPgTable

5. Additional information

Requirements

This walkthrough supposes that you know how to connect to server (tutorial "Connecting To
SQL Server"), how to create necessary objects on the server (tutorial "Creating Database
Objects"), and how to insert data to created tables (tutorial "Inserting Data Into Tables").

General information

As we know, an original function of any database application is establishing connection to a
data source and working with data contained in it. PGDAC provides several components that
can be used for data retrieving, such as TPgQuery and TPgTable. We will discuss data
retrieving using these components.

The goal of this tutorial is to retrieve data from a table dept.

TPgQuery

The following code demonstrates retrieving of data from the dept table using the TPgQuery
component:

[Delphi]

var
g: TPgQuery;
begin
g := TPgQuery.Create(nil);
try
// con 1s TPgConnection already set up
g.Connection := con;
// retrieve data
q.SQL.Text := 'SELECT * FROM dept';
g.0pen;
// shows the number of records obtained from the server
ShowMessage (IntToStr(qg.RecordCount));
finally
g.Free;
end;
end;

[C++Builder]
{

© 2019 Devart



62

PostgreSQL Data Access Components

TPgQuery* q = new TPgQuery(NULL);

tr
{

‘-v-'r-*-\l‘-v-‘

y

// con is TPgConnection already set up

g->Connection = con;

// retrieve data

g->SQL->Text = "SELECT * FROM dept";

q->0pen() ;

// shows the number of records obtained from the server
ShowMessage (IntToStr(g->RecordCount));

finally

g->Free();

TPgTable
The following code demonstrates retrieving of data from the dept table using the TPgTable
component:
[Delphi]

var

tb

1: TPgTable;

begin

tb
tr

fi

en

end;
[C++Builder]

{

TP
tr
{

r-*-\|‘-v-’

1 := TPgTable.Create(nil);

Yy

// con is TPgConnection already set up
tb1.Connection := con;

// retrieve data

tbl.TableName := 'dept';

tb1.0pen;

// shows the number of records obtained from the server
ShowMessage (IntToStr(tbl.RecordCount));
nally

§b1.Free;

gTable* tbl = new TPgTable(NULL);
Yy

// con 1s TPgConnection already set up

tb1->Connection = con;

// retrieve data

tb1->TableName = "dept";

tb1->0pen();

// shows the number of records obtained from the server
ShowMessage (IntToStr(tbl->RecordCount));

finally

© 2019 Devart



Getting Started 63

tb1->Free();

Additional Information

It is also possible to use stored procedures for data retrieving. In this case, all data
manipulation logic is defined on the server.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

3.7 Modifying Data

This tutorial describes how to modify data into tables using the TPgQuery and TPgTable
components.
1. Requirements
2. General information
3. Using DataSet Functionality
4. Building DML Statements Manually
o 4.1 DML Statements With Parameters
o 4.2 DML Statements As Plain Text
5. Additional Information

Requirements

This walkthrough supposes that you know how to connect to server (tutorial "Connecting To
PostgreSQL"), how to create necessary objects on the server (tutorial "Creating Database
Objects"), and how to insert data to created tables (tutorial "Inserting Data Into Tables").

General information

Data on server can be modified using Data Manipulation Language (DML), which is a part of
SQL. DML statements can be executed on server by an account that has necessary
privileges. There are two ways to manipulate a database. You can build DML statements
manually and run them within some component like TPgQuery. Another way is to use the
dataset functionality (the Edit and Post methods) of the TPgQuery and TPgTable
components. We will discuss both ways. The goal of this tutorial is to modify the following
record of the table dept:

10 ACCOUNTING NEW YORK
to make it look as follows:
10 RESEARCH LOS ANGELES

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

64

PostgreSQL Data Access Components

Usi

ng DataSet Functionality

The Edit and Post methods of the TPgQuery and TPgTable components allow deleting data

witho

ut using DML statements. DML statements are generated by PgDAC components

internally. The code below demonstrates using these methods:
[Delphi]

var
el

beg1
q
tr

fi

en
end;

TPgQuery;

n

:= TPgQuery.Create(nil);

y

// con is TPgConnection already set up
g.Connection := con;

// retrieve data

g.SQL.Text := 'SELECT * FROM dept';

g.0pen;

// to make the record with deptno=10 the current record
g.Findkey([10]);

/ modify record

gq.Edit;

g.FieldByName('dname') .AsString := 'RESEARCH';
g.FieldByName('loc').AsString := 'LOS ANGELES';
g.Post;

nally

q.Free;

d;

[C++Builder]

{
TP

tr
{

H—’r—"ﬁ|‘-v-’

gQuery* q = new TPgQuery(NULL);
y

// con is TPgConnection already set up
g->Connection = con;

// retrieve data

g->SQL->Text = "SELECT * FROM dept";

q->0pen() ;

// to make the record with deptno=10 the current record
g->FindKey (ARRAYOFCONST((10)));

// modify record

g->Edit(Q);

g->FieldByName(''dname")->AsString = "RESEARCH";
g->FieldByName("loc")->AsString = "LOS ANGELES";
g->Post();

finally

g->Free();

© 2019 Devart



Getting Started 65

Building DML Statements Manually

DML Statements can contain plain text and text with parameters. This section describes both
ways.

DML Statements With Parameters

[Delphi]
var
g: TPgQuery;
begin
g := TPgQuery.Create(nil);
try
// con is TPgConnection already set up
g.Connection := con;
// set SQL query for update record
g.SQL.Clear;

g.SQL.Add('UPDATE dept SET dname = :dname, loc = :loc WHERE deptno = :
// set parameters
g.ParamByName('deptno') .AsInteger := 10;
g.ParamByName('dname') .AsString := 'RESEARCH';
gq.ParamByName('loc').AsString := 'LOS ANGELES';
// execute query
g.Execute;

finally
g.Free;

end;

end;

[C++Builder]

{

TPgQuery* q = new TPgQuery(NULL);

try

{ . .
// con is TPgConnection already set up
g->Connection = con;
// set SQL query for update record
g->SQL->Clear();
g->SQL->Add ("UPDATE dept SET dname = :dname, loc = :loc WHERE deptno
// set parameters
g->ParamByName(''deptno")->AsInteger = 10;
g->ParamByName(''dname")->AsString = "RESEARCH";
g->ParamByName("loc")->AsString = "LOS ANGELES";
// execute query
g->Execute();

finally

g->Free();

\-v-‘r-*-\|‘-v-’

© 2019 Devart



66

PostgreSQL Data Access Components

DML Statements As Plain Text
[Delphi]

var
g: TPgQuery;
begin
g := TPgQuery.Create(nil);
try
// con is TPgConnection already set up
g.Connection := con;
// set SQL query for update record
g.SQL.Clear;
g.SQL.Add('UPDATE dept SET dname = ''RESEARCH'', loc =
// execute query
g.Execute;
finally
g.Free;
end;
end;

[C++Builder]

TPgQuery* q = new TPgQuery(NULL);
try

// con is TPgConnection already set up

g->Connection = con;

// set SQL query for update record

g->SQL->Clear();

g->SQL->Add ("UPDATE dept SET dname = 'RESEARCH', loc =
// execute query

g->Execute();

finally

g->Free();

\-v-lf-h-\lw-l

Additional Information

It is also possible to use stored procedures for modifying data. In this case, all data
manipulation logic is defined on the server.

© 1997-2019

'""LOS ANGELES'"'

W

'LOS ANGELES' WHE

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Getting Started 67

3.8 Demo Projects

PgDAC includes a number of demo projects that show off the main PgDAC functionality and
development patterns.

The PgDAC demo projects consist of one large project called PgDacDemo with demos for all
main PgDAC components, use cases, and data access technologies, and a number of
smaller projects on how to use PgDAC in different IDEs and how to integrate PgDAC with
third-party components.

Most demo projects are built for Delphi and Embarcadero RAD Studio. There are only two
PgDAC demos for C++Builder. However, the C++Builder distribution includes source code
for all the other demo projects as well.

Where are the PgDAC demo projects located?

In most cases all the PgDAC demo projects are located in "%PgDac%\Demos\".

In Delphi 2007 for Win32 under Windows Vista all the PgDAC demo projects are located in
"My Documents\Devart\PgDac for Delphi 2007\Demos", for example "C:\Documents and
Settings\All Users\Documents\Devart\PgDac for Delphi 2007\Demos\".

The structure of the demo project directory depends on the IDE version you are using.

For most new IDEs the structure will be as follows.
Demos

PgDacDemo [The main PgDAC demo project]
TechnologySpecific
SecureBridge [A component and a demo for integration with

the SecureBridge library]
ThirdParty

[A collection of demo projects on integration with third-

party components]
Miscellaneous

[Some other demo projects on design technologies]

PgDacDemo is the main demo project that shows off all the PgDAC functionality. The other
directories contain a number of supplementary demo projects that describe special use
cases. Alist of all the samples in the PgDAC demo project and a description for the
supplementary projects is provided in the following section.

Note: This documentation describes ALL the PgDAC demo projects. The actual demo
projects you will have installed on your computer depends on your PgDAC version, PgDAC

edition, and the IDE version you are using. The integration demos may require installation of

© 2019 Devart



68

PostgreSQL Data Access Components

third-party components to compile and work properly.

Instructions for using the PgDAC demo projects

To explore a PgDAC demo project,

1. Launch your IDE.

2. In your IDE, choose File | Open Project from the menu bar.

3. Find the directory you installed PgDAC to and open the Demos folder.

4. Browse through the demo project folders located here and open the project file of the demo
you would like to use.

5. Compile and launch the demo. If it exists, consult the ReadMe.xt file for more details.

The included sample applications are fully functional. To use the demos, you have to first set
up a connection to PostgreSQL. You can do so by clicking on the "Connect" button.

Many demos may also use some database objects. If so, they will have two object
manipulation buttons, "Create" and "Drop". If your demo requires additional objects, click
"Create" to create the necessary database objects. When you are done with a demo, click
"Drop" to remove all the objects used for the demo from your database.

Note: The PgDAC demo directory includes two sample SQL scripts for creating and dropping

all the test schema objects used in the PgDAC demos. You can modify and execute this

script manually, if you would like. This will not change the behavior of the demos.

You can find a complete walkthrough for the main PgDAC demo project in the Getting Started
topic. The other PgDAC demo projects include a ReadMe.txt file with individual building and
launching instructions.

Demo project descriptions

PgDacDemo
PgDacDemo is one large project which includes three collections of demos.
Working with components
A collection of samples that show how to work with the basic PgDAC components.
General demos
A collection of samples that show off the PgDAC technology and demonstrate some ways
to work with data.
PostgreSQL-specific demos
A collection of samples that demonstrate how to incorporate PostgreSQL features in
database applications.

© 2019 Devart



Getting Started 69

PgDacDemo can be opened from %PgDac%\Demos\PgDacDemo\PgDacDemo.dpr
(.bdsproj). The following table describes all demos contained in this project.

Working with Components

Name Description
Alerter Uses TPgAlerter to send notifications between connections.

Demonstrates how to customize the PgDAC connect dialog .
Changes the standard PgDAC connect dialog to two custom connect
ConnectDialog dialogs. The first customized sample dialog is inherited from the
TForm class, and the second one is inherited from the default PgDAC
connect dialog class.
Demonstrates how to work with the TCRDBGrid component. Shows
CRDBGrid off the main TCRDBGrid features, like filtering, searching, stretching,
using compound headers, and more.
Demonstrates how to backup data from tables with the TPgDump
component. Shows how to use scripts created during back up to
restore table data. This demo lets you back up a table either by
specifying the table name or by writing a SELECT query.
Uses the TPgLoader component to quickly load data into a server
Loader table. This demo also compares the two TPgLoader data loading
handlers: GetColumnData and PutData .
Demonstrates working with TPgQuery , which is one of the most
useful PgDAC components. Includes many TPgQuery usage
scenarios. Demonstrates how to execute queries in both standard
and NonBlocking mode and how to edit data and export it to XML

Query files.

Note: This is a very good introductory demo. We recommend starting

Dump

here when first becoming familiar with PgDAC.

Uses TPgSQL to execute SQL statements. Demonstrates how to
Sql work in a separate thread, in standard mode, in NonBlocking mode,
and how to break long-duration query execution.
Uses TPgStoredProc to access an editable recordset from a
PostgreSQL stored procedure in the client application.
Demonstrates how to use TPgTable to work with data from a single
Table table on the server without writing any SQL queries manually.

Performs server-side data sorting and filtering and retrieves results

for browsing and editing.

Demonstrates using the TPgUpdateSQL component to customize
UpdateSQL update commands. Lets you optionally use

T:Devart.PgDac.TPgCommand and TPgQuery objects for carrying

out insert, delete, query, and update commands.

StoredProc

© 2019 Devart



70

PostgreSQL Data Access Components

VirtualTable

Name

CachedUpdate
s

FilterAndIndex

MasterDetail

Lock

Name

Pictures

Text

Demonstrates working with the TVirtualTable component. This
sample shows how to fill virtual dataset with data from other datasets,
filter data by a given criteria, locate specified records, perform file
operations, and change data and table structure.

General Demos

Description

Demonstrates how to perform the most important tasks of working
with data in CachedUpdates mode, including highlighting
uncommitted changes, managing transactions, and committing
changes in a batch.

Demonstrates PgDAC's local storage functionality. This sample
shows how to perform local filtering, sorting and locating by multiple
fields, including by calculated and lookup fields.

Uses PgDAC functionality to work with master/detail relationships.
This sample shows how to use local master/detail functionality.
Demonstrates different kinds of master/detail linking, including linking
by SQL, by simple fields, and by calculated fields.

Demonstrates the recommended approach for managing
transactions with the TPgConnection component. The TPgConnection
interface provides a wrapper for PostgreSQL server commands like
START TRANSACTION, COMMIT, ROLLBACK.

PostgreSQL-specific Demos

Description

Uses PgDAC functionality to work with graphics. The sample
demonstrates how to retrieve binary data from PgSQL server
database and display it on visual components. Sample also shows
how to load and save pictures to files and to the database.

Uses PgDAC functionality to work with text. The sample demonstrates
how to retrieve text data from SQL Server database and display it on
visual components. Sample also shows how to load and save text to
files and to the database.

Supplementary Demo Projects

PgDAC also includes a number of additional demo projects that describe some special use
cases, show how to use PgDAC in different IDEs and give examples of how to integrate it
with third-party components. These supplementary PGDAC demo projects are sorted into
subfolders in the %PgDac%\Demos\ directory.

© 2019 Devart



Getting Started 7

Location Name

ThirdParty |FastReport

Technology SecureBrid
Specific ~ (9€

]

Miscellaneo
us

FailOver

PgDacDem PgDacDem

Description

Demonstrates how PgDAC can be used with FastReport
components. This project consists of two parts. The first part
is several packages that integrate PGQDAC components into
the FastReport editor. The second partis a demo
application that lets you design and preview reports with
PgDAC technology in the FastReport editor.

The demo project demonstrates how to integrate the
SecureBridge components with PgDAC to ensure secure
connection to PostgreSQL server through an SSH tunnel and
SSL.

This demo consists of three parts. The first part is a package
that contains the TPgSSHIOHandler and TPgSSLIOHandler
component. These components provide integration with the
SecureBridge library. The second part is two sample
projects that demonstrate how to connect to PostgreSQL
server through an SSH server and through SSL, connect to
the SSH server with SecureBridge by password or by public
key, generate reliable random numbers, enable local port
forwarding.

For more information see the Readme.html file in the demo
directory.

Demonstrates creating and loading DLLs for PgDAC-based
projects. This demo project consists of two parts - an Pg_DII
project that creates a DLL of a form that sends a query to the
server and displays its results, and an Pg_Exe project that
can be executed to display a form for loading and running
this DLL. Allows you to build a dll for one PgDAC-based
project and load and test it from a separate application.
Demonstrates the recommended approach to working with
unstable networks. This sample lets you perform transactions

and updates in several different modes, simulate a sudden
session termination, and view what happens to your data
state when connections to the server are unexpectedly lost.
Shows off CachedUpdates, LocalMasterDetail, FetchAll,
Pooling, and different Failover modes.

[Win32 version of the main PgDAC demo project - see

o o above]

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/sbridge
https://www.devart.com/sbridge
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

72

PostgreSQL Data Access Components

3.9

Deployment

PgDAC applications can be built and deployed with or without run-time libraries. Using run-
time libraries is managed with the "Build with runtime packages" check box in the Project
Options dialog box.

Deploying Windows applications built without run-time
packages

You do not need to deploy any files with PGDAC-based applications built without run-time
packages, provided you are using a registered version of PgDAC.

You can check if your application does not require run-time packages by making sure the
"Build with runtime packages" check box is not selected in the Project Options dialog box.

Trial Limitation Warning

If you are evaluating deploying Windows applications with PgDAC Trial Edition, you will need
to deploy the following DAC BPL files:

dacXX.bpl always
pgdacXX.bpl |always

and their dependencies (required IDE BPL files) with your application, even if it is built without
run-time packages:

rtIXX.bpl always
dbrtiXX.bpl always
veldbXXX.bpl  |always

Deploying Windows applications built with run-time
packages

You can set your application to be built with run-time packages by selecting the "Build with
runtime packages" check box in the Project Options dialog box before compiling your
application.

In this case, you will also need to deploy the following BPL files with your Win32 application:

dacXX.bpl always

pgdacXX.bpl |always

dacvclXX.bpl if your application uses the PgDacVcl unit
pgdacvclXX.bpl |if your application uses the PgDacVcl unit
crcontrolsXX.bpl if your application uses the CRDBGrid component

© 2019 Devart



Getting Started 73

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

4 Using PgDAC

This section describes basics of using PostgreSQL Data Access Components
e Updating Data with PgDAC Dataset Components
e Master/Detail Relationships

e Automatic Key Field Value Generation

e Data Type Mapping

e Data Encryption

e \Working in an Unstable Network

e Secure Connections

¢ Disconnected Mode

¢ Increasing Performance

e Macros
e DataSet Manager

e TPglLoader Component

e Large Objects

e REFCURSOR Data Type

e National and Unicode Characters

e Connection Pooling

e DBMonitor

e Writing GUI Applications with PgDAC

e Compatibility with Previous Versions

¢ 64-bit Development with Embarcadero RAD Studio XE2
e Database Specific Aspects of 64-bit Development

e Demo Projects

¢ Deployment

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

41 Updating Data with PgDAC Dataset Components

PgDAC dataset components which descend from TCustomDADataSet provide different ways
for reflecting local changes on the server.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

74

PostgreSQL Data Access Components

4.2

The first approach is to use automatic generation of update SQL statements. When using this
approach you should specify Key Fields (the KeyFields property) to avoid requesting
KeyFields from the server. When SELECT statement uses multiple tables, you can use the
P:Devart.PgDac.TCustomPgDataSet.UpdatingTable property to specify which table will be
updated. If UpdatingTable is blank, the first table of the FROM clause will be used. In the most
cases PgDAC needs an additional information about updating objects. So PgDAC executes
additional queries to the server. This helps to generate correct updating SQL statements but
may result in performance decrease. To disable these additional queries, set the
ExtendedFieldsInfo option to False.

Another approach is to set update SQL statements using SQLInsert, SQLUpdate, and
SQLDelete properties. Use them to specify SQL statements that will be used for
corresponding data modifications. It is useful when generating data modification statements is
not possible (for example, when working with data returned by a stored procedure) or you
need to execute some specific statements. You may also assign the TPgUpdateSQL
component to the UpdateObject property. TPgUpdateSQL component holds all updating SQL
statements in one place. You can generate all these SQL statements using PgDAC design
time editors. For more careful customization of data update operations you can use
InsertObject, ModifyObject and DeleteObject properties of the TPgUpdateSQL component.

See Also

e TPgQuery

e TPgStoredProc
e TPgTable

e TPgUpdateSQL
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Master/Detail Relationships

Master/detail (MD) relationship between two tables is a very widespread one. So it is very
important to provide an easy way for database application developer to work with it. Lets
examine how PgDAC implements this feature.

Suppose we have classic MD relationship between "Department” and "Employee" tables.
"Department" table has field Dept_No. Dept_No is a primary key.

"Employee" table has a primary key EmpNo and foreign key Dept_No that binds "Employee"
to "Department".

It is necessary to display and edit these tables.

PgDAC provides two ways to bind tables. First code example shows how to bind two

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Using PgDAC 75

TCustomPgDataSet components (TPgQuery, TPgTable, or TPgStoredProc) into MD
relationship via parameters.

procedure TForml.FormlCreate(Sender: TObject);
var
Master, Detail: TPgQuery;
MasterSource: TDataSource;
begin
// create master dataset
Master := TPgQuery.Create(Self);
Master.SQL.Text := 'SELECT * FROM Department';
// create detail dataset
Detail := TPgQuery.Create(Self);

Detail.SQL.Text := 'SELECT * FROM Employee WHERE Dept_No = :Dept_No';
// connect detail dataset with master via TDataSource component
MastersSource := TDataSource.Create(Self);

MasterSource.DataSet := Master;

Detail.MasterSource := MasterSource;

// open master dataset and only then detail dataset
Master.Open;
Detail.Open;

end;

Pay attention to one thing: parameter name in detail dataset SQL must be equal to the field
name or the alias in the master dataset that is used as foreign key for detail table. After
opening detail dataset always holds records with Dept_No field value equal to the one in the
current master dataset record.

There is an additional feature: when inserting new records to detail dataset it automatically fills
foreign key fields with values taken from master dataset.

Now suppose that detail table "Department" foreign key field is named DepLink but not
Dept_No. In such case detail dataset described in above code example will not autofill
DeplLink field with current "Department".Dept_No value on insert. This issue is solved in
second code example.

procedure TForml.FormlCreate(Sender: TObject);
var
Master, Detail: TPgQuery;
MasterSource: TDataSource;
begin
// create master dataset
Master := TPgQuery.Create(Self);
Master.SQL.Text := 'SELECT * FROM Department';
// create detail dataset
Detail := TPgQuery.Create(Self);
Detail.SQL.Text := 'SELECT * FROM Employee';
// setup MD
Detail.MasterFields 'Dept_No'; // primary key in Department
Detail.DetailFields 'DepLink'; // foreign key in Employee
// connect detail dataset with master via TDataSource component

MastersSource := TDataSource.Create(Self);
MastersSource.DataSet := Master;
Detail.MasterSource := MasterSource;

// open master dataset and only then detail dataset

© 2019 Devart



76

PostgreSQL Data Access Components

4.3

Master.Open;
Detail.Open;
end;

In this code example MD relationship is set up using MasterFields and DetailFields properties.
Also note that there are no WHERE clause in detail dataset SQL.

To defer refreshing of detail dataset while master dataset navigation you can use DetailDelay
option.

Such MD relationship can be local and remote, depending on the
TCustomDADataSet.Options.LocalMasterDetail option. If this option is set to True, dataset

uses local filtering for establishing master-detail relationship and does not refer to the server.
Otherwise detail dataset performs query each time when record is selected in master
dataset. Using local MD relationship can reduce server calls number and save server
resources. It can be useful for slow connection. CachedUpdates mode can be used for detail
dataset only for local MD relationship. Using local MD relationship is not recommended when

detail table contains too many rows, because in remote MD relationship only records that
correspond to the current record in master dataset are fetched. So, this can decrease
network traffic in some cases.

See Also
e TCustomDADataSet.Options

e TMemDataSet.CachedUpdates

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Automatic Key Field Value Generation

When editing a dataset it is often convenient to generate key field(s) values automatically
instead of filing them manually. In the most common way application developer generates
primary key value basing it on a previously created sequence. There are three ways of doing
it.

First, application independent way - developer uses SERIAL data type, or manualy sets field
default value like the following:

ALTER TABLE Department ALTER COLUMN DepNo SET DEFAULT nextval('seq_deptno'::

, or creates AFTER INSERT trigger that fills the field value. But there he faces the problem
with getting inserted value back to dataset. This problem can be easily solved in PgDAC using
RETURNING clause. In order for dataset to return a field value specified in RETURNING
clause, set the TDADataSetOptions.ReturnParams property to True. For instance:

PgQuery.SQL.Text := 'SELECT DepNo, DepName, Location FROM Department';

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Using PgDAC 77

PgQuery.SQLInsert.Text := 'INSERT INTO Department (DepNo, DepName, Location)
'"VALUES (DepNo, DepName, Location) ' +
'"RETURNING DepNo';

PgQuery.Options.ReturnParams := True;

The second way is custom key field value generation. Developer can fill key field value in the
TCustomPgDataSet.BeforePost event handler. But in this case he should manually execute
query and retrieve the sequence value. So this way may be useful only if some special value
processing is heeded.

The third way, using KeySequence, is the simplest. Developer only needs to specify two
properties and key field values are generated automatically. There is no need to create trigger
or perform custom BeforePost processing.

PgQuery.SQL.Text := 'SELECT DepNo, DepName, Location FROM Department';
PgQuery.KeyFields := 'DepNo'; // key field

PgQuery.KeySequence := 'seq_deptno'; // sequence that will generate values
See Also

e KeySequence

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

4.4 Data Type Mapping

Overview

Data Type Mapping is a flexible and easily customizable gear, which allows mapping
between DB types and Delphi field types.

In this article there are several examples, which can be used when working with all supported
DBs. In order to clearly display the universality of the Data Type Mapping gear, a separate DB
will be used for each example.

Data Type Mapping Rules

In versions where Data Type Mapping was not supported, PgDAC automatically set
correspondence between the DB data types and Delphi field types. In versions with Data
Type Mapping support the correspondence between the DB data types and Delphi field types
can be set manually.

Here is the example with the numeric type in the following table of a PostgreSQL database:

CREATE TABLE numeric_types
(

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

78

PostgreSQL Data Access Components

id integer NOT NULL,
valuel numeric(5,2),
value2 numeric(10,4),
value3 numeric(15,6),
CONSTRAINT pk_numeric_types PRIMARY KEY (id)

)

And Data Type Mapping should be used so that:

¢ the numeric fields with Scale=0 in Delphi would be mapped to one of the field types:
TSmallintField, TintegerField or TlargeintField, depending on Precision

¢ to save precision, the numeric fields with Precision>=10 and Scale<= 4 would be mapped
to TBCDField

¢ and the numeric fields with Scale>= 5 would be mapped to TFMTBCDField.

The above in the form of a table:

PostgreSQl data type Default Delphi field type DESE e LE Rl

type
numeric(4,0) ftFloat ftSmallint
numeric(10,0) ftFloat ftinteger
numeric(15,0) ftFloat ftLargeint
numeric(5,2) ftFloat ftFloat
numeric(10,4) ftFloat ftBCD
numeric(15,6) ftFloat ftFMTBCD

To specify that numeric fields with Precision <= 4 and Scale = 0 must be mapped to
ftSmallint, such a rule should be set:

var
DBType: Wword;
MinPrecision: Integer;
MaxPrecision: Integer;
MinScale: Integer;
MaxScale: Integer;
FieldType: TfieldType;

begin
DBType = pgNumeric;
MinPrecision := 0;
MaxPrecision := 4;
MinScale = 0;
MaxScale = 0-
FieldType = ftSmallint;

PgConnection.DataTypeMap.AddDBTypeRule(DBType, MinPrecision, MaxPrecision,
end;

This is an example of the detailed rule setting, and it is made for maximum
visualization.Usually, rules are set much shorter, e.g. as follows:

// clear existing rules

© 2019 Devart



Using PgDAC 79

PgConnection.DataTypeMap.Clear;
// rule for numeric(4,0)

PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, O, 4, 0, 0, ftSma
// rule for numeric(10,0)
PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, 5, 10, O, 0, ftint
// rule for numeric(15,0)
PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, 11, rlAny, 0, ftLar

// rule for numeric(5,2)
PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, O, 9,
// rule for numeric(10,4)
PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, 10, rlAny,
// rule for numeric(15,6)
PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, 10, rlAny,

, rlAny, ftFlo

) 4, ftBCD

vi B B O O O

, r1Any, ftF™mT

Rules order

When setting rules, there can occur a situation when two or more rules that contradict to
each other are set for one type in the database. In this case, only one rule will be applied —
the one, which was set first.

For example, there is a table in an PostgreSQL database:

CREATE TABLE person

id integer NOT NULL,
firstname character(20) ,
lastname character(30) ,
gender_code character(l) ,
birth_dttm date ,

CONSTRAINT pk_person_types PRIMARY KEY (id)
)

TBCDField should be used for NUMBER(10,4), and TFMTBCDField - for NUMBER(15,6)
instead of default fields:

PostgreSQL data type Default Delphi field type |Destination field type

NUMBER(5,2) ftFloat ftFloat
NUMBER(10,4) ftFloat fBCD
NUMBER(15,6) ftFloat fFMTBCD

If rules are set in the following way:

PgConnection.DataTypeMap.Clear;

PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, O, 9, rlAny, rlAny, ft
PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, 0, rlAny, 0, 4, ft
PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, 0, rlAny, 0, rlAny, ft

it will lead to the following result:

PostgreSQL data type Delphi field type
NUMBER(5,2) ftFloat

© 2019 Devart



80

PostgreSQL Data Access Components

NUMBER(10,4) fiBCD
NUMBER(15,6) ftFMTBCD

But if rules are set in the following way:

PgConnection.DataTypeMap.Clear;

PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, 0, rlAny, 0, rlAny, ft
PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, 0, rlAny, 0, 4, ft
PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, O, 9, rlAny, rlAny, ft

it will lead to the following result:

PostgreSQL data type Delphi field type
NUMBER(5,2) ftFMTBCD
NUMBER(10,4) ftFMTBCD
NUMBER(15,6) ftFMTBCD

This happens because the rule

PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, 0, rlAny, 0, rlany, ft
will be applied for the NUMBER fields, whose Precision is from 0 to infinity, and Scale is from
0 to infinity too. This condition is met by all NUMBER fields with any Precision and Scale.

When using Data Type Mapping, first matching rule is searched for each type, and it is used
for mapping. In the second example, the first set rule appears to be the first matching rule for
all three types, and therefore the ftFMTBCD type will be used for all fields in Delphi.

If to go back to the first example, the first matching rule for the NUMBER(5,2) type is the first
rule, for NUMBER(10,4) - the second rule, and for NUMBER(15,6) - the third rule. So in the
first example, the expected result was obtained.

So it should be remembered that if rules for Data Type Mapping are set so that two or more
rules that contradict to each other are set for one type in the database, the rules will be
applied in the specifed order.

Defining rules for Connection and Dataset

Data Type Mapping allows setting rules for the whole connection as well as for each DataSet
in the application.

For example, such table is created in SQL Server:

CREATE TABLE person

id integer NOT NULL,

© 2019 Devart



Using PgDAC 81

firstname character(20) ,
Tastname character(30) ,
gender_code character (1) ,
birth_dttm date ,

CONSTRAINT pk_person_types PRIMARY KEY (id)

It is exactly known that the birth_dttm field contains birth day, and this field should be ftDate in
Delphi, and not ftDateTime. If such rule is set:

PgConnection.DataTypeMap.Clear;
PgConnection.DataTypeMap.AddDBTypeRule(pgDate, ftDate);

all DATETIME fields in Delphi will have the ftDate type, that is incorrect. The ftDate type was
expected to be used for the DATETIME type only when working with the person table. In this
case, Data Type Mapping should be set not for the whole connection, but for a particular
DataSet:

PgQuery.DataTypeMap.Clear;
PgQuery.DataTypeMap.AddDBTypeRule(pgbate, ftDate);

Or the opposite case. For example, DATETIME is used in the application only for date
storage, and only one table stores both date and time. In this case, the following rules setting
will be correct:

PgConnection.DataTypeMap.Clear;
PgConnection.DataTypeMap.AddDBTypeRule(pgbDate, ftDate);
PgQuery.DataTypeMap.Clear;
PgQuery.DataTypeMap.AddDBTypeRule(pgbate, ftDateTime);

In this case, in all DataSets for the DATETIME type fields with the ftDate type will be created,
and for PgQuery - with the ftDateTime type.

The point is that the priority of the rules set for the DataSet is higher than the priority of the
rules set for the whole connection. This allows both flexible and convenient setting of Data
Type Mapping for the whole application. There is no need to set the same rules for each
DataSet, all the general rules can be set once for the whole connection. And if a DataSet with
an individual Data Type Mapping is necessary, individual rules can be set for it.

Rules for a particular field

Sometimes there is a need to set a rule not for the whole connection, and not for the whole
dataset, but only for a particular field.

e.g. there is such table in a MySQL database:
CREATE TABLE item

id integer NOT NULL,
name character(50) NOT NULL,
guid character(38),

© 2019 Devart



82

PostgreSQL Data Access Components

CONSTRAINT pk_item PRIMARY KEY (id)
The guid field contains a unique identifier. For convenient work, this identifier is expected to
be mapped to the TGuidField type in Delphi. But there is one problem, if to set the rule like
this:
PgQuery.DataTypeMap.Clear;
PgQuery.DataTypeMap.AddDBTypeRule(pgCharacter, ftGuid);
then both name and guid fields will have the ftGuid type in Delphi, that does not correspond to
what was planned. In this case, the only way is to use Data Type Mapping for a particular
field:

PgQuery.DataTypeMap.Clear;
PgQuery.DataTypeMap.AddFieldNameRule('guid', ftGuid)

In addition, it is important to remember that setting rules for particular fields has the highest
priority. If to set some rule for a particular field, all other rules in the Connection or DataSet will
be ignored for this field.

Ilgnoring conversion errors

Data Type Mapping allows mapping various types, and sometimes there can occur the
problem with that the data stored in a DB cannot be converted to the correct data of the
Delphi field type specified in rules of Data Type Mapping or vice-versa. In this case, an error
will occur, which will inform that the data cannot be mapped to the specified type.

For example:

Database value Destination field type Error

'text value' ftinteger String cannot be converted
to Integer

1000000 ftSmallint Value is out of range

15,1 ftinteger Cannot convert float to
integer

But when setting rules for Data Type Mapping, there is a possibility to ignore data conversion
errors:

PgConnection.DataTypeMap.AddDBTypeRule(pgCharacter, ftInteger, True);
In this case, the correct conversion is impossible. But because of ignoring data conversion
errors, Data Type Mapping tries to return values that can be set to the Delphi fields or DB
fields depending on the direction of conversion.

Database value e C Result Result description

type

© 2019 Devart



Using PgDAC 83

0 will be returned if
'text value' ftinteger 0 the text cannot be

converted to number

32767 is the max

1000000 ftSmallint 32767 valqe that can be
assigned to the

Smallint data type

15,1 ftinteger 15 1 5,.1 was truncated to
an integer value

Therefore ignoring of conversion errors should be used only if the conversion results are
expected.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

4.5 Data Encryption

PgDAC has built-in algorithms for data encryption and decryption. To enable encryption, you
should attach the TCREncryptor component to the dataset, and specify the encrypted fields.
When inserting or updating data in the table, information will be encrypted on the client side in
accordance with the specified method. Also when reading data from the server, the
components decrypt the data in these fields "on the fly".

For encryption, you should specify the data encryption algorithm (the EncryptionAlgorithm
property) and password (the Password property). On the basis of the specified password, the
key is generated, which encrypts the data. There is also a possibility to set the key directly
using the SetKey method.

When storing the encrypted data, in addition to the initial data, you can also store additional
information: the GUID and the hash. (The method is specified in the
TCREncryptor.DataHeader property).

If data is stored without additional information, it is impossible to determine whether the data

is encrypted or not. In this case, only the encrypted data should be stored in the column,
otherwise, there will be confusion because of the inability to distinguish the nature of the data.
Also in this way, the similar source data will be equivalent in the encrypted form, that is not
good from the point of view of the information protection. The advantage of this method is the
size of the initial data equal to the size of the encrypted data.

To avoid these problems, it is recommended to store, along with the data, the appropriate
GUID, which is necessary for specifying that the value in the record is encrypted and it must
be decrypted when reading data. This allows you to avoid confusion and keep in the same
column both the encrypted and decrypted data, which is particularly important when using an

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

PostgreSQL Data Access Components

existing table. Also, when doing in this way, a random initializing vector is generated before
the data encryption, which is used for encryption. This allows you to receive different results
for the same initial data, which significantly increases security.

The most preferable way is to store the hash data along with the GUID and encrypted
information to determine the validity of the data and verify its integrity. In this way, if there was
an attempt to falsify the data at any stage of the transmission or data storage, when
decrypting the data, there will be a corresponding error generated. For calculating the hash
the SHA1 or MD5 algorithms can be used (the HashAlgorithm property).

The disadvantage of the latter two methods - additional memory is required for storage of the
auxiliary information.

As the encryption algorithms work with a certain size of the buffer, and when storing the
additional information it is necessary to use additional memory, TCREncryptor supports
encryption of string or binary fields only (ftString, ftWideString, ftBytes, ftVarBytes, ftBlob,
ftMemo, ftWideMemo). If encryption of string fields is used, firstly, the data is encrypted, and
then the obtained binary data is converted into hexadecimal format. In this case, data storage
requires two times more space (one byte = 2 characters in hexadecimal).

Therefore, to have the possibility to encrypt other data types (such as date, number, etc.), it is
necessary to create a field of the binary or BLOB type in the table, and then convert it into the
desired type on the client side with the help of data mapping.

It should be noted that the search and sorting by encrypted fields become impossible on the
server side. Data search for these fields can be performed only on the client after decryption
of data using the Locate and LocateEx methods. Sorting is performed by setting the
TMemDataSet.IndexFieldNames property.

Example.

Let's say there is an employee list of an enterprise stored in the table with the following data:
full name, date of employment, salary, and photo. We want all these data to be stored in the
encrypted form. Write a script for creating the table:

CREATE TABLE emp (

empno integer,

ename character(2000),

hiredate character(200),

sal character(200),

foto bytea,

CONSTRAINT pk_emp PRIMARY KEY (empno)

¥

As we can see, the fields for storage of the textual information, date, and floating-point
number are created with the VARBINARY type. This is for the ability to store encrypted
information, and in the case of the text field - to improve performance. Write the code to
process this information on the client.

PgQuery.SQL.Text := 'SELECT * FROM emp';

© 2019 Devart



Using PgDAC 85

PgQuery.Encryption.Encryptor := PgEncryptor;
PgQuery.Encryption.Fields := 'ename, hiredate, sal, foto';
PgEncryptor.Password := '11111';

PgQuery.DataTypeMap.AddFieldNameRule ('ename', ftString);
PgQuery.DataTypeMap.AddFieldNameRule ('hiredate', ftDateTime);
PgQuery.DataTypeMap.AddFieldNameRule ('sal', ftFloat);
PgQuery.oOpen;

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

4.6 Working in an Unstable Network

The following settings are recommended for working in an unstable network:

TCustomDAConnection.Options.LocalFailover = True
TCustomDAConnection.Options.DisconnectedMode = True
TDataSet.CachedUpdates = True
TCustomDADataSet.FetchAll = True
TCustomDADataSet.Options.LocalMasterDetail = True
AutoCommit = True

These settings minimize the number of requests to the server. Using
TCustomDAConnection.Options.DisconnectedMode allows DataSet to work without an active
connection. It minimizes server resource usage and reduces connection break probability. .
e. in this mode connection automatically closes if it is not required any more. But every
explicit operation must be finished explicitly. That means each explicit connect must be
followed by explicit disconnect. Read Working with Disconnected Mode topic for more
information.

Setting the FetchAll property to True allows to fetch all data after cursor opening and to close
connection. If you are using master/detail relationship, we recommend to set the
LocalMasterDetail option to True.

It is not recommended to prepare queries explicitly. Use the CachedUpdates mode for
DataSet data editing. Use the TCustomDADataSet.Options.UpdateBatchSize property to
reduce the number of requests to the server.

If a connection breaks, a fatal error occurs, and the OnConnectionLost event will be raised if
the following conditions are fulfilled:

e There are no active transactions;
e There are no opened and not fetched datasets;
e There are no explicitly prepared datasets or SQLs.

If the user does not refuse suggested RetryMode parameter value (or does not use the
OnConnectionLost event handler), PgDAC can implicitly perform the following operations:

connect;
DataSet.ApplyUpdates;

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

86

PostgreSQL Data Access Components

4.7

DataSet.Open;
l.e. when the connection breaks, implicit reconnect is performed and the corresponding
operation is reexecuted. We recommend to wrap other operations in transactions and fulfill
their reexecuting yourself.
The using of Pooling in Disconnected Mode allows to speed up most of the operations
because of connecting duration reducing.

See Also

¢ FailOver demo
e Working with Disconnected Mode

e TCustomDAConnection.Options

e TCustomDAConnection.Pooling

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Secure Connections

Session security depends on several factors, including whether the connection to the host is
a trusted connection. If it is not, confidential information can not be transmitted through this
connection.

PgDAC supports two different ways to increase connection security. They are SSH and SSL.
Both SSH and SSL can be implemented with SecureBridge components.

Devart SecureBridge is a non visual component library that provides functionality for SSH
tunneling and SSL connections. Usage of SecureBridge is the handiest and fastest way to
ensure protected connection to PostgreSQL server. You can read more about SecureBridge
at the SecureBridge home page. The detailed step-by-step instructions on setting up
SecureBridge you will find in the SecureBridge documentation.

To create an SSL connection with PostgreSQL one of the following modes can be used:
smRequire, smPrefer, or smAllow.

For example:

PgConnection.SSLOptions.Mode := smRequire;

SSLMode determines whether or with what priority an SSL connection will be negotiated with

the server.

e smDisable will attempt only an unencrypted SSL connection, then if that fails, raising
exception.

e smRequire will try only an SSL connection, then if that fails, raising exception.

¢ smAllow will negotiate, trying first a non-SSL connection, then if that fails, trying an SSL
connection.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/sbridge/

Using PgDAC 87

e smPrefer will negotiate, trying first an SSL connection, then if that fails, trying a regular non-
SSL connection.

1. SSL using SecureBridge

SecureBridge also allows you to embed functionality of an SSL client into your application.

The following sequence of steps describes how to protect your connection to PostgreSQL

server with SSL using SecureBridge:

¢ Place the TCRSSLIOHandler component onto the form.

e Select a storage object in the Storage property. More information about storage setup you
will find in the SSL client setup topic of SecureBridge help.

¢ Specify the server certificate in the CACertName property.

¢ Specify the client certificate in the CertName property.

¢ Place the TPgConnection component onto the form and setup it to connect to the
PostgreSQL server.

¢ Assign the TCRSSLIOHandler object to the IOHandler property of TPgConnection.

e Connect to PostgreSQL server by setting TPgConnection.Connected to True.

2. SSL using OpenSSL library

The description of the SSL connection features without IOHandler usage:
The following options should be set for SSL connection:

e SSLCACert - the pathname to the certificate authority file.

e SSLCert - the pathname to the certificate file.

e SSLKey - the pathname to the key file.

e SSLCipherList - a list of allowable ciphers to use for SSL encryption.

Note: For using SSL protocol ssleay32.dll and libeay32.dll files are needed.

The detailed description of SSL connection you can find in PostgreSQL Documentation:
e Server settings: "Secure TCP/IP Connections with SSL"
e Client settings: "SSL Support"

3. SSH using SecureBridge

SecureBridge allows you to embed functionality of an SSH client into your application. The

following sequence of steps describes how to protect your connection to PostgreSQL server

through an SSH tunnel with SecureBridge:

e configure your SSH server like described in the server documentation, or use SecureBridge
to make your own SSH server. SecureBridge includes a demo project that implements

© 2019 Devart



88

PostgreSQL Data Access Components

4.8

functionality of an SSH server;

¢ place the TScSSHClient component of SecureBridge onto your form;

e setup TScSSHClient (assign host name, SSH server port, user name, password) to
connect to the SSH server and check the connection;

¢ place the TCRSSHIOHandler component onto your form. This component is included into
PgDAC as a demo project;

¢ place the TPgConnection component onto your form, and link to its IOHandler property the
instance of TCRSSHIOHandler added on the previous step;

e setup TPgConnection to connect to PostgreSQL server and check the connection.

Now you have an encrypted connection between PostgreSQL server and your application.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Connecting via SSL

Connecting to PostgreSQL with via SSL in Delphi

Security is very important when sending messages from the server to the client and vice
versa. There are many data protection methods, including the use of SSL encryption to
connect to a remote PostgreSQL server from a Delphi application. PostgreSQL supports
data transfer via the TCP/IP protocol stack both using SSL encryption or without it.

Devart offers a solution called SecureBridge, which allows you to embed an SSL client into a
Delphi or C++ Builder application to establish a secure connection to PostgreSQL server.
This tutorial demonstrates how to create a sample Delphi application that connects to
PostgreSQL using SSL as the encryption method.

Before connecting to PostgreSQL via SSL, create SSL certificates as explained in the

PostgreSQL documentation and configure SSL parameters in postgresqgl.conf and

pg.hba.conf files.

Sample Delphi app that connects to PostgreSQL using
SSL

To create an SSL connection to PostgreSQL, PgDAC provides several values for the
SSLOptions property. For this tutorial, the Mode property is set to smRequire , since it forces
the application to only connect via SSL connection - if a connection attempt fails, an exeption
is raised.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/sbridge/
https://www.postgresql.org/docs/12/ssl-tcp.html

Using PgDAC 89

Example of SSLOptions property set to smRequire:

PgConnection.SSLOptions.Mode := smRequire;

After installing PgDAC and SecureBridge software on your machine, install the

TCRSSLIOHandler component in RAD Studio to bind PgDAC with SecureBridge. The

installation instructions are provided in the Readme.html, which is located by default in "My

Documents\Devart\PgDAC for RAD Studio\Demos\TechnologySpecific\SecureBridge

\Delphi2x".

1. Run RAD Studio and select 'File -> New — > VCL Forms Application — Delphi'.

2. Place the TCRSSLIOHandler component, which allows PgDAC to connect to
PostgreSQL server through SSL, onto the form. Also add the TPgConnection,
TPgQuery, TDataSource, TDBGrid, and TButton components to the form - they are
required to create a sample application that connects to the PostgreSQL server via SSL,
runs a selection operation against the database, and displays the obtained rows in a data

grid.
File Edit Search ‘iew Refactor Project Run  Corponent Tools  PgDAC  Tabs  Help
ODaE & Orvd BE i 0 v 11 B G=(=cs 0 B Windows 32-bit - B
Structure F X Unitl X
R Oem T =

e Buttonl
& CRESLIOHandlerl
& CipherSuites
[ DEGridl : -
& Columns [ DE g
;}3 PgConnectionl [ Pgiueryl DataSourcel  CRSSLIOHandlerl  PgConnectioni
2 PgQuen1
& Constraints
[ DataSourcel
& Fields
&y Macros
& Params

A
ke

DataSet Manager  Structure

T " noowe

3. Select the TPgConnection component and asign the TCRSSLIOHandler object to the
IOHandler property in the Object Inspector.

4. Expand the SSLOptions property in the Object Inspector and specify the server certificate
in the CACert property, the client certificate in the Cert property, and the private client key
in the Key property.

5. Double-click TPgConnection and specify the server address, port, username, password,
and, optionally, database name. Click Connect to test connection to the PostgreSQL
server.

© 2019 Devart



90

PostgreSQL Data Access Components

Structure
B 4 &
DataSet Manager  Structure
Ohject Inspectar
PgConnectionl TPgConnection
Properties  Events
DataTypehdap (TDAMapRules)
Debug [ False
HttpOptions (TPgHttpOptions)
I0Handler CRSSLIOHandlerl
LiveBindings Desit  LiveBindings Designer
LoginPrarmpt True
Marne PgConnectionl
Options (TPgCannectionDptions)
Password ke
Paaling [ False
PoolingOptions  (TPoolingOptions)
Part 5432
Frotocolversion  puwfuto
Scherna
Server localhost
S5LOptions [TPgConnectionS5L0ptions)
CACert D:\ca.crt
Cert D:iclient.pem
CipherList
Key Driclient.key
Mode smRequire

property.

DR R OEe-H BF &Bin
Structure ks
2% 4 ¢

Dataset Manager  Structure

DataSourcel TDatafource

Properties  Events
AutoEdit True
Dataset PgQueryl
Enabled True

LiveBindings Desi LiveBindings Designer

Marme

Tag

n

P8

>

=

Yifelcorne Page Unitl v Proj
— 3

@ Formt = Er=] -
e P
[ -
2

[m]
3 =[N R
PG T EEN d)h o]
PaCusry] DataSource]l  CRSSLICOHandler]  PoConnectionl
FarmL.PgConnectionl @
Connect | Data Type Mappingl Infa I About|
Server localhost - devc]rt
Fart S432 =
Username postgres
Password LLL L
Database test =
Schema
PostgreSQL
Data Access
Components
. LnginPrnmpt Connect ][ Disconnect

>

. Select the TDataSource component and assign the PgQuery1 object to the DataSet

v v Il B OG=[E = EE Windows 32-bit v -
“elcome Page Unitl A
=

@ Forml

7 = =% (i
P o D"'MD EEN P
PgQueryl DataSourcel  CR3SLICHandlerl  PgConnectionl

7. Assign the DataSource1 object to the DataSource property in the TDBGrid component.

© 2019 Devart



Using PgDAC 91
Structure ® X ‘Welcorne Page I!ME“
LR TR
Oromt oo es
DataSet Manager  Structure ] =] 0
Object Inspector X
DBGridl TOEGrid |
Properties  Event 2] = b i
roperties . wents /O [ Dj ’—_,—%» = [ R PR
CustomHint - [ PoCuery1 DataSourcel  CRSSLIOHandlerl  PgConnectionl | 1100
DataSource DataSourcel Lo
DefaultDrawing True
DragCursar crDrag
DragKind dkDrag
Draghdade drbdanual
Drawingstyle gdsThermed
Enabled True '
FixedCalor |:| clBtnFace i
Font (TFont)

GradientFrdi™nlnr

(A TN TANT N

8. Double-click the TPgQuery component and add a SQL query that will be run against the

PostgreSQL database.

X 4 &

DataSet Manager

ObjectInspector
PgQueryl TRgluery

Properties  Ewvents
Constraints
DataTypehdap
Debug
DetailFields
DhALRefresh
Encryption
Fetchall
FetchRous

Filter

Filtered
FilterOptions
FilterSQL
IndexFieldMarmes
KeyFields
KeySequence
LiveBindings Desit

Structure

(TCheckConstraints)
(TDAMapRules)

D False
D False

(TPGEncryption)
True
25

[ False
11

LiveBindings Designer

@ Forrnl

5 @Fnrml.PgQueryl

SoL | Update SQLsI S0L Generatorl Parametersl Macrosl Data Type Mapping | Stored Proc Call Gener * | *

SELECT * FROM person;| i

l Execute ] [Cude Editor I [Qata Editor... ]

9. Select the TButton component and create the OnClick event. Add the code that will call
the Open method in the TPgQuery component when you click the button.

Structure
=7 Classes

Bae TCAvmnd TC At

DataSet Manager

Object Inspector
Buttonl TEutton

Properties
Images
LiveBindings
OnClick
OnContextPopup

Structure

Events

LiveBindings
ButtonlClick

implementation
{§R *.dfm}

/O procedure TForml.ButtonlClick(3ender: TChject);
begin
PgQueryl.Open:

end;

end.

10.Press F9 to compile and run the application. Click the button on the form to execute the

© 2019 Devart




92

PostgreSQL Data Access Components

4.9

query and display data in the grid.

@ Formt ==
L_‘ .................................... o TI
3 2 Fam1 == =
LG
PaQueryl Dal id first_name last_name email gender =~
’ 1 Wileen Drejer wdrejer0@digo. com Female |=
EE] 2 Ellynn Berceros ebercerosl @wordpress.org Female
3 Cherrita Dullingharn cdullingham2@google.nl Female
4 Samuel ‘ukhnini syukhnini3@jalbum. net Male
5 Griselda Crverstreet goverstreet4@dailymotion, com Female
& Sherwood Mabey smabeyS@ehow, com Male
7 Jewel Ferenczi jferenczis@pinterast, com Female
8 Giacomao Palomba gpalomba?@china. com.cn Male
9 Jarrad Henroryd jhowroyda@ebay.co.uk. Male
10 Bjarn Lebaurn blebourn2@bluehast . com Male
11 Magnum Whilder mwhildera@plala.or.jp Male
12 Elie Caten eoaterb@123-reg.co.uk Female
13 Job Gauch joauchc@alexa.com Male
< [ G
Run

2. SSL connection to PostgreSQL in Delphi using the
OpenSSL library

Another way to embed SSL client functionality into your Delphi app that uses PgDAC
components to access PostgreSQL, is by using the OpenSSL library that implements the
SSL protocol and enables servers to securely communicate with their clients. The description
of the SSL connection features without IOHandler usage:

The following options must be set for SSL connection:

e SSLCACert - the pathname to the certificate authority file.

e SSLCert - the pathname to the certificate file.

e SSLKey - the pathname to the key file.

e SSLCipherList - a list of allowable ciphers to use for SSL encryption.

Note:The ssleay32.dll and libeay32.dll files are required to use the SSL protocol with the
OpenSSL library.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Connecting via SSH

Connecting to PostgreSQL via SSH in Delphi

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Using PgDAC 93

SSH is a protocol that allows users to securely log onto and interact with remote systems on
the Internet by connecting a client program to an SSH server. SSH provides a mechanism for
establishing a cryptographically secured connection between two endpoints, a client and a
remote server, which authenticate each other and exchange messages. It employs different
forms of symmetrical encryption, asymmetrical encryption, and hashing.

It is possible to use SSH to secure the network connection between a Delphi application and
a PostgreSQL server. You execute shell commands in the same fashion as if you were
physically operating the remote machine.

Devart offers a solution called SecureBridge that allows you to create a Delphi SSH client and
a server. You can embed the SSH client into your application and install the SSH server on a
remote machine where your PostgreSQL server resides. The SSL client connects to the SSH
server, which sends all commands to the remote PostgreSQL server. This tutorial
demonstrates how to create a sample Delphi application that connects to PostgreSQL using
SSH as the encryption method.

SSH key-based authentication is done by public and private keys that a client uses to
authenticate itself when logging into an SSH server. The server key is used is used by the
client to authenticate the SSH server and is specified in the TScSSHClient.HostKeyName
property. The client key is used by the SSH server to authenticate the client and is specified in
the TScSSHClient.PrivateKeyName property. Note that the private key contains the public
key. See SecureBridge tutorial on configuring the SSH server for more details.

An SSH server is required to replicate the steps in this tutorial and encrypt the network
connection between the client application and the PostgreSQL server. You can build the SSH
server demo project that is distributed with SecureBridge ('Documents\Devart\PgDAC for
RAD Studio\Demos\TechnologySpecific\SecureBridge\Demo') and run the executable file.

After installing PgDAC and SecureBridge software on your system, install the
TCRSSLIOHandler component in RAD Studio to bind PgDAC with SecureBridge. The
installation instructions are provided in the Readme.html, which is located by default in "My
Documents\Devart\PgDAC for RAD Studio xx.x\Demos\TechnologySpecific\SecureBridge
\Delphixx".

© 2019 Devart


https://www.devart.com/sbridge/
https://www.devart.com/sbridge/docs/server_configuration.htm

94

PostgreSQL Data Access Components

7| SecureBridge demos - SSH Server EI@
| sewer | uses | Log
Time Event User name From hast Fram part To hast To port -
18:16:23 Client connect test 127.0.01 53841
181623 Channel connect test 127.0.01 5384 lncahost 5432
11:2258 Client connect test 127.0.01 26818
11:2358 Channel connect test 127.0.01 26818 lozahost 5432
11:24:06 Channel disconnect test 127.0.01 26818 locahost 5432
11:24:06 Client disconnect test 127.0.01 26815
12:44:28 Channel disconnect test 127.0.01 B3841 locahost 5432
12:44:28 Client disconnect test 127.0.01 53841
13:50:48 Client connect test 127.0.01 436
13:50:48 Channel connect test 127.0.01 3436 locahost 5432
13:50:55 Client connect test 127.0.01 32972
1350:55 Channel connect test 127.0.01 32972 locahost 5432
13510 Channel disconnect test 127.0.01 32972 lozahost 5432
13510 Client disconnect test 127.0.01 32972
14:10:33 Channel connect test 127.0.01 3436 locahost 5432
$ 141035 Channel disconnect test 127.0.01 31436 lncalhast Fd32

Sample Delphi app that connects to PostgreSQL using

SSH

1. Run RAD Studio and select 'File -> New — > VCL Forms Application — Delphi'.

2. Place the following components on the form: TCRSSHIOHandler, TPgConnection,
TPgQuery, TScFileStorage, TScSSHCIlient, TDataSource, TPgQuery, TDBGrid, and

TButton: they are required to create a sample application that connects to the

PostgreSQL server via SSH, runs a selection operation against the database, and displays
the obtained rows in a data grid.

Structure
2 4 $
O] Form2
A Buttonl
L CRSSHIOHandlerl
[ DBGrid1
&y Columns
:ﬂ PgConnectionl
A PgQueryl
S ScFileStoragel
B2 SeSSHClientl
&y CiphersClient
&y CiphersServer
&y HMACAlgorithms
& Hostkeyslgarithrns
& KeyExchangedlgorithms

DataSet Manager  Structure

B X Welcome Page M

-
@ Form3

3. Select the TDBGrid and set the DataSource property to DataSource1.

© 2019 Devart



Using PgDAC 95

Structure

DataSet Mana

Properties
Colurmns
Constraints
CtlZD
Cursar
CustomHin
DataSource
DefaultDran
DragCursor
DragKind
Draghdade
Draniing Syl
Enabled

DBGridl TDEGrid

ger  Structure

Events
(TOBGridColumns)
(TSizeConstraints)
True

crDefault

True
crDirag
dkDrag
dmkdanual
gdsThemed
True

3

X

Welcame Page

Unit ¢

@ Form3

4. In the TDataSource component, assign PgQuery1 to the DataSet property.

Structure

DataSet Mana

ger  Structure

DataSourcel TDataSource

Properties
AutoEdit
DataSet
Enabled
LiveBinding
MNarne

Tag

Events

True

True

LiveBindings Designer
DataSourcel

0

o

x

Welcome Page

Unit3 >

@ Form3

[= =] e=]

5. Select the TPgQuery and set the Connection property to PgConnection1. Double-click

the component and enter an SQL statement to be executed against the PostgreSQL
database.

© 2019 Devart



96

PostgreSQL Data Access Components

Structure

DataSet Manager  Structure

ObjectInspector

PgQueryl TPgQuery

Properties  Ewents
Active ] Falze
AutoCalcFields True
AutoCammit True
CachedUpdates D False
CheckMode cmEzception

ComrmandTimea 0
Connection PgConnectionl

Constraints

DataTypetdap (TDAMapRules)
Debug [ False
DetailFields

DL Refresh [ False
Encryption (TPgEncryption)
FetchAll True
FetrhRms 25

(TCheckCanstraints)

n

e

‘elcome Page Unitd 3¢
@Fnrm}.PgQueryl @
SaL ‘ Update SQLsI QL Generatorl Parametersl Macrosl Data Type Mapping | Stored Proc Call Gener * | =
SELECT * FROM person;| -
- < B
l Execuke ] ICUdE Editor ] IQata Editor ... ]
A

6. Double click the TButton to switch to the unit view. Add the code to call the Open method

on the PgQuery1 object to activate the dataset when the button is clicked.

Structure ® X ‘Welcome Page I!Mm
e Manager  Structure & v & Tromz TFarm3.Button1Click
procedure TFormw3.ButtonlClick(Sender: Tobject):
ObjectInspector X begin
PgQueryl.Open;
Buttonl TEutton -
end;
Properties  Events pel
Action ~ end.
Align idi alMone
Sligriithtdargin [ ] False
Anchors [akLeft,akTop]
BiDitode bdleftToRight
Cancel [ False
Caption Run

7. In the TCRSSHIOHandler component, assign ScSSHCIient1 to the Client property.

Structure * X Welcome Page

@ Farm3

Unit3 >

DataSet Manager  Structure

Ohject Inspector *ox
CRSSHIOHandlerl TCRSSHIOHandler

Ewents pe
ScSSHClientl

LiveBindings LiveBindings Designer

CRESHICHandlerl

Tag ]

Properties
Client

Mame

Buttonl

5c55HClient 1

8. Select the TScFileStorage component and specify in the Path property the directory

© 2019 Devart



Using PgDAC

97

where keys are stored on your system. Double-click the component and generate a pair of
keys for authenticating the server by the client.

o6 N

Structure roX

DataSet Manager  Structure

ChjectInspector X

ScFileStoragel TEcFileStorage

Properties  Events 2
Algorithm saTripleDES_che

LiveBindings LiveBindings Designer

Marme ScFileStoragel
Password

Path ChUsersitest\Desktop
ReadOnly D False
StorellserPa: True

Tag 0

HERvEd BE W@ Gl EEE
Wfelcorne Page
@ Farm3 |E”E”El

oM
B T DR
. PgConnectionl

9. Set the Authentication property to atPublicKey in the TScSSHClient. In the
HostKeyName, specify the server public key. In the Private KeyName, specify the client

private key. The Hostname propety holds the address of your server. Assign

ScFileStorage1 to the KeyStorage property. Enter your username on the server in the

User property. Specify the SSH port in the Port property.

DataSet Manager  Structure

ObjectIn tor
ScS5HClentl TScSSHClient

0

Events
atPublicKey
aes256-ctr,aes192-ctr,aes128-ch
aes26-ctr,aes192-ctraes128-ct
csdflowed

Properties
Buthenticati
CiphersClien
CiphersSense
Compressior

s loweed

[ False

himac-sha2-256,hmac-sha?-512

ssh-rsa,ecdsa

Compressior
Connected

HiACAIgar
Hostkeydlge
HostkeyMarr
HostMarme

HttpOptians
keyEzchange

localhost

127.0.01

(THttpOptions)
curve’519-sha2sf,ecdh-sha2-t
ScFileStoragel

LiveBindings Designer

Mame Sc3SHClient])
[TScS5HClientOptions)

KeyStorage
LiveBindings

Options
Password
Port 22
PrivatekeyM: private_key
Tag 0

Timeout 15

User testp

@ Farm3

R |
A I P
. PgConnection] |

DataSourcel

1

. CRSSHICHandler1 - !

(== ]=]

10.Double-click the TPgConnection component. Specify your server address, port,

database name (optionally), and username and password for the PostgreSQL user. Set

© 2019 Devart



https://www.devart.com/sbridge/docs/

98

PostgreSQL Data Access Components

410

the IOHandler property to CRSSHIOHandler1. Click Test to check connection to the
PostgreSQL server.

Structure f X Welcome Page Unit3 3¢
DataSet Manager  Structure Farm3.PgConnectionl @ k2 |
OhjectInspector rox Connect | baka Type Mapping | Info | About| :
PgConnectionl TPgConnection
Server -
Properties  Events 2 devcrt
ConnectDial Part 5432 1=
Cannected True
Conmection] 15 Usernarme postares
ConnectStrir Data Source=localhost;Databas Password e
Database test b
DataTypeba (TDAMapRules) Database test v #
Deb Fal
S . L False Schema
HttpOptions  (TPgHttpOptions) PostgreSGL
IOHandler  CRSSHIOHandlerl Data Access
LiveBindings LiveBindings Designer fCampononts
LoginPromp  [/] True @ [¥] LoginPrompt: Connect l [ Disconneck I
Mame PgConnectionl
Options (TPgConnectionOptions)
Ok Cancel
v | [ ]
Pooling 1 False

11.Press F9 to compile and run the project, and click the button to run the query against the
database and display data in the form.

Welcome Page Unit3
r il
Form3
@romy © Form3 ool
id firsk_name last_name -
» 1 wileen Drejer |E\
2 Elvnn Berceros
3 Cherrita Dullingharn
4 Samuel “ukhnini
5 ariselda Overstrest
6 Sherwood Mabey
7 Jewel Ferenczi
3 Giacomo Palomba
9 Jarrad Howeroyd
10 Ejorn Lebourn
11 Magnum iehilder i
1 [ r
Run

It is not obligatory to use SecureBridge TScSSHServer component as an SSH server - you
can use any other server that implements the SSH protocol.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

Network Tunneling

Usually when a client needs to connect to server it is assumed that direct connection can be
established. Nowadays though, due to security reasons or network topology, it is often

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Using PgDAC 99

necessary to use a proxy or bypass a firewall. This article describes different ways to connect
to PostgreSQL server with PgDAC.
¢ Direct connection

e Connection through HTTP tunnel
o Connection through proxy and HTTP tunnel

e Additional information

Direct connection

Direct connection to server means that server host is accessible from client without extra
routing and forwarding. This is the simplest case. The only network setting you need is the
host name and port number. This is also the fastest and most reliable way of communicating
with server. Use it whenever possible.

The following code illustrates the simplicity:

PgConnection := TPgConnection.Create(self);
PgConnection.Server := 'localhost';
PgConnection.Port := 5432;
PgConnection.Username := 'root';
PgConnection.Password := 'root';
PgConnection.Connect;

Connection through HTTP tunnel

Sometimes client machines are shielded by a firewall that does not allow you to connect to
server directly at the specified port. If the firewall allows HTTP connections, you can use
PgDAC together with HTTP tunneling software to connect to PostgreSQL server.

PgDAC supports HTTP tunneling based on the PHP script.

An example of the web script tunneling usage can be the following: you have a remote
website, and access to its database through the port of the database server is forbidden. Only
access through HTTP port 80 is allowed, and you need to access the database from a
remote computer, like when using usual direct connection.

You need to deploy the tunnel.php script, which is included into the provider package on the
web server. It allows access to the database server to use HTTP tunneling. The script must
be available through the HTTP protocol. You can verify if it is accessible with a web browser.
The script can be found in the HTTP subfolder of the installed provider folder, e. g. %Program
Files%\Devart\PgDac for Delphi X\HT TP\tunnel.php. The only requirement to the server is
PHP 5 support.

To connect to the database, you should set TPgConnection parameters for usual direct
connection, which will be established from the web server side, the Options.Protocol property
to prHttp, and set the following parameters, specific for the HTTP tunneling:

Property M Meaning

© 2019 Devart



100

PostgreSQL Data Access Components

S5 o

Url of the tunneling PHP script. For example, if the scriptis in the

HitpOptions. Ur server root, the url can be the following: http://localhost/tunnel.php.

wo<<Qomo

HttpOptions.User
name,
HttpOptions.Pass ©
word

Set this properties if the access to the website folder with the
script is available only for registered users authenticated with
user name and password.

Connection through proxy and HTTP tunnel

Consider the previous case with one more complication.

HTTP tunneling server is not directly accessible from client machine. For example, client
address is 10.0.0.2, server address is 192.168.0.10, and the PostgreSQL server listens on
port 5433. The client and server reside in different networks, so the client can reach it only
through proxy at address 10.0.0.1, which listens on port 808. In this case in addition to the
TPgConnection.HttpOptions options you have to setup a HttpOptions.ProxyOptions object as
follows:

PgConnection := TPgConnection.Create(self);
MyConnection.Server := '192.168.0.10"';

PgConnection. 5433;

PgConnection.Username := 'root';

PgConnection.Password := 'root';
PgConnection.Options.Protocol := prHttp;
PgConnection.HttpOptions.uUrl := 'http://server/tunnel.php';
PgConnection.HttpOptions.Proxyoptions.Hostname := '10.0.0.1";
HttpOptions.Proxyoptions.Port := 808;

Port :=

PgConnection.
PgConnection.
PgConnection.
PgConnection.

Httpoptions.
HttpOptions.

connect;

ProxyOptions.Username :
ProxyOptions.Password :

'Proxyuser’';
'ProxyPassword’;

Note that setting parameters of PgConnection.HttpOptions.ProxyOptions automatically
enables proxy server usage.

Additional information

Technically speaking, there is one more way to tunnel network traffic. The Secure Shell
forwarding, or SSH, can be used for forwarding data. However, main purpose of SSH is traffic
encryption rather than avoiding firewalls or network configuration problems. The Secure
Connections article describes how to use SSH protocol in PgDAC.

Keep in mind that traffic tunneling or encryption always increases CPU usage and network

© 2019 Devart



Using PgDAC 101

load. It is recommended that you use direct connection whenever possible.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

411 Disconnected Mode

In disconnected mode a connection opens only when it is required. After performing all server
calls connection closes automatically until next server call is required. Datasets remain
opened when connection closes. Disconnected Mode may be useful for saving server
resources and operating in an unstable or expensive network. Drawback of using
disconnected mode is that each connection establishing requires some time for authorization.
If connection is often closed and opened it can slow down application work. We recommend
to use pooling to solve this problem. For additional information see
TCustomDAConnection.Pooling.

To enable disconnected mode set TCustomDAConnection.Options.DisconnectedMode to
True.

In disconnected mode a connection is opened for executing requests to the server (if it was
not opened already) and is closed automatically if it is not required any more. If the connection
was explicitly opened (the Connect method was called or the Connected property was
explicitly set to True), it does not close until the Disonnect method is called or the Connected
property is set to False explicitly.

The following settings are recommended to use for working in disconnected mode:

TDataSet.CachedUpdates = True
TCustomDADataSet.FetghA11 = True _
TCustomDADataSet.Options.LocalMasterDetail = True

These settings minimize the number of requests to the server.

Disconnected mode features

If you perform a query with the FetchAll option set to True, connection closes when all data is
fetched if it is not used by someone else. If the FetchAll option is set to false, connection does
not close until all data blocks are fetched.

If explicit transaction was started, connection does not close until the transaction is
committed or rolled back.

If the query was prepared explicitly, connection does not close until the query is unprepared or
its SQL text is changed.

See Also

e TCustomDAConnection.Options

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

102

PostgreSQL Data Access Components

412

e FetchAll
e Devart.PgDac.TPgQuery.LockMode
e TCustomDAConnection.Pooling

e TCustomDAConnection.Connect

e TCustomDAConnection.Disonnect

¢ Working in unstable network

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Batch Operations

Data amount processed by modern databases grows steadily. In this regard, there is an
acute problem — database performance. Insert, Update and Delete operations have to be
performed as fast as possible. Therefore Devart provides several solutions to speed up
processing of huge amounts of data. So, for example, insertion of a large portion of data to a
DB is supported in the TPgLoader. Unfortunately, TPgLoader allows to insert data only — it
can’'t be used for updating and deleting data.

The new version of Devart Delphi Data Access Components introduces the new mechanism
for large data processing — Batch Operations. The point is that just one parametrized Modify
SQL query is executed. The plurality of changes is due to the fact that parameters of such a
query will be not single values, but a full array of values. Such approach increases the speed
of data operations dramatically. Moreover, in contrast to using TPgLoader, Batch operations
can be used not only for insertion, but for modification and deletion as well.

Let’s have a better look at capabilities of Batch operations with an example of the
BATCH_TEST table containing attributes of the most popular data types.

Batch_Test table generating scripts

%REATE TABLE BATCH_TEST
ID INTEGER,
F_INTEGER INTEGER,
F_FLOAT DOUBLE PRECISION,
F_STRING VARCHAR(250),
F_DATE DATE,
CONSTRAINT PK_BATCH_TEST PRIMARY KEY (ID)

)

Batch operations execution
To insert records into the BATCH_TEST table, we use the following SQL query:

INSERT INTO BATCH_TEST VALUES (:ID, :F_INTEGER, :F_FLOAT, :F_STRING,

© 2019 Devart

. F_DAT


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Using PgDAC 103

When a simple insertion operation is used, the query parameter values look as follows:

Parameters
‘D ‘F_ INTEGER ‘F FLOAT ‘F STRING :F DATE
1 100 25 ‘String Value 1' /01.09.2015

After the query execution, one record will be inserted into the BATCH_TEST table.
When using Batch operations, the query and its parameters remain unchanged. However,
parameter values will be enclosed in an array:

Parameters

:ID ‘F INTEGER ‘F FLOAT F STRING :F DATE

1 100 2.5 ‘String Value 1' /01.09.2015
2 200 3.15 ‘String Value 2' /01.01.2000
3 300 5.08 ‘String Value 3' /09.09.2010
4 400 7.5343 ‘String Value 4' |10.10.2015
5 500 0.4555 ‘String Value 5' /01.09.2015

Now, 5 records are inserted into the table at a time on query execution.
How to implement a Batch operation in the code?

Batch INSERT operation sample
Let’s try to insert 1000 rows to the BATCH_TEST table using a Batch Insert operation:

var
i: Integer;

begin
// describe the SQL query
PgQueryl.SQL.Text := "INSERT INTO BATCH_TEST VALUES (:ID, :F_INTEGER, :F_F

// define the parameter types passed to the query :

PgQueryl.Params[0] .DataType ftinteger;
PgQueryl.Params[1] .DataType : ftInteger;
PgQueryl.Params[2] .DataType := ftFloat;

PgQueryl.Params[4] .DataType := ftDateTime;

// specify the array dimensio

PgQueryl.Params.ValueCount := 1000;

// populate the array with parameter values:

for i := 0 to PgQueryl.Params.vValueCount - 1 do begin
PgQueryl.Params[0][i].AsInteger := i + 1;
PgQueryl.Params[1][i].AsInteger := i + 2000 + 1;
PgQueryl.Params[2][1].AsFloat = (i + 1) / 12;

PgQueryl.Params[3].DataType :; ftString;
n:

PgQueryl.Params[3][1].AsString := 'values ' +’IntToStr(i + 1);
PgQueryl.Params[4][1].AsDateTime := Now;
end;

// insert 1000 rows into the BATCH_TEST table
PgQueryl.Execute(1000);

© 2019 Devart



104

PostgreSQL Data Access Components

end;

This command will insert 1000 rows to the table with one SQL query using the prepared array
of parameter values. The number of inserted rows is defined in the lters parameter of the
Execute(lters: integer; Offset: integer = 0) method. In addition, you can pass another
parameter — Offset (0 by default) — to the method. The Offset parameter points the array
element, which the Batch operation starts from.

We can insert 1000 records into the BATCH_TEST table in 2 ways.

All 1000 rows at a time:

PgQueryl.Execute(1000);
2x500 rows:

// insert first 500 rows
PgQueryl.Execute(500, 0);
// insert next 500 rows
PgQueryl.Execute(500, 500);

500 rows, then 300, and finally 200:

// insert 500 rows

PgQueryl.Execute(500, 0);

// insert next 300 rows starting from 500
PgQueryl.Execute(300, 500);

// insert next 200 rows starting from 800
PgQueryl.Execute(200, 800);

Batch UPDATE operation sample

With Batch operations we can modify all 1000 rows of our BATCH_TEST table just this
simple:

var
i: Integer;

begin
// describe the SQL query
PgQueryl.SQL.Text := 'UPDATE BATCH_TEST SET F_INTEGER=:F_INTEGER, F_FLOAT=

// define parameter types passed to the query:

PgQueryl.Params[0] .DataType := ftInteger;
PgQueryl.Params[1l] .DataType := ftFloat;
PgQueryl.Params[2] .DataType := ftString;
PgQueryl.Params[3].DataType := ftDateTime;
PgQueryl.Params[4] .DataType := ftInteger;

// specify the array dimension:

PgQueryl.Params.ValueCount := 1000;

// populate the array with parameter values:

for i := 0 to 1000 - 1 do begin
PgQueryl.Params[0][i].AsInteger := i - 2000 + 1;
PgQueryl.Params[1][i].AsFloat := (i + 1) / 100;

PgQueryl.Params[2][1].AsString := 'New Values ' + IntToStr(i + 1);
PgQueryl.Params[3][1].AsDateTime := Now;
PgQueryl.Params[4][1].AsInteger := 1 + 1;

end;

// update 1000 rows in the BATCH_TEST table

© 2019 Devart



Using PgDAC 105

PgQueryl.Execute(1000);
end;

Batch DELETE operation sample
Deleting 1000 rows from the BATCH_TEST table looks like the following operation:

var
1: Integer;

begin
// describe the SQL query
PgQueryl.SQL.Text := 'DELETE FROM BATCH_TEST WHERE ID=:ID';

// define parameter types passed to the query:

PgQueryl.Params[0] .DataType := ftInteger;

// specify the array dimension

PgQueryl.Params.ValueCount := 1000;

// populate the arrays with parameter values

for i := 0 to 1000 - 1 do
PgQueryl.Params[0][i].AsInteger := i + 1;

// delete 1000 rows from the BATCH_TEST table

SgQueryl.Execute(looo);

end;

Performance comparison

The example with BATCH_TEST table allows to analyze execution speed of normal
operations with a database and Batch operations:

25 000 records

o tion T i
peration lype Standard Operation Batch Operation (sec.)

(sec.)
Insert 346.7 1.69
Update 3344 4.59
Delete 373.7 2.05

The less, the better.

It should be noted, that the retrieved results may differ when modifying the same table on
different database servers. This is due to the fact that operations execution speed may differ
depending on the settings of a particular server, its current workload, throughput, network
connection, etc.

Thing you shouldn’'t do when accessing parameters in Batch operations!

When populating the array and inserting records, we accessed query parameters by index. It
would be more obvious to access parameters by name:
for i := 0 to 9999 do begin

PgQueryl.Params.ParamByName('ID')[1].AsInteger := 1 + 1;
PgQueryl.Params.ParamByName('F_INTEGER')[i].AsInteger := i + 2000 + 1;

© 2019 Devart



106 PostgreSQL Data Access Components

PgQueryl.Params.ParamByName('F_FLOAT')[1].AsFloat := (i + 1) / 12;

PgQueryl.Params.ParamByName('F_STRING')[1].AsString := 'Values ' + IntToSt
PgQueryl.Params.ParamByName('F_DATE')[1].AsDateTime := Now;

end;

However, the parameter array would be populated slower, since you would have to define the
ordinal number of each parameter by its name in each loop iteration. If a loop is executed
10000 times — performance loss can become quite significant.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

413 Increasing Performance

This topic considers basic stages of working with DataSet and ways to increase performance
on each of these stages.

Connect

If your application performs Connect/Disconnect operations frequently, additional
performance can be gained using pooling mode (TCustomDAConnection.Pooling = True). It
reduces connection reopening time greatly (hundreds times). Such situation usually occurs in
web applications.

Execute

If your application executes the same query several times, you can use the
TCustomDADataSet.Prepare method or set the TDADataSetOptions.AutoPrepare property to
increase performance. For example, it can be enabled for Detail dataset in Master/Detail
relationship or for update objects in TDAUpdateSQL. The performance gain achieved this way
can be anywhere from several percent to several times, depending on the situation.

To execute SQL statements a TPgSQL component is more preferable than TPgQuery. It can
give several additional percents performance gain.

If the TCustomDADataSet.Options.StrictUpdate option is set to False, the RowsAffected
property is not calculated and becomes equal zero. This can improve performance of query
executing, so if you need to execute many data updating statements at once and you don't
mind affected rows count, set this option to False.

Fetch

In some situations you can increase performance a bit by using
TCustomDADataSet.Options.CompressBlobMode.
You can also tweak your application performance by using the following properties of

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Using PgDAC 107

TCustomDADataSet descendants:
e FetchRows

e Options.FlatBuffers

e Options.LongStrings

e UniDirectional

See the descriptions of these properties for more details and recommendations.

Navigate

The Locate function works faster when dataset is locally sorted on KeyFields fields. Local
dataset sorting can be set with the IndexFieldNames property. Performance gain can be large
if the dataset contains a large number of rows.

Lookup fields work faster when lookup dataset is locally sorted on lookup Keys.

Setting the TDADataSetOptions.CacheCalcFields property can improve performance when
locally sorting and locating on calculated and lookup fields. It can be also useful when
calculated field expressions contain complicated calculations.

Setting the TDADataSetOptions.LocalMasterDetail option can improve performance greatly
by avoiding server requests on detail refreshes. Setting the TDADataSetOptions.DetailDelay
option can be useful for avoiding detail refreshes when switching master DataSet records
frequently.

Update

If your application updates datasets in the CachedUpdates mode, then setting the
TCustomDADataSet.Options.UpdateBatchSize option to more than 1 can improve
performance several hundred times more by reducing the number of requests to the server.

You can also increase the data sending performance a bit (several percents) by using
Dataset.UpdateObject.ModifyObject, Dataset.UpdateObject, etc. Little additional performance
improvement can be reached by setting the AutoPrepare property for these objects.

Insert

If you are about to insert a large number of records into a table, you should use the
T:Devart.PgDac.TPglLoader component instead of Insert/Post methods, or execution of the
INSERT commands multiple times in a cycle. Sometimes usage of

T:Devart.PgDac.TPglLoader improves performance several times.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

108

PostgreSQL Data Access Components

414

Macros

Macros help you to change SQL statements dynamically. They allow partial replacement of
the query statement by user-defined text. Macros are identified by their names which are then
referred from SQL statement to replace their occurrences for associated values.

First step is to assign macros with their names and values to a dataset object.

Then modify SQL statement to include macro names into desired insertion points. Prefix
each name with & ("at") sign to let PgDAC discriminate them at parse time. Resolved SQL
statement will hold macro values instead of their names but at the right places of their
occurrences. For example, having the following statement with the TableName macro name:

SELECT * FROM &TableName

You may later assign any actual table name to the macro value property leaving your SQL
statement intact.

Queryl.SQL.Text := 'SELECT * FROM &TableName';
Queryl.MacroByName('TableName').value := 'Dept';
Queryl.Open;

PgDAC replaces all macro names with their values and sends SQL statement to the server
when SQL execution is requested.

Note that there is a difference between using TMacro AsString and Value properties. If you set
macro with the AsString property, it will be quoted. For example, the following statements will
result in the same result Query1.SQL property value.

Queryl.MacroByName('StringMacro').value := '"'"'A string''’;
Queryl.MacroByName('StringMacro') .AsString := 'A string';

Macros can be especially useful in scripts that perform similar operations on different objects.
You can use macros that will be replaced with an object name. It allows you to have the same
script text and to change only macro values.

You may also consider using macros to construct adaptable conditions in WHERE clauses of

your statements.

See Also
e TMacro

e TCustomDADataSet.MacroByName
e TCustomDADataSet.Macros

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Using PgDAC 109

415 DataSet Manager

DataSet Manager window

The DataSet Manager window displays the datasets in your project. You can use the DataSet
Manager window to create a user interface (consisting of data-bound controls) by dragging
items from the window onto forms in your project. Each item has a drop-down control list
where you can select the type of control to create prior to dragging it onto a form. You can
customize the control list with additional controls, including the controls you have created.

x|
Bl= RS RN
El;ﬂ Project1.bdsproj

o B3E Form1.Queny3
El@,ﬁ Form1.Quened

= Fields
-3 0-L0C {QuenpdLOC}

L3 1 - DNAME {QuendDMAME }
2 -DEFPTHO {QuerydDEFT RO}

TDBEdit

TOEText

E'E' TDECarmboBo:

[?f TOBCheckBo:
218 TORRadioGroup
= MNone

Customize

|Drag'n'Dr|:||:u conkral: TDEEdit i

Using the DataSet Manager window, you can:
e Create forms that display data by dragging items from the DataSet Manager window onto
forms.

e Customize the list of controls available for each data type in the DataSet Manager window.

¢ Choose which control should be created when dragging an item onto a form in your
Windows application.

¢ Create and delete TField objects in the DataSets of your project.

© 2019 Devart



110

PostgreSQL Data Access Components

Opening the DataSet Manager window

You can display the DataSet Manager window by clicking DataSet Manager on the Tools
menu. You can also use IDE desktop saving/loading to save DataSet Manager window
position and restore it during the next IDE loads.

Observing project DataSets in the DataSet Manager
Window

By default DataSet Manager shows DataSets of currently open forms. It can also extract
DataSets from all forms in the project. To use this, click Extract DataSets from all forms in
project button. This settings is remembered. Note, that using this mode can slow down
opening of the large projects with plenty of forms and DataSets. Opening of such projects can
be very slow in Delphi 6 and Borland Developer Studio 2006 and can take up to several tens
of minutes.

DataSets can be grouped by form or connection. To change DataSet grouping click the
Grouping mode button or click a down. You can also change grouping mode by selecting
required mode from the DataSet Manager window popup menu.

|
A8o -3
El;ﬁ Project1.bdsproj
=-Cy Formi
+ 01 S|
..... QE Query3
Q_E Cluerpd
=-Cy Formz
(3 Qe

I'_—'I--D} Frame3
- Q_E Query

[Drag'n'Drop control: TDBG S

Creating Data-bound Controls

You can drag an item from the DataSet Manager window onto a form to create a new data-
bound control. Each node in the DataSet Manager window allows you to choose the type of
control that will be created when you drag it onto a form. You must choose between a Grid
layout, where all columns or properties are displayed in a TDataGrid component, or a Details
layout, where all columns or properties are displayed in individual controls.

To use grid layout drag the dataset node on the form. By default TDataSource and TDBGrid

© 2019 Devart



Using PgDAC 111

components are created. You can choose the control to be created prior to dragging by
selecting an item in the DataSet Manager window and choosing the control from the item's
drop-down control list.

1 o

EE|J}'|E| RN EERRRREEE R IR o :

=51 Projectl_bdsproj | |comm |oephe [EMPHo | =1 |;

|_—‘_|§_E Form1.Query?2 lﬁ_. 20 7389 Cancel |

=3 Fields S [ P 30 7499 :

% 0- COMM {Query2COMM} 9 500 30 7521 T Help |:

(% 1 - DEPTMO {Query2DEPTHND} 1 20 . e

~3F 2- EMPNO {Huen2EMPND] ] 1400 30 7654 AR

~AZ] ENAME ) ——— P ol cciciooni

lg HIREDATE

....iEJDB e

L5 MGR S

-0 saL T e e S S

Moz || R R R R P CRF RIS

E]---Q_E Form.Quergd

|Drag'n'Dru:u|:u control: TOBGrid i

To use Details layout choose Details from the DataSet node drop-down control list in the
DataSet Manager window. Then select required controls in the drop-down control list for each
DataSet field. DataSet fields must be created. After setting required options you can drag the
DataSet to the form from the DataSet wizard. DataSet Manager will create TDataSource
component, and a component and a label for each field.

© 2019 Devart



112

PostgreSQL Data Access Components

=
:l[ﬁ| 9 - | =

jj Project1.bdsproj
=-i=] Forml. Quen?2
= Fields
----- @ 0 - COMM {QueryZCORM}
----- @ 1-DEPTHO {Quen2DEPTHO}
----- 37 2-EMPHO {Query2EMPMHO}
U5 ENAME
IR HIREDATE
JE JOE
43 MGR
-] 5aL
----- G Form1.Queny3
-3 Forml Quenyd

[Drag'n'Drop contral: <Details> o

il x
o L
ffl._Dﬁ'.._....:fffffffffffffffffffffffff
(DEFTRO. - - - - - o
| 20 i

EhiNS 11

?3690 .........................

Adding custom controls to the DataSet Manager window

To add custom control to the list click the Options button on the DataSet Manager toolbar. A
DataSet Manager - Customize controls dialog will appear. Using this dialog you can set
controls for the DataSets and for the DataSet fields of different types. To do it, click DataSets
node or the node of field of required type in DB objects groups box and use Add and Remove
buttons to set required control list. You can also set default control by selecting it in the list of
assigned DB controls and pressing Default button.

© 2019 Devart



Using PgDAC 113

oy
Customize controlz | I:Iptigngl
| = WCL = List of azzighed DB Controls
e "E'!E’tﬂ Controlz
= Fie Unﬁ‘zln I TDBGrid <Defaults
Sting L TCRDEBGHd
1— .
Smallint :ﬂ LDEEtrIGnd
Integer ' Mone
wiord Details
Boolean
Float
Currency e 4= add <7 Remove f,' Set Default
BCD
[rate Lizt of DB Contrals installed in IDE
Tirne Controls Packages
DateTime I TOBGrid deldbG0
3“;3 s TDBNavigator deldbED
;E IPtES =3 TDBCHIGd doldbf
Hmine  TCRDBGrid creontrols6
Blob
temo
Graphic
Frathdemo
FParadoxOle LI
Ol Cancel Rezat Help

The default configuration can easily be restored by pressing Reset button in the DataSet
Manager - Options dialog.

Working with TField objects

DataSet Manager allows you to create and remove TField objects. DataSet must be active to
work with its fields in the DataSet Manager. You can add fields, based on the database table
columns, create new fields, remove fields, use drag-n-drop to change fields order.

To create a field based on the database table column right-click the Fields node and select
Create Field from the popup menu or press <Insert>. Note that after you add at least one field
manually, DataSet fields corresponding to data fields will not be generated automatically when
you drag the DataSet on the form, and you can not drag such fields on the form. To add all
available fields right-click the Fields node and select Add all fields from the popup menu.

To create new field right-click the Fields node and select New Field from the popup menu or
press <Ctrl+Insert>. The New Field dialog box will appear. Enter required values and press
OK button.

To delete fields select these fields in the DataSet Manager window and press <Delete>.
DataSet Manager allows you to change view of the fields displayed in the main window. Open

© 2019 Devart



114

PostgreSQL Data Access Components

4.16

the Customize controls dialog, and jump to the Options page.

=

Customize controls  Options |

| = Dizplay Options

Fields

[ Field type
v Objgct name

S amnple:

DEFTHO[Integer{Querny1DEPTHO}

Drata Fields

v Figld type

S amnple:

DEPTMO[Inkeger)

Ok Cancel Rezet Help

You can chose what information will be added to names of the Field and Data Field objects in
the main window of DataSet Manager. Below you can see the example.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

TPglLoader Component

There are cases when you need to put large amount of data to a PostgreSQL database. Of
course, you may construct INSERT SQL statement and execute it with the TPgSQL
component. But it takes a lot of time. PostgreSQL provides COPY FROM STDIN command
that allows to load data much faster. PgDAC simplifies using this command by the
TPglLoader component.

The COPY command has two modes: text and binary. TPgAlerter supports both these
modes. By default the binary mode is used for a connection with 3.0 protocol. In the binary
mode TPgLoader works a little faster but some data types are not supported in this mode. Set
the TextMode property to True to force text mode. In the text mode you can load data to
columns with any PostgreSQL data type.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Using PgDAC 115

Note: COPY stops operation at the first error. But the target table will already have received
earlier rows in a COPY FROM. These rows will not be visible or accessible, but they will still
occupy disk space. This might amount to a considerable amount of wasted disk space if the
failure happened well into a large copy operation. You may wish to invoke VACUUM to clean

the wasted space.

To write your own loader you should:

e create a TPgLoader component;

¢ set the name of the loading table to TableName;

e create columns which will be loaded (use the TPgLoader component editor at design time);
e write your own event handler: OnGetColumnData or OnPutData;

call the Load method to start loading.

See Also

e TPglLoader

e TPglLoaderColumn
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

417 Large Objects

PostgreSQL has a large object facility which provides stream-style access to user data that
is stored in a special large-object structure. Streaming access is useful when working with
data values that are too large to manipulate conveniently as a whole.

All large objects are placed in a single system table called pg_largeobject. Each large object
has its own OID in this table.

The TPgLargeObiject class of PgDAC can be used to create, read, write and delete large
objects. To manipulate with large objects create an instance of TPgLargeObject and specify
the connection that will be used for operations with a large object. If you are working with an
existent large object, specify its OID.

Creating a new object:

var
LargeObject: TPgLargeObject;
AData: array [1..10] of byte;

PgConnection.StartTransaction; _
LargeObject := TPgLargeObject.Create(PgConnection);
try

LargeObject.CreateObject;

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

116

PostgreSQL Data Access Components

LargeObject.write(0, 10, &AData);
LargeObject.writeBlob;
LargeObject.CloseObject;

finally
LargeObject.Free;

end;

PgConnection.Commit;

Reading an existent object:

LargeObject := TPgLargeObject.Create(PgConnection);
try
LargeObject.0ID := 12345;
LargeObject.OpenObject;
LargeObject.Read(0, 10, &AData);
LargeObject.CloseObject;
finally
LargeObject.Free;
end;

Note that manipulations with large objects require a transaction. So StartTransaction is called
in the example.

By default TPgLargeObject instance uses a memory buffer to hold a value of large object. On
the first call to the Read method the TPgLargeObject reads the whole object value and stores
it in the buffer. You can also call the ReadBlob method to read a value to the buffer.

When you write data using the Write method, the data are stored in memory buffer. You
should call the WriteBlob method to pass the data to the database.

When working with very large objects, you can set the Cached property to False. In this case
the memory buffer is not used, and the Read and Write methods work directly with a value in
the database.

If you open a table with a column of the OID data type, TCustomPgDataSet descendant
components assume that values in this column are large objects OIDs, and automatically
read data from the corresponding large objects.

If OIDs are not large objects OIDs, set the OIDAsInt option of TCustomPgDataSet to True. In
this case OID columns are read as simple integer columns.

You can use the DefferedBlobRead and CacheBlobs options to optimize performance and
memory usage. If you set the DefferedBlobRead option to True, the dataset does not read
large object data when it fetches records. When you access a value of a large object field, the
data for the corresponding large object have been read.

If you set the CacheBlobs option to False, all large objects in the dataset do not cache their
values. In this case the DefferedBlobRead value has no sense.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Using PgDAC 117

418 REFCURSOR Data Type

Rather than executing a whole query at once, it is possible to set up a cursor that
encapsulates the query, and then read the query result a few rows at a time. One reason for
doing this is to avoid memory overrun when the result contains a large number of rows.
PL/pgSQL functions can return cursors to the caller. This is useful to return multiple rows or
columns, especially with very large result sets. To do this, the function opens the cursor and
returns the cursor name to the caller (or simply opens the cursor using a portal name
specified by or otherwise known to the caller). The caller can then fetch rows from the cursor.
The cursor can be closed by the caller, or it will be closed automatically when the transaction
closes.

PgDAC supports reading cursors returned from stored procedures. The TPgStoredProc
component opens automatically the first REFCURSOR returned from a stored procedure.
For example, consider the following procedure:

CREATE FUNCTION cursor_func() RETURNS REFCURSOR AS $$%
DECLARE
ref REFCURSOR;
BEGIN
OPEN ref FOR SELECT * FROM test;
RETURN ref;
END;
$$ LANGUAGE plpgsql;

You can read data from the returned cursor using the following code:

PgConnection.StartTransaction;
PgStoredProc.StoredProcName := 'cursor_func';
PgStoredProc.Open;
while not PgStoredProc.Eof do begin

vValue := PgStoredProc.Fields[0].AsInteger;

PgStoredProc.Next;
end;
PgStoredProc.Close;
PgConnection.Commit;

Note that using cursors requires a transaction. So that StartTransaction is called before the
Open method of TPgStoredProc.

If a stored procedure returns several REFCURSOR parameters, only first cursor is opened
when you call the Open method of TPgStoredProc. To open the rest of cursors you can use
the OpenNext method, or manipulate with TPgRefCursor instances. For example:

CREATE FUNCTION cursor_func(cl INOUT REFCURSOR, c2 INOUT REFCURSOR) RETURNS
BEGIN
OPEN cl FOR SELECT * FROM testl;
OPEN C2 FOR SELECT * FROM test2;
END:
$$ LANGUAGE plpgsql;

You can read data using the following code:

© 2019 Devart



118

PostgreSQL Data Access Components

4.19

PgConnection.StartTransaction;
PgStoredProc.StoredProcName := 'cursor_func';
PgStoredProc.Open;
repeat
while not PgStoredProc.Eof do begin
vValue := PgStoredProc.Fields[0].AsInteger;

PgStoredProc.Next;
end;
until not PgStoredProc.OpenNext;
PgStoredProc.Close;
PgConnection.Commit;

You can open both cursors at the same time by assigning a TPgRefCursor instance to the
Cursor property of a dataset:

var
cursor: TPgRefCursor;
PgQuery: TPgQuery;

PgConnection.StartTransaction;
PgStoredProc.StoredProcName := 'cursor_func';
PgStoredProc.Open;

Cursor := PgStoredProc.ParamByName('C2').AsCursor;
PgQuery.Cursor := Cursor;

PgQuery.Open; // open the second cursor

valuel := PgStoredProc.Fields[0].AsInteger;

value2 := PgQuery.Fields[0].AsInteger;

ﬁéétoredProc.C]ose;

PgQuery.Close;

PgConnection.Commit;

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

National and Unicode Characters

On transferring data between client and server sides, server must know the encoding used at
the client. By default client encoding is the same as the database encoding. You can set the
encoding using TPgConnection.Options.Charset or TPgConnection.Options.UseUnicode
properties. The Charset and UseUnicode options are mutually exclusive, thus on setting the
UseUnicode property to True a value of Charset will be ignored.

If the Charset property is set, then on establishing a connection "SET client_encoding =
<Charset>" query is automatically passed to the server to explicitly notify the server about the
character set of the client. Pay attention that on setting Charset to UTF8 values of all string
fields will be converted to this encoding that in most cases can make impossible to use
DataAware components.

When you set the UseUnicode option to True, PgDAC also uses UTF8 encoding but it
automatically converts all string values to Unicode (UTF-16). TWideStringField and

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Using PgDAC 119

TWideMemoField field types are used instead of TStringField and TMemoField. Setting the
UseUnicode option to True lets you work simultaneously almost with all languages. This
behaviour is suitable, for example, when creating a database of books in the library, when
next to the title of a book you should also store its title in the original language.

See Also

e TPgConnection.Options

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

420 Connection Pooling

Connection pooling enables an application to use a connection from a pool of connections
that do not need to be reestablished for each use. Once a connection has been created and
placed in a pool, an application can reuse that connection without performing the complete
connection process.

Using a pooled connection can result in significant performance gains, because applications
can save the overhead involved in making a connection. This can be particularly significant for
middle-tier applications that connect over a network or for applications that connect and
disconnect repeatedly, such as Internet applications.

To use connection pooling set the Pooling property of the TCustomDAConnection component
to True. Also you should set the PoolingOptions of the TCustomDAConnection. These
options include MinPoolSize, MaxPoolSize, Validate, ConnectionLifeTime. Connections
belong to the same pool if they have identical values for the following parameters:
MinPoolSize, MaxPoolSize, Validate, ConnectionLifeTime, Server, Username, Password ,
Database, Port, ProtocolVersion, Charset, UseUnicode, Schema, ConnectionTimeout,
SSLOptions. When a connection component disconnects from the database the connection
actually remains active and is placed into the pool. When this or another connection
component connects to the database it takes a connection from the pool. Only when there
are no connections in the pool, new connection is established.

Connections in the pool are validated to make sure that a broken connection will not be
returned for the TCustomDAConnection component when it connects to the database. The
pool validates connection when it is placed to the pool (e. g. when the TCustomDAConnection
component disconnects). If connection is broken it is not placed to the pool. Instead the pool
frees this connection. Connections that are held in the pool are validated every 30 seconds.
All broken connections are freed. If you set the PoolingOptions.Validate to True, a connection
also will be validated when the TCustomDAConnection component connects and takes a
connection from the pool. When some network problem occurs all connections to the

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

120

PostgreSQL Data Access Components

database can be broken. Therefore the pool validates all connections before any of them will
be used by a TCustomDAConnection component if a fatal error is detected on one
connection.

The pool frees connections that are held in the pool during a long time. If no new connections
are placed to the pool it becomes empty after approximately 4 minutes. This pool behaviour is

intended to save resources when the count of connections in the pool exceeds the count that
is needed by application. If you set the PoolingOptions.MinPoolSize property to a non-zero
value, this prevents the pool from freeing all pooled connections. When connection count in
the pool decreases to MinPoolSize value, remaining connection will not be freed except if they
are broken.

The PoolingOptions.MaxPoolSize property limits the count of connections that can be active
at the same time. If maximum count of connections is active and some

TCustomDAConnection component tries to connect, it will have to wait until any of
TCustomDAConnection components disconnect. Maximum wait time is 30 seconds. If active
connections' count does not decrease during 30 seconds, the TCustomDAConnection
component will not connect and an exception will be raised.

You can limit the time of connection's existence by setting the
PoolingOptions.ConnectionLifeTime property. When the TCustomDAConnection component
disconnects, its internal connection will be freed instead of placing to the pool if this
connection is active during the time longer than the value of the
PoolingOptions.ConnectionLifeTime property. This property is designed to make load
balancing work with the connection pool.

To force freeing of a connection when the TCustomDAConnection component disconnects,
the RemoveFromPool method of TCustomDAConnection can be used. You can also free all
connection in the pool by using the class procedures Clear or AsyncClear of

TPgConnectionPoolManager. These procedures can be useful when you know that all
connections will be broken for some reason.

It is recommended to use connection pooling with the DisconnectMode option of the
TCustomDAConnection component set to True. In this case internal connections can be

shared between TCustomDAConnection components. WWhen some operation is performed
on the TCustomDAConnection component (for example, an execution of SQL statement) this
component will connect using pooled connection and after performing operation it will
disconnect. When an operation is performed on another TCustomDAConnection component
it can use the same connection from the pool.

See Also

e TCustomDAConnection.Pooling

e TCustomDAConnection.PoolingOptions

© 2019 Devart



Using PgDAC 121

e Working with Disconnected Mode

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

4.21 DBMonitor

To extend monitoring capabilities of PGDAC applications there is an additional tool called
DBMonitor. It is provided as an alternative to Borland SQL Monitor which is also supported by
PgDAC.

DBMonitor is an easy-to-use tool to provide visual monitoring of your database applications.
DBMonitor has the following features:

e multiple client processes tracing;
e SQL event filtering (by sender objects);
e SQL parameter and error tracing.

DBMonitor is intended to hamper an application being monitored as little as possible.
To trace your application with DB Monitor you should follow these steps:
e drop TPgSQLMonitor component onto the form;

e turn moDBMonitor option on;

e set to True the Debug property for components you want to trace;
e start DBMonitor before running your program.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

4.22 Writing GUI Applications with PgDAC

PgDAC GUI part is standalone. This means that to make GUI elements such as SQL cursors,
connect form, connect dialog etc. available, you should explicitly include PgDacVcl unit in your
application. This feature is needed for writing console applications.

Delphi and C++Builder

By default PgDAC does not require Forms, Controls and other GUI related units. Only
TPgConnectDialog component require the Forms unit.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

122

PostgreSQL Data Access Components

4.23

Compatibility with Previous Versions

We always try to keep PgDAC compatible with previous versions, but sometimes we have to
change the behaviour of PgDAC in order to enhance its functionality, or avoid bugs. This topic
describes such changes, and how to revert the old PgDAC behaviour. We strongly
recommend not to turn on the old behaviour of PGDAC. Use options described below only if
changes applied to PgDAC crashed your existent application.

Values of the options described below should be assigned in the initialization section of one
of the units in your project.

DBAccess.BaseSQLOIdBehavior:

The BaseSQL property is similar to the SQL property, but it does not store changes made by
AddWhere, DeleteWhere, and SetOrderBy methods. After assigning an SQL text and

modifying it by one of these methods, all subsequent changes of the SQL property will not be
reflected in the BaseSQL property. This behavior was changed in PgDAC . To restore old
behavior, set the BaseSQLOIdBehavior variable to True.

DBAccess.SQLGeneratorCompatibility:

If the manually assigned RefreshSQL property contains only "WHERE" clause, PgDAC uses
the value of the BaseSQL property to complete the refresh SQL statement. In this situation all
modifications applied to the SELECT query by functions AddWhere, DeleteWhere are not
taken into account. This behavior was changed in PgDAC . To restore the old behavior, set
the BaseSQLOIdBehavior variable to True.

MemDS.SendDataSetChangeEventAfterOpen:

Starting with PgDAC , the DataSetChange event is sent after the dataset gets open. It was
necessary to fix a problem with disappeared vertical scrollbar in some types of DB-aware
grids. This problem appears only under Windows XP when visual styles are enabled.

To disable sending this event, change the value of this variable to False.

MemDS.DoNotRaiseExcetionOnUaFail:

Starting with PgDAC , if the OnUpdateRecord event handler sets the UpdateAction parameter
to uaFail, an exception is raised. The default value of UpdateAction is uaFail. So, the
exception will be raised when the value of this parameter is left unchanged.

To restore the old behaviour, set DoNotRaiseExcetionOnUaFail to True.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Using PgDAC 123

4.24 64-bit Development with Embarcadero RAD Studio XE2

RAD Studio XE2 Overview

RAD Studio XEZ2 is the major breakthrough in the line of all Delphi versions of this product. It
allows deploying your applications both on Windows and Mac OS platforms. Additionally, it is
now possible to create 64-bit Windows applications to fully benefit from the power of new
hardware. Moreover, you can create visually spectacular applications with the help of the
FireMonkey GPU application platform.

Its main features are the following:

e Windows 64-bit platform support;

e Mac OS support;

¢ FireMonkey application development platform;

e Live data bindings with visual components;

¢ \/CL styles for Windows applications.

For more information about RAD Studio XE2, please refer to World Tour.

Changes in 64-bit Application Development

64-bit platform support implies several important changes that each developer must keep in
mind prior to the development of a new application or the modernization of an old one.
General

RAD Studio XE2 IDE is a 32-bit application. It means that it cannot load 64-bit packages at
design-time. So, all design-time packages in RAD Studio XE2 IDE are 32-bit.

Therefore, if you develop your own components, you should remember that for the purpose of
developing components with the 64-bit platform support, you have to compile run-time
packages both for the 32- and 64-bit platforms, while design-time packages need to be
compiled only for the 32-bit platform. This might be a source of difficulties if your package is
simultaneously both a run-time and a design-time package, as it is more than likely that this
package won't be compiled for the 64-bit platform. In this case, you will have to separate your
package into two packages, one of which will be used as run-time only, and the other as
design-time only.

For the same reason, if your design-time packages require that certain DLLs be loaded, you
should remember that design-time packages can be only 32-bit and that is why they can load
only 32-bit versions of these DLLs, while at run-time 64-bit versions of the DLLs will be
loaded. Correspondingly, if there are only 64-bit versions of the DLL on your computer, you
won't be able to use all functions at design-time and, vice versa, if you have only 32-bit
versions of the DLLs, your application won't be able to work at run-time.

© 2019 Devart


http://www.embarcadero.com/world-tour

124 PostgreSQL Data Access Components

Extended type

For this type in a 64-bit applications compiler generates SSE2 instructions instead of FPU,
and that greatly improves performance in applications that use this type a lot (where data
accuracy is needed). For this purpose, the size and precision of Extended type is reduced:

TYPE 32-bit 64-bit
Extended 10 bytes 8 bytes

The following two additional types are introduced to ensure compatibility in the process of
developing 32- and 64-bit applications:

Extended80 — whose size in 32-bit application is 10 bytes; however, this type provides the
same precision as its 8-byte equivalent in 64-bit applications.

Extended80Rec — can be used to perform low-level operations on an extended precision
floating-point value. For example, the sign, the exponent, and the mantissa can be changed
separately. It enables you to perform memory-related operations with 10-bit floating-point
variables, but not extended-precision arithmetic operations.

Pointer and Integers

The major difference between 32- and 64-bit platforms is the volume of the used memory
and, correspondingly, the size of the pointer that is used to address large memory volumes.

TYPE 32-bit 64-bit
Pointer 4 bytes 8 bytes

At the same time, the size of the Integer type remains the same for both platforms:

TYPE 32-bit 64-bit
Integer 4 bytes 4 bytes

That is why, the following code will work incorrectly on the 64-bit platform:

Ptr := Pointer(Integer(Ptr) + Offset);

While this code will correctly on the 64-bit platform and incorrectly on the 32-bit platform:
Ptr := Pointer(Int64(Ptr) + Offset);

For this purpose, the following platform-dependent integer type is introduced:

TYPE 32-bit 64-bit
Nativeint 4 bytes 8 bytes
NativeUInt 4 bytes 8 bytes

© 2019 Devart



Using PgDAC 125

This type helps ensure that pointers work correctly both for the 32- and 64-bit platforms:

Ptr := Pointer(NativeInt(Ptr) + Offset);

However, you need to be extra-careful when developing applications for several versions of
Delphi, in which case you should remember that in the previous versions of Delphi the
Nativelnt type had different sizes:

Delphi

TYPE . Size
Version

Nativelnt D5 N/A
Nativelnt D6 N/A
Nativelnt D7 8 bytes
Nativelnt D2005 8 bytes
Nativelnt D2006 8 bytes
Nativelnt D2007 8 bytes
Nativelnt D2009 4 bytes
Nativelnt D2010 4 bytes

Nativelnt Delphi XE |4 bytes
Nativelnt Delphi XE2 4 or 8 bytes

Out parameters

Some WinAPIs have OUT parameters of the SIZE_T type, which is equivalent to Nativelnt in
Delphi XE2. The problem is that if you are developing only a 32-bit application, you won't be
able to pass Integer to OUT, while in a 64-bit application, you will not be able to pass Int64; in
both cases you will have to pass Nativelnt.

For example:

procedure MyProc(out Vvalue: Nativelnt);
begin
Value := 12345;
end;
var
valuel: NativelInt;
{$IFDEF WIN32}
value2: Integer;
{$ENDIF}
{$IFDEF WING4}
value2: Int64;
{$ENDIF}
begin
MyProc(valuel); // will be compiled;
MéProc(Va1ue2); // will not be compiled !!!
end;

Win API

© 2019 Devart



126 PostgreSQL Data Access Components

If you pass pointers to SendMessage/PostMessage/TControl.Perform, the wParam and
IParam parameters should be type-casted to the WPARAM/LPARAM type and not to Integer/
Longint.

Correct:

SendMessage(hwnd, WM_SETTEXT, 0, LPARAM(@vyCharArray));

Wrong:
SendMessage(hwnd, WM_SETTEXT, 0, Integer(@uycCharArray));

Replace SetWindowLong/GetWindowLog with SetWindowLongPtr/GetWindowLongPtr for
GWLP_HINSTANCE, GWLP_ID, GWLP_USERDATA, GWLP_HWNDPARENT and
GWLP_WNDPROC as they return pointers and handles. Pointers that are passed to
SetWindowLongPtr should be type-casted to LONG_PTR and not to Integer/Longint.
Correct:

SetwindowLongPtr(Chwnd, GWLP_WNDPROC, LONG_PTR(@vywindowProc));
Wrong:
SetwindowLong(hwnd, GWL_WNDPROC, Longint(@MywindowProc));

Pointers that are assigned to the TMessage.Result field should use a type-cast to LRESULT
instead of Integer/Longint.
Correct:

Message.Result := LRESULT(Self);

Wrong:
Message.Result :

Integer(Self);

All TWM...-records for the windows message handlers must use the correct Windows types
for the fields:

Msg: UINT; wParam: WPARAM; 1Param: LPARAM; Result: LRESULT)

Assembler

In order to make your application (that uses assembly code) work, you will have to make

several changes to it:

e rewrite your code that mixes Pascal code and assembly code. Mixing them is not supported
in 64-bit applications;

e rewrite assembly code that doesn't consider architecture and processor specifics.

You can use conditional defines to make your application work with different architectures.
You can learn more about Assembly code here: http://docwiki.embarcadero.com/RADStudio/
en/Using Inline Assembly Code You can also look at the following article that will help you to
make your application support the 64-bit platform: http://docwiki.embarcadero.com/
RADStudio/en/Converting 32-bit_Delphi_Applications_to_64-bit Windows

© 2019 Devart


http://docwiki.embarcadero.com/RADStudio/en/Using_Inline_Assembly_Code
http://docwiki.embarcadero.com/RADStudio/en/Using_Inline_Assembly_Code
http://docwiki.embarcadero.com/RADStudio/en/Converting_32-bit_Delphi_Applications_to_64-bit_Windows
http://docwiki.embarcadero.com/RADStudio/en/Converting_32-bit_Delphi_Applications_to_64-bit_Windows

Using PgDAC 127

Exception handling

The biggest difference in exception handling between Delphi 32 and 64-bit is that in Delphi
XE2 64-bit you will gain more performance because of different internal exception
mechanism. For 32-bit applications, the Delphi compiler (dcc32.exe) generates additional
code that is executed any way and that causes performance loss. The 64-bit compiler
(dccb4.exe) doesn't generate such code, it generates metadata and stores it in the PDATA
section of an executable file instead.

But in Delphi XE2 64-bit it's impossible to have more than 16 levels of nested exceptions.
Having more than 16 levels of nested exceptions will cause a Run Time error.

Debugging

Debugging of 64-bit applications in RAD Studio XE2 is remote. It is caused by the same
reason: RAD Studio XE2 IDE is a 32 application, but your application is 64-bit. If you are trying

to

debug your application and you cannot do it, you should check that the Include remote

debug symbols project option is enabled.
To enable it, perform the following steps:

1.
2.

3.
4.

Open Project Options (in the main menu Project->Options).

In the Target combobox, select Debug configuration - 64-bit Windows platform. If there
is no such option in the combobox, right click "Target Platforms" in Project Manager and
select Add platform. After adding the 64-bit Windows platform, the Debug configuration -
64-bit Windows platform option will be available in the Target combobox.

Select Linking in the left part of the Project Options form.

enable the Include remote debug symbols option.

After that, you can run and debug your 64-bit application.
To enable remote debugging, perform the following steps:

1.

Install Platform Assistant Server (PAServer) on a remote computer. You can find PAServer
in the %RAD_Studio_XE2_Install_Directory%\PAServer directory. The setup_paserver.exe
file is an installation file for Windows, and the setup_paserver.zip file is an istallation file for
MacOS.

. Run the PAServer.exe file on a remote computer and set the password that will be used to

connect to this computer.

. On a local computer with RAD Studio XEZ2 installed, right-click the target platform that you

want to debug in Project Manager and select Assign Remote Profile. Click the Add button
in the displayed window, input your profile name, click the Next button, input the name of a
remote computer and the password to it (that you assigned when you started PAServer on
a remote computer).

After that, you can test the connection by clicking the Test Connection button. If your
connection failed, check that your firewalls on both remote and local computers do not block

© 2019 Devart




128

PostgreSQL Data Access Components

4.25

your connection, and try to establish a connection once more. If your connection succeeded,
click the Next button and then the Finish button. Select your newly created profile and click
OK.

After performing these steps you will be able to debug your application on a remote computer.
You application will be executed on a remote computer, but you will be able to debug it on
your local computer with RAD Studio XE2.

For more information about working with Platform Assistant Server, please refer to http://
docwiki.embarcadero.com/RADStudio/Tokyo/en/

Running the Platform Assistant on Windows

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Database Specific Aspects of 64-bit Development

PostgreSQL Connectivity Aspects

Since PgDAC does not require that the PostgreSQL client be installed to work with the
database, the development of applications for the x64 platform does not differ from the
development of application for Windows x86.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Reference

This page shortly describes units that exist in PgDAC.

Units
Unit Name Description
This unit contains base
CRAccess classes for accessing
databases.
This unit contains
CRBatchMove implementation of the
TCRBatchMove component.
CREncryption This unit contains base
classes for data encryption.
CRVio Description is not available

at the moment.

© 2019 Devart


http://docwiki.embarcadero.com/RADStudio/Tokyo/en/Running_the_Platform_Assistant_on_Windows
http://docwiki.embarcadero.com/RADStudio/Tokyo/en/Running_the_Platform_Assistant_on_Windows
http://docwiki.embarcadero.com/RADStudio/Tokyo/en/Running_the_Platform_Assistant_on_Windows
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 129

DAAlerter

DADump

DALoader

DAScript

DASQLMonitor

DBAccess

Devart.Dac.DataAdapter

Devart.PgDac.DataAdapter
MemData

MemDS

PgAccess

PgAlerter

PgClasses

PgConnectionPool

PgDacVcl
PgDump

This unit contains the base
class for the TPgAlerter
component.

This unit contains the base
class for the TPgDump
component.

This unit contains the base
class for the TPgLoader
component.

This unit contains the base
class for the TPgScript
component.

This unit contains the base
class for the
TPgSQLMonitor component.
This unit contains base
classes for most of the
components.

This unit contains
implementation of the
DADataAdapter class.
This unit contains
implementation of the
PgDataAdapter class.

This unit contains classes for
storing data in memory.
This unit contains
implementation of the
TMemDataSet class.

This unit contains main
components of PgDAC.
This unit contains the
implementation of the
TPgAlerter component.
This unit contains the
implementation of internal
PgDAC classes and types.
This unit contains the
TPgConnectionPoolManage
r class for managing
connection pool.

This unit contains the visual
constituent of PgDAC.

This unit contains the

© 2019 Devart



130

PostgreSQL Data Access Components

5.1

PgError

PglLoader

PgObjects

PgScript

PgSQLMonitor

VirtualDataSet

VirtualTable

© 1997-2019
Devart. All Rights Request Support DAC Forum

Reserved.

CRAccess

This unit contains base classes for accessing databases.

Classes
Name
TCRCursor
Types

Name

TBeforeFetchProc

implementation of the
TPgDump component.

This unit contains the
EPgError exception class.
This unit contains the
implementation of the
TPglLoader component.
This unit contains classes for
PostgreSQL specific data
types.

This unit contains the
implementation of the
TPgScript component.

This unit contains the
implementation of the
TPgSQLMonitor component.
This unit contains
implementation of the
TVirtualDataSet component.
This unit contains
implementation of the
TVirtualTable component.

Provide Feedback

Description

A base class for classes that
work with database cursors.

Description

This type is used for the
TCustomDADataSet.Before

Fetch event.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 131

511

5.1.1.1

Enumerations

Name

TCRIsolationLevel

TCRTransactionAction

TCursorState

© 1997-2019

Devart. All Rights Request Support

DAC Forum

Reserved.

Classes

Classes in the CRAccess unit.

Classes

Name
TCRCursor

© 1997-2019

Devart. All Rights Request Support

DAC Forum

Reserved.

TCRCursor Class

A base class for classes that work with database cursors.
For a list of all members of this type, see TCRCursor members.

Unit

CRAccess

Syntax

TCRCursor = class(TSharedobject);

Remarks

Description

Specifies how to handle
transactions containing
database modifications.
Specifies the transaction
behaviour when itis
destroyed while being
active, or when one of its
connections is closed with
the active transaction.

Used to set cursor state

Provide Feedback

Description

A base class for classes that
work with database cursors.

Provide Feedback

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

132

PostgreSQL Data Access Components

TCRCursor is a base class for classes that work with database cursors.

Inheritance Hierarchy

TSharedObject
TCRCursor

© 1997-2019

Devart. All Rights Request Support

DAC Forum

Reserved.

5.1.1.1.1 Members

5.1.2

TCRCursor class overview.

Properties

Name

RefCount (inherited from TSharedObject)

Methods

Name

AddRef (inherited from TSharedObject)

Release (inherited from TSharedObject)

© 1997-2019

Devart. All Rights Request Support

DAC Forum

Reserved.

Types
Types in the CRAccess unit.

Types

Name

TBeforeFetchProc

Provide Feedback

Description

Used to return the count of
reference to a
TSharedObject object.

Description

Increments the reference
count for the number of
references dependent on the
TSharedObject object.

Decrements the reference
count.

Provide Feedback

Description

This type is used for the
TCustomDADataSet.Before

Fetch event.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 133

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.1.2.1 TBeforeFetchProc Procedure Reference

This type is used for the TCustomDADataSet.BeforeFetch event.

Unit

CRAcCcess

Syntax

TBeforeFetchProc = procedure (var Cancel: boolean) of object;

Parameters

Cancel
True, if the current fetch operation should be aborted.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.1.3 Enumerations

Enumerations in the CRAccess unit.

Enumerations

Name Description

Specifies how to handle
transactions containing
database modifications.

Specifies the transaction

behaviour whenitis
TCRTransactionAction destroyed while being
active, or when one of its
connections is closed with
the active transaction.

TCRIsolationLevel

TCursorState Used to set cursor state
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

134

PostgreSQL Data Access Components

5.1.3.1

5.1.3.2

TCRIsolationLevel Enumeration

Specifies how to handle transactions containing database modifications.

Unit

CRAcCcess

Syntax

TCRIsolationLevel = (ilReadCommitted);
Values

Value Meaning

The default transaction behavior. If the transaction contains DML
iIReadCommitted |that requires row locks held by another transaction, then the DML
statement waits until the row locks are released.
© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

TCRTransactionAction Enumeration

Specifies the transaction behaviour when it is destroyed while being active, or when one of its
connections is closed with the active transaction.

Unit

CRAccess

Syntax

TCRTransactionAction = (taCommit, taRollback);

Values

Value Meaning

taCommit Transaction is committed.

taRollback Transaction is rolled back.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 135

5.1.3.3 TCursorState Enumeration

Used to set cursor state

Unit

CRAcCcess

Syntax

TCursorState = (csInactive, csOpen, csParsed, csPrepared, csBound,
csExecuteFetchAll, csExecuting, csExecuted, csFetching,
csFetchingAll, csFetched);

Values

Value Meaning

csBound Parameters bound

csExecuted Statement successfully executed
csExecuteFetchAll Set before FetchAll
csExecuting Statement is set before executing
csFetched Fetch finished or canceled
csFetching Set on first

csFetchingAll Set on the FetchAll start
cslnactive Default state

csOpen statement open

csParsed Statement parsed

csPrepared Statement prepared

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2 CRBatchMove

This unit contains implementation of the TCRBatchMove component.

Classes

Name Description

TCRBatchMove Transfers records between
datasets.

Types

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

136

PostgreSQL Data Access Components

5.21

5.2.1.1

Name

TCRBatchMoveProgressEvent

Enumerations

Name

TCRBatchMode

TCRFieldMappingMode

© 1997-2019

Devart. All Rights Request Support

DAC Forum

Description

This type is used for the
TCRBatchMove.OnBatchMo

veProgress event.

Description

Used to set the type of the
batch operation that will be
executed after calling the
TCRBatchMove.Execute

method.

Used to specify the way
fields of the destination and
source datasets will be
mapped to each other if the
TCRBatchMove.Mappings

Reserved.

Classes

Classes in the CRBatchMove unit.

Classes

Name
TCRBatchMove

© 1997-2019

Devart. All Rights Request Support

DAC Forum

Reserved.
TCRBatchMove Class

Transfers records between datasets.

listis empty.

Provide Feedback

Description

Transfers records between
datasets.

Provide Feedback

For a list of all members of this type, see TCRBatchMove members.

Unit

CRBatchMove

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 137

Syntax

TCRBatchMove = class (TComponent);

Remarks

The TCRBatchMove component transfers records between datasets. Use it to copy dataset
records to another dataset or to delete datasets records that match records in another
dataset. The TCRBatchMove.Mode property determines the desired operation type, the
TCRBatchMove.Source and TCRBatchMove.Destination properties indicate corresponding
datasets.

Note: A TCRBatchMove component is added to the Data Access page of the component
palette, not to the PgDAC page.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2.1.1.1 Members

TCRBatchMove class overview.

Properties
Name Description

Used to specify whether the
AbortOnKeyViol batch operation should be

terminated immediately after
key or integrity violation.
Used to specify whether the
batch operation should be
AbortOnProblem terminated immediately
when itis necessary to
truncate data to make it fit
the specified Destination.
Used to get the number of
ChangedCount records changed in the
destination dataset.

Used to set the number of

CommitCount records to be batch moved
before commit occurs.
o Used to specify the
Destination destination dataset for the

batch operation.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

138

PostgreSQL Data Access Components

FieldMappingMode

KeyViolCount

Mappings

Mode

MovedCount

ProblemCount

RecordCount

Source

Methods

Name
Execute

Used to specify the way
fields of destination and
source datasets will be
mapped to each other if the
TCRBatchMove.Mappings

listis empty.

Used to get the number of
records that could not be
moved to or from the
destination dataset because
of integrity or key violations.
Used to set field matching
between source and
destination datasets for the
batch operation.

Used to set the type of the
batch operation that will be
executed after calling the
TCRBatchMove.Execute
method.

Used to get the number of
records that were read from
the source dataset during
the batch operation.

Used to get the number of
records that could not be
added to the destination
dataset because of the field
type mismatch.

Used to indicate the
maximum number of records
in the source dataset that will
be applied to the destination
dataset.

Used to specify the source
dataset for the batch
operation.

Description

Performs the batch
operation.

© 2019 Devart



Reference 139

Events

Name

OnBatchMoveProgress

© 1997-2019
Devart. All Rights Request Support DAC Forum

Reserved.

5.2.1.1.2 Properties

Properties of the TCRBatchMove class.

Description

Occurs when providing
feedback to the user about
the batch operationin
progress is needed.

Provide Feedback

For a complete list of the TCRBatchMove class members, see the TCRBatchMove

Members topic.

Public

Name

ChangedCount

KeyViolCount

MovedCount

ProblemCount

Published

Name
AbortOnKeyViol

Description

Used to get the number of
records changed in the
destination dataset.

Used to get the number of
records that could not be
moved to or from the
destination dataset because
of integrity or key violations.

Used to get the number of
records that were read from
the source dataset during
the batch operation.

Used to get the number of
records that could not be
added to the destination
dataset because of the field
type mismatch.

Description

Used to specify whether the
batch operation should be

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

140

PostgreSQL Data Access Components

AbortOnProblem

CommitCount

Destination

FieldMappingMode

Mappings

Mode

RecordCount

Source

See Also
e TCRBatchMove Class

e TCRBatchMove Class Members
© 1997-2019

terminated immediately after
key or integrity violation.
Used to specify whether the
batch operation should be
terminated immediately
when it is necessary to
truncate data to make it fit
the specified Destination.
Used to set the number of
records to be batch moved
before commit occurs.

Used to specify the
destination dataset for the
batch operation.

Used to specify the way
fields of destination and
source datasets will be
mapped to each other if the
TCRBatchMove.Mappings
listis empty.

Used to set field matching
between source and
destination datasets for the
batch operation.

Used to set the type of the
batch operation that will be
executed after calling the
TCRBatchMove.Execute
method.

Used to indicate the
maximum number of records
in the source dataset that will
be applied to the destination
dataset.

Used to specify the source
dataset for the batch
operation.

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 141

5.2.1.1.2.1 AbortOnKeyViol Property

Used to specify whether the batch operation should be terminated immediately after key or
integrity violation.

Class

TCRBatchMove

Syntax
property AbortonKeyviol: boolean default True;

Remarks

Use the AbortOnKeyViol property to specify whether the batch operation is terminated
immediately after key or integrity violation.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2.1.1.2.2 AbortOnProblem Property

Used to specify whether the batch operation should be terminated immediately when it is
necessary to truncate data to make it fit the specified Destination.

Class
TCRBatchMove

Syntax
property AbortonProblem: boolean default True;

Remarks

Use the AbortOnProblem property to specify whether the batch operation is terminated
immediately when it is necessary to truncate data to make it fit the specified Destination.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2.1.1.2.3 ChangedCount Property

Used to get the number of records changed in the destination dataset.

Class

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

142

PostgreSQL Data Access Components

521124

521125

TCRBatchMove

Syntax
property ChangedCount: Integer;

Remarks

Use the ChangedCount property to get the number of records changed in the destination
dataset. It shows the number of records that were updated in the bmUpdate or
bmAppendUpdate mode or were deleted in the bmDelete mode.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

CommitCount Property

Used to set the number of records to be batch moved before commit occurs.

Class

TCRBatchMove

Syntax
property CommitCount: integer default O;

Remarks

Use the CommitCount property to set the number of records to be batch moved before the
commit occurs. If it is set to 0, the operation will be chunked to the number of records to fit 32
Kb.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Destination Property

Used to specify the destination dataset for the batch operation.

Class
TCRBatchMove

Syntax
property Destination: TDataSet;

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 143

Remarks

Specifies the destination dataset for the batch operation.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2.1.1.2.6 FieldMappingMode Property

Used to specify the way fields of destination and source datasets will be mapped to each
other if the Mappings list is empty.

Class
TCRBatchMove

Syntax

property FieldMappingMode: TCRFieldMappingMode default
mmFieldIndex;

Remarks
Specifies in what way fields of destination and source datasets will be mapped to each other
if the Mappings list is empty.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.2.1.1.2.7 KeyViolCount Property

Used to get the number of records that could not be moved to or from the destination dataset
because of integrity or key violations.

Class
TCRBatchMove

Syntax
property KeyviolCount: Integer;

Remarks

Use the KeyViolCount property to get the number of records that could not be replaced,
added, deleted from the destination dataset because of integrity or key violations.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

144 PostgreSQL Data Access Components

If AbortOnKeyViol is True, then KeyViolCount will never exceed one, because the operation
aborts when the integrity or key violation occurs.

See Also
e AbortOnKeyViol

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2.1.1.2.8 Mappings Property

Used to set field matching between source and destination datasets for the batch operation.

Class
TCRBatchMove

Syntax
property Mappings: TStrings;

Remarks

Use the Mappings property to set field matching between the source and destination datasets
for the batch operation. By default fields matching is based on their position in the datasets.
To map the column ColName in the source dataset to the column with the same name in the
destination dataset, use:

ColName

Example

To map a column named SourceColName in the source dataset to the column named
DestColName in the destination dataset, use:

DestColName=SourceColName

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2.1.1.2.9 Mode Property

Used to set the type of the batch operation that will be executed after calling the Execute
method.

Class

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 145

TCRBatchMove

Syntax
property Mode: TCRBatchMode default bmAppend;

Remarks

Use the Mode property to set the type of the batch operation that will be executed after calling
the Execute method.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.2.1.1.2.10 MovedCount Property

Used to get the number of records that were read from the source dataset during the batch
operation.

Class

TCRBatchMove

Syntax
property MovedCount: Integer;

Remarks

Use the MovedCount property to get the number of records that were read from the source
dataset during the batch operation. This number includes records that caused key or integrity
violations or were trimmed.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.2.1.1.2.11 ProblemCount Property

Used to get the number of records that could not be added to the destination dataset because
of the field type mismatch.

Class
TCRBatchMove

Syntax

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

146 PostgreSQL Data Access Components

property ProblemCount: Integer;

Remarks

Use the ProblemCount property to get the number of records that could not be added to the
destination dataset because of the field type mismatch.

If AbortOnProblem is True, then ProblemCount will never exceed one, because the operation
aborts when the problem occurs.

See Also
e AbortOnProblem

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.2.1.1.2.12 RecordCount Property

Used to indicate the maximum number of records in the source dataset that will be applied to
the destination dataset.

Class
TCRBatchMove

Syntax
property RecordCount: Integer default O;

Remarks

Determines the maximum number of records in the source dataset, that will be applied to the
destination dataset. If it is set to 0, all records in the source dataset will be applied to the
destination dataset, starting from the first record. If RecordCount is greater than 0, up to the
RecordCount records are applied to the destination dataset, starting from the current record
in the source dataset. If RecordCount exceeds the number of records left in the source
dataset, batch operation terminates after reaching last record.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.2.1.1.2.13 Source Property

Used to specify the source dataset for the batch operation.

Class

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 147

TCRBatchMove

Syntax

property Source: TDataSet;

Remarks
Specifies the source dataset for the batch operation.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2.1.1.3 Methods

Methods of the TCRBatchMove class.

For a complete list of the TCRBatchMove class members, see the TCRBatchMove
Members topic.

Public

Name Description

Execute Perforr_ns the batch
operation.

See Also
e TCRBatchMove Class

e TCRBatchMove Class Members
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2.1.1.3.1 Execute Method

Performs the batch operation.

Class
TCRBatchMove

Syntax

procedure Execute;

Remarks

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

148 PostgreSQL Data Access Components

Call the Execute method to perform the batch operation.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2.1.1.4 Events

Events of the TCRBatchMove class.
For a complete list of the TCRBatchMove class members, see the TCRBatchMove

Members topic.

Published

Name Description
Occurs when providing

OnBatchMoveProgress feedback to the user about
the batch operation in
progress is needed.

See Also

e TCRBatchMove Class
e TCRBatchMove Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2.1.1.4.1 OnBatchMoveProgress Event

Occurs when providing feedback to the user about the batch operation in progress is needed.

Class
TCRBatchMove

Syntax

property oOnBatchMoveProgress: TCRBatchMoveProgressEvent;

Remarks

Write the OnBatchMoveProgress event handler to provide feedback to the user about the
batch operation progress.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 149

522 Types
Types in the CRBatchMove unit.

Types
Name Description
This type is used for the
TCRBatchMoveProgressEvent TCRBatchMove.OnBatchMo
veProgress event.
© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2.2.1 TCRBatchMoveProgressEvent Procedure Reference

This type is used for the TCRBatchMove.OnBatchMoveProgress event.

Unit

CRBatchMove

Syntax

TCRBatchMoveProgressevent = procedure (Sender: TObject; Percent:
integer) of object;

Parameters

Sender

An object that raised the event.
Percent

Percentage of the batch operation progress.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2.3 Enumerations

Enumerations in the CRBatchMove unit.

Enumerations
Name Description

Used to set the type of the
TCRBatchMode

batch operation that will be
executed after calling the

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

150 PostgreSQL Data Access Components

TCRBatchMove.Execute

method.

Used to specify the way

fields of the destination and
TCRFieldMappingMode source datasets will be
mapped to each other if the
TCRBatchMove.Mappings

listis empty.
© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2.3.1 TCRBatchMode Enumeration

Used to set the type of the batch operation that will be executed after calling the
TCRBatchMove.Execute method.

Unit

CRBatchMove

Syntax

TCRBatchMode = (bmAppend, bmupdate, bmAppendupdate, bmDelete);
Values

Value Meaning

Appends the records from the source dataset to the destination
bmAppend dataset. The default mode.

Replaces records in the destination dataset with the matching
bmAppendUpdate records from the source dataset. If there is no matching record in
the destination dataset, the record will be appended to it.

Deletes records from the destination dataset if there are
matching records in the source dataset.

bmUpdate Replaces records in the destination dataset with the matching
records from the source dataset.

bmbDelete

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.2.3.2 TCRFieldMappingMode Enumeration

Used to specify the way fields of the destination and source datasets will be mapped to each
other if the TCRBatchMove.Mappings list is empty.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 151

Unit

CRBatchMove

Syntax

TCRFieldMappingMode = (mmFieldIndex, mmFieldName);
Values

Value Meaning

Specifies that the fields of the destination dataset will be mapped

mmFieldindex to the fields of the source dataset by field index.

mmFieldName Mapping is performed by field names.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.3 CREncryption

This unit contains base classes for data encryption.

Classes
Name Description
The class that performs data
encryption and decryptionin
TCREncryptor a client application using
various encryption
algorithms.
Enumerations
Name Description
Specifies whether the
TCREncDataHeader additional information is
stored with the encrypted
data.
TCREncryptionAlgorithm Specifies the algorithm of
data encryption.
TCRHashAlgorithm Specifies the algorithm of
generating hash data.
TCRInvalidHashAction Specifies the action to

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

152 PostgreSQL Data Access Components

perform on data fetching
when hash data is invalid.
© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.3.1 Classes
Classes in the CREncryption unit.

Classes

Name Description
The class that performs data
encryption and decryptionin

TCREnNcryptor a client application using
various encryption
algorithms.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.3.1.1 TCREncryptor Class

The class that performs data encryption and decryption in a client application using various
encryption algorithms.
For a list of all members of this type, see TCREncryptor members.

Unit

CREncryption

Syntax

TCREncryptor = class (TComponent);

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.3.1.1.1 Members

TCREncryptor class overview.

Properties

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 153

Name

DataHeader

EncryptionAlgorithm

HashAlgorithm

InvalidHashAction

Password

Methods

Name
SetKey

© 1997-2019
Devart. All Rights
Reserved.

5.3.1.1.2 Properties

Properties of the TCREnNcryptor class.

Request Support DAC Forum

Description

Specifies whether the
additional information is
stored with the encrypted
data.

Specifies the algorithm of
data encryption.

Specifies the algorithm of
generating hash data.
Specifies the action to
perform on data fetching
when hash data is invalid.
Used to set a password that
is used to generate a key for
encryption.

Description

Sets a key, using which data
is encrypted.

Provide Feedback

For a complete list of the TCREncryptor class members, see the TCREncryptor Members

topic.
Published

Name

DataHeader

EncryptionAlgorithm

HashAlgorithm

InvalidHashAction

Description

Specifies whether the
additional information is
stored with the encrypted
data.

Specifies the algorithm of
data encryption.
Specifies the algorithm of
generating hash data.

Specifies the action to

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

154

PostgreSQL Data Access Components

5.3.1.1.2.1

5.3.1.1.2.2

perform on data fetching
when hash data is invalid.

Used to set a password that
Password is used to generate a key for
encryption.

See Also
e TCREncryptor Class

e TCREncryptor Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

DataHeader Property

Specifies whether the additional information is stored with the encrypted data.

Class
TCREncryptor

Syntax
property DataHeader: TCREncDataHeader default ehTagAndHash;

Remarks
Use DataHeader to specify whether the additional information is stored with the encrypted
data. Default value is ehTagAndHash.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

EncryptionAlgorithm Property

Specifies the algorithm of data encryption.

Class
TCRENncryptor

Syntax

property EncryptionAlgorithm: TCREncryptionAlgorithm default
eaBlowfish;

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 155

Remarks

Use EncryptionAlgorithm to specify the algorithm of data encryption. Default value is
eaBlowfish.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.3.1.1.2.3 HashAlgorithm Property

Specifies the algorithm of generating hash data.

Class
TCRENncryptor

Syntax
property HashAlgorithm: TCRHashAlgorithm default haSHA1;

Remarks

Use HashAlgorithm to specify the algorithm of generating hash data. This property is used
only if hash is stored with the encrypted data (the DataHeader property is set to
ehTagAndHash). Default value is haSHA1.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.3.1.1.2.4 InvalidHashAction Property

Specifies the action to perform on data fetching when hash data is invalid.

Class
TCREncryptor

Syntax
property InvalidHashAction: TCRInvalidHashAction default ihFail;

Remarks

Use InvalidHashAction to specify the action to perform on data fetching when hash data is
invalid. This property is used only if hash is stored with the encrypted data (the DataHeader
property is set to ehTagAndHash). Default value is ihFail.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

156

PostgreSQL Data Access Components

5.3.1.1.25

If the DataHeader property is set to enTagAndHash, then on data fetching from a server the
hash check is performed for each record. After data decryption its hash is calculated and
compared with the hash stored in the field. If these values don't coincide, it means that the
stored data is incorrect, and depending on the value of the InvalidHashAction property one of
the following actions is performed:

ihFail - the ElnvalidHash exception is raised and further data reading from the server is
interrupted.

ihSkipData - the value of the field for this record is set to Null. No exception is raised.
ihignoreError - in spite of the fact that the data is not valid, the value is set in the field. No
exception is raised.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Passw ord Property

Used to set a password that is used to generate a key for encryption.

Class
TCRENncryptor

Syntax

property Password: string stored False;

Remarks

Use Password to set a password that is used to generate a key for encryption.
Note: Calling of the SetKey method clears the Password property.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.3.1.1.3 Methods

Methods of the TCREncryptor class.
For a complete list of the TCREnNcryptor class members, see the TCREncryptor Members

topic.

Public

Name Description

SetKey Sets a key, using which data

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 157

is encrypted.

See Also
e TCREncryptor Class

e TCREnNcryptor Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.3.1.1.3.1 SetKey Method

Sets a key, using which data is encrypted.

Class
TCRENncryptor

Syntax

procedure Setkey(const Key; Count: Integer); overload;procedure
SetKey(const Key: TBytes; Offset: Integer; Count: Integer);
overload;

Parameters
Key
Holds bytes that represent a key.

Offset
Offset in bytes to the position, where the key begins.

Count
Number of bytes to use from Key.

Remarks

Use SetKey to set a key, using which data is encrypted.
Note: Calling of the SetKey method clears the Password property.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.3.2 Enumerations

Enumerations in the CREncryption unit.

Enumerations

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

158 PostgreSQL Data Access Components

Name Description
Specifies whether the
TCREncDataHeader additional information is
stored with the encrypted
data.
TCREncryptionAlgorithm Specifies the algorithm of
data encryption.
TCRHashAlgorithm Specifies the algorithm of

generating hash data.

. . Specifies the action to

when hash data is invalid.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.3.2.1 TCREncDataHeader Enumeration

Specifies whether the additional information is stored with the encrypted data.

Unit

CREncryption

Syntax

TCREncDataHeader = (ehTagAndHash, ehTag, ehNone);

Values

Value Meaning

ehNone No additional information is stored.

ehTag GUID and the random initialization vector are stored with the

encrypted data.

ehTagAndHash Hash, GUID, and the random initialization vector are stored with
the encrypted data.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.3.2.2 TCREncryptionAlgorithm Enumeration

Specifies the algorithm of data encryption.

Unit

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 159

CREncryption

Syntax

TCREncryptionAlgorithm = (eaTripleDES, eaBlowfish, eaAES128,
€aAES192, eaAES256, eaCastl28, eaRC4);

Values

Value Meaning

eaAES128 The AES encryption algorithm with key size of 128 bits is used.
eaAES192 The AES encryption algorithm with key size of 192 bits is used.
eaAES256 The AES encryption algorithm with key size of 256 bits is used.
eaBlowfish The Blowfish encryption algorithm is used.

eaCast128 IgdeAST-1 28 encryption algorithm with key size of 128 bits is
eaRC4 The RC4 encryption algorithm is used.

eaTripleDES The Triple DES encryption algorithm is used.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.3.2.3 TCRHashAlgorithm Enumeration

Specifies the algorithm of generating hash data.

Unit

CREncryption

Syntax

TCRHashAlgorithm = (haSHAl, hamD5);

Values

Value Meaning

haMD5 The MD$ hash algorithm is used.
haSHA1 The SHA-1 hash algorithm is used.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

160

PostgreSQL Data Access Components

5.3.2.4

54
541

5.4.1.1

TCRInvalidHashAction Enumeration

Specifies the action to perform on data fetching when hash data is invalid.

Unit

CREncryption

Syntax

TCRInvalidHashAction = (ihFail, ihSkipbData, ihIgnoreError);
Values

Value Meaning

. . The ElnvalidHash exception is raised and further data reading
ihFail o
from the server is interrupted.

In spite of the fact that the data is not valid, the value is set in the

thignoreError field. No exception s raised.

ihSkipData The value of the field for this record is set to Null. No exception is
raised.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

CRVio

Enumerations

Enumerations in the CRVio unit.

Enumerations

Name Description

TIPVersion Specifies the version of the
Internet Protocol

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

TIPVersion Enumeration

Specifies the version of the Internet Protocol

Unit

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 161

CRVio

Syntax

TIPVersion = (ivIPv4, ivIPv6, ivIPBoth);

Values

Value Meaning

iviPBoth Specifies that either IPV6 or IPv4 Internet Protocol version is used
iviPv4 Specifies that the IPv4 Internet Protocol version is used

iviPv6 Specifies that the IPv6 Internet Protocol version is used
Remarks

Note: when the TIPVersion property is set to iviPBoth , there occurs an attempt to connect
via IPv6 (if it is enabled in the OS); if the attempt fails - there occurs an attempt to connect via
IPv4.

See Also
e TPgConnectionOptions.IPVersion

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

55 DAAlerter

This unit contains the base class for the TPgAlerter component.

Classes
Name Description
A base class that defines
TDAAlerter functionality for database
event notification.
Types
Name Description
TAlerterErrorEvent This type is used for the
TDAAlerter.OnError event.
©1997-2019 Request Support DAC Forum Provide Feedback

Devart. All Rights

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

162

PostgreSQL Data Access Components

5.5.1

5.5.1.1

Reserved.

Classes
Classes in the DAAlerter unit.

Classes
Name Description
A base class that defines
TDAAlerter functionality for database
event notification.
© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

TDAAlerter Class

A base class that defines functionality for database event notification.
For a list of all members of this type, see TDAAlerter members.

Unit

DAAlerter

Syntax

TDAAlerter = class (TComponent);

Remarks

TDAAlerter is a base class that defines functionality for descendant classes support database
event notification. Applications never use TDAAlerter objects directly. Instead they use
descendants of TDAAlerter.

The TDAAlerter component allows you to register interest in and handle events posted by a
database server. Use TDAAlerter to handle events for responding to actions and database
changes made by other applications. To get events, an application must register required
events. To do this, set the Events property to the required events and call the Start method.
When one of the registered events occurs OnEvent handler is called.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 163

5.5.1.1.1 Members

TDAAlerter class overview.

Properties

Name

Active

AutoReqister

Connection

Methods

Name
SendEvent

Start
Stop

Events

Name

OnError

© 1997-2019

Devart. All Rights Request Support

DAC Forum

Reserved.

5.5.1.1.2 Properties

Properties of the TDAAlerter class.

Description

Used to determine if
TDAAlerter waits for
messages.

Used to automatically
register events whenever
connection opens.

Used to specify the
connection for TDAAlerter.

Description

Sends an event with Name
and content Message.

Starts waiting process.

Stops waiting process.

Description

Occurs if an exception
occurs in waiting process

Provide Feedback

For a complete list of the TDAAlerter class members, see the TDAAlerter Members topic.

Public

Name

Active

Description
Used to determine if

TDAAlerter waits for

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

164 PostgreSQL Data Access Components

messages.

Used to automatically
AutoRegister register events whenever

connection opens.
Connection Used to specify the

connection for TDAAlerter.

See Also
e TDAAlerter Class

e TDAAlerter Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.5.1.1.2.1 Active Property

Used to determine if TDAAlerter waits for messages.

Class

TDAAlerter

Syntax
property Active: boolean default False;

Remarks

Check the Active property to know whether TDAlerter waits for messages or not. Set it to
True to register events.

See Also
e Start
e Stop

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.5.1.1.2.2 AutoRegister Property

Used to automatically register events whenever connection opens.

Class

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 165

TDAAlerter

Syntax

property AutoRegister: boolean default False;

Remarks

Set the AutoRegister property to True to automatically register events whenever connection
opens.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.5.1.1.2.3 Connection Property

Used to specify the connection for TDAAlerter.

Class

TDAAlerter

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify the connection for TDAAlerter.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.5.1.1.3 Methods

Methods of the TDAAlerter class.
For a complete list of the TDAAlerter class members, see the TDAAlerter Members topic.

Public

Name Description

SendEvent Sends an event with Name
and content Message.

Start Starts waiting process.

Stop Stops waiting process.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

166

PostgreSQL Data Access Components

5.5.1.1.3.1

5.5.1.1.3.2

See Also
e TDAAlerter Class

e TDAAlerter Class Members
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

SendEvent Method

Sends an event with Name and content Message.

Class

TDAAlerter

Syntax

procedure Sendevent(const EventName:

string);

Parameters

EventName
Holds the event name.

Message
Holds the content Message of the event.

Remarks

string; const Message:

Use SendEvent procedure to send an event with Name and content Message.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

Start Method

Starts waiting process.

Class
TDAAlerter

Syntax
procedure sStart;

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 167

Remarks

Call the Start method to run waiting process. After starting TDAAlerter waits for messages
with names defined by the Events property.

See Also

e Stop

e Active

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.5.1.1.3.3 Stop Method

Stops waiting process.

Class
TDAAlerter

Syntax
procedure Sstop;

Remarks

Call Stop method to end waiting process.

See Also
e Start

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.5.1.1.4 Events

Events of the TDAAlerter class.
For a complete list of the TDAAlerter class members, see the TDAAlerter Members topic.

Public
Name Description
OnError Occurs if an exception

occurs in waiting process

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

168 PostgreSQL Data Access Components

See Also
e TDAAlerter Class

e TDAAlerter Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.5.1.1.4.1 OnError Event

Occurs if an exception occurs in waiting process

Class

TDAAlerter

Syntax

property OnError: TAlerterErroreEvent;

Remarks

The OnError event occurs if an exception occurs in waiting process. Alerter stops in this
case. The exception can be accessed using the E parameter.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.5.2 Types
Types in the DAAlerter unit.

Types

Name Description

TAlerterErrorEvent This type is used for the
TDAAlerter.OnError event.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.5.2.1 TAlerterErrorEvent Procedure Reference

This type is used for the TDAAlerter.OnError event.

Unit

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 169

DAAlerter

Syntax

TAlertereErrorEvent = procedure (Sender: TDAAlerter; E: Exception)
of object;

Parameters
Sender
An object that raised the event.

E
Exception object.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6 DADump

This unit contains the base class for the TPgDump component.

Classes
Name Description
A base class that defines
TDADump functionality for descendant
- classes that dump database
objects to a script.
_ This class allows setting up
TDADumpOptions the behaviour of the
TDADump class.
Types
Name Description
This type is used for the
TDABackupProgressEvent TDADump.OnBackupProgr
ess event.
This type is used for the
TDARestoreProgressEvent TDADump.OnRestoreProgr
ess event.
© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

170

PostgreSQL Data Access Components

5.6.1

5.6.1.1

Classes

Classes in the DADump unit.

Classes

Name Description
A base class that defines

TDADump functionality for descendant
classes that dump database
objects to a script.

. This class allows setting up

TDADumpOptions the behaviour of the
TDADump class.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

TDADump Class

A base class that defines functionality for descendant classes that dump database objects to
a script.
For a list of all members of this type, see TDADump members.

Unit

DADUMp

Syntax
TDADuUmp = class (TComponent);

Remarks

TDADump is a base class that defines functionality for descendant classes that dump
database objects to a script. Applications never use TDADump objects directly. Instead they
use descendants of TDADump.

Use TDADump descedants to dump database objects, such as tables, stored procedures,
and functions for backup or for transferring the data to another SQL server. The dump
contains SQL statements to create the table or other database objects and/or populate the
table.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 171

5.6.1.1.1 Members

TDADump class overview.

Properties

Name

Connection

Debug

Options

SQL

TableNames

Methods

Name

Backup

BackupQuery

BackupToFile

BackupToStream

Restore

RestoreFromFile

RestoreFromStream

Events

Description

Used to specify a
connection object that will be
used to connect to a data
store.

Used to display executing
statement, all its parameters'
values, and the type of
parameters.

Used to specify the
behaviour of a TDADump
component.

Used to set or get the dump
script.

Used to set the names of the
tables to dump.

Description

Dumps database objects to
the TDADump.SQL
property.

Dumps the results of a
particular query.

Dumps database objects to
the specified file.

Dumps database objects to
the stream.

Executes a script contained
in the SQL property.

Executes a script from a file.

Executes a script received
from the stream.

© 2019 Devart



172

PostgreSQL Data Access Components

Name

OnBackupProgress

OnError

OnRestoreProgress

© 1997-2019

Devart. All Rights Request Support

DAC Forum

Reserved.

5.6.1.1.2 Properties

Properties of the TDADump class.

Description

Occurs to indicate the
TDADump.Backup,
M:Devart.Dac. TDADump.Ba
ckupToFile(System.String)
or

M:Devart.Dac. TDADump.Ba
ckupToStream(Borland.Vcl.
TStream) method execution
progress.

Occurs when PostgreSQL
raises some error on
TDADump.Restore.

Occurs to indicate the
TDADump.Restore,
TDADump.RestoreFromFile
, or
TDADump.RestoreFromStr
eam method execution
progress.

Provide Feedback

For a complete list of the TDADump class members, see the TDADump Members topic.

Public

Name

Connection

Options

Published

Name

Description

Used to specify a
connection object that will be
used to connect to a data
store.

Used to specify the
behaviour of a TDADump
component.

Description

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 173

5.6.1.1.2.1

Used to display executing
statement, all its parameters

Debug

- values, and the type of
parameters.

sQL Used to set or get the dump

- script.

TableNames Used to set the names of the

- tables to dump.

See Also

e TDADump Class
e TDADump Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

Connection Property

Used to specify a connection object that will be used to connect to a data store.

Class

TDADUMp

Syntax
property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify a connection object that will be used to connect to a
data store.

Set at design-time by selecting from the list of provided TCustomDAConnection or its
descendant class objects.

At runtime, link an instance of a TCustomDAConnection descendant to the Connection
property.

See Also

e TCustomDAConnection

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

174 PostgreSQL Data Access Components

5.6.1.1.2.2 Debug Property

Used to display executing statement, all its parameters' values, and the type of parameters.

Class

TDADUMp

Syntax
property Debug: boolean default False;

Remarks

Set the Debug property to True to display executing statement and all its parameters' values.
Also displays the type of parameters.

You should add the PgDacVcl unit to the uses clause of any unit in your project to make the
Debug property work.

Note: If TPgSQLMonitor is used in the project and the TPgSQLMonitor.Active property is set
to False, the debug window is not displayed.

See Also
e TCustomDADataSet.Debug

e TCustomDASQL.Debug

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6.1.1.2.3 Options Property

Used to specify the behaviour of a TDADump component.

Class
TDADUMP

Syntax
property Options: TDADumpOptions;

Remarks

Use the Options property to specify the behaviour of a TDADump component.
Descriptions of all options are in the table below.

Option Name Description

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 175

56.1.1.2.4

AddDrop

Completelnsert

GenerateHeader

QuoteNames

© 1997-2019

Devart. All Rights Request Support

Used to add drop statements to a script
before creating statements.

Used to explicitly specify the table fields
names when generating the INSERT SQL
query. The default value is False.

Used to add a comment header to a script.
Used for TDADump to quote all database
object names in generated SQL
statements.

DAC Forum Provide Feedback

Reserved.
SQL Property

Used to set or get the dump script.

Class

TDADUMp

Syntax

property SQL: TStrings;

Remarks

Use the SQL property to get or set the dump script. The SQL property stores script that is
executed by the Restore method. This property will store the result of Backup and
BackupQuery. At design time the SQL property can be edited by invoking the String List editor

in Object Inspector.

See Also
e Restore

e Backup
e BackupQuery

© 1997-2019

Devart. All Rights Request Support

DAC Forum Provide Feedback

Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

176 PostgreSQL Data Access Components

5.6.1.1.2.5 TableNames Property

Used to set the names of the tables to dump.

Class

TDADUMp

Syntax

property TableNames: string;

Remarks

Use the TableNames property to set the names of the tables to dump. Table names must be
separated with commas. If it is empty, the Backup method will dump all available tables.

See Also
e Backup

© 1997-2019
Devart. All Rights Request Support

DAC Forum

Reserved.

5.6.1.1.3 Methods

Methods of the TDADump class.

Provide Feedback

For a complete list of the TDADump class members, see the TDADump Members topic.

Public

Name

Backup

BackupQuery

BackupToFile

BackupToStream

Restore

RestoreFromFile

RestoreFromStream

Description

Dumps database obijects to
the TDADump.SQL
property.

Dumps the results of a
particular query.

Dumps database obijects to
the specified file.

Dumps database objects to
the stream.

Executes a script contained
in the SQL property.
Executes a script from a file.

Executes a script received
from the stream.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 177

See Also
e TDADump Class

e TDADump Class Members
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6.1.1.3.1 Backup Method

Dumps database objects to the SQL property.

Class

TDADUMp

Syntax
procedure Backup;

Remarks
Call the Backup method to dump database objects. The result script will be stored in the SQL
property.

See Also
e SQL

e Restore

e BackupToFile
e BackupToStream

e BackupQuery

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6.1.1.3.2 BackupQuery Method

Dumps the results of a particular query.

Class
TDADUMp

Syntax

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

178

PostgreSQL Data Access Components

5.6.1.1.3.3

procedure BackupQuery(const Query: string);

Parameters

Query
Holds a query used for data selection.

Remarks

Call the BackupQuery method to dump the results of a particular query. Query must be a
valid select statement. If this query selects data from several tables, only data of the first table
in the from list will be dumped.

See Also
e Restore

e Backup

e BackupToFile

e BackupToStream
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

BackupToFile Method

Dumps database objects to the specified file.

Class

TDADUMp

Syntax

procedure BackupToFile(const FileName: string; const Query:
string = '');
Parameters

FileName
Holds the file name to dump database objects to.

Query
Your query to receive the data for dumping.

Remarks
Call the BackupToFile method to dump database objects to the specified file.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 179

See Also

e RestoreFromStream
e Backup

e BackupToStream

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6.1.1.3.4 BackupToStream Method

Dumps database objects to the stream.

Class

TDADUMp

Syntax

procedure BackupToStream(Stream: TStream; const Query: string =
pE
Parameters

Stream
Holds the stream to dump database objects to.

Query
Your query to receive the data for dumping.

Remarks

Call the BackupToStream method to dump database objects to the stream.

See Also
e RestoreFromStream

e Backup
e BackupToFile

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6.1.1.3.5 Restore Method

Executes a script contained in the SQL property.

Class

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

180

PostgreSQL Data Access Components

5.6.1.1.3.6

TDADUMp

Syntax

procedure Restore;

Remarks

Call the Restore method to execute a script contained in the SQL property.

See Also
e RestoreFromFile

e RestoreFromStream

e Backup
e SQL
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

RestoreFromFile Method

Executes a script from a file.

Class
TDADUMp

Syntax
procedure RestoreFromFile(const FileName: string);

Parameters

FileName
Holds the file name to execute a script from.

Remarks

Call the RestoreFromFile method to execute a script from the specified file.

See Also
e Restore

e RestoreFromStream
e BackupToFile
© 1997-2019 Request Support DAC Forum Provide Feedback

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 181

Devart. All Rights
Reserved.

5.6.1.1.3.7 RestoreFromStream Method

Executes a script received from the stream.

Class
TDADUMp

Syntax

procedure RestoreFromStream(Stream: TStream);

Parameters

Stream
Holds a stream to receive a script to be executed.

Remarks
Call the RestoreFromStream method to execute a script received from the stream.

See Also
e Restore

e RestoreFromFile

e BackupToStream

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.6.1.1.4 Events

Events of the TDADump class.
For a complete list of the TDADump class members, see the TDADump Members topic.

Published

Name Description
Occurs to indicate the
TDADump.Backup,
M:Devart.Dac. TDADump.Ba

OnBackupProgress ckupToFile(System.String)

or
M:Devart.Dac. TDADump.Ba
ckupToStream(Borland.Vcl.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

182 PostgreSQL Data Access Components

TStream) method execution
progress.
Occurs when PostgreSQL

OnError raises some error on
TDADump.Restore.
Occurs to indicate the
TDADump.Restore,
TDADump.RestoreFromFile

OnRestoreProgress or
TDADump.RestoreFromStr
eam method execution
progress.

See Also

e TDADump Class

e TDADump Class Members

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.6.1.1.4.1

OnBackupProgress Event

Occurs to indicate the Backup, M:Devart.Dac. TDADump.BackupToFile(System.String) or
M:Devart.Dac. TDADump.BackupToStream(Borland.Vcl.TStream) method execution
progress.

Class

TDADUMp

Syntax

property OnBackupProgress: TDABackupProgressevent;

Remarks

The OnBackupProgress event occurs several times during the dumping process of the
Backup, M:Devart.Dac. TDADump.BackupToFile(System.String), or

M:Devart.Dac. TDADump.BackupToStream(Borland.Vcl.TStream) method execution and
indicates its progress. ObjectName parameter indicates the name of the currently dumping
database object. ObjectNum shows the number of the current database object in the backup
queue starting from zero. ObjectCount shows the quantity of database objects to dump.
Percent parameter shows the current percentage of the current table data dumped, not the

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 183

current percentage of the entire dump process.

See Also
e Backup

e BackupToFile
e BackupToStream

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6.1.1.4.2 OnError Event

Occurs when PostgreSQL raises some error on Restore.

Class
TDADUMp

Syntax
property OnError: TOnErrorkEvent;

Remarks

The OnError event occurs when PostgreSQL raises some error on Restore.

Action indicates the action to take when the OnError handler exits. On entry into the handler,
Action is always set to eaException.

Note: You should add the DAScript module to the 'uses' list to use the OnError event handler.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6.1.1.4.3 OnRestoreProgress Event

Occurs to indicate the Restore, RestoreFromFile, or RestoreFromStream method execution
progress.

Class

TDADUMp

Syntax

property OnRestoreProgress: TDARestoreProgressgvent;

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

184

PostgreSQL Data Access Components

5.6.1.2

Remarks

The OnRestoreProgress event occurs several times during the dumping process of the
Restore, RestoreFromFile, or RestoreFromStream method execution and indicates its

progress. The Percent parameter of the OnRestoreProgress event handler indicates the
percentage of the whole restore script execution.

See Also
e Restore

e RestoreFromFile

e RestoreFromStream

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

TDADumpOptions Class

This class allows setting up the behaviour of the TDADump class.
For a list of all members of this type, see TDADumpOptions members.

Unit

DADUMp

Syntax

TDADuUmpOptions = class(TPersistent);

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.6.1.2.1 Members

TDADumpOptions class overview.

Properties
Name Description
Used to add drop
AddDro statements to a script before

creating statements.

Used to explicitly specify the
Completelnsert table fields names when
generating the INSERT SQL

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 185

GenerateHeader

QuoteNames

© 1997-2019

Devart. All Rights Request Support

DAC Forum

Reserved.

5.6.1.2.2 Properties

Properties of the TDADumpOptions class.

query. The default value is
False.

Used to add a comment
header to a script.

Used for TDADump to quote
all database object names in
generated SQL statements.

Provide Feedback

For a complete list of the TDADumpOptions class members, see the TDADumpOptions

Members topic.

Published
Name

AddDrop

Completelnsert

GenerateHeader

QuoteNames

See Also
e TDADumpOptions Class

e TDADumpOptions Class Members

© 1997-2019
Devart. All Rights

Request Support

DAC Forum

Reserved.

Description

Used to add drop
statements to a script before
creating statements.

Used to explicitly specify the
table fields names when
generating the INSERT SQL
query. The default value is
False.

Used to add a comment
header to a script.

Used for TDADump to quote
all database object names in
generated SQL statements.

Provide Feedback

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

186 PostgreSQL Data Access Components

5.6.1.2.2.1 AddDrop Property

Used to add drop statements to a script before creating statements.

Class

TDADumpOptions

Syntax

property AddbDrop: boolean default True;

Remarks

Use the AddDrop property to add drop statements to a script before creating statements.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6.1.2.2.2 Completelnsert Property

Used to explicitly specify the table fields names when generating the INSERT SQL query. The
default value is False.

Class

TDADumpOptions

Syntax

property CompleteInsert: boolean default False;

Remarks

If the Completelnsert property is set to True, SQL query will include the field names, for

example:

INSERT INTO dept(deptno, dname, loc) VALUES ('10', 'ACCOUNTING', 'NEW YORK')

If False, it won't include the field names, for example:

INSERT INTO dept VALUES ('10', 'ACCOUNTING', 'NEW YORK');

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 187

5.6.1.2.2.3

5.6.1.2.24

5.6.2

GenerateHeader Property

Used to add a comment header to a script.

Class

TDADumpOptions

Syntax
property GenerateHeader: boolean default True;

Remarks
Use the GenerateHeader property to add a comment header to a script. It contains script
generation date, DAC version, and some other information.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

QuoteNames Property

Used for TDADump to quote all database object names in generated SQL statements.

Class

TDADumpOptions

Syntax
property QuoteNames: boolean default False;

Remarks

If the QuoteNames property is True, TDADump quotes all database object names in
generated SQL statements.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

Types
Types in the DADump unit.

Types

Name Description

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

188 PostgreSQL Data Access Components

This type is used for the

TDABackupProgressEvent TDADump.OnBackupProgr
ess event.
This type is used for the
TDARestoreProgressEvent TDADump.OnRestoreProgr
ess event.
© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6.2.1 TDABackupProgressEvent Procedure Reference
This type is used for the TDADump.OnBackupProgress event.

Unit
DADUMp

Syntax

TDABackupProgressevent = procedure (Sender: TObject; ObjectName:
string; ObjectNum: integer; ObjectCount: integer; Percent:
integer) of object;

Parameters

Sender
An object that raised the event.
ObjectName
The name of the currently dumping database object.
ObjectNum
The number of the current database object in the backup queue starting from zero.
ObjectCount
The quantity of database objects to dump.
Percent
The current percentage of the current table data dumped.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.6.2.2 TDARestoreProgressEvent Procedure Reference

This type is used for the TDADump.OnRestoreProgress event.

Unit

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 189

5.7

DADUmp

Syntax

TDARestoreProgressevent =
integer) of object;

Parameters

Sender
An object that raised the event.
Percent
The percentage of the whole restore script execution.

© 1997-2019
Devart. All Rights
Reserved.

DALoader

Request Support DAC Forum

procedure (Sender:

TObject; Percent:

Provide Feedback

This unit contains the base class for the TPgLoader component.

Classes

Name
TDAColumn

TDAColumns
TDALoader

TDALoaderOptions

Types

Name

TDAPutDataEvent

TGetColumnDataEvent

TLoaderProgressEvent

Description
Represents the attributes for
column loading.

Holds a collection of
TDAColumn objects.

This class allows loading
external data into database.

Allows loading external data
into database.

Description

This type is used for the
TDALoader.OnPutData
event.

This type is used for the
TDALoader.OnGetColumnD

ata event.

This type is used for the
TDALoader.OnProgress

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

190

PostgreSQL Data Access Components

5.71

5.71.1

event.
© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.
Classes
Classes in the DALoader unit.
Classes
Name Description
TDAColumn Represents the attributes for
column loading.
TDAColumns Holds a collection of
- TDAColumn objects.
TDALoader This class allows loading
- external data into database.
TDALoaderOptions Allows loading external data
into database.
© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

TDAColumn Class

Represents the attributes for column loading.
For a list of all members of this type, see TDAColumn members.

Unit

DALoader

Syntax

TDACoTlumn = class(TColTlectionItem);

Remarks

Each TDALoader uses TDAColumns to maintain a collection of TDAColumn objects.
TDAColumn object represents the attributes for column loading. Every TDAColumn object
corresponds to one of the table fields with the same name as its TDAColumn.Name property.
To create columns at design-time use the column editor of the TDALoader component.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 191

See Also
e TDALoader

e TDAColumns

© 1997-2019

Devart. All Rights Request Support

DAC Forum

Reserved.

5.7.1.1.1 Members

TDAColumn class overview.

Properties

Name
FieldType

Name

© 1997-2019

Devart. All Rights Request Support

DAC Forum

Reserved.

5.7.1.1.2 Properties

Properties of the TDAColumn class.

Provide Feedback

Description

Used to specify the types of
values that will be loaded.

Used to specify the field
name of loading table.

Provide Feedback

For a complete list of the TDAColumn class members, see the TDAColumn Members topic.

Published

Name

FieldType

Name

See Also
e TDAColumn Class

e TDAColumn Class Members

© 1997-2019
Devart. All Rights

Request Support

DAC Forum

Reserved.

Description

Used to specify the types of
values that will be loaded.

Used to specify the field
name of loading table.

Provide Feedback

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

192 PostgreSQL Data Access Components

5.7.1.1.2.1 FieldType Property

Used to specify the types of values that will be loaded.

Class

TDACoTumn

Syntax
property FieldType: TFieldType default ftString;

Remarks

Use the FieldType property to specify the types of values that will be loaded. Field types for
columns may not match data types for the corresponding fields in the database table.
TDALoader will cast data values to the types of their fields.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.7.1.1.2.2 Name Property

Used to specify the field name of loading table.

Class

TDACoTumn

Syntax
property Name: string;

Remarks

Each TDAColumn corresponds to one field of the loading table. Use the Name property to
specify the name of this field.

See Also
¢ FieldType
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 193

5.7.1.2 TDAColumns Class

Holds a collection of TDAColumn objects.
For a list of all members of this type, see TDAColumns members.

Unit

DALoader

Syntax
TDAColumns = class (TownedColTlection);

Remarks

Each TDAColumns holds a collection of TDAColumn objects. TDAColumns maintains an
index of the columns in its ltems array. The Count property contains the number of columns
in the collection. At design-time, use the Columns editor to add, remove, or modify columns.

See Also
e TDALoader

e TDAColumn

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.7.1.2.1 Members

TDAColumns class overview.

Properties

Name Description

ltems Used to access individual
columns.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.7.1.2.2 Properties

Properties of the TDAColumns class.
For a complete list of the TDAColumns class members, see the TDAColumns Members

topic.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

194 PostgreSQL Data Access Components

Public

Name Description

ltems Used to access individual
columns.

See Also
e TDAColumns Class

e TDAColumns Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.2.2.1 ltems Property(Indexer)

Used to access individual columns.

Class
TDACOTumns

Syntax
property Items[Index: integer]: TDAColumn; default;

Parameters

Index
Holds the Index of TDAColumn to refer to.

Remarks

Use the ltems property to access individual columns. The value of the Index parameter
corresponds to the Index property of TDAColumn.

See Also
e TDAColumn

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.3 TDALoader Class

This class allows loading external data into database.
For a list of all members of this type, see TDALoader members.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 195

Unit

DALoader

Syntax

TDALoader = class (TComponent);

Remarks

TDALoader allows loading external data into database. To specify the name of loading table
set the TDALoader.TableName property. Use the TDALoader.Columns property to access
individual columns. Write the TDALoader.OnGetColumnData or TDALoader.OnPutData event
handlers to read external data and pass it to the database. Call the TDALoader.Load method
to start loading data.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.7.1.3.1 Members

TDALoader class overview.

Properties
Name Description
Used to add a TDAColumn
Columns object for each field that will
be loaded.
Used to specify
Connection TCustomDAConnectionin
- which TDALoader will be
executed.
Used to specify the name of
TableName the table to which data will
be loaded.
Methods
Name Description
Creates TDAColumn
CreateColumns objects for all fields of the
table with the same name
as TDALoader.TableName.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

196 PostgreSQL Data Access Components

Load

LoadFromDataSet

PutColumnData

Events

Name
OnGetColumnData

OnProgress

OnPutData

© 1997-2019
Devart. All Rights
Reserved.

5.7.1.3.2 Properties

Request Support

DAC Forum

Starts loading data.
Loads data from the
specified dataset.

Overloaded. Puts the value
of individual columns.

Description

Occurs whenitis needed to
put column values.

Occurs if handling data

loading progress of the
TDALoader.LoadFromData

Properties of the TDALoader class.
For a complete list of the TDALoader class members, see the TDALoader Members topic.

Public

Name

Columns

Connection

TableName

See Also
e TDALoader Class

Set method is needed.

Occurs when putting loading
data by rows is needed.

Provide Feedback

Description

Used to add a TDAColumn
object for each field that will
be loaded.

Used to specify
TCustomDAConnectionin
which TDALoader will be
executed.

Used to specify the name of

the table to which data will
be loaded.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 197

e TDALoader Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.3.2.1 Columns Property

Used to add a TDAColumn object for each field that will be loaded.

Class

TDALoader

Syntax

property Columns: TDAColumns stored IsColumnsStored;

Remarks
Use the Columns property to add a TDAColumn object for each field that will be loaded.

See Also
e TDAColumns

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.3.2.2 Connection Property

Used to specify TCustomDAConnection in which TDALoader will be executed.

Class
TDALoader

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify TCustomDAConnection in which TDALoader will be
executed. If Connection is not connected, the Load method calls
TCustomDAConnection.Connect.

See Also

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

198

PostgreSQL Data Access Components

571323

e TCustomDAConnection

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

TableName Property

Used to specify the name of the table to which data will be loaded.

Class

TDALoader

Syntax

property TableName: string;

Remarks

Set the TableName property to specify the name of the table to which data will be loaded. Add
TDAColumn objects to Columns for the fields that are needed to be loaded.

See Also
e TDAColumn

e TCustomDAConnection.GetTableNames

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.3.3 Methods

Methods of the TDALoader class.
For a complete list of the TDALoader class members, see the TDALoader Members topic.

Public
Name Description
Creates TDAColumn
CreateColumns objects for all fields of the
table with the same name
as TDALoader.TableName.
Load Starts loading data.
LoadFromDataSet Loads data from the

specified dataset.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 199

PutColumnData Overloaded. Puts the value
of individual columns.

See Also
e TDALoader Class

e TDALoader Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.3.3.1 CreateColumns Method

Creates TDAColumn objects for all fields of the table with the same name as TableName.

Class
TDALoader

Syntax

procedure CreateColumns;

Remarks

Call the CreateColumns method to create TDAColumn objects for all fields of the table with
the same name as TableName. If columns were created before, they will be recreated. You
can call CreateColumns from the component popup menu at design-time. After you can
customize column loading by setting properties of TDAColumn objects.

See Also
e TDAColumn

e TableName
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.3.3.2 Load Method

Starts loading data.

Class

TDALoader

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

200

PostgreSQL Data Access Components

5.71.3.3.3

Syntax
procedure Load; virtual;

Remarks

Call the Load method to start loading data. At first it is necessary to create columns and write
one of the OnPutData or OnGetColumnData event handlers.

See Also
e OnGetColumnData

e OnPutData

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

LoadFromDataSet Method

Loads data from the specified dataset.

Class

TDALoader

Syntax
procedure LoadFrombDataSet(DataSet: TDataSet);

Parameters

DataSet
Holds the dataset to load data from.

Remarks

Call the LoadFromDataSet method to load data from the specified dataset. There is no need
to create columns and write event handlers for OnPutData and OnGetColumnData before
calling this method.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 201

5.7.1.3.3.4 PutColumnData Method

Puts the value of individual columns.

Class

TDALoader

Overload List

Name Description

PutColumnData(Col: integer; Row: integer; |Puts the value of individual columns by the
const Value: variant) column index.

PutColumnData(const ColName: string; |Puts the value of individual columns by the
Row: integer; const Value: variant) column name.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Puts the value of individual columns by the column index.

Class

TDALoader

Syntax

procedure PutColumnData(Col: integer; Row: integer; const Value:
variant); overload; virtual;

Parameters
Col

Holds the index of a loading column. The first column has index 0.
Row

Holds the number of loading row. Row starts from 1.

Value
Holds the column value.

Remarks

Call the PutColumnData method to put the value of individual columns. The Col parameter
indicates the index of loading column. The first column has index 0. The Row parameter
indicates the number of the loading row. Row starts from 1.

This overloaded method works faster because it searches the right index by its index, not by
the index name.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

202 PostgreSQL Data Access Components

The value of a column should be assigned to the Value parameter.

See Also

e TDALoader.OnPutData

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Puts the value of individual columns by the column name.

Class
TDALoader

Syntax

procedure PutColumnData(const ColName: string; Row: integer;
const value: variant); overload;

Parameters

ColName

Hods the name of a loading column.
Row

Holds the number of loading row. Row starts from 1.
Value

Holds the column value.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.3.4 Events

Events of the TDALoader class.
For a complete list of the TDALoader class members, see the TDALoader Members topic.

Public
Name Description
OnGetColumnData Occurs when it is needed to

put column values.
Occurs if handling data

OnProaress loading progress of the
B TDALoader.LoadFromData

Set method is needed.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 203

OnPutData Occurs when putting loading
- data by rows is needed.

See Also
e TDALoader Class

e TDALoader Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.3.4.1 OnGetColumnData Event

Occurs when it is needed to put column values.

Class
TDALoader

Syntax
property onGetColumnData: TGetColumnDataEvent;

Remarks

Write the OnGetColumnData event handler to put column values. TDALoader calls the
OnGetColumnData event handler for each column in the loop. Column points to a
TDAColumn object that corresponds to the current loading column. Use its Name or Index
property to identify what column is loading. The Row parameter indicates the current loading
record. TDALoader increments the Row parameter when all the columns of the current
record are loaded. The first row is 1. Set EOF to True to stop data loading. Fill the Value
parameter by column values. To start loading call the Load method.

Another way to load data is using the OnPutData event.

Example
This handler loads 1000 rows.

procedure TfmMain.GetColumnData(Sender: TObject;
Column: TDAColumn; Row: Integer; var Value: variant;
var EOF: Boolean);
begin
if Row <= 1000 then begin
case Column.Index o

0: value := Row;
1: value := Random(100);
2: value := Random*100;

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

204

PostgreSQL Data Access Components

571342

571343

3: value := "abc01234567890123456789"';
4: value := Date;
else
value := Null;
end;
end
else
EOF := True;
end;
See Also
e OnPutData
e | oad
© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

OnProgress Event

Ocecurs if handling data loading progress of the LoadFromDataSet method is needed.

Class

TDALoader

Syntax

property OnProgress: TLoaderProgressEvent;

Remarks

Add a handler to this event if you want to handle data loading progress of the
LoadFromDataSet method.

See Also
e | oadFromDataSet

© 1997-2019
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

OnPutData Event

Occurs when putting loading data by rows is needed.

Class

TDALoader

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 205

Syntax
property OnPutData: TDAPutDataEvent;

Remarks

Write the OnPutData event handler to put loading data by rows.

Note that rows should be loaded from the first in the ascending order.
To start loading, call the Load method.

Example
This handler loads 1000 rows.

procedure TfmMain.PutData(Sender: TDALoader);
var

Count: Integer;

i: Integer;

begin
Count := StrToInt(edRows.Text);
for i := 1 to Count dobegin
Sender.PutColumnbata(0, i, 1);
Sender.PutColumnbata(l, i, Random(100));
Sender.PutColumnbata(2, i, Random*100);
Sender.PutColumnbata(3, i, 'abc01234567890123456789"');
Sender.PutColumnbata(4, i, Date);
end;
end;
See Also
e TDALoader.PutColumnData
e | oad
e OnGetColumnData
© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.1.4 TDALoaderOptions Class

Allows loading external data into database.
For a list of all members of this type, see TDALoaderOptions members.

Unit

DALoader

Syntax

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

206 PostgreSQL Data Access Components

TDALoaderoptions = class(TPersistent);

© 1997-2019
Devart. All Rights Request Support DAC Forum

Reserved.

5.7.1.4.1 Members

TDALoaderOptions class overview.

Properties

Name

UseBlankValues

© 1997-2019
Devart. All Rights Request Support DAC Forum
Reserved.

5.7.1.4.2 Properties

Properties of the TDALoaderOptions class.

Provide Feedback

Description

Forces PgDAC to fill the
buffer with null values after
loading a row to the
database.

Provide Feedback

For a complete list of the TDALoaderOptions class members, see the TDALoaderOptions

Members topic.

Public

Name

UseBlankValues

See Also
e TDALoaderOptions Class

e TDALoaderOptions Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum
Reserved.

Description

Forces PgDAC to fill the
buffer with null values after
loading a row to the
database.

Provide Feedback

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 207

5.7.1.4.2.1 UseBlankValues Property

Forces PgDAC to fill the buffer with null values after loading a row to the database.

Class
TDALoaderOptions
Syntax
property UseBlankvalues: boolean default True;
Remarks
Used to force PgDAC to fill the buffer with null values after loading a row to the database.
© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.
5.72 Types

Types in the DALoader unit.

Types
Name Description
This type is used for the
TDAPutDataEvent TDALoader.OnPutData
event.
This type is used for the
TGetColumnDataEvent TDALoader.OnGetColumnD
ata event.
This type is used for the
TLoaderProgressEvent TDALoader.OnProgress
event.
© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.2.1 TDAPutDataEvent Procedure Reference
This type is used for the TDALoader.OnPutData event.

Unit

DALoader

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

208 PostgreSQL Data Access Components

Syntax
TDAPutDatakEvent = procedure (Sender: TDALoader) of object;

Parameters

Sender
An object that raised the event.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.2.2 TGetColumnDataEvent Procedure Reference

This type is used for the TDALoader.OnGetColumnData event.

Unit

DALoader

Syntax

TGetColumnDatakEvent = procedure (Sender: TObject; Column:
TDAColumn; Row: integer; var Vvalue: variant; var ISEOF: boolean)
of object;

Parameters

Sender
An object that raised the event.

Column
Points to TDAColumn object that corresponds to the current loading column.

Row
Indicates the current loading record.

Value
Holds column values.

ISEOF
True, if data loading needs to be stopped.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.7.2.3 TLoaderProgressEvent Procedure Reference

This type is used for the TDALoader.OnProgress event.

Unit

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 209

DALoader

Syntax

TLoaderProgressEvent = procedure (Sender: TObject; Percent:
integer) of object;

Parameters
Sender

An object that raised the event.
Percent

Percentage of the load operation progress.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8 DAScript

This unit contains the base class for the TPgScript component.

Classes
Name Description
Makes it possible to execute
TDAScript several SQL statements one
by one.
This class has attributes and
TDAStatement methods for controlling
single SQL statement of a
script.
TDAStatements Holds a collection of
TDAStatement objects.
Types
Name Description
This type is used for the
TAfterStatementExecuteEvent TDAScript. AfterExecute
event.
This type is used for the
TBeforeStatementExecuteEvent TDAScript.BeforeExecute
event.
TOnErrorEvent This type is used for the
TDAScript.OnError event.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

210

PostgreSQL Data Access Components

5.8.1

5.8.1.1

Enumerations

Name

TErrorAction

© 1997-2019

Devart. All Rights Request Support

DAC Forum

Reserved.

Classes

Classes in the DAScript unit.

Classes

Name

TDAScript

TDAStatement

TDAStatements

© 1997-2019

Devart. All Rights Request Support

DAC Forum

Reserved.

TDAScript Class

Description

Indicates the action to take
when the OnError handler
exits.

Provide Feedback

Description

Makes it possible to execute
several SQL statements one
by one.

This class has attributes and
methods for controlling
single SQL statement of a
script.

Holds a collection of
TDAStatement objects.

Provide Feedback

Makes it possible to execute several SQL statements one by one.

For a list of all members of this type, see TDAScript members.

Unit

DAScript

Syntax
TDAScript = class (TComponent);

Remarks

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 211

Often it is necessary to execute several SQL statements one by one. This can be performed
using a lot of components such as TCustomDASQL descendants. Usually it isn't the best
solution. With only one TDAScript descedant component you can execute several SQL
statements as one. This sequence of statements is called script. To separate single
statements use semicolon (;) or slash (/) and for statements that can contain semicolon, only
slash. Note that slash must be the first character in line.

Errors that occur during execution can be processed in the TDAScript.OnError event handler.
By default, on error TDAScript shows exception and continues execution.

See Also
e TCustomDASQL

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.1.1 Members

TDAScript class overview.

Properties
Name Description
_ Used to specify the

Connection connection in which the
script will be executed.
Refers to a dataset that

DataSet holds the result set of query
execution.
Used to display the script

Debug execution and all its
parameter values.

o Used to set the delimiter

Delimiter string that separates script

statements.
. Used to get the current

EndLine statement last line number in
a script.
Used to get the offset in the

EndOffset last line of the current
statement.

EndPos Used to get the end position

- of the current statement.

Macros Used to change SQL script

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

212

PostgreSQL Data Access Components

SQL

StartLine

StartOffset

StartPos

Statements

Methods

Name
BreakExec

ErrorOffset

Execute

ExecuteFile

ExecuteNext

ExecuteStream

MacroByName

Events

Name

AfterExecute

BeforeExecute

text in design- or run-time
easily.

Used to get or set script text.

Used to get the current
statement start line number
in a script.

Used to get the offsetin the
first line of the current
statement.

Used to get the start position
of the current statementin a
script.

Contains a list of statements
obtained from the SQL
property.

Description
Stops script execution.

Used to get the offset of the
statement if the Execute
method raised an exception.

Executes a script.

Executes SQL statements
contained in a file.

Executes the next statement
in the script and then stops.
Executes SQL statements
contained in a stream
object.

Finds a Macro with the
name passed in Name.

Description
Occurs after a SQL script
execution.

Occurs when taking a
specific action before

© 2019 Devart



Reference 213

executing the current SQL
statement is needed.
OnError Occurs when PostgreSQL
- raises an error.
© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.1.2 Properties

Properties of the TDAScript class.
For a complete list of the TDAScript class members, see the TDAScript Members topic.

Public

Name

Connection

DataSet

EndLine

EndOffset
EndPos

StartLine

StartOffset

StartPos

Statements

Description

Used to specify the
connection in which the
script will be executed.
Refers to a dataset that
holds the result set of query
execution.

Used to get the current
statement last line number in
a script.

Used to get the offset in the
last line of the current
statement.

Used to get the end position
of the current statement.
Used to get the current
statement start line number
in a script.

Used to get the offset in the
first line of the current
statement.

Used to get the start position
of the current statementin a
script.

Contains a list of statements
obtained from the SQL
property.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

214 PostgreSQL Data Access Components

Published
Name Description
Used to display the script
Debug execution and all its
parameter values.
o Used to set the delimiter
Delimiter string that separates script
statements.
Used to change SQL script
Macros text in design- or run-time
easily.
SQL Used to get or set script text.
See Also
e TDAScript Class
e TDAScript Class Members
© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.1.2.1 Connection Property

Used to specify the connection in which the script will be executed.

Class
TDAScript

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify the connection in which the script will be executed. If
Connection is not connected, the Execute method calls the Connect method of Connection.
Set at design-time by selecting from the list of provided TCustomDAConnection objects.

At run-time, set the Connection property to reference an existing TCustomDAConnection
object.

See Also

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 215

5.8.1.1.2.2

5.8.1.1.2.3

e TCustomDAConnection

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

DataSet Property

Refers to a dataset that holds the result set of query execution.

Class

TDASCript

Syntax
property DataSet: TCustomDADataSet;

Remarks

Set the DataSet property to retrieve the results of the SELECT statements execution inside a
script.

See Also
e ExecuteNext

e Execute

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

Debug Property

Used to display the script execution and all its parameter values.

Class
TDASCript

Syntax
property Debug: boolean default False;

Remarks

Set the Debug property to True to display executing statement and all its parameters' values.
Also displays the type of parameters.

You should add the PgDacVcl unit to the uses clause of any unit in your project to make the

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

216

PostgreSQL Data Access Components

5.8.1.1.24

5.8.1.1.25

Debug property work.

Note: If TPgSQLMonitor is used in the project and the TPgSQLMonitor.Active property is set
to False, the debug window is not displayed.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Delimiter Property

Used to set the delimiter string that separates script statements.

Class
TDAScript

Syntax
property Delimiter: string stored IsDelimiterStored;

Remarks

Use the Delimiter property to set the delimiter string that separates script statements. By
default it is semicolon (;). You can use slash (/) to separate statements that can contain
semicolon if the Delimiter property's default value is semicolon. Note that slash must be the
first character in line.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

EndLine Property

Used to get the current statement last line number in a script.

Class
TDAScCript

Syntax
property EndLine: Int64;

Remarks
Use the EndLine property to get the current statement last line number in a script.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 217

5.8.1.1.2.6 EndOffset Property

Used to get the offset in the last line of the current statement.

Class
TDAScCript

Syntax
property Endoffset: Int64;

Remarks
Use the EndOffset property to get the offset in the last line of the current statement.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.1.2.7 EndPos Property

Used to get the end position of the current statement.

Class
TDAScript

Syntax
property EndPos: Int64;

Remarks

Use the EndPos property to get the end position of the current statement (the position of the
last character in the statement) in a script.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.1.2.8 Macros Property

Used to change SQL script text in design- or run-time easily.

Class
TDAScript

Syntax

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

218

PostgreSQL Data Access Components

5.8.1.1.2.9

property Macros: TMacros stored False;

Remarks

With the help of macros you can easily change SQL script text in design- or run-time. Macros
extend abilities of parameters and allow changing conditions in the WHERE clause or sort
order in the ORDER BY clause. You just insert &MacroName in a SQL query text and change
value of macro by the Macro property editor in design-time or the MacroByName function in
run-time. In time of opening query macro is replaced by its value.

See Also
e TMacro

e MacroByName

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

SQL Property

Used to get or set script text.

Class
TDAScript

Syntax
property SQL: TStrings;

Remarks
Use the SQL property to get or set script text.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.1.2.10 StartLine Property

Used to get the current statement start line number in a script.

Class
TDASCript

Syntax

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 219

property StartLine: Int64;

Remarks

Use the StartLine property to get the current statement start line number in a script.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.1.2.11 StartOffset Property

Used to get the offset in the first line of the current statement.

Class
TDAScript

Syntax
property StartOffset: Int64;

Remarks
Use the StartOffset property to get the offset in the first line of the current statement.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.8.1.1.2.12 StartPos Property

Used to get the start position of the current statement in a script.

Class
TDASCript

Syntax
property StartPos: Int64;

Remarks
Use the StartPos property to get the start position of the current statement (the position of the
first statement character) in a script.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

220 PostgreSQL Data Access Components

5.8.1.1.2.13 Statements Property

Contains a list of statements obtained from the SQL property.

Class
TDAScCript

Syntax
property Statements: TDAStatements;

Remarks

Contains a list of statements that are obtained from the SQL property. Use the Access
Statements property to view SQL statement, set parameters or execute the specified
statement. Statements is a zero-based array of statement records. Index specifies the array
element to access.

For example, consider the following script:

CREATE TABLE A (FIELD1 INTEGER);
INSERT INTO A VALUES(1l);
INSERT INTO A VALUES(2);
INSERT INTO A VALUES(3);
CREATE TABLE B (FIELD1 INTEGER);
INSERT INTO B VALUES(1);
INSERT INTO B VALUES(2);
INSERT INTO B VALUES(3);

Note: The list of statements is created and filled when the value of Statements property is
requested. That's why the first access to the Statements property can take a long time.

Example
You can use the Statements property in the following way:

procedure TForml.ButtonlClick(Sender: TObject);
var

i: integer;
begin

with script do

begin

for i := 0 to Statements.Count - 1 do
if Copy(Statements[i].sQL, 1, 6) <> 'CREATE' then
Statements[i].Execute;

end;

end;

See Also
e TDAStatements

© 2019 Devart



Reference 221

© 1997-2019
Devart. All Rights Request Support

DAC Forum

Reserved.

5.8.1.1.3 Methods

5.8.1.1.3.1

Methods of the TDAScript class.

Provide Feedback

For a complete list of the TDAScript class members, see the TDAScript Members topic.

Public

Name
BreakExec

ErrorOffset

Execute

ExecuteFile

ExecuteNext

ExecuteStream

MacroByName

See Also
e TDAScript Class

e TDAScript Class Members

© 1997-2019
Devart. All Rights Request Support

DAC Forum

Reserved.

BreakExec Method

Stops script execution.

Class

TDAScCript

Syntax

Description
Stops script execution.

Used to get the offset of the
statement if the Execute
method raised an exception.

Executes a script.
Executes SQL statements
contained in a file.

Executes the next statement
in the script and then stops.
Executes SQL statements
contained in a stream
object.

Finds a Macro with the
name passed in Name.

Provide Feedback

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

222

PostgreSQL Data Access Components

5.8.1.1.3.2

5.8.1.1.3.3

procedure Breakexec; virtual;

Remarks
Call the BreakExec method to stop script execution.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

ErrorOffset Method

Used to get the offset of the statement if the Execute method raised an exception.

Class
TDAScript

Syntax
function Erroroffset: Int64;

Return Value
offset of an error.

Remarks

Call the ErrorOffset method to get the offset of the statement if the Execute method raised an
exception.

See Also
e OnError

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Execute Method

Executes a script.

Class
TDASCript

Syntax

procedure Execute; virtual;

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 223

Remarks

Call the Execute method to execute a script. If PostgreSQL raises an error, the OnError event
occurs.

See Also
e ExecuteNext

e OnError
e ErrorOffset

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.1.3.4 ExecuteFile Method

Executes SQL statements contained in a file.

Class
TDAScript

Syntax

procedure ExecuteFile(const FileName: string);

Parameters

FileName
Holds the file name.

Remarks

Call the ExecuteFile method to execute SQL statements contained in a file. Script doesn't
load full content into memory. Reading and execution is performed by blocks of 64k size.
Therefore, it is optimal to use it for big files.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.1.3.5 ExecuteNext Method

Executes the next statement in the script and then stops.

Class
TDAScript

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

224 PostgreSQL Data Access Components

Syntax

function ExecuteNext: boolean; virtual;

Return Value
True, if there are any statements left in the script, False otherwise.

Remarks

Use the ExecuteNext method to execute the next statement in the script statement and stop.
If PostgreSQL raises an error, the OnError event occurs.

See Also
e Execute

e OnError
e ErrorOffset
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.1.3.6 ExecuteStream Method

Executes SQL statements contained in a stream object.

Class
TDAScript

Syntax

procedure ExecuteStream(Stream: TStream);

Parameters

Stream
Holds the stream object from which the statements will be executed.

Remarks

Call the ExecuteStream method to execute SQL statements contained in a stream object.
Reading from the stream and execution is performed by blocks of 64k size.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 225

5.8.1.1.3.7 MacroByName Method

Finds a Macro with the name passed in Name.

Class
TDAScCript

Syntax

function MacroByName(Name: string): TMacro;

Parameters
Name

Holds the name of the Macro to search for.
Return Value

the Macro, if a match was found.

Remarks

Call the MacroByName method to find a Macro with the name passed in Name. If a match
was found, MacroByName returns the Macro. Otherwise, an exception is raised. Use this
method rather than a direct reference to the ltems property to avoid depending on the order of
the entries.

To locate a parameter by name without raising an exception if the parameter is not found, use
the FindMacro method.

To assign the value of macro use the TMacro.Value property.

See Also
e TMacro

e Macros
e M:Devart.Dac.TDAScript.FindMacro(System.String)

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.1.4 Events

Events of the TDAScript class.
For a complete list of the TDAScript class members, see the TDAScript Members topic.

Published

Name Description

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

226

PostgreSQL Data Access Components

5.8.1.1.4.1

5.8.1.14.2

AfterExecute Occurs after a SQL script
- execution.

Occurs when taking a
BeforeExecute specific action before

executing the current SQL
statement is needed.
OnError Occurs when PostgreSQL
- raises an error.

See Also
e TDAScript Class

e TDAScript Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

AfterExecute Event

Ocecurs after a SQL script execution.

Class
TDASCript

Syntax
property AfterExecute: TAfterStatementExecuteEvent;

Remarks
Occurs after a SQL script has been executed.

See Also
e Execute

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

BeforeExecute Event

Occurs when taking a specific action before executing the current SQL statement is needed.

Class
TDAScCript

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 227

Syntax

property BeforeExecute: TBeforeStatementExecuteEvent;

Remarks

Write the BeforeExecute event handler to take specific action before executing the current
SQL statement. SQL holds text of the current SQL statement. Write SQL to change the
statement that will be executed. Set Omit to True to skip statement execution.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.1.4.3 OnError Event

Occurs when PostgreSQL raises an error.

Class
TDAScCript

Syntax

property OnError: TOnErrorEvent;

Remarks

Occurs when PostgreSQL raises an error.
Action indicates the action to take when the OnError handler exits. On entry into the handler,
Action is always set to eaFail.

See Also
e ErrorOffset

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.2 TDAStatement Class

This class has attributes and methods for controlling single SQL statement of a script.
For a list of all members of this type, see TDAStatement members.

Unit
DAScript

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

228 PostgreSQL Data Access Components

Syntax

TDAStatement

Remarks

class(TCollectionItem);

TDAScript contains SQL statements, represented as TDAStatement objects. The
TDAStatement class has attributes and methods for controlling single SQL statement of a

script.

See Also
e TDAScript

e TDAStatements

© 1997-2019
Devart. All Rights

Reserved.

5.8.1.2.1 Members

TDAStatement class overview.

Request Support DAC Forum

Properties

Name

EndLine

EndOffset
EndPos
Omit

Params

Script
SQL

StartLine

Provide Feedback

Description

Used to determine the
number of the last statement
line in a script.

Used to get the offset in the
last line of the statement.
Used to get the end position
of the statement in a script.
Used to avoid execution of a
statement.

Contains parasmeters for an
SQL statement.

Used to determine the
TDAScript object the SQL
Statement belongs to.

Used to get or set the text of
an SQL statement.

Used to determine the
number of the first statement
line in a script.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 229

StartOffset Used to get the offset in the
first line of a statement.

StartPos Used to get the start position

- of the statement in a script.

Methods

Name Description

Execute Executes a statement.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.8.1.2.2 Properties

Properties of the TDAStatement class.
For a complete list of the TDAStatement class members, see the TDAStatement Members

topic.
Public

Name

EndLine

EndOffset
EndPos
Omit
Params
Script
SQL

StartLine

StartOffset

Description

Used to determine the
number of the last statement
line in a script.

Used to get the offset in the
last line of the statement.
Used to get the end position
of the statement in a script.
Used to avoid execution of a
statement.

Contains parasmeters for an
SQL statement.

Used to determine the
TDAScript object the SQL
Statement belongs to.

Used to get or set the text of
an SQL statement.

Used to determine the
number of the first statement
line in a script.

Used to get the offset in the
first line of a statement.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

230

PostgreSQL Data Access Components

5.8.1.2.2.1

5.8.1.2.2.2

StartPos Used to get the start position
- of the statement in a script.

See Also
e TDAStatement Class

e TDAStatement Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

EndLine Property

Used to determine the number of the last statement line in a script.

Class
TDAStatement

Syntax
property EndLine: integer;

Remarks
Use the EndLine property to determine the number of the last statement line in a script.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

EndOffset Property

Used to get the offset in the last line of the statement.

Class

TDAStatement

Syntax
property Endoffset: integer;

Remarks
Use the EndOffset property to get the offset in the last line of the statement.

© 1997-2019 _
Devart. All Rights ~ ReuestSupport  DAC Forum Provide Feedback

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 231

Reserved.

5.8.1.2.2.3 EndPos Property

Used to get the end position of the statement in a script.

Class
TDAStatement

Syntax
property EndPos: integer;

Remarks

Use the EndPos property to get the end position of the statement (the position of the last
character in the statement) in a script.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.2.2.4 Omit Property

Used to avoid execution of a statement.

Class

TDAStatement

Syntax

property Oomit: boolean;

Remarks

Set the Omit property to True to avoid execution of a statement.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.2.2.5 Params Property

Contains parasmeters for an SQL statement.

Class

TDAStatement

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

232 PostgreSQL Data Access Components

Syntax

property Params: TDAParams;

Remarks

Contains parameters for an SQL statement.

Access Params at runtime to view and set parameter names, values, and data types
dynamically. Params is a zero-based array of parameter records. Index specifies the array
element to access.

See Also
e TDAParam

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.2.2.6 Script Property

Used to determine the TDAScript object the SQL Statement belongs to.

Class
TDAStatement

Syntax
property Script: TDAScript;

Remarks
Use the Script property to determine the TDAScript object the SQL Statement belongs to.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.2.2.7 SQL Property

Used to get or set the text of an SQL statement.

Class

TDAStatement

Syntax

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 233

property SQL: string;

Remarks

Use the SQL property to get or set the text of an SQL statement.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.2.2.8 StartLine Property

Used to determine the number of the first statement line in a script.

Class
TDAStatement

Syntax

property StartLine: integer;

Remarks

Use the StartLine property to determine the number of the first statement line in a script.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.2.2.9 StartOffset Property

Used to get the offset in the first line of a statement.

Class

TDAStatement

Syntax
property Startoffset: integer;

Remarks

Use the StartOffset property to get the offset in the first line of a statement.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

234 PostgreSQL Data Access Components

5.8.1.2.2.10 StartPos Property

Used to get the start position of the statement in a script.

Class

TDAStatement

Syntax
property StartPos: integer;

Remarks

Use the StartPos property to get the start position of the statement (the position of the first
statement character) in a script.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.2.3 Methods

Methods of the TDAStatement class.
For a complete list of the TDAStatement class members, see the TDAStatement Members

topic.

Public

Name Description

Execute Executes a statement.
See Also

e TDAStatement Class
e TDAStatement Class Members
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.2.3.1 Execute Method

Executes a statement.

Class

TDAStatement

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 235

Syntax

procedure Execute;

Remarks
Use the Execute method to execute a statement.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.1.3 TDAStatements Class

Holds a collection of TDAStatement objects.
For a list of all members of this type, see TDAStatements members.

Unit
DAScript

Syntax
TDAStatements = class(TCollection);

Remarks

Each TDAStatements holds a collection of TDAStatement objects. TDAStatements maintains
an index of the statements in its ltems array. The Count property contains the number of
statements in the collection. Use TDAStatements class to manipulate script SQL statements.

See Also
e TDAScript

e TDAStatement

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.8.1.3.1 Members

TDAStatements class overview.

Properties

Name Description

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

236

PostgreSQL Data Access Components

ltems Used to access separate
script statements.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.8.1.3.2 Properties

5.8.1.3.2.1

Properties of the TDAStatements class.
For a complete list of the TDAStatements class members, see the TDAStatements
Members topic.

Public

Name Description

ltems Used to access separate
script statements.

See Also

e TDAStatements Class
e TDAStatements Class Members
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

ltems Property(Indexer)

Used to access separate script statements.

Class
TDAStatements

Syntax
property Items[Index: Integer]: TDAStatement; default;

Parameters

Index
Holds the index value.

Remarks
Use the ltems property to access individual script statements. The value of the Index

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 237

parameter corresponds to the Index property of TDAStatement.

See Also
e TDAStatement

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.2 Types
Types in the DAScript unit.

Types
Name Description
This type is used for the
TAfterStatementExecuteEvent TDAScript.AfterExecute
event.
This type is used for the
TBeforeStatementExecuteEvent TDAScript.BeforeExecute
event.
TONErrorEvent This type is used for the
TDAScript.OnError event.
© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.2.1 TAfterStatementExecuteEvent Procedure Reference

This type is used for the TDAScript.AfterExecute event.

Unit
DAScript

Syntax

TAfterStatementExecuteEvent = procedure (Sender: TObject; SQL:
string) of object;

Parameters

Sender

An object that raised the event.
SQL

Holds the passed SQL statement.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

238

PostgreSQL Data Access Components

5.8.2.2

5.8.2.3

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

TBeforeStatementExecuteEvent Procedure Reference

This type is used for the TDAScript.BeforeExecute event.

Unit
DAScript

Syntax

TBeforeStatementExecuteEvent = procedure (Sender: TObject; var
SQL: string; var omit: boolean) of object;

Parameters

Sender
An object that raised the event.
SQL
Holds the passed SQL statement.
Omit
True, if the statement execution should be skipped.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

TOnErrorEvent Procedure Reference

This type is used for the TDAScript.OnError event.

Unit
DAScript

Syntax

TOnErrorEvent = procedure (Sender: TObject; E: Exception; SQL:
string; var Action: TErrorAction) of object;

Parameters
Sender
An object that raised the event.

E
The error code.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 239

SQL
Holds the passed SQL statement.
Action
The action to take when the OnError handler exits.
© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.3 Enumerations

Enumerations in the DAScript unit.

Enumerations
Name Description

. Indicates the action to take
TErrorAction when the OnError handler

exits.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.8.3.1 TErrorAction Enumeration

Indicates the action to take when the OnError handler exits.

Unit

DAScript

Syntax

TErrorAction = (eaAbort, eaFail, eaException, eaContinue);
Values

Value Meaning

eaAbort Abort execution without displaying an error message.
eaContinue Continue execution.

In Delphi 6 and higher exception is handled by the

eaException Application.HandleException method.

eaFail Abort execution and display an error message.
© 1997-2019 .
Devart. All Rights Request Support DAC Forum Provide Feedback

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

240

PostgreSQL Data Access Components

59

Reserved.

DASQLMonitor

This unit contains the base class for the TPgSQLMonitor component.

Classes

Name

TCustomDASQLMonitor

TDBMonitorOptions

Types

Name
TDATraceFlags

TMonitorOptions

TONSQLEvent

Enumerations

Name

TDATraceFlag

TMonitorOption

© 1997-2019

Devart. All Rights Request Support

DAC Forum

Reserved.

Description

A base class that introduces
properties and methods to
monitor dynamic SQL
execution in database
applications interactively.

This class holds options for
dbMonitor.

Description
Represents the set of
TDATraceFlag.
Represents the set of
TMonitorOption.

This type is used for the
TCustomDASQLMonitor.On
SQL event.

Description

Use TraceFlags to specify

which database operations
the monitor should track in

an application at runtime.

Used to define where
information from
SQLMonitor will be
dispalyed.

Provide Feedback

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 241

59.1 Classes
Classes in the DASQLMonitor unit.

Classes

Name Description

A base class that introduces
. properties and methods to
TCUStomDASQLMOn|t0r monitor dynamic SQL
execution in database
applications interactively.

TDBMonitorOptions This class holds options for
dbMonitor.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.9.1.1 TCustomDASQLMonitor Class

A base class that introduces properties and methods to monitor dynamic SQL execution in
database applications interactively.
For a list of all members of this type, see TCustomDASQLMonitor members.

Unit

DASQLMon1itor

Syntax
TCustombASQLMonitor = class(TComponent);

Remarks

TCustomDASQLMonitor is a base class that introduces properties and methods to monitor
dynamic SQL execution in database applications interactively. TCustomDASQLMonitor
provides two ways of displaying debug information. It monitors either by dialog window or by
Borland's proprietary SQL Monitor. Furthermore to receive debug information use the
TCustomDASQLMonitor.OnSQL event.

In applications use descendants of TCustomDASQLMonitor.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

242

PostgreSQL Data Access Components

5.9.1.1.1 Members

TCustomDASQLMonitor class overview.

Properties

Name

Active

DBMonitorOptions

Options

TraceFlags

Events

Name

OnSQL

© 1997-2019

Devart. All Rights Request Support

DAC Forum

Reserved.

5.9.1.1.2 Properties

Properties of the TCustomDASQLMonitor class.
For a complete list of the TCustomDASQLMonitor class members, see the

TCustomDASQLMonitor Members topic.

Public

Name

Active

DBMonitorOptions

Options

Description

Used to activate monitoring
of SQL.

Used to set options for
dbMonitor.

Used to include the desired
properties for
TCustomDASQLMonitor.
Used to specify which
database operations the
monitor should track in an
application at runtime.

Description

Occurs when tracing of SQL
activity on database
components is needed.

Provide Feedback

Description

Used to activate monitoring
of SQL.

Used to set options for
dbMonitor.

Used to include the desired
properties for

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 243

TCustomDASQLMonitor.
Used to specify which
TraceFlags database operations the

monitor should track in an
application at runtime.

See Also
e TCustomDASQLMonitor Class

e TCustomDASQLMonitor Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.1.2.1 Active Property

Used to activate monitoring of SQL.

Class
TCustomDASQLMon1itor

Syntax
property Active: boolean default True;

Remarks
Set the Active property to True to activate monitoring of SQL.

See Also
e OnSQL

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.1.2.2 DBMonitorOptions Property

Used to set options for dbMonitor.

Class

TCustomDASQLMon1itor

Syntax

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

244 PostgreSQL Data Access Components

property DBMonitorOptions: TDBMonitorOptions;

Remarks

Use DBMonitorOptions to set options for dbMonitor.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.1.2.3 Options Property

Used to include the desired properties for TCustomDASQLMonitor.

Class
TCustomDASQLMon1itor

Syntax

property Options: TMonitorOptions default [moDialog,
moSQLMonitor, moDBMonitor, moCustom];

Remarks
Set Options to include the desired properties for TCustomDASQLMonitor.

See Also
e OnSQL

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.1.2.4 TraceFlags Property

Used to specify which database operations the monitor should track in an application at
runtime.

Class

TCustomDASQLMon1itor

Syntax

property TraceFlags: TDATraceFlags default [tfQPrepare,
tfQExecute, tfError, tfConnect, tfTransact, tfParams, tfMisc];

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 245

Remarks

Use the TraceFlags property to specify which database operations the monitor should track in
an application at runtime.

See Also
e OnSQL

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.1.3 Events

Events of the TCustomDASQLMonitor class.
For a complete list of the TCustomDASQLMonitor class members, see the
TCustomDASQLMonitor Members topic.

Public
Name Description
Occurs when tracing of SQL
OnSQL activity on database
components is needed.
See Also

e TCustomDASQLMonitor Class
e TCustomDASQLMonitor Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.1.3.1 OnSQL Event

Occurs when tracing of SQL activity on database components is needed.

Class

TCustomDASQLMon1itor

Syntax
property OnSQL: TOnSQLEvent;

Remarks

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

246 PostgreSQL Data Access Components

Write the OnSQL event handler to let an application trace SQL activity on database
components. The Text parameter holds the detected SQL statement. Use the Flag parameter
to make selective processing of SQL in the handler body.

See Also
e TraceFlags

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.2 TDBMonitorOptions Class

This class holds options for dbMonitor.
For a list of all members of this type, see TDBMonitorOptions members.

Unit

DASQLMon1itor

Syntax

TDBMonitoroptions = class(TPersistent);

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.2.1 Members

TDBMonitorOptions class overview.

Properties
Name Description
Used to set the host name or
Host IP address of _the com_putgr
- where dbMonitor application
runs.
Port Used to set the port number

for connecting to dbMonitor.

Used to set the minimum
ReconnectTimeout time that should be spent
before reconnecting to
dbMonitor is allowed.

SendTimeout Used to set timeout for
- sending events to

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 247

dbMonitor.
© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.2.2 Properties

Properties of the TDBMonitorOptions class.
For a complete list of the TDBMonitorOptions class members, see the TDBMonitorOptions

Members topic.

Published
Name Description
Used to set the host name or
Host IP address of the computer
- where dbMonitor application
runs.
Port Used to set the port number

for connecting to dbMonitor.

Used to set the minimum
ReconnectTimeout time that should be spent
before reconnecting to
dbMonitor is allowed.
, Used to set timeout for
SendTimeout sending events to
dbMonitor.

See Also
e TDBMonitorOptions Class

e TDBMonitorOptions Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.2.2.1 Host Property

Used to set the host name or IP address of the computer where dbMonitor application runs.

Class

TDBMonitoroptions

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

248 PostgreSQL Data Access Components

Syntax
property Host: string;

Remarks

Use the Host property to set the host name or IP address of the computer where dbMonitor
application runs.

dbMonitor supports remote monitoring. You can run dbMonitor on a different computer than
monitored application runs. In this case you need to set the Host property to the
corresponding computer name.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.2.2.2 Port Property

Used to set the port number for connecting to dbMonitor.

Class

TDBMon1itoroptions

Syntax

property Port: integer default DBMonitorpPort;

Remarks

Use the Port property to set the port number for connecting to dbMonitor.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.2.2.3 ReconnectTimeout Property

Used to set the minimum time that should be spent before reconnecting to dbMonitor is
allowed.

Class
TDBMonitoroptions

Syntax
property ReconnectTimeout: integer default

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 249

DefaultReconnectTimeout;

Remarks

Use the ReconnectTimeout property to set the minimum time (in milliseconds) that should be
spent before allowing reconnecting to dbMonitor. If an error occurs when the component
sends an event to dbMonitor (dbMonitor is not running), next events are ignored and the
component does not restore the connection until ReconnectTimeout is over.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.1.2.2.4 SendTimeout Property

Used to set timeout for sending events to dbMonitor.

Class
TDBMon1itorOptions

Syntax
property SendTimeout: integer default DefaultSendTimeout;

Remarks

Use the SendTimeout property to set timeout (in milliseconds) for sending events to
dbMonitor. If doMonitor does not respond in the specified timeout, event is ignored.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

59.2 Types
Types in the DASQLMonitor unit.

Types

Name Description

TDATraceFlags Represents the set of
TDATraceFlag.

TMonitorOptions Repre_sents t_he set of
TMonitorOption.

TONSQLEvent This type is used for the
TCustomDASQLMonitor.On

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

250 PostgreSQL Data Access Components
SQL event.
© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.
5.9.2.1 TDATraceFlags Set

5.9.2.2

5.9.2.3

Represents the set of TDATraceFlag.

Unit

DASQLMon1itor

Syntax

TDATraceFlags = set of TDATraceFlag;

© 1997-2019
Devart. All Rights Request Support DAC Forum
Reserved.

TMonitorOptions Set

Represents the set of TMonitorOption.

Unit

DASQLMon1itor

Syntax

TMonitoroptions = set of TMonitorOption;

© 1997-2019
Devart. All Rights Request Support DAC Forum

Reserved.

TONnSQLEvent Procedure Reference

Provide Feedback

Provide Feedback

This type is used for the TCustomDASQLMonitor.OnSQL event.

Unit
DASQLMon1itor

Syntax

TOnSQLEvent = procedure (Sender: TObject; Text: string; Flag:

TDATraceFlag) of object;

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 251

Parameters

Sender
An object that raised the event.
Text
Holds the detected SQL statement.
Flag
Use the Flag parameter to make selective processing of SQL in the handler body.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.9.3 Enumerations

Enumerations in the DASQLMonitor unit.

Enumerations

Name Description
Use TraceFlags to specify

TDATraceFlag which database operations
the monitor should track in
an application at runtime.
Used to define where

TMonitorOption information from
SQLMonitor will be
dispalyed.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.9.3.1 TDATraceFlag Enumeration

Use TraceFlags to specify which database operations the monitor should track in an
application at runtime.

Unit

DASQLMon1itor

Syntax

TDATraceFlag = (tfQPrepare, tfQExecute, tfQFetch, tfError, tfstmt,
tfConnect, tfTransact, tfBlob, tfService, tfMisc, tfParams,
tfobjbDestroy, tfpPool);

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

252

PostgreSQL Data Access Components

5.9.3.2

Values

Value
tfBlob
tfConnect
tfError
tfMisc
tfObjDestroy
tfParams
tfPool
tfQExecute
tfQFetch
tfQPrepare
tfService
tfStmt
tfTransact

© 1997-2019

Devart. All Rights

Reserved.

Meaning

This option is declared for future use.
Establishing a connection.

Errors of query execution.

This option is declared for future use.
Destroying of components.
Representing parameter values for tfQPrepare and tfQExecute.
Connection pool operations.
Execution of the queries.

This option is declared for future use.
Queries preparation.

This option is declared for future use.
This option is declared for future use.
Processing transactions.

DAC Forum

Request Support Provide Feedback

TMonitorOption Enumeration

Used to define where information from SQLMonitor will be dispalyed.

Unit

DASQLMon1itor

Syntax

TMonitorOption

moHandled) ;
Values

Value

moCustom

moDBMonitor
moDialog

(moDialog, moSQLMonitor, moDBMonitor, moCustom,

Meaning

Monitoring of SQL for individual components is allowed. Set
Debug properties in SQL-related components to True to let
TCustomDASQLMonitor instance to monitor their behavior. Has
effect when moDialog is included.

Debug information is displayed in DBMonitor.

Debug information is displayed in debug window.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 253

moHandled Component handle is included into the event description string.
moSQLMonitor Debug information is displayed in Borland SQL Monitor.

© 1997-2019

Devart. All Rights Request Support

DAC Forum

Reserved.

5.10 DBAccess

This unit contains base classes for most of the components.

Classes

Name

EDAError

TCRDataSource

TCustomConnectDialog

TCustomDAConnection

TCustomDADataSet

TCustomDASQL

TCustomDAUpdateSQL

TDACondition

TDAConditions

Provide Feedback

Description

A base class for exceptions
that are raised when an error
occurs on the server side.
Provides an interface
between a DAC dataset
components and data-aware
controls on a form.

A base class for the connect
dialog components.

A base class for
components used to
establish connections.
Encapsulates general set of
properties, events, and
methods for working with
data accessed through
various database engines.
A base class for
components executing SQL
statements that do not return
result sets.

A base class for
components that provide
DML statements for more
flexible control over data
modifications.

Represents a condition from
the TDAConditions list.
Holds a collection of
TDACondition objects.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

254

PostgreSQL Data Access Components

TDAConnectionOptions

TDADataSetOptions

TDAEncryption

TDAMapRule

TDAMapRules

TDAMetaData

TDAParam

TDAParams

TDATransaction

TMacro

TMacros

TPoolingOptions

TSmartFetchOptions

This class allows setting up
the behaviour of the
TDAConnection class.

This class allows setting up
the behaviour of the
TDADataSet class.

Used to specify the options
of the data encryptionina
dataset.

Class that formes rules for
Data Type Mapping.

Used for adding rules for
DataSet fields mapping with
both identifying by field
name and by field type and
Delphi field types.

A class for retrieving
metainformation of the
specified database objects
in the form of dataset.

A class that forms objects to
represent the values of the
parameters set.

This class is used to
manage a list of TDAParam
objects for an object that
uses field parameters.

A base class that
implements functionality for
controlling transactions.
Object that represents the
value of a macro.

Controls a list of TMacro
objects for the
TCustomDASQL.Macros or

TCustomDADataSet

components.

This class allows setting up
the behaviour of the
connection pool.

Smart fetch options are
used to set up the behavior
of the SmartFetch mode.

© 2019 Devart



Reference 255

Types

Name

TAfterExecuteEvent

TAfterFetchEvent

TBeforeFetchEvent

TConnectionLostEvent

TDAConnectionErrorEvent

TDATransactionErrorEvent

TRefreshOptions

TUpdateExecuteEvent

Enumerations

Name
TLabelSet

TRefreshOption

TRetryMode

Description

This type is used for the
TCustomDADataSet.AfterE
xecute and
TCustomDASQL.AfterExecu
te events.

This type is used for the
TCustomDADataSet. AfterF
etch event.

This type is used for the
TCustomDADataSet.Before
Fetch event.

This type is used for the
TCustomDAConnection.On
ConnectionLost event.

This type is used for the
TCustomDAConnection.On
Error event.

This type is used for the
TDATransaction.OnError
event.

Represents the set of
TRefreshOption.

This type is used for the
TCustomDADataSet. AfterU
pdateExecute and
TCustomDADataSet.Before
UpdateExecute events.

Description

Sets the languauge of labels
in the connect dialog.
Indicates when the editing
record will be refreshed.
Specifies the application
behavior when connection is
lost.

© 2019 Devart



256

PostgreSQL Data Access Components

5.10.1

Variables

Name

BaseSQLOIdBehavior

ChangeCursor

SQLGeneratorCompatibility

© 1997-2019

Devart. All Rights Request Support DAC Forum
Reserved.

Classes

Classes in the DBAccess unit.

Classes

Name

EDAError

TCRDataSource

TCustomConnectDialog

TCustomDAConnection

Description

After assigning SQL text and
modifying it by AddWhere,
DeleteWhere, and
SetOrderBy, all subsequent
changes of the SQL property
will not be reflected in the
BaseSQL property.

When set to True allows
data access components to
change screen cursor for the
execution time.

The value of the
TCustomDADataSet.BaseS
QL property is used to
complete the refresh SQL
statement, if the manually
assigned
TCustomDAUpdateSQL.Ref
reshSQL property contains
only WHERE clause.

Provide Feedback

Description

A base class for exceptions
that are raised when an error
occurs on the server side.
Provides an interface
between a DAC dataset
components and data-aware
controls on a form.

A base class for the connect
dialog components.

A base class for

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 257

TCustomDADataSet

TCustomDASQL

TCustomDAUpdateSQL

TDACondition

TDAConditions

TDAConnectionOptions

TDADataSetOptions

TDAEncryption

TDAMapRule

TDAMapRules

TDAMetaData

TDAParam

TDAParams

components used to
establish connections.
Encapsulates general set of
properties, events, and
methods for working with
data accessed through
various database engines.
A base class for
components executing SQL
statements that do not return
result sets.

A base class for
components that provide
DML statements for more
flexible control over data
modifications.

Represents a condition from
the TDAConditions list.
Holds a collection of
TDACondition objects.

This class allows setting up
the behaviour of the
TDAConnection class.

This class allows setting up
the behaviour of the
TDADataSet class.

Used to specify the options
of the data encryptionina
dataset.

Class that formes rules for
Data Type Mapping.

Used for adding rules for
DataSet fields mapping with
both identifying by field
name and by field type and
Delphi field types.

A class for retrieving
metainformation of the
specified database objects
in the form of dataset.

A class that forms objects to
represent the values of the
parameters set.

This class is used to

© 2019 Devart



258 PostgreSQL Data Access Components
manage a list of TDAParam
objects for an object that
uses field parameters.
. A base class that

TDATransaction implements functionality for
controlling transactions.

TMacro Object that represents the

- value of a macro.
Controls a list of TMacro
objects for the

TMacros TCustomDASQL.Macros or
TCustomDADataSet
components.

_ _ This class allows setting up

TPoolingOptions the behaviour of the

connection pool.
. Smart fetch options are

TSmartFetchOptions used to set up the behavior
of the SmartFetch mode.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.1 EDAError Class

A base class for exceptions that are raised when an error occurs on the server side.
For a list of all members of this type, see EDAError members.

Unit

DBAccess

Syntax
EDAError = class (EDatabaseError);

Remarks
EDAETrror is a base class for exceptions that are raised when an error occurs on the server
side.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 259

5.10.1.1.1 Members

EDAETrror class overview.

Properties

Name
Component

ErrorCode

© 1997-2019

Devart. All Rights Request Support DAC Forum

Reserved.

5.10.1.1.2 Properties

Properties of the EDAETrror class.

Description

Contains the component that
caused the error.

Determines the error code
returned by the server.

Provide Feedback

For a complete list of the EDAError class members, see the EDAError Members topic.

Public

Name

Component

ErrorCode

See Also
e EDAError Class

e EDAError Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum

Reserved.

5.10.1.1.2.1 Component Property

Contains the component that caused the error.

Class

EDAError

Syntax

Description

Contains the component that
caused the error.

Determines the error code
returned by the server.

Provide Feedback

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

260

PostgreSQL Data Access Components

property Component: TObject;

Remarks

The Component property contains the component that caused the error.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.1.2.2 ErrorCode Property

5.10.1.2

Determines the error code returned by the server.

Class
EDAError

Syntax
property ErrorCode: integer;

Remarks

Use the ErrorCode property to determine the error code returned by PostgreSQL. This value
is always positive.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

TCRDataSource Class

Provides an interface between a DAC dataset components and data-aware controls on a
form.
For a list of all members of this type, see TCRDataSource members.

Unit

DBAcCcessS

Syntax

TCRDataSource = class(TDataSource);

Remarks

TCRDataSource provides an interface between a DAC dataset components and data-aware
controls on a form.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 261

TCRDataSource inherits its functionality directly from the TDataSource component.

At design time assign individual data-aware components' DataSource properties from their
drop-down listboxes.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.2.1 Members

TCRDataSource class overview.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.3 TCustomConnectDialog Class

A base class for the connect dialog components.
For a list of all members of this type, see TCustomConnectDialog members.

Unit

DBAcCcessS

Syntax

TCustomConnectDialog = class (TComponent) ;

Remarks

TCustomConnectDialog is a base class for the connect dialog components. It provides
functionality to show a dialog box where user can edit username, password and server name
before connecting to a database. You can customize captions of buttons and labels by their
properties.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.3.1 Members

TCustomConnectDialog class overview.

Properties
Name Description
CancelButton Used to specify the label for

the Cancel button.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

262

PostgreSQL Data Access Components

Caption

ConnectButton

DialogClass

LabelSet

PasswordLabel

Retries

SavePassword

ServerLabel

StoreLogInfo

UsernameLabel

Methods

Name

Execute

GetServerList

© 1997-2019

Devart. All Rights Request Support

DAC Forum

Reserved.

Used to set the caption of
dialog box.

Used to specify the label for
the Connect button.

Used to specify the class of
the form that will be
displayed to enter login
information.

Used to set the language of
buttons and labels captions.
Used to specify a prompt for
password edit.

Used to indicate the number
of retries of failed
connections.

Used for the password to be
displayed in ConnectDialog
in asterisks.

Used to specify a prompt for
the server name edit.

Used to specify whether the
login information should be
kept in system registry after
a connection was
established.

Used to specify a prompt for
username edit.

Description

Displays the connect dialog
and calls the connection's
Connect method when user
clicks the Connect button.
Retrieves a list of available
server names.

Provide Feedback

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 263

5.10.1.3.2 Properties

Properties of the TCustomConnectDialog class.
For a complete list of the TCustomConnectDialog class members, see the
TCustomConnectDialog Members topic.

Public

Name

CancelButton

Description

Used to specify the label for
the Cancel button.

Caption Used to set the caption of
dialog box.

ConnectButton Used to specify the label for
the Connect button.
Used to specify the class of

DialogClass the form that will be
displayed to enter login
information.

LabelSet Used to set the language of

- buttons and labels captions.

PasswordLabel Used to specify a prompt for
password edit.

. Used to indicate the number

Retries of retries of failed
connections.
Used for the password to be

SavePassword displayed in ConnectDialog
in asterisks.

ServerLabel Used to specify a prompt for

StorelLoglnfo

UsernamelLabel

See Also

the server name edit.

Used to specify whether the
login information should be
kept in system registry after
a connection was
established.

Used to specify a prompt for
username edit.

e TCustomConnectDialog Class

e TCustomConnectDialog Class Members

© 1997-2019 Request Support DAC Forum Provide Feedback

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

264

PostgreSQL Data Access Components

Devart. All Rights
Reserved.

5.10.1.3.2.1 CancelButton Property

Used to specify the label for the Cancel button.

Class

TCustomConnectDialog

Syntax
property CancelButton: string;

Remarks

Use the CancelButton property to specify the label for the Cancel button.

© 1997-2019
Devart. All Rights Request Support DAC Forum

Reserved.

5.10.1.3.2.2 Caption Property

Used to set the caption of dialog box.

Class

TCustomConnectDialog

Syntax

property Caption: string;

Remarks

Use the Caption property to set the caption of dialog box.
© 1997-2019

Devart. All Rights Request Support DAC Forum

Provide Feedback

Reserved.

5.10.1.3.2.3 ConnectButton Property

Used to specify the label for the Connect button.

Class

TCustomConnectDialog

Provide Feedback

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 265

Syntax

property ConnectButton: string;

Remarks

Use the ConnectButton property to specify the label for the Connect button.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.3.2.4 DialogClass Property

Used to specify the class of the form that will be displayed to enter login information.

Class

TCustomConnectDialog

Syntax
property DialogClass: string;

Remarks

Use the DialogClass property to specify the class of the form that will be displayed to enter
login information. When this property is blank, TCustomConnectDialog uses the default form -
TConnectForm. You can write your own login form to enter login information and assign its
class name to the DialogClass property. Each login form must have ConnectDialog:
TCustomConnectDialog published property to access connection information. For details see
the implementation of the connect form which sources are in the Lib subdirectory of the
PgDAC installation directory.

See Also
e GetServerList

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.3.2.5 LabelSet Property

Used to set the language of buttons and labels captions.

Class

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

266 PostgreSQL Data Access Components

TCustomConnectDialog

Syntax
property LabelsSet: TLabelSet default 1stEnglish;

Remarks

Use the LabelSet property to set the language of labels and buttons captions.
The default value is IsEnglish.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.3.2.6 Passw ordLabel Property

Used to specify a prompt for password edit.

Class

TCustomConnectDialog

Syntax

property PasswordLabel: string;

Remarks

Use the PasswordLabel property to specify a prompt for password edit.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.3.2.7 Retries Property

Used to indicate the number of retries of failed connections.

Class

TCustomConnectDialog

Syntax
property Retries: word default 3;

Remarks

Use the Retries property to determine the number of retries of failed connections.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 267

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.3.2.8 SavePassw ord Property

Used for the password to be displayed in ConnectDialog in asterisks.

Class

TCustomConnectDialog

Syntax

property SavePassword: boolean default False;

Remarks
If True, and the Password property of the connection instance is assigned, the password in
ConnectDialog is displayed in asterisks.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.3.2.9 ServerlLabel Property

Used to specify a prompt for the server name edit.

Class

TCustomConnectDialog

Syntax

property ServerLabel: string;

Remarks

Use the ServerLabel property to specify a prompt for the server name edit.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.3.2.10 StoreLogInfo Property

Used to specify whether the login information should be kept in system registry after a
connection was established.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

268

PostgreSQL Data Access Components

Class

TCustomConnectDialog

Syntax
property StoreLogInfo: boolean default True;

Remarks

Use the StorelLoginfo property to specify whether to keep login information in system registry
after a connection was established using provided username, password and servername.
Set this property to True to store login information.

The default value is True.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.3.2.11 Usernamelabel Property

Used to specify a prompt for username edit.

Class

TCustomConnectDialog

Syntax

property UsernamelLabel: string;

Remarks

Use the UsernameLabel property to specify a prompt for username edit.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.3.3 Methods

Methods of the TCustomConnectDialog class.
For a complete list of the TCustomConnectDialog class members, see the
TCustomConnectDialog Members topic.

Public

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 269

Name Description
Displays the connect dialog
Execute and calls the connection's

Connect method when user
clicks the Connect button.

GetServerList Retrieves a list of available
server names.

See Also
e TCustomConnectDialog Class

e TCustomConnectDialog Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.3.3.1 Execute Method

Displays the connect dialog and calls the connection's Connect method when user clicks the
Connect button.

Class

TCustomConnectDialog

Syntax

function Execute: boolean; virtual;

Return Value
True, if connected.

Remarks

Displays the connect dialog and calls the connection's Connect method when user clicks the
Connect button. Returns True if connected. If user clicks Cancel, Execute returns False.

In the case of failed connection Execute offers to connect repeat Retries times.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.3.3.2 GetServerList Method

Retrieves a list of available server names.

Class

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

270 PostgreSQL Data Access Components

TCustomConnectDialog

Syntax

procedure GetServerList(List: TStrings); virtual;

Parameters
List
Holds a list of available server names.

Remarks

Call the GetServerList method to retrieve a list of available server names. It is particularly
relevant for writing custom login form.

See Also
¢ DialogClass

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.4 TCustomDAConnection Class

A base class for components used to establish connections.
For a list of all members of this type, see TCustomDAConnection members.

Unit

DBAcCcessS

Syntax

TCustomDAConnection = class (TCustomConnection);

Remarks

TCustomDAConnection is a base class for components that establish connection with
database, provide customised login support, and perform transaction control.

Do not create instances of TCustomDAConnection. To add a component that represents a
connection to a source of data, use descendants of the TCustomDAConnection class.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 271

5.10.1.4.1 Members

TCustomDAConnection class overview.

Properties
Name Description
. Allows to link a

ConnectDialog TCustomConnectDialog
component.
Used to specify the

ConnectString connection information, such
as: UserName, Password,
Server, etc.
Allows customizing line

ConvertEOL breaks in string fields and
parameters.

InTransaction Indicates whether the

- transaction is active.
Specifies whether a login

LoginPrompt dialog appears immediately
before opening a new
connection.

Options Specifies the connection

- behavior.

Password Serves to supply a
password for login.

Pooling Enables or disables using

- connection pool.

PoolingOptions Specifies the behaviour of
connection pool.

Server Serves to supply the server
name for login.

Username Used to supply a user name
for login.

Methods

Name Description
changes in datasets.

Commit Commits current transaction.

Connect

Establishes a connection to

© 2019 Devart



272

PostgreSQL Data Access Components

CreateSQL

Disconnect

ExecProc

ExecProcEx

ExecSQL

ExecSQLEXx

GetDatabaseNames

GetKeyFieldNames

GetStoredProcNames

GetTableNames

MonitorMessage

Ping

RemoveFromPool

Rollback

StartTransaction

Events

Name

the server.

Creates a component for
queries execution.

Performs disconnect.

Allows to execute stored
procedure or function
providing its name and
parameters.

Allows to execute a stored
procedure or function.
Executes a SQL statement
with parameters.

Executes any SQL
statement outside the
TQuery or TSQL
components.

Returns a database list from
the server.

Provides a list of available
key field names.

Returns a list of stored
procedures from the server.
Provides a list of available
tables names.

Sends a specified message
through the
TCustomDASQLMonitor

component.

Used to check state of
connection to the server.
Marks the connection that
should not be returned to the
pool after disconnect.
Discards all current data
changes and ends
transaction.

Begins a new user
transaction.

Description

© 2019 Devart



Reference 273

OnConnectionLost

OnError

© 1997-2019
Devart. All Rights
Reserved.

5.10.1.4.2 Properties

Request Support

DAC Forum

Properties of the TCustomDAConnection class.

This event occurs when
connection was lost.

This event occurs when an
error has arisenin the
connection.

Provide Feedback

For a complete list of the TCustomDAConnection class members, see the
TCustomDAConnection Members topic.

Public

Name

ConnectDialog

ConnectString

ConvertEOL

InTransaction

LoginPrompt

Options

Password

Pooling

PoolingOptions

Server

Description

Allows to link a
TCustomConnectDialog
component.

Used to specify the
connection information, such
as: UserName, Password,
Server, etc.

Allows customizing line
breaks in string fields and
parameters.

Indicates whether the
transaction is active.
Specifies whether a login
dialog appears immediately
before opening a new
connection.

Specifies the connection
behavior.

Serves to supply a
password for login.
Enables or disables using
connection pool.

Specifies the behaviour of
connection pool.

Serves to supply the server
name for login.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

274 PostgreSQL Data Access Components

Username Used to supply a user name
for login.

See Also
e TCustomDAConnection Class

e TCustomDAConnection Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.4.2.1 ConnectDialog Property

Allows to link a TCustomConnectDialog component.

Class

TCustomDAConnection

Syntax
property ConnectDialog: TCustomConnectDialog;

Remarks

Use the ConnectDialog property to assign to connection a TCustomConnectDialog
component.

See Also
e TCustomConnectDialog

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.4.2.2 ConnectString Property

Used to specify the connection information, such as: UserName, Password, Server, etc.

Class

TCustomDAConnection

Syntax

property ConnectString: string stored False;

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 275

Remarks

PgDAC recognizes an ODBC-like syntax in provider string property values. Within the string,
elements are delimited by using a semicolon. Each element consists of a keyword, an equal
sign character, and the value passed on initialization. For example:

Server=Londonl;User ID=nancyd

Connection parameters

The following connection parameters can be used to customize connection:

Parameter Name Description
Specifies whether a login dialog appears
LoginPrompt immediately before opening a new
connection.
Pooling Enables or disables using connection pool.
Used to specify the maximum time during
ConnectionLifeTime which an opened connection can be used

by connection pool.

Used to specify the maximum number of
MaxPoolSize connections that can be opened in

connection pool.

Used to specify the minimum number of
MinPoolSize connections that can be opened in
connection pool.
Used for a connection to be validated when

Validate Connection itis returned from the pool.

Server Serves to supply the server name for login.
Username Used to supply a user name for login.
Password Used to supply a user name for login.
Database Used to set the name of the database to

associate with TPgConnection component.
Used to set the character set that PgDAC

Charset uses to read and write character data.
UseUnicode Used to enable or disable Unicode
E— support.
Port Used to.specify the port number for the
- connection.

Used to specify the amount of time before
ConnectionTimeout an attempt to make a connection is

considered unsuccessful.

Used to set the version of protocol for

ProtocolVersion communication with PostgreSQL server.

© 2019 Devart



276

PostgreSQL Data Access Components

Used to change the search path of the

Schema connection to the specified schema, or get
the first value from the search path.

IPVersion Used to specify the version of the Internet

— Protocol.

CACert Holds _the pathname to the certificate

- authority file.

Cert Holds the pathname to the certificate file.

: . Holds the list of allowed ciphers to use for

CipherList SSL encryption.

Key Holds the pathname to the key file.
Used to determine whether or with what

Mode priority an SSL connection will be
negotiated with the server.

See Also

e Password

e Username

e Server

e Connect

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.4.2.3 ConvertEOL Property

Allows customizing line breaks in string fields and parameters.

Class

TCustomDACoOnnection

Syntax

property ConverteEOL: boolean default False;

Remarks

Affects the line break behavior in string fields and parameters. When fetching strings
(including the TEXT fields) with ConvertEOL = True, dataset converts their line breaks from
the LF to CRLF form. And when posting strings to server with ConvertEOL turned on, their
line breaks are converted from CRLF to LF form. By default, strings are not converted.

© 1997-2019 Request Support DAC Forum Provide Feedback

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 277

Devart. All Rights
Reserved.

5.10.1.4.2.4 InTransaction Property

Indicates whether the transaction is active.

Class

TCustomDAConnection

Syntax

property InTransaction: boolean;

Remarks

Examine the InTransaction property at runtime to determine whether user transaction is
currently in progress. In other words InTransaction is set to True when user explicitly calls
StartTransaction. Calling Commit or Rollback sets InTransaction to False. The value of the
InTransaction property cannot be changed directly.

See Also
e StartTransaction

e Commit
¢ Rollback

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.4.2.5 LoginPrompt Property

Specifies whether a login dialog appears immediately before opening a new connection.

Class

TCustomDAConnection

Syntax
property LoginPrompt default DefvalLoginPrompt;

Remarks

Specifies whether a login dialog appears immediately before opening a new connection. If
ConnectDialog is not specified, the default connect dialog will be shown. The connect dialog

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

278 PostgreSQL Data Access Components

will appear only if the PgDacVcl unit appears to the uses clause.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.4.2.6 Options Property

Specifies the connection behavior.

Class

TCustomDAConnection

Syntax
property Options: TDAConnectionOptions;

Remarks

Set the properties of Options to specify the behaviour of the connection.
Descriptions of all options are in the table below.

Option Name Description

Specifies whether to allow or not implicit
connection opening.

Used to determine the default type of local
sorting for string fields. It is used when a
sort type is not specified explicitly after the
field name in the
TMemDataSet.IndexFieldNames property
of a dataset.

Used to open a connection only when
DisconnectedMode needed for performing a server call and
closes after performing the operation.

Used to prevent an application from

AllowimplicitConnect

DefaultSortType

KeepDesignConnected establishing a connection at the time of
startup.
If True, the OnConnectionLost event occurs
LocalFailover and a failover operation can be performed

after connection breaks.

See Also
e Disconnected Mode

e \Working in an Unstable Network

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 279

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.4.2.7 Passw ord Property

Serves to supply a password for login.

Class

TCustomDAConnection

Syntax
property Password: string stored False;

Remarks

Use the Password property to supply a password to handle server's request for a login.
Warning: Storing hard-coded user name and password entries as property values or in code
for the OnLogin event handler can compromise server security.

See Also
e Username

e Server

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.4.2.8 Pooling Property

Enables or disables using connection pool.

Class

TCustomDAConnection

Syntax
property Pooling: boolean default DefvalPooling;

Remarks

Normally, when TCustomDAConnection establishes connection with the server it takes
server memory and time resources for allocating new server connection. For example,
pooling can be very useful when using disconnect mode. If an application has wide user

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

280 PostgreSQL Data Access Components

activity that forces many connect/disconnect operations, it may spend a lot of time on
creating connection and sending requests to the server. TCustomDAConnection has
software pool which stores open connections with identical parameters.

Connection pool uses separate thread that validates the pool every 30 seconds. Pool
validation consists of checking each connection in the pool. If a connection is broken due to a
network problem or another reason, it is deleted from the pool. The validation procedure
removes also connections that are not used for a long time even if they are valid from the
pool.

Set Pooling to True to enable pooling. Specify correct values for PoolingOptions. Two
connections belong to the same pool if they have identical values for the parameters:
MinPoolSize, MaxPoolSize, Validate, ConnectionLifeTime

Note: Using Pooling := True can cause errors with working with temporary tables.

See Also
e Username

e Password
e PoolingOptions

e Connection Pooling

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.4.2.9 PoolingOptions Property

Specifies the behaviour of connection pool.

Class

TCustomDAConnection

Syntax
property PoolingOptions: TPoolingOptions;

Remarks

Set the properties of PoolingOptions to specify the behaviour of connection pool.
Descriptions of all options are in the table below.

Option Name Description

Used to specify the maximum time during

ConnectionL ifetime which an opened connection can be used

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 281

by connection pool.

Used to specify the maximum number of
MaxPoolSize connections that can be opened in

connection pool.

Used to specify the minimum number of
MinPoolSize connections that can be opened in the
connection pool.
Used for a connection to be validated when
it is returned from the pool.

Validate
See Also

¢ Pooling

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.4.2.10 Server Property

Serves to supply the server name for login.

Class

TCustomDAConnection

Syntax
property Server: string;

Remarks
Use the Server property to supply server name to handle server's request for a login.

See Also
e Username

e Password

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.4.2.11 Username Property

Used to supply a user name for login.

Class

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

282 PostgreSQL Data Access Components

TCustomDAConnection

Syntax

property Username: string;

Remarks

Use the Username property to supply a user name to handle server's request for login. If this
property is not set, PgDAC tries to connect with the user name.

Warning: Storing hard-coded user name and password entries as property values or in code
for the OnLogin event handler can compromise server security.

See Also
e Password

e Server

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.4.3 Methods

Methods of the TCustomDAConnection class.
For a complete list of the TCustomDAConnection class members, see the
TCustomDAConnection Members topic.

Public

Name Description

ApplyUpdates Overloaded. Applies
changes in datasets.

Commit Commits current transaction.

Connect Establishes a connection to
the server.

CreateSQL Creates a component for
queries execution.

Disconnect Performs disconnect.
Allows to execute stored

ExecProc procedure or function

- providing its name and
parameters.

ExecProcEx Allows to execute a stored

procedure or function.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 283

ExecSQL

ExecSQLEXx

GetDatabaseNames

GetKeyFieldNames

GetStoredProcNames

GetTableNames

MonitorMessage

Ping

RemoveFromPool

Rollback

StartTransaction

See Also
e TCustomDAConnection Class

e TCustomDAConnection Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum

Reserved.
5.10.1.4.3.1 ApplyUpdates Method

Applies changes in datasets.

Class

TCustomDAConnection

Executes a SQL statement
with parameters.

Executes any SQL
statement outside the
TQuery or TSQL
components.

Returns a database list from
the server.

Provides a list of available
key field names.

Returns a list of stored
procedures from the server.
Provides a list of available
tables names.

Sends a specified message
through the
TCustomDASQLMonitor
component.

Used to check state of
connection to the server.
Marks the connection that
should not be returned to the
pool after disconnect.
Discards all current data
changes and ends
transaction.

Begins a new user
transaction.

Provide Feedback

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

284

PostgreSQL Data Access Components

Overload List

Name

ApplyUpdates

ApplyUpdates(const DataSets: array of
TCustomDADataSet)

© 1997-2019
Devart. All Rights

Request Support

Description
Applies changes from all active datasets.

Applies changes from the specified
datasets.

DAC Forum Provide Feedback

Reserved.

Applies changes from all active datasets.

Class

TCustomDAConnection

Syntax

procedure ApplyuUpdates; overload; virtual;

Remarks

Call the ApplyUpdates method to write all pending cached updates from all active datasets
attached to this connection to a database or from specific datasets. The ApplyUpdates

method passes cached data to the database for storage, takes care of committing or rolling

back transactions, and clearing the cache when the operation is successful.
Using ApplyUpdates for connection is a preferred method of updating datasets rather than
calling each individual dataset's ApplyUpdates method.

See Also
e TMemDataSet.CachedUpdates

e TMemDataSet.ApplyUpdates

© 1997-2019
Devart. All Rights

Request Support

DAC Forum Provide Feedback

Reserved.

Applies changes from the specified datasets.

Class

TCustomDAConnection

Syntax

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 285

procedure ApplyuUpdates(const DataSets: array of
TCustombADataSet); overload; virtual;

Parameters

DataSets
A list of datasets changes in which are to be applied.

Remarks

Call the ApplyUpdates method to write all pending cached updates from the specified
datasets. The ApplyUpdates method passes cached data to the database for storage, takes
care of committing or rolling back transactions and clearing the cache when operation is
successful.

Using ApplyUpdates for connection is a preferred method of updating datasets rather than
calling each individual dataset's ApplyUpdates method.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.4.3.2 Commit Method

Commits current transaction.

Class

TCustomDAConnection

Syntax

procedure Commit; virtual;

Remarks

Call the Commit method to commit current transaction. On commit server writes
permanently all pending data updates associated with the current transaction to the database
and then ends the transaction. The current transaction is the last transaction started by
calling StartTransaction.

See Also
e Rollback

e StartTransaction
e TCustomPgDataSet.FetchAll

© 1997-2019
Devart. All Rights

Request Support DAC Forum Provide Feedback

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

286

PostgreSQL Data Access Components

Reserved.

5.10.1.4.3.3 Connect Method

Establishes a connection to the server.

Class

TCustomDAConnection

Syntax

procedure Connect; overload;procedure Connect(const

ConnectString: string); overload;

Remarks

Call the Connect method to establish a connection to the server. Connect sets the Connected
property to True. If LoginPrompt is True, Connect prompts user for login information as
required by the server, or otherwise tries to establish a connection using values provided in

the Username, Password, and Server properties.

See Also
e Disconnect

e Username

e Password

* Server

e ConnectDialog
© 1997-2019

Devart. All Rights Request Support DAC Forum
Reserved.

5.10.1.4.3.4 CreateSQL Method

Creates a component for queries execution.

Class

TCustomDAConnection

Syntax
function CreatesSQL: TCustomDASQL; virtual;

Return Value
A new instance of the class.

Provide Feedback

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 287

Remarks

Call the CreateSQL to return a new instance of the TCustomDASQL class and associates it
with this connection object. In the descendant classes this method should be overridden to
create an appropriate descendant of the TCustomDASQL component.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.4.3.5 Disconnect Method

Performs disconnect.

Class

TCustomDAConnection

Syntax

procedure Disconnect;

Remarks

Call the Disconnect method to drop a connection to database. Before the connection
component is deactivated, all associated datasets are closed. Calling Disconnect is similar to
setting the Connected property to False.

In most cases, closing a connection frees system resources allocated to the connection.

If user transaction is active, e.g. the InTransaction flag is set, calling to Disconnect the current
user transaction.

Note: If a previously active connection is closed and then reopened, any associated datasets
must be individually reopened; reopening the connection does not automatically reopen
associated datasets.

See Also
e Connect

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.4.3.6 ExecProc Method

Allows to execute stored procedure or function providing its name and parameters.

Class

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

288

PostgreSQL Data Access Components

TCustomDAConnection

Syntax

function ExecProc(const Name: string; const Params: array of
variant): variant; virtual;

Parameters
Name

Holds the name of the stored procedure or function.
Params

Holds the parameters of the stored procedure or function.
Return Value

the result of the stored procedure.

Remarks

Allows to execute stored procedure or function providing its name and parameters.

Use the following Name value syntax for executing specific overloaded routine:
"StoredProcName:1" or "StoredProcName:5". The first example executes the first overloaded
stored procedure, while the second example executes the fifth overloaded procedure.

Assign parameters' values to the Params array in exactly the same order and number as they
appear in the stored procedure declaration. Out parameters of the procedure can be
accessed with the ParamByName procedure.

If the value of an input parameter was not included to the Params array, parameter default
value is taken. Only parameters at the end of the list can be unincluded to the Params array. If
the parameter has no default value, the NULL value is sent.

Note: Stored functions unlike stored procedures return result values that are obtained
internally through the RESULT parameter. You will no longer have to provide anonymous
value in the Params array to describe the result of the function. The stored function result is
obtained from the Params|[0] indexed property or with the ParamByName('RESULT') method
call.

For further examples of parameter usage see ExecSQL, ExecSQLEX.

Example

For example, having stored function declaration presented in Example 1), you may execute it
and retrieve its result with commands presented in Example 2):

Example 1)

CREATE procedure MY_SUM (
A INTEGER,
B INTEGER)

© 2019 Devart



Reference 289

RETURNS (
RESULT INTEGER)
as
begin
Result = a + b;
end;
Example 2)

MyPgConnectionl.ExecProc('My_Sum', [10, 20]);

Labell.Caption: _ )
MyPgConnectionl.ParamByName('Result') .AsString;

Label2.Caption:

See Also
e ExecProcEx

e ExecSQL
e ExecSQLEx

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.4.3.7 ExecProcEx Method

Allows to execute a stored procedure or function.

Class

TCustomDAConnection

Syntax

function ExecProceEx(const Name: string; const Params: array of
variant): variant; virtual;

Parameters
Name
Holds the stored procedure name.
Params
Holds an array of pairs of parameters' names and values.
Return Value
the result of the stored procedure.

Remarks

Allows to execute a stored procedure or function. Provide the stored procedure name and its
parameters to the call of ExecProcEx.

Use the following Name value syntax for executing specific overloaded routine:
"StoredProcName:1" or "StoredProcName:5". The first example executes the first overloaded
stored procedure, while the second example executes the fifth overloaded procedure.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

290 PostgreSQL Data Access Components

Assign pairs of parameters' names and values to a Params array so that every name comes
before its corresponding value when an array is being indexed.

Out parameters of the procedure can be accessed with the ParamByName procedure. If the
value for an input parameter was not included to the Params array, the parameter default
value is taken. If the parameter has no default value, the NULL value is sent.

Note: Stored functions unlike stored procedures return result values that are obtained
internally through the RESULT parameter. You will no longer have to provide anonymous
value in the Params array to describe the result of the function. Stored function result is
obtained from the Params[0] indexed property or with the ParamByName('RESULT') method
call.

For an example of parameters usage see ExecSQLEX.

Example

If you have some stored procedure accepting four parameters, and you want to provide
values only for the first and fourth parameters, you should call ExecProcEx in the following
way:

Cconnection.ExecProcex('some_Stored_Procedure', ['Param_Namel', 'Param_Valuel

See Also
e ExecSQL

e ExecSQLEx
e ExecProc

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.4.3.8 ExecSQL Method

Executes a SQL statement with parameters.

Class

TCustomDAConnection

Syntax

function ExecsqQL(const Text: string): variant;
overload;function ExecsqQL(const Text: string; const Params:
array of variant): variant; overload; virtual;

Parameters
Text

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 291

a SQL statement to be executed.
Params

Array of parameter values arranged in the same order as they appear in SQL statement.
Return Value

Out parameter with the name Result will hold the result of function having data type dtString.
Otherwise returns Null.

Remarks

Use the ExecSQL method to execute any SQL statement outside the TCustomDADataSet or
TCustomDASQL components. Supply the Params array with the values of parameters
arranged in the same order as they appear in a SQL statement which itself is passed to the
Text string parameter.

See Also
e ExecSQLEx

e ExecProc

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.4.3.9 ExecSQLEx Method

Executes any SQL statement outside the TQuery or TSQL components.

Class

TCustomDAConnection

Syntax

function ExecSQLEx(const Text: string; const Params: array of
variant): variant; virtual;

Parameters
Text
a SQL statement to be executed.
Params
Array of parameter values arranged in the same order as they appear in SQL statement.
Return Value

Out parameter with the name Result will hold the result of a function having data type
dtString. Otherwise returns Null.

Remarks

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

292 PostgreSQL Data Access Components

Call the ExecSQLEx method to execute any SQL statement outside the TQuery or TSQL
components. Supply the Params array with values arranged in pairs of parameter name and
its value. This way each parameter name in the array is found on even index values whereas
parameter value is on odd index value but right after its parameter name. The parameter pairs
must be arranged according to their occurrence in a SQL statement which itself is passed in
the Text string parameter.

The Params array must contain all IN and OUT parameters defined in the SQL statement.
For OUT parameters provide any values of valid types so that they are explicitly defined
before call to the ExecSQLEx method.

Out parameter with the name Result will hold the result of a function having data type dtString.
If neither of the parameters in the Text statement is named Result, ExecSQLEx will return
Null.

To get the values of OUT parameters use the ParamByName function.

Example

PgConnection.ExecSQLEx('begin :A:= :B + :C; end;",
['A" Ol '3" 5! 'C" 3]);

A:= PgConnection.ParamByName('A') .AsInteger;

See Also
e ExecSQL

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.4.3.10 GetDatabaseNames Method

Returns a database list from the server.

Class

TCustomDAConnection

Syntax
procedure GetDatabaseNames(List: TStrings); virtual;

Parameters
List
A TStrings descendant that will be filled with database names.

Remarks

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 293

Populates a string list with the names of databases.
Note: Any contents already in the target string list object are eliminated and overwritten by
data produced by GetDatabaseNames.

See Also
e GetTableNames

e GetStoredProcNames

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.4.3.11 GetKeyFieldNames Method

Provides a list of available key field names.

Class

TCustomDAConnection

Syntax

procedure GetKeyFieldNames(const TableName: string; List:
TStrings); virtual;

Parameters

TableName
Holds the table name
List
The list of available key field names

Return Value
Key field name

Remarks

Call the GetKeyFieldNames method to get the names of available key fields. Populates a
string list with the names of key fields in tables.

See Also
e GetTableNames

e GetStoredProcNames

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

294 PostgreSQL Data Access Components

5.10.1.4.3.12 GetStoredProcNames Method

Returns a list of stored procedures from the server.

Class

TCustomDAConnection

Syntax

procedure GetStoredProcNames(List: TStrings; AllProcs: boolean =
False); virtual;

Parameters

List
A TStrings descendant that will be filled with the names of stored procedures in the
database.

AllProcs

True, if stored procedures from all schemas or including system procudures (depending on
the server) are returned. False otherwise.

Remarks

Call the GetStoredProcNames method to get the names of available stored procedures and
functions. GetStoredProcNames populates a string list with the names of stored procs in the
database. If AllProcs = True, the procedure returns to the List parameter the names of the
stored procedures that belong to all schemas; otherwise, List will contain the names of
functions that belong to the current schema.

Note: Any contents already in the target string list object are eliminated and overwritten by
data produced by GetStoredProcNames.

See Also
e GetDatabaseNames

e GetTableNames

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.4.3.13 GetTableNames Method

Provides a list of available tables names.

Class

TCustomDAConnection

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 295

Syntax

procedure GetTableNames(List: TStrings; AllTables: boolean =
False; onlyTables: boolean = False); virtual;

Parameters
List
A TStrings descendant that will be filled with table names.

AllTables

True, if procedure returns all table names including the names of system tables to the List
parameter.

OnlyTables

Remarks

Call the GetTableNames method to get the names of available tables. Populates a string list
with the names of tables in the database. If AllTables = True, procedure returns all table
names including the names of system tables to the List parameter, otherwise List will not
contain the names of system tables. If AllTables = True, the procedure returns to the List
parameter the names of the tables that belong to all schemas; otherwise, List will contain the
names of the tables that belong to the current schema.

Note: Any contents already in the target string list object are eliminated and overwritten by the
data produced by GetTableNames.

See Also
e GetDatabaseNames

e GetStoredProcNames

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.4.3.14 MonitorMessage Method

Sends a specified message through the TCustomDASQLMonitor component.

Class

TCustomDAConnection

Syntax
procedure MonitorMessage(const Msg: string);

Parameters

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

296 PostgreSQL Data Access Components

Msg
Message text that will be sent.

Remarks

Call the MonitorMessage method to output specified message via the
TCustomDASQLMonitor component.

See Also

e TCustomDASQLMonitor

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.4.3.15 Ping Method

Used to check state of connection to the server.

Class

TCustomDAConnection

Syntax
procedure Ping;

Remarks
The method is used for checking server connection state.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.4.3.16 RemoveFromPool Method

Marks the connection that should not be returned to the pool after disconnect.

Class

TCustomDACoOnnection

Syntax

procedure RemoveFrompPool;

Remarks

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 297

Call the RemoveFromPool method to mark the connection that should be deleted after
disconnect instead of returning to the connection pool.

See Also
¢ Pooling

e PoolingOptions

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.4.3.17 Rollback Method

Discards all current data changes and ends transaction.

Class

TCustomDAConnection

Syntax
procedure Rollback; virtual;

Remarks

Call the Rollback method to discard all updates, insertions, and deletions of data associated
with the current transaction to the database server and then end the transaction. The current
transaction is the last transaction started by calling StartTransaction.

See Also
e Commit

e StartTransaction
e TCustomPgDataSet.FetchAll

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.4.3.18 StartTransaction Method

Begins a new user transaction.

Class

TCustomDAConnection

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

298 PostgreSQL Data Access Components

Syntax

procedure StartTransaction; virtual;

Remarks

Call the StartTransaction method to begin a new user transaction against the database
server. Before calling StartTransaction, an application should check the status of the
InTransaction property. If InTransaction is True, indicating that a transaction is already in
progress, a subsequent call to StartTransaction without first calling Commit or Rollback to
end the current transaction raises EDatabaseError. Calling StartTransaction when
connection is closed also raises EDatabaseError.

Updates, insertions, and deletions that take place after a call to StartTransaction are held by
the server until an application calls Commit to save the changes, or Rollback to cancel them.

See Also

e Commit

¢ Rollback

¢ InTransaction
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.4.4 Events

Events of the TCustomDAConnection class.
For a complete list of the TCustomDAConnection class members, see the
TCustomDAConnection Members topic.

Public
Name Description
connection was lost.
This event occurs when an
OnError error has arisenin the
connection.
See Also

e TCustomDAConnection Class

e TCustomDAConnection Class Members

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 299

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.4.4.1 OnConnectionLost Event

This event occurs when connection was lost.

Class

TCustomDAConnection

Syntax

property onConnectionLost: TConnectionLostEvent;

Remarks

Write the OnConnectionLost event handler to process fatal errors and perform failover.
Note: To use the OnConnectionLost event handler, you should explicitly add the MemData
unit to the 'uses’ list and set the TCustomDAConnection.Options.LocalFailover property to
True.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.4.4.2 OnError Event

This event occurs when an error has arisen in the connection.

Class

TCustomDAConnection

Syntax

property OnError: TDAConnectionErrorEvent;

Remarks

Write the OnError event handler to respond to errors that arise with connection. Check the E
parameter to get the error code. Set the Fail parameter to False to prevent an error dialog
from being displayed and to raise the EAbort exception to cancel current operation. The
default value of Fail is True.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

300

PostgreSQL Data Access Components

5.10.1.5 TCustomDADataSet Class

5.10.1.5.1

Encapsulates general set of properties, events, and methods for working with data accessed
through various database engines.
For a list of all members of this type, see TCustomDADataSet members.

Unit

DBAccess

Syntax
TCustomDADataSet = class(TMemDataset);

Remarks

TCustomDADataSet encapsulates general set of properties, events, and methods for working
with data accessed through various database engines. All database-specific features are
supported by descendants of TCustomDADataSet.

Applications should not use TCustomDADataSet objects directly.

Inheritance Hierarchy

TMemDataSet
TCustomDADataSet
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Members

TCustomDADataSet class overview.

Properties

Name Description
Used to return SQL text

BaseSQL without any changes

- performed by AddWhere,
SetOrderBy, and FilterSQL.

] . Used to enable or disable

CachedUpdates (inherited from TMemDataSet) the use of cached updates
for a dataset.

Conditions Used to add WHERE

conditions to a query

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 301

Connection

DataTypeMap

Debug

DetailFields

Disconnected

FetchRows

FilterSQL

FinalSQL

IndexFieldNames (inherited from TMemDataSet)

IsQuery

KeyExclusive (inherited from TMemDataSet)

KeyFields

Used to specify a
connection object to use to
connect to a data store.
Used to set data type
mapping rules

Used to display executing
statement, all its parameters
values, and the type of
parameters.

Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.
Used to keep dataset
opened after connectionis
closed.

Used to define the number
of rows to be transferred
across the network at the
same time.

Used to change the WHERE
clause of SELECT
statement and reopen a
query.

Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy,
and FilterSQL, and with
expanded macros.

Used to get or set the list of
fields on which the recordset
is sorted.

Used to check whether SQL
statement returns rows.
Specifies the upper and
lower boundaries for a
range.

Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if
they were empty before
updating the database.

© 2019 Devart



302

PostgreSQL Data Access Components

LocalConstraints (inherited from TMemDataSet)

LocalUpdate (inherited from TMemDataSet)

MacroCount

Macros

MasterFields

MasterSource

Options

ParamCheck

ParamCount

Params

Prepared (inherited from TMemDataSet)

Ranged (inherited from TMemDataSet)

ReadOnly

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.
Used to prevent implicit
update of rows on database
server.

Used to get the number of
macros associated with the
Macros property.

Makes it possible to change
SQL queries easily.

Used to specify the names
of one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.
Used to specify the data
source component which
binds current dataset to the
master one.

Used to specify the
behaviour of
TCustomDADataSet object.
Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.
Used to indicate how many
parameters are there in the
Params property.

Used to view and set
parameter names, values,
and data types dynamically.
Determines whether a query
is prepared for execution or
not.

Indicates whether a range is
applied to a dataset.

Used to prevent users from

© 2019 Devart



Reference 303

RefreshOptions

RowsAffected

SQL

SQLDelete

SQLInsert

SQLLock

SQLRecCount

SQLRefresh

SQLUpdate

UniDirectional

UpdateRecordTypes (inherited from TMemDataSet)

updating, inserting, or
deleting data in the dataset.
Used to indicate when the
editing record is refreshed.
Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.
Used to provide a SQL
statement that a query
component executes when
its Open method is called.
Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

Used to specify a SQL
statement that will be used
to perform a record lock.
Used to specify the SQL
statement that is used to get
the record count when
opening a dataset.

Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.Refres
hRecord procedure.

Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

Used if an application does
not need bidirectional
access to records in the
result set.

Used to indicate the update
status for the current record
when cached updates are
enabled.

© 2019 Devart



304

PostgreSQL Data Access Components

UpdatesPending (inherited from TMemDataSet)

Methods

Name

AddWhere

ApplyRange (inherited from TMemDataSet)

ApplyUpdates (inherited from TMemDataSet)

BreakExec

CancelRange (inherited from TMemDataSet)

CancelUpdates (inherited from TMemDataSet)

CommitUpdates (inherited from TMemDataSet)

CreateBlobStream

DeferredPost (inherited from TMemDataSet)

DeleteWhere

EditRangeEnd (inherited from TMemDataSet)

EditRangeStart (inherited from TMemDataSet)

Used to check the status of
the cached updates buffer.

Description

Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

Applies a range to the
dataset.

Overloaded. Writes
dataset's pending cached
updates to a database.
Breaks execution of the SQL
statement on the server.
Removes any ranges
currently in effect for a
dataset.

Clears all pending cached
updates from cache and
restores dataset in its prior
state.

Clears the cached updates
buffer.

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

Makes permanent changes
to the database server.
Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

Enables changing the
ending value for an existing
range.

Enables changing the
starting value for an existing
range.

© 2019 Devart



Reference 305

Execute

Executing

Fetched

Fetching

FetchingAll

FindKey

FindMacro

FindNearest

FindParam

GetBlob (inherited from TMemDataSet)

GetDataType

GetFieldObject

GetFieldPrecision

GetFieldScale

GetKeyFieldNames

Overloaded. Executes a
SQL statement on the
server.

Indicates whether SQL
statement is still being
executed.

Used to learn whether
TCustomDADataSet has
already fetched all rows.
Used to learn whether
TCustomDADataSet is still
fetching rows.

Used to learn whether
TCustomDADataSet is
fetching all rows to the end.
Searches for a record which
contains specified field
values.

Description is not available
at the moment.

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.
Determines if a parameter
with the specified name
exists in a dataset.
Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

Returns internal field types
defined in the MemData and
accompanying modules.
Returns a multireference
shared object from field.
Retrieves the precision of a
number field.

Retrieves the scale of a
number field.

Provides a list of available

© 2019 Devart



306

PostgreSQL Data Access Components

GetOrderBy

GotoCurrent

Locate (inherited from TMemDataSet)

LocateEXx (inherited from TMemDataSet)

Lock

MacroByName

ParamByName

Prepare

RefreshRecord

RestoreSQL

RestoreUpdates (inherited from TMemDataSet)

RevertRecord (inherited from TMemDataSet)

SaveSQL

SaveToXML (inherited from TMemDataSet)

key field names.

Retrieves an ORDER BY
clause from a SQL
statement.

Sets the current record in
this dataset similar to the
current record in another
dataset.

Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Locks the current record.

Finds a Macro with the
name passed in Name.
Sets or uses parameter
information for a specific
parameter based on its
name.

Allocates, opens, and
parses cursor for a query.
Actualizes field values for
the current record.
Restores the SQL property
modified by AddWhere and
SetOrderBy.

Marks all records in the
cache of updates as
unapplied.

Cancels changes made to
the current record when
cached updates are
enabled.

Saves the SQL property
value to BaseSQL.

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO

© 2019 Devart



Reference 307

SetOrderBy

SetRange (inherited from TMemDataSet)

SetRangeEnd (inherited from TMemDataSet)

SetRangeStart (inherited from TMemDataSet)

SQLSaved

UnLock

UnPrepare (inherited from TMemDataSet)

UpdateResult (inherited from TMemDataSet)

UpdateStatus (inherited from TMembDataSet)

Events

Name

AfterExecute

AfterFetch

AfterUpdateExecute

format.

Builds an ORDER BY clause
of a SELECT statement.
Sets the starting and ending
values of a range, and
applies it.

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

Indicates that subsequent
assignments to field values
specify the start of the range
of rows to include in the
dataset.

Determines if the SQL
property value was saved to
the BaseSQL property.

Releases a record lock.

Frees the resources
allocated for a previously
prepared query on the
server and client sides.
Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are
enabled.

Indicates the current update
status for the dataset when
cached updates are
enabled.

Description

Occurs after a component
has executed a query to
database.

Occurs after dataset finishes
fetching data from server.

Occurs after executing

© 2019 Devart



308 PostgreSQL Data Access Components

BeforeFetch

BeforeUpdateExecute

OnUpdateError (inherited from TMemDataSet)

OnUpdateRecord (inherited from TMemDataSet)

© 1997-2019
Devart. All Rights Request Support DAC Forum

Reserved.

5.10.1.5.2 Properties

Properties of the TCustomDADataSet class.

insert, delete, update, lock
and refresh operations.
Occurs before dataset is
going to fetch block of
records from the server.
Occurs before executing
insert, delete, update, lock,
and refresh operations.
Occurs when an exceptionis
generated while cached
updates are applied to a
database.

Occurs when a single
update component can not
handle the updates.

Provide Feedback

For a complete list of the TCustomDADataSet class members, see the TCustomDADataSet

Members topic.

Public

Name

BaseSQL

CachedUpdates (inherited from TMemDataSet)

Conditions
Connection

DataTypeMap

Debug

Description

Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.
Used to enable or disable
the use of cached updates
for a dataset.

Used to add WHERE
conditions to a query
Used to specify a
connection object to use to
connect to a data store.
Used to set data type
mapping rules

Used to display executing
statement, all its parameters'

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 309

DetailFields

Disconnected

FetchRows

FilterSQL

FinalSQL

IndexFieldNames (inherited from TMemDataSet)

IsQuery

KeyExclusive (inherited from TMemDataSet)

KeyFields

LocalConstraints (inherited from TMemDataSet)

LocalUpdate (inherited from TMemDataSet)

values, and the type of
parameters.

Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.
Used to keep dataset
opened after connectionis
closed.

Used to define the number
of rows to be transferred
across the network at the
same time.

Used to change the WHERE
clause of SELECT
statement and reopen a
query.

Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy,
and FilterSQL, and with
expanded macros.

Used to get or set the list of
fields on which the recordset
is sorted.

Used to check whether SQL
statement returns rows.
Specifies the upper and
lower boundaries for a
range.

Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if
they were empty before
updating the database.
Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.
Used to prevent implicit
update of rows on database
server.

© 2019 Devart



310

PostgreSQL Data Access Components

MacroCount

Macros

MasterFields

MasterSource

Options

ParamCheck

ParamCount

Params

Prepared (inherited from TMemDataSet)

Ranged (inherited from TMemDataSet)

ReadOnly

RefreshOptions

RowsAffected

Used to get the number of
macros associated with the
Macros property.

Makes it possible to change
SQL queries easily.

Used to specify the names
of one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.
Used to specify the data
source component which
binds current dataset to the
master one.

Used to specify the
behaviour of
TCustomDADataSet object.
Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.
Used to indicate how many
parameters are there in the
Params property.

Used to view and set
parameter names, values,
and data types dynamically.
Determines whether a query
is prepared for execution or
not.

Indicates whether a range is
applied to a dataset.

Used to prevent users from
updating, inserting, or
deleting data in the dataset.
Used to indicate when the
editing record is refreshed.
Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

© 2019 Devart



Reference 311

Used to provide a SQL
sQL statement that a query
- component executes when

its Open method is called.

Used to specify a SQL
SQLDelete statement that will be used
- when applying a deletion to

a record.

Used to specify the SQL
SQLlInsert statement that will be used
- when applying an insertion

to a dataset.

Used to specify a SQL
SQLLock statement that will be used

to perform a record lock.

Used to specify the SQL
SQLRecCount statement that is used to get
the record count when
opening a dataset.

Used to specify a SQL
statement that will be used
SQLRefresh to refresh current record by
- calling the

TCustomDADataSet.Refres

hRecord procedure.

Used to specify a SQL
SQLUpdate statement that will be used
- when applying an update to

a dataset.

Used if an application does
UniDirectional not need bidirectional
access to records in the
result set.

Used to indicate the update

UpdateRecordTypes (inherited from TMemDataSet) status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

See Also
e TCustomDADataSet Class

e TCustomDADataSet Class Members

© 2019 Devart



312 PostgreSQL Data Access Components

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.2.1 BaseSQL Property

Used to return SQL text without any changes performed by AddWhere, SetOrderBy, and
FilterSQL.

Class
TCustomDADataSet

Syntax

property BaseSQL: string;

Remarks

Use the BaseSQL property to return SQL text without any changes performed by AddWhere,
SetOrderBy, and FilterSQL, only macros are expanded. SQL text with all these changes can
be returned by FinalSQL.

See Also
¢ FinalSQL

e AddWhere

e SaveSQL

e SQLSaved
e RestoreSQL

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.2.2 Conditions Property

Used to add WHERE conditions to a query

Class
TCustomDADataSet

Syntax
property Conditions: TDAConditions stored False;

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 313

See Also
e TDAConditions

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.2.3 Connection Property

Used to specify a connection object to use to connect to a data store.

Class

TCustomDADataSet

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify a connection object that will be used to connect to a
data store.

Set at design-time by selecting from the list of provided TCustomDAConnection or its
descendant class objects.

At runtime, link an instance of a TCustomDAConnection descendant to the Connection
property.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.2.4 DataTypeMap Property

Used to set data type mapping rules

Class

TCustomDADataSet

Syntax
property DataTypeMap: TDAMapRules stored IsMapRulesStored;

See Also
e TDAMapRules

© 1997-2019 Request Support DAC Forum Provide Feedback

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

314 PostgreSQL Data Access Components

Devart. All Rights
Reserved.

5.10.1.5.2.5 Debug Property

Used to display executing statement, all its parameters' values, and the type of parameters.

Class
TCustomDADataSet

Syntax
property Debug: boolean default False;

Remarks

Set the Debug property to True to display executing statement and all its parameters' values.
Also displays the type of parameters.

You should add the PgDacVcl unit to the uses clause of any unit in your project to make the
Debug property work.

Note: If TPgSQLMonitor is used in the project and the TPgSQLMonitor.Active property is set
to False, the debug window is not displayed.

See Also

e TCustomDASQL.Debug

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.2.6 DetailFields Property

Used to specify the fields that correspond to the foreign key fields from MasterFields when
building master/detail relationship.

Class
TCustomDADataSet

Syntax
property DetailFields: string;

Remarks
Use the DetailFields property to specify the fields that correspond to the foreign key fields

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 315

from MasterFields when building master/detail relationship. DetailFields is a string containing
one or more field names in the detail table. Separate field names with semicolons.
Use Field Link Designer to set the value in design time.

See Also
e MasterFields

e MasterSource

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.2.7 Disconnected Property

Used to keep dataset opened after connection is closed.

Class

TCustomDADataSet

Syntax

property Disconnected: boolean;

Remarks

Set the Disconnected property to True to keep dataset opened after connection is closed.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.2.8 FetchRow s Property

Used to define the number of rows to be transferred across the network at the same time.

Class
TCustomDADataSet

Syntax

property FetchRows: integer default 25;

Remarks

The number of rows that will be transferred across the network at the same time. This
property can have a great impact on performance. So it is preferable to choose the optimal

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

316

PostgreSQL Data Access Components

value of the FetchRows property for each SQL statement and software/hardware
configuration experimentally.
The default value is 25.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.2.9 FilterSQL Property

Used to change the WHERE clause of SELECT statement and reopen a query.

Class

TCustomDADataSet

Syntax
property FiltersqQL: string;

Remarks

The FilterSQL property is similar to the Filter property, but it changes the WHERE clause of
SELECT statement and reopens query. Syntax is the same to the WHERE clause.

Note: the FilterSQL property adds a value to the WHERE condition as is. If you expect this
value to be enclosed in brackets, you should bracket it explicitly.

Example
Queryl.FiltersQL := 'Dept >= 20 and DName LIKE ''M%''';

See Also
o AddWhere

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.2.10 FinalSQL Property

Used to return SQL text with all changes performed by AddWhere, SetOrderBy, and
FilterSQL, and with expanded macros.

Class

TCustomDADataSet

Syntax

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 317

property FinalsqQL: string;

Remarks

Use FinalSQL to return SQL text with all changes performed by AddWhere, SetOrderBy, and
FilterSQL, and with expanded macros. This is the exact statement that will be passed on to
the database server.

See Also
e FinalSQL

e AddWhere

e SaveSQL

e SQLSaved
e RestoreSQL
e BaseSQL

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.2.11 IsQuery Property

Used to check whether SQL statement returns rows.

Class

TCustomDADataSet

Syntax
property IsQuery: boolean;

Remarks

After the TCustomDADataSet component is prepared, the IsQuery property returns True if
SQL statement is a SELECT query.

Use the IsQuery property to check whether the SQL statement returns rows or not.

IsQuery is a read-only property. Reading IsQuery on unprepared dataset raises an exception.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

318

PostgreSQL Data Access Components

5.10.1.5.2.12 KeyFields Property

Used to build SQL statements for the SQLDelete, SQLInsert, and SQLUpdate properties if
they were empty before updating the database.

Class

TCustomDADataSet

Syntax
property KeyFields: string;

Remarks

TCustomDADataset uses the KeyFields property to build SQL statements for the SQLDelete,
SQLlInsert, and SQLUpdate properties if they were empty before updating the database. For
this feature KeyFields may hold a list of semicolon-delimited field names. If KeyFields is not
defined before opening a dataset, TCustomDADataset requests information about primary
keys by sending an additional query to the server.

See Also
e SQLDelete

e SQLInsert
¢ SQLRefresh
e SQLUpdate

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.2.13 MacroCount Property

Used to get the number of macros associated with the Macros property.

Class
TCustomDADataSet

Syntax
property MacroCount: word;

Remarks
Use the MacroCount property to get the number of macros associated with the Macros

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 319

property.

See Also
e Macros

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.2.14 Macros Property

Makes it possible to change SQL queries easily.

Class
TCustomDADataSet

Syntax

property Macros: TMacros stored False;

Remarks

With the help of macros you can easily change SQL query text at design- or runtime. Marcos
extend abilities of parameters and allow to change conditions in a WHERE clause or sort
order in an ORDER BY clause. You just insert &MacroName in the SQL query text and
change value of macro in the Macro property editor at design time or call the MacroByName
function at run time. At the time of opening the query macro is replaced by its value.

Example

PgQuery.SQL:= 'SELECT * FROM Dept ORDER BY &Order';
PgQuery.MacroByName('Order').value:= 'DeptNo';
PgQuery.Open;

See Also
e TMacro

e MacroByName

e Params

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

320

PostgreSQL Data Access Components

5.10.1.5.2.15 MasterFields Property

Used to specify the names of one or more fields that are used as foreign keys for dataset
when establishing detail/master relationship between it and the dataset specified in
MasterSource.

Class
TCustomDADataSet

Syntax
property MasterFields: string;

Remarks

Use the MasterFields property after setting the MasterSource property to specify the names of
one or more fields that are used as foreign keys for this dataset when establishing detail/
master relationship between it and the dataset specified in MasterSource.

MasterFields is a string containing one or more field names in the master table. Separate field
names with semicolons.

Each time the current record in the master table changes, the new values in these fields are
used to select corresponding records in this table for display.

Use Field Link Designer to set the values at design time after setting the MasterSource

property.

See Also
e DetailFields

e MasterSource
¢ Master/Detail Relationships

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.2.16 MasterSource Property

Used to specify the data source component which binds current dataset to the master one.

Class
TCustomDADataSet

Syntax

property MasterSource: TDataSource;

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 321

Remarks

The MasterSource property specifies the data source component which binds current dataset
to the master one.

TCustomDADataset uses MasterSource to extract foreign key fields values from the master
dataset when building master/detail relationship between two datasets. MasterSource must
point to another dataset; it cannot point to this dataset component.

When MasterSource is not nil dataset fills parameter values with corresponding field values
from the current record of the master dataset.

Note: Do not set the DataSource property when building master/detail relationships. Although
it points to the same object as the MasterSource property, it may lead to undesirable results.

See Also
e MasterFields

¢ DetailFields
¢ Master/Detail Relationships

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.2.17 Options Property

Used to specify the behaviour of TCustomDADataSet object.

Class

TCustomDADataSet

Syntax
property Options: TDADataSetOptions;

Remarks

Set the properties of Options to specify the behaviour of a TCustomDADataSet object.
Descriptions of all options are in the table below.

Option Name Description
Used to execute automatic Prepare on the
AutoPrepare query execution.
Used to enable caching of the
CacheCalcFields TField.Calculated and TField.Lookup
fields.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

322

PostgreSQL Data Access Components

CompressBlobMode

DefaultValues

DetailDelay

FieldsOrigin

FlatBuffers

InsertAllSetFields

LocalMasterDetail

LongStrings

MasterFieldsNullable

NumberRange

QueryRecCount

QuoteNames

RemoveOnRefresh

RequiredFields

ReturnParams

Used to store values of the BLOB fields in
compressed form.

Used to request default values/expressions
from the server and assign them to the
DefaultExpression property.

Used to get or set a delay in milliseconds
before refreshing detail dataset while
navigating master dataset.

Used for TCustomDADataSet to fill the
Origin property of the TField objects by
appropriate value when opening a dataset.
Used to control how a dataset treats data
of the ftString and ftVarBytes fields.

Used to include all set dataset fields in the
generated INSERT statement

Used for TCustomDADataSet to use local
filtering to establish master/detail
relationship for detail dataset and does not
refer to the server.

Used to represent string fields with the
length that is greater than 255 as
TStringField.

Allows to use NULL values in the fields by
which the relation is built, when generating
the query for the Detail tables (when this
option is enabled, the performance can get
worse).

Used to set the MaxValue and MinValue
properties of TintegerField and TFloatField
to appropriate values.

Used for TCustomDADataSet to perform
additional query to get the record count for
this SELECT, so the RecordCount property
reflects the actual number of records.

Used for TCustomDADataSet to quote all
database object names in autogenerated
SQL statements such as update SQL.
Used for a dataset to locally remove a
record that can not be found on the server.
Used for TCustomDADataSet to set the
Required property of the TField objects for
the NOT NULL fields.

Used to return the new value of fields to
dataset after insert or update.

© 2019 Devart



Reference 323

SetFieldsReadOnly

StrictUpdate

TrimFixedChar

UpdateAllFields

UpdateBatchSize

See Also
e Master/Detail Relationships

e TMemDataSet.CachedUpdates

© 1997-2019
Devart. All Rights Request Support

Used for a dataset to set the ReadOnly
property to True for all fields that do not
belong to UpdatingTable or can not be
updated.

Used for TCustomDADataSet to raise an
exception when the number of updated or
deleted records is not equal 1.

Specifies whether to discard all trailing
spaces in the string fields of a dataset.
Used to include all dataset fields in the
generated UPDATE and INSERT
statements.

Used to get or set a value that enables or
disables batch processing support, and
specifies the number of commands that
can be executed in a batch.

DAC Forum Provide Feedback

Reserved.

5.10.1.5.2.18 ParamCheck Property

Used to specify whether parameters for the Params property are generated automatically

after the SQL property was changed.

Class

TCustomDADataSet

Syntax

property ParamCheck: boolean default True;

Remarks

Use the ParamCheck property to specify whether parameters for the Params property are
generated automatically after the SQL property was changed.
Set ParamCheck to True to let dataset automatically generate the Params property for the

dataset based on a SQL statement.

Setting ParamCheck to False can be used if the dataset component passes to a server the

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

324

PostgreSQL Data Access Components

DDL statements that contain, for example, declarations of stored procedures which
themselves will accept parameterized values. The default value is True.

See Also
e Params

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.2.19 ParamCount Property

Used to indicate how many parameters are there in the Params property.

Class
TCustomDADataSet

Syntax

property ParamCount: word;

Remarks
Use the ParamCount property to determine how many parameters are there in the Params
property.

See Also
e Params

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.2.20 Params Property

Used to view and set parameter names, values, and data types dynamically.

Class
TCustomDADataSet

Syntax
property Params: TDAParams stored False;

Remarks
Contains the parameters for a query's SQL statement.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 325

Access Params at runtime to view and set parameter names, values, and data types
dynamically (at design time use the Parameters editor to set the parameter information).
Params is a zero-based array of parameter records. Index specifies the array element to
access.

An easier way to set and retrieve parameter values when the name of each parameter is
known is to call ParamByName.

See Also
e ParamByName

e Macros

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.2.21 ReadOnly Property

Used to prevent users from updating, inserting, or deleting data in the dataset.

Class
TCustomDADataSet

Syntax
property Readonly: boolean default False;

Remarks

Use the ReadOnly property to prevent users from updating, inserting, or deleting data in the
dataset. By default, ReadOnly is False, meaning that users can potentially alter data stored in
the dataset.

To guarantee that users cannot modify or add data to a dataset, set ReadOnly to True.
When ReadOnly is True, the dataset's CanModify property is False.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.2.22 RefreshOptions Property

Used to indicate when the editing record is refreshed.

Class

TCustomDADataSet

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

326

PostgreSQL Data Access Components

Syntax
property Refreshoptions: TRefreshoptions default [];

Remarks

Use the RefreshOptions property to determine when the editing record is refreshed.
Refresh is performed by the RefreshRecord method.

It queries the current record and replaces one in the dataset. Refresh record is useful when
the table has triggers or the table fields have default values. Use roBeforeEdit to get actual
data before editing.

The default value is [].

See Also
e RefreshRecord

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.2.23 Row sAffected Property

Used to indicate the number of rows which were inserted, updated, or deleted during the last
query operation.

Class

TCustomDADataSet

Syntax
property RowsAffected: integer;

Remarks

Check RowsAffected to determine how many rows were inserted, updated, or deleted during
the last query operation. If RowsAffected is -1, the query has not inserted, updated, or deleted
any rows.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.2.24 SQL Property

Used to provide a SQL statement that a query component executes when its Open method is
called.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 327

Class

TCustomDADataSet

Syntax
property SQL: TStrings;

Remarks

Use the SQL property to provide a SQL statement that a query component executes when its
Open method is called. At the design time the SQL property can be edited by invoking the
String List editor in Object Inspector.

When SQL is changed, TCustomDADataSet calls Close and UnPrepare.

See Also
e SQLInsert

e SQLUpdate
e SQLDelete
¢ SQLRefresh

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.2.25 SQLDelete Property

Used to specify a SQL statement that will be used when applying a deletion to a record.

Class
TCustomDADataSet

Syntax
property SQLDelete: TStrings;

Remarks

Use the SQLDelete property to specify the SQL statement that will be used when applying a
deletion to a record. Statements can be parameterized queries.
To create a SQLDelete statement at design-time, use the query statements editor.

Example
DELETE FROM Orders

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

328 PostgreSQL Data Access Components
WHERE
orderID = :01d_oOrderID
See Also
e SQL
e SQLInsert

e SQLUpdate
e SQLRefresh
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.2.26 SQLlInsert Property

Used to specify the SQL statement that will be used when applying an insertion to a dataset.

Class
TCustomDADataSet

Syntax
property SQLInsert: TStrings;

Remarks

Use the SQLInsert property to specify the SQL statement that will be used when applying an
insertion to a dataset. Statements can be parameterized queries. Names of the parameters
should be the same as field names. Parameters prefixed with OLD__ allow using current
values of fields prior to the actual operation.

Use ReturnParam to return OUT parameters back to dataset.

To create a SQLInsert statement at design-time, use the query statements editor.

See Also
e SQL

e SQLUpdate
e SQLDelete
e SQLRefresh

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 329

5.10.1.5.2.27 SQLLock Property

Used to specify a SQL statement that will be used to perform a record lock.

Class

TCustomDADataSet

Syntax
property SqQLLock: TStrings;

Remarks

Use the SQLLock property to specify a SQL statement that will be used to perform a record
lock. Statements can be parameterized queries. Names of the parameters should be the
same as field names. The parameters prefixed with OLD _ allow to use current values of
fields prior to the actual operation.

To create a SQLLock statement at design-time, the use query statement editor.

See Also
e SQL

e SQLlInsert
e SQLUpdate
e SQLDelete
e SQLRefresh

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.2.28 SQLRecCount Property

Used to specify the SQL statement that is used to get the record count when opening a
dataset.

Class

TCustomDADataSet

Syntax
property SQLRecCount: TStrings;

Remarks

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

330

PostgreSQL Data Access Components

Use the SQLRecCount property to specify the SQL statement that is used to get the record
count when opening a dataset. The SQL statement is used if the
TDADataSetOptions.QueryRecCount property is True, and the TCustomDADataSet.FetchAll
property is False. Is not used if the FetchAll property is True.

To create a SQLRecCount statement at design-time, use the query statements editor.

See Also
e SQLInsert

e SQLUpdate

e SQLDelete

e SQLRefresh

e TDADataSetOptions

e M:Devart.Dac.TCustomDADataSet.FetchingAll

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.2.29 SQLRefresh Property

Used to specify a SQL statement that will be used to refresh current record by calling the
RefreshRecord procedure.

Class
TCustomDADataSet

Syntax
property SQLRefresh: TStrings;

Remarks

Use the SQLRefresh property to specify a SQL statement that will be used to refresh current
record by calling the RefreshRecord procedure.

Different behavior is observed when the SQLRefresh property is assigned with a single
WHERE clause that holds frequently altered search condition. In this case the WHERE
clause from SQLRefresh is combined with the same clause of the SELECT statement in a
SQL property and this final query is then sent to the database server.

To create a SQLRefresh statement at design-time, use the query statements editor.

Example
SELECT Shipname FROM Orders

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 331

WHERE
orderID = :0rderID

See Also
e RefreshRecord

e SQL
e SQLInsert

e SQLUpdate
e SQLDelete

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.2.30 SQLUpdate Property

Used to specify a SQL statement that will be used when applying an update to a dataset.

Class
TCustomDADataSet

Syntax
property SQLUpdate: TStrings;

Remarks

Use the SQLUpdate property to specify a SQL statement that will be used when applying an
update to a dataset. Statements can be parameterized queries. Names of the parameters
should be the same as field names. The parameters prefixed with OLD _ allow to use current
values of fields prior to the actual operation.

Use ReturnParam to return OUT parameters back to the dataset.

To create a SQLUpdate statement at design-time, use the query statement editor.

Example

UPDATE Orders
set
ShipName = :ShipName
WHERE
orderID = :01d_OrderID

See Also
e SQL

e SQLInsert

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

332 PostgreSQL Data Access Components

e SQLDelete
¢ SQLRefresh

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.2.31 UniDirectional Property

Used if an application does not need bidirectional access to records in the result set.

Class
TCustomDADataSet

Syntax

property UniDirectional: boolean default False;

Remarks

Traditionally SQL cursors are unidirectional. They can travel only forward through a dataset.
TCustomDADataset, however, permits bidirectional travelling by caching records. If an
application does not need bidirectional access to the records in the result set, set
UniDirectional to True. When UniDirectional is True, an application requires less memory and
performance is improved. However, UniDirectional datasets cannot be modified. In
FetchAll=False mode data is fetched on demand. When UniDirectional is set to True, data is
fetched on demand as well, but obtained rows are not cached except for the current row. In
case if the Unidirectional property is True, the FetchAll property will be automatically set to
False. And if the FetchAll property is True, the Unidirectional property will be automatically set
to False. The default value of UniDirectional is False, enabling forward and backward
navigation.

Note: Pay attention to the specificity of using the FetchAll property=False

See Also
e TPgQuery.FetchAll

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.3 Methods

Methods of the TCustomDADataSet class.
For a complete list of the TCustomDADataSet class members, see the TCustomDADataSet

Members topic.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 333

Public

Name

AddWhere

ApplyRange (inherited from TMemDataSet)

ApplyUpdates (inherited from TMemDataSet)

BreakExec

CancelRange (inherited from TMemDataSet)

CancelUpdates (inherited from TMemDataSet)

CommitUpdates (inherited from TMemDataSet)

CreateBlobStream

DeferredPost (inherited from TMemDataSet)

DeleteWhere

EditRangeEnd (inherited from TMemDataSet)

EditRangeStart (inherited from TMemDataSet)

Execute

Description

Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

Applies a range to the
dataset.

Overloaded. Writes
dataset's pending cached
updates to a database.
Breaks execution of the SQL
statement on the server.
Removes any ranges
currently in effect for a
dataset.

Clears all pending cached
updates from cache and
restores dataset in its prior
state.

Clears the cached updates
buffer.

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

Makes permanent changes
to the database server.
Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

Enables changing the
ending value for an existing
range.

Enables changing the
starting value for an existing
range.

Overloaded. Executes a
SQL statement on the
server.

© 2019 Devart



334

PostgreSQL Data Access Components

Executing

Fetched

Fetching

FetchingAll

FindKey

FindMacro

FindNearest

FindParam

GetBlob (inherited from TMemDataSet)

GetDataType

GetFieldObject

GetFieldPrecision

GetFieldScale

GetKeyFieldNames

GetOrderBy

Indicates whether SQL
statement is still being
executed.

Used to learn whether
TCustomDADataSet has
already fetched all rows.
Used to learn whether
TCustomDADataSet is still
fetching rows.

Used to learn whether
TCustomDADataSet is
fetching all rows to the end.
Searches for a record which
contains specified field
values.

Description is not available
at the moment.

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.
Determines if a parameter
with the specified name
exists in a dataset.
Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

Returns internal field types
defined in the MemData and
accompanying modules.
Returns a multireference
shared object from field.
Retrieves the precision of a
number field.

Retrieves the scale of a
number field.

Provides a list of available
key field names.

Retrieves an ORDER BY
clause from a SQL

© 2019 Devart



Reference 335

GotoCurrent

Locate (inherited from TMemDataSet)

LocateEXx (inherited from TMemDataSet)

Lock

MacroByName

ParamByName

Prepare

RefreshRecord

RestoreSQL

RestoreUpdates (inherited from TMemDataSet)

RevertRecord (inherited from TMemDataSet)

SaveSQL

SaveToXML (inherited from TMemDataSet)

SetOrderBy

statement.

Sets the current record in
this dataset similar to the
current record in another
dataset.

Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Locks the current record.

Finds a Macro with the
name passed in Name.
Sets or uses parameter
information for a specific
parameter based on its
name.

Allocates, opens, and
parses cursor for a query.
Actualizes field values for
the current record.

Restores the SQL property
modified by AddWhere and
SetOrderBy.

Marks all records in the
cache of updates as
unapplied.

Cancels changes made to
the current record when
cached updates are
enabled.

Saves the SQL property
value to BaseSQL.
Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

Builds an ORDER BY clause
of a SELECT statement.

© 2019 Devart



336 PostgreSQL Data Access Components

) ) Sets the starting and ending
SetRange (inherited from TMemDataSet) values of a range, and
applies it.
Indicates that subsequent
. . assignments to field values
SetRangeEnd (inherited from TMemDataSet) specify the end of the range
of rows to include in the
dataset.
Indicates that subsequent
) ] assignments to field values
SetRangeStart (inherited from TMemDataSet) specify the start of the range
of rows to include in the
dataset.
Determines if the SQL
SQLSaved property value was saved to
the BaseSQL property.

UnLock Releases a record lock.

Frees the resources
UnPrepare (inherited from TMemDataSet) allocated for a previously
- prepared query on the
server and client sides.
Reads the status of the
latest call to the

UpdateResult (inherited from TMemDataSet) ApplyUpdates method while
cached updates are
enabled.

Indicates the current update

UpdateStatus (inherited from TMemDataSet) status for the dataset when
cached updates are
enabled.

See Also

e TCustomDADataSet Class
e TCustomDADataSet Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.3.1 AddWhere Method

Adds condition to the WHERE clause of SELECT statement in the SQL property.

Class

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 337

TCustomDADataSet

Syntax
procedure Addwhere(const Condition: string);

Parameters

Condlition
Holds the condition that will be added to the WHERE clause.

Remarks

Call the AddWhere method to add a condition to the WHERE clause of SELECT statement in
the SQL property.

If SELECT has no WHERE clause, AddWhere creates it.

Note: the AddWhere method is implicitly called by RefreshRecord. The AddWhere method
works for the SELECT statements only.

Note: the AddWhere method adds a value to the WHERE condition as is. If you expect this
value to be enclosed in brackets, you should bracket it explicitly.

See Also
e DeleteWhere

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.3.2 BreakExec Method

Breaks execution of the SQL statement on the server.

Class

TCustomDADataSet

Syntax

procedure BreakExec; virtual;

Remarks

Call the BreakExec method to break execution of the SQL statement on the server. It makes
sense to call BreakExec only from another thread.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

338 PostgreSQL Data Access Components

5.10.1.5.3.3 CreateBlobStream Method

Used to obtain a stream for reading data from or writing data to a BLOB field, specified by the
Field parameter.

Class

TCustomDADataSet

Syntax

function CreateBlobStream(Field: TField; Mode: TBlobStreamMode):
TStream; override;

Parameters
Field
Holds the BLOB field for reading data from or writing data to from a stream.
Mode
Holds the stream mode, for which the stream will be used.
Return Value
The BLOB Stream.

Remarks

Call the CreateBlobStream method to obtain a stream for reading data from or writing data to
a BLOB field, specified by the Field parameter. It must be a TBlobField component. You can
specify whether the stream will be used for reading, writing, or updating the contents of the
field with the Mode parameter.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.3.4 DeleteWhere Method

Removes WHERE clause from the SQL property and assigns the BaseSQL property.

Class

TCustomDADataSet

Syntax

procedure Deletewhere;

Remarks

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 339

Call the DeleteWhere method to remove WHERE clause from the the SQL property and
assign BaseSQL.

See Also
o AddWhere

e BaseSQL
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.3.5 Execute Method

Executes a SQL statement on the server.

Class
TCustomDADataSet

Overload List

Name Description

Execute Executes a SQL statement on the server.
Execute(lters: integer; Offset: integer) Used to perform Batch operations .

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Executes a SQL statement on the server.

Class
TCustomDADataSet

Syntax

procedure Execute; overload; virtual;

Remarks

Call the Execute method to execute an SQL statement on the server. If SQL statement is a
SELECT query, Execute calls the Open method.

Execute implicitly prepares SQL statement by calling the TCustomDADataSet.Prepare
method if the TCustomDADataSet.Options option is set to True and the statement has not
been prepared yet. To speed up the performance in case of multiple Execute calls, an

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

340 PostgreSQL Data Access Components

application should call Prepare before calling the Execute method for the first time.

See Also
e TCustomDADataSet.AfterExecute

e TCustomDADataSet.Executing
e TCustomDADataSet.Prepare
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Used to perform Batch operations .

Class
TCustomDADataSet

Syntax

procedure Execute(Iters: integer; Offset: integer = 0); overload;
virtual;

Parameters

Iters
Specifies the number of inserted rows.

Offset
Points the array element, which the Batch operation starts from. 0 by default.

Remarks

The Execute method executes the specified batch SQL query. See the Batch operations
article for samples.

See Also
e Batch operations

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.3.6 Executing Method

Indicates whether SQL statement is still being executed.

Class
TCustomDADataSet

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 341

Syntax

function Executing: boolean;

Return Value
True, if SQL statement is still being executed.

Remarks

Check Executing to learn whether TCustomDADataSet is still executing SQL statement.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.3.7 Fetched Method

Used to learn whether TCustomDADataSet has already fetched all rows.

Class
TCustomDADataSet

Syntax
function Fetched: boolean; virtual;

Return Value
True, if all rows are fetched.

Remarks
Check Fetched to learn whether TCustomDADataSet has already fetched all rows.

See Also
¢ Fetching

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.3.8 Fetching Method

Used to learn whether TCustomDADataSet is still fetching rows.

Class
TCustomDADataSet

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

342 PostgreSQL Data Access Components

Syntax

function Fetching: boolean;

Return Value
True, if TCustomDADataSet is still fetching rows.

Remarks

Check Fetching to learn whether TCustomDADataSet is still fetching rows. Use the Fetching
method if NonBlocking is True.

See Also
e Executing
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.3.9 FetchingAll Method

Used to learn whether TCustomDADataSet is fetching all rows to the end.

Class
TCustomDADataSet

Syntax
function FetchingAll: boolean;

Return Value
True, if TCustomDADataSet is fetching all rows to the end.

Remarks
Check FetchingAll to learn whether TCustomDADataSet is fetching all rows to the end.

See Also
e Executing

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 343

5.10.1.5.3.10 FindKey Method

Searches for a record which contains specified field values.

Class
TCustomDADataSet

Syntax

function Findkey(const Keyvalues: array of System.Tvarrec):
Boolean;

Parameters

KeyValues
Holds a key.

Remarks

Call the FindKey method to search for a specific record in a dataset. KeyValues holds a
comma-delimited array of field values, that is called a key.

This function is provided for BDE compatibility only. It is recommended to use functions
TMemDataSet.Locate and TMemDataSet.LocateEx for the record search.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.3.11 FindMacro Method

Class
TCustomDADataSet

Syntax
function Findvacro(const value: string): TMacro;

Parameters
Value

See Also
e TMacro

e Macros

e MacroByName
© 1997-2019 Request Support DAC Forum Provide Feedback

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

344 PostgreSQL Data Access Components

Devart. All Rights
Reserved.

5.10.1.5.3.12 FindNearest Method

Moves the cursor to a specific record or to the first record in the dataset that matches or is
greater than the values specified in the KeyValues parameter.

Class
TCustomDADataSet

Syntax
procedure FindNearest(const Keyvalues: array of System.TvarRec);

Parameters

KeyValues
Holds the values of the record key fields to which the cursor should be moved.

Remarks

Call the FindNearest method to move the cursor to a specific record or to the first record in
the dataset that matches or is greater than the values specified in the KeyValues parameter. If
there are no records that match or exceed the specified criteria, the cursor will not move.

This function is provided for BDE compatibility only. It is recommended to use functions
TMemDataSet.Locate and TMemDataSet.LocateEx for the record search.

See Also
e TMemDataSet.Locate

e TMemDataSet.LocateEx
¢ FindKey

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.3.13 FindParam Method

Determines if a parameter with the specified name exists in a dataset.

Class

TCustomDADataSet

Syntax

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 345

function FindrParam(const value: string): TDAParam;

Parameters
Value
Holds the name of the param for which to search.

Return Value
the TDAParam object for the specified Name. Otherwise it returns nil.

Remarks

Call the FindParam method to determine if a specified param component exists in a dataset.
Name is the name of the param for which to search. If FindParam finds a param with a
matching name, it returns a TDAParam object for the specified Name. Otherwise it returns
nil.

See Also
e Params

e ParamByName

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.3.14 GetDataType Method

Returns internal field types defined in the MemData and accompanying modules.

Class
TCustomDADataSet

Syntax
function GetDataType(const FieldName: string): integer; virtual;

Parameters

FieldName
Holds the name of the field.

Return Value
internal field types defined in MemData and accompanying modules.

Remarks

Call the GetDataType method to return internal field types defined in the MemData and
accompanying modules. Internal field data types extend the TFieldType type of VCL by

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

346 PostgreSQL Data Access Components

specific database server data types. For example, ftString, ftFile, ftObject.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.3.15 GetFieldObject Method

Returns a multireference shared object from field.

Class
TCustomDADataSet

Syntax

function GetFieldobject(Field: TField): TSharedobject;
overload;function GetFieldobject(Field: TField; RecBuf:
TRecordBuffer): TSharedobject; overload;function
GetFieldObject(FieldDesc: TFieldDesc): TSharedObject;
overload;function GetFieldobject(Fieldbesc: TFieldDesc; RecBuf:
TRecordBuffer): TSharedobject; overload;function
GetFieldobject(const FieldName: string): TSharedobject; overload;

Parameters
FieldName
Holds the field name.

Return Value
multireference shared object.

Remarks
Call the GetFieldObject method to return a multireference shared object from field. If field
does not hold one of the TSharedObject descendants, GetFieldObject raises an exception.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.3.16 GetFieldPrecision Method

Retrieves the precision of a number field.

Class
TCustomDADataSet

Syntax

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 347

function GetFieldPrecision(const FieldName: string): integer;

Parameters
FieldName

Holds the existing field name.
Return Value

precision of number field.

Remarks

Call the GetFieldPrecision method to retrieve the precision of a number field. FieldName is the
name of an existing field.

See Also
e GetFieldScale

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.3.17 GetFieldScale Method

Retrieves the scale of a number field.

Class

TCustomDADataSet

Syntax
function GetFieldscale(const FieldName: string): integer;

Parameters

FieldName
Holds the existing field name.

Return Value
the scale of the number field.

Remarks

Call the GetFieldScale method to retrieve the scale of a number field. FieldName is the name
of an existing field.

See Also
e GetFieldPrecision

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

348 PostgreSQL Data Access Components

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.3.18 GetKeyFieldNames Method

Provides a list of available key field names.

Class

TCustomDADataSet

Syntax
procedure GetkeyFieldNames(List: TStrings);

Parameters
List

The list of available key field names
Return Value

Key field name

Remarks

Call the GetKeyFieldNames method to get the names of available key fields. Populates a
string list with the names of key fields in tables.

See Also
e TCustomDAConnection.GetTableNames

e TCustomDAConnection.GetStoredProcNames

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.3.19 GetOrderBy Method

Retrieves an ORDER BY clause from a SQL statement.

Class
TCustomDADataSet

Syntax
function GetorderBy: string;

Return Value

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 349

an ORDER BY clause from the SQL statement.

Remarks

Call the GetOrderBy method to retrieve an ORDER BY clause from a SQL statement.
Note: GetOrderBy and SetOrderBy methods serve to process only quite simple queries and
don't support, for example, subqueries.

See Also
e SetOrderBy

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.3.20 GotoCurrent Method

Sets the current record in this dataset similar to the current record in another dataset.

Class
TCustomDADataSet

Syntax
procedure GotoCurrent(DataSet: TCustomDADataSet);

Parameters

DataSet
Holds the TCustomDADataSet descendant to synchronize the record position with.

Remarks

Call the GotoCurrent method to set the current record in this dataset similar to the current
record in another dataset. The key fields in both these DataSets must be coincident.

See Also
e TMemDataSet.Locate

e TMemDataSet.LocateEx

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

350

PostgreSQL Data Access Components

5.10.1.5.3.21 Lock Method

Locks the current record.

Class

TCustomDADataSet

Syntax
procedure Lock; virtual;

Remarks

Call the Lock method to lock the current record by executing the statement that is defined in

the SQLLock property.

The Lock method sets the savepoint with the name LOCK_ + <component_name>.

See Also
e UnLock

© 1997-2019

Devart. All Rights Request Support

DAC Forum

Provide Feedback

Reserved.

5.10.1.5.3.22 MacroByName Method

Finds a Macro with the name passed in Name.

Class

TCustomDADataSet

Syntax

function MacroByName(const Value:

Parameters

Value
Holds the name of the Macro to search for.

Return Value
the Macro, if a match was found.

Remarks

string): TMacro;

Call the MacroByName method to find a Macro with the name passed in Name. If a match
was found, MacroByName returns the Macro. Otherwise, an exception is raised. Use this

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 351

method rather than a direct reference to the ltems property to avoid depending on the order of
the entries.

To locate a parameter by name without raising an exception if the parameter is not found, use
the FindMacro method.

To assign the value of macro use the TMacro.Value property.

Example

PgQuery.SQL:= 'SELECT * FROM Scott.Dept ORDER BY &Order';
PgQuery.MacroByName('Order').value:= 'DeptNo';
PgQuery.Open;

See Also
e TMacro

e Macros
e FindMacro

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.3.23 ParamByName Method

Sets or uses parameter information for a specific parameter based on its name.

Class
TCustomDADataSet

Syntax
function ParamByName(const Value: string): TDAParam;

Parameters
Value
Holds the name of the parameter for which to retrieve information.

Return Value
a TDAParam object.

Remarks

Call the ParamByName method to set or use parameter information for a specific parameter
based on its name. Name is the name of the parameter for which to retrieve information.
ParamByName is used to set a parameter's value at runtime and returns a TDAParam
object.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

352 PostgreSQL Data Access Components

Example

The following statement retrieves the current value of a parameter called "Contact" into an
edit box:

Editl.Text := Queryl.ParamsByName('Contact').AsString;

See Also
e Params

e FindParam

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.3.24 Prepare Method

Allocates, opens, and parses cursor for a query.

Class
TCustomDADataSet

Syntax

procedure Prepare; override;

Remarks

Call the Prepare method to allocate, open, and parse cursor for a query. Calling Prepare
before executing a query improves application performance.

The UnPrepare method unprepares a query.

Note: When you change the text of a query at runtime, the query is automatically closed and
unprepared.

See Also
e TMemDataSet.Prepared

e TMemDataSet.UnPrepare
e Options

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 353

5.10.1.5.3.25 RefreshRecord Method

Actualizes field values for the current record.

Class

TCustomDADataSet

Syntax

procedure RefreshrRecord;

Remarks

Call the RefreshRecord method to actualize field values for the current record.
RefreshRecord performs query to database and refetches new field values from the returned
cursor.

See Also
e RefreshOptions

¢ SQLRefresh

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.3.26 RestoreSQL Method

Restores the SQL property modified by AddWhere and SetOrderBy.

Class

TCustomDADataSet

Syntax
procedure RestoresqQL;

Remarks

Call the RestoreSQL method to restore the SQL property modified by AddWhere and
SetOrderBy.

See Also
o AddWhere

e SetOrderBy

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

354

PostgreSQL Data Access Components

e SaveSQL
e SQLSaved

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.3.27 SaveSQL Method

Saves the SQL property value to BaseSQL.

Class

TCustomDADataSet

Syntax
procedure SavesqQLl;

Remarks
Call the SaveSQL method to save the SQL property value to the BaseSQL property.

See Also
e SQLSaved

e RestoreSQL
e BaseSQL

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.3.28 SetOrderBy Method

Builds an ORDER BY clause of a SELECT statement.

Class
TCustomDADataSet

Syntax
procedure sSetorderBy(const Fields: string);

Parameters

Fields
Holds the names of the fields which will be added to the ORDER BY clause.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 355

Remarks

Call the SetOrderBy method to build an ORDER BY clause of a SELECT statement. The
fields are identified by the comma-delimited field names.

Note: The GetOrderBy and SetOrderBy methods serve to process only quite simple queries
and don't support, for example, subqueries.

Example
Queryl.SetOrderBy('DeptNo;DName');

See Also
e GetOrderBy

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.56.3.29 SQLSaved Method

Determines if the SQL property value was saved to the BaseSQL property.

Class
TCustomDADataSet

Syntax
function sQLSaved: boolean;

Return Value
True, if the SQL property value was saved to the BaseSQL property.

Remarks

Call the SQLSaved method to know whether the SQL property value was saved to the
BaseSQL property.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.3.30 UnLock Method

Releases a record lock.

Class

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

356 PostgreSQL Data Access Components

TCustomDADataSet

Syntax

procedure uUnLock;

Remarks

Call the Unlock method to release the record lock made by the Lock method before.
Unlock is performed by rolling back to the savepoint set by the Lock method.

See Also
e | ock

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.4 Events

Events of the TCustomDADataSet class.
For a complete list of the TCustomDADataSet class members, see the TCustomDADataSet
Members topic.

Public
Name Description
Occurs after a component
AfterExecute has executed a query to
database.
AfterFetch Occurs after dataset finishes

fetching data from server.
Occurs after executing
AfterUpdateExecute insert, delete, update, lock
and refresh operations.
Occurs before datasetis
BeforeFetch going to fetch block of
records from the server.

Occurs before executing
BeforeUpdateExecute insert, delete, update, lock,

and refresh operations.
Occurs when an exception is

OnUpdateError (inherited from TMemDataSet) generated while cached
updates are applied to a

database.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 357

. . Occurs when a single
OnUpdateRecord (inherited from TMemDataSet) update component can not

handle the updates.

See Also
e TCustomDADataSet Class

e TCustomDADataSet Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.5.4.1 AfterExecute Event

Occurs after a component has executed a query to database.

Class

TCustomDADataSet

Syntax
property AfterExecute: TAfterExecuteEvent;

Remarks
Occurs after a component has executed a query to database.

See Also

e TCustomDADataSet.Execute

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.4.2 AfterFetch Event

Occurs after dataset finishes fetching data from server.

Class
TCustomDADataSet

Syntax
property AfterFetch: TAfterFetchEvent;

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

358 PostgreSQL Data Access Components

Remarks

The AfterFetch event occurs after dataset finishes fetching data from server.

See Also
e BeforeFetch

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.4.3 AfterUpdateExecute Event

Occurs after executing insert, delete, update, lock and refresh operations.

Class
TCustomDADataSet

Syntax
property AfterUpdateExecute: TUpdateExecuteEvent;

Remarks

Occurs after executing insert, delete, update, lock, and refresh operations. You can use
AfterUpdateExecute to set the parameters of corresponding statements.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.4.4 BeforeFetch Event

Occurs before dataset is going to fetch block of records from the server.

Class
TCustomDADataSet

Syntax
property BeforeFetch: TBeforeFetchEvent;

Remarks

The BeforeFetch event occurs every time before dataset is going to fetch a block of records
from the server. Set Cancel to True to abort current fetch operation.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 359

See Also
o AfterFetch

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.5.4.5 BeforeUpdateExecute Event

Occurs before executing insert, delete, update, lock, and refresh operations.

Class

TCustomDADataSet

Syntax

property BeforeUpdateExecute: TUpdateExecuteEvent;

Remarks

Occurs before executing insert, delete, update, lock, and refresh operations. You can use
BeforeUpdateExecute to set the parameters of corresponding statements.

See Also
o AfterUpdateExecute

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.6 TCustomDASAQL Class

A base class for components executing SQL statements that do not return result sets.
For a list of all members of this type, see TCustomDASQL members.

Unit

DBAcCcess

Syntax
TCustombDASQL = class (TComponent);

Remarks

TCustomDASQL is a base class that defines functionality for descendant classes which
access database using SQL statements. Applications never use TCustomDASQL objects

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

360 PostgreSQL Data Access Components

directly. Instead they use descendants of TCustomDASQL.

Use TCustomDASQL when client application must execute SQL statement or call stored
procedure on the database server. The SQL statement should not retrieve rows from the
database.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.6.1 Members

TCustomDASQL class overview.

Properties

Name Description
Enables or disables
ChangeCursor changing screen cursor
when executing commands
in the NonBlocking mode.
_ Used to specify a
Connection connection object to use to
connect to a data store.
Used to display executing
statement, all its parameters'
Debug values, and the type of
parameters.
) Used to returna SQL
FinalSQL statement with expanded
macros.
Used to get the number of
MacroCount macros associated with the
Macros property.
Macros Makes it possible to change
- SQL queries easily.
Used to specify whether
parameters for the Params
ParamCheck property are implicitly
generated when the SQL
property is being changed.
Indicates the number of
ParamCount parameters in the Params
property.
Params Used to contain parameters
- for a SQL statement.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 361

ParamValues

Prepared

RowsAffected

SQL

Methods

Name

Execute

Executing

FindMacro
FindParam

MacroByName

ParamByName

Prepare

UnPrepare

WaitExecuting

Used to get or set the values
of individual field
parameters that are
identified by name.

Used to indicate whether a
query is prepared for
execution.

Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.
Used to provide a SQL
statement that a
TCustomDASQL
component executes when
the Execute method is
called.

Description

Overloaded. Executes a
SQL statement on the
server.

Checks whether
TCustomDASQL still
executes a SQL statement.
Searches for a macro with
the specified name.

Finds a parameter with the
specified name.

Finds a Macro with the
name passed in Name.
Finds a parameter with the
specified name.

Allocates, opens, and
parses cursor for a query.
Frees the resources
allocated for a previously
prepared query on the
server and client sides.
Waits until TCustomDASQL
executes a SQL statement.

© 2019 Devart



362 PostgreSQL Data Access Components

Events

Name

AfterExecute

© 1997-2019
Devart. All Rights Request Support DAC Forum

Reserved.

5.10.1.6.2 Properties

Properties of the TCustomDASQL class.

Description

Occurs after a SQL
statement has been
executed.

Provide Feedback

For a complete list of the TCustomDASQL class members, see the TCustomDASQL

Members topic.

Public

Name

ChangeCursor

Connection

Debug

FinalSQL

MacroCount

Macros

ParamCheck

Description

Enables or disables
changing screen cursor
when executing commands
in the NonBlocking mode.
Used to specify a
connection object to use to
connect to a data store.
Used to display executing
statement, all its parameters'
values, and the type of
parameters.

Used to return a SQL
statement with expanded
macros.

Used to get the number of
macros associated with the
Macros property.

Makes it possible to change
SQL queries easily.

Used to specify whether
parameters for the Params
property are implicitly
generated when the SQL
property is being changed.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 363

ParamCount

Params

ParamValues

Prepared

RowsAffected

SQL

See Also
e TCustomDASQL Class

e TCustomDASQL Class Members

© 1997-2019
Devart. All Rights Request Support

DAC Forum

Reserved.

5.10.1.6.2.1 ChangeCursor Property

Indicates the number of
parameters in the Params
property.

Used to contain parameters
for a SQL statement.

Used to get or set the values
of individual field
parameters that are
identified by name.

Used to indicate whether a
query is prepared for
execution.

Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.
Used to provide a SQL
statement that a
TCustomDASQL
component executes when
the Execute method is
called.

Provide Feedback

Enables or disables changing screen cursor when executing commands in the NonBlocking

mode.

Class
TCustomDASQL

Syntax

property ChangeCursor: boolean;

Remarks

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

364

PostgreSQL Data Access Components

Set the ChangeCursor property to False to prevent the screen cursor from changing to
crSQLArrow when executing commands in the NonBlocking mode. The default value is True.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.6.2.2 Connection Property

Used to specify a connection object to use to connect to a data store.

Class
TCustomDASQL

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify a connection object that will be used to connect to a
data store.

Set at design-time by selecting from the list of provided TCustomDAConnection or its
descendant class objects.

At runtime, link an instance of a TCustomDAConnection descendant to the Connection
property.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.6.2.3 Debug Property

Used to display executing statement, all its parameters' values, and the type of parameters.

Class
TCustomDASQL

Syntax
property Debug: boolean default False;

Remarks

Set the Debug property to True to display executing statement and all its parameters' values.
Also displays the type of parameters.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 365

You should add the PgDacVcl unit to the uses clause of any unit in your project to make the
Debug property work.

Note: If TPgSQLMonitor is used in the project and the TPgSQLMonitor.Active property is set
to False, the debug window is not displayed.

See Also

e TCustomDADataSet.Debug

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.6.2.4 FinalSQL Property

Used to return a SQL statement with expanded macros.

Class
TCustomDASQL

Syntax
property FinalsqQL: string;

Remarks

Read the FinalSQL property to return a SQL statement with expanded macros. This is the
exact statement that will be passed on to the database server.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.6.2.5 MacroCount Property

Used to get the number of macros associated with the Macros property.

Class
TCustomDASQL

Syntax
property MacroCount: word;

Remarks

Use the MacroCount property to get the number of macros associated with the Macros

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

366

PostgreSQL Data Access Components

property.

See Also
e Macros

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.6.2.6 Macros Property

Makes it possible to change SQL queries easily.

Class
TCustomDASQL

Syntax

property Macros: TMacros stored False;

Remarks

With the help of macros you can easily change SQL query text at design- or runtime. Marcos
extend abilities of parameters and allow to change conditions in a WHERE clause or sort
order in an ORDER BY clause. You just insert &MacroName in the SQL query text and
change value of macro in the Macro property editor at design time or call the MacroByName
function at run time. At the time of opening the query macro is replaced by its value.

See Also
e TMacro

e MacroByName

e Params

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.6.2.7 ParamCheck Property

Used to specify whether parameters for the Params property are implicitly generated when
the SQL property is being changed.

Class
TCustomDASQL

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 367

Syntax
property ParamCheck: boolean default True;

Remarks

Use the ParamCheck property to specify whether parameters for the Params property are
implicitly generated when the SQL property is being changed.

Set ParamCheck to True to let TCustomDASQL generate the Params property for the
dataset based on a SQL statement automatically.

Setting ParamCheck to False can be used if the dataset component passes to a server the
DDL statements that contain, for example, declarations of the stored procedures that will
accept parameterized values themselves. The default value is True.

See Also
e Params

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.6.2.8 ParamCount Property

Indicates the number of parameters in the Params property.

Class

TCustomDASQL

Syntax

property ParamCount: word;

Remarks

Use the ParamCount property to determine how many parameters are there in the Params
property.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.6.2.9 Params Property

Used to contain parameters for a SQL statement.

Class

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

368 PostgreSQL Data Access Components

TCustomDASQL

Syntax

property Params: TDAParams stored False;

Remarks

Access the Params property at runtime to view and set parameter names, values, and data
types dynamically (at design-time use the Parameters editor to set parameter properties).
Params is a zero-based array of parameter records. Index specifies the array element to
access. An easier way to set and retrieve parameter values when the name of each
parameter is known is to call ParamByName.

Example

Setting parameters at runtime:

rocedure TForml.ButtonlClick(Sender: TObject);
egin
with PgsqL do
begin
SQL.Clear;
SQL.Add("INSERT INTO Temp_Table(Id, Name)');
SQL.Add('VALUES (:id, :Name)');
ParamByName('Id') .AsInteger := 55;
Params[1l] .AsString := ' Green';
Execute;
end;
end;

See Also
e TDAParam

e FindParam
e Macros
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.6.2.10 ParamValues Property(Indexer)

Used to get or set the values of individual field parameters that are identified by name.

Class
TCustomDASQL

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 369

Syntax
property Paramvalues[const ParamName: string]: variant; default;

Parameters

ParamName
Holds parameter names separated by semicolon.

Remarks

Use the ParamValues property to get or set the values of individual field parameters that are
identified by name.

Setting ParamValues sets the Value property for each parameter listed in the ParamName
string. Specify the values as Variants.

Getting ParamValues retrieves an array of variants, each of which represents the value of one
of the named parameters.

Note: The Params array is generated implicitly if ParamCheck property is set to True. If
ParamName includes a name that does not match any of the parameters in ltems, an
exception is raised.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.6.2.11 Prepared Property

Used to indicate whether a query is prepared for execution.

Class
TCustomDASQL

Syntax
property Prepared: boolean;

Remarks

Check the Prepared property to determine if a query is already prepared for execution. True
means that the query has already been prepared. As a rule prepared queries are executed
faster, but the preparation itself also takes some time. One of the proper cases for using
preparation is parametrized queries that are executed several times.

See Also
e Prepare

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

370

PostgreSQL Data Access Components

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.6.2.12 Row sAffected Property

Used to indicate the number of rows which were inserted, updated, or deleted during the last
query operation.

Class
TCustomDASQL

Syntax
property RowsAffected: integer;

Remarks

Check RowsAffected to determine how many rows were inserted, updated, or deleted during
the last query operation. If RowsAffected is -1, the query has not inserted, updated, or deleted
any rows.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.6.2.13 SQL Property

Used to provide a SQL statement that a TCustomDASQL component executes when the
Execute method is called.

Class
TCustomDASQL

Syntax
property SQL: TStrings;

Remarks

Use the SQL property to provide a SQL statement that a TCustomDASQL component
executes when the Execute method is called. At design time the SQL property can be edited
by invoking the String List editor in Object Inspector.

See Also

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 371

e FinalSQL

e TCustomDASQL.Execute

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.6.3 Methods

Methods of the TCustomDASQL class.
For a complete list of the TCustomDASQL class members, see the TCustomDASQL

Members topic.

Public
Name Description
Overloaded. Executes a
Execute SQL statement on the
server.
. Checks whether
Executing TCustomDASQL still
executes a SQL statement.
FindMacro Searches for a macro with
- the specified name.
FindParam Finds a parameter with the
- specified name.
MacroByName Finds a Macro with the
name passed in Name.
ParamByName Finds a parameter with the
specified name.
Prepare Allocates, opens, and

parses cursor for a query.
Frees the resources

UnPrepare allocated for a previously
prepared query on the

server and client sides.

WaitE xecuting Waits until TCustomDASQL
executes a SQL statement.

See Also
e TCustomDASQL Class

e TCustomDASQL Class Members

© 1997-2019
Devart. All Rights

Request Support DAC Forum Provide Feedback

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

372 PostgreSQL Data Access Components

Reserved.

5.10.1.6.3.1 Execute Method

Executes a SQL statement on the server.

Class
TCustomDASQL

Overload List

Name Description

Execute Executes a SQL statement on the server.
Execute(lters: integer; Offset: integer) Used to perform Batch operations .

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Executes a SQL statement on the server.

Class
TCustomDASQL

Syntax

procedure Execute; overload; virtual;

Remarks

Call the Execute method to execute a SQL statement on the server. If the SQL statement has
OUT parameters, use the TCustomDASQL.ParamByName method or the
TCustomDASQL.Params property to get their values. lters argument specifies the number of
times this statement is executed for the DML array operations.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Used to perform Batch operations .

Class
TCustomDASQL

Syntax

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 373

procedure Execute(Iters: integer; Offset: integer = 0); overload;
virtual;

Parameters

Iters
Specifies the number of inserted rows.
Offset
Points the array element, which the Batch operation starts from. 0 by default.

Remarks

The Execute method executes the specified batch SQL query. See the Batch operations
article for samples.

See Also
e Batch operations

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.6.3.2 Executing Method

Checks whether TCustomDASQL still executes a SQL statement.

Class
TCustomDASQL

Syntax

function Executing: boolean;

Return Value
True, if a SQL statement is still being executed by TCustomDASQL.

Remarks

Check Executing to find out whether TCustomDASQL still executes a SQL statement.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

374

PostgreSQL Data Access Components

5.10.1.6.3.3 FindMacro Method

Searches for a macro with the specified name.

Class
TCustomDASQL

Syntax

function Findvacro(const value: string): TMacro;

Parameters

Value
Holds the name of a macro to search for.

Return Value

the TMacro object, if a macro with the specified name has been found. If it has not, returns

nil.

Remarks

Call the FindMacro method to find a macro with the specified name in a dataset.

See Also
e TMacro

e Macros

e MacroByName

© 1997-2019
Devart. All Rights Request Support

DAC Forum Provide Feedback

Reserved.

5.10.1.6.3.4 FindParam Method

Finds a parameter with the specified name.

Class
TCustomDASQL

Syntax

function FindrParam(const Vvalue:

Parameters

Value
Holds the parameter name to search for.

string): TDAParam;

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 375

Return Value

a TDAParm object, if a parameter with the specified name has been found. If it has not,
returns nil.

Remarks
Call the FindParam method to find a parameter with the specified name in a dataset.

See Also
e ParamByName

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.6.3.5 MacroByName Method

Finds a Macro with the name passed in Name.

Class
TCustomDASQL

Syntax

function MacroByName(const Value: string): TMacro;

Parameters
Value
Holds the name of the Macro to search for.

Return Value
the Macro, if a match was found.

Remarks

Call the MacroByName method to find a Macro with the name passed in Name. If a match
was found, MacroByName returns the Macro. Otherwise, an exception is raised. Use this
method rather than a direct reference to the ltems property to avoid depending on the order of
the entries.

To locate a parameter by name without raising an exception if the parameter is not found, use
the FindMacro method.

To assign the value of macro use the TMacro.Value property.

See Also
e TMacro

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

376 PostgreSQL Data Access Components

e Macros
e FindMacro
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.6.3.6 ParamByName Method

Finds a parameter with the specified name.

Class
TCustomDASQL

Syntax

function ParamByName(const Value: string): TDAParam;

Parameters

Value
Holds the name of the parameter to search for.

Return Value
a TDAParam object, if a match was found. Otherwise, an exception is raised.

Remarks

Use the ParamByName method to find a parameter with the specified name. If no parameter
with the specified name found, an exception is raised.

Example

PgSQL . Execute; _
Editl.Text := PgSQL.ParamsByName('Contact').AsString;

See Also
e FindParam

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.6.3.7 Prepare Method

Allocates, opens, and parses cursor for a query.

Class
TCustomDASQL

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 377

Syntax

procedure Prepare; virtual;

Remarks

Call the Prepare method to allocate, open, and parse cursor for a query. Calling Prepare
before executing a query improves application performance.

The UnPrepare method unprepares a query.

Note: When you change the text of a query at runtime, the query is automatically closed and
unprepared.

See Also
e Prepared

e UnPrepare

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.6.3.8 UnPrepare Method

Frees the resources allocated for a previously prepared query on the server and client sides.

Class
TCustomDASQL

Syntax

procedure unPrepare; virtual;

Remarks

Call the UnPrepare method to free resources allocated for a previously prepared query on the
server and client sides.

See Also

e Prepare

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

378

PostgreSQL Data Access Components

5.10.1.6.3.9 WaitExecuting Method

Waits until TCustomDASQL executes a SQL statement.

Class
TCustomDASQL

Syntax

function waitExecuting(Timeout: integer = 0): boolean;

Parameters

TimeOut

Holds the time in seconds to wait while TCustomDASQL executes the SQL statement. Zero
means infinite time.

Return Value
True, if the execution of a SQL statement was completed in the preset time.

Remarks
Call the WaitExecuting method to wait until TCustomDASQL executes a SQL statement.

See Also
e Executing

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.6.4 Events

Events of the TCustomDASAQL class.
For a complete list of the TCustomDASQL class members, see the TCustomDASQL
Members topic.

Public

Name Description
Occurs after a SQL

AfterExecute statement has been
executed.

See Also

e TCustomDASQL Class
e TCustomDASQL Class Members

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 379

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.6.4.1 AfterExecute Event

Occurs after a SQL statement has been executed.

Class
TCustomDASQL

Syntax
property AfterExecute: TAfterExecuteEvent;

Remarks

Occurs after a SQL statement has been executed. This event may be used for descendant
components which use multithreaded environment.

See Also

e TCustomDASQL.Execute

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.7 TCustomDAUpdateSQL Class

A base class for components that provide DML statements for more flexible control over data
modifications.
For a list of all members of this type, see TCustomDAUpdateSQL members.

Unit

DBAccess

Syntax
TCustombAUpdatesQL = class(TComponent);

Remarks

TCustomDAUpdateSQL is a base class for components that provide DML statements for
more flexible control over data modifications. Besides providing BDE compatibility, this
component allows to associate a separate component for each update command.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

380

PostgreSQL Data Access Components

5.10.1.7.1

See Also

e TCustomPgDataSet.UpdateObject

© 1997-2019

Devart. All Rights

Reserved.

Members

TCustomDAUpdateSQL class overview.

Request Support DAC Forum

Properties

Name

DataSet

DeleteObject

DeleteSQL

InsertObject

InsertSQL
LockObject
LockSQL
ModifyObject

ModifySQL

RefreshObject

RefreshSQL

Provide Feedback

Description

Used to hold a reference to
the TCustomDADataSet
object that is being updated.
Provides ability to perform
advanced adjustment of the
delete operations.

Used when deleting a
record.

Provides ability to perform
advanced adjustment of
insert operations.

Used when inserting a
record.

Provides ability to perform
advanced adjustment of lock
operations.

Used to lock the current
record.

Provides ability to perform
advanced adjustment of
modify operations.

Used when updating a
record.

Provides ability to perform
advanced adjustment of
refresh operations.

Used to specify an SQL
statement that will be used
for refreshing the current
record by
TCustomDADataSet.Refres

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 381

SQL

Methods
Name
Apply

ExecSQL

© 1997-2019
Devart. All Rights
Reserved.

5.10.1.7.2 Properties

Properties of the TCustomDAUpdateSQL class.

Request Support DAC Forum

hRecord procedure.

Used to return a SQL
statement for one of the
ModifySQL, InsertSQL, or
DeleteSQL properties.

Description

Sets parameters for a SQL
statement and executes it to
update a record.

Executes a SQL statement.

Provide Feedback

For a complete list of the TCustomDAUpdateSQL class members, see the

TCustomDAUpdateSQL Members topic.

Public

Name

DataSet

SQL

Published

Name

DeleteObject

DeleteSQL

Description

Used to hold a reference to
the TCustomDADataSet
object that is being updated.
Used to returna SQL
statement for one of the
ModifySQL, InsertSQL, or
DeleteSQL properties.

Description

Provides ability to perform
advanced adjustment of the
delete operations.

Used when deleting a
record.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

382 PostgreSQL Data Access Components

InsertObject

InsertSQL

LockObiject

LockSQL
ModifyObject
ModifySQL

RefreshObject

RefreshSQL

See Also
e TCustomDAUpdateSQL Class

e TCustomDAUpdateSQL Class Members
© 1997-2019

Devart. All Rights Request Support DAC Forum

Provides ability to perform
advanced adjustment of
insert operations.

Used when inserting a
record.

Provides ability to perform
advanced adjustment of lock
operations.

Used to lock the current
record.

Provides ability to perform
advanced adjustment of
modify operations.

Used when updating a
record.

Provides ability to perform
advanced adjustment of
refresh operations.

Used to specify an SQL
statement that will be used
for refreshing the current
record by
TCustomDADataSet.Refres

Reserved.

5.10.1.7.2.1 DataSet Property

hRecord procedure.

Provide Feedback

Used to hold a reference to the TCustomDADataSet object that is being updated.

Class
TCustomDAUpdateSqQL

Syntax
property DataSet: TCustombDADataSet;

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 383

Remarks

The DataSet property holds a reference to the TCustomDADataSet object that is being
updated. Generally it is not used directly.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.7.2.2 DeleteObject Property

Provides ability to perform advanced adjustment of the delete operations.

Class
TCustomDAUpdateSQL

Syntax
property DeleteObject: TComponent;

Remarks

Assign SQL component or a TCustomPgDataSet descendant to this property to perform
advanced adjustment of the delete operations. In some cases this can give some additional
performance. Use the same principle to set the SQL property of an object as for setting the
DeleteSQL property.

See Also
e DeleteSQL

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.7.2.3 DeleteSQL Property

Used when deleting a record.

Class
TCustomDAUpdateSQL

Syntax
property DeleteSQL: TStrings;

Remarks

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

384 PostgreSQL Data Access Components

Set the DeleteSQL property to a DELETE statement to use when deleting a record.
Statements can be parameterized queries with parameter names corresponding to the
dataset field names.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.7.2.4 InsertObject Property

Provides ability to perform advanced adjustment of insert operations.

Class
TCustomDAUpdateSQL

Syntax
property InsertObject: TComponent;

Remarks

Assign SQL component or TCustomPgDataSet descendant to this property to perform
advanced adjustment of insert operations. In some cases this can give some additional
performance. Set the SQL property of the object in the same way as used for the InsertSQL
property.

See Also
¢ |nsertSQL

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.7.2.5 InsertSQL Property

Used when inserting a record.

Class
TCustomDAUpdateSqQL

Syntax
property InsertSQL: TStrings;

Remarks

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 385

Set the InsertSQL property to an INSERT INTO statement to use when inserting a record.
Statements can be parameterized queries with parameter names corresponding to the
dataset field names.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.7.2.6 LockObject Property

Provides ability to perform advanced adjustment of lock operations.

Class
TCustomDAUpdateSQL

Syntax
property LockObject: TComponent;

Remarks

Assign a SQL component or TCustomPgDataSet descendant to this property to perform
advanced adjustment of lock operations. In some cases that can give some additional
performance. Set the SQL property of an object in the same way as used for the LockSQL
property.

See Also
e L ockSQL

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.7.2.7 LockSQL Property

Used to lock the current record.

Class
TCustomDAUpdateSqQL

Syntax
property LockSQL: TStrings;

Remarks

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

386

PostgreSQL Data Access Components

Use the LockSQL property to lock the current record. Statements can be parameterized
queries with parameter names corresponding to the dataset field names.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.7.2.8 ModifyObject Property

Provides ability to perform advanced adjustment of modify operations.

Class
TCustomDAUpdateSQL

Syntax
property ModifyObject: TComponent;

Remarks

Assign a SQL component or TCustomPgDataSet descendant to this property to perform
advanced adjustment of modify operations. In some cases this can give some additional
performance. Set the SQL property of the object in the same way as used for the ModifySQL

property.

See Also
 ModifySQL
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.7.2.9 ModifySQL Property

Used when updating a record.

Class
TCustomDAUpdateSQL

Syntax
property ModifysQL: TStrings;

Remarks
Set ModifySQL to an UPDATE statement to use when updating a record. Statements can be

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 387

parameterized queries with parameter names corresponding to the dataset field names.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.7.2.10 RefreshObject Property

Provides ability to perform advanced adjustment of refresh operations.

Class
TCustomDAUpdateSqQL

Syntax
property RefreshObject: TComponent;

Remarks

Assign a SQL component or TCustomPgDataSet descendant to this property to perform
advanced adjustment of refresh operations. In some cases that can give some additional
performance. Set the SQL property of the object in the same way as used for the
RefreshSQL property.

See Also
¢ RefreshSQL

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.7.2.11 RefreshSQL Property

Used to specify an SQL statement that will be used for refreshing the current record by
TCustomDADataSet.RefreshRecord procedure.

Class
TCustomDAUpdateSQL

Syntax
property RefreshsQL: TStrings;

Remarks
Use the RefreshSQL property to specify a SQL statement that will be used for refreshing the

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

388 PostgreSQL Data Access Components

current record by the TCustomDADataSet.RefreshRecord procedure.

You can assign to SQLRefresh a WHERE clause only. In such a case it is added to SELECT
defined by the SQL property by TCustomDADataSet. AddWhere.

To create a RefreshSQL statement at design time, use the query statements editor.

See Also

e TCustomDADataSet.RefreshRecord

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.7.2.12 SQL Property(Indexer)

Used to return a SQL statement for one of the ModifySQL, InsertSQL, or DeleteSQL
properties.

Class
TCustomDAUpdateSqQL

Syntax
property SQL[UpdateKind: TupdateKind]: TStrings;

Parameters

UpdateKind
Specifies which of update SQL statements to return.

Remarks

Returns a SQL statement for one of the ModifySQL, InsertSQL, or DeleteSQL properties,
depending on the value of the UpdateKind index.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.7.3 Methods

Methods of the TCustomDAUpdateSQL class.
For a complete list of the TCustomDAUpdate SQL class members, see the
TCustomDAUpdateSQL Members topic.

Public

Name Description

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 389

Sets parameters for a SQL

Apply statement and executes it to
update a record.

ExecSQL Executes a SQL statement.

See Also

e TCustomDAUpdateSQL Class
e TCustomDAUpdateSQL Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.7.3.1 Apply Method

Sets parameters for a SQL statement and executes it to update a record.

Class
TCustomDAUpdateSQL

Syntax
procedure Apply(UpdateKind: TUpdateKind); virtual;

Parameters

UpdateKind
Specifies which of update SQL statements to execute.

Remarks

Call the Apply method to set parameters for a SQL statement and execute it to update a
record. UpdateKind indicates which SQL statement to bind and execute.

Apply is primarily intended for manually executing update statements from an
OnUpdateRecord event handler.

Note: If a SQL statement does not contain parameters, it is more efficient to call ExecSQL
instead of Apply.

See Also
e ExecSQL

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

390

PostgreSQL Data Access Components

5.10.1.7.3.2 ExecSQL Method

5.10.1.8

Executes a SQL statement.

Class
TCustomDAUpdateSQL

Syntax
procedure ExecSQL(UpdateKind: TupdateKind);

Parameters

UpdateKind
Specifies the kind of update statement to be executed.

Remarks

Call the ExecSQL method to execute a SQL statement, necessary for updating the records
belonging to a read-only result set when cached updates is enabled. UpdateKind specifies the
statement to execute.

ExecSQL is primarily intended for manually executing update statements from the
OnUpdateRecord event handler.

Note: To both bind parameters and execute a statement, call Apply.

See Also
* Apply
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

TDACondition Class

Represents a condition from the TDAConditions list.
For a list of all members of this type, see TDACondition members.

Unit

DBAcCcess

Syntax

TDACondition = class(TCollectionItem);

Remarks

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 391

Manipulate conditions using TDAConditions.

See Also
e TDAConditions

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.8.1 Members

TDACondition class overview.

Properties

Name Description

Enabled Indicates whether the
condition is enabled or not

Name The name of the condition

Value The value of the condition

Methods

Name Description

Disable Disables the condition

Enable Enables the condition

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.8.2 Properties

Properties of the TDACondition class.

For a complete list of the TDACondition class members, see the TDACondition Members

topic.

Published

Name Description

Enabled Indicg’ges yvhether the
condition is enabled or not

Name

The name of the condition

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

392 PostgreSQL Data Access Components

Value

The value of the condition

See Also
e TDACondition Class

e TDACondition Class Members

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.8.2.1 Enabled Property

Indicates whether the condition is enabled or not

Class

TDACondition

Syntax

property Enabled: Boolean default True;

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.8.2.2 Name Property

The name of the condition

Class

TDACondition

Syntax

property Name: string;

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.8.2.3 Value Property

The value of the condition

Class

TDACondition

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 393

Syntax

property Vvalue: string;

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.8.3 Methods

Methods of the TDACondition class.

For a complete list of the TDACondition class members, see the TDACondition Members

topic.

Public

Name Description

Disable Disables the condition
Enable Enables the condition
See Also

e TDACondition Class
e TDACondition Class Members

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.8.3.1 Disable Method

Disables the condition

Class

TDACondition

Syntax

procedure Disable;

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

394

PostgreSQL Data Access Components

5.10.1.8.3.2 Enable Method

5.10.1.9

5.10.1.9.1

Enables the condition

Class

TDACondition

Syntax

procedure Enable;

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

TDAConditions Class

Holds a collection of TDACondition objects.
For a list of all members of this type, see TDAConditions members.

Unit

DBAccess

Syntax
TDAConditions = class(TCollection);

Remarks

The given example code

UniTablel.Conditions.Add('1l', 'JOB=""MANAGER"');
UniTablel.Conditions.Add('2', 'SAL>2500");
UniTablel.Conditions.Enable;

UniTablel.Open;

will return the following SQL:

SELECT * FROM EMP
WHERE (JOB="MANAGER")

and

(SAL<2500)

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Members

TDAConditions class overview.

Properties

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 395

Name
Condition

Enabled

ltems

Text

WhereSQL

Methods

Name

Add

Delete
Disable

Enable

Find

Get

IndexOf

Remove

Description

Used to iterate through all
the conditions.

Indicates whether the
condition is enabled

Used to iterate through all
conditions.

The property returns
condition names and values
as
CONDITION_NAME=COND
TION

Returns the SQL WHERE
condition added in the
Conditions property.

Description
Overloaded. Adds a
condition to the WHERE
clause of the query.

Deletes the condition
Disables the condition

Enables the condition

Search for TDACondition
(the condition) by its name. If
found, the TDACondition
object is returned, otherwise
- nil.

Retrieving a TDACondition
object by its name. If found,
the TDACondition object is
returned, otherwise - an
exception is raised.
Retrieving condition index by
its name. If found, this
condition index is returned,
otherwise - the method
returns -1.

Removes the condition

© 2019 Devart



396

PostgreSQL Data Access Components

© 1997-2019
Devart. All Rights

Request Support

DAC Forum

Reserved.

5.10.1.9.2 Properties

Properties of the TDAConditions class.

Provide Feedback

For a complete list of the TDAConditions class members, see the TDAConditions Members

topic.
Public

Name

Condition
Enabled

ltems

Text

WhereSQL

See Also
e TDAConditions Class

e TDAConditions Class Members

© 1997-2019
Devart. All Rights

Request Support

DAC Forum

Reserved.

5.10.1.9.2.1 Condition Property(Indexer)

Used to iterate through all the conditions.

Class
TDAConditions

Syntax

Description

Used to iterate through alll
the conditions.

Indicates whether the
condition is enabled

Used to iterate through all
conditions.

The property returns
condition names and values
as
CONDITION_NAME=COND
TION

Returns the SQL WHERE
condition added in the
Conditions property.

Provide Feedback

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 397

property Condition[Index: Integer]: TDACondition;

Parameters

Index

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.9.2.2 Enabled Property

Indicates whether the condition is enabled

Class

TDAConditions

Syntax

property Enabled: Boolean;

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.9.2.3 ltems Property(Indexer)

Used to iterate through all conditions.

Class

TDAConditions

Syntax

property Items[Index: Integer]: TDACondition; default;

Parameters

Index
Holds an index in the range 0..Count - 1.

Remarks

Use the ltems property to iterate through all conditions. Index identifies the index in the range
0..Count - 1. ltems can reference a particular condition by its index, but the Condition property
is preferred in order to avoid depending on the order of the conditions.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

398 PostgreSQL Data Access Components

5.10.1.9.2.4 Text Property

The property returns condition names and values as CONDITION_NAME=CONDITION

Class

TDAConditions

Syntax

property Text: string;

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.9.2.5 WhereSQL Property

Returns the SQL WHERE condition added in the Conditions property.

Class

TDAConditions

Syntax

property WwheresSQL: string;

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.9.3 Methods

Methods of the TDAConditions class.

For a complete list of the TDAConditions class members, see the TDAConditions Members

topic.

Public

Name Description
Overloaded. Adds a

Add condition to the WHERE
clause of the query.

Delete Deletes the condition

Disable Disables the condition

Enable

Enables the condition

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 399

Search for TDACondition
_ (the condition) by its name. If

Find found, the TDACondition

object is returned, otherwise

- nil.

Retrieving a TDACondition

object by its name. If found,
Get the TDACondition object is
returned, otherwise - an
exceptionis raised.
Retrieving condition index by
its name. If found, this
condition index is returned,
otherwise - the method
returns -1.

Remove Removes the condition

IndexOf

See Also
e TDAConditions Class

e TDAConditions Class Members
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.9.3.1 Add Method

Adds a condition to the WHERE clause of the query.

Class

TDAConditions

Overload List

Name Description

Add(const Value: string; Enabled: Adds a condition to the WHERE clause of
Boolean) the query.

Add(const Name: string; const Value: Adds a condition to the WHERE clause of
string; Enabled: Boolean) the query.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

400

PostgreSQL Data Access Components

Adds a condition to the WHERE clause of the query.

Class
TDAConditions

Syntax

function Add(const value: string; Enabled: Boolean = True):
TDACondition; overload;

Parameters
Value
The value of the condition
Enabled
Indicates that the condition is enabled

Remarks

If you want then to access the condition, you should use Add and its name in the Name
parameter.

The given example code will return the following SQL.:

SELECT * FROM EMP
WHERE (JOB="MANAGER")

and
(SAL<2500)
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

Adds a condition to the WHERE clause of the query.

Class
TDAConditions

Syntax

function Add(const Name: string; const Vvalue: string; Enabled:
Boolean = True): TDACondition; overload;

Parameters
Name
Sets the name of the condition

Value
The value of the condition

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 401

Enabled
Indicates that the condition is enabled

Remarks

The given example code will return the following SQL:

SELECT * FROM EMP
WHERE (JOB="MANAGER")

and
(SAL<2500)

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.9.3.2 Delete Method

Deletes the condition

Class
TDAConditions

Syntax

procedure Delete(Index: integer);

Parameters

Index
Index of the condition
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.9.3.3 Disable Method

Disables the condition

Class
TDAConditions

Syntax

procedure Disable;

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

402 PostgreSQL Data Access Components

5.10.1.9.3.4 Enable Method

Enables the condition

Class

TDAConditions

Syntax

procedure Enable;

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.9.3.5 Find Method

Search for TDACondition (the condition) by its name. If found, the TDACondition object is
returned, otherwise - nil.

Class
TDAConditions

Syntax
function Find(const Name: string): TDACondition;

Parameters

Name

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.9.3.6 Get Method

Retrieving a TDACondition object by its name. If found, the TDACondition object is returned,
otherwise - an exception is raised.

Class
TDAConditions

Syntax
function Get(const Name: string): TDACondition;

Parameters

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 403

Name

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.9.3.7 IndexOf Method

Retrieving condition index by its name. If found, this condition index is returned, otherwise -
the method returns -1.

Class
TDAConditions

Syntax
function Indexof(const Name: string): Integer;

Parameters

Name

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.9.3.8 Remove Method

Removes the condition

Class

TDAConditions

Syntax

procedure Remove(const Name: string);

Parameters

Name
Specifies the name of the removed condition

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.10 TDAConnectionOptions Class

This class allows setting up the behaviour of the TDAConnection class.
For a list of all members of this type, see TDAConnectionOptions members.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

404 PostgreSQL Data Access Components

Unit

DBAcCcessS

Syntax

TDAConnectionOptions = class(TPersistent);

© 1997-2019
Devart. All Rights Request Support DAC Forum

Reserved.

5.10.1.10.1 Members

TDAConnectionOptions class overview.

Properties

Name

AllowimplicitConnect

DefaultSortType

DisconnectedMode

KeepDesignConnected

LocalFailover

© 1997-2019 Request Support DAC Forum

Provide Feedback

Description

Specifies whether to allow or
not implicit connection
opening.

Used to determine the
default type of local sorting
for string fields. ltis used
when a sort type is not
specified explicitly after the
field name in the
TMemDataSet.IndexFieldNa
mes property of a dataset.

Used to open a connection
only when needed for
performing a server call and
closes after performing the
operation.

Used to prevent an
application from establishing
a connection at the time of
startup.

if True, the
TCustomDAConnection.On
ConnectionLost event
occurs and a failover
operation can be performed
after connection breaks.

Provide Feedback

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 405

Devart. All Rights
Reserved.

5.10.1.10.2 Properties

Properties of the TDAConnectionOptions class.

For a complete list of the TDAConnectionOptions class members, see the

TDAConnectionOptions Members topic.

Public

Name

DefaultSortType

DisconnectedMode

KeepDesignConnected

LocalFailover

Published

Name

AllowimplicitConnect

See Also

Description

Used to determine the
default type of local sorting
for string fields. ltis used
when a sort type is not
specified explicitly after the
field name in the
TMemDataSet.IndexFieldNa
mes property of a dataset.

Used to open a connection
only when needed for
performing a server call and
closes after performing the
operation.

Used to prevent an
application from establishing
a connection at the time of
startup.

if True, the
TCustomDAConnection.On
ConnectionLost event
occurs and a failover
operation can be performed
after connection breaks.

Description

Specifies whether to allow or
not implicit connection
opening.

© 2019 Devart



406 PostgreSQL Data Access Components

e TDAConnectionOptions Class

e TDAConnectionOptions Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.10.2.1 Allow ImplicitConnect Property

Specifies whether to allow or not implicit connection opening.

Class

TDAConnectionOptions

Syntax

property AllowImplicitConnect: boolean default True;

Remarks

Use the AllowlmplicitConnect property to specify whether allow or not implicit connection
opening.

If a closed connection has AllowimplicitConnect set to True and a dataset that uses the
connection is opened, the connection is opened implicitly to allow opening the dataset.

If a closed connection has AllowimplicitConnect set to False and a dataset that uses the
connection is opened, an exception is raised.

The default value is True.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.10.2.2 DefaultSortType Property

Used to determine the default type of local sorting for string fields. It is used when a sort type
is not specified explicitly after the field name in the TMemDataSet.IndexFieldNames property
of a dataset.

Class

TDAConnectionOptions

Syntax
property DefaultSortType: TSortType default stCaseSensitive;

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 407

Remarks

Use the DefaultSortType property to determine the default type of local sorting for string fields.
It is used when a sort type is not specified explicitly after the field name in the
TMemDataSet.IndexFieldNames property of a dataset.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.10.2.3 DisconnectedMode Property

Used to open a connection only when needed for performing a server call and closes after
performing the operation.

Class

TDAConnectionOptions

Syntax
property DisconnectedMode: boolean default False;

Remarks

If True, connection opens only when needed for performing a server call and closes after
performing the operation. Datasets remain opened when connection closes. May be useful to
save server resources and operate in unstable or expensive network. Drawback of using
disconnect mode is that each connection establishing requires some time for authorization. If
connection is often closed and opened it can slow down the application work. See the
Disconnected Mode topic for more information.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.10.2.4 KeepDesignConnected Property

Used to prevent an application from establishing a connection at the time of startup.

Class

TDAConnectionOptions

Syntax

property KeepDesignConnected: boolean default True;

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

408 PostgreSQL Data Access Components

Remarks

At the time of startup prevents application from establishing a connection even if the
Connected property was set to True at design-time. Set KeepDesignConnected to False to
initialize the connected property to False, even if it was True at design-time.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.10.2.5 LocalFailover Property

If True, the TCustomDAConnection.OnConnectionLost event occurs and a failover operation
can be performed after connection breaks.

Class

TDAConnectionOptions

Syntax

property LocalFailover: boolean default False;

Remarks

If True, the TCustomDAConnection.OnConnectionLost event occurs and a failover operation
can be performed after connection breaks. Read the Working in an Unstable Network topic for
more information about using failover.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.11 TDADataSetOptions Class

This class allows setting up the behaviour of the TDADataSet class.
For a list of all members of this type, see TDADataSetOptions members.

Unit

DBAccess

Syntax

TDADataSetOptions = class(TPersistent);

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 409

5.10.1.11.1 Members

TDADataSetOptions class overview.

Properties

Name

AutoPrepare

CacheCalcFields

CompressBlobMode

Description

Used to execute automatic
TCustomDADataSet.Prepar

DefaultValues

DetailDelay

FieldsOrigin

FlatBuffers

InsertAllSetFields

LocalMasterDetail

e on the query execution.
Used to enable caching of
the TField.Calculated and
TField.Lookup fields.

Used to store values of the
BLOB fields in compressed
form.

Used to request default
values/expressions from the
server and assign them to
the DefaultExpression
property.

Used to get or set a delay in
milliseconds before
refreshing detail dataset
while navigating master
dataset.

Used for
TCustomDADataSet to fill
the Origin property of the
TField objects by
appropriate value when
opening a dataset.

Used to control how a
dataset treats data of the
ftString and ftVarBytes
fields.

Used to include all set
dataset fields in the
generated INSERT
statement

Used for
TCustomDADataSet to use
local filtering to establish
master/detail relationship for
detail dataset and does not
refer to the server.

© 2019 Devart



410

PostgreSQL Data Access Components

LongStrings

MasterFieldsNullable

NumberRange

QueryRecCount

QuoteNames

RemoveOnRefresh

RequiredFields

ReturnParams

SetFieldsReadOnly

Used to represent string
fields with the length that is
greater than 255 as
TStringField.

Allows to use NULL values
in the fields by which the
relation is built, when
generating the query for the
Detail tables (when this
optionis enabled, the
performance can get worse).
Used to set the MaxValue
and MinValue properties of
TintegerField and
TFloatField to appropriate
values.

Used for
TCustomDADataSet to
perform additional query to
get the record count for this
SELECT, so the
RecordCount property
reflects the actual number of
records.

Used for
TCustomDADataSet to
quote all database object
names in autogenerated
SQL statements such as
update SQL.

Used for a dataset to locally
remove a record that can not
be found on the server.
Used for
TCustomDADataSet to set
the Required property of the
TField objects for the NOT
NULL fields.

Used to return the new value
of fields to dataset after
insert or update.

Used for a dataset to set the
ReadOnly property to True
for all fields that do not
belong to UpdatingTable or

© 2019 Devart



Reference 411

can not be updated.
Used for
TCustomDADataSet to
StrictUpdate raise an exception when the
- number of updated or
deleted records is not equal
1.
o Specifies whether to discard
TrimFixedChar all trailing spaces in the
string fields of a dataset.
Used to include all dataset
UpdateAllFields fields in the generated
UPDATE and INSERT
statements.
Used to get or set a value
that enables or disables
UpdateBatchSize batch processing support,
and specifies the number of
commands that can be
executed in a batch.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.11.2 Properties

Properties of the TDADataSetOptions class.
For a complete list of the TDADataSetOptions class members, see the TDADataSetOptions

Members topic.

Public
Name Description

Used to execute automatic
AutoPrepare TCustomDADataSet.Prepar

e on the query execution.
_ Used to enable caching of
CacheCalcFields the TField.Calculated and
TField.Lookup fields.

Used to store values of the

CompressBlobMode BLOB fields in compressed
form.
DefaultValues Used to request default

values/expressions from the

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

412

PostgreSQL Data Access Components

DetailDelay

FieldsOrigin

FlatBuffers

InsertAllSetFields

LocalMasterDetail

LongStrings

MasterFieldsNullable

NumberRange

server and assign them to
the DefaultExpression
property.

Used to get or set a delay in
milliseconds before
refreshing detail dataset
while navigating master
dataset.

Used for
TCustomDADataSet to fill
the Origin property of the
TField objects by
appropriate value when
opening a dataset.

Used to control how a
dataset treats data of the
ftString and ftVarBytes
fields.

Used to include all set
dataset fields in the
generated INSERT
statement

Used for
TCustomDADataSet to use
local filtering to establish
master/detail relationship for
detail dataset and does not
refer to the server.

Used to represent string
fields with the length that is
greater than 255 as
TStringField.

Allows to use NULL values
in the fields by which the
relation is built, when
generating the query for the
Detail tables (when this
optionis enabled, the
performance can get worse).
Used to set the MaxValue
and MinValue properties of
TintegerField and
TFloatField to appropriate
values.

© 2019 Devart



Reference 413

QueryRecCount

QuoteNames

RemoveOnRefresh

RequiredFields

ReturnParams

SetFieldsReadOnly

StrictUpdate

TrimFixedChar

UpdateAllFields

UpdateBatchSize

Used for
TCustomDADataSet to
perform additional query to
get the record count for this
SELECT, so the
RecordCount property
reflects the actual number of
records.

Used for
TCustomDADataSet to
quote all database object
names in autogenerated
SQL statements such as
update SQL.

Used for a dataset to locally
remove a record that can not
be found on the server.
Used for
TCustomDADataSet to set
the Required property of the
TField objects for the NOT
NULL fields.

Used to return the new value
of fields to dataset after
insert or update.

Used for a dataset to set the
ReadOnly property to True
for all fields that do not
belong to UpdatingTable or
can not be updated.

Used for
TCustomDADataSet to
raise an exception when the
number of updated or
deleted records is not equal
1.

Specifies whether to discard
all trailing spaces in the
string fields of a dataset.
Used to include all dataset
fields in the generated
UPDATE and INSERT
statements.

Used to get or set a value
that enables or disables

© 2019 Devart



414 PostgreSQL Data Access Components

batch processing support,
and specifies the number of
commands that can be
executed in a batch.

See Also
e TDADataSetOptions Class

e TDADataSetOptions Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.11.2.1 AutoPrepare Property

Used to execute automatic TCustomDADataSet.Prepare on the query execution.

Class
TDADataSetOptions

Syntax
property AutoPrepare: boolean default False;

Remarks

Use the AutoPrepare property to execute automatic TCustomDADataSet.Prepare on the
query execution. Makes sense for cases when a query will be executed several times, for
example, in Master/Detail relationships.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.11.2.2 CacheCalcFields Property

Used to enable caching of the TField.Calculated and TField.Lookup fields.

Class
TDADataSetOptions

Syntax
property CacheCalcFields: boolean default False;

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 415

Remarks

Use the CacheCalcFields property to enable caching of the TField.Calculated and
TField.Lookup fields. It can be useful for reducing CPU usage for calculated fields. Using
caching of calculated and lookup fields increases memory usage on the client side.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.11.2.3 CompressBlobMode Property

Used to store values of the BLOB fields in compressed form.

Class
TDADataSetOptions

Syntax
property CompressBlobMode: TCompressBlobMode default cbNone;

Remarks

Use the CompressBlobMode property to store values of the BLOB fields in compressed form.
Add the MemData unit to uses list to use this option. Compression rate greatly depends on
stored data, for example, usually graphic data compresses badly unlike text.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.11.2.4 DefaultValues Property

Used to request default values/expressions from the server and assign them to the
DefaultExpression property.

Class
TDADataSetOptions

Syntax
property Defaultvalues: boolean default False;

Remarks
If True, the default values/expressions are requested from the server and assigned to the

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

416 PostgreSQL Data Access Components

DefaultExpression property of TField objects replacing already existent values.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.11.2.5 DetailDelay Property

Used to get or set a delay in milliseconds before refreshing detail dataset while navigating
master dataset.

Class
TDADataSetOptions

Syntax
property DetailDelay: integer default O;

Remarks

Use the DetailDelay property to get or set a delay in milliseconds before refreshing detail
dataset while navigating master dataset. If DetailDelay is O (the default value) then refreshing
of detail dataset occurs immediately. The DetailDelay option should be used for detail dataset.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.11.2.6 FieldsOrigin Property

Used for TCustomDADataSet to fill the Origin property of the TField objects by appropriate
value when opening a dataset.

Class
TDADataSetOptions

Syntax
property FieldsOrigin: boolean;

Remarks

If True, TCustomDADataSet fills the Origin property of the TField objects by appropriate value
when opening a dataset.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 417

Reserved.

5.10.1.11.2.7 FlatBuffers Property

Used to control how a dataset treats data of the ftString and ftVarBytes fields.

Class
TDADataSetOptions

Syntax
property FlatBuffers: boolean default False;

Remarks

Use the FlatBuffers property to control how a dataset treats data of the ftString and ftVarBytes
fields. When set to True, all data fetched from the server is stored in record pdata without
unused tails.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.11.2.8 InsertAllSetFields Property

Used to include all set dataset fields in the generated INSERT statement

Class
TDADataSetOptions

Syntax
property InsertAllSetFields: boolean default False;

Remarks

If True, all set dataset fields, including those set to NULL explicitly, will be included in the
generated INSERT statements. Otherwise, only set fields containing not NULL values will be
included to the generated INSERT statement.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.11.2.9 LocalMasterDetail Property

Used for TCustomDADataSet to use local filtering to establish master/detail relationship for
detail dataset and does not refer to the server.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

418 PostgreSQL Data Access Components

Class
TDADataSetOptions

Syntax

property LocalMasterDetail: boolean default False;

Remarks

If True, for detail dataset in master-detail relationship TCustomDADataSet uses local filtering
for establishing master/detail relationship and does not refer to the server. Otherwise detalil
dataset performs query each time a record is selected in master dataset. This option is useful
for reducing server calls number, server resources economy. It can be useful for slow
connection. The TMemDataSet.CachedUpdates mode can be used for detail dataset only
when this option is set to true. Setting the LocalMasterDetail option to True is not
recommended when detail table contains too many rows, because when it is set to False,
only records that correspond to the current record in master dataset are fetched.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.11.2.10 LongStrings Property

Used to represent string fields with the length that is greater than 255 as TStringField.

Class
TDADataSetOptions

Syntax
property LongsStrings: boolean default True;

Remarks
Use the LongStrings property to represent string fields with the length that is greater than 255
as TStringField, not as TMemoField.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.11.2.11 MasterFieldsNullable Property

Allows to use NULL values in the fields by which the relation is built, when generating the

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 419

query for the Detail tables (when this option is enabled, the performance can get worse).

Class

TDADataSetOptions

Syntax

property MasterFieldsNullable: boolean default False;

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.11.2.12 NumberRange Property

Used to set the MaxValue and MinValue properties of TintegerField and TFloatField to
appropriate values.

Class
TDADataSetOptions

Syntax
property NumberRange: boolean default False;

Remarks

Use the NumberRange property to set the MaxValue and MinValue properties of TIntegerField
and TFloatField to appropriate values.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.11.2.13 QueryRecCount Property

Used for TCustomDADataSet to perform additional query to get the record count for this
SELECT, so the RecordCount property reflects the actual number of records.

Class
TDADataSetOptions

Syntax
property QueryRecCount: boolean default False;

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

420 PostgreSQL Data Access Components

Remarks

If True, and the FetchAll property is False, TCustomDADataSet performs additional query to
get the record count for this SELECT, so the RecordCount property reflects the actual
number of records. Does not have any effect if the FetchAll property is True.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.11.2.14 QuoteNames Property

Used for TCustomDADataSet to quote all database object names in autogenerated SQL
statements such as update SQL.

Class
TDADataSetOptions

Syntax
property QuoteNames: boolean default False;

Remarks

If True, TCustomDADataSet quotes all database object names in autogenerated SQL
statements such as update SQL.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.11.2.15 RemoveOnRefresh Property

Used for a dataset to locally remove a record that can not be found on the server.

Class
TDADataSetOptions

Syntax

property RemoveOnRefresh: boolean default True;

Remarks

When the RefreshRecord procedure can't find necessary record on the server and
RemoveOnRefresh is set to True, dataset removes the record locally. Usually

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 421

RefreshRecord can't find necessary record when someone else dropped the record or
changed the key value of it.

This option makes sense only if the StrictUpdate option is set to False. If the StrictUpdate
option is True, error will be generated regardless of the RemoveOnRefresh option value.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.11.2.16 RequiredFields Property

Used for TCustomDADataSet to set the Required property of the TField objects for the NOT
NULL fields.

Class
TDADataSetOptions

Syntax
property RequiredFields: boolean default True;

Remarks
If True, TCustomDADataSet sets the Required property of the TField objects for the NOT
NULL fields. It is useful when table has a trigger which updates the NOT NULL fields.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.11.2.17 ReturnParams Property

Used to return the new value of fields to dataset after insert or update.

Class
TDADataSetOptions

Syntax
property ReturnParams: boolean default False;

Remarks

Use the ReturnParams property to return the new value of fields to dataset after insert or
update. The actual value of field after insert or update may be different from the value stored
in the local memory if the table has a trigger. When ReturnParams is True, OUT parameters

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

422 PostgreSQL Data Access Components

of the SQLInsert and SQLUpdate statements is assigned to the corresponding fields.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.11.2.18 SetFieldsReadOnly Property

Used for a dataset to set the ReadOnly property to True for all fields that do not belong to
UpdatingTable or can not be updated.

Class
TDADataSetOptions

Syntax
property SetFieldsReadonly: boolean default True;

Remarks

If True, dataset sets the ReadOnly property to True for all fields that do not belong to
UpdatingTable or can not be updated. Set this option for datasets that use automatic
generation of the update SQL statements only.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.11.2.19 StrictUpdate Property

Used for TCustomDADataSet to raise an exception when the number of updated or deleted
records is not equal 1.

Class
TDADataSetOptions

Syntax
property StrictUpdate: boolean default True;

Remarks

If True, TCustomDADataSet raises an exception when the number of updated or deleted
records is not equal 1. Setting this option also causes the exception if the RefreshRecord
procedure returns more than one record. The exception does not occur when you execute
SQL query, that doesn't return resultset.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 423

Note: There can be problems if this option is set to True and triggers for UPDATE, DELETE,
REFRESH commands that are defined for the table. So it is recommended to disable (set to
False) this option with triggers.

TrimFixedChar specifies whether to discard all trailing spaces in the string fields of a dataset.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.11.2.20 TrimFixedChar Property

Specifies whether to discard all trailing spaces in the string fields of a dataset.

Class

TDADataSetOptions

Syntax

property TrimFixedChar: boolean default True;

Remarks

Specifies whether to discard all trailing spaces in the string fields of a dataset.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.11.2.21 UpdateAllFields Property

Used to include all dataset fields in the generated UPDATE and INSERT statements.

Class
TDADataSetOptions

Syntax
property UpdateAllFields: boolean default False;

Remarks

If True, all dataset fields will be included in the generated UPDATE and INSERT statements.
Unspecified fields will have NULL value in the INSERT statements. Otherwise, only updated
fields will be included to the generated update statements.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

424 PostgreSQL Data Access Components

5.10.1.11.2.22 UpdateBatchSize Property

Used to get or set a value that enables or disables batch processing support, and specifies
the number of commands that can be executed in a batch.

Class
TDADataSetOptions

Syntax
property UpdateBatchSize: Integer default 1;

Remarks

Use the UpdateBatchSize property to get or set a value that enables or disables batch
processing support, and specifies the number of commands that can be executed in a batch.
Takes effect only when updating dataset in the TMemDataSet.CachedUpdates mode. The
default value is 1.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.12 TDAEncryption Class

Used to specify the options of the data encryption in a dataset.
For a list of all members of this type, see TDAEncryption members.

Unit

DBAccess

Syntax

TDAEncryption = class(TPersistent);

Remarks

Set the properties of Encryption to specify the options of the data encryption in a dataset.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 425

5.10.1.12.1 Members

TDAEnNcryption class overview.

Properties
Name Description
Used to specify the
Encryptor encryptor class that will
perform the data encryption.
_ Used to set field names for
Fields which encryption will be
performed.
© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.12.2 Properties

Properties of the TDAEnNcryption class.
For a complete list of the TDAENcryption class members, see the TDAEncryption Members

topic.

Public

Name Description
Used to specify the

Encryptor encryptor class that will
perform the data encryption.

Published

Name Description

) Used to set field names for

Fields which encryption will be
performed.

See Also

e TDAEncryption Class

e TDAEncryption Class Members

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

426 PostgreSQL Data Access Components

5.10.1.12.2.1 Encryptor Property

Used to specify the encryptor class that will perform the data encryption.

Class

TDAENncryption

Syntax

property Encryptor: TCREncryptor;

Remarks

Use the Encryptor property to specify the encryptor class that will perform the data
encryption.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.12.2.2 Fields Property

Used to set field names for which encryption will be performed.

Class

TDAENncryption

Syntax
property Fields: string;

Remarks

Used to set field names for which encryption will be performed. Field names must be
separated by semicolons.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.13 TDAMapRule Class

Class that formes rules for Data Type Mapping.
For a list of all members of this type, see TDAMapRule members.

Unit

DBAcCcessS

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 427

Syntax
TDAMapRule = class(TMapRule);

Remarks

Using properties of this class, it is possible to change parameter values of the specified rules
from the TDAMapRules set.

Inheritance Hierarchy
TMapRule
TDAMapRule

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.13.1 Members

TDAMapRule class overview.

Properties
Name Description
Maximum DB field length,
DBLengthMax until which the rule is
applied.
. Minimum DB field length,
DBLengthMin starting from which the rule
is applied.
Maximum DB field scale,
DBScaleMax until which the rule is applied
to the specified DB field.
Minimum DB field Scale,
DBScaleMin starting from which the rule
- is applied to the specified
DB field.
DB field type, that the rule is
DBType applied to.
FieldLength The resultant field length in
- Delphi.
FieldName DataSet field name, for
E— which the rule is applied.
FieldScale The resultant field Scale in
- Delphi.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

428 PostgreSQL Data Access Components

FieldType

lgnoreErrors

© 1997-2019
Devart. All Rights
Reserved.

5.10.1.13.2 Properties

Request Support

DAC Forum

Properties of the TDAMapRule class.

Delphi field type, that the
specified DB type or
DataSet field will be
mapped to.

lgnoring errors when
converting data from DB to
Delphi type.

Provide Feedback

For a complete list of the TDAMapRule class members, see the TDAMapRule Members

topic.
Published

Name

DBLengthMax

DBLengthMin

DBScaleMax

DBScaleMin

DBType

FieldLength

FieldName

FieldScale

FieldType

Description

Maximum DB field length,
until which the rule is
applied.

Minimum DB field length,
starting from which the rule
is applied.

Maximum DB field scale,
until which the rule is applied
to the specified DB field.
Minimum DB field Scale,
starting from which the rule
is applied to the specified
DB field.

DB field type, that the rule is
applied to.

The resultant field length in
Delphi.

DataSet field name, for
which the rule is applied.
The resultant field Scale in
Delphi.

Delphi field type, that the
specified DB type or
DataSet field will be

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 429

mapped to.

lgnoring errors when
lgnoreErrors converting data from DB to

Delphi type.

See Also
e TDAMapRule Class

e TDAMapRule Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.13.2.1 DBLengthMax Property

Maximum DB field length, until which the rule is applied.

Class
TDAMapRule

Syntax
property DBLengthMax: Integer default rlAny;

Remarks
Setting maximum DB field length, until which the rule is applied to the specified DB field.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.13.2.2 DBLengthMin Property

Minimum DB field length, starting from which the rule is applied.

Class
TDAMapRule

Syntax
property DBLengthMin: Integer default rlAny;

Remarks
Setting minimum DB field length, starting from which the rule is applied to the specified DB

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

430 PostgreSQL Data Access Components

field.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.13.2.3 DBScaleMax Property

Maximum DB field scale, until which the rule is applied to the specified DB field.

Class
TDAMapRule

Syntax
property DBScaleMax: Integer default rlAny;

Remarks
Setting maximum DB field scale, until which the rule is applied to the specified DB field.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.13.2.4 DBScaleMin Property

Minimum DB field Scale, starting from which the rule is applied to the specified DB field.

Class

TDAMapRule

Syntax
property DBScaleMin: Integer default rlAny;

Remarks

Setting minimum DB field Scale, starting from which the rule is applied to the specified DB
field.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 431

5.10.1.13.2.5 DBType Property

DB field type, that the rule is applied to.

Class

TDAMapRule

Syntax
property DBType: Word default dtunknown;

Remarks

Setting DB field type, that the rule is applied to. If the current rule is set for Connection, the
rule will be applied to all fields of the specified type in all DataSets related to this Connection.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.13.2.6 FieldLength Property

The resultant field length in Delphi.

Class

TDAMapRule

Syntax
property FieldLength: Integer default rlAny;

Remarks
Setting the Delphi field length after conversion.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.13.2.7 FieldName Property

DataSet field name, for which the rule is applied.

Class
TDAMapRule

Syntax

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

432 PostgreSQL Data Access Components

property FieldName: string;

Remarks

Specifies the DataSet field name, that the rule is applied to. If the current rule is set for
Connection, the rule will be applied to all fields with such name in DataSets related to this
Connection.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.13.2.8 FieldScale Property

The resultant field Scale in Delphi.

Class

TDAMapRule

Syntax

property Fieldscale: Integer default rlAny;

Remarks
Setting the Delphi field Scale after conversion.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.13.2.9 FieldType Property

Delphi field type, that the specified DB type or DataSet field will be mapped to.

Class
TDAMapRule

Syntax

property FieldType: TFieldType stored IsFieldTypeStored default
ftuUnknown;

Remarks
Setting Delphi field type, that the specified DB type or DataSet field will be mapped to.

© 1997-2019 Request Support DAC Forum Provide Feedback

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 433

Devart. All Rights
Reserved.

5.10.1.13.2.10 IgnoreErrors Property

Ignoring errors when converting data from DB to Delphi type.

Class
TDAMapRule

Syntax
property Ignoretrrors: Boolean default False;

Remarks

Allows to ignore errors while data conversion in case if data or DB data format cannot be
recorded to the specified Delphi field type. The default value is false.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.14 TDAMapRules Class

Used for adding rules for DataSet fields mapping with both identifying by field name and by
field type and Delphi field types.
For a list of all members of this type, see TDAMapRules members.

Unit

DBAccess

Syntax

TDAMapRules = class(TMapRules);

Inheritance Hierarchy

TMapRules
TDAMapRules
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

434 PostgreSQL Data Access Components

5.10.1.14.1 Members

TDAMapRules class overview.

Properties
Name Description

_ Used to avoid raising
gnorelnvalidRules exception on mapping rules

that can't be applied.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.14.2 Properties

Properties of the TDAMapRules class.
For a complete list of the TDAMapRules class members, see the TDAMapRules Members

topic.
Published
Name Description
_ Used to avoid raising
lgnorelnvalidRules exception on mapping rules
that can't be applied.
See Also

e TDAMapRules Class
e TDAMapRules Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.14.2.1 IgnorelnvalidRules Property

Used to avoid raising exception on mapping rules that can't be applied.

Class

TDAMapRules

Syntax
property IgnoreInvalidRules: boolean default False;

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 435

Remarks

Allows to ignore errors (not to raise exception) during data conversion in case if the data or
DB data format cannot be recorded to the specified Delphi field type. The default value is
false.

Note: In order to ignore errors occurring during data conversion, use the

TDAMapRule.lgnoreErrors property

See Also

e TDAMapRule.lgnoreErrors

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.15 TDAMetaData Class

A class for retrieving metainformation of the specified database objects in the form of dataset.
For a list of all members of this type, see TDAMetaData members.

Unit

DBAccess

Syntax
TDAMetaData = class(TMemDataSet);

Remarks

TDAMetaData is a TDataSet descendant standing for retrieving metainformation of the
specified database objects in the form of dataset. First of all you need to specify which kind of
metainformation you want to see. For this you need to assign the
TDAMetaData.MetaDataKind property. Provide one or more conditions in the
TDAMetaData.Restrictions property to diminish the size of the resultset and get only
information you are interested in.

Use the TDAMetaData.GetMetaDataKinds method to get the full list of supported kinds of
meta data. With the TDAMetaData.GetRestrictions method you can find out what restrictions
are applicable to the specified MetaDataKind.

Example
The code below demonstrates how to get information about columns of the 'emp' table:

MetaData.Connection := Connection;

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

436

PostgreSQL Data Access Components

5.10.1.15.1

MetaData.MetabDatakKind :=

'columns';

MetaData.Restrictions.values['TABLE_NAME']

MetaData.Open;

Inheritance Hierarchy

TMemDataSet
TDAMetaData

See Also
e TDAMetaData.MetaDataKind

e TDAMetaData.Restrictions
e TDAMetaData.GetMetaDataKinds
e TDAMetaData.GetRestrictions

© 1997-2019
Devart. All Rights

Request Support

DAC Forum

Reserved.

Members

TDAMetaData class overview.

Properties

Name

CachedUpdates (inherited from TMemDataSet)

Connection

IndexFieldNames (inherited from TMemDataSet)

KeyExclusive (inherited from TMemDataSet)

LocalConstraints (inherited from TMemDataSet)

LocalUpdate (inherited from TMemDataSet)

:= "Emp"';

Provide Feedback

Description

Used to enable or disable
the use of cached updates
for a dataset.

Used to specify a
connection object to use to
connect to a data store.
Used to get or set the list of
fields on which the recordset
is sorted.

Specifies the upper and
lower boundaries for a
range.

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.
Used to prevent implicit
update of rows on database
server.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 437

MetaDataKind

Prepared (inherited from TMemDataSet)

Ranged (inherited from TMemDataSet)

Restrictions

UpdateRecordTypes (inherited from TMemDataSet)

UpdatesPending (inherited from TMemDataSet)

Methods

Name
ApplyRange (inherited from TMemDataSet)

ApplyUpdates (inherited from TMemDataSet)

CancelRange (inherited from TMemDataSet)

CancelUpdates (inherited from TMemDataSet)

CommitUpdates (inherited from TMemDataSet)

DeferredPost (inherited from TMemDataSet)

EditRangeEnd (inherited from TMemDataSet)

EditRangeStart (inherited from TMemDataSet)

GetBlob (inherited from TMemDataSet)

Used to specify which kind
of metainformation to show.
Determines whether a query
is prepared for execution or
not.

Indicates whether a range is
applied to a dataset.

Used to provide one or more
conditions restricting the list
of objects to be described.
Used to indicate the update
status for the current record
when cached updates are
enabled.

Used to check the status of
the cached updates buffer.

Description

Applies a range to the
dataset.

Overloaded. Writes
dataset's pending cached
updates to a database.
Removes any ranges
currently in effect for a
dataset.

Clears all pending cached
updates from cache and
restores dataset in its prior
state.

Clears the cached updates
buffer.

Makes permanent changes
to the database server.
Enables changing the
ending value for an existing
range.

Enables changing the
starting value for an existing
range.

Overloaded. Retrieves
TBlob object for a field or

© 2019 Devart



438

PostgreSQL Data Access Components

GetMetaDataKinds

GetRestrictions

Locate (inherited from TMemDataSet)

LocateEx (inherited from TMemDataSet)

Prepare (inherited from TMemDataSet)

RestoreUpdates (inherited from TMemDataSet)

RevertRecord (inherited from TMemDataSet)

SaveToXML (inherited from TMemDataSet)

SetRange (inherited from TMemDataSet)

SetRangeEnd (inherited from TMemDataSet)

SetRangeStart (inherited from TMemDataSet)

current record when only its
name or the field itself is
known.

Used to get values
acceptable in the
MetaDataKind property.
Used to find out which
restrictions are applicable to
a certain MetaDataKind.
Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.ocate

method of TDataSet.
Allocates resources and
creates field components for
a dataset.

Marks all records in the
cache of updates as
unapplied.

Cancels changes made to
the current record when
cached updates are
enabled.

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

Sets the starting and ending
values of a range, and
applies it.

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

Indicates that subsequent
assignments to field values
specify the start of the range
of rows to include in the

© 2019 Devart



Reference 439

UnPrepare (inherited from TMemDataSet)

UpdateResult (inherited from TMemDataSet)

UpdateStatus (inherited from TMemDataSet)

Events

Name

OnUpdateError (inherited from TMemDataSet)

OnUpdateRecord (inherited from TMemDataSet)

© 1997-2019
Devart. All Rights Request Support DAC Forum

Reserved.
5.10.1.15.2 Properties

Properties of the TDAMetaData class.

dataset.

Frees the resources
allocated for a previously
prepared query on the
server and client sides.
Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are
enabled.

Indicates the current update
status for the dataset when
cached updates are
enabled.

Description

Occurs when an exception is
generated while cached
updates are applied to a
database.

Occurs when a single
update component can not
handle the updates.

Provide Feedback

For a complete list of the TDAMetaData class members, see the TDAMetaData Members

topic.
Public

Name

CachedUpdates (inherited from TMemDataSet)

Connection

Description
Used to enable or disable
the use of cached updates
for a dataset.

Used to specify a
connection object to use to

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

440

PostgreSQL Data Access Components

IndexFieldNames (inherited from TMemDataSet)

KeyEXxclusive (inherited from TMemDataSet)

LocalConstraints (inherited from TMemDataSet)

LocalUpdate (inherited from TMemDataSet)

MetaDataKind

Prepared (inherited from TMemDataSet)

Ranged (inherited from TMemDataSet)

Restrictions

UpdateRecordTypes (inherited from TMemDataSet)

UpdatesPending (inherited from TMemDataSet)

See Also
e TDAMetaData Class

e TDAMetaData Class Members
© 1997-2019

Devart. All Rights Request Support DAC Forum

Reserved.

5.10.1.15.2.1 Connection Property

connect to a data store.
Used to get or set the list of
fields on which the recordset
is sorted.

Specifies the upper and
lower boundaries for a
range.

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.
Used to prevent implicit
update of rows on database
server.

Used to specify which kind
of metainformation to show.
Determines whether a query
is prepared for execution or
not.

Indicates whether a range is
applied to a dataset.

Used to provide one or more
conditions restricting the list
of objects to be described.
Used to indicate the update
status for the current record
when cached updates are
enabled.

Used to check the status of
the cached updates buffer.

Provide Feedback

Used to specify a connection object to use to connect to a data store.

Class

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 441

TDAMetaData

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify a connection object to use to connect to a data store.
Set at design-time by selecting from the list of provided TCustomDAConnection or its
descendant class objects.

At runtime, set the Connection property to reference an instanciated TCustomDAConnection
object.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.15.2.2 MetaDataKind Property

Used to specify which kind of metainformation to show.

Class
TDAMetaData

Syntax
property MetaDataKind: string;

Remarks

This string property specifies which kind of metainformation to show. The value of this
property should be assigned before activating the component. If MetaDataKind equals to an
empty string (the default value), the full value list that this property accepts will be shown.
They are described in the table below:

MetaDataKind Description

Columns show metainformation about columns of existing tables

Constraints show metainformation about the constraints defined in the database
IndexColumns show metainformation about indexed columns

Indexes show metainformation about indexes in a database

: show the acceptable values of this property. You will get the same
MetaDataKinds result if the MetadataKind property is an empty string
ProcedurePara

meters show metainformation about parameters of existing procedures

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

442 PostgreSQL Data Access Components

Procedures show metainformation about existing procedures

generates a dataset that describes which restrictions are applicable
to each MetaDataKind

Tables show metainformation about existing tables

Databases show metainformation about existing databases

Restrictions

If you provide a value that equals neither of the values described in the table, an error will be
raised.

See Also
e Restrictions

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.15.2.3 Restrictions Property

Used to provide one or more conditions restricting the list of objects to be described.

Class
TDAMetaData

Syntax
property Restrictions: TStrings;

Remarks

Use the Restriction list to provide one or more conditions restricting the list of objects to be
described. To see the full list of restrictions and to which metadata kinds they are applicable,
you should assign the Restrictions value to the MetaDataKind property and view the result.

See Also
¢ MetaDataKind

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.15.3 Methods

Methods of the TDAMetaData class.
For a complete list of the TDAMetaData class members, see the TDAMetaData Members
topic.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 443

Public

Name
ApplyRange (inherited from TMemDataSet)

ApplyUpdates (inherited from TMemDataSet)

CancelRange (inherited from TMemDataSet)

CancelUpdates (inherited from TMemDataSet)

CommitUpdates (inherited from TMemDataSet)

DeferredPost (inherited from TMemDataSet)

EditRangeEnd (inherited from TMemDataSet)

EditRangeStart (inherited from TMemDataSet)

GetBlob (inherited from TMemDataSet)

GetMetaDataKinds

GetRestrictions

Locate (inherited from TMemDataSet)

LocateEx (inherited from TMemDataSet)

Description

Applies a range to the
dataset.

Overloaded. Writes
dataset's pending cached
updates to a database.
Removes any ranges
currently in effect for a
dataset.

Clears all pending cached
updates from cache and
restores dataset in its prior
state.

Clears the cached updates
buffer.

Makes permanent changes
to the database server.
Enables changing the
ending value for an existing
range.

Enables changing the
starting value for an existing
range.

Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

Used to get values
acceptable in the
MetaDataKind property.
Used to find out which
restrictions are applicable to
a certain MetaDataKind.
Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate

© 2019 Devart



444

PostgreSQL Data Access Components

Prepare (inherited from TMemDataSet)

RestoreUpdates (inherited from TMemDataSet)

RevertRecord (inherited from TMemDataSet)

SaveToXML (inherited from TMemDataSet)

SetRange (inherited from TMemDataSet)

SetRangeEnd (inherited from TMemDataSet)

SetRangeStart (inherited from TMemDataSet)

UnPrepare (inherited from TMemDataSet)

UpdateResult (inherited from TMemDataSet)

UpdateStatus (inherited from TMemDataSet)

See Also

method of TDataSet.
Allocates resources and
creates field components for
a dataset.

Marks all records in the
cache of updates as
unapplied.

Cancels changes made to
the current record when
cached updates are
enabled.

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

Sets the starting and ending
values of a range, and
applies it.

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

Indicates that subsequent
assignments to field values
specify the start of the range
of rows to include in the
dataset.

Frees the resources
allocated for a previously
prepared query on the
server and client sides.
Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are
enabled.

Indicates the current update
status for the dataset when
cached updates are
enabled.

© 2019 Devart



Reference 445

e TDAMetaData Class
e TDAMetaData Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.15.3.1 GetMetaDataKinds Method

Used to get values acceptable in the MetaDataKind property.

Class

TDAMetaData

Syntax
procedure GetMetaDataKinds(List: TStrings);

Parameters
List
Holds the object that will be filled with metadata kinds (restrictions).

Remarks

Call the GetMetaDataKinds method to get values acceptable in the MetaDataKind property.
The List parameter will be cleared and then filled with values.

See Also
¢ MetaDataKind

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.15.3.2 GetRestrictions Method

Used to find out which restrictions are applicable to a certain MetaDataKind.

Class

TDAMetabData

Syntax

procedure GetRestrictions(List: TStrings; const MetaDataKind:
string);

Parameters

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

446 PostgreSQL Data Access Components

List

Holds the object that will be filled with metadata kinds (restrictions).
MetaDataKind

Holds the metadata kind for which restrictions are returned.

Remarks

Call the GetRestrictions method to find out which restrictions are applicable to a certain
MetaDataKind. The List parameter will be cleared and then filled with values.

See Also
e Restrictions

o GetMetaDataKinds

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.16 TDAParam Class

A class that forms objects to represent the values of the parameters set.
For a list of all members of this type, see TDAParam members.

Unit

DBAcCcess

Syntax
TDAParam = class(TParam);

Remarks

Use the properties of TDAParam to set the value of a parameter. Objects that use
parameters create TDAParam objects to represent these parameters. For example,
TDAParam objects are used by TCustomDASQL, TCustomDADataSet.

TDAParam shares many properties with TField, as both describe the value of a field in a
dataset. However, a TField object has several properties to describe the field binding and the
way the field is displayed, edited, or calculated, that are not needed in a TDAParam object.
Conversely, TDAParam includes properties that indicate how the field value is passed as a
parameter.

See Also
e TCustomDADataSet

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 447

5.10.1.16.1

e TCustomDASQL
e TDAParams

© 1997-2019
Devart. All Rights Request Support

DAC Forum

Reserved.

Members

TDAParam class overview.

Properties

Name

AsBlob

AsBlobRef

AsFloat

Asinteger

AsLargelnt

AsMemo

AsMemoRef

AsSQLTimeStamp

AsString

AsWideString

Provide Feedback

Description

Used to set and read the
value of the BLOB
parameter as string.

Used to set and read the
value of the BLOB
parameter as a TBlob
object.

Used to assign the value for
a float field to a parameter.
Used to assign the value for
an integer field to the
parameter.

Used to assign the value for
a Largelinteger field to the
parameter.

Used to assign the value for
a memo field to the
parameter.

Used to set and read the
value of the memo
parameter as a TBlob
object.

Used to specify the value of
the parameter when it
represents a SQL
timestamp field.

Used to assign the string
value to the parameter.
Used to assign the Unicode
string value to the
parameter.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

448

PostgreSQL Data Access Components

DataType

IsNull

ParamType
Size

Value

Methods

Name

AssignField

AssignFieldValue

LoadFromFile

LoadFromStream

SetBlobData

© 1997-2019
Devart. All Rights Request Support

DAC Forum

Reserved.

5.10.1.16.2 Properties

Properties of the TDAParam class.

Indicates the data type of the
parameter.

Used to indicate whether the
value assigned to a
parameteris NULL.

Used to indicate the type of
use for a parameter.
Specifies the size of a string
type parameter.

Used to represent the value
of the parameter as Variant.

Description

Assigns field name and field
value to a param.

Assigns the specified field
properties and value to a
parameter.

Places the content of a
specified file into a
TDAParam object.

Places the content from a
stream into a TDAParam
object.

Overloaded. Writes the data
from a specified buffer to
BLOB.

Provide Feedback

For a complete list of the TDAParam class members, see the TDAParam Members topic.

Public

Name

AsBlob

Description

Used to set and read the
value of the BLOB

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 449

AsBlobRef

AsFloat

Aslinteger

AsLargelnt

AsMemo

AsMemoRef

AsSQLTimeStamp

AsString

AsWideString

IsNull

Published

Name

DataType
ParamType
Size

Value

parameter as string.

Used to set and read the
value of the BLOB
parameter as a TBlob
object.

Used to assign the value for
a float field to a parameter.
Used to assign the value for
an integer field to the
parameter.

Used to assign the value for
a Largelinteger field to the
parameter.

Used to assign the value for
a memo field to the
parameter.

Used to set and read the
value of the memo
parameter as a TBlob
object.

Used to specify the value of
the parameter when it
represents a SQL
timestamp field.

Used to assign the string
value to the parameter.
Used to assign the Unicode
string value to the
parameter.

Used to indicate whether the
value assigned to a
parameteris NULL.

Description

Indicates the data type of the
parameter.

Used to indicate the type of
use for a parameter.
Specifies the size of a string
type parameter.

Used to represent the value
of the parameter as Variant.

© 2019 Devart



450

PostgreSQL Data Access Components

See Also
e TDAParam Class

e TDAParam Class Members

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.16.2.1 AsBlob Property

Used to set and read the value of the BLOB parameter as string.

Class
TDAParam

Syntax
property AsBlob: TBlobData;

Remarks
Use the AsBlob property to set and read the value of the BLOB parameter as string. Setting
AsBlob will set the DataType property to ftBlob.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.16.2.2 AsBlobRef Property

Used to set and read the value of the BLOB parameter as a TBlob object.

Class
TDAParam

Syntax
property AsBlobRef: TBlob;

Remarks

Use the AsBIlobRef property to set and read the value of the BLOB parameter as a TBlob
object. Setting AsBlobRef will set the DataType property to ftBlob.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 451

5.10.1.16.2.3 AsFloat Property

Used to assign the value for a float field to a parameter.

Class

TDAParam

Syntax
property AsFloat: double;

Remarks

Use the AsFloat property to assign the value for a float field to the parameter. Setting AsFloat
will set the DataType property to dtFloat.

Read the AsFloat property to determine the value that was assigned to an output parameter,
represented as Double. The value of the parameter will be converted to the Double value if
possible.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.16.2.4 Asinteger Property

Used to assign the value for an integer field to the parameter.

Class
TDAParam

Syntax
property AsInteger: LongInt;

Remarks

Use the Asinteger property to assign the value for an integer field to the parameter. Setting
Asinteger will set the DataType property to dtinteger.

Read the Asinteger property to determine the value that was assigned to an output parameter,
represented as a 32-bit integer. The value of the parameter will be converted to the Integer
value if possible.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

452 PostgreSQL Data Access Components

5.10.1.16.2.5 Aslargeint Property

Used to assign the value for a Largelnteger field to the parameter.

Class

TDAParam

Syntax
property AsLargeInt: Int64;

Remarks

Set the AsLargelnt property to assign the value for an Int64 field to the parameter. Setting
AsLargelnt will set the DataType property to dtLargeint.

Read the AsLargelnt property to determine the value that was assigned to an output
parameter, represented as a 64-bit integer. The value of the parameter will be converted to
the Int64 value if possible.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.16.2.6 AsMemo Property

Used to assign the value for a memo field to the parameter.

Class
TDAParam

Syntax

property AsMemo: string;

Remarks

Use the AsMemo property to assign the value for a memo field to the parameter. Setting
AsMemo will set the DataType property to ftMemo.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 453

5.10.1.16.2.7 AsMemoRef Property

Used to set and read the value of the memo parameter as a TBlob object.

Class

TDAParam

Syntax
property AsMemoRef: TBlob;

Remarks

Use the AsMemoRef property to set and read the value of the memo parameter as a TBlob
object. Setting AsMemoRef will set the DataType property to ftMemo.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.16.2.8 AsSQLTimeStamp Property

Used to specify the value of the parameter when it represents a SQL timestamp field.

Class

TDAParam

Syntax
property AsSQLTimeStamp: TSQLTimeStamp;

Remarks

Set the AsSQLTimeStamp property to assign the value for a SQL timestamp field to the
parameter. Setting AsSQLTimeStamp sets the DataType property to fitTimeStamp.
© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.16.2.9 AsString Property

Used to assign the string value to the parameter.

Class
TDAParam

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

454 PostgreSQL Data Access Components

Syntax
property AsString: string;

Remarks

Use the AsString property to assign the string value to the parameter. Setting AsString will set
the DataType property to ftString.

Read the AsString property to determine the value that was assigned to an output parameter
represented as a string. The value of the parameter will be converted to a string.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.16.2.10 AsWideString Property

Used to assign the Unicode string value to the parameter.

Class
TDAParam

Syntax
property AswideString: string;

Remarks

Set AsWideString to assign the Unicode string value to the parameter. Setting AsWideString
will set the DataType property to ftWideString.

Read the AsWideString property to determine the value that was assigned to an output
parameter, represented as a Unicode string. The value of the parameter will be converted to a
Unicode string.

© 1997-2019

Devart. All Rights Request Support DAC Forum Provide Feedback
Reserved.

5.10.1.16.2.11 DataType Property

Indicates the data type of the parameter.

Class

TDAParam

Syntax

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

Reference 455

property DataType: TFieldType stored IsDataTypeStored;

Remarks

DataType is set automatically when a value is assigned to a parameter. Do not set DataType
for bound fields, as this may cause the assigned value to be misinterpreted.

Read DataType to learn the type of data that was assigned to the parameter. Every possible
value of DataType corresponds to the type of a database field.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.16.2.12 IsNull Property

Used to indicate whether the value assigned to a parameter is NULL.

Class
TDAParam

Syntax
property IsNull: boolean;

Remarks
Use the IsNull property to indicate whether the value assigned to a parameter is NULL.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.16.2.13 ParamType Property

Used to indicate the type of use for a parameter.

Class

TDAParam

Syntax
property ParamType default DB . ptuUnknown;

Remarks

Objects that use TDAParam objects to represent field parameters set ParamType to indicate
the type of use for a parameter.

© 2019 Devart


https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=pgdac
https://forums.devart.com/viewforum.php?f=42
https://www.devart.com/pgdac/feedback.html

456 PostgreSQL Data Access Components

To learn the description of TParamType refer to Delphi Help.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.16.2.14 Size Property

Specifies the size of a string type parameter.

Class
TDAParam

Syntax
property Size: integer default O;

Remarks

Use the Size property to indicate the maximum number of characters the parameter may
contain. Use the Size property only for Output parameters of the ftString, ftFixedChar,
ftBytes, ftVarBytes, or ftWide String type.

© 1997-2019
Devart. All Rights Request Support DAC Forum Provide Feedback

Reserved.

5.10.1.16.2.15 Value Property

Used to represent the value of the parameter as Variant.

Class

TDAParam

Syntax
property Value: variant stored IsvalueStored;

Remarks

The Value property represents the value of the parameter as Variant.

Use Value in generic code that manipulates the values of parameters without the need to
know the field type the 