Squish Manual

Squish Manual

Squish Manual

COLLABORATORS
TITLE :
Squish Manual
ACTION NAME DATE SIGNATURE
WRITTEN BY April 10, 2009
REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Squish Manual

Contents

1 Welcome

2 Release Notes

2.1

2.2

23

24

Version 3.4.4 . . . L e
2. 1.1 Generalo L e e e e
2.1.2 IDE .« .
213 Qt-specific e e e e
2.1.4 Java-specifico
2.1.5 Web-specific e
2.1.6 TK-specific e e e e e e e e
2.1.7 Source Builds e
Version 3.4.3 . . L L e e
221 General e
222 IDE . . e
223 Qt-specific e
224 Java-specifico e
2.2.5 Web-specific e e e e e e
2.2.6 Tk-specific e e e e e e
2.2.7 Mac-specific (Cocoa/Carbon edition) i
2.2.8 Source Builds
Version 3.4.2 . . L L e e e
231 General L e e e
232 Qt-specifico e
2.3.3 Java-specific e
234 Web-specific e e
2.3.5 Tk-specific e e e e
Version 3.4.1 . . . L e
241 General e e
242 Qt-specific e

243 Java-specific L

Squish Manual

iv
244 Web-specific 9
245 Tk-specific e e e e e 9
2.4.6 Native WIn32 Support L e 9
2477 Native X11 Support o o o e e e e e e 9
2.5 Version3.4.0 . . .o e 10
2.5.1 General e 10
252 Qt-specific e 11
253 Java-specifico L. e e e e 11
254 Web-specific e 12
2.5.5 Tk-specific e e e e e e e 12
2.5.6 Source Buildso 12
2.6 Version 3.3.1 . .. e 12
2.6.1 General e 12
2.6.2 Qt-specific e e e 13
2.6.3 Java-specifico e 13
2.6.4 Web-specific e e e 13
2.6.5 Source Builds 14
2.7 Version3.3.0 . ..o e 14
271 General e 14
272 Qt-specific e e e e e 14
2.7.3 Java-specific L e 15
2.7.4 Web-specific e e e e 15
275 Mac-specific e 15
2.7.6 Source Builds e 15
2.8 Version3.3.0Betal. e 15
2.8.1 General e 15
2.8.2 Qt-specific 16
2.83 Java-specific e e e 16
2.8.4 Web-specific e 16
2.8.5 Mac-specific e e e e 16
2.8.6 Source Builds 16
2.9 Version 3.2.3 . L e 17
2.9.1 General e 17
2.9.2 Qt-specific e e e e e 17
293 Web-specific e 17
2.9.4 XView-specific L e e e e 17
2.9.5 Source Builds 18
2.10 Version 3.2.2 . .. L L e e e e 18

2.10.1 General e 18

Squish Manual

v
2.10.2 Qt-specifico e 18
2.10.3 Web-specific e e 18
2,11 Version 3.2 . . oL e e e 18
2011 General e e 19
2012 Qt oo e e 19
2013 Web . . o 19
2014 Java . . oL e e e e 19
2015 TR .o e e 19
2,12 Version 3.1.2 . . . L L e 20
2.12.1 Generalo e e 20
2022 QU . e 20
2023 Java ..o e e e 20
2,124 Web . . o o 21
2025 TR .o e 21

2.13 Version 3.1.1 . . . L L L e 21
2131 General e e 21
2132 QU . o 21
2133 Java . .o e e e e 22
2134 Web . . . L e 22
2.14 Version 3.1.0 L L e 22
2.14.1 General L e e e 22
3 Installation 23
3.1 [Installing from Binary Packages 23
3.1.1 Getting the Correct Package e 23
3.1.2 Configuring the Package e 24
3.1.2.1 Enteringthe License Key e 26

3.1.2.2 Acknowledging the Termsof Use 27

3.1.2.3 Paths for Java™ Settings e e e 28
3.1.24 Preferred Scripting Language 29
3.1.2.5 Preferred Web Browser 30

3.1.2.6 Configuration Review e 31
3.1.2.7 Concluding the Configuration e 32

3.1.3 Using the Binary Package L 32

3.2 Installing from Source Packages L e 32
32,1 QuickInstall e e e e 32

322 Configure Switches e 35

3.2.3 Installation for Testing Pure Qt 4 Applications i i v i i it 37

3.2.4 Installation for Testing Qt 3.0 Applications e 39

Squish Manual

Vi

3.2.5 Installation for testing Qt/Embedded 2.3 applications 40

3.2.6 Installation for testing of Qt/Embedded, QtopiaCore and Qtopia 4.x applications 42
3.2.6.1 Buildinstructions L e e e 42

3.2.6.2 Cross-compilation e 42

3.2.6.3 Installation onthe targetdevice L e 43

3.2.7 Installation for testing with a single-threaded Qtlibrary, 44

3.2.8 Installation for testing with a static Qt library oL oo 44

3.2.9 Installation for testing with a renamed Qt libraryo 45

3.3 Distributing and Sharing an Installation L e e 45
Concepts and Making an Application Testable 48
4.1 Squish ConcCepts o v v i e e e e e e e e e e 48
4.2 Making an application testable L e 49
Tutorial: Creating the First Test with Squish/Java™ 50
5.1 CreatingaTest Suite e e e 50
5.1.1 ChoosingaName L e 51

5.1.2 SelectingaToolKit e e 52

5.1.3 Choosing a Scripting Language e e e 53

5.1.4 Selecting the AUT e 53

52 RecordingaTest e e 55
521 Creating aTest Case v v v v v it e e e e e e e e e e e e 55

522 Recording UserInput e 55

5.23 A Generated Script L e 56

5.3 Introducing Verification Points L 57
5.3.1 Verifying the Outcome using Verification Points 57

5.3.2 Selecting Properties to Check L 58

5.3.3 Injecting a Verification Point Into the Script L L 59

5.34 Verification Points in Action oL e 59

54 Conclusion e e 60
Tutorial: Setting Up Automated Batch Testing 61
6.1 Processing TestResults e 61
6.1.1 Generating HTML Test Results i 61

6.1.2 Walkthrough the Script Code e 64

6.2 Automatically Running Tests e e e 68
6.3 Conclusion e e e e 70

Squish Manual

Vi
7 User’s Guide 71
T.1 SCripting o o o e e e e e e e e e 71
7.1.1 AccessingJava™ APL L 71
7.1.1.1 Finding and Querying Java™ Objects o 71
7.1.1.2 Calling Functions on Java Objects 72
7.1.1.3 Accessing Properties of JavaT™ Objects e 72
7.1.1.4 Java™ Convenience API 73
7.1.2 0 TestStatements i e e e e e e e e e 73
7.1.3 EventHandlers 74
7.1.3.1 Global Events e 74
7.1.3.2 Events for Object Types o o i e e 75
7.1.3.3 ObjectEvents e e e 75
7.1.4 Synchronization Points L 75
7.1.5 Testing Multiple AUTs from a Single Test Script, Working with ApplicationContext 76
7.1.5.1 Starting and Accessing Multiple AUTs 76
7.1.5.2 Working with ApplicationContext o i e 77
7.1.6 Testing Java™ applications o v oo e e e e e e 78
7.1.6.1 Accessing Widgets L e e e e e 78
7.1.6.2 Testing Widget States 79
7.1.6.3 Testing CheckBox e 79
7.1.63.1 AWTCheckBox e 79
7.1.6.3.2 SwingJCheckBox L 79
7.1.6.3.3 SWT Button of type CHECK Or RADTIO v v v v v e e e e e e e e e e e e 79
7.1.6.4 Testing Listand ComboBoxes e 79
7.1.6.5 Testing GEF applications e 80
7.1.7 Semi-Automatic Tests: Querying User Input e 80
7.1.8 Automatic Screenshots on Test Failures and Errors L. 81
7.2 AUTs and Settings o o v i o e e e e e e e e e e e e e 82
7.2.1 AUT Class Name and Classpath for Java™ 82
7.2.2 AUT Paths and Mapped AUTS e e e e e e 82
7.22.1 AUTPath e 82
7.222 Mapped AUT . . . o o e e 83
7.2.3 Settings Groups e e 83
7.2.4 Setting Environment variables forthe AUT L . 84
7.2.5 TestingJava Appletso e 84
7.2.6 TestingJava Web Start L e e e 85
7.277 Wrapping custom JavaT™ classes 85
7.277.1 Writingthe .inifile e 85

7.27.2 Registerthe .inifile 85

Squish Manual

viii
7.2772.1 Using Squish SEIVer oo e e e 85
7.277.2.2 Using an environment variable 0oL oL 86
7.2.8 Configuring the recognition of native Windows controls, 86
7.3 Testcase Templates o e e e e e e e e e e e 86
7.3.1 CreatingaNew Template 86
7.3.2 ReusingaTemplate L e e e 87
7.3.3 Choosing a Custom Location for Storing Templates 87
T4 Object Map o e e e e 87
7.4.1 The Conceptofthe Object Map i e 87
7.4.2 Squish’sObject Map o o e e e e e 87
74.2.1 CreatinganObject Map e 88
7422 EditinganObject Map e e e 88
7.5 Improving Object Identification e e e 88
7.6 Customizing Object Name Generation it v i i it e e e e e 89
7.6.1 (Insufficient) Object Names ot i it e e 89
7.6.2 Defining Property Sets L e e e 90
7.6.2.1 Descriptor File Locations 90
7.6.2.2 Descriptor File Format e 90
7.6.3 Advanced Property Set Definitions o 91
7.6.3.1 The Catch-All Descriptor 0 e e e 91
7.6.3.2 Groups of Exclusive Properties 92
7.6.3.3 ObjectReferences e 93
7.7 Automated Batch Testing e 93
7.7.1 Automated Test Runs oL e 93
7.7.2 Distributed Tests e 94
7.7.3 Processing Test Results e e 96
7.8 Editing and Debugging Test Scripts L 97
7.8.1 Script Debugger e e e e e 97
7.8.2 Recording After a Breakpoint 98
7.8.3 Recording and Inserting at Cursor L e e e e e e e e 98
T84 SpPY o 98
7.9 Explore Wrapper Libraries e e e e e e 99
7.9.1 Opening a Wrapper Library 99
7.9.2 Exploring the Wrappers e e e e 99
7.10 Verification Points L e e 100
7.10.1 Object Property Verifications o 0 o i e e e e e 101
7.10.1.1 Basic Properties e 101
7.10.1.2 Ttem Viewsand Menus e 101

7.10.2 Screenshot Verifications o i e e e 101

Squish Manual

ix
7.10.2.1 Creating Screenshot Verifications L e 101
7.10.22 Image Masks 102
7103 Scripting o e e e e e e e e e 102
7.11 Shared Dataand Scripts e e e 103
7.11.1 Storing and Locating Data- and Scriptfiles oo 103
7.11.2 Data-Driven Testing o oo e e e e e 105
7.11.3 Using Test Datainthe AUT e e e 106
7.12 Java Extension API for custom widgets L e e 107
7021 Introduction L e 107
7.12.2 Customcanvas Exampleo 108
7.12.3 Extension APl documentation L e e 108
7.12.3.1 Creatingthejarfile 108
8 Reference Guide 109
8.1 Script APL . . . L e e e 109
8.1.1 Equivalent Script APT e e e 109
8.1.2 Squish APL o 110
8.1.2.1 ObjectHierarchy e 110

8.1.2.2 Constructors, Functions and Properties, 111
8.1.2.3 Debugging 112
8.1.24 Conversionst e e e e 112
8.1.2.5 Verification Functions e 112
8.1.2.6 TestdataHandling L 114
8.1.2.7 Object Map Handling e 114
8.1.2.8 Application Context i e e e e 115

8.1.2.9 EventHandlers e 115
8.1.2.10 Information e 116
8.1.2.11 TestSettings o v v i e e e e e e e 116
8.1.2.12 Miscellaneous e 118

8.1.3 Java™ Convenience API 121

8.1.4 Java™ Hardcoded synthetic Properties 123

8.1.5 Python Notes e e e e 123
8.1.5.1 Modules e e 123
8.1.5.2 Language Documentation L 124
8.1.6 TCINOES o e e e e 124
8.1.6.1 Language Documentation 124
8.1.7 JavaScript Notes e 124
8.1.7.1 Language Documentation i e e e e e 124

8.1.72 Language Core. e e e 124

Squish Manual

X
8.1.7.3 FileObject o o e e 125

8.1.7.4 OSObject e e 125

8.1.7.5 XML Object 127

8.1.7.6 SQL Object 128

8.1.8 Perl Notes e 129
8.1.8.1 Language Documentation e 129

8.2 Command Line Reference e 130
8.2.1 Squishrunner L e e e e 130
8211 ——testsuite e e 130

82.1.1.1 ExecutingaTestCase 131

8.2.1.1.2 RecordingaTestCase o i i i ittt 131

8.2.1.2 —-MeSICASE e e e e e e e 131

82.13 —info o 132

8.2.1.4 ——config e e e e 132

8.2.1.5 -SPY . . 133

8.2.2 Squishserver e e e 133

8.2.3 Squishidl 134

824 SquishIDE 134

825 CommandFiles L e 135

8.3 Environment Variables 135
9 Add-Ons 136
9.1 Introduction e e e 136
9.2 Mercury Quality Center™ Integration i e e e e e 136
9.2.1 Integration Features e 136

9.2.2 Installing The Integration Plugin L 137
9.2.2.1 Choosing the Quality Center Folder 137

9.2.2.2 Monitoring the Installation Progress 138

9.2.2.3 Post-Installation Registration L 138

9.2.2.4 Manual Plugin Registration e 139

9.2.3 Configurationof the Plugin 139

9.2.4 Using the Integration From Mercury Quality Center™ 140
9.24.1 Creating New Test Caseso vttt i it e et e e e 140

9.24.2 Running Squish Tests L 141

9.2.5 Using the Integration from the SquishIDE 141
9.2.5.1 Creating a Test Suite in the Mercury Quality Center™ 141

9.2.5.2 Importing a Test Suite from Mercury Quality Center™ 142

9.2.5.3 Exporting a Test Suite to Mercury Quality Center™ 143

0.3 TPTPintegrationottt e e e e e e 143

Squish Manual

Xi
9.3.1 Obtaining the plugin L 144
9.3.2 Imstalling the plugin e 144
9.3.3 Working withthe plugin e 146
0.4 Antinte@ration e e e e 153
9.4.1 Obtaining the plugin L 154
9.4.2 Installingthe plugin L 154
9.4.3 Exampleuse of plugin L e e e e e e 154
944 Xmlreference e 155
9.44.1 squish:config. 155
9.4.42 squish:tuntest e e e e e e e 156
9.5 CruiseControl integration oL e e e e e e e 156
9.5.1 Obtaining the plugin L 156
9.5.2 Inmstallingthe plugin L e 157
9.5.3 Exampleuse of plugin L e e e e e 157
9.54 Xmlreference e e 158
9.54.1 squishtest L 158
0.6 Maven integrationt e e e e e e e e e e e e e e e e e e e 158
9.6.1 Obtaining the plugin L 158
9.6.2 Installing the plugin L 158
9.6.3 Exampleuseof plugin e 159
9.6.4 Xmlreference. e e 159
9.6.4.1 runtest e e e e 159
10 Frequently Asked Questions 161
I Java™ Extension API Reference 164
11 Package com.froglogic.squish.extension 1
11.1 Interface Inspectable L L e e 1
11.2 Class Inspectable Adapter 0 e e e e e e e e e e 5
11.3 Interface InspectableFactory e 8
11.4 Class InspectableRegistry e 10
11.5 Interface ObjectQuUery o o e e e e e e e e e e 11
11.6 Class Point L e e 12
11.7 Class Rect o o o e e e 13
12 Constant field values 14
A Acknowledgments 15

B Index 16

Squish Manual

xii
List of Tables
0.1 Configtag o e 155
0.2 TUNLESELAZ o e e e e e e e 156
0.3 squishtesttag L e e e e e e e e e e 158
9.4 runtestgoal e 160

Squish Manual
1/17

Chapter 1

Welcome

I* >

This manual presents froglogic Squish®, a professional automated GUI testing framework. With Squish it is possible to test GUI
applications based on toolkits such as Qt® by Trolltech®, the free Tk or Java™ and XView™ from Sun™.

Additionally, Squish can be used to test HTML-based web applications running in Microsoft Internet Explorer®, Firefox and
other browsers of the Mozilla family, Apple’s Safari™ and KDE™’s Konqueror.

Squish Manual
2/17

Chapter 2

Release Notes

2.1 Version 3.4.4

2.1.1 General

* Added objectMap.load() function.

 Prevent crash that occurred when accessing global AUT properties (like Qt’s qApp) after the AUT has been shut down.

* Fixed Perl return values in case of recursive calls caused by an event handler.

* Respect the 'Response Timeout’ setting in all cases, to avoid that script commands get aborted after 5 minutes.

* Improved handling of breakpoints in shared script files.

* Added option --updatevp option to convertvp utility to update the image in the verification point.

 Properly escape object names and support unicode characters in Verification and Synchronization Points in Tcl test scripts.
 Fixed memory leak in testData.dataset() in Javascript and Python.

* Fixed test::warning() and test::fatal(), which were broken in some cases when using Qt3 and Perl.

* Support stringwise and numerical comparison operators (cmp, <=> etc.) on wrapped objects wherever the objects allow a
meaningful comparison. Also be more verbose when being asked for a string representation of non-string objects.

* Fixed the side effects of the 3.4.3 protection against access to "dead" objects. On repeated AUT starts object class descriptions
got mixed up.

* Don’t let the Unix startup code get confused if one of the tools (e.g. squish) is searched in PATH when the this variable contains
an entry that ends with the same name. This would be .../squish/ in this example.

* Filter out multiply recorded waitForApplicationLaunch() statements.

2.1.2 IDE

* Fixed opening Test Scripts on Windows Shares from Test Result messages.
* Fixed line selection when clicking on a Test Log item with colons in the message.
* Improved stability of the Squish IDE when running tests which print a lot of information to the standard output channel.

* Improve handling of test case templates which are stored in non-standard locations.

Squish Manual
3/17

2.1.3 Qt-specific

* Support Qt 4.5.

* Improved algorithmic complexity and therefore speed of object name generation and lookup.

» Enable wrapping of constructors defined for QWidget sub-classes.

* Fixed replaying recorded scripts that used Qt3 tearoff menus.

* Fixed a crash on Mac OS X on exit of certain Qt applications with Qt 3.

* Fix replay of menu tests when clicking on menus that have a submenu.

* Preserve non-ASCII characters in existing scripts when a newly recorded script snippet is inserted.

* Improved support for translated strings.

2.1.4 Java-specific

* Support for tab list button from CTabFolder.
* Fixed truncatation of return value from a Java function that is of type float or double.

* Fixed a security exception when loading the Java wrapper library with webstart in some cases.

Show AWT/Swing dialogs as toplevel objects in the Spy.
* Added new property ’basetype’.

2.1.5 Web-specific

* Support lazy hooking for IE when the body of the document that is to be hooked does not exist yet.
* Fixed choosing entries in <SELECT> elements in case the entry contains a single apostrophe or the backslash character.
* Fixed runtime dependency for testing Web applications with Firefox 3 on Windows.

* Fix retrieval of Web properties which contain a *%’ in case the property value is longer than 150 characters.

2.1.6 Tk-specific

* Improved double-click emulation by sending also a release the second click as well.

* Improved menubar replay support by moving the mouse to the right top-level menu.

2.1.7 Source Builds

* Support compilation against Tcl 8.6.
* Fixed compilation with Qt 4.5 on Windows and Mac OS 10.5 (Leopard).
* Don’t wrap QStyle sub-classes to make the wrapper more portable. They are not really required for testing purposes.

* Fix compile problem with Qt 4 and gcc 3.2.

Squish Manual
4/17

2.2 Version 3.4.3

2.2.1 General

* Added a --apply-mask mode to the convertp utility.

¢ Added currentApplicationContext() function in all scripting languages. Will be used when recording in a multiple-application
setting.

* Fixed reading of . t sv (tab-separated values format) files that have empty fields.

* Marked references to objects of an exited AUT as "dead" to prevent crashes on further access.
* Fixed a Unicode problem if non-ASCII characters are used in symbolic object names.

* Allow conversion of Tcl double values (or what the interpreter believes are doubles) to a string.
* Added a fallback error message for findObject() to avoid crashes on Solaris.

* Implemented .name and .caller properties on JavaScript function objects that allow assembling a better callstack for improved
debugging. Also added a .lineNumber property to exception objects in addition to the .line property for compatibility to the
Mozilla JavaScript engine.

* Let the Python test.verify() function to use the standard Python truth value rules rather than restricting it to just int and long
values.

* Supress "different type" result details for Tcl command [test compare] when not applicable.
* Let Python’s waitFor() gracefully handle expressions that return a non-integer value.

* Changed the JavaScript print() output so that it writes to stdout (instead of stderr) and uses the UTF-8 encoding to display
non-ASCII characters properly.

* Fixed crashes that occurred as a result of syntax errors in some Python test scripts.
* Fixed a Unicode problem in the test result output that can occur in rare circumstances.
* Fixed a regression when waitForObjectltem() is called on object names that contain a space.

* Fixed a slight oversight in the improved error reporting. The unmatched properties are now reset when an error is reported and
hence don’t pollute later error messages.

2.2.2 IDE

e Made the "End recording" button work if testing with sub AUTs and there are sub AUTs running.
* Fixed focus problems that occurred when saving a file.

* Let the Perl variable watcher display the value of mixed string/int and string/double types. Hide reserved variables that are
denoted by a leading caret.

* Prevented the creation of test cases with empty names.

* * src/gui/objectmapeditor.cpp: Allow dots when editing hierarchical names in the objectmap editor.

Squish Manual
5/17

2.2.3 Qt-specific

* Instead of treating an access to the .text property of an invalid item view index as an invalid operation (that could cause a crash),
an empty string is returned.

* Fixed a crash caused by an access to an invalid iterator.

* Avoid parse errors on Object Map name reuse if the map contains a mixture of multi-property and hierarchical names.
* Fixed a possible source for crashes on 64-bit Windows systems.

* Improved the detection of statically linked Qt applications.

 Raise the AUT on playback on Mac OS X with Qt 4.4.

* Fixed a Spy Unicode problem with Qt 4.

* Avoid wrong menu activation when replaying menu actions with Qt 4.4 on Mac OS X.

* Fix recording of QResizeEvent send during the application launch.

2.2.4 Java-specific

* Fixed the replaying of type("swing-object”, "<Ctrl+X>").
* Fixed the wrong "selection" property of TreeltemProxy. It was always false.

* Don’t record mouseClick() on glass panes if these events are dispatched in the application and trigger a mouse event in the
content pane. Mouse clicks on components below a glass pane will be replayed by sending clicks to the glass pane.

* Let the application context name property of sub-applications be the argv[0] system value rather than using "squish".

* Stopped FigureCanvas only looking at IFigure and ignoring SWT widget children.

2.2.5 Web-specific

* Fixed replaying text input on file input fields with Internet Explorer 6.

* Fixed the recording of backslashes in file input fields with Internet Explorer.

* Support isBrowserDialogOpen() for Mozilla on X11 systems like Linux.

* Fixed a communication problem that could cause objects not being found when testing with Safari.

* Fixed random crashes of the internal webhook tool when doing Safari testing.

* Fixed the recording and playback of text input on input fields with type "search" (they are understood by Safari).
 Support for Kiwi Matrix tables.

* Fixed the handling of strings containing the character sequence "HTTP’.

2.2.6 Tk-specific

* Improved support for the Tk "scale" widget. Replaying scrollTo now uses real mouse events so custom bindings to mouse-press
will also be triggered.

* Fixed infinite recursion when dealing with the VTK KWWidget combobox control.

Squish Manual
6/17

2.2.7 Mac-specific (Cocoa/Carbon edition)

* Added support for Cocoa toolbars and toolbar items.

* Fixed the object picker (and highlighter) for Carbon applications: sometimes, it did not manage to find the right objects under
the cursor.

* Fixed the problem that occurred in some Carbon applications when the application menu did not show up (e.g., in the Spy and
during recording and playback).

e Added support for HIDataBrowser. Please view with the wrapperexplorer to see which APIs are supported by the HI-
DataBrowser and HIDataBrowserCell wrapper classes.

* Fixed the playback of menus which in some Carbon applications sometimes selected the wrong menu item.

* Fixed the recording of menu events on Mac OS 10.5 (Leopard) for Carbon applications.

* Mouse clicks are recorded after the Quit menu option is chosen so that actions on the modification alert can be recorded.
* Allow picking of objects in a sheet in the Spy.

* Fixed a race condition which caused random crashes on playback of waitForObject() on sheets (and may have been the cause
of other crashes t00).

2.2.8 Source Builds

* Fixed building with Qt 4.5.
* Fixed the 'Record and insert here’ feature for when Squish is built without Tcl support.

* Fixed the compilation problem in xml2reportgenerator.cpp which occurred when building squishrunner if JavaScript support
was disabled.

2.3 Version 3.4.2

2.3.1 General

* Fixed the variable watcher so that it shows the correct value for remote objects while stepping through a test script.
* Fixed the recording of waitForApplicationLaunch() calls in some situations where multiple AUTs are used.

* Made screenshot verifications work reliably in distributed tests.

* Set the name property of the application context objects that belong to the subprocesses Squish has hooked into.

* Fixed the recording of setApplicationContext() calls for Perl scripts.

» Highlight the if, else and elsif keywords in Perl scripts.

* Respect spaces in the suite.conf file’s OBJECTMAP entry.

* Fixed drag and drop replay on Mac OS X.

noon

* Empty entries like ";;" are no longer added to the AUT environment’s PATH.

Squish Manual
7/17

2.3.2 Qt-specific

* Corrected the source object of a drag&drop operation recording that got recorded wrongly sometimes.
* Fixed the replaying of activateltem() statements on items which have backslashes or underscore characters in their text.
* Qt 3 on Mac OS X 10.5: fixed a crash of the AUT on application exit.

* Added a workaround for a Qt 4 bug that causes problems with clickItem() on Q3ScrollView when scrolling is needed to reach
the item.

* Made event handlers reliable when they are triggered multiple times by the same event.

* Support compiling against custom Qt 4 installations that have QToolTip, QCursor, QTableView, QTableWidget, QMenu,
QContextMenu, and QTabBar disabled.

* Don’t require otool to be installed on Mac OS X if you are testing a Qt application.

* Made the spinUp() and spinDown() functions style-independent for Qt 4. Also made recording less time-sensitive, i.e., accept
clicks that take a bit longer.

 Prevented a crash when non-button objects are passed to the clickButton() function.

* Wrapped the new Qt 4.4 QPlainTextEdit class

* Fixed support for Q3ComboBox, both standalone and inside a Q3Table.

» Show the text of QStrings in the variable watcher for Qt 4.x and Qt 3.0.x applications.
* Fixed the replay of tests when using a statically linked Qt on Linux.

* Respect the copy action for drag and drop operations.

2.3.3 Java-specific

* Fixed the playback of special keys on JTextField.

* Swing’s JTabbedPane now also supports clickTab() with the extra x, y, key-state, and button arguments. This script function
gets recorded when the tab is clicked with a key modifier pressed and/or any other button than the left mouse button.

* Fixed screenshot verification points on Mac OS X.

¢ Made the logScreenshotOnFail work on Mac OS X.

* Added support to the extension API for RCP based applications. This requires JDK-1.5 or higher.
 Fixed tree item selections for items that have non-string user objects.

* Fixed JVM crash when querying the field or method list throws an exception.

* Added support for recording the result of the ColorDialog (just like with the File and Directory dialogs). The script function is
chooseColor().

* Fixed the java.awt’s Choice and List not sending an ItemEvent on selection change.
* Added a mouseClick(obj, x, y, clicks, state, button) overload for AWT/Swing.
* Fixed some corner-cases in the improved error reporting when object names were using a path instead of a description.

* Fixed binding to SWT objects that are handled via the extension API: Inspectable.isObjectReady() was never called, In-
spectable.mapFromGlobal() result was handled as canvas coordinates, better defaults for Inspectable Adapter.map{To,From}Global,
using the Inspectable.getGlobalBounds, JavaExtensionDir didn’t handle factory classes with a package prefix.

Squish Manual
8/17

2.3.4 Web-specific

* Fixed the execution of the automatel.ogin() and isBrowserDialogOpen() functions when running Web tests with Firefox 3.

* Fixed a lot of potential crashes when invoking functions like grabWidget(), mouseClick(), clickltem(), and others, with null
object arguments.

Fixed the "Record Script and Insert Here’ feature so that it works properly with Web test suites.
* Fixed error findObject()’s error reporting for object names that don’t use multiple properties.

* Fixed replay of listbox selections for GWT by sending a real change event.

2.3.5 Tk-specific

* Fixed the emission of the "application started" event which is needed for script recording when there are multiple AUTS.

2.4 \Version 3.4.1

2.4.1 General

* Support Ctrl+A select all in the object map editor.

* Fixed various problems when executing Tcl scripts which involved the ’array set xyz { ... } statement.

* Fixed occasional crash when right-clicking on test script code in the IDE while having selected not more than one line of text.
* Fixed an infinite loop at the end of executing certain test cases with the Valgrind add-on.

* Avoid a bug in the spy which occurred when selecting an unnamed object in the object spy.

* Fixed occasional creation of broken test case templates on Windows.

* Pass additional commandline arguments in startaut to the AUT on Windows as well.

* Properly show texts with <’ or *>’ in the control bar while recording a test.

* Make removing breakpoints from a test script while the test is being executed work on Windows.

* Accelerate creation of verification points by about 600%.

* Avoid crashing the squishrunner when attempting to create a verification point while a previous VP is still being created.
¢ Fixed Perl debugger when compiled with Perl 5.10.

* Fixed setting of string properties on object via Perl.

* Fixed PATH_MAX declaration was not found on some Linux systems.

* Fixed void symbol conflict with applications that use the TinyXML parser.

Squish Manual
9/17

2.4.2 Qt-specific

* Fixed support of scrolling in comboboxes using the scrollbar as well as the mouse wheel.
* Improved the monkey test example so that it’s more fair when deciding between multiple available widgets in Qt4 applications.

* Fixed the monkey test example so that it properly selects menu items which have no accelerator key associated (and also ignore
separator items).

* Fixed the monkey test example so that it properly interacts with QMenu objects in Qt 4 applications.
* Avoid that the monkey test example gets stuck sometimes when encountering popup widgets.

* Fixed a crash in dllpreload if the AUT and its commandline arguments got too long.

* Added the Unix utility *'whoami’ to the list of ignored applications.

* Fixed crash when spying a QListView which has no model.

* Fix screenshots on Mac OS X for OpenGL widgets.

2.4.3 Java-specific

* Fixed getLocationOnScreen exception occuring both during recording and replaying.

* Added a --with-java-home switch which is equivalent to setting the JAVA_HOME environment variable for detecting the
location of the Java development kit.

» Fixed SWT webstart applications using the JRE javaws tool. Unfortunately, the SQUISH_DISABLE_AWT environment
variable has to be set to workaround the fact that the AWT classes are wrapped during the javaws startup and the SWT classes
as soon as the webstart application is started.

* Fixed ’java.lang.SecurityException: class "com.froglogic.squish.swt.SquishClassLoader"’s signer information does not match
signer information of other classes in the same package’

2.4.4 Web-specific

* Fixed detecting context switches in all cases with Safari.

* Added support for automateLogin on X11

2.4.5 Tk-specific

* Fixed double-click support on canvas based tk widgets.

2.4.6 Native Win32 Support

* Added support for various special key combinations like Shift+End or Shift+Home.
* Fixed replaying key combos involving the Ctrl key on native Windows controls.

* Record & replay pressing the context menu key on native Windows controls.

2.4.7 Native X11 Support

* Added support for sending special keys like Tab as native events for X11

Squish Manual
10/17

2.5 Version 3.4.0

2.5.1 General

* Automatic reuse of Object Map names that use wildcards and regular expressions.
* Improved error messages when an object cannot be found on test execution.

* Wizard for the creation of data-driven tests.

* "Record at Cursor" mode for more efficient test script maintenance.

* The toolkit wrapper can be specified on an application-basis thus allowing for tests of applications using different GUI tech-
nologies within one script.

» Simplified navigation between script editor and Object Map.

* Ant built system plugin for Squish test execution.

* Integration plugin for the CruiseControl continuous integration framework.

¢ Added spinUp() and spinDown() functions for recording and playback of QSpinBox usage.

* Fixed a Perl syntax error in recorded sub-application scripts.

* Cleaned up HTML documentation search index

* More type tolerant Perl setter function for logScreenshotOnFail and logScreenshotOnError configuration.

 Fixed memory management problems of DOM nodes created by the XML object as well as database connections created by
the SQL object.

* Don’t report that the AUT crashed if it was explicitly killed.

* Implement more verbose error reporting when an object is not found. Now reports the properties that didn’t match
* Fixed a JavaScript number-to-string conversion on SPARC and other big endian architectures.

* Allow copy and paste of property name/value in the spy.

* Allow passing Perl strings to functions that accept a numeric type.

* When right-clicking on a selected text in the script editor, offer an option to replace the selected text with a reference to a field
of a test data record in case the selected script code is within a test data loop.

* Fixed clicking on Test Log items when the referenced script file contained a ’-’ or space character.

* Reduced size of object names placed into the clipboard upon copying out of the Spy.

* Prevent the AUT from crashing when doing object lookups with empty strings.

* Implemented support for recording little snippets of script code and inserting it at the current cursor position.
* Fixed invocation of the PDF manual viewer manual on Windows.

* Prevent crash if the Spy is during a "Check all object existence" run.

» Respect logScreenshot settings for test.fail() and test.fatal().

* Fixed crashes occurring after an application launched with startApplication() has exited.

 Support alternative locations for testcase templates by using the SQUISH_TESTCASE_TEMPLATES environment variable.
* Fixed initialization defaultApplicationContext() properties.

* Fixed picking of disabled plain Windows controls.

* Prevent crash in the Perl debugger that occurred when trying to display variables referencing an application context or a test
data record.

Squish Manual
11/17

2.5.2 Qt-specific

* Implemented Qt 4.4 support.

* Binary packages for MSVC 9 and 64-bit Linux.

* Expose QPainter API for test scripts.

* Add support for Input-Method events for Qt 4, so non-latin input is also recorded properly

¢ Use row and column in clickItem() on Qt 4 tables.

* Mac OS X: make the binary edition work with Qt frameworks that are not installed in a standard framework-search location.
* Support use of wildcards in item names when using the clickItem() function on Qt 4 itemviews like a QTreeWidget.

* Improved parsing of CSV files, using RFC 4180 as reference for the parser implementation.

* Fixed occurrence count recorded for Qt objects which don’t have a QObject name set.

* Temporary way to specify custom controls (like OpenGL controls) that require QPixmap::grabWindow() instead of grab-
Widget() for taking a screenshot: the SQUISH_GRABWINDOW_CLASSES environment variable can be set to a comma-
separated list of class names of QWidget sub-classes.

* Fixed recording of actions on native Windows controls with Qt 4.x
* Don’t show null objects (i.e. a null pointer to a QWidget) in expandable state in the Variable Watcher of the IDE.
* Respect the --port=xxx argument of the startaut command.

* Fixed calls to functions with C/C++ enum parameters in JavaScript, Tcl and Perl. Was already working in Python.

2.5.3 Java-specific

* Implemented support for Eclipse 3.4 (Ganymede).

* Java record extension API to enable high-level record and Spy support of complex custom controls.

* Fixed item lookup differences between recording and replaying a clickItem() on a SWT Tree.

* Allow launching a SWT FileDialog, MessageBox or DirectoryDialog when the Squish IDE is in Spy mode.

* Adjust x coordinate for SWT Tree item click to the middle of the viewable item rectangle, making clickItem() more stable for
differently styled Trees.

* Empty captions of SWT widgets were left out of the object property map, which made these multi-property names match
unnecessary many objects. Now they are recorded as: caption="

* Add ’expanded’ property to Treeltem proxy for the Spy.

* Fixed JVM shutdown notification that made the Java process hang on exit in some setups.

* Improved test script speed when interacting with Java classes.

* Properly convert from Java unicode string to QString, so objects containing umlauts in the Spy.

* Added synthetic ’isvisible’ property for SWT which internally calls Control.isVisible(). For new names use ’isvisible’ in favor
of "visible’.

* Fixed ’Illegal constant pool index’ error in the SWT FileOpen class.

* Fixed registered extra classes not being recognized by the script bindings.

Squish Manual
12/17

2.5.4 Web-specific

* Fix recording of context switches to pages which have non-ASCII characters in their names.

* Provide an additional ’--webbrowserargs’ command line argument which can be used to pass additional arguments to the
browser process started when performing Web tests.

* Fix playback of Web tests with Firefox when a different profile than the default one is used.
* Launch Internet Explorer in a new process to make sure that a new session is used.

* Fixed recording and replay of double and right mouse-button clicks.

* Support the isBrowserDialogOpen() script function on Mac OS X.

 Support the automateLogin() script function on Mac OS X.

 Support Safari 3.1.

* Fix retrieving objects with "%’ in their value.

* Fixed entering of non-alphanumerical characters using typeText() with Firefox.

* Improved speed of the Spy when navigating through large web pages.

2.5.5 Tk-specific

* Fixed key event sending via the type() function.
* Record plain mouse press events on buttons that could e.g. be used to open a popup menu.
* Record button clicks with middle and right mouse button.

¢ Small performance improvement on recording.

2.5.6 Source Builds

* Allow compilation against Perl 5.10

* Restore support for Python 2.2.

* Avoid conflict between Perl flags and Solaris system headers.

* Fixed compile problem with Solaris CC

» Compile fix for strict compiler. abs() is defined in stdlib.h

 Explicitly enforce run-time linking on AIX in order to allow loading of native Python extensions. Contributed by customer.

* Fixed conflict with AIX system headers that was causing a compilation problem.

2.6 Version 3.3.1

2.6.1 General

* Prevent crash if the Spy is closed during a "Check all object existence" run.
* Respect logScreenshot settings for test.fail() and test.fatal().

* Fixed crashes when calling global functions or reading global script properties on an application that has already exited.

Squish Manual
13/17

 Support alternative locations for testcase templates by using the SQUISH_TESTCASE_TEMPLATES environment variable.
* Fixed initialization of defaultApplicationContext() properties.

* Fixes for the recording and spying of native windows controls.

* Fixed crashes when inspecting invalid objects in the Variable Watcher.

» Handle negative timeouts more gracefully.

* Fixed drag and drop when dragging over very small distances.

* Let the Variable Watcher show Python objects of 'new-style’ classes (which inherit the generic ’object’).
* Some heuristics for a more relaxed detection of Unix shell scripts.

» Show the complete call trace in case a Python, JavaScript or TSL script fails.

* Fix a crash on Solaris.

* Fixed sending text to native Windows controls when the text contains umlauts and non-ASCII characters.
* Make the response timeout value editable in the server settings dialog.

* Don’t show null objects (i.e. a null pointer to a QWidget) as expandable in the Variable Watcher of the IDE.

2.6.2 Qt-specific

* Fixed invocation of functions with enum parameters.
* Support mouseDrag() recording on all widget types.
* When using attachToApplication(), correctly detect the case that another testcase is already connected and throw an error.

* Respect the --port=xxx argument of the startaut command.

2.6.3 Java-specific

* Fixed ’Tllegal constant pool index’ error when recording File Open actions in an SWT application.

* Fix extra classes not being recognized by the script bindings.

2.6.4 Web-specific

* Fixed entering non-alphanumerical characters using typeText() with Firefox.

* Improved speed of the Spy when navigating through large web pages.

¢ Fix lookup of "heuristic’ names with dots in their value.

* Fixed typing text in web tests via setText() in case the given text contains backslashes.

* Fixed compile problem with Solaris CC

Squish Manual
14 /17

2.6.5 Source Builds

* Avoid conflict between Perl flags and Solaris system headers.

* Compile without QTabWidget support in Qt, i.e. QT_NO_TABWIDGET being defined.
* Fixed compile problem with AIX xIC.

* Fixed Qt visibility detection for the Intel compiler on Linux.

* Fixed configure switches for enabling/disabling the Windows wrapper.

* Compile fix for strict compiler. abs() is supposed to be defined in stdlib.h.

2.7 Version 3.3.0

2.7.1 General

* Ensure that the line of the breakpoint is visible once it is hit

* Added saveDesktopScreenshot() function

¢ Added OS.chdir(path) and OS.cwd() JavaScript functions.

* Windows only: fix a crash in the squishserver that occurred in rare cases at the end of a testcase.

* Bring the Squish IDE to the foreground once a breakpoint is hit.

* Fix incorrect file names and line numbers in error messages when exceptions were thrown from imported Python modules.
* Prevent Variable Watcher from crashing when displaying a variable after the AUT exited.

* Fix renaming of columns after right clicking on a column header if the table has been scrolled to the right.

* Properly enable/disable the Record button, menu entry and link on the suite info page depending on whether a default AUT is
set or not.

* Don’t show JavaScript functions in the variable watcher.

 Select current AUT path as default path when browsing for a new AUT in the testsuite settings dialog.

2.7.2 Qt-specific

* Fix the monkey test example so that it clicks on tabs again.

* Make recording activateltem() calls on menus more robust.

* Properly wrap QFlags types to avoid ambiguous overloads with int overloads. Other template class fixes.
» Show the attributes of QPointF, QSizeF and QRectF properties in the Spy.

* Fix object lookup after an object was reparented.

* Fix for using Squish IDE with Qt4.4

* Fix recording of nested menu items inside a context menu without title.

* Improved Drag and Drop support.

Squish Manual
15/17

2.7.3 Java-specific

* Added support for the IBM Java Virtual Machine.
* Added support for Java Web Start.
* Miscellaneous fixes for the GEF support.

* Added support for JFace actions.

2.7.4 Web-specific

* Fixed File Upload on X11 platforms. Also make it work if the button is scrolled out of the view.
* Improved the installer’s detection of Firefox installations on Windows.

* Use newer version of XPath code. Statements like ’following-sibling:: TABLE’ should not result in an endless loop anymore.

2.7.5 Mac-specific

* Fixed most known hooking problems by avoiding up-front class initializations.

2.7.6 Source Builds

* Fixed compilation with Python installations that use the C type long for representing a Unicode character.
* Drastically shorten command line during Qt wrapper build to avoid errors from the Windows 2000 shell.
* Fixed compile and link errors on AIX

* A few percent speedup when building the Qt wrapper.

2.8 Version 3.3.0 Beta 1

2.8.1 General

* Highly improved Object Map editor

* Added object.children() and properties() functions that return a list of child objects and a property map, respectively. Available
in all scripting languages.

 waitForObjectltem() and findObjectltem() functions for improved synchronization
* Support for live Object Map maintenance while Spy is running
 Support for an append mode in JavaScript’s File.open() function.

 Support an optional SQUISH_LICENSEKEY_DIR environment variable which can be used to define where the license key
file should be read (and written).

 Safe handling of NULL values in the Variable Watcher.

¢ Let the "Uncomment" feature of the script editor only remove the comment marker once so that this operation is symmetric to
"Comment".

* Avoid crash in Variable Watcher in case it’s triggered after the application exited and tries to access a value of the destructed
application.

* Don’t show the "File modification" message box in case an entry was added to the object map using the context menu in the
Spy.

Squish Manual
16 /17

2.8.2 Qt-specific

* Dedicated QGraphicsView support. QGraphicsltems are exposed as fully-fledged objects including properties. The objects are
recognized during recording and their state can be inspected and verified.

* Support for testing (record and replay) of native Windows controls (MFC, ActiveX, etc.) in Qt applications.
* New simplified and non-intrusive setup for tests attaching to a running application.

* Support testing of Qt Jambi applications.

* Wrap QListView and QFontMetrics(F) classes in the Qt 4 wrapper.

¢ Avoid crash with Qt 3.0.5 and earlier versions.

* Fixed name generation for objects that have property values having am &-characters in them.

* Consider ’objectName’ for the symbolic name.

* Support the QFileOpenEvent event type in sendEvent() calls.

2.8.3 Java-specific

* Support testing of applications which mix AWT/Swing and SWT/RCP controls.

* Greatly simplified setup procedure for hooking into Java applications. Applications launched through a .bat file do not have to
be patched anymore for example.

¢ Pre-built binary packages for Solaris.

* Support for record and replay of drag’n’drop and mouse drag operations.
* Dedicated record and replay support for Eclipse GEF-based controls

* Fixed access to object members via Perl test scripts.

* A plug-in that adds a Squish Test Type to the Eclipse Testing and Performance Testing Tools Platform (TPTP). It allows for
Squish tests to be driven by tools based on the TPTP framework.

2.8.4 Web-specific

» Support record and replay of actions on Java applets embedded in a Web page.

* On Windows, support record and replay of basic interactions with native browser dialogs (e.g. certificate and password dialogs),
native browser control elements and embedded ActiveX objects. This includes Flash/Flex plug-ins.

* Several small improvements for better synchronization and object identification.

2.8.5 Mac-specific

* New edition available for automated testing of Carbon and Cocoa applications on Mac OS X

2.8.6 Source Builds

* Compile with a Qt installation that was stripped down with QT_NO_MESSAGEBOX, QT_NO_MENU, QT_NO_MENUBAR
and QT_NO_TOOLBUTTON being defined.

* Avoid compilation error by not using a possibly-reserved "constant" identifier.

Squish Manual
17 /17

2.9 Version 3.2.3

2.9.1 General

* Fixed reading Object Map with empty lines.

* Make sure that backslashes in symbolic names do not get lost.

* Don’t pass open sockets to child processes.

* Fix problems with accessing wrapped functions after an application started via startApplication() was terminated.
* Fix sporadic crash after test suite removal or replacement.

* Keep pointing out file modifications in source()’d files when using Run and Record

* Improved usability of row selection and deletion in the Object Map editor

* Fixed setting of the pid property of the context returned by defaultApplicationContext().

* Fixed Current Working Directory path names with spaces in them.

2.9.2 Qt-specific

* Suppress mouse animation in cases where the events generated by the windowing system could conflict with operations like
dragging of canvas elements.

* Fix clicking on tabs which have a backslash character in their name.
* Fix ’Object not found’ errors when running the monkey test example.
* Qt 4 on Mac only: make recording and playback of menu actions work (i.e. turn off the native menu bar support).

* Fixed memory leaks that occurred with Qt 3.x and use of buddy* and window* object name properties.

2.9.3 Web-specific

* For image links which have no good properties, use the image’s src in the generated name.

* Fixed a race condition leading to waitForContextExists() waiting unnecessariliy for 20 seconds
* Added openContextMenu() function

* Emulate onchange events correctly for select-multi input elements.

* Consider attributes for object identification.

* Fixed race condition leading to a crash of webhook after a test run.

* nativeMouseClick() now accepts a second ’button’ argument.

* Fixed hooking into frames in some tricky situations.

* Sanity check on frame hookup.

2.9.4 XView-specific

* Fixed a settings-dependant crash on Solaris.

Squish Manual
18/17

2.9.5 Source Builds

Fixed Perl auto-detection on HP-UX

Compile fix for a picky version of Sun CC.

2.10 Version 3.2.2

2.10.1 General

Added File.readIn() JavaScript function.
Guess separator used for testdata correctly even for very short data tables.
Fixed Perl bindings for template, pointer and reference C++ types.

Compile fixes for Lynx OS. Some workarounds for for recently discovered compiler bugs are still pending. Please inquire with
support for a patch.

Don’t let the IDE crash when creating a new testdata file and saving it before a second column was added.

Fixed Solaris walkcontext() check.

2.10.2 Qt-specific

Added --with-moc switch.
Added QMenu.title descriptor. This seems got lost somehow between Squish 3.1 and 3.2.
Fixed Qt 4 library detection on AIX.

Deal with quoted built-in, pre-processor macros of latest Sun CC compiler.

2.10.3 Web-specific

Fixed clickButton()
On replay when an object is not found in the current context, try finding it in any other open context before throwing an error.

Fixed hooking into windows opened by subwindows. Squish only hooked into windows opened by frames of subwindows so
far. This will fix many issues with popup windows.

Record and replay right-mouse-button clicks correctly.

If, when recording, it took longer that 20 seconds for an object or context to be available, record this timeout in waitForObject()
and waitForContextExists().

When a frame, which is the current context, is reloaded, reset the context to the new frame window.

Fixed case where waitForContextExists() waited 15 seconds if called in an unfortunate moment.

2.11 Version 3.2

Squish 3.2 is a minor release that brings new features, improvements for all editions. New features and some of the improvements
are listed below. See the ChangeLog file in the package for a complete list.

Squish Manual
19/17

2.11.1 General

* Property name matching supports regular expressions and wildcards. This allows for dynamic property values to be identified.
* References to other objects are possible in multi-property names to avoid repeating redundant information.

 The list of properties used for object identification is configurable.

* Improved documentation with more examples, in-depth information and tutorials

* Improved usablity of the [Test SuitelRecord] sequence in the IDE.

* Implemented source() function for Perl script bindings.

211.2 Qt

* Generated multi-property names now reference container, window, buddy, leftWidget, aboveWidget, parentWidget by name
and not using a set of identifying properties. This makes the names carry less redundant information and better maintainable.

* Use Qt’s translator mechanism to do property value matching in object names and matching of item texts in functions such as
activateltem() so test scripts can run on internationalized applications with no modifications.

* New Qt 4.3 classes like QWizard are wrapped
* Support Qt 3.3.8 by working around a regression that broke the debugger on Windows.

* Support Q3ListBox and Q3ComboBox

2.11.3 Web

* Support record and replay of interactions with FileUpload form elements.

* The Spy can be used without a running test

¢ Added a waitForContextExists() function and record that instead of setContext().
* Much improved Spy object picker.

* Screenshots can now be taken of individual elements in the page and not only of the whole page (as it was the case in previous
versions)

* Added new event types AlertOpened, PromptOpened and ConfirmOpened than can be handled in the test script.

* Added a JavaScript extension API that allows user-defined support for custom AJAX widgets. That includes custom object
identification for record and replay and property definitions.

* Added support for Firefox on Mac OS X.

* Fixed various errors in the interaction with Internet Explorer 7

2.11.4 Java

* More properties and relative widgets (buddies, etc.) are used in object names when recording to generate more robust names.

* Fixed script replay actions ignoring the return value whether the action succeeded or not.

2115 Tk

* Added support for testing Tk-inter applications (e.g. PyTk)

Squish Manual
20/17

2.12 Version 3.1.2

Version 3.1.2 is a maintenance release that incorporates a couple of bug fixes. See the ChangeLog file in the package for a
detailed list. User visible changes and improvements are listed below.

2.12.1 General

* Fixed a race condition leading to occasional IDE crashes when removing a test suite.

* Fix a crash in screenshot comparison with masks if the image is smaller than the mask.

* More robust breakpoints in Python scripts located via SQUISH_SCRIPT_DIR.

* Improved function overload resolution of Perl and JavaScript bindings. Prefer a normal type conversion over a "tolerant" one.
 Support NULL pointer passing from Perl scripts.

* Don’t crash when using an invalid report output format.

* Fix compile problems with Python 2.5.

* Added a "Copy Real Name" option to the Spy.

* Improved algorithm that is used to detect whether a file is binary or text. French accents and Umlauts won’t confuse it anymore.

e Mac OS only: if you add an application path or add an attachable AUT via the test suite settings dialog, then show the last
modal dialog in front.

2.12.2 Qt

* Fix over-aggressive mouse move event compression so that recording multiple subsequent moves of a dialog window gets
played back properly.

* Fix setting breakpoints and using the spy with Qt 3.3.8 on Windows.

Fixed Q3ListBox interaction crash.
* Wrap Q3ComboBox which which appeared in Qt 4.1
* Support Qt builds that have QWheelEvent disabled.

2.12.3 Java

* Support for Java testing on the Mac.

* Keyboard mapping fixes for both SWT and AWT/Swing.

* Replaying ’typeText()’ fix in AWT/Swing, it simply called ’setText()’.

* Fix replaying menu selection when menu bar is a derived JMenuBar class.

* Filter out "typeText()’ on widgets not having the focus AWT/Swing.

* Menu selections and combobox selections are now recorded on the mouse button release event for AWT/Swing.

 Jvm crash workaround when calling "toString()’ on some SWT widgets.

Squish Manual
21/17

2.12.4 Web

* Fix for hooking into pages which automatically redirect.
* Fixed hang in unload handling.

* Made isPagelLoaded more robust.

* Fixed occasions where picking objects hung.

* Added dedicated support for Kiwi_TreeTable.

* Fixed error handling.

* Fixed recording selectOption() when the option text contains special characters.

2125 Tk

* Generate better names for randomly-named TkInter widgets.
* Sanity check that allows to record on statically linked Tk apps.

* Fixed hooking for TkInter Python applications.

2.13 Version 3.1.1

Version 3.1.1 is a maintenance release that incorporates a couple of bug fixes. See the ChangeLog file in the package for a
detailed list. User visible changes and improvements are listed below.

2.13.1 General

* A test suite has a default naming scheme property now. If not specified in the suite. conf file, it is set to old, hierarchical
names. This way existing pre-3.1 test suites keep using hierarchical as default. This is also true for using the Spy when picking
objects and inserting Verification Points. Modify the NAMINGSCHEME entry to MULTIPROP or HIERACHICALin suite.conf
to change the default naming scheme.

2.13.2 Qt

* The following classes that appeared in the Qt 4.2 release were added to the Qt Wrapper and are therefore available in test scripts:
QGraphicsView and related classes, QCalendarWidget, QFontComboBox, QDialogButtonBox, QWidgetAction, QSystem-
Traylcon, QDesktopServices and Q3(HIV)GroupBox.

* The multi-property object identification scheme added in version 3.1.0 has undergone some improvements to provide more
robust names.

* When building a Squish for Qt package from sources a Qt setup with the source directory being different than the Qt installation
directory is automatically detected. This enables builds with custom Qt and Qtopia installations without manually setting the
OTSRCDIR build variable.

Squish Manual
22/17

2.13.3 Java

* Important fix for Squish Spy for SWT, it had a serious threading problem in 3.1.0.

* Screenshots for a JFrame, or Shell in SWT, is now supported as well.

Added closeWindow (object) to the Java™ convenient API for scripts, which closes a top level window or dialog. Also
closing such a window with recording by the system window menu or close button, will now record it as a closeWindow (-
object).

* The object picker from spy now prevents that the click event, triggered by the actual picking, does not reach the AUT event
processing.

2.13.4 Web

¢ Input into file upload elements (INPUT elements of type FILE) can be recorded and replayed now.
* During setup any running Mozilla and Firefox instances are automatically shut down to ensure a proper plug-in installation.

* DIV and SPAN elements that have a reasonable innerText property are now identified by this property rather than by fragile,
hierarchical names.

2.14 Version 3.1.0

2.14.1 General

* Improved control bar: when you record a test script, the control bar shows the events it records and when you replay a test, it
already shows the test log.

* Insertion of Synchronization Points via Point & Click: you can insert synchronization points (waitForObject statements)
within the Spy. It works the same way as inserting a verification point.

* Show AUT’s call stack on crash in test log: if the AUT crashes during test execution, a backtrace of the crash is included in the
test log. This is currently not supported on Mac OS X.

* Live Script console in script debugger: if you execute a test script and hit a breakpoint, the Squish IDE opens a debugger pane
next to the variable watcher. There you can execute script statements to debug your test scripts.

* Completely overhauled variable watcher window: the variable watcher displays more variables and it also displays the type of
the variable.

* Improved automatic object naming: additionally to the hierarchical object identification, you can now choose to use multiple
property object identification instead. This results in more robust object names in many applications. You can choose which
object naming scheme to use when recording a new test script. It is no problem to use both, hierarchical names and multiple
property names side-by-side.

» Excel import for test data: you can copy an Excel file to the test data directory and use it in the script like you would use any
other test data file to read it and access the elements (see Section 7.11.2). It is not possible to edit the Excel test data files inside
Squish, though.

* Excel export for test results: when calling squishrunner with the option ——reportgen you can specify x1s to generate the
testresults as an Excel file.

* Perl support for test scripts: Perl is now a supported language to write test scripts.

* Test-Script template support in IDE

Squish Manual
23/17

Chapter 3

Installation

This chapter describes the steps necessary to install Squish on Unix, Windows, Mac OS X and Embedded Linux. Squish can be
used in many setups using binary packages, but might also need to be compiled from source.

In case it is not possible to use a binary package for your local setup, the section Section 3.2 explains how a default build from
source works. A list of common options to the configure script is available in the Section 3.2.2 section.

Installing Squish for a non-default setup is a bit more complex. Please refer to the following sections for cases that are not
possible to do with a default setup:

e Section 3.2.4
e Section 3.2.5
e Section 3.2.7

e Section 3.2.8

Finally, if you want to use a Squish installation on more than just one machine, please take a look at Section 3.3.

3.1 Installing from Binary Packages

Squish can be installed from binary packages, which simply need to be unpacked and then configured before they are ready
for use. Binary packages are available for Linux®, OS X® and Microsoft™ Windows®. Since Squish integrates very tightly
with your computer’s system and with the application/website you want to test, different versions of each package are available.
Hence, the first step when installing binary packages is finding out which package is the correct one.

3.1.1 Getting the Correct Package

The binary Squish packages are available in your Customer Area on the froglogic website. To find out which of these packages
is the one you need, you first need to know whether you are going to test either a web application or an application written using
the Qt® toolkit. Additionally, you need to know which operating system you are using, i.e. Linux, Mac OS X, or Microsoft
Windows.

If you will be testing a Qt application, you need to collect some further technical information in order to be able to choose the
correct package:

1. Which version of Qt is used by the application you want to test?

2. Which compiler (and which version of the compiler) was used to compile the Qt library (and the application which you
want to test)?

http://www.froglogic.com

Squish Manual
24 /17

If you don’t know this yourself, it’s likely that a developer will be able to give you this information. After you have collected this
information, the following table can tell you the name of the package to be used for each edition/operating system/compiler/Qt
version combination.

Note

Please note that should you be unable to find an entry in the table which matches your local setup, it is best that you build
Squish from source. This ensures that it integrates correctly with your local software configuration. Building Squish from source
is described in Section 3.2.

Note
Squish binary packages do not require installion of any files into some additional directory of your computer, so the directory
you choose for decompressing the package can just as well be the one from which you will run Squish.

After you have decided which of these packages is appropriate for you, download it onto your computer and decompress it
somewhere. Decompressing these files requires a ZIP decompressor for Windows. The Linux and Mac OS X packages use GNU
gzip and GNU tar. In case you don’t have a graphical interface for your respective compressor, change to the directory into which
you downloaded the package and then execute the following command:

On Windows C:\squish> unzip -o packagename
On Linux % tar zxf packagename

OnMacOS X % tar zxf packagename

packagename is a placeholder for the actual name of your binary package, as given in the table above.

3.1.2 Configuring the Package

Before you can run Squish from a binary package, you need to run a special configuration tool contained within the package so
that Squish knows where certain files reside on your hard disk. This configuration tool is called setup and is stored in the top-level
directory of your package. Hence, after decompressing the package, you should be able to find an executable file called setup -
start the configuration process by executing that program.

Note

In case you're using a binary package of Squish built for the Microsoft Visual Studio 2005 compiler (MSVC8), your system might
lack certain runtime libraries. You can tell whether you lack them by starting the setup program: if it works, everything is fine.
However, if you get an error message along the lines of ‘This application has failed to start because the application configuration
is incorrect’ then you have to install the required runtime libraries first. To do so, simply run the vcredist_x86 program which is
in the same directory as the setup program prior to starting the setup.

Note
If you want to go back and change a setting you made during the configuration, you can use the button labeled Back to navigate
back to the respective page, adjust your configuration, then move on again using the Next button.

Squish Manual

25/17

Operating System Edition Qt Version Compiler Package Name
squish-3.1.

Windows (32bit) Qt Testing 3.3.5 MinGW 0-gt335-win32-mingw.
zip
squish-3.1.

Windows (32bit) Qt Testing 3.3.6 MinGW 0-gt336-win32-mingw.
zip
squish-3.1.

Windows (32bit) Qt Testing 4.1.x MinGW 0-gtd4lx-win32-mingw.
zip
squish-3.1.

Windows (32bit) Qt Testing 4.1.x MinGW 0-gt42x-win32-mingw.
zip
squish-3.1.

Windows (32bit) Qt Testing 3.3.5 MSVC 6 0-gt335-win32-mg$vco.
zip
squish-3.1.

Windows (32bit) Qt Testing 3.3.6 MSVC 6 0-gt336-win32-mg$vco6.
zip
squish-3.1.

Windows (32bit) Qt Testing 4.1.x MSVC 6 0-gtd4lx-win32-m$vcé.
zip
squish-3.1.

Windows (32bit) Qt Testing 4.1.x MSVC 6 0-gtd2x-win32-mgvco.
zip
squish-3.1.

Windows (32bit) Qt Testing 3.3.5 Zﬁig:7j (NET 0-gt335-win32-mgvc7.
zip
squish-3.1.

Windows (32bit) Qt Testing 3.3.6 %%;C 7.1 (NET 0-gt336-win32-mgvc7.
zip
squish-3.1.

Windows (32bit) Qt Testing 4.1.x 12\/([)?)\3/)C 7.1 (NET 0-gtd4lx-win32-mgvcT.
zip
squish-3.1.

Windows (32bit) Qt Testing 4.1.x 12\/([)%;/)(: 7.1 (NET 0-gt42x-win32-ms$vc7.
zip
squish-3.1.

Windows (32bit) Qt Testing 3.3.5 MSVC 8.0 (2005) 0-gt335-win32-mgvcSs.
zip
squish-3.1.

Windows (32bit) Qt Testing 3.3.6 MSVC 8.0 (2005) 0-gt336-win32-mgvcs.
zip
squish-3.1.

Windows (32bit) Qt Testing 4.1.x MSVC 8.0 (2005) 0-gtd4lx-win32-mgvcs.
zip
squish-3.1.

Windows (32bit) Qt Testing 4.1.x MSVC 8.0 (2005) 0-gté42x-win32-mgvcs.
zip
squish-3.1.

Windows (64bit) Qt Testing 3.3.5 MSVC 8.0 (2005) 0-gt335-win64-mgvcs.
zip
squish-3.1.

Windows (64bit) Qt Testing 3.3.6 MSVC 8.0 (2005) 0-gt336-win64-ms$vcs.
zip
squish-3.1.

Windows (64bit) Qt Testing 4.1.x MSVC 8.0 (2005) 0-gtdlx-win64-msvcs.
zip
squish-3.1.

Windows (64bit) Qt Testing 4.1.x MSVC 8.0 (2005) 0-gt42x-win64-m$ves.
zip
squish-3.1.

Linux (32bit) Qt Testing 3.3.5 any 0-gt335-1inux32

o

Squish Manual
26 /17

3.1.2.1 Entering the License Key

froglogic 5quish 3.0 setup

License Key Check

Welcome

I License Key
Terms of Use
Qt Library
Scripting Lang

Preferred Bro Please enter your froglogic Squish license key:

Review

Installation Fi

| = Back H | | Cancel

After acknowledging the welcome page, by pressing the button labeled Next on the bottom of the setup program, the next page
will request you to enter your Squish license key as given to you by froglogic. If you already have a previous Squish installation
on your computer, the license key used previously will be shown in the input field. Enter your license here exactly as given to
you, including any dashes.

Note

Since the release of Squish 3.0 also introduced a new license key scheme, you should have received a new license key in your
customer area on the froglogic website (called squish—-3-1icense). In case your previous installation didn’t already use
this scheme, it is recommended that you use the new license key instead of any previous one, as used by Squish 1.x and 2.x.

Click the Next button to advance to the next step of the configuration process. If there are any problems with the license (for
instance, if it has expired or is malformed) then a message box will be shown, notifying you of the issue.

http://www.froglogic.com

Squish Manual
27 /17

3.1.2.2 Acknowledging the Terms of Use

froglogic squish

Terms of Use

Please take a moment to carefully read the following

Welcome license text. Using froglegic Squish requires accepting
License Key this license.
P Terms of Us Squish Commercial License Agreement =
Qt Library For Sguish Developer License and Squish User 3
License

Scripting Lan Agreement version 1.1

Preferred Br
This froglogic End-User License Agreement
("Agreement") is made by and between froglogic
GmbH ("froglogic"), and you (either an individual or a
legal entity) ("Licensee"),

Review

Installation Fi

IMPORTANT-READ CAREFULLY:

||

bl F oSENIR IR N Rt | [t [t [L e B R T E
i~ Accept (Decline

= Back | ‘ | | Cancel

After entering your license key, you will be presented with the license under which you are permitted to use your copy of Squish.
Please read the entire license text carefully before proceeding. Two buttons labeled Accept and Decline, below the license text,
let you state whether you agree or disagree with these terms.

Note
The license text can change depending on which license key you entered.

Accepting the license text will allow you to click the Next button, so you can proceed to the next step of the configuration process.

Squish Manual
28 /17

3.1.2.3 Paths for Java™ Settings

_7 froglogic Squish 3.1.0 Setup

Java Settings

Welcome

License Key Ch
Please specify the path of the Java Runtime Environment.
Mote if you have the complete Java SDKE installed, then choose the jre

sub-directory.
j Browse... |

Terms of Use
Ot Library

[+ Java Settings
Scripting Langu

Preferred Bro

Review
Please specify the path of the SWT jar.

Leawve this field empty if you don't have SWT installed or
do not want to test SWT based Java GUIl applications.

Installation Fini

j Browse... |

< Back Cancel

In order to be able to test Java™ applications, you need to point Squish to the jre sub directory of your Java™ SDK installation,
or if you only have the JRE installed, the root of that installation.

If you also want to test Java™ applications based on the SWT GUI toolkit, then the path to the SWT jar file as well.

Note
Beware that the SWT jar file needs the accompanying shared libraries (or dII's) to be found in your system path.

Note
If you don’t know where the library is stored on your computer, your system administrator should be able to tell you.

After specifying the path to the requested jre directory and optionally filled in a valid path to a SWT jar file, use the Next button
to advance to the next step of the setup.

Squish Manual

29/17

3.1.2.4 Preferred Scripting Language

froglogic Squish 3.0/5etup

Preferred Scripting Language

Welcome
License
Terms of U
Qt Library
I+ Scripting
Preferred B
Rewview

Installation

Please choose your preferred scripting language. Nate
that you can always change the scripting language later
on a pertestsuite basis,

Available Languages

" JavaScript
" Tl

= Back H Next = | | cancel

Test scripts created with Squish can be formulated in a number of scripting languages, such as Python, Tcl or JavaScript. This
page lets you define which language should be used by default when creating new test suites. Select your preferred scripting
language here (or choose the default), then proceed to the next step using the Next button.

Squish Manual
30/17

3.1.2.5 Preferred Web Browser

froglogic 5quish 3.0 setup

Preferred Browser

Welcome
License Key Ch
Terms of Use
Qt Library More than one supported web browser has been found

on your computer, Please choose which browser you
would like to use for testing web applications

Scripting Langu

I Preferred Bro

Available Browsers

Review

Installation Fini

" Mozilla

= Back H Next = | | cancel

Tip This step is only necessary if you are configuring a Squish package set up for testing Web applications on Linux, and if
your license key entitles you to test Web applications. If this is not the case, you won'’t be presented with this page and can
safely skip to the next section.

When using Squish to test web applications, it is necessary to decide which browser should be used for recording and replaying
the tests. On Windows and Mac OS X, the default browser is used (Internet Explorer® and Safari® respectively). However,
Linux systems have no default browser, and if more than one supported browser is detected you need to choose which browser
should be used.

Note
If you are using a Linux package and there was just one supported browser found, it will be chosen silently and this page will
be skipped.

Just select your preferred web browser, or choose the default selection, then move on with the setup by clicking the Next button.

Squish Manual
31/17

3.1.2.6 Configuration Review

froglogic 5quish 3.0 setup

Configuration Review

Welcome
License Key Ch
Terms of Use
Qt Library

Please review the configuration you have selected before
it is saved. You can always change any of the shown
Scripting Langu settings by navigating to the corresponding page using
the Back button.

Preferred Brow i i
Current Configuration

License Type: Commercial version

Path to Qt Librany: fusrfX11R&/libflibgt-mt.so
Scripting Language: Python

Default Web Browser: Firefox (fusr/X11R&/binffirefox)

> Review

Installation Fini

= Back H Next = | | cancel

All required information has now been gathered by the setup program and is presented here for you to review, an example of
which is shown in the picture above. As usual, if you notice any mistakes, you can use the Back button of the setup program to
go back to the respective page and adjust your choices, then return to the review page by using the Next buttons.

Warning

Pressing the Next button on this page means that the configuration shown will be written out - a process which cannot
be reversed (though you could re-run the setup program and overwrite the settings with new ones). Please ensure that
the settings shown look sensible.

Proceeding to the next page, using the Next button, will save the configuration shown, and advance to the final page.

Squish Manual
32/17

3.1.2.7 Concluding the Configuration

froglogic Squish 3.0 Setup

Installation Finished

Welcome
License Key Check
Terms of Use

! froglogic Squish was successfully configured for your
Qt Library system!
Scripting Language

If you like, you can now start running froglogic Squish

Preferred Browser .
directly.

Review
b Installation Finished Thank you for installing froglogic Squish!

[iStart the froglogic Squish IDE now:

[Open the froglogic Squish manual now

< Back H Einish | | Cancel

Congratulations! You have finished the installation, and all settings have been saved successfully. This page concludes the
configuration of your Squish binary package.

You can now use the button labeled Finish to finish the installation and close the setup program. If you like, you can check any
of the check boxes shown, should you subsequently want to open the Squish IDE or the Squish manual.

3.1.3 Using the Binary Package

After acquiring, decompressing and configuring your Squish binary package, you are ready to go. You can start the Squish IDE
by navigating to the bin folder in the place where you unpacked your binary package, and then starting the program called
squish.

If this is your first time using Squish, it might be a good idea to proceed to the tutorial so you can familiarize yourself with the
software.

For testing a sample Java™ application, see Chapter 5.

3.2 Installing from Source Packages

Squish can - and might need to - be built from source, which means that you have to compile it. This ensures that Squish supports
the Qt configuration your applications use. Once Squish is compiled, it can be distributed to different computers running the
same operating system (see Section 3.3).

Compilation usually just requires a few simple steps. The sequence of which, for the most common cases, is described in
Section 3.2.1. Deviations from the common scheme for non-standard configurations are covered in subsequent sections.

3.2.1 Quick Install

The Quick Install guide describes how to perform a standard installation of Squish. This covers most common cases and is the
easiest way to install Squish.

Squish Manual
33/17

Requirements
For a standard installation, certain requirements have to be met:

* Qt 3.1.0 or greater needs to be available.
* Qt needs to be configured and built with support for threads.
* Qt needs to be configured and built as a shared library.

* If you want to use Python as a scripting language for test scripts, a version of Python equal to or greater than 2.2.0 needs to be
installed.

* If you want to use Tcl as a scripting language for test scripts, a version of Tcl equal to or greater than 8.0 needs to be installed.

« If Perl is the scripting language of your choice a Perl 5.8 installation is required on your system. The development release Perl
5.9 is known to work but not regularly being tested.

Windows Linux/Unix Mac OS X
The Python interpreter executable has
to be in the PATH. Most Unixes
already have Python pre-installed. If The pre-installed Python version
this is not the case, however, pre-built | fulfills this requirement.
packages for most Unix systems are
available for download.

We recommend installing the Python
package available at
http://www.python.org/ftp/python/-
2.3.3/Python-2.3.3.exe or a more
recent version from that site.

We recommend installing
ActiveState’s Tcl build. You can
download it from
http://www.activestate.com/Products/-
Download/- Most Unixes already have Tcl The pre-installed Tcl version fulfills
Download.plex?id=ActiveTcl. It installed. this requirement.

comes with a Windows setup
program. If you run this and accept all
the standard settings it will be
installed in C: \Tc1l.

We recommend installing
ActiveState’s Perl package. You can
download it from
http://www.activestate.com/Products/-
Download/-
Download.plex?id=ActivePerl. It
comes with a Windows setup
program. If you run this and accept all
the standard settings it will be
installed in C: \Perl.

Most Unixes already have Perl
installed. The perl executable is
searched in PATH unless overriden
with the ——with-perl configure
switch.

The pre-installed Perl version fulfills
this requirement.

If you want to use Squish to test Qt 3.0.x applications, see Section 3.2.4 and if you want to test Qt/Embedded 2.3 applications,
see Section 3.2.5. QtopiaCore and Qtopia 4.x specific instructions can be found in Section 3.2.6.

Some parts of Squish require that they use the same Qt library as the application you want to test. If the Qt library your application
uses does not fulfill the requirements above (i.e. is not a shared, multi-threaded Qt library), you have to do a split build of Squish
(see Section 3.2.7 and Section 3.2.8).

There are no additional requirements if you want to use JavaScript as a scripting language for test scripts: the source code of
a small JavaScript interpreter library is shipped with the Squish package. The library is built automatically unless JavaScript
support is turned off using the ——disable—js switch of the configure program.

Supported Platforms

Squish has been tested on the following platforms and compilers:

http://www.python.org/ftp/python/2.3.3/Python-2.3.3.exe
http://www.python.org/ftp/python/2.3.3/Python-2.3.3.exe
http://www.activestate.com/Products/Download/Download.plex?id=ActiveTcl
http://www.activestate.com/Products/Download/Download.plex?id=ActiveTcl
http://www.activestate.com/Products/Download/Download.plex?id=ActiveTcl
http://www.activestate.com/Products/Download/Download.plex?id=ActivePerl
http://www.activestate.com/Products/Download/Download.plex?id=ActivePerl
http://www.activestate.com/Products/Download/Download.plex?id=ActivePerl

Squish Manual

34/17

* Windows 2000

* Windows XP

* Windows Vista
Compilers:

* Microsoft VC++ 6.0
* Microsoft VC++ 7.x
* Microsoft VC++ 8.x
* Microsoft VC++ 9.x

e Inte]l C++ 7.x

Windows Linux/Unix Mac OS X
e xIC9.0.0.2 on AIX 6.1
e aCC A.05.52 on HP-UX 11i 11.22

Platforms:

* aCC A.03.45 on HP-UX 11.11 32bit
and 64bit (with PHSS_30049 1d
patch)

* gcc3.3.x on HP-UX 11.11

* GNU gcc 2.95.x on IRIX 6.5 (See
Q:10.1.2)

e MIPSPro C++ 7.4m on IRIX 6.5
32bit and 64bit

* GNU gcc (3.x and 4.x) on Linux
e Intel C++ 7.x on Linux

* GNU gcc (3.x and 4.x) on SUN
Solaris 8 x86

¢ SunCC 5.5 on SUN Solaris 8 x86
* GNU gcc 3.4.4 on FreeBSD 6.x

e gcc 3.3 and 4.0 on Mac OS X 10.4
(Tiger)

Building Squish

We assume that you have unpacked the package into

Windows

Linux/Unix

Mac OS X

C:\squish

/usr/local/squish

/usr/local/squish

You can use any path, but this document uses this path for the sake of example.

The first step is to ensure that you have a license key. Download the file called squish-3—-1icense from the download area
where you obtained your Squish package. Copy this file to

$HOMEPATHS\ .
squish—-3-1license

SHOME\ .squish-3-1icense

SHOME . squish-3-1license

(notice the change of name to include a leading dot). Alternatively you can enter the license key contained in the file when

configure asks for it.

Note

If you build Squish for another user, you must make sure that each user copies the license file into their own account area.

Now Squish is ready to be configured according to your system’s settings.

Start by changing to Squish’s installation directory

Open a console (Command Prompt)
and type:
C:\> cd \squish

$ cd /usr/local/squish

$ cd /usr/local/squish

Squish Manual
35/17

Now run the configuration script:

‘ C:\squish> configure ‘ $./configure ‘ $./configure ‘

The configure script searches for your C++ compiler, Qt, Tcl, Python, and other system components relevant to Squish. The
output indicates which compiler has been detected. You should use the same compiler for Squish, Qt and your applications. If
you want to force configure to use a different compiler from the one it automatically detects, set the CXX environment variable.

For example, if you want to use Intel
C++ instead of MSVC++, run
configure like this:

C:\squish> set CXX=icl
C:\squish> configure

For example, if you want to use gcc
instead of SunCC on Solaris, run
configure like this:

$ CXX=g++ ./configure

For example, if you want to use gcc
3.3 instead of the default gcc version,
run configure like this:

$ CXX=g++-3.3 ./configure

Now configure asks you to run build to compile Squish.

‘C:\squish> build

[$./build

[$./build

This runs for quite a while, since it also creates wrappers for the Qt library. During certain steps of the build process you will

probably see a lot of warnings from the squishidl tool. It is safe to ignore these warnings.

Once it has finished, Squish is installed. The binaries and libraries are now in:

C:\squish\bin
C:\squish\1lib

/usr/local/squish/bin
/usr/local/squish/1ib

/usr/local/squish/bin
/usr/local/squish/1ib

You might want to add the bin directory to your PATH environment variable so you can invoke the Squish tools without

specifying the path:

Open the advanced system settings in
the Windows control panel and add
C:\Squish\bin to PATH.

Edit your .bashrc (or the
appropriate file for the shell you are
using) and extend the PATH by adding
/usr/local/squish/bin.
Alternatively, you may prefer to create
symbolic links, in
/usr/local/bin, to the
executables in
/usr/local/squish/bin.

Edit your .bashrc (or the
appropriate file for the shell you are
using) and extend the PATH by adding
/usr/local/squish/bin.
Alternatively, you may prefer to create
symbolic links, in
/usr/local/bin, to the
executables in
/usr/local/squish/bin.

The Squish IDE itself is an application
bundle (/usr/local/lib/
_squish.app), but don’t call it
directly; rather start the Squish IDE
from the
/usr/local/bin/squish
command line program. This ensures
that the environment is set up
correctly for Squish.

3.2.2 Configure Switches

When invoked, configure tries to automatically detect or guess the configuration of your system and the desired configuration of
Squish. In some cases, this approach is not sufficient. That’s why it is possible to override default settings by a set of switches.

A few examples are:

Squish Manual
36/17

e ——enable-examples — (see Partial Build for a complete explanation)

e ——with-tclconfig=/usr/lib/tcl8.3/tclConfig.sh — overrides the automatic Tcl detection

e ——with-pydir=P:\Python — points configure to the directory where python.exe or bin/python are installed
e ——with—gtdir=C:\Qt\3.3 - points to the Qt installation directory, overriding the QTD IR environment variable

e ——enable-64bit — forces a 64-bit build on platforms where this is supported

For a complete list, please invoke configure——help from the command line.

Partial Build

The default behavior of the configure script is to select all components for a build. However, in some cases it may be desirable to
only build a subset of components. Typical reasons are:

* a distributed installation with a minimal runtime installation on the target machine and execution tools, like the IDE, on the
tester’s machine

* a build with differently configured Qt libraries, such as described in Section 3.2.7 and Section 3.2.8

To support partial builds, configure supports a set of switches that will exclude individual components from the build. Currently
the following components can be selected this way:

* server — the Squish Server application

* runner — the Squish Runner (client) application

e ide — the Squish IDE (graphical frontend)

e id1 —the IDL compiler (needed for generating wrapper libraries)
* wrappers — Squish’s framework wrapper libraries

* examples — the examples

e tk —basic Tk testing

* rest — everything not included in another component

Any of the above components can be used in ——enable-x or ——disable-x switches where x stands for the name of the
component. If you are not interested in building the examples, you could configure and build Squish like this:

configure --disable-examples

build

You can combine these switches freely within the constraints of internal dependencies. This is where the a1 1 component comes
in handy:

configure --disable-all --enable-server —--enable-wrappers

This disables every component but the server and wrapper libraries.

Squish Manual
37/17

Override Build Variables

configure will output the detected configuration into the files config.h and Build. conf. The former will be included by the
source code files, the latter serves as an input file to the build tool. In case the automatic detection produced unsuitable results,
you may choose to adapt these files before invoking build. The variables written to Build.conf can easily be overridden,
without manually editing the file, by specifying arguments of the form VARIABLE=value or VARIABLE+=value at the configure
command line. These arguments will replace and extend the named variables respectively.

An example that will override the default mode of gcc and enforce a 32-bit build on a 64-bit system:

configure "CXXFLAGS+=-m32" "LFLAGS+=-m32"

Here, the default optimization flag will be overriden:

configure "CXXOPT=-01"

3.2.3 Installation for Testing Pure Qt 4 Applications

Testing a Qt 4.x application which does not use the Qt 3.x support functionality (a so called "pure" Qt 4.x) requires a split build
of Squish. This means you must compile the components that come in direct contact with the AUT using your pure Qt 4.x library.
The rest of Squish can be compiled with either Qt 3 or a Qt 4 installation that includes the Qt3Support module. For this, you
have to run the commands configure and build twice: the first time to build the parts that will use the pure Qt 4 library and the
second to build the parts that require Qt 3 or - alternatively - Qt3Support.

Here’s a minimal example that assumes Squish to have been unpacked into two different directories:

Mac OS X
/home /user/squish-qgt-4.0
/home/user/squish-gt-3.2

Linux/Unix
/home/user/squish-gqt-4.0
/home/user/squish-gt-3.2

Windows
C:\Squish-Qt-4.0
C:\Squish-Qt-3.2

The pure Qt 4.0 and Qt 3.2 are installed in:

C:\Qt\4.0.1 /usr/local/qt40 /usr/local/qt40

C:\Qt\3.2.3 /usr/local/qt32 /usr/local/qt32
First, build only the Qt wrapper and the examples using Qt 4.0:

C:\> cd C:\Squish-0t-4.0 $ cd S cd

C:\Squish-Qt—-4.0>
configure
——enable-pure—-qgt4
——with-gtdir=C:\Qt\4.0.1
——disable-all
——enable-idl
—-—enable-wrappers
——enable—-examples

/home/user/squish-qt—-4.0
$./configure
——enable-pure-gqt4 --with-
—gtdir=/usr/local/qt40
——disable-all
—-—enable-idl
—-—enable-wrappers
——enable-examples

/home/user/squish-qt-4.0
$./configure
——enable-pure-gt4 —--with-
-gqtdir=/usr/local/qt40
——disable-all
—-—enable-idl
—-—enable-wrappers
——enable-examples

Verify that the configuration log output reads Checking Qt version 4 . x where x would be the respective Qt

4 release you are using. Now build the wrappers and the examples using Qt 4.0:

| C:\Squish-Qt-4.0> build [$./build | $./build |

Now change to the directory of the second Squish installation, point configure to the Qt 3.2 installation and select the remaining
components:

Squish Manual

38/17

C:\Squish-Qt-4.0> cd
C:\Squish-Qt-3.2
C:\Squish-Qt-3.2>
configure
-—with-gtdir=c:\Qt\3.2.3
——disable-idl
——disable-wrappers
——disable-examples
——disable-explorer

$ cd
/home/user/squish-gqt-3.2
$./configure —--with-gtd-
ir=/usr/local/qt32
——disable-idl
——disable-wrappers
——disable-examples
——disable-explorer

$ cd
/home/user/squish-gqt-3.2
$./configure —--with-gtd-
ir=/usr/local/qt32
—-—disable-idl
——disable-wrappers
——disable-examples
——disable—-explorer

Invoking

‘C:\Squish—Qt—3.2> build

[$./build

| $./build

a second time compiles the second group of binaries.

What’s missing is the registration of the Qt wrapper. Normally this is done automatically, but when the split build was performed
the tool for registration (squishrunner) was missing at the point when the wrapper was built. All you need to do is "rebuild" the

target like this:

C:\Squish-Qt-3.2> build
gtwrapperinit

$./build gtwrapperinit

$./build gtwrapperinit

If you like, you could even perform the above steps on different machines, if you prefer to execute the tests remotely.

Finally, copy over the required files which were built in the Qt4 directory over to your Qt 3.2 build directory:

C:\Squish-Qt-3.2> copy
C:\Squish-Qt—-4.0\bin\squ-
ishhook.dll

bin\

C:\Squish-Qt-3.2> copy
C:\Squish-Qt-4.0\bin\squ-
ishgtwrapper.dll

bin\

C:\Squish-Qt-3.2> copy
C:\Squish-Qt-4.0\bin\win-
hook.dll

bin\

C:\Squish-Qt—-3.2> copy
C:\Squish-Qt—-4.0\bin\dl1l-
preload.exe

bin\

C:\Squish-Qt-3.2> copy
C:\Squish-Qt—-4.0\1ib\squ-
ishgtpre.dll

1ib\

C:\Squish-Qt-3.2> copy
C:\Squish-Qt-4.0\src\wra-
ppers\gt\x.tcl

1ib\

$ cp
/home/user/squish-gqt-4.0-
/1ib/libsquishhook.so
/home/user/squish-qt-3.2-
/1ib

$ cp /home/user/squish-g—
t-4.0/1ib/libsquishgtwra-
pper.so
/home/user/squish-gqt-3.2-
/1ib

$ cp
/home/user/squish-gqt-4.0-
/lib/libsquishgtpre.so
/home/user/squish-gqt-3.2-
/1lib

$ cp
/home/user/squish-qt—-4.0-
/src/wrappers/qt/*.tcl
/home/user/squish-gqt-3.2-
/1lib

$ cp /home/user/squish-g-
t-4.0/bin/isstaticapp
/home/user/squish-gqt-3.2-
/bin

S cp
/home/user/squish-qgt—-4.0-
/1ib/libsquishhook.so
/home/user/squish-qt-3.2-
/1lib

$ cp /home/user/squish-g-
t-4.0/1ib/libsquishgtwra-
pper.so
/home/user/squish-gt-3.2-
/1lib

$ cp
/home/user/squish-qgt—-4.0-
/1lib/libsquishgtpre.so
/home/user/squish-qt-3.2-
/1lib

$ cp
/home/user/squish-gt—-4.0-
/src/wrappers/qt/*.tcl
/home/user/squish-gt-3.2-
/1lib

$ cp /home/user/squish-g-
t-4.0/bin/isstaticapp
/home/user/squish-qt-3.2-
/bin

Now, the build in your Qt 3.2 directory is fully usable for creating and running tests for applications which link against a pure Qt

4.x library.

Squish Manual

39/17

3.24

Installation for Testing Qt 3.0 Applications

Testing a Qt 3.0.x application requires a split build of Squish. This means you must compile the components that come in direct
contact with the AUT using a Qt 3.0 library. The rest of Squish must be compiled with a more recent version of the Qt library
(Qt 3.1 or higher). For this, you have to run the commands configure and build twice: the first time to build the parts that require
Qt 3.0 and the second to build the parts that require Qt 3.1 or higher.

Here’s a minimal example that assumes Squish to have been unpacked into two different directories:

Windows

Linux/Unix

Mac OS X

C:\Squish-Qt-3.0
C:\Squish-Qt-3.2

/home/user/squish-gt-3.0
/home/user/squish-qt-3.2

/home/user/squish-gt-3.0
/home/user/squish—-qt-3.2

Qt 3.0 and Qt 3.2 are installed in:

C:\Qt\3.0.7 /usr/local/gt30 /usr/local/qt30

C:\Qt\3.2.3 /usr/local/qt32 /usr/local/qt32
First, build only the server and the Qt wrapper using Qt 3.0:

C:\> cd C:\Squish-Qt-3.0 $ cd $ cd

C:\Squish-Qt-3.0>
configure
——with-gtdir=c:\Qt\3.0.7
——disable-all
—-—enable-server
——enable-idl
——enable-wrappers
——enable—examples

/home/user/squish-gqt-3.0
$./configure —--with-gtd-
ir=/usr/local/qt30
——disable-all
—-—enable-server
——enable-idl
——enable-wrappers
——enable—-examples

/home/user/squish-qt-3.0
$./configure —--with-gtd-
ir=/usr/local/qgt30
——disable-all
—-—enable-server
——enable-idl
——enable-wrappers
——enable-examples

Verify that the configuration log output reads Checking Qt version

Qt maintenance release. Now build the server and the wrappers using Qt 3.0:

3.0.x where x would be the respective

| C:\Squish-Qt-3.0> build

[$./build

[$./build

Now change to the directory of the second Squish installation, point configure to the Qt 3.2 installation and select the remaining

components:

C:\Squish-Qt-3.0> cd
C:\Squish-Qt-3.2
C:\Squish-Qt-3.2>
configure
——with-gtdir=c:\Qt\3.2.3
—-—disable-server
——disable-idl
——disable-wrappers
——disable-examples

$ cd
/home/user/squish-gqt-3.2
$./configure —--with-gtd-
ir=/usr/local/qt32
——disable-server
——disable-idl
——disable-wrappers
—-—disable-examples

$ cd
/home/user/squish-qt-3.2
$./configure —--with-gtd-
ir=/usr/local/qt32
——disable-server
——disable-idl
—-—disable-wrappers
——disable—-examples

Invoking

| C:\Squish-Qt-3.2> build

[$./build

[$./build |

a second time compiles the second group of binaries.

What’s missing is the registration of the Qt wrapper. Normally this is done automatically, but when the split build was performed

Squish Manual
40/17

the tool for registration (squishrunner) was missing at the point when the wrapper was built. All you need to do is "rebuild" the
target like this:

C:\Squish-Qt-3.2> build

qtwrapperinit $./build gtwrapperinit $./build gtwrapperinit

If you like, you could even perform the above steps on different machines, if you prefer to execute the tests remotely.

Usage Example
Here is a very brief summary of an example usage of this setup on a Unix system. Apart from the different path names, the
approach is the same on Windows. We will assume an AUT with the path /opt /ourcompany/ourapp.

/home/user/squish-qt-3.0/bin/squishserver &
/home/user/squish-qt-3.0/bin/squishserver --config addAppPath /opt/ourcompany

At this point you could verify that the application will indeed be found in the given path:

/home/user/squish-qt-3.2/bin/squishrunner --info applications

The name of your application should be printed out — possibly along with other application names.

Now run the Squish IDE and uncheck the "Start squishserver locally on startup” option (Edit — Preferences), if this has not been
done already.

/home/user/squish-qt-3.2/bin/squish

All that’s left, before you can start creating new test cases, is the creation of a new test suite and the selection of ourapp in the
suite’s settings dialog.

3.2.5 Installation for testing Qt/Embedded 2.3 applications

Using Squish with Qt/E 2.3.x on X11 with QVFb

Installation

Unpack Squish into two directories, e.g. /usr/local/squish-desktop, /usr/local/squish-embedded.

In the squish-desktop directory we build the client-side parts of Squish. For this we need Qt version 3.1.x or higher (X11
version) with thread support turned on. For the rest of the example we assume that we are using Qt 3.2 and that it is installed in
the directory /usr/local/qt32.

In the squish-embedded directory we build the parts of Squish that hook into the AUT as well as the server. For this build
we need Qt/Embedded version 2.3.x, that has been compiled with thread support turned on and built as a shared library. The
command line, with the parameters you passed to configure, should look something like

$./configure -depths 8,16,32 —-gvfb -debug -thread -shared

For the rest of the example we assume that Qt/Embedded is installed in the directory /usr/local/g23embedded.

First we build the desktop version of Squish. Change into the directory /usr/local/squish-desktop and build it nor-
mally, linking against Qt 3.1.x or higher (see the Section 3.2.1 for a more detailed description):

$ cd /usr/local/squish-desktop
$./configure —--with-gtdir=/usr/local/qt32
$./build

Squish Manual
41 /17

Next we have to build the Qt/Embedded version that hooks into your AUT and the server. For this, change to the /usr/
local/squish-embedded directory and configure Squish with everything disabled except the server, the wrappers and the
IDL compiler (we also enable the examples so that we have a small program for testing):

$ cd /usr/local/squish-embedded
$./configure —--with-gtdir=/usr/local/qt23embedded --enable-debug —--disable-all --enable- «

server ——-enable-wrappers —--enable-examples --disable-tk --enable-idl
then run
$./build

to build the Qt/Embedded version of Squish.

Testing the address book example

Now we can start with an initial test of a Qt/Embedded application. First add the AUT path of the address book example to the
squishserver:

$ /usr/local/squish-embedded/bin/squishserver —--config addAppPath /usr/local/squish-
embedded/examples/qgt3/addressbook

Next open a command line shell from which you first start the Qt Virtual Framebuffer:

$ /usr/local/qgt32/tools/qvfb/qvfb -width 1280 -—-height 1024 &

Then set QTD IR to point to your Qt/Embedded 2.3 .x installation directory and start squishserver:

$ export QTDIR=/usr/local/gt23embedded
$ /usr/local/squish-embedded/bin/squishserver

Open another command line shell from which you can control the testing:

$ /usr/local/squish-desktop/bin/squish

This starts the Squish IDE. Now open the test suite /usr/local/squish-embedded/examples/suite_addressbook/
suite.conf.

You also have to tell the Squish IDE to connect to the squishserver we started, rather than starting one of its own. Open Edit
— Preferences and uncheck Start squishserver locally on startup. Make sure that squishserver host is "localhost” (or "127.0.0.1")
and that the squishserver port is "4322" (See Section 7.7.2 for more details).

Finally we also have to tell Squish to start our AUT with the —~qws argument: choose Test Suite — Settings and enter —qws as
the Arguments for the AUT.

Now you can run tests or record them, as described in the manual. You will see that the AUT (address book example), which is
compiled as a Qt/Embedded application, opens up in the Qt Virtual Framebuffer and you can record events and replay the test
cases in there.

Using Squish with a cross-compiled Qt/E 2.3.x

Installation

The installation procedure for building Squish with a cross-compiled Qt/Embedded 2.3.x is almost identical to the procedure for
Qt/Embedded with the Qt Virtual Framebuffer. The only differences are the use of a different squishidl and the setting of the
XCXX environment variable, specifying the cross compiler.

Make sure that the cross compiled Qt 2.3.x/Embedded is built as a shared library with thread support turned on. For the rest of
the example we assume it is installed in /usr/local/gt23xcompiled.

After you have built Squish with the desktop version of Qt, copy the squishidl tool over and set the LD_LIBRARY_PATH variable
to Qt’s library path, if the library is not found automatically (the squishidl tool is needed at compile-time and not at run-time
during the test):

Squish Manual
42 /17

cd /usr/local/squish-embedded

mkdir bin

cp /usr/local/squish-desktop/bin/squishidl bin/
export LD_LIBRARY_PATH=/usr/local/qt32/1ib

wr W U

Next configure the embedded build. You have to set the environment variable XCXX to the cross-compiler you are using. This
time we also disable the squishidl tool (we already copied it over):

$ XCXX=arm-linux-g++ ./configure —--with-qgtdir=/usr/local/qt23xcompiled —--enable-debug —- «
disable-all --enable-server —--enable-wrappers —--enable-examples --disable-tk

then run

$./build

to build the cross-compiled version of Squish.

Testing the address book example

This is essentially the same, except that you start the squishserver on the device and enter the IP address of the device, instead of
"localhost", as the "squishserver host" in Squish IDE’s preferences dialog.

To avoid problems during testing we recommend verifying the correctness of your Qt and AUT setup prior to test execution. Is
QTDIR pointing to the Qt installation directory (must be set prior to launching the server)? Can you successfully run the AUT
standalone?

3.2.6 Installation for testing of Qt/Embedded, QtopiaCore and Qtopia 4.x applications

3.2.6.1 Build instructions

Principally, the build instructions given for a build against Qt/Embedded 2.x apply to QtopiaCore and therefore to Qtopia 4.x as
well. It’s mainly the changed directory layout between the two versions that makes a difference for our purpose.

To build the parts of Squish that hook into the AUT unpack the source package into a directory, change to that directory and use
configure to specify the location of the QtopiaCore installation. In the example

$./configure --with-gtdir=/home/user/gtopia-build/gtopiacore/target
——disable-all --enable-server —--enable-examples —--enable-idl
——enable-wrappers ——enable-pure—qgt4

the ——with-gtdir switch points to the location of QtopiaCore installation. That is where the file 1ib/1ibQtCore.so is
to be found for example.

Once the configure run has finished issue

$./build

to build bin/squishserver and most importantly the QtopiaCore-specific wrapper library. The client side tools (e.g. squishrunner
and the IDE) can either be obtained by compiling a source package against a Qt/X11, Qt/Win or Qt/Mac installation or installing
one of the pre-build binary versions of Squish.

3.2.6.2 Cross-compilation

A so-called cross-compilation is performed when building software on the local host system that will later run on a target system
that has a different architecture. This is a common requirement when building software for special purpose hardware that is too
limited in terms of cpu, memory or tools to serve as a development itself.

Part of the build process requires the execution of the squishidl tool that scans the Qt header files to provide test script bindings.
The tool needs to run on the host system and therefore needs to be build with a native compiler. This is done in the first phase:

Unpack a Squish source package into a directory like squish-desktop. Change the directive

Squish Manual
43 /17

#if 0 // enable for cross-compilations

in src/idl/cpp/cppinput . cpp (at around line 1157) to read

#if 1

Then run:

$./configure —--with-gtdir=/path/to/desktop/gt --disable-all --enable-idl
$./build

Now you will have the squishidl tool in the bin directory.
For the second phase - the actual cross-compilation perform the following steps:

Unpack the source package in a different directory. Like squish-embedded. Use a text editor to create a shell script named
squishidl inthe bin directory that has the following content:

SQUISH_DESKTOP=/path/to/squish-desktop
LD_LIBRARY_PATH=${SQUISH_DESKTOP}/lib:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH

S{SQUISH_DESKTOP}/bin/squishidl "$@"

Make that shell script executable with chmod +x bin/squishidl. You can test whether this wrapper around the real tool works by
issuing bin/squishidl --help.

Now, inquire with development to learn about the cross-compiler they use for application development. Specify its path to the
configure via the XCXX environment variable and select to build only those parts that need to be installed on the target:

S ./configure --with-gtdir=/path/to/gt-embedded
——disable-all --enable-server
—-—enable-wrappers —--enable-pure-qgt4

Once that run has completed start the build which will take a few minutes:

$./build

3.2.6.3 Installation on the target device

Once the executables and libraries are build copy over the directories bin/, 1ib/ and etc/ and their content to the target
device.

The Qt directory in your build environment is likely to differ from the target system. As the executables use Qt themselves they
need to be told where to find it. That can be accomplished by adapting the LibraryPath variable in etc/paths.ini.

Separate from that Squish might need to be told where to look for the Qt libraries used by the application. This might be the
same set as used for the tool itself but can be different. By default Squish will look in the directory that is was told about during
the configuration on the build system. There are two ways to tell it about the path on the target system: 1.) set the environment
SQUISH_LIBQTDIR to Qt’s 1ib/ directory before starting squishserver. 2.) add an entry like UserQtLibDirectory=-
"/path/to/qt/1ib" tothe [General] section of the etc/squish.ini file.

By default Squish expects the Qt libraries unversioned files 1ibQtCore.so and 11bQtGui. so to be installed. These are
typically used for development purposes. The target system might only have the versioned runtime library 1ibQtCore.so.4
installed, however. It is possible to modify the build to expect only the latter (contact support for help with that) but there is a
simple alternative. Create the same symlinks that you will find on your PC by issuing the following commands on the system:

$ 1n -s /path/to/qt/lib/libQtCore.so.4 /path/to/qt/lib/libQtCore.so
$ 1n -s /path/to/gt/lib/1ibQtGui.so.4 /path/to/qt/lib/1ibQtGui.so

Squish Manual
44 /17

3.2.7 Installation for testing with a single-threaded Qt library

The easiest approach is to link the AUT and all of Squish to the same Qt library. If it is possible to link your AUT to a shared,
multi-threaded Qt library, we recommend using this for both Squish and your AUT. Any other Qt configuration settings, (STL,
etc.) don’t matter.

If you don’t want to use a multi-threaded Qt library for your AUT, you can use one Qt library for your AUT and a different one
for Squish (some parts of Squish, mainly the squishserver, require a multi-threaded Qt library).

However, the parts of Squish that hook into your AUT (Squish’s qtwrapper, hook and object model libraries) have to be built
against the exact same Qt library as your AUT. Also make sure that the same C++ compiler is used. The rest of Squish can be
linked with any Qt library.

So in order to support a single-threaded Qt library, you have to perform a split build of Squish, i.e. build some parts against a
multi-threaded Qt library and some parts against the single-threaded Qt library that your AUT uses.

Note
If you want to use a single-threaded Qt library on Windows, please take a look at Q: 10.1.4.

For the example we assume that the single- and multi-threaded Qt libraries are in the following locations:

Windows Linux/Unix Mac OS X
/usr/local/ /usr/local/

C:\Qt\singlethreaded gt-singlethreaded gt-singlethreaded

C:\Qt\multithreaded /usr/local/ /usr/local/
gt-multithreaded gt-multithreaded

First compile only the multi-threaded parts of Squish by running configure, disabling everything but the server:

C:\squish> configure
——with-gtdir=C:\Qt\multi-
threaded --disable-all
——enable-server
C:\squish> build

$./configure
—-with-gtdir=/usr/local/-
gt-multithreaded
—-—-disable-all
—-—enable-server

$./build

$./configure
—--with-gtdir=/usr/local/-
gt-multithreaded
—-—-disable-all
—-—enable-server

$./build

Then compile the remaining parts of Squish with the single-threaded Qt by running configure again, this time disabling only the

server:

C:\squish> configure
——with-gtdir=C:\Qt\singl-
ethreaded
——disable-server
C:\squish> build

$./configure
——with-gtdir=/usr/local/-
gt-singlethreaded
——disable-server

$./build

$./configure
——with-gtdir=/usr/local/-
gt-singlethreaded
——disable-server

$./build

Make sure that the AUT is linked against exactly the same single-threaded Qt library.

to verify the correct linkage:

If in doubt, use one of the following tools

‘ Dependency Walker (depends.exe)

| 1dd or chatr

otool

3.2.8

If you want to link the application against a static version of Qt, this is only partly supported. For recording test cases, the
application must be linked against a dynamic Qt library. For running tests on Unix, the application can be linked against a static

Installation for testing with a static Qt library

Squish Manual
45/17

Qt library. On Windows and on Mac OS X this is not possible, so the AUT must always be linked against a shared Qt library.

Note
Itis not possible to record any tests with a static Qit library, but it is possible to replay test scripts; but currently only on Linux/Unix.
On Windows and Mac OS X it is not possible to use a static Qt library.

If you want to run tests on Unix on a statically linked application, there is one important requirement. When linking the applica-
tion its symbols must be exported so that Squish can hook into the application. To do this using Linux/gcc, for example, specify
—rdynamic on the link line. This switch is harmless, so you can leave it in permanently and ship the application linked this
way. On some operating systems (e.g. Solaris) all the application’s symbols are exported by default, so no special linker switch
is necessary. In this case the configuration of the static Qt library doesn’t matter at all.

3.2.9 Installation for testing with a renamed Qt library

Note
The following currently works only with Qt 3; installation of Squish for testing a Qt 4 application with a renamed Qt library is not
supported at the moment. If you you need support for this, please contact us at squish@froglogic.com.

If you want to use Squish with a renamed Qt library, you have to use additional options to configure. On Unix and Mac OS X
you have to use the ~with-gtlibname=renamed Qt library.

On Windows, you have to specify three options (you have to specify all three options, even if one of the libraries is not renamed;
in this case, just specify the original version):

e ——with-gtdllname=path to Qt/bin/renamedgt-mt.dl1

e ——with-gtlibname=path to Qt/1ib/renamedqgt-mt.1lib

e ——with-gtmainlibname=path to Q0t/lib/gtmain.lib

With the option ——with—-gtdllname you have to specify the path to the renamed Qt DLL, with ——with-gtlibname

you have to specify the path to the renamed Qt import library and with the option ——with-gtmainlibname the path to the
renamed gtmain. 1ib library.

The renamed Qt DLL and import library should contain the characters mt if you have a multi-threaded Qt library. configure uses
this to detect if the Qt library is mult-threaded or single-threaded. If you don’t follow this convention, the automatic detection
fails and some parts of Squish are falsely disabled.

3.3 Distributing and Sharing an Installation

Motivation
Once you have completed the build steps described in the previous section you have a system ready to use on the local machine.
You may repeat these steps for licensed users on as many machines as you like.

This section is devoted to users or administrators that wish to distribute or share a build performed on one machine to a different
location and users on other machines, respectively. If access to a local installation is all you need, you can safely skip the rest of
this section and proceed to the chapters about using Squish.

There are, of course, many reasons why you would want to reuse the built executables and libraries. These include:

* Division of labor between developers or administrators (who will build Squish) and testers (who will use Squish).

* Separation between machines equipped for product development and machines dedicated for testing.

mailto:squish@froglogic.com

Squish Manual
46 /17

* Reduced maintenance work required when upgrading the software.
 Saving of compile time

 Saving of disk space

Distributables

After completing the build, the distributables can be found in the top-level bin, 1ib and etc directories. bin contains the
executables (and .d11 files on Windows) while underlying libraries and script files reside in 1ib. etc houses installation
configuration files (user specific settings are stored elsewhere as explained further below). Here is the complete list:

Windows

Linux/Unix

Mac OS X

bin\squish.exe
bin\squishidl.exe
bin\squishrunner.exe
bin\squishserver.exe
bin\dllpreload.exe

bin\squishhook.dll
bin\squishinterpreter.dll
bin\squishobjectmodel.dll
bin\squish*wrapper.dll
bin\squishserverlib.dll
bin\squishtest.dll
bin\fkit.dll

bin\kjs.dll
bin\squishsw.dll
bin\winhook.dl1l

bin/squish
bin/squishidl
bin/squishrunner
bin/squishserver
bin/isstaticapp

bin/squish
bin/squishidl
bin/squishrunner
bin/squishserver
bin/isstaticapp

1lib_squish.exe
1ib_squishrunner.exe
1ib_squishserver.exe

lib\squishgtpre.dll

lib\keycompression.tcl
lib\propertydelegates.tcl
lib\uniqueproperties.tcl
lib\uniqueproperties_gt4.td

lib/_squish
lib/_squishrunner
lib/_squishserver

lib/libsquishhook.so
lib/libsquishinterpreter.sd
lib/libsquishobjectmodel. sq
lib/libsquishgtpre.so
lib/libsquish*wrapper.so
lib/libsquishserverlib.so
lib/libsquishtest.so
lib/libfkit.so
lib/libkjs.so
llib/libsquishsw.so
lib/keycompression.tcl
lib/propertydelegates.tcl
lib/uniqueproperties.tcl
lib/uniqueproperties_qgt4d.td

lib/_squish.app
lib/_squishrunner
lib/_squishserver

lib/libsquishhook.dylib
lib/libsquishinterpreter.dy
lib/libsquishobjectmodel.dy
lib/libsquishgtpre.dylib
lib/libsquish*wrapper.dylil
lib/libsquishserverlib.dyli
lib/libsquishtest.dylib
lib/libfkit.dylib
lib/1libkjs.dylib
lib/libsquishsw.dylib

lib/keycompression.tcl

lib/propertydelegates.tcl

lib/uniqueproperties.tcl
llib/uniqueproperties_qgt4d.tdg

lib
lib

Squish Manual
47 /17

Windows Linux/Unix Mac OS X

etc\paths.ini etc/paths.ini etc/paths.ini

etc\squish.ini etc/squish.ini etc/squish.ini
etc\+wrapper_descriptors.xnletc/+*wrapper_descriptors.xnletc/+wrapper_descriptors.xmnl

The above can be broken down into groups of files (with some overlap), being part of the server, runner, IDE and wrapper
generator. These groups can be distributed seperately if desired.

Distribution

To distribute the build to another location on the same machine, or a different one, just copy over all (or only the required) files
from the three directories listed above. While the original build path has been hard-coded into the binaries, they will also work
in a different location. To enable the executables to locate their sub-modules, it is important that the relative position remains the
same. This means that you can copy the contents of bin, 1ib and etc to whatever directory prefix you want, as long as they
keep their parallel position.

When Squish hooks into the AUT, it loads the Qt library. The Qt library (with the full path) is hard-coded into the binaries. If the
Qt library is in a different location on the target machine, you must set the environment variable SQUISH_LIBQTDIR to point
to the 11ib directory of your Qt library.

Shared Installation

To allow all licensed users to access Squish over a shared network location, make the bin, 1ib and etc directories accessible
to them. This can be done via a share on Windows or via an NFS mount on Unix, for example. As mentioned earlier, the bin,
lib and etc directories have to maintain their parallel position.

User specific settings will be stored locally on a per-user basis in the application data directory on Windows ($APPDATA%
\froglogic\Squish)orthe ~/.squish directory on Unix and Mac OS, respectively.

Squish Manual
48 /17

Chapter 4

Concepts and Making an Application Testable

4.1 Squish Concepts

When testing an application we have two main components:

* An application under test (AUT)

* A test script that exercises the AUT

One fundamental aspect of Squish’s approach is that the test script and the AUT always run in two separate processes. So if the
AUT crashes, it should never crash the test script execution. Other benefits of this approach are that it allows you to store the test
scripts at a central location, and that you can test applications on different machines and platforms remotely. This is especially
useful when testing GUI applications on embedded devices.

Squish runs a small server (squishserver) that handles the communication between the test script and the AUT. The test script is
executed by the squishrunner tool, and connects to the squishserver. The AUT uses Squish’s hook library to connect to the server.
This library allows the test script to inspect the application remotely via a socket connection.

The following diagram illustrates how the individual script components work together.

Squish IDE
{optional)
A
TE_SI Starts AUT and injects hook
Script ——
T /.‘ H\i\
| AUT
v v
: ; Squish
Squish Runner = MetworkiConnection . Squish Hook
Server ;

From the script writer’s perspective this separation is not visible at all, since all the communication is handled transparently
behind the scenes. When using the Squish IDE, all components are used implicitly as the following diagram shows.

Squish Manual
49 /17

Squish IDE
Test
Script
Starts AUT and injects hook

— s AT and e

= o AUT

L o
Squish Runner «—» Squish Server «—» >auish

Hook

To be able to access the AUT’s functionality from test scripts, the following is necessary:

* Bindings to the GUI toolkit used by the application to obtain information about the object hierarchy, standard components, and
their properties, functions, etc.

* Optionally: bindings to the API of the application or additional components in situations where the toolkit’s bindings don’t
provide sufficient functionality for testing.

The former is provided by Squish, which comes with generic toolkit bindings. The latter is application specific and rarely
necessary.

4.2 Making an application testable

In the usual case, nothing special needs to be done to make an application testable, since the toolkit’s API (e.g. Qt) provides
enough functionality to implement and record test scripts. The connection to the squishserver is also established automatically,
when Squish starts the AUT.

Squish Manual
50/17

Chapter 5

Tutorial: Creating the First Test with Squish/Java™

This chapter will use the Squish IDE to create, run, and extend a test of a sample Swing application. We will use the Calculator
example from Java Swing Tutorial | Swing Examples to demonstrate how Squish is used to test Java applications.

Even though we will use the Squish IDE, a graphical front end to the Squish testing framework, anything we will do can also be
accomplished using command line tools which is interesting when thinking about automating your tests (doing nightly runs of
your regression test suite, for example). Whenever we describe how to do something using the Squish IDE we will also show
how to do it with the command line tools. For full details on Squish’s command line tools, please refer to the Chapter 8.

Tip
The complete test suite we create in this tutorial is available in squish/examples/java/suite_calculator_js, so
you don’t necessarily have to type everything shown here yourself.

For testing applications with Squish, a special server application called squishserver must be running (for further information,
you might want to have a look at the section Chapter 4). If you use the Squish IDE, you don’t need to worry about this since
the Squish IDE will start a server automatically and care about everything. However, not using the Squish IDE means that you
have to start squishserver manually before you can record or run any tests. Please see the respective section in the command line
reference Section 8.2.2 for information how to do this.

5.1 Creating a Test Suite

The first step is to create a new test suite. To do so, start the Squish IDE, and then select File — New Test Suite (or press
Ctrl+Shift+N) to open a convenient wizard which will walk you through the process of creating a new test suite.

http://http://www.java-swing-tutorial.com

Squish Manual

51/17

5.1.1 Choosing a Name

New Test Suite

Suite Name & Directory

Il files of
mposed

Suite Narme: Icalculatnr_js

—Local Folder

T
+

.

= ey
;---;;emul
.---I;Etl:

--thme
- A initrd
- Alib

- ;A lib32
Alibsa
- ;& media
--ant
N ;; opt

- A proc
- ;A root
--Qshin

b Bsry

-;; sys

| Next =

Cancel |

The first page of the wizard used for creating new test suites.

The first page of the wizard lets you choose where the test suite is going to be stored. Simply choose a directory in the directory
tree view, and enter a name for the new test suite in the input field above. The screen shot above shows that calculator_js was

chosen.

Note

If your suite name does not start with ‘suite_’ then the wizard will prepend that prefix automatically, since Squish expects suite

names to start with that text.

After deciding on a location for the suite, press the button labeled Next to progress to the next page.

Squish Manual
52 /17

5.1.2 Selecting a Toolkit

New Test Suite

Toolkit

sed by

you

for.
oot
T Tk
 Web
@ ava)
 Tqg

Enables testing of AWT/Swing and SWT based Java
applications.

= Back Next = Cancel

The second page of the wizard used for creating new test suites.

This next page allows you to choose what kind of application you want to test in this test suite. Since we want to test a Java™
application, we select the Java option here and then advance to the next step of the test suite creation using the Next button.

Squish supports both AWT/Swing GUI applications as well as SWT based ones.

Note

In case your license key does not include support for testing Java™ applications, or if you're using a binary package of Squish
which does not include support for testing Java™ applications, then there won’t be an option labeled Java on this page. Please
contact froglogic at sales@froglogic.com for finding out how to get support for testing Java™ applications.

mailto:sales@froglogic.com

Squish Manual

53/17

5.1.3 Choosing a Scripting Language

New Test Suite

Scripting Language

Test scripts will be recorded and can be written in the
popular JavaScript scripting language.

< Back

Next =

Cancel

The third page of the wizard used for creating new test suites.

Now you get to choose between different scripting languages used for authoring test scripts for your application. The functionality
of Squish is independent of the scripting language used, but your personal preference and experience may vary. For this tutorial,

we’ll choose JavaScript by selecting the JavaScript option.

Tip

A comparison between the scripting languages is available in the chapter Section 8.1.1.

5.1.4 Selecting the AUT

Enter the final step and specify the application you want to test with this test suite. Choose the browse button (C't) and select the
Calculator.class file. You find it in squish/examples/java/calculator. This is the AUT Squish launches for

this test suite.

Squish Manual
54 /17

. New Test Suite e

Application Under Test

der Test

tion
which you
froglogic

button at
put field to
t file

Application: [{eE]] s E hd ﬁl

= Back Finish Cancel

Additional arguments, the working directory of this application or custom environment variables can be configured later in the
test suite’s settings, see Section 7.2.1 for more on this subject. For the calculator example none are required.

Note
Instead of a Java .class file you can also choose one of the following file-types when specifying your AUT:

« JAR-file: The main JAR file of your Java application.

» Native EXE: A native executable which launches your Java application. This is usually the case for RCP/SWT applications
and often also for Swing/Netbeans applications where a native launcher application is built.

« Shell script or batch file: A shell script or batch file wherein you launch the Java application yourself.

This page concludes the creation of our test suite. Clicking the Finish button closes the wizard and will show our new test suite
in the tree view at the left side of the Squish IDE, similar as in this screen shot:

Test Suite E

suite_calculator js vI
- 'g suite_calculator js

t 4 Object Map

—:I shared

: # testdata

A scripts
Previous Results

An empty testing suite as shown in the tree view of the Squish IDE.
Now we can start adding test cases to our suite.

Squish Manual
55/17

5.2 Recording a Test

In Squish, tests can either be written by hand, they can be recorded - or you can use a mixture of the two. We’ll start with creating
a new test case and then recording a script of user interactions. Afterwards, we will augment the script with our customizations.

5.2.1 Creating a Test Case

First, let’s create a new test case. To do so, open the context menu of our newly created suite_calculator_js suite by clicking on
the item labeled suite_calculator_js with the right mouse button. Then, select New Test Case... to create a new test case. An
input field will be shown, waiting for you to enter a name for the new test case. For this tutorial, we will go for ‘Add’ as the name
for our first test case.

Tip
Another way to create a new test case is to select File — New Test Case... or press Ctrl+N. This will create a new test case in
the currently active test suite (the one shown in the tree at the left side of the Squish IDE).

After creating a new test case, your tree view at the left hand side of the Squish IDE should look similar to what is shown in the

next picture.
Test Suite =]
suite_calculator js vI

-~ "4 suite_calculator js
- 4 Object Map
—- ["] tst_Add

A testdata
=1 shared

A testdata
scripts

- 4 Previous Results

The Java testing suite with one test case called tst_Add as shown in the tree view of the Squish IDE.
Now everything is ready to record a test.
5.2.2 Recording User Input

To record a test, either select Record... from the context menu of the test case item in the tree (the one labeled tst_Add in our
example), or go via the menu bar by selecting Test Suite — Record Test Case — tst_Add.

_. Record Settings 2 ax

Settings ITestgata |

Synchronization Mode: [T |

Record Cancel

The generic record settings dialog shown when recording.

Squish Manual
56 /17

This will minimize the Squish IDE into a small control window, shown in the upper left corner. A dialog with the caption Record
Settings will pop up, allowing you to fine-tune some recording settings such as whether to use any initial test data and what
kind of synchronization method to use. For many situations, including ours, just sticking to the defaults and accepting them by
clicking the Record button in the dialog is fine.

Now we can test the calculator adding capabilities. For this tutorial we entered 47, then the plus button, entering 53 and finally
the equal sign.

; _ Java Swing Calculator _ %
File Help
100.0
Barckspace | | CE ” C
(R R
+ Jis Qs JLe | s
HEREE
0 +- . + =

The calculator.

When you are done, close the calculator application to bring the Squish IDE back, showing a script of the recorded actions you
did.

Now, let’s have a look at the generated script and what it does.

5.2.3 A Generated Script

The actions resulted in the following JavaScript script. Depending on how much the actions you did on the application, your
script might differ more or less from the one shown here. Before we go on, it might be a good idea to look at this script for a
minute or two, trying to figure out what all the calls do.

function main() @

{
snooze (1.5); ©
clickButton (":frame0.4_javax.swing.JButton"); (s
snooze (0.7);
clickButton (":frame0.7_javax.swing.JButton");
snooze (1.0);
clickButton (":frame0.+_javax.swing.JButton");
snooze (0.8);
clickButton (":frame0.5_javax.swing.JButton");
snooze (0.6) ;
clickButton (":frame0.3_javax.swing.JButton");
snooze (0.8);

clickButton (":frameO.=_javax.swing.JButton") ;
snooze (1.1);
activatelItem(":frameO_javax.swing.JMenuBar", "File"); 0

snooze (1.0);
activateItem(":frame0.File_javax.swing.JMenu", "Exit");

Here’s a short explanation what’s happening:

] The recording always produces a function called main. A main function is mandatory in Squish test cases.

(2] The snooze statements are used to wait for a while before going on. Since some time elapses between the different user
actions, a snooze is recorded (it takes the number of seconds to wait, one and a half second in this case) and later played
back.

Squish Manual
57 /17

You will notice that there are a lot of snooze statements in recorded scripts. You can change the amount of time which
they wait before execution of the script proceeds (or you can remove them altogether) if you like, but please note that this
could break the script. For instance, after clicking on a menu, you should wait some time for the menu to show, which
may take a bit longer the first time it is opened.

(3] We click on a button. Note the naming of the button. It starts with the name of the frame, added the caption and finally
appended the class name.

o A menu item was activated.

To check that everything works as expected so far, you could now run this script and watch Squish replaying your actions. To do
this, just press the little ‘Play’ button (O) in the toolbar of the Squish IDE.

5.3 Introducing Verification Points

Now that we have a first script recorded, we need to augment it with some checks verifying some properties of the calculator
applicaton so that we actually test something. With Squish, such checks are done via “Verification Points’.

A verification point consists of at least one comparison which looks whether some given condition was met. For instance, a
verification point could test whether a given button is enabled or not and whether the caption of the button equals a given string.

In Squish there are multiple ways to implement verification points. The most generic and powerful way is to implement verifi-
cation points manually as script commands. Another, easier approach is to use the Squish IDE to create verification points via
point & click.

Inserting verification points via the Squish IDE is much simpler and only in rare cases it is necessary to manually write verification
point statements. So we use the Squish IDE here. For more information about manually writing verification points, consult the
chapters Section 7.1.2 and Section 7.10.

5.3.1 Verifying the Outcome using Verification Points

We may want to check the outcome of the calculation we did. If the application is further developed, we want to catch possible
regressions (which is in this example rather embarrassing if the addition would not result in 100).

We check the value of the calculation after the equal sign is pressed This is done by setting a break point on the line of the script
where the verification point should be inserted. This is done by clicking on the line number next to the line with the left mouse
button.

8 clickButton(" : frame0. +_javax.swing.JButton");
snooze(0.8);
10 clickButton(": frame0.3_javax.swing.JButton");
11 snooze(0.6);
12 clickButton{": frame0.3_davax.swing.JButzon");
13 snooze(0.8);
14 clickButton(" : framed.=_ jawvax.swing.JButton");
@15
16 activateltem(" : framel_davax.swing.JMenuBar", "File"];
17 snooze(1.0);
18 activateltem(" : framed.File_javax.swing.JMenu", "Exit");
19
20 3

Setting a new break point in the editor of the Squish IDE.

Now, run your test suite by pressing the run button (9) in the toolbar of the Squish IDE. Squish will the minimize itself and
starts the calculator application, replaying the recorded actions.

As soon as the break point is hit, execution of the script is suspended and Squish restores itself again. You can see the editor
in the Squish IDE, showing that it’s halted at the last line. Now we’re at the right position in our script to insert a verification

Squish Manual
58 /17

point. Below the editor, you can find a monitor showing all variables in your script file and their values. Since we don’t have any
variables defined, this window most likely just shows the text No variables in scope.

Note

In case you did not choose JavaScript as the scripting language to use when creating the test suite (see Section 5.1.3), it
might be that you do see some variables since some languages have some global variables by default. This is not the case for
JavaScript though.

5.3.2 Selecting Properties to Check

To select the properties of the Java™ application which we want the verification point to check, we use the so-called ‘Spy’. You

can invoke the Spy by clicking on the corresponding button (—-L) in the toolbar of the Squish IDE. The variable watcher will
disappear and get replaced with a similar-looking component which is divided vertically. This is the Spy. It’s possible that you
might need to wait for a few moments for the left hand side of the spy to get populated.

In the left hand side of the spy, you can see a tree showing the Java™ frame object. Expanding the tree shows the component
hierarchy in this application. Selecting one object, will populate the right hand side of the spy with a list of all testable properties
of that object. In order to be able to test our case, we need to find the label that shows the result.

Object

Type

2. [java Swing Calculator

javax swing |Frame

2. Jrootrane
+ O null_glassPane
--0O null_layeredPane

=+ O null_contentPane

+- [JLabel
i +-O JPanel
+- [|MenuBar

javax_swing_JRootPane
javax_swing_JPanel
javax_swing_JLayeredPane
javax_swing_JPanel
javax_swing_JLabel
javax_swing_JPanel
javax_swing_JMenuBar

The component hierarchy of the calculator application.

For purpose of a tutorial, we pick the right object from the application by using the object picker (f) from the toolbar by
clicking on it. The Squish IDE will minimize itself and now click on the label of the calculator that shows the result of ‘100.0* -
and voila! The Squish IDE shows up again, showing just that one object in the spy’s object tree. Select the object by clicking on

it to see all the properties:

Property Value

o % 100.0

- [uiclassid LabelUl

- [displayedmnemaonic 0

+- [0 accessiblecontext javax.swingLabel$Accessible]label...
- [verticaltextposition 0

- [verticalalignment 0

+- O ui javax.swing.plaf.metal.MetalLabellUl...
+- O labelfor null

- [icontextgap 4

- [icon niull

The properties of the result label.

The text propery has the value we need for verification.

Note

The property text is dynamic generated by Squish and uses the get Text and setText internally.

Squish Manual
59 /17

5.3.3 Injecting a Verification Point Into the Script

Select the checkbox before the property text. The verification point is injected into the script using the little green check mark
icon at the top of the spy, right next to the input field for the name of the verification point:

a5

e Object Propertie

—

The button in the spy used for adding new verification points.
Click that button and you should see a new verification point called VP1 show up in the tree view at the left hand side of the
Squish IDE. To actually insert the verification point into the script, close the spy again by clicking on the spy button (:L\) in the
toolbar again, and then continuing execution of the script beyond our break point by clicking on the run button (G).
When the script finishes, Squish inserts a new statement into the script to test the new verification point: test.vp ("VP1").

The test . vp function is used for testing verification points and expects to be given the name of the verification point to test.
Since the new verification point is called ‘“VP1’, we pass that to test . vp.

11 snooze(0.6);

12 clickButton(": framed.3_-javax.swing.JButzon"))

13 snooze(0.8);

14 clickButton(" : frame0.=_Jjawvax.swing.JButtcn")}

15 test.vp("vEl "j;|

16 snooze(l.13;

17 activateltem(" : framed_javax.swing.JMenuBar", "File"];

The newly inserted test.vp call.

5.3.4 \Verification Points in Action

Now, let’s see whether the test really worked. To do so, we first need to remove the break point again we defined a few moments
ago. Just click on the little red icon with the white cross in front of the newly inserted test . vp call to remove the break point.

Now, run the test again using the run button (O).

If everything goes right, the test finishes, and you should see a positive test result in the test results view, which is at the very
bottom of the Squish IDE:

Test Log ITestﬁummary IRunnerLDg ISEF.rerLu:ug |

Filter: | All Results =l @A

Result |Tir'ne | Message

i--ESTMF{T WedDec 6 17:26:28 2006 Start 'tst Add' (Passes: 1, Fails: 0, Fatals: 0, Errors: 0, Warmnings: 0)
— PASS Wed Dec 6 17:26:34 2006 testjs:15: VP1: Object property comparison of :framel_javax.swing./Label.text' passed
'100.0' and '100.0" are equal (VP1)
i--ENE: Wed Dec 6 17:26:37 2006 End 'tst_Add'

Our verification point succeeded!

This is a detailed report of the test run and would also contain occurring failures, errors, etc. If you click on a test log item, the
Squish IDE highlights the script line which generated the test result.

Tip

The interface to the test results in Squish is very flexible. By implementing custom report generators it is possible to process
test results in many different ways, for example to store them in a data base, or to output them as HTML files. You can also
save the test results in the Squish IDE as XML by right clicking on the test results and choosing Save Results As.

If you run tests on the command line using squishrunner, you can also export the results in different formats and save them to
files. See the chapters Section 7.7.3 and Section 7.1.2 for more information.

Squish Manual
60/17

5.4 Conclusion

This concludes the tutorial. A test for a sample application was created, executed and augmented. Still, there is much to learn
of course, since the API which Squish provides gives so much more power, not to speak of the vast expressiveness of any of the
scripting languages supported by Squish. The other tutorials and the Chapter 7 give introductions and details about more features
of Squish and topics of automated GUI testing.

Squish Manual
61/17

Chapter 6

Tutorial: Setting Up Automated Batch Testing

This tutorial walks through the steps necessary to set up running automated tests and to process the results.

We start by creating a script which processes Squish’s XML test results and generates a HTML file with the information. In the
second step we create a script which automatically runs test suites and processes the test results automatically.

6.1 Processing Test Results

6.1.1 Generating HTML Test Results

One important part of automating test runs is to present the test results to the testing team. Squish can store the test results in a
XML format that is suitable for arbitrary processing. In this chapter we use a Python script to convert the XML to HTML.

But the XML format allows various conversion, e.g. you can integrate the test results into a test management system. Any
post-processing is done in very similar ways. With the information in this chapter it is possible to create any kind of presentation
of the test results.

In order to convert the Squish’s XML format, one has to know its format; it is described in detail in the chapter Section 7.7.3 in
the Chapter 7.

As an example we take the XML test result when running a sample suite_addressbook_py test suite which contains two
test cases for whether entering data into a simple addressbook database application works as expected.

To generate the XML report, we run the test suite using squishrunner (assuming that squishserver is running):

squishrunner —--testsuite suite_addressbook_py —--reportgen xml, /tmp/results.xml

The possible values for reportgen are xm1 (XML), x1s (Excel) and stdout (ASCII table).

This produces a XML result file similar to the one below:

<SquishReport version="1.2" >

<summary fatals="0" testcases="2" expected_fails="0" unexpected_passes="0" warnings="0"
tests="20" errors="0" fails="0" passes="20" />

<testresult message="Start ’'suite_addressbook_py’" result="START" time="2006-05-22T15 <«
:27:55" >Test ’suite_addressbook_py’ started</testresult>

<testresult fatals="2424884" expected_fails="0" unexpected_passes="0" warnings="0" <«
errors="46" message="Start ’tst_add_address’" result="START_TEST_CASE" fails="0" <«
time="2006-05-22T15:28:01" passes="13691" >Test Case ’tst_add_address’ started</ «
testresult>

<testresult line="test.py:22" message="VP1l: Object property comparison of ’Addressbook. >
ABCentralWidgetl.QListViewl.childCount’ passed" result="PASS" time="2006-05-22T15 <
:28:17" >'1" and ’'1l’ are equal (VP1l)</testresult>

Squish Manual
62/17

<testresult line="test.py:22" message="VPl: Object property comparison of ’"Addressbook.
ABCentralWidgetl.QListViewl.item 1.text0’ passed" result="PASS" time="2006-05-22T15
:28:17" >'Max’ and ’'Max’ are equal (VP1l)</testresult>

<testresult line="test.py:22" message="VPl: Object property comparison of ’"Addressbook.
ABCentralWidgetl.QListViewl.item 1.text3’ passed" result="PASS" time="2006-05-22T15
:28:17" >'max@mustermann.net’ and ’'max@mustermann.net’ are equal (VP1l)</testresult>

<testresult line="test.py:22" message="VPl: Object property comparison of ’Addressbook.
ABCentralWidgetl.QListViewl.item 1l.text2’ passed" result="PASS" time="2006-05-22T15
:28:17" >'Bakerstreet 55’ and ’‘Bakerstreet 55’ are equal (VP1l)</testresult>

<testresult line="test.py:22" message="VP1l: Object property comparison of ’Addressbook.
ABCentralWidgetl.QListViewl.item 1l.textl’ passed" result="PASS" time="2006-05-22T15 <
:28:17" >'Mustermann’ and ’Mustermann’ are equal (VP1l)</testresult>

<testresult message="End ’tst_add_address’" result="END_TEST_CASE" time="2006-05-22T15 «
:28:18" >End of test case ’tst_add_address’</testresult>

<testresult fatals="2424884" expected_fails="0" unexpected_passes="0" warnings="0"
errors="46" message="Start ’tst_add_address_datadriven’" result="START_TEST_CASE" <«
fails="0" time="2006-05-22T15:28:22" passes="13691" >Test Case ' <«
tst_add_address_datadriven’ started</testresult>

<testresult line="test.py:29" message="VPl [addresses.tsv:Number:1]: Object property <«
comparison of ’Addressbook.ABCentralWidgetl.QListViewl.childCount’ passed" result="
PASS" time="2006-05-22T15:28:35" >'1’ and '1l’ are equal (VPl [addresses.tsv:Number
:1])</testresult>

<testresult line="test.py:29" message="VP1l [addresses.tsv:First Name:1]: Object <«
property comparison of ’Addressbook.ABCentralWidgetl.QListViewl.item_1.text0’ passed «
" result="PASS" time="2006-05-22T15:28:35" >’'Max’ and ’'Max’ are equal (VP1l [«
addresses.tsv:First Name:1])</testresult>

<testresult line="test.py:29" message="VPl [addresses.tsv:Last Name:1]: Object property «
comparison of ’Addressbook.ABCentralWidgetl.QListViewl.item_1.textl’ passed" result <«
="PASS" time="2006-05-22T15:28:35" >"Mustermann’ and ’'Mustermann’ are equal (VPl [>
addresses.tsv:Last Name:1])</testresult>

<testresult line="test.py:29" message="VP1l [addresses.tsv:Address:1]: Object property <«
comparison of ’Addressbook.ABCentralWidgetl.QListViewl.item_1.text2’ passed" result <«
="PASS" time="2006-05-22T15:28:35" >’Bakerstreet 55’ and ’Bakerstreet 55’ are equal
(VP1 [addresses.tsv:Address:1])</testresult>

<testresult line="test.py:29" message="VP1l [addresses.tsv:E-Mail:1]: Object property <«
comparison of ’Addressbook.ABCentralWidgetl.QListViewl.item_1.text3’ passed" result <
="PASS" time="2006-05-22T15:28:35" >'max@mustermann.net’ and ’'max@mustermann.net’ <«
are equal (VP1 [addresses.tsv:E-Mail:1])</testresult>

<testresult line="test.py:29" message="VPl [addresses.tsv:Number:2]: Object property <«
comparison of ’Addressbook.ABCentralWidgetl.QListViewl.childCount’ passed" result=" «
PASS" time="2006-05-22T15:28:44" >'2’ and ’'2’ are equal (VP1l [addresses.tsv:Number <
:2])</testresult>

<testresult line="test.py:29" message="VP1l [addresses.tsv:First Name:2]: Object <«
property comparison of ’Addressbook.ABCentralWidgetl.QListViewl.item 1l.text0’ passed <«
" result="PASS" time="2006-05-22T15:28:44" >’John’ and ’'John’ are equal (VPl [<
addresses.tsv:First Name:2])</testresult>

<testresult line="test.py:29" message="VP1l [addresses.tsv:Last Name:2]: Object property <

comparison of ’Addressbook.ABCentralWidgetl.QListViewl.item 1.textl’ passed" result <

="PASS" time="2006-05-22T15:28:44" >'Kelly’ and ’'Kelly’ are equal (VP1l [addresses. <«
tsv:Last Name:2])</testresult>

<testresult line="test.py:29" message="VP1l [addresses.tsv:Address:2]: Object property <«
comparison of ’Addressbook.ABCentralWidgetl.QListViewl.item_1.text2’ passed" result <«
="PASS" time="2006-05-22T15:28:44" >'Rhodeo Drv. 678’ and ’'Rhodeo Drv. 678’ are <«
equal (VP1l [addresses.tsv:Address:2])</testresult>

<testresult line="test.py:29" message="VP1l [addresses.tsv:E-Mail:2]: Object property <«
comparison of ’Addressbook.ABCentralWidgetl.QListViewl.item_1.text3’ passed" result <«
="PASS" time="2006-05-22T15:28:44" >’ jkelly@acompany.com’ and ’Jjkelly@acompany.com’ <«
are equal (VP1 [addresses.tsv:E-Mail:2])</testresult>

<testresult line="test.py:29" message="VP1l [addresses.tsv:Number:3]: Object property <«
comparison of ’Addressbook.ABCentralWidgetl.QListViewl.childCount’ passed" result=" <
PASS" time="2006-05-22T15:28:54" >3’ and '3’ are equal (VP1l [addresses.tsv:Number «
:3])</testresult>

) 1

)

Squish Manual
63/17

<testresult line="test.py:29" message="VPl [addresses.tsv:First Name:3]: Object <«
property comparison of ’Addressbook.ABCentralWidgetl.QListViewl.item 1l.text0’ passed <«
" result="PASS" time="2006-05-22T15:28:54" >’Joe’ and ’Joe’ are equal (VP1l [«
addresses.tsv:First Name:3])</testresult>

<testresult line="test.py:29" message="VP1l [addresses.tsv:Last Name:3]: Object property <«
comparison of ’"Addressbook.ABCentralWidgetl.QListViewl.item_1l.textl’ passed" result <«
="PASS" time="2006-05-22T15:28:54" >’Smith’ and ’Smith’ are equal (VP1l [addresses. <
tsv:Last Name:3])</testresult>

<testresult line="test.py:29" message="VP1l [addresses.tsv:Address:3]: Object property <«
comparison of ’Addressbook.ABCentralWidgetl.QListViewl.item_ 1.text2’ passed" result <
="PASS" time="2006-05-22T15:28:54" >’Queens Blvd. 37’ and ’'Queens Blvd. 37’ are <«
equal (VP1l [addresses.tsv:Address:3])</testresult>

<testresult line="test.py:29" message="VPl [addresses.tsv:E-Mail:3]: Object property <«
comparison of ’Addressbook.ABCentralWidgetl.QListViewl.item_1.text3’ passed" result <«
="PASS" time="2006-05-22T15:28:54" >’ joe@smith.com’ and ’ joe@smith.com’ are equal («
VP1 [addresses.tsv:E-Mail:3])</testresult>

<testresult message="End ’'tst_add_address_datadriven’" result="END_TEST_CASE" time <«
="2006-05-22T15:28:54" >End of test case ’'tst_add_address_datadriven’</testresult>

<testresult message="End ’suite_addressbook_py’" result="END" time="2006-05-22T15 <
:28:55" >End of test ’suite_addressbook_py’</testresult>

</SquishReport>

The complete Python script to convert the XML file to HTML is included in Squish under examples/regressiontesting/
xmlresult2html.py

‘We can now run the script to convert the results.xml to HTML:

xmlresult2html.py /tmp/results.xml > results.html

This way the resulting HTML is redirected into the file results.html which we can display now in a web browser:

Squish Manual
64 /17

6006 ftmp/results.xml

: 4 » & + 9 file:// /tmp/results.html . z'i:l.* Goog
B3 EE
I:I:]

Summary

Test cases 2

Tests 20

Passes 20 (including 0 expected failures)
Fails 0 (including 0 unexpected passes)
Errors 0

Fatals 0

Results

ftmp/resultsxml
e Test 'suite_s
START 03-22 Start 'suite_addressbook_py' < i -
15:27:35
2006-
START_TEST_CASE 05-22 Start 'tst_add_address' Test Case '
15:28:01
20006- VP1: Object property comparison of
PASS 05-22 test.py:22 'Addressbook. ABCentralWidgetl .QListView1.childCount' 'l1'and '1'ar
15:28:17 passed
2006- VP1: Object property comparison of
PASS 05-22 test.py:22 'Addressbook ABCentralWidgetl QListView1.item_1.text)' "Max' and 'N
15:28:17 passed
2006- VP1: Object property comparison of 'max @must
PASS 05-22 test.py:22 'Addressbook. ABCentralWidgetl QListView1.item_1.text3' 'max @ must
153217 LT | [AYArE Y

This completes the first step: We can now convert a XML test report to a user presentable HTML file.

6.1.2 Walkthrough the Script Code

You can find the complete Python script in the directory examples/regressiontesting/xmlresult2html.py. We
just present the most important parts: the ResultParser class parses the XML result into a Python struct:

class ResultParser:
"""This class parses one XML test result file and stores it in Python
structures. The attribute summary is a Python dictionary with the summary
of the test result file. The attribute details is a list of dictionaries
for the detailed test results."""
def _ _init__ (self, filename):

Squish Manual

65/17

def

self.filename = filename

self.summary = {’testcases’:
"tests’:
"passes’ :
"fails’:
"errors’ :
"fatals’:
"unexpected_passes’:
"expected_fails’:
}

self.details = []

~ 0~

~

~ 0~ 0~

O O O O O O O O
~

~

parse the document

doc = xml.dom.minidom.parse (filename)
self.___walkNodes (doc)

doc.unlink ()

_ _walkNodes (self, node):
"""This private function walks each node in the
the node. The walk is depth first recursive."""
if node.nodeName == ’summary’:
for attr in self.summary.keys() :
if attr in node.attributes.keys() :

self.summary[attr] = int (node.getAttribute (attr))

document and processes

elif node.nodeName == ’'testresult’:
result = {}
for attr in (’result’, 'time’, ’line’, ’'message’, ’'detail’,):
if attr == ’'detail’:
if node.firstChild:
result[attr] = node.firstChild.nodeValue. \
replace (“\\n’, "\n’). \
replace (“\\t’, ’\t’)
else:
result [attr] = "'
elif attr == "time’:
str = node.getAttribute (attr)
dt = str.replace('T’, ' 7). \
replace('=", 7). \
replace(’:’, ' ") .split ()
if len(dt) == 6:
result [attr] = datetime.datetime (int (dt[0]), int(dt[1])
int (dt[2]), int(dt[3])
int (dt[4]), int(dt[5])
else:
result [attr] = "'
else:
result [attr] = node.getAttribute (attr)

self.details.append (result)
walk child nodes
child = node.firstChild
while child:
self._ walkNodes (child)
child = child.nextSibling

The HtmlConverter class converts the Python struct to HTML:

class HtmlConverter:

"""This class converts a list of test results
HTML.

results."""

(as ResultParser objects) to
The attribute html contains the HTML version of the converted

Squish Manual
66/17

def _ init__ (self, title, results):
summary = {’testcases’:
"tests’:
"passes’:
"fails’:
"errors’:
"fatals’:
"unexpected_passes’ :
"expected_fails’:
}
detailsHtml = '’
for r in results:
aggregate the keys of the summary
for attr in summary.keys/() :
summary[attr] += r.summary.get (attr, 0)

~ 0~ 0~

~

~

~

O O O O O O O O
~

~

convert the details to HTML
detailsHtml += htmlResultsBegin % {’filename’: r.filename}
for d in r.details:
convert newlines and tab to HTML
d[’detail’] = d[’detail’]. \
replace ("\n’, ’
’).replace(’\t’, ’ ’x4)
detailsHtml += htmlResults.get (d[’result’],
htmlResults[’default’]) % d
detailsHtml += htmlResultsEnd

put the parts together to one HTML document

self.html = htmlHeader % {’title’: title} + \
htmlSummary % summary + \
detailsHtml + \
htmlFooter

The above code uses some variables with the HTML code for certain parts of the resulting document. For example the variable
htmlResults [’ PASS’] contains the HTML code for one test result entry that passed:

htmlResults[’PASS’] = """\
<tr bgcolor="#80FF80">
<td>% (result) s</td>
<td>% (time) s</td>
<td>% (line) s</td>
<td>% (message) s</td>
<td>% (detail) s</td>
</tr>

nun

The code contains placeholders like % (result) s that are filled with Python’s % operator. Here are all variables that are used:

The following HTML snippets can be modified to customize the look of the
resulting page. The script substitutes the "% (title)s" parts with the data
from the XML testresults.

htmlHeader = """\
<html>
<head>
<title>% (title)s</title>
</head>

<body>

nun

Squish Manual
67 /17

htmlFooter = """\
</body>
</html>

nun

htmlSummary = """\
<hl>Summary</hl>
<table border="0" cellpadding="3">
<tr>
<td>Test cases</td><td>% (testcases) s</td>
</tr>
<tr>
<td>Tests</td><td>% (tests) s</td>
</tr>
<tr>
<td>Passes</td><td>% (passes)s (including % (expected_fails)s
expected failures)</td>
</tr>
<tr>
<td>Fails</td><td>% (fails)s (including % (unexpected_passes)s
unexpected passes)</td>

</tr>
<tr>
<td>Errors</td><td>% (errors) s</td>
</tr>
<tr>
<td>Fatals</td><td>% (fatals)s</td>
</tr>
</table>
<hl>Results</hl>
mmww
htmlResultsBegin = """\

<p>% (filename) s</p>
<table border="0" cellpadding="3" width="100%%">

htmlResultsEnd = """\
</table>

nun

htmlResults = {}
htmlResults[’PASS’] = """\
<tr bgcolor="#80FF80">
<td>% (result) s</td>
<td>% (time) s</td>
<td>% (line) s</td>
(
(

o\

<td>$% (message) s</td>
<td>% (detail) s</td>

</tr>
mmw

o oo

htmlResults[’XFAIL’] = htmlResults[’PASS’]
htmlResults[/FAIL’] = """\
<tr bgcolor="#FF8080">
<td>% (result) s</td>
<td>% (time) s</td>
<td>% (line) s</td>
<td>% (message) s</td>
<td>% (detail) s</td>
</tr>

nun

htmlResults [’ XPASS’] = htmlResults[’FAIL’]

Squish Manual
68/17

htmlResults[’ERROR’] = htmlResults[’/FAIL’]
htmlResults[’FATAL’] = htmlResults[’'FAIL’]
htmlResults[’default’] = """\

<tr bgcolor="#EEEEEE">
<td>% (result) s</td>
<td>$% (time) s</td>
<td>% (line) s</td>
<td>% (message) s</td>
<td>% (detail) s</td>
</tr>

The remaining part of the script is used when the script was called from the commandline (as opposed to being included with the
import statement). It just passes all the XML files given on the commandline to the ResultParser class and converts them
to HTML with the Htm1lConverter class:

if _ name_ == '_ _main_ ':
"""The following code is executed if this script was called from the
commandline."""

import sys
open input file
if len(sys.argv) < 2:
raise RuntimeError, ’'Missing a file name argument’

parse the XML files

title = 77’

results = []

for filename in sys.argv([l:]:
title += filename + " '/

results.append (ResultParser (filename))

convert the result to HTML
converter = HtmlConverter (title, results)
print converter.html.encode (’utf-8")

6.2 Automatically Running Tests

The next step is to automate running the tests and automatically call the script to convert the XML reports into HTML. Also, an
index page should be generated, so a test engineer can view the index page and click on links to see the full reports.

For this we create a script runtests.py which takes over this task. The script is printed below and can also be found in
examples/regressiontesting/runtests.py.

#! /usr/bin/env python

import necessary modules
from os import system
from os import path

from datetime import date

these variables need to be adjusted:

bin directory of Squish

squishbin = "/home/reggie/src/squish/bin/"

directory to which the HTML results should be written

Squish Manual

69/17
outdir = "/home/reggie/results"
list of test suites to execute
suites = ["/home/reggie/src/squish/examples/qt3/suite_addressbook_py",
"/home/reggie/src/squish/examples/qt3/suite_addressbook_js"]
list of hosts on which the suites should be executed
hosts = ["127.0.0.1"]
this functions runs the test suite ’suite’ on the host 'host’ and converts the
XML result into HTML and saves that to ’htmloutput’
def runTest (suite, host, htmloutput) :
print ("run " + suite + " on " + host)
print (squishbin + "squishrunner --host " + host + " —--testsuite " + suite + " —- <
reportgen xml, /tmp/results.xml")
system (squishbin + "squishrunner --host " + host + " —--testsuite " + suite + " ——- «
reportgen xml, /tmp/results.xml")
system (squishbin + "../examples/regressiontesting/xmlresult2html.py /tmp/results.xml >" «

+ htmloutput)

index = "<h2>Test runs on " + str(date.today()) + "</h2>\n\n"

loop over all test suites and hosts and call ’runTest’
for s in suites:
sn = path.basename (s)
for h in hosts:
file = outdir + "/" + str(date.today()) + "_" 4+ sn + "_" + h + ".html"
runTest (s, h, file)
index += "Suite " + s + "/ on host '" + h + "'\n"

index += "\n"

write links to the generated HTML reports into the index.html so one
can view a summary of all results
if path.isfile(outdir + "/index.html") :

ifile = open (outdir + "/index.html", "r")

index += ifile.read()

ifile.close ()

ifile = open(outdir + "/index.html", "w")
ifile.write (index)
ifile.close()

The comments in the script explain the code quite well. Basically one defines a list of test suites and hosts and then, using a loop,
the test suites are run on all hosts using squishrunner. The resulting XML file is automatically converted into HTML. The file
names for the HTML result contain the date, test suite and host to be unique.

When running this script it is assumed that on all specified hosts squishserver is running, and the AUT paths are set up so the
needed AUTs for the test suites can be found.

Here is the generated index page from one test run:

Squish Manual
70/17

[=To] indexhtmi - Kongqueror BER

........................

Location Edit Miew Go Bookmarks Took Settings Window Help

€220 00 B8R AA LS 2

E# Location: ||E.-'home-'reggh-‘resurts.-'index.html |=-| |=-| ﬁ

Test runs on 2005-08-18

+ Suite "home/reqagie/sre/squish/examples/qgtd/suite addressbook py' on host '127.0.0.1"
+ Suite 'home/reqagie/sre/squish/examples/gta/suite addressbook js' on host '127.0.0.1"

The last step would be to have the runtests.py script ran automatically for example once every night to ensure that no
regressions have been introduced into the AUT. On Unix this can be done by setting up a cron job which executes the script. On
Windows it is possible to set up a Windows Service to run the script regularly.

For detailed documentation about cron jobs or Windows Services, search for the relevant information on the Internet or contact
froglogic’s commercial support to assist you.

6.3 Conclusion

This tutorial showed how to set up automated test runs using Squish’s command line tools and two simple Python scripts. Of
course a lot more can be done in the way how results are presented, statistics are calculated, etc. By interpreting the XML results
all this is possible and using the information provided in this tutorial you should be able to improve the scripts to satisfy your
needs

Squish Manual
71/17

Chapter 7

User’s Guide

The Squish User’s Guide explains all aspects and features of Squish in detail.

7.1 Scripting

This chapter discusses Squish’s scripting support, the different supported scripting languages and the script APIs which are
available when working with test scripts.

7.1.1 Accessing Java™ API

One of Squish’s most useful features is the ability to access the toolkit’s API from test scripts. This gives test engineers an amount
of flexibility allowing to test about anything in the AUT.

With Squish’s Java™-specific API it is possible to find and query objects, access fields and methods. When we talk about
properties, we mean fields in Java™ classes combined with member functions that have a

Type getSomething () ;
boolean isSomething();
void setSomething(Type t);

pattern. In the above code the property would have been called something. When both getXxx and isXxx are there, then
Squish will use the get Xxx variant. The existence of getFoo/isFoo and/or setFoo sets whether the property is read-only
or read-write, write-only properties are not generated by Squish.

In addition, Squish provides a Section 7.1.1.4 to execute common actions on GUI applications such as clicking a button or
entering some text.

The chapter Section 7.1.6 later in this manual shows using different examples how to use the scripting Java™ API to access and
test complex Java™ GUI elements.

7.1.1.1 Finding and Querying Java™ Objects

Squish provides a function called £indOb ject which returns the object for a given qualified object name.
There are two notations for an object qualified name:
* Multiple properties: A list of property/value pairs in curly braces defines the object. Squish will search the GUI parent child

hierarchy until it finds a matching object. Example: {type=’ javax.swing.JButton’ caption=’'x’ windowTy-—
pe='Calculator’ windowName=’'frameO’ windowCaption=’Java Swing Calculator’}

* Hierarchical notation: From the top Frame (or Shell in SWT) the path to the object, all parent GUI elements, are noted and
separated by a dot. Example: : frame0.JRootPane.null_layeredPane.null_contentPane.JLabel.

Squish Manual
72/17

To find out the name of an object, you can use the Spy to introspect the document of the Web application. See the chapter
Section 7.8.4 for details.

Squish prefers the multiple property notation where ever possible. This notation has the advantage that scripts wont break if you
need another layer (like a JPanel) in between somewhere.

The multiple property notation may be followed by a hierarchical notation.

As described in Section 7.4, the multiple property notation names automatically get a shorter name in the ‘Object map’. In the
above example that shorter name could be : frame0. x_javax.swing.JButton. You may use either the short or original
name to reference the object.

Querying on object using findObject in Python you would use the following code:

multiply = findObject (":frameO.*_javax.swing.JButton")

If findObject can’t find the specified object, a script error is thrown which stops the script execution. In some situations it
might be desirable to first check if the object exists and execute an action on the object. For this purpose, Squish provides an
object.exists function.

As example, we want to find the radio button like above, and click it if it exists. In Python this functionality would be implemented
like this:

if object.exists (":framel.*_javax.swing.JButton") :
multiply = findObject (":framel.x_javax.swing.JButton")
clickButton (multiply)

This allows test engineers to query and access the complete object tree of the Web document.

7.1.1.2 Calling Functions on Java Objects

With Squish it is possible to call every public function on any Java object. Section 7.1.1.1 describes how objects can be found.
The following example shows how you can create an object in JavaScript:

var s = new java_lang_String("abc");

Note
The notation of Java™ objects are with a ‘_’ instead of *. for package directories separation. This is because a ‘.’ has a meaning
in most of the script languages that Squish support.

In the example below we change the button text of the multiply button of the calculator demo application. In JavaScript this can
be written as:

var multiply = findObject (":framel.x*_javax.swing.JButton");
multiply.setText ("x");

Static functions can also be called. The next example shows a JavaScript example of calling the static Integer.parseInt-
(String s):

var i = java_lang_Integer.parselnt ("12");

7.1.1.3 Accessing Properties of Java™ Objects

Java™ objects can have fields. Public fields are accessible in Squish like in the next JavaScript example:

var p = new java_awt_Point(5, 8);
print(p.x);

Squish Manual
73/17

In addition to public fields, Squish adds synthetic properties derived from method names with the Type getSomething (),
boolean isSomething () and void setSomething (Type t) pattern (see Section 7.1.1 for details). In the example
where we changed the button text with set Text ("x"), we could have written in JavaScript:

var multiply = findObject (":framel.*_javax.swing.JButton");
multiply.text = "x";

And Squish will call the corresponding set Text ("x") for us.

Note
These extra generated properties allows you to add more verifications points in the test scripts, see Section 7.10 for more
information.

Squish knows about a limited set of classes. If you get errors accessing a class method, referring to a super class, then it is likely
this class is not wrapped by Squish. See Section 7.2.7 how to extend the set of known classes.

7.1.1.4 Java™ Convenience API

This section describes the script API Squish offers on top of Java™’s API to make it easy to perform common user actions such
as clicking a button, entering text, etc. A complete list of this API is available in the chapter Section 8.1.3 in the Chapter 8. Here
we will show some examples.

In the example below, we click on a button, type some text and activate a menu. As mentioned, there are more convenience
functions, but the examples below should give a good overview of how it works.

Here is the Python code for those examples:

clickButton (":frameO_Notepad$1l")

type (":frameO_javax.swing.JTextArea", "Some text")
activateItem(":frame0O_javax.swing.JMenuBar", "File")
activateItem(":frameO.File_javax.swing.JMenu", "Exit")

In Perl or JavaScript this looks like this:

clickButton (":frameO_Notepads$l");

type (":framel_javax.swing.JTextArea", "Some text");
activateItem(":frameO_javax.swing.JMenuBar", "File");
activateItem(":frame0.File_javax.swing.JMenu", "Exit");

7.1.2 Test Statements

This section discusses the API Squish offers to perform tests which will create test results. Verification points use this test APL.
Different approaches and topics on verification points are discussed in the chapter Section 7.10. Working with the test result log
is discussed in the chapter Section 7.7.3.

To compare two values and write the result to the test log, the test . compare is used. To just verify a boolean value, test.
verify is used. To write some information to the test log, the test . 1og function can be used. If you want to emphasize a
message, you might want to mark it as a warning message, which can be done with the test . warning function.

Here is a small example for Python:

lineedit = findObject ("Addressbook.ABCentralWidgetl.FirstName")
test.verify(lineedit.enabled)

test.compare (lineedit.text, "Max")

test.log("Important note", "This is an important note about the test")

test.warning ("Suspicious warning", "This test is incomplete and should be extended!")

In JavaScript we of course can do the same:

Squish Manual
74 /17

lineedit = findObject ("Addressbook.ABCentralWidgetl.FirstName") ;
test.verify(lineedit.enabled);

test.compare (lineedit.text, "Max");

test.log ("Important note", "This is an important note about the test");

test.warning ("Suspicious warning", "This test is incomplete and should be extended!");

In Tcl it works too:

set lineedit [findObject "Addressbook.ABCentralWidgetl.FirstName"]

test verify [property get $lineedit enabled]

test compare [property get $lineedit text] "Max"

test log "Important note" "This is an important note about the test"

test warning "Suspicious warning" "This test is incomplete and should be extended!"

There are of course more test commands available. A complete listing and API documentation can be found in the chapter
Section 8.1.2 in the Chapter 8.

7.1.3 Event Handlers

In Squish test scripts it is also possible to react on events in your AUT. For example, this is useful to react on unexpected dialogs
popping up such as error message boxes.

The concept is to specify an event handler function for a certain event on a certain object, all objects or object type. The function
to do this is called installEventHandler.

In this chapter we will give the code examples only in one script language. As we will discuss three different types of event
handlers, there will be a code example in each script language.

A complete listing and API documentation of event handlers can be found in the chapter Section 8.1.2 in the Chapter 8.

7.1.3.1 Global Events

A global event is for example the event MessageBoxOpened which is sent when a message box opens. This can be used to
e.g. react on unexpected message boxes which pop up. The event handler below will log the message box’s text in the test results
and then close the message box so the test can continue. In Python this would look like this:

def handleMessageBox (msgBox) :
label = msgBox.child("messageBoxText")
label = cast (label, QLabel)
text = label.text
caption = msgBox.caption
test.log("Message box '" + str(caption) + "’ opened", str(text))
msgBox.close ()

def main () :
installEventHandler ("MessageBoxOpened", "handleMessageBox")

Another special event is Crash. This way it is possible to install an event handler which is called when the AUT crashes to do
e.g. cleanups or restart the AUT. In JavaScript, this would look like:

function handleCrash ()

{
test.log("Deleting lock files after application crash");
deletelLockFiles () ;

function main ()
{

installEventHandler ("Crash", "handleCrash");

Squish Manual
75/17

A third special event are Timeout events. These events are triggered whenever the AUT fails to respond to some Squish
command within five minutes. This can happen if the application got stuck in an endless loop, or if there is some other reason
which keeps it from being able to respond. You can install an event handler for this event in order to handle this event gracefully.

7.1.3.2 Events for Object Types

It is also possible to react on specific events on a specified object type. For example, we can install an event handler which is
always called when a QMouseEvent occurs on a QCheckBox. This means, every time the test performs e.g. a click on any
check box in the application, the event handler would be called. In JavaScript we could implement it as follows:

function handleCheckBox (obj) {
test.log ("QCheckBox clicked", "check box ’" + objectName (obj) + "’ clicked")

function main () {
installEventHandler ("QCheckBox", "QMouseEvent", "handleCheckBox");

7.1.3.3 Object Events

The third kind of event handling is to react on events on a specific instance of an object. As an example we could install an event
handler which is called every time a line editor receives a QKeyEvent. This means the event handler will be called every time
the test types some text into the line editor. In Tcl we would implement it like this:

proc handleKeyEvent {obj} {
set firstName [property get Sobj text]
test log "First Name Changed" "First Name changed to $firstName"

proc main {} {
set lineedit [findObject "Addressbook.ABCentralWidget.FirstName"]
installEventHandler $lineedit QKeyEvent handleKeyEvent

7.1.4 Synchronization Points

When recording a script in Squish, the event recorder automatically inserts snooze statements into the script. Those statements
make the script to wait for a specified amount of seconds. This is important to ensure that a script is replayed in the same speed
as it was recorded. So if the user waited for e.g. a window to pop up, the script will do the same.

Using snooze statements is the simplest way of synchronizing the AUT and the script. But in many cases, just waiting for a
certain amount of time isn’t sufficient. E.g. when a script is recorded on a fast machine and later replayed on a slow computer a
snooze might wait not long enough.

Therefore, in the record settings dialog, you can choose to not insert snooze statements but waitForObject statements
instead. This way, before every action recorded, a waitForObject statement will be recorded for the object to be accessed.
So on replay, Squish will then, instead of just waiting for a given amount of time, wait for the given object to exist and be
accessible.

Alternatively, Squish offers a waitFor function. This function waits until a given condition becomes true, or optionally, until a
specified time out expired.

The condition can be anything from a property to a complex script statement. The following Python code would wait until the
dialog "Addressbook.FileSave" pops up. In case it doesn’t pop up after 5 seconds, an error will be thrown:

ok = waitFor ("object.exists (’Addressbook.FileSave’)", 5000)
if not ok:
test.fatal ("Dialog Addressbook.FileSave didn’t pop up’")

Squish Manual
76 /17

The following JavaScript snippet will wait until the file "addresses.addr" exists in the AUT’s directory (which is the current
working directory). Since no timeout is specified, this call will wait forever in case the file gets never created:

waitFor ("QFile.exists (’addresses.tsv’)");

The following Tcl code will wait for a maximum of 2 seconds for the Add button to become disabled:

set addButton [findObject "Addressbook.ABCentralWidgetl.AddButton"]
set ok [waitFor {property get S$addButton enabled} 2000]
if {Sok == false} {

test fatal "Add button still enabled after 2 seconds"

The examples above have shown different variations of synchronization points. As the condition which is passed to the waitFor
function can be any script code which can be evaluated, there are no limits to synchronization points.

Event-Driven Test

By combining the waitFor function and Section 7.1.3 it is possible to wait with the script execution until a specific event
has been handled. This can be done by installing an event handler, setting a global variable (e.g. eventHandled) to
false and passing this global variable as condition to the waitFor. In the event handler, just set eventHandled to true
and you are done.

This way it is event possible to create completely event driven tests, where the main function of the test just installs event
handlers and starts a waitFor and all testing is done in the event handlers.

7.1.5 Testing Multiple AUTs from a Single Test Script, Working with ApplicationContext

Usually, as also shown in the tutorials, one application under test is specified for a test suite. This AUT is then executed and
accessed by each test case. In Squish it is also possible to start multiple applications and access and test all of them. This allows
to test the interaction between different applications or multiple instances of the same application which is necessary to test
client/server systems.

For each started application, an ApplicationContext object is created which is used as a handle to the application. Using
the application context it is also possible to query information such as the command line, the running state, etc. Using a default
application context it is also possible to query such information from a single AUT. So this information is also interesting for
single-AUT tests.

7.1.5.1 Starting and Accessing Multiple AUTs

When testing multiple applications from one test script, the first step is to specify no application in the test suite settings of the
test suite. To do that in the Squish IDE open Test Suite — Settings and go to the page Settings. Under AUT simply choose <No
AUT>.

The script command to start an application is startApplication. This command starts the given application (assuming it is
located in an application path- see Section 7.2) using the given command line arguments and returns its context. The context is a
handle which refers to the application.

Optionally, as second and third parameter a host and port can be passedto startApplication. Thisway, startApplication
will connect to the squishserver on the specified host listening to the specified port instead of using the default host and port (as
specified in the Squish IDE’s settings or squishrunner’s command line). This allows to control multiple applications on multiple
computers from one test script.

Special care has to be taken if the application is using a different GUI toolkit than the default toolkit of the test suite. The
testSettings object allows for a configuration of the toolkit wrapper on a per-AUT basis. See Section 8.1.2.11 for usage of the
setWrappersForApplication() function.

Using setApplicationContext the currently active application can be set. This means, that script function calls will be
executed in this currently active application. When calling startApplication, the current context is automatically set to
the newly started application.

Squish Manual
77117

The function applicationContextList returns alist of all application contexts. Using defaultApplicationContext
the context of the default application (the one specified in the test suite settings), if there is one, is returned. . Using currentApplicat
the current context is returned.

Note
If you want to record and access applications which are started by the AUT and not by Squish please see [?].

The next section will discuss the usage of ApplicationContext objects in more detail. Now we will look at an example of
working with multiple applications in a test script.

Suppose we have an chat client/server system with an application called chatserver which needs to be running for the
communication and two clients called chatclientqgt and chatclient java which can be used for chatting. In the test we
first start the chat server. Then we start two clients which automatically connect to the chat server. We then type something in
the message editor of the first client and check that the second client received the message. We will use Python for the test. The
comments in the program code give some more details:

start server so clients can connect to it
startApplication ("chatserver")

start first client, using Qt toolkit
clientl = startApplication("chatclientqgt","Qt")

start second client, using Java toolkit
client2 = startApplication("chatclientjava","Java")

need to switch to clientl to be able to access it
setApplicationContext (clientl)

type something into the message editor
editor = findObiject ("ChatWindow.messageEditor")
type (editor, "Message for client 2")

switch context to client2 to be able to verify
that the message was received
setApplicationContext (client?2)

check that the message was received
msgView = findObject ("ChatWindow.messageView")
test.compare (msgView.text, "Message for client 2")

7.1.5.2 Working with ApplicationContext

Using the ApplicationContext object information about the application it refers to can be retrieved. The application con-
text of the running AUT as defined in the test suite settings can be retrieved using the function defaultApplicationContext.

When starting an application using startApplication, this function returns the application context for the newly started
AUT.

A complete list of properties and functions provided by the ApplicationContext object can be found in the chapter Sec-
tion 8.1.2 in the Chapter 8. Here are some examples.

To print out the command line and current working directory of the test’s default application the following Python code can be
used:

ctx = defaultApplicationContext ()
print (ctx.commandLine)
print (ctx.cwd)

To start the application myapp and calculate its maximum memory usage as long it is running, we could use the following
JavaScript code (The memoryUsage property is only available in conjunction with the Squish memory module add-on):

Squish Manual
78 /17

ctx = startApplication ("myapp");
var maxcpu = 0;
while (ctx.isRunning) {
maxcpu = Math.max (ctx.usedMemory, maxcpu) ;

}

To print out the process identifier of the application myapp and to check for a maximum time of 10 seconds if the application is
responsive (not frozen), the following Tcl code would work:

set ctx [startApplication "myapp"]

puts [applicationContext $ctx pid]

set frozen [applicationContext S$ctx isFrozen 10]
test compare $frozen false

To add everything which has been written to STDOUT and STDERR by the application to the test log, classifying all STDERR
messages as warnings, the following Python code would work:

ctx = startApplication ("myapp")
test.log ("STDOUT", ctx.readStdout())
test.warning ("STDERR", ctx.readStderr())

7.1.6 Testing Java™ applications
This chapter shows using small example code snippets in JavaScript how to test specific Java widgets in an application and verify
that their properties have the expected values and the widgets contain the expected contents.

The hardest part when implementing test scripts is to create the test verifications. As shown in the chapter Section 5.3 and in the
tutorial Chapter 5, most of that can be done using the Spy and its point & click interface. But in some cases it might be most
desirable to implement a verification point using script code to gain more flexibility.

Often the biggest issue there is to find out how to retrieve the information from widgets which should be tested. These examples
show how to do this on different widgets of different complexity. Using the principles shown in this chapter it should be possible
to test any widget in your application under test.

7.1.6.1 Accessing widgets

To test and verify a widget and its properties or contents, first we need access to the widget in the test script. To obtain a reference
to the widget, the £indObject function is used. This functions locates a widgets of the given name and returns a reference to
it.

For this purpose we need to know the name of the widget we want to test. To find out the name of a widget the Spy tool comes
in very handy (for more details about using Spy see Section 7.8.4.

The steps to find out the name are the following:

« Start the Squish IDE and make the test suite we are working in active

« Start the Spy on the application under test

» Switch to the AUT and work through the GUI until the widget we want to test is visible (e.g. open the dialog it is contained in)
» Switch back to the Squish IDE and switch the Spy into Pick mode

» Switch to the AUT and click on the widget you want to test

» Switch back to the Squish IDE. In the Spy object view the selected widget and its tree will be displayed. Right-click onto the
object name and choose "Copy to clipboard".

« Exit the Spy

Squish Manual
79/17

Now the object name we were looking for is saved in the clipboard and we can paste it into the script as the argument to
findObject.

For more details about the £indOb ject functions, see Section 7.1.1.1.

In the following sections we always assume that we have access to the widget we want to test.

7.1.6.2 Testing Widget States

Very often the state of a widget, such as its visibility, needs to be tested. Those states can be queried on a widget by testing the
value of its respective properties. Here are some examples in the various scripting languages that Squish supports:

Verify that the widget has the input focus in Python:

test.compare (widget.focusowner, True)

Verify that the widget is visible in JavaScript:

test.compare (widget.visible, true);

Verify that the widget is enabled in Tcl:

test compare [property get S$Swidget enabled] true

7.1.6.3 Testing CheckBox

A common test is to verify that the state of a checkbox reflects the expected settings.

7.1.6.3.1 AWT CheckBox

This can be tested by querying the value of the checkboxes state property in JavaScript:

test.compare (checkbox.state, true);

7.1.6.3.2 Swing JCheckBox

This can be tested by querying the value of the checkboxes selected property in JavaScript:

test.compare (checkbox.selected, true);

7.1.6.3.3 SWT Button of type CHECK or RADIO

This can be tested by querying the value of the checkboxes selection property in JavaScript:

test.compare (checkbox.selection, true);

7.1.6.4 Testing List and ComboBoxes

Although the different GUI Java™ toolkits that Squish supports have different implementations for list and comboboxes, their
items are wrapped by Squish in TtemProxy objects. These objects act as child objects of the list or combobox object. The child
objects are called item_0, item_1 and so on.

The ItemProxy objects have the properties text and selected. For the SWT based List and Combo widgets, there is an
extra property called control. The AWT/Swing based ones have an extra property called component.

Squish Manual
80/17

Object Type ;I Show Properties

2. List org_eclipse_swt widgets_List Property Value
+ itern_0 com_froglogic_squish_swt_temProxy | text Four
+ itern_1 com_froglogic_squish_swt_ItemProxy celected falce
+ itern_2 com_froglogic_squish_swt_ ltermProxy + cantral null
T tem_E! cnm_fmglngc_sqush_swt_rteml’mxy - class class com.froglogic.squish.swt.Listite)
+-item_4 com_froglogic_squish_swt_ltemProxy L. synthetic falce
t-item_ 5 com_froglogic_squish_swt_ItemProxy - superclass class com.froglogic.squish.swtltemPr
+-item_6 com_froglogic_squish_swt_ltemProxy |- simplename ListitemProxy
+ item_7 com froglogic_squish_swt_ItemProxy ;—--prntectiundumain ProtectionDomain (file:/home/koos/p
+- itern_8 com_froglogic_squish_swt_termProxy primitive false
+ item_3 com froglogic_squish_swt_ftemProxy b package package com.froglogic.squish.swt
+-item_10 com_froglogic_squish_swt_ItemProxy __| L name com.froglogic.squish.swt.ListltermPros
+-item_11 com_froglogic_squish_swt_lternProxy E""rnl:udifiers o

—~ Combol org_eclipse_swt widgets Combo E----memberclass false
+ itern_0 com_froglogic_squish_swt_ItemProxy lacalclass falce
+-itern_1 com_froglogic_squish_swt_ItemProoxy interface false
+-item_ 2 com _froglogic_squish_swt ttemProxy | genericsuperclass class com.froglogic.squish.swt.ltemPr
L. it 2 rovre Fromlanic canich otk harm Drmowesr

In the spy you get for each item an ItemProxy derived object.

In SWT, the List and Combo widget have the method get SelectionIndex (). Squish generates from this method a property
calls selectionindex. So for the SWT toolkit, these two tests are equal:

test.compare (list.selectionindex, 2);
test.compare (list.item_2.selected, true);

Note however that the second test gives a script error if the list has less then three items. And that the first test only gives one
of the selections if the list supports multiple selections. In that case you can only use the generated TtemProxy objects for
verification points.

7.1.6.5 Testing GEF applications

Squish exposes Figures and FigureCanvas from the GEF (Graphical Editing Framework) library. The Figure hierarchy of the
FigureCanvas is exposed and can be inspected in the spy. Properties of the Figure items can be tested like this:

item = findObject ("<name of Figure item>")
test.compare (item.visible, true);

test.compare (item.enabled, true);

7.1.7 Semi-Automatic Tests: Querying User Input

While Squish allows to automate the GUI testing, in some cases it might still be of interest to have testers to input some data.
E.g. when testing a software which works together with a hardware device, it might be necessary to ask a user when running the
test if the device’s state has been changed using the software as expected.

Let’s assume we create a test for a printer software. The tests exercises the software and one of the results should be that the
printer printed a page with the contents "This is a test."

Since Squish can’t verify that, we could put the following code into the Python test script so the person running the test has to
confirm that the page was printed correctly:

Note
The code below uses Qt API (QMessageBox) to display a message box. For editions other than Squish for Qt, different APIs
(such as a JavaScript alert box or a Tk message box displayed using evalJs or tcleval could be used.

Squish Manual
81/17

def main () :

def main () :
ok = QMessageBox.question (0, "Require User Input",
"Did the printer print a page with the contents ’'This is a <«

test’?",
"Yes", "Noll) == (
if ok:
test.passes ("Printing worked", "Printer printed test page correctly")
else:

test.fail ("Printing failed", "Printer didn’t printed test page")

Another example would be to query the tester for the number of pages printed. In JavaScript this can be done like this:

function main ()

{

var num = QInputDialog.getInteger("Require User Input", "How many pages have been <«
printed?");

if (num == 0) {
test.fail("No pages printed");

} else {
test.pass (num + " pages printed");

The same in Tcl:

proc main {} {

set num [invoke QInputDialog getInteger "Require User Input" "How many pages have been <«
printed?"]

if {$num == 0} {
test fail "No pages printed"

} else {
test pass "$num pages printed"

This section showed again that using Squish’s powerful script bindings classes like QMessageBox and QInputDialog (or the
respective DOM/HTML, Tk or XView APIs depending of the used Squish edition) can be used in test scripts to allow querying
for user input.

7.1.8 Automatic Screenshots on Test Failures and Errors

To make tracing of test failures and errors easier, it is possible to instruct Squish to take a screenshot on test failures or test errors.
This way it is possible to look at a screenshot of the complete desktop taken at the time the error occurred. This is especially
helpful for debugging of test failures and errors of automated, unattended test runs.

To enable this feature, it is necessary to set the test script properties 1logScreenshotOnFail and/or logScreenshotOn—
Error of the global test Settings object to value indicating a True boolean value in your scripting language.

Once this property is activated, all test results of following fails or errors will contain a path to image file that contains the saved
screenshot. In the Squish IDE the screenshots can be viewed directly by right-clicking on the respective test result item.

See Section 8.1.2.11 for the language-specific syntax.

http://doc.trolltech.com/3.3/qmessagebox.html
http://doc.trolltech.com/3.3/qinputdialog.html

Squish Manual
82/17

7.2 AUTs and Settings

This chapter discusses many aspects of applications under test, how they are located and can be specified and special settings.

7.2.1 AUT Class Name and Classpath for Java™

A Java™ application can be configured in the testuite settings dialog. There are three different paths one can take to set the AUT.
Leave the Application as <No Application> and put the class name containing the main in the Main Class edit box.

Alternatively, a . jar archive can be set in the application field provided that the archive lists the main class in a suitable
MANIFEST included within. Please note however that SWT based applications will not work with this setup and it is therefore
advisable not to use this method, Instead add the .jar archive to the CLASSPATH and set the main class name as described above.

And finally one can set a script or executable as AUT in the Application field. Testing RCP applications however, require only to
set the launcher executable in this field.

Next section goes deeper in the subject of setting the AUT this way.

CLASSPATH can be configured in the Classpath edit box or outside of Squish as environment variable. Do not use any quotes,
Squish get confused if paths are quoted.

Note
Use either a CLASSPATH environment variable set outside of Squish or use the Classpath edit box.

7.2.2 AUT Paths and Mapped AUTs

In Squish the application under test is not specified with its absolute path in the test suite. The reason for this is, that the test
runner (squishrunner) doesn’t directly execute the AUT, but that the squishserver will be instructed to start the AUT.

squishserver can be running on multiple machines where the AUT is located in different location. Therefore squishrunner only
passes the name of the AUT’s executable to squishserver and it is squishserver’s responsibility to locate the executable and start
it.

There are two different approaches to let squishserver know where an executable is located:

7.2.2.1 AUT Path

The AUT Path is a variable in squishserver’s settings which specifies a list of paths. When starting an AUT, squishserver searches
in all of the specified paths for the executable and as a matching executable can be found, it will be started.

To add an path to squishserver’s AUT paths, call

squishserver —--config addAppPath <path>

To remove a path again, call

squishserver --config removeAppPath <path>

The same can be done in the Squish IDE’s test suite settings dialog under Test Suite — Settings. To add an AUT path, click on
the Manage... button in the General tab. In the Manage AUTs dialog, first select the AUT Paths tree item, and then click the
Add... button and choose the directory you want to add. To remove a path, select the path to be removed and click the Remove
button.

The test suite settings dialog also shows all executables which squishserver can find and could start.

Squish Manual
83/17

7.2.2.2 Mapped AUT
Another approach is to directly map the name of an AUT to a given path. So when squishserver looks for the path of an
executable, it looks if a path is mapped to it and starts it directly without searching all AUT paths.

This way it is possible to make sure that the correct application will be started and it can’t happen that accidentally a wrong
executable with the same name in a different path is picked up.

To map the application myaut to the path /home/squishuser/bin/, call

squishserver —--config addAUT myaut /home/squishuser/bin

This way, if squishserver is instructed to execute the AUT myaut, it will not search all AUT paths for the executable but directly
start /home/squishuser/bin/myaut.

squishserver --config removeAUT myaut /home/squishuser/bin

The same can be done in the Squish IDE’s test suite settings dialog under Test Suite — Settings. To add an AUT directly mapped
to a path, click on the Manage... button in the General tab. In the Manage AUTs dialog, first select the Mapped AUTS tree item,
and then click the Add... button. Now select the application, and the mapping between the selected AUT and its path will be
added to squishserver. To remove a mapping, select the AUT and click the Remove button.

The test suite settings dialog also shows all executables which squishserver can find and could start. In there it is also visible if
an application has been mapped to a path or if it was found in an AUT path.

7.2.3 Settings Groups

Another concept offered by Squish are settings groups. This way it is possible to save specific settings (such as an AUT path)
under a settings group.

To explain the benefit of that we will look at a usage example which often occurs:

We want to create tests for an application called mycad. There exist two versions of the application, one in /usr/local/
mycad_1_0/bin and the new version 1.1 is located in /usr/local/mycad_1_1/bin.

The tests we create should be ran against both versions. But without modifying the AUT paths or AUT mapping between each
test run, it isn’t possible to tell squishserver which version we want to launch.

In addition, only in version 1.1 we need to pass the argument ——guifrontend to the application when starting it.
To solve this kind of problems, Squish introduces settings groups.

Setting up everything with settings groups is much easier in the Squish IDE so we discuss this way of doing it. First we create
two settings groups: vl_0 and v1_1. To do this we open the test suite settings via Test Suite — Settings in the Squish IDE.

At the right top corner we can see a combobox which currently displays the default settings group and a button to add a new
settings group:

Test Suite Settings - suite_ addressbook py

Settings Group: E’

General rAdditinnaIWrappers rEngirunment
I

By clicking this button, the two new settings groups can be added. Now all settings which will be specified (AUT, AUT path,
arguments, etc.) will be added under the currently active settings group. To change the currently active settings group, select one
in the combobox at the top right

When recording or replaying a test, it also is necessary to let the Squish IDE know which settings group to use. This way we can
specify if e.g. version 1.0 or 1.1 of the AUT should be started. This can be done in the test suite settings dialog as well - just
select the settings group to use in the combobox at the top.

Squish Manual
84 /17

For command-line users
On the command line, to specify a settings group when recording a test case, use

squishrunner —--settingsGroup group —-testsuite suite directory —--record test case name

To run a test suite in a specific settings group, use

squishrunner —--settingsGroup group —-testsuite suite directory

7.2.4 Setting Environment variables for the AUT

In some cases an application needs a special environment to be set up before it can start. This might include setting some
environment variables, running a helper application and checking for some other conditions (enough memory available, etc.).
Usually this is done by having a shell script or Windows batch file which does this pre-initialization work and then starts the
actual application binary. See [?] for details.

If only some environment variables need to be set up, the preferred way to do this when testing and application with Squish is to
specify the environment variables in the test suite settings and use the application binary directly as AUT.

To specify environment variables, open the test suite settings in the Squish IDE via Test Suite — Settings and switch to the
Environment Variables tab. In there it is possible to specify environment variables:

Test Suite Settings - suite_ addressbook py

Settings Group: E’

(general [AdditinnalWrappers | Environment

Variable |'~.-"a|ue
1 |MYAPP_LICENSE_KEY /homeffrerich/.myapp_license
2 |MYAPP _DATADIR fhome/ffrerichf myapp/fdata
3 |MYAPP_DOCS fusrflocalishare/doc/myapp
a |

0K | ‘ cancel

This way the specified environment variables will be set before squishserver starts the AUT.

7.2.5 Testing Java Applets

For testing Java™ applets, just specify in your test suite settings the Java appletviewer as AUT (application under test) and
specify the URL of the HTML file containing the applet as argument to the AUT. No more special setup is required.

Additionally, using Squish for Web it is also possible to test Java applets embedded in a web browser. See also [?]

Squish Manual
85/17

7.2.6 Testing Java Web Start

For testing Java™ Java applications launched via Java Web Start, just specify in your test suite settings the Java javaws as AUT
(application under test) and specify the URL to the JNLP file of your web start application as argument to the AUT. No more
special setup is required.

7.2.7 Wrapping custom Java™ classes

Squish wraps a predefined set of Java™ classes. Only from wrapped classes, scripts can access properties and methods on object
instances. Likewise the spy can only show properties of wrapped classes. If a class isn’t wrapped, only properties and methods
from super classes can be used that are wrapped.

To extend the list of wrapped classes, the classes have to be listed in a . ini file. And the wrapper of the Java™ process has to
be told where to find this file.

7.2.7.1 Writing the . ini file
The format is like in the example below. For a class com.example.product .Example and com.example.product-
.Main.

[general]
AutClasses="com/example/product/Example", "com/example/product/Main"

The class names must be relative to the classpath.

When an extra class is wrapped, all super classes, classes from method arguments and return type classes will be wrapped as
well. If such a wrapping fails however, it will become an Unknown type.

Additionally, an extra classpath can be set that might be needed if the application extends its classpath during execution.
For instance, testing Java™ applets with Web testing, the classpath is extended by the ARCHIVE attribute of the APPLET
HTML tag. In the previous example, a classpath setting is added like below.

[general]

AutClasses="com/example/product/Example", "com/example/product/Main"
AutClassBaseUrl="http://www.example.com/product/"
AutClassPath="demo. jar"

The classpath entry is like usual notation, with *;> (Windows) or *:” (Mac/Linux/Unix) separators. The complete entry has to
be quoted.

The option AutClassBaseUrl is optional and when set, adds a prefix to all paths in the AutClassPath entry plus the
AutClassBaseUrl itself is added to the classpath.

7.2.7.2 Register the . ini file

7.2.7.2.1 Using Squish server

The squishserver can then be used to register the created . ini file. The command

squishserver --config setConfig <name-of-AUT> <path-of-ini-file>

will register the file. Note the name of the application in the above command is the exact name found in the Test Suite Settings
dialog. Removing this registration is done by issuing this command with the removeConfig option, thus

squishserver —--config removeConfig <name-of-AUT> <path-of-ini-file>

Squish Manual
86/17

7.2.7.2.2 Using an environment variable

An environment variable can be set to specify the . ini file location. The environment variable is SQUI SH_WRAPPER_CONFIG
and can be set in the testsuite settings dialog.

7.2.8 Configuring the recognition of native Windows controls

By default, Squish will only record actions on native controls (such as embedded ActiveX controls) if it can clearly identify the
controls as such. However, with Java™, it’s not possible for Squish to tell for sure whether something is a native control or a
Java™ control. Hence, it is necessary to tell Squish about the native controls being used, otherwise no actions on the control will
be recorded.

Note

The support for interacting with native Windows control is in a relatively early stage. The support for more sophisticated and
stable automation of native Windows GUIs is scheduled to be released with Squish 4.0 but may require purchasing a special
Windows testing license.

Much like in the section Section 7.2.7, this is done by configuring an . ini file appropriately. For instance, to describe that a
control called MyCalendarCtrl is a native control, create a configuration file with the following content:

[Windows Wrapper]
Whitelist="MyCalendarCtrl"

Tip
If you don’t know the class name of the native control, the developers of the application can properly tell. Alternatively, you can
use tools like Spy++ (ships with Microsoft Visual Studio) or Autolt Window Info.

If you have an existing . ini file (possibly because you instructed Squish to recognize custom Java™ classes as described in the
section Section 7.2.7), you can simply add the above lines to your existing file.

If you want to add more entries to the Squish whitelist, simply separate their names with a comma, as in this example:

[Windows Wrapper]
Whitelist="MyCalendarCtrl", "AnotherControl","InternetExplorerCtrl"

After creating the configuration file, the only thing left to do is to tell Squish which application this configuration file is for. To
do so, simply follow the steps described in the section Section 7.2.7.2.

7.3 Testcase Templates

After creating a number of test cases in Squish, you might notice that they all have some basic structure in common. For instance,
they might all have some startup code in their main test script. To avoid that you have to copy and paste that common code
whenever you create a new testcase, you can use test case templates.

7.3.1 Creating a New Template

To create a new test case template, you first need to decide which existing test case shall serve as a template. To do so, choose
any test case item in your tree of test suites at the left hand side of the Squish IDE, right click on it to open the context menu,
then click on the menu item labeled Use As Testcase Template.

A small dialog will pop up, asking you for a name for the template - choose something descriptive here, then press the OK button.
In case you already have a test case template with the chosen name, the dialog will tell you so and ask you again.

http://www.autoitscript.com/autoit3/

Squish Manual
87 /17

7.3.2 Reusing a Template

To use your test case template instead of starting a new test case from scratch, simply select File — New Test Case From
Template... from the menu bar (or choose the menu item with the same name from the context menu of test suite items).

Assuming you have defined any test case templates before (if you haven’t, a message box will tell you so), a little dialog will
become visible, asking you to select one of the available templates for the creation of the new test case. Select the template you
want to use, then press the OK button.

A new test case item will be added to the currently active test suite, and you have to enter a name for the new test case. Press
Enter after entering a name for the test case to finish the creation.

7.3.3 Choosing a Custom Location for Storing Templates

By default, test case templates are stored in $APPDATA%\froglogic\Squish\templates, (Windows)or ~/.squish/
templates (Unix & Mac OS). This allows reusing test case templates between different test suites. However, it might be
desireable to store test case templates together with the suites. For instance, a test suite might be stored in a version control
system and all test case templates should go with the suite so that every user who downloads the test suite from the version
control system gets to use the very same test case templates as well.

This can be accomplished by making sure that the SQUISH_TESTCASE_TEMPLATES_DIR is set as the Squish IDE is started.
In case this variable is set, the default location will be ignored and instead the given directory will be expected to contain the test
case templates.

7.4 Object Map

This chapter will introduce the concept of an automatic object map (also called GUI object map in QA literature) and how Squish
implements this concept.

7.4.1 The Concept of the Object Map
The object map is a tool with the goal to ease the maintenance of test scripts when the application under test changes its object
hierarchy or object names.

In a test script, objects are accessed by looking up the object via its fully qualified name or its multi-property name. This is called
the real name.

If the name of the object, one of its parent object (for qualified names) or one of the identifying properties (multi-property names)
changes, this real name is not valid anymore.

To solve this problems, objects are not looked up directly by its real name anymore. Instead in the test scripts, symbolic names
are used. Then, when the object is looked up by its name, the real name for the given symbolic name is looked up in the object
map. This way, if the name of an object changes because of any of the given reasons, it is enough to correct one entry in the
object map and all test scripts will keep working.

For more information on Squish’s object naming mechanism see also Section 7.6

7.4.2 Squish’s Object Map

The concept provided above is offered by Squish as well to make the QA engineers’ lives easier when the AUT changes in the
described manners.

Squish Manual
88/17

7.4.2.1 Creating an Object Map

The object map for an application is created automatically when recording test cases in Squish. The map is saved in the file
objects.map in the test suite’s root directory and applies to all tests of the test suite. Alternatively it is possible to specify the
location of the object map using the OBJECTMAP key in the suite.conf of the test suite. The value of this can be an absolute
or relative path. Specifying a different location of an object map can be useful if e.g. multiple test suites should share the same
object map file.

When recording a test, for each object accessed in the generated script code, an entry is stored in the object map. Initially the
symbolic name and the real name of the widget are identical. The only way to distinguish a symbolic object name is its prefix.
Concretely, this means a symbolic object name is prefixed by a colon.

Therefore, in the generated test script only symbolic object names will be used by using this prefix. So when Squish executes a
test script and an object should be looked up by its name, Squish will retrieve the real name from the object name if this name
is prefixed with a colon and will do the runtime object lookup with the real name. If the given object name does not start with a
colon, the object is looked up directly with this name.

This means it is possible to mix symbolic and real object names in test scripts without conflicts.

7.4.2.2 Editing an Object Map

The best way to edit an object map is to click on it in the Squish IDE in the test suite view and edit it in the object map editor
which will open up automatically.

If you manually write script code and want to use symbolic names for objects which have not been added to the object map yet,
you can insert those entries by editing the object map table.

If the object name for an object changed and you want to correct its real name, you can do this by looking for this object in the
object map editor and by editing the real name of the object. A good way to look up the new object name is to use the Spy as
discussed Section 7.8.4. You can add objects from the Spy to the object map using the Spy’s context menu.

When opening the object map editor while the Spy is actively spying the application under test, it is possible to check which
names in the object map are valid. To do this, right-click on a symbolic name in the object map editor and choose the option to
check one or all names.

It is also possible to edit the symbolic name of an object. If you do this, you will also have to edit the scripts using these names,
since the symbolic name is the one which is used for the lookup.

7.5 Improving Object Identification

Starting with Squish 3.2, the syntax of multiple property names has been enhanced to allow more flexible matching of objects.
For instance, lets assume that you have the following real name for a MainWindow object in your application with the caption
‘UsefulApp v1.3 - All rights reserved’:

{caption="UsefulBApp v1.3 - All rights reserved’ type=’'MainWindow’ }

This multiple property name will match the first object in your application which is of type MainWindow and whose caption
matches the one given above.

Such names are perfectly fine in many situations and they are generated automatically when recording a test (see Section 7.6 for
more information on that topic), but over time, as your application evolves, you might find this to be insufficient. For example,
imagine a new version of the Useful App program gets released - version 1.4 - and you attempt to run your test. Since your
programs version number was increased, the caption of the MainWindow object now read ‘Useful App v1.4 - All rights reserved’.
This unfortunately makes many tests fail, since our real name given above still expects the caption of the 1.3 main window.

To solve this in an elegant manner, Squish allows you to use other matching modes when comparing the property values given in
a real name with the property values of some object in the application. Some real name like

{text='Watermelon’}

Squish Manual
89/17

simply identifies the object whose text equals ‘Watermelon’. This text equality is expressed by the '=" sign. However, it is
possible to use other matching modes as well. For instance, the following matches any object whose text starts with ‘Wat’,
followed by zero or more arbitrary characters, followed by ‘lon’:

{text?="Watxlon’}

Note how the ’=" was changed into a *?=" to express that we don’t want to simply compare to character strings for equality but
that the given string is to be treated as a so-called *wildcard’ string. Hence, the asterisk (*’) stands for ’zero or more arbitrary
characters’ and not a plain **’. If we had used ’=" instead of *?=’, then the asterisk wouldn’t have had any special role, and the
real name would have identified the object whose text equals *Wat*lon’.

Hence, we can solve our original problem easily by replacing the hardcoded version number in the real name with an asterisk, so
that any version will match:

{caption?="UsefulApp v+ — All rights reserved’ type=’'MainWindow’ }

Finally, there’s a third matching mode available, which treats the given string as a so-called regular expression. Please see the
following reference table for more information on that:

PropertyName=PropertyValue Performs a straight character string comparison. A given object must match PropertyVva-
Iue exactly to match.

PropertyName?=PropertyValue Performs a wildcard match. In this matching mode, the given PropertyValue can contain
certain meta characters:
? This matches any single character.
* This matches zero or more of any characters.
[...] (i.e. [abc123]) This matches a given set of characters. The example string [abc123] matches any of the characters ’a’,

7b” ,C” !1” 927 ()I‘ ’37-

If you want to match any of these meta characters directly (i.e. you want to match a plain question mark), you have to
escape them by preceding them with a backslash character (i.e. ‘text?=Is this true\?”).

For example, the following multiple property name will match all objects whose text starts with either *a’ or ’A’ followed
by an arbitrary character and ending in ‘tion’:

{text='[aA]?*tion’}

PropertyName~=PropertyValue Performs aregular expression match, treating the given PropertyVvalue string as a regular
expression.

This is an even more powerful method to specify string patterns, more powerful than the above mentioned wildcard
strings. Regular expressions feature more meta characters, however they might become very hard to read when overusing
the features.

You can find a lot of information about regular expressions, including a referencee of the syntax, many examples and
tutorials and links to other pages at Regular-Expressions.info.

7.6 Customizing Object Name Generation

7.6.1 (Insufficient) Object Names

When recording a test case or picking objects in the Spy, Squish will automatically create a name for the object to identify
it. Depending on the configured naming scheme, this name can either be a hierarchical name or a so-called multiple property
name. The latter is a set of propert yName=value pairs enclosed in curly braces. For instance, a multiple property name which
identifies the object whose type is Button and whose text is ‘Hello’ looks like

{type='Button’ text='Hello’}

http://www.regular-expressions.info/

Squish Manual
90/17

Thus, when creating a name for an object, Squish needs to decide which properties to use for identifying the object. However, it
can be difficult for Squish to decide on a set of properties which is both

Unambiguous There mustn’t be more than one object in the application which matches the given set of property/value pairs, so
that the name identifies just the object you want to.

Minimal You don’t want to have more properties in the object name than necessary so that the name is robust in the face of
application changes. For instance, if the object name included all properties of the respective object, any change to the
object which affects the value of a property would break the test script since the object name no longer finds the original
object.

Squish has a set of heuristics built-in to determine what properties to use, but sometimes this fails. For instance when writing a
Qt test, Squish will use the ‘name’ property of objects in the application to identify them if it exists. However, you might find
that for your particular application, this is not a good choice since the name is a more or less random value on every run so you
would like to remove this property from the list which Squish uses internally.

Starting with Squish 3.2, the property list used to create the real names can be configured by editing some straightforward XML
files. How to use these files to customize the name creation process will be explained in the following two sections.

7.6.2 Defining Property Sets

7.6.2.1 Descriptor File Locations

The list of properties used for the real name of some object are defined by XML files. For each wrapper which your application
uses there can be up to two XML files (so called ‘descriptor files’) which have to adhere to a special naming scheme so that
Squish finds them:

Squish_Directory/etc/wrapper_descriptors.xml This XML file contains the default properties which Squish
uses for an object’s name. Depending on the type of package you use, you might find gt wrapper_descriptors.xml,
swtwrapper_descriptors.xml or others in the et c subdirectory of your Squish installation.

Squish_Directory stands for the installation where you installed your Squish package.

Squish_User_Settings/wrapper_user_descriptors.xml This file is used for your own extensions. In case you
want to modify the default behaviour, either by overriding the existing behaviour or by adding new properties, you can use
this file. The file format is the same as for the default descriptors file mentioned above.

Squish_User_Settings stands for the directory where user specific settings will be stored. On Windows, this is the
directory $APPDATA$\froglogic\Squish, on Unix and Mac OS it’s ~/.squish. If you set the environment
variable SQUISH_USER_SETTINGS_DIR to point to a different directory, that directory is used insted for storing the
user settings (it is used for all user settings; not only for descriptor files).

In both files, a list of types is defined together with the names of the properties to be used when generating names for objects of
that particular type. The file format used to do so is the same in both files and they’re treated the same, except that the descriptor
file for user extensions (wrapper_user_descriptors.xml) can not only add additional type descriptors, but it can also
override any descriptors in the main XML file.

7.6.2.2 Descriptor File Format

The list of types and the properties to be used for each object are written down using a rather straightforward XML format. Here’s
a quick example for some fictive application toolkit which has a Button type:

<objectdescriptors>
<descriptor>
<type name="Button"/>
<realidentifiers>
<property>caption</property>
</realidentifiers>
</descriptor>
</objectdescriptors>

Squish Manual
91/17

This descriptor file defines just one descriptor which says that for all objects of type Button, the ’caption’ property should be
used for the real name.

Note

This means that not only objects which are instances of the Button class will get the caption property in their real name, but also
instances of classes which inherit Button! When deciding which descriptors to use for generating the name for a given object,
Squish takes the inheritance hierarchy into account and will use all descriptors whose type name shows up in the inheritance
hierarchy of the given object.

In this example, only the name of the type was used for identifying the name. However, it is also possible to introduce so-called
constraints which make sure that not all objects of a particular type are applicable but only those which match certain constraints.
Another example illustrates this:

<objectdescriptors>
<descriptor>
<type name="Button">
<constraint name="visible">false</constraint>
</type>
<realidentifiers>
<property>caption</property>
<property>tooltip</property>
</realidentifiers>
</descriptor>

<descriptor>
<type name="Button"/>
<realidentifiers>
<property>caption</property>
<property>xpos</property>
<property>ypos</property>
</realidentifiers>
</descriptor>
</objectdescriptor>

Here, two descriptors are defined. Both of them are about objects of the Button class, however the first one is only applicable
if the ’visible’ property of the respective object has the value *false’. When using this descriptor file to generate the real name
for a Button object which is invisible, the properties ’caption’ and ’tooltip’ will show up in the real name. However, for visible
buttons, the second descriptor will be used and hence the properties *caption’, *xpos’ and "ypos’ will be used in the object name.

You could also list more than one constraint. In that case, all of the listed constraints have to match before the descriptor is used.
In general, when facing multiple descriptors which all reference the same type name, Squish will try to use the best match; that
is, the descriptor with the highest number of constraints of which all match.

7.6.3 Advanced Property Set Definitions

7.6.3.1 The Catch-All Descriptor

In addition to the normal descriptors, which match an object by the type name, there’s a special case descriptor which is always
used no matter what the name of the object’s type is. However, you can use constraints for this special type as well. Here’s how
to use it:

<objectdescriptors>
<descriptor>
<type name="x"/>
<realidentifiers>
<property>id</property>
</realidentifiers>
</descriptor>

Squish Manual
92 /17

<descriptor>
<type name="Button"/>
<realidentifiers>
<property>caption</property>
</realidentifiers>
</descriptor>
</objectdescriptor>

In this example, a catch-all descriptor (which is denoted by using an asterisk as the type name) is defined. This means that for
all objects, no matter what their type name is, the id will be used in the property name. If the given object does not have an id
property, it will be silently ignored but not trigger an error.

Note

It does not hurt to list properties in the catch-all descriptor (or any other descriptor, for that matter) which don’t exist on some
particular object. For instance, even though the catch-all descriptor would be used for any object, that object doesn’t have to
have an ’id’ property. If it doesn’t that property will be silently ignored.

The catch-all descriptor is also taken into account when merging multiple descriptors. For instance, if the above example would
be used to generate the name for an object of type Button, the properties ’caption’ and ’id’ would be used in the real name.

7.6.3.2 Groups of Exclusive Properties

Let’s say that you have a descriptor file to generate names for your *Button” widgets like this:

<objectdescriptors>
<descriptor>
<type name="Button"/>
<realidentifiers>
<property>id</property>
<property>caption</property>
<property>text</property>
<property>enabled</property>
</realidentifiers>
</descriptor>
</objectdescriptor>

With this descriptor, the properties ’id’, ’caption’, text’ and ’enabled’ will be used in the real name of *Button’ objects. However,
this might be too much. For instance, even though you do want the ’id” and the ’enabled’ property in the real name, you do not
need the ’text’ property in case a ’caption’ is available. The ’text’ property should only be used when there is no ’caption’
available.

To solve this common problem, you can use so-called property groups. The idea is to put all properties which exclude each other
(in this example, the ’caption’ and the "text’ properties) into a group. When generating a name, Squish will try one property in
the group after the other. As soon as it finds a property which exists on the given object, all other properties in the group are
ignored.

Here’s how to do that in XML:

<objectdescriptors>
<descriptor>
<type name="Button"/>
<realidentifiers>
<property>id</property>
<group>
<property>caption</property>
<property>text</property>
</group>

Squish Manual
93/17

<property>enabled</property>
</realidentifiers>
</descriptor>
</objectdescriptor>

Now, names for Button objects will either contain the caption of a property or the text - but never both.

7.6.3.3 Object References

One feature of object names in Squish is that they can not only contain property/value pairs but also references to related objects.
For instance, it is possible to identify an input field by specifying the label which is next to the input field (such a label is often
called the *buddy’ of the input field).

Here’s an example object name for a fictive input field which is not only identified by its own properties but also by the buddy
label:

{type='LineEdit’ size=’32’" numbersAllowed=’false’ buddy={type=’Label’ text=’Last Name’}}

Note how the value of the "buddy’ property is really just another object name, nested in the object name of the input field. The
only notational difference between normal properties and such object references is that with normal properties (like ’size’ in the
example above) the value of the property is enclosed in apostrophes. With object references, this is not the case.

Specifying that some property is really a reference to another object in the XML file is quite straightforward:

<objectdescriptors>
<descriptor>
<type name="LineEdit"/>
<realidentifiers>
<property>type</property>
<property>size</property>
<property>numbersAllowed</property>
<object>buddy</object>
</realidentifiers>
</descriptor>
</objectdescriptor>

The only difference with the buddy property is that it’s enclosed in "object’ tags instead of the normal *property’ tags.

7.7 Automated Batch Testing

This chapter discusses all aspects of automating testing, so called batch testing. This includes automatically executing tests,
distributing tests to different machines and finally processing the results from the test runs.

7.7.1 Automated Test Runs
To allow automating test runs, Squish provides command line tools which control the whole procedure. The tool to execute tests
is squishrunner. To be able to start an AUT and communicate with it, squishserver has to be running.

A simple Unix shell script to execute the complete test suite /home /squish/suite_myapp and save its results to /home /
squish/results<date>.xml would be:

#!/bin/sh

start squishserver
squishserver &

generate filename for logfile
LOGFILE=/home/squish/results‘date +%d%m%Y‘.xml

Squish Manual
94 /17

execute the test
squishrunner --testsuite /home/squish/suite_myapp --reportgen xml, SLOGFILE

exit squishserver again
squishserver ——-stop

The same as a Windows batch file wouldn’t look very different:

REM start squishserver
start /B squishserver

REM generate filename for logfile
set LOGFILE=c:\squishhome\results.xml

REM execute the test
squishrunner —--testsuite c:\squishhome\suite_myapp --reportgen xml, $LOGFILE%

REM exit squishserver again
squishserver --stop

Both sample scripts assume that the squishserver and squishrunner executables can be found in the system search path as denoted
by the PATH environment variable.

To avoid having to maintain a Unix shell script and a Windows batch file, another option would be to implement this script e.g.
using Python which would allow a platform independent implementation.

Such a script automatically executes a test with all required initializations and cleanups. For details on how to process the
resulting XML file, see Section 7.7.3.

The next step would be to have this test script run automatically e.g. once a day. On Unix this can be done by setting up a cron
job which executes the script. On Windows it is possible to set up a Windows Service to run the script regularly.

For detailed documentation about cron jobs or Windows Services, search for the relevant information on the Internet or contact
froglogic’s commercial support to assist you.

7.7.2 Distributed Tests

So far everything in this manual assumed local testing. This meant that the squishserver, squishrunner, and the AUT are all
running on the same machine. This chapter shows how to remotely run a test on a different machine. For example, let’s assume
that we work and test on computer A, and want to test the AUT located on computer B.

We begin by installing Squish and the AUT (except for Web testing, where this is not necessary), on the target computer (computer
B). Now, if we are using an edition other than Squish for Web, on computer B, we must tell the squishserver where the AUT is
located. This is achieved by running the following command:

squishserver —--config addAppPath <path_to_addressbook>

Later we will connect from computer A to squishserver on computer B. By default the squishserver only accepts connections
from the local machine. Accepting connections from elsewhere might compromise security, so if we want to connect to the
squishserver from another machine we must register the machine which will try to establish a connection for executing the tests
(computer A in our example) with the machine running the AUT and squishserver (computer B). This way we can ensure that
only trusted machines can communicate with each other using the squishserver.

To do this, on the AUT’s machine (computer B) we create a plain text file called /etc/squishserverrc (on Unix or Mac)
or c:\squishserverrc (on Windows). If you don’t have write permissions to /etc or c: \, you can also put this file into
SQUISH_ROOT/etc/squishserverrc on either platform. The file should have the following contents:

ALLOWED_HOSTS = <ip_addr_of_computer_A>

<ip_addr_of_computer_A> must be the IP address or host name of computer A. For example on our network the line is:

Squish Manual
95/17

ALLOWED_HOSTS = 192.168.0.3

but this will most certainly differ on your network.

ALLOWED_HOSTS also accepts IP addresses with wildcards. To e.g. allow all machines from the 192.168.0 range to connect
to this squishserver, you can specify 192.168.0.*. To specify multiple IP addresses which should be allowed to connect to the
squishserver, you can specify all IP addresses in the ALLOWED_HOSTS separated by spaces.

Once we have registered computer A, we can run the squishserver on computer B, ready to listen to connections e.g. from
computer A.

We are now ready to create test cases on computer A and have them executed on computer B. So we have to start squishserver
on computer B (calling it with the default options starts it on port 4322 - see Section 8.2.2 for a list of available options):

squishserver

By default for convenience, the Squish IDE starts squishserver locally on startup and connects to this local squishserver to execute
the tests. But it is also possible to connect to the squishserver on a remote machine, such as computer B, from withing Squish
IDE. We can control this behavior through the preferences dialog. Click Edit — Preferences to invoke the preferences dialog.
Uncheck the Start squishserver locally on startup checkbox, and enter the IP address of the AUT’s machine (computer B) in the
squishserver host line edit. The port spinbox should not need to be changed.

Preferences

General rgditor r‘lfalgrind rAdvanced [Eemer Settings

[i Restore workspace!

[Smart list items

 Enable control bar

[¥ Start squishserver locally on startup

squishserver host: squishserver port: I %

Cefault scripting language: | Python --|

Script snooze factor |1.D

0K ‘ | cancel

Now we can execute the test suite as usual. We will see that the AUT will not be started locally, but on computer B instead. After
the test has finished, the results will be visible in the Squish IDE on computer A as usual.

We can also do remote testing using the command line. The command is the same as described in the previous sections, only this
time we must also specify a host name using the ——host option:

squishrunner --host computerB.froglogic.com —--testsuite suite_addressbook
This way it is possible to create, edit and run tests on a remote machine via Squish IDE and also to control them from the

command line or a shell script using squishrunner. In conjunction with Section 7.7.1 it is possible to automate testing of an
applications located on different machines and platforms using shell scripts or batch files.

Squish Manual
96 /17

7.7.3 Processing Test Results

In the previous section we saw how to execute an AUT and run its tests on a target machine under the direction of a master
machine and also how to automatically execute test runs using scripts and batch files. In this section we will look at processing
the test results from automatic test runs.

By default, squishrunner prints the test results to stdout. Although it isn’t difficult to parse this output, squishrunner also
includes a report generator which can output the results in XML or Excel file format. There are modules for nearly every
scripting language available to parse XML, so it is quite easy to post-process the test results and convert them to the format you
require.

To make squishrunner use the XML report generator, specify ——reportgen xml on the command line. If you want to get the
XML output written into a file instead of stdout, specify ——reportgen xml, filename,e.g.:

squishrunner —--host computerB.froglogic.com —-testsuite suite_addressbook_py —--reportgen
xml, /tmp/results.xml

For Excel output, use the x1s option for ——reportgen instead. So the command then looks like:

squishrunner —--host computerB.froglogic.com —-testsuite suite_addressbook_py —--reportgen
xls, /tmp/results.xls

The XML format is very simple. The document starts with the tag SquishReport. All other tags are children of this one. The
following child tags are possible:

* summary: (only once) with the following attributes

— testcases: Number of test cases executed

tests: Number of test commands executed

fatals: Number of fatal results

errors: Number of failed test commands

passes: Number of passed test commands

expected_fails: Number of expected failures

— unexpected_passes: Number of unexpected passes
* testresult: (any number of times) with the following attributes

— message: Short result message
— result: Result type, this can be one of

* START

¥ START_TEST_CASE
% END

END_TEST_CASE

* PASS

* FATL

* FATAL

¥ ERROR

* LOG

* MEMLOG

If the result type is START_TEST_CASE then the testresult element has all the attributes available with the summa-

ry element (fails, passes, warnings and so on), reflecting how many of the comparisons in that particular test case
failed/passed etc..

— time: The timestamp of the result in ISO format.

— line: Line number information including source file name.

Squish Manual
97 /17

The detailed message of the result is saved in the text node of the element.

Here is an example report of a test suite run. This test suite had just one test case, in which four comparisons passed and one
failed:

<SquishReport version="1.2" >

<summary fatals="0" testcases="1" expected_fails="0" unexpected_passes="0" warnings="0"
tests="5" errors="0" fails="1" passes="4" />

<testresult message="Start ’‘suite_addressbook_js’" result="START" time="2006-06-06T10 <«
:33:31" >Test ’suite_addressbook_js’ started</testresult>

<testresult fatals="0" expected_fails="0" unexpected_passes="0" warnings="0" errors="0"
message="Start ’‘tst_add_address’ " result="START_TEST_CASE" fails="1" time <«
="2006-06-06T10:33:32" passes="4" >Test ’'tst_add_address’ started</testresult>

<testresult line="test.js:23" message="VP1l: Object property comparison of ’:Addressbook <>
.ABCentralWidgetl.QListViewl.childCount’ passed" result="PASS" time="2006-06-06T10 <«
:33:44" >'1’ and ’'1’ are equal (VP1l)</testresult>

<testresult line="test.js:23" message="VP1l: Object property comparison of ’:Addressbook <>
.ABCentralWidgetl.QListViewl.item_ 1.text0’ failed" result="FAIL" time="2006-06-06T10 <
:33:44" >'Max’ and ’'Maxi’ are not equal (VP1l)</testresult>

<testresult line="test.js:23" message="VP1l: Object property comparison of ’:Addressbook <>
.ABCentralWidgetl.QListViewl.item_ 1.text3’ passed" result="PASS" time="2006-06-06T10 <
:33:44" >'max@mustermann.net’ and 'max@mustermann.net’ are equal (VP1l)</testresult>

<testresult line="test.]js:23" message="VP1l: Object property comparison of ’:Addressbook «
.ABCentralWidgetl.QListViewl.item_ 1.text2’ passed" result="PASS" time="2006-06-06T10 <«
:33:44" >'Bakerstreet 55’ and ’Bakerstreet 55’ are equal (VP1l)</testresult>

<testresult line="test.]js:23" message="VPl: Object property comparison of ’:Addressbook <«
.ABCentralWidgetl.QListViewl.item_ 1.textl’ passed" result="PASS" time="2006-06-06T10 <
:33:44" >'Mustermann’ and ’Mustermann’ are equal (VP1l)</testresult>

<testresult message="End ’'tst_add_address’ " result="END_TEST_CASE" time «
="2006-06-06T10:33:46" >End of test ’'tst_add_address’</testresult>

<testresult message="End ’'suite_addressbook_js’" result="END" time="2006-06-06T10 <
:33:46" >End of test ’suite_addressbook_js’</testresult>

</SquishReport>

Inexamples/regressiontesting you can find some example scripts which execute the addressbook test suite on different
machines and present the daily output on a Web page by post processing the XML and generating HTML. The tutorial Chapter 6
shows step-by-step using this example how to automate test runs and process the test results.

7.8 Editing and Debugging Test Scripts

Squish doesn’t only provide the tools to record and edit tests. In addition debugging and inspection tools are available which
assist test engineers when post-editing and debugging test scripts.

7.8.1 Script Debugger

The script debugger in the Squish IDE allows to set break points in the script. This can be useful to insert verification points (see
[?]) or to record from a breakpoint as discussed later in this chapter. But it also can be used to step through the test script using
Test Suite — Step and Test Suite — Step Into.

To halt a test run without setting a break point, Test Suite — Break can be used. To continue a test run, use Test Suite — Execute
again.

Sometimes during test execution it is interesting to follow the currently executed line in the Squish IDE. For this purpose it
is possible to specify in the Editor’s tab of the preferences dialog Edit — Preferences to highlight the current line during test
execution by checking the corresponding check box.

Squish Manual
98 /17

7.8.2 Recording After a Breakpoint

In some cases it is required to extend an existing test case with more actions. It would be tedious to record everything from
scratch just to e.g. click an additional button in the test. Sometimes it is easily possible to just manually write a few lines, but
often it would be easier to record the new actions.

This approach is also very useful if e.g. each test needs to run the same initialization actions on the AUT (opening a file or so)
which is provided by a shared script. A new test case could then be created by writing a script which loads the shared script (see
Section 7.11.1 and executes this initialization actions. After that a new test should be recorded.

This is possible in Squish by setting a breakpoint in a test script located where the newly recording actions should be inserted.
Then you execute the test until this breakpoint is hit. After that you can choose Test Suite — Record which starts recording on
the running AUT. By choosing Test Suite — End recording recording will be stopped and the newly recorded actions will be
inserted into the test script at the breakpoint.

7.8.3 Recording and Inserting at Cursor

In some cases it is needed to extend an existing test case. Often in applications its needed to some setup steps before the extra
actions can be recorded. The section Section 7.8.2 explains how to do that by first executing the existing script. Sometimes this
takes time due to the various verifications beeing done and also the AUT might allow shortcuts. So it would be nice if one could
just start the application and work with it and at some point tell Squish to record from this point and insert the recorded actions
into a testcase.

Squish allows to do that by right-clicking into the test script and choosing the menu item Record script and insert here. Then
Squish starts the AUT and opens the Squish control bar. Then you can work with the AUT as if Squish wasn’t running and when
you want to start recording you can select the Start Recording toolbutton in the control bar. It uses the same icon as the normal
record button in the IDE. When you’re done recording your actions simply hit the stop button in the control bar and in your script
you’ll see new code inserted at the point where your cursor was.

7.8.4 Spy

In the chapter Section 7.10 and the chapter [?] in the tutorial [?] the Spy was used to insert verification points.

The Spy can be used stand-alone (without a test script) in all editions except Squish for Web to inspect the application, its objects
and properties. For Squish for Web, to use the Spy, you need a test script which opens an URL. Set a breakpoint after the
loadUrl call, and execute the test script until that point to use Spy.

Using Spy is especially useful when manually writing script code to find out the names of objects and which properties of certain
objects are accessible.

To start the Spy, activate Spy — Spy AUT in the menu of the Squish IDE. Now the AUT of the currently active test suite will be
started and the Spy window appears in the Squish IDE, or in Squish for Web, choose the menu option after you started the test
script and hit the breakpoint.

There are three different modes in the Spy

* Run: The Spy is active and you can navigate in the object and property hierarchy views. In this mode all user events to the
AUT are blocked.

* Pause: The Spy is inactive and all events to the AUT are processed normally. You usually switch to this mode when you want
to e.g spy on a dialog in the AUT. For this reason you will pause the Spy, open the dialog in the AUT and then choose Run in
the Spy again which will let you navigate the object hierarchy and properties of the now opened dialog.

* Pick Object: The Spy switches the AUT into a picking mode. In this mode you can select a widget in the AUT by moving
the mouse over the widgets and clicking on it. If you selected a widget in the AUT, its object hierarchy and properties will get
displayed in the Spy’s views.

To exit the Spy, choose Spy — Spy AUT again.

Squish Manual
99 /17

Initially the Spy is in the Run state. To e.g. find out the name of a widget in the AUT, switch to the Pick Object state by activating
Spy — Pick Object in the menu of the Squish IDE. Now we can switch the focus to the AUT which has been started. When
moving the mouse over the AUT’s windows, the objects under the mouse pointer are selected with a red frame and the name and
type of the hovered widgets are displayed in a tool tip. So we move the mouse over the desired widget in the AUT and click on
it.

The Spy will automatically switch back to Run mode and display the selected object, its children and properties in the Spy views.
By right clicking on the object in the Spy view, you can copy the name to the clipboard and paste it into the test script where
needed (e.g. for a findObject call) or add the object directly to the object map. See also Section 7.4.2.2.

7.9 Explore Wrapper Libraries

Depending on your Squish edition, you can explore all the bindings (wrappers) that are available for Squish. Squish comes with
its own set of wrapper libraries, but if you have bindings for an AUT, like explained in [?], then you can explore those too.

7.9.1 Opening a Wrapper Library

The Wrapper Explorer is started by choosing File — Explore Wrapper Library... in the Squish IDE. It will first open a dialog
where you can select which wrapper library/libraries to explore.

“' Dpen Wrapper Libraries

&

Path Add ... |

Bindings created for your own AUT, can be added by clicking the Add... button. The file selection dialog which pops up will
only show library files. However you still have to make sure you select only wrapper libraries. Their filename contains the string
Wrapper.

After choosing Open the library will be added to the list in the Open Wrapper Libraries dialog.

' Open Wrapper Libraries = = -

Wrapper

Path | ada.. |

squishgtwrapper fhome/koos/projects/squishilibdlibsquishgtwrapper.so Remove
[1 squishtkwrapper /home/koos/projectsisguish/libvlibsquishtkwrapper.so

Worapper libraries added will stay in this list for future use, or remove it with Remove.

Finally clicking Ok will load all checked libraries.

7.9.2 Exploring the Wrappers

After opening one or more libraries, you see the classes that are wrapped as a hierarchical tree.

Squish Manual
100/ 17

' froglogic Wrapper Explorer =
File Edit Help

+- ¢ QObject 1
+-2A ColorMode
3. = ColorSpec
- Mormal Color (D)
- CustomColor (1)
L Many Color (2)
+- = Encoding
+-E8 Type
- Ay Cpplication{undefined * dpy)
Ay CApplication{undefined * dpy, long visual)
- Ay Cpplication{undefined * dpy, long visual, long cmap)
- =% boal closingDown ()
- =% ool deskiopSettingsAware()
=4 ool hasGlobalMouseTracking ()
- =% ool hasPendingEvents()
=4 ool isEffectEnabled(int)
- =% ool isSessionRestored()
- =% boal locked()
- =4 bool notify{QObject *, QEvent *)
=4 ool qt_emit(int, undefined *)
— =4 ool gt_invoke(int, undefined *)

-
‘ Feenl At mrmnarbslint id it F M riant *oad
4| b

|Fi|ter:| lEIasses | A

Opening a class will show its parent class(es), declared enum(s), constructor(s), member function(s) and property(s) resp. if any
declared.

For faster navigation, there is a Filter text field at the bottom of the application. When text is entered here, it will filter on the
tree. If all entered text is in lowercase, the filter is case insensitive. In case Classes is selected in the bottom right list, the filter
works only on class names. Use this for quickly finding a particular class. For fast navigation for class members, change the list
in the right bottom to Members.

Selected items can be copied to the system’s clipboard as text keeping its indention it has in the tree. Items become selected
when clicked. Selection can be extended. On Windows™ one can select a second item by holding the Ctrl when clicking this
second item. Holding the Shift will also select all items between the clicked one and the last selected item above it. Finally you
can choose Edit — Select All to select all items.

Note
Child items are determined on first time expansion. Selecting all items will thus be different depending on which items are filled
in.

7.10 Verification Points

Verification points are one of the central aspects of automated testing. One part is to automatically drive the AUT. The other part
is to verify that the application reacted as expected. This is done using verification points which verify that property values, the
screen output or similar is as expected.

In Squish it is possible to insert verification points via a point & click interface in the Squish IDE, or to code them manually via
script statements. Both approaches are presented in this chapter.

Squish Manual
101 /17

7.10.1 Object Property Verifications

The most common type of verifications is to compare the value of an object’s property with an expected value. For example,
after a text was entered, one could compare that the line editor’s text property returns the expected value.

7.10.1.1 Basic Properties

Object property comparisons can be inserted for all properties of QObject based objects. This includes all widgets of the Qt
toolkit and custom widgets based on QWidget.

7.10.1.2 Item Views and Menus
Squish provides also extensions so items of view classes (such as QListView or Qt 4’s item views) and menus can be accessed
like any other QObject’s property.

This means a QListView or QPopupMenu, for example, have an item_N child for each list view or menu item. This item in
return has properties such as the item’s text and the item’s state (enabled, disabled, checked, etc.). Items can have child items
again (such as nested list view items).

This allows to access view items and menu items from Squish IDE’s point & click interface. So verification points which check
if, for example, a list view contains the expected items or a menu’s item is checked as expected can be easily inserted.

7.10.2 Screenshot Verifications

This section discusses how to create and work with screenshot verification points.

7.10.2.1 Creating Screenshot Verifications

Another common type of verifications is to compare the the visual output of a widget (or set of widgets) with an expected image.
This means a screenshot of the desired widget(s) is taken and compared to a screenshot which has been taken when the test was
created.

Generally it is advisable to use object property comparisons whenever possible to compare actual values and not screen output.
The reason for this is that due to different resolutions and platforms, esp. changing fonts often lead to differing images while the
actual content would be correct. This way tests will fail even though the output is correct.

A case where screenshot comparisons are a good solution is when comparing that a graph or diagram is drawn correctly.

Inserting such a screenshot verification point in Squish is just as easy as inserting an object property comparison. The steps to it
are the same as described in [?]. Only instead of selecting object properties, in the right pane of Spy you have to click on the tab
page Screenshots.

Now when marking objects in the left pane as checked, a screenshot will be taken and a preview of it will be placed in the right
pane:

Squish Manual
102/17

Verification Point: |\.r|=1 +

O bject Type Object Properties | Screanshots

.0 ot Demo Collecti.. OWidget —
+- Screen QFrama r
+- [abal QDl U '
+-[F QLCDMumb... QLCONumber =
+ Curvel QFrame
<~ QSpinBox1 QSpinBox [
+- [QProgressB... QProgressBar

When now inserting the verification point, the taken screenshots will be saved as the expected results. When later executing this
verification point in the test script, screenshots of the same widgets will be taken during the test run and compared against the
saved screenshots.

In case a screenshot verification fails, Squish saves the new and differing image for later inspection. The Squish IDE also allows
to view the differences between the expected and new image in the test log view via Show Image Diff.

The differences are shown in different ways such as a subtraction of the images, a side-by-side view and an animation where the
expected and new result are displayed quickly one after the other in a loop making differences visible. It then is also possible to
accept the new image as new expected result.

7.10.2.2 Image Masks

Squish provides a tool which allows to make screenshot verifications more robust. This is done using image masks which allow
to specify areas in the screenshot which should be ignored or respected in the comparison.

Image masks can be created and modified for a screenshot in the verification point editor in the Squish IDE There it is possible
to insert, modify and remove positive and negative masks.

7.10.3 Scripting

While inserting verification points can be done without writing a single line of script code, it is also possible to code them in
script. This is specially useful when a verification point needs to be more flexible, such as iterating over all items of a list view.

It never hurts to initially create all verification points using the point & click interface in the Squish IDE. Such a verification point
is always saved as an external file, and a script line such as

test.vp ("VP—name")

To convert such a statement into pure script code, you can right click on this statement in the Squish IDE and choose Scriptify
Verification Point in the context menu. This way, for example, the line

test.vp ("VP1")

becomes

Verification Point ’'VP1’

test.compare (findObject (" :Addressbook.ABCentralWidgetl.QListViewl") .childCount, 1)

test.compare (findObject (" :Addressbook.ABCentralWidgetl.QListViewl.item_1") .text0, "Max <«
")

test.compare (findObject (" :Addressbook.ABCentralWidgetl.QListViewl.item 1") .text3, " «
max@mustermann.net")

Squish Manual
103/17

test.compare (findObject (" :Addressbook.ABCentralWidgetl.QListViewl.item 1") .text2, " <
Bakerstreet 55")

test.compare (findObject (" :Addressbook.ABCentralWidgetl.QListViewl.item_1") .textl, " <«
Mustermann")

To scriptify all verification points of a file, you can right click somewhere into the file and choose Scriptify All Verification
Points.

For more details about the script API for test statements, have a look at Section 7.1.2. Here is a small example in JavaScript
which shows a dynamic verification point which iterates over all items of a Qt list view and checks that the item text is not empty.
Such a verification point can’t be created using the Squish IDE since the number of items is unknown and can be different on
each test run. Such flexibility is only provided by using script languages:

function main () {
get the list view
var listview = findObject ("Addressbook.addressList");

get the first item of the list view
var item = listView.firstChild();
var cnt = 0;

loop as long as there is a valid item
while (!isNull (item)) {
CMEFr 2
check that the text of column 0 is not empty
test.compare (item.text (0) .isEmpty (), false);
go to next item
item = item.nextSibling();
}
store in the test results the number of checked items
test.log("Checked " + cnt + " items");

7.11 Shared Data and Scripts

This chapter discusses how to split tests into multiple files and how to share, access and use script and data files.

7.11.1 Storing and Locating Data- and Scriptfiles

Each test case contains a default script file called test . lang (where 1ang can be one of py, js, pl or tcl).

When creating more sophisticated tests, often many test cases may use common functionality. In Squish this is done by putting
such functionality into a function in a separate script file which then can be used by multiple test cases.

Shared scripts are located in the shared/scripts folder of the test suite.

To create such a script file, just right click on scripts under shared in the test suite view and choose New Script

Test Suite E
suite_addressbook_py vl

- "3 suite_addressbook_py
- 4 Object Map
— shared
. b Jtestdata

“ # scripts

- 4 Previous Results

Squish Manual
104 /17

Then enter the name of the new file and press Enter. After that you can edit the new script file in the Squish IDE.

If you want to import an existing script into the shared script’s folder of the test suite, just choose Import Script in the context
menu instead.

For command-line users

Creating a shared script on the command line or using a different editor is just as easy: First create the directories shared
and scripts in the test suite’s directory and then create the new script file using the editor or your choice in the new
location.

Sharing between test suites

In some cases it might be desirable to share script files between test suites even. To do this, you can put the script file in
any directory and have the environment variable SQUISH_SCRIPT_DIR point to that directory.

After a shared script file has been created, it needs to be included by the test script of the test case.

To locate a script file, the findFile function can be used. The first argument to it is the type of file. In the case of a script
file, we will use script. The second argument is the filename of the script. This function will search all possible locations
(shared/scripts and SQUISH_SCRIPT_DIR and return the path of the file.

To include and evaluate a script file, the source function will be used.

Example 7.1 Include a Shared Script File

As an example we assume that we created a function enterAddresses which enters some addresses into the address book
AUT. We have put this function into the file enter_addr.<lang> under shared/scripts.

To include and call this function in the main script file of a test case, we would write:

def main () :

source (findFile ("scripts", "enter_addr.py"))
enterAddresses ()

function main () {

source (findFile ("scripts", "enter_addr.js"));
enterAddresses () ;

sub main {

source (findFile ("scripts", "enter_addr.pl"));
enterAddresses () ;

proc main{} {

source [findFile scripts "enter_addr.tcl"]
enterAddresses

Test scripts are a special kind of test data. You can also use generic test data of any type such as a table with input and expected
output data for example.

Squish Manual
105/17

If a test data file should be only used by a single test case, it can be put into the testdata directory of the test case. If the test
data should be shared so it can be used by multiple test cases, the data file can be put into the shared/testdata folder of the
test suite

Additionally it is possible to create sub directories under the testdata directories to structure the test data.
Creating or importing a test data file is done as described above for the script files, just that the testdata directory is used.

To retrieve the filename of a test data file in a script, the findFile function can be used by passing festdata as first argument
to it.

7.11.2 Data-Driven Testing

Data-driven testing is an approach where the test data (input and expected output) is separated from the test script code which
contains the logic of the test. This means that the test data is read from a file or a database which contains data records. The test
or a certain part of it is run for each data record.

The rationale behind this approach is to allow modifying a test (e.g. adding new data which the test should be run for) without
having to modify the test’s logic (test script). This enables to have test engineers without coding skills work on the content of a
test (the data), while engineers with coding skills create the test logic (scripts).

Squish offers a special API to utilize test data for data-driven testing. Creating test data files has been discussed in the previous
section. This section presents the script API to read and interpret test data.

Test data always contains data in a tabular format. By default Squish can read tab separated value files (TSV). In such a file,
records are separated by new lines and fields are separated by tabs. The first record is used to describe the columns. Here is an
exemplary TSV data file:

First Name Last Name Address E-Mail Number

Max Mustermann Bakerstreet 55 max@mustermann.net 1
John Kelly Rhodeo Drv. 678 jkelly@acompany.com 2

Joe Smith Queens Blvd. 37 joe@smith.com 3

This first line describes the table columns (First Name, etc). The other lines contain the actual data records. Fields are separated
by tabs.

To open that file, read each record and print out the values, we can use the following Python code:

for address_record in testData.dataset ("addresses.tsv"):
firstName = testData.field(address_record, "First Name")

lastName = testData.field(address_record, "Last Name")
address = testData.field(address_record, "Address")
email = testData.field(address_record, "E-Mail")

print ("First Name:" + firstName)

print ("Last Name:" + lastName)

print ("Address:" + address)

print ("E-Mail:" + email)

In JavaScript the same looks like this:

var set = testData.dataset ("addresses.tsv");

for (var address_record in set) {
firstName = testData.field(set[address_record], "First Name");
lastName = testData.field(set[address_record], "Last Name");
address = testData.field(set[address_record], "Address");

email = testData.field(set[address_record], "E-Mail");
print ("First Name:" + firstName);
print ("Last Name:" + lastName);

(
(

print ("Address:" + address);
(

print ("E-Mail:" + email);

Squish Manual
106 /17

Finally the same can be done in Tcl:

foreach address_record [testData dataset "addresses.tsv"] {
set firstName [testData field Saddress_record "First Name"]
set lastName [testData field $address_record "Last Name"]
set address [testData field $address_record "Address"]
set email [testData field $address_record "E-Mail"]

puts "First Name: S$firstName"
puts "Last Name: $lastName""
puts "Address: $address""
puts "E-Mail: Semail""

So using testData.dataset ((filename)) a test data file is opened and a reference to the data file object is returned. The
file is located using £ indF1i le internally, so for locating the file the rules as described in the previous chapter apply.

Using a for loop it is possible to iterate over each record of the data set. Using testData.field it is possible to read the
value of a specified fields of the current record.

Using this API it is possible to execute script code for all records of a data file and use this external data instead of hardcoded
data in the script.

Finally it is also possible to import existing test data files (Excel and TSV files). You can either import the file using the context
menu by right-clicking on the testdata item in the Squish IDE’s test suite view or by just copying the file into the test data
directory.

7.11.3 Using Test Data in the AUT

So far this chapter only talked about using test data in test scripts. Another usage case of test data is to provide files which the
AUT itself should use or to retrieve files which the AUT created for verification.

As a first example let’s assume that the addressbook AUT should load a file called customers . adr before executing further
actions. The best way to store the customers. adr file is again the test case’s or test suite’s testdata directory.

To allow the AUT to open this file without the need to specify the path to this file (which can be different depending on the
machine the test runs on), it is possible to copy the data file into the AUT’s current working directory using testData.put.
Additionally Squish will automatically clean up the data (remove the file) after the test completed.

Here is an example in Python which copies the file into the AUT’s current working directory and then instructs the AUT to open
this file:

def main() :

testData.put ("customers.adr")
findObject ("Addressbook") .fileOpen ("customers.adr")

Often it is already necessary to have this file available in the AUT’s current working directory when recording a test case. Given
that the file already exists in a testdata directory, when choosing Test Suite — Record Test Case it is possible to choose test
data files which should be copied into the AUT’s working directory in the record settings dialog:

Squish Manual
107 /17

Record Settings

Used Testdata:

Time Synchronization: | SnoozZe ~r|

[Disable Event Compression

| Record || Cancel |

When recording a test case this way, the testData . put will be generated automatically in the recorded script.

Other case is to verify a file which has been generated by the AUT. Let’s assume the addressbook AUT create a file newcustomers.
adr after saving the addresses. In the script we want to compare this file with the existing customers.adr.

To retrieve the file from the AUT’s current directory, we can use testData.get. Let’s look the the following Tcl script as an
example:

proc main {} {

call saveAs in the AUT
set mainwindow [findObject "Addressbook"]
invoke $mainwindow saveAs "newcustomers.adr"

retrieve saved file
testData get "newcustomers.adr"

open and compare files

set f1 [open [findFile testdata "customers.adr]]
set f2 [open [findFile testdata "newcustomers.adr]]
test compare [read $fl] [read $f2]

Additionally, using testData.exists itis possible to verify if a file exists in the AUT’s working directory. Using testData.
delete itis possible to remove a file from the AUT’s working directory.

7.12 Java Extension API for custom widgets

7.12.1 Introduction

Squish understands all AWT/SWT widgets that are normal components, however some custom widgets can choose to represent
its children as non AWT/SWT components. For example, imagine a canvas with items on it, these can be just normal Java objects.
Or take a Gantt diagram, it can decide to render the contents itself, with the data stored in some model. Using the Java extension
API, you can teach Squish more about your AWT/SWT application and expose more functionality.

In order to tell Squish what functionality to expose, there is the concept of the Inspectable. An Inspectable is a class that handles
questions Squish has for a certain class type. For example the Inspectable could handle canvas item types, and answer questions
like, what are your bounds, what is your parent and return all the children. The exact questions are listed in the Inspectable
interface. Once registered, Squish queries each Inspectable whether its knows the type it is handling at the moment. If so, it

Squish Manual
108/17

uses its interface. This allows Squish to know for example when determining what object is hit after a mouse click, even for non
AWT/SWT components, because the matching Inspectable does know which of its children is being hit.

All the Inspectables for the types you want to teach Squish about are placed together in what we call a wrapper. A clean way to
do this is to put these classes in a separate jar, though if preferred they can be added to the existing jar of the application. The
canvastest example shows how to do the former.

The following added functionality is possible for non AWT/SWT components by using the extension API:

* Allow identification in the scripts.
* Use verification points on them.
* Show them in the overall Spy hierarchy.

* Pick them using the object picker.

7.12.2 Custom canvas Example
To show how a wrapper to extend an existing AWT application works, we use the canvastest example which is shipped together
with the Java package. You can find it in squish/examples/java/canvastest.

The source files CanvasTest.java, MyCanvas.java, MyCanvasltem.java, MyCanvasGroup.java, MyCanvasShape.java, MyRect-
Canvasltem.java, MyCircleCanvasltem.java are part of a AWT application that provides a simple canvas with multiple items.

To teach Squish about the application, the source file MyCanvasFactory.java has been made. It tells Squish which items to expose
as Squish objects, so that they can be picked and inspected in the Spy, and will be identified when clicked on during recording.

To really enable the wrapper for the canvas one extra step has to be made; the location of the wrapper has to be made known
through the included ini file like this:

squishserver --config setConfig CanvasTest.jar /abs/path/to/squish/examples/canvastest/
Extension.ini

To try the AUT and the wrapper we made an existing testsuite. You can find it in squish/examples/java/suite_canvastest_js.

7.12.3 Extension APl documentation

See Part I for an overview of the extension API.

7.12.3.1 Creating the jar file

The manifest file must contain an Extension entry that has the class as value having the public static void init (
InspectableRegistry registry) method. This function is the entry point for the extension and should register the
factory class in the registry.

For applications that load their classes with one or more classloaders that differ from the system classloader, an entry LoadAt -
Class must be added. All RCP fall in this category.

The value of this entry is the class that will trigger the extension registration, as soon as that class gets loaded by a classloader.
This may require some trail and error, because all the fields of the factory classes that gets registered, must be known by the
classloader allready.

Squish Manual

109/17

Chapter 8

Reference Guide

8.1 Script API

This chapter documents the script APIs which can be used by Squish test scripts. First the differences between the supported

scripting languages will be discussed.

8.1.1 Equivalent Script API

Squish supports the same APIs in all scripting languages. Here we will discuss the differences between the scripting languages.

This table shows equivalent script functions for the most basic tasks.

syntactical differences are.
All entries assume an example C++ class C defined as

class C
{
public:
CQOi
C(const char =*s);

void doA (bool b);
static void doB();

int p;

and a class instance named c.

It gives merely a quick overview to find out what the

Feature Tcl Python JavaScript Perl
Construct a default

. setc[constructC] c=C() varc=newC () ; myS$c=C->new () ;
object
Construction with varc= mySc=C—>

A\l @?(I m l n

argument setclconstructCia ¢"dpple”) newC ("apple"); new ("apple");
Get a property setx [propertygeti$xpd.p X=C.P; Sx=$Sc—>p;
Set a property propertyset$cpl(c.p=10 c.p=10; Sc—>p(10);
Call b

a a}mem er invokeS$ScdoAtrue | ¢.doA (True) c.doA (true); Sc—>doA (1) ;
function

Call a class (static)

. invokeCdoB
function

C.doB ()

C.doB();

C::doB();

Squish Manual

110/17
Feature Tcl Python JavaScript Perl
testcompare [propetresyiget Scpl test. test::
Test for equality b broy ¥9 P compare (c.p, 2) compare ($Sc->p,

2 compare (c.p, 2) . 2);

Compare wrapped
string-like object with | compare$s"Max" s=="Max" s=="Max" $seg"Max"
native string

Convert to native

string sets[toString$vald=str (val) s=String(val); Ss=Sval.""
t A 2 d t " "w 3 d t " "w 1 d t "w
Send key presses invoketype "namewidépe?: b VT S type ("namewidget™ype ("namewidge
aX") "MaX") ; "Maxll) ;
Native boolean values | true, false True, False true, false — (uselandO)

In the following sections the APIs will be described generally. Examples will be given for Python. Using the table above it will
be easy to convert the respective code to any other scripting language.

8.1.2 Squish API

This chapter introduces Squish’s API modules. These extensions are useful for controlling the test framework and the AUT from
test scripts.

8.1.2.1 Object Hierarchy

object.exists(objectName);
Returns whether the object with the name ob jectName exists.
findObject(objectName);

Finds and returns the object via the path specified by objectName. The object name contains dots to represent the object
hierarchy. The names of the single objects are not necessarily the QObject names, but a unique name. This can also be another
unique property like the caption, a groupbox title, etc. In the worst case this is the class name plus a number (e.g. QLineEdit5).

object.children(object);

Returns a list of child objects of object. The list will be of type Array, Tuple or similar depending on the scripting language.
See the examples below for possible ways to access the result.

JavaScript

var obj = findObject (":MyWidget") ;
var children = object.children (obj);
// 1lterate over array
for (var i in children) {

var child = children[i];

Python

obj = findObject (":MyWidget")
children = object.children (obj)
iterate over tuple

for child in children:

Squish Manual
111/17

Perl

my S$obj = findObject (":MyWidget");

my @children = object::children ($Sobj);
iterate over array

foreach $child (Qchildren) {

Tcl

set obj [findObject ":MyWidget"]
set children [object children $obj]
foreach child $children {

object.properties(object);

Returns a key/value map with all properties of object. The return type is an array in JavaScript, a dict in Python and a hash in
Perl. The Tcl syntax is slightly different: the result is written into an array whose name is specified as an additional argument.
The behavior of referencing an array in more than one call is undefined so better invoke array unset in between. See below for
examples.

JavaScript

var w = findObject (":MyWidget") ;

var props = object.properties (w);
for (var n in props) {

test.log("Property " + n + ": " + props[n]);
}

Python

w = findObject (":MyWidget")

props = object.properties (w)
for key, value in props.iteritems() :
test.log ("Property " + key + ": " + str(value))
Perl

my S$Sw = findObject (":MyWidget") ;

my $props = object::properties ($w);

while ((Skey, S$value) = each (%props)) {
test::log("Property: " . Skey . ": " . S$str);

Tcl

set w [findObject ":MyWidget"]
object properties $w props
foreach key [array names props] {
test log "Property S$key: [toString S$props (Skey) 1"

8.1.2.2 Constructors, Functions and Properties

Squish objects blend in with native objects of the scripting language quite smoothly. This means that you can use standard
language features to construct objects of the wrapped types, invoke member functions or get, set or iterate over properties on
these objects.

Squish Manual
112/17

The best way to show how that works is to look at the example code below:

create an object of type QPoint
p = QPoint (10, 20)

read a property of a widget
x = mywidget.x

set a property of a widget
mywidget.y = 33

call a member function
mywidget.setCaption ("My Widget")

call a static function
QApplication.setOverrideCursor (Qt.busyCursor)

8.1.2.3 Debugging

isNull(object);
Returns True (1) if object is null (a NULL pointer in C), False (0) otherwise.
typeName(object);

Returns the class name of the ob ject.

8.1.2.4 Conversions

cast(object, type);

Casts the object to the type type and returns a reference to that object. type can either be specified by name (as a string) or
via a type object.

This modifies the ob ject itself. If the cast fails, O is returned.

8.1.2.5 Verification Functions

This set of functions implements functions that can be used to verify that the AUT’s state is as expected during a test run.
test.verify(condition, [info]);

Verifies that condition is True (1). If the condition is True a test result of type PASS is added to the test log, otherwise a test
result of type FAIL is added.

Returns True on PASS and False on FAIL.

You may use the optional info parameter to specify an arbitrary string (comment, bug number, test plan reference etc.) that will
be added to the test result.

test.compare(vall, val2, [info]);

Compares vall and val2 and if they are equal a test result of type PASS is added to the test log, otherwise a test result of type
FAIL is added.

Returns True on PASS and False on FAIL.

You may use the optional info parameter to specify an arbitrary string (comment, bug number, test plan reference etc.) that will
be added to the test result.

test.xverify(condition, [info]);

This function is used for expected failures in test scripts.

Squish Manual
113/17

Verifies that condition is not True (1). If the condition is False a test result of type XFAIL (eXpected FAILure) is added to the
test log, otherwise a test result of type XPASS (uneXpected PASS) is added.

Returns the boolean value of condition.

You may use the optional info parameter to specify an arbitrary string (comment, bug number, test plan reference etc.) that will
be added to the test result.

test.xcompare(vall, val2, [info]);
This function is used for expected failures in test scripts.

Compares vall and val2 and if they are equal a test result of type XFAIL (eXpected FAILure) is added to the test log, otherwise
a test result of type XPASS (uneXpected PASS) is added.

Returns True if vall and val2 are equal.

You may use the optional info parameter to specify an arbitrary string (comment, bug number, test plan reference etc.) that will
be added to the test result.

test.exception(code, [info]);

If executing code throws an exception, a test result of type PASS is added to the test log, otherwise a test result of type FAIL is
added.

Note
code must be of type string.

You may use the optional info parameter to specify an arbitrary string (comment, bug number, test plan reference etc.) that will
be added to the test result.

test.log(message, [detail]);
test.warning(message, [detail]);

test.pass(message, [detail]);

Note
As pass is a reserved word in Python, the Python version of this functions is called test .passes ().

test.fail(message, [detail]);

test.fatal(message, [detail]);

Adds a test result of type PASS, FAIL, FATAL, LOG or WARNING with the message and an optional detaiI to the test log.
test.vp(name, [record]);

Executes the verification point vp. If the verification point references a data set, record references the record of the data set
which should be used.

Returns True on PASS and False on FAIL.
saveDesktopScreenshot(filename);

Grabs an image of the screen the AUT is running on and saves it to disk. The filename should have a suffix denoting the image
format to be used. An exemplary Python statement:

saveDesktopScreenshot ("screen.png")

Squish Manual
114 /17

8.1.2.6 Test data Handling

findFile(where, filename);

Looks for the file £ilename. If the first argument is "scripts", the search begins in the test case’s scripts directory and if
it isn’t found there, the shared scripts directory of the test suite is searched. If the first argument is "testdata", the search
begins in the test case’s testdata directory, and if the file isn’t there, then the test suite’s shared testdata directory is searched.

If the file is found the absolute file name is returned, otherwise an error is thrown.
testData.put(filename);

Copies the test data file £ilename from the test case’s testdata directory or the test suite’s shared testdata directory into the
AUT’s current working directory.

testData.get(filename);

Copies the file £ilename from the AUT’s current working directory to the test case’s testdata directory.
testData.remove(filename);

Removes the file £ilename from the AUT’s current working directory.

testData.exists(filename);

Returns whether the file £ilename exists in the AUT’s current working directory.
testData.dataset(filename);

testData.field(datasetrecord, fieldnamelfieldindex);

These functions are used for data-driven testing. They allow opening a dataset (e.g. a TSV file) and retrieving fields from the
datarecordby fieldindex or fieldname.

testData.fieldNames(datasetrecord);
This function returns a tuple containing the field names of the specified record.
testData.create(where, filename);

This function returns a valid filename you can write to. The file will be located in the shared test data directory when where is
"shared" or in the local test data directory when whereis "local™".

This function should be used when you are running a script in a learning mode to create test data dynamically.

8.1.2.7 Object Map Handling

objectMap.add(object);

Adds ob ject to the object map.

objectMap.symbolicName(objectlrealName);

Returns the symbolic name for the given ob ject, or the object referenced by realName.
objectMap.realName(objectlsymbolicName);

Returns the real name for the given object, or the object referenced by symbolicName.
objectMap.symbolicNames();

Returns a tuple containing all mapped symbolic names. The element order is not defined.
objectMap.load(filename);

Load an object map from a given f£ilename. The current object map is unloaded.

Squish Manual
115/17

8.1.2.8 Application Context

startApplication(aut, [host], [port], [timeout]);

Starts the specified application and returns a reference to its context. aut must be an application whose path is already registered
to squishserver. In addition to the application name command line parameters can be specified in the string passed to this function.

Optionally, as second and third parameter a host and port can be passed to this function. This way instead of connecting to
the default host and port (as specified in the Squish IDE’s settings or squishrunner’s command line), a connection to squishserver
on the specified host listening to the specified port will be established. This allows to control multiple applications on multiple
computers from one test script.

Also optionally, as fourth parameter a timeout (in seconds) can be passed to specify how long Squish should wait for the appli-
cation to come up before throwing an error. This value overrides squishrunner’s default AUT timeout.

setApplicationContext(ctx);

This function can be used to switch the current application context. The ctx handle is is either the one returned from a setAp-
plicationContext(), defaultApplicationContext() or applicationContextList() call. If the argument is omitted the default context
is activated.

defaultApplicationContext();

Returns a handle to the default application context.
currentApplicationContext();

Returns a handle to the current application context.
applicationContextList();

Returns a list of handles to all existing application contexts.

The ApplicationContext object provides the following properties and functions:

* name Name of the application.

e commandLine Complete command line the application was started with.
* pid The process identifier of the application.

* cwd The current working directory of the application.

* isRunning Returns whether the application is still running.

* startTime Returns the time when the application was started.

¢ usedMemory Amount of memory used by the application (This property is only available in conjunction w-
ith the Squish memory module add-on).

* isFrozen (timeout) Returns False if the application answers before the timeout (in seconds) expired.

* readStdout () Reads everything which has been written to STDOUT by the application since the last call to readStdout()
and returns it.

* readStderr () Reads everything which has been written to STDERR by the application since the last call to readStderr()
and returns it.

8.1.2.9 Event Handlers

installEventHandler([objectlclass], event, handlerFunction);

Installs an event handler on an object class, an object or globally (if no class or object is specified). The script function
handlerFunction will be called when the event of the type event occurs.

event can be any event type such as QKeyEvent (Qt), ButtonPressed (XView, Tk), etc. Squish adds the following convenience
event types:

Squish Manual
116 /17

* MessageBoxOpened

®* DialogOpened

® MainWindowOpened

* ToplevelWidgetOpened

® Crash

8.1.2.10 Information

squishinfo.major

A numeric property holding the Squish major version number.
squishinfo.minor

A numeric property holding the Squish minor version number.
squishinfo.patch

A numeric property holding the Squish patch level version number.
squishinfo.version

A numeric property holding a unique number representing the Squish version. The number is made up of a hexadecimal repre-
sentation of major, minor, patch and release level. The individual values are shifted and packed into a single 4-byte number. The
release levels Alpha, Beta and Final are denoted by the values OxAA, 0xBB and OxFF, respectively. As an example, 0x030001FF
stands for the final 3.0.1 release.

This kind of representation looks odd on first sight but simplifies version tests in script code. Here’s some JavaScript sample
code that does a single comparison for conditional code:

if (squishinfo.version >= 0x030100AA) {
// code meant for version 3.1.0-alpha or higher

squishinfo.version_str

A property of type string holding the human-readable Squish version number, e.g. "3.0.0-alpha".
squishinfo.settingsGroup

A property that denotes the currently active settings group of the test.
squishinfo.testCase

A property that returns the path to the current test case.

8.1.2.11 Test Settings

testSettings.logScreenshotOnFail
testSettings.logScreenshotOnError

Above properties control whether test failures and errors will automatically trigger a screenshot of the current desktop to be
taken. By default, this feature is off. To activate it assign a value evaluating to the True boolean value.

Example: Let’s assume that we ocassionally experience test failures when verifying the state of a specific control in our nightly
tests. We cannot explain the cause of the problem but suspect that the overall state of our application’s GUI is broken due yet
unknown external factors. To provide development with first information via a visual inspection we enable automatic screenshot
capturing for only this sequence of tests.

Squish Manual
117 /17

JavaScript

testSettings.logScreenshotOnFail = true;
// ... perform test

testSettings.logScreenshotOnFail = false;
Python
testSettings.logScreenshotOnFail = True

... perform test
testSettings.logScreenshotOnFail = False

Perl

testSettings->logScreenshotOnFail (1) ;
... perform test
testSettings->logScreenshotOnFail (0);

Tcl

testSettings set logScreenshotOnFail 1
... perform test
testSettings set logScreenshotOnFail 0

testSettings.setWrappersForApplication(application, wrapperList);

Associates a list of wrappers with the specified application. The list has to include at least one of the main toolkit wrappers like
Java. Optionally, it can include wrappers created for an application specifically (not available in all editions).

testSettings.getWrappersForApplication(application);
Returns the list of wrappers associated with the specified application.
Here is an example that sets the Qt toolkit wrapper as well as a custom application wrapper:

JavaScript

testSettings.setWrappersForApplication ("MyApp", ["Qt", "CanvasWrapper"]);
startApplication ("MyApp") ;

Python

testSettings.setWrappersForApplication ("MyApp", ("Qt", "CanvasWrapper"));
startApplication ("MyApp")

Perl

testSettings—>setWrappersForApplication ("MyApp", ("Qt", "CanvasWrapper"));
startApplication ("MyApp") ;

Tcl

testSettings setWrappersForApplication MyApp { Qt CanvasWrapper }
startApplication "MyApp"

Squish Manual
118/17

8.1.2.12 Miscellaneous

source(filename);
Reads and evaluate the contents of £ilename. Use this function to parse shared script files.
snooze(secs);

Sleep for the specified nominal number of seconds. Fractions of seconds can be specified as well by using decimal numbers. The
effective delay will depend on the current snoozeFactor.

waitFor(condition, [timeout]);

Evaluates condition until it becomes true or the waiting times out after the number of specified milliseconds. The timeout
parameter is optional. This is useful if you want to synchronize your script execution to a certain state in the AUT.

waitForObject(objectname, [timeout]);

Waits until the object with the name objectname exists and is accessible. This is useful if you want to synchronize your
script execution. By default, it waits for maximum 20 seconds. With the optional timeout parameter a different timeout (in
milliseconds) can be specified.

waitForObjectItem(objectname, itemtext, [timeout]);

Waits until the object with the name ob jectname exists and is accessible and the list of items contains itemtext. This is
an extension to waitForObject for widgets having items. By default, it waits for maximum 20 seconds. With the optional
timeout parameter a different timeout (in milliseconds) can be specified.

waitForApplicationLaunch();

Waits for a new application, which Squish will hook into, to start. This is used by Squish for test scripts which access multiple
applications which are started by the AUT.

sendNativeEvent(window, sequence);

Send a sequence of low-level native events to the specified window with the name window. This function may be of use when
interacting with windows from another application or controls implemented with a foreign toolkit. For interaction with standard
application controls use of type() and other function is recommended.

Example:

sendNativeEvent ("Login", "username");

Currently, the only supported type of events are simple keystrokes. Support for complex keystrokes and mouse events might be
added in a future version. Please contact technical support to voice your demand.

nativeType(keys);

Simulates user-input using the operating system facilities. One Windows, this can be used to interact with native Windows

message boxes for example. The keyboard input will be sent to whatever control has the keyboard focus.

This function can also simulate keyboard input of special keys. Finally, it’s also possible to send combinations of key presses
using this function. To do so, separate the keys to be pressed with '+’ signs. Here are some examples of a few different key
combinations:

JavaScript
nativeType ("Hello");
nativeType ("<Return>");
nativeType ("<Alt+F4>");
nativeType ("<Alt+Tab>");
nativeType ("<Ctrl+C>");
Python

nativeType ("Hello")
nativeType ("<Return>")

Squish Manual

119/17

nativeType ("<Alt+F4>")
nativeType ("<Alt+Tab>")
nativeType ("<Ctrl+C>")

Perl

nativeType ("Hello");
nativeType ("<Return>");
nativeType ("<Alt+F4>")
nativeType ("<Alt+Tab>")
nativeType ("<Ctrl+C>")

Tcl

invoke nativeType
invoke nativeType
invoke nativeType
invoke nativeType
invoke nativeType

"Hello"
"<Return>"
"<Alt+F4>"
"<Alt+Tab>"
"<Ctrl+C>"

Here’s the complete list of currently supported special keys which (in addition to normal alphanumeric characters) can be used
with the nativeType function:

* Shift

e Ctrl

o Alt

* Return

* Escape

* Backspace
e Tab

e Pause

* PageUp

* PageDown
* Home

¢ End

o Left

* Right

« Up

* Down

* Insert

e Delete

¢ Print

¢ NumPad(
¢ NumPadl

Squish Manual
120/ 17

NumPad2
NumPad3
NumPad4
NumPad5
NumPad6
NumPad?7
NumPad8
NumPad9
MenuLeft
MenuRight
F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

F13

F14

F15

F16

F17

F18

F19

F20

F21

F22

F23

F24
NumLock

Squish Manual
121/17

¢ ScrollLock

setRecordMouseDrag(className, recordMouseDrag);

This function can be used in init files to disable the recording of mouseDrag() statements for certain widget classes. The class
to disable this on is given by className and to disable recording of mouseDrag operations on that widget recordMousedrag
should be set to false

The init files are Tcl scripts that are registered with the server and then read before starting any tests. How to register such an init
script is explained in Section 8.2.1.4.

Example:

setRecordMouseDrag ScribbleArea false

Then we can tell Squish to execute this file at startup:

squishrunner —--config addInitScript Qt <absolute_path>/myinit.tcl

8.1.3 Java™ Convenience API

In the following functions, a mouse button can be set with a convenient enumeration. The enumeration values are

Button AWT/Swing SWT Value
No mouse button AWT .NoButton SWT.NoButton 0
Left mouse button AWT.Buttonl SWT.Buttonl 1
Middle mouse button AWT .Button2 SWT .Button2 2
Right mouse button AWT.Button3 SWT.Button3 3

Keyboard modifier keys don’t have an enumeration and are toolkit dependent. The next table lists the mask values of them for
your convenience

Modifier AWT/Swing Value SWT Value
No modifier 0 0
. j . .E - .ecli .s—
Shift java.awt .Even 1 org.eclipse.s 131072
t.SHIFT_MASK wt.SWT.SHIFT
Control java.awt .Even- 5 org.eclipse.s- 062144
t.CTRL_MASK wt.SWT.CTRL
Meta java.awt.Even— A
t .META_MASK
j . .E - .ecli .s—
Alt java.awt .Even 5 org.eclipse.s 65536
t.ALT_MASK wt.SWT.ALT
Command org.eclipse.s— | 4 q,30,
wt .SWT.COMMAND
Note

In all functions below, ob ject can be a reference to an object or the name of an object as string.

clickButton(object);
Clicks the button referenced by ob ject.
type(object, text);

Types text into the editable widget referenced by object. If the text is surrounded by < and >, the contents is interpreted as
a key combination, e.g <Ctrl+Return>. Note the SWT buttons from a ToolBar are selected with the c1ickItem function
below.

Squish Manual
122/17

activateItem(object, item);

Activates the menu item with the item text i tem in the popup menu or menu bar referenced by object.

mouseClick(object, X, y, state, button);

Sends a mouse click at position x and y with the button butt on and modifier state state to the widget referenced by object.
mouseClick(object, x, y, clicks, state, button);

Like the previous function with an extra c1icks argument. This overload is for AWT/Swing. The additional argument represents
the MouseEvent .getClickCount from Java™

doubleClick(object, x, y, state, button);

Sends a mouse double click at position x and y with the button button and modifier state state to the widget referenced by
object.

mouseMove(object, X, y);

Moves the mouse to position (x, y) relative to top-left of widget referenced by object. This function can be useful if you want
to trigger events that need a mouse at a certain position. Tooltips are an example of this, they only show when the mouse is at a
certain area.

mouseDrag(object, x, y, dx, dy, state, button);

Performs a mouse drag operation on the widget referenced by object with a horizontal distance of dx and a vertical distance of
dy with the button button and modifier state state. Parameters x and y indicate the relative distance from the widget top-left
origin where the drag must start.

dragltemBy(object, X, y, dx, dy, state, button);

Moves the item referenced by object a horizontal distance of dx and a vertical distance of dy with the button button and
modifier state state. Parameters x and y indicate the distance from the object top-left bounding box value where the drag was
started and thus are relative values.

dragAndDrop(source, x1, y1, target, x2, y2, operation);

Starts a drag on the widget referenced by source at the position x1 and y1 and releases the drop on the widget referenced by
target at the position x2 and y2. operation is one of DropNone, DropCopy, DropMove, DropLink, DropMoveTar—
get or DropDefault. Parameters x1, y1, x2 and y2 indicate the distance from the object top-left bounding box value where
the drag was started and thus are relative values.

clickItem(object, item, X, y, state, button);

Sends a mouse click at position x and y (in item’s coordinates) with the button button and modifier state state to the item
with the name item to the view widget referenced by object. Supported view widgets are List, Combo and ToolBar for the
SWT toolkit and JList, JTable, JTree, List and Choice for the AWT/Swing toolkit.

clickTreeHandle(object, item);

Sends a mouse click to the expand/collapse locations of an item, which should be an item in a tree widget that has child items.
The tree widgets is referenced by object. Supported tree widgets are Tree for the SWT toolkit and JTree for the AWT/Swing
toolkit.

closeWindow(object);
Closes the Window (or Shell in SWT) referenced by object as if it was closed by its window system menu.
doubleClickItem(object, item, X, y, state, button);

Sends a mouse double click at position x and y (in item’s coordinates) with the button button and modifier state state to the
item with the name item to the view widget referenced by object. Supported view widgets are List, Combo and ToolBar for
the SWT toolkit and JList, JTable, JTree, List and Choice for the AWT/Swing toolkit.

clickTab(object, tab);
Clicks on the tab with the text tab on the tab widget referenced by ob ject.

clickTab(object, tab, X, y, state, button);

Squish Manual
123 /17

Only for the org.eclipse.swt.custom.CTabFolder and javax.swing.JTabbedPane variants. Clicks on the tab
with the text tab at position x, y with mouse button button and with keyboard modifiers state pressed on the tab widget
referenced by object.

grabWidget(object);
Takes a screenshot of the window referenced by ob ject and returns it.
activateAction(objectname);

For SWT only. Activates the JFace action referenced by the object with the name ob jectname.

8.1.4 Java™ Hardcoded synthetic Properties

In addition to public Java™ class fields, sythetic properties generated from getXxx/isXxx functions, some additional proper-
ties are defined to better identify objects. See Section 7.6.2 for further reading on this subject.

Object window

Holds the toplevel window wherein this object resides.

Object container

Holds a parent Container/Composite that hold this object. These are typically tab pages and the menubar.
String type

Holds the class name of the object. Note that Squish replaces dots with underscores.

String caption

Holds the title, caption or text of this object if this object has typically a text to display.

Object leftWidget

Object aboveWidget

Holds the object left of this widget in the same logical parent Container/Composite. This should be used for objects that don’t
have a caption but often come with an accompagning widget, like edit boxes have often a label.

String buttonType

Holds the type of SWT buttons. Introduced because buttons with arrows are poorly described without this property.
String arrowDirection

Holds the direction of SWT buttons that have arrow style enabled.

String menuStyle

Holds the style of SWT menu, whether it is a menubar, menu popup or menu dropdown.

String firstltemText

Holds the first found text of child SWT Toolltem objects. If non found, then tooltip text is considered.

8.1.5 Python Notes

8.1.5.1 Modules

The extension modules are loaded automatically by internally executing the equivalent of the statements

import test

import testData
import object
import objectMap
from squish import =

Squish Manual
124 /17

before the script is executed. It’s therefore not necessary to import them by yourself unless you are developing your own
standalone module.

Note the drawback of above wild card import of the wrapped API: native Python functions like int () and type () will be
shadowed as their names conflict with the wrapped int C type and the type () function used to send key events to the AUT.
To access the built-in functions just import the _ _builtin__ module and access them with their fully qualified name, e.g.
__builtin__ .int ().

8.1.5.2 Language Documentation

Besides the Squish extension API the full set of Python language features and modules is available for scripting. The Python
Documentation page lists a few books and also has the current documentation available for download and online browsing.

8.1.6 Tcl Notes

8.1.6.1 Language Documentation

For documentation on the Tcl language and standard extension packages see the Tcl/Tk Documentation page on the Tcl home
page. Next to links to the man pages you’ll find a tutorial there.

8.1.7 JavaScript Notes

8.1.7.1 Language Documentation

Theoretically you could pick up any JavaScript book or online resource to learn about the language or look up a function.
Unfortunately most authors don’t draw a clear line between features that are part of the language proper and those specific to
a web browser. When browsing such HTML programming documentation beware of any example code that operates on the
window or document object.

When keeping this distinction in mind you’ll still be able to draw the required information from a variety of books and online
resources. Here are some online resources that we have collected for your convenience:

* Mozilla’s Core JavaScript Reference
* Microsoft’s JScript Language Reference at msdn.microsoft.com

* DevGuru JavaScript Quick Reference at www.devguru.com

8.1.7.2 Language Core

The JavaScript engine shipped with Squish is compliant with the ECMAScript language specification (ECMA 262 Edition 3).
This corresponds with Netscape’s JavaScript 1.5 and Microsoft’s JScript 5.5. The language core that is defined in this standard
encompasses operators, control structures, objects and other features commonly found in a scripting language. A handful of
built-in classes provide functions for the most common data handling. These objects are:

* Object
* String
* Number
* Boolean
* RegExp

e Date

http://www.python.org/doc/
http://www.python.org/doc/
http://www.tcl.tk/doc/
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference
http://msdn.microsoft.com/en-us/library/4yyeyb0a(VS.85).aspx
http://www.devguru.com/Technologies/ecmascript/quickref/javascript_intro.html

Squish Manual
125/17

¢ Function

¢ Error

You may notice the lack of classes such as file or network I/O typically found in languages like Python and Tcl. This is because
pure JavaScript (or rather ECMAScript) has been designed to be a small language that can safely be embedded into an application.
It’s meant to be extended by custom API specific to the embedding application, though. In the case of web browsers there are
hundreds of functions and properties that allow manipulation of HTML documents via the DOM API for example. In the case of
Squish we have added numerous functions specific to testing. We also added some general purposes classes described below. If
you need anything else please file an enhancement request.

8.1.7.3 File Object

File.exists(path);

Returns true when a file or directory path does exist on the local hard disk; false otherwise.
File.remove(path);

Attempts to remove the file with path from the local hard disk. Returns true on sucess; false otherwise.
File.open(path, [mode]);

Will attempt to open file path and return a File instance. In case of failure an exception will be thrown. The mode can either be
"r" for read access, "w" for write access or "a" for append mode where all data is written to the end of the file. If undefined it will
default to "r".

Functions like read (), write () and access () can be called on the returned File instance.
read();

Reads in and returns the content of a file. The file content is assumed to be UTF-8 encoded.
Example:

var f = File.open("input.txt", "xr");
var t f.read();
inputField.setText (t);

readin();

Reads in and returns the next line of a file (without any end of line characters). When reading beyond the end of the file null is
returned.

write(string);
Writes the st ring to the file using UTF-8 encoding. The file has to be opened in write-mode.
close();

Closes the file. Afterwards no data can be read or written anymore.

8.1.7.4 OS Object

0S.name The name property of the OS object holds the name of the operating system that squishrunner is running on. On
Microsoft Windows systems the value will be "Windows". On Unix-like systems the value will be identical to the output of
uname-s, i.e. "Linux", "Solaris", "Darwin" etc.

OS.system(command);

Executes command by calling the system command line shell. In case of a successfull execution the return status of the command
will be returned. On errors -1 will be returned.

command can not only hold the name of an executable but also command line arguments to be interpreted by the application or
shell.

Example: execute an external application and direct the output to a file:

Squish Manual
126 /17

var ret = OS.system("readresult.exe > output.txt");
if (ret != 0)
test.warn ("readresult failed");

Example: Send an e-mail on a Unix system

var msg = "This is a mail from Squish";
OS.system("echo " + msg + "’ | mail -s Subject bugs@example.com");
OS.capture(command);

Analogous to 0S.system () will execute command from a system shell. The commands Stdout output will be read and
returned.

Example:

var files = OS.capture("ls out/*.dat");
for (var £ in files) {

0OS.getenv(name);
Obtains the current value of the environment variable, name.
Example:

var homeDir = OS.getenv ("HOME") ;
test.log ("Current user’s home directory: " + homeDir);

OS.setenv(name, value);

Inserts the environment variable name into the current environment. If the variable name does not exist, it is inserted with the
given value. If the variable does exist, its value is overwritten.

Example:

var preferableEditor = "vinm";
OS.setenv ("EDITOR", preferableEditor);

OS.pause(msecs);

Pauses the script for the specified number of milliseconds. Unlike snooze () the delay is fixed and not influenced by the current
snoozeFactor setting.

OS.listDir(path);
Returns the list of files and directories in the directory specified by path. The special directories . and . . are excluded.
Here is an example that logs all files that were generated in an output directory:

var files = 0S.listDir ("output");
for (var £ in files)
test.log ("Found generated file: " + files[f]);

OS.cwd();
Returns the current working directory.
Example:

var cwd = OS.cwd();
test.log ("Current working directory: " + cwd);

Squish Manual
127 /17

OS.chdir(path);
Changes the working directory to the directory specified by path.
Example:

var dir = "output";
OS.chdir (dir);

8.1.7.5 XML Object

XML.parse(markup);

Attempts to parse the given string of XML markup. In case of success, a document node is returned which represents the root of
the document ree. In case of an error, an exception is thrown. node . 1sNull Returns whether this node is a null node. nod-
e.nodeName Returns the name of the node. For elements, it’s the tag name. For the document node, the string ‘<anonymous
xml document>’ is returned. node . nodeType Returns the type of the nodename of the node. Possible return values are:

* XML.DocumentNode

* XML.ElementNode

* XML.CommentNode

* XML.TextNode

¢ XML.DeclarationNode

* XML.UnknownType

node . parentNode Returns the parent node of this node. If there is no parent node (which is true for the document node) then
a null node is returned. node . firstChild Returns the first child node of this node. If this node does not have any children,
a null node is returned. node .nextSibling Returns the next sibling node of this node. This this node does not have any
siblings, a null node is returned. node.textContent Returns the text contained within this node. Note that this function
does not recursively collate the text of all child nodes (assuming that aElem always points to the ‘a’ element):

// XML markup is ’<a>Hello<a>’
test.log(aElem.textContent); // prints ’'Hello’ to the test log

// XML markup is ’<a>Hello’
test.log(aElem.textContent); // prints an empty string to the test log

Note
This function can only be called on element nodes (where nodeType returns XML .ElementNode). Calling it on non-
element nodes will cause an exception to be thrown.

node.hasAttribute(attrName);

Returns a boolean indicating whether the given node has an attribute called att rName.

Note
This function can only be called on element nodes (where nodeType returns XML .ElementNode). Calling it on non-
element nodes will cause an exception to be thrown.

node.getAttribute(attrName);

Returns a string with the value of the attribute with the name attrName. If there is no such attribute with that name, the
behaviour is undefined. If att rName is an empty string, an exception is thrown.

Squish Manual
128 /17

Note
This function can only be called on element nodes (where nodeType returns XML .ElementNode). Calling it on non-
element nodes will cause an exception to be thrown.

8.1.7.6 SQL Object

SQL.connect(informationObject);

Attempts to create a connection to some SQL database. The information required is expected to be passed via an object whose
properties are then interpreted. Here’s a sample invocation showing how to connect to a MySQL server on the host ‘dulsberg’:

var ¢ = SQL.connect({ Driver: "MySQL",
Host: "dulsberg",
Port: 1342,
Database: "mydatabase",
UserName: "test",
Password: "secretPhrase" });

The settings have the following meanings:

Driver The driver to use when connecting to the database. Possible values are:

ODBC ODBC Diriver (includes Microsoft SQL Server)
Oracle* Oracle Call Interface Driver
PostgreSQL PostgreSQL v6.x and v7.x Driver
Sybase* Sybase Adaptive Server
MySQL MySQL Driver
DB2* IBM DB2, v7.1 and higher
SQLite* SQLite Driver
IBase* Borland Interbase Driver
Note

The drivers marked with an asterisk (*) are not supported in Squish binary packages. This is usually because the license
of the database vendor does not permit redistributing their client libraries without owning a license of their product. What
you can do is to either try the ODBC driver, or build Squish yourself against a Qt library which includes support for your
particular SQL database.

Host The host name (or IP address) of the computer on which the SQL database is installed.

Port The port on the remote computer to which the connection should be established. If this is omitted, the default port (de-
pending on the driver) is used.

Database Specify the name of the database to which a connection should be established here.

DataSource This setting is only necessary when using the ODBC driver, in which case this is expected to specify the Data
Source Name (DSN) to use.

UserName The user name to use when logging into the SQL server.

Password The password to use when logging into the SQL server. If omitted, an empty password is assumed.

In case there was some problem while connecting to the SQL server, an exception is thrown. If there is no error, an object of
type *SQLConnection’ is returned which can be used to evaluate SQL statements. The connection object provides the following
functions:

connection.close();

Squish Manual
129 /17

Closes the given SQL connection.

connection.execute(statement);

Executes an SQL statement on the given connection object connection. In case of an error, an exception is thrown.
connection.query(statement);

Queries an SQL database referenced by the given connection object connection. In case of an error, an exception is thrown.
Otherwise an object of type "SQLResult’ is returned which can be used to iterate over the returned data. Here is an example how
to execute a SQL query on some connection object:

var result = connection.query("SELECT last_name, first_name FROM persons WHERE country <«
LIKE "A%';");

The result objects returned by this function provide the following functions and properties: result.isValid Returns whether
this result object is in a valid state. Some functions return invalid result objects to flag an error or otherwise special condition
(see below).

result.toNext();

Selects the next row in this SQL result. Marks result as invalid in case there is no other row to navigate to. This function and
the isValid property above let you iterate over the rows returned by some SQL query easily, as in this example:

var result = connection.query("SELECT last_name, first_name FROM persons WHERE country <«
LIKE ’"A%’';");

while (result.isValid) {
// do something with the result
result.toNext () ;

result.toFirst();

Navigate to the first row in this result. This is useful if you want to iterate over the rows many times: after processing the rows
using toNext, call toFirst to jump back to the first result so that you can use toNext again. result.size Returns the
number of rows which this result contains.

result.value(fieldNumber);
result.value(columnName);

These two functions can be used to get the data in the given column of the current row. The column can either be addressed using
a number (counting from zero), or using the name of the column (case insensitive). The data in the given column is implicitely
converted into a string. Note that you can also use the bracket-syntax as a shortcut. This little example will execute a sample
SQL query and then iterate over the returned data rows, printing the first and last name of all matching entries in the persons
table:

var result = connection.query("SELECT last_name, first_name FROM persons WHERE country <«
LIKE "AS';");
while (result.isValid) {

var s = "First name: ";

s += result.value(1); // same as result["first_name"] or result.value("first_name" <«
)i

s += ", Last name: ";

s += result(["last_name"]; // same as result.value(0) or result.value("last_name");

test.log(s);
result.toNext () ;

8.1.8 Perl Notes

8.1.8.1 Language Documentation

The Perl documentation contains a manual page perlintro that can serve as a good starting point. Links to other manual pages,
tutorials and FAQs can be found on the Online Documentation and the perldoc page.

http://perldoc.perl.org/perlintro.html
http://www.perl.org/docs.html
http://perldoc.perl.org/

Squish Manual
130/17

There is a great numer of Perl books available for purchase. A listing can be found at the Perl Books page. Among the most
popular ones are probably "Learning Perl" and "Programming Perl" both published by O’Reilly & Associates.

8.2 Command Line Reference

8.2.1 Squishrunner

squishrunner is used to execute and record test cases and test suites, and to set and retrieve the settings that squishrunner uses at
runtime. squishrunner’s command line interface looks like this:

squishrunner [server options] command [command specific options]

The optional server options are:

——host <hostname>

By default squishrunner connects to the squishserver on the local host (127.0.0.1). If squishrunner should connect to a squish-
server running on a different machine, this can be specified with this option.

—-—port <port>

By default squishrunner tries to connect to the squishserver on port 4322 which is also the default port squishserver listens to. If
you set up squishserver to listen on another port, use this option to tell squishrunner which port it should use for connecting to
squishserver.

After the server options one of the following commands must be specified:

 Section 8.2.1.1
 Section 8.2.1.2
* Section 8.2.1.3
 Section 8.2.1.4
* Section 8.2.1.5

8.2.1.1 --testsuite

In this mode squishrunner executes a test suite or records a test case in a test suite. In this mode a settingsGroup to be used can
be specified before the ——testsuite switch using —-settingsGroup <settingsGroup>.

Example:

squishrunner —--testsuite /home/reggie/squish_addressbook_py —--testcase tst_add_address

The first argument after this command must be the directory that contains the test suite. In this mode, squishrunner reads the file
suite.conf in the test suite’s root directory. The following settings are read:

* AUT=<application [args]> The application which will be started for each test case and optional command line arguments
which will be used when executing the AUT.

* LANGUAGE=<lang> The scripting language which is used for interpreting the test scripts. Currently this may be Python,
JavaScript or Tcl.

* WRAPPERS=<wrappers> List of wrappers which must be loaded for the tests. Currently supported: ot and xview. Addition-
ally a number of bindings libraries (application wrappers) to be loaded my be specified.

http://books.perl.org/books

Squish Manual
131/17

* ENVVARS=<parameter> File which should be read and parsed to set environment variables before executing the AUT. The
file must contain VARIABLE=VALUE pairs which define the environment variables.

* OBJECTMAP=<parameter> File that contains the objectmap. If this entry is not present, it defaults to objects.map.

The values in the suite.conf can also reference environment variables. The syntax for this is $ (ENVVAR). So when such an
entry is read, it is expanded to the value of the environment variable ENVVAR.

There are two different usages of this mode of squishrunner.

e Section 8.2.1.1.1
e Section 8.2.1.1.2

8.2.1.1.1 Executing a Test Case

To execute all of a test suite’s test cases, no more arguments need to be specified. If only specified test cases from the suite should
be executed, a sequence of one or more ——-testcase <testcase> options must be specified, where <testcase> identifies a
particular test case.

To influence the delay triggered by snooze script calls can be specified with ——snoozeFactor <factor>. A value smaller
than 1 will cause shorter delays; a value greater than 1 will cause longer delays. A factor of 0 will lead to the fastest possible
execution.

Optionally a different report generator to process the test results can be specified with the ——reportgen <[reportgen], [f-
ilename] > option, e.g. ——reportgen xml, /tmp/results.xml.

The possible values for [reportgen] are xml (XML), x1s (Excel) and stdout (ASCII table).

8.2.1.1.2 Recording a Test Case

To record a test case in a test suite, ~——record <testcase> must be specified where <testcase> is the name of the test case
which should be generated. The name must start with the prefix tst_.

If the test case needs some test data, the test data files can be specified with ——testdata <file>, where file must exist either
in the shared testdata directory or the test case’s testdata directory.

Optionally, event compression during recording, which detects common event sequences and generates high-level API calls, can
be switched off with ——disableEventCompression. This is not recommended.

8.2.1.2 --testcase

In this mode squishrunner executes or records one specified test case.
Example:

squishrunner --testcase tst_add_address —--wrapper Qt —--aut addressbook

The first argument after this command must be the test case’s directory.

If you want to record a test case, specify the ——record option after the —-testcase option. If a test case is to be recorded and
requires test data, the test data files can be specified with ——testdata <file>, where <file> must exist in the shared testdata
directory or in the test suite’s testdata directory, or in the test case’s testdata directory.

The next options must specify which application should be started to execute or record the test case and the wrappers to be used.
This is done with the ——aut <application> <arguments> and one or more —-wrappers <wrapper> options. Note that
all arguments after ——aut are interpreted as the AUT name and its command line argument so always keep it last. Otherwise
you’ll see squishrunner options being passed to your application.

If some environment variables should be set before executing the AUT, it is possible to specify a file which defines these vari-
ables with the ——envvars <filename> option. The file must contain VARIABLE=VALUE pairs which define the environment
variables. Alternatively environment variables can be specified directly on the command line via ——envvar VAR=value.

Squish Manual
132/17

If you are recording a test case, event compression during recording, which detects common event sequences and generates
high-level API calls, can be switched off with ——disableEventCompression. This is not recommended.

To influence the delay triggered by snooze script calls can be specified with ——snoozeFactor <factor>. A value smaller
than 1 will cause shorter delays; a value greater than 1 will cause longer delays. A factor of 0 will lead to the fastest possible
execution.

If you are executing a test case and want to use a different report generator to process the test results, this can be specified with
the -—reportgen <[reportgen], [filename]> Option, e.g. ——reportgen xml, /tmp/results.xml.

The possible values for [reportgen] are xm1 (XML), x1s (Excel) and stdout (ASCII table).

If you specify the —-debug switch, squishrunner will start an interactive command line script debugger which allows setting
break points, stepping through the code, etc. The interface is similar to gdb” s but is currently internal and not documented. We
recommend using the Squish IDE to debug test scripts as described in Section 7.8.1 in the Chapter 7.

8.2.1.3 --info

In this mode squishrunner can be queried for various information.
Example:

squishrunner —--info applications

The second argument defines what squishrunner will be asked about:

* wrappers Prints out a list of installed wrappers,

* applications Connects to the squishserver and prints out a list of all the applications which are located in the squishserver’s
application paths and can be tested by Squish with the current settings.

* AUTTimeout Prints out how many seconds squishrunner will wait before timing out with a test failure if the AUT doesn’t
respond after being started.

* cursorAnimation Returns whether the mouse cursor should be animated (visually moved between positions) during script
playback.

* pauseHotkey Returns the hotkey which should be used to pause test execution.

* settingsKey Prints out the settings key for this Squish installation.

8.2.1.4 --config

This option allows squishrunner’s settings to be changed.
Example:

squishrunner --config setAUTTimeout 600

The following arguments are recognized:

* setBaseDir <wrapper> <dir> Creates a new wrapper called <wrapper> with the base directory <dir>.

* addInitScript <wrapper> <script> Adds the script <script> as an init script for the wrapper <wrapper>. <script> must
be either an absolute file name or relative to the wrapper’s base directory. All the init scripts for a wrapper are executed before
the test script of a test case which uses the wrapper.

* setAUTTimeout <seconds> Specifies how many seconds squishrunner will wait before timing out with a test failure if the
AUT doesn’t respond after being started.

* setCursorAnimation [on]off] Specifies whether the mouse cursor should be animated (visually moved between posi-
tions) during script playback.

* setPauseHotkey <key> Specifies the hotkey which should be used to pause test execution.

Squish Manual
133/17

8.2.1.5 --spy

In this mode squishrunner starts an interactive command line spy.
Example:

squishrunner —--spy —-testsuite /home/reggie/squish_addressbook_py

The spy shell is started on the already running AUT given its ID via ——aut <aut-id> or by starting the AUT of the test suite
given by ——testsuite <suite dir>.

The interactive commandline Spy frontend is internal and we recommend using the Spy via the Squish IDE as described in
Section 7.8.4 in the Chapter 7.

8.2.2 Squishserver

squishserver, is responsible for the communication between the squishrunner and the application under test. squishserver must
run on the same machine as the AUT, although squishrunner can run on a different machine.

If squishserver is started without any command line options, it will listen to connections on port 4322 and will only accept
connections from the local host (127.0.0.1). To allow connections from other hosts, those hosts must be specified. For this
purpose, squishserver reads a file called squishserverrcin /etc (on Unix/Linux/Mac) or C: \ (on Windows). This file can
specify the IP addresses from which connections are allowed using the line ALLOWED HOSTS=<ip-addrl> <ip-addr2>
<ip-addrn>. The port number that squishserver listens to can be changed by creating a PORT=<port > line in the squishserverrc
file.

The following command line options are supported by squishserver:

e ——port <port> Specifies the port which squishserver should listen to. This will override any PORT=<port> setting in the
squishserverrc file.

* ——config If squishserver is started with this option, it will simply update its configuration and terminate; it will not listen for
connections.

In this mode a settingsGroup to be used can be specified before the ——config switch using —-settingsGroup <setting-

sGroup>

The following arguments are recognized after ——config:

— addAppPath <path> Adds <path> to the list of paths in which squishserver will look for applications when starting an
AUT.

— addAUT <aut> <path> Adds the application <aut> to be mapped with the fixed path <path> to be known by squishserver.

— removeAppPath <path> Removes <path> from the list of paths in which squishserver will look for applications when
starting an AUT.

— removeAUT <aut> <path> Removes the application <aut> which has been mapped with the fixed path <path> to be
known by squishserver.

* ——stop The server will be asked to shut itself down. Unless overridden with ——port the server will be contacted at the default
port.

e ——daemon The server will be run in the background. This means it will detach itself from the controlling terminal and stop
printing anything to standard output and standard error. Note that anything the AUT prints to these channels will currently get
lost, too.

This switch is not supported on Windows.

Squish Manual
134 /17

8.2.3 Squishidl

squishidl is a tool which parses C++ header files and generates C++ introspection and automation code. For each C++ header
file one .h and . cpp file with the automation and introspection code will be created. For this reason, squishidl must be run on
every header file twice.

To generate the header file, run squishidl with the —-dec1 option, and specify the C++ header that must be parsed with the -1
option. For example:

squishidl --decl -i myapp.h -o generated.h

To generate the cpp file, run squishidl with the ——imp1 option, and specify both the C++ header using -1, and the generated
header using -h. For example:

squishidl --impl -i myapp.h -h generated.h -o generated.cpp
All the other options can be used with both —-dec1 and —-imp1, and they are all optional.

* -0 <outputfile> By default the output is written to stdout. With this option the output will be written to the specified file.

* ——dump [<dumpfile>] squishidl creates an intermediate format after parsing the C++ header which is then processed by the
output generator. For debugging purposes this intermediate data structure can be dumped to stdout, or to a file if specified.

* -D <macro>and -U <macro> In a similar way to the C++ compiler, macros can be defined and undefined on the command
line. The same macro definitions as passed to the C++ compiler when compiling the input file should be passed to squishidl.
This option can be specified multiple times.

* —I <includepath>In asimilar way to the C++ compiler, include search paths can be added on the command line. The same
include paths as passed to the C++ compiler when compiling the input file should be passed to squishidl. This option can be
specified multiple times.

e ——includePrefix [<prefix>] Specifies the prefix which should be used when generating #include statements. An
empty <prefix> means the same as specifying the current directory.

* ——strict If this option is on, parse errors when parsing the C++ header file will result in fatal errors. Otherwise, parse errors
are just interpreted as warnings.

* ——extralnclude [<include>] Specifies an include file which should be included in the generated file via an #include
statement. This option can be specified multiple times.

e ——filter [<expr>] Specifies to not generate introspection and automation code for a class, global function, class member
function or template instantiation matching <expr>. This option can be specified multiple times.

* ——nocache By default squishidl caches the intermediate format and only parses the C++ header file again if its timestamp
changed. Use this option to switch off squishidl’s caching.

Arguments can also be read from Section 8.2.5 via the —~—commandFi 1e option.

8.2.4 Squish IDE

The Squish IDE is a graphical environment to record, develop, edit, debug and run tests. There are a few options supported by
this GUI application.

* —-startclean Starts the Squish IDE without reading any settings using default settings.

* ——testsuite <testsuite> Starts the Squish IDE by opening only the test suite <testsuite>.

Squish Manual
135/17

8.2.5 Command Files

Command line arguments can also be read in from a file. These so-called command files are plain text files that contain the
arguments in a single line or spread over multiple lines. Sometimes this may just be a convient way to specify a complex list
of arguments. In other cases this approach might be become a necessity because the maximum command line length of the
underlying operating system is exceeded.

Command files can contain comments if they are prefixed with a # character as the first character of a line. Arguments containing
whitespace character can be surrounded by single or double quotes as can be seen in the following example:

mycmd.txt
-1 myheader.h

-I /usr/local/include -I "/opt/My App/include"

An invocation using above command file could like this:

squishidl --decl --commandFile mycmd.txt

Note: as of the time of writing squishidl is the only tool supporting this feature.

8.3 Environment Variables

Squish respects the following environment variables:

* SQUISH_WRAPPER_PATH In addition to all AUT paths, Squish will also search all paths listed in the variable when trying to
locate a wrapper library.

* SQUISH_LIBQTDIR If this variable is set, Squish will look into the directory specified by this variable when locating the Qt
library when starting and hooking into an AUT instead of using the default location.

* SQUISH_SCRIPT_DIR In addition to the shared scripts folder of a test suite, Squish will search the directories listed in this
variable when trying to locate a script file.

* SQUISH_USER_SETTINGS_DIR If this variable is set, Squish uses that directory to store its user settings (settings of the
squishserver and the Squish IDE as well as the descriptor files). The default locations are no longer searched for settings.

Squish sets the following environment variables:

* SQUISH_TESTSUITE_NAME This variable is set in the AUT’s shell to the name of the currently executed test suite.

* SQUISH_TESTCASE_NAME This variable is set in the AUT’s shell to the name of the currently executed test case.

Squish Manual
136/17

Chapter 9

Add-Ons

9.1 Introduction

There exist several add-ons to Squish with specialized functionality for certain areas of software testing. The add-ons need to be
purchased separately. For details, contact sales @froglogic.com.

This chapter documents all available add-ons.

9.2 Mercury Quality Center™ |ntegration

With this addon package, Squish integrates tightly with any Mercury Quality Center™ server, allowing to export test cases and
test suites from the Squish IDE into the Mercury Quality Center™, running Squish tests from within Mercury Quality Center™
and inspecting the test results in the browser and more. All that’s necessary for this is an extra software package provided by
froglogic which installs a plugin into your Mercury Quality Center™ server, making it aware of how to invoke Squish. No
changes to the Squish IDE are necessary.

9.2.1 Integration Features

Here’s a quick overview what you can do when integrating Mercury Quality Center™ with Squish.
From within Mercury Quality Center™ you can...

* Create new Squish test suites and test cases in any of the scripting languages supported by Squish.
* Edit test scripts of Squish test cases.

* Run Squish tests on any host known by Mercury Quality Center™.

* Run arbitrary commands before and after a test case is run.

* Inspect the results of a test run without having to start the Squish IDE.

* Inspect results of any previous Squish test runs, all test runs are recorded in the Mercury Quality Center™ database.
From the Squish IDE you can...

* Create test suites directly within the Mercury Quality Center™ without leaving the Squish IDE.
* Open test suites which are stored in the Mercury Quality Center™.

 Edit test scripts, object maps, suite configuration, test data and more of test suites stored in the Mercury Quality Center™ - any
changes done are transparently uploaded to the Mercury Quality Center™.

* Maintain multiple test suites which come from different Mercury Quality Center™ servers in the same Squish IDE.

mailto:sales@froglogic.com

Squish Manual
137 /17

9.2.2 Installing The Integration Plugin

Besides the augmented Squish IDE, the Mercury Quality Center™ integration consists of a special software package which needs
to be installed on the computer on which the Mercury Quality Center™ server is running. The installation is done by a mostly
automatic installer program and should be finished within five minutes.

Warning

Please note that during the installation of the Mercury Quality Center™ plugin, the Mercury Quality Center™ server
needs to be shut down (and then restarted) by the installation program. Hence, users won'’t be able to connect to the
Mercury Quality Center™ for a short period during the installation.

Please note that this installation process only has to be executed once, on the Mercury Quality Center™ server. The client
desktops won’t need any installation at all.

9.2.2.1 Choosing the Quality Center Folder

After acknowledging the welcome page, the first step in the installation process is to tell the setup program where Mercury
Quality Center™ was installed on the computer.

L. froglogic Squish Plugin Installer

Quality Center Folder Selection

Welcome

[+ Quality Center Selection
Irstallaticr
Reqgistration

Conclusion)) ; ")
Pleaze select the falder in which Mercur Quality Center waz inztalled on this computer.

whdercuny InteractivehQuality Center Starter Editiu:ur‘ Browsze. ..

< Back Mext » Cancel

The first page of the wizard used for installing the Mercury Quality Center integration plugin.

Specify the folder in which Mercury Quality Center™ was installed on this computer in the input field, or use the button at the
right side of the input field to open a dialog which lets you browse to the directory. The setup program will try to find your
Mercury Quality Center™ installation automatically, but depending on your software configuration this might not work in any
case. If the input field stays blank, you have to specify the path yourself.

Often, the directory has a name like C: \ProgramFiles\MercuryInteractive\QualityCenter or similar.

As soon as you have specified the correct directory, the Next button which commences the installation of the plugin becomes
available. Just click it to start the installation.

Squish Manual
138/17

Warning

Even though the installation program takes great care to not to cause and stale files in case an error occurs during the
installation, it cannot be guaranteed that i.e. a power outage during the installation won’t cause any data corruptions.
Hence, it is suggested that you first try the installation process on a spare server.

9.2.2.2 Monitoring the Installation Progress

After specifying the folder in which Mercury Quality Center™ was installed, the setup program begins with deploying all files
which are required to access Squish from within the Mercury Quality Center™. This process should take roughly five minutes.

L froglogic Squish Plugin Installer

Installation

Y Elcame:

Quality Center Selection
[Installation

Reqiztration

Concluzian

Pleaze wait while the froglogic Squizh Plugin for Mercuny Quality Center iz installed...

Creating backup copy of gebinwar file...

IEERRNNRNENRNENRNRNRNRNRREENEnE 72%

£ Back et

A picture of the Mercury Quality Center plugin installation wizard deploying the files to the server.

In case anything goes wrong during the installation, a message box will be shown giving detailed information about what hap-
pened. Any stale files installed up to that point will be removed.

9.2.2.3 Post-Installation Registration

After installing the files composing the Mercury Quality Center™ integration plugin, the setup program can augment the Mercury
Quality Center™ server’s configuration file automatically so that it becomes aware of the new plugin files. However, administra-
tor login credentials are required for this. In case you have access to that login data, you can specify it on this screen to let the
setup program do the work.

Squish Manual
139/17

L. froglagic Squish Plugin Installer

Registration

wil The files compaozing the froglogic Squish pluagin for Mercury Quality Center have been installed
= successfully.

(uality Center Selection
[F you want, you can now register the froglogic Squish kest type in Merncury Quality Center

Installation automatically, or you can skip thiz step and finizh the installation [in which caze you have to
P Regiztration add the Squizh test twpe lateran manually).
Conclusion Host: |bahrenfeld ﬂ |E":'E":I il

Path: |.-’|:||:I:uin.-"wcc:msrv.dll

Lluery Server for Projects. |

Domain; | DEFALLT |

Project: | QualityCenter_Demo ﬂ

Uszername: |al:|min

HHRENRENRENNR

Pazsword:

BN MMM ME NN NN

Server Administrator Pazsword:

Reqizter Test Type

< Back Hest = | LCancel |

A picture of the Mercury Quality Center plugin installation wizard’s configuration page.

You can also skip this step by pressing the Next button at the bottom of the setup program window. However, you’ll have to do
the required configuration by hand then before you’re able to use the Squish integration from within Mercury Quality Center™.

9.2.2.4 Manual Plugin Registration

In some situations it may be necessary to register the Squish plugin in the Mercury Quality Center™ server manually. This
registration however requires having the proper login credentials to your Mercury Quality Center™ server (to the Project Cus-
tomization interface, in particular). Please check back with your system administrator to find out whether you can do this
yourself.

For registering the Squish test type, open the Project Customization interface (available through the Customize link at the left
hand side of the Mercury Quality Center™ login screen). Then, select Customize Project Entities from the links at the left side.
In the dialog that shows up, navigate through the tree view of items by selecting TEST, System Fields and then Type.

The right side of the dialog will be populated with controls now. One of them is a button labelled Goto List which you need to
click to open the list of test types. In the list dialog, click on the button labelled New Item and enter the string SQUISH-TEST
exactly like that (all uppercase, a dash separating the two words) and press OK.

Close the list dialog by clicking on Close, close the ‘Customize Project Entities’ dialog by clicking on the button labelled OK,
then log out of the Project Customization interface by selecint Logout in the upper-right corner of the screen.

9.2.3 Configuration of the Plugin
After the plugin has been installed and registered, you will need to setup the initial configuration. You might also want to adjust
and augment the configuration lateron. How this is accomplished will be discussed in this section.

The configuration of the Squish integration plugin consists of two settings keys which are stored in the ‘Site Configuration’ of
your Mercury Quality Center™ server.

Squish Manual
140/17

SQUISH_SCRIPTING_LANGUAGE Indicates the scripting language to be used when creating new Squish test cases within
the Mercury Quality Center™. Can be ‘Python’, “Tcl’ or ‘JavaScript’.

SQUISH_PATHS This string in the format hostname=path, hostname=path tells the Squish plugin, where the Squish
installation can be found on each of the hosts on which you intend to run the tests. hostname can be the name of a host
(or an IP address of one) on which a test should be run. path stands for the path on which Squish is installed on the given
host.

An example entry which describes that on the host “TREBULUS’ Squish is installed in C: \Tools\Squish and on the
host with the IP address 192.168.42.3 Squish is installed in E: \Deploy\Tools\Squish-Stable looks like this:

TREBULUS=C:\Tools\Squish,192.168.42.3=E:\Deploy\Tools\Squish-Stable

You need to configure these entries before being able to execute Squish runs in the Site Configuration. In case they don’t exist
yet, you might have to add them. To do so, open the Site Administrator interface of Mercury Quality Center™, then click on the
Site Config tab at the top of the screen to move to the site configuration screen. Here you can add and edit any keys.

9.2.4 Using the Integration From Mercury Quality Center™

After the integration plugin has been installed and configured correctly, you can work on Squish tests from within Mercury
Quality Center™ fairly easily. All changes you do to test cases from within the Mercury Quality Center™ can be seen from the
Squish IDE and vice versa.

9.2.4.1 Creating New Test Cases

Creating new Squish test cases within the Mercury Quality Center™ works virtually the same as creating any other kind of test.
In the Test Plan module, create a new test folder called ‘froglogic Squish Tests’. In this folder, you can then create as many
test folders (preferably you start the names of the folders which are going to contain test cases with the ‘suite_’ prefix, since the
Squish IDE expects that) as you want.

Note

As described further down, only those test suites which are in the ‘froglogic Squish Tests’ folder are visible from the Squish IDE.
You can create Squish tests in another Mercury Quality Center™ folder as well and execute them. They won’t be visible from
the Squish IDE though.

Here’s a quick rundown on how to create a new Squish test in Mercury Quality Center™ which will be visible from the Squish
IDE.

1. Log into the Mercury Quality Center™ project to which you want to add a test.
2. Click on the button labelled Test Plan at the left side of the screen to move ot the Test Plan module.

3. In the tree view of the Test Plan module screen, open the froglogic Squish Tests folder. If it doesn’t exist yet, create it using
the New Folder button above the tree view.

4. Right-click on the froglogic Squish Tests folder item to open the context menu. In the context menu, select New Test....

5. In the dialog that shows up, select ‘SQUISH-TEST’ from the combo box to indicate that you want to create a Squish test.
Choose any name for the test you want, then press OK.

6. In the Required Fields that now shows up, select any values which are appropriate for your organizational testing discipline.
For this sample, choose any values you want (you can always change them lateron), then press OK.

Congratulations, you just created a Squish test!

Since Squish tests always have at least one test script attached to them, you could now switch to the Test Script tab of the newly
created test case to see the simple (mostly empty) test script.

Squish Manual
141 /17

9.2.4.2 Running Squish Tests

Executing this Squish test works like executing any other test which is stored in a Mercury Quality Center™ server: move to the
Test Plan module by clicking on Test Plan on the left side of the screen, then drag the tests you want to execute into the exeuction
grid. When you have assembled all tests for a test run, press the Run button to run the test.

Executing a Squish test within Mercury Quality Center™ will cause the integration plugin to invoke squishrunner, much like
the Squish IDE does internally. You might want to pass special arguments to squishrunner when executing the test though
(for instance, you probably want to specify any additional wrapper libraries you want to use, and you will want to specify an
application which to test).

Note
A comprehensive reference of the command line options for squishrunner is available in the command line reference section
for Section 8.2.1.

You can also specify arbitrary commands to be executed before and/or after squishrunner is invoked.

To configure a Squish test run, right-click on the test in the test execution grid of the Test Plan, then select Test Run Properties... in
the context menu to open the dialog which presents all kinds of execution parameters. The Squish-specific settings are accessible
by clicking on Configuration on the left side of the dialog, then clicking on the Automatic tab.

9.2.5 Using the Integration from the Squish IDE

When using an Squish IDE with a license key which allows accessing Mercury Quality Center™ servers, a set of new features is
available which makes working with tests in Mercury Quality Center™ servers much easier. Among other things you can

* Create test suites directly in the Mercury Quality Center™.
* Import test suites from the Mercury Quality Center™ to the Squish IDE.

* Export test suites from the Squish IDE to Mercury Quality Center™.

9.2.5.1 Creating a Test Suite in the Mercury Quality Center™
Creating a new test suite in a Mercury Quality Center™ server works very much like creating a normal test suite locally, only
one step in the creation process differs from the normal workflow.

In the Squish IDE, select File — New Test Suite to open the wizard for creating new test suites. The very first step of this wizard
is what differs between creating a normal test suite and a test suite in a Mercury Quality Center™ repository.

Squish Manual
142 /17

1. Mew Test Suite

Suite Mame & Directony

Suite Hame & Directory

Suite Mame; ||

Chooze a name far the new test — -
suite, as well a3 a location in Storage Type: | Stare suite in Quality Center j
which &l files of which the suite is

e ol b saved [uality Center Connection

Host: | | |s080 4
Frogiogic 5gurstwill prepend
suite o the name Bath: |.»'qc|:uin.-"wu:umsrv.dll

automatically in caze you didn't _
da =0 vourself. Lluery Server for Projects. . |

Darnair; | J
Project: | R
Username: |
Password: |

< Back et = LCancel

A picture of the wizard for creating new tests suites.

In this very first page, right below the input field for the test suite name, a combo box lets you choose whether the test suite
should be stored locally, or whether it should be created within a given Mercury Quality Center™ repository. If you decide to
create the suite in a repository, then you will need to enter all required login credentials so that the data can be uploaded. All
other steps of the wizard are the very same.

The login credentials used when creating the suite will be stored in the suite configuration file. Whenever you change anything
in the test suite (for instance, when adding entries to the object map or when adjusting one of the test scripts), the suite will be
uploaded in the background to the server so that it becomes less likely for the two copies to go out of synch.

9.2.5.2 Importing a Test Suite from Mercury Quality Center™

For importing a test suite from Mercury Quality Center™ into the Squish IDE, select File — Open Test Suite from Quality
Center... from the menu bar. A dialog will show up which asks you to enter the name of the Mercury Quality Center™ server
you want to connect to as well as the login credentials for the particular project.

Squish Manual
143 /17

LI Mercury Quality Genter Test Suite Import

The fallowing fraglogic Squish test suites have been found in the given Mercur Quality
Center Server.

Pleaze chooze the test suite you would like ta impart, then press the button
labelled 'Import’ to start the importing process.

M arne

3 tddresshbook. Suites

b suite_addresshook_js
- guite_addreszbook_py

uite_addrezzboak_tel

+- Durnmy Falder

- zUike_base

- gUibe_commmmomn

- zuike_perf

- gUike_validator_jz

Irnpaort Cancel

A picture of the dialog for importing test suites from the Mercury Quality Center into the Squish IDE.

A dialog like the one shown above will show up, showing all folders and test suites the Squish IDE could find in the given project
of the server. Simply select one of the suites and press the button labelled Import to import that suite into the Squish IDE.

Note
The import dialog will not show all available test suites in the Mercury Quality Center™ database but only those which are
stored in a folder called ‘froglogic Squish Tests’!

The login credentials used when importing the suite will be stored in the suite configuration file. Whenever you change anything
in the test suite (for instance, when adding entries to the object map or when adjusting one of the test scripts), the suite will be
uploaded in the background to the server so that it becomes less likely for the two copies to go out of synch.

9.2.5.3 Exporting a Test Suite to Mercury Quality Center™

For exporting a test suite which you have opened in the Squish IDE, simply select Test Suite — Export To Quality Center from
the menu bar. A dialog will be shown asking you for the server to which the suite should be exported. You will also need to give
the information necessary for logging into a project on the server.

After having entered the required information, press the button labelled Connect to Server to connect to the specified project
and commence the upload. The dialog will disappear, and the upload of all data belonging to the test suite commences in the
background You can see some progress information in the status bar at the bottom of the Squish IDE window.

The login credentials used when exporting the suite will be stored in the suite configuration file. Whenever you change anything
in the test suite (for instance, when adding entries to the object map or when adjusting one of the test scripts), the suite will be
uploaded in the background to the server so that it becomes less likely for the two copies to go out of synch.

9.3 TPTP integration

This Eclipse plugin allows the user to take existing Squish tests and add them as regular tests into the Test and Performance Tools
Platform (TPTP) framework, allowing execution, monitoring, log analysing, charting and reporting amongst others.

Squish Manual
144 /17

9.3.1 Obtaining the plugin

You can obtain the TPTP plugin from the following URL:
www.froglogic.com/download/com.froglogic.squish.plugin_latest.zip

This zip file contains the latest distribution of the TPTP plugin at the time of download. Unzip the file to get the jar file which is
named in the standard Eclipse naming scheme, namely com.froglogic.squish.plugin_x.y.z.jar, where x,y,z are the major, minor
and service version numbers. Below we will keep using this name.

9.3.2 Installing the plugin
The following steps are needed for installing the Squish plugin.

e The com. froglogic.squish.plugin_x.y.z. jar file needs to be copied into the eclipse plugins directory.

* The Squish plugin can be used with either the integrated or the remote agent controller. To determine which one you are using,
you can go to Window — Preferences — Profiling and Logging — Hosts. The screenshot below shows how the dialog looks:

& Preferences -0l x|

I kvpe filker bext j Hosts o=
[+ General
Agent Contraller Defaulk Hosts:
- Ak -
" Help ELucal Direct Connection Add. ..
- Install{Update EHlocahost: 10002 =
-- Java ' Remove |
[Plug-in Development —
[=- Profiling and Logging Test Connection |

[+ Appearance
- Application conkext
- izenetic Log Adapker

- Large Resaurce Supmp

- Logaing Agents

[+ Log View

- Symptom Database L
-~ Trace Associations

[+~ FunDebug

- Squish
[+]- Team
[#- Tesk
Host name or IF address: I lacalhost
fgent Controller part: I 10002
Reskaore Defaulks | Apply |
| | ©

Ik I Cancel |

Screenshot of the Hosts dialog.
When the Local Direct Connection entry is selected, you are using the Integrated Agent Controller. When another entry is
selected, the Remote Agent Controller is in use. You can verify the selection works by using Test Connection.

Note: the Remote Agent Controller is standalone and not contained in the TPTP plugins. Follow the instructions here(section
Agent Controller) if you want to obtain and install it.

http://www.froglogic.com/download/com.froglogic.squish.plugin_latest.zip
http://www.eclipse.org/tptp/home/downloads

Squish Manual
145/17

* If you are using the Integrated Agent Controller, its environment is in eclipse\plugins\org.eclipse.hyades.

xml file of the Integrated Agent Controller:
<Variable name="CLASSPATH" position="append" value="%PLUGINS_HOME%\com.froglogic.squish.plugin_x.y.z.jar"/>
Copy the com. froglogic.squish.plugin_x.y.z.jar inthe extensions dir of Integrated Agent Controller.
* If you are using the Remote Agent Controller, add this in the AgentControllerEnvironment section of the plugins/serviceconfi
xml file of the Remote Agent Controller:
<Variable name="CLASSPATH" position="append" value="%PLUGINS_HOME%\com.froglogic.squish.plugin_x.y.z.jar"/>
Copy the com. froglogic.squish.plugin_x.y.z.jar inthe plugins dir of Remote Agent Controller.
After this the Remote Agent Controller has to be restarted.

* Make sure the application squishserver.exe is running. Start up a shell, go to the Squishbin directory and run
squishserver.exe.

ommand Prompt - squishserver.exe

Microsoft Windows WP [Uersion 5.1.26H@1
CC» Copyright 1985-2801 Microsoft Corp.

C:sred squish-3.1.2—qt336—win32-msvch

Cisegquizh—3.1.2—qt336—wind2Z-—msuc8>cd hin

Cisegquizh—3.1.2—qt336—win3d2Z—mzsucBshinsquiszhserver.exe
Port: 4322

Starting squishserver app from a shell.

One way to check whether the plugin is detected is by looking at the plugin list in Eclipse using Window — About Eclipse
— Plug-in details. SquishPlugin should be listed there, like in this screenshot:

Squish Manual
146 /17

I=TEY
Provider I Plug-in Mame | \ersion I Plug-in Id |:|
Eclipse.org TPTFP Test Tools Source 4,1.0 org.eclipse,kptp, kest, toals, s, ..
Eclipse.org TPTF Test Toaols UT Plug-In 4.1.0 org.eclipse. hvades.test. toal. ..
Eclipse.org TPTP Test LI Plug-In 4,1.0.1 org.eclipse. hvades. test. i
Eclipse.org TFTP Trace 4.1.0 org.eclipse.kptp.krace
Eclipse.org TPTF Trace Source 4.1.0 org.eclipse.kptp.krace. source
Eclipse.org TPTP Trace Source MLS Su... 4.1.101.v20... org.eclipse.tptp.trace.sourc. ..
Eclipse.org Wigws 311 org.eclipse, Ui, views
Eclipse.org Wigws MLS Suppart 311 org.eclipse.ui.views,nll
Eclipse.org \Welcome Framework, 311 org.eclipse.ui.intro
Eclipse.org \Warkbench 31.z org.eclipse.ui.workbench
Eclipse.org wWorkbench Compatibility 3.1.0 org.eclipse,ui.workbench.co. ..
Eclipse.org WWorkbench MLS Support 311 org.eclipse,ui.workbench.nll
Eclipse.org #ML Schema Edit Framewark, 2.1.0 org.eclipse, xsd, edit
Eclipse.org %ML Schema Editar 2.1.0 org.eclipse. xsd. editar
Eclipse.org *ML Schema Imporker For ... 2.1.0 org.eclipse, xsd. ecore.importer
Eclipse.org #ML Schema Infoset Mode... 2.1.1 org.eclipse,xsd
Eclipse.org ®¥ML Schema Infoset Mode,.. 2.1.1 org.eclipse, xsd.doc
Eclipse.org ®¥ML Schema Infoset Mode,.. 2.1.1 org.eclipse, xsd.source
Eclipse.org %30 ko Ecore Mapping 2.1.0 org.eclipse,emf.mapping.xsd. ..
Eclipse.org %50 to Ecore Mapping Editor 2.1.0 org.eclipse. emf.mapping.xsd. ..
froglogic GmbH SguishPlugin Plug-in 1.0.4 com.froglogic.squish. plugin
IEM.com and BEA.com Commond S0 2.1.0 org.eclipse.emf. commonj. sdo j
v, example. org Sympkom Edit Support ML... 4.1.101.%20... org.eclipse.hyades.sdb.nll -

MMare Info |

The Squish plugin in the plugin list.

9.3.3 Working with the plugin

A first thing to make sure is that the plugin knows where Squish is located on the operating system. To do so select Window
— Preferences — Squish. On this page use the Browse button to select the Squish installation path. Here you can also set the
hostname of the server and the port it is listening on.

Squish Manual
147 /17

_lgix
It\,-'pe Filkes berst j Squish Pt

- aeneral

- Agent Controller Installation path: | C:isquish Browse. .. |
- Ank

" Help Server pork; I 43IFE
[+ InstallfUpdate
- Java Server host: | localhost

- Plug-in Developrent
- Profiling and Logging
¥l Run/Debug
i Squish

-- Team
-- Test

Restore Defaultks | Apply |

Ok I Cancel |

The Squish preferences page.

Now we are ready to import existing Squish tests. Make sure there is an existing project in the workbench where the test cases
can be stored. Now choose File — New — Other — Test — Squish Test Suite and click Next. The selection page looks like this:

Squish Manual
148 /17

Erew x|

Select a wizard
Add a Squish Test Suite

Wizards:

= Java Emitter Templates LI
-2 Plug-in Development
[E; Profiling and Logging
- Simple

- Test

Squish Test Suite
----- £ Test Case

----- @ Test From Recording

----- = TPTP JUrit Plugin Test

----- i TPTP JUnit Test

..... a7 TPTP Manual Test

..... E% TPTP URL Test

[#-{= Recording

[F-[=- Test Assets

[#-[-=- Examples =

= Back I Mexk = I Einish Cancel

The wizard selection page with the Squish wizard highlighted.

On the first page we can choose the Squish suite.conf file to import. Use the Browse file dialog to choose the testsuite you want
to import, then click Next. This screenshot shows how this page looks:

Squish Manual
149 /17

Mew Teskt

Select Squish Test Suite

Please select an existing Sgquish test suike,

Cilsguish-3. 1. 2-qt336-win32-msved examplesigt3suite_addressbaoak_

The first page of the wizard used for importing a Squish test.

On this last page you need to select the Eclipse project to import the test cases into and give a name to the imported suite (this
can be the same name as the original squish testsuite). Again, below is a screenshot showing how the final page in the wizard
looks:

Squish Manual
150/17

& New Test |

Mew Generic Test

Defines the name and location of the kest, E

Enter or select the parent: Folder:

| suishtests

i,
o
------ |=F squishtests

Mame I squish_impart]

< Back Mexk = | Finish I Zancel

The last page of the wizard used for importing a Squish test.

Click on Finish to start importing the tests. After importing, in the workbench in the chosen project there should be a new
.testsuite file, with its first tab page showing general information about the test. It should look like the screenshot below.

Squish Manual
151 /17

& Java - squish_import - Eclipse SDK
File Edit Mavigate Search Project Run Window Help
e~ | $-0-8 Q- [BHT- |®F |G- -

i — T
{8 Package Explorer 53 Hierarchv| B O7 squish_impart X

= % 7 || squish GUI Test

LT

[F-1=F squishtests
- squish_impark . bestsyite » General Information = Test Cases

This section describes the general infarmation about this abject, The following test cases are defined
kst add address ksk add addre

Marne

| squish_import

Descripkion

s

N I

b

Type: Sguish Test Suite Definition
File: fsguishtests/squish_import. kestsuite

.| |
Cwerview | Tesk cases |

=
E_L, Problems &3 Javadoc ‘ Declaration |

0 errors, 0 warnings, 0 infos
| Description | Resource | In Folder | Location

tst_add_address_datadriven Writable

The workbench after importing a Squish testsuite.

When you click on the second tab, it shows the test cases in the testsuite. Select a test case and press the play button in the
top-right of the tab.

Squish Manual
152 /17

& Java - squish_import - Eclipse SDK

File Edit Mavigate Search Project Run Window Help

Nt |%-0-%-%- | BH#G- B |0 &0 -
i — T
{8 Package Explorer 53 Hierarchv| B O7 squish_impart X

=
= TE1squishtests,l'squish_impu:urt.testsuiteh

LV

(=11 squishtests
(o souish_import.bestsuite || L

! Test Cases + General Information
The Fallowing test cases are defined in this tesk: This section describes the general information a
E:d tst_add_address this object.
E:d tst_add_address_datadriven = Marme
|
Do Descripkion
= Detail
The detailed properties of the selected itern app
below
Overview | Test cases |
=
|__E_L, Problems &3 Javadoc ‘ Declaration |
0 errors, 0 warnings, 0 infos
| Description | Resource | In Folder | Location

tst_add_address_datadriven Writable

The second tab page showing the available test cases.

When the test has run it should have produced an execution file detailing the test run. Click on the . execution file to examine
the test run. Execution files have the same names as the test case name, but will include a timestamp in the name to make them
unique.

Squish Manual

153 /17

& Java - tst_add_address - Eclipse SDK

- -,

kst add_address X

File Edit Mavigate Search Project Run Window Help
|05 - |3-0-%-Q- |EFG-|BV|"
i = T

] Package Explarer &3 Hierarchv| | squish_impu:urt

s o
= Test Log
[=]-]=F squishtests
i - Events

- sguish_import, bestsuite
------ kst_add_address.execution

.p start
& stop
& stop

& pass

¢ - ol B &

* Common Properties

Time

squish _import

|D‘3-.ﬁ.ug-2ljlil? 16:55:17 o'clock CEST

Texk

= Detailed Properties

9.4 Antintegration

Showing the execution file after the test has run.

Type
|start

Crveryiew |Events

=

E_l, Problems &3 Javadoc ‘ Declaratiu:un|

0 errars, 0 warnings, 0 infos

| Description I Resource I In Folder I Location
\Writable

Apache Ant is a software tool for automating software build processes. It is similar to make but is written in the Java language,
requires the Java platform, therefore is cross-platform, and is best suited to building Java projects. More information can be

found here.

Using the Squish plugin for Ant described in this chapter, it is possible to run Squish tests from an Ant build file.

http://ant.apache.org/

Squish Manual
154 /17

9.4.1 Obtaining the plugin

You can obtain the Ant plugin from the following URL:

www.froglogic.com/download/squish-ant-plugin_latest.jar

9.4.2 Installing the plugin
There are multiple ways to install the Squish plugin:

* Copy the jar to ANT_HOME/lib. This often requires Administrator rights.
¢ Copy the jar to USER_HOME/.ant/lib.

* When calling ant use the -lib option to specify the Squish plugin.

Details for installing external Ant libraries are described here.

9.4.3 Example use of plugin

Here is a typical build.xml file:

<project name="MyProject" basedir=".">
<description>
simple example build file
</description>
<!-- set global properties for this build -->
<property name="src" location="src"/>
<property name="build" location="build"/>
<property name="dist" location="dist"/>

<target name="init">

<!-- Create the time stamp -—>
<tstamp/>
<!-— Create the build directory structure used by compile —-->
<mkdir dir="${build}"/>
</target>

<target name="compile" depends="init"
description="compile the source " >
<!—— Compile the java code from ${src} into ${build} —-->
<javac srcdir="${src}" destdir="S${build}"/>
</target>

<target name="dist" depends="compile"
description="generate the distribution" >
<!-— Create the distribution directory -—>
<mkdir dir="${dist}/1lib"/>

<!-— Put everything in ${build} into the MyProject-${DSTAMP}.jar file —-->
<jar jarfile="${dist}/lib/MyProject—-${DSTAMP}. jar" basedir="${build}"/>
</target>

<target name="clean"
description="clean up" >
<!—- Delete the ${build} and ${dist} directory trees —-—>
<delete dir="${build}"/>
<delete dir="${dist}"/>
</target>

http://www.froglogic.com/download/squish-ant-plugin_latest.jar
http://ant.apache.org/manual/install.html#optionalTasks

Squish Manual
155 /17

</project>

To use the plugin functionality the Squish namespace has to be mentioned:

<project name="MyProject" basedir="." xmlns:squish="antlib:com.froglogic.squish.ant">
<description>
simple example build file
</description>

In this case it may make sense to run the Squish test as a separate target. The following will accomplish this:

<target name="test" depends="compile"

description="run the tests">

<squish:runtest suite="C:\squish\examples\gt3\suite_addressbook_js" />
</target>

Finally, running a Squish test from the command line gives the following output for the above example when using target test:

$ ant test
Buildfile: build.xml

init:

test:

[squish:runtest] Running testcase: add_address_datadriven took 47.0s
[squish:runtest] Running testcase: add_address took 16.0s

[squish:runtest] Tests run : 2, Failures : 0, Errors : 0, Fatals : O

BUILD SUCCESSFUL
Total time: 1 minute 3 seconds

9.4.4 Xml reference

This section gives an overview of the tags that can be used after installing the plugin.

9.4.4.1 squish:config

The config tag can be used as a convenient way to set the path to the Squish installation that should be used to run the tests. The
table below shows the attributes that can be used:

attribute value

path The absolute path to the root directory of Squish.
host The hostname where squishserver is running.

port The port number where squishserver is listening on.

Table 9.1: Config tag

Here is an example of using the config tag in an Ant build file:

<project name="MyProject" basedir="." xmlns:squish="antlib:com.froglogic.squish.ant">
<squish:config path="C:\squish"/>
<target>

Squish Manual
156 /17

When the config tag is used, like in the example, at the start of the document the path that is set will be used for all Squish tests
in the targets. When used inside a target container, the path will only be used for that container.

Note It is also possible to set the Squish path in the runtest tag, but if there are many Squish tests to be run and they all use
the same Squish installation, the config tag is more convenient.

9.4.4.2 squish:runtest

The runtest tag can be used to run a Squish testcase or suite. The table below shows the attributes that can be used:

attribute value required
. The absolute path to the Squish suite

suite Yes
to run.

testcase The one testcase from the suite to run. | No
The hostname of the machine where

host .) . No
squishserver is running.
The port number where squishserver

port .o P . 4 No
is listening on.

Table 9.2: runtest tag

Note The attributes host and port are not marked as required since they can be set using the config tag too.

Here is an example of using the runtest element in an Ant build file:

<project name="MyProject" basedir="." xmlns:squish="antlib:com.froglogic.squish.ant">

<target name="test" depends="compile"
<description> run the tests </description>
<squish:runtest suite="C:\squish\examples\gt3\suite_addressbook_js"
testcase="add_address" />

</target>

For the runtest tag to work, the suite attribute has to indicate a valid Squish suite. Also it must know the absolute path to the
Squish installation to use for running tests, either through the path attribute or squish:config element. The ant process will wait
for the Squish test to be completed, and the results are reported back on standard output (maybe screenshot/show output?).

9.5 CruiseControl integration

CruiseControl is a framework for a continuous build process. It includes, but is not limited to, plugins for email notification,
Ant, and various source control tools. A web interface is provided to view the details of the current and previous builds. More
information can be found here.

Using the CruiseControl plugin described in this chapter, it is possible to run squish tests from a Cruise Control continuous build.

9.5.1 Obtaining the plugin

You can obtain the CruiseControl plugin from the following URL: www.froglogic.com/download/squish-cc-plugin_latest.jar

http://cruisecontrol.sourceforge.net/
http://www.froglogic.com/download/squish-cc-plugin_latest.jar

Squish Manual
157 /17

9.5.2 Installing the plugin

To install the plugin simply place the jar file in CC_HOMEM\lib.

9.5.3 Example use of plugin

Below is the example used in the CruiseControl distribution:

<cruisecontrol>
<project name="connectfour">

<listeners>
<currentbuildstatuslistener file="logs/${project.name}/status.txt"/>
</listeners>

<bootstrappers>
<antbootstrapper anthome="%$%APACHE_ANT%%" buildfile="projects/S${project.name}/ «
build.xml" target="clean" />
</bootstrappers>

<modificationset quietperiod="30">
<!—-— touch any file in connectfour project to trigger a build -->
<filesystem folder="projects/${project.name}"/>
</modificationset>

<schedule interval="300">
<ant anthome="$%$$APACHE_ANT%%" buildfile="projects/${project.name}/build.xml"/>
</schedule>

<log>
<merge dir="projects/${project.name}/target/test-results"/>
</log>

<publishers>
<onsuccess>
<artifactspublisher dest="artifacts/${project.name}" file="projects/${ «
project.name}/target/${project.name}.jar"/>
</onsuccess>
</publishers>

</project>
</cruisecontrol>

The Squish plugin must be declared before using the functionality from it. The best option is to declare it as the first child of the
project. Taking the above example, here is how that should look:

<?xml version="1.0" encoding="UTF-8"7?>
<cruisecontrol>

<project name="connectfour">
<plugin name="squishtest"
path="C:\squish"classname="com. froglogic.squish.cc.builders.SquishTestBuilder"/>

To run a Squish test, the following change has to be made to the schedule section:

<schedule interval="300">
<composite>

Squish Manual
158 /17

<ant anthome="%%APACHE_ANT%%" buildfile="projects/S${project.name}/build.xml «
vl/>
<squishtest suite="C:\squish\examples\gt3\suite_addressbook_js"
testcase="add_address"/></composite>
</schedule>

The composite is needed since we have multiple tasks in this case, i.e. the ant build file is executed and a Squish test is run. Note
that it is also possible to do the squishtest first or to use squishtest more than once in order to run multiple testsuites.

9.5.4 Xml reference

This section gives an overview of the tags that can be used after installing the plugin.

9.5.4.1 squishtest

The squishtest tag can be used to run a Squish testcase or suite. The table below shows the attributes that can be used:

attribute value required
. The absolute path to the Squish suite

suite Yes
to run.

testcase The one testcase from the suite to run. | No
Th lut h to th i

path e ab§o ute path to the root directory No
of Squish.
The hostname of the machine where

host .) . No
squishserver is running.
The port number where squishserver

port - . No
is listening on.

Table 9.3: squishtest tag

Note When the attributes mentioned in the table are set in the Squish plugin binding element, they act as default values. So in
the plugin binding listed in the previous section, path is set to a default of "C:\squish", and the same can be done for the other
attributes, for example to set the default host and port. This means the attributes are inherited from the plugin element and can
be overridden again in the squishtest element.

9.6 Maven integration

Maven is a software project management and comprehension tool. Based on the concept of a project object model (POM), Maven
can manage a project’s build, reporting and documentation from a central piece of information.

More information can be found here.

Using the Maven plugin described in this chapter, it is possible to run squish tests during any Maven phase.

9.6.1 Obtaining the plugin

You can obtain the Maven plugin from the following URL: www.froglogic.com/download/squish-maven-plugin_latest.zip

9.6.2 Installing the plugin

To install the plugin first unzip the package. Then run the install-squish-plugin.bat for the windows version and install-squish-
plugin.sh for linux.

http://maven.apache.org/
http://www.froglogic.com/download/squish-maven-plugin_latest.zip

Squish Manual
159 /17

9.6.3 Example use of plugin

To use the plugin from your POM file add this to the plugins section:

<project>
<plugins>
<!-- Make the Squish plugin known to Maven and run one testcase ——>
<plugin>

<groupId>com. froglogic.squish.maven</groupId>
<artifactId>squish-plugin</artifactId>

<executions>
<!-— This test uses local Squish server ——>
<execution>
<id>testl</id>
<phase>test</phase>
<goals>
<goal>run-test</goal>
</goals>
<configuration>

<path>C:\squish</path>
<testsuite>C:\squish\examples\gt4\suite_addressbook_js</testsuite>
<testcase>add_address</testcase>
</configuration>
</execution>

</executions>
<plugin>

</plugins>
</project>

This example runs the testcaseadd_address from the testsuite suite_addressbook_js during the test phase. Note that the test can
be run during any phase by changing the phase tag. To do multiple test runs simply add execution sections to executions.

9.6.4 Xml reference

This section gives an overview of the goal and configuration that can be used after installing the plugin.

9.6.4.1 runtest

The runtest goal should be used to run a Squish testcase or suite. The table below shows the tags that can be used within the
configuration section:

Note When specifying a testcase the tst_ prefix must not be used. For example when Squish IDE shows tst_add_address,
add_address should be specified.

Squish Manual

160/17

attribute value required
. The absolute path to the Squish suite

testsuite P qus Yes
to run.

testcase The one testcase from the suite to run. | No
The absolute path to the root directo

path . P Y1 Yes
of Squish.
The hostname of the machine where

host .) . No
squishserver is running.
The port number where squishserver

port No

is listening on.

Table 9.4: runtest goal

Squish Manual
161/17

Chapter 10

Frequently Asked Questions

1. Why does text entered with type() end up garbled in a Qt application? Why does a clickButton() call have no effect?

The Qt 4.3 series has a bug that mixes up the order of posted events in the internal queue. In some seldom cases this breaks
text input or mouse click sequences. This problem will be solved in Qt 4.4 and possibly also in Qt 4.3.4. A source code
patch is available on request.

2. How do I Build Squish and Qt on IRIX with gcc

To build Squish, Qt must be linked as a shared library. When compiling Qt with gcc in IRIX, it is built as a static library
by default. To build Qt as a shared library, specify the —~shared option when running Qt’s configure script.The reason,
why static is the default build is because Qt doesn’t link as a shared library on IRIX when being built with gcc. To fix this
problem, edit the file src/Makefile after you have run configure. Add the switch -W1, -LD_LAYOUT: lgot_buf-
fer=100 to the Makefile’s LFLAGS variable. The line should then look similar to the following one:

LFLAGS = -Wl,-LD_LAYOUT:lgot_buffer=100 -shared -Wl,-soname, libgt-mt.so.3 -Wl,-rpath,/ <
usr/people/reggie/qt32-gcc/lib

After this just compile Qt as usual (by running make). Then compile Squish as documented in this manual.

Note
This fix has been submitted to Trolltech support and has been incorporated into Qt releases as of version 3.3.0.

3. How do I Build Squish with Python Support on MinGW

Some Python binary distributions already contain a import library for Python that can be used with MinGW. In such a case
you don’t have to do anything.If you don’t have it, you have to generate it yourself. For this you need the pexports and
dlltool tools that are available for MinGW. In the following example we assume that Python is installed in C: \Python23
and the Python DLL is under C : \WINNT\system32\python23.d11. To generate a import library for Python do:

cd C:\Python23\1libs
pexports C:\WINNT\system32\python23.d1ll > python23.def
dlltool —--dllname python23.dll --def python23.def --output-1lib libpython23.a

For more information see the MinGW Wiki on Python extensions (just the Basic Setup section).

4. I have problems building Squish with a single-threaded Qt 3 library on Windows

As mentioned in Section 3.2.7 in the chapter Chapter 3, most parts of Squish can be built with a single-threaded Qt library.
On Windows there is one problem with this: The single-threaded Qt library is linked against the static LIBC . LIB instead
of the shared MSVCRT.LIB. This leads to problems with memory management because of different heaps when using
multiple DLLs linked against Qt, and this problem affects Squish.To work around the problem, open the file $QTDIR%
\mkspecs\win32-msvc\gmake.conf (or $QTDIR%\mkspecs\win32-icc\gmake.conf, if you use Intel
C++) and change the lines

http://www.mingw.org/MinGWiki/index.php/Python%20extensions

Squish Manual
162/17

OMAKE_CFLAGS_RELEASE = -01
OMAKE_CFLAGS_DEBUG = -Z7

to

OMAKE_CFLAGS_RELEASE = -0l -MD
OMAKE_CFLAGS_DEBUG = -27 -MDd

After this you must regenerate Qt’s Makefile and recompile the Qt library:

cd %QTDIR%\src
agmake gt.pro
nmake clean
nmake

5. Why doesn’t Squish record mouse move events

Squish only records mouse move events when a mouse button is pressed (even if Qt’s mouse tracking is enabled). This is
because in most cases mouse move events that take place when no mouse button is pressed can be ignored since they don’t
need to be replayed for the widgets to function properly. Furthermore, recording these events would produce a lot of script
code which would not affect the application, but would make the script harder to read and maintain.For those situations
where it is necessary to record all the mouse move events because they are essential for the widget to work correctly, you
can change Squish’s behavior. Let’s assume that we have a custom widget of type CanvasView for which we want to
record all mouse move events. We can tell Squish to switch on mouse tracking for widgets of this type by creating and
registering a suitable init file. For example, we could create a file called myinit .tcl that contained this line:

setMouseTracking CanvasView true

Then we can tell Squish to execute this file at startup:

squishrunner —--config addInitScript Qt <absolute_path>/myinit.tcl

After this when recording a test case, mouse move events on CanvasView widgets will be recorded even if no mouse
button is pressed.

6. Why do my widgets always get names like MyWidget34 and not more descriptive names

Squish tries to create the most descriptive names for GUI objects. By default is uses the QObject name. If this property
isn’t unique, other possibly unique properties are examined (window caption, button text, etc.) before falling back to
<ObjectType><num>.One solution (and probably the best!) to get better names in generated scripts is to give all the
widgets descriptive, short and unique QObject names in the AUT’s source code.If the custom widgets have other possibly
unique properties, like a label, etc., Squish can be told to try using these properties. For example, suppose that we have a
custom widget called CanvasView which has a unique 1abel property. To tell Squish about this, create a file myinit .
tcl that contains the following line:

setUniqueProperty CanvasView label

Then tell Squish to interpret this file at startup:

squishrunner —--config addInitScript Qt <absolute_path>/myinit.tcl

After this, Squish will attempt to use the CanvasView’ slabel property for identification if its value is unique.

7. Why does comparing unicode strings containing e.g. German umlauts fail

When comparing a string from the AUT (e.g. a QString such as returned from QLineEdit::text()) with an expected native
script string containing 8-bit characters, you get an error although the strings match.The problem here is that Squish
assumes a UTF8 encoding while your application uses a different default Qt encoding, e.g. Latinl. Now when Squish tries
to convert the QString to a const char* so it can be compared against the string from the script, this default encoding is
used instead of UTF8. In a future version of Squish this problem will be solved, for now the following workarounds are
possible:

Squish Manual

163 /17

10.

11.

* Use use UTFS as default encoding in your application by calling

QTextCodec: :setCodecForCStrings (new QUtf8Codec);

This will result in Qt using UTFS8 as encoding when e.g. converting a QString from or to a const char*. Note that this
will change the AUT’s behavior.

* In the test script explicitly convert the string to a QString, e.g.:

test.compare (object.text, QString.fromUtf8 ("tiBcher")
test.compare (object.text, QString.fromUtf8 ("iiBcher");
test compare [invoke S$object text] [invoke QString fromUtf8 "#Bcher"]

* You explicitly convert the QString coming from the AUT to UTFS, e.g.

test.compare (object.text.utf8 (), "iBcher")
test.compare (object.text.utf8 (), "iiBcher");
test compare [invoke [invoke S$object text] utf8] "dBcher"

Why aren’t mouse clicks blocked by modal dialogs on Windows when replaying a test

On Windows test scripts successfully deliver mouse clicks to widgets which are blocked by a modal dialog, although a user
never could perform such a click. To allow Squish detecting such a modality to block a click and add an error to the test log,
on Windows a private symbol of the Qt library needs to be exported. To do this, open src\kernel\gapplication.
cpp and replace the line

bool gt_tryModalHelper (QWidget xwidget, QWidget #*xrettop);

by

Q_EXPORT bool gt_tryModalHelper (QWidget *widget, QWidget *xrettop);

Then rebuild Qt and re-run configure and build in Squish. After this clicks to blocked widgets will be caught by
Squish resulting, as expected, in an error.On Unix and Mac this problem doesn’t exist since this symbol is always exported.

Why does Squish fail to hook into my AUT on AIX

Why does squishrunner fail to start with the error cannot restore segment prot after reloc: Perm-—
ission denied?

Usually, Squish hooks into the AUT without requiring any special preparations. However, in some cases such as on AIX
this is not possible due to technical limitations. See the chapter [?] in the Chapter 7 for a solution.

Due to the usage of 3rd party code and imperfect compilers Squish contains libraries with so called "text relocations". By
themselves these are harmless but a "hardened" Linux distribution with SELinux (Security Enhanced Linux) installed may
nevertheless disallow such a property. We’ll investigate solving this problem. Until then, one workaround is to change the
SELINUX=enforcing entry in /etc/selinux/config to SELINUX=permissive and reboot the system. A more
fine-grained solution is also possible using the chcon command. Please contact support if you are interested in going this
route.

Why does Squish not properly replay paintings in my painting application

Squish always compresses a mouse press events followed by mouse move events, while the button is pressed, into a
mouseDrag(). A mouseDrag() is much more robust against changes in the application then recording the individual mouse
events. However during the replay of the mouseDrag() there is only one mouse move event synthesized, starting from
the point where the mouse button was pressed to the point where the mouse button was released.To enable recording of
applications that depend on all of the individual mouse move events being recorded there’s a way to disable the creation of
the mouseDrag() function for a specific widget type. See setRecordMouseDrag for the details on how to do that.

Squish Manual
164 /17

Part I

Java™ Extension API Reference

Squish Manual
165/17

2008froglogic GmbH

froglogic GmbH. All rights reserved

April 10, 2009

Abstract

This reference documents the Squish extension API for testing custom Java™ components.

Squish Manual
1/17

Chapter 11

Package com.froglogic.squish.extension

11.1 Interface Inspectable

Name

Interface Inspectable — This interface needs to be implemented for custom Java support in Squish.

Synopsis
public interface com.froglogic.squish.extension.Inspectable {

// Public Methods public boolean findObjects (ObjectQuery query,

int n,
java.util.AbstractList matches);

public boolean findObjects (ObjectQuery query,
Object obj,
java.util.AbstractList matches);

public Object getChildAt (Point pos);

public Object[] getChildren();

public Rect getGlobalBounds () ;

public String getName () ;

public Object getObject();

public Object getParent();

public Object getPropertyValue (String prop);

public boolean isObjectReady () ;

public Point mapFromGlobal (Point pos);

public Point mapToGlobal (Point pos);

Description

This interface needs to be implemented for custom Java support in Squish. When fully implemented it ensures that the cus-
tom classes/widgets are shown correctly in the spy, will show a correct highlight rectangle when picking, and can be used to
record/playback events on. An Inspectable interface will have to be implemented for each custom class that needs to be known
to Squish. These classes can either be stored in the AUT jar or in an external jar. The classes can look like this for an imaginary
canvas example:

class MyCanvasItemExtension extends InspectableAdapter

{

Squish Manual
2/17

MyCanvasItem itm;
public Rect getGlobalBounds ()
{

}

class MyCanvasExtension extends InspectableAdapter
{

MyCanvas can;

public Rect getGlobalBounds ()

{

After defining such classes for every custom Object that needs to be exposed, these need to be registered into Squish. The way
to do it is to create a factory that returns the right Inspectable for the given object:

class MyCanvasFactory implements InspectableFactory

{
public Inspectable query(Object object)

{

if (object instanceof MyCanvas) {
return new MyCanvasExtension(object);
} else {

Now we have the factory we need an init hook which registers the factory into the registry:

public static void init(InspectableRegistry registry)
{

registry.register (new MyCanvasFactory ());

Also, in the manifest file for the jar where the above extensions are stored, there needs to be an extra entry so that Squish can find
the init method:

Extension: MyCanvasFactory

Finally, in order to let Squish know the wrapped custom Java classes better, it is encouraged to let Squish know the new
wrapped classes better through the .ini file. See Wrapping custom Java classes in the user guide. The same .ini file should
be used to let Squish know the location of the extension jar file generated above. An entry can look like this: JavaExten-
sionDir="/home/squish/extensions/", "/home/squish/mycanvas"

See Also , ,

Methods

findObjects(ObjectQuery, int, AbstractList)

publicbooleanf i ndOb ject sObjectQuery queryintnjava.util. AbstractListmat ches PARAMETERS

query ObjectQuery object
n no more then n objects need to be found
matches list that matches the query in order of found

return true if n objects are in the list

Squish Manual
3/17

Find and add objects that matches query in a list. The search should end if list contains n objects. This function is used for
finding the n-th reoccurrence of an object.

IMPORTANT: This function is subject to change at any time. Use the InspectableAdapter default implementation, unless there
are good reasons not to.

findObjects(ObjectQuery, Object, AbstractList)

publicbooleanf i ndOb ject sObjectQuery queryObjectob jjava.util. AbstractListmat ches PARAMETERS
query ObjectQuery object

obj stop searching up until obj is found

matches objects that matches the query in order of found

return true if obj is in the list

Find and add objects that matches query in a list. The search should end after obj is found. This function is used for finding the
occurrence property of an object.

IMPORTANT: This function is subject to change at any time. Use the InspectableAdapter default implementation, unless there
are good reasons not to.

getChildAt(Point)

publicObjectget ChildAtPointpos PARAMETERS

pos the point to use for hit-testing

return the object that is hit
Return the child hit at position pos. Containers should return the exact child that is hit if it supports recording at that level of

detail (for instance canvasses). The hit child can also be an indirect child, for instance a child of a child of the container. The
coordinates are relative to the wrapped object.

getChildren()

publicObject[]get Children PARAMETERS
return array of all children

Return all children of the wrapped object.

getGlobalBounds()
publicRectget GlobalBounds PARAMETERS
return the bounds as a Rect

Gets the bounds of this component in the form of a Rect object. The bounds specify this component’s width, height, and location
relative to its container, all in the container’s coordinate system.

Squish Manual

4/17

getName()

publicStringget Name PARAMETERS
return the name

Return the name of this object.

getObject()

publicObjectget Object PARAMETERS

return the object

Return the object that this Inspectable inspects.

getParent()
publicObjectgetParent PARAMETERS
return the parent

Return the parent of this object.

getPropertyValue(String)

publicObjectget PropertyValueStringprop PARAMETERS

prop property name

return value of this property or null

Return the value of a string property. This function is used for creating an object name for the object map. In the descriptors xml
file, any property name "abc" from getter functions "getAbc()" may be added if the object class is known to Squish. For object
classes not known to Squish, or if there is not a getter function, this function should return the value instead. Properties marked

in the descriptor xml as object, must have a matching Inspectable.

isObjectReady()

publicbooleani sOb jectReady Returns true when the wrapped object is ready to receive user input like text for a text field, or

button clicks for a button, false otherwise.

mapFromGlobal(Point)

publicPointmapFromGlobalPointpos PARAMETERS

pos the global coordinate

return the converted point

Converts the global/screen coordinates x,y into coordinates local to the wrapped object and returns the result as a Point.

Squish Manual
5/17

mapToGlobal(Point)
publicPointmapToGlobalPointpos PARAMETERS

pos the local coordinate

return the converted point

Converts the local coordinates X,y into absolute screen coordinates and returns the result as a Point.

11.2 Class InspectableAdapter

Name

Class InspectableAdapter — Adapter class for writing extensions.

Synopsis
public abstract class com.froglogic.squish.extension.InspectableAdapterimplements com.fro

// Public Constructors public InspectableAdapter();
// Public Methods public boolean findObjects (ObjectQuery query,
int n,
java.util.AbstractList list);
public boolean findObjects (ObjectQuery query,
Object obj,
java.util.AbstractList list);
public Object getChildAt (Point pos);
public Object[] getChildren();
public Rect getGlobalBounds () ;
public String getName () ;
public Object getPropertyValue (String prop);
public boolean isObjectReady () ;
public Point mapFromGlobal (Point pos);
public Point mapToGlobal (Point pos);
// Protected Methods protected boolean findObjects (ObjectQuery query,
int n,
Object obj,
java.util.AbstractList list);

Description

Adapter class for writing extensions. You can use this class when one or more of the default implementations presented here for
the Inspectable methods make sense for your extension. You must to reimplement Inspectable.getObject ()

Methods
findObjects(ObjectQuery, int, AbstractList)
publicbooleanf i ndOb ject sObjectQueryqueryintnjava.util. AbstractList1ist PARAMETERS

query ObjectQuery object

Squish Manual
6/17

n no more then n objects need to be found
matches list that matches the query in order of found

return true if n objects are in the list

Description copied from interface: <link linkend="method-com.froglogic.squish.extension.inspectable.findobjects-com.froglog
int-java.util.abstractlist">findObjects</link>

Find and add objects that matches query in a list. The search should end if list contains n objects. This function is used for
finding the n-th reoccurrence of an object.

IMPORTANT: This function is subject to change at any time. Use the InspectableAdapter default implementation, unless there
are good reasons not to.

findObjects(ObjectQuery, int, Object, AbstractList)

protectedbooleanf i ndOb ject sObjectQuery que ryintnObjectob jjava.util. AbstractList 1 i st Depth first implementation for find-
Objects.

Squish calls the function when searching for an object, its container or window object. Therefore the properties ’container’,
window’ and ’occurrence’ should not be used when searching for objects. The ’type’ property is for performance reasons taken
out of the ObjectQuery.match function and should be checked in this function instead.

findObjects(ObjectQuery, Object, AbstractList)

publicbooleanf i ndOb ject sObjectQuery queryObjectob jjava.util. AbstractList1ist PARAMETERS
query ObjectQuery object

obj stop searching up until obj is found

matches objects that matches the query in order of found

return true if obj is in the list

Description copied from interface: <link linkend="method-com.froglogic.squish.extension.inspectable.findobjects-com.froglog
java.lang.object-java.util.abstractlist">findObjects</link>

Find and add objects that matches query in a list. The search should end after obj is found. This function is used for finding the
occurrence property of an object.

IMPORTANT: This function is subject to change at any time. Use the Inspectable Adapter default implementation, unless there
are good reasons not to.

getChildAt(Point)

publicObjectget ChildAtPointpos PARAMETERS

pos the point to use for hit-testing

return the object that is hit

Squish Manual
7/17

Description copied from interface: <link linkend="method-com.froglogic.squish.extension.inspectable.getchildat-com.froglogic

Return the child hit at position pos. Containers should return the exact child that is hit if it supports recording at that level of
detail (for instance canvasses). The hit child can also be an indirect child, for instance a child of a child of the container. The
coordinates are relative to the wrapped object.

getChildren()

publicObject[]get Children PARAMETERS

return array of all children

Description copied from interface: <link linkend="method-com.froglogic.squish.extension.inspectable.getchildren">getChildrel

Return all children of the wrapped object.

getGlobalBounds()

publicRectget GlobalBounds PARAMETERS

return the bounds as a Rect

Description copied from interface: <link linkend="method-com.froglogic.squish.extension.inspectable.getglobalbounds">getGl

Gets the bounds of this component in the form of a Rect object. The bounds specify this component’s width, height, and location
relative to its container, all in the container’s coordinate system.

getName()

publicStringget Name PARAMETERS

return the name

Description copied from interface: <link linkend="method-com.froglogic.squish.extension.inspectable.getname">getName</lin|

Return the name of this object.

getPropertyValue(String)

publicObjectget PropertyValueStringprop PARAMETERS

prop property name

return value of this property or null

Squish Manual
8/17

Description copied from interface: <link linkend="method-com.froglogic.squish.extension.inspectable.getpropertyvalue-
java.lang.string">getPropertyValue</link>

Return the value of a string property. This function is used for creating an object name for the object map. In the descriptors xml
file, any property name "abc" from getter functions "getAbc()" may be added if the object class is known to Squish. For object
classes not known to Squish, or if there is not a getter function, this function should return the value instead. Properties marked
in the descriptor xml as object, must have a matching Inspectable.

isObjectReady()

publicbooleanisObjectReady

Description copied from interface: <link linkend="method-com.froglogic.squish.extension.inspectable.isobjectready">isObject

Returns true when the wrapped object is ready to receive user input like text for a text field, or button clicks for a button, false
otherwise.

mapFromGlobal(Point)
publicPointmapF romGlobalPointpos PARAMETERS

pos the global coordinate

return the converted point

Description copied from interface: <link linkend="method-com.froglogic.squish.extension.inspectable.mapfromglobal-
com.froglogic.squish.extension.point">mapFromGlobal</link>

Converts the global/screen coordinates x,y into coordinates local to the wrapped object and returns the result as a Point.

mapToGlobal(Point)

publicPointmapToGlobalPointpos PARAMETERS

pos the local coordinate

return the converted point

Description copied from interface: <link linkend="method-com.froglogic.squish.extension.inspectable.maptoglobal-com.froglo

Converts the local coordinates X,y into absolute screen coordinates and returns the result as a Point.

11.3 Interface InspectableFactory

Name

Interface InspectableFactory — A Factory that delivers an Inspectable for custom Objects that it manages.

Squish Manual
9/17

Synopsis
public interface com.froglogic.squish.extension.InspectableFactory {

// Public Static Fields public static final int MAX_PRIORITY = 10;
public static final int MIN_PRIORITY = 1;
public static final int NORM_PRIORITY = 5;

// Public Methods public int priority();
public Inspectable query (Object object);

}

Description

A Factory that delivers an Inspectable for custom Objects that it manages.

Fields

MAX_PRIORITY

publicstaticfinalintMAX_PRIORITY10 The maximum priority that an InspectableFactory can have.

MIN_PRIORITY

publicstaticfinalintMIN_PRIORITY1 The minimum priority that an InspectableFactory can have.

NORM_PRIORITY

publicstaticfinalintNORM_PRIORITYS A good default priority for an InspectableFactory.

Methods

priority()

publicintpriority PARAMETERS

return a value indicating the priority of this factory.

The priority of this factory. Possible values should lie between MIN_PRIORITY (1) and MAX_PRIORITY(10). The priority
NORM_PRIORITY is a good default value to use.

query(Object)
publicInspectableque ryObjectob ject PARAMETERS

object the Object to get an Inspectable for.

return an Inspectable that handles the queried object, otherwise null.

Query this factory for an Inspectable that can handle Object object.

Squish Manual
10/17

11.4 Class InspectableRegistry

Name

Class InspectableRegistry — This class allows registration of factories of extensions that implement Inspectable.

Synopsis
public abstract class com.froglogic.squish.extension.InspectableRegistry {

// Public Constructors public InspectableRegistry();

// Public Static Methods public static final InspectableRegistry getRegistry();
public static final void setRegistry (InspectableRegistry r);

// Public Methods public abstract Inspectable getInspectable (Object obj);
public abstract void register (InspectableFactory factory);

Description

This class allows registration of factories of extensions that implement Inspectable. It is meant to be implemented inside Squish,
and used as part of the extension API in init.

See Also ,

Methods

getinspectable(Object)

publicabstractlnspectableget InspectableObjectobj PARAMETERS

obj the object

return An Inspectable for this object obj, or null if non found

Get Inspectable that for an object.

getRegistry()

publicstaticfinallnspectableRegistryget Regist ry PARAMETERS
return The global registry

Get global registry.

register(InspectableFactory)

publicabstractvoidregisterlnspectableFactory fact ory PARAMETERS
factory the factory to register

Register the factory in the registry.

Squish Manual
11/17

setRegistry(InspectableRegistry)

publicstaticfinalvoidset Regist rylnspectableRegistry r Set global registry.

11.5 Interface ObjectQuery

Name

Interface ObjectQuery —

Synopsis
public interface com.froglogic.squish.extension.ObjectQuery {

// Public Methods public int getIntProperty (String property);
public Object getObjectProperty (String property);
public String getStringProperty (String property);
public boolean hasProperty (String property);
public boolean match (Object obj);
public boolean matchProperty (String property,
String value);

Methods

getintProperty(String)

publicintget IntPropertyStringproperty PARAMETERS
return int value of property

Return property value as int.

getObjectProperty(String)

publicObjectgetObjectPropertyStringproperty PARAMETERS
return resolved object from property value or null if not found

Return property value as object. The value of this property must be a multi-property string or a symbolic name.

getStringProperty(String)

publicStringget St ringPropertyStringproperty PARAMETERS
return string value of property

Return property value as string.

Squish Manual

12/17

hasProperty(String)
publicbooleanhasPropertyStringproperty PARAMETERS
return if real name has this property

Return if the real name contains a property

match(Object)
publicbooleanmat chObjectob j PARAMETERS
return true if the match succeeds

Return if an object matches the query.

matchProperty(String, String)
publicbooleanmat chPropertyStringpropertyStringvalue PARAMETERS
return true if the match succeeds

Return if a property matches a value.

11.6 Class Point

Name

Class Point — Toolkit independent Point class.

Synopsis
public class com.froglogic.squish.extension.Point ({
// Public Fields public int x ;
public int y ;
// Public Constructors public Point ();
public Point (int x,
int y);

// Public Methods public boolean equals (Object obj);
public String toString();

Description

Toolkit independent Point class.

Constructors

Point()

publicPoint Construct a point at origin (0, 0).

Squish Manual
13/17

Point(int, int)
publicPointintxinty PARAMETERS

x X position of the point

y y position of the point

Construct a point at location X, y.

11.7 Class Rect

Name

Class Rect — Toolkit independent Rectangle class.

Synopsis
public class com.froglogic.squish.extension.Rect {

// Public Fields public int height ;
public int width ;
public int x ;
public int y ;
// Public Constructors public Rect ();
public Rect (int x,
int vy,
int width,
int height);
// Public Methods public boolean contains (Point p);
public boolean equals (Object obj);
public String toString();

Description

Toolkit independent Rectangle class.

Constructors

Rect()

publicRect Construct a rectangle with zero width and height at left-top position (0, 0).

Rect(int, int, int, int)
publicRectintxintyintwidthintheight PARAMETERS

x X position of the rectangle
y Yy position of the rectangle
width the width of the rectangle

height the width of the rectangle

Construct a rectangle at left-top position X, y, with given width and height.

Squish Manual
14 /17

Chapter 12

Constant field values

Squish Manual
15/17

Appendix A

Acknowledgments

* This software ships with a copy of the KDE JavaScript engine (KJS) which is copyrighted by the authors of the K Desktop
Environment and Apple Computer, Inc.

 To provide regular expression support on all platforms the JavaScript engine includes the "Perl-Compatible Regular Expres-
sions" library written by Philip Hazel ph10@cam.ac.uk (© 1997-2003 University of Cambridge).

 Support for the test data import from Excel spreadsheets is provided by the portable spreadsheet library Swinder (© 2003-2006
Ariya Hidayat ariya@kde.org) which is part of the KOffice application suite.

* Testing Qt applications on Mac OS X uses portions of the mach_star project (© 2003-2005 Jonathan *Wolf* Rentzsch).

* The XML module available to JavaScript users, as well as the squishidl tool, is based on tinyxml (© 2000-2006 Lee Thomason
leethomason@mindspring.com and others) which is subject to the following license (the ‘zlib license’):

This software is provided ’as-is’, without any express or implied
warranty. In no event will the authors be held liable for any
damages arising from the use of this software.

Permission is granted to anyone to use this software for any
purpose, including commercial applications, and to alter it and
redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this
software in a product, an acknowledgment in the product documentation
would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.

3. This notice may not be removed or altered from any source
distribution.

mailto:ph10@cam.ac.uk
mailto:ariya@kde.org
mailto:leethomason@mindspring.com

Squish Manual

16/17

Appendix B

Index

C

Classes
InspectableAdapter, 5
InspectableRegistry, 10
Point, 12
Rect, 13

F

Fields
MAX_PRIORITY, 9
MIN_PRIORITY, 9
NORM_PRIORITY, 9

findObjects, 2, 3, 5, 6

G

getChildAt, 3, 6
getChildren, 3, 7
getGlobalBounds, 3, 7
getInspectable, 10
getIntProperty, 11
getName, 4, 7
getObject, 4
getObjectProperty, 11
getParent, 4
getProperty Value, 4, 7
getRegistry, 10
getStringProperty, 11

H
hasProperty, 12

I
Inspectable, 1
InspectableAdapter, 5
InspectableFactory, 8
InspectableRegistry, 10
Interfaces
Inspectable, 1
InspectableFactory, 8
ObjectQuery, 11
isObjectReady, 4, 8

M
mapFromGlobal, 4, 8

mapToGlobal, 5, 8

match, 12

matchProperty, 12

MAX_PRIORITY, 9

Methods
findObjects, 2, 3, 5, 6
getChildAt, 3, 6
getChildren, 3, 7
getGlobalBounds, 3, 7
getInspectable, 10
getIntProperty, 11
getName, 4, 7
getObject, 4
getObjectProperty, 11
getParent, 4
getProperty Value, 4, 7
getRegistry, 10
getStringProperty, 11
hasProperty, 12
isObjectReady, 4, 8
mapFromGlobal, 4, 8
mapToGlobal, 5, 8
match, 12
matchProperty, 12
Point, 12, 13
priority, 9
query, 9
Rect, 13
register, 10
setRegistry, 11

MIN_PRIORITY, 9

N
NORM_PRIORITY, 9

(0]
ObjectQuery, 11

P
Point, 12, 13
priority, 9

Q
query, 9

Squish Manual
17 /17

R
Rect, 13
register, 10

S
setRegistry, 11

	Welcome
	Release Notes
	Version 3.4.4
	General
	IDE
	Qt-specific
	Java-specific
	Web-specific
	Tk-specific
	Source Builds

	Version 3.4.3
	General
	IDE
	Qt-specific
	Java-specific
	Web-specific
	Tk-specific
	Mac-specific (Cocoa/Carbon edition)
	Source Builds

	Version 3.4.2
	General
	Qt-specific
	Java-specific
	Web-specific
	Tk-specific

	Version 3.4.1
	General
	Qt-specific
	Java-specific
	Web-specific
	Tk-specific
	Native Win32 Support
	Native X11 Support

	Version 3.4.0
	General
	Qt-specific
	Java-specific
	Web-specific
	Tk-specific
	Source Builds

	Version 3.3.1
	General
	Qt-specific
	Java-specific
	Web-specific
	Source Builds

	Version 3.3.0
	General
	Qt-specific
	Java-specific
	Web-specific
	Mac-specific
	Source Builds

	Version 3.3.0 Beta 1
	General
	Qt-specific
	Java-specific
	Web-specific
	Mac-specific
	Source Builds

	Version 3.2.3
	General
	Qt-specific
	Web-specific
	XView-specific
	Source Builds

	Version 3.2.2
	General
	Qt-specific
	Web-specific

	Version 3.2
	General
	Qt
	Web
	Java
	Tk

	Version 3.1.2
	General
	Qt
	Java
	Web
	Tk

	Version 3.1.1
	General
	Qt
	Java
	Web

	Version 3.1.0
	General

	Installation
	Installing from Binary Packages
	Getting the Correct Package
	Configuring the Package
	Entering the License Key
	Acknowledging the Terms of Use
	Paths for Java™ Settings
	Preferred Scripting Language
	Preferred Web Browser
	Configuration Review
	Concluding the Configuration

	Using the Binary Package

	Installing from Source Packages
	Quick Install
	Configure Switches
	Installation for Testing Pure Qt 4 Applications
	Installation for Testing Qt 3.0 Applications
	Installation for testing Qt/Embedded 2.3 applications
	Installation for testing of Qt/Embedded, QtopiaCore and Qtopia 4.x applications
	Build instructions
	Cross-compilation
	Installation on the target device

	Installation for testing with a single-threaded Qt library
	Installation for testing with a static Qt library
	Installation for testing with a renamed Qt library

	Distributing and Sharing an Installation

	Concepts and Making an Application Testable
	Squish Concepts
	Making an application testable

	Tutorial: Creating the First Test with Squish/Java™
	Creating a Test Suite
	Choosing a Name
	Selecting a Toolkit
	Choosing a Scripting Language
	Selecting the AUT

	Recording a Test
	Creating a Test Case
	Recording User Input
	A Generated Script

	Introducing Verification Points
	Verifying the Outcome using Verification Points
	Selecting Properties to Check
	Injecting a Verification Point Into the Script
	Verification Points in Action

	Conclusion

	Tutorial: Setting Up Automated Batch Testing
	Processing Test Results
	Generating HTML Test Results
	Walkthrough the Script Code

	Automatically Running Tests
	Conclusion

	User's Guide
	Scripting
	Accessing Java™ API
	Finding and Querying Java™ Objects
	Calling Functions on Java Objects
	Accessing Properties of Java™ Objects
	Java™ Convenience API

	Test Statements
	Event Handlers
	Global Events
	Events for Object Types
	Object Events

	Synchronization Points
	Testing Multiple AUTs from a Single Test Script, Working with ApplicationContext
	Starting and Accessing Multiple AUTs
	Working with ApplicationContext

	Testing Java™ applications
	Accessing widgets
	Testing Widget States
	Testing CheckBox
	AWT CheckBox
	Swing JCheckBox
	 SWT Button of type CHECK or RADIO

	Testing List and ComboBoxes
	Testing GEF applications

	Semi-Automatic Tests: Querying User Input
	Automatic Screenshots on Test Failures and Errors

	AUTs and Settings
	AUT Class Name and Classpath for Java™
	AUT Paths and Mapped AUTs
	AUT Path
	Mapped AUT

	Settings Groups
	Setting Environment variables for the AUT
	Testing Java Applets
	Testing Java Web Start
	Wrapping custom Java™ classes
	Writing the .ini file
	Register the .ini file
	Using Squish server
	Using an environment variable

	Configuring the recognition of native Windows controls

	Testcase Templates
	Creating a New Template
	Reusing a Template
	Choosing a Custom Location for Storing Templates

	Object Map
	The Concept of the Object Map
	Squish's Object Map
	Creating an Object Map
	Editing an Object Map

	Improving Object Identification
	Customizing Object Name Generation
	(Insufficient) Object Names
	Defining Property Sets
	Descriptor File Locations
	Descriptor File Format

	Advanced Property Set Definitions
	The Catch-All Descriptor
	Groups of Exclusive Properties
	Object References

	Automated Batch Testing
	Automated Test Runs
	Distributed Tests
	Processing Test Results

	Editing and Debugging Test Scripts
	Script Debugger
	Recording After a Breakpoint
	Recording and Inserting at Cursor
	Spy

	Explore Wrapper Libraries
	Opening a Wrapper Library
	Exploring the Wrappers

	Verification Points
	Object Property Verifications
	Basic Properties
	Item Views and Menus

	Screenshot Verifications
	Creating Screenshot Verifications
	Image Masks

	Scripting

	Shared Data and Scripts
	Storing and Locating Data- and Scriptfiles
	Data-Driven Testing
	Using Test Data in the AUT

	Java Extension API for custom widgets
	Introduction
	Custom canvas Example
	Extension API documentation
	Creating the jar file

	Reference Guide
	Script API
	Equivalent Script API
	Squish API
	Object Hierarchy
	Constructors, Functions and Properties
	Debugging
	Conversions
	Verification Functions
	Test data Handling
	Object Map Handling
	Application Context
	Event Handlers
	Information
	Test Settings
	Miscellaneous

	Java™ Convenience API
	Java™ Hardcoded synthetic Properties
	Python Notes
	Modules
	Language Documentation

	Tcl Notes
	Language Documentation

	JavaScript Notes
	Language Documentation
	Language Core
	File Object
	OS Object
	XML Object
	SQL Object

	Perl Notes
	Language Documentation

	Command Line Reference
	Squishrunner
	--testsuite
	Executing a Test Case
	Recording a Test Case

	--testcase
	--info
	--config
	--spy

	Squishserver
	Squishidl
	Squish IDE
	Command Files

	Environment Variables

	Add-Ons
	Introduction
	Mercury Quality Center™ Integration
	Integration Features
	Installing The Integration Plugin
	Choosing the Quality Center Folder
	Monitoring the Installation Progress
	Post-Installation Registration
	Manual Plugin Registration

	Configuration of the Plugin
	Using the Integration From Mercury Quality Center™
	Creating New Test Cases
	Running Squish Tests

	Using the Integration from the Squish IDE
	Creating a Test Suite in the Mercury Quality Center™
	Importing a Test Suite from Mercury Quality Center™
	Exporting a Test Suite to Mercury Quality Center™

	TPTP integration
	Obtaining the plugin
	Installing the plugin
	Working with the plugin

	Ant integration
	Obtaining the plugin
	Installing the plugin
	Example use of plugin
	Xml reference
	squish:config
	squish:runtest

	CruiseControl integration
	Obtaining the plugin
	Installing the plugin
	Example use of plugin
	Xml reference
	squishtest

	Maven integration
	Obtaining the plugin
	Installing the plugin
	Example use of plugin
	Xml reference
	runtest

	Frequently Asked Questions
	I Java™ Extension API Reference
	Package com.​froglogic.​squish.​extension
	Interface Inspectable
	Class InspectableAdapter
	Interface InspectableFactory
	Class InspectableRegistry
	Interface ObjectQuery
	Class Point
	Class Rect

	Constant field values
	Acknowledgments
	Index

