
 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

1 
 

 

 

 

Visual WebGui 

Technology Overview 
 

Rich Internet, Cloud & SaaS Applications (RIA) 

Platform 

 

Version 1.0.2 

 

 

By: Itzik Spitzen, VP R&D 

Development Department 

Gizmox LTD. 

 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

2 
 

Table of contents 

1. Abstract.................................................................................................................................................. 4 

2. What is Visual WebGui? ......................................................................................................................... 5 

3. General Overview .................................................................................................................................. 7 

4. Technical Overview .............................................................................................................................. 10 

4.1 Visual WebGui position in Microsoft’s technologies stack ......................................................... 10 

4.1.1 Introduction ....................................................................................................................... 10 

4.1.2 Overview ............................................................................................................................ 10 

4.1.3 Summary ............................................................................................................................ 12 

4.2 Command level virtualization ..................................................................................................... 12 

4.2.1 Introduction ....................................................................................................................... 12 

4.2.2 Overview ............................................................................................................................ 13 

4.2.3 Summary ............................................................................................................................ 16 

4.3 Security ....................................................................................................................................... 17 

4.3.1 Introduction ....................................................................................................................... 17 

4.3.2 Overview ............................................................................................................................ 18 

4.3.3 Summary ............................................................................................................................ 20 

4.4 Performance ............................................................................................................................... 21 

4.4.1 Introduction ....................................................................................................................... 21 

4.4.2 Overview ............................................................................................................................ 22 

4.4.3 Summary ............................................................................................................................ 27 

4.5 Scalability and deployment economy ......................................................................................... 27 

4.5.1 Introduction ....................................................................................................................... 27 

4.5.2 Overview ............................................................................................................................ 27 

4.5.3 Summary ............................................................................................................................ 31 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

3 
 

4.6 Multiple Presentation Layers ...................................................................................................... 32 

4.6.1 Introduction ....................................................................................................................... 32 

4.6.2 Overview ............................................................................................................................ 32 

4.6.3 Summary ............................................................................................................................ 36 

4.7 WinForms API Development and Migration ............................................................................... 36 

4.7.1 Introduction ....................................................................................................................... 36 

4.7.2 WinForms API Development Overview .............................................................................. 36 

4.7.3 Migration Overview ............................................................................................................ 44 

4.8 Cloud optimized architecture ..................................................................................................... 44 

4.8.1 Introduction ....................................................................................................................... 44 

4.8.2 Visual WebGui for the Cloud Overview .............................................................................. 45 

4.8.3 Summary ............................................................................................................................ 47 

4.9 Controls & Themes Design and Extensibility Model ................................................................... 47 

4.9.1 Introduction ....................................................................................................................... 47 

4.9.2 Themes & Control Level Designer Overview ...................................................................... 48 

4.9.3 Integrated 3
rd

 Party Controls Wrapper Overview .............................................................. 51 

4.9.4 Summary ............................................................................................................................ 52 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

4 
 

1. Abstract 

The following document will explore the basic technology aspects presented by Visual WebGui 

solution. 

Document structure 

The first subject “What is Visual WebGui?” provides the initial background on Visual WebGui, its 

features, benefit and usages scenarios. 

The second subject “General Overview” explores some technology aspects of Visual WebGui with 

deep dive approach on a highlight level. 

The third subject “Technical Overview” deep dives into the technological aspects.  Each reference 

explored in this document will contain the following parts: 

 Introduction – a general description of the explored aspect. 

 Overview – a technological overview of the aspect  

 Summary – Summary and further relevant considerations. 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

5 
 

2. What is Visual WebGui? 

Visual WebGui is a platform for rapid development, quality & secured deployment and easy migration 

of desktop applications & abilities to the web. It is incorporated with an SDK integral to Microsoft 

Visual Studio, enabling the most productive, secured and responsive RIA (Rich Internet Applications). 

 

 

 

 

 

 

 
Fig. 1 

Server centric architecture 

Visual WebGui executes the business logic on the server and virtualizes the UI to its clients (plain 

browsers). In addition it introduces a unique approach for decoupling the application and the logics 

from the presentation layer. Having this unique separation between the application and the UI 

rendering enables support for multiple presentation layers simultaneously and with the same source 

code (currently available presentation layers are plain browser DHTML, Silverlight and smart client 

WinForms; in the near future mobile technologies WPF and Flash will be supported as well). 

Standard development tool 

Visual WebGui is coded using standard .NET languages (C#.NET/VB.NET) and utilizes the productive 

proven WinForms development paradigm to develop generic web applications including WYSIWYG 

forms designer. 

Empty Client 

Visual WebGui presents the unique approach of an “Empty Client” which is a paradigm shift that 

provides the following benefits: 

 Military grade security. 

 No code generation; nor at coding time neither at runtime. 

 Smallest footprint on the client (~200kb). 

Rapid 

Development 

Tool 

Migration of       

Desktop to    

Web 
 

Applications 

Deployment 

Platform  



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

6 
 

 No installation on the client.  

 Accessible from any plain browser. 

 

Web / ASP.NET based technology 

Visual WebGui replaces the pipeline protocol and creates a new pipeline; however purely based on 

the standard ASP.NET technology. Visual WebGui uses ASP.NET including its base objects (Server, 

Session, Application, Request and Response), deployed on standard IIS (no server installation 

required) and the code is parsed by the standard .NET CLR. 

This fact constitutes the following benefits: 

 Interactive with any ASP.NET application (including mutual containment) 

 Wrap in any ASP.NET control in a click of a button 

 Interact with any other web technology 

 Reduce risks in terms of infrastructures and use known and proven MS underlying 

technologies. 

 Deployment is as simple as copy & paste 

 

Open RAD 

Utilizing WinForms as application development paradigm positions Visual WebGui as a RAD, however, 

due to the internal structure of Visual WebGui it enables extending the library by adding new 

controls, editing the look & feel of the UI through the Themes mechanism and customizing the 

existing set of controls utilizing OOP inheritance. 

Based on plain web principles and no proprietary client components provide the freedom to extend 

the library utilizing web development skills. In the near future, a rapid controls designer will be 

shipped as an integral part of the development tools enabling visualize customization and 

adjustments.  



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

7 
 

3. General Overview 

This section will specify the different aspects which will be explored within this document: 

Visual WebGui in Microsoft’s technologies stack 

Technologically Visual WebGui can be best describes as an extension to ASP.NET for application 

development and deployment. 

As such the best way to start over viewing the solution would be by exploring Visual WebGui position 

in Microsoft’s technologies stack. 

Command level virtualization 

Being a server centric architecture; Visual WebGui presents a unique mechanism of balancing 

between the server state and the client UI rendering state at any given point of time.  This aspect is 

crucial in the path to understanding the following other aspects: 

 Security  

 Performance  

 Scalability and deployment economy 

 Multiple Presentation Layers 

Security 

Visual WebGui presents the “Empty Client” model, a paradigm shift in which the client downloads a 

kernel of plain and static code which is responsible for further communication with the server. This 

concept is secured by design as the client code cannot control the server behavior under any 

circumstances. 

Visual WebGui does not solve the entire issues spectrum of securing your applicative environment, 

however, by shifting the issue to more comfort zones which are the middleware communication 

between the client and the server and securing the server, the security problem becomes solvable, 

controllable and reach military grade easily. 

Performance  

Being a server centric architecture, Visual WebGui is an immediate “suspect” for being less 

responsive or for suffering from high latency.  This suspicion is far from being true, on the contrary 

Visual WebGui has proved to be more responsive than pure client side solutions due to the fact that 

Visual WebGui extremely reduces the CPU usage on the server, optimizes the communication 

protocol between the client and the server to a degree never realized on web before, optimizes the 

UI rendering and leverages the client power when it can create a better responsive experience. With 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

8 
 

this mechanism Visual WebGui offers an optimal balance of communication between the server and 

the client.  

Scalability and deployment economy 

Visual WebGui is fully scalable and redundant across web farms due to a unique capability of enabling 

serialization of the entire state model into a floating state server (preferably cluster DB based state 

server). 

A single IIS server can server between 200-400 concurrent users and even more since it reduces the 

CPU usage dramatically.  

Multiple Presentation Layers  

The outcome of Visual WebGui architecture is a generic object model that is completely separated 

from UI rendering. This architecture which is often described as decoupled presentation layer 

provides the ability to render the UI and consume the application practically from any device which 

can receive and send XML. 

The application itself runs on the server and acts on objects containing only metadata and data and 

the client only renders the UI as reflected from the current application state on the server. 

WinForms API Development and Migration 

The fact that Visual WebGui flattens web development to a single layer, made it possible to select the 

most productive and intuitive WYSIWYG development paradigm which is WinForms. 

Visual WebGui mimics WinForms API in order to provide the entire toolset available for desktop 

application development including Data-Binding, Layout options (anchoring, docking etc.) and a visual 

WYSIWYG designer. 

Due to the similarity of Visual WebGui API to that of WinForms API, it is quite a straightforward and 

natural process to transform any native WinForms Application to Visual WebGui and by that provide 

an application which can be consumed either as a desktop application or a plain web application. 

Cloud optimized architecture 

Visual WebGui enables the heaviest organization’s desktop apps on the cloud with no UI 

compromises and at no-cost. 

Being a highly optimized server centric architecture; Visual WebGui has high value and support the 

model of cloud computing scenarios in terms of compatibility and optimizations considerations.  

Why does it match the cloud? 

1. Plain ASP.NET, complete .NET CLR parsed solution. 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

9 
 

2. Supports state serialization and seamless scalability. 

What are the optimizations for the cloud? 

1. Highly optimizes the network usage and lowers CPU usage. 

2. Highly optimized state saving and state-server interaction. 

3. Eliminates the web limitations for the cloud. 

Controls & Themes Design and Extensibility Model 

Being pure web architecture, Visual WebGui utilizes the web server and client technologies 

underneath; therefore, it is possible to create new controls based on the same concepts and set of 

tools in Visual WebGui.  

The various extensibility & customization options will be explored further in this section: 

1. Theme designer – enables visual point & click wise editing of themes. 

2. Control level designer – enables visual point & click wise editing & creation of new controls 

(inherited or from scratch) 

3. Wrapping in new ASP.NET based controls (i.e. Infragistics, Telerik, deveXpress, ComponentOne 

etc.) 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

10 
 

4. Technical Overview 

4.1  Visual WebGui position in Microsoft’s technologies stack 

 
Fig. 2 

4.1.1 Introduction 

A Visual WebGui project is basically an ASP.NET flavored project type which behaves exactly the same 

as ASP.NET in terms of coding language and compilation products. 

 

4.1.2 Overview 

The compilation product is an assembly accompanied by a web.config configuration file and the 

runtime result is based on the ASP.NET essential infrastructure: 

 Session object – In a Visual WebGui application, the Session object plays a very important 

part. It contains a new container unit defined by Visual WebGui and known as the Context. 

The Context is the highest object in the hierarchy represented by a Visual WebGui 

application and is functioning as semi-global scope of one instance of the application. 

One of the channels through which Visual WebGui application can communicate with its 

ASP.NET environment is the Session object. 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

11 
 

 

 Application object – Functions exactly the same as in ASP.NET which means it’s the global 

scope of the application and can be used to consolidate global application data if necessary 

(although static members can function just as well for this specific cause).  

 

 Server object – is accessible from Visual WebGui applications and provides the same services 

as in standard ASP.NET applications.  

 

 Response/Request – are normally overridden by Visual WebGui providing a standard and 

single pipeline to the server, however, Visual WebGui provides the Gateway mechanism 

(which is explored more deeply further in this document) to take control of those objects 

and use them according to the custom needs of the application (for example: retrieving 

images from database, creating resources on the fly etc). 

Mapping requests to objects is done by Visual WebGui Router object which is defined within the 

httpHandlers section in the web.config file: 

    <system.web> 

    <httpHandlers> 

<add verb="*" path="*.wgx" 

type="Gizmox.WebGUI.Server.Router,Gizmox.WebGUI.Server,Version=2.

0.5701.0,Culture=neutral,PublicKeyToken=3de6eb684226c24d" />… 

 

Unlike ASP.NET and due to the fact that Visual WebGui uses live state objects on the server, there 

isn’t any actual file which defines a Form object; Forms are object which inherit from 

Gizmox.WebGUI.Forms.Form object and is mapped by this Visual WebGui Router object to be 

handled by an instance of an object of the suitable type. 

Entry point forms which are called “Applications” are defined within the web.config file and define 

the set of forms which are browse-able directly: 

<WebGUI> 

    <Applications> 

      <Application Code="MainForm" Type="MySample.MainForm, MySample"/> 

      <Application Code="Form2" Type="MySample.Form2, MySample"/> 

    </Applications>… 

 

Visual WebGui Context initialization scenario (as described in figure 3): 

1. The client approaches the server for the first time. 

2. The IIS server infrastructure discovers that no Session exists for this client and creates an IIS 

Session. 

3. ASP.NET native ISAPI filter takes over the request and creates the basic ASP.NET infrastructure on 

the server. 

4. ASP.NET Visual WebGui HttpHandler definition causes ASP.NET ISAPI filter to hand over the 

request to Visual WebGui a new Router object. 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

12 
 

5. The router detects a “Preload” request and sends back the initial HTML and the kernel resources 

which are responsible for further communication with the server and UI rendering. 

 

Fig. 3 

 

4.1.3 Summary 

Visual WebGui utilizes the IIS and ASP.NET infrastructure and depart from ASP.NET only on the 

pipeline. The Context object is an application instance global scope and it is a Session resistance 

further dividing it to a specified scope. 

  

4.2  Command level virtualization 

 

4.2.1 Introduction 

Visual WebGui virtualizes the application state from the server to the client using a unique protocol 

of events and commands. 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

13 
 

Think of a bitmap based virtualization solution such as Citrix or Remote-desktop, even though highly 

optimized it is still transferring a picture; the client plays the minor part of showing a bitmap and 

replacing it when necessary. 

Now, the natural evolving paradigm would be having the client “understand” better in terms of UI yet 

having the application perform the business logic and manage sensitive data on the server. Visual 

WebGui is able to utilize the client strength and at the same time leverage the server’s accessibility to 

data and security. 

 

4.2.2 Overview 

Visual WebGui pipeline balance flow 

 The client gets the kernel code only once – then it’s cached and reused. 

 Events are sent to the server only when necessary 

o Events that are not handled by the server are queued on the client. 

o A mechanism of unique events prevent sending multiple events which are causing a 

single result (for example, only the last text within a textbox is sent to the server as 

long as the “KeyPress” event is not handled by the application) 

o Event and command sizes are limited to 1kb and never exceed the HTTP packet size. 

 The server gets the last event queue, and then it executes the applications logic according to 

the events which are executed chronologically. 

 As a result, the current application instance might change the UI accordingly then minimal 

commands are sent back to the client kernel in order to cause the client to render the 

relevant parts of the UI and add/remove/change data.  

  
Fig. 4 

Client kernel structure 

 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

14 
 

 XSLT - Visual WebGui uses client rendering capabilities as offered by the target device, 

therefore, when using a plain HTML device (i.e. web browsers) the best choice was to utilize 

XSL transformation in order to perform client side HTML rendering. Each of the Visual 

WebGui controls and general layout behaviors and capabilities such as Dialogs, Docking, and 

Anchoring etc. are represented in XSLT. 

 

When sent to the client, one large XSLT is created of all the XSLT parts of controls and 

general purpose by two mechanisms which are part of Visual WebGui core library called 

“Collectors” and “Compiler”. The static XSLT is then cached on the client and enables any 

further render of the UI (either partial or full UI elements rendering). 

 

 JavaScript – as mentioned before, the client behavior in the HTML presentation layer is 

performed by JavaScript code. Each of the controls in Visual WebGui has its own JavaScript 

piece of code and also many general behaviors such as: 

o Dialog layers management 

o AJAX communication with the server 

o Drag & Drop mechanisms 

o General events handling  

o Events optimizing and queuing 

The “Collectors” mechanism is collecting all the JavaScript files into one large file and then 

the “Compiler” rearranges and compresses this part of the kernel in order to create a highly 

optimized kernel part. 

This compressing mechanism can be turned off in case we need to debug client side 
scripting, this is done by switching the “DisableObscuring_Switch” on (0-Off, 1-On): 
 
  <system.diagnostics> 

<switches> 

<!-- 

0 - Disabled 

1 - Enabled 

--> 

<add name="VWG_DisableObscuringSwitch" value="0" />… 

 

Note: it is strongly recommended to switch this switch back on when deploying the 

application. 

 CSS – is the part which is responsible for general styling and exists in most of the controls 

and in some general scope styling mechanisms. 

 

 

Static Resources 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

15 
 

The static resources mechanism enables the system to cache the entire set of resources (JavaScript, 

CSS, XSLT and any other static images or data of any kind) of the application as static cached files 

within the web server’s directory. 

Switching Static Resources to “On” can be done either through the web.config file or through the 

project properties and results in caching of the entire resources and further optimize those resources 

at runtime. 

<WebGUI> 

    <StaticResources Mode="On"/>… 

 

Note: it is strongly recommended to develop with this flag off and deploy with this flag on. 

 

Private Version 

The private version is a value which helps Visual WebGui decides whether it should grab new 

resources from the server dynamically or it can use the old cached ones. When upgrading a version 

successfully, the internal cache version is changed within the core library automatically; therefore, 

this value should not change in this case. However, when changing resources as part of the 

development process (I.e. creating themes or custom controls) this value should be advanced 

whenever a change is made in order to cause Visual WebGui to retrieve a new version of resources 

and avoid using old cached files. 

Changing Private Version value can be done either through the web.config file or through the project 

properties:  

<WebGUI> 

<PrivateVersion Value="2"/>… 

 

Icons Preloading 

As part of the general optimization of resource management, Visual WebGui offers a mechanism for 

preloading icons when the client first approaches the server. 

Switching Icons Preloading to “On” can be done either through the web.config file or through the 

project properties and results in loading and caching icons on the client machine when it first 

approaches the application. 

<WebGUI> 

<IconsPreloading Value="On"/>… 

Note: using this flag is application dependent; in case the application contains a very large number of 

icons and many of them are inaccessible for some users, there is no point in preloading all of them 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

16 
 

since some of them are not used. In any other case, switching the Icons Preloading to “On” will cause 

a slight latency on first access, however, will result in better performance from this point on since 

images are now cached on the client. 

Inline Windows 

Visual WebGui implements 2 different approaches for windows handling: 

1. Non-inline windows – Internet Explorer (IE) dialogs based – which are separate windows of the 

Internet Explorer. 

2. Inline windows – dialogs which are drawn using floating div elements within the client area of the 

browser. 

When using non-IE browser, the default behavior will always be Inline-Windows, and with IE the 

default would be Non-inline windows, unless configured otherwise: 

 <WebGUI> 
<InlineWindows Value="On"/>… 

Setting inline windows switch to “On”, either through the web.config file or through the project 

properties forces the use of Inline-Windows in IE as well. 

Behaviors differences: 

Naturally, inline windows are limited to the client area of the browser, therefore, they do not appear 

in the task bar when minimized or managed as normal OS windows. Except for that there should be 

no difference in using those windows type. 

Inline-Windows are fully customizable in terms of looks and behaviors as they are entirely drawn and 

controlled by the client code and not affected by any browser dialog management. 

G-Zip Compression 

In addition to the internal compressed mode of the client kernel code, a G-Zip compression mode can 

be applied either through the web.config file or through the project properties: 

<WebGUI> 

<GZipCompression Value="On"/>… 

 

4.2.3 Summary 

Visual WebGui Virtualization model: the static client kernel and the server are constantly balancing 

each other. The client sends events to the server and in return, the server sends update commands 

back to the client. The client is responsible to re-render the UI when needed. 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

17 
 

Kernel parts are assembled of plain HTTP formats: XSLT, JavaScript & CSS and are compressed to the 

minimal size of ~200kb. 

There are some customizable switches which are tuning this process, the cache level and enables 

optimizing for the various usages. 

 

4.3  Security 

 

4.3.1 Introduction 

Using today’s offered technologies and more specifically .NET, we are offered many great solutions 

and methodologies which help us to understand how and using which tools we can secure our 

applications. 

The most painful security issues aren’t in using standard security solutions to secure our server’s farm 

or to secure the messages sent between the client and the server. Those security tasks can be quickly 

and efficiently achieved by using today’s firewall capabilities and other secured server’s farm 

solutions and by securing the transferred data using HTTPS, WCF and other great solutions. 

The most problematic issues today which gets worst when it comes to thick clients as fat AJAX clients, 

Flash/Flex and Silverlight based clients are that the more broad and accessible the system becomes 

the less we can control or even know who are our clients whereas thick clients hold sensitive data 

which is accessible to those clients. 

Being a paradigm shift in form of Empty Client, Visual WebGui clears-up entirely those issues due to 

the fact that nothing except for UI commands and one static kernel is downloaded to the client. This 

means that: 

1. No sensitive/hidden data is sent to the client. Neither the infrastructure nor the developers can 

perform security violations by sending sensitive data to client machines. 

 

2. The server exclusively handles interaction with data and other services. 

 

3. The client is responsible to render UI and send events to the server; in any case it can never 

control the server’s behavior. 

 

4. Each client request is validated by the single layer server code which constitutes a single point 

access control center. 

 

 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

18 
 

Standard web applications: 

 
Fig. 5 

With Visual WebGui: 

 
Fig. 6 

4.3.2 Overview 

Without diving into details, the Visual WebGui security model should be quite clear from the 

introduction part alone. The only  issue that needs further clarification is a key claim which was 

specified above  the fact that Visual WebGui client cannot change the server behavior whatsoever. 

The following flow which describes a Visual WebGui application explains why the key-claim is true: 

Flow Step 1: The first time the client approaches the server it downloads a small amount of 

kernel code which is constructed of: 

a. JavaScript– responsible for the client behaviors and communication with the server. 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

19 
 

b. XSLT – responsible for the UI layout including the HTML rendering of the entire set of 

controls. 

c. CSS  – responsible for UI styling 

The kernel is sent in a compressed mode and weights about 200kb. Furthermore, it is cached on 

the client and on the server statically and will never change from this point on.  

Security aspects: no code generation at runtime, the kernel is well known and  

static. 

Flow Step 2: The client renders the basic HTML to the screen and from that point on it acts like a 

smart AJAX client which consumes a UI service from the server only. 

Security aspects: only UI essential data is sent to the client, no applicative or sensitive data. 

Flow Step 3: Highly optimized events are sent to the server whenever a client performs a set of 

action that should result in executing server code. Events metadata are constructed of UI object 

Id and the action performed. 

Security aspects: events are reflecting UI behavior and never applicative logic which is 

uniquely handled by the server. 

Flow Step 4: The server executes the event handler and sends back highly optimized UI 

instructions to the client. The instructions are reflecting the deltas of changes between the last 

balanced state and the new state. 

Security aspects: server instructions are reflecting UI changes and presented data changes, 

however, will never contain hidden applicative logic or data which is uniquely kept and 

handled by the server. 

Flow Step 5: The client accepts the UI changes instructions and re-renders the parts which have 

changed according to the last server execution of logics. 

Security aspects: the client is responsible to render UI and that is the only aspect which is 

affected by application logics. 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

20 
 

Fig. 7 

 

4.3.3 Summary 

1. Client security-holes which are commonly created by either applicative or sensitive data which is 

kept on the client or even simply sent to the client are impossible by design (as illustrated in 

figures 5 and 6). 

 

2. Client scripting cannot control the server behavior as "by design", simply because the 

responsibilities of the client are limited to: 

 

a. Render the UI at the control level – meaning that utilizing the XSLT, the client kernel can 

render: 

o The entire screen – this happens only when the UI is entirely replaced. 

o Specific control (thoroughly) – this happens when the control cannot be partially 

drawn to adjust to its new given state.  

o Control Part – this is the most common scenario, in this case only the part of the 

control which has changed is drawn. 

This responsibility is pure client side and cannot affect any server behavior. The only 

server’s requests which can be caused by such client action are when the rendering of 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

21 
 

whatever is rendered items require resources (i.e. images, or dynamic data). Those 

requests are uniquely controlled by the server code. 

b. Send client events to the server (yet the server has the freedom to decide which are 

valid events and parameters according to the current user’s  credentials) 

o Those are predefined events which are exclusively handled by predefined handlers 

and can never affect other parts of the code or change the server behaviors. 

o Any non-formatted data which will be added to those requests will be filtered by 

the server and might invalidate the entire request. 

o Replaying requests does not affect the server behavior due to a unique timestamp 

mechanism. 

 

3. The server centric , event-driven design results in an enterprise-level security & very high level of 

fine-grained control over precisely what the user is seeing - all using one programming language - 

standard .NET (C#, VB, etc.) 

 

4. Visual WebGui does not imply to present an ultimate solution for all the security issues, however, 

through the Visual WebGui communication protocol it will be impossible to hack a web 

application. This means that assuming https and/or any other incredible secured communication 

solutions (i.e. WCF) are used to secure the HTTP communication and that the OS and DB are safe 

on the server side, Visual WebGui application is thoroughly safe. 

4.4  Performance  

 

4.4.1 Introduction 

Server centric architecture is mostly examined performance wise by four major factors: 

1. The amount of data sent and received from the client to the server and vice versa. 

2. The intensively of which information transportation is required between the client and the 

server. 

3. The server’s service capacity; in other words the count of users which can be intensively 

served (often called concurrent users) by one server. 

4. The ability to leverage client machine’s power in order to increase responsiveness. 

Visual WebGui attends those 4 major issues by design; a short reference of the architecture highlights 

which affect the 4 above: 

1. Visual WebGui uniquely optimizes the protocol in a way that most of the requests and 

responses are less than 1kb. 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

22 
 

2. The client is always the initiator of requests to the server as in standard web applications; 

the events mechanism is highly optimized and results in the minimal interaction on a server 

centric application run. 

3. Having a full state of application on the server, Visual WebGui dramatically lowers the 

amount of construction and disposals of objects; this fact alone reduces the CPU usage 

dramatically and enables a single server to serve between 200-400 concurrent users. 

4. Visual WebGui leverages the client’s power in order to render the UI, create a responsive 

and dynamic UI and perform client-client actions which do not require interaction with the 

server. 

4.4.2 Overview 

Figure 8 illustrates the runtime paradigm which is presented by Visual WebGui. 

 
Fig. 8 

The following parts of the runtime model of Visual WebGui directly affect the runtime performance 

of Visual WebGui applications: 

 UI Virtualization is performed by transferring highly optimized commands and events 

metadata from the client and from the server, for example, the following negotiation 

represents the scenario of clicking a button and as a result, opening a message-box with 

some text, 3 buttons (Yes, No, Cancel), a question icon and focus on the OK button: 

 

AJAX Request: 

- <ES LR="633704779264797648"> 

  <E SR="1" TP="GotFocus" />  

  <E SR="1" TP="Click" X="43" Y="12" />  

  </ES> 

 

The above request contains the absolutely minimal data required in order to update the server 

with what happened on the client: 

LR – Request identification including timestamp and internal data required for  

further optimization mechanisms. 

SR – Registered control Id. 

TP – event type  GotFocus – tells the server that the button got focus. 

../../../Local%20Settings/Documents%20and%20Settings/itzik.spitzen/Desktop/request.xml


 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

23 
 

TP – event type  Click – tells the server that the button was clicked on coordinates (43, 12). 

 

AJAX Response: 

<WG:R LR="633704779298387528" AF="10" FC="8" xmlns:WC="wgcontrols" 

mlns:WG="http://www.gizmox.com/webgui"> 

- <WG:F Id="2"> 

- <WG:F H="106" W="410" RD="1" TX="Confirm" TP="ModalWindow"  

FBS="3" FSP="2" WS="0" S="0" FCB="1" Id="10" F="1" PA="10"> 
  - <WC:TLP Id="6" TI="1" F="1" D="B" H="24" TX=""> 

     <TLC W="50%" />  

     <TLC W="76px" />  

     <TLC W="6px" />  

     <TLC W="76px" />  

     <TLC W="6px" />  

     <TLC W="76px" />  

     <TLC W="50%" />  

    <TLR H="24px" />  

<WC:B Id="9" E="1" RS="0" CS="5" RSP="1" CSP="1" TI="3" F="1" TX="Cancel" 
TA="MiddleCenter" TIR="0" L="0" T="0" H="23" W="75" A="LT" />  
<WC:B Id="8" E="1" RS="0" CS="3" RSP="1" CSP="1" TI="2" F="1" TX="No" 
TA="MiddleCenter" TIR="0" L="0" T="0" H="23" W="75" A="LT" />  
<WC:B Id="7" E="1" RS="0" CS="1" RSP="1" CSP="1" TI="1" F="1" TX="Yes" 
TA="MiddleCenter" TIR="0" L="0" T="0" H="23" W="75" A="LT" />  

        </WC:TLP> 

- <WC:P Id="5" TI="2" F="1" TX="" D="L" W="50"> 

<WC:PBX Id="3" TI="-1" F="1" L="0" T="0" H="32" W="32" A="LT" IMS="0" 
IM="Skins.Question.GIF.wgx" />  

  </WC:P> 

    <WC:L Id="4" TI="3" F="1" SA="0" TX="Are you sure?" TA="TopLeft" D="F" />  

       </WG:F> 

               </WG:F> 

          - <CMDS> 

                <IM MM="Controls_Focus" ARG0="8" />  

                </CMDS> 

         </WG:R> 

 

The above response contains thorough instructions for the client kernel of what should be 

rendered as a result of clicking that button.  

In the above sample we may emphasize few important elements: 

o WG:F – Stands for “form“. It can be observed that the xml contains 2 forms – representing 

the main form and another open form inside (which is the message box form). 

o WC:TLP – Stands for table layout panel control which is a very important UI element which is 

responsible in this case to instruct the client to place a UI element which will create the 

reflected message-box layout. 

o WC:B – Stands for a button control with all of its non-default properties (such as text, 

location and size). 

../../../Local%20Settings/Documents%20and%20Settings/itzik.spitzen/Desktop/response.xml
../../../Local%20Settings/Documents%20and%20Settings/itzik.spitzen/Desktop/response.xml
../../../Local%20Settings/Documents%20and%20Settings/itzik.spitzen/Desktop/response.xml
../../../Local%20Settings/Documents%20and%20Settings/itzik.spitzen/Desktop/response.xml
../../../Local%20Settings/Documents%20and%20Settings/itzik.spitzen/Desktop/response.xml


 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

24 
 

o WC:PXB – Stands for a picture-box control containing the image (the actual picture resource 

will be grabbed through Visual WebGui’s resource management right after this response will 

be processed by the client kernel and then cached on the client) 

o CMDS – Stands for command which should be executed after rendering the UI, in this case 

the command is Control_Focus which will result in focusing the “No” button in this case. 

 

Any other UI state balancing option or virtualization would have transferred either a bit map or 

much less optimized state, this is exactly the reason why Visual WebGui is the undoubted winner 

in a comparison performed by Mr. Wiktor Zychla, Microsoft MVP and performance specialist (as 

demonstrated in figure 9 bellow). 

 

  

 
Fig. 9 

 

 Visual WebGui server holds the UI updated state at all times (up until disconnection); The state 

contains the currently relevant UI tree of controls, for example, if the screen currently shows a 

Form with a TreeView, a ListView and a few Buttons, the controls tree will look something like 

that: 

o VWG Application Context 

 Form (form-name, etc) 

 TreeView (text, location etc) 

o TreeNode1 (text, image etc) 

o TreeNode2 -“- 

 TreeNode2_FirstChild  

… 

http://netpl.blogspot.com/2007/07/tiny-aspnet-ajax-framework-contest.html


 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

25 
 

 ListView (location, text etc)  

o ListViewColumns Collection 

 ListViewColumn1 (text, width etc) 

 ListViewColumn1 (text, width etc) 

… 

o ListViewItems Collection 

 ListViewItem1 

 ListViewSubItem1 (text etc) 

 ListViewSubItem2 (text etc) 

… 

 Button1 (location, text etc) 

 Button2 (location, text etc) 

Note: except for the controls tree, when developed correctly using all best practices of web 

development, there should not be allot more than that in the application context.  

 

As opposed to any stateless or semi stateless web applications such as ASP.NET, when the client 

sends events, the state already exists within the session as described above, and it is ready for 

executing any application logic on it. This fact dramatically reduces the amount of memory 

allocations, objects initializations, object disposals and garbage collector activity. This fact lowers 

the CPU usage accordingly. 

 

The fact that the CPU usage is very low directly reflects the capacity of the web server and its 

ability to fast serve all the requests. As shown in figure 10, compared to other AJAX frameworks 

and even plain JavaScript, Visual WebGui serves larger number of users faster (the comparison 

was performed by Mr. Wiktor Zychla, Microsoft MVP and performance specialist). 

 

http://netpl.blogspot.com/2007/07/tiny-aspnet-ajax-framework-contest.html


 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

26 
 

Fig. 10 

 
 Client behaviors and client-client actions are uniquely performed by the client: 

 

o Behaviors such as scrolling, state images and styles (such as hover) etc are handled 

uniquely by the client.  

 

o Critical events are those events that when they occur they should immediately be 

raised to the server; any non-critical event (majority of the events are non critical), 

are handled uniquely by the client in places where the developer did not choose to 

perform any logic in response. In order to keep the server state balanced, those 

events are queued and sent the next time any other event is raised to the server. 

 

o Unique events are queued only once, for example ListView selected index changed 

will be transferred to the server only once (the last selected index) even if the client 

changed his selection multiple times (unless the developer has chosen to handle 

this event on the server). 

 

o The option of performing client to client invocation enables the developer to apply 

application behaviors on the client without having to send them back to the server. 

For example, editing text in a RichTextEditor control, enables applying text styles 

(such as bold, italic and changing font) on the client side without raising events to 

the server and only the final result is transferred to the server. 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

27 
 

The optimizations above helps Visual WebGui leverage the client machine’s power and present a 

responsive and rich application. 

 

4.4.3 Summary 

Although Visual WebGui is a server centric architecture it optimizes the communication and the 

balance between client and server responsibilities and provides low latency and excellent 

performance. In highlights level, the following factors are producing this outcome: 

 Low CPU usage on the server side low negotiation establishment time due to the existence of 

valid context at all times. 

 

 Highly optimized communication protocol based on compressed deltas metadata and minimal 

commands. 

 

 Leveraging the client machine power to minimize communication and throughput. 

 

 

4.5  Scalability and deployment economy 

 

4.5.1 Introduction 

One of the important enterprise tests of technology qualification is scalability. The fact that Visual 

WebGui is a server centric architecture makes it far more curtail to explain why and how Visual 

WebGui solutions are scaled. 

 

4.5.2 Overview 

When approaching to horizontally scale state-full web applications, the following 3 major load 

balancing options are available which are intended to increase the availability and the concurrent 

capacity to serve large number of users: 

 STATIC LOAD BALANCING: IP/Machine sticky – each server is responsible to serve a pre 

defined group of machines. 

o Pros:  



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

28 
 

 There is no need to plan the development process to support this 

approach or to have any sort of specific server side support. 

o Cons: 

 No redundancy; upon server crash a group of workstations will not be able 

to continue working until the configuration is manually changed.  

 Can easily create a non balanced load on the servers. 

 Increasing or decreasing the number of clients, requires re-configuring the 

load balancer manually. 

 
Fig. 11 

 

 DYNAMIC SESSION BASED: Session sticky – the static link between a workstation and a server 

is done upon connection establishment; in this option, the load balancing device selects the 

most available server and connects the client to it. Once the connection is established, the 

client will be working against the assigned server until disconnected. 

o Pros: 

 There is no need to plan the development process to support this 

approach or to have any sort of specific server side support. 

 Increasing or decreasing the number of clients does not require re-

configuring the load balancer manually and will take effect right after the 

next connection establishment. 

o Cons: 

 No full redundancy; upon server crash a group of workstations will be 

disconnected and will require reconnecting the server farm. 

 Can create unbalanced load on the servers - the load balancing mechanism 

is based on the moment of when the load balancer device performs the 

load test. This fact can create severe non-balanced situations. 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

29 
 

 

 
Fig. 12 

 

 FULLY DYNAMIC: Call based sticky – the load balancer device has the freedom to route each 

request of whatever client to the most available server that exists at this moment. 

o Pros: 

 Fully dynamic routing; has the potential to reach truly balance of load on 

the servers, increase the availability and decrease the response times of 

the system. 

 Fully redundant, the most severe situation in this case can cause a single 

request to fail due to server crash, however, the recovery is immediate and 

the next request will be routed to the next available server. 

 Increasing or decreasing the number of clients does not require re-

configuring the load balancer manually and will take effect immediately. 

 Due to the session persistency of this solution, session timeout is not a 

must and can theoretically persist forever. In addition, sessions can be 

recovered and reconnected to after server crash or any kind of restart (IIS 

reset or machine reset). 

o Cons: 

 In many cases this option affects the development process and depends 

very much on the readiness of the infrastructure in use. 

 The solution can affect the performance. 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

30 
 

 
Fig. 13 

If it was possible to easily overcome the development process barrier it was quite obvious that given 

the above options, we would choose the third one (Call based sticky). Note that the performance 

issues are thoroughly solved by using very strong state servers (normally some SQL/Oracle/DB2 

cluster servers) and high speed communication servers’ farm. 

State Serialization is the way to store a floating session on a state server which can be accessed from 

multiple servers simultaneously and provide the last call based stickiness. 

With “VWG Cluster Server extension” installed on the server, Visual WebGui is responsible to serialize 

the entire UI model and store it on a state server (exactly like ASP.NET). In addition, any object which 

can be serialized and contains no non-serialize-able members will be automatically serialized as well 

due to a generic serialization forcing mechanism. 

Latency issues are commonly solved by strong cluster DB servers (as mentioned above); however, 

Visual WebGui optimized the state size to the minimal amount of data in order to require less 

transportation to the DB and back. 

Configuring Visual WebGui application to use DB state server is done using the same “sessionState” 

configuration node as in ASP.NET: 

<configuration> 

<system.web> 

 <sessionState mode="SQLServer" sqlConnectionString="data 

source=server_name;user id=user_id;password=password" 

stateNetworkTimeout="15" />  



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

31 
 

  </system.web> 

</configuration> 

  

4.5.3 Summary 

 

Upon decision, Visual WebGui can support all type of horizontally scaling to a web servers’ farm.  The 

most dynamic and recommended scaling option is the call based stickiness scalability and is fully 

supported by the “VWG Cluster Server”. 

“VWG Cluster Server extension” provides a complete solution for availability and redundancy using a 

state server. 

The methodology of work with this kind of scalability is identical to ASP.NET, in addition, Visual 

WebGui provides a generic mechanism forcing objects to serialize whenever they do not contain non-

serialize-able members (i.e. BitVector). 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

32 
 

 

4.6  Multiple Presentation Layers  

 

4.6.1 Introduction 

Decoupling the presentation layer from server application logic makes it possible for Visual WebGui 

to be presentation device agnostic. Visual WebGui application can be consumed by any device that 

can send & receive XML and draw UI. 

The following diagram (figure 14) illustrates the decoupling of Visual WebGui server from the 

presentation layer and the outcome of this nature: 

Fig. 14 

 

4.6.2 Overview 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

33 
 

Two major characteristics make it possible to consume Visual WebGui from any device that can send 

and receive XML:  

 Generalized Object Model  

A Visual WebGui control consists of two major parts: 

1. Server code – the UI logic of the control which might be affected or might affect the other 

UI on the screen or even the business logic of the application. For example: events handling 

– when an event handler is defined then the control has to. 

 

2. Client code – the part of the control which is responsible for rendering it (completely or 

partially) and applying behaviors – the part of the control which is responsible for pure 

client behaviors (such as styles, hover and visual drag ability). 

 

 

 
Fig. 15 

The clear cut separation described above (illustrated in figure 15) generalizes any control and UI in 

general when the Server code is the “Generalized Object Model” and the client code is responsible 

for a single task of rendering and maintaining the shown UI balanced according to the server state.  



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

34 
 

The server code responsibility is ended on the “rendering” part; as opposed to WinForms control 

which is assembled of both the logic and the rendering part, Visual WebGui control’s server rendering 

part is simply adding the metadata of instructions for the actual rendering on the client side. For 

example, follows a piece of the server code relating to ImageSize of a PictureBox: 

Server Code 

public PictureBoxSizeMode SizeMode 

{ 

 get 

 { 

  return menmPictureBoxSizeMode; 

 } 

 set 

 { 

  menmPictureBoxSizeMode = value; 

 } 

} 

 

protected override void Render(IContext objContext,IResponseWriter 

objWriter,long lngRequestID) 

{ 

 … 

   

objWriter.WriteAttributeString(WGAttributes.ImageSize, 

            ((int)this.menmPictureBoxSizeMode).ToString()); 

… 

} 

Responsibilities:  

 Maintain the state of the enumerator of the current PictureBox instance. 

 “Render” – write the metadata string to the instructions XML sent to the client when a 

PictureBox should be rendered on the client side. 

 

DHTML Client Code (XSLT) 

<?xml version="1.0" encoding="UTF-8" ?> 

… 

<xsl:template match="WC:Tags.PictureBox" mode="modContent"> 

    <div style="width:100%;height:100%;overflow:hidden;"> 

      <xsl:if test="@Attr.Image"> 

        <xsl:choose> 

          <xsl:when test="@Attr.ImageSize=1"> 

      <img src="{@Attr.Image}" style="width:100%;height:100%"/> 

          </xsl:when> 

          <xsl:when test="@Attr.ImageSize=3"> 

<table cellpadding="0" cellspacing="0"  

       style="width:100%;height:100%;"> 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

35 
 

                <tr> 

                  <td align="center" valign="middle"> 

                     <img src="{@Attr.Image}"/> 

                  </td> 

                </tr> 

             </table> 

          </xsl:when>           

          <xsl:otherwise> 

            <img src="{@Attr.Image}" /> 

          </xsl:otherwise> 

        </xsl:choose> 

      </xsl:if> 

      <xsl:if test="not(@Attr.Image)"> 

        &#160; 

      </xsl:if> 

    </div> 

 </xsl:template>… 

 

Responsibilities: 

 Read the attributes from the instructions metadata sent from the server (@Attr). 

 Perform the rendering accordingly; in this case the PictureBox is either rendered as a simple 

<img> tag or an <img> tag within a table according to the image size mode. 

Note: the code above was taken from the client code of the DHTML version of the PictureBox, 

however, using the same rendered metadata, and any device can render the UI accordingly. 

 

 UI Transportation Protocol 

The second mechanism which makes it possible to completely decouple the presentation layer form 

the UI logic is the UI transportation protocol. 

This protocol is assembled of two different parts: 

1. Metadata behind – which is the XML which is held on the client side and contains the entire 

layout and controls status as reflected by the last change on the server. This XML represents the 

persistent state of the client at all times and reflects the exact state of the tree of controls on the 

server. 

 

2. Events and Commands – which are pieces of pointed data sent from the client to the server and 

vice versa:  

a. Events – to the server when events occur on the client. 

b. Commands – back from the server which is instructing the client how to change the 

metadata behind XML according to the new state on the server.  



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

36 
 

* This mechanism id described in more details on the chapter “Command level 

virtualization” on this document. 

4.6.3 Summary 

Due to a clear cut separation of controls code to server and client code and UI transportation 

protocol, Visual WebGui application is completely agnostic to the presentation device. 

Any device that can send and receive XML and render UI is a valid presentation layer of Visual 

WebGui. The generic communication protocol between the server parts and the client parts makes it 

possible to implement within each device/presentation technology the rendering part of controls 

using its own plain and native code and standards. 

 

4.7  WinForms API Development and Migration 

 

4.7.1 Introduction 

 

WinForms API development: Application development success depends on few major factors, it is of 

course a result of well defined requirements, engineering and planning, skilled developers, wide and 

capable infrastructures which is flexible enough and thorough enough. 

Migration: Visual WebGui is probably the most natural tool to enable migration of WinForms, VB 6.0 

and practically any other desktop technologies to the web. This fact directly involves the WinForms 

API which was chosen to be used with Visual WebGui. 

 

4.7.2 WinForms API Development Overview 

Visual WebGui is making all of the above prerequisites much easier to achieve: 

Ensuring well defined requirements at a very early stage 

Having a powerful WYSIWYG forms designer, makes it very easy to create pre-development 

prototypes in no time based on general requirements and perform expectations coordination at a 

very early stage (illustrated in figure 16). 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

37 
 

 
Fig. 16 

 

Assisting the engineers to create the best architecture for the application 

Being a fully desktop-like WinForms identical development paradigm, it is only natural to use the 

most proven and advanced development patterns such as: MVC, Command, Observer, Service 

Locator and many others. 

The engineers can concentrate on building the most flexible objects model and they don’t need to 

find solutions for the multipart architecture of the web.   

Visual WebGui enables the use of UIP application blocks and the CAB methodologies which are the 

most advanced infrastructure patterns for desktop development. 

 

Creating skilled developers teams 

Leveraging existing skills sets of the most common development knowhow which is the natural 

evolution of VB 6.0 development approach makes it possible to easily create the suitable team for 

any application development task. 

 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

38 
 

 
Fig. 17 

Infrastructure flexibility and wideness 

Based on the generic API of WinForms and enjoying the fact that it’s still ASP.NET based web under 

the hood, Visual WebGui offers a very wide solution. Starting from stand alone applications 

development through mash-ups and ending in highly interactive and data centric add-ons. 

Visual WebGui offers the ASP.NET FormBox control which enables ASP.NET based applications to 

contain Visual WebGui applications. Figure 18 show a large testing central application by SAP (called 

SNAP), which combines Visual WebGui with ASP.NET.  The data centric and interactive part in the 

middle is Visual WebGui and the surrounding “frame” is ASP.NET. 

 
Fig. 18 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

39 
 

 

Combining Visual WebGui application within an ASP.NET is done in the most standard 

way of adding ASP.NET controls to a WebForm: 

<%@ Page Language="C#" AutoEventWireup="true" 

CodeBehind="WebForm1.aspx.cs" Inherits="VWGLibraryOne.WebForm1" %> 

<%@ Register Assembly="Gizmox.WebGUI.Forms"  

Namespace="Gizmox.WebGUI.Forms.Hosts" TagPrefix="vwg"%> 

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 

 

<html xmlns="http://www.w3.org/1999/xhtml" > 

<head runat="server"> 

    <title>Untitled Page</title> 

</head> 

    <body style="background-color:Silver; font-size:small;"> 

      <form id="form1" runat="server"> 

        <div> 

        This is an ASP.NET Page. 

        <br /> 

        <asp:Literal runat="server" ID="mobjLiteral" /> 

        <br /> 

        <br />       

<vwg:FormBox id="FormBox1" runat="server" Stateless="false" 

Height="480px" Width="640px" Form="LibraryForm"> 

</vwg:FormBox> 

  </div> 

 </form> 

</body> 

</html>  

The vice versa option is a Visual WebGui application being able to contain an ASP.NET 

application. This option is provided in the form of a control named AspPageBox in Visual WebGui. 

Figure 19 illustrates the usage of an AspPageBox control, which is simply dragged into a Visual 

WebGui form:  

 
Fig. 19 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

40 
 

 
The next step would be to set the .aspx path into the appropriate property: 

        private void Form1_Load(object sender, EventArgs e) 

        { 

            this.aspPageBox1.Path = "/MyAspNet/WebForm1.aspx"; 

        } 

 
Furthermore, any interaction between any client technology such as: Flash, ActiveX, Silverlight 

(Xaml), JavaApplet etc, can be easily combined and interacted  within  Visual WebGui 

applications. Figure 20 illustrates combined document viewer JavaApplet within Visual WebGui 

application: 

 

 
Fig. 20 

 
Complete Data-binding options make it possible to again concentrate on the business logics of 

the application as opposed to struggling with various techniques for binding UI to data.  

 

The following three steps process, illustrates how easy data-binding may be using WinForms 

tools to develop web applications with Visual WebGui: 

 

 

 

 

 

 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

41 
 

a. Drag data control, in this case DataGridView: 

 
Fig. 21 

 

b. Use Linq to SQL to add dynamic data-source to any DB tables: 

 
Fig. 22 

 

 

 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

42 
 

 
c. Bind the Control to the newly created data-source: 

 
Fig. 23 

The short process above, binds a very sophisticated and capable UI control such as a 

DataGridView to the data behind using the latest LINQ technology in 3 minutes, providing a fully 

functional bi-directionally bounded grid of data. 

 

Other productive advantages of using WinForms API development for building business 

applications for the web: 

 

Layout options: Docking, Anchoring, Tab-Control, Panels etc 

 
Fig. 24 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

43 
 

 

Single layer code maintenance; while maintaining standard web applications forces you to 

write and maintain multilayered application:  

 

 Client: JavaScript, CSS, Html, Xslt, Flash, Silverlight … 

 Server: ASP.NET, JSP, PHP, Web Services ...  

 

Visual WebGui is coded and maintained through a single code base of C# pure object 

oriented WinForms identical, widely documented and easily maintainable code. 

 

Windows management is seamlessly handled by Visual WebGui upon using the standard 

.Show() and .ShowDialog() methods on standard form objects and is enabled on any plain 

browser (IE, FireFox, Netscape, Chrome, Safari). 

 

Passing through parameters and receiving returned data back from dialogs is done through 

normal OOP channels (different c’tors, properties and public methods). 

The following code shows the way to consume dialogs in Visual WebGui: 

 

Opened form code (Form2.cs): 

        public partial class Form2 : Form 

{ 

   public Form2() 

         { 

      InitializeComponent(); 

            } 

 

         public Form2(Object objMyParams) 

         { 

              //... 

         } 

        } 

 

Form2 opening code:  

         private void button1_Click(object sender, EventArgs e) 

         { 

            Form2 objForm2 = new Form2(new Object()); 

            objForm2.ShowDialog(); 

         } 

 

 

 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

44 
 

4.7.3 Migration Overview 

As thoroughly described in the WinForms API development section above, Visual WebGui implements 

WinForms identical API, in addition, it provide generic purpose object model consumable from any 

device which can send and receive XML as described in the “Multiple presentation layer” aspect 

section above. 

Any migration of any product from one technology to another must be defined as a project, the 

question is what can be done to make this process as natural as possible and at the end, deploy fully 

functional application on the web with the lowest costs. 

Visual WebGui mimicking the WinForms API raises the bar for any existing alternative as it can 

consume almost the same code base used in WinForms with some well known exceptions and reach 

a compiling and working application in the shortest term. 

The following three articles, describe the different migration scenarios of desktop applications to the 

web using Visual WebGui: 

Migrating desktop applications – part 1 – WinForms to Web 

Migrating desktop applications – part 2 – VB 6.0 to Web 

Migrating desktop applications – part 3 – Smart Client Technologies to Web 

 

4.8  Cloud optimized architecture 

 

4.8.1 Introduction 

 

(Wikipedia) Cloud computing is a style of computing in which dynamically scalable and often 

virtualized resources are provided as a service over the Internet. Users need not have knowledge of, 

expertise in, or control over the technology infrastructure "in the cloud" that supports them. 

 

According to the official definition of the cloud, it’s an abstract environment which has the ability to 

dynamically scale and virtualized resources creating a self-managed deployment platform for 

applications which can expand and shrink according to the needs and is charged upon usage. 

Common used measureable parameters (upon which the application is charged for): 

1. CPU Usage. 

2. External network usage (the amount of data transferred from and to the server). 

3. Data transactions (the # of transactions and the amount of data sent/received). 

 

http://www.visualwebgui.com/Gizmox/CIOs/WhitePapers/tabid/528/articleType/ArticleView/articleId/394/WinForms-to-Web-Migrating-desktop-applications-part-1.aspx
http://www.visualwebgui.com/Gizmox/CIOs/WhitePapers/tabid/528/articleType/ArticleView/articleId/396/VB-60-to-Web-Migrating-desktop-applications-part-2.aspx
http://www.visualwebgui.com/Gizmox/CIOs/WhitePapers/tabid/528/articleType/ArticleView/articleId/394/WinForms-to-Web-Migrating-desktop-applications-part-1.aspx


 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

45 
 

4.8.2 Visual WebGui for the Cloud Overview 

Technology wise, all we need at this point is to explore the technology highlights of Visual WebGui 

which were discussed through this technology section and look for cloud related factors. 

Cloud-friendly technology 

Being ASP.NET based Visual WebGui is coded, parsed and executed on top of .NET and is most native 

application nature for Azure, Amazon and other cloud vendors. 

 
Fig. 25 

Smart Network Usage 

A compressed protocol of metadata transportation over standard HTTP port 80 reduces the network 

consumption dramatically. This fact contributes allot to maintain a low network usage and pay less 

for more when hosted on the cloud. 

 

 
Fig. 26 

 

 

 

 

 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

46 
 

Secured-By-Design On-Cloud Applications 

The same ‘empty client’ paradigm results in secured-by-design applications on the cloud, exposing 

only what’s shown and nothing else. (LINK) 

 

 
Fig. 27 

 

Low CPU & Network Bandwidth Consumption 

Having an optimized received & sent data actually concludes in lowering the transportation and the 

costs when it comes to cloud deployment. The highest request-per-second compared to any other 

AJAX framework shows the simple fact that the CPU is much less occupied with allocations & 

disposals of objects and results again with lowering the costs when deployed on the cloud. (LINK) 

 

 

 

Fig. 28 

Seamless Cloud-like Scalability Optimized 

 The internally optimized support for application scalability and redundancy enables cloud 

applications to scale as much as needed seamlessly.  



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

47 
 

 Having a mechanism that saves the smallest amount of data required for state persistence, 

results in keeping the amount of data transactions controllable.  

Migration of Desktop Applications to the Cloud 

Having WinForms identical API and desktop compliant development patterns makes it only natural to 

port desktop business centric apps to the cloud using Visual WebGui. 

 

4.8.3 Summary 

Examining any runtime parameter, Visual WebGui is as optimized as it gets for cloud applications. 

Using Visual WebGui provides the productiveness in development including the natural option of 

migrating desktop applications to the cloud.  

In addition it dramatically lowers continues costs of cloud applications due to a highly optimized 

communication protocol and lowered CPU consumption.  

In terms of dynamic scalability, Visual WebGui scales up easily and seamlessly saving the minimal 

amount of data to the state server and lowering the amount and the size of data transactions. 

4.9  Controls & Themes Design and Extensibility Model 

 

4.9.1 Introduction 

Visual WebGui is built on top of standard web technologies: 

1. Server side runtime ASP.NET 

2. HTTP/XML based optimized protocol 

3. Plain device specific optimized client code: 

a. Browsers: Internet Explorer, WebKit, Mozilla & Opera optimized JS, XSLT, CSS 

Kernels 

b. Silverlight: Client .NET/XAML code (in the future plain Flex swf code, mobile devices 

specific code) 

c. Smart Client: WinForms .NET code (in the future WPF) 

Those layers are transparent to the developer in any case of UI development except for when 

customization is required. 

Visual WebGui presents a unified visual designer for point & click editing of UI look & feel without 

getting down to: CSS, HTML, XAML etc. 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

48 
 

Furthermore, an integrated tool to wrap in any 3
rd

 party ASP.NET based control within a Visual 

WebGui application exists within the Professional Studio version of Visual WebGui. 

4.9.2 Themes & Control Level Designer Overview 

Visual WebGui provides a visual designer for point & click to the following DHTML controls layers: 

 
                                                                                                    Fig. 29 

With Silverlight, the customization levels are identical, though the technologies are different: 

 

Fig. 30 

Paradigm result: due to the fact that over 90% of the customization cases are based on the top 3 

levels and those three levels’ customization is identical to any deployed presentation-layer (shown 

here DHTML & Silverlight and will be the same with any other presentation layer only with different 

underlying technologies), Visual WebGui maintains the approach of having a single code base here as 

well. 

The hierarchical structure of the controls theme makes it most simple to define global definitions at 

any desired level (global Control, Control’s Parent and Control specific). 

(v. 6.4+) 

Visual Point & Click designer 

(Future) WYSIWYG 

Designer 

(Future) Intelisense  

Support 

(v. 6.4+) 

Visual Point & Click designer 

(Future) WYSIWYG 

Designer 

(Future) Intelisense  

Support 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

49 
 

The internal process of applying the theme’s definitions and resources is done at compile time so that 

the runtime efficiency is not affected from the number of available themes or from resources 

collecting process. 

 
Fig. 31 

Design developer user interface 

 Theme view & resources types’ selector: 

 
Fig. 32 

Images point & click editor: 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

50 
 

 
Fig. 33 

Styles point & click editing:  

 
Fig. 34 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

51 
 

 

4.9.3 Integrated 3rd Party Controls Wrapper Overview 

Another extensibility option, except from the above customization option is the automatic 3
rd

 party 

ASP.NET controls wrapper. This integrated capability enables migrating in any native ASP.NET based 

control (i.e. Infragistics, Telerik, DeveXpress, ComponentOne etc.) and interface with Visual WebGui 

as if it’s a native control. 

Having those kind of controls wrapped in, provides an automatic mechanism of integration the 

ASP.NET native request/response mechanisms with Visual WebGui ones. This unique offering works 

on the pipeline level, imitating the ASP.NET control’s environment. 

Working with an ASP.NET wrapped control exposes the same API and requires the same operation 

techniques. This means that any resource that is expected to be provided to this control should be 

provided here as well. 

Wrapper runtime process: 

 Fig. 35 

 

 

 

 

 



 

2 Hangar St. 2nd floor, POB 21118 Kefar Saba Israel 
Tel – 972-9-7673063 Fax- 972-9-7673064 Web site- www.visualwebgui.com 

52 
 

Automatic wrapping process UI: 

  
Fig. 36 

4.9.4 Summary 

Visual WebGui’s extensibility & customization options are served as productive driven tools to the 

developer. The mechanisms required to apply design changes and runtime abilities are wrapped into 

an optimized engine.  

Except for the WYSIWYG forms designer, Visual WebGui provides a visually simple solution to edit, re-

create and customize Visual WebGui controls. In addition, an automatic tool for migration of 3rd 

party controls is also enabled immediately widening the available verity of controls with all the kinds 

of ASP.NET based controls by any of the existing providers.  

The developer has the complete power to customize & brand the application using a point & click 

designer to change the look & feel completely according to the customers’ requirements.    


