

ComponentOne

Xamarin.iOS Controls

Copyright © 1987-2015 GrapeCity, Inc. All rights reserved

ComponentOne, a division of GrapeCity
201 South Highland Avenue, Third Floor
Pittsburgh, PA 15206 USA

Website: http://www.componentone.com

Sales: sales@componentone.com

Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh , PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $25 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

Xamarin.iOS Controls 1

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://www.componentone.com/
mailto:sales@componentone.com

Table of Contents
 1

Getting Started with Xamarin.iOS Controls 4

Breaking Changes for Xuni Users 4-5

NuGet Packages 5

Redistributable Files 5-6

System Requirements 6

Creating a New Xamarin.iOS App 6-9

Adding NuGet Packages to your App 9-11

Licensing 11

Licensing your app using GrapeCity License Manager Add-in 11-16

Licensing your app using website 16-17

Finding the Application Name 17-19

About this Documentation 19

Technical Support 19-20

Controls 21

Calendar 21

Quick Start: Display a C1Calendar Control 21-23

CollectionView 23-24

Quick Start 24-26

FlexChart 26

Chart Elements 26-27

Chart Types 27-32

Quick Start: Add Data to FlexChart 32-36

FlexGrid 36-37

Quick Start: Add Data to FlexGrid 37-45

FlexPie 45-46

Quick Start: Add data to FlexPie 46-49

Gauge 49

Gauge Types 49-50

Quick Start: Add and Configure Gauge 50-52

Input 52

AutoComplete 52

Quick Start: Populating C1AutoComplete with data 52-55

CheckBox 55

Xamarin.iOS Controls 2

Copyright © 2017 GrapeCity, inc. All rights reserved.

ComboBox 55-56

Quick Start: Display a C1ComboBox Control 56-58

DropDown 58

Creating a Custom Date Picker using C1DropDown 58-59

MaskedTextField 59

Mask Symbols 59-60

Quick Start: Display C1MaskedTextField Controls 60-61

Xamarin.iOS Controls 3

Copyright © 2017 GrapeCity, inc. All rights reserved.

Getting Started with Xamarin.iOS Controls
ComponentOne Xamarin.iOS is a collection of iOS UI controls developed by GrapeCity. Xamarin.iOS Edition has been
optimized for iOS development. For existing Xuni users, the new architecture brings many new features listed below:

Enhanced performance
The new controls should generally perform better than the old controls (sometimes doubling performance). By
specifically focusing on the Xamarin architecture, the controls cut out some intermediary logic and are
optimized for the platform. Since they’re entirely in C#, so you can also expect a more consistent experience.

Designer support
The new controls should also support Xamarin’s designers for iOS and Android applications. This makes it
much easier to construct your Android XML or iOS Storyboards using these controls.
New control features
The controls have been rethought for the new architecture with the combined experience of Xuni, Wijmo, as
well as ComponentOne controls. Some controls have a number additional features (such as FlexGrid).

Breaking Changes for Xuni Users
New Package Names

The packages have changed their prefix if you're coming from Xuni. For instance,

Xuni.iOS.Calendar now corresponds to C1.iOS.Calendar

We have also moved to a more consistent naming scheme for our controls based on the following pattern:

C1.[Platform].[ControlName]

Xamarin.iOS Controls 4

Copyright © 2017 GrapeCity, inc. All rights reserved.

For example, FlexGrid is available in C1.Xamarin.Forms.Grid

Additionally, FlexChart, FlexPie, and ChartCore have all been consolidated into one single package instead of three
different packages. To use FlexChart or FlexPie, you now need to add a single package developed for the platform of
your choice:

C1.iOS.Chart

Namespace Changes

We’ve made some changes to the namespace of the current controls, which are in line with the changes in package
names. For example, Xuni.iOS.FlexGrid now corresponds to C1.iOS.Grid.

Minor API Changes

There are some minor changes in API between ComponentOne Xamarin Edition and Xuni. These should mostly
amount to additions, slight change in syntax, and use of prefix 'C1' instead of 'Xuni' in class and object names. For
FlexChart, however, the control is very actively growing in terms of API, so missing features are intended to be added
in the future.

NuGet Packages
The following NuGet packages are available for download:

Package Name Description

C1.CollectionView This is the dependency package for the control NuGet packages and is automatically
installed when any dependent package is installed.

C1.iOS.Calendar Installing this NuGet package adds all the references that enable you to use the Calendar
control in your Xamarin.iOS application.

C1.iOS.Core This is the dependency package for the control NuGet packages and is automatically
installed when any dependent package is installed.

C1.iOS.Chart Installing this NuGet package adds all the references that enable you to use the FlexChart
and FlexPie controls in your Xamarin.iOS application.

C1.iOS.Grid Installing this NuGet package adds all the references that enable you to use the FlexGrid
control as well as CollectionView interface in your Xamarin.iOS application.

C1.iOS.Gauge Installing this NuGet package adds all the references that enable you to use the Gauge
control in your Xamarin.iOS application.

C1.iOS.Input Installing this NuGet package adds all the references that enable you to use the Input
controls in your Xamarin.iOS application.

Redistributable Files
Xamarin.iOS Edition, developed and published by GrapeCity, inc., can be used to develop applications in conjunction
with Microsoft Visual Studio, Xamarin Studio or any other programming environment that enables the user to use and
integrate controls.

You may also distribute, free of royalties, the following redistributable files with any such application you develop to
the extent that they are used separately on a single CPU on the client/workstation side of the network.

Xamarin.iOS Controls 5

Copyright © 2017 GrapeCity, inc. All rights reserved.

Control Redistributable File

Calendar C1.iOS.Calendar.dll

CollectionView C1.CollectionView.dll

Core C1.iOS.Core.dll

FlexChart C1.iOS.Chart.dll

FlexGrid C1.iOS.Grid.dll

Gauge C1.iOS.Gauge.dll

Input C1.iOS.Input.dll

System Requirements
Xamarin.iOS Edition can be used in applications written for the following mobile operating systems:

iOS 10 and above (recommended)

Requirements

Xamarin Platform 2.3.3.193 and above
Visual Studio 2015 Update 3

Windows System Requirements

Windows 8.1 and above

Mac System Requirements

Xamarin Studio or Visual Studio for Mac
MacOS 10.12
Xcode 8 and above

Creating a New Xamarin.iOS App
This topic demonstrates how to create a new Xamarin.iOS app in Visual Studio or Xamarin Studio. See the System requirements
before proceeding. To download and install Xamarin Studio, visit http://xamarin.com/download.

To know more about Xamarin.iOS, visit:

https://developer.xamarin.com/guides/ios/getting_started/

Complete the following steps to create a new Xamarin.iOS App:

1. Select File | New | Project.
2. Under installed templates, select Visual C# |Universal.
3. In the right pane, select Single View App (iOS).
4. Type a name for your app and select a location to save it.

Visual Studio (Windows)

Xamarin.iOS Controls 6

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://xamarin.com/download
https://developer.xamarin.com/guides/ios/getting_started/

5. Click OK.

1. Select File | New Solution.
2. Select iOS | App.
3. In the right pane, select Single View App.
4. Click Next.

Visual Studio for Mac (macOS)

Xamarin.iOS Controls 7

Copyright © 2017 GrapeCity, inc. All rights reserved.

5. Type a name for your app and select a location to save it..

6. Click Next.

Xamarin.iOS Controls 8

Copyright © 2017 GrapeCity, inc. All rights reserved.

7. Click Create.

Adding NuGet Packages to your App
To install NuGet

1. Go to http://nuget.org/ and click Install NuGet.
2. Run the NuGet.vsix installer.
3. In the Visual Studio Extension Installer window, click Install.
4. Once the installation is complete, click Close.

To add Xamarin References to your App

In order to use Xamarin controls on iOS references have to be added to your project. Complete the following steps to
add Xamarin references to your project.

1. Open a pre-existing Mobile App or create a new Mobile App (see Creating a New Xamarin.iOS App).
2. From the Project menu, select Manage NuGet Packages. The Manage NuGet Packages dialog box appears.
3. Click Online and then click GrapeCity.
4. Click Install next to C1.iOS.ControlName (for example C1.iOS.Chart). This adds the references for the

Xamarin control.
5. Click I Accept to accept the license and then click Close in the Manage NuGet Packages dialog box.

Visual Studio (PC)

Xamarin.iOS Controls 9

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://nuget.org/

1. Open a pre-existing Mobile App or create a new Mobile App (see Creating a New Xamarin.iOS App).
2. In the Solution Explorer, right click the project and select Add | Add Packages. The Add Packages dialog

appears.
3. From the drop down menu in the top left corner, select GrapeCity. The available Xamarin packages are

displayed.
4. Select the package C1.iOS.ControlName and click the Add Package button. This adds the references for

the Xamarin control.

To manually create a Xamarin feed source

Complete the following steps to manually add Xamarin NuGet feed URL to your NuGet settings in Visual Studio or
Xamarin Studio and install Xamarin.

1. From the Tools menu, select NuGet Package Manager | Package Manager Settings. The Options dialog
box appears.

2. In the left pane, select Package Sources.
3. Click the Add button in top right corner. A new source is added under Available package sources.
4. Set the Name of the new package source. Set the Source as http://nuget.grapecity.com/nuget/.
5. Click OK. The feed has now been added as another NuGet feed source.

To install Xamarin using the new feed

1. Open a pre-existing Mobile App or create a new Mobile App (see Creating a New Xamarin.iOS App).
2. Select Project | Manage NuGet Packages. The Manage NuGet Packages dialog box appears.
3. Click Online and then click Xamarin. The available packages are displayed in the right pane.
4. Click Install next to C1.Xamarin.Forms.ControlName (for example C1.Xamarin.Forms.Chart). This updates

the references for the Xamarin control.
5. Click I Accept to accept the ComponentOne license for Xamarin and then click Close in the Manage

NuGet Packages dialog box.

1. From the Projects menu, select Add Packages. The Add Packages dialog appears.
2. From the drop down menu on the top left corner, select Configure Sources. The Preferences dialog

appears.
3. In the left pane, expand Packages and select Sources.
4. Click the Add button. The Add Package Source dialog appears.
5. Set the Name of the new package source. Set the URL as http://nuget.grapecity.com/nuget/.
6. Click the Add Source button. The Xamarin feed has now been added as another NuGet feed source.
7. Click OK to close the Preferences dialog.

To install Xamarin using the new feed

1. Open a pre-existing Mobile App or create a new Mobile App (see Creating a New Xamarin.iOS App).
2. In the Solution Explorer, right click the project and select Add | Add Packages. The Add Packages dialog

Visual Studio for Mac

Visual Studio (PC)

Visual Studio for Mac

Xamarin.iOS Controls 10

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://nuget.grapecity.com/nuget/
http://nuget.grapecity.com/nuget/

appears.
3. From the drop down menu on the top left corner, select Xamarin. The available Xamarin packages are

displayed.
4. Select the package C1.[Platform].[ControlName] and click the Add Package button. This adds the

references for the Xamarin control.

Licensing
ComponentOne Xamarin Edition contains runtime licensing, which means the library requires a unique key to be
validated at runtime. The process is quick, requires minimal memory, and does not require network connection. Each
application that uses ComponentOne Xamarin Edition requires a unique license key. This topic gives you in-depth
instructions on how to license your app. For more information on GrapeCity licensing and subscription model, visit
https://www.componentone.com/Pages/Licensing/.

To know the licensing process in details, see the following links

Licensing your app using GrapeCity License Manager Add-in
Licensing you app using website

Licensing your app using GrapeCity License Manager Add-in
If you are using ComponentOne Xamarin Edition 2017v2 and newer versions with Visual Studio, you can use the
GrapeCity License Manager Add-in to license your apps. If you are using a version with Xamarin Studio or Visual
Studio for Mac, follow the instructions given in Licensing your app using website.

GrapeCity License Manager Add-in for Visual Studio

The GrapeCity License Manager Add-in generates XML keys to license your apps directly in Visual Studio. To license a
Xamarin.iOS app, complete the steps given below:

1. From the Tools menu in Visual Studio, select GrapeCity License Manager option.

Xamarin.iOS Controls 11

Copyright © 2017 GrapeCity, inc. All rights reserved.

https://www.componentone.com/Pages/Licensing/

2. Sign-in into the License Manager using your email address and password. If you have not created a GrapeCity
Account in the past, you can create an account at this step. If you are already signed in, skip the screen.

Xamarin.iOS Controls 12

Copyright © 2017 GrapeCity, inc. All rights reserved.

3. From the main License Manager Screen, you can activate or deactivate a serial number, generate a license key,
or launch the support portal. To activate a full license serial key, click Activate/Deactivate Serial Number. To
generate an app license using an already activated serial key or a trial key, click Generate App (runtime)
Licenses.

Xamarin.iOS Controls 13

Copyright © 2017 GrapeCity, inc. All rights reserved.

4. Select your full license from the drop-down menu at the top. To generate a trial key, select Eval.
5. Click on the check box next to the PCL or shared project to be licensed.

Xamarin.iOS Controls 14

Copyright © 2017 GrapeCity, inc. All rights reserved.

6. Click Generate App (runtime) License button.
7. Click Done to add the GCDTLicense.xml file containing the license key to your PCL or shared project.

Xamarin.iOS Controls 15

Copyright © 2017 GrapeCity, inc. All rights reserved.

You can now build and run your licensed app.

Licensing your app using website
ComponentOne Xamarin Edition users can license their app via the ComponentOne website. If you are using
ComponentOne Xamarin Edition with Visual Studio on PC, you have the option to use the GrapeCity License
Manager Add-in. For more information, see Licensing your app using GrapeCity License Manager Add-in.

How to License your app using the website

1. Open a pre-existing mobile application or create a new mobile application.
2. Add the required Xamarin Edition NuGet packages to your application through the NuGet Package Manager.
3. Visit https://www.componentone.com/Members/?ReturnUrl=%2fMyAccount%2fMyXuni.aspx.

You must create a GrapeCity account and login to access this web page.

4. If you are generating a full license, select your serial number from the drop-down menu at the top of the page.
If you are generating a trial license, leave it selected as Evaluation.

5. Select C# for the language.
6. In the App Name text box, enter the name of your application. This name should match the Default

Namespace of your application. See Finding the Application Name to know how to find the name of your
application.

7. Click the Generate button. A runtime license will be generated in the form of a string contained within a class.
8. Copy the license and complete the following steps to add it in your application.

Xamarin.iOS Controls 16

Copyright © 2017 GrapeCity, inc. All rights reserved.

https://www.componentone.com/Members/?ReturnUrl=/MyAccount/MyXuni.aspx

1. Open your application in Visual Studio.
2. In the Solution Explorer, right-click the project YourAppName.
3. Select Add | New. The Add New Item dialog appears.
4. Under installed templates, select C# | Class.
5. Set the name of the class as License.cs and click OK.
6. In the class License.cs, create a new string to store the runtime license inside the constructor as shown

below.
C#

public static class License
{
 public const string Key = "Your Key";
}

7. From the Solution Explorer, open AppDelegate.cs and set the runtime license inside the
FinishedLaunching() method as shown below.
C#

C1.iOS.Core.LicenseManager.Key = License.Key;

If you are generating a trial license, your application is now ready to be used for trial purposes. You can repeat this
process for any number of applications. You must generate a new trial license for each app because they are unique
to the application name.

The trial period is limited to 30 days, which begins when you generate your first runtime license. The controls
will stop working after your 30-day trial period is over.

Finding the Application Name
ComponentOne Xamarin Edition licenses are unique to each application. Before you can generate a runtime license, you
need to know the name of the application where the license will be used.

Visual Studio

1. Open a pre-existing mobile application.
2. In the Solution Explorer, right-click the project YourAppName and select Properties.
3. Open the Library tab.
4. The application name is the same as the displayed Default namespace.

Xamarin.iOS Controls 17

Copyright © 2017 GrapeCity, inc. All rights reserved.

You need to generate a new runtime license in case you rename the assembly later.

Visual Studio for Mac

1. Open a pre-existing mobile application.
2. In the Solution Explorer, right click the project YourAppName and select Options.
3. The application name is displayed on the Main Settings tab.

Xamarin.iOS Controls 18

Copyright © 2017 GrapeCity, inc. All rights reserved.

About this Documentation
Acknowledgements

Microsoft, Windows, Windows Vista, Windows Server, and Visual Studio are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries.

Contact Us

If you have any suggestions or ideas for new features or controls, please call us or write:

ComponentOne, a division of GrapeCity
201 South Highland Avenue, Third Floor
Pittsburgh, PA 15206 • USA
1.800.858.2739 | 412.681.4343
412.681.4384 (Fax)

http://www.componentone.com/

Technical Support
ComponentOne offers various support options. For a complete list and a description of each, visit the ComponentOne
website to explore more.

Some methods for obtaining technical support include:

Online Resources

Xamarin.iOS Controls 19

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://www.componentone.com/
http://www.componentone.com/
http://www.componentone.com/

ComponentOne provides customers with a comprehensive set of technical resources in the form of Licensing
FAQs, samples, demos, and videos, searchable online documentation and more. We recommend this as the
first place to look for answers to your technical questions.
Online Support
The online support service provides you direct access to our Technical Support staff via Submit a ticket. When
you submit an incident, you immediately receive a response via e-mail confirming that the incident is created
successfully. This email provides you with an Issue Reference ID. You will receive a response from us via an
email within two business days.
Product Forums
Forums are available for users to share information, tips, and techniques regarding all the platforms supported
by the ComponentOne Xamarin Edition, including Xamarin Forms, Xamarin.iOS and Xamarin.Android.
ComponentOne developers or community engineers will be available on the forums to share insider tips and
technique and answer users' questions. Note that a user account is required to participate in the Forums.
Installation Issues
Registered users can obtain help with problems installing Xamarin Edition on their systems. Contact technical
support by using the online incident submission form or by phone (412.681.4738). Please note that this does
not include issues related to distributing a product to end-users in an application.
Documentation
ComponentOne documentation is available online for viewing. If you have suggestions on how we can improve
our documentation, please send a feedback to the Documentation team. Note that the feedback sent to the
Documentation team is for documentation related issues only. Technical support and sales issues should be
sent directly to their respective departments.

Note: You must create a user account and register your product with a valid serial number to obtain support
using some of the above methods.

Xamarin.iOS Controls 20

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://www.componentone.com/Pages/Licensing/
http://www.componentone.com/Pages/Licensing/
http://www.componentone.com/Studio/Pages/Samples
http://www.componentone.com/Studio/Pages/Demos
http://our.componentone.com/videos/
http://our.componentone.com/docs/
https://supportone.componentone.com/login
http://our.componentone.com/docs/
http://feedback.componentone.com/forums/281442-xuni-documentation
https://supportone.componentone.com/login
mailto:sales@componentone.com

Controls

Calendar
The C1Calendar control provides a calendar through which you can navigate to any date in any year. The control
comes with an interactive date selection user interface (UI) with month, year and decade view modes. Users can view
as well as select multiple dates on the calendar.

The C1Calendar provides the ability to customize day slots so that users can visualize date information on the
calendar. In addition, you can also customize the appearance of the calendar using your own content and style.

Key Features

Custom Day Content: Customize the appearance of day slots by inserting custom content.
View Modes: Tap header to switch from month mode to year and decade mode.
Appearance: Easily style different parts of the control with heavy customizations.
Date Range Selection: Simply tap two different dates to select all the dates in between.
Orientation: Toggle the scroll orientation to either horizontal or vertical.

Quick Start: Display a C1Calendar Control
This section describes how to add a C1Calendar control to your iOS app and select a date on the calendar at runtime. This
topic comprises two steps:

Step 1: Add a C1Calendar Control
Step 2: Run the Project

The following image shows how C1Calendar appears after completing the above steps.

Xamarin.iOS Controls 21

Copyright © 2017 GrapeCity, inc. All rights reserved.

Step 1: Add a C1Calendar Control

Add a Calendar control in StoryBoard

1. In the Solution Explorer, click MainStoryboard to open the storyboard editor.
2. Under the Document Outline, expand View Controller and click View.
3. In your Toolbox under the Custom Components tab, drag a C1Calendar onto your ViewController.

Xamarin.iOS Controls 22

Copyright © 2017 GrapeCity, inc. All rights reserved.

Initialize Calendar control in code

To initialize a C1Calendar control, open the ViewController file from the Project Navigator and replace its code with the code
below. This code overrides the ViewDidLoad method of the View controller in order to initialize a C1Calendar.

C#

public override void ViewDidLoad()
 {
 base.ViewDidLoad();
 calendar = new C1Calendar();
 this.Add(calendar);

 }
 public override void ViewDidLayoutSubviews()
 {
 base.ViewDidLayoutSubviews();
 calendar.Frame = new CGRect(this.View.Frame.X, this.View.Frame.Y,
 this.View.Frame.Width, this.View.Frame.Height);
 }

Step 2: Run the Application

Press F5 to run the application.

Xamarin.iOS Controls 23

Copyright © 2017 GrapeCity, inc. All rights reserved.

CollectionView
The C1CollectionView is a powerful data binding component that is designed to be used with data controls, such as
FlexGrid. The C1CollectionView control provides currency, filtering, grouping and sorting services for your data
collection. The ICollectionView interface also includes the IEditableCollectionView that defines methods and properties
for editing.

The C1CollectionView class implements the following interface:

ICollectionView: provides current record management, custom sorting, filtering, and grouping.

Key Features

Provides filtering, grouping and sorting on a data set.
Can be used with the data collection controls, such as FlexGrid.
Provides currency for master-detail support for iOS apps.
Based on the .NET implementation of ICollectionView.

C1.CollectionView is .NET Standard compliant while C1.iOS.CollectionView provides the ability to quickly connect your
C1CollectionView to a UITableView.

Quick Start
This section describes how to use the CollectionView to provide on demand data loading in a UITableView. It
demonstrates how you can use CollectionView for incremental loading within your app.

C#

public partial class SimpleOnDemandController : UITableViewController
 {
 public SimpleOnDemandController(IntPtr handle) : base(handle)
 {
 }

 public override void ViewDidLoad()
 {
 base.ViewDidLoad();

 // instantiate our on demand collection view
 RefreshControl = new UIRefreshControl();
 var myCollectionView = new SimpleOnDemandCollectionView();
 var myCollectionViewSource = new
SimpleOnDemandCollectionViewSource(TableView, myCollectionView, RefreshControl);
 TableView.Source = myCollectionViewSource;
 }
 }

 public class SimpleOnDemandCollectionView : C1CursorCollectionView<MyDataItem>
 {
 public SimpleOnDemandCollectionView()
 {
 PageSize = 10;
 }

Xamarin.iOS Controls 24

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/XamarinEdition/C1.CollectionView~C1.CollectionView.C1CollectionView`1.html
http://helpcentral.componentone.com/nethelp/XamarinEdition/C1.CollectionView~C1.CollectionView.C1CollectionView`1.html
http://helpcentral.componentone.com/nethelp/XamarinEdition/C1.CollectionView~C1.CollectionView.ICollectionView`1.html

 public int PageSize { get; set; }
 protected override async Task<Tuple<string, IReadOnlyList<MyDataItem>>>
GetPageAsync(string pageToken, int? count = null)
 {
 var newItems = new List<MyDataItem>();
 await Task.Run(() =>
 {
 // create new page of items
 for (int i = 0; i < this.PageSize; i++)
 {
 newItems.Add(new MyDataItem(this.Count + i));
 }
 });
 return new Tuple<string, IReadOnlyList<MyDataItem>>("token not used",
newItems);
 }
 }

 public class SimpleOnDemandCollectionViewSource : C1TableViewSource<MyDataItem>
 {
 private string CellIdentifier = "Default";

 public SimpleOnDemandCollectionViewSource(UITableView tableView,
ICollectionView<MyDataItem> collectionView, UIRefreshControl refreshControl = null)
 : base(tableView, collectionView, refreshControl)
 {
 }

 public override UITableViewCell GetItemCell(UITableView tableView, MyDataItem
item)
 {
 UITableViewCell cell = tableView.DequeueReusableCell(CellIdentifier);
 if (cell == null)
 cell = new UITableViewCell(UITableViewCellStyle.Subtitle,
CellIdentifier);

 cell.TextLabel.Text = item.ItemName;
 cell.DetailTextLabel.Text = item.ItemDateTime.ToLongTimeString();

 return cell;
 }
 }

 public class MyDataItem
 {
 public MyDataItem(int index)
 {
 this.ItemName = "My Data Item #" + index.ToString();
 this.ItemDateTime = DateTime.Now;
 }

Xamarin.iOS Controls 25

Copyright © 2017 GrapeCity, inc. All rights reserved.

 public string ItemName { get; set; }
 public DateTime ItemDateTime { get; set; }

 }

FlexChart
The FlexChart control allows you to represent data visually in your iOS mobile applications. Depending on the type of
data you need to display, you can represent your data as bars, columns, bubbles, candlesticks, lines, scattered points
or even display them in multiple chart types.

FlexChart manages the underlying complexities inherent in a chart control completely, allowing developers to
concentrate on important application specific tasks.

Key Features

Chart Type: Change a line chart to a bar chart or any other chart type by setting a single property. FlexChart
supports nine different chart types.
Touch Based Labels: Display chart values using touch based labels.
Multiple Series: Add multiple series on a single chart.

Chart Elements
FlexChart is composed of several elements as shown below:

Xamarin.iOS Controls 26

Copyright © 2017 GrapeCity, inc. All rights reserved.

Chart Canvas Area on which all chart elements including the series, axes title and legend are placed.

Chart Header Text that you want to display at the top of your chart, basically a title that serves as a
heading for your chart.

Axes Two primary axes, X and Y. Although in some cases you may add secondary axes as well.

Series Collection of data that is plotted on the chart.

Legend Name of the series added in the chart along with predefined symbols and colors used to
plot data for that series.

Tooltip Tooltips or labels that appear when you hover on a series.

Chart Types
You can change the type of the FlexChart control depending on your requirement. Chart type can be changed by setting
the ChartType property of the FlexChart control. In case of adding multiple series to FlexChart, each series of the chart are of the
default chart type selected for that chart. However, you can set chart type for each series in code.

In Code

C#

chart.ChartType = ChartType.Area;

Line and LineSymbol chart

A Line chart draws each series as connected points of data, similar to area chart except that the area below the connected points is
not filled. The series can be drawn independently or stacked. It is the most effective way of denoting changes in value between
different groups of data. A LineSymbol chart is similar to line chart except that it represents data points using symbols.

These charts are commonly used to show trends and performance over time.

Xamarin.iOS Controls 27

Copyright © 2017 GrapeCity, inc. All rights reserved.

Line Chart LineSymbol Chart

Area chart

An Area chart draws each series as connected points of data and the area below the connected points is filled with color to denote
volume. Each new series is drawn on top of the preceding series. The series can either be drawn independently or stacked.

These charts are commonly used to show trends between associated attributes over time.

Bar and Column chart

A Bar chart or a Column chart represents each series in the form of bars of the same color and width, whose length is determined by
its value. Each new series is plotted in the form of bars next to the bars of the preceding series. When the bars are arranged
horizontally, the chart is called a bar chart and when the bars are arranged vertically, the chart is called column chart. Bar charts and
Column charts can be either grouped or stacked.

These charts are commonly used to visually represent data that is grouped into discrete categories, for example age groups,
months, etc.

Xamarin.iOS Controls 28

Copyright © 2017 GrapeCity, inc. All rights reserved.

Bar Chart Column Chart

Bubble chart

A Bubble chart represents three dimensions of data. The X and Y values denote two of the data dimensions. The third dimension is
denoted by the size of the bubble.

These charts are used to compare entities based on their relative positions on the axis as well as their size.

Scatter

A Scatter chart represents a series in the form of points plotted using their X and Y axis coordinates. The X and Y axis coordinates
are combined into single data points and displayed in uneven intervals or clusters.

These charts are commonly used to determine the variation in data point density with varying x and y coordinates.

Xamarin.iOS Controls 29

Copyright © 2017 GrapeCity, inc. All rights reserved.

Candlestick chart

A Candlestick chart is a financial chart that shows the opening, closing, high and low prices of a given stock. It is a special type of
HiLoOpenClose chart that is used to show the relationship between open and close as well as high and low values of data. Candle
chart uses price data (high, low, open, and close values) and it includes a thick candle-like body that uses the color and size of the
body to reveal additional information about the relationship between the open and close values. For example, long transparent
candles show buying pressure and long filled candles show selling pressure.

Elements of a Candlestick chart

The Candlestick chart is made up of the following elements: candle, wick, and tail.

Candle: The candle or the body (the solid bar between the opening and closing values) represents the change in stock price
from opening to closing.
Wick and Tail: The thin lines, wick and tail, above and below the candle depict the high/low range.
Hollow Body: A hollow candle or transparent candle indicates a rising stock price (close was higher than open). In a hollow
candle, the bottom of the body represents the opening price and the top of the body represents the closing price.
Filled Body: A filled candle indicates a falling stock price (open was higher than close). In a filled candle the top of the body
represents the opening price and the bottom of the body represents the closing price.

In a Candlestick there are five values for each data point in the series.

x: Determines the date position along the x axis.
high: Determines the highest price for the day, and plots it as the top of the candle along the y axis.
low: Determines the lowest price for the day, and plots it as the bottom of the candle along the y axis.
open: Determines the opening price for the day.
close: Determines the closing price for the day.

The following image shows a candlestick chart displaying stock prices.

Xamarin.iOS Controls 30

Copyright © 2017 GrapeCity, inc. All rights reserved.

High Low Open Close chart

HiLoOpenClose are financial charts that combine four independent values to supply high, low, open and close data for a point in a
series. In addition to showing the high and low value of a stock, the Y2 and Y3 array elements represent the stock's opening and
closing price respectively.

Spline and SplineSymbol chart

A Spline chart is a combination of line and area charts. It draws a fitted curve through each data point and its series can be drawn
independently or stacked. It is the most effective way of representing data that uses curve fittings to show difference of values. A
SplineSymbol chart is similar to Spline chart except that it represents data points using symbols.

These charts are commonly used to show trends and performance over time, such as product life-cycle.

Xamarin.iOS Controls 31

Copyright © 2017 GrapeCity, inc. All rights reserved.

Spline Chart SplineSymbol Chart

SplineArea Chart

Quick Start: Add Data to FlexChart
This section describes how to add a FlexChart control to your iOS app and add data to it. This topic comprises of three steps:

Step 1: Create a data source for FlexChart
Step 2: Add a FlexChart control
Step 3: Run the Application

The following image shows how the FlexChart appears, after completing the steps above:

Xamarin.iOS Controls 32

Copyright © 2017 GrapeCity, inc. All rights reserved.

Step 1: Create a data source for FlexChart

Add a new class to serve as the data source for the FlexChart control.

FlexChartDataSource.cs

public class FlexChartDataSource
{
 private List<Month> appData;

 public List<Month> Data
 {
 get { return appData; }
 }

 public FlexChartDataSource()
 {
 // appData
 appData = new List<Month>();
 var monthNames =
"Jan,Feb,March,April,May,June,July,Aug,Sept,Oct,Nov,Dec".Split(',');
 var salesData = new[] { 5000, 8500, 7000, 6500, 12000, 14800, 18500, 7500, 6500,
13000, 20000, 9000 };
 var downloadsData = new[] { 6000, 7500, 12000, 5800, 11000, 7000, 16000, 17500,
19500, 13250, 13800, 19000 };
 var expensesData = new[] { 15000, 18000, 15500, 18500, 11000, 16000, 8000, 7500,
6500, 6000, 13500, 5000 };
 for (int i = 0; i < 12; i++)
 {
 Month tempMonth = new Month();

Xamarin.iOS Controls 33

Copyright © 2017 GrapeCity, inc. All rights reserved.

 tempMonth.Name = monthNames[i];
 tempMonth.Sales = salesData[i];
 tempMonth.Downloads = downloadsData[i];
 tempMonth.Expenses = expensesData[i];
 appData.Add(tempMonth);

 }
 }
}

public class Month
{
 string _name;
 long _sales, _downloads, _expenses;

 public string Name
 {
 get { return _name; }
 set { _name = value; }
 }

 public long Sales
 {
 get { return _sales; }
 set { _sales = value; }
 }

 public long Downloads
 {
 get { return _downloads; }
 set { _downloads = value; }
 }
 public long Expenses
 {
 get { return _expenses; }
 set { _expenses = value; }
 }
}

Back to Top

Step 2: Add a FlexChart control

Complete the following steps to initialize a FlexChart control in C#.

Add a FlexChart control in StoryBoard

1. In the Solution Explorer, click MainStoryboard to open the storyboard editor.
2. Under the Document Outline, expand View Controller and click View.
3. In your Toolbox under the Custom Components tab, drag a FlexChart onto your ViewController.

Xamarin.iOS Controls 34

Copyright © 2017 GrapeCity, inc. All rights reserved.

Initialize the FlexChart control in Code

To initialize the FlexChart control, open the ViewController file from the Solution Explorer and replace its content with the
code below. This overrides the ViewDidLoad method of the view controller in order to initialize FlexChart.

C#

 public override void ViewDidLoad()
 {
 base.ViewDidLoad();
 // Perform any additional setup after loading the view, typically from a nib.

 chart = new FlexChart();
 chart.BindingX = "Name";
 chart.Series.Add(new ChartSeries() { SeriesName = "Sales", Binding =
"Sales,Sales" });

FlexChartDataSource SalesData = new FlexChartDataSource();
 chart.ItemsSource = SalesData.Data;
 this.Add(chart);
 }

 public override void ViewDidLayoutSubviews()
 {
 base.ViewDidLayoutSubviews();
 chart.Frame = new CGRect(this.View.Frame.X, this.View.Frame.Y + 80,

Xamarin.iOS Controls 35

Copyright © 2017 GrapeCity, inc. All rights reserved.

 this.View.Frame.Width, this.View.Frame.Height - 80);
 }

Back to Top

Step 3: Run the Application

Press F5 to run the application.

Back to Top

FlexGrid
The FlexGrid control provides a powerful and flexible way to display data from a data source in tabular format.
FlexGrid is a full-featured grid, providing various features including automatic column generation; sorting, grouping
and filtering data using the CollectionView; and intuitive touch gestures for cell selection, sorting, scrolling and
editing. FlexGrid brings a spreadsheet-like experience to your iOS mobile apps with quick cell editing capabilities.

FlexGrid provides design flexibility with conditional formatting and cell level customization. This allows developers to
create complex grid-based applications, as well as provides the ability to edit and update databases at runtime.

Key Features

Xamarin.iOS Controls 36

Copyright © 2017 GrapeCity, inc. All rights reserved.

Auto Generate Columns: Generates grid columns automatically when set to true.
Data Binding: FlexGrid allows you to bind data with business objects, and display it in rows and columns of the
grid.
Touch-based Cell Selection, Zooming and Editing: FlexGrid supports touch-based cell selection and editing.
Double-tapping inside a cell puts it into the edit mode similar to Microsoft Excel®. FlexGrid also allows smooth
scrolling.
Format columns: FlexGrid supports various format options that can be used to display data with simple format
strings.
Themes: FlexGrid supports various application and device themes to enhance grid's appearance.
Pull-to-Refresh and Incremental Loading: FlexGrid supports the ability to load data on-demand using
CollectionView and refresh data by pulling down at the top of the grid.

Quick Start: Add Data to FlexGrid
This section describes how to add a FlexGrid control to your iOS app and add data to it. This topic comprises of three steps:

Step 1: Create a data source for FlexGrid
Step 2: Add a FlexGrid control
Step 3: Run the Application

The following image shows how the FlexGrid appears, after completing the steps above:

Step 1: Create a data source for FlexGrid

Add a new class to serve as the data source for FlexGrid.

C#

 public class Customer :
 INotifyPropertyChanged,
 IEditableObject
 {
 #region ** fields

Xamarin.iOS Controls 37

Copyright © 2017 GrapeCity, inc. All rights reserved.

 int _id, _countryId, _orderCount;
 string _first, _last;
 string _address, _city, _postalCode, _email;
 bool _active;
 DateTime _lastOrderDate;
 double _orderTotal;

 static Random _rnd = new Random();
 static string[] _firstNames = "Andy|Ben|Charlie|Dan|Ed|Fred|Gil|Herb".Split('|');
 static string[] _lastNames =
"Ambers|Bishop|Cole|Danson|Evers|Frommer|Griswold|Heath".Split('|');
 static KeyValuePair<string, string[]>[] _countries = "China-Beijing|India-
Mumbai,Delhi|United States-New York|Japan-Tokio,Ōsaka".Split('|').Select(str => new
KeyValuePair<string, string[]>(str.Split('-').First(), str.Split('-
').Skip(1).First().Split(','))).ToArray();
 static string[] _emailServers = "gmail|yahoo|outlook|aol".Split('|');
 static string[] _streetNames =
"Main|Broad|Grand|Panoramic|Green|Golden|Park|Fake".Split('|');
 static string[] _streetTypes = "ST|AVE|BLVD".Split('|');
 static string[] _streetOrientation = "S|N|W|E|SE|SW|NE|NW".Split('|');

 #endregion

 #region ** initialization

 public Customer()
 : this(_rnd.Next(10000))
 {
 }

 public Customer(int id)
 {
 Id = id;
 FirstName = GetRandomString(_firstNames);
 LastName = GetRandomString(_lastNames);
 Address = GetRandomAddress();
 CountryId = _rnd.Next() % _countries.Length;
 var cities = _countries[CountryId].Value;
 City = GetRandomString(cities);
 PostalCode = _rnd.Next(10000, 99999).ToString();
 Email = string.Format("{0}@{1}.com", (FirstName + LastName.Substring(0,
1)).ToLower(), GetRandomString(_emailServers));
 LastOrderDate = DateTime.Today.AddDays(-_rnd.Next(1,
365)).AddHours(_rnd.Next(0, 24)).AddMinutes(_rnd.Next(0, 60));
 OrderCount = _rnd.Next(0, 100);
 OrderTotal = Math.Round(_rnd.NextDouble() * 10000.00, 2);
 Active = _rnd.NextDouble() >= .5;
 }

 #endregion

 #region ** object model

 public int Id
 {

Xamarin.iOS Controls 38

Copyright © 2017 GrapeCity, inc. All rights reserved.

 get { return _id; }
 set
 {
 if (value != _id)
 {
 _id = value;
 OnPropertyChanged();
 }
 }
 }

 public string FirstName
 {
 get { return _first; }
 set
 {
 if (value != _first)
 {
 _first = value;
 OnPropertyChanged();
 OnPropertyChanged("Name");
 }
 }
 }

 public string LastName
 {
 get { return _last; }
 set
 {
 if (value != _last)
 {
 _last = value;
 OnPropertyChanged();
 OnPropertyChanged("Name");
 }
 }
 }

 public string Address
 {
 get { return _address; }
 set
 {
 if (value != _address)
 {
 _address = value;
 OnPropertyChanged();
 }
 }
 }

 public string City
 {

Xamarin.iOS Controls 39

Copyright © 2017 GrapeCity, inc. All rights reserved.

 get { return _city; }
 set
 {
 if (value != _city)
 {
 _city = value;
 OnPropertyChanged();
 }
 }
 }

 public int CountryId
 {
 get { return _countryId; }
 set
 {
 if (value != _countryId && value > -1 && value < _countries.Length)
 {
 _countryId = value;
 //_city = _countries[_countryId].Value.First();
 OnPropertyChanged();
 OnPropertyChanged("Country");
 OnPropertyChanged("City");
 }
 }
 }

 public string PostalCode
 {
 get { return _postalCode; }
 set
 {
 if (value != _postalCode)
 {
 _postalCode = value;
 OnPropertyChanged();
 }
 }
 }

 public string Email
 {
 get { return _email; }
 set
 {
 if (value != _email)
 {
 _email = value;
 OnPropertyChanged();
 }
 }
 }

 public DateTime LastOrderDate
 {

Xamarin.iOS Controls 40

Copyright © 2017 GrapeCity, inc. All rights reserved.

 get { return _lastOrderDate; }
 set
 {
 if (value != _lastOrderDate)
 {
 _lastOrderDate = value;
 OnPropertyChanged();
 }
 }
 }

 public TimeSpan LastOrderTime
 {
 get
 {
 return LastOrderDate.TimeOfDay;
 }
 }

 public int OrderCount
 {
 get { return _orderCount; }
 set
 {
 if (value != _orderCount)
 {
 _orderCount = value;
 OnPropertyChanged();
 }
 }
 }

 public double OrderTotal
 {
 get { return _orderTotal; }
 set
 {
 if (value != _orderTotal)
 {
 _orderTotal = value;
 OnPropertyChanged();
 }
 }
 }

 public bool Active
 {
 get { return _active; }
 set
 {
 if (value != _active)
 {
 _active = value;
 OnPropertyChanged();

Xamarin.iOS Controls 41

Copyright © 2017 GrapeCity, inc. All rights reserved.

 }
 }
 }

 public string Name
 {
 get { return string.Format("{0} {1}", FirstName, LastName); }
 }

 public string Country
 {
 get { return _countries[_countryId].Key; }
 }

 public double OrderAverage
 {
 get { return OrderTotal / (double)OrderCount; }
 }

 #endregion

 #region ** implementation

 // ** utilities
 static string GetRandomString(string[] arr)
 {
 return arr[_rnd.Next(arr.Length)];
 }
 static string GetName()
 {
 return string.Format("{0} {1}", GetRandomString(_firstNames),
GetRandomString(_lastNames));
 }

 // ** static list provider
 public static ObservableCollection<Customer> GetCustomerList(int count)
 {
 var list = new ObservableCollection<Customer>();
 for (int i = 0; i < count; i++)
 {
 list.Add(new Customer(i));
 }
 return list;
 }

 private static string GetRandomAddress()
 {
 if (_rnd.NextDouble() > 0.9)
 return string.Format("{0} {1} {2} {3}", _rnd.Next(1, 999),
GetRandomString(_streetNames), GetRandomString(_streetTypes),
GetRandomString(_streetOrientation));
 else
 return string.Format("{0} {1} {2}", _rnd.Next(1, 999),
GetRandomString(_streetNames), GetRandomString(_streetTypes));
 }

Xamarin.iOS Controls 42

Copyright © 2017 GrapeCity, inc. All rights reserved.

 // ** static value providers
 public static KeyValuePair<int, string>[] GetCountries() { return
_countries.Select((p, index) => new KeyValuePair<int, string>(index, p.Key)).ToArray(); }
 public static string[] GetFirstNames() { return _firstNames; }
 public static string[] GetLastNames() { return _lastNames; }

 #endregion

 #region ** INotifyPropertyChanged Members

 // this interface allows bounds controls to react to changes in the data objects.
 public event PropertyChangedEventHandler PropertyChanged;

 private void OnPropertyChanged([CallerMemberName] string propertyName = "")
 {
 OnPropertyChanged(new PropertyChangedEventArgs(propertyName));
 }

 protected void OnPropertyChanged(PropertyChangedEventArgs e)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, e);
 }

 #endregion

 #region IEditableObject Members

 // this interface allows transacted edits (user can press escape to restore
previous values).

 Customer _clone;
 public void BeginEdit()
 {
 _clone = (Customer)this.MemberwiseClone();
 }

 public void EndEdit()
 {
 _clone = null;
 }

 public void CancelEdit()
 {
 if (_clone != null)
 {
 foreach (var p in this.GetType().GetRuntimeProperties())
 {
 if (p.CanRead && p.CanWrite)
 {
 p.SetValue(this, p.GetValue(_clone, null), null);
 }
 }

Xamarin.iOS Controls 43

Copyright © 2017 GrapeCity, inc. All rights reserved.

 }
 }

 #endregion
 }

Back to Top

Step 2: Add a FlexGrid control

Complete the following steps to initialize a FlexGrid control in C#.

Add a FlexGrid control in StoryBoard

1. In the Solution Explorer, click MainStoryboard to open the storyboard editor.
2. Under the OutlineDocument , expand View Controller and click View.
3. In the Toolbox under the Custom Components tab, drag the FlexGrid onto the ViewController.

Initialize FlexGrid control in code

To initialize FlexGrid control, open the ViewController file from the Solution Explorer and replace its content with the code
below. This overrides the ViewDidLoad method of the View controller in order to initialize FlexGrid.

C#

public partial class GettingStartedController: UIViewController
 {
 FlexGrid grid;

Xamarin.iOS Controls 44

Copyright © 2017 GrapeCity, inc. All rights reserved.

 public GettingStartedController (IntPtr handle) : base (handle)
 {
 }
 public override void ViewDidLoad()
 {
 base.ViewDidLoad();
 grid = new FlexGrid();
 grid.ItemsSource = Customer.GetCustomerList(100);
 }
 public override void ViewDidLayoutSubviews()
 {
 base.ViewDidLayoutSubviews();
 grid.Frame = new CGRect(this.View.Frame.X, this.View.Frame.Y,
 this.View.Frame.Width, this.View.Frame.Height);

 }
 }

Back to Top

Step 3: Run the Application

Press F5 to run the application.

Back to Top

FlexPie
The FlexPie control allows you to create customized pie charts that represent a series as slices of a pie. The arc length
of each slice depicts the value represented by that slice.

Pie charts are commonly used to display proportional data such as percentage cover. Multi-colored slices make pie
charts easy to understand and usually the value represented by each slice is displayed with the help of labels.

Xamarin.iOS Controls 45

Copyright © 2017 GrapeCity, inc. All rights reserved.

Key Features

Touch Based Labels: Displays values using touch based labels.
Exploding and Donut Pie Charts: Converts a standard pie chart into an exploding or a donut pie chart.

Quick Start: Add data to FlexPie
This section describes how to add a FlexPie control to your iOS app and add data to it. This topic consists of three steps:

Step 1: Create a data source for FlexPie
Step 2: Add a FlexPie control
Step 3: Run the Application

The following image shows how the FlexPie appears, after completing the steps above:

Xamarin.iOS Controls 46

Copyright © 2017 GrapeCity, inc. All rights reserved.

Step 1: Create a data source for FlexPie

Add a new class to serve as the data source for FlexPie.

C#

public class PieChartData
 {
 public string Name {get; set;}
 public double Value {get; set;}

 public static IEnumerable<PieChartData> DemoData()
 {
 List<PieChartData> result = new List<PieChartData> ();
 string[] fruit = new string[]
{"Oranges","Apples","Pears","Bananas","Pineapples" };
 Random r = new Random ();

 foreach (var f in fruit)
 result.Add (new PieChartData { Name = f, Value = r.Next(100) * 101});

 return result;
 }
 }

Back to Top

Step 2: Add a FlexPie control

Complete the following steps to initialize a FlexPie control in C#.

Add FlexPie control in StoryBoard

1. In the Solution Explorer, click MainStoryboard to open the storyboard editor.
2. Under the Document Outline, expand View Controller and click View.
3. In the Toolbox under Custom Components tab, drag a FlexPie onto the ViewController.

Xamarin.iOS Controls 47

Copyright © 2017 GrapeCity, inc. All rights reserved.

Initialize FlexPie control in Code

To initialize the FlexPie control, open the ViewController file from the Solution Explorer and replace its content with the code below.
This overrides the ViewDidLoad method of the View controller in order to initialize FlexPie.

C#

public override void ViewDidLoad()
 {
 base.ViewDidLoad();
 // Perform any additional setup after loading the view, typically from a nib.

 pieChart = new FlexPie();
 pieChart.Binding = "Value";
 pieChart.BindingName = "Name";
 pieChart.ItemsSource = PieChartData.DemoData();
 this.Add(pieChart);
 }

 public override void ViewDidLayoutSubviews()
 {
 base.ViewDidLayoutSubviews();

 pieChart.Frame = new CGRect (this.View.Frame.X, this.View.Frame.Y,
 this.View.Frame.Width, this.View.Frame.Height);
 }

Back to Top

Step 3: Run the Application

Xamarin.iOS Controls 48

Copyright © 2017 GrapeCity, inc. All rights reserved.

Press F5 to run the application.

Back to Top

Gauge
The Gauge control allows you to display information in a dynamic and unique way by delivering the exact graphical
representation you require. Gauges are better than simple labels because they also display a range, allowing users to
determine instantly whether the current value is low, high, or intermediate.

Linear Gauge

Radial Gauge

Bullet Graph

Key Features
Easy Customization: Restyle the Gauge by changing a property to create gauges with custom colors, fills and
more.
Ranges: Add colored ranges to the Gauge to draw attention to a certain range of values. Use simple properties
to customize their start and end points, as well as appearance.
Direction: Place the LinearGauge and BulletGraph horizontally or vertically.
Pointer Customization: Customize the pointer color, border, origin and more to make the Gauge more
appealing.
Animation: Use out-of-the-box animations to add effects to the Gauge control.

Gauge Types
C1Gauge comprises of three kinds of gauges: C1LinearGauge, C1RadialGauge and C1BulletGraph.

Type Image Usage

Linear Gauge: A linear gauge displays the
value along a linear scale, using a linear
pointer. The linear scale can be either
horizontal or vertical, which can be set using
the direction property.

A linear gauge
is commonly
used to
denote data as
a scale value
such as length,
temperature,
etc.

Xamarin.iOS Controls 49

Copyright © 2017 GrapeCity, inc. All rights reserved.

Radial Gauge: A radial gauge displays the
value along a circular scale, using a curved
pointer. The scale can be rotated as defined
by the StartAngle and SweepAngle properties.

A radial gauge
is commonly
used to
denote data
such as
volume,
velocity, etc.

Bullet Graph: A bullet graph displays a single
value on a linear scale, along with a target
value and ranges that instantly indicate
whether the value is good, bad or in some
other state.

A bullet graph
is a variant of
a linear gauge,
designed
specifically for
use in
dashboards
that display a
number of
single value
data, such as
yearly sales
revenue.

Quick Start: Add and Configure Gauge
This section describes how to add a C1Gauge controls to your iOS app and set its value.

Add C1Gauge control in StoryBoard

1. In the Solution Explorer, click MainStoryboard to open the storyboard editor.
2. Under the Document Outline, expand View Controller and click View.
3. In the Toolbox under Custom Components tab, drag a C1LinearGuage, C1RadialGauge, or C1BulletGraph onto the

View Controller.

Xamarin.iOS Controls 50

Copyright © 2017 GrapeCity, inc. All rights reserved.

Initialize C1Gauge control in code

To initialize C1Gauge control, open the ViewController file from the Solution Explorer and replace its content with the code
below. This overrides the ViewDidLoad method of the View controller in order to initialize a C1LinearGauge, C1BulletGraph,
and C1RadialGauge.

C#

private const double DefaultValue = 25;
private const double DefaultMin = 0;
private const double DefaultMax = 100;

C1LinearGauge linearGauge;
C1RadialGauge radialGauge;
C1BulletGraph bulletGraph;

public override void ViewDidLoad()
 {
 base.ViewDidLoad();
 this.EdgesForExtendedLayout = UIRectEdge.None;
 linearGauge = new C1LinearGauge();
 radialGauge = new C1RadialGauge();
 bulletGraph = new C1BulletGraph();

 linearGauge.Value = DefaultValue;
 linearGauge.Min = bulletGraph.Min = radialGauge.Min = DefaultMin;
 linearGauge.Max = bulletGraph.Max = radialGauge.Max = DefaultMax;

Xamarin.iOS Controls 51

Copyright © 2017 GrapeCity, inc. All rights reserved.

 linearGauge.Value = bulletGraph.Value = radialGauge.Value = DefaultValue;
 bulletGraph.Bad = 20;
 bulletGraph.Good = 75;
 bulletGraph.Target = 70;
 this.View.BackgroundColor = linearGauge.BackgroundColor =
bulletGraph.BackgroundColor = radialGauge.BackgroundColor = UIColor.White;
 this.Add(linearGauge);
 this.Add(radialGauge);
 this.Add(bulletGraph);
 }

 public override void ViewDidLayoutSubviews()
 {
 base.ViewDidLayoutSubviews();
 linearGauge.Frame = new CGRect(this.View.Frame.X, this.View.Frame.Y,
 this.View.Frame.Width, this.View.Frame.Height/6);

 bulletGraph.Frame = new CGRect(this.View.Frame.X, this.View.Frame.Height / 3,
 this.View.Frame.Width, this.View.Frame.Height / 6);

 radialGauge.Frame = new CGRect(this.View.Frame.X, this.View.Frame.Height * 2 /
3, this.View.Frame.Width, this.View.Frame.Height/3);

 }

Input

AutoComplete
The C1AutoComplete is an editable input control designed to show possible text suggestions automatically as the
user types text. The control filters a list of pre-defined items dynamically as a user types to provide suggestions that
best or completely matches the input. The suggestions that match the user input appear instantly in a drop-down list.

Key Features

Customize Appearance - Use basic appearance properties to customize the appearance of the drop-down list.
Delay - Use delay feature to provide some time gap (in milliseconds) between user input and suggestion.
Highlight Matches - Highlight the input text with matching string in the suggestions.

Quick Start: Populating C1AutoComplete with data
This section describes adding a C1AutoComplete control to your iOS application and populating it with data. The data is
shown as a list in the drop-down part of the control.

Complete the following steps to display a C1AutoComplete control.

Step 1: Add a C1AutoComplete control to ViewController
Step 2: Run the project

The following image shows a C1AutoComplete control displaying input suggestions as the user types.

Xamarin.iOS Controls 52

Copyright © 2017 GrapeCity, inc. All rights reserved.

Step 1: Add a C1AutoComplete control to ViewController

Add C1AutoComplete control to StoryBoard

1. In the Solution Explorer, click MainStoryboard to open the storyboard editor.
2. Under the OutlineDocument , expand View Controller and click View.
3. In the Toolbox under the Custom Components tab, drag the C1AutoComplete control onto the ViewController.

Xamarin.iOS Controls 53

Copyright © 2017 GrapeCity, inc. All rights reserved.

Initialize C1AutoComplete in code

To initialize C1AutoComplete control, open the ViewController file from the Solution Explorer and replace its content with the
code below. This overrides the ViewDidLoad method of the View controller in order to initialize C1AutoComplete.

C#

public override void ViewDidLoad()
 {
 base.ViewDidLoad();

 HighlightDropdown.DropDownHeight = 200;
 HighlightDropdown.DisplayMemberPath = "Name";
 HighlightDropdown.IsAnimated = true;
 HighlightDropdown.ItemsSource = GetDemoDataList();
 }

 public static IEnumerable<object> GetDemoDataList()
 {
 List<object> array = new List<object>();

 //NSMutableArray array = new NSMutableArray();
 var quarterNames = "Australia,Bangladesh,Brazil,Canada,China".Split(',');

 for (int i = 0; i < quarterNames.Length; i++)
 {
 array.Add(new Countries
 {

Xamarin.iOS Controls 54

Copyright © 2017 GrapeCity, inc. All rights reserved.

 Name = quarterNames[i]
 });
 }
 return array as IEnumerable<object>;
 }

Step 2: Run the Project

Press F5 to run your application

CheckBox
The C1CheckBox control provides an iOS implementation of the classic checkbox control. The C1CheckBox is a
visualization control and provides input for Boolean values. Users can select and clear the control by simply tapping
it.

The following image shows the C1CheckBox control.

You can set the value of the checkbox by setting the IsChecked property. You can also customize the style by setting
the Color property. The image given below shows a modified C1CheckBox in a FlexGrid.

Xamarin.iOS Controls 55

Copyright © 2017 GrapeCity, inc. All rights reserved.

ComboBox
The C1ComboBox is an input control that combines the features of a standard text box and a list view. The control is
used to display and select data from the list that appears in a drop-down. Users can also type the text into the
editable text box that appears in the header to provide input. The control also supports automatic completion to
display input suggestions as the user types in the text box.

Key Features

Automatic Completion - The C1ComboBox control supports automatic completion feature that provides
relevant suggestions to user while typing the text in the text area.
Edit Mode - By default, the C1ComboBox control editable. However, you can make it non-editable to modify
the input.

Quick Start: Display a C1ComboBox Control
This section describes adding a C1ComboBox control to your iOS application and displaying a list of items in the
drop-down as input suggestions for users.

Complete the following steps to display a C1ComboBox control.

Step 1: Add an item list to be displayed in the drop-down
Step 2: Add a C1ComboBox control to ViewController
Step 3: Run the Project

The following image shows a C1ComboBox displaying input suggestions as the user types.

Step 1: Add an item list to be displayed in the drop-down

Complete the following steps to add a list of items to be displayed in the drop-down list.

1. Create a new iOS application (Refer Creating a new Xamarin.iOS app for detailed instructions).
2. Add the following code in the ViewController to create an item list.

Xamarin.iOS Controls 56

Copyright © 2017 GrapeCity, inc. All rights reserved.

C#

public static IEnumerable<object> GetDemoDataList()
 {
 List<object> array = new List<object>();

 //NSMutableArray array = new NSMutableArray();
 var quarterNames =
"Australia,Bangladesh,Brazil,Canada,China".Split(',');

 for (int i = 0; i < quarterNames.Length; i++)
 {
 array.Add(new Countries
 {
 Name = quarterNames[i]
 });
 }
 return array as IEnumerable<object>;
 }

Step 2: Add a C1ComboBox control to ViewController

1. Initialize a C1ComboBox control in the ViewDidLoad method.
C#

public override void ViewDidLoad()
 {
 base.ViewDidLoad();

 ComboBoxEdit.DisplayMemberPath = "Name";
 ComboBoxEdit.ItemsSource = Countries.GetDemoDataList();
 ComboBoxEdit.DropDownHeight = 200;
 ComboBoxEdit.Placeholder = "Please Enter...";
 ComboBoxEdit.ItemsSource = GetDemoDataList();
 }

 public static IEnumerable<object> GetDemoDataList()
 {
 List<object> array = new List<object>();

 //NSMutableArray array = new NSMutableArray();
 var quarterNames =
"Australia,Bangladesh,Brazil,Canada,China".Split(',');

 for (int i = 0; i < quarterNames.Length; i++)
 {
 array.Add(new Countries
 {
 Name = quarterNames[i]
 });
 }
 return array as IEnumerable<object>;

Xamarin.iOS Controls 57

Copyright © 2017 GrapeCity, inc. All rights reserved.

 }

Step 3: Run the Project

Press F5 to run the application.

DropDown
The C1DropDown is a basic drop-down control that can be used as a base to create custom drop-down controls such
as date picker, auto complete menus, etc. The control comprises three major elements including a Header view, a
button, and a DropDown view. The header includes the entire width of the control, while the button is placed on the
top of the header, indicating that the control can be expanded. The drop-down includes the entire length of the
control and gets expanded or collapsed.

Creating a Custom Date Picker using C1DropDown
This topic provides you a walkthrough to creating a custom date picker using the C1DropDown control. For this, you
begin by creating an iOS application, and initializing a C1DropDown, a C1Calendar control, and a C1MaskedTextField
control. To create a date picker, you need to set the Header property to the object of the MaskedTextField and
DropDown property to the object of the C1Calendar class.

The image below shows how a custom date picker created using the C1DropDown appears.

Add the following code to your ViewController to display the control.

C#

public static C1MaskedTextField maskedField;
public C1Calendar calendar;
public static C1DropDown d;
public C1DropDown DropDown;

Xamarin.iOS Controls 58

Copyright © 2017 GrapeCity, inc. All rights reserved.

public override void ViewDidLoad()
 {
 base.ViewDidLoad();

 DropDown = new C1DropDown();

 DropDown.DropDownHeight = 300;
 DropDown.DropDownWidth = DropDown.Frame.Size.Width;
 DropDown.DropDownMode = DropDownMode.ForceBelow;
 DropDown.IsAnimated = true;
 d = DropDown;

 maskedField = new C1MaskedTextField();
 maskedField.Mask = "00/00/0000";
 maskedField.BackgroundColor = UIColor.Clear;
 maskedField.BorderStyle = UITextBorderStyle.None;
 DropDown.Header = maskedField;

 calendar = new C1Calendar();
 calendar.SelectionChanged += (object sender,
CalendarSelectionChangedEventArgs e) =>
 {
 DateTime dateTime = calendar.SelectedDates[0];
 string strDate = dateTime.ToString("MM-dd-yyyy");
 maskedField.Text = strDate;
 d.IsDropDownOpen = false;
 };
 DropDown.DropDown = calendar;
 this.View.Add(DropDown);

 }

MaskedTextField
The C1MaskedTextField control is designed to capture properly formatted user input. The control prevents users from
entering invalid values in an input field, and other characters like slash or hyphen. The control also provides data
validation by skipping over invalid entries as the user types. The control uses special elements called mask symbols or
mask inputs to specify the format in which the data should be entered in an input field, .

For example, you can use the MaskedTextField control to create an input field that accepts phone numbers with area
code only, or Date field that allows users to enter date in dd/mm/yyyy format only.

Mask Symbols
The C1MaskedTextField control provides an editable mask that supports a set of special mask characters/symbols.
These characters are used to specify the format in which the data should be entered in an text field. For this, all you
need to do is use the Mask property to specify the data format.

For example, setting the Mask property for a C1MaskedTextField control to "90/90/0000" lets users enter date in
international date format. Here, the "/" character works as a logical date separator.

The following table enlists mask symbols supported by the C1MaskedTextField control.

Xamarin.iOS Controls 59

Copyright © 2017 GrapeCity, inc. All rights reserved.

Mask Symbol Description

0 Digit

9 Digit or space

Digit, sign, or space

L Letter

? Letter, optional

C Character, optional

& Character, required

I Letter or space

A Alphanumeric

a Alphanumeric or space

. Localized decimal point

, Localized thousand separator

: Localized time separator

/ Localized date separator

$ Localized currency symbol

< Converts characters that follow to lowercase

> Converts characters that follow to uppercase

| Disables case conversion

\ Escapes any character, turning it into a literal

All others Literals

Quick Start: Display C1MaskedTextField Controls
This section describes adding C1MaskedTextField controls to an iOS application for specifying four input fields,
namely ID, Date of Birth, Phone and State. The ID input field accepts a nine-digit number separated by hyphens, the
Date of Birth field accepts a date in mm/dd/yyyy format, the Phone field accepts a 10-digit number with area code,
and the State field accepts abbreviated postal code of a state.

The following image shows the input fields configured after completing the above steps.

Xamarin.iOS Controls 60

Copyright © 2017 GrapeCity, inc. All rights reserved.

Add the following code in ViewDidLoad method to display C1MaskedTextField controls.

C#

public override void ViewDidLoad()
 {
 base.ViewDidLoad();
 C1MaskedTextField MaskedID = new C1MaskedTextField();
 C1MaskedTextField MaskedDOB = new C1MaskedTextField();
 C1MaskedTextField MaskedPhone = new C1MaskedTextField()
 C1MaskedTextField MaskedState = new C1MaskedTextField();

 MaskedID.Mask = "000-00-0000";
 MaskedDOB.Mask = "90/90/0000";
 MaskedPhone.Mask = "(999) 000-0000";
 MaskedState.Mask = "LL";

 this.View.Add(MaskedID);
 this.View.Add(MaskedDOB);
 this.View.Add(MaskedPhone);
 this.View.Add(MaskedState);
 }

Xamarin.iOS Controls 61

Copyright © 2017 GrapeCity, inc. All rights reserved.

	€
	Table of Contents
	Getting Started with Xamarin.iOS Controls
	Breaking Changes for Xuni Users
	NuGet Packages
	Redistributable Files
	System Requirements
	Creating a New Xamarin.iOS App
	Adding NuGet Packages to your App
	Licensing
	Licensing your app using GrapeCity License Manager Add-in
	Licensing your app using website
	Finding the Application Name

	About this Documentation
	Technical Support

	Controls
	Calendar
	Quick Start: Display a C1Calendar Control

	CollectionView
	Quick Start

	FlexChart
	Chart Elements
	Chart Types
	Quick Start: Add Data to FlexChart

	FlexGrid
	Quick Start: Add Data to FlexGrid

	FlexPie
	Quick Start: Add data to FlexPie

	Gauge
	Gauge Types
	Quick Start: Add and Configure Gauge

	Input
	AutoComplete
	Quick Start: Populating C1AutoComplete with data

	CheckBox
	ComboBox
	Quick Start: Display a C1ComboBox Control

	DropDown
	Creating a Custom Date Picker using C1DropDown

	MaskedTextField
	Mask Symbols
	Quick Start: Display C1MaskedTextField Controls

