
CUBA Platform. Developer’s

Manual

Preface
This manual provides the reference information for the CUBA platform and covers the most important

topics of developing business applications with it.

Intended Audience

This manual is intended for application developers using the CUBA platform. The following technologies

knowledge is required to use the platform:

 Java Standard Edition

 Relational databases (SQL, DDL)

Further Reading

This manual and other documentation related to the CUBA platform can be found at www.cuba-

platform.com/manual.

Video materials and presentations that can help you to understand the platform are available at www.cuba-

platform.com/tutorials.

You can also check out online demo applications at www.cuba-platform.com/online-demo.

Knowledge of the following technologies and frameworks will be helpful to get a deeper understanding of

the platform:

 Gradle build system

 Spring Framework

 Java Persistence API

 EclipseLink framework

 Vaadin web applications framework

 HTML / CSS / JavaScript

 Java Servlets

 Java Swing

Feedback

If you have any suggestions for improvement of this Manual, please contact support at www.cuba-

platform.com/support/topics.

https://www.cuba-platform.com/manual
https://www.cuba-platform.com/manual
https://www.cuba-platform.com/tutorials
https://www.cuba-platform.com/tutorials
https://www.cuba-platform.com/online-demo
https://docs.gradle.org/2.6/userguide/userguide.html
http://projects.spring.io/spring-framework
http://en.wikipedia.org/wiki/Java_Persistence_API
https://www.eclipse.org/eclipselink/documentation
https://vaadin.com/book
https://www.cuba-platform.com/support/topics
https://www.cuba-platform.com/support/topics

If you find a mistake in the documentation, please specify the number of the chapter and attach a small

portion of the surrounding text to facilitate the search.

1. Introduction
This chapter provides information about the CUBA platform features and requirements.

1.1. Overview

CUBA platform is an ideal tool for development teams working on line-of-business applications, typically

having extensive data model, hundreds of screens and complex business logic.

Based on a mainstream technology stack, CUBA platform brings unparalleled productivity by utilizing a

rich set of ready to use data-aware components, extensive scaffolding, visual interface designer and hot

deploy.

Open architecture allows a developer to customize any part of the framework, providing high levels of

control and flexibility. Developers have the freedom to use popular Java IDEs and have full access to the

source code.

CUBA applications fit seamlessly into the corporate IT environment, supporting major databases and

application servers, as well as popular aPaaS clouds. Streamlined clustered deployment ensures scalability

and failover, while a generic REST API enables easy integration with other systems.

1.2. Technical Requirements

Minimum requirements for development using CUBA platform:

 Memory – 4 GB

 Hard drive space – 5 GB

 Operating system: Microsoft Windows, Linux or Mac OS X

1.3. Release Notes

CUBA platform changelog is available at http://files.cuba-platform.com/cuba/platform/platform-6.0-

changelog.html.

2. Installation and Setup
Minimum software requirements are as follows:

 Java SE Development Kit (JDK) 8. It is recommended that you use Oracle Java HotSpot VM.

In order to build and run projects outside Studio, you need to set the path to the JDK root directory in

the JAVA_HOME environment variable, e.g. C:\Program Files\Java\jdk1.8.0_60. On

Windows, you can do this at Computer → Properties → Advanced System Settings → Advanced

→ Environment variables. The value of the variable should be added to the System variables list.

 Java IDE: IntelliJ IDEA Community Edition 13+ or Eclipse 4.3+. We recommend using IntelliJ

IDEA.

http://files.cuba-platform.com/cuba/platform/platform-6.0-changelog.html
http://files.cuba-platform.com/cuba/platform/platform-6.0-changelog.html

In the most basic scenario, the built-in HyperSQL (http://hsqldb.org) can be used as the database server.

This is sufficient for exploring the platform capabilities and application prototyping. For building

production applications, it is recommended to install and use one of the full-featured DBMS supported by

the platform, like PostgreSQL for instance.

The web interface of the platform-based applications supports all popular browsers, including Google

Chrome, Mozilla Firefox, Safari, Opera 15+, Internet Explorer 9+, Microsoft Edge.

2.1. CUBA Studio Installation

Prerequisites:

 Make sure that Java SE Development Kit (JDK) 8 is installed by running the following command in

the console:

java -version

The command should return the Java version, e.g. 1.8.0_60.

 If you connect to the internet via a proxy server, some Java system properties must be passed to the

JVM running Studio and Gradle. These properties are explained here:

http://docs.oracle.com/javase/8/docs/technotes/guides/net/proxies.html (see properties for HTTP and

HTTPS protocols).

It is recommended to set these properties system-wide in the JAVA_OPTS environment variable. The

Studio launch script passes JAVA_OPTS to the Java executable.

In order to install CUBA Studio, take the following steps:

1. Download an appropriate installer or ZIP archive from https://www.cuba-platform.com/download.

2. Run the installer or unzip the archive to a local directory, e.g. c:/work/studio

3. Launch the installed application or open the command line, go to bin directory and run studio

4. In the CUBA Studio Server window, enter the following parameters:

o Java home − JDK installation to be used for building and running projects. If you have set the

JAVA_HOME environment variable as described in the beginning of this chapter, it will appear in

this field. Otherwise, Studio will try to find your Java installation itself.

o Gradle home − leave this field empty; in this case, the required Gradle distribution will be

downloaded automatically.

If you want to use a local Gradle distribution, enter the path to the respective directory in the field.

For project build system to work correctly, Gradle 2.6 is required.

o Server port − CUBA Studio server port (the default port is 8111).

o IDE port − IDE plugin listening port (the default port is 48561).

o Repository − binary artifacts repository URL and authentication parameters.

http://hsqldb.org/
https://doc.cuba-platform.com/manual-6.1/manual.html#dbms_types
https://doc.cuba-platform.com/manual-6.1/manual.html#dbms_types
http://docs.oracle.com/javase/8/docs/technotes/guides/net/proxies.html
https://www.cuba-platform.com/download
https://doc.cuba-platform.com/manual-6.1/manual.html#setup
https://doc.cuba-platform.com/manual-6.1/manual.html#artifact_repository

5. The following options are also available:

o Check for updates - check for new versions on every start.

o Help language - built-in help language.

o Offline - enable working with projects without an Internet connection, provided that all the

required libraries have been previously downloaded from the repository.

o Send anonymous statistics and crash reports - enable Studio to send error statistics to

developers.

o Enable remote connection - by default, it is assumed that Studio runs on localhost. Select this

checkbox if you need to connect to this Studio instance from a remote host.

6. Click Start to run the Studio server.

The server will download, run, and connect to the Gradle daemon. This may take a significant amount

of time on first startup; on subsequent launches, this will take just a few seconds.

After that, the web server will be started, and the URL of the Studio interface will appear in the URL

field. By clicking →, you can open the address in your default web browser; by clicking Copy you

can copy the address to the clipboard.

7. Open the specified address in the web browser.

8. In the Studio web interface, click Create new to create a new project, or Import to add an existing

one to the Recent list.

9. Once the project is opened, the Studio will download the source code of the platform base projects

and save it to the local folder. Before building the project, it is recommended to wait until the

download is finished and make sure that the background task indicator in the bottom left corner has

faded out.

2.2. IDE Integration

Take the following steps to integrate Studio with IntelliJ IDEA or Eclipse:

1. Open or create a new project in the Studio.

2. Switch to Project properties section and click Edit. Select the required Java IDE by checking

IntelliJ IDEA or Eclipse.

3. Select Build > Create or update <IDE> project files in the Studio menu. The corresponding files

will be created in the project directory.

4. For IntelliJ IDEA integration:

a. Run IntelliJ IDEA 13+ and install CUBA Framework Integration plugin, from the plugin

repository: File > Settings > Plugins > Browse Repositories.

5. For Eclipse integration:

a. Run Eclipse 4.3+, open Help > Install New Software, add http://files.cuba-

platform.com/eclipse-update-site repository and install the CUBA Plugin.

b. In the CUBA section of the Window > Preferences menu, check Studio Integration Enabled,

and click OK.

Please note that IDE: on port 48561 label has appeared in the bottom left corner of the Studio. Now the

corresponding source code files will be opened in IDE when you click IDE buttons in the Studio.

3. Quick Start
This section describes the process of creating an application using CUBA Studio. Similar information is

provided in the videos available at www.cuba-platform.com/quickstart.

Make sure that the necessary software is already installed and set up on your computer, see Installation and

Setup.

Key stages of our application development:

1. Data model development including creation of entities describing application domain and

corresponding database tables.

2. Development of the user interface screens enabling to create, view, update and delete data model

entities.

3.1. Application Details

The application should maintain information about the customers and their orders.

A customer has the following attributes:

 Name

 E-mail

Order attributes:

 Ownership by a customer

 Date

 Amount

The application UI should contain:

https://doc.cuba-platform.com/manual-6.1/manual.html#qs_create_project
https://www.cuba-platform.com/quickstart
https://doc.cuba-platform.com/manual-6.1/manual.html#setup
https://doc.cuba-platform.com/manual-6.1/manual.html#setup
https://doc.cuba-platform.com/manual-6.1/manual.html#data_model

 Customers browser screen;

 Customer editor screen, containing as well the list of this customer’s orders;

 General orders browser screen;

 Order editor screen.

The application should support user interface in English and Russian.

3.2. Creating a Project

1. Start CUBA Studio and open its web interface (See CUBA Studio Installation).

2. Click Create new.

3. Specify the name of the new project in the Project name field of the New project window – for

example, sales. The name should contain only Latin letters, numbers and underscores. Think

carefully on the project name at this stage, as changing it later on will require complex manual

intervention.

4. The following fields below will be automatically populated:

o Project path – the path to the new project directory. You can select the directory manually by

clicking the … button next to the field. The Select folder window will appear with the list of

folders n your hard drive. You can select one of those, or create a new directory by clicking the +

button.

o Project namespace – the namespace which will be used as a prefix for entity names and database

tables. The namespace can consist of Latin letters only and should be as short as possible. For

example, if the project name is sales_2, the namespace can be sales or sal.

o Root package − the root package of Java classes. It can be adjusted later, but the classes

generated at project creation will not be moved.

o Base projects version – the platform version used in the project. The platform artifacts will be

automatically downloaded from the repository on project build.

5. Click OK. Empty project will be created in the specified sales directory and the main Studio

window will open.

6. Assemble the project: select option Build > Assemble project in the Studio main menu. At this stage

all required libraries will be downloaded and project artifacts will be assembled in build

subdirectories of the modules.

7. Create the database on the local HyperSQL server: select option Run > Create database in the

menu. The database name is the same as project namespace by default.

8. Select Run > Deploy menu option. Tomcat server with the deployed application will be installed in

the project build subdirectory.

9. Select Run > Start application server option. The link next to the Web application caption in the

status panel will become available in a few seconds so you will be able to open the application

directly from Studio.

The username and password are admin / admin.

The running application contains two main menu items (Administration and Help), as well as

security and administration subsystems functionality.

3.3. Creating Entities

https://doc.cuba-platform.com/manual-6.1/manual.html#cubaStudio_install
https://doc.cuba-platform.com/manual-6.1/manual.html#artifact

Let us create the Customer entity class.

 Go to the Entities tab in the navigation section and click New entity. The New entity dialog window

will appear.

 Enter the name of the entity class – Customer – in the Class name field.

 Click OK. The entity designer page will be displayed in the workspace.

 The entity name and the database table name will be automatically generated in the Name and the

Table fields respectively.

 Leave the existing value – StandardEntity - in the Parent class field.

 Leave the Inheritance strategy field blank.

 Click button next to the Name to open the Localized message window. Specify localization for the

entity name for the available languages in it.

Next, let us create entity attributes. To do this, click the New button below the Attributes table.

 Create attribute window will appear. Enter the name of the entity attribute − name, in the Name

field. Select DATATYPE value in the Attribute type list, specify String attribute type in the Type

field and then set the length of the text attribute to 100 characters in the Length field. Check the

Mandatory box. The name of the database table column will be automatically generated in the

Column field.

https://doc.cuba-platform.com/manual-6.1/manual.html#localization

Now click button next to the attribute name to open the Localized message window. Localize the

attribute name in the available languages.

Click Add to add the attribute.

 email attribute is created in the same way but the value in Length field should be set to 50.

After creating the attributes, go to the Instance name tab in the entity designer to specify Name pattern.

Select the name attribute in the Available attributes list and move it to the Name pattern attributes list

by clicking the button with the right arrow on it.

https://doc.cuba-platform.com/manual-6.1/manual.html#namePattern

Customer entity creation is now complete. Click OK in the top panel to save the changes and close the

page.

Let us create the Order entity. Click New entity option on the Entities tab. Enter the Class name −

Order. The entity should have the following attributes:

 Name − customer, Attribute type − ASSOCIATION, Type − Customer, Cardinality −

MANY_TO_ONE.

 Name − date, Attribute type − DATATYPE, Type − Date. Check Mandatory box for date

attribute.

 Name − amount, Attribute type − DATATYPE, Type − BigDecimal.

Specify localized caption for each of the attributes by clicking the button next to the attribute name.

3.4. Creating Database Tables

It is sufficient to click Generate DB scripts button in Entities tab on the navigation panel to create

database tables. After that, Database scripts page will open. Both incremental DB update scripts from the

current state (Update scripts) and initial DB creation scripts (Init tables, Init constraints, Init data) will

be generated on this page.

https://doc.cuba-platform.com/manual-6.1/manual.html#db_update_in_dev
https://doc.cuba-platform.com/manual-6.1/manual.html#db_update_in_dev

Click Save and close button to save the generated scripts. To run update scripts, stop the running

application using the Run > Stop application server command, then select Run > Update database.

3.5. Creating User Interface Screens

Now we will create screens for customers and orders data management.

3.5.1. Screens for Customer

Select Customer entity in the Entities tab on the navigation panel to create standard screens for viewing

and editing Customers. Click Create standard screens link at the bottom of the section. After that, Create

standard screens page will appear.

All fields in this dialog are already populated with default values, there is no need to change them. Click

the Create button.

customer-edit.xml and customer-browse.xml items will appear in GUI Module on Screens

tab of the navigation panel.

You can specify localized captions for the screens. For this, select a screen and click Edit to open the

screen designer page. Go to the Properties tab. Click the [] button next to the Caption field and specify

screen names in different locales. Alternatively, you can open messages.properties item located in

the screens package and edit browseCaption and editCaption messages for available locales.

3.5.2. Order Screens

Order entity has the following distinction: since one of the attributes is the Order.customer

reference attribute, you should define a view including this attribute (standard _local view does not

include reference attributes).

https://doc.cuba-platform.com/manual-6.1/manual.html#views

Go to the Entities tab on the navigation panel, select the Order entity and click the New view button.

View designer page will open. Enter orderWithCustomer as the view name, click on customer

attribute and select _minimal view for the Customer entity in the panel on the right.

Click OK in the top panel.

After that, select the Order entity and click Create standard screens. Select orderWithCustomer in

the View fields in both browser and editor panels of the Create standard screens page and click Create.

order-edit.xml and order-browse.xml items will appear in the GUI Module on the Screens tab

of the navigation panel.

You can specify localized captions for the Order screens as described above for the Customer screens.

3.5.3. Application Menu

At the moment of their creation, the screens were added to the application menu item of the default

application menu. Let us rename it. Switch to the Main menu tab on the navigation panel and click Edit.

The Menu designer page will open. Select the application menu item to edit its properties.

Enter the new value of the menu identifier − shop − in the Id field, then click the Caption edit button and

set localized names of the menu item.

After editing the menu, click OK in the top panel.

3.5.4. Customer Editor With a List of Orders

Do the following to display the list of Orders in the Customers edit screen:

 Go to the Screens tab on the navigation panel. Choose customer-edit.xml screen and click

Edit.

 Go to the Datasources tab on the screen designer page and click New.

 Select the newly created data source in the list. Its attributes will appear in the right part of the page.

 Specify collectionDatasource in the Type field.

 In Id field enter the data source identifier − ordersDs.

 Select com.sample.sales.entity.Order entity in the Entity list.

 Select _local view in the View list.

 Enter the following query in the Query field:

select o from sales$Order o where o.customer.id = :ds$customerDs

order by o.date

The query contains orders selection criterion with ds$customerDs parameter. The parameter value

named like ds${datasource_name} will contain id of the entity selected in

datasource_name datasource at the moment, in this case it is the id of the Customer being edited.

 Click Apply to save the changes.

 Next go to the Layout tab in the screen designer and find the Label component in the components

palette. Drag this component to the screen components hierarchy panel and place it between

fieldGroup and windowActions. Go to the Properties tab in the properties panel. Enter

msg://orders in the value field. Click the button next to the value field and define label values

in available languages.

Tip If the application is not intended to be used in multiple languages, the value in the

value field can be entered straight in the required language.

 Drag Table from the components palette to components hierarchy panel and place it between label

and windowActions. Select this component in the hierarchy and specify table size in properties on

the Layout tab: set 100% in the width field and 200px in the height field.

Go to the Properties tab. Set ordersTable value as id, choose orderDs from the list of available

datasources.

 Click OK in the top panel to save the changes in the screen.

3.6. Running the Application

Now let us see how the created screens look in the actual application. Select Run > Restart application

server.

Log in selecting English language in the login window. Open the Sales > Customers menu item:

Figure 1. The Customers browser

Click Create:

Figure 2. The Customer editor screen

Open the Sales > Orders menu item:

Figure 3. The Orders browser

Click Create:

Figure 4. The Order editor

