TrueUpaate

E B EEEERERN HEEEENEBRG

User’s Guide

wwwwwwwwwwwwwwwwww

http://www.indigorose.com

Proprietary Notice

The software described in this document is a proprietary product of Indigo Rose Software
Design Corporation and is furnished to the user under a license for use as specified in the
license agreement.

The software may be used or copied only in accordance with the terms of the agreement.

Information in this document is subject to change without notice and does not represent a
commitment on the part of Indigo Rose Software Design Corporation. No part of this
document may be reproduced, transmitted, transcribed, stored in any retrieval system, or
translated into any language without the express written permission of Indigo Rose Software
Design Corporation.

Trademarks

TrueUpdate and the Indigo Rose logo are trademarks of Indigo Rose Software Design
Corporation. All other trademarks and registered trademarks mentioned in this document are
the property of their respective owners.

Copyright
Copyright © 1992 - 2007 Indigo Rose Software Design Corporation.
All Rights Reserved.

LUA is copyright © 2003 Tecgraf, PUC-Rio.
UPX executable compression (http://upx.sf.net) copyright (C) 1996-2007 Markus Franz Xaver

Johannes Oberhumer, copyright (C) 1996-2007 Laszlo Molnar, copyright (C) 2000-2007 John
F. Reiser. All Rights Reserved.

Note: This user’'s guide is also available as a professionally printed, perfect-bound
manual. To order your copy, please visit www2.ondemandmanuals.com/indigorose.

http://upx.sf.net

CHAPTER 1:

CHAPTER 2:

CHAPTER 3:

INTRODUCTION ..ot 10

Key Features of TrueUpdateoooeeveeiiiiiiieieiiieiiiiie e 12
What's New in TrueUpdate?...........uuuiiiiiiiiiiiiiiiieeeeeeeii 15
Frequently Asked QUESEIONSooiiiiiiiiiiiiii e 20
ADOUL thiS GUITE ... 23
Document CONVENLIONScivviiiiiiiiiiiiiiiiieieee e 24
THE TRUEUPDATE MODELcccvvviiiiiiien 26
What Does TrueUpdate DO?uuuiiiiiiiiiiiiiiiiieeeeeeeeiii e 28
The TrueUpdate ClHENt.........coooeiiiiiii e 29
TrueUpdate SEIVEIS. ..o 30
Server Configuration FilesS............coooiii e, 30
The Update PrOCESSccuvuuiiiieeiiiiiiiiee ettt 31
Yol 1] o] £ TP 32
Script Tabs: Client VS. SEIVer ..., 33

The Client SCHPL.....coiieeii e 33

THEe ServVer SCHPL.....cooeiiiiie e 34
Screens: CHENt VS, SEIVETuuiiiiiiiiiiiiiiiiiiiiiiiiieeeieeeeeeeeeeeennes 34

The Clent SCreeNS ... 34

The Server SCreens........cccccvvviiii 35
Updating An Existing Client...........coooioiiiiiiiiieieeii e 35
THE PROJECT WIZARD ..o 36
Starting a NeW Project...........uuuoiiiiiiiiiiiiii e 38
THE DEVELOPMENT ENVIRONMENT.............. 60
Updating TrueUPdate..........cooeeiiiiiiiiieeeiieeiiiee e 62
Learning the INterface ... 62

Table of Contents

CHAPTER 4:

CHAPTER 5:

Getting Help ..o 69

Setting Preferences............ooo 72
INTRODUCTION TO SCRIPTING........cvviennnn. 76
WAt Are SCHPES? ittt 78
What Are ACIONS?ooooviiiiiiiii 78
The SCript EItOr ... 79
Programming FeatUresoiiieiiiiiiiiiiie e 81
CHENE SCIPL ..ot 85
SEIVEE SCHPLS ..ttt 85
SCreeNn EVENLSviiiiiiiiiiii e 86
Using the Action Wizard ... 87
AddiNg ACLIONS......coiiiiiiiii e 88
Editing ACHONScuueiii et 93
Getting Help on ACHIONSoiiiiiiiiiiic e, 95
INCIUAES ... 96
PIUGINS. ..o 97
Where to GO from Here.........oooovviiii 99
CREATING THE USER INTERFACE............... 100
The User INterface ..o 102
SCIBEINS ...ttt 102
The Screen Panes..........cccocviii 104
ClHENt SCIEENS ... 104
SEIVEI SCIEENSuuiiiiiiiiiieiie et 105
SCIEEN LiStS ... 105
AddiNg SCrEENScoeiiiiiii e 106
REMOVING SCrEENSiiiiiiiiiiiiie e 107
Editing SCIreENS ...ccvvviiii e 107

Table of Contents

CHAPTER 6:

SNOWING SCrEENS.....ccciiiiiiiiiie e 107

SCreen Properti€S......ccoiiiiiiiiiii e 108
The Language Selector..........cooiviiiiiiiiiiiiiiiiiic e, 109
Session Variables ... 110
Screen NavIigationooouuieiiiiieiieiie e 110
SCreen CONMIOIS......coo i 113
SCreen LayOutooouviiiiiii e 115
TREMES. .. 120
ChoosiNg @ ThEMEcoiiiiii e 121
Creating a Custom TheMEcooiiiiiiiiiiii e 122
Overriding TREMESooiiiiiii e 123
Other OPLIONS ...cceeiiiiie e 124
Taskbar SettingS........couuuuiiiiieiee e 124
ACHONS et 124
Alternative INterfacesccccovvi 126
SHENt UPAALESeeeiiieiiiiiiiiei e 126
Dialog-based Updatesuuiiiiiiiiiiiiiiiieeii e, 126
TRUEUPDATE SERVERS ... 128
What Are TrueUpdate SEIVErS?coov i 130
Types of TrueUpdate SErvers..........oouuueeiiieiiiiiiiiiiiiee e, 130
HTTP SEIVEN....coiiiiiiiiie e 131
HTTPS SEIVEN .o 131
FTP SEIVEI ... 131
LAN/LOCAl SEIVET.....uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieibeebeeeereeeeeeeeeeeeeees 131
Adding, Removing and Editing Serversccccoooeviieiiiiinnnenn. 132
TrueUpdate Server Redundancyooooovveiiiiiiniineeniieniinnnnn. 132
TrueUpdate Server Scalabilitycooiiiiiiiiiiin, 133

Table of Contents

CHAPTER 7:

CHAPTER 8:

SESSION VARIABLES ..., 136
What Are Session VariableS?........ccccooii 138
Built-in Session Variablescccccvviiiiiiiiiiiiiiii 138
Custom Session Variables...........coceeen 142
Setting Session Variables ..., 142
Using the Session Variables Tabceiiiiiiiiiiiiiiiinnnn. 142
USING ACHIONS.coiiiiiiii et 144
Removing Session Variables. ... 145
Using the Session Variables Tabc..ceeiiiiiiiiiiiiiinnnnn. 145
USING ACHIONS.ceiiiiiiiie e 145
Using Session Variables on Screens..........ccooooeviiiiiiiiiiieens 146
When Are Session Variables Expanded?cccccceeeeneen. 146
Expanding Session Variables in Scriptsccccevvveinnnenn. 147
LANGUAGES ... 152
Internationalizing Your Project..........cooooeviiiiiiiiiiinieeeieeeiiieeee 154
Run-time Language Detection...........cccoeuuuiuiiiiieiiieiiiiiiie e 154
The Language Manageroooeeeiieiiiiiiiiieeeeeeeeeiiee e 155
Default LanQUagEeoooveeeiieeiiiieie e 156
Language FileS 156
Adding LaNQUAJESuuii ittt 158
Removing LangQUagescccuuuiuiiiieeiiieiiiiee e 159
The Language Selector..........oooooiiiiiiiiiiiiieeeei e 159
LOCAlIZING SCIEENSuuii ittt 160
Importing and Exporting Screen Translations....................... 162
Customizing Error Messages and Prompts...........cccoeveeeeeeeennnnnn. 162
Advanced TeChNIQUES...........ccoiiiiiiiiiiee e 163
Determining the Current Languageccoeveeeeeeeeivinennnennn. 163
Changing the Current Languagecooveeeveeeeiiiiinnieeeneeenns 165

Table of Contents

CHAPTER 9:

CHAPTER 10:

LocaliziNng ACHONSuiiiieiiieiiice e 166

Working with Existing Translated Messages..........cccccccee..... 167
SECURITY e 170
Security in TrueUpdate............ooiiiiiiiiiiiiii e 172
Client Side SECUILY.......cciiiiiiiiii e 172

Client Executable File ..., 172

ClientData File ... 172

Client File Updatingcccuuvuiiiiiiiiiiiiii e 173
Server Fles SECUNMLYoooiiiiiiii e 173

Types of Server Files. ..., 173
Client-Server CoOmMmUNICALION...........uvvvreiiiiieiiiiiieiiieieeireeenneeennes 175

SeCUre ProtoCOISccoooeeieeeeeee e 176
Custom Client-Server CommuniCation..............eevvveeveveeienenennnnns 176
Important Considerationsuuuiiiiiiiiiiiiiii e 177
BUILDING AND DISTRIBUTING..............c....... 178
The BUild PrOCESSccoo oo 180
The Publish Wizard...........cooooooiio 181
BUIlA SEHINGS....coiiiiiiiiiei e 184

OUIPUL ... e e e e e eeeas 185

UPIOA. ... e 186

CONSIANTS ... 188

Pre/Post BUild StEPS......oooiiiiiiiii e 190
BUild Preferences.........cvvvviiiiiiii 191
Integrating the Client into your Softwarecooeeeviiiinnnenn. 192

Step 1: Adding the Client Filescoiiiiiiiiiiiiiiiees 192

Step 2: Triggering TrueUpdate.............eeiiiiiiiiiiiiiiiineeeeeeees 193
SOUICE COUR ... uuuuiiiiiiiiiiiiittbb bbb 194

Table of Contents

CHAPTER 11:

Testing YOUr UPAateuuuiiiiaiiiiiiiii e 196

LOG FlES..eeiiiiiii 196
SCRIPTING GUIDE ..., 198
A Quick Example of Scripting in TrueUpdatec...uueeenen. 200
Important Scripting CONCEPLSccvvvviiiieiiiiiiiii e 201

SCrptisS GIODaloiiiiiii 201

Script IS Case-SENSItIVEuuiiieeiiiiiiiiie e 202

COMMENES ...ttt 202

Delimiting StatementsS.........coouuiuiiiiiieiiii e 203
Variables.........oooo 204

What Are VariableS?.......ccccccoviiiiiiii 204

Variable SCOPEoooviiiiiii e 204

Variable Namingoooo i 206

Reserved KeYWOrdS.........cooviiiiiiiiiieeiceiiii e 207

Types and ValUuesuuuiiiiiiiiiiiiiiii e 207
Expressions and OPEratorsScooveeeeeeeuiiiiiieeeeeeeiiiiaee e eeeeeees 215

Arithmetic OPerators.........oooiiiiiiiiieeeeeeee e 215

Relational Operators.........cooeuuiiiiiiiiieeieeeii e 216

LOQICal OPEIAtOrSuuiieeeiieeiii ettt 217

CONCALENALION ... 217

Operator PreCedeNCE.uuuiiiiieiiieiiiicee e 218
CONIOl SITUCLUIES ...ttt 219

e e 219

WHITE e 220

REPEAL..... .o 221

O 222
TaDIES (AITAYS) .evveuiiieeiieeiit et 223

Creating Tables ... 223

Table of Contents

NUMETIC AFTAYS .. eeeiitiee ettt e e 224
ASSOCIALIVE AITAYS ..evvviiiieeeei ettt ee e 225
Using For to Enumerate Tables...........cooviiiiniiiiiiiiiii, 226
Copying Tables: ... oo 228
Table FUNCHONS ..o 230
FUNCHONS ...cooiiiiiiiiiiiiiie 231
FUNCioN ArgUMENES........oooiiiiiiiiii et 232
Returning ValUBScooo oo 233
Returning Multiple Values ..., 234
Redefining FUNCLIONSoooiiiiii e, 234
Putting Functions in Tables.............iii, 235
String Manipulation ... 236
Concatenating StriNgS..........u.oeieeeiiieiiiiia e eeeees 236
Comparing SNGSccieieiiiie e 236
Counting CharaCters...........uuiiiiieiiiiiiiiie e 238
FINdiNg StringS:.....couueiiiiiiiie e 238
Replacing StNGS:.......o i 239
EXTracting StHNQGS.uiiiieeiieiiiiie et 240
Converting Numeric Strings into Numbers.................o.e. 241
Other BUilt-in FUNCHONS.........uuviiiiiiiiiiiiiiiiiiiiiiiiiiiieevieveeeeeieeeees 243
SCHPL FUNCLIONS ... 243
ACHONS .o 245
Debugging YOouUr SCHPLScooiiiiiiiiei e 245
Error HandliNgeeoiiiiiiiii e 245
SYNEAX EITOIS. .o 245
FUNCHONAl EFTOISvvvviiiiiiiiiiiiiiiiiiiiiiiieieiieee e 247
DebUQg ACHIONScoeiiiiiii e 248
Final ThoughtsSoouunii e 255

Table of Contents

Welcomel!

10

Introduction

TrueUpdate is the finest toolkit available for adding a sophisticated software updating
and patch management solution to both software products and network infrastructure.
Whether you're a software devel oper needing to add a“ Check for Update” featureto
your program, or you' re a network administrator wanting to automate the detection
and application of system patches to hundreds or thousands of computer systemsin
your organization, TrueUpdate is an excellent solution.

In either case, the benefits include lower technical support costs, faster time-to-
market, more frequent bug fixes, hassle-free security updates and quicker feature
additions. Additionally, TrueUpdate was designed from the ground up to be flexible,
easy to use, and easy to integrate. It’'s a solution that can be implemented with a
minimum of effort so you can realize positive returns as quickly as possible.

We veimproved the development environment to streamline your workflow and have
introduced unprecedented flexibility with a brand-new scripting engine and action
library. We' ve also introduced a customizable screen manager, support for secure data
transfer, project themes (skins) and many other powerful and timesaving features.

Introduction

What is TrueUpdate?

TrueUpdate is a comprehensive solution for software devel opers, network
administratorsand I T departments wanting to integrate automated update capabilities
into their software and business processes. TrueUpdate provides a sophisticated
client/server framework for determining required updates and then retrieving and
applying the necessary patch or installation files using Internet or LAN protocols.

TrueUpdate was designed to meet the demand for a complete, web-enabled software
updating solution that can be integrated quickly and easily into new and existing
software products and networks, regardless of the installation and deployment
methods used. TrueUpdate makes adding software update and patch management
capability to a company's devel opment infrastructure as simple and cost effective as
possible.

TrueUpdate can be used to securdy update any electronic content, from software
applications and operating system patches to time sensitive data such as product
catalogs, spreadsheets, financial information, sales figures and budgets. Additionally,
TrueUpdate is extremely easy to integrateinto your applications and offers nearly
unlimited flexibility and customization options to ensure that your particular update
requirements and goals are met.

The TrueUpdate brand is a recognizable mark of quality that you can proudly display
to assure your clients and customers that your software updates are in the hands of the
experts.

11

Introduction

12

Key Features of TrueUpdate

Vista Compatible

TrueUpdat€ s design workspace and generated updates are compatible with Windows
Vista, including a configurable " requested execution level” setting for the update’ s
manifest.

Custom Resource Stamping

TrueUpdate allows you to use your own product icon and provides control of the
resource information that you want written into the update s resources.

Integrated Code Signing

Protect theintegrity of your company and products by code signing your updates with
your own certificate during the build process.

MSI Actions

Over 35 M S| actions that |everage the Windows Installer service technology on the
user's system. These are perfect for adding Windows Installer functionality to your
update.

Dynamic Control of Client Systems

Once the TrueUpdate Client application is installed on a computer system, you have
everything you need to ensure that the system is always up-to-date with the latest
software and patches. Operating in conjunction with a TrueUpdate Server connection,
the client software can be continually modified and reconfigured to carry out whatever
system modification you require. This completely dynamic system puts you in full
control and affords you flexibility that other products simply cannot match.

You Control the Server

With TrueUpdate, there is no need to relinquish control over the reliability of your
update process. Other services lock you into using their servers; with TrueUpdate, you
decide where your update files are hosted. Y ou decide on thelevel of redundancy.
You arein control of your updatefiles, patches and servers. Thereis no need to rely
on the uncertain future of an “update service,” pay exorbitant annual fees or wait
helplessly during downtimes you are powerless to resolve.

Introduction

Industry Standard Protocols and Servers

TrueUpdate uses readily available client/server technologies rather than the
proprigtary servers required by competitive products. By making use of affordable and
trusted protocols such as HTTP, HTTPS and FTP, organizations of any size can
deploy TrueUpdate enabled software without the need for specialized and costly
hardware and software platforms. TrueUpdateis built on the trusted, dependable
standards you already rely on.

Easy to Integrate

TrueUpdate was designed to minimize the time it takes to add automated update
capabilities to software applications. As a compact and standal one executable, the
TrueUpdate Client application is extremely easy to integrate into your software. A
typical software developer can haveit donein only afew hours, and it doesn’'t matter
what language you are working in — TrueUpdate is compatible with everything from
Visual Basic to Delphi, C++, COBOL or whatever you are working with. In fact, it
was designed from the ground up to beflexible, easy to use, and easy to integrate.

Runs Stand-alone or Embedded

The TrueUpdate Client application can be invoked in avariety of ways, depending on
your particular needs. Software developers can easily embed the client software
directly into their application, making use of the extensive “theme” support to match
their own unique look and feel. Network administrators, meanwhile, can simply install
the client application on each system and configure an appropriate execution schedule
using standard system tools.

Automates Complex Tasks

TrueUpdateis built on a powerful scripting engine that is capable of quickly
processing any of the more than 250 included high-level actions. Featuring everything
from registry editing to file copying to web file downloads, this complete scripting
environment contains everything you need to automate complex tasks and handle even
the most sophisticated software updating requirements. No other tool gives you the
same leve of ready-to-use commands. TrueUpdate helps you to get your job done
both faster and better!

Scalable and Fault-Tolerant

From the ground up, TrueUpdate was created to be fully scalable and fault-tolerant.
It's easy to configure the client application to access redundant servers. If aserver is
unavailable for any reason, the client will move on to the next one until it can

13

Introduction

14

establish a connection. Additionally, since you control the underlying server
technology suchas HTTP, HTTPS, FTP or LAN, you have ultimate control over load-
balancing and distributed processing of client/server requests.

Reduces Costs

Automating the update process saves considerable time and expense. For software
vendors, it reduces support costs by making it easier for your users to keep their
software up to date—giving your tech support department fewer legacy support issues
to deal with. And for network administrators who maintain hundreds or thousands of
systems, the benefits of TrueUpdate far outweigh theinitial investment.

Lightweight and Stand-alone

Written completely in optimized C and C++ code, the TrueUpdate client is small,
weighing in around 500K in size. It’s also completely self-contained—the TrueUpdate
client has no external dependencies, so you don't haveto distribute any extras to make
it work. Unlike competitive products, it doesn’t require the Java runtime, Visual Basic
runtime, .NET framework or any other multi-megabyte runtime engine.

Works with Any Patch/Install Builder

TrueUpdate works with your choice of installation and patching tools. For a complete
and fully integrated end-to-end solution, we' d recommend choosing Indigo Rose' s
Setup Factory and Visual Patch; however you're certainly not locked into doing so. If
your company has standardized on other install/patch builders, such as those offered
by Installshield, Wise or ZeroG, TrueUpdate can accommodate them. In fact,
TrueUpdate is even able to work with zip archives and individual data files, should
you desire.

Trusted by Professionals

Thousands of software devel opers trust Indigo Rose software tools. In fact, our
products such as TrueUpdate, Setup Factory and Visual Patch are used to distribute
and manage software on millions of customer and client systems around the world.
Additionally, all of our products are backed up by world-class technical support
services.

Introduction

What's New in TrueUpdate?

Vista Compatible

TrueUpdat€ s design workspace and generated updates are compatible with Windows
Vista, including a configurable " requested execution level” setting for the update’ s
manifest.

Custom Resource Stamping

TrueUpdate allows you to use your own product icon and provides control of the
resource information that you want written into the update s resources.

Integrated Code Signing

Protect theintegrity of your company and products by code signing your updates with
your own certificate during the build process.

MSI Actions

Over 35 M S| actions that |everage the Windows Installer service technology on the
user's system. These are perfect for adding Windows Installer functionality to your
update.

Extensive Project Wizard

Getting your project started has never been easier, thanks to the new Project Wizard.
You'll be walked through each step of the process, including setting up your
TrueUpdate Server, choosing download methods, customizing the TrueUpdate Client
and configuring your automatic upload settings. The wizard includes dozens of
options and project templates to choose from.

More Server Types

TrueUpdate supports all of the most popular protocols for client/server
communication. ThisincludesHTTP, FTPand LAN (both UNC paths and mapped
drives), as well as secure connections and file transfers using HTTPS. Full support for
HTTP basic authentication, timeouts, ports, FTP passive mode, usernames and
passwords is also built-in.

Automatic Firewall and Proxy Server Detection

TrueUpdate handles proxy servers and firewalls in an entirely seamless and industry-
standard manner. Internet communication is now done entirely through the WinlNet

15

Introduction

16

API, making it fully compatible with any corporate network hardware and software
that supports standard Windows/Internet Explorer functionality.

Supports More Patching Methods

It doesn’'t matter what method you plan to use to patch/update the software on the
client system; TrueUpdate can work with them all. Whether you' re deploying a self-
contained patch executable (such as those created by Visual Patch), asingle-file
installer (like those created with Setup Factory), zip files, individual data files,
multiple binary patch files or whatever else you require, TrueUpdate can handle it.
WEe€ ve even included a variety of project templates and samples to get you started.

Sophisticated Version Analysis

TrueUpdate provides many flexible methods for analyzing existing software versions
on the client system. It can access the registry, read values from INI files, comparefile
CRC values, query file version resource information or even use time/date stamps if
necessary. Once a version has been identified, TrueUpdate can use a series of actions
to bring that version up to date as required.

Powerful Scripting Engine

TrueUpdate includes the same scripting engine as Setup Factory and AutoPlay Media
Studio. Based on the popular “Lua’ language, this all-new and incredibly powerful
free-form scripting engine gives you unprecedented control over your software
updating system. This easy to use language features everything from “for, repeat and
while’ loops, to “if/else” conditions, functions, variables and associative arrays.
Paired with the built-in action library, full mathematical evaluation and Boolean
expressions, there is simply nothing you can’t achieve. We ve also built in an “Action
Wizard” and “ Quick Scripts’ feature so you can get right up to speed creating
powerful projects to handle even the most demanding update tasks.

Extensive Action Library

TrueUpdate includes a built-in library of more than 250 powerful yet easy to use
actions. Here, you'll find high-level actions to handle everything from text file editing
to system registry changes. Y ou can execute programs, call DLL functions, query
drive information, manipulate strings, copy files, enumerate processes, start and stop
services, interact with web scripts, display dialog boxes and much more. Thereis also
afull suite of file download actions including FTP, HTTP and secure HTTPS
transfers, including new automatic support for firewalls and proxy servers.

Introduction

Easy to Use Action Wizard

You don’t have to be a wizard to create powerful update systems with TrueUpdate.
W€ ve built the wizard into the software! Simply choose the action you want from a
categorized list (complete with on-screen interactive help), fill in the requested
information fields and the wizard does the rest. Making changes is just as easy. Click
on the line you want to change and press the “edit” button to go back to the original
form. It sreally that easy.

Color Syntax Highlighting Script Editor

The TrueUpdate script editor features all of the professional features you' d expect.
Theré s color syntax highlighting, code completion, function highlighting, as-you-type
action prototypes, Ctrl+Space function listings and even context-sensitive help. If
you're used to programming in MicrosoftO Visua Basic, MicrosoftO Visual C++ or
any other modern development language, you'll beright at home.

Improved Client Interface

TrueUpdate gives you nearly unlimited flexibility in designing the user interface. You
can choose from a fully interactive wizard, aminimal dialog box style, a completely
silent approach or a“silent until update available’ system. Additionally, thanksto the
new screen gallery and manager, you can choose from over 25 ready to use wizard-
style dialogs, or customize them to fit your needs.

Screen Gallery & Manager

With alibrary of more than 25 different screen templates to choose from, TrueUpdate
is miles ahead of both previous versions and the competition. There are pre-built
layouts to handle just about any task you can dream up, and it’s easy to adjust them to
fit your needs exactly. You'll find check boxes, radio buttons and edit fields to
popular screens like license agreements, folder selection and other advanced options.
The Screen Manager allows you to add and remove screens at will and adjust the
sequence with a simple drag-and-drop motion. Each screen features a real-time
preview so you can see the result of your changes as you work.

Themes and Skins

Choose from over twenty included themes (skins) for your project or even make your
own. It'saseasy as viewing alive dialog preview and picking your favorite style. You
can configure everything from fonts (face, color, size, style) and banner images to
body/background graphics, control colors (buttons, check boxes, radio buttons) and
more.

17

Introduction

18

Publishing Wizard

Once you’ ve got your project ready to go, the Publishing Wizard will help you to
package it up and upload it to your server. The wizard will create the client
application, server configuration files and everything el se you need to put your update
system into operation. You'll also get a full project manifest that tells you what files
have been generated and what you need to do with them.

Automatic Server Uploads with Secure FTP Support

TrueUpdate makes it easy to keep both your client and server files up-to-date. The
new automatic upload feature turns the build process into a complete publishing
solution. It supports file copying to UNC or mapped drives, standard FTP, or secure
SFTP. Of course, should you wish to handleit all yourself, thereis amanual upload
option as well.

Compact Client Application

Smaller and faster means a better experience, and TrueUpdate delivers. Compare our
tiny ~500 KB client application to the competition and see for yourself. And sinceit is
written completely in optimized C++ code, there are no external dependencies or
runtimes required.

Encrypted Configuration Files

Both client configuration files and server data files are automatically compressed and
encrypted using your own private key. Featuring the secure Blowfish algorithm, your
scripts and configuration info are safe from any casual tampering or viewing.

Runs Silent or Interactive

Y our TrueUpdate projects can be configured to operate without displaying user
interface dialogs, prompts, messages or errors. Silent operation lets you maintain
control over hundreds or thousands of workstations while enforcing corporate
standards. The client application can easily be called from programs, system
schedulers or automatic processes.

Expandable with Action Plugins

TrueUpdate can be easily expanded with Action Plugins. These plug-in modules can
extend the product in infinitely powerful ways, such as adding support for SQLite
databases, XML, MD5 hashing, data encryption and much more. Tight integration
with the design environment—including I ntelli Sense style code compl etion and
syntax highlighting—makes them just as easy to use as built-in actions. Plugins are

Introduction

available through Indigo Rose as well asthird-party developers thanks to Indigo
Rose s freely available plug-in development kit.

International Language Support

TrueUpdate offers unsurpassed support for multilingual projects right out of the box.
Update systems created with TrueUpdate can automatically determine the language of
the client operating system and adjust the display of screens and messages
appropriatdy. Whether you need to support English, French, German, Spanish, Italian
or any other language recognized by Windows, you simply provide the text and
TrueUpdate takes care of the rest!

Built-in Spelling Checker

Now it's easier than ever to make sure that typos don’t creep into your projects.
Basically anywhere you can type, you can perform a spell check to ensure error-free
text. Dictionaries are available for over a dozen languages including English, French,
German, Italian, Spanish, Dutch, Swedish, Danish, Croatian, Czech, Polish and
Slovenian.

Client Log Files

The client application can easily log each action giving you an accurate record of
everything that is happening behind the scenes. It's perfect for debugging or even
archiving. You can control the level of detail being logged, including options for

recording script actions.

Unattended Builds

TrueUpdate fits seamlessly into your daily build process. Creating your update project
every time you build your source code makes it easy to test early and often. Used in
conjunction with design-time constants (e.g. DEFINE’s) and build responsefiles, your
TrueUpdate project can be kept up to date simply and automatically.

Works with Windows 95 and Up

Update systems created with TrueUpdate work just fine on every Windows operating
system from Windows 95 to Vista and beyond. Compare that to competitive tools and
you're sure to be surprised at their requirements. If you need to support legacy
systems, your choiceis clear!

19

Introduction

20

Frequently Asked Questions

Who needs TrueUpdate?

Software devel opers, network administrators and end-users alike sharein the benefits
of TrueUpdate enabled software. Devel opers appreciate it for the control it gives them
over software that has already been deployed. Network administrators benefit from
improved security and better control of network nodes. End-users see TrueUpdate
enabled software as an assurance of quality—a symbol that the developer is thereto
stand behind their product.

Any company who devel ops software applications or distributes data needs
TrueUpdate. Any organization that needs to ensure its network is secure and updated
with the latest patches needs TrueUpdate. Anyone who needs timely and secure
synchronization of documents and files needs TrueUpdate.

Ensuring that everyone is using the most recent point release of a particular package
makes good sense. It diminates legacy technical support calls, and corresponding user
frustration. It ensures that datais current. It also serves to maintain customer
satisfaction. And that’s something everyone can appreciate.

What can you do with TrueUpdate?

Software products and network clients that have been TrueUpdate enabled can quickly
and efficiently determine if they are out of date. Embedding TrueUpdateinto a
software product makes it extremely easy to manage, control and update “in the field”.
Likewise, deploying the TrueUpdate client to computer systems throughout your
network gives you a fast and manageable way to ensure that each nodeis current with
the latest patches, documents and data that your company requires.

What's wrong with traditional update methods?

One of the most serious problems with traditional update methods is that they require
the users to do most of the work. The prablem with relying on an update process that
demands too much user involvement is obvious; the users might decideit isn't worth
the hassle to keep their systems up to date. This results in a higher incidence of legacy
support issues, more security holes and other rdated problems. Additionally, when
users don't update, they don’t benefit from bug fixes and product improvements.
TrueUpdate helps solve all of these problems.

Introduction

What is automated updating?

Automated updating is the ability of software to handle some or all of the update
process so the user doesn’t have to. The update process consists of all the steps
required to determine whether a newer version exists for a given piece of software, as
well as all the steps required to bring an older version up to date. Automating the
update process allows software to keep itsdf current after it has been deployed to
users.

How important is automated updating?

Today’s rapid product cycles, security vulnerabilities and short turnaround times make
it more important than ever to get new versionsinto the hands of users quickly and
efficiently. The Internet has created a highly competitive market where users expect
immediate results; the prize often goes to the company that reacts the most quickly to
changes in user needs and perceptions. In order to streamline software deployment, it
is becoming increasingly desirable for software authors to incorporate automated
updating abilities into their software.

How does TrueUpdate benefit the software developer?

Theeasier it isfor your users to update your software, the more likely it is that your
users will be using the latest version. Y our technical support teem will have fewer
legacy issues to deal with. The easier it isfor you to release updates, the more often
you can release them. Y ou won't have to hold back releases until you have made
enough changes to justify the effort required to prepare updates using traditional
update methods.

Why add TrueUpdate to your software application?

In atraditional release cycle, once your application or datafiles are released to
customers, clients or other end-users, they are static, expensive and time-consuming to
alter. However, once you add TrueUpdate to your application, you'll be ableto easily
update your product or data as often as you require.

From the developer’s point of view, when a new software release is available—
perhaps a bug has been fixed—TrueUpdate makesi it trivial to publish the changes and
bring all of your users up to date. The next time the user runs the application,
TrueUpdate will detect that a new release is available and take steps to handle it.

How easy is it to add TrueUpdate to an application?

As a sdf-contained executable, the TrueUpdate client can be integrated into your
application in less than a day. While the actual time required depends on the amount

Introduction

21

22

of integration you desire and your level of programming knowledge, most devel opers
should be able to completethe job in just afew hours. We even include sample source
code for adding a“ Check for Update’ menu command and tips to get you going.

Alternatively, the TrueUpdate client executable can be distributed directly, rather than
being embedded within an application. This allows the TrueUpdate client to be called
manually from the start menu, from a shortcut on the user’ s desktop or automeatically
with system schedulers. This method of adding TrueUpdate to your application is as
easy as installing a shortcut onto the user’s system.

How does TrueUpdate impact technical support?

TrueUpdate allows your users to benefit quickly from any new features and bug fixes
you develop, which in turn reduces the incidence of support calls. Keeping users up to
date makes it easier to support them when incidents occur.

How will TrueUpdate impact our customers and clients?

Today’s users are savvy; they demand responsiveness from software companies and
they want tools that meet their needs and make them more productive. In order to
maintain customer loyalty and maximize the user’ s experience with your software,
you need to make updating the software as easy as possible. Making it easy for users
to update your software shows that you' re committed to supporting it.

How does TrueUpdate benefit the network administrator?

Keeping a corporate, educational or government network up-to-date with the latest
security patches, applications updates and operating system fixes is a time consuming
ordeal. Without tools like TrueUpdate, the task is virtually impossible. By installing
the TrueUpdate client onto your networked computers, you'll be able to quickly and
effectively roll out whatever software you want throughout your organization. The
client software can analyze the computer system, decide what is currently installed
and then take whatever actions you determine are needed to bring that system up-to-
date. It’s fast, easy and automatic.

I'm not a developer...do | still need TrueUpdate?

Absolutely! You don't need to be a software devel oper to benefit from TrueUpdate.
As a stand-alone executabl e, the TrueUpdate client can be used to update al kinds of
files. You could use TrueUpdate to distribute product catalogs to your sales teams, or
to remotely configure system files across your corporate network. Pricelists, help
files, quarterly reports, internal support videos—TrueUpdate can help you keep
anything up to date.

Introduction

Does TrueUpdate actually install files?

With afull suite of file operations, including specialized actions to download, copy,
delete, rename and even zip and unzip files, TrueUpdate may be all you need to install
files onto a user’s system. For situations requiring a more manageable and
compartmentalized solution to file installation and patching, we' d recommend using
Indigo Rose' s Setup Factory and Visual Patch products. Used in conjunction with
TrueUpdate, these products make up a complete and robust software deployment and
management solution.

About this Guide

This user’s guide is intended to teach you the basic concepts you need to know in
order to build a working update system. You'll learn the ins and outs of the program
interface and how to perform many common tasks.

The guideis organized into 11 chapters:

Chapter 1: The TrueUpdate Model
Chapter 22 The Project Wizard
Chapter 3: The Development Environment
Chapter 4: Introduction to Scripting
Chapter 5: Creating the User Interface
Chapter 6: TrueUpdate Servers
Chapter 7: Session Variables
Chapter 8: Languages

Chapter 9: Security

Chapter 10: Building and Distributing
Chapter 11: Scripting Guide

Each chapter begins with a brief overview and a list of the things you will learn in that
chapter.

Introduction

23

24

Document Conventions

This user's guide follows some simple rules for presenting information such as
keyboard shortcuts and menu commands.

Keyboard Shortcuts

Keyboard shortcuts are described like this: press Ctrl+V. The*+" means to hold the
Ctrl key down while you presstheV key.

Menu Commands

Menu commands are described like this: choose File > Open. This means to click on
the File menu at the top of the TrueUpdate program window, and then click on the
Open command in the list that appears.

€% Untitled - TrueUpdate €% Untitled - TrueUpdate

. Fle Edit Project Script Publist Eile_’ Edit Project Script Publist
: B e | L i | [F) Mew Project Chrln B
D%’]HJ @ 8 L is =5 §
i Kl Client Sn:riptl i§ Server Script | K save Chrl+s et
ol Savedsis 0000 ETEET
0Z —— The purpose of the C1i - ke C1i
03 — welcome the user to th i Print... Ctl+P ot th
04 —— donmload and run the 5 Properties. .. 2 the 5
05 | fesng
(]
07 Zcreen.3how("Client 3cree - | Scres
0 Exit

Click on the File menu... ...and click on the Open command

Typed-In Text

When you're meant to type something into atext field, it will be presented in italics,
likethis: type " TrueUpdate makes updates easy" into the M essage setting. This means
to typein "TrueUpdate makes updates easy"”, including the quotes.

Introduction

Chapter 1.

The TrueUpdate Model

Like any system that involves client-server interaction, updating softwareis a
sophisticated process. It involves advanced technologies and protocols and rules that,
without a clear and defined plan, would seem incredibly daunting to employ.

TrueUpdate is specifically designed to make the entire update process as simple to
understand and as easy to accomplish as possible. Much of thisis dueto the unique
update model that TrueUpdate employs. TrueUpdate provides the framework that
makes it possible—in fact, easy—for you to build an update for your software.

Beforeyou start working with TrueUpdate, however, it is important to understand the
way TrueUpdate works.

26

Chapter 1

In This Chapter
In this chapter, you'll learn aboult:

What TrueUpdate does (and what it’ s capable of)
The TrueUpdate Client

TrueUpdate Servers

Server configuration files

A typical update process

The value of scriptsin TrueUpdate

Client and server scripts

Client and server screens

How the client is able to update itself

The TrueUpdate Model

27

28

What Does TrueUpdate Do?

At its simplest, TrueUpdate is an updater of software. It determines whether an update
is available, downloads the required files, and then uses them to perform the update.

Anything that falls within that broad definition is possible with TrueUpdate. All of the
details arein your control, from the specific methods used to detect the installed
version, to the steps that are taken to actually update the software. An update can be as
simple as making a subtle change to aregistry key, or it can involve downloading and
applying multiple patch files from a geographically selected download | ocation.

Most commonly, however, TrueUpdate will be used to perform these basic functions:
* Determining the version that is installed
» Deciding whether an update is available
» Deciding whether an update is required
* Acquiring the appropriate patch file
* Applying the patch to update the installed version

Other Uses for TrueUpdate

The above steps describe the most common use of an updater like TrueUpdate.
However, TrueUpdateis an incredibly flexibletool. In addition to handling the
countless variations on the update process that are possible, TrueUpdate can be used
to perform many other tasks—including some that are completely unrelated to
updating software. For example, you could use TrueUpdate as a communications tool,
automatically detecting and displaying a new “ message of the day” from a central
location. Or you could useit as a general development environment, taking advantage
of its sophisticated system actions and wizard-like screens to build standal one
configuration utilities. The possibilities are indeed limitless.

Chapter 1

The TrueUpdate Client

The TrueUpdate Client is the client application that will actually perform the update
process. It is generated when you build your TrueUpdate project. Thisis the * updater”
that you will distribute to your usersin order to provide the update ability.

In other words, the TrueUpdate Client is the program that does the work of your
update. Everything in your TrueUpdate project—from the project settings that you
configure, to the server-side scripts that you create—either directly affect how the
TrueUpdate Client is built, or serve asinstructions that define how it performs the
update.

The TrueUpdate Client is a compact, self-contained application, without any external

dependencies such as .Net, Java, or any other needlessly complicated technologies. It

takes advantage of standard Internet protocols and encryption methods to perform the
update process in arobust and secure way.

It's also designed to be mindful of privacy needs. The TrueUpdate Client doesn’t
require any information to be sent to the server at all—everything from the installed
version detection to the decision about whether an update is required is handled
entirely at the client end. This client-pull method completely avoids the privacy issues
that revolve around other methods that require detailed information about the user’s
system and installed software to be transmitted to a remote | ocation.

Of course, TrueUpdate can still communicate with aremote location if you need it to;
in fact, it has built-in actions to submit information to standard web scripts using both
unsecured and secured transfer protocols. However, this functionality is entirely in
your control; a TrueUpdate Client will never send anything to a server unless you
specifically design it to do so.

The TrueUpdate Client is also designed to keep itself up to date. It does this by
automatically downloading any updated versions of its client data or executablefiles
that it finds at the TrueUpdate Server. (The latest versions of these files are included
in the server configuration files that are uploaded to each TrueUpdate Server
location.)

Tip: For more information on the client’s self-updating ability, see Updating An
Existing Client on page 35.

29

The TrueUpdate Model

30

TrueUpdate Servers

A TrueUpdate Server is any location where the TrueUpdate Client can download the
server configuration files that tdl it how to perform the update. This can be a standard
HTTP server, astandard FTP server, or even afolder on your local area network.

Note that thisis completely independent of any specific hardware platform, operating
system, or server software. TrueUpdate doesn’t lock you into any proprietary server
technology. Infact, it doesn’t require you to run anything on a server at all.

All you need to create a TrueUpdate Server is a place to put your server configuration
files where the TrueUpdate Client will be ableto get them. “ Creating” the server
involves nothing more than uploading a handful of files and adding the new location
in your TrueUpdate project settings.

For example, if you upload the server configuration files to your company’ s web
server, and add the location in your project settings, you've just created a TrueUpdate
Server. Want another TrueUpdate Server for redundancy? Upload the files to another
web server, or to an FTP server, or to afolder on your network. Y ou could even copy
thefilesto a USB key and pass it around the office—anywhere that your TrueUpdate
Client can access thefiles isavalid TrueUpdate Server |ocation.

Because TrueUpdate Servers use standard Internet protocols, you are free to take
advantage of the full range of server technologies available to you. Whether your
server isan old PC in your basement, or a fully load-balanced and distributed server
farmin a high-security building, the choice of where and how to host your filesis
entirely up to you.

Note: For moreinformation on TrueUpdate Servers, please see Chapter 6.

Server Configuration Files

Server configuration files provide the server-side component of the update processin
TrueUpdate. This handful of files contain all the information the TrueUpdate Client
needs in order to keep itsdf up to date and to perform the actual update of your
software.

Chapter 1

Specifically, the server configuration files allow each client to:

Update its client-side data and executablefilesif newer versions become
available

Determine what version of your softwareis currently installed
Determine whether an updateis required
Take the steps required to update the installed software if it is out of date

The server configuration files are generated whenever you build a project. They are
completely project-specific—the server configuration files that you build in one
project will only work with a TrueUpdate Client generated from that same project. In
other words, TrueUpdate Clients and server configuration files from different projects
areincompatible.

Note: TrueUpdate Clients are only compatible with server configuration files from the
same project.

The Update Process

Hereis a description of atypical update processin detail.

1

The TrueUpdate Client welcomes the user to the update by displaying an
appropriate screen or popup dialog box.

The client then attempts to download the server configuration files from the
first server initslist of TrueUpdate Servers. (By default, it will attempt to
connect to each server location in the list until it succeeds.)

Once it connects to a server location, it checks to seeif the location contains a
newer version of the client data or client executablefile. If it does, the client
downloads the appropriate server configuration files (e.g. the .ts2 or .ts3 file, or
both), and then restartsin order to use the new version of itself.

Assured that it is up to date, the client next downloads the server script and
screens, which are contained in the .tsl server configuration file.

After loading the server screens into memory, the TrueUpdate Client runs the
server script.

The TrueUpdate Model

31

32

6. Thefirst function of the server script is to determine what version of the target
software is currently installed on the user’s system. Thisversion is generally
referred to as theinstalled version.

7. Oncetheinstalled version has been determined, the server script compares it to
atarget version. Thetarget version represents the desired version of the
software—i.e. the version that the script was designed to update the software to.

8. If theabovetest determines that theinstalled version is already current, the
server script informs the user that they already have the latest version, and then
exits.

9. If onthe other hand the test determines that an update is required, the server
script proceeds with the actual update process. While the actual update method
will vary from project to project, the most common method involves
downloading a single executable patch file and then running that file with
appropriate command line options.

10. If the patch file returns a value that can be used to determine whether it
succeeded, the server script will usually check this value and then inform the
user of the success or failure of the update.

11. If the patch file doesn't return any such information, the server script will either
wait for the patch to finish and then inform the user that the update processis
complete, or simply exit silently and let the patch continue on its own.

Scripts

Scripts are a key component of TrueUpdate. In fact, the entire client-server interaction
is scripted, and the built-in screens implement their functionality using scripts
triggered by various screen events.

Thisisavery important feature, because it exposes the implementation to you for
modification. In other words, the scripted nature of TrueUpdate makes it possible for
you to completely control the behavior of your update.

A script is essentially alist of instructions for the TrueUpdate Client to follow.

Each script contains a sequence of commands, called actions, which work together to
perform a specific task. A script can contain a single action, or any number of actions.
These actions combine to form a series of steps that are performed sequentially, with

Chapter 1

one action following another. The sequence of actions can either occur in a direct and
straightforward manner, or—Dby taking advantage of control structureslike*if” and
“whil€’—can incorporate sophisticated techniques such as decision-making,
branching and looping.

Note: Scripts are ultimatdy just text documents that follow a specific syntax. The
actions and control structuresin a script are represented by specific keywords, which
the TrueUpdate Client interprets asinstructions that tell it what to do. Y ou can edit
these instructions as easily as you would edit any other text.

Script Tabs: Client vs. Server

Each TrueUpdate project contains two main scripts: a client script, and a server script.
In the TrueUpdate devel opment environment, these two scripts are represented by the
Client Script tab, and the Server Script tab.

The scripts are divided according to where they are stored. The client script is built
into the TrueUpdate Client application, and the server script is stored in one of the
server configuration files.

Together, these two scripts implement the client-server interaction and control the
entire update process.

The Client Script
Theclient script’s job is to introduce the user to the update, and download and run the
server script.

Downloading the server script is done using the TrueUpdate. GetServerFile action.
Since this action involves downloading files, it is usually called from a client screen
(e.g. the Download Server Script screen) so that progress can be shown.

Oncethe server script is downloaded, it can be executed using the
TrueUpdate.RunScript action.

33

The TrueUpdate Model

34

The Server Script

The server script’sjob is to determine whether an update is required, and then to
actually perform the update—either by running a series of actions or by launching a
separate installer or patch file.

Because it is downloaded each time your TrueUpdate Client connects to a TrueUpdate
Server, you are free to modify the server script at any time—even after the
TrueUpdate Client has been distributed.

This separation between the client and the server scriptsis an essential feature of
TrueUpdate. It allows you to adjust the update process for your software at any time,
without any modifications to the client at all. In other words, it allows you to modify
your update process without having to redistribute new clients to your users.

Screens: Client vs. Server

Screens are the individual windows that make up any wizard-styled update. When you
navigate through an update by clicking the Next and Back buttons, you are navigating
from screen to screen.

Note: Each screen has a number of events, with associated scripts that get executed
when the corresponding events are triggered. By modifying these scripts you have full
control over the functionality of the screensin your project.

Likethe client and server scripts, the screensin your project are divided into two main
aress. In the TrueUpdate devel opment environment, these areas are represented by
two screen panes, which by default are tabbed together in the upper right corner of the
program window. Thereis one screen panefor the client-side screens, and one for the
server-side screens.

The Client Screens

When you build your project, the screens on the Client Screens pane are packaged
with the TrueUpdate Client and are accessible to the end user without having to
download anything from the Internet. These screens cannot be updated without
updating the client itself.

Chapter 1

The Server Screens

The screens on the Server Screens pane are stored in a server configuration file. These
screens are accessible to the end user only after the client has downloaded the server
configuration files. Because the screens on the Server Screens pane are downl oaded
whenever the TrueUpdate Client connects to a TrueUpdate Server, you are freeto
change them after your client has been distributed.

Updating An Existing Client
Theclient script and client screens are stored within the client’s data file, which is
normally distributed initially with your software.

Generally, it is preferable to write the client script in such a way that it does not need
updating after the client has been distributed. If changes are made, the client will need
to be restarted in order to update itsdlf.

Of course, there may be an occasion when you need to add actions to your client script
or to add another screen after your client has been distributed.

Not to worry; TrueUpdate has been designed to handle such cases. Every time your
project is built, three server configuration files are generated. One of thesefiles (the
.tslfile) contains the server scripts and server screens. The other two server
configuration files contain the latest versions of your client data file (.ts2) and client
executable (.ts3). This allows each client to automatically update itself if you have
made changes to the client script and screens.

Here' s how it works: Whenever a TrueUpdate Client connects to a TrueUpdate Server
in order to begin the update process, it first checksto seeif the .ts2 and .ts3 fileson
the server are newer than the client’s current data file and executable. If either of the
filesis newer, the client downloads the new file, replacing the existing file with the
new version. Remember that in order to replace either of thesefiles, however, the
client needsto restart itsdf; therefore, if at all possible, it is better to avoid updating
the client script and client screens after the client has been distributed to your users.

The TrueUpdate Model

35

Chapter 2:

The Project Wizard

Every journey begins with afirst step, and TrueUpdate makes this step as painless as
possible. With the built-in project wizard, creating professional product updatesis as
easy asfilling in the blanks and clicking Next. This chapter will introduce you to the
easy-to-use TrueUpdate project wizard.

36

Chapter 2

In This Chapter
In this chapter, you'll learn about:

e Starting a new project

* Theproject wizard

37
The Project Wizard

38

Starting a New Project

Everything has to start somewhere. In TrueUpdate, the design process starts with the
creation of a new project.

A project is simply the collection of scripts, screens, settings and everything else that
goes into building an update. For example, each project will contain the scripts and
screens that will be built into the TrueUpdate Client application as well as those that
will be contained in the server files. The settings for all of the scripts and screensin a
project are stored in asingle file, known as the project file.

When you start a new project, TrueUpdat€ s project wizard walks you through the
first few steps of project creation. This helps you get your project started quickly
without missing any of the basics.

Let’s open the TrueUpdate program and start a new project.

1) Open TrueUpdate.
Use the Start menu to launch the TrueUpdate program.

You'll find TrueUpdate under:
Start > Programs > Indigo Rose Corporation > TrueUpdate 3.0

‘-ig My Metwork Places

@ Set Program Sccess and Defaults

Accessaries

g @ TrueUpdate 3.0 v &% Truelpdate 3.0 k
Skarkuy) TrueUpdate 3.0 Hel
P p p
T Truellpdate 3.0 User's Guide

@ Internet Explorer
@ Qutlook Express

3‘2) windows Live Messenger
allprograms B (=) Windows Media Player

El Log OFf @l Shut Dawn

4 start

Chapter 2

2) When the Welcome dialog appears, click on “Create a new project.”

The Welcome dialog appears whenever you run TrueUpdate. It not only welcomes
you to the program, it also lets you easily create a new project, open an existing one,
or restore the last project you worked on. (Restoring the last project automatically
opens the project you were working on the last time you ran TrueUpdate.)

| RESTORE LAST PROJECT
EXITTRUEUPDATE TryelJndate

ol

When you click on “Create a new project,” the Welcome dialog closes and the project
wizard appeers.

39

The Project Wizard

40

3) Enter your project information and click Next.

First, the project wizard asks you for three pieces of information reated to your
project. Simply enter your company name and product name in the appropriate fields.
Additionally, you may specify a unique server file encryption key; however, the
randomly generated default key is unique to each project and is typically sufficient.

Project Wizard - General Information

Truellpdate Project "Wizard

‘Wielzome tathe Truellpdate Project Wizard! This wizard will
guide you through the steps of creating an update for pour
software.

Ww'hat iz your company name’?

| oL Cormpaty |

Ww'hat iz your product's name or kitle?

|Ynur Froduct |

Fleaze zpecify a unique [per-project] server file encroption kew:

| 5B83EDGR-BEDFE-4CD3-30BF-DOESADEGNTBET |

sies 1T u._

< Back [Mext »] [Cancel] [Help]

When you' ve entered all your information, click Next to move to the next step in the
project wizard.

Tip: At any step in the project wizard, you can click Cancel to go straight to the
program window with all of the default project settings untouched (i.e. to start with a
“blank” project).

Chapter 2

4) Select the Wizard style interface and click Next.

The next step in the project wizard is to specify which type of user interface your
TrueUpdate Client will use.

Project Wizard - Interface Type g|

Interface Type

The Truellpdate Client application can show screens, dialogs, or
prezent no interface at all. “What twpe of interface would you like
the Truellpdate Client to dizplay to the user?

) Whizard style
) Dialog style
) Silent

[] Don't show any interface unless an update is available

AL Y

[< Back ” Mext »][Cancel][Help]

The most common update user interface is the default Wizard style. A Wizard style
interface presents the user with a series of screens which they can navigate through by
clicking Next and Back buttons. Wizard interfaces are considered very user friendly
because they present and request information in discrete, guided steps, which makes
the overall process easier for the user to understand.

The other two interface styles are Dialog and Silent. A dialog user interface uses
popup dialogs or “message boxes” as opposed to screens to guide the user through the
update. A silent update runs entirely in the background, and has no user interaction
whatsoever.

Thelast optionin this step allows your TrueUpdate Client to run silently until an
update is available. Once an update is available, the client will continue in whatever
style you have chosen (Wizard or Dialog).

The Project Wizard

41

42

5) Select a theme for your update, and click Next.
This step allows you to configure how your update will 1ook.

Project Wizard - Theme

Select a project theme:
Truellpdate Default o |
Wealcome
Yl b e roln Prodiuct upsiaber. Ths pacgnanm vl
carrend o e eterveed i el ool F - retw e o Wons
Prochuct i pwndable
- . Flaam raba o el pou s oonmeched 5 Be inienaet and
W iy il 0 it
I :
RO A% LA) e
[< Back ”_ Mext » J [Cancel] [Help]

Once you' ve selected your project theme, click Next to proceed to the next step.

6) Select the languages you plan to support in your update and click
next.

TrueUpdate supports multilingual updates. In this step, you can select which
languages you want your update to support by checking them off. Aswell, you can
select the default language to be used in the event that the user’s system employs a
language you haven't specifically accounted for.

Chapter 2

Project Wizard - Multilingual Settings

Ywhat languages do pou want pour update o support?

[0 anizh *
[1Divvehi
[1Dutch *
[w|Erglizh * =
[JE stanian

[(JFaemese

[JFarsi

[CIFirnizh

[

[5G alician

| £

* - Indicates languages that have language files installed

e WELRER L Wwhhich language should be used by default?

RN W | Engiih v |

[< Back ” Mext »][Cancel][Help]

Two things happen when a language is supported. First, TrueUpdate will use the text
from that language' s message file (if one exists) for the update' s built-in messages
when that language is detected at run time. (If a message file doesn’t exist for a
particular message, the default language’ s message file will be used.)

Second (and more important), you will be ableto localize the text in your project for
each supported language. For example, if you choose English, French and German as
your three supported languages, you will be able to enter different English, French and
German text on your project’s screens. Thisis done by simply choosing a different
language from the language sel ector, which appears wherever thereis text that you
can translatein your project.

] Shew hawdrg
el
Lo Engith .1 Llanguage
selector
3 P | Lok][Concal |[_Hew |

The Project Wizard

43

Note: Only supported languages will appear in the language selector; you will only be
ableto select alanguage on a screen if that language was “checked” in thelist of
supported languages.

Once you’ ve selected the languages you want to support, click Next to proceed to the
next step.

7) Select which download method your update will use, and click Next.

TrueUpdate supports a variety of filetransfer protocols. This step allows you to
specify which protocol your update will employ.

Project Wizard - Download Method

Download Method
The Truellpdate Client application needs to download
configuration files from a Truellpdate Server. ‘What download
method waould pou like the Truellpdate Client to uze?
FIHTTR
CIHTTRS
I FTR
) LAM
AN
< Back ” Mext »] [Cancel] [Help

44
Chapter 2

Thefirst option isto use the standard hypertext transfer protocol (HTTP). This
protocol was designed for accessing files on aweb server from your local system.
Thisis the same protocol that Internet Explorer uses, and is generally the easiest
method to use. Since it uses port 80 by default, it’'s also the most likely method to be
alowed across auser’s firewall; chances arethat if a user can browse the Internet
from their computer, they’ [l be able to run your update.

The second option is to use the secure hypertext transfer protocol (HTTPS). Thisis
essentially a“ secured” version of HT TP that uses the Secure Sockets Layer (SSL) to
perform the data transfer in a more safeguarded fashion. It operates on port 443 by
default.

Note: In order to usethe HTTPS protocol, you must have a secure web server to
connect to. You can't use HTTPS to connect to aregular web server; you can only use
the HTTPS protocol if your web server supports it.

Thethird option isto use the file transfer protocol (FTP). This protocol was designed
for exchanging files over the Internet, and supports file transfers in both directions, i.e.
downloading and uploading. (It is commonly used to upload web pagefiles to the web
server that will host them.) In order to transfer filesto or from an FTP server, you
must logon to it by providing a user name and password. Many FTP servers provide
public access to their files by accepting a* guest” logon; thisis usually referred to as
“anonymous ftp.” The FTP method transfers files over port 21 by default.

Thefourth option isto copy thefiles over alocal area network (LAN). This method is
ideal if your update will be distributed within your organization, astransfer speeds are
quite high. However, it cannot be used to download the configuration files from a
remote site (over the Internet). To usethe LAN transfer method, the client must have
direct access to your network.

For this walkthrough, select the standard HT TP transfer method, and click Next.

45

The Project Wizard

46

8) Input your server's download settings, and click Next.

TrueUpdate needs to know the specifics of the server from which your client will
download the configuration files.

Project Wizard - TruelUpdate Server Download Settings

Truellpdate Server [HTTF)

Y'ou have chogen bo download the configuration files from a web
zemver. Pleaze specify the URL of the folder where the
configuration files will be located.

Folder URL:

ALthenticatian

[Usze authentication:

R S A | | |

[< Back ” Mest >][Cancel] [Help]

Fill inthe URL to thefolder that will contain your TrueUpdate server files.

The Timeout setting refers to the amount of time in seconds that the TrueUpdate
Client will wait with no reply before giving up on the server and returning an error.

The Port field allows you to specify a different communication port if your web server
doesn’t use port 80 (the standard HTTP port). Use this field to specify which port your
server is accessed by.

Y ou can also use basic HT TP authentication to connect to your server, if required.
This allows you an additional layer of security by requiring a valid username and
password in order to download the server configuration files. If your web server
supports basic HTTP authentication, select the “ Use authentication” option and insert
the authentication username and password.

Chapter 2

9) Specify a server files prefix, and click Next.

This step allows you to specify the prefix that your server files will use. Thisisa
useful step if you have multiple products and would like to host your products in the
same folder on your web server.

Project Wizard - Server Files Prefix

Server Files Prefix
The Truellpdate Server configuration files will share a common
filename prefis with different file extenzions. FPleaze pick a unique,
product-zpecific name to uze az the prefis for this update.
Server files prefis:
|
I :
iy BTN
e
< Back ” Mext » _] [Cancel] [Help

47
The Project Wizard

48

10) Specify how TrueUpdate should transfer the files to your web server,
and click Next.

For your convenience, TrueUpdate can automatically upload the server configuration
filesfor you whenever you build your project. This feature can be a helpful time saver
but is, of course, completely optional. Y ou can always upload the configuration files
to your TrueUpdate server locations on your own —by using your favorite FTP
program, for example.

Project Wizard - Upload Method

Upload Method
How do pou want to upload vour Truellpdate Server configuration
filez to the HT TP folder?
) | will do this mpself manually or will configure it later
FTP
) SFTR
) File copy
AL Y
[< Back ” Mext » l [Cancel] [Help

Thefirst option allows you to take care of uploading the server configuration files on
your own, separate from TrueUpdate, or to configure the upload automation later.
(You can add automatic upload locations at any time on the Upload tab, which you
can access by choosing Publish > Settings from the program menu.)

The second option will automatically transfer your files by FTP, and the third option
will transfer your files by SFTP (secure FTP). These options are useful when you need
to upload the files to a web server, as we will be doing in this walkthrough.

Chapter 2

Thelast option performs a simplefile copy and is useful if you selected LAN as your
download method.

Since we chose to download the server filesfroman HTTP server earlier in this
walkthrough, it would be convenient to have TrueUpdate upload the configuration
filesto that web server for us. Uploading files to aweb server is normally done via
FTP, so sdect the FTP option and click Next.

11) Configure your FTP server settings, and click Next.

This step allows you to specify where to upload the TrueUpdate server configuration
files.

Note: Though we are uploading the server files via FTP, the client will access them
viaHTTP. Since HTTP is strictly a download protocol, we need to use a different
protocol to upload thefiles to the web server.

Project Wizard - TruelUpdate Server, Lipload Settings

Upload Settings [FTF)

Y'ou have chogen o upload the configuration files wzsing FTP.
Pleaze zpecify the FTF addrezs [inchuding folder path] where the
configuration files should be uploaded.

Folder address:

i ftp. pourdornain. conm e

|’E_ﬁ Test]

Timeaut; i3|:| | Part: IE'I |

Authenticatian
| zermarme: FPaszward:

|lze pazzive mode

..I. II! -1..1':" %

[< Back ” Mext »][Cancel][Help]

In this step, you need to specify the full address of the folder where the server files
need to be uploaded to. Thiswill consist of the FTP server address and the full path to

The Project Wizard

49

50

the folder on your FTP server. You can also configure the timeout of your FTP server
and the port to be used when connecting.

Lastly, you must enter the username and password that is used to access the FTP
server. Be sureto use a username with appropriate accessrights, as the TrueUpdate
design environment will be uploading files to the server.

The passive mode option is useful when connecting to an FTP server from behind a
firewall. When you connect to an FTP server normally, the server attempts to open a
second connection back to your computer. If you are behind a firewall, this connection
will often fail. (Most firewalls object when external systems attempt inbound
connections.) Using passive mode, the FTP server will wait for your computer to open
both connections, thus avoiding the objectionable behavior. The FTP server must
support passive mode connections in order for this method to work, but it isawidely
supported option.

Once you have entered all of your information, click Next.

12) Select a version identification method, and click Next.

Project Wizard - Version Identification

“erzion |dentification kMethod

The Truellpdate Client application needs to identify the version
of your zoftware that iz currently installed on the uzer's spstem.
wihat method of wersion identification do you uze?

) Registry key

() File information

M file

) Other [skip this step for now)

AL Y

< Back ” Mext »][Cancel][Help

Chapter 2

Since you are creating an update for an existing product, TrueUpdate needs to know
how to determine which version of your softwareisinstalled on the user’s system so it
can decide if a newer version is available.

There are basically three ways to determine which product version isinstalled. The
first isto inspect the value of aregistry key. Thisis an excellent option to choose if
your installation program stored some kind of version-identifying value in the
registry. For example, many installation programs create a registry key containing the
version that is being installed so that other programs can easily determine the current
version. Thisis apopular method supported by most installation tools. For example,
Indigo Rose's Setup Factory allows you to easily create and modify registry keys
during an installation.

The second option is to use specific file information such as the date a file was last
modified. In fact, many files such as ex€ s and dll’ s contain version information that
can be read using this option. This method is useful if the installer stored no additional
version information (for example, if the product didn’t use aninstaller at al). In that
case, you may wish to use the version information stored in a primary file such as the
software' s main executable (if it has one).

Thethird option isto read values directly froman INI file. Thisis similar to reading a
value from theregistry, but the valueis retrieved from an INI fileinstead. The INI file
would have either been included with the product or created when the product was
installed. (Setup Factory is also capable of creating and modifying INI file entries.)

Note: Whether to store version information in theregistry or inan INI fileislargely a
matter of preference. However, your TrueUpdate project needs to use the same
method that was chosen for your installer. For example, if your installer stored the
installed version in aregistry key, your update won't work if you tell it to get the
version froman INI file.

Thereis afourth option that allows you to skip this step for now. Thisis useful if you
would rather configure this option later, or if, for example, you want to perform the
update every time the update is run, regardless of the version currently on the user’s
system.

For this walkthrough, select the File Information option and click Next.

51

The Project Wizard

13) Specify which file information will be checked, and click Next.

This step allows you to specify both which file and which attribute should be checked
in order to determine which version of your software isinstalled.

Project Wizard - File Information

ldentify “Yerzion From File Info

Y'ou have chogen to identify the installed version of your software
uzing file information. Pleaze specify the file whose information
reprezents the installed verzion of wour zoftware.

File:
ZSourceFalderz \MyProduct exe

Information:

| File “Wersion

Product Yerzion
Creation D ate
taodified Date
CRC Value

AN

< Back ” Mext »][Cancel][Help

There are fivetypes of fileinformation that can be checked:

File Version
The*fileversion” stored in thefile. Thisis normally the version number of the
fileitself.

Product Version
The “product version” stored in thefile. Thisis normally the version number of
the product that the file belongs to.

Creation Date
The date and time when the file was created.

52
Chapter 2

Modified Date
The date and time when the file was last modified.

CRC Value
The CRC value of thefile. The CRC value serves as adigital “fingerprint”
which can be compared to the CRC value of a known version of that sasmefilein
order to determine whether the two files match.

Select the Product Version option, and click Next.

14) Specify the target version, and click Next.

In the previous step, we decided to check a specific file for its product version. In this
step, we will specify a value to compare that product version to. This essentially |ets
you specify the target version for your update—the version that you want to update
the softwareto. Thisis the value that your TrueUpdate Client will compare the
installed version to in order to determine whether a newer version is available.

Project Wizard - Target Version

Target Yferzion

The purpose of Truellpdate iz to bring the installed version of wour

zoftware up to a target verzion. What value would pou like to

compare the inztalled version to?

Target value:

[|
’u Get File Version]

..I. II! -I'...ll.l" %
< Back ” Mext » l [Cancel] [Help

The Project Wizard

53

You can click the Get File Version button to retrieve the version information from a
specific file on your system. This alows you to quickly get the most up-to-date
version information from your newest software.

15) Select an update method, and click Next.

This step controls how your software will be updated when the TrueUpdate Client
determines that an update is available. There are two options. The most common
method is to have your update download an executabl e patch file (or installer) and run
it. Or, if you prefer, you can select a custom update method from a list of pre-defined
templates.

Project Wizard - Update Method

Update Method

[f Truellpdate determines that an update iz required, it will need a
way ko get the installed wersion of your zoftware up to pour target
verzion, "What update method would vou like Truellpdate to use?

The Truelpdate Client application will download and run
a zingle setup.exe or executable patch file.

) Custom

Select a custom update method from pre-exizting templates.

AL Y

[< Back ” Mest >][Cancel] [Help

Select the Single installer/patch file option, and click Next.

54

Chapter 2

16) Select a download method for the patch, and click Next.
Beforethe client canrun theinstaller or patch file, it needs to download it from
somewhere. This step allows you to specify what method the TrueUpdate Client
should use to download thefile.

Project Wizard - Installer/Patch Download Method

~—

————_—

....... ..I. III -1I \.E HL\. -

Davanload Method

Y'ou have chogen bo update vour software using a single installer
or patch file. “What download method would you like the
Truellpdate Client to uze in arder bo download the file?

@ HTTP
(O HTTPS
COFTP
O LM

[< Back ”

Mext »] [Cancel] [Help

The same options exist asin step 7, where you specified what method to use to
download the server configuration files. Select the HT TP method and click Next.

The Project Wizard

55

56

17) Specify your HTTP server settings, and click Next.

Asin step 8, this step allows you to specify how the TrueUpdate Client will interact
with your web server. Only this time, instead of specifying where the client can find
its server configuration files, the settings determine where the client should get the
executableinstaller or patch file that will actually update the installed software.

Project Wizard - Installer/fPatch Download Settings

Single Installer/Patch File [HTTR)

Y'ou have chogen bo download the installer or patch file from a
web zerver. Please specify the URL [including folder path and
filename] where the file will be located.

LRL:

| i), poLrdormain. cond patches/patch. exe
Timeaut; |3|:| Port: |80
Authentication

—— [Usze authentication:

AV RN | || |

————_—

[< Back ” Mext »][Cancel][Help]

Y ou must specify the exact path to your patch file, as well as the timeout and port to
be used. Additionally, you may use a username and password to connect to the server
if it supports basic HT TP authentication.

Once you have specified how TrueUpdate will connect to your web server, click Next.

Chapter 2

18) Specify the download location and execution options, and click Next.

This step allows you to tell the TrueUpdate client what to do with the patch once it has
been downloaded.

Project Wizard - Installer/fPatch File Settings

Single Inztaller/Fatch File

[f an update iz required, the Truellpdate Client will download and
run the inztaller or patch file you specified. Fleaze provide a full
path [including filename] far the downloaded file.

D ownload inztaller/patch file to:

ZSourceFolder\Patcheshpatch. exe

Fun Settings

Caommand line arguments:;

[] ait for retum

L |
5 R : :
Lot Y '1‘" ll"lll' Process return code indicates success

[< Back ” Mext »][Cancel][Help]

Y ou must specify alocation to download the patch to. Be sure to specify alocation
that the users will have write access to, or the TrueUpdate Client will not be ableto
savethefile. If the users do not have sufficient access rights to create afile in that
folder, the download will fail.

Y ou also have the option of specifying command line arguments to use, and whether
the TrueUpdate Client should wait for the patch executable to return before
continuing. Also, if your patch executable returns aresult code, you can specify a
return code that indicates success.

The Project Wizard

57

19) Review your settings, and click Finish.

This step allows you to review everything you have configured before you create the
project. Review the information presented, and either move back through the wizard
to make any changes, or click Finish.

Project Wizard - Ready to Create New Project @

Summary
The project wizard iz now ready to create your new project

Here iz a summary of the choices you made;

53

IIRL: v yourdomain. comdpatchesz/patch. exe
Timeout: 30 secands

Part; 80

|lze bazic authentication: falze

Inztaller/Patch File Settings

Download installer/patch file to; %5 ourceFolderihF
Command line arguments:
Wait for return: falze

T

I... . ..I. III -1I \.E HL\. -

————_—

[~
v
[£ |

[< Back ” Finizh][Cancel] [Help

After you click Finish, the project wizard will close and the design environment will
appear, complete with scripts and screens configured with the settings you chosein
the project wizard.

58

Chapter 2

59
The Project Wizard

Chapter 3:

The Development Environment

This chapter will take you on atour of TrueUpdat€ s sophisticated program interface.
You'll learn how to use the features of the interface that allow you to create a
comfortable and productive work environment, customized for the way you want to
use the program. You' Il also learn how to take advantage of TrueUpdate s self-help
resources, which are designed to answer any questions you might have while working
with TrueUpdate as quickly and efficiently as possible.

60

Chapter 3

In This Chapter
In this chapter, you'll learn about:

Updating TrueUpdate
Learning the interface
Getting help

Setting preferences

The Development Environment

61

62

Updating TrueUpdate

TrueUpdate has the built-in ability to check the Internet to seeif thereis an update
available. In fact, this ability is theresult of a TrueUpdate Client application, just like
the ones you will build with TrueUpdate.

Beforewe start exploring the program interface, let’s use this feature to make sure you
have the latest version of the program.

1) Choose Help > Check for Update.
The TrueUpdate Client application will open.

2) Click Next.

When you click Next, the TrueUpdate Client will connect to the Indigo Rose website
and determine whether thereis a newer version of TrueUpdate available for you to
download. If thereis, it will give you the option to download and apply a patch that
will update your copy of TrueUpdate to the latest version.

Note: If you are running any Internet firewall software such as ZoneAlarm, it may ask
you whether to permit the TrueUpdate Client to connect. You will need to allow the
client to connect in order for the update to work.

3) If an update is available, click Next and follow the instructions;
otherwise, click Finish to exit.

If an updateis available, click Next and follow the instructions to update your
software to the latest version.

If you already have the latest version, click Finish to exit the TrueUpdate Client
application.

Learning the Interface

Now that you know you are using the latest version of TrueUpdate, it’'s timeto get
comfortable with the actual program interface.

1) Explore the TrueUpdate program window.
The TrueUpdate program window is divided into a number of different parts.

Chapter 3

At thetop of the window, just under thetitle bar, is the program menu. You can click
on this program menu to access various commands, settings and tools.

Below the program menu are a number of toolbars. The buttons on these toolbars give
you easy access to many of the commands that are available in the program menu.

Tip: You can create your own custom toolbars or edit the existing ones by choosing
Tools > Customize.

Menu Script Tabs Standard Toolbar Screen Pane

. Untitled - Truelydate

Bt Project | Sopk Puish few Tooks BHep

Do r IDOMABPAEB v a P!

Sk | il Sewme Scrigt

Wl - e e e -

02 == Dowtilowd dend JEn Gl SerTer Foript

[1}: [SN Gl PO SR P i S L Y N

o4

0F —— Caly phow bhd b4PCLp-wMlcomd Aordend I chey havea't Jlreedy bean phe = Conndecl b S

06 ifinot ClisntRestarted] then Dhowricund Seret Scriph

0l Sl S SEAFTIRT) ¢ Dhiwriotei] Sarraier Scriph Fasied

08 e

L]

10 == Dopmlodd @end JEm Cink SerTer soripd

11 i) Boreen. Fhow ["Cormect to Server™| == BF_BUCCESS) them

12 Troalpdues. PanSeeipe| “Sarmae Sepipe’) e

11 snd

d = et Scrvens | [Server o
Somen Freview =

v
I)
[repsen pecven]
Script Editor Screen Tabs Screen Preview Pane

The Development Environment

63

64

2) Check out the Script Editor.

The script editor takes up most of the program window. It is where you will edit the
main scripts that determine what your project does. There are actually two script
editors in this window—one for the client script, and one for the server script. You
can switch between the client and server scripts by clicking on the respective tabs.

The script editor is afull featured code editor, including autocomplete, dropdown lists,
and syntax checking.

3) Keep an eye on the Quick Help bar.

At the very bottom of the window is the quick help bar, which displays any quick help
information available. For example, when working with an action in the script editor,
the quick help bar will display the prototype for that action.

4) Take a peek at the panes.

Therest of the program window is made up of individual sub-windows known as
panes. Each pane can be docked, tabbed, pinned, resized, dragged, and even made to
float on top of the design environment.

There are two panes to the right of the script editor. The top-most paneis actually a
pair of panes that have been tabbed together: the Client Screens pane, and the Server
Screens pane. Because these panes are tabbed by default, we often refer to them as the
Client Screens tab and the Server Screens tab.

The client screens are distributed with the TrueUpdate Client application, and the
server screens are stored in the server configuration files (which get hosted at your
TrueUpdate Server locations). Y ou can switch between the client screens and server
screens by clicking on the appropriate tab.

Below the pair of screen panes is the Screen Preview pane. When a screen is selected
on one of the screen panes, a preview of how that screen will look is shown in the
Screen Preview pane.

Chapter 3

5) Make the screen panes larger by dragging their window edges to the
left.

5] Client Screens (5 Server Scre..,

......

Y ou can resize panes by dragging their edges. In this case, you want to drag the part
“between” the rightmost panes and the script editor...specifically, the little bit of
window surface to the right of the script editor and to the | eft of the two screen panes
and the Screen Preview pane. As you begin to drag the edge of a pane, aline will
appear to show where the edge will move to when you release the mouse button.

Y ou can also resize the screen and preview panes vertically by dragging the window
edge between the two of them up or down. As one becomes larger, the other will
become smaller, and vice-versa.

65

The Development Environment

6) Double-click on the Screen Preview pane’s title bar to un-dock it.

The Screen Preview paneis docked by default. A docked paneis seamlessly integrated
into the program window. Y ou can “un-dock” it from the program window by double-
clicking on itstitle bar.

When you un-dock the Screen Preview pane, it floats above the program window, and
the screen panes expand to fill in the space that the Screen Preview pane | eft behind.

Screen Preview

*. ¥our Prodect Update

Welcorme

“eelomne 1y B Vou Pigduol upiois T pogas. =l
Bt b Dar bt i it ool 8 ras v o Wi
Prisdiact o irdalatin

Pl sk sunp gt ot s corvatctind B ket 5
o chick Meat b cortrus

s | [Server Scre... |
UM 4

66

Chapter 3

7) Drag the Screen Preview pane to the bottom of the screen panes to
dock it again.

Y ou can move panes around by dragging them by their title bars. As you move a pane,
an outline shows you the general area where the panel will end up, and special ‘drop
points' appear to control where the pane will be docked. We want to put the Screen
Preview pane back where it was originally. Drag the Screen Preview pane by itstitle
bar around the design environment until the drop points appear. Then, drop it on the
point that will re-dock it below the screen panes.

L Linditled - Trurlipdate

File G Prowct Joet Publsh Yew Tool Helo

Béds ¢+ 0 00w eaBBEB e E-WoHky

W o 5ot | @ 5o 5o 7 e —]
R — Dowrlosd and rur Hhe Server Sorapd

1 o P T A e AEE I LS - (R PR = Tt

4 Walename

OE - gnly ahew e RtariEpAEslooms Acresns £F thay hawen 't 2lraady besn she = Conrut 10 S

b ifimot CliencReswaroed) then Duovaniined Sewver Script

Ly} Sermst, Shaw (T SEarTUgT] Dhipvairiiid] s ripd s
L

L)

0 — Downlosd and runr the server scerpt

Ll Afi3ceeen. Few|"Tonect e FarvagTh == FR_FAUCCETI) them
12 Trurllpdaoe . Bunfoript | “Secver Sordpt™] s

13 smal

14 4

: :;' x
g dv-.w

SETEEN PHEER

v w

IE ¥ -:htm!siwiml
b e bl W

Tip: When you are dragging panes, the position of the mouse cursor is what
determines where the pane will land. When moving panes to the drop points, the
mouse pointer must be over the point for the screen to dock as you intend.

The Development Environment

67

68

8) Unpin the Screen Preview pane, and then pin it again.

Docked panes can aso be“pinned” or “unpinned.” Pinned panes remain open when
you're not using them. (All of the panes in the default layout are pinned.) Unpinned
panes stay out of the way until you click on them or hover the mouse over them.

Whenever you need them, they “dlide” open on top of everything else and then slide

closed when you're done.

Tools Help

'y Q& & H S

screens if they haven't al

ript
"1 == 3R_3UCCESS) then
Script™):

L

=
F

b

|. A3Aal g US340S I =] | SU9342S U0 ﬂ| ,

MWLM

»

The Client Screens pane unpinned...

Tools Help

L

E

°QBIDS

AE0D ¢S O

(=] Starbup
o elcome
¢ | = Connect to Server

Download Server Scripk
‘. Download Server Script Failed

|. Maliald Usalas |] | =82S S0 @
|

MUM

...and after "sliding" open

You can pin or unpin a pane by clicking thelittle pin icon on the pane’ s title bar.

Panes remember their positions even after you unpin them. If you unpin a pane, and
then pin it again, it will return to the position it had before it was unpinned.

Chapter 3

9) Turn on the Script Help toolbar.

Right clicking on the standard toolbar will bring up the list of available toolbars.
Notice that only the standard toolbar is enabled by default. Click on ‘ Script Help’ to
enable the Script Help toolbar. This toolbar displays useful tips and information, and
any other helpful tools relating to scripting.

Y ou can turn on as many toolbars as you like, or disable them all. Y ou can drag and
drop toolbars around the interface similar to how you dragged panes around. Dragging
atoolbar to the edge of the TrueUpdate window will dock it to that side. Dragging a
toolbar to the middle of the TrueUpdate window will make the toolbar float above the
interface.

Feel free to customize the design environment as you seefit. TrueUpdateis your tool,
so0 go ahead and arrange it to fit the way you work.

Getting Help
If you still have questions after reading this user’s guide, there are many sdlf-help
resources at your disposal.

Here are some tips on how to quickly access these sdlf-help resources.

1) Press the F1 key.

Help isonly a key press away! TrueUpdate comes with an extensive online program
reference with information on every action and feature in the program.

Infact, pressing F1 will, whenever possible, bring you directly to the appropriate topic
in the online help. This context-sensitive help is an excellent way to answer any
guestions you may have about a specific dialog or action.

Note: Y ou can also access the help system by choosing Help > TrueUpdate Help.

There are three ways to navigate the online help system and find the appropriate topic:
use the table of contents, use the keyword index, or search through the entire help
system for a specific word or phrase.

2) Close the help window and return to the TrueUpdate design
environment.

To exit from the online help, just click the Close button on the help window’ stitle bar.

69

The Development Environment

70

3) Choose View > Help to open the Help pane.

Y ou can also open the help file inside a pane, right in the TrueUpdate design
environment. Thisis especially useful when you’re working on scripts and want quick
access to the help topics for the actions you' re working on.

4) Select the Client Script tab, and click on the Screen.Show action.

When you click on an action in the script editor, notice that the Help pane
automatically displays the help topic for that action.

& Linitled - Truelipdate

File Ed Proict Jogt Pbksh v Took Help

5 : 3 i L A 5 e -] =

BeOdS D 0o Q@BREFEIB L PE-WoHY,

8 Chor 5crck| gl Sevves St EEETr)
o] — | . i | 3 ; % w
= L e D '-j
R — Downlosd snd mm the Berver Szriph o
o - e O SR Rt A T R R T W Awtup
04 Veitloommn
Overview ESECITEEH 08 — {nly show the searcupseelcoms scresns fr & Loned o v
o ifimot _ClientRestarced] than Drowarbousd Server Soript
i SeraEr, Shoe M ESeseepT] ¢ oo SvT SOph Fadied
Fooweh.Fhow | 0 gmd
o
W — Downlosd srd rumr the server soriph
& Ll df{3ccasn. Fow] "Comect te Jerwan™) == JF_J1

Description 12 Truellpdate, Bunforipe| "Server Soripe®]
13 pmd

Shows the screens of a

given scraan Bt and 14 [hort Sermana | (g Sorvsr Scre

retuimE the liEts retumn

omde. Return ocodes can be

ganeratied from & soresn

usang the Ecreendieturn

WCtion or e SCreen Nt

mction . Tou can also speoly

tha firse scrasn tn shaw in

the given list.

Mated Binos only one

sereary Bt can be shown

a4 e, this actson can

onily be callad fram A

Fonpt tab, Using this 7 W

& "m L »
sl Son ST Listame, BTG FrsSonesn = =) = Pras Pl for Help L)

Asyou are working on your scripts, the Help pane will automatically display the help
topic for any action that you click on. It will also automatically display the help topic
for an action as you' re typing it into the script editor. (In other words, if you typed
“Application.Exit” into the script editor, the Help pane would automatically show you
the help topic for the Application.Exit action.)

Chapter 3

5) Choose View > Help again to close the Help pane.
Choosing View > Help will closethe Help paneif it is currently open.

6) Choose Help > User Forums.

TrueUpdate is used by thousands of people worldwide. Many users enjoy sharing
ideas and tips with other users. The online forums can be an excellent resource when
you need help with a project or run into a problem that other users may have
encountered.

Choosing Help > User Forums opens your default web browser directly to the online
user forums at the Indigo Rose website.

7) Close your web browser and return to the TrueUpdate design
environment.

Exit from your web browser and switch back to the TrueUpdate program.

Alternatively, you can press Alt+Tab to switch back to TrueUpdate while leaving the
web browser open in the background.

8) Choose Help > Technical Support > Support Options.

This takes you to the TrueUpdate web site, where a variety of online technical support
resources are available to you, including a large knowl edge base with answersto
common questions.

Thisis also where you can find information about submitting a support request.

9) Close your web browser and return to the TrueUpdate design
environment.

When you' re done browsing the technical support information, return to the
TrueUpdate design environment to continue with this chapter.

71

The Development Environment

Setting Preferences

There are anumber of preferences that you can configure to adjust the TrueUpdate
design environment to suit your work style. Let’s have alook at some of them.

1) Choose Edit > Preferences.

Thiswill open the Preferences dialog, where all of TrueUpdate' s preferences can be
found.

Bl Revic

Code Signing
[+~ Document Euild with Publish “izard
2 Em_flr-:unm.ent Opet output folder after build

Script Editar

Spell Checker Show publizh report after build

Startup Confirm befare building [non-#izard mode only]

Updat

Siae Exclude fonts from build:
i.-'l'-.rial, Couner Mew, Times Hew Roman |

l oK l
[Cancel]
[Hep |

The preferences are arranged into categories. The categories are listed on the |eft side
of the dialog. When you click on a category, the corresponding preferences appear on
theright side of the dialog.

72

Chapter 3

2) Click on the Document category.

The Document preferences allow you to change settings that affect the project file.
For example, you can configure the auto-save feature that can automatically save your
project file as you're working on it to avoid any accidental loss of data. You can also
configure the number of undo/redo levels, and choose either to use the project wizard
to create new projects or to simply start with a blank project.

Preferences E|
Auto-Save
[+] Enabled
Script Editar |nterval;
Spell Checker 15 = R
Startup | v_| minutes
Updates Purge Level:
|1|:| :| documents
Unda/Redo
Levelz
10 =]

MHew Projects

[oK] (%) Start with Project Wizard

(") Start with empty project
[Cancel]

[Help]

Tip: It can be helpful to set the number of undo levelsto a larger value, like 25 or 50.
That way you can undo even more “steps’ and go back further in your project if you
change your mind while you’ re working.

The Development Environment

73

3) Expand the Environment category by double-clicking on it, and then
click on the Folders category.

Y ou can also expand the Environment category by clicking on the little plus symbol to
theleft of it.

Preferences E'
Code Signing
[+~ Document Temporary build files:
[=I- Erveironment IE:'\Temp @
Folderz ! |
Sript E ditar Default output folder; .
Spell Checker iE:'an:n::uments and SettingzhRinzeT haralyhkdy Dn:n::umi
Start : :
e Preference files:
Updates :
IE:'\DDcuments and SettingzhRinzeT haralApplicatio |
Project files:
I = : : | 2
IE.HD::u:uments and Settingz'RinzeT horalyhhdy D-:u:umI
Additional themes:
| oK l
[Cancel]
[Heb]

The Folders category allows you to specify the locations of various folders that are
used by the project. For example, you can specify the location where project files are
stored, and specify the default output folder where your update files will be published
to.

74

Chapter 3

4) Feel free to explore some of the other categories. When you're done,
click OK to close the Preferences dialog.

There are many other preferences that you can set, such aswhat to do when the design
environment is started (in the Startup category). Take some timeto look through the
categories and familiarize yoursalf with the different options that are available.

Remember that you can click Help or press F1 to get moreinformation about any of
the settings in a specific category.

75

The Development Environment

Chapter 4.

76

Introduction to Scripting

Scripting is the art of creating and modifying a sequence of actions that work together
to perform a specific task.

Actions are among the most important features in TrueUpdate. They are what you use
to control the functionality of your update, with virtually limitless possibilities. Each
action is a specific command that tells your TrueUpdate Client to do something, such
as downloading afile, showing a screen, or modifying the Registry.

Actions also allow your update to react to different situations in different ways. Does
the user have your software installed? Is an Internet connection available? You can
use actions to answer these types of questions and have your TrueUpdate Client
respond accordingly.

In this chapter, we'll introduce you to the basics of scripting in TrueUpdate.

Chapter 4

In This Chapter
In this chapter, you'll learn aboult:

e What scriptsare
* What actions are

* Thescript editor (including features such as syntax highlighting, intellisense,
quick help, and context-sensitive help)

» TheClient Script tab

* Server Script tabs

» Screen events

* Using the action wizard

* Including external script files

* Extending TrueUpdate with action plugins

77

Introduction to Scripting

78

What Are Scripts?

A script is asequence of actions that work together to perform a specific task. It can
include a single action, or any number of actions. The simplest scripts comprise a
basic series of steps, with one action following another in a direct and straightforward
manner. More advanced scripts take advantage of control structures like “if” and
“whil€’ to incorporate sophisticated techniques such as decision-making, branching
and looping.

Scripts are ultimately just text documents that follow a specific syntax. The actions
and control structuresin a script are represented by specific keywords, which the
TrueUpdate Client ultimately interprets as instructions that tell it what to do.

Note: Scripts are akey component of TrueUpdate. For example, the entire client-
server interaction is defined by the script that is entered on the Client Script and
Server Script tabs.

What Are Actions?

Actions are what you use in TrueUpdate when you want to get something done. They
are specialized commands that your TrueUpdate Client can perform at run time. Each
action is a short text instruction that tells the client to do something—whether it's to

download the server configuration files, show a screen, open a document, or modify a

registry key.

Actions are grouped into categories like “File” and “ Registry.” The category and the
name of the command are joined by a period or “dot,” like so: File.Run,
Registry.GetValue. Thetext “File Run” essentialy tells TrueUpdate that you want to
perform a“Run” command from the*File’ category...ak.a. the“File Run” action.

Tip: The period in an action nameis either pronounced “dot,” asin “File-dot-Open,”
or it isn't pronounced at all, asin “File Open.”

It is worth noting that the many screen types available to you in TrueUpdate actually
use actions to accomplish their tasks. In fact, if you want to modify a screen’s built-in
functionality, you can do so simply by editing the screen’s actions. Because of
TrueUpdat€ s scripting engine, the power isin your hands!

Chapter 4

The Script Editor

The script editor is where you create and edit your scripts in the TrueUpdate design
environment. It essentially functions like a text editor, allowing you to type the actions
and other scripting el ements that you want to use.

However, while it may function like a text editor, the script editor has powerful
features that make it a full-fledged programming environment. Some of these features
include syntax highlighting, intellisense, quick help and context-sensitive help.

It also has a built-in action wizard, which provides an easy dial og-based way to select,
create, and edit actions without having to type aline of script.

In short, the script editor gives you the best of both worlds: pure scripting capabilities
for advanced users and programmers, and an easy-to-use action wizard interface for
those who' d rather not use free form scripting.

Script Tabs and Screen Events

The script editor has two visible interfaces, depending on whether you are adding
actions to script tabs or screen events.

€% Untitled - TrueUpdate

. File Edit Project Script Publish Wiew Tools Help

BOHS A0 QBERFEB ¢ B

-%I Client Scriptni ﬁ Server Scripk

0l
02 —— Dowmload and rum the Server Script
03
04
05 — Orly show the startup/welcome screens if they haven't already bes
06 if(not _ClientRestarted] then

a7 Jcreen. Show("3tartup™) ;

05 end

ns

10 —— Dowmload and runr the server script

11 ifi(3creen.3how("Connect to Jerver™) == SR_3UCCESS3] then
12 Truelpdate.Funicript("3erver 3cript™):

The script editor on the Client Script tab

Introduction to Scripting

79

80

Screen Properties

| 7] Sattings | (5] Attributes _j. 5ty|e| =3 Actions |

©n Preload |On Back OnNext [©On Cancel OBHelp On Elé.r-lur.'-.’l-essagef
Ewvent Variables: |None
0l F— These actions are performed before the screen is showm. 7’
0= L
b
JES | >
Guick Help: |Tip: Preszs Ctri+Space to wiew a list of all avalable actions. | @
[;‘:r Ateiion] [:Eﬂddgc-de r] [E-;lgdit] [i& b] [3 b] [UAgvanced b]

[1] l[Cancel H Help]

The script editor on a screen event tab

The script editor is functionally the same in both places; the only differenceisin how
you access some of its programming features. The screen event tabs have built-in
buttons that allow you to access the most common features of the script editor. The
script tabs have no integrated buttons; instead you can access the features via the
program menu and toolbars. In both cases, however, you can access the features by
using the right-click menu.

Chapter 4

Programming Features

The script editor provides many powerful features that make it a useful and accessible
tool for programmers and non-programmers alike. Along with the action wizard
(covered later under Using the Action Wizard), the four most important features of the
script editor are: syntax highlighting, intellisense, quick help, and context-sensitive
help.

Syntax Highlighting
Syntax highlighting colors text differently depending upon syntax. This alows you to

identify script in the script editor asan operator, keyword, or comment with a quick
glance.

Note: You can customize the colors used for syntax highlighting via the script editor
settings. The script editor settings are accessed on screen event tabs via the advanced
button: Advanced > Editor Settings. On script tabs it can be accessed from the
program menu by choosing Edit > Advanced > Editor Settings.

Intellisense

Intellisense is a feature of advanced programming environments. It refers to the
surrounding script and the position of the cursor at a given moment to provide
intligent, contextual help to the programmer.

Intellisense is aterm that has been used with various intended meanings. In
TrueUpdate, intellisense manifests itself as two features: autocomplete, and the
autocompl ete dropdown.

Autocomplete is the editor’ s ability to automatically complete keywords for you when
you press Tab. Asyou typethefirst few letters of a keyword into the script editor, a
black tooltip will appear nearby displaying the whole keyword. Thisistheintellisense
feature at work. Whenever you type something that the intellisense recognizes as a
keyword, it will display its best guess asto what you are typing in one of those little
black tooltips. Whenever one of these tooltips is visible, you can press the Tab key to
automatically typetherest of the word.

81

Introduction to Scripting

ol
02 —— The puwrpose of the Server Script s to detect the installed

03 — version, decide if an wpdate is awvailable, and then perfork
04 — the update 1f required.
05
0 Fi
File

Another feature of intdlisense is the autocomplete dropdown. By pressing Ctrl+Space
while your cursor isin the code window, you can make a drop-down list appear
containing the names of all the available actions, constants and global variables.
Choosing one of the listed items and pressing Tab or Enter will automatically type the
item into the script editor for you.

D€ —— The purpose of the Server Script is to detect the installed

03 — wersion, decide 1f an update is arailable, and then perform
04 —— the update if required.
05
i3
% File.Install -
% File.IsInlsze
§ File.Move
& File.MoveOnReboot
& File.Open

% File.OpenFmail
& File.OpenURL
L File, Print{string Filename}l
% File.Renane

% File.Pun v

Note: This dropdown cannot be accessed if your cursor isinside a set of quotes (a
string).

82

Chapter 4

The autocomplete dropdown is also available for completing action names after the
category has been typed. For example, when you type a period after the word File, the
intellisense recognizes what you've typed as the beginning of an action name and
presents you with a drop-down list of all the actions that begin with "File."

@ DeletednReboot
 DoesFxiszt

& ExploreFolder

¢
@ Getattributes

% GetCRC

% GetDefaultViewer

& GetShortName W

ol
02 — The purpose of the Server Script is to detect the installed
03 — version, decide if 4an upddte is availakle, and then perform
04 — the update if reguired.
05
05 File.
1t $ Copy e
 Delete

The word will automatically be typed for you if you choose it and then press Tab or
Enter. However, you don't have to make use of the dropdown list; if you prefer, you

can continue typing the rest of the action manually.

Quick Help

Once you' ve typed something that the script editor recognizes as the name of an
action, quick help is automatically displayed. Quick help is essentially a* blueprint”
for the action. It lists the names of the action’s parameters, and indicates what type of
valueis expected for each one. For example, in the case of a Screen.Jump action, the
quick help looks like this:

Screen. Junp(string ScreenNane)

This quick help indicates that the Screen.Jump action takes a single parameter called
ScreenName, and that this parameter needs to be a string. Strings need to be quoted,

Introduction to Scripting

83

so if you wanted to jump to a screen named Finish, the full action would have to be
typed exactly like this:

Screen. Junp("Fi ni sh");

On screen events, the quick help is located towards the bottom of the properties
window. When you’ re working on script tabs, it can be found on the status bar at the
bottom of the program window, or on the optional Script Help toolbar. (Y ou can
enable the Script Help toolbar by choosing View > Toolbars > Script Help.)

Screen Properties

| 7] Sattings | (5] Attributes _j. 5ty|e| =3 Actions |

|OI'|F'I’E|I:IE|I:|| on Back! on Mext |On Cancel OBHelp On Elé.r-lur.'-.’l-essagef

Ewvent Variables: |None
01l —— These actions are performed when the Next button is clicked. 7’
0= L
03 Screen.Ju.mpiI
04

b
JES | >
Guick Help: iScreen.Jump[string ScreenMame) | @
[;‘:r Ateiion] [:Eﬂddgc-de r] [E-;lgdit] [i& b] [3 b] [UAgvanced b]

[Q. l[Cancel H Help]

Script help on a screen event tab

84

Chapter 4

Context Sensitive Help

Context sensitive help, as its name suggests, provides help for you based upon what
you are currently doing. In the script editor, the context sensitive help lets you jump
directly to the current action’ s topic in the help file.

For instance, if you aretyping an action into the script editor and the quick help
featureisn't giving you enough information (perhaps you would like to see an
example), press the F1 key and the help file will open directly to that action’s help
topic.

Note: The context sensitive feature is only available when the script editor recognizes
the action that the cursor is on. It is easy to know when thisis the case; when the
script editor recognizes an action, the action’s template appearsin the quick help.

Client Script

The Client Script tab is a script editor located on the main development window. It
contains the script that runs as soon as the TrueUpdate Client application is started.
This script is generally referred to as the client script.

Generally the client script should contain any actions needed to initialize and initiate
the update process.

A typical client script will introduce the user to the update and then download the
server configuration files. In fact, the main function of the client script is to download
and run the server script, which is contained in the server configuration files.

Tip: While you' re working on the script tabs, you can access all of the script editor
features under the Edit and Script program menus.

Server Scripts

The Server Script tab is another script editor located on the main development
window. It contains the script that is hosted at the TrueUpdate Server locations. This
script is generally referred to as a server script.

The purpose of a server script is to determine whether an update is available, and to
actually perform the update—either by running a series of actions, or by launching a
separate installer or patch file.

85

Introduction to Scripting

86

Multiple Server Scripts

TrueUpdate actually supports multiple server scripts, each represented by a separate
tab on the program window. Every project begins with asingle“main” server script,
represented by the Server Script tab.

For larger projects, you may want to divide your actions into multiple server scriptsin
order to make the project easier to maintain. TrueUpdate allows you to add as many
additional server scripts as you need in order to facilitate organizing your code.

The server scripts that you add are treated just like the main server script. In fact, the
contents of all the server scripts are stored in the same server configuration file, and
they are all downloaded together by the TrueUpdate. GetServerFile action. Just as you
would run the main server script, you can run any individual server script using the
TrueUpdate.RunScript action.

Tip: Use multiple server scripts to implement “branching” in different situations. For
example, if your TrueUpdate Client needs to perform different stepsin order to update
different versions of your software, you could create a separate server script for each
version, and then use the TrueUpdate.RunScript action to call the appropriate script
tab from your main server script oncetheinstalled version is detected.

Designed For Easy Modification

The server scripts are stored together in one of the server configuration files, which is
downloaded by an action in the client script. Because they are downloaded each time
your TrueUpdate Client connects to a TrueUpdate Server, you are free to modify the
server scripts at any time—even after the TrueUpdate Client has been distributed.

This separation between the client and the server scriptsis an important feature of
TrueUpdate. It allows you to adjust the update process for your software at any time,
without any modifications to the client at all. In other words, it allows you to modify
your update process without having to redistribute new clients to your users.

Note: The server scripts are normally what you will modify each time a new version
of your softwareis released (or whenever you need to update your software).

Screen Events

Every screen has a number of events associated with it. These events are “triggered”
when something happens to the screen. For example, every screen has an On Preload
event that istriggered just before the screen is displayed.

Chapter 4

For every event that a screen supports, thereis a separate tab on the screen’s
properties dialog. Each tab contains a script editor, where you can edit the script that
will be executed when the corresponding event occurs.

When you add an action to a screen’s event tab, you arein effect adding the action to
that event. At run time, when the event istriggered, all of the actions on the event tab
are performed in sequence from top to bottom. In other words, TrueUpdate “runs
through” the script for that event. This happens each time the event is triggered.

For example, to make something happen immediately before a screen is displayed,
you would add an action to the screen’s On Preload event. To make something happen
when a screen’s Next button is clicked, you would add an action to the screen’s On
Next event.

Screen events are triggered either by the controls on the screen or by the screen itself.
They can be used for navigation (e.g. moving to the next screen), to change what is
displayed on the screen (e.g. updating progress text), or to perform the task required of
the screen (e.g. downloading a file).

Note: A control isan “object” on a screen that serves a specific purpose, such as
receiving mouse clicks, displaying text, or providing a checkbox. Most screens
contain several controls. Y ou can think of the controls as the different screen “ parts”
that allow the screen to do what it does. For more information on controls and which
controls exist on the various screen types, please consult the help file.

Using the Action Wizard

Theaction wizard is a dial og-based way for you to add actions in the script editor. It is
designed to guide you through the process of selecting your action and configuring its
parameters.

Tip: Evenif you prefer typing actions directly into the script editor, don’t disregard
the usefulness of the action wizard. It is an excellent way to add an action when you
aren’'t familiar with its parameters and the range of values it accepts.

Whilein a script editor, you can launch the action wizard by pressing Ctrl+W, or by
right-clicking and choosing Action Wizard from the context menu.

Note: The action will be added at the current location of the cursor, so take care where
you click or right-click before launching the action wizard.

Introduction to Scripting

87

88

Adding Actions

Hereis a brief example that shows how easy it isto add an action. It illustrates how to
display a popup dialog with a message on it by adding a Dialog.Message action to the
Client Script tab.

1) Start a new project and click Cancel when the project wizard appears.
Make sure the Client Script tab is selected.

To start a new project, either start TrueUpdate and click “ Create a new project” on the
welcome dialog, or choose File > New Project from the program menu. When the
project wizard appears, click Cance to skip the wizard and go straight to the design
environment.

Note: Normally you will want to use the project wizard in order to base your project
on a completed structure; however for this exampleit is easier to start with an almost
blank project.

Make sure you have the Client Script tab selected and not the Server Script tab. (You
can select the Client Script tab by clicking onit.)

2) Comment out the Screen.Show action by adding two dashes (--) at the
start of the line.

Beforewe continue, let’s disable the default client script’s Screen.Show action so it
won't interfere with this example.

Any linein a script that begins with two dashes is treated as a comment. Comments
aren't executed; they aretypically used to add helpful notes and explanations to your
code. For example, you'll notice that the first four lines of the Client Script already
have comments describing what the Client Script does.

When you add two dashes to the start of the line that has the Screen.Show action on it,
the line turns green, the default color for comments in the script editor. Adding the
two dashes turned the line into a comment. This effectively causes TrueUpdate to
ignore that line completely.

Y ou can add two dashes to the start of any line of code to “turnit off” temporarily.
Turning aline of codeinto a comment is known as “commenting out” the code.

Tip: You can “uncomment” alinethat is currently commented out by simply deleting
the two dashes. Removing the dashes reverts the line to its former “active’ status; it is
no longer a comment.

Chapter 4

Hereis how the Client Script should ook when you’re done:

& Client Script I @ Server Script |

oL

02 —— The purpose of the Client Script is to
03 —— welcome the user to the update and then
04 —— dowmload and run the Server Script.

05

0g

07 ——Screen. Show("Client Screens™)

0g

For the purposes of this example, we don’t want the client script to display any
screens; instead, we will be displaying a message in a popup dial og.

3) Place the cursor on the last line (line 8) and choose Script > Action
Wizard from the program menu. When the action wizard appears, switch
to the Dialog category and click on the action called Dialog.Message.

The action wizard will walk you through the process of adding an action to the client
script. Thefirst step is to choose a category using the drop-down list.

Mew Action Wizard - Select Action

Step 1 - Chooze a categony:

A

Bnplic:

Applical

Application. @etLasztE mor
Application. Getlpdatelanguage
Application. Getw'ndH andle
Application. LoaddctionPlugin
Application. LoadScript
Application. Loadyalue
Application. Minirmize
Application. R estone

| %

Application. E xit
E itz the application and returns an optional return code.

< Back Mewt =][Canicel] ’ Help]

89

Introduction to Scripting

90

When you choose the Dialog category from the drop-down list, all of the actionsin
that category will appear in the list below.

Mew Action Wizard - Select Action IL_|E| rz|

Step 1 - Choose a categorny:

Dialog w |

Step 2 - Chooze an action;

Dialog.FileBrowsze
Dialog. FolderBrowse
Dialag. lnput
Dialog.Masked nput
[halog.Message

Dialog. Pazsw
Dialog.Splazkimage
Dialog. TimedMezzage

Dialog. Meszage
Preszentz a dialog to the user with an informative meszage on it

¢ Back [Mext > l[Cancel] [Help

To sdect an action from the list, just click onit. When you select an action in the list,
a short description appears in the area below the list. In this description, the name of
the action will appear in blue. Y ou can click on this blue text to get more information
about the action from the help file.

4) Click the Next button and configure the parameters for the
Dialog.Message action.

Parameters are just values that get “ passed” to an action. They tell the action what to
do. For instance, in the case of our Dialog.Message action, the action needs to know
what the dialog’ s window title and message should be. Y ou provide this information
tothe action initsfirst two parameters.

Thefirst parameter lets you specify thetitle of the dialog. Thisit the text that will
appear in the dialog window’ s title bar.

Chapter 4

The second parameter lets you specify the message that will be displayed on the
dialog itsdlf.

For now the other parameters are not important, but you should take sometime to
look at them and their options. (TrueUpdate will automatically fill the other
parameters with appropriate default values.)

For now, change thetitle to:
"TrueUpdat e"
and the text to:

"Message from Chapter 4!"

Note: Be sureto include the quotes on either side of both parameters. These are string
parameters and the quotes are needed for TrueUpdate to properly interpret them.

Mew Action Wizard - Action Settings |;||E| [z|

Step 3 - Cuztomize the action. Click Finish to create the action or
Back to choose a different action.

Click here to learn more about thiz action.

=] T
| Tite "TruelUpdate"
"Message from Chapter 41" J
Type ME_Ok [
Icon ME_TCONIMFORMATION

DefaultButton ME_DEFEUTTOM1
ResultYariable result

Text
The kext that will appear on the dialog,

[< Back ” Finizh l[Cancel] [Help

Once you’ ve set the action’s parameters, click the Finish button to close the action
wizard. The Dialog.Message action will appear on the Client Script tab.

Introduction to Scripting

91

92

i &l Client Script[@ Server Scripk

ol

02 —— The purpose of the Client Script is to
03 — welcome the user to the updite and then
04 — domzload and run the Server Script.

05

06

07 ——Screen. Show("Client Screena™);

o2

Note that the parameters you provided are listed between parentheses after the
action’s name. The parameters are in the same order as they appeared in the action
wizard, separated by commas.

5) Build the project and run the TrueUpdate Client. When the client
starts, you should see the dialog created by the Dialog.Message action.

Start the publish wizard by choosing Publish > Build from the program menu. The
default settings should suffice, so click the Next button to show thelist of upload
locations (which can beignored for this example) and then click the Build button to
start the build process.

Once the build has completed successfully, make sure the “ Open output folder”
checkbox is selected, and click the Finish button.

Once the output folder appears, double-click on the client executable to launch it.

Y ou should see the following dial og message appear:

Truellpdate E|

L]
\EJ’) Message from Chapter 4!

This popup “message box” is the result of the Dialog.Message action.
Click OK to close the message box and allow the TrueUpdate Client to exit.

Chapter 4

03 result = Dialog.Message("Truelpdate™, "Message from Chapter 4!, ME 0K,

Editing Actions
There are two ways that you can modify an existing action: you can either edit the

action’stext directly in the script editor, just like you would edit text in a word
processor; or you can use the Action Properties dial og.

The Action Properties dialog is similar to the action wizard, but instead of walking
you through choosing a category, it takes you straight to the part where you modify
the action’s parameters.

The easiest way to bring up the Action Properties dialog is by double-clicking on the
action. Or, if you prefer, you can place the cursor within the action and either press
Ctrl+E, or right-click and choose Edit Action from the context menu.

Tip: You can tell that the cursor is within an action when the action’s function
prototype appearsin the quick help.

Hereis a quick exampleillustrating how to edit the Dial og.M essage action that we
created in the previous section.

1) Double-click on the Dialog.Message action to bring up the Action
Properties dialog.

First, make sure the Client Script tab is sdected. Y ou should see the Dialog.M essage
action created in the previous topic.

To edit the action, just double-click it. Double-clicking on the action opens the Action
Properties dialog, where you can modify the action’s current parameters.

2) Change the Type parameter to MB_OKCANCEL and the Icon
parameter to MB_ICONNONE.

To change the Type parameter, first click on the parameter field, then click the sdect
button at the right edge of the parameter field and choose MB_OKCANCEL from the
drop-down list.

B
Title "TruglJpdate"
Text "Message from Chapter 41"
Type ME_CK :,— Select button
Icon ME_ICOMIMFORMATICN

DefaultButton MB_DEFBUTTOM1
Resultyariable resulk

93

Introduction to Scripting

94

Title: "TrueJpdate"

Texk "Message from Chapter 41"

Twpe ME_ Ok hd
Icon ME_Ck

DefaulkButton

Resultyariable |ME_ABORTRETRYIGMORE
ME_YESMOCANCEL
ME_YESMO
ME_RETRYCANCEL

Drop-down list

For the Icon parameter, click the parameter field, click the select button, and choose
MB_ICONNONE from the drop-down list.

These changes will add a cancel button to the dialog (MB_OKCANCEL) and get rid
of theicon (MB_ICONNONE).

Finally, click OK to finish editing the action. Notice that the changes you made now
appear in the script editor.

Constants

MB_OKCANCEL isaconstant. A constant is a name that represents a value,
essentially an “alias’ for that value. Constants are often used to represent numeric
valuesin parameters. It's easier to remember what effect MB_OK CANCEL has than
it is to remember what happens when you pass the number 1 to the action.

3) Build the project and run the client. When the client starts, you should
see the dialog created by the Dialog.Message action.

When you run the TrueUpdate Client, a dialog will pop up. This dialog is created by
the Dialog.M essage action on the Client Script tab.

Truellpdate

Message from Chapter 41

(o4 | [Cancel]

Chapter 4

Notice that there is no longer an “information” icon on the dialog, and thereis now a
Cancd button next to the OK button. Thisis a direct result of the changes that you
made to the action’s parameters.

Getting Help on Actions

You can get help on actionsin a variety of different ways in TrueUpdate. For
example, when you're using the action wizard, text is displayed at the bottom of the
dialog describing the current action or parameter that you have selected. Additionally,
quick accessto the help file is provided in the form of a blue text link that you can
click on to receive context sensitive help for the action.

In the script editor, the current action’s function prototype is displayed in the quick
help field—either on the Script Help toolbar, in the status bar, or directly on a screen’s
event tab. In the case of the Script Help toolbar and the event tabs, thereis even a hdp
button next to the quick help field that will open the help file directly to that action’s
help topic.

You can press the F1 key at any time while working in the script editor to open the
TrueUpdate help file. The help file is especially useful when you' re working with
actions. It contains a wealth of information on each action, including an overview
topic with detailed information about each parameter, and a topic providing one or
more working examples for that action.

The overview topic for an action will provide you with the function prototype, which
serves as adefinition of the action showing what (if anything) the action returns, along
with the action’ s parameters and their types.

A function prototype defines the types of all of the parameters, the type of thereturn
value (if any), and whether or not any of the parameters have default values.

File.Bun | Filename,
Lrgs o
WorkingFolder :
WindowMode N
WaitForReturn 1

You can click on any part of the function prototype in the help file to learn more about
that part and its particular purpose.

Introduction to Scripting

95

96

Includes

Anincludeis any external script that can be“included” in your project. Also known
asascript file, aninclude is simply an external text file that contains avalid
TrueUpdate script. By convention, these text files usually have a .lua file extension.

Y ou can add script files to your project on the Includes tab of the Resources dial og,
which can be accessed by choosing Project > Includes.

All of thefiles listed on the Includes tab are stored in the client data file when you
build your project. Note that this means adding or removing script files will result in a
change to your TrueUpdate Client application.

Script files are very similar to script tabs in TrueUpdate except that instead of the
script being kept in the project, it is stored in an external text file.

Note: All of the script editors in TrueUpdate have the ability to export their script to
an external file. To save a script from the script editor, simply right-click and choose
Advanced > Export from the context menu.

Script files are very useful if you need to share important and complex code between a
variety of different projects. By keeping the common code in a single location, your
projects will be easier to maintain.

This is more advantageous than simply copying and pasting scripts between projects.
Having duplicated script in multiple projects can mean duplicated effort if you want to
make changes to the script in all of the projects (e.g. if you discover a bug). For
instance, when two projects contain copies of a script, you have to edit both projects
in order to make the same changes to both scripts.

Using an external script file gets around this issue, by allowing multiple projects to
share the same script. When using an external script file, each project does not contain
a copy of the script; rather, each project references the same script. If you find an error
or want to change any of the code, you do not have to edit the script in each project;
you simply have to edit the script in the external file. Since each project references the
samefile, you know that the next time you build a project, it will be using the new
Sscript.

Using external script files allows you to maintain your script in a single location: the
script file. For this reason, it’s a good idea to use includes whenever you want to share
scripts between projects.

Chapter 4

Plugins

Plugins are actions that are “added on” to the TrueUpdate program. They are
independently developed and distributed and can beintegrated into your projects to
extend their functionality. Y ou can obtain plugins developed by Indigo Rose as well
as those devel oped by third parties.

Any available plugin can be enabled or disabled in your project on the Plugins tab,
which you can access by choosing Project > Plugins.

Resources

& Plugine | % Includes |

Available action plugins:

[Clipboard |
R

&} More Plugins i) About Plugin

Plugin information:

Zip Actions Plugin

Created by Indigo Roze Corpaoration
Copyright & 2004 Indigo Rose Corporation
hittp: £ s indigorose. com

[k. H Cancel][Help]

Note: Only plugins that areinstalled in the Includes\Plugins folder within the
TrueUpdate program directory will be available on the Plugins tab.

To enableaplugin in your project, simply place a check mark in the checkbox next to

97

Introduction to Scripting

98

its name on the Plugins tab. Only plugins that are enabled on the Plugins tab will be
available in your project.

Once you have enabled a plugin in your project, all of its actions become available to
you in the script editor and action wizard. You can even access the plugin’s help file
in the same way that you would access the help for built-in actions.

Note: Sincethereis some overhead in terms of file size, it is recommended that you
only include plugins that are needed by your update. If you do not place a check mark
beside a plugin, it will not be included in the TrueUpdate Client and will not take up
any extra space.

For information about a particular plugin’s features and how to use them, refer to the
plugin’s documentation. Y ou can access a plugin’s documentation from the Plugins
dialog by selecting the plugin, clicking the About Plugin button, and then clicking the
Plugin Help button on the About Plugin dialog.

®. About Plugin @

Flugin Mame: Zip
File: IRZiphIBZip.Imd
Wersion: 1.0.0.1

Flugin [nformation;

Zip Actions Plugin

Created by Indign Roze Corporation
Coperight 2 2004 |ndigo Foze Corporation
http: & e indigoroge. com

MHatice: Pluging are independently developed, publizhed and distributed from
Truellpdate. Pleaze contact the Flugin'z author directly with any technical support,
diztribution or licensing questions.

Indigo Roze Corporation will not answer any technical zupport questions regarding
third-party Fluginz.

k. l [) PluginHelp] ’@ kare Pluging

Chapter 4

Tip: The More Plugins button on the About Plugin dialog is an easy way to see what
plugins are currently available on the Indigo Rose website. Clicking this button will
take you directly to the TrueUpdate plugins area of the Indigo Rose website.

Where to Go from Here

Now that you’ ve been introduced to the basics of scripting, you' Il probably want to
learn more about this important feature of TrueUpdate. Fortunately, there are several
resources available to you.

The Scripting Guide

Chapter 11 of this user’ s guide is a crash course on the scripting language. It covers
the basic syntax of the scripting language, and more advanced topics such as looping
and functions.

The Project Wizard

The scripts that are generated by the project wizard are excellent real-world examples
for you to follow. They were designed to serve as best-practice examples, and include
full comments making them easy to follow despite their sophistication. Try choosing
different settings in the project wizard, and see how it changes the script as a resullt.

Project Templates

When you reach the “ Update Method” step of the project wizard, you are given the
option to use a single installer/patch file, or a custom method. If you choose the
custom option and click Next, you will be presented with a list of project templates to
choose from. These project templates also contain excellent real-world examples of
scripting. Like the other project wizard scripts, they are also fully commented.

Sample Projects

TrueUpdate comes with a number of sample projects that demonstrate very specific
update situations. In addition to being good starting points for your own projects,
these sample projects contain customized scripts and screens that you will not find in
the generic scripts that the project wizard generates.

The sample projects are located in a“Samples” subfolder within the Program Files
folder where TrueUpdate was installed.

99

Introduction to Scripting

Chapter 5:

100

Creating the User Interface

Cregting the user interfaceis anintegral part of every update. The user interfaceis the
first thing your end users will see when they run your update. It also serves as a bridge
between the information that the user has and that the update wants. Having an easy to
use yet fully functional user interface is something that all users of TrueUpdate should
be concerned about.

This chapter will introduce you to the user interface and get you well on your way to
creating a sharp and consistent look and feel for all of your projects.

Chapter 5

In This Chapter
In this chapter, you'll learn about:

The user interface

Client vs. Server screens
Screens

Themes

Taskbar settings

Dialog and Status Dialog actions
Alternative update methods

Creating the User Interface

101

102

The User Interface

You can think of the user interface as any part of the update that the end user will see.
When a screen is displayed, the end user is seeing part of the user interface. When the
end user clicks the Next button, they are interacting with the user interface.

The basic eements of the user interface are:
* Screens
e Themes
e Taskbar visibility

* Any actions that generate a user-interface element (e.g. Dialog.Message,
StatusDIg.Show)

Screens

The most important aspects of your user interface are the screens that you choose to
display. Screens are where your end user will actually interact with the update. They
allow you to provide important information (such as changes to system requirements)
and allow your user to make decisions (such as locating the product to be updated).

Tip: It is possible to create an update project that doesn’t use screens for its interface.
For example, you can useindividual popup “dialogs,” or you can have your update
remain “silent” and not show any interface at all. However, the most common and
most attractive interfaces take advantage of TrueUpdate' s screens.

Chapter 5

*. Sample Product Update

Welcome

Ywelcome to the Sample Product update. Thiz program waill
cohnect to a Truellpdate server to find out if a new werzion of
Sample Product iz available.

Fleaze make zure that vou are connected to the Internet and
then click Mest to continue.

| Mewt » | ’ Cancel

A typical screen in TrueUpdate (the Welcome screen)

Screens are the individual windows that make up your update. When you navigate
through an update by clicking the Next and Back buttons, you are navigating from
screen to screen.

Tip: You canthink of the screensin your project as steps in awizard that walk your
user through the process of updating their software.

In general, each screen performs a single task, such as showing a welcome message or
letting the end user sdlect which product to update. If you want to perform a major
update task, chances are you will need a screen to do so.

Creating the User Interface

103

104

The Screen Panes

The two screen panes are where you will configure all of the screens that are used in
your project. By default, these two panes are tabbed together in the upper right hand
corner of the program window.

Thereis one screen panefor client-side screens, and one for server-side screens. Since
they are tabbed together by default, you can access either pane by clicking on the
appropriate tab.

Client Screens n E]
) (o gl ¢ &
[=) Skartup

W'elcome
[=) Conneck ko Server

Dovnload Server Scripk
Download Server Scripk Failed

[T Client Screens | [Server Scre...

From the screen panes, you can add and remove screens and screen lists, as well as
adjust the order of screensin your project. You can also import and export languages
for individual screens.

Client Screens

When you build your project, the screens on the Client Screens pane are packaged
with the TrueUpdate Client and are accessible to the end user without having to
download anything from the Internet. These screens cannot be updated without
updating the client itself. Whenever the TrueUpdate Client detects a newer version of
itsdf on the server, it will update itsdf automatically; however, this sef-update
process requires the client to restart.

In order to make the update process appear as seamless to the user as possible, it is
preferable to avoid unnecessary changes to the client screens after the client has been
distributed to your customers. For this reason, you should only include screens on the
Client Screens pane that will be used by the client script and that need to be shown
before the server script has been downloaded.

Chapter 5

Examples of typical client screens are:
+ Wedcome
» Download Server Script
» Download Server Script Failed

e Enter Password

Server Screens

The screens on the Server Screens pane are stored in a server configuration file. These
screens are accessible to the end user only after the client has downloaded the
configuration file—in other words, after the server script has been downloaded. This
generally happens as the result of a TrueUpdate.GetServerFile action, which typically
occurs every time the TrueUpdate Client is run.

Because the screens on the Server Screens pane are downloaded along with the server
script, you are free to change them after your client has been distributed. Changes to
the server script and server screens do not require the client to restart; any such
changes will appear perfectly seamless to the user. In fact, you could completely
replace all the server screens and the user would have no indication aside from the fact
that this time, different screens are shown.

Examples of Server Screens are;
* Update Available
* Update Successful
* Download File (HTTP)
* Already At Target

Screen Lists

All screens in your project are organized into screen lists. The purpose of screen lists
is twofold: they provide away to group screens together, and they allow you to define
separate sequences of screens.

A typical screen list will contain a sequence of screens that work together as a unit.
For example, you might want to group all of the screens that deal with downloading

105

Creating the User Interface

106

your patch files within one screen list. This allows you to treat those screens as a
single unit. Using a single Screen.Show action, you can show the list, and the screens
within that list will display sequentially.

Note: The Screen.Show action takes two parameters: the name of a screen list, and the
name of a screen within that list. If you omit the second parameter, the action will
begin showing thefirst screen in thelist, and only “return” once it reaches the last
screeninthelist.

In general, the order in which screens appear within alist on the screen pane will be
the order in which they appear during the update. The screen that is at the top of the
list will appear first and the screen that is at the bottom of the list will appear last.

To change the order of your screens, simply select a screen inthelist, then click the
Up or Down button to placeit in the desired location in the list.

Tip: You can use the Screen.Show action to show screensin the middle of alist by
specifying which screen to start at. In this case, the screens would be displayed
sequentially from that point forward. This can be useful if you want to “skip” some of
theinitial screensin alist in specific circumstances.

Adding Screens

Adding a screen to your project is easy. Simply select the screen list that you want to
add it to, and click the Add button at the top of the screen pane. Note that screens can
only be added to screen lists, and cannot exist on their own; a screen cannot be added
until thereis at least one screen list to add it to.

Note: To add a client-side screen, ensure that the Client Screens tab is sdected. To
add a server-side screen, ensure that the Server Screens tab is se ected.

Clicking the Add button brings up the screen gallery where you can select from a
variety of screen types. Once you' ve selected the type of screen you want, simply
click OK to add it to the screen list.

Tip: Most of the screens in the screen gallery contain default scripts for their events.
If the default behavior of a screen doesn’t suit your needs, remember that you can
customize it by modifying the default scripts.

Chapter 5

Removing Screens

To remove a screen from your project, simply select it on the screen pane and click
the Remove button, or press the delete key.

Tip: If you remove a screen from your project by accident, you can undo the deletion
by pressing Ctrl+Z.

Editing Screens
To edit ascreen’s properties, just select it in the list and click the Edit button.

Clicking the Edit button opens the Screen Properties dialog where you can edit and
customize all of the settings for that screen.

Tip: You can also edit a screen by double-clicking on its namein the list.

Showing Screens

At run time, only screens that are explicitly shown by your script are presented to the
user. In order to show a screen, you must use a Screen.Show action. This action takes
two parameters: the name of a screen list, and (optionally) the name of a specific
screen in that screen list.

For example, to show thefirst screenin a screen list, you would use the Screen.Show
action and specify the name of the screen list you wish to show:

Screen. Show " Li st 01");

The above action would show thefirst screen in the list named ListO1. Assuming each
screen in that list had a Screen.Next() action in its On Next event script, each screenin
that list would be shown in sequence as the user clicked the Next button until the end
of the“List01” screen list was reached.

Alternatively, you can specify a starting point within alist by indicating which screen
should be shown first:

Screen. Show("Li st 01", "Screen04");

The above action would show Screen04, and (once again assuming the screen handles
the On Next event normally) every screen succeeding it in ListO1.

107

Creating the User Interface

108

Note: You can only show the screens on the Server Screens tab after the server
configuration files have been downloaded using the TrueUpdate. GetServerFile action.
Attempting to show a server screen without first getting the server configuration files
will result in an error.

Screen Properties

The Screen Properties dialog is where you can edit the properties of a specific screen.
All Screen Properties dial ogs have the same four tabs (although the specific content
on these tabs may differ depending on the screen type): Settings, Attributes, Style and
Actions.

Settings

The Settings tab allows you to edit properties that are specific to the selected screen.
Each screen type has different settings that are specific to that type of screen.

For example, a Check Boxes screen will have settings that apply to check boxes onits
Settings tab.

For more information on the specific screen settings, please see the TrueUpdate help
file

Attributes

The Attributes tab contains settings that are common to all screens. The only
difference that you will find between the Attributes tabs of different screen typesis
that Attributes tabs for progress screens lack options for the Next, Back, and Help
buttons. Thisis because these buttons don’t exist on progress screens.

In general, the Attributes tab is where you can configure which banner styleto use, the
name of the screen, and the navigation button settings.

Style

The Style tab is where you can override the project theme on a per-screen basis. By
default the project theme is applied to all screens throughout your project; however,
you might feel that a particular screen needs something a bit different in order to stand
out. You can use the Style tab to override any of the theme settings on a specific
screen. Note that the changes will only be applied to that screen.

Actions
The Actions tab is where you can edit the actions associated with the screen’s events.

Chapter 5

For more information on actions and events, please see the help file and Chapter 4.

Screen Properties |:.@@

| 7] Settings | Altributes _j. 5ty|e| =3 Actions |

'_On Preload | On Start !On Firish { on Cancel

Ewent Yariables: | Mane

001 —— These actions dre performed when the screen iz shoum. :"
ooz -
003 —— Set up a table for this acreen's global variakles —
004 —— g0 we don't dccidentally modify any global variables that ar
005 zcreen globals = {}:

oo

007 —— Whether the Cancel button has besn clicked.

008 —— We'll set this teo true when the user clicks the Cancel butte
009 — to tell the GetServerFilesCallback fumction to stop the doww
010 szcreen globals.bCancelled = false:?

oll

012 —— Thether the server confiqurdtion files have been dowmlodded.
013 —— We'll set this to true once the download is successful W
IES | >
Guick Help: iTip: Preszs Ctri+Space to wiew a list of all avalable actions. | @
|# addacton | [Z)addCode | [E]Edt | [»| [2 o] (@) Advanced o)

[Q. l[Cancel H Help]

The Language Selector

The Settings and Attributes tabs both have a language sel ector in the bottom right
corner. The language sdlector is adrop-down list containing all of the languages that
arecurrently enabled in the project. It is used for creating multilingual updates.

Selecting a language in the list allows you to edit the text that will be used on the
screen when that language is detected.

109

Creating the User Interface

110

Session Variables

Session variables play alarge part in the way that screens work and how they display
their text. Anytime you see something in TrueUpdate that looks like
%ProductName, you are looking at a session variable.

Note: A session variableis essentially just a name (with no spaces) that begins and
ends with %.

Session variables are very similar to normal variables in that they serve as
“containers’ for values that may change. We say that values are “assigned to” or
“stored in” session variables. When you use a session variable, its name (e.g.
%ProductName%o) is replaced at run time by its value (e.g. “TrueUpdate’). Session
variables are basically placeholders for text that getsinserted later.

Session variables are often used in the default text for screens. They are automatically
expanded before the screen is displayed, so instead of seeing %ProductName% on the
screen, the end user will actually see the name of your product that you entered in the
project wizard, or on the Session Variables tab of the Project Settings dial og.

Session variables are also used to store return values when screens or controls need
them.

Tip: Session variables can be created and changed at run time using actions like
SessionVar.Expand, SessionVar.Get, SessionVar.Remove, and SessionVar.Set.

For more information please see Chapter 7, which discusses session variablesin more
detail.

Screen Navigation

Screen navigation can be thought of as the path that the user takes through the screens
in your update. The user navigates forward through various screens by clicking the
Next button, and backward through the screens by clicking the Back button.

Screen navigation is basically a linear path from the top screen in a screen list to the
bottom screen. Generally, the order of your screensin a screen list is exactly the order
in which the navigation will proceed. Although there are other ways to control the
path through the screens (e.g. using actions to create a “branching” path), in most
cases the default behavior is all that is needed.

Chapter 5

Note: The user cannot normally move between screen lists using the navigation
buttons. If you want them to be able to move back into a previous screen list, or
forward into the next screen list, you will need to use additional Screen.Show actions
in your script. For example, when Next is clicked on the last screen in a screen list,
TrueUpdate does not display the next screen list, but instead returns back to the

| ocation where Screen.Show was called from. In order to show the next screen list,
you would need to follow that first Screen.Show action with a second one.

How Screen Navigation Works

Inits simplest form, screen navigation is when the user moves forward or backward
through the update by clicking the Next and Back buttons. By default, this moves the
end user down or up through the screens in a screen list.

Thisis actually accomplished using actions. Each screen has Screen.Next and
Screen.Back actions on its On Next and On Back events which are performed when
the Next and Back buttons are clicked. If necessary, you can modify or override the
default behavior of any screen by editing or replacing the default actions with your
own. Most of the time, however, you will not even need to know that the actions are
there.

Navigation Buttons

Navigation buttons are the Back, Next, and Cancel buttons that are usually visible
along the bottom (or “footer”) of each screen. The Next button moves the user down a
screen list from the top to the bottom; the Back button moves up through the screen
list; and the Cancel button stops the user’ s navigation by canceling the entire update.

The settings for these buttons can be found on the Attributes tab of the screen
properties dialog for each screen. There you can change the text, enabled state and
visible state of these buttons.

Thetwo options for the visibility state are self-explanatory; they make the button
either visible or invisible. The two options for the enabled state make the button
enabled or disabled. If a button isin the enabled state, it looks and functions like a
normal button; it will depress when the user clicks on it, and the text is displayed in its
normal color (usually black). When a button isin the disabled state, however, it will
not respond to the user’s mouse, and is typically drawn in less prominent gray shades
(also known as being “ghosted” or “grayed out”).

Creating the User Interface

111

112

Each navigation button has an event that will be fired when the button is clicked.
These events can be found on the Actions tab of the screen properties dialog.

Note: A Help button is also available on the footer of each screen but is generally not
considered a navigation button.

Navigation Events

An event is something that can happen during the update. When an event is triggered
(or “fired”), any actions that are associated with that event are performed. Note that an
event must betriggered in order for its actions to be performed. If an event is not
triggered, the actions associated with it will not be performed.

Each event represents something that can happen while your updateis running.

For example, all screens have an On Preload event, which istriggered just before the
screen is displayed. To make something happen before a screen is displayed, you
simply add an action to its On Preload event.

All of the three navigation buttons have an event that will be fired when they are
clicked. The events are“On Back” for the Back button, “On Next” for the Next button
and “On Cancel” for the Cancdl button.

In the case of the three navigation buttons, navigation actions are executed when their
respective events arefired. This allows the end user to navigate through the screens
from the beginning to the end.

There are other events that are associated with screens but aren’t necessarily related to
screen navigation:

* OnPrdoad —just before the screen is displayed
* On Help —when the help button is selected

* On Ctrl Message — triggered when a control on the screen fires a control
message (for example, when the user clicks on a button, or when anitemis
selected in alist box)

Navigation Actions

There are seven navigation actions available to you in TrueUpdate: Screen.Back,
Screen.End, Screen.Jump, Screen.Next, Screen.Previous, Application.ExitScript, and
Application.Exit. The most common of the seven actions are Screen.Next and
Screen.Back.

Chapter 5

When the Next button is clicked, the user is attempting to navigate from the current
screen to the next screen in the update. The easiest way to implement this behavior is
to insert the Screen.Next action on the On Next event. This is done by default for all
screens.

The same holds true for the Back button; when the Back button is clicked, the user is
attempting to move backwards in the update to the previous screen. To implement this
behavior, a Screen.Back action needs to be executed when the On Back event is fired.

Note: The Screen.Back action moves backward through the screen history in the same
way that a Back button does in a web browser: it sends you “back” to the previously
viewed screen. To move up one screen in the screen list, use the Screen.Previous
action, which sends you to the previous screen in the lig.

In certain situations, simply moving down a screen list is not the appropriate behavior;
instead, jumping to a specific screen in the list is necessary. You can accomplish this
by using a Screen.Jump action. If the goal isto jump to the next list in the update, first
a Screen.End action can be used to jump past all of the screensin the current screen
list, and then a Screen.Show action can be used to show screens from the next list.

To interrupt screen navigation—which usually occurs when the Cancd button is
clicked—you can use an Application.ExitScript action. The Application.ExitScript
action immediately exits from the current script—essentially skipping any actions that
follow and going straight to the end of the script. In other words, it forces the
immediate interruption of the current screen event.

The Application.Exit action goes one step further: it causes your entire update to exit
as soon as the action is performed. In other words, it not only stops the current script,
it stops the entire TrueUpdate Client application.

Tip: You can find detailed information on these actions in the help file.

Screen Controls

A control isan “object” on a screen that serves a specific purpose, such asreceiving
mouse clicks, displaying text, or providing an option in the form of a checkbox, radio
button, efc. Most screens contain several controls. You can think of the controls as the
different screen “parts’ that allow the screen to do what it does. In other words,
controls are the parts of a screen that your users directly interact with.

113

Creating the User Interface

Note: Most controls are designed to display information to the user or receive the
user’sinput.

*. Your Product Update

Enter Data
Fill i the iternz below and click Mext to cortinue. ‘

Question One:

Question Two:

aja

< Back] | Mest » | l LCancel

An Edit Fields screen showing three types of controls: labels, edit fields, and buttons

TrueUpdate provides a number of actions that allow you to get and set the properties
of the controls on a screen. Y ou can use these actions to change the information that is
displayed on a control, or to retrieve the information that the user provided.

For example, if you need to determine whether a checkbox is selected, you can use a
DlgCheckBox.GetProperties action to investigate the control’s “ checked” property.

Similarly, if you wanted to change the contents of a list box according to the user’s
input on a previous screen, you could modify thelist box’s items using actions like
DlgListBox.Addltem and DIgListBox.Deleteltem.

Tip: The control-related actions in TrueUpdate begin with “Dlg,” which is short for
“Dialog.” In programming terms, TrueUpdate's screens are implemented as dialog
windows. The“DIg” prefix was chosen for its familiarity to Windows programmers.

Y ou can also use actions to programmatically show and hide controls, or enable and
disable them. For example, you could hide a button on a screen if the user’ s input on
the previous screen made that button unnecessary. Or you could make one checkbox

114

Chapter 5

only become enabled after the user sdects another checkbox, essentially making the
second checkbox a “sub-option” of thefirst.

Note: For more information on screen controls and the related actions, please consult
the help file.

Screen Layout

In TrueUpdate choosing a layout for your screens and their controlsisincredibly easy.
Y ou can switch between all three banner styles (top, side, and none) on any screen
that you like, and the controls on your screens will dynamically position themselves
ensuring that all of your information is visible.

Note: A control can be thought of as any visible element on a screen, from edit fields,
to radio buttons, to static text controls. However, when the term “control” is used, it
does not generally refer to the navigation buttons or banner text.

Header, Body, Footer

Screensin TrueUpdate are divided into three basic parts: the header, the body and the
footer.

The header runs across the top of each screen and can be thought of as the area that
the top banner fills.

*. Sample Product Update E|

Welcome
Click Mext to check for an update. I = Header

Welcome

“wielcome to the Sample Product updater. This program will connect ta the Internet to find out if a
new version of 5 ample Product is available.

Please make suwre that you are connected to the Internet and then click Mext to continue.

—— Body

Mest> | [Cancel —— Footer

115

Creating the User Interface

116

Thefooter is similar to the header area except that it runs along the bottom of each
screen. Thisis the area of the screen where the navigation buttons are placed.

*.. Sample Product Update

Welcome

Welcome to the Sample Product updater. This prograrm will
caonnect ta the Internet ta find out if a new version of Sample
Product is available.

Flease make sure that vou are connected to the Intermet and
then click Next to continue.

—— Body

LCancel

B

| Mest »

—— Footer

|

Now that you know what the header and the footer are, you can think of the body as
the rest of the screen. The body of a screen takes up the majority of each screen and

will contain most of the screen’s information.
*.. Sample Product Update

Welcome

Welcome to the Sample Product updater. This program will connect ta the Internet to find out if a
new version of Sample Product iz available.

Pleaze make sure that pou are connected to the [nternet and then click Mext ko continue.

X

—— Body

Mest » LCancel

B

—— Footer

Chapter 5

Banner Style

In TrueUpdate the term banner refers to an area of the screen that is special and
somewhat separate from the rest of the screen. You can use the banner area to display
some descriptive text, an image, or both.

There are three different types of banner styles available in TrueUpdate: none, top,
and side.

The none banner styleisthe easiest of all three styles to understand since it means that
there will be no banner displayed on the screen.

*.. Your Product Update

IndigoRose

SOFTWARE DESIGN CORP.

S E T U P The none banner style

FOR WINDC(
+ Next Generatio

bt
& e T (Vi

£ | >

[< Back l | Hext» | [LCancel]

Thetop banner style has along thin banner (or “header”) across the top of your
screen. Thisis the style that you will probably apply to the majority of the screensin
your project. Thetop banner style supports two lines of text referred to as the heading
text and the subheading text. This text is usually used to describe the current screen
and/or provide some information about what is required of the user.

Thetop banner style also supports an image that will be placed on theright hand side
of the banner. Theimage is drawn starting from the upper right corner and extending
towards the lower |€ft. If the top banner image istaller than the banner area, it will
extend down into the body of the screen. In fact, the top banner image can be as large
as the body and cover the whole screen. Any area of the top banner that is not covered
by the image will be painted with a color according to the project theme.

117

Creating the User Interface

*% Your Product Update

‘Web Site
Here iz zome infarmation fram our web site.

Al
SOFTWARE DESIGN CORP.
Products | Purchase | Forun The top banner style
| - i : I S @

[< Back l L Hext» J [LCancel]

The side banner style has an image that runs down the | eft side of the screen, forming
avertical banner alongside the body.

*% Your Product Update

The side banner style

[< Back l L Hext» J [LCancel]

The side banner image is drawn in the upper |eft corner of the screen, starting from the
upper left and extending towards the lower right. Like the top banner image, it can be
larger than the banner area and extend into the body.

118

Chapter 5

Tip: For more detailed information on how the screens in TrueUpdate are drawn, and
for an example of how to use the side and top banner images to create interesting
backdrops for your screens, see How Screens Are Drawn in the help file.

Dynamic Control Layout

One of the best features in TrueUpdate is the dynamic control layout ability of
screens. TrueUpdate will dynamically repasition the controls on your screen so that
the maximum amount of information stays visible.

Dynamic control layout means that controls will resize and layouts will adjust
automatically as you type. You no longer have to manually place your controls and
you won't find yourself locked into a pre-determined amount of space.

The dynamic repositioning of controls takes place within an area called the control
area. The control area of a screen occupies a sub-section of the body of a screen; its
sizeis controlled by the global theme.

= The control area for each banner style
Top Banner 15,15, 15, 13 is defined in the theme settings using
Side Banner 15, 15, 15, 15 offsets from the top, bottom, left and
Mo Bannet 15, 15, 15, 15 right sides of the body.

Banner Text & 10

Banner Text Y 10

The best part of the dynamic control layout feature is that it works without any effort
on your part. Simply fill your screens with all of the information and controls that you
want, and TrueUpdate will re-position all the controls so that everything is visible and
avisually appealing ook is achieved.

Thisis not to say that you do not have any control over how controls will be displayed
on your screen; in fact, it’s just the opposite. Many screens (Edit Fields, Checkboxes,
etc.) allow you to add as many as 32 controls to your screen, which TrueUpdate will
dynamically position. Y ou have the ability to choose how many columns you want the
controls displayed in, whether they are distributed horizontally or vertically and, in the
case of the Edit Fields screen, how many columns each control spans!

The best way to understand the dynamic control layout featureisto actualy useit
yourself. Try playing around with the settings of a Check Boxes or Select Folder
screen and observe how TrueUpdate positions your controls to achieve the best ook
possible.

Creating the User Interface

119

120

Themes

A themeis agroup of settings and images that control the way your update |ooks.

Y ou’ ve probably encountered themes before when using other applications or even
Windows XP. Themes do not change what is displayed; instead, they change how it is
displayed.

Themes in TrueUpdate determine the general appearance of your screens and the
controls they contain. Rather than managing the position of screen controls or the
banner style used, themes determine the color and font of screens and controls.
Themes are project-wide and affect all screens in the project unless intentionally
overridden on the style tab of the screen’s properties.

Themes provide an easy way to change the look and feel of your screens and controls
across your entire project.

*. Sample Product Update

Update Available
Click Mest to update Sample Product.

There iz a newer version of Sample Product available.

Fleaze click MNest to proceed with the update.

MNewt > | ’ Cancel

An Update Available screen with the "Default”" theme applied

Chapter 5

*. Sample Product Update

Update Available
Click Mext to update Sample Product.

There iz a newerversion of Sample Product availahle.

Flease click Mext to proceed with the update.

| Dext > |’ Cancel

The same screen with a custom theme applied

Choosing a Theme

Y ou can choose a theme for your project on the Theme tab of the Project Settings
dialog, which can be accessed by choosing Project > Theme.

The drop-down list on the Theme tab contains a list of all the themes that are available
in the project. Selecting a theme in this drop-down list will apply the theme to all of
the screensin your project. For your convenience, a preview of the currently seected
theme is displayed on the Theme tab as soon as you make a sdl ection.

As shown above, themes affect the appearance of screens and their controls. For
example, choosing a theme that colors static text controls purple will result in all static
text controls being purple, and choosing a theme that colors static text controls black
will result in all static text controls being colored black.

121

Creating the User Interface

122

Project Settings E@@

| €3 Truelpdate Servers | i Session ‘-;"arial:nles| Theme | DOptions | tdvanced |

Freview

*. Sample Product Lipdaie

Welcame

Chick bt fo Gl for nﬂﬁm

Welcome

‘et ame 10 e Sanple Produc updater. This program wal connec by the Intemet
o find oa if & new vesaion of Samale Product iz svaitanle,

Pleage make suie that you are tonnacied 10 T irdemet and then click Nest 1o
foEinug,

;-‘-_,_-—" _u..-dw
[neas [comca |
Preview banner style: &) Top (D S5ide () Mane
Project theme:
ISand Dunes v| [H Save As] [':? Edit I ’x Bemowve I
[ok | l Cancel] l Help]

Creating a Custom Theme

TrueUpdate allows you to create your own custom themes. This provides you with an
easy way to share the same custom look and feel between multiple projects.

Hereis abrief step-by-step guideto help you in the creation of a custom theme.

1) Start a new project and save a copy of a pre-existing theme.

Start a new project by choosing File > New Project from the menu, then open up the
theme settings by choosing Project > Theme.

Thefirst step in creating a custom theme is to select an existing theme to base your
new theme upon. If you cannot find a suitable theme, simply choose the default
theme.

Chapter 5

Once you have selected a theme to start from, use the Save As button to save a copy
of it under a new name. Choose a name that describes the theme you plan to make;
this themeis what you will be modifying in order to create your new theme.

2) Edit your new theme in the Theme Properties dialog and click OK to
save your changes.

Make sure that your new theme is selected and click the Edit button to bring up the
Theme Properties dialog. Here you will be able to edit all of the properties of your
theme. Once you have made all of your changes, simply click the OK button and the
changes to your theme will automatically be saved.

Now you have a working theme that will be available to you in all your TrueUpdate
projects.

Note: If you are not happy with the changes made while editing your theme, simply
click the Cancel button and your changes will not be saved.

Overriding Themes

As stated earlier, project themes affect every screen in your project. While in the vast
majority of situations thisis the desired effect, there may be a few instances where
thisis not exactly what you want. Fortunately, TrueUpdate allows you to override any
or all of the theme settings on any of your screens.

As mentioned in the Screen Properties section, each screen has a Style tab associated
with it. If you look at the Style tab you will notice that it looks identical to the Theme
Properties dialog except that it has a checkbox in thetop left corner labded “ Override
project theme.”

Choosing the override project theme option will enable the theme settings and allow
you to make changes to the theme settings strictly for the current screen. The changes
you make on the Style tab will not affect any of the other screens in your project.

Note: If you decide that you want to go back to the project theme on a screen where
you have overridden it, simply go to the Style tab and uncheck the Override project
theme checkbox. Thereis no need to re-creste the screen.

Creating the User Interface

123

124

Other Options

There are afew other optionsin TrueUpdate that relate to the user interface. These
options may not be as important as screens or themes, but they just might provide the
elements necessary to perfect your project’s look and fedl.

Taskbar Settings

The taskbar is the bar that runs across the bottom of al modern Windows operating
systems beginning with the START button on the left. When a program is running, its
icon and name will generally appear in a button in the taskbar.

’ 4 start en EoOE G o !"*.. Sample Product Lpdate

TrueUpdate allows you to choose whether or not to show an icon in the task bar and to
choose what that icon will be. Both of these settings can be found on the Options tab
of the Project Settings dialog: Project > Options.

To choose a custom icon, enable the “Use custom icon” option, click the browse
button, and locate the icon of your choice.

To hide the taskbar icon, simply select the appropriate option (i.e. “ System tray” or
“Hidden”) in the Taskbar Visibility section of the Options tab.

Actions

Some of the actions available to you in TrueUpdate are capable of showing user
interface elements. These actions can be divided into two main categories: Dialog
actions and Status Dialog actions.

Dialog actions are used to show pop up dialogs to the user. Examples include the
Dialog.Message action that |ets you display a message in a dialog, and the

Dialog. TimedM essage action that lets you show a dialog with a message for a specific
amount of time.

Chapter 5

Error g|

L.
‘!r) Disk is Full
A typical message dialog

Status dialogs are the other main user interface el ements that are available to you
through scripting. Status dialogs are mainly used to show progress during a lengthy
event like an HTTP.Download action or a File.Find action.

Searching for, Documents

Searching...

A status dialog

(RENSRNRNRWRAARNRNRNRRARRNR)

Status dial ogs are shown and configured using actions like StatusDIg.SetM essage,
StatusDIg.ShowProgressM eter, and StatusDIg.Show.

Note: It is generally recommended that progress be shown in a more integrated
manner by using a progress screen; however, there are situations where a status dial og
may be more appropriate.

Tip: For more information on the Dialog and StatusDIg actions, please consult the
help file.

125

Creating the User Interface

126

Alternative Interfaces

Silent Updates

Although the user interface is the most important aspect of most updates, there may be
occasions when a“silent” updateis preferred. A silent update requests no input from
the user, and performs its work invisibly.

For example, if your update will be run regularly on system startup and can function
completely using hard-coded values, you may prefer your update to act entirely in the
background, unseen by the user—whether to avoid annoying the user, or to prevent
the user from interrupting the update process.

There are two main steps in creating a silent update. The first, and least complicated,
is ensuring that the updaterunsin a ‘hidden' mode. This is accomplished by selecting
the Hidden option in the Taskbar Visibility section of the Options dialog (which can
be accessed by choosing Project > Options). This will prevent the TrueUpdate Client
from displaying an icon on the Windows taskbar while it is running.

Next, your update must be configured in such away that it requires no input from the
user. This means that everything must be anticipated and handled in your scripts. Any
paths must be hard-coded in or determined automatically (e.g. registry keys, INI files,
etc.) without any input from the user.

As a backup plan, you could configure your update to ask the user for any information
that it cannot determine automatically. This negates the purpose of a silent update, but
may be preferable to the update failing all together.

Dialog-based Updates

A dialog-based update uses popup dialogs for its user interface, essentially replacing
the full screens of awizard styleinterface with an interface made up of small, simple
dialogs or “message boxes.” This approach aims to offer a streamlined interface to the
user, presenting a minimum amount of information without any of the graphical
panache of TrueUpdate s fully themed screens.

The dialog interface style is most often used by devel opers who wish to incorporate
TrueUpdate directly into another application, and who want the update process to
appear tightly integrated into their product. The dial og-style updates you can create

Chapter 5

with TrueUpdate use standard Windows message boxes that will appear just like any
standard messages and dialogs that are displayed by your own application.

Tip: Another way to make the update process appear integrated with an application is
to create a custom theme. Using custom themes, it is possible to make an update with
awizard-style interface that closely matches the look of a particular application.

In a dialog-based update, you do not use screens or any of the screen actions. Instead,
you perform all required actions in the client script and server scripts. The client script
would check for a connection to the Internet and download the server script. Then,
your server script would perform all required update functions, without calling upon
any screens.

Any information that needs to be presented to the user or received from the user is
done using actions like Dialog.M essage and Dialog.Input. If you want to display the
progress of alengthy action (like File.Copy or HTTP.Download), you can use actions
such as StatusDIg.Show, StatusDIg.SetM eterPos and StatusDIg.Hide.

Creating the User Interface

127

Chapter 6:

TrueUpdate Servers

One of the best features of TrueUpdateis that it uses standard server technology. It
doesn’t require any proprietary hardware or software—all you need is alocation
where you can host the three server configuration files. These locations are called
TrueUpdate Servers.

128

Chapter 6

In This Chapter
In this chapter, you'll learn about:

What are TrueUpdate Servers?

Types of TrueUpdate Servers

Adding, removing and editing servers
Using multiple servers for redundancy

Why TrueUpdate provides scalability

TrueUpdate Servers

129

130

What Are TrueUpdate Servers?

In TrueUpdate, the term TrueUpdate Server refers to the location of your server
configuration files. In other words, a TrueUpdate Server is any location where the
TrueUpdate Client can download your server configuration files. This can bea
standard HTTP server, astandard FTP server, or even afolder on your local area
network.

The server configuration files allow the TrueUpdate Client to update its client-side
data and executablefiles if newer versions are available, alow it to determine whether
an update is required, and tel it the exact steps to takein order to perform the update.
They are generated whenever you build a project. Once you upload the server
configuration files to a location where the TrueUpdate Client can find them, that
location becomes a TrueUpdate Server.

Tip: You can set up multiple, redundant TrueUpdate Servers by hosting the
configuration files at more than one location.

Each TrueUpdate Client contains alist of all the locations whereit can download the
configuration files. The itemsin thislist are also called TrueUpdate Servers. In this
context, a TrueUpdate Server is the collection of settings that describe a location
where the server configuration files can be found and the method that should be used
to download them. These settings include a name that uniquely identifies the
TrueUpdate Server along with the location (e.g. a URL) and any other connection
details that are required to access thefiles, such as a username and password.

Tip: TrueUpdate can automatically upload your server configuration files to your
TrueUpdate Servers via FTP, SFTP, or direct file copy. You can configure these
automatic upload locations on the Upload tab of the Build Settings dial og, which you
can access by choosing Publish > Settings from the program menu.

Types of TrueUpdate Servers

TrueUpdate provides a variety of methods for downloading server configuration files.
All file access is handled using standard protocols—TrueUpdate doesn’t require any
special hardware or specific types of servers.

Each download method is represented as a different “type” of TrueUpdate Server.

Chapter 6

Thefour types of TrueUpdate Servers are listed below.

HTTP Server

An HTTP TrueUpdate Server is a location (folder) on any Web server. For this type of
server, the TrueUpdate Client will download the server configuration files from the
Web site using the HT TP protocol. TrueUpdate uses Internet Explorer’s connection
settings, so even if aclient is behind a proxy server, they should have no problems
provided they are ableto use Internet Explorer successfully.

HTTPS Server

An HTTPS TrueUpdate Server is alocation (folder) on a secure Web server. For this
type of server, the TrueUpdate Client will download the server configuration files
from the server using the HT TP protocol exchanged over an SSL (Secure Socket
Layer)-encrypted session. Thisis known as the “ secure hypertext transfer protocol.”
Aswith HTTP, TrueUpdate also uses Internet Explorer’ s connection settings for
HTTPS connections, so the same likelihood of achieving a successful connection
across a proxy server exists for this method as well.

Note: Thistype of location requires that you have access to a secure Web server.

FTP Server

An FTP TrueUpdate Server is alocation (folder) on an FTP server from which the
TrueUpdate Client will download the server configuration files using FTP (file
transfer protocol).

LAN/Local Server

As its name suggests, a LAN/Local server is alocation (folder) either on alocal drive,
amapped network drive, or anetwork path. In this case, the TrueUpdate Client copies
the server configuration files from the TrueUpdate Server |ocation on the network.

Note: Thistype of server is most useful when you are using TrueUpdate to update
applications within your organization. Keep in mind that those without access to your
local area network will be unable to download files from this type of TrueUpdate
Server.

131

TrueUpdate Servers

132

Adding, Removing and Editing Servers

All TrueUpdate Servers can be added and configured through the TrueUpdate Servers
tab of the Project Settings dialog. Y ou can access this dialog by choosing Project >
TrueUpdate Servers from the program menu.

Y ou can add a TrueUpdate Server by clicking the Add button and selecting the
appropriate server type from the menu. Once you have selected a server type, a
properties dialog will appear allowing you to specify how the server will be accessed.
Each server’ s properties depend upon what type of server was selected. With that in
mind, properties generally include a unique name or identifier that is used to refer to
the TrueUpdate Server, the folder path or address, and any other connection settings
that are necessary to accessiit.

Once a TrueUpdate Server’s settings have been configured through its properties
dialog, clicking OK adds it to the list on the TrueUpdate Servers tab. If the server’s
settings need to be adjusted later, you can highlight the desired TrueUpdate Server
and click the Edit button to open its properties dialog. Also, note that any TrueUpdate
Server can be easily removed. Simply highlight the desired TrueUpdate Server and
click the Remove button.

Note: TrueUpdate supports as many TrueUpdate Servers as you require.

TrueUpdate Server Redundancy

Although most updates can be served from a single location, many developers find it
useful to have one or more backup serversin case of problems with the primary
server. TrueUpdate makes this easy to accomplish by allowing you to set up multiple
TrueUpdate Server |ocations.

TrueUpdat€ s approach to handling redundancy is straightforward: simply add more
TrueUpdate Server |ocations to the list, and see that the server configuration files are
uploaded to those locations. If a server is unavailable for any reason, the TrueUpdate
Client will move on to the next one until it can establish a connection and download
the configuration files.

Infact, TrueUpdate is designed to support redundancy to any level. You can add as
many TrueUpdate Server locations as you need, and you can mix the server types as
well—for example, you could have a primary HTTPS server, followed by a pair of
HTTP servers and an FTP server as backups.

Chapter 6

Tip: If you're designing an update for amission critical application, use TrueUpdat€e' s
support for redundancy to ensure that, given appropriate access to the Internet or your
internal network, your TrueUpdate Client can always access a TrueUpdate Server.

By default, any project generated through the project wizard is designed to run
through the list of TrueUpdate Servers defined in the project until the server
configuration files have been downloaded successfully. In other words, if the first
server fails, it will automatically try the next location. The default project achieves
this functionality by using a TrueUpdate. GetUpdateServerList action to get alist of all
of the servers, and then using a TrueUpdate.GetServerFile action to download the
server configuration files from each TrueUpdate Server in turn.

While simply going through the list of TrueUpdate Serversin the order they are
defined on the Project Settings dialog is the default behavior, thisis by no means the
only option availableto you. Since the default server interaction is scripted, it is
possible for you to modify it even further. For example, you may want to use different
TrueUpdate Serversin specific cases. Y ou could change the primary server for clients
distributed in different geographic locations, for instance—letting the client
automatically choose the appropriate TrueUpdate Server location whether its run from
North America, Europe, or Asia. By customizing the script, you can have full control
over the entire process. This allows you to choose the best server for each particular
client.

TrueUpdate Server Scalability

From the ground up, TrueUpdate was created to be fully scalable and fault-tolerant. In
addition to being able to easily configure the client application to access redundant
servers, you control the underlying server technology. Because TrueUpdate uses
standard Internet protocols such asHTTP, HTTPS, FTP and LAN, you are freeto take
advantage of the full range of server technologies available to you. Unlike other
update services that use proprietary server hardware and software, TrueUpdate allows
you ultimate control over load-balancing and distributed processing of client/server
requests.

Another exciting feature of TrueUpdateis the client’s ability to update itself with the
newest client executable or data file. That way, if any changes are made to the
client—such as an updated list of TrueUpdate Servers—these changes can be
propagated through to the existing clients that have already been distributed. While we
generally recommend not modifying the client after it has been distributed, this feature

TrueUpdate Servers

133

134

can be alifesaver if you run into a situation where you require additional servers or
need to change existing ones.

Note: In order for the client to update itself, it must be able to access at least one of its
previously defined TrueUpdate Servers. In other words, you cannot ssimply update the
TrueUpdate Server list on your end, switch servers entirely, and expect the client to
update itself. Before the client makes use of any new servers, it must know what those
new servers are.

Chapter 6

135

TrueUpdate Servers

Chapter 7:

Session Variables

When designing an update, it is often desirable to make parts of it dynamic. For
example, the user might input a value on one screen that you’ d like to display on the
next. Or you might want to display a path on a screen (as the default value in an edit
field, perhaps), but the path includes a folder like “My Documents’ that is likely to
have a different location on each user’s system.

Although you could use regular script variables along with actions to manipulate the
screen text at run time, session variables allow you to accomplish the sameresult in a
more direct way: by simply including “ placeholders’ in your screen text that will
automatically be replaced by specific values before the screen is shown.

In this chapter you will learn everything thereis to know about session variablesin
TrueUpdate.

136

Chapter 7

In This Chapter
In this chapter, you'll learn about:

Built-in and custom session variables
Setting session variables

Adding session variables

Removing session variables

Using session variables on screens

Expanding session variables

Session Variables

137

138

What Are Session Variables?

Session variables are designed to handle dynamic data during the update process.
Essentially “ placeholders’ for changeabl e text, session variables give you an easy way
to insert dynamic values into the text that appears on your screens.

They also give you an easy way to compose paths to locations that cannot be known
in advance, such as the path to the user’s My Documents folder. For example, you can
use a session variable like %oMyDocumentsFolder% in a path to be replaced by the
appropriate full path at run time.

Likeregular variables, session variables allow you to * store” information in them,
acting like named “ containers’ that you can assign values to. The main difference
between session variables and the “regular” variables you usein scriptsis simply that
session variablesin a screen’s text are automatically expanded before the screen is
shown. This makes them especially useful for displaying dynamic text on screens.

Even though all session variables are functionally identical, there are two distinct
categories of session variables that can be used in TrueUpdate: built-in session
variables, and custom session variables.

Built-in Session Variables

For convenience, TrueUpdate contains a variety of built-in session variables for
values that are commonly used in projects. These variables are automatically assigned
appropriate values when the TrueUpdate Client application is started.

Most of the built-in session variables hold information that has been gathered from the
user’s system. For example, since the path to the Windows folder can differ between
systems, a session variable named %WindowsFolder% is provided which
automatically contains the correct path.

Note: Many of these values are also available in the form of global variables that you
can use directly in your scripts, eg. _WindowsFolder and _ProgramFilesFolder. There
are aso actions like Shell.GetFolder that you can use to get additional system paths.
The built-in session variables are provided primarily for use in paths and default
values that are displayed on screens.

Hereisthelist of built-in session variables, in alphabetical order:

Chapter 7

%ApplicationDataFolder%

The path to the Application Data folder on the user’s system. This folder serves as
a common repository for application-specific data. Typically, this path is something
like “C:\Documents and Settings\YourName\Application Data.” On Windows Vista,
it would return something like “ C:\Users\YourName\AppData\Roaming.”

%ApplicationDataFolderCommon%

The path to the all-user Application Data folder on the user’s system. This folder
servers as a common repository for application-specific data. Typically thisis
something like “ C:\Documents and Settings\All Users\Application Data.” On
Windows Vista, this returns “ C:\ProgramData.”

%CommonFilesFolder%

The user’s Common Files folder. Typically, this is something like “ C:\Program
Files\Common Files.”

%CompanyName%

Your company’s name. The value of this variableis set on the Session Variables
tab of the Project Settings dial og.

%Copyright%

The copyright message for your product. The value of this variableis set on the
Session Variables tab of the Project Settings dial og.

%DAOPath%
The path to the user’s DAO (Data Access Objects) directory.

%DesktopFolder%

The path to the user’s Desktop folder. On Windows NT/2000/XP/Vista, thisis
the path from the per-user profile.

%DesktopFolderCommon%

The path to the user’s Desktop folder. On Windows NT/2000/XP/Vista, thisis
the path from the All Users profile. On a non-Windows NT system, thisis the
same as %DesktopFol der%.

139

Session Variables

%FontsFolder%
The path to the user’s font directory (e.g. “ C:\Windows\Fonts”).

%MyDocumentsFolder%

Theuser's personal (My Documents) folder on their system. Usually thisis
something like"C:\Documents and Settings\YourName\My Documents' on
Windows 2000/XP and "C:\My Documents" on Windows 98/ME, and
"C:\Users\YourName\Documents" on Windows Vista.

%ProductName%

The name of the product that you are updating. The value of thisvariableis set
on the Session Variables tab of the Project Settings dialog.

%ProgramFilesFolder%
The user’s Program Files folder (e.g. “ C:\Program Files”).

%RegOwner%
The name of the registered user of the system.

%RegOrganization%
The organization of theregistered user of the system.

%SourceDrive%

The drivethat the TrueUpdate Client executable was run from (e.g. “C:” or
“ D:H).

%SourceFolder%

Thefull path to thefolder that the update executable was run from (e.g.
“C:\Downloads’ or “D:\").

%SourceFilename%

Thefull path, including the filename, for the current update executable. For
example, if the user was running “ update.exe’ from “C:\Downloads,”
%SourceFilename% would be expanded to “ C:\Downl oads\update.exe.”

140

Chapter 7

%StartFolder%

The path to the user’s Start menu folder. On Windows NT/2000/XP/Vista, thisis
the path from the per-user profile.

%StartFolderCommon%

The path to the user’s Start menu folder. On Windows NT/2000/XP/Vista, thisis
the path from the All Users profile. On a non-Windows NT system, thisis the
same as %StartFol der%.

%StartProgramsFolder%

The path to the Programs folder in the user’s Start menu. On Windows
NT/2000/XP/Vista, thisis the path from the per-user profile.

%StartProgramsFolderCommon%

The path to the Programs folder in the user’s Start menu. On Windows
NT/2000/XP/Vista, thisis the path from the All Users profile. On a non-
Windows NT system, this is the same as %StartProgramsFol der%.

%StartupFolder%

The path to the user’s Startup folder. On Windows NT/2000/XP/Vista, thisis the
path from the per-user profile.

%StartupFolderCommon%

The path to the user’s Startup folder. On Windows NT/2000/XP/Vista, thisis the
path from the All Users profile. On a non-Windows NT system, thisis the same
as Y%StartupFolder%.

%SystemFolder%
The path to the user’'s Windows System folder (e.g. “C:\Windows\System”).

%SystemDrive%
The drivethat the user’'s Windows System directory is located on (usually “C:").

%TempFolder%
The path to the user’s Temp folder.

141

Session Variables

142

%WindowsFolder%
The path to the user’s Windows folder (e.g. “C:\Windows").

Custom Session Variables

Y ou can define your own session variables to supplement the built-in session
variables that are automatically provided in TrueUpdate. The session variables that
you define are known as “ custom” session variables.

Custom session variables can be used everywhere that built-in session variables can
be used; in fact, they are functionally identical. The only differenceis that the built-in
session variables are automatically created for you in each project, whereas custom
session variables don’t exist until you assign a value to them.

Setting Session Variables

Each session variable consists of a name, e.g. “%ProductName%,” and a value that
you assign to it, eg. “Widget Master 2.0.” When a session variableis expanded at run
time, its name is replaced by the value that is currently assigned to it. (For example,
“Thank you for using %ProductName20” would become “ Thank you for using Widget
Master 2.0.”)

There are two ways you can assigh a value to a session variable: you can set itsinitial
value on the Session Variables tab, or you can use an action to st its value anywhere
in your project.

Using the Session Variables Tab

The Session Variables tab provides a convenient |ocation for setting theinitial value
of session variables at startup. It is primarily used for values that need to be displayed
on the client screens and that don’t need to be determined dynamically at run time
using actions. In other words, it is where you can specify values that you know in
advance and that you want to display on the earliest screens in your project.

Y ou can access the Session Variables tab by choosing Project > Session Variables
from the program menu.

Chapter 7

Project Settings

'ZT‘ Truellpdate Sewers_' & Session Variables @ Theme | Options | E_'_! Advanced |

=
“eProductames ‘idget Master 2.0
elZompanyMame s Widgets R Us
eCopyrightss Copyright © 2005 %CompanyMames
=
SolurrentVersion s 2.0
YeUpgradePrices $295
%UpgradeMessage¥e Upgrade to Widget Master Pro For only %UpgradePrice®.. Take advantage of

@ o) Koo [

I k. l[Cancel][Help]

All session variables defined on the Session Variables tab are stored in the client data
file. This means that any changes to the list of session variables will in turn change the
client data file. TrueUpdate handles changes to the client data file automatically—in
fact, acopy of the latest client datafileis stored at each TrueUpdate Server location so
the TrueUpdate Client applications can make sure they are always using the latest
version. In order for a TrueUpdate Client to update its data file, however, it needs to
restart itsdlf. If you foresee needing to change the values of these session variables
often, you should consider whether they could be defined in your Server Script using
actions instead. Since changes to the Server Script aren’'t stored in the client datafile,
they don't cause the TrueUpdate Client application to restart.

Tip: Generally, session variables that aren’t displayed on the client screens should be
created from your Server Script so they can be changed without affecting the client
datafile.

Session Variables

143

144

The Session Variables dialog contains two categories: Product Information and
Custom.

The Product Information category contains three built-in session variables for values
that are commonly displayed on screens, such as the product name and the name of
the company that produced it. To set the value of one of these variables, simply edit
the appropriate field in the right-hand column.

The Custom category is where you can add, remove and edit your own session
variables to supplement the ones in the Product Information category. To add a
custom session variable, click on the Add button at the bottom of the dial og.

Tip: Asthe session variablelist grows, it may help to hide portions of the list. Each
category can be expanded or collapsed by clicking the “+” icon on the |eft hand side
of the category text.

Using Actions

An action is also available to set the value of a session variable. This action is called
SessionVar.Set. It allows you to set the value of an existing session variable that was
defined on the Session Variables tab, or to create a brand new one.

The SessionVar.Set action can be used with any event (i.e. in any script) throughout
the project. The function prototypefor this actioniis:

SessionVar. Set (string Variabl eNanme, string Val ue)

For example, if you want to assign the value“My Value” to a session variable named
%MyVar%, the action would look like this:

SessionVar. Set ("%wVar%, "M Val ue");

After the above action is performed, all occurrences of the text %oMyVar% on future
screens will be replaced with thetext “My Value.”

Note: The SessionVar.Set action works with all session variables, including built-in
session variables like %M yDocumentsFolder%. It is possible to overwrite a built-in
session variable' s value using the SessionVar.Set action, so be very careful when
setting session variables with actions. Under normal circumstances, there should be no
reason to modify the values of built-in variables.

Chapter 7

Removing Session Variables

When you remove a session variable from your project, TrueUpdate will no longer
recognize the variabl€ s name as special placeholder text. For example, removing the
session variable %ProductName% causes the name to revert back to its actual
characters. In other words, the text “%ProductName%” ceases to be anything other
than theletters %, P, r, 0, d, u, c...and so on. After the session variableis “removed,”
thereis no longer a value associated with the name, and no expansion occurs.

There are two methods for removing session variables from your project: using the
Session Variables tab, or using actions.

Using the Session Variables Tab

Similar to adding session variables, removal of session variables can also be
accomplished from the Session Variables tab. However, only those in the Custom
category can be removed from your project. To remove a custom session variable,
click on the desired session variable name in the list to highlight it, and then click on
the Remove button. The session variable will be removed from thelist.

Using Actions

Session variables can also be removed at any point during your update with an action.
The action used to remove a session variable is called SessionVar.Remove and can be
found in the“ SessionVar” action category. The function prototype for this action can
be seen below:

Sessi onVar . Renove(string Vari abl eNane)

For example, if you want to remove a session variable called %M yVar%, the action
script would look like the following:

Sessi onVar . Remove(" %WVar %) ;

Note: Since both custom and built-in session variabl es behave the same, it is possible
to remove a built-in session variable using the SessionVar.Remove action. For this
reason, extra care should be taken when removing session variables with actions.

145

Session Variables

146

Using Session Variables on Screens

The main use of session variablesisfor the dynamic expansion of text strings on
screens. One example of a valuable use of session variablesis when you need to use a
value on multiple screens, such as a product version number. While you can certainly
enter the text directly for each screen, if that string changes in the future, it would
require finding every location whereit is used in order to changeits value. Using a
session variable in place of that text would only require the modification of the
session variable' s value in one location.

Another valuable use of session variablesis for gathering data on one screen that
needs to be displayed on another screen. In this case, the values are not known until
some point during the update, and therefore could not be directly entered at design
time.

Tip: Session variables can also be useful in multilingual updates for custom messages
that you wish to display depending on the language detected or chosen.

When Are Session Variables Expanded?

Session variables are automatically expanded before each screen is shown—
specifically, before each screen’s On Preload event. Any session variable that is used
on a screen will automatically display the value it contained before that screen was
shown.

This means that if you change the value of a session variable in a screen’s On Preload
event, in most cases the old value will still appear. There are afew exceptions, such as
some static text controls which will automatically be “refreshed” after the On Preload
event and will therefore display their new values. As ageneral rule, however, the On
Preload event is already “too late” for any changes to a session variable to be made if
you want the new value to automatically appear on the screen.

One way to get the current value from a session variable is to expand it “ manually”
using the SessionVar.Expand action. SessionVar.Expand allows you to retrieve the
current value of a session variable at any point in your project. In fact, you can use
SessionVar.Expand on a screen’s On Preload event to retrieve a session variable's
value, and then use actions to replace the screen text with new text that includes the
current value.

Chapter 7

Expanding Session Variables in Scripts

Session variables are often used on screens that gather information from the user. For
example, the Edit Fields screen stores the user’ s input in separate session variables—
one session variable for each edit field on the screen. Thisisfineif you simply want
to display the user’ sinput on another screen; in that case, all you need to do isinclude
the appropriate session variables in that other screen’stext. If you want to use the
inputted values in your scripts, however, you need a way to expand the session
variables in your script. This can easily be accomplished using the SessionVar.Expand
action.

Thefunction prototypefor this action is:

string SessionVar. Expand(string Text);

Basically, the SessionVar.Expand action takes a string of text and gives you back the
sametext, but with all of the session variables in the string expanded. In other words,
it returns a copy of thetext in which al of the session variables have been replaced by
their current values.

For example, if a session variable called %MyName% contains the string “ They call
me nobody,” you can access the string using the following action script:

strContents = SessionVar. Expand(" %WNanme%) ;

In the above line of script, the variable strContents would receive an expanded version
of “%MyName%.” The end result is that the value stored in %oMyNameY% (“ They call
me nobody”) would be assigned to strContents.

However, SessionVar.Expand isn't limited to retrieving the contents of asingle
session variable. It will happily expand a string containing several session variables—
or even one containing no session variables at al. (In the latter case, the string it
returns will be an exact copy of the original string.)

For example, using SessionVar.Expand on the string “When asked for his name, all he
said was: YoM yName2o” would return the entire string with the expanded contents of
the session variable %MyNameY%:

When asked for his name, all he said was: They call me Nobody

In addition, when the SessionVar.Expand action expands a string, it performs a
recursive expansion. Session variables within session variables are expanded as well.
This means that if the valuein a session variableis a string that has a session variable

Session Variables

148

init, the“internal” session variable will also be expanded. Y ou can think of the
expansion as being a*“loop” that continues until there are no more session variables
left to expand.

For example, consider the following two session variables:

%verb% - whose valueis “flying”
%message%o - whose value is “Look at me, I'm %verb%!”

After the following action script is executed:

strContents = SessionVar. Expand(" %ressage®%) ;
...the contents of the variable strContents would be:

Look at me, I'mflying!

As you can see, %message% was replaced by “Look at me, I'm %verb%!” and then
%verb% was replaced by “flying.”

Expanding Without Recursion

TrueUpdate also contains an action that will prevent the recursive expansion of
session variables. This action is called SessionVar.Get and can also be found in the
“SessionVar” actions category. The function prototypeis:

string SessionVar. CGet(string Text);

Using the previous example, let’s say we only wanted to expand the contents of
%messagedo, without expanding %verb%. In that case, the following action script
could be used:

strContents = SessionVar. Get (" %ressage®) ;

...and the contents of the variable strContents would be:

Look at me, I’'m %overb%!

As you can see, the SessionVar.Get action would expand the %message%o session
variable, but wouldn't go any further; the %verb% variable would remain
unexpanded.

Chapter 7

Expanding after On Preload

Session variables are automatically expanded before each screen is shown. This
automatic expansion happens before any of the screen’ s events are triggered—even
before the earliest screen event, On Preload. This means that if you use the
SessionVar.Set action to change the value of a session variable from On Preload, the
new value will not appear on the screen, because at that point the session variables
have already been expanded. (There are exceptions to this rule, such as the static text
controls on some screens, but it is safer to assumethat it istruein al cases.)

In order to change the text on a screen from within that screen’s events, you must use
adifferent method. Luckily, there are two ways in which you can expand session
variables on the current screen.

Thefirst and most straightforward method is to formulate a new text string with the
session variable in it, expand that string using SessionV ar.Expand, and then assign the
expanded string to the desired screen control.

For example, the following script would expand a string that contains two session
variables and then replace the text on a scrolling text screen with the new text:

NewText = SessionVar.Expand("First: 9%irstName%r\nLast: %.astNane%);
Dl gScrol i ngText. Set Properti es(CTRL_SCROLLTEXT_BODY, {Text=NewText});

Although this method works well, it requires you to write and edit the text within your
script, instead of composing the text directly on the Settings tab for that screen. This
isn't too difficult if your project only supports one language. However, if you're
creating a multilingual project, you'll need to use control structures to assign different
text to the screen that is appropriate for the user’ s system language. This would make
your scripts much longer and more difficult to maintain.

An aternative method is to use an action to retrieve the original text for the screen,
which still contains the session variables in their unexpanded form. This allows your
script to essentially “re-expand” the text that you entered on the Settings tab.

Hereis aversion of the previous script that uses the Screen.GetL ocalizedString action
to retrieve the original unexpanded text for the scrolling text control:

Original Text = Screen. GetLocal i zedSt ri ng(1 DS_CTRL_SCROLLTEXT_BODY) ;

NewText = SessionVar.Expand(Oigi nal Text);
Dl gScrol i ngText. Set Properti es(CTRL_SCROLLTEXT_BODY, {Text=NewText});

149

Session Variables

The key to this second approach is the Screen.GetL ocalizedString action, which
retrieves the text for a specific screen control as it was entered on the Settings tab,
automatically choosing the appropriate text for the language on the user's system.

When your project supports multiple languages, it is much easier to edit the screen
text directly on the Settings tab, where you can use the language selector to switch
between all of the languages that your project supports.

Tip: If you would like to see an advanced example of session variables in use,
examine some of TrueUpdate's built-in screens. For example, the Select Drive screen
uses actions to set, update, and display the session variable %SpaceAvailabl €.

150

Chapter 7

151

Session Variables

Chapter 8:

Languages

The Internet has opened many new markets to software devel opers whose past
products would usually have supported only their own local language. In the
international marketplace, it isimportant to not only offer software in a variety of
languages, but also to keep this software current.

Asyou'll seein this chapter, you can use TrueUpdate to create an update that will
automatically display messages and prompts in your user’s native language. With
integrated language sd ection built into all screen dialogs, TrueUpdate also makes it
very easy to modify your existing tranglations at any time.

152

Chapter 8

In This Chapter
In this chapter, you'll learn aboult:

* Internationalizing your project

* How language detection works

* Thelanguage manager

* Languagefiles

» Sdting the default language

* Adding and removing languages

* Thelanguage seector

» Localizing screens and actions

» Customizing error messages and prompts

» Advanced techniques, such as using actions to determine the current language
and “changing’ the current language for testing purposes

153

Languages

154

Internationalizing Your Project

TrueUpdate has the ability to automatically detect the user’s system’ s language and to
display messages and screens in that language. The developer has full control over
which languages are supported in their project and over the content presented to the
user.

Language text is mainly used for messages generated throughout the update and on
screens, both of which can be easily translated for multilingual updates.

TrueUpdate allows you to localize your application in two areas:
Common error messages, status messages and prompts
Application-specific screens

Thefollowing sections of this chapter will look more closely at how to achieve this
localization.

Run-time Language Detection

The language that the TrueUpdate Client detects is based on the user’ s regional and
language settings. These settings allow Windows users to configure which languageis
displayed, which input locale is used and which keyboard layout is supported in the
Windows operating system environment. These settings are usually configured when
Windows is installed and can usually be changed from the Windows Control Panel.
For example, in Windows XP, a user can select Start > Settings > Control Panel and
start the Regional and Language Settings control panel application.

Each language in Windows has a constant language identifier. A language identifier is
a standard international numeric abbreviation for the language that is used in a country
or geographical region. Each language identifier is made up of a primary and
secondary language ID. (Thereis a completelist of primary and secondary language
IDs in the TrueUpdate help file.) TrueUpdate maps all known languages and sub-
languages according to the language identifiers used by Windows.

Chapter 8

Tip: TrueUpdate maps language identifiers to language names in a file called
language_map.xml located in TrueUpdate s Language folder (usually “ C:\Program
Files\TrueUpdate 3.0\Languages”). Y ou can look at this file to see which primary and
secondary language | Ds are mapped to which languages. It is NOT recommended that
you modify this file unless you have a very specific reason to do so.

The Language Manager

The languages that are supported by your client are all configured from the Language
Manager. Y ou can access the language manager by sdecting Project > Languages
from the menu.

& Settings . |

Languages supported by update:

Language Default Language File
Englizh TRUE C:AProgram FilessT el pdate 3,05 anguageshE nglish. xmil
French C:\Program Files T el pdate 3 .05\ anguageszhFrench. smil

4 @ S=tD: "@ tare Languages]

k. H Cancel][Help]

155

Languages

156

Although you can localize messages in several areas of the design environment, the
Language Manager is the only place where you can control the project’s default
language as well as which languages are supported by your update. For example, if
you are editing one of your screens and decide that you would like to add a German
tranglation, you will have to use the Language Manager to do so. Once you add
German support here, it will be available in all other areas of your project.

When you add a language to your project, you areindicating that you want the client
to recognize that particular language identifier on a system and to use specific
messages for that language when identified. Conversely, if a system’s language is not
represented in the languages list, it does not mean that the update will not run on that
system; rather, it means that the update will use the default language.

Default Language

Every project must have a default language. The default language is the one that will
be used when the client encounters a system language that is not represented in the
languages list.

For example, let’s suppose that you have English, French and German support in your
update with English as the default language. If your user runs the update on a Greek
system, the user will see the English messages since you did not specifically include
support for the Greek language.

Note that the default language must be one that has a corresponding language file (see
the next section).

Language Files

A languagefileisan XML filethat contains al of the“internal” error messages, status
messages and prompts that are used by the TrueUpdate Client. Language files do not
contain project-specific messages, such as the text that you enter on screens.

Thelanguagefiles arelocated in TrueUpdate' s Languages folder (usually
“C:\Program Files\TrueUpdate 3.0\Languages”). They are named according to the
English name for the language they represent. Each file contains a language map that
identifies which language thefile is responsible for and all of the built-in messages
that will be used for that language.

Not all languages have a pre-configured languagefile. If you add a language to your

Chapter 8

project that does not have a languagefile, that language will use the same messages as
the default language.

Getting Additional Language Files

If you need a languagefilethat is not shipped with TrueUpdate, please visit the Indigo
Rose website (www.indigorose.com) and user forums (www.indigorose.com/forums/)
where new language files are made available from time to time.

Making Your Own Language File

If after consulting the Indigo Rose web site you still can't find the language file you
need, you can always make one yourself. To make a new languagefile, simply make a
copy of the existing languagefile that you want to translate from, rename it to the new
language name, change the language map in the file accordingly, and then translate

the messages.

To clarify this process, hereis an example of how to create a French languagefile:

1. Open Windows Explorer to TrueUpdate s Languages folder (usually
“C:\Program Files\TrueUpdate 3.0\Languages”).

Make a copy of English.xml and name it French.xml.
Open French.xml in atext editor such as Notepad.

Open language_map.xml from the Languages folder in atext editor as well.

o > w DN

Locate the section that maps French in the language_map.xml file. It should
look likethis:

<Language>
<Nane>Fr ench</ Nanme>
<Primary>12</Pri mary>
<Secondary>
<I D>1</ | D>
<I D>2</ 1 D>
<I b>3</ 1 D>
<| D>4</ | D>
<| D>5</ | D>
<| D>6</ 1 D>
</ Secondar y>
</ Language>

Languages

157

http://www.indigorose.com
http://www.indigorose.com/forums/

6. Copy the above section from language_map.xml and paste it in place of the
<Language></Language> section of the French.xml file. Thiswill allow
TrueUpdate to recognize this file as a language file for the French language.

7. Trandlate all messages in the <M essages></M essages> section to French. Do
not change any actual XML tags. For example:

<MSG_SUCCESS>Success</ M5G_SUCCESS>

becomes:

<MSG_SUCCESS>Succes</ M5G_SUCCESS>
8. Savethefileand re-open TrueUpdate. The new language will now be available.

9. Fed freetovist the Indigo Rose user forums (www.indigorose.com/forums/)
and share thefile with others so they can use your trandlations in their projects.

Adding Languages
To add a new language to your project, click the Add button in the Language
Manager. Thiswill open the Add New Language dialog.

Simply select the language that you want to add and click OK. Y ou will then see the
language appear in the languages list.

What Happens When You Add a New Language
When you add a new language to your project, the following happens automatically:

» TrueUpdate searches the Languages folder for an appropriate language file for
the language. If oneis not found, the new languageis set to use the default
language’ s languagefile.

* Thenewly added language is added to all screens. That is, all screens have
messages added to them for the new language. If a trandlated languagefile for
that particular screen already exists, it will be used. Otherwise, the messages
from the default language will be replicated for the new language.

» Thelanguageis added to the list of languages that you can select fromin the
language sel ectors throughout the design environment.

Of course, you will still need to go into the screen dialogs to verify and/or trandate the
text for the new language.

158

Chapter 8

http://www.indigorose.com/forums/

Removing Languages

To remove alanguage from the project, select it in the Language Manager’s list and
click the Remove button.

Note that the default language cannot be removed. In order to remove a language that
is currently being used as the default language for a project, you will need to make
another language the default language first.

When you remove a language, all of the translations for that language are removed
from the screens in the project. Therefore, use caution when removing languages.

The Language Selector

Once alanguage is added to your project, it is available for translation. When you’'re
editing the text on a screen, you can select the language that you want to edit by using
the language selector. The language selector is ssimply a drop-down list that lets you
choose the current language (for editing purposes) of the screen.

For example, if your project supports English, French and German, the language
selector on every screen’s properties dialog will let you choose whether to edit the
English, French, or German text.

Language: | English b

Lok]

Selecting a language in the language selector replaces the editable text on the dialog
with the text for that language. Any changes that you make to the screen text will be
restricted to that language.

Note: If you select a newly added language for which there is no language file, the
editable text will initially be the same as the text for the default language.

Only the languages that have been added to the project will appear in the language
selector. If you want to work on a language that is not in the drop-down list, you will
first haveto add it to the project using the Language Manager.

Languages

159

160

Localizing Screens

To localize a screen, open the specific screen’s properties. Next, sdect the language
that you want to enter text for in the language sel ector. Then, simply type the text that
you want for the various fields in that language.

Note: The Screen ID field on the Attributes tab cannot be translated. The Screen ID is
aunique identifier for the screen and is never displayed to the user.

Hereis an example of a Welcome screen with English text:

Screen Properties

[Settings | Attributes | Shle | =8 Actions|

Screen Text
Tent:

Welcome to the ZProductMame® update. This program will connect to a Truelpdate server to find
out if & new vergion of EProducthlame’ iz available.

Pleaze make zure that you are connected to the Internet and then click Mest to continue,

Show heading:

|'W'e|come

Language: | Englizh |

| Ok |[Cancel H Help

Chapter 8

And hereis the same screen with French text:

Screen Properties

[Settings | Attributes | [Stle | =8 Actions |

Screen Text
Tent:

Biervenue a la mize & jour pour Z%ProductM ame®. Cette programme va connecter a un serveur
Trueldpdate pour decouwrir 2 une nouvells version de ZProductM ame’ est dizponible.

S'il wouz plait, azsurez-vous que vous &tes connecté a linternet et cliguetez sur Suivante pour
continuer.

Show heading:

|Bienvenue

| Ok |[Cancel H Help]

Notice that in the second screenshot, “French” has been sdected in the language
selector near the bottom of the dialog. The text that you enter always corresponds to
the language that is selected in the language sel ector.

Tip: If the language that you want to translate to doesn’t appear in the language
selector, you need to add support for that language to your project. Thisis done by
adding the language in the language manager. For more information, see The
Language Manager beginning on page 155 and Adding Languages on page 158.

Languages

161

162

Importing and Exporting Screen Translations

There may be times when you want to have your screens translated by a third party
trangdlator. If the translator owns a copy of TrueUpdate, you can simply send them
your project file, have them trandate the screens using the method explained above,
and then have them send the project file back to you.

However, it may be that the translator does not own TrueUpdate or that you need to
work with the project in other ways while the tranglation is taking place. TrueUpdate
has a solution for this situation. Y ou can:

1. Select the screen that you want to have translated in either the client or server
screens list.

Click the Advanced button (this will open a popup menu).

Select Export Language and then the language that you want to export to.
Choose a location to save thefileto.

Send the exported file to your tranglator.

When you receive the file back, select the screen in the Screens list.

N o g & w DN

Click the Advanced button and then choose Import Language from the popup
menu.

©

Locate the trandated file and select Open.

9. You will now have the new translated strings in your screen.

Customizing Error Messages and Prompts

If you want to change the default error messages, prompts or status messages, you can
edit the appropriate XML filein the Languages folder using a text editor such as
Notepad. However, thisis not generally recommended; the messages that you change
will be propagated to all projects that are built after the changes are made.

Note also that if you choose to change the default messages, your modified language
file may be overwritten by a future update to TrueUpdate. To avoid this, you may
want to rename any language files that you modify, for example renaming english.xml

Chapter 8

to my_english.xml. (In cases where thereis more than one language file for a given
language, TrueUpdate will use the last onethat it finds in the Languages folder.)

~Messages>
<HSG_SUCCESS>SuccesS<HHSG_SUCCESS>
<HSG_ERROR>ErrUr<£HSG_ERROR}
<HSG_NOTICE>NDtice{ﬁHSG_NOTICE}
<ME3G_WARNING:>Warning</MSG WARNING:
<ME3G_YES>Yes</MSG_TES:
<M3G_MO-MNo</M3G_NOx
<M3G_YES_TOALL»Yes to ALLl</M3G_YES_TOALL:>
<M3G_Torto</M3G_Tox
<M3G_FROM»from</M3G_FROM>
<HSG_BROHSE>BKUWSE...<KHSG_BROUSE>
<M3G_OK>OK</M3G_OK>
<HSG_CANCEL>Cancel<HHSG_CENCEL}
<HSG_PATH>Path<fHSG_PATH}
<HSG_SEARCH_HASK}Search<IHSG_SERRCH_HLSK}
<M5G SELRCH ALL»All Files</M3G SEARCH ALL:

<M3G SEARCH FILE->Searching file</M3G SEARCH FILE-

<M3G_SIZE_BYTESrbytes</M3G_SIZE_BYTES:
<M3G_SIZE_KILOBYTESrKE</MSG_SIZE_KILOBYTES:
<M3G_SIZE MEGABYTES>ME</MSG_SIZE MEGABTTES:
<M5G_SIZE GIGABYTES>GE</MSG_SIZE GIGABTTES:
<M3G_BITSPERPIXEL>EFP</M3G EITSPERFIXEL>
<M3G_CCNF IRM>Confirme</HSG_CONF IRM>

An excerpt from english.xml

<M3G CONFIRM ABORT>The update iz not finished! Do you reslly want to abort?<fHSG_CON
<M3G CONFIRM CONTINUE=Are you Sure you want to proceed with the update?<fHSG_CONFIRH
<M3G MNOT_ENOUGH FREE SPACE>There iz not enough free space to update 3Productlame: on

<ME3G COPYING»Copying</M3G COPYING:
<M3G_DELETING:>Deleting</M3G_DELETING:>
<M3G_SEARCHING:Searching</M3G_SEARCHING:

Advanced Techniques

There are a number of advanced techniques that you can use to manipulate the
language and the translated language strings in your update at run time. Most of these
methods are accomplished using actions. This section covers a few of these advanced

techniques.

Determining the Current Language

There are two actions that can be used to retrieve information about the user’s
language ID: System.GetDefaultLanglD and Application.GetUpdatel anguage.
Although both actions return a table of information containing language IDs, it is

important to know the difference between the two.

Languages

163

164

System.GetDefaultLangID

System.GetDefaultLanglD is used to get the primary and secondary language ID for
the language that the user employs in Windows. This is absolute and cannot be
changed with any other actions. For example, if this action returns 10 as the primary
ID and 13 asthe secondary ID, you will know that the user’s Windows system is
configured for Spanish (Chile). (Thereis a completelist of primary and secondary
language IDs in the TrueUpdate help file))

Theinformation returned by this action can be used in cases where you want to make
specific choices about what to do based on the user’ s absolute system language. For
example, if you have a Web site that is translated into several different languages, you
might want to use a series of if...then statements to open the appropriate site:

-- Determ ne the absol ute system | anguage
| ocal tbl SysLang = System Get Def aul t Langl () ;

-- Set a default
[ocal strURL = "http://wwmv your conpany. conl english");

-- See if we should go to a different site
if (tblSysLang.Primary == 7) then

strURL = "http://ww. your conpany. coni ger nan") ;
el seif (tbl SysLang.Primary == 10) then

strURL = "http://ww. your conpany. coni spani sh");
el seif(tbl SysLang. Primary == 16) then

strURL = "http://ww. yourconpany.confitalian");
end

-- G to the Wb site
File.OpenURL(strURL);

Application.GetUpdateLanguage

Application.GetUpdatel anguage is used to retrieve the primary and secondary
language ID that is actually being used by the TrueUpdate Client. Note that
Application.GetUpdatel anguage may return a different result than
System.GetDefaultLanglD if the language being used by the client differs from the
language your user employs in Windows.

For example, let’s say that you have three languages in your project: English (whichis
the default language), French, and German. Suppose a user from Chile runs the update
on their system. Even though their system uses primary 1D 10 and secondary 1D 13
(which would be returned by System.GetDefaultLangl D and corresponds to a dialect

Chapter 8

http://www.yourcompany.com/english
http://www.yourcompany.com/german
http://www.yourcompany.com/spanish
http://www.yourcompany.com/italian

of Spanish), Application.GetUpdatel anguage would return aprimary 1D of 9 and a
secondary ID of 1, which is the updat€e' s default language (English). The TrueUpdate
Client would be using the default language because Spanish was not added to the
project at design time.

The value returned by Application.GetUpdatel anguage will always be avaluefor a
language that you added to your project using the Language Manager. It will never
contain values for languages that were not explicitly included in the project.

Changing the Current Language

Normally, if TrueUpdate detects a language on the user’s system that is not supported
in the Language Manager, the default language will be used. However, you may
prefer to have your update use a different language in such situations. Y ou can
accomplish this by using the Application.SetUpdatelanguage action.

The Application.SetUpdatel anguage action allows you to directly set the primary and
secondary language | Ds that will be used for the update. Calling this action changes
all subsequent error and status messages as well as the text shown on the screens. It
effectively “forces’ the TrueUpdate Client to act like it detected that language in the
first place.

For example, let’s say that your project supports two languages: English (which is the
default language) and Simplified Chinese. Since English is the default language, it
will be used whenever the client is run on anything other than Simplified Chinese.

However, you might prefer that the client use Simplified Chinese if the user runs the
client on a system configured to use Traditional Chinese.

In other words, you want to override the default language rule and force your client
to use Simplified Chinese whenever Traditional Chinese is detected. Y ou can do so
easily by placing the following short script at the beginning of your client script,
before any screens or dialogs are shown:

-- Determ ne the absol ute system | anguage

| ocal tbl SysLang = System Get Def aul t Langl () ;

if (tblSysLang.Primary == 4) and (tbl SysLang. Secondary == 1) then
-- Traditional Chinese on user's system
-- so use Sinplified instead
Appl i cati on. Set Updat eLanguage(4, 2);

end

165

Languages

166

Testing Different Languages

Y ou may also want to use the Application.SetUpdatel anguage action for testing
purposes. For example, if you are running an English version of Windows, you might
want to see how your update will look on an Italian system. Because your system is
running in English, the client will always choose English as the language to display
when you run it on your system. However, you could force the client to use Italian by
putting the following script at the beginning of your client script:

Appl i cation. Set Updat eLanguage(16, 1);

Y ou could even modify your client script to check for a custom command line option,
so you could force your TrueUpdate Client to use a different language at any time.
This could be useful for testing purposes, or to handle any language detection issues
that are discovered after the client has been distributed.

Tip: The global variable _CommandLineArgs can be used to determine what
arguments were passed to the TrueUpdate Client executable.

Localizing Actions

Y ou may have noticed that there is no language sel ector when editing scriptsin
TrueUpdate. Any text you enter directly into a script will remain the same, regardless
of what language is detected on the user’s system.

However, it is possible to use actions to detect the current language, and to use
multiple“if” statements to specify different text for different languages.

For example, let’s say that your project supports English and French and you want to
show a dialog box using actions that will be localized according to those languages.
Thefollowing script first determines the language that the client is using, and then
displays one of two possible greetings:

| ocal tbl SysLang = Application. Get Updat eLanguage() ;

if (tblSysLang.Primary == 9) then
Di al og. Message("Wl conme",
"Wl come to the update");
end

if (tblSysLang.Primary == 12) then
Di al og. Message(" Bi envenue",
"Bienvenue a la mse a jour");
end

Chapter 8

The Application.GetUpdatel anguage action returns a table containing the primary
and secondary language ID that is being used by the TrueUpdate Client. Note that this
may or may not be the exact language that was detected on the user’ s system; rather, it
is the appropriate language that the TrueUpdate Client has chosen from the list of
supported languages in the project. In other words, it is the user’ s system language if
that language is supported by the update; otherwise, it is the default language.

Tip: You can get the user’s actual system language by using the
System.GetDefaultLangl D action. However, it is usually preferable to use the
Application.GetUpdatel anguage action so the scripted language behavior will match
the “automatic” language behavior of the screens and error messages in the project.

Working with Existing Translated Messages

TrueUpdate allows you to get and set translated messages from the language files and
screens at run time. Thisis done through several actions.

TrueUpdate.GetLocalizedString

This action allows you to retrieve the localized text for a general message from the
language files at run time. The message will be returned in the current update
language. For example, the default language files provide messages to confirm if the
user wants to abort the update. Here is away to show a dialog that confirmsif the user
wants to abort the update in the current language:

| ocal strTitle = TrueUpdate. GetLocalizedString("MG CONFI RM');
| ocal strPronpt =
TrueUpdat e. Get Local i zedStri ng(" M5G_CONFI RM_ABORT") ;
| ocal nResult = Dial og. Message(strTitle
, StrPronpt
, MB_YESNO
, MB_I CONQUESTI ON
, MB_DEFBUTTONZ);

i f(nResult == | DYES)t hen
Application. Exit();
end

Note: The message IDs (like MSG_CONFIRM) for the localized message strings can
befoundin the XML languagefiles, e.g. English.xml in the TrueUpdate Languages
folder.

167

Languages

168

TrueUpdate.SetLocalizedString

This action allows you to change the value of alocalized string. This can be useful if
you want to override the default value of an error message from script, so you don’t
have to permanently change your languagefile.

For example, let’s say that you want to change the message that is displayed if the
user triesto cancel the update. By default it is* The update is not finished! Do you
really want to abort?’, but you want to change it to: “ Stopping now is not a good idea.
Areyou sure?’

TrueUpdat e. Set Local i zedStri ng(" M5G_CONFI RM_ABORT" ,
"Stopping nowis not a good idea. Are you sure?");

Screen.GetLocalizedString and Screen.SetLocalizedString

These actions are used to get and set the value of alocalized string from the current
screen’s message file. Every editable text item on a screen has a corresponding string
ID that is used internally to retrieve the appropriate text for the current language when
the screen is displayed.

These actions can be used to create new, temporary localized strings that are only
valid on the current screen. In other words, they permit you to define your own
localized strings (using custom string IDs) for use on the current screen.

For example, you could create custom localized error messages for usein ascreen’s
event scripts, without having to implement “if...then” branching to choose the
appropriate translated text wherever an error message can be displayed.

Note: The Screen.GetL ocalizedString and Screen.SetL ocalizedString actions work the
same way that TrueUpdate. GetL ocalizedString and TrueUpdate. Setl ocalizedString
do, except that they will only access strings used on the current screen.

Chapter 8

169

Languages

Chapter 9:

Security

Any time data is exchanged over the Internet security is an issue. TrueUpdate
normally relies on Internet communication to update software; therefore, it is also
subject to Internet security issues.

This chapter will explain the security measures that have been implemented in
TrueUpdate and outline ways in which you can further enhance your update
application’s security.

170
Chapter 9

In This Chapter
In this chapter, you'll learn about:

Client side security

How the server files are secured

Client-server communication

The secure protocols supported by TrueUpdate
Custom client-server communication

Important security considerations

Security

171

172

Security in TrueUpdate

The security of your product is only as strong as its weakest link. For that reason,
measures have been taken in the design and development of TrueUpdate to provide as
much security as is practical for the product.

Since TrueUpdate was designed to be flexible enough to accommodate your specific
updating needs, there are security measures that can only be implemented by you, the
developer. In this chapter, we will examine TrueUpdate' s built-in security features
and the additional measures you can take to further secure your software updates.

Client Side Security

TrueUpdate takes steps to ensure that the update files you distribute with your
software are secure. The details of your update application, such as scripts and project
settings, are hidden from casual inspection.

In general, you will distribute two files with your update application: the client
executable file and the client data file. Below is a short overview examining how these
files and the file updating process are protected.

Client Executable File

The client executable file does not contain any information specific to your update
application. It isaruntime executable that is used by all TrueUpdate users. For this
reason thereis no special protection applied to it.

Client Data File

The client datafile contains your client script, screens and most of the project settings
you configured at design time. Since some of this information can be sensitive, thefile
is compressed and encrypted to prevent unauthorized inspection or tampering.

At run time the scripts, screens and settings in the client datafile are read directly into
memory, without being written to the hard drive (even temporarily) in any unencrypted
form. The only files that are temporarily created by the TrueUpdate Client are not
sensitive in nature, and are deleted as soon as the update application shuts down.

Chapter 9

Client File Updating

Every time you publish your update, the MD5 hash of the current client data fileis
stored in the server data. This alows the client application to automatically determine
whether its data fileis up to date. If the MD5 hash of the client data file on the user’s
system does not match the one that the server file was published with, the client data
file will automatically be downloaded and updated. So, if your client data fileis
tampered with on the client system (e.g. if it isinfected with a virus, or damaged by
the user), it will be removed and updated the next time an update is requested.

How MD5 Security Works

An MDS5 hash isadigital signature that can be used to uniquely identify any piece of
data. It isthe result of a special calculation that can be applied to any kind of data.
This calculation processis strictly one-way. Although you can calculate the MD5 hash
for any value, you cannot later retrieve the value from the MD5 hash. It is currently
impossible to reverse the process.

So, if you calculate the MD5 hash of afile, that MD5 hash will always be the same for
that exact file. If even one bit of datain thefile is modified, the MD5 hash will be
different. This method is a great way to ensure data integrity.

Note that you can calculate and validate M D5 hashes on your own files using the
Crypto plugin available for TrueUpdate.

Server Files Security

Y our TrueUpdate server files are especially vulnerable because they are usually
publicly available on your TrueUpdate servers. For this reason, there are strong
security measures in place to protect them.

Types of Server Files

When you publish your update to a TrueUpdate Server, several files are uploaded. The
files all use your custom server file prefix for file names and have the file extensions
.tsl, .ts2 and .ts3.

Security

173

174

Server Data File

The server data file has the extension .ts1 on the TrueUpdate Server. This file contains
all of your server scripts and screens. Thisfileis the most critical security concern as
it contains information about how you update your software and may also contain
sensitive passwords and file locations.

The server datafileis encrypted using private-key Blowfish encryption. The private
key is the unique, product-specific key that you specify in TrueUpdate at design time
(see Project > Options from the menu.) This private key is stored in the client data
file, which is also encrypted using a different encryption scheme.

What is Blowfish Encryption?
Hereis a definition from the official Blowfish Web site (www.schneier.com):

“Blowfish is a symmetric block cipher that can be used as a drop-in replacement for
DES or IDEA. It takes a variable-length key, from 32 bits to 448 hits, making it ideal
for both domestic and exportable use. Blowfish was designed in 1993 by Bruce
Schneier as afadt, free alternative to existing encryption algorithms. Since then it has
been analyzed considerably, and it is slowly gaining acceptance as a strong encryption
algorithm. Blowfish is unpatented and license-free, and is available free for al uses.”

Only update clients that were built with the same encryption key that was used to
encrypt the server data at build time can read the server file. For thisreason, it isvery
important not to lose the encryption key used for an update project. It is aso important
not to change the encryption key after your update application has been distributed to
end users.

Tip: Thelonger your encryption key, the harder it is to break. It is recommended that
your encryption key be at least 20 characters long.

Updated Client Data File

The updated client data file has the extension .ts2 on the TrueUpdate Server. It
contains the latest version of your client datafile, and is placed on the TrueUpdate
Server in case the user does not have the most recent version of the client data on their
system at run time. If the TrueUpdate Client sees that the .ts2 file is newer than its
existing client datafile, it will download the .ts2 file and replace the client data file
with the newer version.

Sincetheclient datafileis already encrypted, the updated client data file doesn’t
require any additional security measures.

Chapter 9

http://www.schneier.com)

Updated Client Executable File

The updated client executable file has the extension .ts3 on the TrueUpdate Server. It
isa compressed version of the client executable. Like the updated client datafile, the
updated client executable is used to update the user’ s TrueUpdate Client application
when the user does not have the most recent version of the client on their system.

Since this file does not contain any of your product-specific information, no special
protection has been applied to it.

Client-Server Communication

As you probably know by now, the TrueUpdate Client application normally needs to
communicate with a TrueUpdate Server in order to update your software. The
question is, what kind of communication takes place?

Thereisno “default” communication between your TrueUpdate Client and your
TrueUpdate Servers. If you build a TrueUpdate project that has an empty client and
server script, no client-server communication takes place. All client-server
communication is specified through script, whether it is created manually or with the
project wizard.

The most common way that your projects will interact with your TrueUpdate Servers
is through the action TrueUpdate.GetServerFile. This action downloads the server file
you have specified from a TrueUpdate Server and then runs the server script. All of
this communication takes place through the protocol specified for the TrueUpdate
Server (HTTP, HTTPS, FTP, or LAN).

The TrueUpdate Client never sends information about the client or client system to the
TrueUpdate Server. It merely downloads the specified server file, decryptsit and then
runs the script. It may also do a self-update if necessary.

Of course, TrueUpdate provides awide variety of actions that you can execute to
perform all sorts of client-server communication over several protocols. The following
sections will look more closely at some of these available options.

175

Security

176

Secure Protocols

TrueUpdate provides you with several secure protocols that can be used in both the
design and run-time phases of devel opment.

SFTP

TrueUpdate allows you to use the SFTP (Secure File Transfer Protocol) to upload
server files at publish time. SFTPis atransfer method that uses SSH to transfer files
using AES, DES, and Blowfish encryption. Unlike standard FTP, it encrypts both
commands and data, preventing passwords and sensitive information from being
transmitted in the clear over the network. It is functionally similar to FTP, but because
it uses a different protocol, you cannot use a standard FTP client to talk to an SFTP
server, nor can you connect to an FTP server with a client that supports only SFTP.
TrueUpdate s implementation of SFTP uses SSH2.

HTTPS

The secure hypertext transfer protocol (HTTPS) is a communications protocol
designed to transfer encrypted information between computers over the World Wide
Web. HTTPSisHTTP using a Secure Socket Layer (SSL). A secure socket layer isan
encryption protocol invoked on a Web server that uses HTTPS.

The TrueUpdate Client can transfer files and data from a Web site using the actions
HTTP.DownloadSecure and HT TP.SubmitSecure. These actions will ensure that the
connection between your client and your server is secure. Note that your Web server
must be specially configured in order to support HTTPS.

Custom Client-Server Communication

There may be times when you want your update client to communicate with a Web
server inaway that is not built into TrueUpdate. Some examples are:

validating the user’ s serial number against a Web database before providing
updates

tracking which customers have updated the software and when they last
updated in a Web-based database

Chapter 9

allowing the user to renew a software subscription through your update client.
Theclient will gather payment data and then submit it to your Web server
through the HTTPS protocol for payment processing

submitting user feedback from the TrueUpdate client to a Web script that in
turn emails the information to you

Fortunatdy, TrueUpdate comes with built-in actions to facilitate this kind of
communication, namely HTTP.Submit and HT TP.SubmitSecure. These two actions
allow you to send data to a script on your Web server and then receive a response
from the server. These actions should work with any type of standard Web server,
such as Apache or Microsoft |1S, and with any type of scripting language that allows
CGI communication, such as ASP, PHP, Perl, etc.

By providing a method to interface with Web scripts, TrueUpdate gives you the
flexibility to add further security features to the client-server communication process
beyond the built-in actions it comes with. This ability to utilize any Web scripts you
develop greatly adds to the extensibility of TrueUpdate.

Important Considerations

When planning product security, it isimportant to keep the following in mind: even
the best security measures can be circumvented. Thisis clearly illustrated by
successful breaches of highly sophisticated security systems such as DVD encryption
and secure government communications.

In addition to securing your installer, update application, and perhaps your installed
application, you may want to consider controlling the distribution of your installation
files. After all, a software thief can’t steal something he or she can't find.

Onefinal point to keep in mind is that too much security can be a bad thing. While it
isimportant to secure your application to prevent against unauthorized use, it is
equally important to allow legitimate users a painless update process.

Security

177

Chapter 10:

Building and Distributing

Once you have designed your update system, you need to build and distribute it.
Fortunatdy, TrueUpdate makes this as seamless as the actual design process.

From automatically uploading to your chosen TrueUpdate Server |ocations, to a handy
list describing what you need to do after the build, TrueUpdate makes building your
project fast and easy.

178

Chapter 10

In This Chapter
In this chapter, you'll learn about:

The build process

The publish wizard

Build Settings

Uploading to your server

Integrating the client into your software
Distributing the client

Launching your client

Testing

Log files

Building and Distributing

179

180

The Build Process

Once you havefinished creating your TrueUpdate project, you must useit to generate
the actual TrueUpdate Client application and server configuration files. Thisis similar
to a programmer compiling source code into a working executable.

When building your update, TrueUpdate will go through the following steps in the
order listed below:

=

© © N o g & w D

=
o

11.

12.

Run any pre-build programs that have been specified.

Callect all of the fonts needed for the screens in your update.

Convert al of theimages used by the screens.

Collect all of therequired language files.

Callect all includes (external script files) that have been specified.
Callect all action plugins that have been specified.

Callect any external files that have been specified (e.g. a customicon).
Copy the run-time engine into the specified output directory.

Create the client datafile by compressing al of the collected files and saving all
necessary client information.

. Create the server configuration files (*.tsl, *.ts2, and *.ts3).

Upload the server configuration files and the server information file (*.tsx) to
any automatic upload locations you’ ve defined in the project.

Run any post-build programs that have been specified.

Note: When TrueUpdate uploads the files to your automatic upload locations, it only
uploads the files that it needs to (the ones that have changed since the last time your
project was built). For instance, the .ts2 file will only be uploaded if it differs from the
2 filethat is already on the server, and the .ts3 file will only be uploaded if itsfile

version is newer than the file version of the .ts3 file on the server.

Chapter 10

The Publish Wizard

With the goal of making the build process as seamless as possible, TrueUpdate
includes a publish wizard to assist you. The publish wizard can be accessed by
choosing Build from the Publish menu.

Thefirst step in the publish wizard allows you to specify three important items: the
output folder, the name of the TrueUpdate Client executable, and the server files
prefix.

The output folder is simply the location where your TrueUpdate Client and server
configuration files will be generated on your local system.

The TrueUpdate Client filename determines the name of the client executable that you
will distribute to your users.

The server files prefix is the name that will be used for the server configuration files,
i.e. the namethat will be used for the .tsl, .ts2, and .ts3 files.

Publish Wizard - Output

Output Settingz

‘Wielzome tothe Truellpdate Publish wizard! This wizard will
guide you through the steps of generating and publizhing the
Truellpdate Client and Server configuration files.

Dutput folder;
ihMy Docurnentsh T ruelpdate Output | ’,é,] Browse]

Truellpdate Chent filename:

I_TIELI pdateClient. exe |

Server files prefis:

|_I,u:|ur_|:|r|:u:|uu:t | D!

Comprezs client executable

Mest > l [Cancel] [Help

Building and Distributing

181

182

Note: Thefirst time you build your project, you will be able to edit the server files
prefix directly. However, on all subsequent builds the server files prefix field will be
disabled; to edit the server files prefix, you will need to click the Change button.
Clicking the Change button displays a warning before allowing you to change the
value, because changing the server files prefix will “break” an existing distribution.
The TrueUpdate Client needs to know what the server files prefix isin order to
download the server files. If you change the server files prefix, you will need to
redistribute the TrueUpdate Client application to all of your users.

The second step in the publish wizard prompts you to configure your upload locations.
Y ou can use this feature to automatically upload the server configuration files to your
TrueUpdate Server |ocations. Y ou can also useit to upload the files to other locations,
such as a backup file server or afolder on your network for testing.

Publish Wizard - Upload

Upload Locations
The publizh wizard can automatically upload the zerver
configuration files for wou, ‘Which locations would you like the
publizh wizard to upload to’
| Mame Location

115 Sepver ftp. rycompary. com

Canadian Server ftp. mycompany. ca

European Server ftp. mpcompany. co. uk,

% | =

@] Ao 2

| <Back || Buid | [Cancel | [Hep

Chapter 10

Note that you can add and edit upload locations in this step, and you can enable or
disable the individual upload locations by checking or unchecking the corresponding
checkbox.

Once you’ ve selected the locations that you want to upload the server files to, you can
click the Build button to start the build process.

Publish Wizard - Building Update

Building update...

(RNRNRANRNNRNNANRANRAARRRANRAS)

»» Image; C:5\Program Files\Truellpdate 3.05T hemeshTruellpdat
»» Image; C:\Program Files\Truelpdate 3.05T hemeshTruelpdat
Collecting extra zcreen files..

Proceszing language modules.

» Default language added: Englizh [C:%Program FileshTruellpdate

» Language added: Englizh [C:\Program FileshTruel) pdate 3.04L
Inzluding global script files..

» Scnpt file included: C:A\Program FileshTruelpdate 3.04 nchudes*
Inzluding constants for build. .

Collecting external files

Copying runtime engine

£3

|
|l

Lblizh report

< Back Build [Cancel] [Help]

Once the build process is complete, the publish wizard will display a summary of the
build process and any errors or warnings that occurred during the build.

Building and Distributing

183

184

Publish Wizard - Finished

Finizhed!

(RNRNRANRANRANRRANRANRNRANRANRNNRRRANRAN]

Client output falder: C:ADocuments and SettingzhRinzeT haralyhkd A
Client files created: 1
» CADocuments and SettingshRinzeThoraly My Documentz True
» ChDocuments and SettingzhRinzeT horalyhkdy Docurments' T e
Server output folder: C:ADocuments and Settingz'RinzeT horalphh
| Server files created:

» ChDocuments and SettingzhRinzeT haralyhky Docurments' T e
» CADocuments and SettingshRinzeThoraly by Documentz True
» ChDocuments and SettingzhRineeT horalyykdy Docurments' T e
T otal build tire: 00:00:03

£ | b

Open autput folder Show publizh report

There are two options bel ow the summary that control what happens after you click
Finish. One determines whether TrueUpdate will automatically open the output folder
for you (for example, if you wanted to immediately test the update, you won't have to
navigate to the output folder yourself). The other controls whether to display a publish
report listing the files that have been output by the build process and what you need to
do next.

When you' re finished reading the summary, you can click Finish to exit the publish
wizard.

Build Settings

The Build Settings dialog allows you to specify default settings for the publish wizard
and to configure additional features that affect the build process or the generated files.
Y ou can access the Build Settings dialog by choosing Publish > Settings from the
program menu.

Chapter 10

Output

The Output tab is where you can set the output folder, the TrueUpdate Client

filename, and the server files prefix.

Build Settings =3

@ Output | [#] Upload | L& Constants | [# Code Signing | S Resources | (8 Pre/Post Buid|
Cutput Settings
Output falder:

-EE:-";ijncumths and S ettlngs'\H|nseThoral}l'\MyD l.:ucuments.";'.l:ruél:l.pd.éh-e- D utput
Truell pdate Client filename:

| TruellpdateClient. exe

Server files prefiv:

i‘_','Dul_D[DdL‘.l“Ct | [z

Comprezs clent executable

[0K l [Cancel] [Help

]

The output folder iswhere all of your update files will be built to. This can be any
location on alocal hard drive or on thelocal network. All of thefiles that TrueUpdate
uses are built to this location, including both client files and server configuration files.

There aretwo client files that get built: an executablefile (the“ client executable’) and
adatafile (the “client data file”). The namethat you enter in the TrueUpdate Client

filenamefield is the full name that will be used for the executablefile.

TrueUpdate automatically chooses a name for the client data file based on the
executable file’'s name. For example, if you wereto specify “ Update.exe” in the
TrueUpdate Client filename field, the data file would be named “Update.dat.” If you
wereto specify “myupdate.exe,” the data file would be named “ myupdate.dat.”

Building and Distributing

185

Upload

A great featurein TrueUpdate is the ability to have your server configuration files
automatically uploaded for you. This can save you alot of time when distributing your
updates, especially if you have more than one server to upload to.

Y ou can configure as many or as few upload locations as you want, but in general
each upload location will correspond to a TrueUpdate Server used in your project.

Build Settings

| i I:Iutput.| [Upload |.,-._4'§ Constants | [# Code Sigring | (2, Hesuurces.f: (%) Pre/Post Build|

Automatic upload locations:

Mame Location Type Last Upload
Upload Location 1 fip pourdomain, com:trueupdate, FTF Mever
Upload Location 2 ftpyourdomain. co.ukArueupdate FTP Mewver
Upload Location 3 ftp.yourdomain. cadtrueupdate FTP Mewver

| add b (88 Remove | [Edi |

[0k H Cancel H Help]

Note: When specifying upload locations it is not necessary to specify any file names.
Y ou only need to specify the folder where the files will be uploaded to.

186
Chapter 10

Upload locations come in three different varieties that correspond to the upload
methods used: FTP, SFTP, and File Copy.

FTP

Uses the File Transfer Protocol to upload your server files to a specific folder on
an FTPsarver.

SFTP

Uses the Secure File Transfer Protocol to upload your server filesto an FTP
server. The SFTP upload method is very similar to the FTP upload method
except that it encrypts the transfer of data between the client and server.

File Copy

Copiesthe server filesto awritable folder on alocal storage device (e.g. hard
drive, floppy drive, USB key) or aLAN location (i.e. afolder on thelocal area
network). Normally used with LAN/Local TrueUpdate Servers or internal
Web/FTP servers.

Upload Location (FTP)

[Gettings |

Upload Lozation [FTF)
Mame/D:

|_| load Location 1 |

Folder address:

i_f-tp.yourdumain.cum!trueupdate;‘ |’§a Test]
Timeout; Port:

(30 [121 '

Authentication
Uzemame: Fazsword:

Uze passive mode

Ok][Cancel][Help

187

Building and Distributing

Constants

Constants are essentially design time variables. They are similar to session variables,
but instead of being expanded as the user runs the update, they are expanded when
you build the project. In other words, when you build your project, all of the constants
are automatically replaced by the values assigned to them.

Y ou can define constants on the Constants tab of the Build Settings dialog, which you
can access by choosing Publish > Settings.

Build Settings =13

_@ Output | [T L||:|I|:|a|:|| & Constants | [# Code Signing | "0, Resources | (%) Pre/Past Build|

Dezign-time Congtants

=]
CURREMT _WERSICM 1.0.0.2
CUTPUT_FOLDER_PATH CioutputiReleasel Updates
QUTPUT _FILEMAME Mylpdate.exe
IS_DEMO false
MORE_INFO_PAGE hktp: e, rvdamain, comfmyproduct finfo Rkl

[add_] 38 Bemove | [S Rename |

[kK H Cancel H Help

Clicking the Add button on the Constants tab displays a dialog where you can name
the new constant and giveit avalue.

188

Chapter 10

x)

Mew Constant

Congtant name:
[oUsTOM CONSTEAN

Congtant value:

Walue

[ak. H Cancel]

Each constant has a name that will be replaced by this value throughout the project
when the project is built. 1t s exactly like a big search-and-replace operation that
happens whenever you build the project.

Since each constant is essentially just a name that gets replaced with different text,
you can use them just about anywhere. Y ou can use them on screens, in file paths, in
actions...pretty much anywhere that you can enter text.

Note: Design-time constant names can be in any format you like. One recognizable
format which we recommend is to write the constant name in all capitals, using
underscores in place of spaces between words, likeso: LATEST_FILE_VERSION.

Unattended Builds

An unattended build is when a project (in this case a TrueUpdate project) is built with
little or no developer interaction, often by another software process. Unattended builds
are usually used when many different tasks need to be accomplished in sequence with
the TrueUpdate build process. In these cases a software application or a simple batch
fileis used to automate the tasks. An example would be using a program to compile
the source code for an application, building that application’s installer using Setup
Factory, and then building the update using TrueUpdate.

Constants are extremely useful for performing unattended builds because they can be
changed using a command line argument. Y ou can even use constants to specify the
output location, and the server file prefix. The possibilities are endless.

For example, you could create a batch file that would generate a unique update for
every one of your customers, with the customer’s name showing up on one or al of
the screens during the update.

For more information on performing unattended builds of your project, search for
“Unattended Build Options’ in the TrueUpdate help file.

189

Building and Distributing

190

Pre/Post Build Steps

There may be instances where you want to run a program either before or after your
project has been built. TrueUpdate makes this process easy. On the Pre/Post Build tab
of the Build Settings dialog, you can set a program to Run Before Build, and a
program to Run After Build.

Build Settings =13

__@ Output | [T Upload | L Constants | [# Code Sigring | (2, Flesuurces“! () Pre/Pozt Build |

Fiun Before Build

Biun program:
I | [1_'_3,] Browse]

Command line argurments:

[ait Far program ta finish mnning

Fun After Build

Run progran:

| | [{j] Browse]

Command line arguments:
| |

[]#ait For program ta finish mnning

[k. H Cancel H Help]

The uses of this feature are limited only by your imagination. Y ou could, for example,
chain several builds together by having one project call another through the Run After
Build option. Or you could run an “automated backup” batch file that compresses all
of the server filesinto a single zip file, and then copies the zip file to a folder on your
network. The possibilities are limitless.

Chapter 10

Y ou can specify the path to the desired program in either of the Run Program fields.
Any command line arguments that are needed should be specified in the Command
Linearguments fields. If you want the design environment to pause while the other
program is open, check the Wait for program to finish running checkbox.

Build Preferences

TrueUpdate includes a number of preferences that affect how TrueUpdate handles the
build process. Y ou can find these preferences by choosing Preferences from the Edit
menu and selecting the Build category.

Thebuild preferences allow you to control whether TrueUpdate opens the output
folder, whether it shows the publish report by default, whether it displays the publish
wizard before building, and (when not using the wizard) whether a confirmation
dialog is displayed before the build process begins.

Y ou can also specify alist of fonts to exclude from the build process. Fonts take up
additional space in your update so it is often a good idea to exclude any fonts that you
know your end user will already have. By default this field includes Arial, Courier
New, and Times New Roman.

Preferences g|
Code Signing
- Document Build with Publizh */izard
& En\fm:nmlent Open output folder after build
Script Editor
Spell Checker Show publizh report after build
Startup Canfirm befare building [nan-wizard maode only]
Updates .
Exclude fants fram build:
.Arial, Courier Mew, Times: Mew Boman

Building and Distributing

191

192

Integrating the Client into your Software

Once you’ ve built the TrueUpdate Client, you need to integrate it into your software.
Integrating the client simply means including it with your software distribution and
providing one or more ways for your users (or your software) to initiate an update.

Note: The TrueUpdate Client can be thought of as the client executable and the client
datafile.

Integrating TrueUpdate can be as simple as putting a shortcut on the Start menu that
will launch the client executable, or it can be as sophisticated as having your main
application run the client executable every 15 days. Y ou could provide an itemin your
application’s menu to initiate an update, or even a button on your application’s
toolbar. Thelevel of integration is up to you.

Note: The TrueUpdate Client program is an executable that can be run normally from
Windows.

Integrating TrueUpdate into your application involves two basic steps. adding the
client files to your software distribution, and providing one or more ways to initiate an
update.

Step 1. Adding the Client Files

The TrueUpdate client consists of two files: a client executable, and a single data file.
By default the client executableis named TrueUpdateClient.exe and the datafileis
named TrueUpdateClient.dat. Both files are generated when you build your update.

Note: A complete list of files that you need to distribute can be found in the publish
report that is generated each time your build your update.

Exactly how you add the client files to your distribution depends on the distribution
method you use. It can be as simple as including the two files in a zip archive, or as
sophisticated as using a professional installation tool like Setup Factory.

You can install the files anywhere on the user’ s system, but it’s usually best to install
them in the same place as your application. This way the location of your software can
easily be determined at run time by using the built-in variable _SourceFolder, or the
built-in session variable %Sourcefol der%.

If you'd prefer to havethe client filesin a different folder, remember to provide some
way for the TrueUpdate client to determine the path where your software was

Chapter 10

installed. For example, you could write the path to a Registry key or INI file with your
installer and then use actions to read that information into a variable.

Step 2: Triggering TrueUpdate

Initiating an update is simply a matter of running the TrueUpdate client. In fact, your
users could check for an update simply by double-clicking on the client executable.

Of course, there are several more sophisticated ways to initiate an update. Here are
some of the different ways TrueUpdate could be started:

Using a Start Menu item
Install a shortcut to the TrueUpdate client in the user’s Start menu.

Using an icon on the Desktop

Giveyour users the option to install a shortcut on their Desktop so they can
initiate an update at any time. You could use the standard TrueUpdate client icon
for this purpose, or perhaps the same icon you use for your application.

Using a menu item in your program

Provideanitem in a program menu like Help > Check for Updates that will
launch the client executable.

Using a toolbar button in your program
Provide a* Check for Updates’ button on one of your program'’s toolbars.

Automatically on starting Windows

Install a shortcut in the user’s Startup folder to automatically run the TrueUpdate
Client every time the user’s systemis started. You could also create a small
“launcher” program that checks the number of times the system has been booted
since the last update was performed and only launch TrueUpdate periodically.
You could even set up an event with the Windows scheduling service if it's
active on the user’s system.

Automatically when your program starts

Launch TrueUpdate silently from your program when it’s started. You could
check the system date and only launch the client if your application was last

193
Building and Distributing

started more than a certain number of days ago. Or keep a counter of
“application starts’ in the Registry, and only check for an update after a certain
amount of times that the user launches your program. You can even let your user
specify how often they want the checks to be performed.

As a stand-alone executabl e, the TrueUpdate client gives you plenty of freedom to
initiate the update process in a way that fits the style of your application. Which
method (or methods) you choose to provide is entirely up to you.

Source Code

Here are some source code samples using ShellExecute to call the TrueUpdate Client
from Visual Basic, C/C++, and C#.

Calling ShellExecute from Visual Basic

Private Declare Function Shell Execute Lib "shell32.dll" _
Alias "Shel | ExecuteA" (ByVal hwnd As Long, _
ByVval | pQperation As String, ByVal IpFile As String, _
ByVal | pParaneters As String, ByVal |pDirectory As String,
ByVval nShowCnd As Long) As Long

Private Const SWNORVAL = 1

Private Sub RunTrueUpdated ient()

Execut e the program
Dm | Return As Long

| Return = Shel | Execut e(Me. hwnd, "open", _
"C:\\Program Fi | es\\ Wdget Designer\\TrueUpdated i ent. exe",
", 0, SW.NORVAL)

If IReturn <= 32 Then
MsgBox "Error executing client”
End If

End Sub

194

Chapter 10

Calling ShellExecute from C/C++
BOOL RunTrueUpdat eCl i ent ()

{
HWD hW ndow;
int nResult;
hW ndow = Get Saf eHwnd() ;
nResult = Shel | Execut e(hW ndow, "open"
, "C:\\ Program Fi | es\\ Wdget Designer\\TrueUpdated i ent.exe"
,"", NULL, SW NORMAL) ;
if(nResult > 32) // val ues above 32 indicate success
{
return TRUE, // update executed
}
el se
{
return FALSE; // update not executed
}
}

Using Process components and the .Net framework from C#

usi ng System
usi ng System Di agnosti cs;
usi ng Syst em Conponent Model ;

public bool RunTrueUpdatedient()
{

bool bReturn = true;
try
{

Process Updat eProcess = new Process();
Updat eProcess. Startlnfo. Fil eNane =

"C:\\Program Fi | es\\ Wdget Designer\\update. exe";
Updat eProcess. Start | nfo. WndowStyl e =

ProcessW ndowSt yl e. Nor mal ;
[/ The Start nethod returns true on success and
[/false on failure
bReturn = Updat eProcess. Start ();

195
Building and Distributing

196

catch (W n32Exception e)

//An error has occurred
bReturn = fal se;

}

return bReturn;

Testing Your Update

One of the most important and often overlooked steps when creating an update is
testing it after it has been built. You should test your update on as many computers
and operating systems as possible. Try it on every operating system that your product
supports. Windows 95, Windows 98, Windows 2000, Windows ME, Windows NT,
Windows XP and Windows Vista all have both slight and major differences between
them and should be thoroughly tested. It is also important to test the way that your
update responds to different OS configurations, different service packs, monitor
resolutions, color depth, and font sizes. If your update needs a lot of hard drive space,
be sureto test it on systems with a very limited amount of hard drive space.

If you have made use of TrueUpdate s multilingual support, be sure to test out each
language in your update. If you are using multiple TrueUpdate servers, be sureto test
each update server individually to ensure that they are all working properly.

It is very important to test before you distribute. An ‘internal build’ of your updateis
much easier to recall than is a public release should a problem arise.

Tip: For information related to tracking down script-related issues, see Debugging
Your Scriptsin Chapter 11.

Log Files

TrueUpdate€ s built-in logging function can quickly become a devel oper’ s best friend.
It is enabled by default, and contains all the information that you as a devel oper will
need to diagnose an update gone bad. Everything that happens during the updateis
logged, from which screens were displayed to what version of the update engineis
being used.

Chapter 10

Beyond its basic components, the update log fileis fully customizable; as the

devel oper, you can choose what information is logged and what information is not. If
you require even more detail than what the built-in logging capabilities provide, you
can add custom lines to the log at any point during your update.

Using log filesisinvaluable to devel opers for diagnosing problems. Let’s faceit, no
matter how much testing is done, there will always be one end user who hits a snag.
Utilizing log files, you can find out exactly where that snag occurred, and fix the
problem. As aresult, you save on support costs and keep your customer happy.

Ultimately, the choice of whether or not to use the log file, and how much information
should beinthat log file, is up to you.

Hereis an example of what a log file might look like:

[12/28/2004 16:38:11] Success Update started: C:\output\tu20\TrueUpdateClient.exe
[12/28/2004 16:38:11] Notice Update engine version: 3.0.0.0

[12/28/2004 16:38:11] Notice Product: Your Product, version %ProductV er%
[12/28/2004 16:38:11] Success Language set: Primary = 9, Secondary = 1
[12/28/2004 16:38:11] Success Include script: _TU20_Global_Functions.lua
[12/28/2004 16:38:11] Success Language set: Primary = 9, Secondary = 1
[12/28/2004 16:38:12] Success Run client data event: Client Script

Building and Distributing

197

Chapter 11.:

198

Scripting Guide
One of the powerful features of TrueUpdateis its scripting engine. This chapter will
introduce you to the new scripting environment and language.

TrueUpdate scripting is very simple, with only a handful of conceptsto learn. Hereis
what it looks like:

a =5;
if a <10 then

D al og. Message("Guess what?", "a is |less than 10");
end

(Note: this script is only a demonstration. Don't worry if you don’t understand it yet.)

The example above assigns a value to a variable, tests the contents of that variable,
and if the value turns out to beless than 10, uses a TrueUpdate action called
“Dialog.Message’ to display a message to the user.

New programmers and experienced coders alike will find that TrueUpdateis a
powerful, flexible yet simple scripting environment to work in.

Chapter 11

In This Chapter
In this chapter, you'll learn aboult:

Important scripting concepts
Variables

Variable scope and variable naming
Types and values

Expressions and operators

Control structures (if, while, repeat, and for)
Tables (arrays)

Functions

String manipulation

Debugging your scripts

Syntax errors and functional errors

Other scripting resources

Scripting Guide

199

A Quick Example of Scripting in TrueUpdate

Hereis a short tutorial showing you how to enter a script into TrueUpdate and
preview the results:

1. Startanew project.
2. Inyour project’s Client Script, add the following code:

D al og. Message("Title", "Hello World");

It should look like this when you’ re done:

€% Untitled - TrueUpdate

 File Edt Project Script Publsh Wiew Tools Help

BOde v+ v QRPEHNS

| &l Clignt Scriptl a Server Scripk

01 Dialog.Message("Title™ ,"Hello World!™):
oz
03

3. Choose Publish > Build from the program menu, and go through the publish
wizard.

4. Once your project has finished building, run the created file (typically
TrueUpdateClient.exe).

200

Chapter 11

When the Client Script is run, the script you entered will be performed. Y ou should
see the following dialog appear:

Title X
\ir) Hedlo Yorld

Congratulations! You have just made your first script. Though thisis asimple
example, it shows you just how easy it is to make something happen in your
TrueUpdate application. Y ou can use the above method to try out any script you want
in TrueUpdate.

Note: If you are working with actions that interact with screens, you must perform
these actions from a screen event.

Important Scripting Concepts

There are afew important things that you should know about the TrueUpdate scripting
language in general before we go on.

Script is Global

The scripting engineis global to the runtime environment. That means that all of your
events will “know” about other variables and functions declared elsewherein the
product. For example, if you assign “myvar = 10;” on a particular screen event, myvar
will still equal 10 when the next event is triggered. There are ways around this global
nature (see Variable Scope on page 204), but it is generally true of the scripting
engine.

Scripting Guide

201

202

Script is Case-Sensitive

The scripting engine is case-sensitive. This means that upper and lower case
characters areimportant for things like keywords, variable names and function names.

For example:
ABC = 10;
aBC = 7;

In the above script, ABC and aBC refer to two different variables, and can hold
different values. The lowercase“a” in “aBC” makes it completely different from
“ABC" asfar as TrueUpdateis concerned.

The same principle applies to function names as well. For example:

Di al og. Message("H ", "Hello Wrld");

...refers to a built-in TrueUpdate function. However,

DI ALOG Message("H ", "Hello Wrld");

...will not be recognized as the built-in function, because DIALOG and Dialog are
seen as two completely different names.

Note: It's entirely possible to have two functions with the same spelling but different
capitalization—for example, GreetUser and gREETUSeR would be seen as two totally
different functions. Although it's definitely possible for such functions to coexist, it’s
generally better to give functions completely different names to avoid any confusion.

Comments

Y ou can insert non-executable comments into your scripts to explain and document
your code. In a script, any text after two dashes (--) on aline will be ignored. For
example:

-- Assign 10 to variable abc

abc = 10;
..0r:
abc = 10; -- Assign 10 to abc

Chapter 11

Both of the above examples do the exact same thing—the comments do not affect the
script in any way.

Y ou can also create multi-line comments by using --[[and]] on either side of the
comment:

--[[This is
a multi-line
comrent]]
a = 10;

Y ou should use comments to explain your scripts as much as possible in order to
make them easier to understand by yourself and others.

Delimiting Statements

Each unique statement can either be on its own line and/or separated by a semi-colon
(;). For example, all of the following scripts arevalid:

Script 1:

a =10
MyVar = a

Script 2:
a = 10; MyVar = a;
Script 3:

a = 10;
MyVar = a;

However, werecommend that you end all statements with a semi-colon (as in scripts 2
and 3 above).

Scripting Guide

203

204

Variables

What Are Variables?

Variables are very important to scripting in TrueUpdate. Variables are simply
“nicknames” or “placeholders’ for values that might need to be modified or re-used in
the future. For example, the following script assigns the value 10 to a variable called
“amount.”

anount = 10;

Note: We say that values are “assigned to” or “stored in” variables. If you picture a
variable as a container that can hold a value, assigning a valueto avariableis like
“placing” that value into a container. Y ou can change this value at any time by
assigning a different value to the variable; the new value simply replaces the old one.
This ability to hold changeable information is what makes variables so useful.

Here are a couple of examples demonstrating how you can operate on the “amount”
variable:

anount 10;
anount anount + 20;
Di al og. Message("Val ue", anount);

This stores 10 in the variable named amount, then adds 20 to that value, and then
finally makes a message box appear with the current value (which is now the number
30) init.

Y ou can also assign one variable to another:
a 10;

b a;

Di al og. Message("Val ue", b);

Thiswill make a message box appear with the number 10init. Theline“b=g;"
assigns the value of “a” (which is 10) to “b.”

Variable Scope

All variablesin TrueUpdate are global by default. This means that they exist project-
wide, and hold their values from one script to the next. In other words, if avalueis

Chapter 11

assigned to a variable in one script, the variable will still hold that value when the next
script is executed.

For example, if you enter the script:

foo = 10;
...into a screen’s On Preload event, and then enter:

Di al og. Message("The value is:", foo);

...into a different screen’s On Preload event, the second script will use the value that
was assigned to “foo” on thefirst event. As aresult, when the second screen is
encountered, a message box will appear with the number 10 init.

Note that the order of execution isimportant...in order for one script to be able to use
the value that was assigned to the variable in another script, that other script hasto be
executed first. In the above example, thefirst screen’s On Preload event is triggered
before the second screen’s On Preload event, so the value 10 is already assigned to
foo when the second screen’s event script is executed.

Local Variables

The global nature of the scripting engine means that a variable will retain its value
throughout your entire project. Y ou can, however, make variables that are non-global,
by using the special keyword “local.” Putting the word “local” in front of avariable
assignment creates a variable that is local to the current script, function, or block of
code.

For example, let’s say you have the following three scripts in the same project:

Script 1:

-- assign 10 to Xx

X = 10;

Script 2:

[ocal x = 500;

D al og. Message("Local value of x is:", X);

x = 250; -- this changes the local x, not the global one
D al og. Message("Local value of x is:", X);

Scripting Guide

205

206

Script 3:

-- display the global value of x
Di al og. Message("d obal value of x is:", x);

Let’s assume these three scripts are performed one after the other. Thefirst script
gives x thevalue 10. Since all variables are global by default, x will have this value
inside all other scripts, too. The second script makes a local assignment to x, giving it
the value of 500—but only inside that script. If anything eseinside that script wants
to access the value of x, it will seethe local value instead of the global one. It's like
the “x” variable has been temporarily replaced by another variable that looks just like
it, but has a different value.

(This reminds me of those caper movies, where the bank robbers put a picturein front
of the security cameras so the guards won’t see that the vault is being emptied. Only
in this case, it’s like the bank robbers create a whole new working vault, just like the
original, and then dismantle it when they leave.)

When told to display the contents of x, the first Dialog.Message action inside script #2
will display 500, since that is the local value of x when the action is performed. The
next line assigns 250 to the local value of x—note that once you make a local variable,
it completely replaces the global variable for the rest of the script.

Finally, thethird script displays the global value of x, which is still 10.

Variable Naming

Variable names can be made up of any combination of |etters, digits and underscores
as long as they do not begin with a number and do not conflict with reserved
keywords.

Examples of valid variables nhames:

a
strName

_My Variable
datal
data 1 23
index

bReset

nCount

Chapter 11

Examples of invalid variable names:

1

1data

%MyVauek

$strData

for

local
_FirstNamet+LastName _
User Name

Reserved Keywords
Thefollowing words are reserved and cannot be used for variable or function names:

and break do else esalf
end false for function if

in |ocal nil not or
repeat return table then true
until while

Types and Values
TrueUpdat€ s scripting language is dynamically typed. There are no type
definitions—instead, each value carries its own type.

What this means is that you don't have to declare a variable to be of a certain type
before using it. For example, in C++, if you want to use a number, you haveto first
declare the variabl€ s type and then assign avalueto it:

int j;

j = 10;

The above C++ example declares j as an integer, and then assigns 10 to it.

Scripting Guide

207

208

As we have seen, in TrueUpdate you can just assign a value to a variable without
declaring itstype. Variables don’t really havetypes; instead, it's the values inside
them that are considered to be one type or another. For example:

j = 10;

...thisautomatically creates the variable named *j” and assigns the value 10 to it.
Although this value has a type (it's a number), the variable itself is still typeless. This
means that you can turn around and assign a different type of valuetoj, like so:

j = "Hello";

This replaces the number 10 that is stored in j with the string “Hello.” The fact that a
string is a different type of value doesn’t matter; the variablej doesn’t care what kind
of valueit holds, it just stores whatever you put init.

There are six basic data types in TrueUpdate: number, string, nil, Boolean, function,
and table. The sections below will explain each data type in more detail.

Number

A number is exactly that: a numeric value. The number type represents real
numbers—specifically, double-precision floating-point values. Thereis no distinction
between integers and fl oating-point numbers (also known as *fractions’)...all of them
arejust “numbers.” Here are some examples of valid numbers:

4 4, 4 04 4.57e-3 0.3e12

String

A string is simply a sequence of characters. For example, “Joe2” is a string of four
characters, starting with a capital “J’ and ending with the number “2.” Strings can
vary widely in length; a string can contain a single letter, or asingle word, or the
contents of an entire book.

Strings may contain spaces and even more exotic characters, such as carriage returns
and linefeeds. In fact, strings may contain any combination of valid 8-bit ASCI|
characters, including null characters (“\0”). TrueUpdate automatically manages string
memory, so you never haveto worry about allocating or de-allocating memory for
strings.

Strings can be used quite intuitively and naturally. They should be delimited by
matching single quotes or double quotes. Here are some examples that use strings:

Chapter 11

Nanme = "Joe Bl ow';
Di al og. Message("Title", "Hello, how are you?");
Last Name = ' Bl ow ;

Normally double quotes are used for strings, but single quotes can be useful if you
have a string that contains double quotes. Whichever type of quotes you use, you can
include the other kind inside the string without escaping it. For example:

doubl es
singl es

"How s that agai n?";
'"She said "Talk to the hand,"” and | was all |ike "Dude!"';

If we used double quotes for the second line, it would look like this:

escaped = "She said \"Talk to the hand,\" and | was all like \"Dude!\"";

Normally, the scripting engine sees double quotes as marking the beginning or end of
a string. In order to include double quotes inside a double-quoted string, you need to
escape them with backslashes. This tells the scripting engine that you want to include
an actual quote character in the string.

The backslash and quote (\") is known as an escape sequence. An escape sequence is a
special sequence of characters that gets converted or “translated” into something else
by the script engine. Escape sequences allow you to include things that can’t be typed
directly into a string.

The escape sequences that you can use include:

\a - bdl
\b - backspace
\f - formfeed

\n - newline
\r - carriagereturn
\t - horizontal tab

\v - vertical tab
\\ - backslash
\" - quotation mark
\' - apostrophe

\[- left square bracket
\] - right square bracket

Scripting Guide

209

210

So, for example, if you want to represent three lines of text in a single string, you
would use the following:

Li nes = "Line one.\nLine two.\nLine three";
Di al og. Message("Here is the String", Lines);

This assigns a string to a variable named Lines, and uses the newline escape sequence
to start anew line after each sentence. The Dialog.M essage function displays the
contents of the Lines variablein a message box, likethis:

s Line one.
\EJ’) Lime bwia,

Line three

Another common example is when you want to represent a path to afile such as
C:\My Folder\My Data.txt. You just need to remember to escape the backs ashes:

MyPath = "C\\My Fol der\\My Data.txt";
Each double-backslash represents a single backslash when used inside a string.

If you know your ASCI| table, you can use a backslash character followed by a
number with up to three digits to represent any character by its ASCII value. For
example, the ASCII valuefor a newline character is 10, so the following two lines do
the exact same thing:

Li nes
Li nes

"Li ne one.\nLine two.\nLine three";
"Li ne one.\10Li ne two.\10Li ne three";

However, you will not need to use this format very often, if ever.

Y ou can also define strings on multiple lines by using double square brackets ([[and
11). A string between double square brackets does not need any escape characters. The
double square brackets let you type special characters like backslashes, quotes and
newlines right into the string.

Chapter 11

For example:

Li nes = [[Li ne one.
Li ne two.
Line three.]];

is equivalent to:
Li nes = "Li ne one.\nLine two.\nLine three"

This can be useful if you have preformatted text that you want to use as a string, and
you don’'t want to have to convert all of the special characters into escape sequences.

Thelast important thing to know about strings is that the script engine provides
automatic conversion between numbers and strings at run time. Whenever a numeric
operation is applied to a gtring, the engine tries to convert the string to a number for
the operation. Of course, this will only be successful if the string contains something
that can be interpreted as a number.

For example, the following lines are both valid:

a
b

"10" + 1, -- Result is 11
"33" * 2; -- Result is 66

However, the following lines would not give you the same conversion result:

"10+1"; -- Result is the string "10+1"
"hello" + 1; -- ERROR, can’t convert "hello" to a nunber

a =
b =
For more information on working with strings, see page 236.

Nil

Nil isa special valuetype. It basically represents the absence of any other kind of
value.

You can assign nil to a variable, just like any other value. Note that thisisn't the same
as assigning the letters “nil” to avariable, asin astring. Like other keywords, nil must
beleft unquoted in order to be recognized. It should also be entered in all lowercase
letters.

211

Scripting Guide

212

Nil will always evaluate to false when used in a condition:

a=nil;
if a then

-- Any lines in here

-- wll not be executed
end

It can also be used to “ddete’ avariable:

"Joe Bl ow';
nil;

y
y

In the example above, “y” will no longer contain a value after the second line.

Boolean

Boolean variabl e types can have one of two values: true, or false. They can be used in
conditions and to perform Boolean logic operations. For example:

bool ybooly = true;
i f bool ybooly then

-- Any script in here will be executed
end

This sets a variable named boolybooaly to true, and then usesit in an if statement.
Similarly:

a = true;

b fal se;

if (a and b) then
-- Any script here will not be executed because
-- true and false is fal se.

end

Thistime, theif statement needs both “a” and “b” to betruein order for thelines
inside it to be executed. In this case, that won't happen because “b” has been set to
false

Chapter 11

Function

The script engine allows you to define your own functions (or “sub-routines’), which
are essentially small pieces of script that can be executed on demand. Each function
has aname that is used to identify the function. Y ou can actually use that function
name as a special kind of value, in order to store a “reference” to that functionin a
variable, or to pass it to another function. This kind of referenceis of the function

type.
For more information on functions, see page 231.

Table

Tables are a very powerful way to store lists of indexed values under one name.
Tables are actually associative arrays—that is, they are arrays that can be indexed not
only with numbers, but with any kind of value (including strings).

Here are a few quick examples (we cover tablesin more detail on page 223):

Example 1:

guys = {"Adanf, "Brett", "Darryl"};
D al og. Message("Second Nanme in the List", guys[2]);

Thiswill display a message box with the word “ Brett” init.

Example 2:

t ={};

t.FirstNane = "M chael *;
t. Last Name = "Jackson";

t.CQccupation = "Singer";
Di al og. Message(t. FirstName, t.Cccupation);

Thiswill display the following message box:
Michael [X]
\ir) Singer

Scripting Guide

213

214

You can assign tables to other variables as well. For example:

tabl e_one = {};

tabl e_one. First Name = "M chael ";
tabl e_one. Last Nane = "Jackson";
t abl e_one. Cccupati on = "Si nger";

table two = tabl e one;
occupation = table_two. Qccupati on;
Di al og. Message(b. Fi rst Name, occupation);

Tables can beindexed using array notation (my_tablg[1]), or by dot notation if not
indexed by numbers (my_table.LastName).

Note that when you assign one table to another, as in the following line:

table two = tabl e one;

...thisdoesn’t actually copy table two into table_one. Instead, table two and
table_one both refer to the same table.

This is because the name of a table actually refersto an address in memory where the
data within the tableis stored. So when you assign the contents of the variable
table_oneto the variable table_two, you' re copying the address, and not the actual
data. You're essentially making the two variables “point” to the same table of data.

In order to copy the contents of a table, you need to create a new table and then copy
all of the data over oneitem at atime.

For more information on copying tables, see page 228.

Variable Assignment

Variables can have new values assigned to them by using the assignment operator (=).
This includes copying the value of one variable into another. For example:

a
b
c

10;
"I am happy";
b;

It isinteresting to note that the script engine supports multiple assignment:
a, b =1, 2

After the script above, the variable“a’ contains the number 1 and the variable “b”
contains the number 2.

Chapter 11

Tables and functions are a bit of a special case: when you use the assignment operator
on atable or function, you create an alias that points to the same table or function as
the variable being “copied.” Programmers call this copying by reference as opposed to
copying by value.

Expressions and Operators

An expression is anything that evaluates to a value. This can include a single value
such as“6” or a compound value built with operators such as“1 + 3”. You can use
parentheses to “group” expressions and control the order in which they are evaluated.
For example, the following lines will all evaluate to the same value:

10;

(5 * 1) * 2
100 / 10;
100/ (2 * 5);

QYYD
o mn

Arithmetic Operators

Arithmetic operators are used to perform mathematical operations on numbers. The
following mathematical operators are supported:

+ (addition)

- (subtraction)

* (multiplication)
/ (division)

unary - (negation)

Here are some examples:

a=>5+2;

b =a* 100;
twent yt hreepercent = 23 / 100;
neg - 29;

pos - neg;

Scripting Guide

215

216

Relational Operators

Relational operators allow you to compare how one value relates to another. The
following relational operators are supported:

> (greater-than)

< (less-than)

<= (less-than or equal to)
>= (greater than or equal to)
~= (not equal to)

== (equal)

All of the relational operators can be applied to any two numbers or any two strings.
All other values can only use the == operator to seeif they are equal.

Relational operators return Boolean values (true or false). For example:

10 > 20; -- resolves to fal se
a = 10;

a > 300; -- false

(3 * 200) > 500; -- true
"Brett" ~= "Lorne" -- true

One important point to mention is that the == and ~= operators test for complete
equality, which means that any string comparisons done with those operators are case
sensitive. For example:

"Joj oba" == "Jojoba"; -- true

"Wldcat" == "wildcat"; -- false

"I likeit alot" =="1 like it a LOT"; -- false
"happy" ~= "HaPPy"; -- true

Chapter 11

Logical Operators

Logical operators are used to perform Boolean operations on Boolean values. The
following logical operators are supported:

and (only trueif both values are true)
or (trueif either valueistrue)
not (returns the opposite of the value)
For example:
a = true;
b = fal se;
c = aand b; -- false
d =aand nil; -- false
e = not b; -- true

Note that only nil and false are considered to befalse, and all other values are true.

For example:

iamnvisible = nil;
if iamnvisible then

-- any lines in here won't happen

-- because iamnvisible is considered fal se

Di al og. Message("You can't see ne!", "I aminvisiblel!l11");
end

if "Brett" then
-- any lines in here WLL happen, because only nil and fal se
-- are considered false...anything else, including strings,
-- is considered true
D al og. Message("Wat about strings?", "Strings are true.");
end

Concatenation

In TrueUpdate scripting, the concatenation operator is two periods (..). It is used to
combine two or more strings together. You don't have to put spaces before and after
the periods, but you can if you want to.

For example:
name = "Joe".." Blow'; -- assigns "Joe Blow' to name
b =mname .. " is nunber " .. 1; -- assigns "Joe Blowis nunber 1" to b

217

Scripting Guide

218

Operator Precedence

Operators are said to have precedence, which is away of describing the rules that
determine which operations in a series of expressions get performed first. A simple
example would bethe expression 1 + 2 * 3. The multiply (*) operator has higher
precedence than the add (+) operator, so this expression isequivalentto1 + (2 * 3). In
other words, the expression 2 * 3 is performed first, and then 1 + 6 is performed,
resulting in the final value 7.

Y ou can override the natural order of precedence by using parentheses. For instance,
the expression (1 + 2) * 3 resolves to 9. The parentheses make the whole sub-
expression “1 + 2" the left value of the multiply (*) operator. Essentially, the sub-
expression 1 + 2 is evaluated first, and the result is then used in the expression 3 * 3.

Operator precedence follows the following order, from lowest to highest priority:

and or

< > <= >= ~= ==
+ -

* /

not - (unary)

N

Operators are also said to have associativity, which is a way of describing which
expressions are performed first when the operators have equal precedence. In the
script engine, all binary operators are | eft associative, which means that whenever two
operators have the same precedence, the operation on the left is performed first. The
exception is the exponentiation operator ("), which is right-associative.

When in doubt, you can always use explicit parentheses to control precedence. For
example:

a+l<b/l2+1

..Isthesame as:

(a +1) < ((b/l2) + 1)

...and you can use parentheses to change the order of the cal culations, too:
a+1<bl(2+1)

Inthis last example, instead of 1 being added to half of b, bisdivided by 3.

Chapter 11

Control Structures

The scripting engine supports the following control structures: if, while, repeat and
for.

If

Anif statement evaluates its condition and then only executes the “then” part if the
condition istrue. An if statement is terminated by the “end” keyword. The basic
syntax is:

if condition then
do something here

end
For example:
x = 50;
if x > 10 then
Di al og. Message("result", "x is greater than 10");
end
y =3
if ((35 * y) < 100) then
D al og. Message("", "y times 35 is less than 100");
end

In the above script, only thefirst dialog message would be shown, because the second
if condition isn't true...35 times 3 is 105, and 105 is not less than 100.

You can also use dse and elseif to add more “ branches” to theif statement:

x = 5;
if x > 10 then
D al og. Message("", "x is greater than 10");
el se
D al og. Message("", "x is less than or equal to 10");
end

In the preceding example, the second dialog message would be shown, because 5 is
not greater than 10.

219

Scripting Guide

220

X = b;
if x == 10 then

D al og. Message("", "x is exactly 10");
elseif x == 11 then

D al og. Message("", "x is exactly 11");
elseif x == 12 then

D al og. Message("", "x is exactly 12");
el se

D al og. Message("", "x is not 10, 11 or 12");

end

In that example, the last dialog message would be shown, because x is nhot equal to 10,
or 11, or 12.

While

The while statement is used to execute the same “block” of script over and over until a
condition is met. Likeif statements, while statements are terminated with the “ end”
keyword. The basic syntax is:

while condition do
do something here
end

The condition must be true in order for the actions inside the while statement (the “ do
something here’ part above) to be performed. The while statement will continue to
loop as long as this condition is true. Heré's how it works:

If the condition istrue, all of the actions between the “while” and the corresponding
“end” will be performed. When the " end” is reached, the condition will be
reevaluated, and if it's still true, the actions between the “while’ and the “end” will be
performed again. The actions will continue to loop like this until the condition
evaluatesto false.

For example:

a = 1;

while a < 10 do
a=a+ 1;

end

In the preceding example, the“a=a+ 1;” line would be performed 9 times.

Chapter 11

Y ou can break out of awhileloop at any time using the “break” keyword. For
example:

count = 1;
whil e count < 100 do
count = count + 1;
if count == 50 then
br eak;
end
end

Although the while statement is willing to count from 1 to 99, theif statement would
cause this |oop to terminate as soon as count reached 50.

Repeat

Therepeat statement is similar to the while statement, except that the condition is
checked at the end of the structureinstead of at the beginning. The basic syntax is:

repest
do something here
until condition

For example:
i =1
r epeat
i =i + 1;
until i > 10

Thisis similar to one of the while loops above, but this time, the loop is performed 10
times. The“i =i + 1;” part gets executed before the condition determines that a is now
larger than 10.

221

Scripting Guide

222

Y ou can break out of arepeat loop at any time using the “ break” keyword. For
example:

count = 1;
r epeat
count = count + 1;
if count == 50 then
br eak;
end

until count > 100

Once again, this would exit from the loop as soon as count was equal to 50.

For

Thefor statement is used to repeat a block of script a specific number of times. The
basic syntax is:

for variable = start,end,step do
do something here
end

The variable can be named anything you want. It is used to “ count” the number of
trips through the for loop. It begins at the start value you specify, and then changes by
the amount in step after each trip through the loop. In other words, the step gets added
to the valuein the variabl e after the lines between the for and end are performed. If
the result is smaller than or equal to the end value, the loop continues from the
beginning.
For example:
-- This loop counts from1l to 10:
for x =1, 10 do

Di al og. Message(" Nunber", x);
end
This displays 10 dialog messages in a row, counting from 1 to 10.

Note that the step is optional; if you don't provide avaluefor the step, it defaultsto 1.

Chapter 11

Here s an examplethat uses a step of “-1" to make the for loop count backwards:

-- This loop counts from 10 down to 1
for x =10, 1, -1 do

Di al og. Message(" Nunber", x);
end

That example would display 10 dialog messages in arow, counting back from 10 and
going all the way downto 1.

Y ou can break out of afor loop at any time using the “ break” keyword. For example:

for i =1, 100 do
if count == 50 then
br eak;
end
end

Once again, this would exit from the loop as soon as count was equal to 50.

Thereis also a variation on the for loop that operates on tables. For more information
on that, see Using For to Enumerate Tables on page 226.

Tables (Arrays)

Tables are very useful. They can be used to store any type of value, including
functions or even other tables.

Creating Tables

There are generally two ways to create a table from scratch. Thefirst way uses curly
braces to specify alist of values:

nmy_table = {"appl e", "orange", "peach"};
associ ative_table = {fruit="apple", vegetable="carrot"}

The second way isto create a blank table and then add the values one at atime:

223

Scripting Guide

224

my_table = {};

nmy_table[1l] = "apple";

my_table[2] = "orange";

nmy_table[3] = "peach";
associative_table = {};
associative_table.fruit = "apple";
associ ative_table.vegetable = "carrot”;

Accessing Table Elements

Each “record” of information stored in atable is known as an € ement. Each d ement
consists of a key, which serves as the index into the table, and avaluethat is
associated with that key.

There are generally two ways to access an e ement: you can use array notation, or dot
notation. Array notation is typically used with numeric arrays, which are smply tables
where all of the keys are numbers. Dot notation is typically used with associative
arrays, which are tables where the keys are strings.

Hereis an example of array notation:

t = {"one", "two", "three"};
D al og. Message("El erent one contains:", t[1]);

Hereis an example of dot notation:

t = {first="one", second="two", third="three"};
D al og. Message("Elenment 'first' contains:", t.first);

Numeric Arrays

One of the most common uses of tablesis as arrays. An array isa collection of values
that are indexed by numeric keys. In the scripting engine, numeric arrays are one-
based. That is, they start at index 1.

Here are some examples using numeric arrays:

Example 1:

nyArray = {255, 0, 255};
D al og. Message("First Number”, nyArray[1]);

Thisfirst example would display a dialog message containing the number “255.”

Chapter 11

Example 2:

al phabet = {"a","b","c","d","e","f", "g","h","i","j","k",

"I "l"mll"n"l"O"l"p"l"q"l"r"l"S"l"t"l"u"l"V"lnwll"X"l"y"l"Z"};
Di al og. Message("Seventh Letter", al phabet[7]);

Thiswould display a dialog message containing the |etter “g.”

Example 3:

nyArray = {};

myArray[1] = "Option One";
myArray[2] = "Option Two";
myArray[3] = "Option Three";

Thisis exactly the same as the following:
myArray = {"Option One", "Option Two", "Option Three"};

Associative Arrays

Associative arrays are the same as numeric arrays except that the indexes can be
numbers, strings or even functions.

Hereis an example of an associative array that uses alast name as an index and a first
name as the value:
arrNanes = {Ander son="Jason",

d enmens="Roger ",

Cont reras="Jose",

Hamond="Chri s",

H tchcock="Al fred"};

Di al og. Message(" Anderson's First Nane", arrNames. Anderson);

The resulting dialog message would look like this:

Anderson’s First Hame @
\ir) Jason

Scripting Guide

225

226

Hereis an example of a simple employee database that keeps track of employee
names and birth dates indexed by employee numbers:

Enpl oyees = {}; -- Construct an enpty table for the enpl oyee nunbers
-- store each enployee's information in its own table

Enpl oyeel = {Name="Jason Anderson", Birthday="07/02/82"};

Enpl oyee2 = {Name="Roger Cl enens", Birthday="12/25/79"};

-- store each enployee's infornmation table

-- at the appropriate nunber in the Enpl oyees table

Enpl oyees[100099] = Enpl oyeel;

Enpl oyees[137637] = Enpl oyee2;

-- now typing "Enpl oyees[100099]" is the same as typi ng "Enpl oyeel”
Di al og. Message("Bi rt hday", Enpl oyees[100099] . Bi r t hday) ;

The resulting dialog message would look like this:

\ir) 07inztaz

Using For to Enumerate Tables

Thereis a special version of the for statement that allows you to quickly and easily
enumerate the contents of an array. The syntax is:

for index,value in table do
operate on index and value
end

Chapter 11

For example:

nytable = {"One", "Two", " Three"};
-- display a nmessage for every table item
for j,k in nytable do
Di al og. Message("Table Item, j .. "=" .. Kk);
end

Theresult would be three dialog messages in arow, one for each of the elementsin
mytable, like so:

Table ltem E'

\:\ir) 1=0ne

Table Item @
\:\Il) Z=Two

Table Item E|

\:\If) 3=Three

Remember the above for statement, because it is a quick and easy way to inspect the
valuesin atable. If you just want the indexes of atable, you can leave out the value
part of thefor statement:

227

Scripting Guide

228

a = {One=1l, Two=2, Three=3};

for k in a do
D al og. Message(" Tabl e I ndex", Kk);
end

The above script will display three message boxes in arow, with the text “One,”
“Threg,” and then “Two.”

Whoa there—why aren’t the table elementsin order? The reason for thisis that
internally the scripting engine doesn’t store tables as arrays, but in a super-efficient
structure known as a hash table. The important thing to know is that when you define
table elements, they are not necessarily stored in the order that you define or add
them, unless you use a numeric array (i.e. atable indexed with numbers from 1 to
whatever).

Copying Tables:

Copying tablesis a bit different from copying other types of values. Unlike variables,
you can't just use the assignment operator to copy the contents of one table into
another. Thisis because the name of a table actually refers to an address in memory
where the data within the table is stored. If you try to copy one table to another using
the assignment operator, you end up copying the address, and not the actual data

For example, if you wanted to copy a table, and then modify the copy, you might try
something likethis:

tabl e_one = { nood="Happy", tenperature="Warn' };

- create a copy
tabl e_two = tabl e_one;

- nmodi fy the copy
tabl e_two.tenperature = "Col d";

Di al og. Message(" Tabl e one tenperature is:", table_one.tenperature);
Di al og. Message("Table two tenperature is:", table_two.tenperature);

If you ran this script, you would see the following two dial ogs:

Chapter 11

Table one temperature is: g|

\ir) Cold

Table two temperature is: g|

\ir) Cold

Wait aminute...changing the “temperature’ element in table two also changed it in
table_one. Why would they both change?

The answer is simply because the two are in fact the same table.

Internally, the name of atable just refers to amemory location. When table oneis
created, a portion of memory is set aside to hold its contents. The location (or
“address”) of this memory iswhat gets assigned to the variable named table_one.

Assigning table_oneto table two just copies that memory address—not the actual
memory itself.

It's like writing down the address of alibrary on a piece of paper, and then handing
that paper to your friend. You aren’'t handing the entire library over, shelves of books
and all...only the location where it can be found.

If you wanted to actually copy thelibrary, you would haveto create a new building,
photocopy each book individually, and then store the photocopies in the new |ocation.

That’s pretty much how it is with tables, too. In order to create afull copy of atable,
contents and all, you need to create a new table and then copy over all of the elements,
one element at atime.

Luckily, thefor statement makes this really easy to do. For example, here' s a modified
version of our earlier example, that creastes a“true’ copy of table one.

229

Scripting Guide

tabl e_one = { nood="Happy", tenperature="Warni' };

-- create a copy

table_two = {};

for index, value in table_one do
tabl e_two[index] = val ue;

end

- nodi fy the copy
tabl e_two. tenperature = "Col d";

Di al og. Message(" Tabl e one tenperature is:", table_one.tenperature);
Di al og. Message("Table two tenperature is:", table_two.tenperature);

This time, the dialogs show that modifying table two doesn't affect table_one at all:

Table one temperature is: @

] Warm

Table two temperature is: g|

\ij) Cold

Table Functions

There are anumber of built-in table functions at your disposal, which you can use to
do such things as inserting elements into a table, removing elements from a table, and
counting the number of elementsin atable. For moreinformation on these table
functions, please see Program Reference / Actions/ Table in the online help.

230

Chapter 11

Functions

By far the coolest and most powerful feature of the scripting engine is functions. You
have already seen a lot of functions used throughout this document, such as
“Dialog.Message.” Functions are simply portions of script that you can define, name
and then call from anywhere else.

Although there are a lot of built-in TrueUpdate functions, you can also make your
own custom functions to suit your specific needs. In general, functions are defined as
follows:

function function_name (arguments)
function script here
return return_value,

end

Thefirst part isthe keyword “function.” This tells the scripting engine that what
follows is a function definition. The function_name is smply a unique name for your
function. The arguments are parameters (or values) that will be passed to the function
every timeit is called. A function can receive any number of arguments from O to
infinity (well, not infinity, but don’t get technical on me). The “return” keyword tells
the function to return one or more values back to the script that called it.

The easiest way to learn about functionsis to look at some examples. In thisfirst
example, we will make a simple function that shows a message box. It does not take
any arguments and does not return anything.

function Hell oWrl d()
Di al og. Message("Wl conme”, "Hell o Worl d");
end

Noticethat if you put the above script into an event and build your update, nothing
script related happens. Well, that istrue and not true. It is true that nothing visible
happens but the magic isin what you don't see. When the event is fired and the
function script is executed, the function called “Helloworld” becomes part of the
scripting engine. That meansit is now availableto therest of the update in any other
Sscript.

This brings up an important point about scripting in TrueUpdate. When making a
function, the function does not get “into” the engine until the script is executed. That
means that if you define Helloworld() in a screen’s On Help event, but that event
never gets triggered (because the user doesn't click on the screen’s Help button), the

Scripting Guide

231

Helloworld() function will never exist. That is, you will not be ableto call it from
anywhere else.

Now back to the good stuff. Let’s add alineto actually call the function:

function Hell oWrl d()
Di al og. Message("Wl conme”, "Hell o Worl d");
end

Hel | oVor 1 d();

The*HeloWorld();” linetells the scripting engineto “go perform the function named
Helloworld.” When that line gets executed, you would see a welcome message with
thetext “Hello World” init.

Function Arguments

Let’'stake this a bit further and tell the message box which text to display by adding
an argument to the function.

function Hel |l oworl d(Message)
D al og. Message("Wl cone”, Message);
end

Hel l oworl d("This is an argunent");
Now the message box shows the text that was “passed” to the function.

In the function definition, “Message’ is a variable that will automatically receive
whatever argument is passed to the function. In the function call, we pass the string
“Thisisan argument” asthefirst (and only) argument for the HellowWorld function.

Hereis an example of using multiple arguments.

function Helloworl d(Title, Message)
Di al og. Message(Title, Message);
end

Hel l oworl d("This is argunment one", "This is argument two");
Hel | oWor | d(" Wl come”, "H there");

This time, the function definition uses two variables, one for each of itstwo
arguments...and each function call passes two strings to the HelloWorld function.

232

Chapter 11

Note that by changing the content of those strings, you can send different arguments
to the function, and achieve different results.

Returning Values

The next step is to make the function return values back to the calling script. Hereisa
function that accepts a number as its single argument, and then returns a string
containing all of the numbers from one to that number.

functi on Count(n)

-- start out with a blank return string
ReturnString = "";

for num= 1,n do
-- add the current nunber (nun) to the end of the return string
ReturnString = ReturnString..num

-- if thisisn't the last nunber, then add a conma and a space
-- to separate the nunbers a bit in the return string
if (num~=n) then
ReturnString = ReturnString..", ";
end
end

-- return the string that we built
return ReturnString;
end

Count String = Count (10);
Di al og. Message(" Count", CountString);

Thelast two lines of the above script uses the Count function to build a string
counting from 1 to 10, storesit in a variable named CountString, and then displays the
contents of that variablein a dialog message box.

233
Scripting Guide

234

Returning Multiple Values
Y ou can return multiple values from functions as well:

function SortNunmbers(Nunber1, Nunber?2)
i f Numberl <= Nunber?2 then
return Nunberl, Nunber?2
el se
return Nunber2, Nunberl
end
end

firstNum secondNum = Sort Nunbers(102, 100);
D al og. Message("Sorted", firstNum.. ", " .. secondNum;

The above script creates a function called SortNumbers that takes two arguments and
then returns two values. Thefirst value returned is the smaller number, and the second
valuereturned is the larger one. Note that we specified two variables to receive the
return values from the function call on the second last line. The last line of the script
displays the two numbers in the order they were sorted into by the function.

Redefining Functions

Another interesting thing about functionsis that you can override a previous function
definition simply by re-defining it.

function Hell oWrl d()
Di al og. Message(" Message", "Hell o Worl d");
end

function Hell oWrl d()
Di al og. Message(" Message","Hell o Earth");
end

Hel | oVor 1 d();

The script above shows a message box that says “Hello Earth,” and not “Hello
World.” That is because the second version of the HelloWorld() function overrides the
first one.

Chapter 11

Putting Functions in Tables

Onereally powerful thing about tables is that they can be used to hold functions as
well as other values. Thisis significant because it allows you to make sure that your
functions have unique names and arelogically grouped. (Thisis how all of the
TrueUpdate functions are implemented.) Here is an example:

-- Make the functions:
function Hell oEarth()

Di al og. Message(" Message", "Hello Earth");
end

function Hel |l oMoon()
Di al og. Message(" Message", "Hello Mon");
end

-- Define an enpty table:
Hello = {};

-- Assign the functions to the table:
Hel l o. Earth = Hel | oEart h;
Hel | o. Moon = Hel | oMbon;

-- Now call the functions:
Hel |l o. Eart h();
Hel | o. Moon();

It is also interesting to note that you can define functions right in your table definition:

Hello =

Earth = function () D al og. Message(" Message", "Hello Earth") end,
Moon = function () D al og. Message(" Message”, "Hello Mon") end

b

-- Now call the functions:
Hel l o. Eart h();
Hel | 0. Moon() ;

235

Scripting Guide

236

String Manipulation
In this section we will briefly cover some of the most common string manipulation
techniques, such as string concatenation and comparisons.

(For more information on the string functions available to you in TrueUpdate, see
Program Reference / Actions/ Sring in the online help.)

Concatenating Strings
We have already covered string concatenation, but it iswell worth repeating. The
string concatenation operator istwo periodsinarow (..). For example:

Ful | Name = "Bo".." Derek"; -- FullNanme is now "Bo Derek"

-- You can al so concatenate nunbers into strings
Daysl nYear = 365;
YearString = "There are "..DayslnYear.." days in a year.";

Note that you can put spaces on ether side of the dots, or on one side, or not put any
spaces at all. For example, the following four lines will accomplish the same thing:

foo = "Hello " .. user_nane;
foo = "Hello ".. user_nane;
foo = "Hello " ..user_nane;
foo = "Hello "..user_nane;

Comparing Strings
Next to concatenation, one of the most common things you will want to do with

strings is compare one string to another. Depending on what constitutes a* match,”
this can either be very simple, or just a bit tricky.

If you want to perform a case-sensitive comparison, then all you haveto do is usethe
equals operator (==).

Chapter 11

For example:

strOne = "Strongbad”;
strTwo = "Strongbad”;

if strOne == strTwo then

Di al og. Message(" Guess what?", "The two strings are equal!");
el se

D al og. Message("Hmmt', "The two strings are different.");
end

Since the == operator performs a case-sensitive comparison when applied to strings,
the above script will display a message box proclaiming that the two strings are equal.

If you want to perform a case-insensitive comparison, then you need to take advantage
of either the String.Upper or String.Lower function, to ensure that both strings have
the same case before you compare them. The String.Upper function returns an all-
uppercase version of the string it is given, and the String.Lower function returns an
all-lowercase version. Note that it doesn’t matter which function you use in your
comparison, so long as you use the same function on both sides of the == operator in
your if statement.

For example:
strOne = "Mdoohahahaha";
strTwo = "MOOohaHAHAha" ;

if String.Upper(strOne) == String. Upper(strTwo) then

Di al og. Message(" Guess what?", "The two strings are equal!");
el se

D al og. Message("Hmmt', "The two strings are different.");
end

In the example above, the String.Upper function converts strOneto
“MOOOHAHAHAHA" and strTwo to “MOOOHAHAHAHA” and then the if
statement compares the results. (Note: the two original strings remain unchanged.)
That way, it doesn’'t matter what case the original strings had; all that mattersis
whether the |etters are the same.

Scripting Guide

237

Counting Characters

If you ever want to know how long a string is, you can easily count the number of
charactersit contains. Just use the String.Length function, like so:

twister = "If a wood chuck could chuck wood, how nmuch would...um..";
num chars = String.Length(tw ster);
Di al og. Message(" That tongue twister has:", numchars .. " characters!");

...which would produce the following dialog message:

That tongue twister has: g|

L]
\E’) 56 characters!

Finding Strings:
Another common thing you’ Il want to do with strings is to search for one string within
another. Thisis very simpleto do using the String.Find action.

For example:
strSearchln = "lIsn't it a wonderful day outside?";
str SearchFor = "wonder";

-- search for strSearchln inside strSearchFor
nFoundPos = String. Fi nd(strSearchln, strSearchFor);

i f nFoundPos ~= nil then

-- found it!

Di al og. Message(" Search Result", strSearchFor

" found at position " nFoundPos) ;

el se

-- no |uck

Di al og. Message(" Search Result", strSearchFor.
end

not found!");

238

Chapter 11

...would cause the following message to be displayed:

Search Result

L]
‘Er) wonder found at position 12

Tip: Try experimenting with different values for strSearchFor and strSearchin.

Replacing Strings:
One of the most powerful things you can do with strings is to perform a search and
replace operation on them.

The following example shows how you can use the String.Replace action to replace
every occurrence of a string with another inside a target string:

st r Tar get = "There can be only one. Only one is allowed!"
st r Sear chFor = "one";
strReplaceWth = "a dozen";

strNewSt ring String. Repl ace(str Target

, StrSearchFor
, StrReplaceWth);
Di al og. Message("After searching and replacing:", strNewString);

-- create a copy of the target string with no spaces init
strNoSpaces = String. Repl ace(strTarget, " ", "");

D al og. Message("After renovi ng spaces:", strNoSpaces);

239

Scripting Guide

240

The above example would display the following two messages:

After searching and replacing;

L]
\!J) There can be only a dozen, Onlv a dozen is allowed!

After removing spaces: FX|

L]
\!J) Therecanbeonlvone, Onlyoneisallomed!

Extracting Strings

There are three string functions that allow you to “ extract” a portion of a string, rather
than copying the entire string itself. These functions are String.L eft, String.Right, and
String.Mid.

String.L eft copies a number of characters from the beginning of the string.
String.Right does the same, but counting from the right end of the string instead.
String.Mid allows you to copy a number of characters starting from any position in the
string.

Y ou can use these functions to perform all kinds of advanced operations on strings.
Here' s a basic example showing how they work:

strOriginal = "It really is good to see you again."”;

-- copy the first 13 characters into strlLeft
strLeft = String.Left(strOiginal, 13);

-- copy the last 18 characters into strRi ght
strRight = String. Rght(strOriginal, 18);

Chapter 11

-- create a new string with the two pi eces
strNeo = String.Left .. "awesone" .. strRight .. " Woa."

-- copy the word "good" into strMddle
strMddle = String. Md(strOriginal, 13, 4);

Converting Numeric Strings into Numbers
There may be times when you have a numeric string, and you need to convert it to a
number.

For example, if you have an input field where the user can enter their age, and you
read in the text that they typed, you might get a value like “31". Because they typed it
in, though, this value is actually a string consisting of the characters“3" and “1”.

If you tried to compare this value to a number, you would get a syntax error saying
that you attempted to compare a number with a string.

For example, the following script:

age = "31";
if age > 18 then

Di al og. Message("", "You're ol der than 18.");
end

...would produce the following error message if run from the Client Script:

Error &|

L] E Client Script, Line 2; attempt to compare number with string
L

241
Scripting Guide

242

The problem in this case is the line that compares the contents of the variable “ age”
with the number 18:

if age > 18 then

This generates an error because age contains a string, and not a number. The script
engine doesn’t allow you to compare numbers with strings in this way. It has no way
of knowing whether you wanted to treat age as a number, or treat 18 as a string.

The solution is simply to convert the value of age to a number before comparing it.
There are two ways to do this. One way is to use the String. ToNumber function.

The String. ToNumber function translates a numeric string into the equivalent number,
so it can be used in a numeric comparison.

age = "31";
if String. ToNunber (age) > 18 then

Di al og. Message("", "You're older than 18.");
end

The other way takes advantage of the scripting engine's ability to convert numbers
into strings when it knows what your intentions are. For example, if you're
performing an arithmetic operation (such as adding two numbers), the engine will
automatically convert any numeric strings to numbers for you:

age = "26" + 5; -- result is a nuneric val ue

The above example would not generate any errors, because the scripting engine
understands that the only way the statement makes senseis if you meant to use the
numeric string as a number. As aresult, the engine automatically converts the numeric
string to a number so it can perform the calculation.

Knowing this, we can convert a numeric string to a number without changing its value
by simply adding O toit, like so:

age = "31";
if (age + 0) > 18 then

Di al og. Message("", "You're older than 18.");
end

In the preceding example, adding zero to the variable gets the engine to convert the
valueto a number, and the result is then compared with 18. No more error.

Chapter 11

Other Built-in Functions

Script Functions

There are three other built-in functions that may prove useful to you: dofile, require,
and type.

dofile

Loads and executes a script file. The contents of the file will be executed as though it
was typed directly into the script. The syntax is:

dofile(file_path);

For example, say we typed the following script into afile called MyScript.lua (just a
text file containing this script, created with notepad or some other text editor):

Di al og. Message("Hell o™, "World");
Assumethat the file was distributed with our update.
Now wherever the following line of script is added:
dofil e(_TenmpFol der.."\\MyScript.lua"));

...that script filewill beread in and executed immediately. In this case, you would see
a message box with the friendly “hello world” message.

Tip: Usethe dofile function to save yourself from having to re-type or re-paste a
script into your projects over and over again.

require

Loads a script file into the scripting engine and runsiit. It is similar to dofile except
that it will only load a given file once per session, whereas dofilewill re-load and re-
run the file each time it is used. The syntax is:

require(file_path);
So, for example, even if you do two requiresin arow:

requi re(" %renpFol der %\ foo.lua");
requi re("%enpFol der%\foo.lua"); -- this Iine won't do anything

243

Scripting Guide

244

...only thefirst one will ever get executed. After that, the scripting engine knows that
the file has been loaded and run, and future calls to require that file will have no
effect.

Since require will only load a given script file once per session, it is best suited for
loading scripts that contain only variables and functions. Since variables and functions
are global by default, you only need to “load” them once; repeatedly loading the same
function definition would just be a waste of time.

This makes the require function a great way to load external script libraries. Every
script that needs a function from an external file can safely require() it, and thefile
will only actually be loaded thefirst timeit’ s needed.

type

This function will tell you the type of value contained in a variable. It returns the
string name of the variabletype. Valid return values are “nil,” “number,” “string,”
“boolean,” “table,” or “function.” For example:

a = 989;

strType = type(a); -- sets strType to "nunber”
a="H there";

strType = type(a); -- sets strType to "string"

Thetype function is especially useful when writing your own functions that need
certain data types in order to operate. For example, the following function uses type()
to make sure that both of its arguments are numbers:

- find the maxi mum of two nunbers
functi on Max(Nunmber1l, Nunber2)
-- make sure both argunments are nuneric
if (type(Nunberl) ~= "nunber") or (type(Nunber2) ~= "nunber") then

D al og. Message("Error", "Please enter nunbers");
return nil; -- we're using nil to indicate an error condition
el se

i f Nunmber1l >= Nunber2 then
return Nunber1;
el se
return Nunber 2;
end
end
end

Chapter 11

Actions

TrueUpdate comes with a large number of built-in functions. In the program interface,
these built-in functions are commonly referred to as actions. For scripting purposes,
actions and functions are essentially the same; however, theterm “actions” is
generally reserved for those functions that are built into the program and areincluded
in the aphabetical list of actions in the online help. When referring to functions that
have been created by other users or yourself, the term “functions” is preferred.

Debugging Your Scripts

Scripting (or any kind of programming) is relatively easy once you get used to it.
However, even the best programmers make mistakes, and need to iron the occasional
wrinkle out of their code. Being good at debugging scripts will reduce thetime to
market for your projects and increase the amount of sleep you get at night. Please read
this section for tips on using TrueUpdate as smartly and effectively as possible!

This section will explain TrueUpdate s error handling methods as well as cover a
number of debugging techniques.

Error Handling

All of the built-in TrueUpdate actions use the same basic error handling techniques.
However, thisis not necessarily true of any third-party functions, modules or scripts—
even scripts developed by Indigo Rose Corporation that are not built into the product.
Although these externally developed scripts can certainly make use of TrueUpdate s
error handling system, they may not necessarily do so. Therefore, you should always
consult a script or modul€e's author or documentation in order to find out how error
handling is, well, handled.

There are two kinds of errorsthat you can have in your scripts when calling
TrueUpdate actions: syntax errors, and functional errors.

Syntax Errors

Syntax errors occur when the syntax (or “grammar”) of ascript isincorrect, or a
function receives arguments that are not appropriate. Some syntax errors are caught by
TrueUpdate when you build your application.

Scripting Guide

245

For example, consider the following script:

foo =

Thisisincorrect because we have not assigned anything to the variable foo—the script
isincomplete. Thisis a pretty obvious syntax error, and would be caught by the
scripting engine at build time (when you build your project).

Another type of syntax error is when you do not pass the correct type or number of
arguments to a function. For example, if you try and run this script:

Di al og. Message("H There");

...the project will build fine, because there are no obvious syntax errors in the script.
As far asthe scripting engine can tell, the function call iswell formed. The nameis
valid, the open and closed parentheses match, the quotes are in the right places, and
there€' s even a terminating semi-colon at the end. L ooks good!

However, at run time you would see something like the following:
Error E|

@ 2 arguments required.

Looks like it wasn't so good after all. Note that the message says two arguments are
required for the Dialog.Message action. Ah. Our script only provided one argument.

According to the function prototype for Dialog.Message, it looks like the action can
actually accept up to five arguments:

Dialog.Message | Title,
Text,
Type ;
Icon ,
DefaultButton 1

246
Chapter 11

Looking closely at the function prototype, we see that the last three arguments have
default values that will be used if those arguments are omitted from the function call.
Thefirst two arguments—Title and Text—don't have default values, so they cannot
be omitted without generating an error. To make a long story short, it's okay to call
the Dial og.M essage action with anywhere from 2 to 5 arguments...but 1 argument
isn't enough.

Fortunatdy, syntax errors like these are usually caught at build time or when you test
your application. The error messages are usually quite clear, making it easy for you to
locate and identify the problem.

Functional Errors

Functional errors are those that occur because the functionality of the action itself
fails. They occur when an action is given incorrect information, such asthe path to a
filethat doesn't exist. For example, the following code will produce a functional error:

filecontents = TextFile. ReadToString("this_file_don't exist.txt");

If you put that script into an event or script tab right now and try it, you will see that
nothing appears to happen. Thisis because TrueUpdate' s functional errors are not
automatically displayed the way syntax errors are. We leave it up to you to handle (or
to not handle) such functional errors yourself.

Thereason for thisis that there may be times when you don't careif afunction fails.
In fact, you may expect it to. For example, the following code tries to remove a folder
caled C:\My Temp Folder:

Fol der. Del ete("C\\My Tenp Fol der");

However, in this case you don't care if it really gets deleted, or if thefolder didn’t
exist in thefirst place. You just want to make surethat if that particular folder exists,
it will beremoved. If thefolder isn’t there, the Folder.De ete action causes a
functional error, because it can't find the folder you told it to delete...but since the end
result is exactly what you wanted, you don’'t need to do anything about it. And you
certainly don’t want the user to see any error messages.

Conversely, there may betimes when it is very important for you to know if an action
fails. Say for instance that you want to copy a very important file:

File.Copy("C\\Temp\\My File.dat","C\\Tenp\\ My File.bak");

247

Scripting Guide

248

In this case, you really want to know if it fails and may even want to exit the program
or inform the user. Thisis where the Debug actions come in handy. Read on.

Debug Actions

TrueUpdate comes with some very useful functions for debugging your updates. This
section will look at a number of them.

Application.GetLastError

Thisisthe most important action to use when trying to find out if a problem has
occurred. At runtimethereis always an internal value that stores the status of the last
action that was executed. At the start of an action, this valueis set to O (the number
zero). This means that everything is OK. If afunctional error occurs inside the action,
the value is changed to some non-zero value instead.

Thislast error value can be accessed at any time by using the
Application.GetLastError action.

The syntax is:
last_error_code = Application.GetLastError();

Hereis an example that uses this action:

File.Copy("C\\Temp\\My File.dat","C\\Tenp\\ My File. bak");

error_code = Application. GetlLastError();

if (error_code ~= 0) then
-- sone kind of error has occurred!
Di al og. Message("Error", "File copy error: "..error_code);
Application. Exit();

end

The above script will inform the user that an error occurred and then exit the
application. Thisis not necessarily how all errors should be handled, but it illustrates
the point. Y ou can do anything you want when an error occurs, like calling a different
function or anything else you can dream up.

The above script has one possible problem. Imagine the user seeing a message like
this:

Chapter 11

L]
\!J) File copy error: 1021

It would be much nicer to actually tell them some information about the exact
problem. Well, you arein luck! At runtimethereisatablecalled _tblErrorMessages
that contains all of the possible error messages, indexed by the error codes. Y ou can
easily usethe last error number to get an actual error message that will make more
sense to the user than a number like “1021.”

For example, hereis amodified script to show the actual error string:
File.Copy("C\\Temp\\My File.dat","C\\Tenp\\ My File. bak");
error_code = Application. GetlLastError();
if (error_code ~= 0) then

-- sone kind of error has occurred!

D al og. Message("Error", "File copy error:

_tbl Error Messages[error_code]);
Application. Exit();

end

Now the script will produce the following error message:

Error &|

L]
\!J) File copy error: Source filefs) does nok exist,

Much better information!

Scripting Guide

249

250

Just remember that the value of the last error gets reset every time an action is
executed. For example, the following script would not produce an error message:

File.Copy("C\\Temp\\My File.dat","C\\Tenp\\ My Fil e. bak");
-- At this point Application.GetlLastError() could be non-zero, but...

Di al og. Message("H There", "Hello Wrld");

-- Oops, nowthe last error nunber will be for the D al og. Message acti on,
-- and not the File.Copy action. The Dial og. Message action w |l succeed,
-- resetting the last error nunber to O, and the following lines will not

-- catch any error that happened in the File.Copy action.
error_code = Application.GetlLastError();
if (error_code ~= 0) then
-- sone kind of error has occurred!
D al og. Message("Error", "File copy error:
. _tbl ErrorMessages[error_code]);
Application. Exit();
end

Debug.ShowWindow

The TrueUpdate runtime has the ability to show a debug window that can be used to
display debug messages. This window exists throughout the execution of your update,
but is only visible when you tdl it to be.

The syntax is:
Debug. ShowWindow(show_window);

...where show_window is a Boolean value. If true, the debug window is displayed, if
false, the window is hidden. For example:

-- show t he debug w ndow
Debug. ShowW ndow(t rue);

If you call this script, the debug window will appear on top of your update, but
nothing else will really happen. That’s where the following Debug actions comein.

Chapter 11

Debug.Print

This action prints the text of your choosing in the debug window. For example, try the
following script:

Debug. ShowW ndow(t rue);

for i =1, 10 do
Debug.Print("i =" .. i .. "\r\n");
end

The*\r\n” part is actually two escape sequences that are being used to start a new line.
(Thisistechnically called a “carriage return/linefeed” pair.) You can use\r\n in the
debug window whenever you want to insert anew line.

The above script will produce the following output in the debug window:

(=3

= L0 0D -] O LT e D O —

[}

Cloze

Y ou can use this method to print al kinds of information to the debug window. Some
typical uses areto print the contents of a variable so you can see what it contains at
run time, or to print your own debug messages like “inside outer for loop” or “foo()
function started.” Such messages form atrail like bread crumbs that you can tracein

Scripting Guide

251

252

order to understand what’ s happening behind the scenesin your project. They can be
invaluable when trying to debug your scripts or test your latest algorithm.

Debug.SetTraceMode

TrueUpdate can run in a special “trace” mode at run time that will print information
about every line of script that gets executed to the debug window, including the value
of Application.GetLastError() if theline involves calling a built-in action. You can
turn this trace mode on or off by using the Debug.SetTraceM ode action:

Debug.SetTraceM ode(turn_on);

...whereturn_on is aBoolean value that tells the program whether to turn the trace
mode on or off.

Hereis an example:

Debug. ShowW ndow(t rue);
Debug. Set Tr aceMbde(true);

for i =1, 3 do
Di al og. Message(" Nunber", i);
end

File.Copy("C\\fake file.ext", "C\\fake_file.bak");

Chapter 11

Running that script will produce the following output in the debug window:

= L OCATION: Client Seript

[fori=1, 3 do
[B] Dialog.Meszzage("Mumber', i];
[4] fari=1. 3 do
[5] Dialog.Meszage("Mumber", i)
[4] fari=1, 3 do
[B] Dialog.Meszage("Humber", i];
[fari=1. 3 dao

[B]: File. Copy("'C:\fake_file ext, "C:5\\fake_file. bak');
TRACE: LastEror = 1021 ["Source file(z] does not exist."]

Cloze

Notice that every line produced by the trace mode starts with “TRACE:” Thisis so
you can tell them apart from any lines you send to the debug window with
Debug.Print. The number after the“ TRACE:” part is the line number that is currently
being executed in the script.

Turning trace mode on is something that you will not likely want to do in your final,
distributable update, but it can really help find problems during devel opment.

Debug.GetEventContext

The Debug.GetEventContext action is used to get a descriptive string about the event
that is currently being executed. This can be useful if you define a function in one
place but call it somewhere else, and you want to be ableto tell wherethe function is
being called from at any given time.

For example, if you execute this script from the On Preload event of an Edit Fields
screen:

Di al og. Message("Event Context", Debug. Get Event Context());

Scripting Guide

253

254

...you will see something like this:

Event Context E|

\EJ’) Edit Fields > Cn Preload

Dialog.Message

This brings us to good ole’ Dialog.Message. Y ou have seen this action used
throughout this document, and for good reason. This is a great action to use
throughout your code when you are trying to track down a problem.

For example, you can useit to display the current contents of a variable that you're
working with:

Di al og. Message("The current value of nCats is: " .. nCats);

Y ou can also useit to put up messages at specific pointsin a script, to break it into
arbitrary stages. This can be helpful when you're not sure wherein a script an error is
occurring:

function foobar(argl, arg2)
D al og. Message(" Tenporary Debug Msg", "In foobar()");
-- bunch of script
D al og. Message(" Tenporary Debug Msg", "1");
-- bunch of script
D al og. Message(" Tenporary Debug Msg", "2");
-- bunch of script
Di al og. Message(" Tenporary Debug Msg", "Leaving foobar()");

end

Chapter 11

Final Thoughts

Hopefully this chapter has helped you to understand scripting in TrueUpdate. Once
you get the hang of it, it isareally fun, powerful way to get things done.

Other Resources
Hereisalist of other places that you can go for help with scripting in TrueUpdate.

Help File

The TrueUpdate help file is packed with good reference material for al of the actions,
events and script tabs supported by TrueUpdate, and for the design environment itself.
Y ou can access the help file at any time by choosing Help > TrueUpdate Help from
the menu.

Tip: If you arein a screen’s action editor, or a script tab and you want to learn more
about an action, simply click on the action and press the F1 key on your keyboard.

TrueUpdate Web Site
The TrueUpdate web site is located at http://www.trueupdate.com. Be sure to check

out the user forums where you can read questions and answers by felow users and
Indigo Rose staff as well as ask questions of your own.

Tip: A quick way to access the online forums is to choose Help > User Forums from
the menu.

Indigo Rose Technical Support

If you need help with any scripting concepts or have a mental block to push through,
feel free to open a support ticket at http://support.indigorose.com. Although we can't
write scripts for you or debug your specific scripts, we will be happy to answer any
general scripting questions that you have.

The Lua Web Site

TrueUpdat€ s scripting engine is based on a popular scripting language called Lua.
Luais designed and implemented by ateam at Tecgraf, the Computer Graphics
Technology Group of PUC-RIo (the Pontifical Catholic University of Rio de Janeiro
in Brazil). You can learn more about Lua and its history at the official Lua web site:

http://www.lua.org

Scripting Guide

255

http://www.trueupdate.com
http://support.indigorose.com
http://www.lua.org

256

The Luawebsiteisis also whereyou can find the latest documentation on the Lua
language, along with tutorials and areally friendly community of Lua developers.

Note that there may be other built-in functions that exist in Luaand in TrueUpdate
that are not officially supported in TrueUpdate. These functions, if any, are
documented in the Lua 5.0 Reference Manual.

Only the functionslisted in the online help are supported by I ndigo Rose
Software. Any other “undocumented” functions that you may find in the Lua
documentation are not supported. Although these functions may work, you must use
them entirely on your own.

Chapter 11

257

Scripting Guide

258

Index

ts1, 31, 35, 174, 180, 181
12, 35, 174, 180, 181
s3, 35, 175, 180, 181

\
\r\in, 251

_CommandLineArgs, 166
_ProgramFilesFolder, 138
_ SourceFolder, 192
_tblErrorMessages, 249
_WindowsFolder, 138

A

access rights, 57
accessing table elements, 224
action wizard, 87, 89, 95
actions, 78, 108, 124, 245
adding, 88
editing, 93
adding languages, 158
adding screens, 106
adding servers, 132
adding the client filesto your software,
192
alternative interfaces, 126
Application.Exit, 248, 249, 250
Application.ExitScript, 113
Application.Getlnstall Language, 163, 164,
165
Application.GetLastError, 248, 252
Application.GetUpdatel anguage, 167
Application.SetUpdatel anguage, 165
arguments, 231, 232
arithmetic operators, 215

arrays. Seetables
accessing e ements, 224
assignment, 214
associative arrays, 225
attributes, 108, 111
authentication, 46
autocomplete, 81, 82, 83
auto-save preferences, 73

B

Back button, 103, 108, 110, 111, 113
banner style, 108, 115, 117
blowfish, 174

body, 116

Boolean variables, 212, 244

build process, 180, 191

build settings, 184

building and distributing, 178
built-in session variables, 138

C

calling ShellExecute from C/C++, 195

calling ShellExecute from Visual Basic,
194

Cancd button, 111

case sensitive, 202

changing the current language, 165

choosing atheme, 121

client, 29

client datafile, 172, 174, 185

client executable, 172, 175, 181, 185

client screens, 34, 64, 104

client script, 33, 85

client-server communication, 175

command line arguments, 57, 166, 189,
191

comments, 88, 202

comparing grings, 236

Index

259

concatenating strings, 236

concatenation operator (..), 217, 236

constants, 94, 188, 189

context sendtive help, 85

control area, 119

control area offsets, 119

control structures, 219-23

controls, 87, 113, 115, 119

converting numeric strings into numbers,
241

copying tables, 228

counting characters, 238

CRC value, 53

creating a custom theme, 122

creating tables, 223

creating the user interface, 100

creation date, 52

Ctrl+Space, 82

current language, 163, 165

custom client-server communication, 176

custom session variables, 142

custom themes, 122

customizing error messages and prompts,
162

D

debug actions, 248
debug window, 250, 251

Dialog. TimedMessage, 124
dialog-based updates, 126
disabled, 111

distributing your client, 178
docking panes, 67
document preferences, 73
dofile, 243

double quotes, 208
download location, 57
download method, 44, 55
download settings, 46, 56
dynamic control layout, 119

E

editing actions, 93

editing screens, 107
editing servers, 132

ese 219

esaif, 219

enabled, 111

enumerating tables, 226
environment preferences, 74
error handling, 245

error messages, 162

escape sequences, 209, 251
escaping backdlashes, 210
escaping strings, 209
events, 86, 111, 112

Debug.GetEventContext, 253
Debug.Print, 251
Debug.SetTraceMode, 252
Debug.ShowWindow, 250, 252
debugging your scripts, 245
default language, 43, 156, 165
delimiters, 203 F

design environment, 64 F1 help, 69, 85, 255
determining the current language, 163 file copy, 187
development environment, the, 60 fileinformation, 51
digog actions, 124 file version, 52

dialog style, 41 File.Copy, 247, 248, 249, 250, 252
Dialog.Message, 88, 89, 90, 93, 124, 198, FileFind, 125

200, 205, 224, 225, 231, 235, 246, 247, finding strings, 238

existing trandated messages, 167
expanding session variables, 147

exporting screen trandations, 162
expressions, 215

extracting strings, 240

260

Index

Folder.Delete, 247 interface type, 41

footer, 116 internationalizing, 154

for, 222, 226 introduction to scripting, 76
forums, 71

frequently asked questions, 20 K

FTP, 45, 49, 131, 187 keyboard shortcuts, 24
function arguments, 232 knowledge base, 71
function definition, 232

function prototypes, 95, 246 L

functional errors, 247

functions, 213, 231, 244 LAN, 45,131, 187

language detection, 154

G language files, 156, 167

language ID, 154, 163, 165
getting additional language files, 157 language identifier. See language ID
getting help, 69, 95 language manager, 155
ghosting buttons, 111 language selector, 43, 109, 159
global environment, 201 languages, 42, 152
global variables, 204 adding, 158
H removing, 159

testing, 166

header, 115 local variables, 205
HelloWorld function, 231, 232, 234 localized strings, 167
help, 69 localizing actions, 166
Help button, 108 localizing screens, 160
help file, 255 log files, 196
help pane, 70 logical operators, 217
HTTP, 45, 131 Luavariables, 204
HTTP authentication, 46 Luaweb site, 255
HTTP.Download, 125
HTTP.Submit, 177 M
HTTP.SubmitSecure, 177 making your own language file, 157
HTTPS, 45, 131, 176 MD5, 173
I menu commands, 24

message IDs, 167
if, 219 modified date, 53
importing screen trand ations, 162 moving panes, 67
includes, 96 multi-line comments, 203
ini file, 51 multiple arguments, 232
integrating the client into your software, multiple server scripts, 86

192
source code, 194 N

intellisense, 81, 82 naming variables, 206
interface, 100

261

Index

262

navigation, 110

navigation actions, 112

navigation buttons, 111

navigation events, 112

Next button, 103, 108, 110, 111, 113
nil, 211, 244

null characters, 208

numbers, 208, 244

numeric arrays, 224

O

On Back, 111, 112, 113

On Cancdl, 112

On Ctrl Message, 112

On Help, 112

On Next, 111, 112, 113

On Preload, 112, 149

On Startup, 200, 201, 253
online forums, 71
onlinehdp, 85

operating systems, 196
operator precedence, 218
operators, 215

order of table elements, 228
other uses for TrueUpdate, 28
output folder, 74, 181, 184, 185
Output tab, 185

overriding functions, 234
overriding themes, 123

P

panes, 64, 68
docking and undocking, 66, 67
moving, 67
pinning and unpinning, 68
resizing, 65

parameters, 90, 93, 231

passive mode, 50

pinned panes, 68

pinning panes, 68

plugins, 97

port, 46

post-build steps, 190

pre-build steps, 190
preferences, 72, 191

prefix, 181, 182, 185

primary ID. See primary language ID
primary language ID, 154, 164, 165
product information, 144
product version, 52

program menu, 63

program window, 62
programming environment, 79
progress screens, 108, 125
project files, 74

project templates, 99

project wizard, 36, 39, 99
prompts, 162

protocol, 44

publish report, 184

publish settings, 184

publish wizard, 92, 181, 191
publishing, 178

putting functionsin tables, 235

Q
quick help, 63, 64, 83

R

redefining functions, 234
redundancy, 132

registry key, 51
relational operators, 216
removing languages, 159
removing screens, 107
removing servers, 132
removing session variables, 145
repeat, 221

replacing strings, 239
require, 243

reserved keywords, 207
resizing panes, 65
resources, 96

return, 231, 233

return code, 57

return values, 110

Index

returning multiple values, 234
returning values, 233

run after build, 190

run before build, 190

running TrueUpdate, 193
run-time language detection, 154

S

sample projects, 99
scalahility, 133
scope, 204
screen attributes, 108
screen contols, 113
screen events, 79, 86, 87
screen ID, 160
screen layout, 115
screen lists, 105
screen navigation, 110
screen panes, 63, 104
screen preview, 63, 64, 66
screen properties, 108
screen settings, 108
screen tabs, 63
Screen.Back, 111, 113
Screen.End, 113
Screen.GetlL ocalizedString, 149, 168
Screen.Jump, 83, 113
Screen.Next, 111, 113
Screen.Previous, 113
Screen.SetlocalizedString, 168
Screen.Show, 107
screens, 102, 146
adding, 106
editing, 107
removing, 107
script editor, 63, 64, 79
script files, 96
script help tool bar, 69
script tabs, 33, 63, 79
scripting, 76, 78, 198
important scripting concepts, 201
scripting resources, 200256
scripts, 32, 78

secondary I1D. See secondary language 1D
secondary language ID, 154, 164, 165
secure protocols, 176
security, 170
self-updating, 35
server configuration files, 30
server datafile, 174
server files prefix, 181, 182, 185
server redundancy, 132
server scalahility, 133
server screens, 35, 64, 105
server script, 85
server scripts, 34, 86
servers, 30, 130
session variables, 110, 136, 138
expanding, 146
removing, 145
setting, 14244
session variables tab, 142
SessionVar.Expand, 110, 146, 147, 149
SessionVar.Get, 110, 148
SessionVar.Remove, 110, 145
SessionVar.Set, 110, 144, 149
setting session variables, 14244
setting the current language, 165
Setup Factory, 14, 16, 23, 51, 189, 192
SFTP, 176, 187
Shell.GetFolder, 138
showing screens, 107
side banner, 118
silent update, 41
silent updates, 126
single quotes, 209
source code, 194
SSH, 176
SSL, 176
standard toolbar, 63
starting anew project, 38
status bar, 63
status dialogs, 125
storing functionsin tables, 235
String.Find, 238
String.Left, 240

Index

263

264

String.Length, 238
String.Lower, 237
String.Mid, 240
String.Replace, 239
String.Right, 240
String. ToNumber, 242
String.Upper, 237
strings, 208, 244
comparing, 236
concatenating, 236
converting to numbers, 241
counting characters, 238
extracting, 240
finding, 238
manipulating, 242
replacing, 239
style, 108
syntax errors, 245
syntax highlighting, 81
System.GetDefaultLangID, 163, 164, 167

T

table functions, 230

tables, 213, 223-30, 244
accessing e ements, 224
associative arrays, 225
copying, 228
creating, 223
enumerating, 226
numeric arrays, 224
order of elements, 228

target version, 53

taskbar settings, 124

taskbar visibility, 126

technical support, 71, 255

testing, 196

testing different languages, 166

TextFile.ReadToString, 247

the build process, 180

the devel opment environment, 60

the TrueUpdate model, 26

the update process, 31

theme, 42

themes, 120, 122, 123
timeout, 46
toolbars, 63
top banner, 117
trandated messages, 167
trandated strings, 167
trandating actions, 166
trandating screens, 160
triggering TrueUpdate, 193
TrueUpdate 2.0, 11
key features, 12
web site, 255
what’snew in 2.0, 15
TrueUpdate Client, 29, 62, 130, 175, 181
TrueUpdate program window, 62
TrueUpdate Servers, 30, 128, 130, 175,
182
TrueUpdate.GetL ocalizedString, 167
TrueUpdate. GetServerFile, 133, 175
TrueUpdate.GetUpdateServerList, 133
TrueUpdate. SetL ocalizedString, 168
tsl, 31, 35, 174, 180, 181
ts2, 35, 174, 180, 181
ts3, 35, 175, 180, 181
type, 244
types, 207

U

unattended builds, 189
undo/redo preferences, 73
un-docking panes, 66
undocumented functions, 256
unpinned panes, 68
unpinning panes, 68

update method, 54

update process, 31

updating an existing client, 35
updating TrueUpdate, 62
upload, 48

upload locations, 182, 186
user forums, 71

user interface, 100

using session variables on screens, 146

Index

using the action wizard, 87

Vv

values, 207

variable assignment, 214

variable scope, 204

variables, 136, 204
naming, 206

version identification, 51

vighility, 111

Visua Patch, 14, 16, 23

\W

Welcome dialog, 39
what TrueUpdate does, 28
while, 220
wizard, 103
action wizard, 87, 89, 95
project wizard, 36, 39, 99
publish wizard, 92, 181, 191
wizard style, 41

Index

265

266

Notes

267

Notes

	Introduction
	What is TrueUpdate?
	Key Features of TrueUpdate
	What’s New in TrueUpdate?
	Frequently Asked Questions
	About this Guide
	Document Conventions

	Chapter 1: The TrueUpdate Model
	In This Chapter
	What Does TrueUpdate Do?
	The TrueUpdate Client
	TrueUpdate Servers
	Server Configuration Files
	The Update Process
	Scripts
	Script Tabs: Client vs. Server
	The Client Script
	The Server Script

	Screens: Client vs. Server
	The Client Screens
	The Server Screens

	Updating An Existing Client

	Chapter 2: The Project Wizard
	In This Chapter
	Starting a New Project

	Chapter 3: The Development Environment
	In This Chapter
	Updating TrueUpdate
	Learning the Interface
	Getting Help
	Setting Preferences

	Chapter 4: Introduction to Scripting
	In This Chapter
	What Are Scripts?
	What Are Actions?
	The Script Editor
	Programming Features
	Client Script
	Server Scripts
	Screen Events

	Using the Action Wizard
	Adding Actions
	Editing Actions
	Getting Help on Actions

	Includes
	Plugins
	Where to Go from Here

	Chapter 5: Creating the User Interface
	In This Chapter
	The User Interface
	Screens
	The Screen Panes
	Client Screens
	Server Screens
	Screen Lists
	Adding Screens
	Removing Screens
	Editing Screens
	Showing Screens
	Screen Properties
	The Language Selector
	Session Variables
	Screen Navigation
	Screen Controls
	Screen Layout

	Themes
	Choosing a Theme
	Creating a Custom Theme
	Overriding Themes

	Other Options
	Taskbar Settings
	Actions

	Alternative Interfaces
	Silent Updates
	Dialog-based Updates

	Chapter 6: TrueUpdate Servers
	In This Chapter
	What Are TrueUpdate Servers?
	Types of TrueUpdate Servers
	HTTP Server
	HTTPS Server
	FTP Server
	LAN/Local Server

	Adding, Removing and Editing Servers
	TrueUpdate Server Redundancy
	TrueUpdate Server Scalability

	Chapter 7: Session Variables
	In This Chapter
	What Are Session Variables?
	Built-in Session Variables
	Custom Session Variables

	Setting Session Variables
	Using the Session Variables Tab
	Using Actions

	Removing Session Variables
	Using the Session Variables Tab
	Using Actions

	Using Session Variables on Screens
	When Are Session Variables Expanded?
	Expanding Session Variables in Scripts

	Chapter 8: Languages
	In This Chapter
	Internationalizing Your Project
	Run-time Language Detection
	The Language Manager
	Default Language
	Language Files
	Adding Languages
	Removing Languages

	The Language Selector
	Localizing Screens
	Importing and Exporting Screen Translations

	Customizing Error Messages and Prompts
	Advanced Techniques
	Determining the Current Language
	Changing the Current Language
	Localizing Actions
	Working with Existing Translated Messages

	Chapter 9: Security
	In This Chapter
	Security in TrueUpdate
	Client Side Security
	Client Executable File
	Client Data File
	Client File Updating

	Server Files Security
	Types of Server Files

	Client-Server Communication
	Secure Protocols

	Custom Client-Server Communication
	Important Considerations

	Chapter 10: Building and Distributing
	In This Chapter
	The Build Process
	The Publish Wizard
	Build Settings
	Output
	Upload
	Constants
	Pre/Post Build Steps

	Build Preferences
	Integrating the Client into your Software
	Step 1: Adding the Client Files
	Step 2: Triggering TrueUpdate

	Source Code
	Testing Your Update
	Log Files

	Chapter 11: Scripting Guide
	In This Chapter
	A Quick Example of Scripting in TrueUpdate
	Important Scripting Concepts
	Script is Global
	Script is Case-Sensitive
	Comments
	Delimiting Statements

	Variables
	What Are Variables?
	Variable Scope
	Variable Naming
	Reserved Keywords
	Types and Values

	Expressions and Operators
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Concatenation
	Operator Precedence

	Control Structures
	If
	While
	Repeat
	For

	Tables (Arrays)
	Creating Tables
	Accessing Table Elements
	Numeric Arrays
	Associative Arrays
	Using For to Enumerate Tables
	Copying Tables:
	Table Functions

	Functions
	Function Arguments
	Returning Values
	Returning Multiple Values
	Redefining Functions
	Putting Functions in Tables

	String Manipulation
	Concatenating Strings
	Comparing Strings
	Counting Characters
	Finding Strings:
	Replacing Strings:
	Extracting Strings
	Converting Numeric Strings into Numbers

	Other Built-in Functions
	Script Functions
	Actions

	Debugging Your Scripts
	Error Handling
	Syntax Errors
	Functional Errors
	Debug Actions

	Final Thoughts
	Other Resources

