isuall
vPcl’rC

User’s Guide

wwwwwwwwwwwwwwwwww

http://www.indigorose.com

Proprietary Notice

The software described in this document is a proprietary product of Indigo Rose Software
Design Corporation and is furnished to the user under a license for use as specified in the
license agreement.

The software may be used or copied only in accordance with the terms of the agreement.

Information in this document is subject to change without notice and does not represent a
commitment on the part of Indigo Rose Software Design Corporation. No part of this
document may be reproduced, transmitted, transcribed, stored in any retrieval system, or
translated into any language without the express written permission of Indigo Rose Software
Design Corporation.

Trademarks

Visual Patch, Setup Factory, TrueUpdate, AutoPlay Media Studio and the Indigo Rose logo are
trademarks of Indigo Rose Software Design Corporation. All other trademarks and registered
trademarks mentioned in this document are the property of their respective owners.

Copyright
Copyright © 2001 - 2007 Indigo Rose Software Design Corporation.
All Rights Reserved.

LUA is copyright © 2003 Tecgraf, PUC-Rio.

Note: This User’s Guide is also available as a professionally printed, perfect-bound
manual. To order your copy, please visit www2.ondemandmanuals.com/indigorose.

CHAPTER 1:

INTRODUCTION ..ot 12

Key Features of Visual PatCh ... 13
What's New in Visual PatCh?...........cccccooiii 17
Frequently Asked QUESEIONSooiiiiiiiiiiiiii e 21
ADOUL thiS GUITE ... 26
Document CONVENLIONScivviiiiiiiiiiiiiiiiieieee e 26
UNDERSTANDING VISUAL PATCH 28
What is @ PatC?.........coooviiiiiii 30
Benefits of PatChing...........c..uuiiiiiiiii e, 30
What Can a Patch DO?ccovvviiiiiiiiiiii 31
Patching Methodscooo oo 32
Binary PatChingcooooiiiiiiiii et 32
Whole-File PatChing...........coooiiiiiii e 33
Patching Strat@giesS oo v v i i 34
Incremental PatChing ..., 34
Multi-Version PatChingeiiiooiiiiiiiii e 34
Full-History PatChing.........ccouuiuiiiiiiiiii e 35
Finding the Right Balance ... 35
VEISIONS. ..ot 37
Version Tabscoovvvviiiiiiiii 37
Version Management.........ccouveuuiuiiiiieeeeeeeiii e 38
The Installed Versioncccccoviiiii 38
The Target VErsioNeeiiiiiiiiiiiiiiii e 38
Version DeteCHioN..........coovviiiiiiiiii 39
The Application Folder (Y%oAppFolder%)...........cccoeeveeeiieeinnnnnn. 39
Detection MethOdS.uuvrriiiiiiiiiiiiiiiiiiiiieeeeieeeeereeeieeees 39
KBY IS et 41

Table of Contents

CHAPTER 2:

CHAPTER 3:

Choosing Appropriate Key Files.........ccooooiiiiiiiiiiieeeeiiienn, 42

MiSSION-CritiCal FileS........uuuuiiiiiiiiiiiiiiiiiiiiieiiiiiieeeveeieeees 42
MD5 FiNGerprinting........ oo eeeiieeiiiiiaae et e e e e eeeees 43
UNrecognized FIleSooi i 43
Version NUMDEINGcoovviiiiiiiiiie e 44
THE PROJECT WIZARD ..o 46
Starting a NeW Project........c..uuuiiiiiiiiiiiiiii e, 48

1) Open Visual PatCh..........viiiiiiii e, 48

2) Create a NeW ProjecCt.........ooooiiieiiiiiiiieeeeceei e, 49

3) Enter General Project Information.............cccccceevveeiiiieiinnnnn. 50

4) Choose an Interface TYPe.......couuuuiiiiieiiieiiiiiie e, 51

5) Pick aWindow Style ..., 52

6) Select a Project Theme..........coooiiiiiiiiiiiiiii e, 53

7) Define VEISIONScooeiiiiiiiieeeieee e 54

8) Decide How to Locate your Installed Software 55

9) Locate Using Registry Key........ccuuuiiiiiiiiiiiiiiiiieeecceeiiienn 56

10) Locate Using File Search ... 57

11) Select Optional Features..........cccovuuiuuiiiieeiiieiiiie e 58

12) Click Finish to Create your Patchcccevviuiiiiiieiinens 59
THE DEVELOPMENT ENVIRONMENT.............. 60
The Visual Patch Program Windowccouuiiiiieiiiiiiiiinnnnn. 62

TOOIDAIS ... 63

Task Pane ... 64

Version Tabscoovvviiiiiiiiiii 65
Setting PreferenCes. ... 66
Updating Visual PatCh............ooouiiiiii e 68
Getting Help ..o 69

Table of Contents

CHAPTER 4:

CHAPTER 5:

VERSIONS AND FILES ... 70
The ProjeCt WINAOWuuueiiiiiiiiiiiii et 72
Version TabsS.......cooooviiiiiii 72
Adding VEISIONS.couuuiiiiiiiiieeiii e 73
RemMOVING VEISIONS......cooiiiiiiiiii e 73
Renaming and Duplicating Versions.............ccccceevvvviinieeeneeenns 74
Organizing VerSiONS.uuuiiiaaiiieiiiiiiaae e e eeeiiie e e e e eeeenanns 74
FlE LISES coiiiiiiiiiiiiiiiiiieeee 76
Column HeadingsScoouuiiiiiiieeiieeeii e 76
File LISt ITEMS ...uuiiiiiiiiiiiiiiiiiiieiiiiiei e 78
Filtering the File LiSt.........cocouiiiii e 78
Folder Referencescccccccviviiiiii 83
Overriding Individual FileS..........coooiuiiiiii e, 84
AdAING FIlES ... 84
Adding Folder References. ... 86
RemoVINg FIlES ..o 88
Removing Folder References. ... 88
File PrOPeItIES. .. oo 88
GENEIAD ... 89
CONILIONS ... 91
NOEES ..o 93
Folder Reference Propertiesoooeeeiveeeiiiiiineeeeeeeiiiiceee e 94
Working with Multiple FileS..........couuiiiii e 95
MISSING FIES ... 97
PrHMeEr FileS.....coviiiiiiiii 98
CREATING THE USER INTERFACE............... 100
The User INterface ... 102
SCIBEINS ...ttt 102

Table of Contents

The Screen ManagQeruuuuiiiieiiiiiiiiee e 104

Before PatChing ..., 105
PrOgreSS ... e 105
After PatChingccouvuiiiiiii e 105
AddiNG SCrEENS.coiiiiiiiii e 106
REMOVING SCrEENS......ueiii i 106
Organizing SCrEENS.ccciiiiiiiii ettt a e eaeeeaans 107
Editing SCIrEENS.....coiiiiiiiii e 107
SCreen ProPeItIESt 107
SEUINGS -ttt eee 107
ALMDULES .o 108
SHYIE s 108
ACHONS .ot 108
The Language Selector..........ooovoiiiiiiiiiiiiieceeei e, 108
SesSIoN Variablesuuiiiiiiiiiiiiiiiiiiii 109
Screen NaVIigation..... ... 110
How Screen Navigation WOrksS...........ccoeuiiiiiieiiiiiiiiiinnnenn, 110
Navigation BULLONS..........cooiiiiiiiiii et 110
NaVIgation EVENTS.......ooiiiiiiiiiiiii e 111
NaVigation ACHONSooviiiiiiiiiii e 112
SCrEeN LayOUL........uuiiiiii e 112
Header, Body, FOOter..........oouuiiiiiiiiiiiiieii e 113
Banner StYle.......ooouuieiiiiii 114
Dynamic Control LayOuUL.............oiiieeiiiiiiiiiiieeeeeeeeiii e 117
TREMES. .. 118
ChoosiNng @ ThEMEooiiiiii e 119
Creating a Custom TheMEccoiiiiiiiiiiiieeeeeeeeii e 120
Overriding TREMESoooiiiiii e 121
The Background Windowccoeuuiiiiiiiiiiiiiiiiii e, 122

Table of Contents

CHAPTER 6:

CHAPTER 7:

Other Interface OPLtONS..........uiiiiiiiiiiiiiie e 123

Taskbar SettiNgS.......ccouuiuiiiieiee e 123
ACHONS ettt 124
ACTIONS, SCRIPTS AND PLUGINS............... 126
What are ACHONS?.......coovviiiiiiiii 128
The Action EditOrcoooiieeeee e 129
Programming Featuresuuooiiiiiiiiiiiiiii e 130
EVENES ..o 135
AddiNg ACLIONS......cceiiiiiiii e 138
Editing ACHONScceiiiiiiieeeiieee e 140
Getting Help on ACHIONSeoiiiiiiiiiiiii e 142
SCHPNG BASICS oevvvniiiiiiiieeii e 143
Using aVariable ..., 143
Adding an If Statementoiiiiiiii 146
Testing a Numeric Value............oouuiiiiiiiiiiiiiii e, 150
USING @ FOI LOOP vt 151
Creating FUNCLIONS........oooiiiiiiiie e e 154
ACHON RESOUICES.......ccoiiiiiiiiiiiii 159
Global FUNCLONS.......coo oo 159
PIUGINS et 160
SCHPL FIlES. e 161
SESSION VARIABLES ..., 164
What Are Session VariableS?........ccccooci 166
Built-in Session Variablescccccvvviiiiiiiiiiiiiii, 166
Custom Session Variables ..., 170
Setting Session Variables ..., 171
Using the Session Variables Tabceiiiiiiiiiiiiiiinnnen. 171

Table of Contents

CHAPTER 8:

CHAPTER 9:

USING ACHIONS.cceiiiiiiii et 172

Removing Session Variables. ... 173
Using the Session Variables Tabc..ceeiiiiiiiiiiiiicinnenn. 173
USING ACHIONS.ceiiiiiiiie e 173

Using Session Variables on Screens..........cccoooovoviiiiiiiiiiieees 174
When Are Session Variables Expanded?cccccceeeeen. 174
Expanding Session Variables in Scriptscccccvvvunnnenn. 175

LANGUAGES ... 180

Internationalizing Your Patch...........c..oooiiiii 182

Run-time Language Detection...........ccooeuuuiiiiiiieiiieeiiiiiie e 182

The Language Managerooooeeiieeiuiiiiiieeeeeeeeiiee e 183
Default LanQUaOgEoooeeeeiieiiiiiiee et 184
Language FileS ... 184
Adding LANQUAGESuuiieeeiieeiiiiee e 186
Removing LanguUagescccuuuiuiiiiiaiiiiiiiie e 186

The Language Selector.........coooooiiiiiiiiiiiiieieei e 187

LOCAlIZING SCIEENSuuii ittt 188
Importing and Exporting Screen Translations....................... 190

Customizing Error Messages and Prompts...........ccccoveeeeeeeennnnnn. 191

Advanced TeChNIQUES.cooiiiiiiiiieee e 192
Determining the Current Languagecceeveeeieeeeiiinnnnennn. 192
Changing the Current Languagecooveeeveeeeiiiiinnneeeeeeenns 193
LocaliziNng ACHONSuuieieiiieiiie e 194
Working with Existing Translated Messages..........cccccccee..... 195

BUILDING AND DISTRIBUTING..............c....... 198

The BUild ProCESSccoo oo 200

The Publish Wizard...........coooooeiio 200

Table of Contents

CHAPTER 10:

OUIPUL ... e e eeeas 205
CONSIANTS ... 206
Pre/Post BUild.............uvuiiiiiiiiiiiiiiiiiiiiiiiiiieievviivieeeeeees 209
OPtMIZALIONS....evieiiie e 210
BUild PreferenCesuvvvvviviiiiiiiiiiiiiiiiiiiiiiniiiiiveeeveeeenennes 212
Testing YOour PatCh.........coouuuiiiiiiiii e, 213
Distributing Your PatCh...........oouuiiiii e 213
SCRIPTING GUIDE ..., 216
Before YOU BegIN.......uuiiiiiiiieiiiii e 218
A Quick Example of Scripting in Visual Patch 219
Important Scripting CoONCEPLScouvvuiiiieiiiieiiii e 220
SCrptisS GIODAloiiiiiii 220
Script IS Case-SENSItIVEuuiiieiiiiiiiiiie e 221
COMMENES ...ttt 221
Delimiting StatementsS.........ccouueeiiiiiiiiiiii e 222
Variables.........oooo 223
What are VariableS?ccccoooiiiiiii 223
Variable SCOPEcooviiiiiii e 224
Variable Namingoooooiiiiiii e 225
Reserved KeYWOrdS.........cooieiiiiiiiiieeiiceeii e 226
Types and Valuesuuuoiiiiiiiiiiiiiii e 226
Expressions and OPEratorscooeeeeeeeeuiiuinieeeeeeeeiiiaee e eeeeeees 234
Arithmetic OpPerators........ooooiieiiiiiii e 234
Relational Operators.........cooeuuiiuiiiiiieeieeeii e 235
LOQICal OPEIAtOrSuuiieeeeiieeiiie ettt 236
CONCAENALION ... 236
Operator PreCedeNCE.uuuiiiiieiiieiiiiiae e 237

Table of Contents

e e 238
WHITE e 239
REPEAL..... .o 240
O 241
TaDIES (AITAYS) ..vvuniiieeiieeiii e 242
Creating Tables ... 242
Accessing Table Elements..........cccooooeiiiiiiiiiieiieeei e, 243
NUMETIC AFTAYS .. ettt ettt e s 243
ASSOCIALIVE AITAYS ..eevviiiieeeeieeiiiie ettt ee s 244
Using For to Enumerate Tables...........ooouiiiiiiiiiiiiiiiic, 245
Copying TabIeS......oi i 247
Table FUNCHONS ... 249
FUNCHIONS ...coiiiiiiiiiiiiiiiie 250
FUNCioN ArgUMENES........oooiiiiiiiiiii e 251
Returning ValUBScooo i 252
Returning Multiple Values ..., 253
Redefining FUNCLIONS ..., 253
Putting Functions in Tables.............ciiii, 254
String Manipulationoouuuiiiii e 255
Concatenating StriNgS...........eoeieeeiiieiiiiii e 255
Comparing SNGSooieieiiiiee e 255
Counting CharaCters..........uuuiiiiieiiiiiiiiie e 257
FINdiNg StringS:.......uveiiiiiiie e 257
Replacing StNGS:oi i 258
EXTracting StHNQGS.ui ittt 259
Converting Numeric Strings into Numbers...................e. 260
Other BUilt-in FUNCHONS.........uvviiiiiiiiiiiiiiiiiiiiiiieiiiieeeeveeeeeeeeeees 262
SCHPL FUNCLIONS ... e 262

Table of Contents

ACTIONS L. 264

Debugging YOouUr SCHPLScooiiiiiiiiiie et 264
Error Handlingeeiiiiiiiiii e 264
SYNEAX EITOIS. .o 264
FUNCHONAl EFTOISvvvviiiiiiiiiiiiiiiiiiiiiiiieiiieeee e 266
DebUQg ACHIONScoeiiiiiii e 267

Final ThoughtsSooouiii e 274
Other RESOUICES.....coi oo 274

Table of Contents

Welcomel!

12

Introduction

Visual Patchisafast and efficient system for creating software patches. This unique
solution features state-of-the-art binary differencing and compression algorithms,
combined with a powerful full-history patching engine. Visual Patch makes an
excellent addition to the toolbox of any software developer or IT manager.

We veimproved the development environment to streamline your workflow and have
introduced unprecedented flexibility with a brand-new scripting engine and action
library. We' ve also added a customizabl e screen manager, project themes (skins),
action plugins, MD5 security, and many other powerful and timesaving features.

You'll find that Visual Patch simplifies software version management. It turns the
otherwise complicated task of managing point-releases into a fast and automated
process. Thereis no easier way to make professional-quality, full-history binary
patches for your software and other e ectronic content.

Introduction

What is Visual Patch?

It doesn’t matter what kind of eectronic content you're distributing. Whether it’s
application software, databases, spreadsheets, video, audio or any other data, the
likelihood is that it will change over time. That’s why you need Visual Patch.

Visual Patch makes it easy to create professional, rock-solid software patches. As you
release new software (documents, data, etc.), simply drag-and-drop thefilesinto
Visual Patch and it will automatically track and package the differences for you.

Using a sophisticated combination of binary differencing, data compression and MD5
fingerprinting, Visual Patch is able to create compact full-history software patches
that outperform any comparable tool on a value and feature-by-feature basis.

Visual Patchisan integral part of a complete and effective approach to software
lifecycle management. Software developers, network administratorsand I T
departments all require a professional tool for building software patches. As such,
Visual Patch integrates seamlessly with other Indigo Rose products like Setup Factory
(software installation) and TrueUpdate (automated updating/patch delivery) to provide
a complete solution for al aspects of software delivery.

Key Features of Visual Patch

Vista Compatible

Visual Patch’'s design workspace and generated patches are compatible with Windows
Vista, including a configurable " requested execution level” setting for the patch’s
manifest.

Introduction

13

14

Custom Resource Stamping

Visual Patch allows you to use your own product icon and provides full control of the
version information that you want written into the patch’s resources.

Integrated Code Signing

Protect theintegrity of your company and products by code signing your patches with
your own certificate during the build process.

Sophisticated Version Management

Visual Patch makes it easy to manage your software releases. Y ou can quickly and
easily add, remove and organize product versions, and see all of theimportant details
about your files. Thetoolbars, columns, sort-order, color-coding and other interface
elements are fully customizable, allowing you to view only the information that is
important to your workflow.

State-of-the-Art Binary Differencing Engine

Visual Patch features state-of-the-art binary differencing and compression algorithms.
This ensures smaller and better performing software patches. The algorithms used by
Visual Patch were devel oped specifically for their impressive speed characteristics.
Whereas software patching was once a notoriously slow and cumbersome process,
companies choosing Visual Patch have a distinct advantage.

Full-History Patching

With Visual Patch, you have full control over which versions of your software can be
patched with a single executable. While some vendors will chooseto include only a
single version update, others may offer a patch that can update any version that has
ever been released. Visual Patch can handle ether extreme, or anything in between.
Unlike some other products, Visual Patch’'s full-history patching ability can update
any version of your softwareto the latest release. By only having onefileto
download, Visual Patch brand patches are much more user friendly. Y our users won't
have to worry about finding multiple patches and applying them in the correct order as
they would if you used other, less sophisticated patch builders.

Internet Ready, Single-File Executable

Smaller and faster means a better experience for your customers, and Visual Patch
delivers. Compare our tiny ~500 KB runtime overhead to the competition and see for
yourself. Patches created with Visual Patch are faster to initialize and install than
those created by competitive tools. What's more, our Publishing Wizard walks you

Introduction

through the build process with a few easy steps. The single-file patch executable
(patch.exe) is perfect for distribution by web, email, LAN, CD-ROM or DVD-ROM.

100% Data Integrity

You can rest assured that patches are only applied to files you’ ve specified. Using a
combination of 128-bit MD5 hashing, CRC-32 checksums and industry standard data
encryption protocols, Visual Patch helps you keep your applications and data safe
from unauthorized use, transmission errors and other threats.

Automatic Target Detection

Visual Patch makes quick work out of locating your target application. Using a
flexible combination of starting-point techniques (registry keys and file/folder
searches) and key-fileidentification, Visual Patch can quickly locate the application
files and folders on the system that require patching. Definitively identifying the target
folder greatly simplifies the patching process and is a key requirement for ensuring
that your software is updated quickly and correctly.

Customizable User Interface

Featuring alibrary of over twenty different screen templates, Visual Patch makes it
easy to control your project’s user interface. There are pre-built layouts to handle just
about any task you can imagine, and it’'s easy to adjust them to fit your needs exactly.
You'll find everything from check boxes, radio buttons and edit fields to popular
screens like license agreements and folder selection. The Screen Manager allows you
to add and remove screens at will and adjust the sequence with a simple drag-and-
drop motion. Each screen features a real-time preview so you can see the results of
your changes as you work.

Dynamic Interactive or Silent Operation

Visual Patch supports the creation of both fully-interactive “wizard based” patches or
completely automatic “silent” patches that operate without displaying user interface
dialogs, prompts and other messages. Y ou can choose to dynamically enable the silent
mode through a command line switch, or configure the patch to always runin this
unattended mode. Either way, patches made with Visual Patch are suitable for usein
both consumer/standal one applications and corporate/network patch management
solutions.

Introduction

15

16

Powerful Scripting Engine

Visual Patch includes an incredibly powerful free-form scripting engine, giving you
unprecedented control over your software patching system. This easy to understand
scripting language features everything from “for, repeat and while’ loops, to “if/else”
conditions, functions, variables and arrays. Paired with the built-in action library, full
mathematical evaluation and Boolean expressions, there' s simply nothing you can’'t
achieve. We' ve aso built in an Action Wizard so even complete novices can create
powerful projects that handle the most demanding patching tasks.

Comprehensive Action Library

To make the most out of Visual Patch’'s scripting engine, we' veincluded a library of
over 250 high-level actions. With everything from registry editing to file copying to
web file downloads, this complete scripting environment contains everything you
need to automate complex tasks and handle even the most sophisticated software and
system patching requirements. No other tool can match it!

Integrates with TrueUpdate

Visual Patchis an integral component of software lifecycle management. For a
complete and fully integrated end-to-end solution, we' d recommend using Visual
Patch in conjunction with Indigo Rose' s Setup Factory (software installation) and
TrueUpdate (automatic updating/patch delivery); however you're certainly not locked
into doing so. If your company has standardized on other tools for software
installation, patch deployment and patch management, Visual Patch will still add
significant benefit, being a best-of-breed solution.

Network Patch Management

Visual Patchisn't just for software vendors. It's also an extremely valuable tool for
use in corporate, government and educational 1T departments. Visual Patch helps you
get the most out of your network patch management and software management/SMS
infrastructure. As a network administrator responsible for keeping hundreds or
thousands of computers and servers up to date, being able to create your own
bulletproof software patches is invaluable. Simply add them to your patch deployment
solution of choice (TrueUpdate, SMS, etc) and manage them just like any other OS or
application patch used on your network.

Trusted by Professionals

Thousands of companies trust Indigo Rose software tools. In fact our products, such
as Setup Factory, TrueUpdate and AutoPlay Media Studio, are used to distribute and

Introduction

manage software on millions of customer and client systems around the world.
Additionally, all of our products are backed up by world-class technical support
Services.

What’s New in Visual Patch?

Vista Compatible

Visual Patch’'s design workspace and generated patches are compatible with Windows
Vista, including a configurable " requested execution level” setting for the patch’s
manifest.

Custom Resource Stamping

Visual Patch allows you to use your own product icon and provides full control of the
version information that you want written into the patch’s resources.

Integrated Code Signing

Protect theintegrity of your company and products by code signing your patches with
your own certificate during the build process.

Improved Workflow

Visual Patch features an unbeatable devel opment environment that puts you in control
of your files. Each point release gets its own version tab — then you simply drag and
drop your files and folders onto the project window and you' re ready to build. Visual
Patch is smart enough to maintain your folder structure, automatically query version
resource information, determine what has been added, changed or deleted and ensures
100% data integrity with reliable MD5 hashing and CRC-32 checksums.

Sophisticated Binary Patching Algorithm

Visual Patch features a cutting-edge binary differencing engine. By way of a
sophisticated byte-granular analysis of your file data, Visual Patch is able to extract
only the“delta’ between one file version and the next. Rather than having to distribute
afull copy of changed files, Visual Patch will only package up the parts that have
changed. Theresult is a significant reduction in patch sizes, more security, reduced
transmission time and |ower bandwidth costs.

Introduction

17

18

Project Wizard Quick-Start

Spend five minutes with Visual Patch's easy to use Project Wizard and come away
with a complete and ready to build project. You'll be walked through each option so
you can get your project started as quickly as possible. The new wizard helps you to
add versions, associate your files, configure the user interface, and much more.

Customizable Wizard Dialogs

Visual Patch is considerably more customizable than before. Included are over twenty
different screen templates — easily adjustable to fit your particular needs — that
handle just about any task your project requires. There' s everything from check boxes,
radio buttons and edit fields to popular screens like license agreements, folder
selection and many more. The Screen Manager allows you to add and remove screens
at will and adjust the sequence with a simple drag-and-drop motion. Each screen
features areal-time preview so you can seetheresult of your changes as you work.

Powerful Scripting Engine

Visual Patch includes the same scripting engine as Setup Factory, TrueUpdate and
AutoPlay Media Studio. Based on the popular “Lua’ language, this all-new and
incredibly powerful free-form scripting engine gives you unprecedented control over
your software patching system. This easy to use language features everything from
“for, repeat and while” loops, to “if/else’ conditions, functions, variables and
associative arrays. Paired with the built-in action library, full mathematical evaluation
and Boolean expressions, there is smply nothing you can't achieve. We ve also built
inan “Action Wizard” and “Quick Scripts’ feature so you can get right up to speed
creating powerful projects to handle even the most demanding tasks.

Extensive Action Library

Visual Patch includes a built-in library of more than 250 powerful, yet easy to use
actions. There are high-level actions to handle everything from text file editing to
system registry changes. Y ou can execute programs, call DLL functions, query drive
information, manipulate strings, copy files, enumerate processes, start and stop
services, interact with web scripts, display dialog boxes and much more. Whatever
you need your software patch to do, Visual Patch can make it happen!

Easy to Use Action Wizard

You don’t have to be a wizard to create powerful patching systems with Visual Patch.
W€ ve built the wizard into the software! Simply choose the action you want from a
categorized list (complete with on-screen interactive help), fill in the requested

Introduction

information fields and the wizard does therest. You don’t have to know anything
about scripting or programming — just fill in the blanks, and you' re done! Making
changesisjust as easy. Click on the line you want to change and press the * edit”
button to go back to the original form. It'sredlly that easy!

Professional Script Editor

If you’ ve outgrown the Action Wizard interface or simply want to get the most out of
the Visual Patch scripting engine, we ve got you covered. The Visual Patch action
editor features all of the professional features you' d expect. There' s color syntax
highlighting, code completion, function highlighting, as-you-type action prototypes,
Ctrl+Space function listings and even context-sensitive help. If you're used to
programming in MicrosoftO Visual Basic, MicrosoftO Visual C++ or any other
modern devel opment language, you' Il beright at home.

Publishing Wizard

Once you’ ve got your project ready to go, the Publishing Wizard will help you
package it up into a compact single-file executable. Compare our tiny ~500 KB
runtime overhead to the competition and see for yourself — patches created with
Visual Patch are smaller and faster than ever before. What’s more, the single-file
patch executableis perfect for distribution by web, email, LAN, CD-ROM or DVD-
ROM.

Themes, Skins and Backgrounds

Choose from dozens of pre-made themes (skins) for your screens or even make your
own. It'saseasy as viewing alive dialog preview and picking your favorite style. You
can configure everything from fonts (face, color, size, style) and banner images to
body/background graphics, control colors (buttons, check boxes, radio buttons) and
more. If you like, you can even customize the desktop background with gradients,
images, color washes, headlines and footer text with 3D effects.

Fully Automatic Patches

Visual Patch supports the creation of both fully-interactive “wizard based” patches or
completely automatic “silent” patches. Silent patches operate without displaying user
interface dialogs, prompts and other messages, making them perfect for usein
corporate networks and managed infrastructures. New options let you enable silent
operation via a command line switch, or even configure the patch to alwaysrunin
unattended mode. Visual Patch patches automatically return command line status
codes and are ready for use in automatic deployment processes and corporate patch
management consoles.

Introduction

19

20

Patch Security

Visual Patch includes a variety of features designed to help you manage access to
your software, including the ahility to ask for aserial number or password. Visual
Patch automatically restricts use of your patch files through the use of binary
differencing, key files and sophisticated message digests calculations.

Expandable with Action Plugins

Visual Patch can be easily expanded with Action Plugins. These add on modules can
extend the product in infinitely powerful ways, such as adding support for databases,
XML, data encryption and FTP file transfers. Tight integration with the design
environment, including IntelliSense style code completion and syntax highlighting,
makes Plugins just as easy to use as built-in actions. Plugins are available through
Indigo Rose as well as third-party devel opers thanks to Indigo Rose s freely available
plug-in development kit.

International Language Support

Visual Patch gives you everything you need to support your customers and clients
around the world. Patches created with Visual Patch can automatically determine the
language of the client operating system and adjust the display of screens and messages
appropriatdy. Whether you need to support English, French, German, Spanish, Italian
or any other language recognized by Windows, ssimply provide the text and Visual
Patch takes care of the rest!

Built-in Spelling Checker

Now it's easier than ever to make sure that typos don't creep into your projects. Just
about anywhere you can type, you can perform a spell check to ensure error-free text.
Dictionaries are available for over a dozen languages including English, French,
German, Italian, Spanish, Dutch, Swedish, Danish, Croatian, Czech, Polish and
Slovenian.

Reports and Logs

Keeping track of the essential details of your patching project is now just a couple of
clicks away. With improved HTML-based project reports (featuring CSS formatting)
and text-based run-time log files, you’ Il have an accurate record of everything you
need. New options let you control the level of detail being logged, including options
for recording errors and script execution details.

Introduction

Unattended Builds

Visual Patch fits seamlessly into your automated build processes. Software

devel opment teams and network managers will appreciate features such as build
constants and pre/post build processes. You'll find that Visual Patch projects integrate
right into your daily builds.

Works with Windows 95 and Up

Patches created with Visual Patch work just fine on every Windows operating system
from Windows 95 to Vista and beyond. Compare that to competitive tools and you're
sure to be surprised at their requirements. If you need to support legacy systems, your
choiceisclear!

Frequently Asked Questions

Why use Visual Patch?

Visual Patch simplifies your product management and makes it easy to manage your
software releases. Thereis no easier way to make professional quality, full-history
patches for your software and other electronic content. Unlike other products, Visual
Patch combines sophisticated binary patching with the flexibility offered by full-
history patches. These patches can update any older version to the latest release with a
single executable patch file.

Who needs Visual Patch?

Anyone who needs to create compact and secure software patches needs Visual Patch.
This includes software developers, network administrators and I'T managers, among
others. Regardless of the type of data being distributed — executables, documents,
databases, videos, etc. — Visual Patch can figure out what files have changed, the
exact changes within each file and how to update any previous version to the current
version.

How easy is it to learn?

Visual Patch’'s point-and-click design takes the difficulty out of building even the
most sophisticated full-history patches. With the same ease of use and interface style
that has made Setup Factory famous, Visual Patch makes it easier to get from “no
patch” to “patch” than ever before.

Introduction

21

22

How does Visual Patch affect my bottom line?

Distributing smaller filesis good for both you and your customers. Visual Patch will
help you save money on bandwidth, server hardware and network congestion. Y our
customers and clients will benefit from faster downloads, ardiable and easy to use

patching process and increased satisfaction with your product and company.

Does Visual Patch support binary patching?

Yes. Visual Patch features state-of -the-art binary differencing and compression
algorithms. Combined with a powerful full-history patching engine, Visual Patch
offers a unique approach unequaled by any other product, making it an excellent
addition to the toolbox of any software developer or IT manager.

Does Visual Patch support full history patching?

Yes. Visual Patch gives you full control over which versions of your software can be
patched with a single executable. Unlike some other products, Visual Patch’s full-
history patching ability can update any version of your software to the latest rel ease.
This makes patches created with Visual Patch easier to apply and friendlier to use than
those created with less sophisticated patch builders.

Can | password protect my patches?

Yes. Visual Patch includes a number of features designed to help you manage access
to your software. Asking for a password or serial number is no problem. Additionaly,
Visual Patch automatically restricts use of your patch files through the use of binary
differencing, key files and sophisticated message digests calculations.

Will my patch work on all Windows platforms?

Visual Patch builds patches with 100% support for all 32-bit Windows platforms. This
includes Windows 95, 98, ME, NT4, 2000, XP, Vista and Server 2003.

What languages can my patch appear in?

Visual Patch gives you everything you need to support your customers and clients
around the world. Patches created with Visual Patch can automatically determine the
language of the client operating system and adjust the display of screens and messages
appropriatdy. Whether you need to support English, French, German, Spanish, Italian
or any other language recognized by Windows, ssmply provide the text and Visual
Patch takes care of the rest!

Introduction

Why not just use Setup Factory to build a new installer?

When preparing a new release, you will certainly want to use Setup Factory to build
an installer for new customers; however, you can save money and ensure the security
of your updates by using patch files. Patch files are smaller as they only distribute the
files that have changed and — more importantly — they are absolutely useless to anyone
who doesn’t already have avalid version of your software installed.

What's the difference between an Installer builder and a Patch builder?

Installer builders (such as Indigo Rose' s Setup Factory) have a different purpose than
patch builders (like Visual Patch). A softwareinstaller is used to setup and configure a
full software application on a computer system. Onceit’s installed and working, the
installation program’sjob is done. In a perfect and unchanging world, that would be
the end of the story. However, we all know that change is a constant. Software and
data need to be updated periodically (bug fixes, features etc), but such changes seldom
require the complete overhaul of a program. Y ou need a method that synchronizes the
data“in-the-field” with your current release.

Visual Patch greatly simplifies product maintenance by taking care of this for you.
Whenever you have a new version ready, Visual Patch figures out what files need to
be added, changed or replaced to bring any older version of your software up to date.

Visual Patch saves you time by making the design process as easy as possible. Visual
Patch is also incredibly accurate; by automating much of the decision process, it
eliminates opportunities for human error compared to devel oping patches * by hand”
with other methods. Also, with the addition of binary differencing, Visual Patch can
actually determine the areas of difference within afile and only distribute those
particular changes — something that is impossible to do without sophisticated
algorithms.

Will my patch be Internet ready?

Yes. Visual Patch generates a compact, single-file, self-executing patch that is easy to
distribute, and easy for your usersto use. It’s perfect for distribution using web, email,
LAN, TrueUpdate, CD-ROM or DVD-ROM. It’s also Authenticode-ready, so you can
digitally sign your patches.

What other tools do | need to use Visual Patch?

None. As a standalone product, Visual Patch can be used by anyone. It doesn’t matter
what installation product you use or even whether you use oneat all. If you need to
get newer versions of files out to users, Visual Patch will do it. However, as part of a

23

Introduction

24

complete solution for software deployment, you will find that Visual Patch integrates
quite nicely with tools like Setup Factory and TrueUpdate.

What kinds of files can Visual Patch update?

Visual Patch will work with any kind of files. Y ou could even use it to update a few
dlidesin a presentation, or individual filesin alibrary of help documents used by your
sales team. With aflexibletool like Visual Patch, the possibilities are endless.

Can | customize the runtime interface?

Yes. Visual Patch lets you easily drop in new wizard dialogs using the built-in Screen
Manager and Gallery. Altering the display sequence is as simple as clicking on up and
down arrows. Y ou can edit text messages, use custom graphics and set conditional
display options. A variety of screen types are available, from basic text displays, to
check boxes, text input, radio buttons and more.

Can | create patches that target multiple operating systems?

Yes. You can attach conditions to any part of the patch to make them specific to the
version of Windows that the user is running. For instance, your patch might install
some new files only on Windows 95, or it might check different Registry locations for
valuesif the user is running Windows 98 or Windows XP.

Can | distribute my patch on CD-ROM / DVD-ROM? Email? Web?

Yes. Visual Patch creates standalone, single-file executable patches that you can
distribute using virtually any type of mediayou like.

Can Visual Patch handle advanced patching needs?

Absolutely. With Visual Patch, you aren’t limited to just replacing old files with new
ones. We ve also included many advanced features — you can query the Registry,
modify INI files, perform file searches, interact with web scripts, explorefolders,
delete and renamefiles, and more.

How does Visual Patch benefit the software developer?

Theeasier it isfor your users to update your software, the more likely it is that your
users will be using the latest version. As aresult, your technical support team will
have fewer legacy issues to deal with. The easier it isfor you to rel ease updates, the
more often you can rel ease them. Y ou won't have to hold back rd eases until you have
made enough changes to justify the effort required to prepare updates using traditional
update methods.

Introduction

How does Visual Patch impact technical support?

Timely software patches allow your users to benefit quickly from any new features
and bug fixes you develop. Ensuring that users benefit from all the bug fixes you've
released reduces the incidence of support calls. Keeping users up to date makes it
easier to support them when incidents occur.

How will Visual Patch impact our customers and clients?

Today’'s users are savvy; they demand responsiveness from software companies and
they want tools that meet their needs and make them more productive. In order to
maintain customer loyalty and maximize the user’ s experience with your software,
you need to make patching your software as easy as possible. Making it easy for users
to patch your software shows that you' re committed to supporting it.

How does Visual Patch benefit the network administrator?

Keeping a corporate, educational or government network up-to-date with the latest
security patches, applications updates and operating system fixes is a time consuming
ordeal. Without tools like Visual Patch, the task is virtually impossible. Used in
conjunction with Indigo Rose’' s TrueUpdate, you' Il be able to quickly and effectively
roll out whatever software patches you need to throughout your organization. The
TrueUpdate client software can analyze the computer system, decide what is currently
installed and then take action to download and install the patches you’ ve made with
Visual Patch to bring that system up-to-date. It’s fast, easy and automatic.

I'm not a developer...do | still need Visual Patch?

Absolutely! You don’'t need to be a software devel oper to benefit from Visual Patch.
You can use Visual Patch to update product catalogs, databases, pricelists, help files,
quarterly reports, training videos or whatever else you want.

25

Introduction

26

About this Guide

This user’s guide is intended to teach you the basic concepts you need to know in
order to build a working software patch. You'll learn the ins and outs of the program
interface and how to perform many common tasks.

The guideis organized into 10 chapters:

Chapter 1: Understanding Visual Patch
Chapter 22 The Project Wizard

Chapter 3: The Development Environment
Chapter 4: Versions and Files

Chapter 5: Creating the User Interface
Chapter 6: Actions, Scriptsand Plugins
Chapter 7: Session Variables

Chapter 8: Languages

Chapter 9: Building and Distributing
Chapter 10: Scripting Guide

Each chapter begins with a brief overview and a list of the things you will learn in that
chapter.

Document Conventions

This user’s guide follows some simple rules for presenting information such as
keyboard shortcuts and menu commands.

Keyboard Shortcuts

Keyboard shortcuts are described like this: press Ctrl+V. The“+” meansto hold the
Ctrl key down while you pressthe V key.

Menu Commands

Menu commands are described like this: choose File > Open. This meansto click on
the File menu at the top of the Visual Patch program window, and then click on the
Open command in the list that appears.

Introduction

Untitled - Visual Patch

Tasks "-_* Iil

Yersions

[Addversion
4l Remove Yersion
%3 Rename Version
@ Cuplicate Mersion

[# Organize Yersions

Files

Click on the File menu...

Typed-In Text

Eit\}, Edit Wersions Project Publish

hox=]” IGIORE ¥

o]

Untitled - Visual Patch

l File | Edit Wersions Project Publish

a few Project

o

Save As...
Properties...
Recent File

Exit
i Cuplicate Version

[# Organize Yersions

ko)

Files

...and click on the Open command

When you're meant to type something into atext field, it will be presented in italics,
likethis: type "Visual Patch makes software patching easy" into the M essage setting.
This means to type in "Visual Patch makes software patching easy", including the

quotes.

Introduction

27

Chapter 1.

28

Understanding Visual Patch
Patching software from one version to another is a sophisticated process.

Visual Patch is designed to make the patching process as simple to understand as
possible. It takes care of most details for you, such as inspecting your versions to
decide which files have changed, and analyzing the individual filesin each version in
order to extract the differences between them.

However, there are some important concepts that you will want to understand before
you begin designing your first patch. Some of these, like the concept of key files, are
uniqueto Visual Patch and are central to how the patching system works.

This chapter will discuss the nature of patching and explain some of the concepts you
need to know in order to use Visual Patch effectively.

Chapter 1

In This Chapter
In this chapter, you'll learn aboult:

Patches

The benefits of patching vs. distributing a full installer
Other tasks that Visual Patch can handle

Binary patching and whole-file patching

Different patching strategies, such as full-history patching
Versions and version tabs

Managing your versions

What we mean by “installed version” and “target version”
Version detection (how the installed version is found)
The application folder, and the three standard detection methods used to find it
Key files

MDO5 fingerprints

How the patch handles unrecognized files

Version numbering

29

Understanding Visual Patch

30

What is a Patch?

A patchis afilethat, when run, modifies or replaces specific files on a computer
system, usually to bring an already-installed software product up to date.

Patches are used every day to fix problems, add features, solve unforeseen
compatibility issues, and fix security holes. They can be used to update all kinds of
files: software executables, word documents, satellite images, medical databases,
ocean maps, game data files, even parts of the operating system itsdlf.

Because they only contain the data that has changed, patches are also used to transmit
changes to very largefiles as efficiently and securely as possible.

Benefits of Patching

Therole of patches in the software deployment cycleis to get already-installed
software up to date after it becomes outdated. Patching technology offers numerous
benefits over ssimply redistributing new versions of the original softwarein whole
form.

Smaller file size

Because they only contain the data that has changed from one version to another,
patches can be much smaller than afull softwareinstaller needs to be. Especially
in situations where large data files are involved, the savings are often dramatic—
patches that are less than 1% of the original file sizes are possible.

Reduced traffic

Smaller file sizes trandate into reduced bandwidth costs, and reducing the
amount of traffic leaves more bandwidth for other services.

Faster transmission speeds

Having less data to transmit means that updates can be sent and received faster,
which means less time is spent waiting for updates.

Chapter 1

Security

The best way to protect information during transmission is to never transmit it in
thefirst place. By only transmitting the data that has changed, patches reduce
the risk of third-party interception. Even if some hypothetical future technology
made it possibleto * crack” the encryption methods used to package the changes,
the unchanged data would remain safe.

Integrity
A patch can’t update something that isn’t there. If auser doesn't already have
your softwareinstalled, they won’t be able to apply the patch. And if someone is
using a modified version of afile, that file won’t be updated—unless you
expressly permit it when you design your patch.

What Can a Patch Do?

Thebasic role of a patch isto modify or replacefiles so they match thefilesin atarget
version of your software. It also might need to back up or remove any legacy files, i.e.
files from previous versions that no longer exist in the current version.

But Visual Patchisn’t limited to just updating files. With a built-in scripting engine
containing over 250 high-level actions, it can aso perform many other tasks involving
everything from Registry changes to HT TP downloads.

With alittle bit of scripting, your patch application can handle any advanced task you
need it to: copying files, modifying INI files, starting and stopping services—even
calling external DLL functions.

This ahility to perform system changes in addition to the basic file updating is an
important and valuabl e feature of Visual Patch.

Tip: If you use Setup Factory to build your software installer, you can use actions to
add new filesto the uninstall contral file so they will be removed along with the
original files when the user uninstalls your software via the control pand.

31

Understanding Visual Patch

32

Patching Methods

There are two basic methods that can be used to update afile: binary patching, and
whole-file patching.

Binary Patching

Binary patching or “ddta compression” involves analyzing two versions of afilein
order to extract only the data that has changed. The same changes can then be applied
to any file that matches the old version, in order to “transform” it into the new version.

Creating a binary patch involves performing a byte-by-byte comparison between the
original file and the new file, and then encoding the differences into a difference file.
Each difference file contains the actual bytes that are different in the new file, along
with a number of instructions that describe which bytes need to change, and which
bytes are the same. Thisinformation is said to be encoded into the differencefile.

Tip: Theterm “differencefile’ is often shortened to “ diff file” or just “diff.”

When the patch is applied, the difference file is decoded, and the instructions are used
to build the new file by copying the * unchanged” data out of the old file, along with
the “changed” data that was encoded into the difference file.

For example, given anold file*A” and anew file“B,” abinary patching engine
would compare A to B and then produce a differencefile; let’s call it “ AB.diff.” Once
the differencefileis created, you can useit to create the B file from any file that
matches the A file. In fact, the binary patching engine could recreate B using A and
AB.diff.

Because binary patching only stores the parts that have changed, the differencefiles
can be very small—often less than one percent of the new file' s size. The size of the
difference file depends entirdy on how much data has changed between the two
versions.

Each difference file can update a single, specific version of a fileto another single,
specific version of that file. The encoded instructions in the differencefile are only
valid for afilethat is a perfect match of the original sourcefile. Note that binary
patching cannot be used to update a fileif it has been modified in any way.

For patches that need to update multiplefiles, the patch executable will need to
contain a separate difference file for each file that needs to be updated. So, for
example, to update asinglefilefrom version 1.0 or 1.1to version 1.2, using asingle

Chapter 1

patch executable, it would need to contain one differencefileto go from 1.0to 1.2,
and another togofrom1.1to 1.2.

In most cases, the differencefiles are so small that you can fit alot of versionsinto a
single patch executable and still use less space than you would by just including the
wholefile, as in whole-file patching (see be ow).

Note: Visual Patch will automatically switch from binary to whole-file patching on a
file-by-file basis whenever the total size of all the difference files surpasses the size of
thewholefile.

In some cases, encoding the differences between the two files results in a binary patch
that is larger than just compressing the new file, for example into a.zip archive. This
generally means that there are very little similarities between the two files; in other
words, thetwo files are so different that it is difficult to reuse any of the datain the
old file. This can sometimes be the casefor files that are already highly compressed,
or filesthat are encrypted. Visual Patch is able to detect these cases and will choose
whichever patching method provides the best results.

Whole-File Patching

Whole-file patching operates on a different principle. Instead of only containing the
parts that have changed (as binary patches do), whole-file patches just copy the entire
file. The“patch” isjust a copy of the new version.

Whole-file patches can be faster to apply, because they don't have to search through
the original filein order to copy the parts that haven’t changed to the new version.
They just overwrite the old file with the new one. The downside, of courseg, is that
whole-file patches tend to be much larger than binary patches.

There are, however, two situations where whole-file patches can actually be smaller:
when creating a single patch file that is able to update many different versions, and
when thefiles being patched are too dissimilar.

Visual Patch always chooses the patching method that produces the best results. It
automatically switches between binary patching and whole-file patching on afile-by-
file basisin order to produces the smallest patch possible for your project.

33

Understanding Visual Patch

34

Patching Strategies

Although Visual Patch chooses theright patching method for every situation, it's up
to you to choose an overall patching strategy. The three general strategies that you can
choose from relate to the three different “kinds’ of patches you can create.

Visual Patch supports three general patching strategies: incremental patching, multi-
version patching, and full-history patching.

Incremental Patching

Anincremental patch is a patch that is able to update asingle, specific versionto a
singletarget version. For example, a patch that is able to update version 1.3 to 1.4, and
only 1.3 to 1.4, isan incremental patch. Similarly, a patch that is able to update
version 1.0to 1.4, and only 1.0 to 1.4, isan incremental patch.

Incremental patches take full advantage of binary patching. Each patch only needs to
contain a single differencefile for each file that has changed. This eliminates any
unnecessary data in the patch. For example, why bother sending the data needed to
update 1.0 to 1.4 if the user has 1.3 installed? Because an incremental patch is targeted
at aspecific version, it only needs to contain the information needed to update that
version, and nothing else.

Thisis especially true for incremental patches that update two consecutive versions.
Although there may be many changes over the entire history of a software product, the
changes between any two consecutive versions aretypically very small. For example,
if there arefiles that changed from version 1.2 to 1.3, but thesefiles didn’t change
from version 1.3 to 1.4, an incremental patch to go from 1.3 to 1.4 doesn’t need to
contain any data for the files that changed from 1.2 to 1.3. This minimizes the amount
of datathat needs to beincluded in the patch.

Incremental patching generates the smallest and most secure patches possible.

Multi-Version Patching

A multi-version patch, asthe name implies, is a patch that is able to update multiple
installed versions to a single target version. For example, a patch that is able to update
versions 1.2 and 1.3 to 1.4 isa multi-version patch.

Chapter 1

Multi-version patches are larger than incremental patches. The more versions that a
patch supports, the moreinformation it needs to contain. This increases the amount of
redundant data within the patch.

When a user runs the patch, they are only interested in updating a single version: the
onethey currently have installed on their system. All of the other versions that a
multi-version patch supports are just excess baggage for that user.

The benefit of multi-version patches is that they are smpler to coordinate. A single
patch file can be used to update multiple versions. Y our users have fewer patches to
choose from, and you have fewer patches to distribute. If there are 15 different
versions of your softwarein thefield, you would need 15 incremental patches to
support them all. Using multi-version patches allows you to support all 15 potentially
installed versions with fewer patches.

Full-History Patching

A full-history patch is able to update every previous release of your software up to a
singletarget version. It is essentially a multi-version patch for every version of your
software.

Full-history patches are the simplest patches to coordinate since the same patch file
can update all versions of your software. Your users don’t have to know what version
they currently have in order to choose the correct patch. You only haveto provide a
single download that will work for all of your users. It's simple, straightforward, and
uncomplicated.

However, full-history patches are the largest patches you can produce. In some cases
they can even approach or surpass the size of afull install. For this reason, you will
want to weigh the benefits of full-history patching vs. the other patching strategies.

Finding the Right Balance

Each patching strategy has different benefits and limitations. Y ou will need to choose
a combination of strategies that provides an appropriate balance between file size and
logistical simplicity.

Since a lot depends on how many versions you need to support, and what methods
you use to distribute your patches, thereis no single “right way” to handle everything.
Thefrequency of your updates is another factor that can determine how “ up to date”’
your users are. For instance, if you release new versions often, and you don’t use an

Understanding Visual Patch

35

36

automatic updating technology like Indigo Rose s TrueUpdate, the chances are higher
that several of your users will be more than one version behind.

Y ou will probably want to use a combination of incremental and multi-version
patching in order to get the benefits of both. One strategy that works well is to use two
separate patches:

Anincremental patch to go from the previous version to the current version
A multi-version patch for all of the other versions

Theassumption is that if most of your users always stay up to date, you will save alot
of bandwidth by providing the incremental patch. Thisis especially trueif you use
technology like TrueUpdate to keep your users up to date automatically.

Even if your patch distribution isn’t automated—for example, if the usersjust click on
adownload link and run the patch themselves—this approach provides a good balance
between minimizing patch size and making things less complicated for the user (by
giving them fewer patches to choose from).

If you are using a tool like TrueUpdate, you might want to provide even more patch
files, and let TrueUpdate decide which one to download and run.

For example, if you're about to release version 1.29 of your software, and you know
that most of your users areusing 1.28 and 1.27, it would make sense to create two
incremental patches: onefor the users of 1.28 and onefor the users of 1.27.

Y ou might also want to create a few different multi-version patches, for example one
for versions 1.20 through 1.26, and another for thereally old versions 1.0 to 1.19.

Ultimately, the patching strategy you choose depends on the number and sizes of files
you need to update. The key point is to consider which method makes the most sense
for you, given the distribution methods available to you, and how comfortable your
users are with the patching process.

Chapter 1

Versions

A version is the collection of files and folders that makes up a single release of your
software.

If your original releaseis version 1.0, then all of thefilesin that release—everything
that gets installed onto the user’ s system—constitutes one version.

Each time you modify your software and release it to the public, you create a new
version. For example, if your next releaseisversion 1.1, all of thefilesin that release
constitute another version.

Notethat a version isn’t just the files that have changed from one release to the next.
Each version contains all of thefiles in your software from a specific point in time. It
even includes all of thefiles that remain the same.

In essence, aversion is a complete copy of your software from a specific point in its
lifecycle.

Version Tabs

Each version is represented in Visual Patch by a version tab on the project window.
Theversion tabs are listed in increasing order, with the oldest supported version on
the left and the newest supported version on the right.

Y our project should have one version tab for every version of your software that you
want to build patches for. Whenever you build the project, you will be ableto select
which of these versions you want that particular patch to support.

Each version tab contains afile list where you can add the files that belong to that
version. Adding a new version to a project involves adding a new version tab, and
then adding all of thefiles from that version into that tab' s filelist.

Y ou should put all of thefiles from each version onto a separate version tab. So for
exampleif you have version 1.1 and version 1.2, put all thefilesfrom 1.1 ontoa“1.1”
tab, and put all the filesfrom version 1.2 onto a“1.2" tab.

Note: Make sure you don't have any “empty” tabs, or Visual Patch will report an
error when you build your project.

For more information on version tabs, see chapter 4, Versions and Files.

Understanding Visual Patch

37

38

Version Management

Since each version tab needs to reference thefiles that belong to that version, you
need to keep a copy of each release of your software.

Each version of your software should be stored in a separate location on your system.
A good way to organize your versionsis to keep them in separate folders, with each
folder named according to the version it contains. Each folder should contain a
complete copy of your software, with all internal subfolders intact.

Thisisabit different from Visual Patch 1.0, which was able to take “ snapshots’ of
each version. All it ever needed to know was the digital signatures of thefilesin the
old versions. Because it only provided whole-file patching, it only needed access to
thefiles from the latest version in order to build.

Visual Patch 3.0 on the other hand uses delta compression to create even smaller patch
files. This binary differencing engine needs to analyze the entire contents of each file
in each version in order to build a binary patch that contains only the data that has
changed from one version to another.

The Installed Version

The version that the patch application detects on the user’s system is known as the
installed version. It sthe version of the software that was installed by the original
software installer.

For example, if the user has version 5.8 of your software installed on their system, and
the patch application successfully locates it, “5.8” is the installed version.

In some cases, there may be more than one version of a software program installed on
ause’s system. In these cases, the installed version is the one that the patch
application identifies as the version to update. Usually this will be based on some kind
of information that was recorded on the system by the installer, for example a“ current
version” entry in the Registry.

The Target Version
The version that a patch application is designed to update an installed version to is
known as the target version.

For example, if you create a patch to update version 5.8 to version 5.9, “5.9” isthe
target version.

Chapter 1

Version Detection

Before a patch can begin updating, it needs to determine whether a compatible version
isinstalled on the user’s system. In other words, thefirst task that the patch must
performisto locate and identify the installed version of your software.

Thelocation where your softwareisinstalled is referred to as the application folder.

The Application Folder (%0AppFolder%)

The application folder is the folder where your software is installed on the user’s
system. Finding the application folder is very important—without it, the patch has
nothing to update.

In Visual Patch, the search for the application folder isimplemented using actionsin
the project’s On Startup event. When you use the project wizard to start a new project,
it automatically configures the On Startup script to handle this for you.

In screens and actions throughout the project, the application folder is represented by
a session variable named %A ppFolder%. Storing the application folder path in this
session variableis the ultimate goal of any version detection method.

In the default action scripts, thisis handled by the Visual Patch.CheckFolderVersion
action. This action inspects the folder to determine whether it contains all of the key
filesfor a compatible version. (For more information on key files, see page 41.)

If the folder meets all of the requirements and is recognized as a compatible version,
the Visual Patch.CheckFolderVersion action stores the folder path into the
%A ppFolder% session variable.

Tip: For more information on session variables, see chapter 7.

Detection Methods

In addition to any “custom” methods you might implement, there are three standard
detection methods that are used in Visual Patch. Each of thesewill be implemented
for you by the project wizard in the form of an action script in the On Startup event.

By default these detection methods are designed to follow a specific sequence.
Assuming all three methods are enabled, the sequence is to check the current folder,
check a specific Registry key, and then perform afile search on the user’ s system.

Understanding Visual Patch

39

40

Current Folder

The current folder method checks the folder that the patchis running in to seeif it
contains a recognizable version of the software. This is done by checking for specific
key filesin thefolder.

This method is useful when your software is installed in more than one location on the
user’s system, and the user wants to control which instance of the software is patched.
Since the current folder check is performed before the other detection methods, it
allows the user to override the other two detection methods by copying the patch file
into the folder where the installation they want to patch is installed.

If the current folder doesn’t contain a recognizable version, the patch moves on to the
next detection method.

Registry Key
The Registry key detection method attempts to retrieve the application folder path

from a specific Registry key. This is the recommended detection method, sinceit is
the fastest and most reliable way to locate the application folder.

In order to use this method, your software sinstaller needs to have written the
application folder path into a Registry key so that it can be retrieved by the patch.

If an application path is found in the specified Registry key, the patch will verify that
it pointsto avalid version of your software. Asin the current folder method, it does
this by confirming the MD5 signatures of specific key filesin thefolder.

If no path isfound, or if the key files don’'t match, the patch will proceed with the next
detection method (assuming it is enabled).

File Search

Thefile search method searches the user’ s system for afolder that contains a version
of your software, by checking every folder for the existence of key files. The search
ends when it finds a folder that contains all of the key files for a compatible version
and the MD5 signatures prove that the key files are a perfect match.

Custom Actions

Sinceit’s ultimately al done with actions, it’'s possible to use a completely different
method to determine the folder where your application isinstalled. In fact, you could
even write a script that just set %AppFolder% to a hard-coded path if you were

Chapter 1

absolutdy certain that your software was installed at the exact same place on every
system, and was never modified or installed incorrectly.

In the vast majority of cases, though, you will want to use the standard methods
described above.

Key Files

Each version of your software usually includes one or morefiles that are unique to
that version. For instance, as new features are added, your software’ s main executable
might change, along with a help file and perhaps afew data files. Visual Patch refers
to these “identifiable” files as key files.

Key files are used to locate and identify your software on the user’ s system.

Designating a file as a key file means that you want Visual Patch to verify its
existence and its MD5 signature in order to fully identify the version it belongsto. If
the key file doesn’t exist, or its MD5 signature doesn’t match, Visual Patch will
consider that version not found.

Each release of your software must have at least one key file, but you can specify as
many as you want. It’simportant to remember that every key filein aversion must be
found in order for that version to be identified. In other words, a user must have all of
the key filesfrom a given release installed in order for their version to “qualify.” If
you havefour key files for a particular version and only three of them are found, the
version on the user’ s system won't be considered legitimate. The same goes for a user
with three key files from one version, and one from another. All the key files must
match the original files from a single rel ease absolutely.

It's also important to remember that each key file will be verified by its MD5
signature. Care should be taken to avoid selecting key files that are likely to change
for legitimate reasons once they’reinstalled. For example, if your software uses a
database file that is constantly updated, that file wouldn’t be a good choice for a key
file because its MD5 signature will change. The key files on a user’s system must all
be present, and their MD5 signatures must all match the original values determined
for those files at design time.

If the patch doesn't find a valid release anywhere on the user’ s system, the user won't
be allowed to update their software.

41

Understanding Visual Patch

42

Choosing Appropriate Key Files

Key files are usually files whose contents are unique to a single version. Visual Patch
requires at least one unique key file per version in order to uniquely identify that
version. Thefile names and paths don’'t need to be unique, but their contents do. In
other words, you must designate at least one key file per version whose contents are
different from every other version. Otherwise, the patch won't be able to tell that
version apart from the others.

Key files must also not change after being installed or patched because Visual Patch
relies on their MD5 signature for validation. Files that are normally modified after
they areinstalled (for example, .ini files) should never be designated as key files. If a
key file has been changed in any way from the original filethat is referenced in your
project, it will prevent the version from being identified.

Each version can contain as many key filesasyou like. Infact, it’s agood idea to
designate additional key filesto help ensure a positive identification.

Tip: Good candidates for key files are executables, images, help files, PDF docs,
readme files...anything that can be used to tell one release from another, but isn't
expected to change onceit’s installed.

Thebest key files arefiles that change from one version to the next, such asthe main
executable for the software. As a matter of fact, having amain .exefilethat is
different from one version to another is the perfect example of akey file. It'safile
that must exist (if the .exeisn't there, the softwareisn’t properly installed). It's also
usually different from one version to the next, even if all that changesis the version
number or thetext on the “Help > About” window.

Mission-Critical Files

Although at least one of the key files in a version needs to be unique to that version,
they don’t all haveto be. You can also use the key file feature to perform validation
on mission-critical files. For example, if your software contains areally important file
whose existence and integrity must be checked, making it a key file will prevent the
patch from proceeding if the file has been removed or modified.

Remember: aversion will beidentified only if all of its key files are there and they
match the originals exactly.

Chapter 1

MD5 Fingerprinting
Visual Patch calculates the MD5 fingerprint of each file in order to identify files that
arethe same and in order to detect whether two versions of afile are different.

The MD5 algorithm is a standard algorithm that is widely used to generate
cryptographic signatures. It was developed by Professor Ronald L. Rivest of MIT.
To quote RFC 1321, which describes the MD5 standard:

[The MD5 algorithm] takes as input a message of arbitrary length and produces as
output a 128-bit “fingerprint” or “message digest” of theinput. It is conjectured
that it is computationally infeasible to produce two messages having the same
message digest, or to produce any message having a given prespecified target
message digest.

An MD?5 fingerprint is essentially alarge number that is calculated directly from the
entire contents of afile. If even a single byte within the file changes, the MD5
signature changes as well. For all practical purposes, no two files can have the same
MDO5 fingerprint unless their internal data matches exactly.

Unrecognized Files

Once the patch application has detected a valid version, it will update each filein the
release on an individual basis. By default, Visual Patch will only update files that it
recognizes. If afilethat is part of theinstalled version doesn’'t match the original
sourcefilein your project, it will not be updated. Visual Patch will skip over the
unrecognized file and continue with the rest of the patching process.

This behavior is both a security feature and a requirement:

If whole-file patching is being used, preventing the file from being installed
unless the user has arecognizably valid version is a security feature.

If binary patching is being used, it isimpossible to update the file unless its
contents exactly match the original file.

Y ou can override this behavior for individua files by enabling the* Forceinstall”
option in your project. For more information on this option, see page 91.

Understanding Visual Patch

43

44

Version Numbering

The whole point of Visual Patch isto makeit easier for you and your users to update
your software. One part of this process is deciding on the version numbering scheme
you will useto identify each release of your software.

Visual Patch allows you complete freedom in naming your versions. (You could call
one version “George” and the next version “Henry” if you wanted to.) We recommend
using an industry-standard version numbering scheme that will be more readily
understood by your users. Whatever you decide on, here are some guidelines you
might want to consider.

Give each release a number

Using numbers makes it easy for your users to identify the hierarchy between different
versions of your software. If you name one version 1.0.3.2 and the next version
1.0.3.3, it'sreadily apparent which version is the newer one.

Make the numbers mean something

Version numbering schemes like “ version.revision.sub-revision” are popular because
they allow you to make the magnitude of an update readily apparent in the version
number itself. Going from 1.5.2 to 1.5.3 normally indicates a small change, like a bug
fix. Going from 1.5.3 to 1.6.0 would indicate moderate changes, such as new features
being added, or improvements to the program code. Going from 1.6.0 to 2.0.0 would
be reserved for sweeping changes, like complete rewrites or a completely new
interface design.

Aim for clarity

Try to avoid version numbers that might confuse your users. A prime exampleisa
number like 1.10. Isthis version newer or older than 1.9? That depends on the
numbering scheme being used. The standard “ version.revision” scheme makes 1.10
newer than 1.9, sinceit marks “the tenth revision of the first version” of the product.
But many users mistake the version number for afraction. Even more savvy users that
are aware of the“version.revision” standard might wonder if you were as savvy as
they are—enough software has been released using fractional notation to make it a
difficult guess. One solution is to use double digits for each part, so that 1.9 becomes
1.09 and the ordering becomes readily apparent.

Chapter 1

Don’t rely on file sizes or date stamps

Make it a habit to issue a new version number whenever you release a new version of
your software. Don't expect your users to identify versions based on changesin the
file size or date stamp alone. Not all users will be able to determine this information
easily, and date stamps may be subject to change as files are downloaded or copied.

Simpler is better (within reason)

Avoid using a numbering schemethat involves long awkward version names like
“49823.B345.14231-A.” At the sametime, avoid overly simple schemes that might
limit your ahility to release updates often.

Don’t go overboard

Your external version numbers don’t need to reflect the number of compilations your
software has been through since the last version. They also don’t need to reflect how
many failed attempts there were before a new feature started working. The version
numbers your users see should only reflect the changes that are visible to them. Keep
external version numbers “tight” between consecutive releases. (Releasing version
2.0.29right after version 2.0.21 could have your users searching for nonexistent
versions like 2.0.28 if they run into any problems with 2.0.29. If you must track
recompilations internally, consider keeping your internal version numbers separate
from the version numbers that your users will see.)

Be consistent

If your numbering scheme is “MajorUpdate.MinorUpdate.BugFix,” don't start
incrementing your “major update’ number when you’ ve only put out a bug fix.

Avoid unnecessary changes

Once you decide on a numbering scheme, stick to it. Switching from one scheme to
another could be confusing for your users, especialy if the new version numbers look
similar to the old ones. If you really must switch, make sure you take steps to explain
the changes to your users.

Tell your users what has changed

It's always good to tell your users what new features or bug fixes a new version
brings. A rich and detailed version history makes a good impression on your users,
because it shows how much time and effort you’ ve spent improving your product.

45

Understanding Visual Patch

Chapter 2:

The Project Wizard

Every journey begins with afirst step. In Visual Patch, thisfirst step is easily
accomplished through the Project Wizard. In this chapter we will walk you through
opening Visual Patch for the first time and creating a project using the Project Wizard.

46

Chapter 2

In This Chapter
In this chapter, you'll learn about:

Starting a new project
Adding versions through the project wizard

Locating your installed software

The Project Wizard

47

48

Starting a New Project

Everything has to start somewhere. In Visual Patch, the design process starts with the
creation of a new project.

A project is simply the collection of files and settings and everything else that goes
into building a patch. A typical project will contain all of the files that you want to
patch, some screens that inform or gather information from the user, and maybe afew
actions to take care of any “extras’ (such as storing the patched version number in a
registry key for future patches to use).

The project file

Each file that you add to a Visual Patch project has individual settings that control
where, when and how thefile will be included in the patch at build time. Likewise,
each screen that you can display has its own properties that determine everything from
the text that appears on the various parts of the screen to the color of the screen itsdf
at run time.

These settings are all stored in asingle file called the project file. The project file
contains all of the properties and settings of a project and thelist of source files that
need to be gathered up each time the project is built.

The project file is automatically created for you when you start a new project.

When you start a new project, Visual Patch’'s project wizard walks you through the
first few steps of project creation. This helps you get your project started quickly
without missing any of the basics.

Let’s open the Visual Patch program and start a new project.

1) Open Visual Patch
Use the Start menu to launch the Visual Patch program.

By default, you'll find Visual Patch under:
Start > Programs > Indigo Rose Corporation > Visual Patch 3.0

Chapter 2

B8 comemand Prompt
B control pane
E,thmmad
@ Set Program Access and Defauls

@ Wisual Patch 3.0 Help
" Visual Fatch 3.0 User's Guide |

All Programs B

Start > Programs > Indigo Rose Cor por ation > Visual Patch 3.0

2) Create a New Project

The Welcome dialog appears whenever you run Visual Patch. It not only welcomes
you to the program, it also lets you easily create a new project, open an existing one,
or restore the last project you worked on. (Restoring the last project automatically
opens the project you were working on the last time you ran Visual Patch.)

* CREATE A NEW PROJECT

Qg

OPEN AN EXISTING PROJECT
RESTORE LAST OPEN PROVECT

~ EXIT VISUALPATCH

The Welcome dialog
When you click on “Create a new project,” the Welcome dialog closes and the project
wizard appeers.

49

The Project Wizard

50

3) Enter General Project Information

First, the project wizard asks you for three pieces of information related to your
project. Simply enter your company name, product name, and your company URL in
the appropriate fields.

Project Wizard - General Information

Yizual Patch Project 'wizard

Wielzome to the Yisual Patch Project “wWizard! This wizard will
guide you through the steps of creating a patch for your
software.

whhat is your company name’y?

| 'our Company |

whhat iz your product's name or fitle?
|Ynur Product |

wihat iz your company LIRL?

| bkt A A, IoLrCampant. com |

< Back [Mext > J[Cancel][Help]

Insert your company name, product name, and company website

When you' ve entered all your information, click Next to move to the next step in the
project wizard.

Tip: At any step in the project wizard, you can click Cancel to go straight to the
program window with all of the default project settings untouched (i.e. to start with a
“blank” project).

Chapter 2

4) Choose an Interface Type

The next step in the project wizard is to specify which type of user interface your
patch executable will use.

Project Wizard - User, Interface

Interface Type

The patch applization can show zoreens, dialogs or present no
interface at all. “What tppe of interface would you like to dizplay to
the user?

) Wizard ztyle
) Dialog style
) Silent

[< Back ” Mext » J[Cancel][Help]

Select an interface type

The most common patch user interface is the default Wizard style. A Wizard style
interface presents the user with a series of screens that they can navigate through by
clicking Next and Back buttons. Wizard interfaces are considered very user friendly
because they present and request information in discrete, guided steps, which makes
the overall process easier for the user to understand.

The other two interface styles are Dialog and Silent. A dialog user interface uses
popup dialogs or “message boxes” as opposed to screens to guide the user through the
patch. A silent patch runs entirely in the background, and has no user interaction
whatsoever. It'sa great choice for unattended or automatic patching preferred by
network administrators.

51
The Project Wizard

52

5) Pick a Window Style

This step determines whether or not your patch will have a background window
covering the user’s desktop.

Project Wizard - Window Settings

Wfindow Style
Select a zhyle for your patch application's window.
,.l i (%) Wizard
n) wizard with background window
Appearance
Solid color: Gradignt;
I~ | ([F ~
Irnage:
| | 2] Browse
[< Back]L Mext > J [Cancel] [Help]

Choose a window style
Note: If you choose to have a background window, you can customize its appearance
using the settings in this step.

If you select the background window style, you can specify how you want the
background window to look. It can display a solid color throughout, a top-bottom
gradient, or an image of your choosing.

Chapter 2

6) Select a Project Theme

This step allows you to pick a visual theme for your wizard-style patch. Each theme
applies a different overall appearance to the patch. (For more information on themes,

see page 118.)

Project Wizard - Theme

Ready to Patch

Tt geegram vl paabcihy Vi Prachuct on pous syslerm o
it KheabaledVei i o eedtian 5T e etnn

Py click St b procssd wilh tha palch

[2o [cwen |

[< Back]L Mext > J[Cancel][Help]

Select atheme for your patch executable

Once you' ve selected your project theme, click Next to proceed to the next step.

53

The Project Wizard

54

7) Define Versions

Usethis step to add versions to your patch. Clicking on the Add button allows you to
add a version to your patch. To make adding versions to your patch as easy as
possible, store each version of your software in a separate folder on your development
system. Then, using this step, add those folders one by one. For each version added,
you can opt to add the folder recursively, which means that all files from that point
downward in the directory structure will be added.

Once you have added a folder, you must specify akey file. Thisisthefilethat Visual
Patch will useto determineif your software exists on the user’ s system, and what
version is already installed. It isimportant to select afilethat is version specific, such
as your program’s executable, or aDLL.

Note: You can skip this step and add versions after the wizard is completed. Y ou can
also make changes to these versions, or delete them entirely in the design
environment. For more information on key files, see Chapter 1.

Project Wizard - Define Yersions

Software Wersions

Define the versions of vour zoftware that will be patched
[including the newest version] in the izt below. Arange them from
the oldest at the top of the lizt o newest at the battam.

Yerzion Source Folder k.ey File
C:vrour Products... C:hvour Product..

1.0.0.1 C:hour Producth... C:hyour Product.

[add | [88 Remove | [Eat | @

[< Back ” Mext » J[Cancel][Help]

Add your various product versionsto the patch

Chapter 2

Once you have added all of your product’s versions to the wizard, click Next to
continue.

8) Decide How to Locate your Installed Software

Visual Patch must be ableto find your existing files on the user’s system in order to
patch them. There are a number of ways that Visual Patch can do this. Y our patch
executable can: search for the files in the location from which it was run, retrieve a
value from the registry, and search either specific folders or entire drives on the user’s
system.

Project Wizard - Locate Installed Yersion

Locate Inztalled YWerzion

The patch application needs to locate pour software on the uzer's
ayztem. "hich methods do you want bo uze?

Current folder

R egiztry key

File zearch

[< Back ” Mext = _] [Cancel] [Help]

Decide how the patch executable will locate your installed software

Enabling the Current folder option creates a“failsafe’ patching method: if the user has
your softwareinstalled, but the patch can’t find it, you can direct them to copy the
patch to theinstall location and runiit. This option by itself, however, is not sufficient
as many users have no idea where your softwareisinstalled.

55
The Project Wizard

56

Retrieving a value from the system Registry is by far the best |ocating method, though
it does require some forethought on your part. In order to use this method, your
softwareinstaller must create aregistry value during installation. Then, it isasimple
matter of configuring Visual Patch to inspect that registry key so the value can be
retrieved. Thisis the most efficient method as accessing a single registry key is quick
and not resource intensive.

If neither of the previous methods has located your software, a file search can be
performed. This option scans the entire system looking for your software. It is arather
intensive and lengthy operation, but is an excellent choice of last resort.

9) Locate Using Registry Key
Visual Patch can retrieve your software s installation folder from a specific registry

key. Use this step to specify the location in the Registry that contains the path where
your software was installed.

Project Wizard - Registry Location

Read Folder from Registry

Y'ou have chogen to read vour software's folder path from the
walue of a regizty key. Pleaze specify the registry value where the
folder path iz ztored.

b ain ke

[HKEY_CURRENT_USER v |

Sub key:

|S|:|ftware"-.Y|:|ur Comparyrour Product |

W alue:

| InztallF older |
< Back ” Mext » _] [Cancel] [Help

Specify which registry key and value contains the path to your installed software

Chapter 2

10) Locate Using File Search

Visual Patch can search all or part of auser’s system for key files. Usethis step to
configure specific locations to search, as well as whether or not entire local and
networked drives should be searched if key files are not located in the specified
folders.

Project Wizard - File Search

File Search
Search for file:

| 'our Product exe |

Folders to search:

ZProgramFilesFolder® ' our Product
ZProgramFilesFolders Ny our Comparny
EProgramFilesFolder?

[f hat lacated in the above falders or their subfalders:

Search all local hard drives
[]5earch all netwark, drives

[< Back][_ Mext » J[Cancel][Help]

Specify afileto search for, and whereit could be found

This option searches the user’ s system for afile known to exist in your product. If
found, the software' s version number is determined from key files located within the
found fil€' s path (a Visual Patch.CheckFolderVersion action is used).

Note: Searching a user’s system for afile can be resource intensive, especially if
searching entire drives. This should occur only as a last resort. Retrieving a value
from aregistry key is much more efficient.

The Project Wizard

57

58

11) Select Optional Features

There are several optional features that are useful, though not required. Creating alog
file while patching is an excellent tool for diagnosing potential errors that may arise.
Additionally, warning the user if they do not have Administrative privilegesis an
excellent way to prevent patching problems resulting from the user not having the
COrrect permissions.

In addition, requiring that the user closes your application before the patch will
continue is an excellent way to minimize ‘locked file' issues.

Enabling the Backup patched files option creates a backup copy of any file modified
during the patching process. Enabling rollback support allows files modified to be
‘rolled back’ to their unmodified versions should an error occur while patching or if
the user aborts the patching process.

Project Wizard - Optional Features

Froject Ophions

Thiz iz the final step of the Project ‘Wizard. If you want o review
your choicesz, click Back. Othenwize, click Finizh to create the
project, or Cancel to abort,

Create a log file while patching

Wwiarn the uzer if they don't have Adminiztrative privileges
Backup patched files

Enable file mallback support

[] Require the uzer to close your software before patching

[< Back ” Finizh _] [Cancel] [Help]

Turn on or off various optional features

Chapter 2

12) Click Finish to Create your Patch

After you click Finish, the project wizard will close and the design environment will
appear, complete with scripts, screens, and folder structures configured with the
settings you chose in the project wizard.

At this point, you could build the project and generate a basic patch for those files. Of
course, you'd probably want to customize the screens before distributing it. To learn
how to customize the screens in your installer, see Chapter 5.

Untitled - Visual Patch

File Edit ‘Wersions Project Publish Wiew Tools Help

ROHDwAN BAIB00 e, &S

Tasks el @ 1000 |3 1.004]

e = Filenarne Source Drestination
ersions
EF‘ngram.exe Ci¥aour Produckil,... %AppFalders
I‘E] readme. bxt CAour Producthl,.., SeAppFolders:

[Add Yersion

&1 Remove Version

@ Renarme Yersion

@l Duplicate Yersion
The Visual Patch design environment once the wizard iscomplete

Tip: Once you'rein the design environment, you can start a new project by choosing
File> New.

The Project Wizard

59

Chapter 3:

The Development Environment

This chapter will take you on atour of Visual Patch’'s development environment.
You'll learn how to use the features of the interface that allow you to create a
comfortable and productive work environment, customized for the way you want to
use the program. You' Il also learn how to take advantage of Visual Patch's self-help
resources, which are designed to answer any questions you might have while working
with Visual Patch as quickly and efficiently as possible.

60

Chapter 3

In This Chapter
In this chapter, you'll learn about:

The Visual Patch Program Window
Toolbars

Using the Task Pane

Version Tabs

Setting Preferences

Updating Visual Patch

Getting Help

The Development Environment

61

The Visual Patch Program Window

Now that you have started Visual Patch and created a new project, either through the
Project Wizard or from scratch, it’s time to get comfortable with the program interface
itsdlf.

The Visual Patch program window is divided into a number of different parts.

At thetop of the window, just under thetitle bar, is the program menu. You can click
on this program menu to access various commands, settings and tools.

Below the program menu are a number of toolbars. The buttons on these toolbars give
you easy access to many of the commands that are available in the program menu.

Menu Toolbars File List

& Untinled - Visval Paich

B Vergierd Projest Publih Yiew | Tesh Hele

[| & copol @ oapon| @ ows

Wi

g Ao basicn,
gl Remove Yersion
':..’ Rianame Warson

: D-w::':::l Version Columns
Tabs

Files

& mddFla

o R il
(il Eclif Properties
i LA Raharenes

& ot ke
o Chas FyFibe

S1i2 | [ZM4rR/3AE

Task Pane Status Bar

Visual Patch’s Design Environment

62
Chapter 3

Most of the program window is taken up by thefilelist, which iswhere al thefilesin
your project arelisted. Thereis one tabbed list for each version of your software.

At the very bottom of the window, a status bar reflects your interaction with the
program and offers a number of informative readouts.

Therest of the program window is made up of individual sub-windows known as
panes. Each pane can be docked, tabbed, pinned, resized, dragged, and even madeto
float on top of the design environment. As well, panes remember their positions even
after you unpin them. If you unpin a pane, and then pin it again, it will return to the
position it had when it was pinned.

Tip: When you're dragging panes, it’s the position of the mouse cursor that
determines where the outline snaps into place. For example, to dock a pane below
another one, drag the pane so the cursor is near the bottom edge of that pane. To “tab”
one pane with another, drag the pane so the cursor is on top of the other pan€e stitle
bar.

Toolbars

Toolbarsin Visual Patch provide quick access to many of the more commonly used
features. There are four toolbars available — Standard, Versions, Common, Filters —
with thefirst three displayed by default.

Bodw.

The standard toolbar

BB B B,

The versonstoolbar

®BODEHO V9L,
The common toolbar

: Filter: |All Executables v 8 7 Filers...

Thefilter stoolbar

63

The Development Environment

64

Showing & Hiding
All four toolbars can be shown or hidden in the design environment. To show or hide
atoolbar, simply right click on any toolbar, and click on the one you wish to change.

Customizing

If the default toolbar configurations are not fulfilling your needs, you can customize
them. To customize the toolbars, right click on any toolbar and choose ‘ customize'.
Doing this opens the Customize dialog, where you can show or hide existing toolbars,
create new toolbars, add or remove individual toolbar buttons, create keyboard
shortcuts, change the toolbar themes, and adjust various other options.

Task Pane

Thetall pane on thel€eft is the task pane. The task pane provides easy access to the
parts of Visual Patch you will use the most. It provides an aternative to the program
menu for accessing the various parts of the Visual Patch design environment.

Hersiur\[ﬁ,}

[Add vYersion

&3 Remove Version
<3 Rename Yersion
[§ Duplicate Yersion

;};‘i Qrganize Yersions

Category Heading

Item

& Remove Files
[@ Edit Properties
i Add Reference
B Set Kevyfils

& Clear Keyfile

Project

Help

The Task pane

Chapter 3

Version Tabs

In Visual Patch, your application’s various versions are represented by version tabs on
the project window. In a nutshell, every version of your software |oaded into your
Visual Patch project will have its own version tab.

Note: For more information about versions, files, and other related concepts see
Chapter 1 and Chapter 4.

File Lists

Each version tab is linked to a separatefile list. File lists contain all of thefiles and
folder references associated with that particular version of your software, and provide
you with a central location to manage its contents.

Fromthisfilelist, you can change the properties of one or many files or folder
references; you can change the source folders, destination folders, whether or not
certain files are key files, and under what condition a file will be patched.

Columns

Thefilelist is divided into many columns, allowing you to quickly locate relevant
information. Y ou can decide which columns are displayed by selecting View >
Columns. From the same dial og, you can change their display order.

Y ou can use the displayed columns to sort your filelist; by clicking on a column
header, you can sort your entirefile list by the information contained in that column.
For example, by clicking on the filename column, all files and folder references will
be sorted by their filename.

Filters Toolbar

Thefilters toolbar allows you to apply both default and custom filtersto thefilelist.
Filters display filesin thefile list matching certain criteria, and hide those that don’t.
By default Visual Patch is configured with threefilters: All executables, all key files,
and all missing files. You can create custom filters based on any available column in
Visual Patch. Note that the column used in thefilter does not need to be visiblein the
design environment, and that only one filter can be applied at atime.

Right-Click Context Menus

A quick way to change many settings within your Visual Patch project isto usethe
various right-click context menus available. For example, right clicking on aversion
tab will allow you to add a version, remove the selected version, rename the selected

The Development Environment

65

version, or organize all available versions. Right clicking on thefilelist brings up
various options for working with existing files in the list, and allows you to add new
files and folder references to your project.

Setting Preferences

There are anumber of preferences that you can configure to adjust the Visual Patch
design environment. To access the Preferences dialog, choose Edit > Preferences from

the file menu.
Preferences [g|
Buld Revic
M emony
Code Signing Geteral
[+ Document Build with Publizh 'wizard
i+ Enviraniment Open output folder after build
Script Editar ' . '
SralThadke Confirm before building [hon-wizard made anly]
Startup Show lowe memarny warnings
Updates YWerbogze log output [include individual file items]
Exclude fonts from build:
!.-’-‘-.rial, Courier Mew, Times New Roman |
Log Files
) Mone
r (%) Save in output folder
[0K] i) Save in other folder;
[Catcel] | || &
[Help]

The Preferences dialog

66
Chapter 3

The preferences are arranged into categories listed on the left side of the dialog. When
you click on a category, the corresponding preferences appear on theright side of the
dialog.

Thefirst category contains the build preferences. Here you can specify whether or not
the publish wizard should be used, as well as how Visual Patch behaves before and
after the build. You can also specify where the log files should be saved to, or even
disablethelogfiles.

The Document preferences alow you to change settings that affect the project file.
For example, you can configure the auto-save feature that automatically saves your
project file as you're working on it to avoid any accidental loss of data. You can also
configure the number of undo/redo levels, and choose whether to use the project
wizard to create new projects or to simply start with a new, blank project.

Tip: It can be helpful to set the number of undo levels to a larger value, like 25 or 50.
That way you can undo even more “steps’ back if you change your mind while you're
working on a project.

The Environment category allows you to customize the design environment, and the
Environment > Folders category allows you to specify the locations of various folders
that are used by the project.

There are many other preferences that you can set, such aswhat to do when the design
environment is started (in the Startup category) and what happens when you add files
to the project (in the Document > Adding Files category). Take sometimeto look
through the categories and familiarize yourself with the different options that are
available.

67

The Development Environment

Updating Visual Patch

As with any application, Visual Patch will from time to time be updated to include
bug fixes and possibly new features. In order to ensure you have the most current
version of Visual Patch installed, you can check for updates by choosing Help >
Check for Update from the program menu.

Note: Visual Patch will automatically prompt you to check for updates every 30 days
by default. You can modify this value at any time through the Preferences dialog
(Help > Preferences).

¥, Visual Patch 3.0 Update

Welcome

wielcame to the Wizual Patch 3.0 updater. This proagram wail
connect to the [ntemet to find out F a new version of Wisual
Patch 3.0z available.

Fleaze make zure that you are connected to the [ntermet and
then click Mest to continue,

L MNest > J [LCancel I

Check for themost current version of Visual Patch

Tip: Toinclude this type of update functionality in your software application, check
out TrueUpdate (www.trueupdate.com) today!

68

Chapter 3

http://www.trueupdate.com)

Getting Help

If you still have questions after reading the user’s guide, there are many self-help
resources at your disposal.

F1 Help

Theonline help is only a key press away! Visual Patch comes with an extensive
online program reference with information on every action and feature in the program.

In fact, whenever possible, pressing F1 will actually bring you directly to the
appropriate topic in the online help. This context-sensitive help is an excellent way to
answer any questions you may have about a specific dialog or object.

Note: You can also access the online help system by choosing Help > Visual Patch
Help.

There are three ways to navigate the online help system: you can find the appropriate
topic using the table of contents, with the help of the keyword index, or by searching
through the entire help system for a specific word or phrase.

User Forums

Visual Patch is used by developers all over the world. Many users enjoy sharing ideas
and tips with other users. The online forums can be an excellent resource when you
need help with a project or run into a problem that other users may have encountered.

Choosing Help > User Forums opens your default web browser directly to the online
user forums at the Indigo Rose website.

Technical Support

Choosing Help > Technical Support allows you to either check out the various support
options available to you or to contact Indigo Rose s technical support department.

Choosing Support Options takes you to the Visual Patch web site, where a variety of
online technical support resources are available to you, including a knowledge base
with answers to common questions. This is also where you can find information about
ordering one of our premium support packages and submitting a support request.

Choosing Contact Support takes you directly to the support ticket submission web
page within Visual Patch’s support website.

69

The Development Environment

Chapter 4.

70

Versions and Files

A version is the collection of files and folders that makes up a single release of your
software. Having accurate information about your versions and the files they contain
isacrucia part of performing a successful patch.

Visual Patch uses this information to analyze the differences between your versions,
to determine what data needs to beincluded in the patch, to identify which version (if
any) is actually installed on the user’ s system, and to update thefilesin the installed
version so they match thefilesin your target version.

Since the entire patching process depends on the information you provide, it's
important to understand how to configure al of the versions and files in your project.
This chapter will explain everything you need to know about versions and filesin
order to create a successful patch for your software.

Note: Patching filesis the ultimate purpose of any software patching tool. As such,
you are expected to be completely familiar with files and folder structuresin order to
use Visual Patch. If you need more information on the basics of files and hierarchical
folder structures, please consult the “Windows Basics” section of the Visual Patch
help file.

Chapter 4

In This Chapter
In this chapter, you'll learn aboult:

The project window

Version tabs

Adding and removing versions
Filelists

Filtering file lists

Folder references

Adding files and folder references
Removing files and folder references
File and folder reference properties
What %AppFolder% is

Working with multiplefiles
Missing files

Primer files

71

Versions and Files

72

The Project Window

The project window contains a series of version tabs, each containing the lists of files
that are part of each version. From these lists you can highlight specific files and view
or edit their properties.

File List

Lnmiitied - ¥isuel Patch
[[Versons Project Pupieh Wew Tooh Help
Bl 348 26 d 9. ABEE@ 9 .

Tazks = [ETE

Dapanaion Kille | Flawr G W
higolfolderts TALE 1002
& Audd Version 1] ot wlppoler: » 13-Ct-2004
i FoTers Version

% Ferame Verson
il Drlicabs Vewsion
ik Crganie warsend

Files Version
3 Adkd Hes Tabs
] PrervaFian
S Bl P g e
ia Add kefeence
B St Kyl
By Tl Keyfie

B FFEETLE

The Visual Patch Project Window

Version Tabs

The version tabs on the project window represent each version of your software. New
versions may be required to fix bugs or to introduce new features. Every version of
your software that your patch will update must have a separatefile list that contains all
of thefilesthat are part of that particular version. Version tabs are organized from left
to right where the leftmost version tab is the oldest version and the rightmost tab isthe
newest version. These tabs allow you to switch between the versions in your project to
view or edit their filelists.

Chapter 4

Adding Versions

Each time a new release of your software s created, you will need to add a new
version tab to your project so you can add all of the new version’sfiles. Thefollowing
steps can be taken to add a new version to your project:

1. Select Versions > Add from the program menu.

Selecting Versions > Add from the program menu opens the New Version dialog
where you can specify the name you want to give the new version.

Mew Version g|

Yersion name:

1004

[Q.] [Cancel

Specifying the ver sion name

2. Specify the name of the new version.

Version numbers are normally used as the version names, but you are not limited to
version numbers. You could also use a word or phrase.

Tip: If you use version numbers, whenever you add a new tab Visual Patch will
automatically try to guess the next version number based on the previous versions in
the project.

3. Click the OK button to create the new version.

When you click the OK button, a new version tab with the specified name will be
added to theright of all existing version tabs.

Removing Versions

Occasionally mistakes are made that require the removal of a version from your
project. To remove aversion, select the version you want to remove and then choose
Versions > Remove from the program menu. A confirmation dialog will be shown
before the version and its referenced files are removed from your project.

73

Versions and Files

74

Renaming and Duplicating Versions

Versions can be renamed in your project by choosing Versions > Rename from the
program menu. Thiswill open the Rename Version dialog where you can specify its
new name.

It is also possibleto duplicate a version and all of itsfile references in your project. To
do this, simply select the version you want to make a copy of, and choose Versions >
Duplicate from the program menu. Thiswill add a new version tab with an
automatically generated name containing the samefile list as the copied version. After
the version duplication, you may want to rename the new version to suit your project.

Organizing Versions

The order of the version tabsin your project is very important. Positioning your
versions in the wrong order would result in a patch that is unable to update your
software. In order to build a patch that can successfully deal with all your software
versions, you need to ensurethat Visual Patch “sees” the versions in the correct order,
from the ol dest on theleft, to the newest on theright.

When you build a patch, Visual Patch analyzes thefiles in the newest version of your
software and compares them to thefiles in all the other versions that are defined in the
project. It uses this information to determine what changes are required to update each
version to the newest.

If the order of your versionsisincorrect, the following steps can be taken to
reorganize them to match your software s version history:

1. Select Versions > Organize from the program menu.

The organization of the version tabs in your project can be changed on the Organize
Versions dialog. Y ou can access this dialog by choosing Versions > Organize from
the program menu.

The Organize Versions dialog shows a list of all the versions that are currently in your
project and orders them top down, from ol dest to newest.

Chapter 4

€ Organize Versions

(ooo]
1002
10,01

.J

| QK |[Cancel][Help

The Organize Versions dialog

2. Select the name of the version whose order needs to change, and
click the Move Down button.

On the Organize Versions dialog shown in step 1, you will notice that version 1.0.0.2
isin the second position while version 1.0.0.1 isin the last position. This order
indicates that 1.0.0.1 is the newest version. Lets assume that thisisincorrect and that
1.0.0.2 is the newest version of the software. This means that version 1.0.0.2 needs to
be moved into the last position in the list.

To move version 1.0.0.2, you would first sdect it in the list, and then click the Move
Down button (the one with the arrow pointing down).

3. Confirm the positions of all versions, and click OK.

Repeat step 2 until all the versions arein the correct order. Once you' re satisfied with
the order of the versions, click OK to make the changes to your project. The version
tabs in your project should now follow the order you specified on the Organize
Versions dialog. For example, if you moved version 1.0.0.2 to the bottom of the list,
version 1.0.0.2 would now be the rightmost version tab.

75

Versions and Files

76

File Lists

Version tabs in Visual Patch were designed to contain the lists of files that are part of
each version of your software. Since a minimum of two versionsis required to create
a patch, your project will normally contain at least two lists of files. Theselists
contain references to each file on your local system or LAN where Visual Patch can
access them during the build process. These lists should only contain thefiles that are
distributed to the user.

The best strategy for managing your sourcefilesis to keep each version of your
software in a separate folder. It is also best to preservethe internal folder structure for
each version, i.e. to store each version complete with any subfolders relative to the
main application’s folder. This greatly simplifies the process of adding the versions
filesto your project and setting their destination paths.

Filelists can also be sorted and filtered so you can easily find or focus on the files you
need to customize. Each file within alist has properties you can view or set such asits
source and destination paths, key file property, and patch conditions.

Column Headings

All filelists have columns that display different information about each filein your
project. You can sort the information along any of the columns by clicking on the
heading for that column. If you click on the same heading again, the files will be
sorted by that category in reverse order.

Column
Headings
_ I
| @ 1001 | @ 1o.02]
Filename Source Destination Keyfile
] CiY\Widget DesigneriDocs “afppFolder % Docs

> C:YWidget DesigrneriUpdate ehppFolder¥:'Update
G * C:hWidget DesigneriWidget Samples “ehppFolder:\\Widget Samples
= *.* CiiWidget DesigneriData “eippFolderst|Data

,@ Ordering Information. bk CiVWwidget Designer ohppFolder %

,@ Readme. htm CiVWidget Designer “ehppFolder %
Q Widget Designer.exe Civwidget Designer “ehppFolder % TRUE
,i-] widgetlibrary, dll C:VWidget Designer YehppFolder ¥
€ >

Column headings

Chapter 4

Y ou can customize the columns by choosing View > Columns. This opens the
Columns dialog, where you can choose which columns to display in thefile list, and

change the order (l€ft to right) that the columns arelisted in.

-] Settings |

Colurnns:

[wFilename

[w]Source
[w]Deztination
[w]E.evfile

[wFile %er

[w]5ize

[w]Date

[]5tatug

[]1Build Configurations
[C]Estenszion
[C]105 Candition
[CIProduct Ver
[C]Seript Canditian

|3 Creckan |[E ncheckan | o 3

[Ok l [Cancel

J[_Hee |

The Columnsdialog

Tip: Moving a column up in the columns list moves it to the left in thefilelist;

moving a column down in the columns list moves it to the right.

Versions and Files

s

File List Items

Theitems that appear in the Visual Patch filelists refer to files on your system. When
you add afileto your project, thefile is not copied into the project. It is only
referenced by the project.

In other words, only the path to the file (and a few other properties, such as the size of
thefile) is stored in your project. If the original fileis renamed, moved or deleted,
Visual Patch won't be able to build it into the patch executable. (In fact, it will show
up inthefilelist asamissingfile)

Thefileitself, however, is not part of the project. If you copy your project from one
system to another, you will not be able to build it unless you also copy thefiles, and
place them in the exact same folder structure—in other words, you must place the files
where the project expects them to be located.

Note: Thefilesthat your project references are commonly referred to as source files.

Filtering the File List

If your software contains many files, you might find it easier to temporarily “hide’
some of them from thefilelist in order to focus on thefiles that you're interested in at
the moment. Y ou can do this by applying afilter to thefilelist so it only shows files
that meet specific criteria. For example, you could filter the list to only show files that
are larger than 5 MB, or files that are currently missing from your system.

Thisis all done using the Filters toolbar.

Select a Create custom
different filter filters

| "2 7 Filters...

Toggle filtering
on/off

Filter: |all Executables

-

Clicking the Filters... button on the toolbar opens the filters manager, where you can
configurethelist of filters that appear in the drop-down seector on the toolbar.

78

Chapter 4

Filters Manager,

'5"} Filterz |
I arne Property Rule Criteria
All Executables File Extenzion Equal Ta ENE
K.epfiles K.evfile Equal Ta TRUE
Mizzing Files Status Equal To izzing

[]][Cancel][Help

The FiltersManager dialog

Thefilters manager alows you to define custom filters using a wide range of criteria.

79

Versions and Files

Creating a Filter

Setting up a new filter isincredibly easy. After clicking on Add in thefilters manager,
you simply givethefilter a name:

E Filter Properties

Mame:

| Filez larger than kB |

Froperty:

| Filename v |
Bule:

| Equal Ta W |
Critena:

I ok | [Cancel] [Help]

Naming thefilter

80

Chapter 4

...then select the property you want to filter on:

E Filter Properties

Hame:

| File= larger than BB

Froperty:

Filenarne

Build Canfiguratians
[ate
Dezcription
Destination

File Estenzion
File Wersion
Filename
K.epfile

Local Falder
05 Condition
Product Wersion

== S cript Condition s
Statk

Selecting thefilter property

Versions and Files

81

82

...Select therule that you want to use:

E Filter Properties

Mame:

| Filez larger than kB

Froperty:
| Size b |
Bule:

Equal Ta W

Does Mot kM atch Pattern

Iz Empty
Iz Mat Ernpky
Lesz Than

Lesz Than or Equal To
Matches Pattern
Mot Equal Ta

Equal To
Greater Than or EI:]&TD

Selecting thefilter rule

Chapter 4

...and finally providethe criteria:

P Filter Properties

Mame:

Files larger than BB

.E.rcupert_l,l:

[sie 3
Bule: .
T-L;:-r.eater Than b
Critena:

| 5242880

I ok | [Cancel] [Help

Providing thefilter criteria

Thefilters are saved on a global basis, so once afilter is defined it can be used in all
of your projects. You can switch between filters by using the drop-down selector on
thefilterstoolbar.

Folder References

Folder references are similar to files, but they reference afolder on your system
instead of asinglefile. They're useful for including folders full of files without having
to reference each file individually.

For example, if you have afolder full of documents that you need to patch, you can
use afolder reference to add the entire folder to your project. This also lets you
configure the settings for all of thosefiles from a single item in thefilelist.

Y ou can even choose whether or not to reference folders recursively. In other words,
you can choose whether or not to include the files in any subfolders (and subfolders of
subfolders, and so on) that may be in the selected folder. (Thisisin fact the default

Versions and Files

83

84

behavior of folder references; however, you can choose to only include thefilesin the
immediate folder if you want by ssimply turning off the “ Recurse subfolders’ option.)

Each folder reference also has a File Mask setting that you can use to include only
files that match a specific pattern. For instance, if you wanted to use different settings
for the .doc files and all other filesin your product’s folder, you could use two folder
references—one for each type. So, for example, you could set up one folder reference
to add everything beneath C:\Program Files\ProductX that matches “*.doc” and
another one to add everything in that same path that are “Files that do not match” the
“* doc” file mask. Y ou could then configure their settings differently—for example,
you could set one up with a condition so it only patches the .doc files on specific
operating systems.

Tip: Folder references are one of the most powerful features in Visual Patch! Be sure
to use them to your advantage.

Overriding Individual Files

There may be cases where you want to include a folder full of files, but you want to
use different settings for some of thefilesin the folder. Visual Patch makes this
incredibly easy to accomplish because you can override afolder reference with
individual file items.

Theruleis simple: the settings for individual fileitems always take precedence over
folder references. So if you have afolder reference that happens to includefiles A, B,
and C, and you also add file B to your project on its own, the settings for the
standalone file item will be used for file B, and not the settings for the folder
reference.

Note: It doesn't matter what order thefiles arein — individual file items always
override folder references.

Adding Files

One method for keeping source files organized is to keep each version’s sourcefiles
in a separate folder. While this strategy may take up additional hard drive space, it
greatly simplifies the management of your patches.

Chapter 4

Once you have added a new version tab to your project, the next step isto add all of
its sourcefiles.

1. Click on one of the version tabs.
Select the version tab whose source files you want to add to the project.

2. Choose Versions > Add Files from the program menu.
Thiswill open the Add Filesto Project dialog.

Add Files to Project

Look in: | (29 1.0.0.0 v Q@

I+ 3 B
Product ¥, exei

E_w] readme. bk

File name: i | I Add l
File of type: I,-'.‘-.II Files [*.7] w | [Cancel]
Add Mode

(%) Selected files only
() &l files in this folder
() &l files in this folder and all sub folders

Adding filesto the project

Tip: You can also click the Add Files button on the toolbar, press the Insert key, or
right-click on the project window and select Add Files from the right-click menu.

85

Versions and Files

86

3. Select the add mode that you want to use.

At the bottom of the Add Files to Project dialog is a section labeled “ Add Mode.” This
setting controls which files in the folder structure will be added to the version’sfile
list. There are three add modes to choose from:

The “Selected files only” option will only add the files that you select

The*All filesin this folder” option will add all of thefilesin the folder that
the Add Files to Project dialog is currently displaying

The*All filesin this folder and all subfolders” option will add all of thefiles
in the current folder, and all of thefilesin any subfolders as well

4. Select the files that you want to add, or navigate to the folder where all
the files (and possibly subfolders) that you want to add are located.

Depending on the add mode you chose, you either need to select one or more
individual filesin the browse dialog, or navigate into the folder that you want to add
files from.

5. Click the Add button to add the files to your project.
Once you click the Add button, the files will appear in thefilelist.

Tip: You can also add files to your project by dragging and dropping them onto the
selected version tab in the project window.

Adding Folder References
If your software contains folders of files whose settings do not need to be individually
customized, folder references are a convenient way to add those files to your project.

Assuming you have a version tab ready for files to be added, the following steps can
be taken to add a folder reference to your project:

1. Click on one of the version tabs.

Select the version tab whose source files you want to add to the project as a folder
reference.

Chapter 4

2. Choose Versions > Add Reference from the program menu.
Thiswill open the Browse For Folder dialog.

Browse For Folder

Select Falder

ﬂﬂ' Desktop

[+ l,'_J My Documents

[+ ’j My Compuker

%J My Network Places

Folder: My Documents |

[Make Mevw Falder] oK | [Cancel]

Browsing for afolder toreference

Tip: You can also click the Add Folder Reference button on the toolbar, press
Ctrl+Insert, or right-click on the project window and select Add Folder Reference
from the right-click menu.

3. Select the folder that you want to add.

Simply browse for the folder that you want to add. When you select a folder, its name
will appear in the Folder field near the bottom of the dialog.

4. Click OK to add the folder to your project.
When you click the OK button, the folder reference will appear in thefile list.

Tip: You can also drag and drop a folder onto the selected version tab to add a folder
referenceto your project. Thiswill open the Drag and Drop Assistant dialog to
confirm its addition.

87

Versions and Files

88

Removing Files
To removefiles from your Visual Patch project:

1. Select the files that you want to remove on the project window.
Simply click on the file items that you want to remove.

2. Choose Edit > Delete.
Choosing Edit > Ddete from the program menu will remove the selected file items.

Tip: You can also click the Remove Files button, press the Delete key, or right-click
on the project window and select Remove from the context menu.

Note: Removing files from your project removes thefile items from the file list, but
does not deletethe original files. The original files remain completely unaffected.

Removing Folder References

Removing folder references is exactly like removing files. Simply select the folder
references that you want to remove and choose Edit > Delete (or press the Delete key,
efc).

File Properties

Y ou can use the File Properties dialog to view and edit the settings for any file in your
project.

To access the File Properties dial og:

1. Select a file on one of your version tabs.
Simply select thefileitem that you want to edit.

2. Choose Versions > File Properties.

Thiswill open the File Properties dialog, where you can view and edit the properties
of thefile you selected.

Chapter 4

Tip: There are several other ways to access thefile properties as well. You can click
the File Properties button, press Ctrl+Enter, right-click on thefile item and select File
Properties from the right-click menu, or simply double-click on afilein thelist.

There are three tabs on the File Properties dialog: General, Conditions, and Notes.

General

The General tab iswhere you will find information about thefile itsdf, such as its
name and location on your system, whether it's a key file, and whereit is expected to
be on the user’ s system (the destination path).

|l General |_a’ Conditions | ©7 MNotes|

Source

Filenarne:

F'rn:u:h.u::tZi=-=i.Ee:-:E | ":? Detailz]
Local falder:

!E:HHeIeasedVersiuns'\F‘mductX’ﬂ.EI.EI.EI | ’,Lj] Browse]

[keyfie

Drestination
Irnztall ko

ZdppFolderk |

[Force install

[2k, H Cancel][Help]

The General tab of the File Properties dialog

Filename
The Filename field specifies the name and extension of the file being referenced.

Versions and Files

89

90

Local folder

The Local folder specifies the current location of thefile on your system. This must
be afolder that iswithin local access of your system or LAN.

Visual Patch uses the local folder in combination with the filenameto retrieve the
file sinformation (e.g. when you open a project) and to analyze the file when it builds
the patch executable (i.e. when you build the project).

Key file

Key filesareavery important part of Visual Patch. Key files are used to identify what
version of the software is on the user’ s system and whether or not it isa valid version.
Designating a file as a key file means that you want Visual Patch to verify its
existence and its MD5 signature in order to fully identify the version it belongsto. If
the key file doesn’t exist, or its MD5 signature doesn’t match, Visual Patch will
consider that version not found.

Key files are usually files whose contents are unique to a single version. The best key
files arefiles that change from one version to the next, such as the main executable for
the software. The file names and paths don’t need to be unique, but the contents do.

Visual Patch requires at least one unique key file per version in order to uniquely
identify that version. In other words, you must designate at least one key file per
version whose contents are different in every other version.

Key files must also not change after being installed or patched since Visual Patch
relies on their MD5 signature for validation. Files that are normally changed after they
areinstalled (for example, .ini files) should not be designated as key files. If akey file
has been changed in any way from the original filethat is referenced in your project, it
will prevent the version from being identified.

A version can contain as many key files as you like; however, only one key file must
be unique between versions. If your software contains mission critical files whose
existence and integrity must be checked, you can set them as key files as well, even
though they haven’t changed between versions. Again, only one unique key fileis
required to identify a version.

Install to

ThelInstall to (or “destination”) property specifies wherethefileis expected to exist
on the user’ s system. Though this seems simple enough, it is complicated by the fact
that you can't predict the layout of the folder structure on the user’ s system.

Chapter 4

For instance, if you want to patch afilelocated in the user’ s “My Documents” folder,
how do you know what the full path to that folder is? It could be anything from
“C:\Documents and Settings\JoeUser\My Documents” to “F:\Joe's Docs.”

Visual Patch gets around this uncertainty by providing you with a number of built-in
session variables for common system folders. These are essentially placeholders (like
%MyDocumentsFol der%) that you can use in your file paths, and that will be replaced
by the corresponding path on the user’ s system at run time. Y ou simply use the
appropriate placeholder, and Visual Patch will take care of investigating what the
actual path is when your user runs the patch file.

For more information on session variables, see Chapter 7.

%AppFolder%

In most cases you know the directory structure of your software, however the user is
often given the choice of where they would liketo install. For this reason, the exact
folder path is not known until run time. Visual Patch uses a special session variableto
represent the main folder that your software was installed to. The name of this session
variable is %AppFolder%, which is short for Application Folder, i.e. thefolder where
your software application isinstalled. At run time, this variableis populated with the
folder path from a Registry value, file search, or some other method implemented
using action script. (By default, the setting of %AppFolder% is handled in the On
Startup event by the VisualPatch.CheckFolderVersion action.)

Force Install

The Forceinstall check box isfor files that you always want installed as part of the
patching process for a given version. It instructs Visual Patch to include the wholefile
in the patch and to overwrite any existing version of thefile that it finds on the user’s
system.

Y ou should only enable this option when you're sure that it’s okay for afileto have
been modified after it was installed, and you want to overwrite the modified version
with the new file. (Generally you will want to leave this option unchecked.)

Conditions

The Conditions tab is where you can edit settings that affect whether the file will be
included in the patch executable, and whether it will actually be used when the patch
isrun. In other words, it is used to conditionally include or exclude a filefrom the
patch at build time or run time.

91

Versions and Files

92

Product X.exe Properties

___@_Mi & Conditionz l_:f Mates |

Build Configurations Operating Systerns
= [7] 41 Build Corfigurations [EW
Drefault - [] Windows 95
#-[o] Windows 98
: Windaws ME

: Windaws NT 3.51
[[o] Windows NT 4.0
- [] Windows 2000
#-[o] Windows =P
#- [o] Windows Server 2003
#-[o] Windows Yista
Al Future 053

Script Condition

[2k, H Cancel][Help]

The Conditionstab of the File Properties dialog

Thelist of build configurations allows you to select the build configurations that the
filewill beincluded in. Thefile will only beincluded in the patch if it isincluded in
the build configuration that is selected when you build the project.

Thelist of operating systems allows you to specify which operating systems the file
will be patched on. Thefilewill only be patched on an operating systemiif it is
marked with a check in thislist. So, for example, if you uncheck Windows 95 and
Windows 98 for afile, it will not be patched on a system running Windows 95 or
Windows 98.

The script condition is a short expression written in Lua script. It must evaluate to a
Boolean value of either true or false. At run time this result will determine whether or
not the file will be patched. For example, if you have a variable used in your project
called MyNum and you want to check to seeif its value is 5, the script condition

Chapter 4

would be MyNum == 5. If the contents of the variableis 5, the condition evaluates to
true and the file will be patched. If the variable contains some other value, the
condition evaluates to false, and the file will not be patched.

Notes

The Notes tab is where you can type any notes that you want to keep about thefile.
These are not used by the patch, and are not included in the patch executable. The
Notes tab is simply a convenient place for you to keep notes about the file for your
own purposes. For example, you could list any special instructions involved in
preparing thefilefor the build process, or you could keep track of who last edited the
filé's properties.

Product X.exe Properties |Z||E| [g|

| [4] General | & Ennditinns.i 2 ND':ES|

Hates:

Feature Addition:

Thiz version zupparts the uze of pluginz.

[2k,][Cancel][Help

The Notes tab of the File Properties dialog

Versions and Files

93

Folder Reference Properties

For the most part, Folder References have the same properties as files do. In fact, the
Conditions and Notes tabs are exactly the same. However, there are a couple
differences on the General tab worth mentioning:

Folder references have a “Recurse subfolders’ option that controls whether filesin
subfolders (and their subfolders) should beincluded as well. This allows you to
include full folder treesif you wish.

Folder references also have a File mask setting that allows you to include or exclude a
range of files that match a filename pattern, e.g. “*.exe’. This alows you to use
custom settings for different file types.

Folder Reference Properties |;||E | [z|

|l General |_a’ Conditions | ©7 MNotes|

Source
Local folder:

|C:\Released Versions\Product XA1.0.0.04Docs | |@) Browse |

Recurse subfolders

File mask: (%) Files that match () Files that do not match
|".|:u:|f|".htm

Deztination
Inztall to:

ZdppFolderziDocs |

—T— [Cancel] [Help]

The General tab of the Folder Reference Propertiesdialog

94

Chapter 4

Working with Multiple Files

Y ou can use the Multiple File Properties dialog to edit the properties of more than one
file (or folder reference) in your project at atime.

To access the Multiple File Properties dialog:

1. Select morethan onefile on aversion tab. (You can sdect multiple files by
pressing and holding the Ctrl key or the Shift key while you click on thefiles.)

2. Choose Versions > File Properties from the menu.

(You can also click the File Properties button, press the Cirl+Enter key, or
right-click on the files and select File Properties from the right-click menu.)

Thiswill open the Multiple File Properties dialog, where you can view and edit
the properties of the files you selected.

Multiple File Properties |;I|EI E|

|gl General |_& Conditions |

Source
Filenarme:
|_L| g2 onginal values |
Local folder:

o = [=
!Llse oniginal values ! u‘] Browsze]
[Eey file
Destination
Install to:
|L|$e anginal walues |
[]Farce instal

| OF. | [Cancel] [Help]

The General tab of the Multiple File Propertiesdialog

Versions and Files

95

The Multiple File Properties dialog is similar to the File Properties dialog, but there
are some important differences:

Thereis no Notes tab.

Y ou cannot enter text in afield directly; instead, you must click the Edit button
to theright of thefield, and use the Edit Multiple Values dial og to change the
text. Note that the Edit Multiple Values dialog allows you to completely replace
thetext for all selected files, append (or prepend) some text to the value for each
selected file, or search and replace among the values for all selected files.

B Edit Multiple Values X]

HModify mode: Search and Replace » [] Case sensitive
Search for:

| =td

Replace with:

| standard
() Show original values (3) Preview changes
: standard_dialog.lua

standard_silent.lua
standard_wizard.lLa

| Ok, |[Cancel][Help]

Changing threefilenames at once using the Edit M ultiple Values dialog

Check boxes on the Multiple File Properties dial og have three states:
enabled (¥), disabled (I), and mixed (¥). The mixed state preserves the
settings for that check box in all of the selected files.

For more information on using the Multiple File Properties dialog, please consult the
Visual Patch help file.

96
Chapter 4

Missing Files

Since Visual Patch only records an informational link to each file, and doesn’t
actually maintain a copy of thefileitself, it's possiblefor filesto go “missing” from
Visual Patch’'s point of view. For example, if afilein your project has moved to
another folder, Visual Patch will no longer be abletofind it at itsoriginal location.
The same thing happens when afileis renamed or deleted. Visual Patch only knows
to look for afile at the place where it was when you “showed” thefileto Visual Patch
by adding it to your project.

Although Visual Patch might not know where a missing file has ended up, it definitely
knows when afile is missing. Whenever afilein your project can't be found at its
original location, Visual Patch displays thefile sinformation in red instead of black.
Thered color makes it easy for you to see which filesin your project are missing.

Thefile's statuswill also show as*“Missing” instead of “OK” in the Status column on
thelist view, if that column is enabled. Y ou can enable the Status column from the
column settings dialog found by choosing View > Columns from the program menu.

Tip: A quick way to determine which files are missing in your project isto click on
the Status column heading to sort thefilesin the list view according to their status.

If you find that your files are suddenly playing hide-and-seek with Visual Patch, try to
remember if you’ ve made any changes to your files recently. If you moved thefiles,
you can try moving them back. If you renamed the files, you can restore the original
names. If you deleted thefiles, you'll have to replace them.

If Visual Patch still shows thefilesin red after you' ve corrected the situation, you
probably just need to refresh the display. To do so, ssimply choose View > Refresh
from the program menu, or press the F5 key. Refreshing the display causes Visual
Patch to re-examine the location of every file in your project.

Note: Visual Patch automatically refreshes the display for you when you open a
project or initiate the build process.

If you moved, renamed, or deleted the files on purpose, and you want Visual Patch to
usethefiles at their new locations, remember the files by their new names, or just
forget about the past and move on, you' Il need to change the local source path on the
File Properties dialog for each file. This can easily be done by selecting all thefiles
and then modifying their properties using the Multiple File Properties dial og.

Versions and Files

97

Primer Files

Primer files get extracted from the patch executable before the patch process begins.
This means you can use primer files at the very start of the patch process, right after the
user runs the patch executable. Primer files are useful in situations where changes need
to be made before the normal patching process begins.

One use of primer filesisto run aprogram on the user’ s system before the rest of your
files are patched. For example, you might need to execute a custom program or DLL
function before your software is patched—perhaps to perform some product-specific,
low-level pre-patch tests on the user’ s hardware and write the results to the Registry.
By adding your custom program or .dll to thelist of primer files, you could distribute
it “inside” your patch executable and still be ableto run it before any of the “normal”
filesinyour project are patched.

Primer files are automatically extracted to a temporary folder at run time. The path to
this folder is stored in a session variable named %TempL aunchFolder%. Y ou should
use this session variable in actions when you need to access your primer files.

Any type of file can be added as a primer file simply by adding it to the Primer Files
tab on the Resources dialog. All files on this tab will be included in the patch
executable when you build your patch, but are not part of any version of your
software.

98

Chapter 4

Resources

[i7 Primer Files |_|j| Global Functions || El Includes II-m Pluginsi

Files ta extract to %T emplaunchFalder? when the patch starts:

Filename Build Configurations Delete On Exit

C:WWwidget Master Regzhaystern checker exe All True

C:\Wwidget M azter Hegzhwidget driver 3

< | @

[:{}z Add Hx aemwe][f_? Edi]

[0k, _H Cancel H Help

The Primer Filesdialog

Tip: Another way to access files at the start of the patch is to distribute them
“alongside’ your patch. For instance, you could store thefiles “externally” on the
same CD-ROM, and access them directly; or, you could download the files from your
web site using an HTTP.Download action in the On Startup project event.

99

Versions and Files

Chapter 5:

100

Creating the User Interface

Creating the user interfaceis anintegral part of every project since the user interface
isthefirst thing your end users will see when they run your patch. It also serves asa
bridge between the information that the user has and that the patch wants. Having an
easy to use yet fully functional user interface is something that all developers working
with Visual Patch should be concerned about.

This chapter will introduce you to the user interface and get you well on your way to
creating a sharp and consistent look and feel for all of your projects.

Chapter 5

In This Chapter
In this chapter, you'll learn about:

The user interface

Screens

Themes

The background window
Taskbar settings

Dialog and Status Dialog actions

101

Creating the User Interface

The User Interface

You can think of the user interface as any part of the patch process that the end user
will see. When a screen is displayed, the end user is seeing part of the user interface.
When the end user clicks the Next button, the end user is interacting with the user
interface.

The basic e ements of the user interface are:
Screens
Themes
The Background Window
Taskbar visibility

Any actions that generate a user interface element (e.g. Dialog.Message,
StatusDIg.Show)

Screens

The most important aspects of your user interface are the screens that you choose to
display, since thisis where your end user will actually interact with the patch. Screens
allow you to provide important information, such as whether or not a valid software
version was located.

102

Chapter 5

F;&- Your Product Patch

Ready to Patch

Thiz pragram will patch 'our Product on pour system from
verzion 1.0 to verzion 1.7

Fleaze chck Start to proceed with the patch.

L Start J ’ Cancel

A typical ‘Ready to Patch’ screen

Screens are the individual windows that make up your patch. When you navigate
through a patch by clicking the Next and Back buttons, you are navigating from
screen to screen, exactly as you would navigate through any wizard.

Tip: You can think of the screensin your project as steps in a wizard, walking your
user through the process of patching your software.

103

Creating the User Interface

The Screen Manager

The screen manager is where you will configure al of your screens. In Visual Patch,
the screens are divided into three stages.

Screens

Before Patching | Progress | [] After Patching |

Screens: Preview:
Screen D Screen Type
Cannot Locate Software Static Text
Software iz Cument Static Text

Ready to Fatch Static Test

add | [Bemove | [Z) Ed] 1

[(] H Cancel][Help]

Befor e Patching tab in the Screen Manager
The three patching stages at which screens can be displayed are:
Before Patching
Progress
After Patching

Each screen stage is represented by a tab on the screen manager.

104
Chapter 5

Before Patching

The Before Patching screens are displayed before the actual patching of any files
occurs. In general, if the end user cancels the patch during this stage, no files will be
patched on their computer.

This stage is used to perform such tasks as letting the user know what version his or
her software is being patched to, displaying a license agreement, and collecting user
information.

Progress

The Progress screen stage is displayed while the files on the end user’ s computer are
being patched. This stage differs from both the Before Patching and After Patching
stages in that only one screen can be displayed (as opposed to a sequence of screens),
and it must be a progress screen.

This stageis used to display the file patching progress as it occurs. In other words,
whilethe user’ sfiles are being patched, the screen you chose for the Progress stage
will display information about the progress of the patch, such aswhat file is being
patched, what percentage of all files have been patched thus far, and what percentage
of the current file has been patched.

After Patching

The After Patching stageis thefinal screen stage and occurs after al of thefiles have
been patched on the end user’ s computer.

This stageistypically used to show areboot advisement (if needed), provide any post-
patch instructions, and inform the user that the patch has finished successfully.

Creating the User Interface

105

106

Adding Screens

Adding a screen to your patch is easy. Select the stage where you want to add the
screen, and click the Add button at the bottom of the screen manager.

Note: The Progress screen stage is different since a maximum of one screen is
allowed. For this stage, the button is labeled “Change’ instead of “Add.”

Clicking the Add button brings up a screen gallery where you can select from a
variety of screen types. Sdect the type of screen you want and click the OK button to
add it to the list of screens for the stage that you’ re currently working on.

Screens |;I|E| f'3__<|

B efore Patching | Progress | After Patching |

Screens: Prewview:
Screen D Screen Type
Cannot Locate Software Static Text

Software iz Curent Static Text

FIEEEH:I_I,I ta Patch Static T ext
Ready w0 Paich
e e

Fngem b H s s e ol B i

The Screen Gallery

Removing Screens

To remove a screen from your patch, simply select it in the screen list and click the
Remove button.

Tip: If you remove a screen from your patch by accident, you can undo the deletion
by pressing Ctrl + Z, or by pressing the Cancel button.

Chapter 5

Organizing Screens

In general, the order in which screens appear in the screen manager will be the order
in which they appear during that screen stage. The screen that is at the top of the list
will appear first and the screen that is at the bottom of thelist will be the final screen
of that stage.

To change the order of your screens, select ascreeninthelist and click the Up or
Down button until it’s in the desired location. Or, if you prefer, you can simply drag
the screen from one position to another.

Tip: You can also use the cursor keys to move a screen up or down in the list. Simply
select the screen you want to move, and press Alt+Up or Alt+Down.

Editing Screens
To edit ascreen’s properties, select it in thelist and click the Edit button.

Clicking the Edit button opens the Screen Properties dialog where you can edit and
customize all of the settings for that screen.

Tip: You can also edit a screen by double-clicking onit in thelist.

Screen Properties

The Screen Properties dialog is where you can edit the properties of a specific screen.
All Screen Properties dial ogs have the same four tabs (although the specific content
on these tabs may differ): Settings, Attributes, Style and Actions.

Settings

The Settings tab allows you to edit properties that are specific to the sel ected screen.
Each screen type has different settings that are specific to that type of screen. For
example, a Check Boxes screen will have settings that apply to check boxes on its
Settings tab.

For more information on the specific screen settings, please see the Visual Patch help
file

Creating the User Interface

107

108

Attributes

The Attributes tab contains settings that are common to all screens. The only
difference that you will find between Attributes tabs is that progress screens lack
options for the Next, Back, and Help buttons. (Those buttons don’'t exist on progress
screens.)

The Attributes tab is where you can configure which banner style to use, the name of
the screen, and the navigation button settings.

Style

The Style tab is where you can override the project theme on a per-screen basis. By
default the project theme is applied to all screens throughout your project; however,
there might be some instances where you feel a certain screen needs something a bit
different in order to stand out. You can use the Style tab to override any of the theme
settings on a specific screen. (The changes will only be applied to that screen.)

Actions

The Actions tab is where you can edit the actions associated with the screen’s events.
For more information on actions please see Chapter 6.

Screen Properties El@FE

| 7] Settings | [£] Atibutes | [Stle | =@ Actions |

| On Preload :_On Back | On Mext || On Cancel | On Help | On Ctrl Message |

Event¥ariables: | Mone

0l -- These actions dare perforped before the screen is shown.

=]
~
0z

Actionsthat will be performed before the screen isvisibleto the user

The Language Selector

The Settings and Attributes tabs both have a language selector in the bottom right
corner. The language sdlector is adrop-down list containing all of the languages that
are currently enabled in the project. It isused for creating multilingual patches.

Chapter 5

Selecting a language in the list allows you to edit the text that will be used on the
screen when that language is detected.

Language: | Englizh b

The language selector

Session Variables

Session variables play alarge part in the way that screens work and how they display
their text. Anytime you see something in Visual Patch that looks like
%ProductName, you are looking at a session variable.

Note: A session variableis essentially just a name (with no spaces) that begins and
ends with %.

Session variables are very similar to normal variables in that they serve as
“containers’ for values that may change. We say that values are “assigned to” or
“stored in” session variables. When you use a session variable, its name (e.g.
%ProductName%o) is replaced at run time by its value (e.g. “Visual Patch”). Session
variables are basically placeholders for text that gets inserted later.

Session variables are often used in the default text for screens. They are automatically
expanded the first time the screen is displayed, so instead of seeing %ProductName%o
on the screen, the end user will actually see the product name that you entered in the
session variable editor (Project > Session variables).

Session variables are al'so used to store return values when screens or controls need
them. For example, an edit field screen will use session variables to store information
that the user has entered.

Tip: Session variables can be created and changed at run time using actions like
SessionVar.Expand, SessionVar.Get, SessionVar.Remove, and SessionVar.Set.

For more information please see Chapter 7, which discusses session variablesin more
detail.

Creating the User Interface

109

110

Screen Navigation

Screen navigation can be thought of as the path that the end user takes through the
visible part of the patch process. The end user navigates forward through the screens
by clicking the Next button, and backward through the screens by clicking the Back
button.

The default screen navigation is alinear path from the top of your screen list in the
screen manager to the bottom. Generally, the order of your screen list in the screen
manager is exactly the order in which the navigation will proceed.

Although there are other ways to control the path through the screens (e.g. using
actions to create a“ branching” path), in most cases the default behavior is all that is
needed.

How Screen Navigation Works

Inits simplest form, screen navigation is when the end user moves forward or
backward through your patch by clicking the Next and Back buttons. By default, this
moves the end user down or up through the list of screens on the screen manager.

Thisis actually accomplished using actions. Each screen has Screen.Next and
Screen.Back actions on its On Next and On Back events which are performed when
the Next and Back buttons are clicked. If you ever need to, you can modify or
override the default behavior of any screen by editing or replacing the default actions.
Most of the time, however, you will not even need to know that the actions are there.

Navigation Buttons

Navigation buttons are the Back, Next, and Cancel buttons that are usually visible
along the bottom (or “footer”) of each screen. The Next button moves the end user
down the screen list from the top to the bottom, the Back button moves the end user
up through the screen list, and the Cancel button stops the user’ s navigation by
canceling the patch.

The settings for these buttons can be found on the Attributes tab of the screen
properties dialog. There you can change the text, enabled state and visible state of
these buttons.

Thetwo options for the visibility state are self-explanatory; they make the button
either visible or invisible. The two options for the enabled state make the button

Chapter 5

enabled or disabled. If a button isin the enabled state, it looks and functions like a
normal button; it will depress when the user clicks on it, and the text is displayed in its
normal color (usually black). When a button isin the disabled state, however, it will
not respond to the user’s mouse, and is typically drawn in less prominent gray colors
(also known as being “ghosted” or “grayed out”).

Each navigation button has an event that will be fired when the button is clicked.
These events can be found on the Actions tab of the screen properties dialog.

Note: A Help button is also available on the footer of each screen but is generally not
considered a navigation button.

Navigation Events

An event is something that can happen during the patching process. When an event is
triggered (or “fired”), any actions that are associated with that event are performed.
Note that an event must be triggered in order for its actions to be performed.

Each event represents something that can happen while your patch executableis
running. For example, all screens have an On Preload event, which is triggered just
before the screen is displayed. To make something happen before a screenis
displayed, you simply add an action to its On Preload event.

All of the three navigation buttons have an event that will be fired when they are
clicked. The events are“On Back” for the Back button, “On Next” for the Next button
and “On Cancel” for the Cancdl button.

In the case of the three navigation buttons, navigation actions are executed when their
respective events arefired. This allows the end user to navigate through the patch
from the beginning to the end.

There are other events that are associated with screens but aren’t necessarily related to
screen navigation:

On Preload — just before the screen is displayed.
On Help — when the help button is selected.

On Ctrl Message —triggered by a control on the screen.

111

Creating the User Interface

112

Navigation Actions

There are six navigation actions available to you in Visual Patch: Screen.Back,
Screen.End, Screen.Jump, Screen.Next, Screen.Previous, and Application.Exit. Of
those, the most commonly used are Screen.Next and Screen.Back.

When the Next button is clicked, the user is attempting to navigate from the current
screen to the next screen or phase of the patch. The easiest way to implement this
behavior is to insert the Screen.Next action on the On Next event. This is done by
default for all screens.

The same holds true for the Back button; when the Back button is clicked, the user is
attempting to move backwards in the patch to the previous screen. To implement this
behavior, a Screen.Back action needs to be executed when the On Back event is fired.

Tip: The Screen.Back action moves backward in the patch's history in the same way
that a Back button does in a web browser. To move up (back) one screen in the screen
list, usethe Screen.Previous action.

In certain situations, simply moving down the screen list is not the appropriate
behavior; instead, jumping to a specific screen in the screen stage is necessary. You
can accomplish this by using a Screen.Jump action. If the goal is to jump to the next
phase in the patch—i.e., to end the current screen stage—a Screen.End action can be
used to jump past all of the screens in the current screen stage.

To interrupt screen navigation—which usually occurs when the Cancd button is
clicked—you can use an Application.Exit action. The Application.Exit action causes
your patch to stop as soon as it is performed.

Note: For more information on the specifics of screen actions, please seethe help file.

Screen Layout

In Visual Patch choosing alayout for your screens and the controls on them is simple.
Y ou can switch between all three banner styles (top, side, and none) on any screen
that you like. The controls on your screens will dynamically position themselves
ensuring that all of your information is visible.

Chapter 5

Note: A control can be thought of asthe visible elements on a screen, from edit fields,
to radio buttons, to static text controls. However, when the term “control” is used, it
does not generally refer to the navigation buttons or banner text.

Header, Body, Footer

Screensin Visual Patch are divided into three basic parts: the header, the body and the
footer.

The header runs across the top of each screen and is the area that the top banner fills.

Thefooter is similar to the header area except that it runs along the bottom of each
screen. Thisis the area of the screen where the navigation buttons are placed.

Thebody is any part of the screen that is not taken up by the header or footer— it
takes up the majority of each screen and contains most of the screen’s information.

% Your Product Patch

Ready to Patch
'ou are now ready to patch Your Product

Ready to Patch

Thiz program will patch 'our Product on your system from version 1.0.0.0 to version 1.0.0.7.

Pleaze click Start to proceed with the patch.

—+— Body

| Start | [Cancel —— Footer

Basc partsof a screen

113

Creating the User Interface

114

Banner Style

In Visual Patch the term banner refers to an area of the screen that is special and
somewhat separate from the rest of the screen. You can use the banner area to display
some descriptive text, an image, or both.

There are three different types of banner styles available in Visual Patch: none, top,

and side.

Setting the banner styleto noneisthe easiest of all three styles to understand since it
means that there will be no banner displayed on the screen.

% Your Product Patch

%]

[

E[JF]WAEI—gDEhI:iN CORF

SUPPORT

Please use the links below to access the available
product support resources which best suit vyour needs,

o]

¢ Back l | Mext » | ’ Cancel l

The'none’ banner style

Chapter 5

The top banner style will give you along thin banner across the top of your screen
(the header). Thisis the style that you will probably apply to the majority of the
screens in your project. Thetop banner style supports two lines of text referred to as
the heading text and the subheading text. This text is usually used to describe the
current screen and/or provide some information about what is required of the end user.

Thetop banner style also supports an image that will be placed on theright hand side
of the banner. Visual Patch will resize thisimage proportionally so that its height
matches the height of the top banner. The width of the image can be as wide as you
want and can take up the entire banner if necessary.

Any area of the top banner that is not covered by an image will be painted with a color
according to the project theme.

% Your Product Patch [g|
web Site W
Here iz zome infarmation fram aur web site. w
.—-.f_'-..\‘

IndigoRose

SOFTWARE PESIGH CORP

SUPPORT .

¢ Back l | Mext » | ’ Cancel l

The ‘top’ banner style

Creating the User Interface

115

116

The side banner style will give you athick banner that runs down the |eft side of your

screen. The side banner will start at the top of the screen and then stop just above the
screen’ s footer. Thisis the side banner area.

The side banner style supports an image that will automatically be stretched or resized
by Visual Patch to fill the entire side banner area.

'35 Your Product Patch E

SOFTWARE g DESIGN CORF

PRODUCT SUPPOR

Please use the links below to access t
product support resources which best

S AT S IR RS il
< I Jl ¥

[< Back] L MNest » J [Cancel

The ‘side’ banner style

Chapter 5

Dynamic Control Layout

One of the best features of the Visual Patch system is the dynamic control layout
ability of screens. Visual Patch will dynamically reposition the controls on your
screen so that the maximum amount of information stays visible.

Dynamic control layout means that controls will resize and layouts will adjust
automatically as you add moretext. The layout will be automatically chosen based
upon your control settings.

For example, you do not have to worry about fitting your descriptive text within two
or threelines. If you want a fourth (or fifth) line just typeit in, and all of the controls
on the screen will adjust to fit the new lines of text.

The dynamic repositioning of controls takes place within an area called the control
area. The control area of a screen occupies a sub-section of the screen’s body area. Its
sizeis controlled by the theme settings.

[N N =t) [L]

=
Top BEanner 15, 15, 15, 15
Side Banner 15, 15, 15, 15
Mo Banner 15, 15, 15, 15
Banner Text = 10
Banrmer Texk ¥ 110

Control area offsets (Style tab, Screen Propertiesdialog)

The best part of the dynamic control layout feature is that it works without any effort
on your part. Simply fill your screens with all of the information and controls that you
desire, and Visual Patch will re-paosition all the controls so that everything is visible.

Of course, you still have full control over how controls will be displayed on your
screen. Many screens (Edit Fields, Checkboxes, etc.) allow you to add as many as 32
controls to your screen, which Visual Patch will dynamically position. Y ou have the
ability to choose how many columns you want the controls displayed in, whether they
are distributed horizontally or vertically and, in the case of the Edit Fields screen, how
many columns each control spans!

The best way to understand the dynamic control layout featureisto useit. Try playing
around with the settings of a Check Boxes screen or Select Folder screen and observe
how Visual Patch positions your controls to achieve the best look possible.

117

Creating the User Interface

Themes

A themeisagroup of settings and images that control the way your patch looks.

Y ou’ ve probably encountered themes before when using other applications or even
Windows XP. Themes do not change what is displayed; instead, they change how it is
displayed.

Themesin Visual Patch control the general appearance of your screens and the
controls they contain. Rather then controlling the position of screen controls or the
banner style used, themes control the color and font of screens and controls. Themes
are project-wide and affect all screensin the patch unless intentionally overridden on
the style tab of the screen’s properties.

Themes provide an easy way to change the look and feel of your screens and controls
without having to go to each screen and update it every time you wish to apply a new
visual style.

'-'A Your Product Patch

]

Ready to Patch

Thiz program will patch v'our Product on pour system fraom
verzion 1.0.0.0 to verzion 1.0.0.7.

Pleaze click Start to proceed with the patch.

| Start | [Cancel

A Welcome screen with the " Visual Patch Default” theme applied

118

Chapter 5

';ﬂ Your Product Patch

P
6818 00t Ready to Patch

M=t

£

Thiz pragram will patch 'our Product on pour system from
verzion 1.0.0.0 to verzion 1.0.0.1.

Fleaze chck Start to proceed with the patch.

L Start J ’ Cancel

The same screen with the " Visual Patch Theme" theme applied

Choosing a Theme

Y ou can choose a theme for your project on the theme tab of the Project Settings
dialog, which you can access by choosing Project > Settings, and clicking on the
Theme tab.

The drop-down list on the Theme tab contains a list of all the themes that are available
in the project. Selecting a theme in this drop-down list will apply the theme to all of
the screensin your project. For your convenience, a preview of the currently selected
theme is displayed on the Theme tab as soon as you make a selection.

As shown above, themes affect the appearance of screens and their controls. For
example, choosing a themethat colors static text controls purple will result in all static

Creating the User Interface

119

text controls being purple, and choosing a theme that colors static text controls black
will result in all static text controls being colored black.

Project Settings |T_. @@

| & Session Variables”! Theme | & Background | Advanced |

Preview

%% Your Product Pateh

Ready 1o Patch

Thiz program will patch Yiour Product om wour system fsom
wersion Xl i = version XT. =

Plaase chck Sart ko procsed with the patch.

L

Preview banner stele: (O Top (3 Side (O MNone

Froject theme:
[

[I'/izual Patch Default

[u].9][Cancel][Help]

The Project theme selector (accessible by choosing Project > Settings)

Creating a Custom Theme

Visual Patch allows you to create your own custom themes. This provides you with an
easy way to share the same custom look and fedl between multiple projects.

Hereisabrief step-by-step guideto help you in the creation of a custom theme.

1) Start a new project and save a copy of a pre-existing theme.

Start a new project by choosing File > New Project from the menu, then open up the
theme settings by choosing Project > Settings, making sure that the theme tab is
selected.

120
Chapter 5

Thefirst step in creating a custom theme is to select an existing theme to base your
new theme upon. If you cannot find a suitable theme, simply choose the default
theme.

Once you have selected a theme to start from, use the Save As button to save a copy
of it under a new name. Choose a name that describes the theme you plan to make;
this themeis what you will be modifying in order to create your new theme.

2) Edit your new theme in the Theme Properties dialog and then press
Ok to save your changes.

Make sure that your new theme is selected and press the edit button to bring up the
theme properties dialog. Here you will be ableto edit all of the properties of your
theme. Once you have made all of your changes, simply click the Ok button and the
changes to your theme will automatically be saved.

Now you have a working theme that will be availableto you in all your Visual Patch
projects.

Note: If you are not happy with the changes made while editing your theme, simply
click the Cancel button and your changes will not be saved.

Overriding Themes

As stated earlier, project themes affect every screen in your project. While in the vast
majority of situations thisis the desired effect, there may be a few instances where
thisis not exactly what you want. Fortunately, Visual Patch allows you to override
any or all of the theme settings on any of your screens.

As mentioned in the Screen Properties section, each screen has a style tab associated
with it. If you look at the Style tab you will notice that it looks identical to the Theme
tab on the Screen Properties dialog except that it has a checkbox in the top left corner
labeled “ Override project theme.”

Choosing the override project theme option will enable the theme settings and allow
you to make changes to the theme settings strictly for the current screen. The changes
you make on the Style tab will not affect any of the other screens in your project.

Note: If you decide that you want to go back to the project theme on a screen where
you have overridden it, simply go to the Style tab and uncheck the Override project
theme checkbox. Thereis no need to re-creste the screen.

121

Creating the User Interface

122

The Background Window

The background window is an optional maximized window that can appear behind all
screens in your patch. Its main use is to focus the end user’ s attention on your patch
by blocking out the rest of the desktop.

r;ﬂ ‘;"-l:ur Product Patch

Your Product Patch

Your Company
£8 Your Product Paich

Ready to Patch

Thiz program will patch o |
verzion 1.0 ta verzion 1.7,

Pleasze click Start to proceed

The background window behind a ‘Ready To Patch’ screen

The background window can be enabled in one of three styles:

Standard — all the features of a normal application window (i.e., atitle bar with
a close button and a standard window border).

Bordered — a standard background window without a title bar or close button.

Kiosk — a standard background window without a title bar, close button, or
border.

Note: The text on the window title bar is controlled by the %WindowT itle% session
variable.

Chapter 5

No matter which of the above styles you choose, you can configure the appearance of
the background window through the Background Window tab on the Project Settings
dialog (Project > Settings). Y ou can specify what the content of the background
window should be (solid color, gradient, or an image), what text will appear on the
window, and how the text will look (font, size, and style). Y ou have the option of
having a heading, subheading, or footer in any combination, or none at all.

Other Interface Options

Thereare afew other optionsin Visual Patch that relate to the user interface of your
patch. These options may not be as important as screens or themes, but they just might
provide the elements necessary to perfect your project’ s look and fedl.

Taskbar Settings

The taskbar is the bar that runs across the bottom of al modern Windows operating
systems beginning with the START button on the left. When a program is running, its
icon and name will generally appear in a button in the taskbar.

— o=
:J ctart I B ‘vour Product Patch

Visual Patch allows you to choose whether or not to show an icon in the task bar and
to choose what that icon will be. Both of these settings can be found on the Advanced
tab of the project settings: Project > Settings.

Project Settings |;|[E| El

| W Session Varables | Theme | &l Backgrouncii Advanced

Optionz Application Settings [}\)
(18 ackun patched files [Use custom icon:
Backup folder: | |] Browse
ié.ﬂ\ppFolder/;\B ackup ! [T Hide taskbar icon
Enable file rollback. support [] &hways on top

[] Delete legacy files [] Enable silent mode

IR AT

Taskbar Settingsavailablein the Project Settingsdialog

Creating the User Interface

123

124

To hide the taskbar icon simply check the hide taskbar icon checkbox on the
Advanced tab. To choose a custom icon simply check the use custom icon checkbox
to turn on the custom icon setting and then click the browse button to locate theicon
of your choice.

Note: If you configure your patch to be a silent patch in the advanced settings then no
taskbar entry will appear.

Actions

Some of the actions available to you in Visual Patch are capable of showing user
interface elements. These actions can be divided up into two main categories: Dialog
actions and Status Dialog actions.

Dialog actions are used to show pop up dialogs to the end user. Examples include the
Dialog.Message action that |ets you display a message in a dialog, and the
Dialog. TimedM essage action that lets you show a dialog with a message for specific

amount of time.
\ij) Disk is Ful

A typical message dialog

Chapter 5

Status dialogs are the other main user interface e ements that are available to you
through scripting. Status dialogs are mainly used to show progress or status during a
lengthy event likean HTTP.Download action or aFile. Find action.

Searching for Documents

Searching...

A statusdialog

Status dialogs are shown and configured using actions like StatusDIg.SetM essage,
StatusDIg.ShowProgressM eter, and StatusDIg.Show.

Note: It is generally recommended that progress be shown in a more integrated
manner using a progress screen, however there are situations where a status dialog
may be more appropriate.

Note: For more information on the Dialog and StatusDIg actions, please seethe
Visual Patch hep file.

125

Creating the User Interface

Chapter 6:

126

Actions, Scripts and Plugins

Visual Patch comes standard with a plethora of actions allowing you to create more

powerful patches than ever before. They are what you use to accomplish the specific
tasks that make your patch unique. Each action is a specific command that tells your
patch to do something, such asretrieving a value from the Registry.

Actions also allow your patch to react to different situations in different ways. Does
the user only have the evaluation version of your software installed? Is an Internet
connection available? Y ou can use actions to answer these types of questions and have
your patch respond accordingly.

Scripts are essentially sequences of actions that work together to perform a specific
task. Plugins allow you to extend the built-in actions with additional libraries of
commands.

Together, actions, scripts and plugins allow you to extend the default functionality of
Visual Patch with virtually limitless possibilities.

Chapter 6

In This Chapter
In this chapter, you'll learn aboult:

Actions—what they are and what they’re good for

Theaction editor (including features such as syntax highlighting, intellisense,
quickhelp, and context-sensitive help)

Project and screen events
Adding and removing actions

Scripting basics, such as using a variable, adding an if statement, testing a
numeric value, using afor loop, and creating functions

Global functions
Plugins

External script files

127

Actions, Scripts and Plugins

128

What are Actions?

Actions are specialized commands that your patch can perform at runtime. Each
action is a short text instruction that tells the patch to do something—whether it'sto
open a document, download a file from the web, create a shortcut, or modify a registry

key.

Actions are grouped into categories like “File” and “ Registry.” The category and the
name of the command are joined by a decimal point, or “dot,” like so: FileRun,
Registry.GetValue. Thetext “File Run” essentially tells Visual Patch that you want to
perform a“Run” command from the*File’ category...ak.a. the“File Run” action.

Tip: The period in an action nameis either pronounced “dot,” asin “File-dot-Open,”
or it isn't pronounced at all, asin “File Open.”

By default Visual Patch handles the most common patch needs without you ever
having to add additional actions. As aresult you will only need to use actions when
you want to supplement the basic behavior and handle advanced patch tasks. Actions
let you customize what Visual Patch does for you automatically so that you can meet
your patch needs exactly.

You can use actions to call functions from DLLs, submit data to a website, start and
stop programs, get the amount of free space on a drive, and much more.

Note: You can find a completelist of actionsin the Visual Patch help file (Help >
Visual Patch Help).

Note: In order to try out the example scripts in this chapter, you will need abasic
project that you can build so you can run the patch application and see the scripts in
action. Please see Chapter 10 for more information.

Chapter 6

The Action Editor

The action editor is where you create and edit your actionsin the Visual Patch design
environment. In general you can expect to find an action editor for every event in
Visual Patch.

Essentially the action editor functions like a text editor by allowing you to type the
actions that you want to use.

Actions |z|@

=] On Startup |i] 0n Pre Patch | (=] OnPost Patch | (] On Shutdown|

Event Y aniables: i None |

ool =
002 —— Check for administrative privileges

aos

oo4

005 —— Make sure that the user has administrative privileges on the ay:

006 —— (g IsUserddein is defined in Global Functions.lua)
007 ——if mot g Tallserddming) then

08 — if mot SilentPatch then

ons —— locgl Title = SessionVar,Expand("$WindowTitles™)

oL —— local Message = SessionVar.Expand (VisualPatch, GetLocalized:
011 —- local DlgResult = Dialog.Message(Title, Message, MB OKCANCE
0lz — if DlgResult == IDCANCEL then

al3 — Application.Exit (EXIT REASON USER NOT ADMIN) ;

0ld — axad

0ls —— elzse

0l& —— Since it is & silent patch, fail w
IE: ‘ >
Quick Help: |Ti|:-: Press Ctil+Space to view a list of all available actions. |

|# Addaction | =) addCode »| [E] Edt | [¥ [o [Advanced ¥

[0K, |[Cancel]l Help

Visual Patch’s action editor

However, while it may function like a text editor, the action editor has powerful
features that make it closer to a full-fledged programming environment. Some of these
features include syntax highlighting, intellisense, quickhelp and context-sensitive
help.

One of the most important features of the action editor is the action wizard. The action
wizard provides an easy dialog-based way to sdect, create and edit actions without
ever having to type aline of script.

129

Actions, Scripts and Plugins

130

The action editor gives you the best of both worlds: pure scripting capabilities for
advanced users and programmers, and the easy-to-use action wizard interface for
those who' d rather not use free form scripting.

Programming Features

As mentioned briefly above, the action editor provides some powerful features that
make it a useful and accessible tool for programmers and non-programmers alike.
Along with the action wizard (covered later under Adding Actions), the four most
important features of the action editor are: syntax highlighting, intellisense, quickhelp
and context-sensitive help.

Syntax Highlighting

Syntax highlighting colors text differently depending upon syntax. This alows you to
identify script in the action editor as an operator, keyword, or comment with a quick
glance.

Note: You can customize the colors used for syntax highlighting via the action editor
settings. The action editor settings are accessed via the advanced button: Advanced >
Editor Settings.

Intellisense

Intellisense is a feature of advanced programming environments that refers to the
surrounding script and the position of the cursor at a given moment to provide
intligent, contextual help to the programmer.

Intellisense is aterm that has been used differently by different programs. In Visual
Patch, intellisense manifests itself as two features: autocomplete, and the
autocompl ete dropdown.

Autocomplete is the editor’ s ability to automatically complete keywords for you when
you press Tab. Asyou typethefirst few |etters of a keyword into the action editor, a
black tooltip will appear nearby displaying the whole keyword. Thisistheintellisense
feature at work.

Whenever you type something that the intellisense recognizes as a keyword, it will
display its best guess at what you are typing in one of those little black tooltips.
Whenever one of thesetooltipsis visible, you can press the Tab key to automatically
typetherest of the word.

Chapter 6

Actions

| [E On StE"l'ulilll| =] OnPre Patch |E| On Post Patch _j O S hutdowr |
Ewent Variables: HNune ‘
0l Fih =
5
hoc
< | >
Guick Help: |Tip: Fresz Chri+Space to view a list of all available actions. |
% addbcton | [E) addcode »| [E] Edi | [be »] [»] 6D agvanced |
[ak.] [Cancel] [Help

Intellisense predicting what isbeing typed

Another feature of intellisense is the autocomplete dropdown. By pressing Ctrl+Space
while your cursor isin the code window, a drop-down list will appear containing the
names of all available actions, constants and global variables. Y ou can choose one of
thelisted items and then press Tab or Enter to have it automatically typed.

131

Actions, Scripts and Plugins

132

Actions

;_.EI On Staltuplnli |=| OnPre Patch |§_—] On Post Patch | (5] On Shutdown |

Ewvent Variables: ENune |

01

N

% File.GetVersionInto -
% File.Install

% File.I=sInllze >
% File.Move

% File.MoveOnReboot

& File.Open

% File.OpenEmail

® File.OpenlRL

% File.Print File. Prink{string Filename)l
% File.Renaue hd

< | >
Guick Help: |_T_ip: Fresz Chri+Space to view a list of all available actions. |

[ﬁ fdd Action] ’-E]Addgode r] [_j gdit] [i:; I] [J r] [u;’-\gvanced I]

[ak. H Cancel H Help

The autocomplete dropdown list accessed by Ctrl + Space

Note: This dropdown cannot be accessed if your cursor isinside a set of quotes (a
string).

The autocomplete dropdown is also available for completing action names after the
category has been typed.

For example, when you type a period after the word File, the intellisense recognizes
what you’ ve typed as the beginning of an action name and presents you with a drop-
down list of all the actions that begin with “File.”

Chapter 6

Actions

| = on Staltuplnl| |=| OnPre Patch | |=| OnPost F'atch. | [Z] On Shutdown |

Ewvent Variables: HNune ‘

0l File.|

% Install

% IsInlse

% Move

% MovelOnReboot
L] Open

L] OpenEmail

L] OpenlURL

% Print

% Penane

% pun

N

[

B4

< | >
Guick Help: |Tip: Fresz Chri+Space to view a list of all available actions. |

[3!- fdd Action] ’EIAdonde r] [El gdit] [i» I] [_:; r] [uf—'«gvanced I]

[ak.][Cancel H Help]

The autocomplete dropdown list automatically appearing as an action istyped

The word will automatically be typed for you if you choose it and then press Tab or
Enter. However, you don’'t have to make use of the dropdown list; if you prefer, you
can continue typing therest of the action manually.

133

Actions, Scripts and Plugins

Quickhelp

Once you’ ve typed something that the action editor recognizes as the name of an
action, the quickhelp feature appears near the bottom of the window.

fctions

g On Startu;.u.l |=| OnPre Patch |§—] On Pogt Patch | |=] On Shutdown |
Ewvent Y aniables: HNDHE |
0l Minduw.EnumerateTitles[' T\d

¥
< | >
Guick Help: |table Window EnumerateT ileslboolean Toplevel = tiue) |
|# addacton | [E)addCode »| (5] Edi | [We »| [»| [Advanced
[0k,] [Cancel] [Help]

Quickhelp for the action Window.Enumer ateTitles

Quickhelp is essentially a“blueprint” for the action that lists the names of the action’s
parameters and indicates what type of valueis expected for each one. In the case of
our Window.EnumerateTitles action, the quickhelp looks like this:

tabl e W ndow. Enuner at eTi t| es(bool ean TopLevel = true)

134

Chapter 6

The quickhelp above indicates that the action Window.EnumerateT itles takes a single
parameter called TopLevel, and that this parameter needs to be a boolean value. It also
indicates that Window.EnumerateTitles returns a table value.

From this brief example, you can see how useful the quickhelp feature will be when
you are working on your scripts.

Context-sensitive Help

Context-sensitive help, as its name suggests, provides help for you based upon what
you are currently doing. In the action editor, the context sensitive help lets you jump
directly to the current action’s help topic.

For instance, if you are typing an action into the action editor and the quickhelp
featureisn't giving you enough information (perhaps you would like to see an
example), press the F1 key and the help file will open directly to that action’s help
topic.

Note: The context-sensitive help feature is only available when the action editor
recognizes the action that the cursor ison. It is easy to know when thisis the case
since the action will appear in the quickhelp.

Tip: You can also click the Help button to trigger the context-sensitive help feature.

Events

Events are simply things that can happen when your patch is running. For example, all
screens have an On Preload event, which istriggered just before the screenis
displayed. To make something happen just before the screen is displayed, you simply
add an action to its On Preload event.

When an event is triggered, the actions (or “script”) associated with that event will be
executed. By adding actions to different events, you can control when those actions
occur during the patch.

In Visual Patch thereis an action editor for every event. When you add an actionin an
event’s action editor, you are adding that action to the event. At run time, when that
event istriggered, the action that you added will be performed.

Every patch has four main project events: On Startup, On Pre Patch, On Post Patch,
and On Shutdown. These events can be thought of as bookends to the main phases of
the patch. Theremaining eventsin Visual Patch are triggered by the screens.

135

Actions, Scripts and Plugins

Project Events

There are four project events. They are the main events of your patch and will be
triggered before or after important stages of the patch. The project events can be found
under Project > Actions.

Thefour project events are:
On Startup
On Pre Patch
On Post Patch
On Shutdown

The On Startup event is thefirst event triggered in Visual Patch and thus occurs
before any screens are displayed. Thisis a good place to perform pre-patch tasks, such
as making sure the end user has a previous version of your product installed, or that
they haven't already run the patch.

The On Pre Patch event is triggered just before the patch enters the patching phase and
begins patching files on the user’s computer. This event is fired right after the last
screen in the Before Patching screen stage is displayed.

The On Post Patch event is triggered after the patching phase of the patch has been
completed, right before thefirst screen of the After Patching screen stage is displayed.

The On Shutdown event is the last event that will be triggered in your patch. It occurs
after al screensin your patch have been displayed. It is your last chanceto
accomplish any action in your patch.

Before Patching Progress After Patching

On Startup On Pre Patch On Post Patch On Shutdown

Visual Patch’s screen stages (top) and project events (bottom)

136

Chapter 6

Screen Events

The settings for each screen can be configured in the screen properties dialog. The
screen events can be found on the Actions tab of the screen properties dialog.

Screen events are events that are triggered either by the controls on the screen or by
the screen itsdlf. Screen events are used for screen navigation (e.g. moving to the next
screen), to change what is displayed on the screen (e.g. updating progress text), and to
perform the task required of the screen (e.g. set the patch folder).

There are two main types of screensin Visual Patch: progress screens and non-
progress screens. The majority of screens are non-progress screens, which basically
means that these screens are not used to show progress.

Progress screens are used to show progress in your patch. They can be further broken
down into two types of progress screens: those used in the Before Patching and After
Patching screen stages, and those used in the Progress stage. In general progress
screens used in the Before and After Patching screen stages show progress that arises
from actions. Progress screens that are used during the While Patching screen stage
are used to show the progress of the main patch phase.

There are six events associated with non-progress screens:
On Preload — triggered just before the screen is going to be displayed.
On Back —when the back button is clicked.
On Next —when the next button is clicked.
On Cancel —when the cancel button is clicked.
On Help —when the help button is clicked.

On Ctrl Message — Triggered when a control on the screen fires a control
message. Every time a control message event is fired, there will be event
variables passed to the event to describe the message and which control fired it.

The On Citrl Message event is where you will interact with the controls on the screens
via script. For example, if you choose to add a Button screen to your patch, the On
Ctrl Message event is where you will specify what each button does.

On the Buttons screen, each button will fire a control message when it has been
clicked, basically saying “Hey I’ ve been clicked!” Y ou will then have a script in the

Actions, Scripts and Plugins

137

138

On Ctrl Message event that will check the event variables to see which button has
been clicked and the corresponding actions will be performed.

There are four events associated with progress screens used in the Before and After
Patching screen stages:

On Preload — triggered just before the screen is going to be displayed.

On Start —fired as soon as the screen is displayed. This is where you will put all
of the actions that are to occur while the progress screen is visible. The actions
placed here are what will cause the progress that the progress screen is going to

display.

On Finish —triggered as soon as all of the On Start’s event actions have finished
executing. Thiswill usually be used to move to the next screen.

On Cancdl — triggered when the cancel button is pressed.

There are three events associated with progress screens used in the While Patching
screen stage:

On Preload — triggered just before the screen is going to be displayed.

On Progress — fired as progress is made during the patch phase. Event variables
are passed to this event to describe which stage is triggering the progress event
and other information.

On Cancd — triggered when the cancel button is pressed.

Adding Actions

In order to have an action performed when an event is triggered, you must add it to
that event using the action editor.

Actions can either betyped directly, or you can use the Add Action button to start the
action wizard. The action wizard is a dialog-based way for you to add actionsin the
action editor. It will guide you through the process of selecting your action and
configuring its parameters.

Note: Asyou type an action, you can use the intellisense and code completion
features to simplify this process.

Chapter 6

Hereis a brief example that shows how easy it isto add an action. It will explain how
to add a Dialog.M essage action to the On Startup event of your patch. The
Dialog.Message action pops up a dialog with a message on it.

1) Start a new project and open the Actions dialog to the On Startup tab.

Start a new project and bring up the Actions dialog by choosing Project > Actions. On
the actions dialog, select the On Startup tab so that you can edit the On Startup event.

2) Click the Add Action button. When the action wizard appears, switch to
the Dialog category and then click on the action called Dialog.Message.

The action wizard will walk you through the process of adding an action to the action
editor. Thefirst step is to choose a category using the drop-down list.

When you choose the “Dialog” category from the drop-down list, all of the actionsin
that category will appear in the list below.

To sdect an action from the list, just click on it. When you select an action in the list,
a short description appears in the area below thelist. In this description, the name of
the action will appear in blue. Y ou can click on this blue text to get more information
about the action from the online help.

3) Click the Next button and configure the parameters for the
Dialog.Message action.

Parameters are values that get “ passed” to an action. They tell the action what to do.
For instance, in the case of our Dialog.M essage action, the action needs to know what
thetitle of the dialog and the message should be. Thefirst parameter |ets you specify
thetitle of the dialog and the second parameter lets you specify the text that will be
displayed on the dialog. For now the other parameters are not important but you
should take some time to look at them and their options. By default Visual Patch will
fill most parameters with defaults.

For now changethetitleto:

"Vi sual Patch"

and the text to:

"Message from Chapter 6!"

Note: Be sureto include the quotes on either side of both parameters. These are string
parameters and the quotes are needed for Visual Patch to properly interpret them.

Actions, Scripts and Plugins

139

140

Once you' ve set the action’s parameters, click the Finish button to close the action
wizard. The Dialog.Message action will appear in the action editor. It will look like
this:

D al og. Message(" Vi sual Patch", "Message from Chapter 6!");

4) Build and run your project. When the project starts you should see the
dialog created by the Dialog.Message action.

Start the publish wizard by selecting Publish > Build from the menu and click the
Next button. Build your patch to whichever folder you want and using whichever
name you like. Once the build has completed successfully, make sure that you check
the open output folder checkbox and then click the Finish button.

Note: You must have at least 2 version tabs in your project (containing at least one
file each) in order to successfully build your project.

Oncethe folder where you built your patch appears, double-click on your patch
executableto launchit. You should see the following dialog message appear:

Visual Patch g|

L]
\EJ’) Message from Chapter !

Editing Actions

Often you will want to change a few of your actions' settings after you add them; to
do this you need to edit the action. Y ou can edit the action by typing directly into the
action editor or by using the actions properties dialog.

The easiest way to bring up the actions properties dialog is by double-clicking on the
action. If you prefer you can bring it up by placing the cursor in the action editor and
then pressing the edit action button. (Y ou can tell that the cursor isin an action when
the actions function prototype appears in the quickhelp.)

Hereis a quick example illustrating how to edit the Dial og.M essage action that we
created in the previous section.

Chapter 6

1) Open the Actions dialog to the On Startup tab and bring up the Action
Properties dialog.

Open the Actions dialog by choosing Project > Actions. Make sure you are on the On
Startup tab and that you see the Dialog.M essage action created in the previous topic.

To edit the action, just double-click on it. Double-clicking on the action opens the
Action Properties dialog, where you can modify the action’s current parameters.

Tip: You can also edit the action’s text directly in the action editor, just like you
would edit text in aword processor. For example, you can select the text that you
want to replace, and then simply type some new text in.

2) Change the Type parameter to be MB_OKCANCEL and the Icon
parameter to MB_ICONNONE.

Click on the Type parameter, click the select button, and choose MB_OKCANCEL
from the drop-down list. Then click on the Icon parameter, click the select button, and
choose MB_ICONNONE from the drop-down list. Thiswill add a cancel button to the
dialog (MB_OKCANCEL) and get rid of theicon (MB_ICONNONE). Finally, click
OK to finish editing the action. Notice that the changes that you made now appear in
the action editor.

Constants

SW_SHOWNORMAL is aconstant. A constant is a name that represents a value,
essentially becoming an “alias’ for that value. Constants are often used to represent
numeric values in parameters. It's easier to remember what effect SW_MAXIMIZE
has than it is to remember what happens when you pass the number 3 to the action.

3) Build and run your project. When the project starts, you should see
the dialog created by the Dialog.Message action.

When you run your patch, adialog will pop up. Thedialog is created by the
Dialog.M essage action on the On Startup event of your patch. Notice that thereis no
icon and that a cancel button has been added the dialog.

Visual Paich g|

Message from Chapter &l

(o4 | [Cancel]

141

Actions, Scripts and Plugins

142

Getting Help on Actions

You can get help on actionsin a variety of different waysin Visual Patch. As
previously mentioned, when using the action wizard some text will be displayed in the
bottom of the dialog describing the current action or parameter selected. Y ou can aso
click the blue hyperlink text in the action wizard to receive context-sensitive help.

The same holds true for the action editor itsef. The quickhelp will display the current
action’'s function prototype. The help button to the right of the quickhelp will open the
Help file directly to that action’s help topic if thereis a current action (as with the F1
key). The current action is simply the action that the cursor isin. If the cursor isnot in
an action, then thereis no current action.

Note: For more information on the quickhelp, please see the Action Editor Features
section above.

The Help button on the action editor can be clicked at any time to open the Visual
Patch help file. Here you can view more information on the event that the actions are
being added to.

The help file contains detail ed information for each action available to you in Visual
Patch. It is divided into two topics for each action: Overview and Examples. The
overview section provides detailed information about the action while the examples
section provides one or more working examples of that action.

In the overview topic, the help file will provide you with the function prototype,
which serves as a definition of the action, showing what (if anything) the action
returns, and the parameters and their types.

A function prototype is the definition of the action. It defines the types of all of the
parameters, the type of the return value (if any), and whether or not any of the
parameters have defaults.

File.Run | Filename,
Arg= ,
WorkingFolder ,
WindowMode N
WMaitForReturn]

The help file also describes each parameter in detail and what its purposeis. For
example, if the action returns a value, the help file will describe the return value and
what it might be.

Chapter 6

Scripting Basics
A script can be thought of as a sequence of actions. Scripting, therefore, is basically

the creation of a sequence of actions. A script can contain one action or as many
actions as you can type.

Although you can accomplish alot in Visual Patch without any scripting knowledge,
even alittle bit of scripting practice can make a big difference. Y ou can accomplish
far morein a project with alittle bit of scripting than you ever could without it.
Scripting opens the door to all sorts of advanced techniques, from actions that are only
performed when specific conditions are met, to functions that you can define, name
and then call from somewhere else.

Using a Variable

One of the most powerful features of scripting is the ability to make use of variables.
Variables are essentially just “nicknames” or “placeholders’ for values that may need
to be modified or re-used in the future. Each variableis given a name that you can use
to access its current valuein your script.

We say that values are “assigned to” or “stored in” variables. If you picture a variable
asacontainer that can hold a value, assigning a valueto avariableis like “placing”
that value into a container.

Y ou place avalueinto a variable by assigning the value to it with an equals sign. For
example, the following script assigns the value 10 to a variable called “ amount.”

anount = 10;

Note: The semi-colon at the end of the linetells Visual Patch where the end of the
statement is. It acts as aterminator. (No relation to Arnold, though.) Although
technically it’s optional—Visual Patch can usually figure out where the end of the
statement is onits own—it’s a good idea to get in the habit of including it, to avoid
any potential confusion.

Y ou can changethe value in a variable at any time by assigning a different valueto it.
(The new value simply replaces the old one.)

For example, the following script assigns 45 to the amount variable, replacing the
number 10:

anount = 45;

Actions, Scripts and Plugins

143

144

...and the following script assigns the string "Woohoo!" to the variable, replacing the
number 45:

amount = "Wbohoo! ";

Note that you can easily replace a numeric value with astring in a variable. Having a
number or a string in a variable doesn't “lock” it into only accepting that type of
value—variables don't care what kind of datathey hold.

This ahility to hold changeable information is what makes variables so useful.

Hereis an example that demonstrates how variables work:

1) Start a new project and follow the steps from the Adding an action
example on page 139.

Start a new Visual Patch project by selecting File > New Project from the menu. If
you have any unsaved changes in your current project, Visual Patch will prompt you
to save them. If the project wizard dialog comes up, simply hit cancel to get rid of it
for now.

Once you have a brand new project, follow along with the three steps in the Adding an
Action example.

2) In the action editor, replace the “Message from Chapter 6!" string with
a variable named strMsg.

Just edit the script on the On Startup event so that it looks like this instead:
D al og. Message(" Vi sual Patch", strMsQ);

Thiswill make the Dialog.Message action display the current value of the strMsg
variable when it is performed. Before wetry it out, though, we need to assign a value
to that variable somewhere.

Note: A common practice among programmers is to give their variables names with
prefixes that help them remember what the variables are supposed to contain. This
practiceis often referred to as Hungarian notation. One such prefix is “str,” which is
used to indicate a variable that contains a string. Other common prefixes are“n” for a
numeric value (e.g. nCount, nTotal) and “b” for a Boolean trueffalse value (e.q.

bL oaded, bReadyT oStart).

Chapter 6

3) Insert the following text on the first line, before the Dialog.Message
action:

strvsg = "Hello World!'";

Remember to press Enter at the end of the line to move the Dialog.M essage action to
the next line. The script should look like this when you' re done:

Actions |;||E| El

[=] On Startup I 3 Ot Pre Patch ':] Ot Post Patch :_-f_:.i Om Shutdown

Event Variables: ENDHE |

01 strM=sg = "Hello World!™: —
02 Dialog.Mezzage ("Visual Patch™, strlM=g):;

An On Startup script that will display a message dialog when the patch isrun

Thiswill assign the string “Hello World!” to the variable named strMsg before the
Dialog.Message action is executed.

The On Startup event is triggered as soon as the patch begins, just before the first
screen is displayed. This makes it a good place to put any initialization script, such as
setting up default values or preparing variables that will be used in the patch. Another
good location is the Global Functions section that will be described later.

4) Build and run your project. When the project starts, you should see
the dialog created by the Dialog.Message action.

Visual Patch @

\!}) Hello world

Note that the variabl€ s name, strMsg, is nowhereto be found. Instead, the value that
is currently in the variableis displayed. In this case, it's the value that was assigned to

Actions, Scripts and Plugins

145

146

the variablein the project’s On Startup event.

Note: You must have at least 2 version tabs in your project (containing at least one
file each) in order to successfully build your project.

5) Exit the patch. In the action editor, change the value that is assigned
to the strMsg variable to "Good Morning!".

Edit the On Startup script so it looks like this instead:

strMsg = "CGood Morning!";
Di al og. Message(" Vi sual Patch", strMsQ);

6) Build and run your project. When the project starts, you should see
the dialog created by the Dialog.Message action.

This time, the message looks like this:

Visual Patch @

L]
\Er) Good Morning!

Asyou can see, you'vejust changed the message without even touching the
Dialog.M essage action.

Now imagineif you had the same or similar Dialog.M essage actions on fifty different
events throughout your project, and you decided you wanted to change the text. With
variables and a little planning, such changes are a piece of cake.

Adding an If Statement
Theif statement gives your scripts the ability to make decisions, and do one thing or
another in different circumstances.

Each if statement consists of a condition (or “test”), followed by a block of script that
will only be performed if the condition is found to be true.

Chapter 6

Thebasic syntax is:

if condition then
do something here

end

For example:

if age < 18 then
Di al og. Message("Sorry!", "You nmust be 18 to access this CD.");
Application. Exit();

end

The above script checks to seeif the value in a variable named “age’ isless than 18. If
itis, it puts up amessage saying "You must be 18 to access this CD," and then
immediately exits from the application.

For example, if we set ageto 17 first:

age = 17,

if age < 18 then
D al og. Message("Sorry!", "You nmust be 18 to access this CD.");
Application. Exit();

end

...the block of script between the “then” and “end” keywords will be performed,
because 17 isless than 18. In this case, we say that the if statement’s condition
“passed.”

However, if we set ageto 20:

age = 20

if age < 18 then
D al og. Message("Sorry!", "You nmust be 18 to access this CD.");
Application. Exit();

end

...the block of script between the “then” and the “end” isn't performed, because 20
isn't less than 18. Thistime, we say that the if statement’s condition “failed.”

Note: An if statement's condition can be any expression that evaluates to true or false.

Let's modify the script on our project’s On Startup event to only display the message
if itis“Helloworld!”

147

Actions, Scripts and Plugins

148

1) Open the On Startup event and edit the script to enclose the
Dialog.Message action in an if statement, like this:

strMsg = "CGood Morning!";
if strMsg == "Hello World!" then

D al og. Message(" Vi sual Patch", strMsQ);
end

The double equals compares for absolute equality, so thisif statement's condition will
only betrueif strMsg contains "Hello World!" with the exact same capitalization and

spelling.

Tip: Aneasy way to add an if statement on the action editor is to highlight the line of
text that you want to put “inside’ the if, click the Add Code button, and then choose
“if statement” from the menu. Anif statement “template” will be added around the
line that you highlighted. Y ou can then edit the template to fit your needs.

2) Press F7 to build your project. When the build is complete, launch the
patch to trigger the script.

This time nothing happens because strMsg is still set to "Good Morning!" in the first
line of the On Startup event. "Good Morning!" doesn’t equal "Hello World!" so the if
condition fails, and the block of code between the “then” and “end” keywordsis
skipped entirely.

3) Exit from the patch. Edit the On Startup script to change the ==to ~=.
The script should look like this when it’s done:

strMsg = "CGood Morning!";
if strMsg ~= "Hello World!" then

D al og. Message(" Vi sual Patch", strMsQ);
end

Thetilde equals (~=) compares for inequality (does not equal), so thisif statement’s
condition will only betrueif strMsg contains anything but "Hello World!" with the
exact same capitalization and spelling.

4) Build and execute the project.

This time, because strMsg contains "Good Morning!"”, which is definitely not equal to
"Hello World!", the message will appear.

Chapter 6

The == and ~= operators are fine when you want to check strings for an exact match.
But what if you’re not sure of the capitalization? What if the variable contains a string
that the user typed in, and you don't careif they capitalized everything correctly?

One solution is to use an old programmer’ s trick: just convert the contents of the
unknown string to all lowercase (or al uppercase), and do the sameto the string you
want to match.

Let's modify our script to ask the user for a message, and then display what they
typed, but only if they typed the words "hello world" followed by an exclamation
mark.

5) Exit from the patch. Edit the project’s On Startup script to look like
this:

strMsg = Dialog. Input("", "Enter your mnessage:");
if String.Upper(strMg) == "HELLO WORLD! " t hen
Di al og. Message(" Vi sual Patch", strMsQ);
el se
D al og. Message("Um..", "You didn't type Hello World!'");
end

Thefirst line uses a Dialog.I nput action to pop up a message dialog with an input field
that the user can type into. Whatever the user typesis then assigned to the strMsg
variable.

In theif statement’s condition, we used a String.Upper action to convert the contents
of strMsg to all uppercase characters, and then compare that to "HELLO WORLD!".

We veadded an “else’ keyword after the first Dialog.Message action. It basically
divides theif statement into two parts: the “then” part, that only happensif the
condition istrue; and the “ else” part, that only happensiif the condition is false. In this
case, the ese part uses a Dialog.Message action to tell the user that they didn't type
the right message.

6) Build and run the patch. Try typing different messages into the input
field by closing and re-running the patch.

Depending on what you type, you'll either seethe"Hello World!" message, or "You
didn’'t type Hdlo World!".

Note that if you type some variation of "Hello World!", such as "hello world!", or
"hEIO WorlD!", the capitalization that you type will be preserved in the message that

149

Actions, Scripts and Plugins

150

appears. Even though we used a String.Upper action to convert the message string to
all uppercase lettersin the if statement’s condition, the actual contents of the variable
remain unchanged. When the String.Upper action converts avalue to all uppercase
letters, it doesn't change the valuein the variable...it just retrieves it, convertsit, and
passes it along.

Now you know how to compare two strings without being picky about capitalization.

Tip: You can also use a String. CompareN oCase action to perform a case-insensitive
comparison.

Testing a Numeric Value

Another common use of the if statement is to test a numeric valueto seeif it has
reached a certain amount. To demonstrate this, let’s create another script that will stop
your patch from running after it has been run on the same system more then 5 times.

1) Add the following script to a new project’s On Startup event:

nRuns = Application. LoadVal ue(" VPUser sCGui de", "Chapter6");
if nRuns == "" then

nRuns = O;
end

nRuns = nRuns + 1,
Appl i cation. SaveVal ue("VPUser sQui de", "Chapter6", nRuns);

i f nRuns>5 then
Di al og. Message("Sorry!", "Patch has been run: ".. nRuns
"times and will exit");
Application. Exit();
end

Thefirst linetries to read an application value using the Application.LoadValue
action. It storestheresult in a variable named nRuns.

The second line tests the return value of the Application.LoadValue action. If a blank
string has been returned (") then thisis thefirst time that the patch has been executed
on this computer. As aresult thethird line then assigns a value of 0 to nRuns. The
fourth line simply completes the if statement.

Chapter 6

Thefifth line adds 1 to the current value contained in the variable nRuns, and the sixth
line saves that number using the Application.SaveValue action.

Therest of the script isjust an if statement that tests whether the value of nRunsis
greater than 5, displays a message when that’ s true, and then exits the patch.

We used the concatenation operator to join the current value of nRuns to the end of
the string "Patch has been run: " and then used them again to add the string " times
and will exit" to the end. Note that this string has a space at the end of it, so there will
be a space between the colon and the value of nRuns. (The resulting string just looks
better that way.)

The concatenation operator consists of two periods, or dots (..). Infact, it's often
referred to as the “dot-dot” operator. It is used to join two strings together to form a
new, combined string. It'skind of like string glue.

Note: Technically, the valueinside nRunsisn't a string—it’s a number. That doesn’t
really matter, though. When you’ re doing concatenation, Visual Patch will
automatically convert a number into the equivalent string, as required.

2) Build the project and then run it six times.

Each time you run the project the value of nRuns will be loaded, incremented by one,
and then saved again. After you have run the patch six times (and all times after that)
the message will appear and the patch will stop.

Thereyou go. You’'ve just created a pretty sophisticated little program.

Using a For Loop

Sometimes it’s helpful to be able to repeat abunch of actions several times, without
having to type them over and over and over again. One way to accomplish thisis by
using afor loop.

The basic syntax of thefor loopis:

for variable = start,end,step do
do something here
end

Actions, Scripts and Plugins

151

152

For example:

for n = 10,100, 10 do
D al og. Message("", n);
end

The above script simply counts from 10 to 100, going up by 10 at atime, displaying
the current value of the variable n in a dialog message box. This accomplishesthe
same thing as typing:

D al og. Message("", 10);
D al og. Message("", 20);
D al og. Message("", 30);
D al og. Message("", 40);
D al og. Message("", 50);

D al og. Message(" 60) ;

D al og. Message("", 70);
D al og. Message("", 80);
D al og. Message("", 90);
Di al og. Message("", 100);

Obvioudly, the for loop makes repeating similar actions much easier.
Note: If the step is missing from the for loop, it will default to 1.

Let'suseasimplefor loop to add all of the digits between 1 and 100, and display the
result.

1) Start a new project and add the following script to the project’s On
Startup event:

n = 0;
for i =1, 100 do
n=mn+i,
end
D al og. Message("", "The sumof all the digits is: " .. n);

Thefirst line creates a variable called n and sets it to 0. The next linetells the for loop
to count from 1 to 100, storing the current “count” in avariable named i.

During each “pass’ through the loop, the script between the “do” and the * end” will
be performed. In this case, this consists of a single line that adds the current values of

Chapter 6

nandi together, and then stores the result back into n. In other words, it addsi to the
current value of n.

Thisfor loop is the same as typing out:
1

5 3 35 5
TITRRTINT
5 3 35 5
+ 4+ + +

2;
3;
4.

...al theway up to 100.

Thelast line of our script displays only the result of the calculation to the user in a
dialog message box.

Tip: You can use the Add Code button to insert an example for loop, complete with
comments explaining the syntax. Y ou can then edit the exampleto fit your own needs.

2) Build and run the patch.

When you run the patch, the for loop will blaze through the calculation 100 times, and
then the Dialog.Message action will display the result.

It al happens very fast.

The sum of all the digits is: 5050

—

3) Exit the patch.

Y ou probably won't find yoursef using for loops as often as you' |l use if statements,
but it’ s definitely worth knowing how to use them. When you need to repesat steps,
they can saveyou alot of effort.

Of course, when it comes to saving you effort, the real champions are functions.

153

Actions, Scripts and Plugins

154

Creating Functions

A functionisjust a portion of script that you can define, name and then call from
somewhere else.

Y ou can use functions to avoid repeating the same script in different places,
essentially creating your own custom “ actions’—complete with parameters and return
valuesif you want.

In general, functions are defined like this:

function function_name (arguments)
function script here
return return_value;

end

The*function” keyword tells Visual Patch that what follows is a function definition.
Thefunction_nameis simply a unique name for the function. The arguments part is
the list of parameters that can be passed to the function when it is called. It’s
essentially alist of variable names that will receive the values that are passed. (The
resulting variables are local to the function, and only have meaning within it.) A
function can have as many arguments as you want, even none at all.

The*return” keyword tells the function to return one or more values back to the script
that called it.

The easiest way to learn about functions is to try some examples, so let’sdiveright in.

1) Start a new project and then choose Project > Resources.
This opens the resources dialog. Click on the Global Functions tab.

The global functions section is a convenient place to put any functions or variables
that you want to make available throughout your project. Any script that you add to
this section will be performed when your application is launched, right before the
project's On Startup event is triggered.

Chapter 6

Resources

E_ Primer Files | (@ Global Functions |E| Includes | Pluginz|
Global functions:
01 — Convert boolesn walue to string walue :‘J
02 —— Note: if @ non—boolean value i3 passed, it will be returned —
03 function ConwertBoolToString (bBoolValue)
04 —— Check that pdssed type 1s infact boolean
0k if type(bBoolWalue)l == "hoolean™ then
06 if bBoolValue then
a7 —— type wdEs boolean and true, set string
s strReturn = "true";
o9 else
10 —— type wEs boolean and false, sat string L9
11 strBeturn = "false™:
12 end
L3 el=ze
14 —— type was not boolean, aet string
15 strReturn = bEoolValue;
la end
17 — retwrn value
15 return StrReturn;
lg B]‘lﬂ yt
JES | >
Guick Help: |Ti|:|: Preszs Chi+Space to view a list of all available actions. ‘
lp Add Action] [.E]ﬁddgnde r] [_‘] Edit] [;s r] [,; r] [u.&gvanced r]
[0F, i [Cancel] [Help

M aking the function ConvertBool ToString available to the entire proj ect

2) Type the following script into the Global Functions tab, then click OK
to close the dialog:

function SayHel | o(nane)
Di al og. Message("", "Hello " .. nane);
end

This script defines a function named SayHello that takes a single argument (which
we' ve named “name”) and displays a simple message.

155

Actions, Scripts and Plugins

156

Note that this only defines the function. When this script is performed, it will “load”
the function into memory, but it won't actually display the message until the function
iscalled.

Once you’ ve entered the function definition, click OK to close the Global Functions
dialog.

3) On the project’s On Startup event add the following script:

SayHel | o("M . Anderson");

This script calls the SayHello function that we defined on the global functions section,
passing the string “Mr. Anderson” as the value for the function’s “name” parameter.

4) Build and run the patch.

When you run the patch, the script on the On Startup event calls the SayHello
function, which then displays its message.

Hella Mr. Anderson

=

Note that the SayHello function was able to use the string that we passed to it as the
message it displayed.

5) Exit the patch. Choose Resources > Global Functions, and add the
following script below the SayHello function:

function Get Nane()
| ocal name = Dialog.Input("", "Wat is your nane:");
return namne;

end

When you're done, click OK to close the dialog.

This script defines a function called GetName that does not take any parameters. The
first line inside the function uses a Dialog.I nput action to display a message dialog
with an input field on it asking the user to type in their name. The value returned from

Chapter 6

this action (i.e., the text that the user entered) is then stored in alocal variable called
name.

The*local” keyword makes the variable only exist inside this function. It's essentially
like saying, “for the rest of this function, whenever | use‘name’ I'mreferringto a
temporary local variable, and not any global one.” Using local variables inside
functions is a good idea—it prevents you from changing the value of a global variable
without meaning to. Of course, there are times when you want to change the value of
aglobal variable, in which case you just won't use the*local” keyword thefirst time
you assign anything to the variable.

The second line inside the function returns the current value of theloca “name’
variable to the script that called the function.

Tip: We could actually make this function’s script fit on asingle line, by getting rid of
the variable completely. Instead of storing the return value from the Dial og. I nput
action in a variable, and then returning the contents of that variable, we could just put
those two statements together, like so:

function Get Nanme()
return Dialog.Input("", "What is your name:");
end

This would make the GetName function return the value that was returned from the
Dialog.Input action, without storing it in a variablefirst.

6) Edit the script in the project’s On Startup event so it looks like this
instead:

strNanme = Get Name();
SayHel | o(st r Nane) ;

Thefirst line calls our GetName function to ask the user for their name, and then
stores the value returned from GetName in a variable called strName.

The second line passes the value in strName to our SayHello function.

Actions, Scripts and Plugins

157

158

7) Build and launch the patch.

When the patch begins the On Startup script will automatically be executed and the
input dialog will appear, asking you to enter your name.

X

Wwhat iz your name:

I Rinze Thoraly |

I Ok kj[Cancel]

After you typein your name and click OK (or press Enter), a second dialog box will
appear, greeting you by the name you entered.

Hella Rinse Tharaly

Pretty neat, huh?

8) Exit the patch. Edit the script in the project’s On Startup event so it
looks like this:

SayHel | o(Get Nane());

Thisversion of the script does away with the strName variable altogether. Instead, it
uses the return value from our GetName function as the argument for the SayHello
function.

In other words, it passes the GetName function’s return value directly to the SayHello
function.

Whenever a function returns a value, you can use a call to the function in the same
way you would use the value, or a variable containing the value. This allows you to
use the return value from a function without having to come up with a unique name
for atemporary variable.

Chapter 6

9) Build and launch the patch again to try out the script again. When
you're done, exit the patch.

The script should work exactly the same as before: you’ll be asked for your name, and
then greeted withit.

Thisisjust asimple example, but it should give you an idea of what an incredibly
powerful feature functions are. With them, you can condense large pieces of script
into simple function calls that are much easier to type and give you a single, central
location to make changes to that script. They also let you create flexible “ subroutines”
that accept different parameters and return results, just like the built-in Visual Patch
actions.

And despite all that power, they arereally quite simpleto use.

Action Resources

There are three additional resources at your disposal that can be useful when you are
working with actions in Visual Patch: Global Functions, Plugins, and Script Files.

Global Functions

The Global Functions resource in Visual Patch can befound in the design
environment by choosing Project > Resources and clicking the Global Functions tab.
The Global Functions resource is an action editor that will let you enter script.

The script in the global functions section will be loaded into the patch before the On
Startup event is executed. This makes it a great place to create any functions that you
want to have available throughout your project and a great placeto initialize any
global variables.

Note that any script in the Global Functions resource will be executed, soit is
generally best to only use it for variable initialization and function declarations. It isa
good ideato place all other scripts on events within your patch.

Note: Since the global function section is normally used to create global functions and
initialize global variables, the script that is contained there is sometimes referred to as
global script.

159

Actions, Scripts and Plugins

160

Plugins

Plugins are actions that are external to the Visual Patch program. They are
independently developed and distributed and can beintegrated into your projects to
extend their functionality. Some plugins may be developed by Indigo Rose, while
others may be developed by third parties.

You can refer to the plugin's documentation for information on what features it adds
and how to use them (click the About Plugin button to bring up the About Plugin
dialog and then click the Plugin Help button).

Plugins can be added or removed from your project on the Plugins tab, which can be
accessed by choosing Project > Resources and clicking on the Plugins tab in the
Visual Patch design environment.

Resources

i@ Primer Filez | (§) Global Functions | £ Includes.i f Plugins |

Auvailable action plugins:

[CClipboard !

B e e

) More Plugine i) About Plugin

Flugin information:

T
Zip Achons Plugin

Created by Indigo Roze Corporation
|E0|:|_I,lright @ 2004 Indigo Roze Corporation
hittp: A indigorose. com

[Ok][Cancel][Help

Project resour ces: enabling the zip plugin

Chapter 6

Note: Any action plugins that are located in the Includes\Plugins folder within the
Visual Patch program directory will be available on the Plugins tab.

The More Plugins button is an easy way to see what plugins are currently available on
the Indigo Rose website. Pressing this button will bring you to the Visual Patch
plugins area of the Indigo Rose website.

If a plugin has a check in the checkbox beside its name on the plugins tab, it will be
included in your patch. Sincethereis some overhead in terms of filesize, it is
recommended that you only include plugins that are needed by your patch. If you do
not check the checkbox beside a plugin, it will not be included in the patch and will
not take up any extra space.

Once you haveincluded the plugin in your project al of its actions will be availableto
you in the action editor and action wizard.

Note: Help for plugin actions can be accessed on the action editor in the same way
that you would access help for built-in actions.

Script Files

Script files are external text files that contain script usually with the .luafile
extension. They can be added to your project on the Includes tab of the Resources
dialog, which you can access by choosing Project > Resources from the program
menu.

Note: All action editorsin Visual Patch have the ability to export their script viathe
Advanced button. Select Advanced > Save to save the script asan external file.

Script files are very similar to the global functions section of Visual Patch except that
instead of the script being kept in the Global Functions resource, it is stored externally
to your project in atext file.

Script files are very useful if you share important and complex code between a variety
of different projects.

Hereis a quick comparison of the differences between sharing script between projects
using the Global Functions resource versus script files.

If you have some script that you want to share between many projects using the
Glaobal Functions resource, you have to copy and paste the script into each patch that
needs it. Now each project has an exact copy of the script.

161

Actions, Scripts and Plugins

162

The method works fine until you discover a bug or want to change some of the code.
Since each project contains a copy of the script, you will have to edit the script in each
project in order to be surethat it is using the correct code.

If you wereto use an external script file, you need to develop a working piece of
script and then get that script into atext file. Then, include the script file in each
project that needs it. Using this script file method, each project does not contain a
copy of the script; rather, each project references the same piece of script.

If you find an error or want to change any of the script, you do not have to edit the
script in each project; you simply haveto edit the script in the text file. Since each
project references the same script file, you know that the next time you build a project,
it will be using the correct script.

Essentially, with the Global Functions resource, you have to maintain the script for
each project that uses it. On the other hand, the script file method allows you to
maintain your script in asingle location, the script file. For this reason, it’s a good
idea to use script files when you want to share global script between several projects.

Chapter 6

163

Actions, Scripts and Plugins

Chapter 7:

164

Session Variables

When designing a patch, it’s often desirable to make parts of it dynamic. For example,
the user might input a value on one screen that you' d like to display on the next. Or
you might want to display a path on a screen (as the default value in an edit field,
perhaps), but the path includes a folder like“My Documents’” that is likely to have a
different location on each user’s system.

Although you could use regular script variables along with actions to manipulate the
screen text at run time, session variables allow you to accomplish the sameresult in a
more direct way: by simply including “ placeholders’ in your screen text that will
automatically be replaced by specific values before the screen is shown.

In this chapter you will learn everything thereis to know about session variablesin
Visual Patch.

Chapter 7

In This Chapter
In this chapter, you'll learn about:

Built-in and custom session variables
Setting session variables

Removing session variables

Using session variables on screens

Expanding session variables in scripts

165

Session Variables

166

What Are Session Variables?

Session variables are designed to handle dynamic data during the patching process.
Essentially “ placeholders’ for changeabl e text, session variables give you an easy way
to insert dynamic values into the text that appears on your screens.

They also give you an easy way to compose paths to locations that cannot be known
in advance, such as the path to the user’s My Documents folder. For example, you can
use a session variable like %oMyDocumentsFolder% in a path to be replaced by the
appropriate full path at run time.

Likeregular variables, session variables allow you to * store” information in them,
acting like named “ containers’ that you can assign values to. The main difference
between session variables and the “regular” variables you usein scriptsis simply that
session variablesin a screen’s text are automatically expanded before the screen is
shown. This makes them especially useful for displaying dynamic text on screens.

Even though all session variables are functionally identical, there are two distinct
categories of session variables that can be used in Visual Patch: built-in session
variables, and custom session variables.

Built-in Session Variables

For convenience, Visual Patch contains a variety of built-in session variables for
values that are commonly used in projects. These variables are automatically assigned
appropriate values when the patch application is started.

Most of the built-in session variables hold information that has been gathered from the
user’s system. For example, since the path to the Windows folder can differ between
systems, a session variable named %WindowsFolder% is provided which
automatically contains the correct path.

Note: Many of these values are also available in the form of global variables that you
can use directly in your scripts, eg. _WindowsFolder and _ProgramFilesFolder. There
are aso actions like Shell.GetFolder that you can use to get additional system paths.
The built-in session variables are provided primarily for use in paths and default
values that are displayed on screens.

Chapter 7

Hereisthelist of built-in session variables, in alphabetical order:

%AppFolder%

The main directory where your software has been found on the user’s system.
The value of this session variableis set through actions. (A default action script
to determine this folder path is automatically generated for you by the project
wizard.)

%ApplicationDataFolder%

The path to the Application Data folder on the user’s system. This folder serves
as a common repository for application-specific data. Typically, this path is
something like “ C:\Documents and Settings\YourName\Application Data.”

%ApplicationDataFolderCommon%

The path to the all-user Application Data folder on the user’s system. This folder
serves as a common repository for application-specific data. Typically, this path
is something like “ C:\Documents and Settings\All Users\Application Data.”

%CommonFilesFolder%

The user’s Common Files folder. Typically, this is something like “ C:\Program
Files\Common Files.”

%CompanyName%

Your company’s name. The value of this variableis set on the Session Variables
tab of the Project Settings dial og.

%Copyright%

The copyright message for your product. The value of this variableis set on the
Session Variables tab of the Project Settings dial og.

%DesktopFolder%

The path to the user’s Desktop folder. On Windows NT/2000/XP/Vista, thisis
the path from the per-user profile.

167

Session Variables

%DesktopFolderCommon%

The path to the user’s Desktop folder. On Windows NT/2000/XP/Vista, thisis
the path from the All Users profile. On a non-Windows NT system, thisis the
same as %DesktopFol der%.

%FontsFolder%
The path to the user’s font directory (e.g. “ C:\Windows\Fonts”).

%MyDocumentsFolder%

Theuser’s personal (*My Documents™) folder on their system. Usually thisis
something like “ C:\Documents and Settings\YourName\My Documents’ on
Windows 2000/XP and “ C:\My Documents’ on Windows 98/ME and
"C:\Users\YourName\Documents" on Windows Vista.

%ProductName%

The name of the product that you are patching. The value of thisvariableis set
on the Session Variables tab of the Project Settings dialog.

%ProgramFilesFolder%
The user’s Program Files folder (e.g. “ C:\Program Files”).

%RegOwner%
The name of the registered user of the system.

%RegOrganization%
The organization of theregistered user of the system.

%SourceDrive%
The drivethat the patch executable was run from (e.g. “C:” or “D:").

%SourceFolder%

Thefull path to thefolder that the patch executable was run from (e.g.
“C:\Downloads’ or “D:\").

168

Chapter 7

%SourceFilename%

Thefull path, including the filename, for the current patch executable. For
example, if the user was running “ patch.exe” from “C:\Downloads,”
%SourceFilename% would be expanded to “ C:\Downl oads\patch.exe.”

%StartFolder%

The path to the user’s Start menu folder. On Windows NT/2000/XP/Vista, thisis
the path from the per-user profile.

%StartFolderCommon%

The path to the user’s Start menu folder. On Windows NT/2000/XP/Vista, thisis
the path from the All Users profile. On a non-Windows NT system, thisis the
same as %StartFol der%.

%StartProgramsFolder%

The path to the Programs folder in the user’s Start menu. On Windows
NT/2000/XP/Vista, thisis the path from the per-user profile.

%StartProgramsFolderCommon%

The path to the Programs folder in the user’s Start menu. On Windows
NT/2000/XP/Vista, thisis the path from the All Users profile. On a non-
Windows NT system, this is the same as %StartProgramsFol der%.

%StartupFolder%

The path to the user’s Startup folder. On Windows NT/2000/XP/Vista, thisis the
path from the per-user profile.

%StartupFolderCommon%

The path to the user’s Startup folder. On Windows NT/2000/XP/Vista, thisis the
path from the All Users profile. On a non-Windows NT system, thisis the same
as %StartupFolder%.

%SystemFolder%
The path to the user’'s Windows System folder (e.g. “C:\Windows\System”).

169

Session Variables

170

%SystemDrive%
The drivethat the user’'s Windows System directory is located on (usually “C:").

%TempFolder%
The path to the user’s Temp folder.

%TempLaunchFolder%

The path to the temporary directory where Visual Patch extractsthefilesit will
need for the patch. (For example, thisis the directory where primer files are
extracted.)

Usually this will be the user’s temporary directory, unless overridden with the /T
command line option.

%WindowsFolder%
The path to the user’s Windows folder (e.g. “C:\Windows").

%WindowTitle%

Thetext that will appear on the windows task bar while the patch is running.
The value of this variable can be changed on the Session Variables tab of the
Project Settings dialog.

Custom Session Variables

Y ou can define your own session variables to supplement the built-in session
variables that are automatically provided in Visual Patch. The session variables that
you define are known as “ custom” session variables.

Custom session variables can be used everywhere that built-in session variables can
be used; in fact, they are functionally identical. The only differenceis that the built-in
session variables are automatically created for you in each project, whereas custom
session variables don’t exist until you assign a value to them.

Chapter 7

Setting Session Variables

Each session variable consists of a name, e.g. “%ProductName%,” and a value that
you assign to it, eg. “Widget Master 2.0.” When a session variableis expanded at run
time, its name is replaced by the value that is currently assigned to it. (For example,
“Thank you for using %ProductName%” would become “ Thank you for using Widget
Master 2.0.”)

There are two ways you can assign a value to a session variable: you can set itsinitial
value on the Session Variables tab, or you can use an action to s&t its value anywhere
in your project.

Using the Session Variables Tab

The Session Variables tab provides a convenient location for setting the initial value
of session variables at startup. It is primarily used for values that need to be displayed
on screens and that don’t need to be determined dynamically at run time using actions.
In other words, it is where you can specify values that you know in advance and that
you want to display on the earliest screensin your project.

The Session Variables tab is located on the Project Settings dialog, which you can
access by choosing Project > Settings from the program menu.

Project Settings |:|@

& Session Variables Theme | & Background | [¥] Advanced

=
YeProductMames ‘Your Product
olZompanyMame v Your Company
HoCopyright3s Copyright © 2007 %:CompanyMarmes
%oi_ompanyURL%s http: f s, woUrcompany, com
eindowTitle% #eProductMamedt Patch

The Session Variablestab

Session Variables

171

172

The Session Variables tab contains two categories: Product Information and Custom.

The Product Information category contains built-in session variables for values that
are commonly displayed on screens, such as the product name and the name of the
company that produced it. To set the value of one of these variables, simply edit the
appropriate field in the right-hand column.

The Custom category is where you can add, remove and edit your own session
variables to supplement the ones in the Product Information category. To add a
custom session variable, click on the Add button at the bottom of the dial og.

Tip: Asthe session variablelist grows, it may help to hide portions of the list. Each
category can be expanded or collapsed by clicking the “+” icon on the |eft hand side
of the category text.

Using Actions

An action is also available to set the value of a session variable. This action is called
SessionVar.Set. It allows you to set the value of an existing session variable that was
defined on the Session Variables tab, or to create a brand new one.

The SessionVar.Set action can be used with any event (i.e. in any script) throughout
the project. The function prototypefor this actioniis:

SessionVar. Set (string Variabl eNanme, string Val ue)

For example, if you want to assign the value“My Value” to a session variable named
%MyVar%, the action would look like this:

SessionVar. Set ("%wVar%, "M Val ue");

After the above action is performed, all occurrences of the text %oMyVar% on future
screens will be replaced with thetext “My Value.”

Note: The SessionVar.Set action works with all session variables, including built-in
session variables like %M yDocumentsFolder%. It is possible to overwrite a built-in
session variable' s value using the SessionVar.Set action, so be very careful when
setting session variables with actions. Under normal circumstances, there should be no
reason to modify the values of built-in variables.

Chapter 7

Removing Session Variables

When you remove a session variable from your project, Visual Patch will no longer
recognize the variabl€ s name as special placeholder text. For example, removing the
session variable %ProductName% causes the name to revert back to its actual
characters. In other words, the text “%ProductName%” ceases to be anything other
than theletters %, P, r, 0, d, u, c...and so on. After the session variableis “removed,”
thereis no longer a value associated with the name, and no expansion occurs.

There are two methods for removing session variables from your project: using the
Session Variables tab, or using actions.

Using the Session Variables Tab

Similar to adding session variables, removal of session variables can also be
accomplished from the Session Variables tab. However, only those within the Custom
category can be removed from your project. To remove a custom session variable,
click on the desired session variable name in the list to highlight it, and then click on
the Remove button. The session variable will be removed from thelist.

Using Actions

Session variables can also be removed at any point during the patching process with
an action. The action used to remove a session variable is called SessionVar.Remove.
The function prototype for this action can be seen below:

Sessi onVar. Renove(string Vari abl eNane)

For example, if you wanted to remove a session variable called %MyVar%, the action
script would look like the following:

Sessi onVar . Remove(" %WVar %) ;

Note: Since both custom and built-in session variabl es behave the same, it is possible
to remove a built-in session variable using the SessionVar.Remove action. For this
reason, extra care should be taken when removing session variables with actions.

173

Session Variables

174

Using Session Variables on Screens

The main use of session variablesisfor the dynamic expansion of text strings on
screens. One example of a valuable use of session variablesis when you need to use a
value on multiple screens, such as a product version number. While you can certainly
enter the text directly for each screen, if that string changes in the future, it would
require finding every location whereit is used in order to changeits value. Using a
session variable in place of that text would only require the modification of the
session variable' s value in one location.

Another valuable use of session variablesis for gathering data on one screen that
needs to be displayed on another screen. In this case, the values are not known until
some point during the patching process, and therefore could not be directly entered at
design time.

Tip: Session variables can also be useful in multilingual patches for custom messages
that you wish to display depending on the language detected or chosen.

When Are Session Variables Expanded?

Session variables are automatically expanded before each screen is shown—
specifically, before each screen’s On Preload event. Any session variable that is used
on a screen will automatically display the value it contained before that screen was
shown.

This means that if you change the value of a session variable in a screen’s On Preload
event, in most cases the old value will still appear. There are afew exceptions, such as
some static text controls which will automatically be “refreshed” after the On Preload
event and will therefore display their new values. As ageneral rule, however, the On
Preload event is already “too late” for any changes to a session variable to be made if
you want the new value to automatically appear on the screen.

One way to get the current value from a session variable is to expand it “ manually”
using the SessionVar.Expand action. SessionVar.Expand allows you to retrieve the
current value of a session variable at any point in your project. In fact, you can use
SessionVar.Expand on a screen’s On Preload event to retrieve a session variable's
value, and then use actions to replace the screen text with new text that includes the
current value.

Chapter 7

Expanding Session Variables in Scripts

Session variables are often used on screens that gather information from the user. For
example, the Edit Fields screen stores the user’ s input in separate session variables—
one session variable for each edit field on the screen. Thisisfineif you simply want
to display the user’ sinput on another screen; in that case, all you need to do isinclude
the appropriate session variables in that other screen’stext. If you want to use the
inputted values in your scripts, however, you need a way to expand the session
variables in your script. This can easily be accomplished using the SessionVar.Expand
action.

Thefunction prototypefor this action is:

string SessionVar. Expand(string Text);

Basically, the SessionVar.Expand action takes a string of text and gives you back the
sametext, but with all of the session variables in the string expanded. In other words,
it returns a copy of thetext in which al of the session variables have been replaced by
their current values.

For example, if a session variable called %MyName% contains the string “ They call
me nobody,” you can access the string using the following action script:

strContents = SessionVar. Expand(" %WNanme%) ;

In the above line of script, the variable strContents would receive an expanded version
of “%MyName%.” The end result is that the value stored in %oMyNameY% (“ They call
me nobody”) would be assigned to strContents.

However, SessionVar.Expand isn't limited to retrieving the contents of asingle
session variable. It will happily expand a string containing several session variables—
or even one containing no session variables at al. (In the latter case, the string it
returns will be an exact copy of the original string.)

For example, using SessionVar.Expand on the string “When asked for his name, all he
said was: YoM yName2o” would return the entire string with the expanded contents of
the session variable %MyNameY%:

When asked for his name, all he said was: They call me Nobody

In addition, when the SessionVar.Expand action expands a string, it performs a
recursive expansion. Session variables within session variables are expanded as well.
This means that if the valuein a session variableis a string that has a session variable

Session Variables

176

init, the“internal” session variable will also be expanded. Y ou can think of the
expansion as being a*“loop” that continues until there are no more session variables
left to expand.

For example, consider the following two session variables:

%verb% - whose valueis “flying”
%message%o - whose value is “Look at me, I'm %verb%!”

After the following action script is executed:

strContents = SessionVar. Expand(" %ressage®%) ;
...the contents of the variable strContents would be:

Look at me, I'mflying!

As you can see, %message% was replaced by “Look at me, I'm %verb%!” and then
%verb% was replaced by “flying.”

Expanding Without Recursion

Visual Patch also contains an action that will prevent the recursive expansion of
session variables. This action is called SessionVar.Get, and its function prototypeis:

string SessionVar. CGet(string Text);

Using the previous example, let’s say we only wanted to expand the contents of
%messagedo, without expanding %verb%. In that case, the following action script
could be used:

strContents = SessionVar. Get (" %ressage®) ;

...and the contents of the variable strContents would be:

Look at me, I’'m %overb%!

As you can see, the SessionVar.Get action would expand the %message%o session
variable, but wouldn't go any further; the %verb% variable would remain
unexpanded.

Chapter 7

Expanding after On Preload

Session variables are automatically expanded before each screen is shown. This
automatic expansion happens before any of the screen’ s events are triggered—even
before the earliest screen event, On Preload. This means that if you use the
SessionVar.Set action to change the value of a session variable from On Preload, the
new value will not appear on the screen, because at that point the session variables
have already been expanded. (There are exceptions to this rule, such as the static text
controls on some screens, but it is safer to assumethat it istruein al cases.)

In order to change the text on a screen from within that screen’s events, you must use
adifferent method. Luckily, there are two ways in which you can expand session
variables on the current screen.

Thefirst and most straightforward method is to formulate a new text string with the
session variable in it, expand that string using SessionV ar.Expand, and then assign the
expanded string to the desired screen control.

For example, the following script would expand a string that contains two session
variables and then replace the text on a scrolling text screen with the new text:

NewText = SessionVar.Expand("First: 9%irstName%r\nLast: %.astNane%);
Dl gScrol i ngText. Set Properti es(CTRL_SCROLLTEXT_BODY, {Text=NewText});

Although this method works well, it requires you to write and edit the text within your
script, instead of composing the text directly on the Settings tab for that screen. This
isn't too difficult if your project only supports one language. However, if you're
creating a multilingual project, you'll need to use control structures to assign different
text to the screen that is appropriate for the user’ s system language. This would make
your scripts much longer and more difficult to maintain.

An aternative method is to use an action to retrieve the original text for the screen,
which still contains the session variables in their unexpanded form. This allows your
script to essentially “re-expand” the text that you entered on the Settings tab.

Hereis aversion of the previous script that uses the Screen.GetL ocalizedString action
to retrieve the original unexpanded text for the scrolling text control:

Original Text = Screen. GetLocal i zedSt ri ng(1 DS_CTRL_SCROLLTEXT_BODY) ;

NewText = SessionVar.Expand(Oigi nal Text);
Dl gScrol i ngText. Set Properti es(CTRL_SCROLLTEXT_BODY, {Text=NewText});

177

Session Variables

The key to this second approach is the Screen.GetL ocalizedString action, which
retrieves the text for a specific screen control as it was entered on the Settings tab,
automatically choosing the appropriate text for the language on the user's system.

When your project supports multiple languages, it is much easier to edit the screen
text directly on the Settings tab, where you can use the language selector to switch
between all of the languages that your project supports.

Tip: If you would like to see an advanced example of session variables in use,
examine some of Visual Patch’'s built-in screens. For example, the Select Drive screen
uses actions to set, update, and display the session variable %SpaceAvailabl €.

178

Chapter 7

179

Session Variables

Chapter 8:

Languages

The Internet has opened many new markets to software devel opers whose past
products would usually have supported only their own local language. In the
international marketplace, it isimportant not only to offer software in a variety of
languages, but also to keep this software current.

Asyou'll seein this chapter, you can use Visual Patch to create a patch that will
automatically display messages and prompts in your user’s native language. With
integrated language selection built into all screen dialogs, Visual Patch also makes it
very easy to modify your existing tranglations at any time.

180

Chapter 8

In This Chapter
In this chapter, you'll learn aboult:

Internationalizing your patch

How run-time language detection works
The language manager

Languagefiles

Setting the default language

Adding and removing languages

The language selector

Localizing screens and actions
Customizing error messages and prompts

Advanced techniques, such as using actions to determine the current language
and “changing’ the current language for testing purposes

181

Languages

182

Internationalizing Your Patch

Visual Patch has the ability to automatically detect the user’s system'’ s language and
to display messages and screens in that language. As the devel oper, you have full
control over which languages are supported in your project and over the content that
you would like presented to the user.

Language text is mainly used for messages generated throughout the patching process
and on screens, both of which can be easily trandated for multilingual patches.

Visual Patch allows you to localize your patch application in two areas:
Common error messages, status messages and prompts
Application-specific screens

Thefollowing sections of this chapter will look more closely at how to achieve this
localization.

Run-time Language Detection

The language that the patch application detects is based on the user’s regional and
language settings. These settings allow Windows users to configure which languageis
displayed, which input locale is used and which keyboard layout is supported in the
Windows operating system environment. T he settings are configured when Windows
isinstalled and can usually be changed from the Windows Control Panel. For
example, in Windows XP, a user can sdect Start > Settings > Control Pand and then
launch the Regional and L anguage Settings control panel application.

Each language in Windows has a constant language identifier. A language identifier is
a standard international numeric abbreviation for the language that is used in a country
or geographical region. Each language identifier is made up of a primary and
secondary language ID. (Thereis a completelist of primary and secondary language
IDsinthe Visual Patch help file)

Visual Patch maps all known languages and sub-languages according to the language
identifiers used by Windows. These mappings exist in a file called language_map.xml
located in Visual Patch's Language folder (usually “ C:\Program Files\Visual Patch
3.0\Languages’). You can look at this file to see which primary and secondary
language | Ds are mapped to which languages. (It is not recommended that you modify
this file unless you have a very specific reason to do so.)

Chapter 8

The Language Manager

The languages that are supported by your patch are all configured from the Language
Manager. Y ou can access the language manager by sdecting Project > Languages
from the menu.

Languages

- P Settings |

Languages supported by patch:

Language Default Language File ‘
E higlizh C:\Prograrn Files'Wisual Patch 300 anguagesE nglizh. 2l
French C:AProgram Files Wizual Patch 3.0 anguages\French.sml

’d} Add] ’x Femove] @/ SetDefaul ’ﬁ More Languages]

I_]S][Cancel][Help]

The Language M anager

Although you can localize messages in several areas of the design environment, the
Language Manager is the only place where you can control the project’s default
language as well as which languages are supported by your patch. For example, if you
are editing one of your screens and decide that you would like to add a German
tranglation, you will have to use the Language Manager to do so. Once you add
German support here, it will be availablein all other areas of your project.

Languages

183

184

When you add a language to your project, you areindicating that you want the patch
application to recognize that particular language identifier on a system and to use
specific messages for that language when identified. Conversdy, if a system’s
language is not represented in the languages list, it does not mean that the patch will
not run on that system; rather, it means that the patch will use the default language.

Default Language

Every project must have a default language. The default language is the one that will
be used when the patch application encounters a system language that is not
represented in the languages list.

For example, let’s suppose that you have English, French and German support in your
project with English as the default language. If your user runs the patch on a Greek
system, the user will see the English messages since you did not specifically include
support for the Greek language.

Note that the default language must be one that has a corresponding language file (see
the next section).

Language Files

A languagefileisan XML filethat contains al of the“internal” error messages, status
messages and prompts that are used by the patch application. Language files do not
contain project-specific messages, such as the text that you enter on screens.

Thelanguagefiles arelocated in Visual Patch's Languages folder (usually
“C:\Program Files\Visual Patch 3.0\Languages”). They are named according to the
English name for the language they represent. Each file contains a language map that
identifies which language thefile is responsible for and all of the built-in messages
that will be used for that language.

Not all languages have a pre-configured languagefile. If you add a language to your
project that does not have a languagefile, that language will use the same messages as
the default language.

Getting Additional Language Files

If you need a languagefilethat is not shipped with Visual Patch, please visit the Indigo
Rose website (www.indigorose.com) and user forums (www.indigorose.com/forums/)
where new language files are made available from time to time.

Chapter 8

http://www.indigorose.com)
http://www.indigorose.com/forums/)

Making Your Own Language File

If after consulting the Indigo Rose web site you still can't find the language file you

need, you can always make one yourself. To make a new languagefile, simply make a
copy of the existing language file that you want to translate from, rename it to the new
language name, change the language map in the file accordingly and then trandlate the

MESSAgES.

To clarify this process, here is an example of how you would create a French language
filelike the one that ships with Visual Patch:

1.

o > w DN

Open Windows Explorer to Visual Patch's Languages folder (usually
“C:\Program Files\Visual Patch 3.0\Languages’.)

Make a copy of English.xml and name it French.xml.
Open French.xml in atext editor such as Notepad.
Open language_map.xml from the Languages folder in atext editor as well.

L ocate the section that maps French in the language_map.xml file. It should
look likethis:

<Language>
<Nane>Fr ench</ Nanme>
<Primary>12</Pri mary>
<Secondary>
<I D>1</ | D>
<I D>2</ | D>
<I b>3</ 1 D>
<| D>4</ | D>
<| D>5</ | D>
<|I D>6</1 D>
</ Secondar y>
</ Language>

Copy the above section from language_map.xml and pasteit in place of the
<Language></Language> section of the French.xml file. Thiswill allow Visual
Patch to recognize this file as a language file for the French language.

Translate all messages in the <M essages></M essages> section to French. Do
not change any actual XML tags. For example:

<MSG_SUCCESS>Success</ M5G_SUCCESS>

Languages

185

186

becomes:

<MSG_SUCCESS>Succés</ M5G_SUCCESS>

8. Savethefileand re-open Visual Patch. The new language will now be
available.

9. Sharethefile with others! Go to http://support.indigorose.com and open a
support ticket saying that you have made a language that you would like to
share with other Visual Patch users. We will take it from there.

Adding Languages

To add a new language to your patch, click the Add button in the Language Manager.
Thiswill open the Add New Language dialog. Simply select the language that you
want to add and click OK. Y ou will then see the language appear in the languages list.

What Happens When You Add a New Language
When you add a new language to your project, the following happens automatically:

Visual Patch searches the Languages folder for an appropriate language file for
the language. If oneis not found, the new languageis set to use the default
language’ s languagefile.

The newly added language is added to all screens. That is, all screens have
messages added to them for the new language. If a trandlated languagefile for
that particular screen already exists, it will be used. Otherwise, the messages
from the default language will be replicated for the new language.

Thelanguage is added to the list of languages that you can select fromin the
language sel ectors throughout the design environment.

Of course, you will still need to go into the Screens dialogs to verify and/or translate
the text for the new language.

Removing Languages

To remove alanguage from the project, select it in the Language Manager’s list and
click the Remove button.

Chapter 8

http://support.indigorose.com

Note that the default language cannot be removed. In order to remove a language that
is currently being used as the default language for a project, you will need to make
another language the default language first.

When you remove a language, all of the translations for that language are removed
from the screens in the project. Therefore, use caution when removing languages.

The Language Selector

Once alanguage is added to your project, it is available for translation. When you’'re
editing the text on a screen, you can select the language that you want to edit by using
the language selector. The language selector is ssimply a drop-down list that lets you
choose the current language (for editing purposes) of the screen.

For example, if your project supports English, French and German, the language
selector on every screen’s properties dialog will let you choose whether to edit the
English, French, or German text.

Language: | English b

Lok]

The language selector

Selecting a language in the language selector replaces the editable text on the dialog
with the text for that language. Any changes that you make to the screen text will be
restricted to that language.

Note: If you select a newly added language for which there is no language file, the
editable text will initially be the same as the text for the default language.

Only the languages that have been added to the project will appear in the language
selector. If you want to work on a language that is not in the drop-down list, you will
first haveto add it to the project using the Language Manager.

Languages

187

Localizing Screens

To localize a screen, open the Screens dialog (Project > Screens) and double-click on
a screen to open the screen’s properties. Next, sdect the language that you want to
edit in the language sdl ector. Then, smply type the text that you want for the various
fieldsin that language.

Note: The Screen ID field on the Attributes tab cannot be translated. The Screen ID is
aunique identifier for the screen and is never displayed to the user.

Hereis an example of a screen with English text:

Screen Properties

[Settings | Attributes | Shle | =8 Actions|

Screen Text
Tent:

Thiz program will patch ZProductiame® on vour system from version Zlnstalederzsion® o version
%Targetverzsioni.

Pleaze click Start to procesd with the patch.

Show heading:
|F|eac|_u to Patch

Language: | Enalizh bl

[118 H Cancel H Help

A “Ready to Patch” screen with English text

188
Chapter 8

And hereis the same screen with French text:

Screen Properties

[Settings | Attributes | [Stle | =8 Actions |

Screen Text
Tent:

Ce programme de corection va rustiner ZProductd ame? sur votre spstéme pour 'avancge de
werzion ilnstallederzsion® & verzion T argeterzion’,

S'il wouz plait, cliguetez zur Commencer pour continuer avec la rustine.

Show heading:

|F'rét & Rustiner

[118 H Cancel H Help

A “Ready to Patch” screen with French text

Notice that in the second screenshot, “French” has been sdected in the language
selector near the bottom of the dialog. The text that you enter always corresponds to
the language that is selected in the language sel ector.

Tip: If the language that you want to translate to doesn’t appear in the language
selector, you need to add support for that language to your project. This is done by
adding the language in the language manager. For more information, see The
Language Manager beginning on page 183 and Adding Languages on page 186.

189

Languages

190

Importing and Exporting Screen Translations

There may be times when you want to have your screens translated by a third party
trangdlator. If the translator owns a copy of Visual Patch, you can simply send them
your project file, have them trandate the screens using the method explained above,
and then have them send the project file back to you.

However, it may bethat the translator does not own Visual Patch or that you need to
work with the project in other ways while the translation is taking place. Visual Patch
has a solution for this situation. Y ou can:

1.

2
3.
4

© N o U

0.

Open the Screens dialog (Project > Screens).
Select the screen that you want to have trandlated in the Screens list.
Click the Advanced button (this will open a popup menu).

In the popup menu, select Export Language followed by the language that you
want to export.

Choose alocation to save thefileto.
Send the exported file to your tranglator.
When you receive thefile back, select the screen in the Screens list.

Click the Advanced button and then choose Import Language from the popup
menu.

Locate the trandlated file and click Open.

10. You will now have the new translated strings in your screen.

Chapter 8

Customizing Error Messages and Prompts

If you want to change the default error messages, prompts or status messages, you can
edit the appropriate XML filein the Languages folder using a text editor such as
Notepad. However, thisis not generally recommended; the messages that you change
will be propagated to all projects that are built after the changes are made.

Note also that if you choose to change default messages, your modified languagefile
may be overwritten by a future update to Visual Patch. To avoid this, you may want to
rename any language files that you modify, for example you might rename
english.xml to my_english.xml. (In cases where there is more than one language file
for agiven language, Visual Patch will use the last one that it finds in the Languages
folder.)

<Mez=sages:=
<M3G SUCCESSrSuccess</M3G SUCCESS:
<M3G ERROR>Error</M3G ERROR>
<M3G NOTICE>Notice</M3G NOTICE>
<M3G WARNING:Warning</M3G WARNING:
<M3G_VES>Yes</M3G_VES:>
<M3G_NO-No</M3G_NO>
<M3G YEZ TOALL»Yes to All</M3G YES TOALL>
<HSG TOsto</MSG To -~ An excerpt from English.xml
<HSG:TO_CAP>T0<7HSG_TO_CAP>
<M3G FROM>from</M3G FROM:
<M3G FROM CAP>From</M3G FROM CAP>
<M3G BEROWZE>EBrowse...</M3G EROWSIE>
<M3G OE»OE</M3G OH:
<M3G CANCEL>Cancel</M3G CANCEL>
<M3G_PATH>Path</N3G_PATH>
<M3G_SEARCH MASE»Search</M3G_SEARCH MASE:
<M3G_SEARCH ALL>All Files</M3G_ZEARCH ALL>
<M3G_SEARCH FILE>Searching file</M3G_SEARCH FILE>
<M3G_SIZE_BYTES-bytes</M3G_SIZE_BYTES:
<M3G 3IZE KILOBYTES»KE</M3G ZIZE KILOBYTES:
<M3G 3IZE MEGABYTES>ME</M3G ZIZE MEGAEYTES:
<M3G 3IZE GIGABYTES»GE</M3G ZIZE GIGABYTES:
<M3G BITSPERPIXEL»EPP</M3G EITS3FERFIXEL:>
<M3G CONFIRM»Confirm</M3G CONFIRM>

191

Languages

192

Advanced Techniques

There are anumber of advanced techniques that you can use to manipulate the
language and the translated language strings in your patch at run time. Most of these
methods are accomplished using actions. This section covers a few of these advanced
techniques.

Determining the Current Language

There are two actions that can be used to retrieve information about the user’s
language ID: System.GetDefaultLanglD and Application.GetLanguage. Although
both actions return a table of information containing language IDs, it is important to
know the difference between the two.

System.GetDefaultLangID

System.GetDefaultLanglID is used to get the primary and secondary language ID that
the user employs in Windows. This is absolute and cannot be changed with any other
actions. For example, if this action returns 10 as the primary ID and 13 as the
secondary 1D, you will know that the user’s Windows system is configured for
Spanish (Chile). (Thereisa complete list of primary and secondary language IDs in
the Visual Patch help file)

Theinformation returned by this action can be used in cases where you want to make
specific choices about what to do based on the user’ s absolute system language. For
example, if you have a Web site that is translated into several different languages, you
might want to make a series of if...then statements to open the appropriate site:

-- Determ ne the absol ute system | anguage
| ocal tbl SysLang = System Get Def aul t Langl () ;

-- Set a default
l ocal strURL = "http://wwmv your conpany. conl english");

-- See if we should go to a different site
if (tblSysLang.Primary == 7) then

strURL = "http://ww. your conpany. coni ger nan") ;
el seif (tbl SysLang.Primary == 10) then

strURL = "http://ww. your conpany. coni spani sh");
el sei f(tbl SysLang. Primary == 16) then

strURL = "http://ww. yourconpany.confitalian");
end

Chapter 8

http://www.yourcompany.com/english
http://www.yourcompany.com/german
http://www.yourcompany.com/spanish
http://www.yourcompany.com/italian

-- G to the Wb site
File.OpenURL(strURL);

Application.GetLanguage

Application.GetLanguage is used to retrieve the primary and secondary language 1D
that is actually being used by the patch application. Note that
Application.GetLanguage may return a different result than
System.GetDefaultLangl D if the language being used by the patch differs from the
language your user employs in Windows.

For example, let’s say that you have three languages in your project: English (whichis
the default language), French, and German. Suppose a user from Chile runs the patch
on their system. Even though their system uses primary 1D 10 and secondary 1D 13
(which would be returned by System.GetDefaultLangl D), Application.GetL anguage
would return a primary 1D of 9 and a secondary 1D of 1, whichis the project’s default
language (English). The patch application would be using the default language
because Spanish was not added to the project.

The value returned by Application.GetL anguage will always correspond to a language
that you added to your project using the Language Manager. It will never identify
languages that were not explicitly included in the project.

Changing the Current Language

Normally, if the patch application detects a language on the user’ s system that is not
supported in the Language Manager, the default language will be used. However, you
may prefer to have your update use a different language in such situations. Y ou can
accomplish this by using the Application.SetL anguage action.

The Application.SetL anguage action allows you to directly set the primary and
secondary language | Ds that will be used for the patch. Calling this action changes all
subsequent error and status messages as well as the text shown on the screens. It
effectively “forces’ the patch application to act like it detected that language in the
first place.

For example, let’s say that your project supports two languages: English (whichis the
default language) and Simplified Chinese. Since English is the default language, it
will be used whenever the patch is run on anything other than Simplified Chinese.

However, you might prefer that the patch application use Simplified Chinese if the
user runs it on a system configured to use Traditional Chinese.

193

Languages

194

In other words, you want to override the default language rule and force your patch
application to use Simplified Chinese whenever Traditional Chinese is detected. Y ou
can do so easily by placing the following short script at the beginning of the

On Startup event, before any dialogs are shown:

-- Determ ne the absol ute system | anguage

| ocal tbl SysLang = System Get Def aul t Langl () ;

if (tblSysLang.Primary == 4) and (tbl SysLang. Secondary == 1) then
-- Traditional Chinese on user's system
-- so use Sinplified instead
Appl i cation. Set Language(4, 2);

end

Testing Different Languages

You may also want to use the Application.SetL anguage action for testing purposes.
For example, if you are running an English version of Windows, you might want to
see how your patch will look on an Italian system. Because your systemisrunningin
English, the patch application will always choose English as the language to display
when you run it on your system. However, you could force the patch to use Italian by
putting the following script at the beginning of your On Startup event:

Appl i cation. Set Language(16, 1);

Y ou could even modify your On Startup script to check for a custom command line
option, so you could force your patch application to use a different language at any

time. This could be useful for testing purposes, or to handle any language detection

issues that are discovered after the patch has been distributed.

Tip: The global variable _CommandLineArgs can be used to determine what
arguments were passed to the patch executable.

Localizing Actions

Y ou may have noticed that there is no language selector when editing scripts in Visual
Patch. Any text you enter directly into a script will remain the same, regardless of
what language is detected on the user’s system.

However, it is possible to use actions to detect the current language, and to use
multiple“if” statements to specify different text for different languages.

For example, let’s say that your project supports English and French and you want to
show a dialog box using actions that will be localized according to those languages.

Chapter 8

Thefollowing script first determines the language that the patch application is using,
and then displays one of two possible greetings:

| ocal tbl SysLang = Application. Get Language();

if (tbl SysLang.Primary == 9) then
Di al og. Message("Wl conme”,
"Wl come to the patch");
end

if (tblSysLang.Primary == 12) then
Di al og. Message(" Bi envenue”,
"Bi envenue au programme de correction");
end

The Application.GetL anguage action returns a table containing the primary and
secondary language ID that is being used by the patch application.

Note that this may or may not be the exact language that was detected on the user’s
system; rather, it is the appropriate language that the patch application has chosen
from the list of supported languages in the project.

In other words, it is the user’ s system language if that language is supported by the
patch; otherwise, it is the default language.

Tip: You can get the user’s actual system language by using the
System.GetDefaultLangl D action. However, it is usually preferable to use the
Application.GetL anguage action so the scripted language behavior will match the
“automatic” language behavior of the screens and error messages in the project.

Working with Existing Translated Messages

Visual Patch allows you to get and set translated messages from the language files and
screens at run time. Thisis done using the following actions.

VisualPatch.GetLocalizedString

This action allows you to retrieve the localized text for a general message from the
language files at run time. The message will be returned in the language currently
being used by the patch application.

For example, the default language files provide confirmation messages that can be
used if the user wants to abort the patching process.

195

Languages

Hereis away to show a dialog that asks the user for confirmation in the current
language before exiting:

local strTitle = Visual Patch. Get Local i zedSt ri ng(" M5G_CONFI RM') ;
| ocal strPronpt = Visual Pat ch. Get Local i zedSt ri ng(" M5G_CONFI RM_ABCORT") ;
| ocal nResult = Dial og. Message(strTitle

, StrPronpt

, MB_YESNO

, MB_I CONQUESTI ON

, MB_DEFBUTTONZ);

i f(nResult == | DYES)t hen
Application. Exit();
end

VisualPatch.SetLocalizedString

This action allows you to change the value of alocalized string. This can be useful if
you want to override the default value of an error message from script, so you don’t
have to permanently change your languagefile.

For example, let’s say that you want to change the message that is displayed if the
user triesto cancel the patch. By default it is “The patch is not finished! Do you really
want to abort?’, but you want to change it to: “ Stopping now is not a good idea. Are
you sure?’

Vi sual Pat ch. Set Local i zedSt ri ng(" M5G_CONFI RM_ABORT",
"Stopping nowis not a good idea. Are you sure?");

Screen.GetLocalizedString and Screen.SetLocalizedString

These actions are used to get and set the value of alocalized string from the current
screen’s message file. Every editable text item on a screen has a corresponding string
ID that is used internally to retrieve the appropriate text for the current language when
the screen is displayed.

These actions can be used to create new, temporary localized strings that are only
valid on the current screen. In other words, they permit you to define your own
localized strings (using custom string IDs) for use on the current screen.

For example, you could create custom localized error messages for usein ascreen’s
event scripts, without having to implement “if...then” branching to choose the
appropriate translated text wherever an error message can be displayed.

196

Chapter 8

Note: The Screen.GetL ocalizedString and Screen.SetL ocalizedString actions work the
same way that Visual Patch.GetlL ocalizedString and Visual Patch. Setl ocalizedString
do, except that they will only access strings used on the current screen.

197

Languages

Chapter 9:

198

Building and Distributing.

Once you have created your Visual Patch project and configured all relevant options,
the only two steps | eft are to build your patch and distribute it.

Building your patch is made easy using the built-in Publish Wizard. For more
advanced cases, you can customize the build process through the Build Settings
dialog, which gives you access to many advanced features such as build
configurations and pre/post build steps. Whatever route you choose, Visual Patch
makes building your patch a seamless part of the development process.

Once your patch is built, you must distribute it to your users. This chapter will
introduce you to both the standard and advanced aspects of the build process, and will
get you well on your way to distributing your patch

Chapter 9

In This Chapter
In this chapter, you'll learn about:

The build process

The publish wizard
Build settings

Build configurations
Constants

Pre- and post-build steps
Build optimizations
Build-rdlated preferences

Testing and distributing your patch

Building and Distributing

199

200

The Build Process

Visual Patch’'s ultimate goal is to produce the smallest patch possible. When you
chooseto build your patch, all of the filesin your included versions are first verified
and then analyzed. Visual Patch begins analyzing at the latest version in your patch,
and compares all previous versions' filesto the onesin the latest version.

Depending on what the previous versions contain, files listed in the most current
version are either not included in the final patch, are partially included in the form of
diff files, or areincluded in their entirety. This ensures that the patch is of the smallest
size possible while maintaining compatibility with all desired previous versions.

After analyzing all of theincluded files, diff files are created for any file existing in all
versions but which is not the same across all versions. These diff files are created
using Indigo Rose' s proprietary binary differencing compression engine. If afile
existsin the latest version that does not exist in one or more previous versions, the
completefileisincluded in the patch. Lastly, if afileexistsin all versions, and is
unchanged across all versions, it is not included in the patch.

During the build process, the files to be included — both diff files and complete files —
are compressed into the final single patch executable. It isimportant to note that the
sum of the diff file sizes will never be greater than the individual file's calculated
compressed filesize. In other words, if Visual Patch can create a smaller patch by
simply compressing an entirefile rather than including diff files, it will include the
entirefile.

The Publish Wizard

With the goal of making the build process as seamless as possible, Visual Patch
includes a Publish Wizard to assist you.

Thefirst screen of the publish wizard prompts you for the location that you would like
to publish to, as well asthe name of thefilethat you would liketo create.

Chapter 9

Publish Wizard - Output

Output Settingz

Welcome bo the Visual Patch Publish *Wizard! This wizard will
guide you through the steps of generating a patch executable.

Build patch to folder:

|m | {2 Browse. ..

Fatch filenarme:

| patch. exe |

¢ Back L Nzt >][Cancel] [Help

Indicate wher e the patch executable should be built to

Note: If your project contains more than one build configuration, the wizard will
prompt you to choose which build configuration you want to use before it starts:

Select Build Configuration

YW hich build configuration would you like to use for this build?
e B

L Ok][Cancel]

Selecting a build configuration when the build wizard starts

Build configurations are discussed on page 207.

201

Building and Distributing

The second screen of the publish wizard allows you to select which versions will be
built into your patch.

Publish Wizard - Yersions

Select Yerzionz

Select which versions of pour zoftware that you waould like to
include in this patch.

Wi1.0.0.0

[w]1.0.0.1

[w1.00.2
| <Back || Buid | | Cancel | [Hep |

Specify which ver sions should beincluded in the patch executable

Thisisavery important step in the build process. It allows you to individually include
or exclude each of the versions in your project from the built patch executable.

Being able to specify which versions areincluded in your patch is extremely useful.
For example, imagine you have a product that has been updated fifteen times.
Including al of these versions in your patch could potentially result in arather large

patch. On the other hand, creating a patch that applies only to the last three previous
versions would be a substantially smaller file.

202

Chapter 9

The wonderful thing about the Visual Patch build process is you don’t have to choose
between building a complete full history patch and building a patch applicable to only
afew of your past versions. Build one, launch the build wizard again, and easily build
the other! Then, let the user decide which patch they should download, or better yet,
incorporate TrueUpdate (www.trueupdate.com) into your software and have that
decision made automatically, without any user interaction required.

When the Next button is clicked, Visual Patch begins building the patch.

Publish Wizard - Building Patch

Stage 5 of ¥ - Creating Dff Files

[-ll'l'l'l'llllllll'l'l'l'l'llllllll'l'l'q

[)

»» Image: C:A\Program Files'\Wisual Patch 3.05T hemez\WP_Them
Analyzing wersions for differences =
» Analyzing file: C:%our Producty1.0.0. 2%FProduct = exe

»» Difference found in version: 1.0.0.71

»» Difference found in wergion: 1.0.0.0

» Analyzing file: C:%our Producty1.0.0. 24 readme. b=t

»» Difference found in version: 1.0.0.71

»» Difference found in werzion: 1.0.0.0

Checking wersions for emorg

Creating diff files

»» Checking available memary

»» Start diff file generation

& | 5

< Back st » Help

The patch being built

Building and Distributing

203

http://www.trueupdate.com)

204

Oncethe build process is complete, the following summary screen is displayed. This
screen presents a summary of the build process and displays any errors.

Publish Wizard - Finished

Checking for unuzed progress screens. .
Comprezzing files

Creating patch configuration file. .
Creating patch executable

22

GrmhaliE i
[Build Summary:

) Cutput falder: C:AOutput

Patch filez created:

» ChOutputhpatch.ere - 524 KB (633456 bytes]
Tatal buid tirme: 00:00:01

Build completed successfully - O Erar(z], 0% arningls)

w

£ ¥

Open autput folder Build Log...

A summary of the build process

Once you are finished viewing this screen, you can click Finish to dismiss the build
wizard. If the Open output folder option is checked, the output folder will be opened
automatically, giving you instant access to the generated files.

Tip: If you need moreinformation or want to trace an error, you can view the entire
build log file by clicking the Build Log button.

Build Settings

The Build Settings dialog, accessible by choosing Settings from the Publish menu,
allows you to set the defaults you would like to use for the build process. Basically,
any setting affecting the final built patch file is found here. If you opted to publish

Chapter 9

without using the publish wizard, this is where you must specify your build settings.
These settings are organized into tabbed sections in the Build Settings dialog: Output,
Constants, Pre/Post Build, and Optimizations.

Output

All of your patch output settings are located on this tab. Y ou can specify where your
final patch executable will be built by adjusting the L ocation settings.

Enabling the “Encrypt patch archive data” option encrypts your patch data with a
random key during the build process, helping to hide and further protect your
information.

The Versionsto Build list allows you to specify which versions to include in the final
patch executable. The executable will only be able to patch the versions you select.

Build Settings |:.@@

) Dutput | L& Constants | [# CodeSigning| 'S, Resources | Of Pre/Post Build | B Optimizations

Build configuration: | v [l:,'}l fidd] [x Femove] [Q}. Edit]
Location
COutput folder:
|E:\Dutput'\ Hé! Browse]

Patch filename:

| patch.exe |

Encrypt patch archive data

Yergions ko Build

[w]1.0.0.0
[w]1.0.01
[w]1.0.0.2

Patch output settings

Building and Distributing

205

Constants

Constants are essentially design time variables. They are similar to session variables,
but instead of being expanded as the user runs the patch, they are expanded when you
build the project. In other words, when you build your project, all of the constants are
automatically replaced by the values assigned to them.

Y ou can define constants on the Constants tab of the Build Settings dial og.

Build Settings M =1E3

| (%] Dutput.i Lo Constants im Code Signing | 5, Pesources | 5] Pre/Post Build | B Optimizations

Build cnnfiguratian:!Default vi [l:,'}l &dd] [a Femaove] [Qu Edit]
= -

#Product Twpe# Professional

#Dermoversions false

#IncludeProductVideos# krue

Custom constants

Clicking the Add button displays a dialog where you can name the constant and giveit
avalue.

206

Chapter 9

Mew Constant

X)

Conzstant name:
HMEWCONSTANTH
Constant value:

Walle

|]S |[Cancel]

Add a new constant

Each constant has a name that begins and ends with a# sign, and an associated value.
The name will be replaced by this value throughout the project when it is built. 1t's
exactly like a big search-and-replace operation that happens whenever you build the
project.

Since each constant is essentially just a name that gets replaced with different text,
you can use them just about anywhere. Y ou can use them on screens, in file paths, in
actions...pretty much anywhere that you can enter text.

Build Configurations

One of the many timesaving features of Visual Patch is the ability to define build
configurations. Build configurations allow you to define different build settings for
your project and switch between them easily.

For example, it’s often useful to have a build configuration for each type of patch that
you wish to build. One build configuration could create a full-history patch, capable of
updating all previous versions (e.g. 1.0, 1.1, 1.2, 1.3, 1.4) up to the current version.
Another could be an incremental patch to bring the previous version up to the current
one (e.g. from 1.4 to 1.5). A third could be a multi-version patch to bring two common
previous versions up to the latest version (e.g. from 1.2 or 1.3 to 1.5). You could then
build each type of patch by switching between the build configurations.

Note: Files and folders can also be associated with specific build configurations on
their Conditions tab. This makes it easy to conditionally enable or disable the patching
of specific files within a version.

Y ou can add a build configuration to the current project by clicking the Add button
(22 1) near the top of the Constants tab of the Build Settings dial og.

207

Building and Distributing

208

Constants and Build Configurations

The values that you assign to constants are specific to each build configuration. In
fact, thisis what makes constants so useful. By assigning different values to the
constants in each build configuration, you can make sweeping changes to your project
by simply selecting a different build configuration when you build it.

Note: The build configuration determines which values are used when the project is
built.

Here are some things you can do with constants and build configurations:

use constants in the paths for your sourcefiles, and use different versions of the
filesfor different build configurations (professional version vs. standard version
patch)

use actions that test the value of a constant named #DEBUGH#, and set it to true
ina*“Debug” build configuration and false in all other configurations. Then you
can leave helpful debugging codein your scripts, and only have it performed
when you build the Debug configuration. For example:

function MyFunc()
nCount = nCount + 1,
i f #DEBUGH t hen
Debug. Showw ndow() ;
Debug. Print ("I nside MyFunc() - nCount =" .. nCount);
end
end

Constants and Unattended Builds

Constants are extremely useful for performing unattended builds because they can be
changed using a command line argument. Y ou can even use constants to specify the
output location, and which build configuration to use. The possibilities are endless.

For example, you could create a batch file that would generate a unique patch for
every one of your customers, with the customer’s name showing up on one or all of
the screens during the patch.

For more information on performing unattended builds of your project, search for
“Unattended Build Options” in the Visual Patch help file.

Chapter 9

Pre/Post Build.

There may be instances where you want to run a program either before or after you
build your patch. Visual Patch makes this process easy through Pre and Post Build
Steps. On the Pre/Post Build tab of the Build Settings dialog, you can set a program to
Run Before Build, and a program to Run After Build.

Build Settings M =1E3

| () Output| £& Constants | [# Code Signing| 2, Flesuurces| %) Pre/Post Build |_i’_*’d Dptimizatiu:uns_

Build cunfiguratiun:lDefault ;I [l;'} Add] [a Remaove] [‘\:‘ Edit]
Run Before Build
Run program:
|E:\Dev\Llpdate_FiIes.e:-:e HLJ'] Browse]

LCommand line argurnents:
| 48DesTWProjProduct 3 |

[w]2w¢ ait For program ko finish running

Fiun after Build

Run program:
| |l¢j] Browse]

Command line argurnents:

[] it far program to finish running

Run programs before and/or after the build process

The uses of this feature are limited only by your imagination. Y ou could, for example,
launch a program that would compare all files from your company’ s devel opment
network to the files about to be patched to ensure the most up-to-date files are
included — the program could alert you if the local files do not match those on the
network. Y ou would want this program run at the last possible second to ensure |ast-
minute bug fixes are not left out. Alternatively, you could have Visual Patch call an
FTP client program with command line arguments to automatically upload your latest
patch to your website. The possibilities are limitless.

Building and Distributing

209

Y ou can specify the path to the desired program in either of the Run Program fields.
Any command line arguments that are needed should be specified in the Command
Line arguments fields. If you want Visual Patch to ‘sleep’ whilethe other programis
open, check the Wait for program to finish running checkbox.

Optimizations

There are anumber of size and speed optimizations on the build settings dialog that
allow some control over the build process. For example, enabling the “ Cache diff
files” and “ Cache compressed file sizes” options allow Visual Patch to store any
binary differencefilesthat it creates so it only needs to perform the delta compression
oncefor eachfile, instead of every timethe patch is built.

Build Settings M =1E3

k:_'," Output | L Constants | [# Code Signing | "2 Resources |) F'ref"F'DstEuiId_E 7 I:|I:'til'l'liZElti':'f'lS:

Build Cache

Cache diff files
Cache compressed file sizes

Cache folder:
My Documentstvisual Patch Projectshcachehshared il-.g] Browse]
Clear Cache
Multipazs Diff Creation Low Memary 5cenario
Enabled (®) Minimize patch size
Initial pazs time threshold:) Mawimize buld speed
. 180 o| zeconds

w

M awirnurm additional pazses:
E -

st |

Build process optimizations

Enabling the “ Cache diff files” option stores the generated diff filesin afolder on
your system so they can be reused the next time you build, instead of having to be

210

Chapter 9

generated again. Subsequent builds of the same project are much faster when this
option is enabled.

Likewise, Visual Patch calculates the compressed file size of each file and compares

this valueto thetotal size of all the diff files that are generated for that file. Enabling

the “ Cache compressed file sizes” option stores the compressed size information so it
doesn’t need to be recalculated the next time you build the project.

The Multipass Diff Creation options determine whether Visual Patch will perform
multiple passes on each file in order to achieve the smallest possible diff size. Each
successive pass will look for longer patternsin thefile, which, depending on the
internal structure of the file, may result in better compression.

Since each pass adds to the creation time, you can limit the multipass optimization so
it is only performed when theinitial pass takes |ess than a specific amount of time.
Thisis known as the* Initial pass time threshold.”

The*Maximum additional passes’ option controls the maximum number of additional
passes that will be attempted in order to search for successively longer patterns.

Tip: Enable the® Cache diff files” option and set the “Initial pass time threshold” to O
so the multipass optimization will be performed for every file, but only the first time
you build the project. Thiswill allow Visual Patch to generate the smallest diff files,
and will allow subsequent builds to be performed as quickly as possible.

The Low Memory Scenario options alow you decide how you want Visual Patch to
behave in low memory situations. Y ou can choose to favor small patch sizes or shorter
build times. In general, it is best to keep this set to “Minimize patch size,” however
you may wish to change the setting on systems with limited memory resources if you
find that your builds are taking a very long time to complete.

Tip: For largefiles, the size of the generated diff files depends on your computer’s
available memory. Because of this, it is recommended that you clear out the diff cache
(by clicking the Clear Cache button) whenever your computer’s RAM is upgraded.

211

Building and Distributing

Build Preferences

To control how Visual Patch handles the build process, you can modify the build

preferences by choosing Edit > Preferences from the menu.

Y ou can use the build preferences to control whether Visual Patch opens the output
folder by default, disable the publish wizard and, when not using the wizard, control

whether a confirmation dialog is displayed before the build process begins.

Preferences

M emony
Code Signing
[+~ Document
[+~ Ervvironment
Script Editar
Spell Checker
Startup
Updates

l 0K l

[Cancel]

[Help]

General

Build with Publizh ‘»fizard

Open output folder after build

Confirm before building [hon-wizard made anly]
Show lowe memarny warnings

YWerbogze log output [include individual file items]

Exclude fonts from build:

!.-’-‘-.rial, Courier Hew, Times Mew Boman

Log Files

) Mone

(%) Save in output folder
i) Save in other folder;

%]

Preferences dialog (Edit > Preferences)

212
Chapter 9

Testing Your Patch

One of the most important and often overlooked steps when creating a patch is testing
it after it has been built. Y ou should test your patch on as many computers and
operating systems as possible. Try it on every operating system that your software
product supports. All versions of windows have differences between them, and should
be thoroughly tested. As well, test your patch on systems with a lot of hard-drive
space and on those with a very limited amount of hard drive space. And lastly, test
your patch on a system where the defaults for your program’ s installation were not
used. For example, install your software to C:\SomeDirectory\ and then patch it. Does
your patch fail, or does it work as expected?

If you have made use of Visual Patch’s multilingual support, be sure to test out each
language in your patch.

Many problems with patches have simple causes, such as forgetting to include afile,
or moving afileto an incorrect location. Often a runtime problem is simply dueto the
patch being unable to locate the fil es to patch. Care must be taken when designing the
directory structure of your patch, ensuring that it is compatible with the installed
software being patched.

If you do run into a problem with your patch, test it on as many systems as possible to
narrow down the problem. Y ou might discover a common factor between the systems
that is causing the patch to fail.

Tip: For information related to tracking down script-related issues, see Debugging
Your Scriptsin Chapter 10.

Distributing Your Patch

Once you have thoroughly tested your patch, it istimeto distributeit. There are
several ways to distribute your software patch, but the four main media are floppy
disks, CD-ROMs, DVDs, and the Internet.

Preparing your patch for distribution is as easy as publishing to a hard drive folder.
Once the build operation has completed, simply copy the patch executable to your
desired media, and you areready to go! Or, if you have opted to distribute via the
Internet, ssimply take the generated patch file and upload it onto your website for your
customers to download.

213

Building and Distributing

214

For an automated patch delivery system, consider TrueUpdate. TrueUpdate
incorporates easily into any windows-based application, and allows the user to check
for updates through your software application. Or, your application could use
TrueUpdate to check for updates periodically. TrueUpdate supports either awizard,
dialog, or silent interface.

TrueUpdateisn't just an easy way to let your customers know software updates are
available; it can automatically seect the best patch to apply. For example, consider a
product that has experienced fifteen version changes. Y ou may choose to publish one
full history patch, and one patch that updates the last three versions to the most current
version. TrueUpdate can check the user’s version and download the appropriate patch,
potentially saving you bandwidth costs and your userstime.

For more information on TrueUpdate, please contact Indigo Rose Software or visit the
TrueUpdate website at www.trueupdate.com.

Chapter 9

http://www.trueupdate.com

215

Building and Distributing

Chapter 10:

216

Scripting Guide
One of the powerful features of Visual Patch isits scripting engine. This chapter will
introduce you to the new scripting environment and language.

Visual Patch scripting is very simple, with only a handful of conceptsto learn. Hereis
what it looks like:

a =5;
if a <10 then

D al og. Message("Guess what?", "a is |less than 10");
end

(Note: this script is only a demonstration. Don't worry if you don’t understand it yet.)

The example above assigns a value to a variable, tests the contents of that variable,
and if the value turns out to be less than 10, uses a Visual Patch action called
“Dialog.Message’ to display a message to the user.

New programmers and experienced coders alike will find that Visual Patchisa
powerful, flexible yet simple scripting environment to work in.

Chapter 10

In This Chapter
In this chapter, you'll learn aboult:

Important scripting concepts
Variables

Variable scope and variable naming
Types and values

Expressions and operators

Control structures (if, while, repeat, and for)
Tables (arrays)

Functions

String manipulation

Debugging your scripts

Syntax errors and functional errors

Other scripting resources

217

Scripting Guide

218

Before You Begin

In order to try out the example scripts in this chapter, you will need a basic project
that you can build so you can run the patch application and see the scripts in action.

If you already have a Visual Patch project established, you can use a copy of it for this
purpose. (Definitely use a copy of the project, though, so you can modify its scripts
freely.)

Alternatively, you can create a simple project to usejust for trying out your scripts.

All you need is a project that you can successfully build. Even if you have no
intention of ever publishing the project, it will need afew itemsin order to get past the
various checks performed during the build process.

The minimum, therefore, is a project with:
at least two version tabs
at least onefile on each tab
at least one key file on each tab

By default, every new project in Visual Patch has some standard scripts that provide
default functionality and serve as a starting point for the project. For the purposes of
this chapter, however, you will want to remove the default actions.

Y ou can remove a default script just like you would remove any text in a text editor:
simply select thetext (e.g. press Cirl+A to select it all) and press the Delete key.

The examples in this chapter assume that you have removed the default script from
the On Startup event (Project > Actions) and that the project can build successfully.

Tip: If you want to test actions in the On Startup event without proceeding with the
rest of the patching process, add an Application.Exit() action to the end of your script
for that event. This action will immediately exit from the patch application as soon as
it is encountered in the script.

Chapter 10

A Quick Example of Scripting in Visual Patch

Hereis a short tutorial showing you how to enter a script into Visual Patch and
preview the results.

1. Set up aworking project as described in the previous section, Before you Begin.
2. Inthe On Startup event (Project > Actions), add the following line:

D al og. Message("Title", "Hello World");

It should look like this when you’ re done:

Actions

"5 OnStatup | (=] OnPre Patch | (5] On Post Paich | (] On Shutdawn|
Ewvent Yariables: %None |
01l Dialog.Messzage ("Title™, "Hello World™): :‘5
oz b
M
< | >
(luick Help: |Ti|:|: Fresz Chil+Space to view a list of all available actions. |
[ﬁ- &dd Action] ’.E]Addgode r] [:| gdit] [i.» r] [_:,: r] ’u.&gvanced r]
|_ k. J [Cancel] [Help

Scripting Guide

219

3. Click OK to close the action editor.
4. Choose Publish > Build from the menu, and go through the publish wizard.

5. Once you have built the patch, run it so the script you entered is performed.

Y ou should see the following dialog appear:
Title X
\ir) Hella world

Congratulations! You have just made your first script. Though thisis a simple
example, it shows you just how easy it is to make something happen in your project.
Y ou can use the above method to try out any script you want in Visual Patch.

Note: If you are working with actions that interact with screens, you will need to
perform the actions from a screen event.

Important Scripting Concepts

There are afew important things that you should know about the Visual Patch
scripting language in general before we go on.

Script is Global

The scripting engineis global to the runtime environment. That means that all of your
events will “know” about other variables and functions declared elsewherein the
product. For example, if you assign “myvar = 10;” in the project’s On Startup event,
myvar will still equal 10 when the next event istriggered. There are ways around this
global nature (see Variable Scope on page 224), but it is generally true of the scripting
engine.

220

Chapter 10

Script is Case-Sensitive

The scripting engine is case-sensitive. This means that upper and lower case
characters areimportant for things like keywords, variable names and function names.

For example:
ABC = 10;
aBC = 7;

In the above script, ABC and aBC refer to two different variables, and can hold
different values. The lowercase“a” in “aBC” makes it completely different from
“ABC” asfar as Visual Patch is concerned.

The same principle applies to function names as well. For example:

Di al og. Message("H ", "Hello Wrld");

...refersto abuilt-in Visual Patch function. However,

DI ALOG Message("H ", "Hello Wrld");

...will not be recognized as the built-in function, because DIALOG and Dialog are
seen as two completely different names.

Note: It's entirely possible to have two functions with the same spelling but different
capitalization—for example, GreetUser and gREETUSeR would be seen as two totally
different functions. Although it's definitely possible for such functions to coexist, it’s
generally better to give functions completely different names to avoid any confusion.

Comments

Y ou can insert non-executable comments into your scripts to explain and document
your code. In a script, any text after two dashes (--) on aline will be ignored. For
example:

-- Assign 10 to variable abc

abc = 10;
..0r:
abc = 10; -- Assign 10 to abc

221

Scripting Guide

Both of those examples do the exact same thing—the comments do not affect the
script in any way.

Y ou can also create multi-line comments by using --[[and]]-- on ether side of the

comment:
--[[This is
a multi-line
coment]]--
a = 10;

Y ou should use comments to explain your scripts as much as possible in order to
make them easier to understand by yourself and others.

Delimiting Statements

Each unique statement can either be on its own line and/or separated by a semi-colon
(;). For example, all of the following scripts arevalid:

Script 1:

a =10
MyVar = a

Script 2:
a = 10; MyVar = a;
Script 3:

a = 10;
MyVar = a;

However, werecommend that you end all statements with a semi-colon (as in scripts 2
and 3 above).

222

Chapter 10

Variables

What are Variables?

Variables are very important to scripting in Visual Patch. Variables are simply
“nicknames” or “placeholders’ for values that might need to be modified or re-used in
the future. For example, the following script assigns the value 10 to a variable called
“amount.”

anount = 10;

Note: We say that values are “assigned to” or “stored in” variables. If you picture a
variable as a container that can hold a value, assigning a valueto avariableis like
“placing” that value into a container. Y ou can change this value at any time by
assigning a different value to the variable; the new value simply replaces the old one.
This ability to hold changeable information is what makes variables so useful.

Here are a couple of examples demonstrating how you can operate on the “amount”
variable:

anount 10;
anount anount + 20;
Di al og. Message("Val ue", anount);

This stores 10 in the variable named amount, then adds 20 to that value, and then
finally makes a message box appear with the current value (which is now the number
30) init.

Y ou can also assign one variable to another:
a 10;

b a;

Di al og. Message("Val ue", b);

Thiswill make a message box appear with the number 10init. Theline“b=g;"
assigns the value of “a” (which is 10) to “b.”

223

Scripting Guide

224

Variable Scope

As mentioned earlier in this document, all variablesin Visual Patch are global by
default. This just means that they exist project-wide, and hold their values from one
script to the next. In other words, if avalueis assigned to avariablein one script, the
variable will still hold that value when the next script is executed.

For example, if you enter the script:

foo = 10;
...into the patch’s On Startup event, and then enter:

Di al og. Message("The value is:", foo);

...into a screen’s On Preload event, the second script will use the value that was
assigned to “foo” inthefirst script. As aresult, when the screen loads, a message box
will appear with the number 10 in it.

Note that the order of execution isimportant...in order for one script to be able to use
the value that was assigned to the variable in another script, that other script hasto be
executed first. In the above example, the On Startup event is triggered before the
screen’s On Preload event, so the value 10 is already assigned to foo when the On
Startup event’s script is executed.

Local Variables

The global nature of the scripting engine means that a variable will retain its value
throughout your entire project. Y ou can, however, make variables that are non-global,
by using the special keyword “local.” Putting the word “local” in front of avariable
assignment creates a variable that is local to the script, function, or block of code.

For example, let’s say you have the following three scripts in the same project:

Script 1:

-- assign 10 to x

X = 10;

Script 2:

[ocal x = 500;

D al og. Message("Local value of x is:", X);

x = 250; -- this changes the local x, not the global one
D al og. Message("Local value of x is:", X);

Chapter 10

Script 3:

-- display the global value of x
Di al og. Message("d obal value of x is:", x);

Let’s assume these three scripts are performed one after the other. Thefirst script
gives x thevalue 10. Since all variables are global by default, x will have this value
inside all other scripts, too. The second script makes a local assignment to x, giving it
the value of 500—but only inside that script. If anything eseinside that script wants
to access the value of x, it will seethe local value instead of the global one. It's like
the “x” variable has been temporarily replaced by another variable that looks just like
it, but has a different value.

(This reminds me of those caper movies, where the bank robbers put a picturein front
of the security cameras so the guards won’t see that the vault is being emptied. Only
in this case, it’s like the bank robbers create a whole new working vault, just like the
original, and then dismantle it when they leave.)

When told to display the contents of x, the first Dialog.Message action inside script #2
will display 500, since that is the local value of x when the action is performed. The
next line assigns 250 to the local value of x—note that once you make a local variable,
it completely replaces the global variable for the rest of the script.

Finally, thethird script displays the global value of x, which is still 10.

Variable Naming

Variable names can be made up of any combination of |etters, digits and underscores
as long as they do not begin with a number and do not conflict with reserved
keywords.

Examples of valid variables nhames:

a
strName

_My Variable
datal
data 1 23
index

bReset

nCount

Scripting Guide

225

Examples of invalid variable names:

1

1data

%MyVauek

$strData

for

local
_FirstNamet+LastName _
User Name

Reserved Keywords
Thefollowing words are reserved and cannot be used for variable or function names:

and break do else esalf
end false for function if

in |ocal nil not or
repeat return table then true
until while

Types and Values

Visual Patch’'s scripting language is dynamically typed. There are no type
definitions—instead, each value carries its own type.

What this means is that you don't have to declare a variable to be of a certain type
before using it. For example, in C++, if you want to use a number, you haveto first
declare the variabl€ s type and then assign avalueto it:

int j;
j = 10;

The above C++ example declares j as an integer, and then assigns 10 to it.

226

Chapter 10

Aswe have seen, in Visual Patch you can just assign a value to a variable without
declaring itstype. Variables don’t really havetypes; instead, it's the values inside
them that are considered to be one type or another. For example:

j = 10;

...thisautomatically creates the variable named *j” and assigns the value 10 to it.
Although this value has a type (it's a number), the variable itself is still typeless. This
means that you can turn around and assign a different type of valuetoj, like so:

j = "Hello";

This replaces the number 10 that is stored in j with the string “Hello.” The fact that a
string is a different type of value doesn’t matter; the variablej doesn’t care what kind
of valueit holds, it just stores whatever you put init.

There are six basic datatypesin Visual Patch: number, string, nil, Boolean, function,
and table. The sections below will explain each data type in more detail.

Number

A number is exactly that: a numeric value. The number type represents real
numbers—specifically, double-precision floating-point values. Thereis no distinction
between integers and fl oating-point numbers (also known as *fractions’)...all of them
arejust “numbers.” Here are some examples of valid numbers:

4 4, 4 04 4.57e-3 0.3e12

String

A string is simply a sequence of characters. For example, “Joe2” is a string of four
characters, starting with a capital “J’ and ending with the number “2.” Strings can
vary widely in length; a string can contain a single letter, or asingle word, or the
contents of an entire book.

Strings may contain spaces and even more exotic characters, such as carriage returns
and linefeeds. In fact, strings may contain any combination of valid 8-bit ASCI|
characters, including null characters (“\0”). Visual Patch automatically manages string
memory, so you never haveto worry about allocating or de-allocating memory for
strings.

Strings can be used quite intuitively and naturally. They should be delimited by
matching single quotes or double quotes. Here are some examples that use strings:

227

Scripting Guide

228

Nanme = "Joe Bl ow';
Di al og. Message("Title", "Hello, how are you?");
Last Name = ' Bl ow ;

Normally double quotes are used for strings, but single quotes can be useful if you
have a string that contains double quotes. Whichever type of quotes you use, you can
include the other kind inside the string without escaping it. For example:

doubl es
singl es

"How s that agai n?";
'"She said "Talk to the hand,"” and | was all |ike "Dude!"';

If we used double quotes for the second line, it would look like this:

escaped = "She said \"Talk to the hand,\" and | was all like \"Dude!\"";

Normally, the scripting engine sees double quotes as marking the beginning or end of
a string. In order to include double quotes inside a double-quoted string, you need to
escape them with backslashes. This tells the scripting engine that you want to include
an actual quote character in the string.

The backslash and quote (\") is known as an escape sequence. An escape sequence is a
special sequence of characters that gets converted or “translated” into something else
by the script engine. Escape sequences allow you to include things that can’t be typed
directly into a string.

The escape sequences that you can use include:

\a - bdl
\b - backspace
\f - formfeed

\n - newline
\r - carriagereturn
\t - horizontal tab

\v - vertical tab
\\ - backslash
\" - quotation mark
\' - apostrophe

\[- left square bracket
\] - right square bracket

Chapter 10

So, for example, if you want to represent three lines of text in a single string, you
would use the following:

Li nes = "Line one.\nLine two.\nLine three";
Di al og. Message("Here is the String", Lines);

This assigns a string to a variable named Lines, and uses the newline escape sequence
to start anew line after each sentence. The Dialog.M essage function displays the
contents of the Lines variablein a message box, likethis:

s Line one.
\EJ’) Lime bwia,

Line three

Another common example is when you want to represent a path to afile such as
C:\My Folder\My Data.txt. You just need to remember to escape the backs ashes:

MyPath = "C\\My Fol der\\My Data.txt";
Each double-backslash represents a single backslash when used inside a string.

If you know your ASCI| table, you can use a backslash character followed by a
number with up to three digits to represent any character by its ASCII value. For
example, the ASCII valuefor a newline character is 10, so the following two lines do
the exact same thing:

Li nes
Li nes

"Li ne one.\nLine two.\nLine three";
"Li ne one.\10Li ne two.\10Li ne three";

However, you will not need to use this format very often, if ever.

Y ou can also define strings on multiple lines by using double square brackets ([[and
11). A string between double square brackets does not need any escape characters. The
double square brackets let you type special characters like backslashes, quotes and
newlines right into the string.

Scripting Guide

229

230

For example:

Li nes = [[Li ne one.
Li ne two.
Line three.]];

is equivalent to:
Li nes = "Line one.\nLine two.\nLine three";

This can be useful if you have preformatted text that you want to use as a string, and
you don’'t want to have to convert all of the special characters into escape sequences.

Thelast important thing to know about strings is that the script engine provides
automatic conversion between numbers and strings at run time. Whenever a numeric
operation is applied to a gtring, the engine tries to convert the string to a number for
the operation. Of course, this will only be successful if the string contains something
that can be interpreted as a number.

For example, the following lines are both valid:

a
b

"10" + 1, -- Result is 11
"33" * 2; -- Result is 66

However, the following lines would not give you the same conversion result:

"10+1"; -- Result is the string "10+1"
"hello" + 1; -- ERROR, can’t convert "hello" to a nunber

a
b
For more information on working with strings, see page 255.

nil
nil is a special valuetype. It basically represents the absence of any other kind of
value.

You can assign nil to a variable, just like any other value. Note that thisisn't the same
as assigning the letters “nil” to avariable, asin astring. Like other keywords, nil must
beleft unquoted in order to be recognized. It should also be entered in all lowercase
letters.

Chapter 10

nil will always evaluate to false when used in a condition:

a=nil;
if a then

-- Any lines in here

-- wll not be executed
end

It can also be used to “ddete’ avariable:

"Joe Bl ow';
nil;

y
y

In the example above, “y” will no longer contain a value after the second line.

Boolean

Boolean variabl e types can have one of two values: true, or false. They can be used in
conditions and to perform Boolean logic operations. For example:

bool ybooly = true;
i f bool ybooly then

-- Any script in here will be executed
end

This sets a variable named boolybooaly to true, and then usesit in an if statement.
Similarly:

a = true;

b fal se;

if (a and b) then
-- Any script here will not be executed because
-- true and false is fal se.

end

Thistime, theif statement needs both “a” and “b” to betruein order for thelines
inside it to be executed. In this case, that won't happen because “b” has been set to
false

Scripting Guide

231

232

Function

The script engine allows you to define your own functions (or “sub-routines’), which
are essentially small pieces of script that can be executed on demand. Each function
has a name which is used to identify the function. Y ou can actually use that function
name as a special kind of value, in order to store a “reference” to that functionin a
variable, or to pass it to another function. This kind of referenceis of the function

type.
For more information on functions, see page 250.

Table

Tables are a very powerful way to store lists of indexed values under one name.
Tables are actually associative arrays—that is, they are arrays which can be indexed
not only with numbers, but with any kind of value (including strings).

Here are afew quick examples (we cover tablesin more detail on page 242):

Example 1:

guys = {"Adanf, "Brett", "Darryl"};
D al og. Message("Second Nanme in the List", guys[2]);

Thiswill display a message box with the word “ Brett” init.

Example 2:

t ={};

t.FirstNane = "M chael *;
t. Last Name = "Jackson";

t.CQccupation = "Singer";
Di al og. Message(t. FirstName, t.Cccupation);

Thiswill display the following message box:
Michael [X]
\ir) Singer

Chapter 10

You can assign tables to other variables as well. For example:

tabl e_one = {};

tabl e_one. First Name = "Bruce";
tabl e_one. Last Nane = " Spri ngsteen";
t abl e_one. Cccupati on = "Si nger";

table two = tabl e one;
occupation = table_two. Qccupati on;
Di al og. Message(b. Fi rst Name, occupation);

Tables can beindexed using array notation (my_tablg[1]), or by dot notation if not
indexed by numbers (my_table.LastName).

Note that when you assign one table to another, as in the following line:

table two = tabl e one;

...thisdoesn’t actually copy table two into table_one. Instead, table two and
table_one both refer to the same table.

This is because the name of a table actually refersto an address in memory where the
data within the tableis stored. So when you assign the contents of the variable
table_oneto the variable table_two, you' re copying the address, and not the actual
data. You're essentially making the two variables “point” to the same table of data.

In order to copy the contents of a table, you need to create a new table and then copy
all of the data over oneitem at atime.

For more information on copying tables, see page 247.

Variable Assignment

Variables can have new values assigned to them by using the assignment operator (=).
This includes copying the value of one variable into another. For example:

a
b
c

10;
"I am happy";
b;

It isinteresting to note that the script engine supports multiple assignment:

a, b =1, 2;

After the script above, the variable“a’ contains the number 1 and the variable “b”
contains the number 2.

233

Scripting Guide

234

Tables and functions are a bit of a special case: when you use the assignment operator
on atable or function, you create an alias that points to the same table or function as
the variable being “copied.” Programmers call this copying by reference as opposed to
copying by value.

Expressions and Operators

An expression is anything that evaluates to a value. This can include a single value
such as“6” or a compound value built with operators such as“1 + 3”. You can use
parentheses to “group” expressions and control the order in which they are evaluated.
For example, the following lines will all evaluate to the same value:

10;

(5 * 1) * 2
100 / 10;
100/ (2 * 5);

QYYD
o mn

Arithmetic Operators

Arithmetic operators are used to perform mathematical operations on numbers. The
following mathematical operators are supported:

+ (addition)

- (subtraction)

* (multiplication)
/ (division)

unary - (negation)

Here are some examples:

a=>5+2;

b =a* 100;
twent yt hreepercent = 23 / 100;
neg - 29;

pos - neg;

Chapter 10

Relational Operators

Relational operators allow you to compare how one value relates to another. The
following relational operators are supported:

> (greater-than)

< (less-than)

<= (less-than or equal to)
>= (greater than or equal to)
~= (not equal to)

== (equal)

All of the relational operators can be applied to any two numbers or any two strings.
All other values can only use the == operator to seeif they are equal.

Relational operators return Boolean values (true or false). For example:

10 > 20; -- resolves to fal se
a = 10;

a > 300; -- false

(3 * 200) > 500; -- true
"Brett" ~= "Lorne" -- true

One important point to mention is that the == and ~= operators test for complete
equality, which means that any string comparisons done with those operators are case
sensitive. For example:

"Joj oba" == "Jojoba"; -- true

"Wldcat" == "wildcat"; -- false

"I likeit alot" =="1 like it a LOT"; -- false
"happy" ~= "HaPPy"; -- true

235
Scripting Guide

Logical Operators

Logical operators are used to perform Boolean operations on Boolean values. The
following logical operators are supported:

and (only trueif both values are true)
or (trueif either valueistrue)
not (returns the opposite of the value)
For example:
a = true;
b = fal se;
c = aand b; -- false
d =aand nil; -- false
e = not b; -- true

Note that only nil and false are considered to befalse, and all other values are true.

For example:

iamnvisible = nil;
if iamnvisible then

-- any lines in here won't happen

-- because iamnvisible is considered fal se

Di al og. Message("You can't see ne!", "I aminvisiblel!l11");
end

if "Brett" then
-- any lines in here WLL happen, because only nil and fal se
-- are considered false...anything else, including strings,
-- is considered true
D al og. Message("Wat about strings?", "Strings are true.");
end

Concatenation

In Visual Patch scripting, the concatenation operator istwo periods (..). Itisused to
combine two or more strings together. You don't have to put spaces before and after
the periods, but you can if you want to.

For example:
name = "Joe".." Blow'; -- assigns "Joe Blow' to name
b =mname .. " is nunber " .. 1; -- assigns "Joe Blowis nunber 1" to b

236

Chapter 10

Operator Precedence

Operators are said to have precedence, which is away of describing the rules that
determine which operations in a series of expressions get performed first. A simple
example would bethe expression 1 + 2 * 3. The multiply (*) operator has higher
precedence than the add (+) operator, so this expression isequivalentto1 + (2 * 3). In
other words, the expression 2 * 3 is performed first, and then 1 + 6 is performed,
resulting in the final value 7.

Y ou can override the natural order of precedence by using parentheses. For instance,
the expression (1 + 2) * 3 resolves to 9. The parentheses make the whole sub-
expression “1 + 2" the left value of the multiply (*) operator. Essentially, the sub-
expression 1 + 2 is evaluated first, and the result is then used in the expression 3 * 3.

Operator precedence follows the following order, from lowest to highest priority:

and or

< > <= >= ~= ==
+ -

* /

not - (unary)

N

Operators are also said to have associativity, which is a way of describing which
expressions are performed first when the operators have equal precedence. In the
script engine, all binary operators are | eft associative, which means that whenever two
operators have the same precedence, the operation on the left is performed first. The
exception is the exponentiation operator ("), which is right-associative.

When in doubt, you can always use explicit parentheses to control precedence. For
example:

a+l<b/l2+1

..Isthesame as:

(a +1) < ((b/l2) + 1)

...and you can use parentheses to change the order of the cal culations, too:
a+1<bl(2+1)

Inthis last example, instead of 1 being added to half of b, bisdivided by 3.

237

Scripting Guide

238

Control Structures

The scripting engine supports the following control structures: if, while, repeat and
for.

If

Anif statement evaluates its condition and then only executes the “then” part if the
condition istrue. An if statement is terminated by the “end” keyword. The basic
syntax is:

if condition then
do something here

end
For example:
x = 50;
if x > 10 then
Di al og. Message("result", "x is greater than 10");
end
y =3
if ((35 * y) < 100) then
D al og. Message("", "y times 35 is less than 100");
end

In the above script, only thefirst dialog message would be shown, because the second
if condition isn't true...35 times 3 is 105, and 105 is not less than 100.

You can also use dse and elseif to add more “ branches” to theif statement:

x = 5;
if x > 10 then
D al og. Message("", "x is greater than 10");
el se
D al og. Message("", "x is less than or equal to 10");
end

In the preceding example, the second dialog message would be shown, because 5 is
not greater than 10.

Chapter 10

X = b;
if x == 10 then

D al og. Message("", "x is exactly 10");
elseif x == 11 then

D al og. Message("", "x is exactly 11");
elseif x == 12 then

D al og. Message("", "x is exactly 12");
el se

D al og. Message("", "x is not 10, 11 or 12");

end

In that example, the last dialog message would be shown, because x is nhot equal to 10,
or 11, or 12.

While

The while statement is used to execute the same “block” of script over and over until a
condition is met. Likeif statements, while statements are terminated with the “ end”
keyword. The basic syntax is:

while condition do
do something here
end

The condition must be true in order for the actions inside the while statement (the “ do
something here’ part above) to be performed. The while statement will continue to
loop as long as this condition is true. Heré's how it works:

If the condition istrue, all of the actions between the “while” and the corresponding
“end” will be performed. When the " end” is reached, the condition will be
reevaluated, and if it's still true, the actions between the “while’ and the “end” will be
performed again. The actions will continue to loop like this until the condition
evaluatesto false.

For example:

a = 1;

while a < 10 do
a=a+ 1;

end

In the preceding example, the“a=a+ 1;” line would be performed 9 times.

Scripting Guide

239

240

You can break out of awhileloop at any time using the “break” keyword. For
example:

count = 1;
whil e count < 100 do
count = count + 1;
if count == 50 then
br eak;
end
end

Although the while statement is willing to count from 1 to 99, theif statement would
cause this |oop to terminate as soon as count reached 50.

Repeat

Therepeat statement is similar to the while statement, except that the condition is
checked at the end of the structureinstead of at the beginning. The basic syntax is:

repest
do something here
until condition

For example:
i =1
r epeat
i =i + 1;
until i > 10

Thisis similar to one of the while loops above, but this time, the loop is performed 10
times. The“i =i + 1;” part gets executed before the condition determinesthat i is now
larger than 10.

Chapter 10

Y ou can break out of arepeat loop at any time using the “ break” keyword. For
example:

count = 1;
r epeat
count = count + 1;
if count == 50 then
br eak;
end

until count > 100

Once again, this would exit from the loop as soon as count was equal to 50.

For

Thefor statement is used to repeat a block of script a specific number of times. The
basic syntax is:

for variable = start, end, step do
do something here
end

The variable can be named anything you want. It is used to “ count” the number of
trips through the for loop. It begins at the start value you specify, and then changes by
the amount in step after each trip through the loop. In other words, the step gets added
to the valuein the variabl e after the lines between the for and end are performed. If
the result is smaller than or equal to the end value, the loop continues from the
beginning.
For example:
-- This loop counts from1l to 10:
for x =1, 10 do

Di al og. Message(" Nunber", x);
end
This displays 10 dialog messages in a row, counting from 1 to 10.

Note that the step is optional; if you don’'t provide a valuefor the step, it defaultsto 1.

241

Scripting Guide

242

Here s an examplethat uses a step of -1 to make the for loop count backwards:

-- This loop counts from 10 down to 1
for x =10, 1, -1 do

Di al og. Message(" Nunber", x);
end

That example would display 10 dialog messages in arow, counting back from 10 and
going all the way downto 1.

Y ou can break out of afor loop at any time using the “ break” keyword. For example:

for i =1, 100 do
if count == 50 then
br eak;
end
end

Once again, this would exit from the loop as soon as count was equal to 50.

Thereis also a variation on the for loop that operates on tables. For more information
on that, see Using For to Enumerate Tables on page 245.

Tables (Arrays)

Tables are very useful. They can be used to store any type of value, including
functions or even other tables.

Creating Tables

There are generally two ways to create a table from scratch. Thefirst way uses curly
braces to specify alist of values:

nmy_table = {"appl e", "orange", "peach"};
associ ative_table = {fruit="apple", vegetable="carrot"}

The second way isto create a blank table and then add the values one at atime:

Chapter 10

my_table = {};

nmy_table[1l] = "apple";

my_table[2] = "orange";

nmy_table[3] = "peach";
associative_table = {};
associative_table.fruit = "apple";
associ ative_table.vegetable = "carrot”;

Accessing Table Elements

Each “record” of information stored in atable is known as an € ement. Each d ement
consists of a key, which serves as the index into the table, and avaluethat is
associated with that key.

There are generally two ways to access an e ement: you can use array notation, or dot
notation. Array notation is typically used with numeric arrays, which are smply tables
where all of the keys are numbers. Dot notation is typically used with associative
arrays, which are tables where the keys are strings.

Hereis an example of array notation:

t = {"one", "two", "three"};
D al og. Message("El erent one contains:", t[1]);

Hereis an example of dot notation:

t = {first="one", second="two", third="three"};
D al og. Message("Elenment 'first' contains:", t.first);

Numeric Arrays

One of the most common uses of tablesis as arrays. An array isa collection of values
that are indexed by numeric keys. In the scripting engine, numeric arrays are one-
based. That is, they start at index 1.

Here are some examples using numeric arrays:

Example 1:

nyArray = {255, 0, 255};
D al og. Message("First Number”, nyArray[1]);

Thisfirst example would display a dialog message containing the number “255.”

Scripting Guide

243

244

Example 2:

al phabet = {"a","b","c","d","e","f", "g","h","i","j","k",

"I "l"mll"n"l"O"l"p"l"q"l"r"l"S"l"t"l"u"l"V"lnwll"X"l"y"l"Z"};
Di al og. Message("Seventh Letter", al phabet[7]);

Thiswould display a dialog message containing the |etter “g.”

Example 3:

nyArray = {};

myArray[1] = "Option One";
myArray[2] = "Option Two";
myArray[3] = "Option Three";

Thisis exactly the same as the following:
myArray = {"Option One", "Option Two", "Option Three"};

Associative Arrays

Associative arrays are the same as numeric arrays except that the indexes can be
numbers, strings or even functions.

Hereis an example of an associative array that uses alast name as an index and a first
name as the value:
arrNanes = {Ander son="Jason",

d enmens="Roger ",

Cont reras="Jose",

Hamond="Chri s",

H tchcock="Al fred"};

Di al og. Message(" Anderson's First Nane", arrNames. Anderson);

The resulting dialog message would look like this:

Anderson’s First Hame @
\ir) Jason

Chapter 10

Hereis an example of a simple employee database that keeps track of employee
names and birth dates indexed by employee numbers:

Enpl oyees = {}; -- Construct an enpty table for the enpl oyee nunbers
-- store each enployee's information in its own table

Enpl oyeel = {Name="Jason Anderson", Birthday="07/02/82"};

Enpl oyee2 = {Name="Roger Cl enens", Birthday="12/25/79"};

-- store each enployee's infornmation table

-- at the appropriate nunber in the Enpl oyees table

Enpl oyees[100099] = Enpl oyeel;

Enpl oyees[137637] = Enpl oyee2;

-- now typing "Enpl oyees[100099]" is the same as typi ng "Enpl oyeel”
Di al og. Message("Bi rt hday", Enpl oyees[100099] . Bi r t hday) ;

The resulting dialog message would look like this:

\ir) 07inztaz

Using For to Enumerate Tables

Thereis a special version of the for statement that allows you to quickly and easily
enumerate the contents of an array. The syntax is:

for index,value in table do

operate on index and value
end

245

Scripting Guide

For example:
nytable = {"One", "Two", " Three"};

-- display a nmessage for every table item
for j,k in nytable do

Di al og. Message("Table Item, j .. "=" .. Kk);
end

Theresult would be three dialog messages in arow, one for each of the elementsin
mytable, like so:

Table ltem E'

\:\ir) 1=0ne

Table Item @
\:\Il) Z=Two

Table Item E|

\:\If) 3=Three

Remember the above for statement, because it is a quick and easy way to inspect the
valuesin atable. If you just want the indexes of atable, you can leave out the value
part of thefor statement:

246
Chapter 10

a = {One=1l, Two=2, Three=3};

for k in a do
D al og. Message(" Tabl e I ndex", Kk);
end

The above script will display three message boxes in arow, with the text “One,”
“Threg,” and then “Two.”

Whoa there—why aren’t the table elementsin order? The reason for thisis that
internally the scripting engine doesn’t store tables as arrays, but in a super-efficient
structure known as a hash table. The important thing to know is that when you define
table elements, they are not necessarily stored in the order that you define or add
them, unless you use a numeric array (i.e. atable indexed with numbers from 1 to
whatever).

Copying Tables

Copying tablesis a bit different from copying other types of values. Unlike variables,
you can't just use the assignment operator to copy the contents of one table into
another. Thisis because the name of a table actually refers to an address in memory
where the data within the table is stored. If you try to copy one table to another using
the assignment operator, you end up copying the address, and not the actual data

For example, if you wanted to copy a table, and then modify the copy, you might try
something likethis:

tabl e_one = { nood="Happy", tenperature="Warn' };

- create a copy
tabl e_two = tabl e_one;

- nmodi fy the copy
tabl e_two.tenperature = "Col d";

Di al og. Message(" Tabl e one tenperature is:", table_one.tenperature);
Di al og. Message("Table two tenperature is:", table_two.tenperature);

If you ran this script, you would see the following two dial ogs:

Scripting Guide

248

Table one temperature is: g|

\ir) Cold

Table two temperature is: g|

\ir) Cold

Wait aminute...changing the “temperature’ element in table two also changed it in
table_one. Why would they both change?

The answer is simply because the two are in fact the same table.

Internally, the name of atable just refers to amemory location. When table oneis
created, a portion of memory is set aside to hold its contents. The location (or
“address”) of this memory iswhat gets assigned to the variable named table_one.

Assigning table_oneto table two just copies that memory address—not the actual
memory itself.

It's like writing down the address of alibrary on a piece of paper, and then handing
that paper to your friend. You aren’'t handing the entire library over, shelves of books
and all...only the location where it can be found.

If you wanted to actually copy thelibrary, you would haveto create a new building,
photocopy each book individually, and then store the photocopies in the new |ocation.

That’s pretty much how it is with tables, too. In order to create afull copy of atable,
contents and all, you need to create a new table and then copy over all of the elements,
one element at atime.

Luckily, thefor statement makes this really easy to do. For example, here' s a modified
version of our earlier example, that creastes a“true’ copy of table one.

Chapter 10

tabl e_one = { nood="Happy", tenperature="Warni' };

-- create a copy

table_two = {};

for index, value in table_one do
tabl e_two[index] = val ue;

end

- nodi fy the copy
tabl e_two. tenperature = "Col d";

Di al og. Message(" Tabl e one tenperature is:", table_one.tenperature);
Di al og. Message("Table two tenperature is:", table_two.tenperature);

This time, the dialogs show that modifying table two doesn't affect table_one at all:

Table one temperature is: @

] Warm

Table two temperature is: g|

\ij) Cold

Table Functions

There are anumber of built-in table functions at your disposal, which you can use to
do such things as inserting elements into a table, removing elements from a table, and
counting the number of elementsin atable. For moreinformation on these table
functions, please see Program Reference / Actions/ Table in the online help.

249

Scripting Guide

250

Functions

By far the coolest and most powerful feature of the scripting engine is functions. You
have already seen a lot of functions used throughout this document, such as
“Dialog.Message.” Functions are simply portions of script that you can define, name
and then call from anywhere else.

Although there are alot of built-in Visual Patch functions, you can also make your
own custom functions to suit your specific needs. In general, functions are defined as
follows:

function function_name (arguments)
function script here
return return_value,

end

Thefirst part isthe keyword “function.” This tells the scripting engine that what
follows is a function definition. The function_name is smply a unique name for your
function. The arguments are parameters (or values) that will be passed to the function
every timeit is called. A function can receive any number of arguments from O to
infinity (well, not infinity, but don’t get technical on me). The “return” keyword tells
the function to return one or more values back to the script that called it.

The easiest way to learn about functionsis to look at some examples. In thisfirst
example, we will make a simple function that shows a message box. It does not take
any arguments and does not return anything.

function Hell oWrl d()
Di al og. Message("Wl conme”, "Hell o Worl d");
end

Noticethat if you put the above script into an event and build your install, nothing
script related happens. Well, that istrue and not true. It is true that nothing visible
happens but the magic isin what you don't see. When the event is fired and the
function script is executed, the function called “Helloworld” becomes part of the
scripting engine. That meansit is now availableto therest of theinstall in any other
Sscript.

This brings up an important point about scripting in Visual Patch. When making a
function, the function does not get “into” the engine until the script is executed. That
means that if you define Helloworld() in a screen’s On Preload event, but that event
never gets triggered (because the screen is never displayed), the Helloworld()

Chapter 10

function will never exist. That is, you will not be ableto call it from anywhere else.
That iswhy, in general, it is best to define your global functions in the global script of
the project. (To access the global script, choose Resources > Global Functions from
the menu.)

Now back to the good stuff. Let’s add alineto actually call the function:

function Hell oWrl d()
Di al og. Message("Wl conme”, "Hell o Worl d");
end

Hel | oVor 1 d();

The*HeloWorld();” linetells the scripting engineto “go perform the function named
Helloworld.” When that line gets executed, you would see a welcome message with
thetext “Hello World” init.

Function Arguments
Let’'stake this a bit further and tell the message box which text to display by adding
an argument to the function.

function Hel |l oworl d(Message)
D al og. Message("Wl cone”, Message);
end

Hel l oworl d("This is an argunent");
Now the message box shows the text that was “passed” to the function.

In the function definition, “Message’ is a variable that will automatically receive
whatever argument is passed to the function. In the function call, we pass the string
“Thisisan argument” asthefirst (and only) argument for the HellowWorld function.

Hereis an example of using multiple arguments.

function Hellowrl d(Title, Message)
Di al og. Message(Title, Message);
end

Hel l oworl d("This is argunment one", "This is argument two");
Hel | oWor | d(" Wl come”, "H there");

Scripting Guide

251

252

This time, the function definition uses two variables, one for each of itstwo
arguments...and each function call passes two strings to the HelloWorld function.

Note that by changing the content of those strings, you can send different arguments
to the function, and achieve different results.

Returning Values

The next step is to make the function return values back to the calling script. Hereisa
function that accepts a number as its single argument, and then returns a string
containing all of the numbers from one to that number.

functi on Count (n)

-- start out with a blank return string
ReturnString = "";

for num= 1,n do
-- add the current nunber (nun) to the end of the return string
ReturnString = ReturnString..num

-- if thisisn't the last nunber, then add a conma and a space
-- to separate the nunbers a bit in the return string
if (num~=n) then
ReturnString = ReturnString..", ";
end
end

-- return the string that we built
return ReturnString;
end

Count String = Count (10);
Di al og. Message(" Count", CountString);

Thelast two lines of the above script uses the Count function to build a string
counting from 1 to 10, storesit in a variable named CountString, and then displays the
contents of that variablein a dialog message box.

Chapter 10

Returning Multiple Values
Y ou can return multiple values from functions as well:

function SortNunmbers(Nunber1, Nunber?2)
i f Numberl <= Nunber?2 then
return Nunberl, Nunber?2
el se
return Nunber2, Nunberl
end
end

firstNum secondNum = Sort Nunbers(102, 100);
D al og. Message("Sorted", firstNum.. ", " .. secondNum;

The above script creates a function called SortNumbers that takes two arguments and
then returns two values. Thefirst value returned is the smaller number, and the second
valuereturned is the larger one. Note that we specified two variables to receive the
return values from the function call on the second last line. The last line of the script
displays the two numbers in the order they were sorted into by the function.

Redefining Functions

Another interesting thing about functionsis that you can override a previous function
definition simply by re-defining it.

function Hell oWrl d()
Di al og. Message(" Message", "Hell o Worl d");
end

function Hell oWrl d()
Di al og. Message(" Message","Hell o Earth");
end

Hel | oVor 1 d();

The script above shows a message box that says “Hello Earth,” and not “Hello
World.” That is because the second version of the HelloWorld() function overrides the
first one.

Scripting Guide

253

254

Putting Functions in Tables

Onereally powerful thing about tables is that they can be used to hold functions as
well as other values. Thisis significant because it allows you to make sure that your
functions have unique names and arelogically grouped. (Thisis how all of the Visual
Patch functions are implemented.) Here is an example:

-- Make the functions:
function Hell oEarth()

Di al og. Message(" Message", "Hello Earth");
end

function Hel |l oMoon()
Di al og. Message(" Message", "Hello Mon");
end

-- Define an enpty table:
Hello = {};

-- Assign the functions to the table:
Hel l o. Earth = Hel | oEart h;
Hel | o. Moon = Hel | oMbon;

-- Now call the functions:
Hel |l o. Eart h();
Hel | o. Moon();

It is also interesting to note that you can define functions right in your table definition:

Hello =

Earth = function () D al og. Message(" Message", "Hello Earth") end,
Moon = function () D al og. Message(" Message”, "Hello Mon") end

b

-- Now call the functions:
Hel l o. Eart h();
Hel | 0. Moon() ;

Chapter 10

String Manipulation
In this section we will briefly cover some of the most common string manipulation
techniques, such as string concatenation and comparisons.

(For more information on the string functions available to you in Visual Patch, see
Program Reference / Actions/ Sring in the online help.)

Concatenating Strings
We have already covered string concatenation, but it iswell worth repeating. The
string concatenation operator istwo periodsinarow (..). For example:

Ful |l Nanme = "Bo".." Derek"; -- FullNane is now "Bo Derek"

-- You can al so concatenate nunbers into strings
Daysl nYear = 365;
YearString = "There are "..DayslnYear.." days in a year.";

Note that you can put spaces on ether side of the dots, or on one side, or not put any
spaces at all. For example, the following four lines will accomplish the same thing:

foo = "Hello " .. user_nane;
foo = "Hello ".. user_nane;
foo = "Hello " ..user_nane;
foo = "Hello "..user_nane;

Comparing Strings
Next to concatenation, one of the most common things you will want to do with

strings is compare one string to another. Depending on what constitutes a* match,”
this can either be very simple, or just a bit tricky.

If you want to perform a case-sensitive comparison, then all you haveto do is usethe
equals operator (==).

Scripting Guide

255

For example:

strOne
str Two

" St rongbad”;
" St rongbad”;

if strOne == strTwo then

Di al og. Message(" Guess what?", "The two strings are equal!");
el se

D al og. Message("Hmmt', "The two strings are different.");
end

Since the == operator performs a case-sensitive comparison when applied to strings,
the above script will display a message box proclaiming that the two strings are equal.

If you want to perform a case-insensitive comparison, then you need to take advantage
of either the String.Upper or String.Lower function, to ensure that both strings have
the same case before you compare them. The String.Upper function returns an all-
uppercase version of the string it is given, and the String.Lower function returns an
all-lowercase version. Note that it doesn’t matter which function you use in your
comparison, so long as you use the same function on both sides of the == operator in
your if statement.

For example:
strOne = "Mdoohahahaha";
strTwo = "MOOohaHAHAha" ;

if String.Upper(strOne) == String. Upper(strTwo) then

Di al og. Message(" Guess what?", "The two strings are equal!");
el se

D al og. Message("Hmmt', "The two strings are different.");
end

In the example above, the String.Upper function converts strOneto
“MOOOHAHAHAHA" and strTwo to “MOOOHAHAHAHA” and then the if
statement compares the results. (Note: the two original strings remain unchanged.)
That way, it doesn’'t matter what case the original strings had; all that mattersis
whether the |etters are the same.

256

Chapter 10

Counting Characters

If you ever want to know how long a string is, you can easily count the number of
charactersit contains. Just use the String.Length function, like so:

twister = "If a wood chuck coul d chuck wood, how much would...um..";
num chars = String.Length(tw ster);
Di al og. Message(" That tongue twister has:", numchars .. " characters!");

...which would produce the following dialog message:

That tongue twister has: g|

L]
‘Er) 56 characters!

Finding Strings:
Another common thing you’ Il want to do with strings is to search for one string within
another. Thisis very simpleto do using the String.Find action.

For example:
strSearchln = "lIsn't it a wonderful day outside?";
str SearchFor = "wonder";

-- search for strSearchln inside strSearchFor
nFoundPos = String. Fi nd(strSearchln, strSearchFor);

i f nFoundPos ~= nil then

-- found it!

Di al og. Message(" Search Result", strSearchFor

" found at position " .. nFoundPos);

el se

-- no |uck

Di al og. Message(" Search Result", strSearchFor.." not found!");
end

257
Scripting Guide

258

...would cause the following message to be displayed:

Search Result

L]
‘Er) wonder found at position 12

Tip: Try experimenting with different values for strSearchFor and strSearchin.

Replacing Strings:
One of the most powerful things you can do with strings is to perform a search and
replace operation on them.

The following example shows how you can use the String.Replace action to replace
every occurrence of a string with another inside a target string:

st r Tar get = "There can be only one. Only one is allowed!"
st r Sear chFor = "one";
strReplaceWth = "a dozen";

strNewSt ring String. Repl ace(str Target

, StrSearchFor
, StrReplaceWth);
Di al og. Message("After searching and replacing:", strNewString);

-- create a copy of the target string with no spaces init
strNoSpaces = String. Repl ace(strTarget, " ", "");

D al og. Message("After renovi ng spaces:", strNoSpaces);

Chapter 10

The above example would display the following two messages:

After searching and replacing;

L]
\!J) There can be only a dozen, Onlv a dozen is allowed!

After removing spaces: FX|

L]
\!J) Therecanbeonlvone, Onlyoneisallomed!

Extracting Strings

There are three string functions that allow you to “ extract” a portion of a string, rather
than copying the entire string itself. These functions are String.L eft, String.Right, and
String.Mid.

String.L eft copies a number of characters from the beginning of the string.
String.Right does the same, but counting from the right end of the string instead.
String.Mid allows you to copy a number of characters starting from any position in the
string.

Y ou can use these functions to perform all kinds of advanced operations on strings.
Here' s a basic example showing how they work:

strOriginal = "It really is good to see you again."”;

-- copy the first 13 characters into strlLeft
strLeft = String.Left(strOiginal, 13);

-- copy the last 18 characters into strRi ght
strRight = String. Rght(strOriginal, 18);

259
Scripting Guide

260

-- create a new string with the two pi eces
strNeo = String.Left .. "awesone" .. strRight .. " Woa."

-- copy the word "good" into strMddle
strMddle = String. Md(strOriginal, 13, 4);

Converting Numeric Strings into Numbers
There may be times when you have a numeric string, and you need to convert it to a
number.

For example, if you have an input field where the user can enter their age, and you
read in the text that they typed, you might get a value like “31". Because they typed it
in, though, this value is actually a string consisting of the characters“3" and “1”.

If you tried to compare this value to a number, you would get a syntax error saying
that you attempted to compare a number with a string.

For example, the following script (when placed in the On Startup event):

age = "31";
if age > 18 then

Di al og. Message("", "You're ol der than 18.");
end

...would produce the following error message:

Error E|

! E On Startup, Line 2: atkempt to compare number with skring
L

Chapter 10

The problem in this case is the line that compares the contents of the variable “ age”
with the number 18:

if age > 18 then

This generates an error because age contains a string, and not a number. The script
engine doesn’t allow you to compare numbers with strings in this way. It has no way
of knowing whether you wanted to treat age as a number, or treat 18 as a string.

The solution is simply to convert the value of age to a number before comparing it.
There are two ways to do this. One way is to use the String. ToNumber function.

The String. ToNumber function translates a numeric string into the equivalent number,
so it can be used in a numeric comparison.

age = "31";
if String. ToNunber (age) > 18 then

Di al og. Message("", "You're older than 18.");
end

The other way takes advantage of the scripting engine's ability to convert numbers
into strings when it knows what your intentions are. For example, if you're
performing an arithmetic operation (such as adding two numbers), the engine will
automatically convert any numeric strings to numbers for you:

age = "26" + 5; -- result is a nuneric val ue

The above example would not generate any errors, because the scripting engine
understands that the only way the statement makes senseis if you meant to use the
numeric string as a number. As aresult, the engine automatically converts the numeric
string to a number so it can perform the calculation.

Knowing this, we can convert a numeric string to a number without changing its value
by simply adding O toit, like so:

age = "31";
if (age + 0) > 18 then

Di al og. Message("", "You're older than 18.");
end

In the preceding example, adding zero to the variable gets the engine to convert the
valueto a number, and the result is then compared with 18. No more error.

Scripting Guide

261

262

Other Built-in Functions

Script Functions

There are three other built-in functions that may prove useful to you: dofile, require,
and type.

dofile

Loads and executes a script file. The contents of the file will be executed as though it
was typed directly into the script. The syntax is:

dofile(file_path);
For example, say we typed the following script into afile called MyScript.lua (just a
text file containing this script, created with notepad or some other text editor):
Di al og. Message("Hell o™, "World");

Now weincludethefileasaprimer filein our Visual Patch installer. Wherever the
following line of script is added:

dofi | e(Sessi onVar . Expand(" % enpLaunchFol der %\ MyScri pt.lua"));

...that script filewill beread in and executed immediately. In this case, you would see
a message box with the friendly “hello world” message.

Tip: Usethe dofile function to save yourself from having to re-type or re-paste a
script into your projects over and over again.

require

Loads and runs a script fileinto the scripting engine. It is similar to dofile except that
it will only load a given file once per session, whereas dofile will re-load and re-run
thefile each timeit isused. The syntax is:

require(file_path);
So, for example, even if you do two requiresin arow:

require(" %\ppFol der %\ foo.lua");
requi re(" %\ppFol dera\foo.lua"); -- this line won't do anything

Chapter 10

...only thefirst one will ever get executed. After that, the scripting engine knows that
the file has been loaded and run, and future calls to require that file will have no
effect.

Since require will only load a given script file once per session, it is best suited for
loading scripts that contain only variables and functions. Since variables and functions
are global by default, you only need to “load” them once; repeatedly loading the same
function definition would just be a waste of time.

This makes the require function a great way to load external script libraries. Every
script that needs a function from an external file can safely require() it, and thefile
will only actually be loaded thefirst timeit’ s needed.

type

This function will tell you the type of value contained in a variable. It returns the
string name of the variabletype. Valid return values are “nil,” “number,” “string,”
“boolean,” “table,” or “function.” For example:

a = 989;

strType = type(a); -- sets strType to "nunber”
a="H there";

strType = type(a); -- sets strType to "string"

Thetype function is especially useful when writing your own functions that need
certain data types in order to operate. For example, the following function uses type()
to make sure that both of its arguments are numbers:

- find the maxi mum of two nunbers
functi on Max(Nunmber1l, Nunber2)
-- make sure both argunments are nuneric
if (type(Nunberl) ~= "nunber") or (type(Nunber2) ~= "nunber") then

D al og. Message("Error", "Please enter nunbers");
return nil; -- we're using nil to indicate an error condition
el se

i f Nunmber1l >= Nunber2 then
return Nunber1;
el se
return Nunber 2;
end
end
end

Scripting Guide

263

264

Actions

Visual Patch comes with alarge number of built-in functions. In the program
interface, these built-in functions are commonly referred to as actions. For scripting
purposes, actions and functions are essentially the same; however, the term “ actions’
is generally reserved for those functions that are built into the program and are
included in the alphabetical list of actions in the online help. When referring to
functions that have been created by other users or yoursdf, the term “functions’ is
preferred.

Debugging Your Scripts

Scripting (or any kind of programming) is relatively easy once you get used to it.
However, even the best programmers make mistakes, and need to iron the occasional
wrinkle out of their code. Being good at debugging scripts will reduce thetime to
market for your projects and increase the amount of sleep you get at night. Please read
this section for tips on using Visual Patch as smartly and effectively as possible!

This section will explain Visual Patch’'s error handling methods as well as cover a
number of debugging techniques.

Error Handling

All of the built-in Visual Patch actions use the same basic error handling techniques.
However, thisis not necessarily true of any third-party functions, modules, or
scripts—even scripts devel oped by Indigo Rose Corporation that are not built into the
product. Although these externally devel oped scripts can certainly make use of Visual
Patch's error handling system, they may not necessarily do so. Therefore, you should
always consult a script or module's author or documentation in order to find out how
error handling is, well, handled.

There are two kinds of errorsthat you can have in your scripts when calling Visual
Patch actions: syntax errors, and functional errors.

Syntax Errors

Syntax errors occur when the syntax (or “grammar”) of ascript isincorrect, or a
function receives arguments that are not appropriate. Some syntax errors are caught by
Visual Patch when you build.

Chapter 10

For example, consider the following script:

foo =

Thisisincorrect because we have not assigned anything to the variable foo—the script
isincomplete. Thisis a pretty obvious syntax error, and would be caught by the
scripting engine at build time (when you build your project).

Another type of syntax error is when you do not pass the correct type or number of
arguments to a function. For example, if you try and run this script:

Di al og. Message("H There");

...the project will build fine, because there are no obvious syntax errors in the script.
As far asthe scripting engine can tell, the function call iswell formed. The nameis
valid, the open and closed parentheses match, the quotes are in the right places, and
there€' s even a terminating semi-colon at the end. L ooks good!

However, at run time you would see something like the following:
Error E|

@ 2 arguments required.

Looks like it wasn't so good after all. Note that the message says two arguments are
required for the Dialog.Message action. Ah. Our script only provided one argument.

According to the function prototype for Dialog.Message, it looks like the action can
actually accept up to five arguments:

Dialog.Message | Title,
Text,
Type ;
Icon ,
DefaultButton 1

265
Scripting Guide

Looking closely at the function prototype, we see that the last three arguments have
default values that will be used if those arguments are omitted from the function call.
Thefirst two arguments—Title and Text—don't have default values, so they cannot
be omitted without generating an error. To make a long story short, it's okay to call
the Dial og.M essage action with anywhere from 2 to 5 arguments...but 1 argument
isn't enough.

Fortunatdy, syntax errors like these are usually caught at build time or when you test
your installer. The error messages are usually quite clear, making it easy for you to
locate and identify the problem.

Functional Errors

Functional errors are those that occur because the functionality of the action itself
fails. They occur when an action is given incorrect information, such asthe path to a
filethat doesn't exist. For example, the following code will produce a functional error:

filecontents = TextFile. ReadToString("this_file_don't exist.txt");

If you put that script into an event right now and try it, you will see that nothing
appearsto happen. Thisis because Visual Patch’s functional errors are not
automatically displayed the way syntax errors are. We leave it up to you to handle (or
to not handle) such functional errors yourself.

Thereason for thisis that there may be times when you don't careif afunction fails.
In fact, you may expect it to. For example, the following code tries to remove a folder
caled C:\My Temp Folder:

Fol der. Del ete("C\\My Tenp Fol der");

However, in this case you don't care if it really gets deleted, or if thefolder didn’t
exist in thefirst place. You just want to make surethat if that particular folder exists,
it will beremoved. If thefolder isn’t there, the Folder.De ete action causes a
functional error, because it can't find the folder you told it to delete...but since the end
result is exactly what you wanted, you don’'t need to do anything about it. And you
certainly don’t want the user to see any error messages.

Conversely, there may betimes when it is very important for you to know if an action
fails. Say for instance that you want to copy a very important file:

File.Copy("C\\Temp\\My File.dat","C\\Tenp\\ My File.bak");

266

Chapter 10

In this case, you really want to know if it fails and may even want to exit the program
or inform the user. Thisis where the Debug actions come in handy. Read on.

Debug Actions

Visual Patch comes with some very useful functions for debugging your patches. This
section will look at a number of them.

Application.GetLastError

Thisisthe most important action to use when trying to find out if a problem has
occurred. At runtimethereis always an internal value that stores the status of the last
action that was executed. At the start of an action, this valueis set to O (the number
zero). This means that everything is OK. If afunctional error occurs inside the action,
the value is changed to some non-zero value instead.

Thislast error value can be accessed at any time by using the
Application.GetLastError action.

The syntax is:
last_error_code = Application.GetLastError();

Hereis an example that uses this action:

File.Copy("C\\Temp\\My File.dat","C\\Tenp\\ My File. bak");

error_code = Application. GetlLastError();

if (error_code ~= 0) then
-- sone kind of error has occurred!
Di al og. Message("Error", "File copy error: "..error_code);
Application. Exit();

end

The above script will inform the user that an error occurred and then exit the patch.
Thisis not necessarily how all errors should be handled, but it illustrates the point.

Y ou can do anything you want when an error occurs, like calling a different function
or anything else you can dream up.

The above script has one possible problem. Imagine the user seeing a message like
this:

Scripting Guide

267

268

L]
\!J) File copy error: 1021

It would be much nicer to actually tell them some information about the exact
problem. Well, you arein luck! At runtimethereisatablecalled _tblErrorMessages
that contains all of the possible error messages, indexed by the error codes. Y ou can
easily usethe last error number to get an actual error message that will make more
sense to the user than a number like “1021.”

For example, hereis amodified script to show the actual error string:
File.Copy("C\\Temp\\My File.dat","C\\Tenp\\ My File. bak");
error_code = Application. GetlLastError();
if (error_code ~= 0) then

-- sone kind of error has occurred!

D al og. Message("Error", "File copy error:

_tbl Error Messages[error_code]);
Application. Exit();

end

Now the script will produce the following error message:

Error &|

L]
\!J) File copy error: Source filefs) does nok exist,

Much better information!

Chapter 10

Just remember that the value of the last error gets reset every time an action is
executed. For example, the following script would not produce an error message:

File.Copy("C\\Temp\\My File.dat","C\\Tenp\\ My Fil e. bak");
-- At this point Application.GetlLastError() could be non-zero, but...

Di al og. Message("H There", "Hello Wrld");

-- Oops, nowthe last error nunber will be for the D al og. Message acti on,
-- and not the File.Copy action. The Dial og. Message action w |l succeed,
-- resetting the last error nunber to O, and the following lines will not

-- catch any error that happened in the File.Copy action.
error_code = Application.GetlLastError();
if (error_code ~= 0) then
-- sone kind of error has occurred!
D al og. Message("Error", "File copy error:
. _tbl ErrorMessages[error_code]);
Application. Exit();
end

Debug.ShowWindow

The Visual Patch runtime has the ability to show a debug window that can be used to
display debug messages. This window exists throughout the execution of your patch,
but is only visible when you tdl it to be.

The syntax is:
Debug. ShowWindow(show_window);

...where show_window is a Boolean value. If true, the debug window is displayed, if
false, the window is hidden. For example:

-- show t he debug w ndow
Debug. ShowW ndow(t rue);

If you call this script, the debug window will appear on top of your patch, but nothing
else will really happen. That's where the following Debug actions come in.

269

Scripting Guide

270

Debug.Print
This action prints the text of your choosing in the debug window. For example, try the
following script:

Debug. ShowW ndow(t rue);

for i =1, 10 do
Debug.Print("i =" .. i .. "\r\n");
end

The*\r\n” part is actually two escape sequences that are being used to start a new line.
(Thisistechnically called a “carriage return/linefeed” pair.) You can use\r\n in the
debug window whenever you want to insert anew line.

The above script will produce the following output in the debug window:

(=3

= L0 0D -] O LT e D O —

[}

Cloze

Y ou can use this method to print al kinds of information to the debug window. Some
typical uses areto print the contents of a variable so you can see what it contains at
run time, or to print your own debug messages like “inside outer for loop” or “foo()
function started.” Such messages form atrail like bread crumbs that you can tracein

Chapter 10

order to understand what’ s happening behind the scenesin your project. They can be
invaluable when trying to debug your scripts or test your latest algorithm.

Debug.SetTraceMode

Visual Patch can run in a special “trace” mode at run time that will print information
about every line of script that gets executed to the debug window, including the value
of Application.GetLastError() if theline involves calling a built-in action. You can
turn this trace mode on or off by using the Debug.SetTraceM ode action:

Debug.SetTraceM ode(turn_on);

...whereturn_on is aBoolean value that tells the program whether to turn the trace
mode on or off.

Hereis an example:

Debug. ShowW ndow(t rue);
Debug. Set Tr aceMbde(true);

for i =1, 3 do
Di al og. Message(" Nunber", i);
end

File.Copy("C\\fake file.ext", "C\\fake_file.bak");

271

Scripting Guide

272

Running that script will produce the following output in the debug window:

= LOCATION: On Startup

[fori=1, 3 do
[B] Dialog.Meszzage("Mumber', i];
[4] fari=1. 3 do
[5] Dialog.Meszage("Mumber", i)
[4] fari=1, 3 do
[B] Dialog.Meszage("Humber", i];
[fari=1. 3 dao

[B]: File. Copy("'C:\fake_file ext, "C:5\\fake_file. bak');
TRACE: LastEror = 1021 ["Source file(z] does not exist."]

Cloze

Notice that every line produced by the trace mode starts with “TRACE:” Thisis so
you can tell them apart from any lines you send to the debug window with
Debug.Print. The number after the“ TRACE:” part is the line number that is currently
being executed in the script.

Turning trace mode on is something that you will not likely want to do in your final,
distributable patch, but it can really help find problems during development.

Debug.GetEventContext

The Debug.GetEventContext action is used to get a descriptive string about the event
that is currently being executed. This can be useful if you define a function in one
place but call it somewhere else, and you want to be ableto tell wherethe function is
being called from at any given time.

For example, if you execute this script from the On Startup event:

Di al og. Message("Event Context", Debug. Get Event Context());

Chapter 10

...you will see something like this:

Event Context E'
\Er) in Startup

Dialog.Message

This brings us to good ole’ Dialog.Message. Y ou have seen this action used
throughout this document, and for good reason. This is a great action to use
throughout your code when you aretrying to track down a problem.

For example, you can useit to display the current contents of a variable that you're
working with:

D al og. Message("The current value of nCats is: " .. nCats);

Y ou can also useit to put up messages at specific pointsin a script, to break it into
arbitrary stages. This can be helpful when you're not sure wherein a script an error is
occurring:

function foobar(argl, arg2)
D al og. Message(" Tenporary Debug Msg", "In foobar()");
-- bunch of script
D al og. Message(" Tenporary Debug Msg", "1");
-- bunch of script
D al og. Message(" Tenporary Debug Msg", "2");
-- bunch of script
Di al og. Message(" Tenporary Debug Msg", "Leaving foobar()");

end

Scripting Guide

273

274

Final Thoughts

Hopefully this chapter has helped you to understand scripting in Visual Patch. Once
you get the hang of it, it isareally fun, powerful way to get things done.

Other Resources
Hereisalist of other places that you can go for help with scripting in Visual Patch.

Help File

The Visual Patch help fileis packed with good reference material for all of the actions
and events supported by Visual Patch, and for the design environment itself. Y ou can
access the help file at any time by choosing Help > Visual Patch Help from the menu.

Tip: If you arein the action editor and you want to learn more about an action, simply
click on the action and press the F1 key on your keyboard.

Visual Patch Web Site
The Visual Patch web siteislocated at http://www.visualpatch.com. Be sure to check

out the user forums where you can read questions and answers by felow users and
Indigo Rose staff as well as ask questions of your own.

Tip: A quick way to access the online forums is to choose Help > User Forums from
the menu.

Indigo Rose Technical Support

If you need help with any scripting concepts or have a mental block to push through,
feel free to open a support ticket at http://support.indigorose.com. Although we can't
write scripts for you or debug your specific scripts, we will be happy to answer any
general scripting questions that you have.

The Lua Web Site

Visual Patch’'s scripting engine is based on a popular scripting language called Lua.
Luais designed and implemented by ateam at Tecgraf, the Computer Graphics
Technology Group of PUC-RIo (the Pontifical Catholic University of Rio de Janeiro
in Brazil). You can learn more about Lua and its history at the official Lua web site:

http://www.lua.org

Chapter 10

http://www.visualpatch.com
http://support.indigorose.com
http://www.lua.org

The Luawebsite is also where you can find the latest documentation on the Lua
language, along with tutorials and areally friendly community of Lua developers.

Note that there may be other built-in functions that exist in Luaand in Visual Patch
that are not officially supported in Visual Patch. These functions, if any, are
documented in the Lua 5.0 Reference Manual.

Only the functionslisted in the online help are supported by I ndigo Rose
Software. Any other “undocumented” functions that you may find in the Lua
documentation are not supported. Although these functions may work, you must use
them entirely on your own.

275

Scripting Guide

276

Index

%

%AppFolder%, 39, 91
%MyDocumentsiol der%, 91
%TempLaunchFolder%, 98, 262

\
\r\n, 270

_CommandLineArgs, 194
_ProgramFilesFolder, 166
_tblErrorMessages, 268
_WindowsFolder, 166

A

accessing table elements, 243
action editor, 129
action wizard, 129, 139
actions, 108, 124, 126, 128, 264
adding, 138
editing, 140
getting help, 142
Add Action button, 139
Add Code button, 148, 153
adding actions, 138
adding an if statement, 146
adding files, 84
adding folder references, 86
adding languages, 186
adding screens, 106
adding versions, 73
After Patching screens, 105
After Patching stage, 137
application folder, 39, 91

Application.LoadValue, 150
Application.SaveValue, 151
Application.Setlanguage, 193
arguments, 154, 155, 250, 251
arithmetic operators, 234
arrays. Seetables

associative arrays, 244
attributes, 108, 110
autocomplete, 130, 131, 132
auto-save preferences, 67

B

Back button, 103, 108, 110, 112
background window, 52, 122
banner style, 108, 112, 114
Before Patching screens, 105
Before Patching stage, 137
benefits of patching, 30

binary patching, 32

body, 113, 117

Boolean variables, 231, 263
build configurations, 92, 201, 207, 208
build constants, 206

Build Log button, 204

build optimizations, 210

build preferences, 212

build process, 200, 212

build settings, 204

building and distributing, 198
built-in session variables, 166, 167
built-in variables, 91

button state, 111

Buttons screen, 137

C

Application.Exit, 112, 267, 268, 269 cache compressed file sizes, 210, 211
Application.GetLanguage, 192, 193, 195 cache diff files, 210, 211
Application.GetLastError, 267, 271 Cancel button, 110

277

Index

278

changing the current language, 193
check boxes, 96
choosing atheme, 119
choosing key files, 42
code completion, 138
columns, 65, 76
customizing, 77
headings, 76
command line arguments, 194, 208, 210
comments, 221
comparing grings, 150, 255
concatenating strings, 255
concatenation operator (..), 151, 236, 255
conditions, 91
constants, 141, 206, 208
context sendtive help, 135
control structures, 238-42
controls, 113, 117
converting numeric strings into numbers,
260
copying tables, 247
copying versions, 74
counting, 152
counting characters, 257
creating a custom theme, 120
creating afilter, 80
creating functions, 154
creating tables, 242
creating the user interface, 100
Ctrl+Space, 131
current language, 192, 193
custom session variables, 170
custom themes, 120
customizing error messages and prompts,
191

D

debug actions, 267

debug window, 269, 270
Debug.GetEventContext, 272
Debug.Print, 270
Debug.SetTraceMode, 271
Debug.ShowWindow, 269, 271

debugging your scripts, 264
default language, 184, 193
delta compression, 32
design environment, 63
detection methods, 39
current folder, 40
custom actions, 40
file search, 40, 57
registry, 40, 56
determining the current language, 192
development environment, 60
dialog actions, 124
dialog style, 51
Dialog.Input, 149, 156, 157
Dialog.Message, 124, 139, 141, 144, 145,
149, 216, 219, 224, 243, 244, 250, 254,
265, 266, 267, 268, 269, 271, 273
Dialog. TimedMessage, 124
diff file, 32
distributing your patch, 198, 213
distribution media, 213
Document Conventions, 26
document preferences, 67
dofile, 262
double quotes, 227
dynamic control layout, 117

E

edit multiple values, 96

editing actions, 140

editing screens, 107

else, 149, 238

esaif, 238

enumerating tables, 245
environment preferences, 67
error handling, 264

error messages, 191

escape sequences, 228, 270
escaping backslashes, 229
escaping strings, 228

events, 110, 111, 135, 145
existing trandated messages, 195
expanding session variables, 175

Index

exporting screen trandations, 190
expressions, 234
extracting strings, 259

F

F1 help, 69, 135, 274
filelist, 62, 63, 65, 76
columns, 62
tabs, 62
file masks, 84, 94
file properties, 88-93
conditions, 91
general, 89
notes, 93
File.Copy, 266, 267, 268, 269, 271
FileFind, 125
files, 70, 78
adding, 84
removing, 88
filter toolbar, 62, 78
filtering thefilelist, 78
filters, 80-83
filters manager, 79
finding strings, 257
folder reference properties, 94
folder references, 83
adding, 86
overriding individual files, 84
removing, 88
Folder.Delete, 266
folders, 67
footer, 113
for, 151, 152, 241, 245
forums, 69
Frequently Asked Questions, 21
full history patch, 35, 203
function arguments, 251
function definition, 156, 251
function prototype, 142, 265
functional errors, 266
functions, 154, 156, 159, 232, 250, 263

G

GetName function, 156, 157, 158
getting additional language files, 184
getting help, 69, 142

ghosting buttons, 111

global functions, 154, 159, 161, 251
global variables, 224

H

header, 113, 115
HelloWorld function, 250, 252, 253
help, 69
F1, 69
technical support, 69
user forums, 69
Help button, 108
help file, 274
HTTP.Download, 99, 125

if, 146, 148, 149, 151, 238
importing screen trandations, 190
incremental patching, 34
initial passtime threshold, 211
input dialog, 158

input field, 156

installed version, 38, 55
intellisense, 130, 131, 138
interface options, 123
interface type, 51
internationalizing, 182

J
joining strings, 151
K

key features, 13, 17
key files, 41, 42, 90
keyboard shortcuts, 26
knowledge base, 69

279

Index

280

L

language files, 184, 195
language ID, 182, 192, 193
primary, 182
secondary, 182
language manager, 183
language sdlector, 108, 187
languages, 180
adding, 186
removing, 186
testing, 194
legacy files, 31
local folder, 90
local variables, 157, 224
localizing actions, 194
localizing screens, 188
localizing strings, 195
logical operators, 236
loop, 151
Luavariables, 223
Luaweb site, 274

M

making your own language file, 185
maximum additional passes, 211
MDS5, 41, 43

menu commands, 26

missing files, 97

mission critical files, 42
multi-line comments, 222
multilingual patches, 108

multi pass optimization, 211
multiple arguments, 251
multiple file properties, 95
multiple files, 95

multi-version patching, 34

N

naming variables, 225

navigation, 110
actions, 112
buttons, 110

events, 111
Next button, 103, 108, 110, 112
nil, 230, 263
non-progress screens, 137
notes, 93, 96
null characters, 227
numbers, 227, 263
numeric arrays, 243

O

On Back, 110, 111, 112, 137

On Cancdl, 111, 137, 138

On Ctrl Message, 111, 137

On Finish, 138

On Help, 111, 137

On Next, 110, 111, 112, 137

On Post Patch, 135, 136

On Pre Patch, 135, 136

On Preload, 111, 135, 137, 138, 177

On Progress, 138

On Shutdown, 135, 136

On Start, 138

On Startup, 135, 136, 139, 141, 144, 145,
148, 149, 150, 152, 154, 156, 157, 158,
159, 219, 220, 272

online forums, 69

online help, 69, 135, 142

operating systems, 92, 213

operator associativity, 237

operator precedence, 237

operators, 234

optimizations, 210

optional features, 58

order of table elements, 247

organizing screens, 107

organizing versions, 74

output folder, 204, 212

overriding functions, 253

overriding themes, 121

P

panes, 63
parameters, 139, 141, 154, 250

Index

patch functionality, 31
patching methods, 32

patching strategies, 34

plugins, 126, 160

pre/post build options, 209
preferences, 66, 212

previous versions, 55

primary language ID, 182, 192, 193
primer files, 98, 262

product information, 172
program menu, 62

program window, 62
programming environment, 129
programming features, 130
progress screen, 105, 108, 125, 137
Progress stage, 137

project events, 135, 136

project file, 43

project settings, 171

project window, 72

project wizard, 46, 49

prompts, 191

publish settings, 204

publish wizard, 140, 200, 212
publishing, 198

putting functionsin tables, 254

Q
quickhelp, 134, 142

R

recurse subfolders, 94
redefining functions, 253
refreshing thefilelist, 97
registry, 40

relational operators, 235
removing files, 88

removing folder references, 88
removing languages, 186
removing screens, 106
removing session variables, 173
removing versions, 73
renaming versions, 74

repeat, 240

replacing strings, 258

require, 262

reserved keywords, 226

return, 109, 154, 156, 158, 250, 252
returning multiple values, 253
returning values, 252

right-click, 65

run after build, 209

run before build, 209

run-time language detection, 182

S

SayHello function, 155, 156, 158
screen ID, 188
screen layout, 112
screen manager, 104, 119
screen navigation, 110
Screen.Back, 110, 112
Screen.End, 112
Screen.GetlL ocalizedString, 177, 196
Screen.Jump, 112
Screen.Next, 110, 112
Screen.Previous, 112
Screen.SetlocalizedString, 196
screens, 102, 174

actions, 108, 112

adding, 106

After Patching, 105

attributes, 108

banner style, 112, 114

Before Patching, 105

editing, 107

events, 111, 137

localizing, 188

organizing, 107

progress, 105

properties, 107

removing, 106

settings, 107

style, 108

themes, 118

trandations, 190

281

Index

282

script condition, 92
script files, 161
scripting, 216
comments, 221
important scripting concepts, 220
variables, 223
scripting basics, 143
scripting resources, 274—75
scripts, 126
secondary language ID, 182, 192, 193
security, 20, 31
session variable actions, 172
session variables, 91, 98, 109, 164
removing, 173
setting, 17172
session variablestab, 171
SessionVar.Expand, 109, 174, 175, 177
SessionVar.Get, 109, 176
SessionVar.Remove, 109, 173
SessionVar.Set, 109, 172, 177
setting session variables, 17172
setting up versions, 70
Shell.GetFolder, 166
side banner, 116
silent patch, 51
single quotes, 228
sorting files, 76
sourcefiles, 76
starting anew project, 43
status bar, 62, 63
status column, 97
status dialogs, 125
step, 152
storing functionsin tables, 254
String.CompareNoCase, 150
String.Find, 257
String.Left, 259
String.Length, 257
String.Lower, 256
String.Mid, 259
String.Replace, 258
String.Right, 259
String. ToNumber, 261

String.Upper, 256

strings, 151, 227, 263
comparing, 255
concatenating, 255
converting to numbers, 260
counting characters, 257
extracting, 259
finding, 257
manipulating, 261
replacing, 258

style, 108

subroutines, 159

syntax errors, 264

syntax highlighting, 130

System.GetDefaultLangID, 192, 193, 195

T

table functions, 249
tables, 232, 24249, 263
accessing e ements, 243
associative arrays, 244
copying, 247
creating, 242
enumerating, 245
numeric arrays, 243
order of elements, 247
tabs, 65
target version, 38
task pane, 62, 64
taskbar settings, 123
technical support, 69, 274
terminator, 143
testing anumeric value, 150
testing different languages, 194
testing your patch, 213
TextFile.ReadToString, 266
themes, 53, 118, 120
toolbars, 62, 63
common, 63
customize, 64
filters, 63, 65, 78
show/hide, 64
standard, 63

Index

versions, 63
top banner, 115
trandated messages, 195
trandated strings, 195
trandating actions, 194
trandating screens, 188
tri-state check boxes, 96
types, 226, 263

U

unattended builds, 208
Understanding Visua Patch, 28
undo/redo preferences, 67
undocumented functions, 275
unrecognized files, 43
updating, 68

user forums, 69

user interface, 100

using afor loop, 151

using avariable, 143

using session variables on screens, 174

Vv

values, 226
variable assignment, 233
variable scope, 224

variables, 143, 149, 152, 154, 157, 164,
223
naming, 225
version detection, 39
version management, 38
version numbering, 44
version tabs, 37, 72
versions, 37, 54, 65, 70, 202
adding, 73
copying, 74
organizing, 74
removing, 73
renaming, 74
vighility, 110
Visual Patch.GetL ocalizedString, 195
Visual Patch.Setl ocalizedString, 196

\W

web site, 274
Welcome dialog, 49
what isa patch, 30
while, 239

whole file patching, 33
window style, 52
wizard style, 51
working with files, 70

Index

283

284

Notes

285

Notes

	Introduction
	What is Visual Patch?
	Key Features of Visual Patch
	What’s New in Visual Patch?
	Frequently Asked Questions
	About this Guide
	Document Conventions

	Chapter 1: Understanding Visual Patch
	In This Chapter
	What is a Patch?
	Benefits of Patching
	What Can a Patch Do?

	Patching Methods
	Binary Patching
	Whole-File Patching

	Patching Strategies
	Incremental Patching
	Multi-Version Patching
	Full-History Patching
	Finding the Right Balance

	Versions
	Version Tabs
	Version Management
	The Installed Version
	The Target Version

	Version Detection
	The Application Folder (%AppFolder%)
	Detection Methods

	Key Files
	Choosing Appropriate Key Files
	Mission-Critical Files

	MD5 Fingerprinting
	Unrecognized Files
	Version Numbering

	Chapter 2: The Project Wizard
	In This Chapter
	Starting a New Project
	1) Open Visual Patch
	2) Create a New Project
	3) Enter General Project Information
	4) Choose an Interface Type
	5) Pick a Window Style
	6) Select a Project Theme
	7) Define Versions
	8) Decide How to Locate your Installed Software
	9) Locate Using Registry Key
	10) Locate Using File Search
	11) Select Optional Features
	12) Click Finish to Create your Patch

	Chapter 3: The Development Environment
	In This Chapter
	The Visual Patch Program Window
	Toolbars
	Task Pane
	Version Tabs

	Setting Preferences
	Updating Visual Patch
	Getting Help

	Chapter 4: Versions and Files
	In This Chapter
	The Project Window
	Version Tabs
	Adding Versions
	Removing Versions
	Renaming and Duplicating Versions
	Organizing Versions

	File Lists
	Column Headings
	File List Items
	Filtering the File List

	Folder References
	Overriding Individual Files

	Adding Files
	Adding Folder References
	Removing Files
	Removing Folder References
	File Properties
	General
	Conditions
	Notes

	Folder Reference Properties
	Working with Multiple Files
	Missing Files
	Primer Files

	Chapter 5: Creating the User Interface
	In This Chapter
	The User Interface
	Screens
	The Screen Manager
	Before Patching
	Progress
	After Patching

	Adding Screens
	Removing Screens
	Organizing Screens
	Editing Screens
	Screen Properties
	Settings
	Attributes
	Style
	Actions

	The Language Selector
	Session Variables
	Screen Navigation
	How Screen Navigation Works
	Navigation Buttons
	Navigation Events
	Navigation Actions

	Screen Layout
	Header, Body, Footer
	Banner Style
	Dynamic Control Layout

	Themes
	Choosing a Theme
	Creating a Custom Theme
	Overriding Themes

	The Background Window
	Other Interface Options
	Taskbar Settings
	Actions

	Chapter 6: Actions, Scripts and Plugins
	In This Chapter
	What are Actions?
	The Action Editor
	Programming Features
	Events
	Adding Actions
	Editing Actions
	Getting Help on Actions

	Scripting Basics
	Using a Variable
	Adding an If Statement
	Testing a Numeric Value
	Using a For Loop
	Creating Functions

	Action Resources
	Global Functions
	Plugins
	Script Files

	Chapter 7: Session Variables
	In This Chapter
	What Are Session Variables?
	Built-in Session Variables
	Custom Session Variables

	Setting Session Variables
	Using the Session Variables Tab
	Using Actions

	Removing Session Variables
	Using the Session Variables Tab
	Using Actions

	Using Session Variables on Screens
	When Are Session Variables Expanded?
	Expanding Session Variables in Scripts

	Chapter 8: Languages
	In This Chapter
	Internationalizing Your Patch
	Run-time Language Detection
	The Language Manager
	Default Language
	Language Files
	Adding Languages
	Removing Languages

	The Language Selector
	Localizing Screens
	Importing and Exporting Screen Translations

	Customizing Error Messages and Prompts
	Advanced Techniques
	Determining the Current Language
	Changing the Current Language
	Localizing Actions
	Working with Existing Translated Messages

	Chapter 9: Building and Distributing
	In This Chapter
	The Build Process
	The Publish Wizard
	Build Settings
	Output
	Constants
	Pre/Post Build
	Optimizations
	Build Preferences

	Testing Your Patch
	Distributing Your Patch

	Chapter 10: Scripting Guide
	In This Chapter
	Before You Begin
	A Quick Example of Scripting in Visual Patch
	Important Scripting Concepts
	Script is Global
	Script is Case-Sensitive
	Comments
	Delimiting Statements

	Variables
	What are Variables?
	Variable Scope
	Variable Naming
	Reserved Keywords
	Types and Values

	Expressions and Operators
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Concatenation
	Operator Precedence

	Control Structures
	If
	While
	Repeat
	For

	Tables (Arrays)
	Creating Tables
	Accessing Table Elements
	Numeric Arrays
	Associative Arrays
	Using For to Enumerate Tables
	Copying Tables
	Table Functions

	Functions
	Function Arguments
	Returning Values
	Returning Multiple Values
	Redefining Functions
	Putting Functions in Tables

	String Manipulation
	Concatenating Strings
	Comparing Strings
	Counting Characters
	Finding Strings:
	Replacing Strings:
	Extracting Strings
	Converting Numeric Strings into Numbers

	Other Built-in Functions
	Script Functions
	Actions

	Debugging Your Scripts
	Error Handling
	Syntax Errors
	Functional Errors
	Debug Actions

	Final Thoughts
	Other Resources

