

NetAdvantage for JSF

NetAdvantage for JSF

NetAdvantage for JSF

Table of Contents

1. Getting Started 1

1.1. Welcome to NetAdvantage for JSF 2

1.2. Supported Software 3

1.3. IDE Support 4

1.3.1. IBM RAD 5

1.3.1.1. Installing the NetAdvantage for JSF Plug-In for IBM RAD 6-13

1.3.1.2. Setting Up Your Application in IBM RAD 14-19

1.3.1.3. Upgrading the NetAdvantage for JSF Plug In for IBM RAD 20

1.3.2. Eclipse 21

1.4. Portal Support 22

1.4.1. JBoss Portal 23-28

1.4.2. WebLogic Portal 29-43

1.4.3. WebSphere Portal 44-49

1.5. NetAdvantage for JSF Components, JSF 1.1 and JSF 1.2 50-51

1.6. Deploying Your Application 52

1.6.1. Deploying Your Application 53-54

1.6.2. Files and Folders Required for Deployment 55-56

1.6.3. Changing the Location of the Resource Files 57

1.7. Installing and Deploying the Samples 58

1.7.1. Apache Tomcat 59

1.7.2. BEA WebLogic 60

1.7.3. IBM WebSphere 61

1.7.4. JBoss 62

NetAdvantage for JSF

NetAdvantage for JSF

1.7.5. Sun Java System Application Server 63

1.7.6. Facelets Support 64

1.8. Managing the License 65

1.9. Localization 66

1.10. Getting Support 67-68

2. Known Issues and Breaking Changes 69

2.1. Known Issues and Breaking Changes in 2008 Volume 2 70

2.2. Known Issues and Breaking Changes in 2008 Volume 1 71-72

2.3. Known Issues and Breaking Changes in 2007 Volume 2 73

3. What's New 74

3.1. What's New in 2009 Volume 1 75

3.1.1. Expanded Icon Added to WebBar 76

3.1.2. New Client-Side Object Model 77

3.1.3. New Methods Added to SelectedRowsChangeEvent 78

3.1.4. You Can Now Change the Default Setting of ColumnSelectRow 79

3.1.5. You Can Now Expand or Collapse WebMenu with Mouse Events 80

3.1.6. You Can Now Export an Entire WebGrid to CSV 81

3.1.7. You Can Now Force a Vertical Scroll Bar 82

3.1.8. You Can Now Set the Text of DateChooser Submit Button 83

3.1.9. You Can Now Sort a Localized WebGrid 84

3.2. Revision History 85

3.2.1. What's New in 2008 Volume 2 86

3.2.1.1. Full Support for JSF 1.2 87

3.2.1.2. WebGrid 2008.2 88

3.2.1.2.1. Aggregate Functions Support 89

3.2.1.2.2. Grid Activation 90

NetAdvantage for JSF

NetAdvantage for JSF

3.2.1.2.3. You Can Now Disable Column Moving 91

3.2.2. What's New in 2008 Volume 1 92

3.2.2.1. AJAX is Now Supported Within Portal Environments 93

3.2.2.2. New Treemap Chart 94

3.2.2.3. New WebDialogWindow Component 95

3.2.2.4. WebGrid 2008.1 96

3.2.2.4.1. Improved Functionality for Fixed Columns 97

3.2.2.4.2. WebGrid Allows Load-On-Demand Scrolling 98

3.2.2.4.3. WebGrid Supports Multi-Column Sorting 99

3.2.2.4.4. You Can Edit Cells in Your WebGrid 100

3.2.3. What's New in 2007 Volume 2 101

3.2.3.1. New Support for IBM RAD and NetBeans IDEs 102-104

3.2.3.2. WebGrid 2007.2 105

3.2.3.2.1. WebGrid Columns Can Be Resized 106

3.2.3.2.2. WebGrid Now Supports Vertical Scroll Bars 107

3.2.4. What's New in 2007 Volume 1 108

3.2.4.1. WebChart 2007.1 109

3.2.4.1.1. New WebChart Component 110

3.2.4.2. WebGrid 2007.1 111

3.2.4.2.1. Data from WebGrid Can Now Be Exported to a CSV File 112

3.2.5. What's New in 2006 Volume 2 113

3.2.5.1. Facelet and Portal Support 2006.2 114

3.2.5.1.1. JSF Components Now Support Facelets and Portals 115

3.2.5.2. WebGrid 2006.2 116

3.2.5.2.1. Columns and Headers Can Now Be Fixed 117

NetAdvantage for JSF

NetAdvantage for JSF

3.2.5.2.2. Display Grid Data in a Hierarchical View 118

3.2.5.2.3. New Event Triggered When Row is Selected 119

4. Components 120

4.1. Accessibility Overview 121

4.2. Binding JSF Components to Data 122

4.3. Getting Started with the Client Side Object Model 123-125

4.4. WebBar 126

4.4.1. About the WebBar Components 127-128

4.4.2. Set the Expanded Icon 129

4.4.3. WebBar Accessibility Compliance 130

4.5. WebChart 131

4.5.1. Understanding WebChart 132

4.5.1.1. About WebChart 133

4.5.1.2. WebChart Gallery 134

4.5.1.2.1. WebChart 2D Gallery 135-136

4.5.1.2.2. WebChart 3D Gallery 137-139

4.5.1.3. Feature Overview 140

4.5.2. Chart Types 141

4.5.2.1. 2D Charts 142-143

4.5.2.2. 3D Charts 144-145

4.5.2.3. Area Chart 146-150

4.5.2.4. Candlestick Chart 151-155

4.5.2.5. Column Chart 156-160

4.5.2.6. Doughnut Chart 161-163

4.5.2.7. Line Chart 164-168

4.5.2.8. OHLC Chart 169-172

NetAdvantage for JSF

NetAdvantage for JSF

4.5.2.9. Pie Chart 173-175

4.5.2.10. Range Area Chart 176-180

4.5.2.11. Range Column Chart 181-185

4.5.2.12. Treemap Chart 186-188

4.5.3. Group Types 189

4.5.3.1. Cluster Groups 190-193

4.5.3.2. Stack Groups 194-195

4.5.3.3. Stack 100 Groups 196-197

4.5.3.4. Overlay Groups 198-199

4.5.3.5. Set Group Type of the Chart 200-201

4.5.4. Using WebChart 202

4.5.4.1. Appearance 203

4.5.4.1.1. Combining Series 204-205

4.5.4.1.2. Combining WebCharts 206

4.5.4.1.3. Combining WebChart Types 207-208

4.5.4.1.4. Layout 209

4.5.4.1.5. Object Shapes 210

4.5.4.1.5.1. Column Shapes 211-212

4.5.4.1.5.2. Pie and Doughnut Shapes 213

4.5.4.1.6. Styling Using Extended CSS 214

4.5.4.2. Binding WebChart to Data 215

4.5.4.3. Designing the Look and Feel 216

4.5.4.3.1. Customize Column Charts 217-218

4.5.4.3.2. Customize Pie Charts 219-221

4.5.4.3.3. Resize 3D Pie Charts 222

NetAdvantage for JSF

NetAdvantage for JSF

4.5.4.4. Interaction with WebChart 223

4.5.4.5. Working with Axes 224

4.5.4.5.1. About Axes 225

4.5.4.5.2. Add an Axis 226

4.5.4.5.3. Add Grid Lines to an Axis 227

4.5.4.5.4. Add Tick Marks to an Axis 228

4.5.4.5.5. Modify the Axis Range 229

4.5.4.6. Working with Markers 230

4.5.4.6.1. About Markers 231

4.5.4.6.2. Add a Marker 232-233

4.5.4.7. Working with the Legend 234

4.5.4.7.1. Add the Legend 235-236

4.5.4.7.2. Position the Legend 237

4.5.5. WebChart Accessibility Compliance 238

4.6. WebDialogWindow 239

4.6.1. About WebDialogWindow 240

4.6.2. Getting Started with WebDialogWindow 241-242

4.6.3. Using WebDialogWindow 243

4.6.3.1. Add a Caption to the Dialog Window's Header 244

4.6.3.2. Allow the End User to Resize the Dialog Window 245

4.6.3.3. Center the Dialog Window 246

4.6.3.4. Display the Dialog Window 247

4.6.3.5. Maintain the Header's Width on Minimize 248

4.6.3.6. Make the Dialog Window Modal 249

4.6.3.7. Prevent the End User from Moving the Dialog Window 250

4.6.3.8. Show the Minimize and Maximize Button 251

NetAdvantage for JSF

NetAdvantage for JSF

4.6.3.9. Using WebDialogWindow with DateChooser 252

4.6.4. WebDialogWindow Accessibility Compliance 253

4.7. WebGrid 254

4.7.1. About WebGrid 255-256

4.7.2. Getting Started with WebGrid 257

4.7.2.1. Creating WebGrid in Design View Using IBM RAD 258-260

4.7.2.2. Creating WebGrid Using Code 261-262

4.7.3. Using WebGrid 263

4.7.3.1. Accessing Data 264

4.7.3.1.1. Data Binding Overview 265

4.7.3.1.2. Bind a Hierarchical WebGrid to Data 266-267

4.7.3.1.3. Bind WebGrid to Data 268

4.7.3.1.4. Exporting Data to a CSV File 269-270

4.7.3.1.5. Identify the Rows in a Collection 271-272

4.7.3.2. Aggregate Functions 273-275

4.7.3.3. Designing the Look and Feel 276

4.7.3.3.1. Column Moving 277-279

4.7.3.3.2. Fixed Columns 280-281

4.7.3.3.3. Resizable Columns 282

4.7.3.3.4. Setting the Width of a Column 284

4.7.3.3.5. Horizontal Scroll Bars 285-286

4.7.3.3.6. Vertical Scroll Bars 287-288

4.7.3.3.7. Force Vertical Scroll Bars 289

4.7.3.4. Editing Data 290

4.7.3.4.1. Cell Editing 291-293

NetAdvantage for JSF

NetAdvantage for JSF

4.7.3.4.2. Cell Editing Properties 294

4.7.3.5. Navigating and Selecting 295

4.7.3.5.1. Change Default Setting of ColumnSelectRow 296

4.7.3.5.2. Grid Activation 297-298

4.7.3.5.3. Grid Activation Properties 299-300

4.7.3.5.4. Load On Demand Scrolling 301-302

4.7.3.5.5. Multi-Column Sorting 304-305

4.7.3.5.6. Paging 306-308

4.7.3.5.7. Row Selection 309-310

4.7.3.5.8. SelectedRowsChangeEvent 311

4.7.3.5.9. Sorting 312-313

4.7.3.5.10. Sorting a Localized WebGrid 314

4.7.4. WebGrid Accessibility Compliance 315

4.8. WebInput 316

4.8.1. About the WebInput Components 317

4.8.1.1. CheckBox 318-320

4.8.1.2. CheckboxList 321-322

4.8.1.3. DateChooser 323-324

4.8.1.3.1. Set the Text of the Submit Button 325-326

4.8.1.4. DropdownList 327-328

4.8.1.5. InputCurrency 329-330

4.8.1.6. InputDecimal 331-332

4.8.1.7. InputEmail 333

4.8.1.8. InputPercent 334-335

4.8.1.9. InputRegularExpression 336-337

4.8.1.10. RadioButton 338-340

NetAdvantage for JSF

NetAdvantage for JSF

4.8.1.11. RadioButtonList 341-342

4.8.2. WebInput Accessibility Compliance 343

4.9. WebMenu 344

4.9.1. About the WebMenu Components 345

4.9.2. Create a WebMenu Component 346-350

4.9.3. Expand or Collapse WebMenu with Mouse Events 351

4.9.4. WebMenu Accessibility Compliance 352

4.10. WebTab 353

4.10.1. About the WebTab Components 354

4.10.2. Create a WebTab Component 355-357

4.10.3. WebTab Accessibility Compliance 358

4.11. WebTree 359

4.11.1. About the WebTree Components 360

4.11.2. WebTree Accessibility Compliance 361

5. Designing the Look and Feel 362

5.1. Enabling and Disabling Components 363

5.2. Setting Component ToolTips 364

5.3. Themes, Styles and Style Classes 365

5.4. Apply a Style Class to a JSF Component 366

5.5. Apply a Style to a JSF Component 367-368

5.6. Apply a Theme to a JSF Component 369

5.7. Override Themes 370-371

6. Smart Refresh Technology 372

6.1. Using Smart-Refresh Technology with Core JSF Components 373

6.2. Using Smart-Refresh Technology with NetAdvantage for JSF
Components

374

NetAdvantage for JSF

NetAdvantage for JSF

6.3. Using Smart-Refresh Technology without NetAdvantage for JSF
Components

375

7. Tutorial Programs 376

7.1. IBM RAD Tutorials 377

7.1.1. Create a JSF Project Using IBM RAD 378-386

7.1.2. Data Binding and Method Binding in JSF using IBM RAD 387-394

7.2. JSF Component Tutorials 395

7.2.1. Running the Tutorial Programs 396

7.2.2. WebBar 397

7.2.2.1. Using WebBar 398

7.2.2.1.1. Creating the Backing Bean Part - 1 of 4 399-401

7.2.2.1.2. Creating the JSP Page - Part 2 of 4 402-403

7.2.2.1.3. Configuring the Application - Part 3 of 4 404-405

7.2.2.1.4. Deploying the Application - Part 4 of 4 406

7.2.3. WebChart 407

7.2.3.1. Creating a WebChart 408

7.2.3.1.1. Creating Chart Data 409

7.2.3.1.1.1. Creating Chart Data for Pie Chart 410

7.2.3.1.1.2. Creating Chart Data for Line and Column Chart 411

7.2.3.1.2. Creating the Backing Bean 412

7.2.3.1.3. Creating the JSP Pages 413

7.2.3.1.3.1. Simple Pie Chart 414-415

7.2.3.1.3.2. Grouped Column Chart 416-418

7.2.3.1.3.3. Simple Line Chart 419-421

7.2.3.1.4. Configuring the XML 422

7.2.3.1.5. Deploying the Application 423

NetAdvantage for JSF

NetAdvantage for JSF

7.2.3.2. Dynamically Create a WebChart 424

7.2.3.2.1. Creating the JSP Page 425

7.2.3.2.2. Creating the Backing Bean 426-427

7.2.3.2.3. Configuring the XML 428

7.2.3.2.4. Deploying the Application 429

7.2.4. WebGrid 430

7.2.4.1. Connect a WebGrid to a Data Source 431

7.2.4.1.1. Creating the Backing Bean - Part 1 of 4 432

7.2.4.1.2. Creating WebGrid and Binding to a Backing Bean - Part 2
of 4

433-435

7.2.4.1.3. Updating the Configuration Files - Part 3 of 4 436

7.2.4.1.4. Deploying the Application - Part 4 of 4 437

7.2.4.2. Create a Dynamic Hierarchical WebGrid 438

7.2.4.2.1. Creating the Data Structure for the Play list - Part 1 of 5 439

7.2.4.2.2. Creating the Backing Bean - Part 2 of 5 440-442

7.2.4.2.3. Creating the JSP Page - Part 3 of 5 443-444

7.2.4.2.4. Configuring the Application - Part 4 of 5 445-446

7.2.4.2.5. Deploying the Application - Part 5 of 5 447

7.2.4.3. Create a Fixed Column WebGrid 448

7.2.4.3.1. Creating the Backing Bean - Part 1 of 4 449

7.2.4.3.2. Creating the JSP Page - Part 2 of 4 450-453

7.2.4.3.3. Configuring the Application - Part 3 of 4 454-455

7.2.4.3.4. Deploying the Application - Part 4 of 4 456

7.2.4.4. Create a Hierarchical WebGrid 457

7.2.4.4.1. Creating the Backing Bean - Part 1 of 4 458-460

7.2.4.4.2. Creating the JSP Page - Part 2 of 4 461-462

NetAdvantage for JSF

NetAdvantage for JSF

7.2.4.4.3. Configuring the Application - Part 3 of 4 463-464

7.2.4.4.4. Deploying the Application - Part 4 of 4 465

7.2.4.5. Dynamically Create a Fixed Column WebGrid 466-467

7.2.4.5.1. Creating the Backing Bean - Part 1 of 4 468-470

7.2.4.5.2. Creating the JSP Page - Part 2 of 4 471

7.2.4.5.3. Configuring the Application - Part 3 of 4 472-473

7.2.4.5.4. Deploying the Application - Part 4 of 4 474

7.2.4.6. Dynamically Update Data in a WebGrid 475

7.2.4.6.1. Creating the Backing Bean - Part 1 of 4 476-477

7.2.4.6.2. Creating the JSP Page - Part 2 of 4 478-479

7.2.4.6.3. Configuring the Application - Part 3 of 4 480-481

7.2.4.6.4. Deploying the Application - Part 4 of 4 482

7.2.4.7. Working with Facelets 483

7.2.4.7.1. Creating the Backing Bean - Part 1 of 5 484

7.2.4.7.2. Creating the Template - Part 2 of 5 485-486

7.2.4.7.3. Creating the JSP Page - Part 3 of 5 487-488

7.2.4.7.4. Configuring the Application - Part 4 of 5 489-490

7.2.4.7.5. Deploying the Application - Part 5 of 5 491

7.2.5. WebInput 492

7.2.5.1. Using Smart Refresh 493

7.2.5.1.1. Creating the Backing Bean - Part 1 of 4 494-496

7.2.5.1.2. Creating the JSP Page - Part 2 of 4 497-501

7.2.5.1.3. Configuring the Application - Part 3 of 4 502-503

7.2.5.1.4. Deploying the Application - Part 4 of 4 504

NetAdvantage for JSF

NetAdvantage for JSF

This section provides the answers to your key questions on getting started using the NetAdvantage for JSF
components. It guides you through fundamental tasks such as installing the product and samples, importing the
components into an IDE, etc.

 Welcome to NetAdvantage for JSF (Section 1.1) -- Introduces you to the NetAdvantage for JSF product.

 Supported Software (Section 1.2) -- Lists the software that the NetAdvantage for JSF product supports.

 IDE Support (Section 1.3) -- Contains links to procedures on how to set up the NetAdvantage for JSF
components in a specific IDE.

 Portal Support (Section 1.4) -- Contains links to procedures on how to set up the NetAdvantage for JSF
components in a specific portal.

 NetAdvantage for JSF Components, JSF 1.1 and JSF 1.2 (Section 1.5) -- Contains information relating to
the JSF 1.1 and JSF 1.2 frameworks and how the NetAdvantage for JSF components work in them.

 Deploying Your Application (Section 1.6) -- Provides information on how to deploy your Web application.

 Installing and Deploying the Samples (Section 1.7) -- Provides information on how to install the demos
and deploy them to your Web application server.

 Managing the License (Section 1.8) -- Provides information on where the license file must reside in order
to use the NetAdvantage for JSF product.

 Localization (Section 1.9) – Provides information on the workaround to a Sun Microsystems™ known issue
regarding the <f: loadBundle> component, which is used for localization.

 Getting Support (Section 1.10) -- Provides information on the support services provided by Infragistics.

1 Getting Started

NetAdvantage for JSF

1 NetAdvantage for JSF

The NetAdvantage for JSF product is a comprehensive set of AJAX-enabled JavaServer™ Faces (JSF) components
for building commercial-class user interfaces for J2EE™ applications.

NetAdvantage for JSF has every major UI control including a hierarchical grid, charting, calendar, menu, tree,
tab, listbar, dialog window, drop down and input controls. All components are AJAX-enabled, with built in
styles and fully customizable look and feel.

IDE design times support include:

 Eclipse 3.0 and later

 IBM® Rational® Application Developer for WebSphere Software® 7.0

The NetAdvantage for JSF product runs on all the major application servers including:

 BEA WebLogic™

 IBM WebSphere®

 JBoss®

 Apache® Tomcat

 Sun® Java System Application Server

1.1 Welcome to NetAdvantage for JSF

NetAdvantage for JSF

2 NetAdvantage for JSF

The NetAdvantage for JSF product is supported for the following software:

 Java™

 JDK™ 1.4.x and up

 JavaServer™ Faces Reference Implementation (RI)

 Sun® RI 1.0 and later

 Apache™ MyFaces 1.1.5, 1.2.3

 JavaServer Faces 1.1, 1.2

 Portal Servers

 JBoss® 2.4.*, 2.6.*

 IBM® WebSphere® 6.0.1 (Production), 6.1 with AJAX

 BEA® WebLogic™ 10.0 (Production) with AJAX

 Application Servers

 Apache™ Tomcat 5.5, 6.0

 JBoss Application Server 4.2.2 GA, 5.0.0 BETA 4

 Sun Application Server 9.1

 IBM WebSphere Application Server 6.1

 BEA WebLogic Application Server 10.0

 Integrated development environment (IDE)

 Eclipse™ 3.0 and later

 IBM Rational® Application Developer for WebSphere Software® 7.0

 Web browsers (for AJAX support)

 Microsoft® Internet Explorer 6 and 7

 Mozilla® Firefox® 1.5 and 2.0

 Operating Systems

 Suse® 10

 Microsoft Windows® XP, Vista™, Server 2003

1.2 Supported Software

NetAdvantage for JSF

3 NetAdvantage for JSF

NetAdvantage for JSF components are fully integrated into the available JSP page designer tools palette for
IBM® Rational® Application Developer for WebSphere® 7.0.

Click the following link to learn how to install the plug-in for the IDE, as well as set up an application in the
IDE:

 IBM RAD (Section 1.3.1)

Click the following link to learn how to set up the NetAdvantage for JSF components in Eclipse:

 Eclipse (Section 1.3.2)

1.3 IDE Support

NetAdvantage for JSF

4 NetAdvantage for JSF

NetAdvantage for JSF components are integrated with IBM® Rational® Application Developer for WebSphere®
7.0, allowing you to take full advantage of the design surface of RAD. You can drag the NetAdvantage for JSF
components from the palette to your JSP page.

Click the following links to learn how to install the NetAdvantage for JSF plug-in for RAD and how to set up an
application using our components in RAD:

 Installing the NetAdvantage for JSF Plug-In for IBM RAD (Section 1.3.1.1)

 Setting Up Your Application in IBM RAD (Section 1.3.1.2)

 Upgrading the NetAdvantage for JSF Plug-In for IBM RAD (Section 1.3.1.3)

1.3.1 IBM RAD

NetAdvantage for JSF

5 NetAdvantage for JSF

Starting in the 2007 Volume 2 release, the NetAdvantage for JSF components are fully integrated into the
available JSP page designer tools palette for IBM® Rational® Application Developer for WebSphere 7.0. This
integration with the IBM RAD IDE lets you create an application quickly and easily using the design view.

To install the NetAdvantage for JSF plug-in into IBM RAD:

1. Open the IBM RAD IDE.

2. On the Help menu, point to Software Updates and click Find and Install...

3. In the Install/Update wizard, select the "Search for new features to install" option, then click Next.

1.3.1.1 Installing the NetAdvantage for JSF Plug-In for IBM RAD

NetAdvantage for JSF

6 NetAdvantage for JSF

4. In the wizard, click New Local Site...

NetAdvantage for JSF

7 NetAdvantage for JSF

5. Browse the the netAdvantageUpdateSiteRad folder on your hard drive, select it, and click OK. This is
located in the INSTALL_PATH\lib\designtime folder.

NetAdvantage for JSF

8 NetAdvantage for JSF

6. In the Edit Local Site dialog box that appears, click OK.

7. In the Update Sites to Visit page, select the designtime/netAdvantageUpdateSiteRad check box, and click
Finish.

NetAdvantage for JSF

9 NetAdvantage for JSF

8. In the Search Results page of the wizard, select the designTime/netAdvantageUpdateSiteRad check box.
This should automatically select all the tree.

NetAdvantage for JSF

10 NetAdvantage for JSF

9. Click Next.

10. In the Feature License page of the wizard, select the "I accept the terms in the license agreement", and
click Next.

NetAdvantage for JSF

11 NetAdvantage for JSF

11. In the Installation page of the wizard, NetAdvantage for JSF feature should appear in the Features to
Install list.

12. Click Finish.

NetAdvantage for JSF

12 NetAdvantage for JSF

13. In the Verification dialog box, click Install All.

14. When the installation is finished, you will be prompted to restart RAD. Click Yes.

NetAdvantage for JSF

13 NetAdvantage for JSF

This topic guides you through the process of setting up an application using the NetAdvantage for JSF
components in IBM® Rational® Application Developer for WebSphere 7.0.

To set up an application using NetAdvantage for JSF components in RAD:

1. On the File menu, point to New, and click Dynamic Web Project to create a new project. The New Dynamic
Web Project wizard appears. In the first page of the New Dynamic Web Project wizard, enter the following
information, and click Next:

 Project name - Enter a name for the project.

 Project contents - If you want the new project to be created in a workspace other than the current
one, deselect the "Use default" check box, and click Browse... to navigate to the new workspace. By
default, the "Use default" check box is selected.

 Target Runtime - Select a target server for your application. If your server is not listed in the drop-
down list, click New... to navigate to a new server.

 Configurations - From the drop-down list, select Faces Project for myfaces support.

 EAR Membership - If you want to add Web components to an enterprise application (EAR file), select
the "Add project to an EAR" check box. To select a different EAR project, click New... to browse to the
project.

1.3.1.2 Setting Up Your Application in IBM RAD

NetAdvantage for JSF

14 NetAdvantage for JSF

2. In the Project Facets page of the wizard, select the Infragistics NetAdvantage For JSF check box, and click
Next.

NetAdvantage for JSF

15 NetAdvantage for JSF

3. In the Web Module page of the wizard, enter the following information, then click Finish:

 Context Root - This specifies the Web application root, the top-level directory of your application
when it is deployed to a Web server. The default value is the name of your Web project.

 Content Directory - This specifies the name of the directory where the common Web resources are
located.

 Java Source Directory - This specifies the name of the directory where the Java source files are
located.

NetAdvantage for JSF

16 NetAdvantage for JSF

4. Create a new JSP page in your application. You should see a new tab in the Palette that displays all the
NetAdvantage for JSF components. You can then drag the components onto your JSP page.

NetAdvantage for JSF

17 NetAdvantage for JSF

5. Create a new JSP page in your application. You should see a new tab in the Palette that displays all the
NetAdvantage for JSF components. You can then drag the components onto your JSP page.

NetAdvantage for JSF

18 NetAdvantage for JSF

NetAdvantage for JSF

19 NetAdvantage for JSF

This topic explains how to upgrade the NetAdvantage for JSF plug in for IBM® Rational® Application Developer
for WebSphere 7.0 to a newer version of the plug-in. This ensures that all your projects created with an older
version of the plug-in are still compatible with a new version of the plug-in

To upgrade the NetAdvantage for JSF plug-in into IBM RAD:

1. After installing the latest NetAdvantage for JSF plug-in for IBM RAD, open the IBM RAD IDE.

2. You will be prompted to update your projects using the newer resources. Click Yes.

3. You have successfully upgraded your NetAdvantage for JSF plug-in.

1.3.1.3 Upgrading the NetAdvantage for JSF Plug In for IBM RAD

NetAdvantage for JSF

20 NetAdvantage for JSF

The NetAdvantage for JSF components have been designed to support the Eclipse 3.0 (and later) IDE.

To import the NetAdvantage for JSF components into Eclipse:

1. From the INSTALL_DIRECTORY/lib/runtime folder, copy the following JAR files, and paste them into your
web application’s WEB-INF/lib folder:

 infragistics-3dengine.jar

 infragistics-netadvantage.jar

 infragistics-shared.jar

 infragistics-webbar.jar

 infragistics-webchart.jar

 infragistics-webdialogwindow.jar

 infragistics-webgrid.jar

 infragistics-webinput.jar

 infragistics-webmenu.jar

 infragistics-webtab.jar

 infragistics-webtree.jar

 jogl.jar

 portlet.jar

2. Copy the lib/runtime/resources folder, and paste it into the WebContent folder of your web application.

3. You are now ready to use the NetAdvantage for JSF components in Eclipse.

1.3.2 Eclipse

NetAdvantage for JSF

21 NetAdvantage for JSF

NetAdvantage for JSF components are fully supported within BEA WebLogic™ 10, IBM® WebSphere® 6.0.1
(Production), IBM WebSphere Application Server 6.1, JBoss® 2.4.* and JBoss 2.6.* portal environments.

Click the following links to learn how to configure and deploy NetAdvantage for JSF components on the
following portals:

 JBoss Portal (Section 1.4.1)

 WebLogic Portal (Section 1.4.2)

 WebSphere Portal (Section 1.4.3)

1.4 Portal Support

NetAdvantage for JSF

22 NetAdvantage for JSF

Before you Begin

Note: The files needed for this topic can be found at INSTALL_DIRECTORY\Portal Resources\Jboss

Ensure that:

 JBoss® is installed correctly, for more information on versions, see Supported Software (Section 1.2).

 The server runs without any exceptions

 You can access http://localhost:8080/portal

 You can log in to the portal administrative interface with the administrator user name and password.

 You do not have the portlet.jar in the WEB\lib folder of your web application.

 You have not defined a context-param WAR_BUNDLES_JSF_IMPL in your web.xml file because we use the
JSF implementation that JBoss provides.

What You Will Accomplish
After completing the following steps, your JSF components will be aware of the server side filter and all post
backs from your JSF components will behave as normal AJAX requests.

Follow These Steps

1. Place the portlet-jboss.xml file in your web application’s WEB-INF folder and rename it to portlet.xml.

2. Place the jsf-portletbridge jar into your web application’s WEB-INF\lib folder.

Note: Ensure that the JSF implementation jars and the JSF API jars do not exist in the WEB-INF\lib
folder as JBoss already has these jars available and are loaded at runtime.

3. Place igPortalFilter.jar into the JBOSS_HOME\server\default\lib folder.

4. Open the web.xml file located at JBOSS_HOME\server\default\deploy\jboss-portal.sar\portal-
server.war\WEB-INF\web.xml and add the following code:
In XML:

<filter>
 <filter-name>
 IGAjaxFilter
 </filter-name>
 <filter-class>
 com.infragistics.faces.portals.JBossFilter
 </filter-class>
</filter>
<filter-mapping>
 <filter-name>
 IGAjaxFilter
 </filter-name>
 <url-pattern>

1.4.1 JBoss Portal

NetAdvantage for JSF

23 NetAdvantage for JSF

 /*
 </url-pattern>
</filter-mapping>

The above code snippet ensures that all portal calls are intercepted by the Infragistics servlet filter. If the
call is a smart refresh request then the output will be correctly filtered to include only fragments relevant
to the smart refresh event that was sent from the client side.

5. Restart JBoss.

6. Deploy your WAR file to JBOSS_HOME\server\default\deploy.

7. Login to the JBoss portal home page (http://localhost:8080/portal) as an administrator .

8. Click Admin in the top right corner.

9. Select the Portlet Definitions tab.

NetAdvantage for JSF

24 NetAdvantage for JSF

10. From the list that appears, locate the Infragistics Portlet and select Create instance.

11. Enter Sample Infragistics Portlet as a name for the portlet instance. Click Create Instance.

12. The next page that appears displays the details of the Sample Infragistics Portlet.

13. Select the Portal Objects tab.

NetAdvantage for JSF

25 NetAdvantage for JSF

14. From the Portal list, select default

15. Create a new sub page named Infragistics within the default portal. Click Create page.

16. From the Page list, locate Infragistics and select Page Layout.

17. Under the Content Definition section, enter Infragistics Window in the Window Name text box.

18. From the portal list, select Sample Infragistics Portlet as the portlet instance associated to the Infragistics
window.

NetAdvantage for JSF

26 NetAdvantage for JSF

19. Under the Page Layout section, click Add to add the Infragistics window to the center Region.

20. Select Portal from the top right corner.

21. Select the Infragistics tab.

22. You should now see your application running inside the JBoss portal.

NetAdvantage for JSF

27 NetAdvantage for JSF

NetAdvantage for JSF

28 NetAdvantage for JSF

Before you Begin

Note: The files needed for this topic can be found at INSTALL_DIRECTORY\Portal Resources\WebLogic

Note: You should use the MyFaces implementation because using AJAX with Sun's RI is not supported on
WebLogic Portals

Ensure that:

 BEA WebLogic™ Portal Server 10.0 is installed correctly.

 BEA Workshop for WebLogic Portal platform 10.0 is installed correctly.

 Place the portlet-weblogic.xml file in your web application’s WEB-INF folder and rename it to portlet.xml.

 Place the following jars in the WEB-INF\lib folder of your web application

 the customized myfaces-impl.jar

 myfaces-api.jar

 myfaces-shared-impl2.0.8.jar

 That you have the following listener configured in your web.xml file:
In XML:

<listener>
 <listener-class>
 org.apache.myfaces.webapp.StartupServletContextListener
 </listener-class>
</listener>

What You Will Accomplish
After completing the following steps your JSF components will be aware of the server side filter and all post
backs from your JSF components will behave as normal AJAX requests while running in the WebLogic portal.

Follow These Steps
1. Open BEA Workshop.

2. From the Workspace Launcher wizard, create a workspace.

1.4.2 WebLogic Portal

NetAdvantage for JSF

29 NetAdvantage for JSF

3. On the Window menu, click to Preferences.

4. Expand the Server node, select Installed Runtimes. Ensure that the BEA WebLogic 10.0 runtime is installed.

5. If the BEA WebLogic 10.0 is not installed, select Add.

6. Expand the BEA Systems node and select BEA WebLogic v10.0. Click Next.

7. Browse to the WebLogic installation directory. Click Finish.

NetAdvantage for JSF

30 NetAdvantage for JSF

8. On the File menu, point to New and click Project.

9. In the Select a wizard page, expand WebLogic Portal and select Portal Ear Project.

NetAdvantage for JSF

31 NetAdvantage for JSF

10. Click Next.

11. In the New Portal EAR Project page of the wizard, enter a name for the EAR.

NetAdvantage for JSF

32 NetAdvantage for JSF

12. Click Finish.

13. In the Open Associated Perspective dialog window that appears, click Yes.

14. On the File menu, point to New and click Project.

15. In the Select a wizard page, expand WebLogic Portal and select Portal Web Project.

NetAdvantage for JSF

33 NetAdvantage for JSF

16. In the New Portal Web Project page of the wizard, enter a name for Web Project.

17. Select the Add project to an EAR checkbox. From the Ear Project Name, select the EAR you previously
created.

NetAdvantage for JSF

34 NetAdvantage for JSF

18. Click Finish.

19. On the Project Explorer, right click your web project, point to Import and click Import...

NetAdvantage for JSF

35 NetAdvantage for JSF

20. In the Select page of the wizard, expand Other and select Portlet(s) from Archive.

NetAdvantage for JSF

36 NetAdvantage for JSF

21. Click Next.

22. In the Select Project page of the wizard, select your web project as the target to import external portlets
to.

NetAdvantage for JSF

37 NetAdvantage for JSF

23. Click Next.

24. In the Select Archive page of the wizard, browse to the location of your WAR file.

25. Click Next.

26. From the Select Portlet(s) page of the wizard, select InfragisticsPortlet and click Next.

NetAdvantage for JSF

38 NetAdvantage for JSF

27. From the Select Files page of the wizard, select all files, except web.xml.

28. Click Finish.

29. On the Project Explorer, right click your web project, point to New and click Portal.

NetAdvantage for JSF

39 NetAdvantage for JSF

30. From the New Portal page of the wizard, expand your web project and select WebContent as the parent
folder. Enter a name for your portal.

31. Click Finish.

NetAdvantage for JSF

40 NetAdvantage for JSF

32. Add the following entries to the web.xml file located in WEB-INF folder of your web project
In XML:

<filter>
 <filter-name>IGAjaxFilter</filter-name>
 <filter-class>com.infragistics.faces.portals.WeblogicFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>IGAjaxFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

<context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>server</param-value>
</context-param>

<context-param>
 <param-name>javax.faces.CONFIG_FILES</param-name>
 <param-value>/WEB-INF/navigation.xml,/WEB-INF/managed-beans.xml</param-value>
</context-param>

<context-param>
 <param-name>com.infragistics.faces.THEME</param-name>
 <param-value>Claymation</param-value>
</context-param>

<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.faces</url-pattern>
</servlet-mapping>

33. On the Project menu, select Properties. Select Java Build Path, select the Libraries tab. Click Add External
JARS... and browse to the igPortalFilter.jar. Click OK. Select Order and Export tab, select
igPortalFilter.jar. Click OK.

34. On the Project Explorer, locate the Infragistics portlet and place it on your newly created portal.

NetAdvantage for JSF

41 NetAdvantage for JSF

35. Save all your work.

36. On the Project Explorer, right click on your portal definition, point to Run As and select Run On Server.

37. From the Define a New Server page of the wizard, click Next.

38. From the BEA WebLogic Server v10.0, browse to an existing Domain home.

NetAdvantage for JSF

42 NetAdvantage for JSF

39. Click Next.

40. Click Finish.

41. You have successfully run your portlet on a WebLogic portal.

NetAdvantage for JSF

43 NetAdvantage for JSF

Before you Begin

Note: The files needed for this topic can be found at INSTALL_DIRECTORY\Portal Resources\WebSphere.
The jsf-ibm.jar and jsf-portletbridge.jar jars are located in your portal installation directory.

Ensure that:

 IBM® WebSphere® Portal or IBM WebSphere Portal Express is installed correctly, for more information on
versions, see Supported Software (Section 1.2).

 The server runs without any exceptions.

 You can access http://localhost:<port>/wps/portal

 You can log in to the portal administrative interface with the administrator user name and password.

 You do not have the following in the WEB-INF\lib folder of your web application:

 jsf implementations such as jsf-api, jsf-impl, myfaces-api and myfaces-impl

 portletbridge jars

 portlet.jar

 You have not declared JSF listeners such as com.sun.faces.config.ConfigureListener in your web.xml file.

What You Will Accomplish
After completing the following steps your JSF components will be aware of the server side filter and all post
backs from your JSF components will behave as normal AJAX requests while running in the WebSphere portal.

Follow These Steps
1. Place the portlet-websphere.xml file in your web application’s WEB-INF folder and rename it to

portlet.xml.

2. Place the following jars into your web application’s WEB-INF\lib folder:

 igPortalFilter.jar

 jsf-ibm.jar

 jsf-portletbridge.jar

3. Login to the WebSphere portal home page (http://localhost:<port>/wps/portal) as an administrator .

4. Click Administration, on the bottom of the page.

1.4.3 WebSphere Portal

NetAdvantage for JSF

44 NetAdvantage for JSF

5. From the table of contents, expand Portal Management and select Web Modules.

NetAdvantage for JSF

45 NetAdvantage for JSF

6. From the Manage Web Modules page, select Install.

7. Browse to the location of your web application. Click Next.

8. After reviewing your WAR file contents, click Finish.

NetAdvantage for JSF

46 NetAdvantage for JSF

9. On the Launch menu, select News.

10. On the Today's News tab, select New Page.

11. Enter a title for your page. Click OK.

12. From the Edit Layout page, click Add portlets.

NetAdvantage for JSF

47 NetAdvantage for JSF

13. Select your portlet. Click OK.

14. On the Edit Layout page, you should see a message stating that your portlets was added successfully. Click
Done.

NetAdvantage for JSF

48 NetAdvantage for JSF

15. You should now see your application running inside the WebSphere portal.

NetAdvantage for JSF

49 NetAdvantage for JSF

This topic describes a few differences between the JSF 1.1 and the JSF 1.2 framework when using
NetAdvantage for JSF components.

There is full backward compatibility between JSF 1.2 and JSF 1.1 versions. This means that all your web
applications that you created using the JSF 1.1 framework will also run on the JSF 1.2 framework.

JSF 1.2 supports the new Unified Expression Language, which integrates the expression languages defined by
JSP 2.0 and JSF 1.1. In the NetAdvantage for JSF 2008 volume 2 - JSF 1.2 support release, the NetAdvantage for
JSF components supports the following:

 #{value}

 value

The following code demonstrates how you operate with values and methods in JSF 1.1, JSF 1.2 and also using
the UnifiedValueExpression and the UnifiedMethodExpression classes. These are helper classes that allow you to
use NetAdvantage for JSF components in your web application independent of the framework.

Operating with Values

JSF 1.1

In Java:

FacesContext context = FacesContext.getCurrentInstance();
Application app = context.getApplication();
ValueBinding binding = app.createValueBinding(“#{userBean.userid}”);
String userid = (String) binding.getValue(context);

// Update this value

binding.setValue(context,”NewUserId”);

JSF 1.2
In Java:

FacesContext context = FacesContext.getCurrentInstance();
ELContext elContext = context.getELContext();
Application app = context.getApplication();
ExpressionFactory factory = app.getExpressionFactory();
ValueExpression ex = factory.createValueExpression(elContext,
"#{userBean.userid}", String.class);
String userId =(String) ex.getValue(elContext);
ex.setValue(elContext, "newUserId");

Universal
In Java:

FacesContext context = FacesContext.getCurrentInstance();
UnifiedValueExpression uve = UnificationHelper.createUnifiedValueExpression(context, "#{userBean.userid}");
uve.setValue(context, "newUserId");

1.5 NetAdvantage for JSF Components, JSF 1.1 and JSF 1.2

NetAdvantage for JSF

50 NetAdvantage for JSF

Operating with Methods

JSF 1.1

In Java:

Object result = null;
 FacesContext context = FacesContext.getCurrentInstance();
 Application app = context.getApplication();
 Class[] paramTypes = new Class[] { UserInfo.class, String.Class };
 MethodBinding mb = app.createMethodBinding("#{userBean.addUser}", paramTypes);
 try
 {
 result = mb.invoke(context, new Object [] {UserInfo(),"joe.dow"});
 }
 catch (EvaluationException e)
 {
 Throwable wrapped = e.getCause();
 }

JSF 1.2

In Java:

Object result = null;
FacesContext context = FacesContext.getCurrentInstance();
ELContext elContext = context.getELContext();
Application app = context.getApplication();
Class[] paramTypes = new Class[] { UserInfo.class, String.class };
ExpressionFactory factory = app.getExpressionFactory();
MethodExpression me = factory.createMethodExpression(elContext, "#{userBean.addUser}", Void.TYPE, paramTypes);
try
 {
 result = me.invoke(context, new Object [] {UserInfo(),"joe.dow"});
 }
catch (EvaluationException e)
 {
 Throwable wrapped = e.getCause();
 }

Universal
In Java:

FacesContext context = FacesContext.getCurrentInstance();
Class[] paramTypes = new Class[] { UserInfo.class, String.class };
UnifiedMethodExpression ume = UnificationHelper.createUnifiedMethodExpression(context, "#{userBean.addUser}", paramTypes);
ume.invoke(context, new Object [] {UserInfo(),"Allene Boyle"});

NetAdvantage for JSF

51 NetAdvantage for JSF

This section provides useful information on what you need to do in order to deploy a Web application that uses
NetAdvantage for JSF components.

 Deploying Your Application (Section 1.6.1)

 Files and Folders Required for Deployment (Section 1.6.2)

 Changing the Location of the Resource Files (Section 1.6.3)

1.6 Deploying Your Application

NetAdvantage for JSF

52 NetAdvantage for JSF

This topic contains important information about how to deploy a Web application that uses our NetAdvantage
for JSF components.

To install and deploy the NetAdvantage for JSF components to a web server:

1. Download JavaServer™ Faces, for more information on versions, see Supported Software (Section 1.2),
from the Sun Microsystem’s download page
(http://java.sun.com/javaee/javaserverfaces/download.html), if you do not already have it installed.

2. Copy the following files and paste them into your Web application’s WEB-INF/lib folder:

 jsf-api.jar

 jsf-impl.jar

3. Copy the JAR files from the INSTALL_DIRECTORY/lib/runtime folder, and paste them into your web
application’s WEB-INF/lib folder.

4. Verify that your Web application’s directory structure is correct, and contains the appropriate Infragistics
files and folders. See the “Directory Structure” section below for more information.

Directory Structure
When deploying an application that uses NetAdvantage for JSF components, you must distribute all of the
required folders and files in the appropriate directory structure in order for your Web application to function
properly. Below is a screen shot of a high-level view of the required directory structure.

Note: By default, the resources folder is located in the WEB_APP folder, where WEB_APP is the folder
name of your application. You can specify a different location for the resources folder by modifying the
WEB_APP/conf/web.xml file. For more information, see Changing the Location of the Resource Files
(Section 1.6.3).

The list below describes the three types of files that are associated with each NetAdvantage for JSF component
group, and need to be deployed at run time in order for the components to function properly. For information
on the location of these files, see Files and Folders Required for Deployment (Section 1.6.2).

 JavaScript files – These files are used by the NetAdvantage for JSF components on the client side. The
JavaScript files must be deployed to the resources/infragistics/scripts directory.

 Theme files – These files are CSS and image files that are required by the NetAdvantage for JSF
components to display the various themes. These files must be deployed to the
resources/infragistics/theme/theme_name directory, where theme_name is the name of the Infragistics
theme used by the Web application.

 JAR files – These files contain the classes that the NetAdvantage for JSF components depend upon. These
files must be deployed to the WEB-INF/lib directory.

All of the above-mentioned files follow a naming convention. Files/folders that are associated with a specific

1.6.1 Deploying Your Application

NetAdvantage for JSF

53 NetAdvantage for JSF

NetAdvantage for JSF component group contain the name of the component group within the name of the
file/folder. For example, in the WEB-INF/lib folder, the infragistics-webgrid.jar file is used only by the WebGrid
component group. There are also files/folders that are shared by all the component groups. These files/folders
usually contain the name "shared" or "core" in the name of the file/folder. For example, in the WEB-INF/lib
folder, the infragistics-shared.jar file is required by all the component groups.

Note: Although it is recommended to deploy all files/folders as they are required by all of the
NetAdvantage for JSF components, it is possible to deploy only a subset of the JAR, JavaScript, CSS, and
image files. See the table below for a list of the specific files/folders required by each component group.

The table below lists the files/folders that are required by each component group.

*When deploying your application, you must distribute all files and folders used by the Shared component,
regardless of which NetAdvantage for JSF component groups are used by your Web application.

Component Group Required Files

Script Folder Themes Folder Lib Folder

*Shared igf_core.js

igf_ui.js

igf_shared.CSS

/shared folder

infragistics-shared.jar

WebBar igf_bar.js igf_bar.CSS

/webbar folder

infragistics-webbar.jar

WebChart igf_chart.CSS

/webchart folder

infragistics-webchart.jar

WebDialogWindow igf_dialogwindow.js igf_dialogwindow.CSS

/webdialogwindow folder

infragistics-webdialogwindow.jar

WebGrid igf_grid.js igf_grid.CSS

/webgrid folder

infragistics-webgrid.jar

WebInput igf_input.js igf_input.CSS

/webinput folder

infragistics-webinput.jar

WebMenu igf_menu.js igf_menu.CSS

/webmenu folder

infragistics-webmenu.jar

WebTab igf_tab.js igf_tab.CSS

/webtab folder

infragistics-webtab.jar

WebTree igf_tree.js igf_tree.CSS

/webtree folder

infragistics-webtree.jar

NetAdvantage for JSF

54 NetAdvantage for JSF

This topic describes the folders and files that are required when deploying a Web application that uses
NetAdvantage for JSF components.

Note: If you want to move the resource files to a different location, see Changing the Location of the
Resource Files (Section 1.6.3).

The portlet.jar should be present in all webapps that you are assembling, except if you are deploying your
application in a portal environment, for more information on portals, see Portal Support (Section 1.4). The
portlet.jar is located in the INSTALL_DIRECTORY\lib\runtime folder.

scripts Folder

themes Folder

1.6.2 Files and Folders Required for Deployment

The /resources/infragistics/scripts folder of the deployed application must contain the
JavaScript support files required by the NetAdvantage for JSF components. These files can be
found in the install_dir/lib/runtime/resources/infragistics/scripts folder.

The /resources/infragistics/themes folder of the deployed application must
contain the subfolders that are named after the wide variety of themes (e.g.,
"Pear", "Peach", and "SpringGreen") used by the NetAdvantage for JSF
components that are being deployed.

Each theme folder (e.g., "blue") contains a set of CSS files for each of the
NetAdvantage for JSF component groups, as well as subfolders (e.g., "webbar"
and "webgrid") named after the NetAdvantage for JSF component groups. Each
subfolder contains images for the themes supported by the component group.

The theme files can be found in the
install_dir/lib/runtime/resources/infragistics/themes folder.

NetAdvantage for JSF

55 NetAdvantage for JSF

lib Folder

The /WEB-INF/lib folder of the deployed application must contain the Infragistics JAR
files. These JAR files contain code that is used by the NetAdvantage for JSF
components.

The JAR files can be found in the install_dir/lib/runtime folder.

NetAdvantage for JSF

56 NetAdvantage for JSF

The NetAdvantage for JSF product contains various resource files (i.e., icons, cascading style sheets (CSS), and
JavaScript files). The default location for these resource files is the WEB_APP/resources/infragistics folder,
where WEB_APP is the folder name of your Web application.

You have the option of moving these resource files to a different location. For example, you may want to move
the images to the WEB_APP/resources/images folder, the CSS files to the WEB_APP/resources/images folder,
and the JavaScript files to the WEB_APP/resources/scripts folder.

To change the location of the resource files, you need to modify the WEB_APP/conf/web.xml file. Using the
previously-mentioned example, you would need to modify the web.xml file using the text below, then save the
file.

In XML:

<context-param>
 <param-name>com.infragistics.faces.RESOURCES_FOLDER</param-name>
 <param-value>/put the location of the resources folder here</param-value>
</context-param>

1.6.3 Changing the Location of the Resource Files

NetAdvantage for JSF

57 NetAdvantage for JSF

A sample application has been built and packaged as the infragistics-netadvantage.war file in the
demos/war/j2ee.VERSION directory (where VERSION is the J2EE version that you are using). This application
contains all of the NetAdvantage for JSF samples.

Note: You will need to place the license file into the WEB-INF folder of the sample, once it has been
deployed. For more information, see Managing the License (Section 1.8).

For information on how to install and deploy the sample application on an application server, click the
appropriate link below:

 Apache™ Tomcat (Section 1.7.1)

 BEA WebLogic™ (Section 1.7.2)

 IBM WebSphere® (Section 1.7.3)

 JBoss® (Section 1.7.4)

 Sun Java™ System Application Server (Section 1.7.5)

 Facelets Support (Section 1.7.6)

1.7 Installing and Deploying the Samples

NetAdvantage for JSF

58 NetAdvantage for JSF

To install and deploy the sample application on Tomcat:

Note: For more information on supported versions, see Supported Software (Section 1.2).

1. Copy the infragistics-netadvantage.war file to the following directory: <TOMCAT_HOME>/webapps.

2. Start tomcat.

3. The WAR file will begin to deploy. Wait until the deployment process finishes.

4. Open your web browser and enter the following URL to browse the samples:

http://localhost:port_number/infragistics-netadvantage

where port_number is the port on which Tomcat is listening for requests.

1.7.1 Apache Tomcat

NetAdvantage for JSF

59 NetAdvantage for JSF

To install and deploy the sample application on BEA WebLogic™ 10:

When you are installing and deploying the sample application on BEA WebLogic 10, you will need to use an
exploded archive directory. You must manually unpack the infragistics-netadvantage.war file. Our components
must be deployed using an exploded archive directory because the WebChart component performs a direct file
system I/O. For more information on exploded archive directories, see Using Exploded Archive Directories
(http://edocs.bea.com/wls/docs100/deployment/deployunits.html#wp1045820).

Note: For more information on supported versions, see Supported Software (Section 1.2).

1. Unpack the infragistics-netadvantage.war file to the following directory: /user_projects/applications.

2. Start your WebLogic application server.

3. Open your Web browser and enter the following URL to browse the samples:

http://localhost:port_number/infragistics- (http://-/#wp1045820)netadvantage

where port_number is the port on which WebLogic is listening for requests.

1.7.2 BEA WebLogic

NetAdvantage for JSF

60 NetAdvantage for JSF

To install and deploy the sample application on IBM WebSphere® 6.1:

Note: For more information on supported versions, see Supported Software (Section 1.2).

1. Start the WebSphere Administrative Console.

2. Double-click the Applications node.

3. Click Install New Application.

4. Click the Browse button, and select the infragistics-netadvantage.war file.

5. In the Context Root text box, type "infragistics-netadvantage".

6. Click Next.

7. Click Next.

8. Click Continue.

9. Click Next.

10. Select the Infragistics sample, then click Next.

11. Select the Infragistics sample, and select the host on which you want to deploy the sample (by default, the
default host is selected).

12. Click Next.

13. Click Finish.

14. Click Save to Master Configuration.

15. Click Save.

16. In the left pane, click Enterprise Applications.

17. Select the newly-installed sample, and click Start.

18. Open your Web browser and enter the following URL to browse the samples:

http://localhost:port_number/infragistics-netadvantage

where port_number is the port on which WebSphere is listening for requests.

1.7.3 IBM WebSphere

NetAdvantage for JSF

61 NetAdvantage for JSF

To install and deploy the sample application on JBoss:

Note: For more information on supported versions, see Supported Software (Section 1.2).

1. Remove all the files from the the following directory: <JBOSS4_HOME>/server/default/deploy/jbossweb-
tomcat55.sar/jsf-libs.

2. Copy infragistics-netadvantage.war to the following folder: <JBOSS4_HOME>/server/default/deploy.

3. Start your JBoss application server.

4. The WAR file will begin to deploy. Wait until the deployment process finishes.

5. Open your Web browser and enter the following URL to browse the samples:

http://localhost:port_number/infragistics-netadvantage

where port_number is the port on which JBoss is listening for requests.

1.7.4 JBoss

NetAdvantage for JSF

62 NetAdvantage for JSF

To install and deploy the sample application on Sun Java™ System Application Server 9.1:

Note: For more information on supported versions, see Supported Software (Section 1.2).

1. Copy the infragistics-netadvantage.war file to the following directory:
<SUNAS8_HOME>/domains/your_domain_name/autodeploy.

2. Start your application server.

3. The WAR file will begin to deploy. Wait until the deployment process finishes.

4. Open your Web browser and enter the following URL to browse the samples:

http://localhost:port_number/infragistics-netadvantage

where port_number is the port on which Java System Application Server is listening for requests.

1.7.5 Sun Java System Application Server

NetAdvantage for JSF

63 NetAdvantage for JSF

The NetAdvantage for JSF components should work in a Facelet. This is not server specific, therefore Facelets
should work in all the supported application servers. For more information on the supported application
servers, see Supported Software (Section 1.2). For an example on using the components in a Facelet see, the
Working with Facelets (Section 7.2.4.7) tutorial.

1.7.6 Facelets Support

NetAdvantage for JSF

64 NetAdvantage for JSF

The NetAdvantage for JSF product requires the infragistics-netadvantage.lic file in order to be rendered (e.g.,
at run time or in a visual IDE). The infragistics-netadvantage.lic file must reside in the WEB-INF directory;
otherwise, you will receive the error message below when it displays a page with a NetAdvantage for JSF
component. You will also receive this message if you are using an expired license with a newer version of the
product.

1.8 Managing the License

NetAdvantage for JSF

65 NetAdvantage for JSF

For localization purposes, locale-sensitive data (e.g., error messages, button labels, string literals) are isolated
into resource bundles, rather than being hard-coded into the source code. These resource bundles act as a
single-source code base so that can be translated into various languages.

Sun Microsystems™ provides an <f:loadBundle> tag, which creates a Load Bundle component that allows you to
create a localizable Web application. However, as a result of a known issue with Sun’s <f:loadBundle>
mechanism, the <f:loadBundle> cannot be used with NetAdvantage for JSF components.

To work around this known issue:

1. Open the faces-config.xml file, and add the following code to the <faces-config> section of the file:
In XML:

<managed-bean>
 <description>BackingBean used to mimic an f:loadBundle tag</description>
 <managed-bean-name>
 msg
 </managed-bean-name>
 <managed-bean-class>
 com.infragistics.faces.shared.helpers.JsfResourceBundle
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>baseName</property-name>
 <value>resources.messages</value>
 </managed-property>
</managed-bean>

2. Open your .jsp file, and repleace the <f:loadBundle> reference with the following code:
In JSP:

 <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
 <h:outputText value="#{msg.message}"/>

3. The properties of the .jsp file that contains the message is saved as the following file:
META-INF/classes/resources/messages.properties.

The <f:loadBundle> version is as follows:

In JSP:

 <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
 <h:outputText value="#{msg.message}"/>

1.9 Localization

NetAdvantage for JSF

66 NetAdvantage for JSF

If you own a copy of NetAdvantage, you are entitled to certain benefits regarding support services offered by
Infragistics.

Creating a Member Profile
Visit the "My Infragistics" area of Infragistics' Web site (http://www.infragistics.com/), and create a Member
Profile (http://www.infragistics.com/scripts/redirects.aspx?id=PROFILE). It is important that your most
current information is entered into your Member Profile, this will ensure that our Support Service Department
can deliver support correspondence and subscription upgrades to you.

Registering your Product Key
After creating a Member Profile, register your Product Key to your MemberID by visiting the Product
Registration (http://www.infragistics.com/scripts/redirects.aspx?id=REGPRDKEY) page. This will provide you
with superior technical support services quickly and conveniently. Your MemberID is connected to your personal
profile. Your registration identifies you as the active developer entitled to use and request support for the
Infragistics product you have registered.

Getting MemberID Information
You can always visit your Registration Records (http://www.infragistics.com/scripts/redirects.aspx?
id=REGHISTORY) and review your purchases, issued subscription upgrade keys and registered keys online, 24
hours a day, 7 days a week. After logging in with your MemberID, you’ll be able to view vital information
including product keys and subscription service and status.

Getting Help
A wealth of valuable information is available at our DevCenter
(http://devcenter.infragistics.com/Default.aspx). DevCenter is a customer community location for self-service
support information, technical articles, reference applications and much more. For more information on what
help is available, hover your mouse over the "Support" menu item in the left pane of DevCenter.

Important Support Policies (http://www.infragistics.com/scripts/redirects.aspx?id=SUPPORTPOLICY) and
phone support contact information is also available on DevCenter.

Note: You must have valid priority support to access phone support.

Each Infragistics product registered user can submit requests for technical support via the Web site. To log an
incident or start any support issue, please log on to DevCenter to Submit a Support Issue
(http://www.infragistics.com/scripts/redirects.aspx?id=SUPPORTISSUE) and enter your MemberID. For your
convenience, you can also attach a sample project if applicable.

Product Life Cycle
Infragistics Product Life Cycle information is available in PDF format and provides the following information:

1.10 Getting Support

NetAdvantage for JSF

67 NetAdvantage for JSF

 name and version of the Infragistics tools

 product maintenance (bug fix) period

 product support period

 product status

Click here (http://download.infragistics.com/download/pubs/ProductLifeCycle.pdf) to download the PDF
file.

For issues related to your account, product ownership, or registration, please e-mail
Registrations@Infragistics.com. Include your name and product key (if known) so that we may better assist
you. You can also call (609) 448-2000 9 a.m. to 5 p.m., Monday to Friday, EST US.

NetAdvantage for JSF

68 NetAdvantage for JSF

The following links provide information on known issues and breaking changes that impact the entire
NetAdvantage for JSF product. Please take note of these issues/breaking changes as you use NetAdvantage for
JSF.

If an issue arises after a volume is released, you can visit our forums
(http://forums.infragistics.com/forums/209.aspx) for the latest breaking changes and known issues.

 Known Issues and Breaking Changes in 2008 Volume 2 (Section 2.1)

 Known Issues and Breaking Changes in 2008 Volume 1 (Section 2.2)

 Known Issues and Breaking Changes in 2007 Volume 2 (Section 2.3)

2 Known Issues and Breaking Changes

NetAdvantage for JSF

69 NetAdvantage for JSF

The following is a list of known issues we became aware of during the NetAdvantage for 2008 volume 2 release.
For known issues and breaking changes in previous releases, see Known Issues and Breaking Changes (Section
2).

Known Issue with JSF 1.2 and Sun Application Server 9.1

The NetAdvantage for JSF 2008 volume 2 with support for JSF 1.2 release does not work in Sun® Application
Server 9.1.

Known Issue with JSF 1.2.08

There is a known issue with NetAdvantage for JSF components running in the JSF 1.2.08 framework. An issue
occurs when the summary length of all attributes exceeds one buffer size in the implementation. This mainly
effects the WebChart component and some WebInput components.

2.1 Known Issues and Breaking Changes in 2008 Volume 2

NetAdvantage for JSF

70 NetAdvantage for JSF

Known Issues of Facelets Support

 The Facelets environment expects a DataModel instance to be bound for the dataSource attribute of a
component. For example, if you have the following getter method:
In Java:

public List getTreeNodes() {
 if (treeNodes==null) treeNodes = new java.util.ArrayList();
 return treeNodes;
}

You should change it to use DataModel instead, as demonstrated by the following code:

In Java:

public DataModel getTreeNodes() {
 if (treeNodes==null) treeNodes = new java.util.ArrayList();
 return new ListDataModel(treeNodes);
}

 When using value binding, the getter method should not receive parameters

 There is a current limitation in the Facelets environment that when using method binding, you can not pass
listeners as parameters in composition templates.

 An exception occurs when running the WebChart component within the facelets environment. This
exception occurs because some of the WebChart attributes are of type Number and when Facelets tries to
create a concrete number implementation for these attributes, it is unable to do so and throws a "Cannot
convert type class.java.lang.String to class java.lang.Number" exception.

Known Issues of WebBar

When WebGrid is nested within a Stackbar or Sidebar component, the content of the WebGrid component does
not appear. This issue does not occur with a non-scrolling WebGrid.

Known Issues of WebGrid

 Column resizing is not retained while paging. If you resize the columns on your WebGrid and then navigate
to another page of your WebGrid, the columns will revert back to the default size.

 Vertical and Horizontal scroll bars are not shown on the child grid in a hierarchical resizable WebGrid. If
the child grid exceeds the width and/or height of the parent grid, you will not be able to scroll horizontally
and/or vertically to see the data of the child grid.

 When you set the resizableColumns property to true, you must also set the width attribute in the style
property. The following code example demonstrates how to do this.

In JSP:

 <ig:gridView dataSource="#webgrid_resizeColumnsPage.employees}">
 pageSize="10"
 fixedColumnCount="2"
 resizableColumns="true"
 style="width: 600px">

 When you are using the design surface of IBM® Rational® Application Developer for WebSphere 7.0,
dragging the ColumnSelectRow component on to the GridView component creates an instance of the

2.2 Known Issues and Breaking Changes in 2008 Volume 1

NetAdvantage for JSF

71 NetAdvantage for JSF

CheckBox component outside of the GridView component. An instance of the ColumnSelectRow component
is also created on the GridView component.

 When you are using the design surface of RAD, deleting the Column's header of your WebGrid, using the
Delete key, does not successfully delete it.

 When you are using the design surface of RAD, dragging multiple instances of the GridActivation
component and the GridEditing component on to your WebGrid produces many unnecessary tags in the
source.

 When you are using the design surface of NetBeans™, the last column header of your WebGrid does not
extend to your WebGrid's outline. When you are using the design surface of NetBeans, deleting your
WebGrid's header, footer, column header and column footer, using the Delete key, does not refresh the
Design page automatically.

 When you are running your project from NetBeans, using the Apache™ Tomcat bundled server, the sorting
functionality on WebGrid does not work.

Known Issues of WebTab

When you are using the design surface of IBM® Rational® Application Developer for WebSphere 7.0, two or
more TabItem's Selected property can be set to true at the same time.

Known Issues of WebTree

When you run your WebTree component, each node in your WebTree is automatically generated as a link.

NetAdvantage for JSF

72 NetAdvantage for JSF

We recommend that when you are using Microsoft® Internet Explorer 6 and later, you include the <DOCTYPE>
tag in your JSP page. This reduces the risk of your components rendering incorrectly within your application.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Known Issues in WebGrid

 When your data source is configured to use a ResultSet Data Object Model, paging will not work on your
WebGrid. It does not work because the following method

In Java:
getRowCount()

returns -1. The number of rows in the ResultSet cannot be determined without scrolling through the entire
ResultSet which is not feasible if the ResultSet contains many rows.

 When you set the resizableColumns property to true, you must also set the width attribute in the style
property. The following code example demonstrates how to do this.

In JSP:

 <ig:gridView dataSource="#webgrid_resizeColumnsPage.employees}"
 pageSize="10"
 fixedColumnCount="2"
 resizableColumns="true"
 style= "width: 600px">

Breaking changes in WebChart

The following methods return type have been changed from java.util.List to java.util.Collection:

 GetAxes()

 GetLights()

 GetSeries()

The following methods parameter type have been changed from java.util.List to java.util.Collection:

 SetAxes()

 SetLights()

 SetSeries()

2.3 Known Issues and Breaking Changes in 2007 Volume 2

NetAdvantage for JSF

73 NetAdvantage for JSF

What's New in 2009 Volume 1 (Section 3.1)
Find out which new components and features were added to this volume release of NetAdvantage for JSF.

Revision History (Section 3.2)
Need to find out when a certain feature was added to our controls? Easily track down any new feature since our
2006 Volume 2 release.

3 What's New

NetAdvantage for JSF

74 NetAdvantage for JSF

The NetAdvantage for JSF 2009 Volume 1 includes a number of powerful new features and functionalities to
allow you to take even more advantage of our JSF components.

Click the links to see a list of the features being offered:

 Expanded Icon Added to WebBar (Section 3.1.1)

 New Client-Side Object Model (Section 3.1.2)

 New Methods Added to SelectedRowsChangeEvent (Section 3.1.3)

 You Can Now Change the Default Setting of ColumnSelectRow (Section 3.1.4)

 You Can Now Expand or Collapse WebMenu with Mouse Events (Section 3.1.5)

 You Can Now Export an Entire WebGrid to CSV (Section 3.1.6)

 You Can Now Force a Vertical Scroll Bar (Section 3.1.7)

 You Can Now Set the Text of DateChooser Submit Button (Section 3.1.8)

 You Can Now Sort a Localized WebGrid (Section 3.1.9)

3.1 What's New in 2009 Volume 1

NetAdvantage for JSF

75 NetAdvantage for JSF

We have added a new attribute, expandedIconUrl, to the <ig:stackbarGroup> tag. This allows you to set an icon
that is displayed to your end user when the stack bar is expanded.

The existing attribute, iconUrl, is now used to indicate the collapsed state of the stack bar.

Related Topic

Set the Expanded Icon (Section 4.4.2)

3.1.1 Expanded Icon Added to WebBar

NetAdvantage for JSF

76 NetAdvantage for JSF

Starting in the NetAdvantage for JSF 2009 volume 1 release, a new JavaScript-based object model, also known
as a Client-Side Object Model (CSOM), is now available on the client for each of our NetAdvantage for JSF
components. This CSOM lets you build rich, responsive, Web applications which keep post-backs to a minimum.

Each and every component now has a new tag in the form <ig:nnnnClientEvents> where nnnn is the name of the
component and you can assign your event listeners declaratively through these Client Event settings.

Related Topic

Getting Started with the Client Side Object Model (Section 4.3)

3.1.2 New Client-Side Object Model

NetAdvantage for JSF

77 NetAdvantage for JSF

In the NetAdvantage for JSF 2009 volume 1 release, new functionality has been added to the
SelectedRowsChangeEvent event. With this new feature you can determine if the SelectAll checkbox is selected
and also if the event was triggered from the SelectAll checkbox or from select row checkbox.

Related Topic

SelectedRowsChangeEvent (Section 4.7.3.5.8)

3.1.3 New Methods Added to SelectedRowsChangeEvent

NetAdvantage for JSF

78 NetAdvantage for JSF

Previously, when using the ColumnSelectRow component in your WebGrid you could not override the default
setting. The checkboxes were unselected when they were initially loaded. However, we have added a new
feature which allows the checkboxes to be selected when they are initially loaded. You can override the
default setting by simply setting the newly added defaultSelected attribute to True in the
<ig:columnSelectRow> tag.

Related Topic

Change the Default Setting of ColumnSelectRow (Section 4.7.3.5.1)

3.1.4 You Can Now Change the Default Setting of
ColumnSelectRow

NetAdvantage for JSF

79 NetAdvantage for JSF

Previously, you were not able to control how a menu item opened or closed. However, in the NetAdvantage for
JSF 2009 volume 1 release, we have added two new attributes to the <ig:menu> tag, named expandOn and
collapseOn. These attributes allow you to specify how the menu item will open or close, through a series of
mouse events.

You can set these attributes at the parent level, so that all the children menu items will inherit the setting or
you can set it for each individual menu item.

Related Topic

Expand or Collapse WebMenu with Mouse Events (Section 4.9.3)

3.1.5 You Can Now Expand or Collapse WebMenu with Mouse
Events

NetAdvantage for JSF

80 NetAdvantage for JSF

You could previously export selected rows and the current page of your WebGrid to a Comma Separated Value
file. For this release, we have expanded on that functionality and you can now export your entire WebGrid to a
CVS file.

Related Topic

Exporting Data to a CSV File (Section 4.7.3.1.4)

3.1.6 You Can Now Export an Entire WebGrid to CSV

NetAdvantage for JSF

81 NetAdvantage for JSF

Previously vertical scroll bars would only appear on your grid if the content of the grid exceeded the specified
height. If the height attribute of the <ig:gridView> is not set, then the vertical scroll bar would not appear.

Starting in the 2009 volume 1 release, we have added a new attribute, forceVerticalScrollBar, to the
<ig:gridView> tag.

This allows you to apply vertical scrollbars to your WebGrid component regardless of the value of the height
attribute.

Related Topic

Force Vertical Scroll Bars (Section 4.7.3.3.7)

3.1.7 You Can Now Force a Vertical Scroll Bar

NetAdvantage for JSF

82 NetAdvantage for JSF

Previously you were not able to edit the text of the DateChooser's submit button. However, we've now added
functionality that allows you to override the default setting of "...".

To set the text of the button, you simply set the new buttonText attribute of the <ig:dateChooser> to the text
value you want to appear.

Related Topic

Set the Text of DateChooser Submit Button (Section 4.8.1.3.1)

3.1.8 You Can Now Set the Text of DateChooser Submit Button

NetAdvantage for JSF

83 NetAdvantage for JSF

Sorting has been a feature of our WebGrid component for a long time; in this release we have expanded this
functionality so that a localized WebGrid can also be sorted. Previously WebGrid could only be sorted based on
the English alphabet, this caused problems when special characters were used in different languages. To
overcome this, we have added language, country and variant attributes to the <ig:gridView> tag.

Depending on the values you set, the WebGrid component will be sorted according to that alphabet.

Related Topic

Sorting a Localized WebGrid (Section 4.7.3.5.10)

3.1.9 You Can Now Sort a Localized WebGrid

NetAdvantage for JSF

84 NetAdvantage for JSF

This section makes it easy for you to track down all the new features and enhancements that were made to
NetAdvantage for JSF components in the following volume release:

 2008 Volume 2 (Section 3.2.1)

 2008 Volume 1 (Section 3.2.2)

 2007 Volume 2 (Section 3.2.3)

 2007 Volume 1 (Section 3.2.4)

 2006 Volume 2 (Section 3.2.5.2)

3.2 Revision History

NetAdvantage for JSF

85 NetAdvantage for JSF

The NetAdvantage for JSF 2008 Volume 2 release includes a number of powerful new features and
functionalities to allow you to take even more advantage of our JSF components.

Click the links to see a list of the features being offered:

 Full Support for JSF 1.2 (Section 3.2.1.1)

 WebGrid 2008.2 (Section 3.2.1.2)

3.2.1 What's New in 2008 Volume 2

NetAdvantage for JSF

86 NetAdvantage for JSF

In the 2008 Volume 2 release, JavaServer™ Faces (JSF) 1.2 is fully supported. The NetAdvantage for JSF
components are tested fully to ensure they function within the JSF 1.2 environment.

JSF 1.2 consists of many new features, bug fixes and improvements, such as:

 Unified Expression Language

 Integration with JavaServer Pages Standard Tag Library (JSTL)

 Component View Creation / Content Interweaving

 Use of Multiple RenderKits

For more information on JSF 1.2, see Java™ Specification Requests 252 (http://jcp.org/en/jsr/detail?id=252).

Note: JSF 1.2 works with Servlet API 2.5 and JavaServer Pages (JSP) 2.1. If you are running Apache™
Tomcat, it must be version 6.0 or higher.

Related Topic

NetAdvantage for JSF Components, JSF 1.1 and JSF 1.2 (Section 1.5)

3.2.1.1 Full Support for JSF 1.2

NetAdvantage for JSF

87 NetAdvantage for JSF

Explore the new features that were added to the WebGrid™ component in the 2008 Volume 2 release by
clicking the links below:

 Aggregate Functions Support (Section 3.2.1.2.1)

 Grid Activation (Section 3.2.1.2.2)

 You Can Now Disable Column Moving (Section 3.2.1.2.3)

3.2.1.2 WebGrid 2008.2

NetAdvantage for JSF

88 NetAdvantage for JSF

Starting in the 2008 Volume 2 release, you can now perform calculations on values in a column and display the
results in the column's footer. This feature is extremely useful and beneficial to your end user. For example if
your WebGrid has a column that displays monthly sales, displaying the total yearly sales in the column's footer
would eliminate the need for your end user to manually calculate the yearly sales themselves.

You can perform the following aggregate functions:

 AVERAGE

 COUNT

 MAXIMUM

 MINIMUM

 SUM

Related Topic

Aggregate Functions (Section 4.7.3.2)

3.2.1.2.1 Aggregate Functions Support

NetAdvantage for JSF

89 NetAdvantage for JSF

Previously, you were only able to navigate through WebGrid™ and activate a cell using the mouse. However,
we've now added functionality that allows you to navigate and activate cells using both the mouse and the
keyboard. To enable this feature you simply add the new <ig:gridActivation> (Section 4.7.3.5.2) tag to your
WebGrid component.

Related Topic

Grid Activation (Section 4.7.3.5.2)

3.2.1.2.2 Grid Activation

NetAdvantage for JSF

90 NetAdvantage for JSF

One of the features of the WebGrid™ component is that the end user can interact with the WebGrid component
by moving the columns to different positions to create a customized appearance that suits their needs. This
feature is enabled by default; however, there may be certain situation where you do not want your end users
to have the ability to move a column's position. Starting in the NetAdvantage for JSF 2008 Volume 2 release,
you can now disable this feature by simply setting the new movableColumns attribute of the <ig:gridView> tag
to False. You can also disable column moving on a per column basis by setting the new movable attribute of the
<ig:column> or <ig:columnSelectRow> tag to False.

Related Topic

Column Moving (Section 4.7.3.3.1)

3.2.1.2.3 You Can Now Disable Column Moving

NetAdvantage for JSF

91 NetAdvantage for JSF

The NetAdvantage for JSF 2008 Volume 1 release includes a number of powerful new features and
functionalities to allow you to take even more advantage of our JSF components.

Click the links to see a list of the features being offered:

 AJAX is Now Supported Within a Portal Environment (Section 3.2.2.1)

 New TreeMap Chart (Section 3.2.2.2)

 New WebDialogWindowComponent (Section 3.2.2.3)

 WebGrid 2008.1 (Section 3.2.2.4)

3.2.2 What's New in 2008 Volume 1

NetAdvantage for JSF

92 NetAdvantage for JSF

In the NetAdvantage for JSF 2008 volume 1 release, the NetAdvantage for JSF components can perform AJAX
operations within portal environments. To enable this feature, you just need to make a simple change to the
configuration file.

The following portals are supported:

 BEA WebLogic™ 10

 IBM WebSphere® Portal 6.1

 JBoss® 2.4.* and 2.6.* portals

Related Topics

JBoss Portal (Section 1.4.1)

WebLogic Portal (Section 1.4.2)

WebSphere Portal (Section 1.4.3)

3.2.2.1 AJAX is Now Supported Within Portal Environments

NetAdvantage for JSF

93 NetAdvantage for JSF

Starting in the NetAdvantage for JSF 2008 Volume 1 release, a new treemap chart has been added to the
WebChart™ component.

A treemap chart can be used to represent a very large amount of data in a rectangular space. Treemap charts
can also be used for monitoring activities with a large quantity of data.

The following screen shot shows a treemap chart.

Related Topic

Treemap Chart (Section 4.5.2.12)

3.2.2.2 New Treemap Chart

NetAdvantage for JSF

94 NetAdvantage for JSF

The WebDialogWindow™ component allows you to add dialog box functionality to your application without
having to open a new browser window. The advantage to this is that it is able to bypass many of the pop-up
blockers in present-day browsers, while still appearing to the end users as if it were a pop-up window. The
dialog window's content area can contain any HTML markup or anything else your application requires.
WebDialogWindow supports being displayed as either a modal (the user must interact with and close the dialog
box; interaction with the rest of your page is suspended) or modeless (non-modal; the user is free to interact
with the rest of your page) dialog box.
A few of the other key features of this JSF dialog control include:

 Modes - The WebDialogWindow allows you to set whether the dialog behaves as a modal or modeless (non-
modal) dialog would allowing you to better control the flow of your application.

 Header - The WebDialogWindow displays a customizable header area into which you can place caption
text, several buttons including such stand-by's as the close, minimize and maximize buttons seen in
desktop applications.

 Resizing - Just like a resizable dialog on the desktop, you can enable your end user to resize the
WebDialogWindow at run-time.

 Location - Cause the WebDialogWindow to display at the starting location in the page where you want it to
appear.

 Window State - WebDialogWindow takes care of remembering whether the user has minimized, restored or
maximized its appearance.

The following screen shot displays the WebDialogWindow.

Related Topic

WebDialogWindow (Section 4.6)

3.2.2.3 New WebDialogWindow Component

NetAdvantage for JSF

95 NetAdvantage for JSF

Explore the new features that were added to the WebGrid™ component in the 2008 Volume 1 release by
clicking the links below:

 Improved Functionality for Fixed Columns (Section 3.2.2.4.1)

 WebGrid Allows Load-On-Demand Scrolling (Section 3.2.2.4.2)

 WebGrid Supports Multi-Column Sorting (Section 3.2.2.4.3)

 You Can Edit Cells in Your WebGrid (Section 3.2.2.4.4)

3.2.2.4 WebGrid 2008.1

NetAdvantage for JSF

96 NetAdvantage for JSF

In the NetAdvantage for JSF 2008 Volume 1 release we have improved the WebGrid's™ fixed column
functionality.

A column indicator is displayed in the header of your WebGrid, next to the column name. When your end user
selects this indicator, that column will automatically move to the left of your WebGrid and remain fixed. This
column will then remain in view when the grid is scrolled horizontally.

Related Topic

Fixed Columns (Section 4.7.3.3.2)

3.2.2.4.1 Improved Functionality for Fixed Columns

NetAdvantage for JSF

97 NetAdvantage for JSF

In the NetAdvantage for JSF 2008 volume 1 release, the WebGrid component now allows load-on-demand
scrolling. You can specify a certain number of rows to be rendered by the client. When the end user scrolls
through the WebGrid component, WebGrid makes an intelligent call-back to the server to display the specified
number of rows. The scroll bar represents the total number of rows in the data set.

Related Topic

Load On Demand Scrolling (Section 4.7.3.5.4)

3.2.2.4.2 WebGrid Allows Load-On-Demand Scrolling

NetAdvantage for JSF

98 NetAdvantage for JSF

You can now configure your WebGrid to allow multi-column sorting. Your end user can apply sort conditions to
many columns.

Related Topic

Multi-Column Sorting (Section 4.7.3.5.5)

3.2.2.4.3 WebGrid Supports Multi-Column Sorting

NetAdvantage for JSF

99 NetAdvantage for JSF

In the NetAdvantage for JSF 2008 volume 1 release you can now edit cells in your WebGrid. The WebGrid
component can switch from display to edit mode. You can specify any valid JSF component to edit the cell
value.

The following screen shot shows how a cell can be edited using the Calendar component.

Related Topic

Cell Editing (Section 4.7.3.4.1)

3.2.2.4.4 You Can Edit Cells in Your WebGrid

NetAdvantage for JSF

100 NetAdvantage for JSF

The NetAdvantage for JSF 2007 Volume 2 release includes a number of powerful new features and
functionalities to allow you to take even more advantage of our JSF components.

Click the links to see a list of the features being offered:

 New Support for IBM RAD and NetBeans IDEs (Section 3.2.3.1)

 WebGrid (Section 3.2.3.2)

3.2.3 What's New in 2007 Volume 2

NetAdvantage for JSF

101 NetAdvantage for JSF

Starting in the 2007 Volume 2 release, NetAdvantage for JSF components are now integrated into the available
JSP page designer tools palette for IBM® Rational® Application Developer for WebSphere® 7.0 and NetBeans™
5.5. This new IDE support helps you to create applications using NetAdvantage for JSF components easier and
quicker than ever before.

Design View
With the support for integration of the NetAdvantage for JSF components into RAD and NetBeans IDEs, you can
take full advantage of the tools palette available within these IDEs. You can drag the components from the
palette to your JSP page, and control the layout and size of the components.

Properties Window
Using the Properties window, you can edit the properties of your component and instantly see the changes in
the design view, simplifying the editing process. Selecting a component from the design view populates the
Properties window with the attributes and values of that component.

Preview
Additionally, you can also preview your application within the design view eliminating the need to compile your
application to view it.

The following screen shots show the NetAdvantage for JSF components integrated within RAD and NetBeans.

3.2.3.1 New Support for IBM RAD and NetBeans IDEs

NetAdvantage for JSF

102 NetAdvantage for JSF

NetAdvantage for JSF

103 NetAdvantage for JSF

Related Topic

IDE Support (Section 1.3)

NetAdvantage for JSF

104 NetAdvantage for JSF

Explore the new features that were added to the WebGrid™ component in the 2007 Volume 2 release by
clicking the links below:

 WebGrid Columns Can Be Resized (Section 3.2.3.2.1)

 WebGrid Now Supports Vertical Scroll Bars (Section 3.2.3.2.2)

3.2.3.2 WebGrid 2007.2

NetAdvantage for JSF

105 NetAdvantage for JSF

In the 2007 Volume 2 release, you can now allow columns to be resized. With this new feature the end user can
shrink or expand the columns of a grid, allowing them to have more control over the grid layout.

The following screen shot shows a grid with the Resizing Columns feature enabled.

Related Topic

Resizable Columns (Section 4.7.3.3.3)

3.2.3.2.1 WebGrid Columns Can Be Resized

NetAdvantage for JSF

106 NetAdvantage for JSF

Now in the 2007 Volume 2 release, not only can you apply horizontal scroll bars to your grid, but you can also
apply vertical scroll bars. With both horizontal and vertical scroll bars, large amounts of data can be displayed
in a tight and tidy grid.

When the contents of your grid exceeds the specified height, a vertical scroll bar is automatically displayed,
allowing your end users to scroll through the data. While scrolling through the grid, the header and footer
remain stationary and do not scroll out of view.

The following screen shot shows a grid with the Vertical Scroll Bars feature enabled.

Related Topic

Vertical Scroll Bars (Section 4.7.3.3.6)

3.2.3.2.2 WebGrid Now Supports Vertical Scroll Bars

NetAdvantage for JSF

107 NetAdvantage for JSF

The NetAdvantage for JSF 2007 Volume 1 release includes a number of powerful new features and
functionalities to allow you to take even more advantage of our JSF components.

Below is a list of the components that we added for the 2007 Volume 1 release. Click the links to see a list of
the features being offered.

 WebChart (Section 4.5)

 WebGrid (Section 3.2.4.2)

3.2.4 What's New in 2007 Volume 1

NetAdvantage for JSF

108 NetAdvantage for JSF

Explore the new WebChart™ control that was added to our suite of controls and components in the 2007
Volume 1 release by clicking the link below.

 New WebChart Component (Section 3.2.4.1.1)

3.2.4.1 WebChart 2007.1

NetAdvantage for JSF

109 NetAdvantage for JSF

WebChart™ is a new and powerful component that has been added to the 2007 Volume 1 release. The WebChart
component allows you to display information visually in the form of tables or graphs.

WebChart allows you to easily create different charts such as pie, doughnut, column and bar. Also specialized
charts such as OHLC and candlestick charts can be created. The charts can be displayed in 2D or 3D mode and
can also be grouped into different groupings such as stack, stack100, overlay or cluster.

The WebChart component allows you to combine different charts and series together to let the user quickly see
the data represented on different charts at once.

ToolTips can be implemented to allow the user interact with the WebChart. Legends, labels and axes can be
customized for WebChart.

Related Topic

WebChart (Section 4.5)

3.2.4.1.1 New WebChart Component

NetAdvantage for JSF

110 NetAdvantage for JSF

Explore the powerful new WebGrid™ feature that was added in the 2007 Volume 1 release:

 Data from WebGrid Can Now Be Exported to a CSV File (Section 3.2.4.2.1)

3.2.4.2 WebGrid 2007.1

NetAdvantage for JSF

111 NetAdvantage for JSF

In the 2007 Volume 1 release, we enhanced the WebGrid™ components, so that you can enable your end users
to export data to a Comma Separated Value (CSV) file.

The export method allows the following type of data to be exported to CSV file:

 data on the current page

 data in the selected rows

Related Topic

Exporting Data to a CSV File (Section 4.7.3.1.4)

3.2.4.2.1 Data from WebGrid Can Now Be Exported to a CSV File

NetAdvantage for JSF

112 NetAdvantage for JSF

The NetAdvantage for JSF 2006 Volume 2 release includes a number of powerful new features and
functionalities to allow you to take even more advantage of our NetAdvantage for JSF components.

Click the links below to gain access to information describing the new features being offered in the 2006
Volume 2 release:

 Facelet and Portal Support (Section 3.2.5.1)

 WebGrid (Section 3.2.5.2)

3.2.5 What's New in 2006 Volume 2

NetAdvantage for JSF

113 NetAdvantage for JSF

We are proud to offer new support for facelets and portals in the 2006 Volume 2 release. Click the link below
for details.

 JSF Components Now Support Facelets and Portals (Section 3.2.5.1.1)

3.2.5.1 Facelet and Portal Support 2006.2

NetAdvantage for JSF

114 NetAdvantage for JSF

In response to various requests from customers for facelet and portal support, we have enhanced the
NetAdvantage for JSF product so that our components can now work in facelets and portals.

Facelet Support
Starting in the 2006 Volume 2 release, the NetAdvantage for JSF components can be used within facelets.
Facelets provides a highly performant, JSF-centric view technology that can be used in place of JSP. Anyone
who has created a JSP page will be able to do the same with Facelets. Facelets provides a light-weight
templating framework that lets you create JSF views easily using HTML-style templates. Facelets can be run on
any Java EE application server with the addition of a few JAR files.

To use our components in a facelets container, you need the following tag library:
netAdvantage.facelet.taglib.xml. This tag library is located in the infragistics-netadvantage.jar file.

Portal Support
In addition to support for facelets, NetAdvantage for JSF has added support for portlets. Portlets are web
components--like servlets--specifically designed to be aggregated in the context of a composite page.

Starting in 2006 Volume 2, you can use the full suite of NetAdvantage for JSF components in a portlet that runs
on a portal server. This support allows you to create JSP pages with our components, and run the application as
a portlet on a portal server.

The following is a list of the portal servers that NetAdvantage for JSF supports:

 JBoss Portal

 WebLogic

 WebSphere

Related Topics

Facelet Support (Section 1.7.6)

Portlet Support (Section 1.4)

3.2.5.1.1 JSF Components Now Support Facelets and Portals

NetAdvantage for JSF

115 NetAdvantage for JSF

Explore the new features of the WebGrid™ components that were added in the 2006 Volume 2 release:

 Columns and Headers Can Now Be Fixed (Section 3.2.5.2.1)

 Display Grid Data in a Hierarchical View (Section 3.2.5.2.2)

 New Event Triggered When Row is Selected (Section 3.2.5.2.3)

3.2.5.2 WebGrid 2006.2

NetAdvantage for JSF

116 NetAdvantage for JSF

Starting in the 2006 Volume 2 release, the WebGrid™ components now have the ability to lock a specified
number of the left-most columns. This allows the grid to be split into two sections. These left-most columns
will be locked and won't scroll, allowing end users to horizontally scroll the columns on the right-hand side so
they can keep the important data in the grid visible at all times.

The number of columns that are fixed is controlled by the fixedColumnCount parameter of the grid. The
GridView class also has a setter and getter for this parameter.

Related Topic

Fixed Columns (Section 4.7.3.3.2)

3.2.5.2.1 Columns and Headers Can Now Be Fixed

NetAdvantage for JSF

117 NetAdvantage for JSF

Starting in the 2006 Volume 2 release, you can now display the data of your grid in a hierarchical view so that
the grid is nested inside the rows of the grid. With this feature, end users can easily navigate your hierarchical
data by expanding and collapsing the rows.

As part of this Hierarchical Grid feature, a new facet tag was added to the grid called masterDetail. The
contents of this facet is a template of the nested grid. Adding nested grids involves adding this new facet to the
column where you want the nested grid to appear. In most cases, this will be the first column, but there is no
restriction.

The following API changes have also been made to support this new feature:

 Column.getMasterDetail() -- Getter used to return masterDetail facet defined for columns.

 Column.setMasterDetail(UIComponent masterDetail) -- Setter used to create a masterDetail facet defined
for columns.

 Row.isExpanded() -- Returns a boolean, specifying whether a row is expanded or collapsed.

 Row.setExpanded(boolean expanded) -- Programmatically expands or collapses a row.

Related Topics

Bind a Hierarchical WebGrid to Data (Section 4.7.3.1.2)

3.2.5.2.2 Display Grid Data in a Hierarchical View

NetAdvantage for JSF

118 NetAdvantage for JSF

Starting in 2006 Volume 2, you can take advantage of a new event that has been added to the WebGrid™
components that can be triggered when the end user selects/un-selects a row selection checkbox in the grid.

To allow for the row selection event to be triggered, we've enhanced the WebGrid components as follows:

 Added the SelectedRowsChangeEvent and SelectedRowsChangeListener classes

 Added the following methods to the grid class to get/set a row selection listener:

 grid. getSelectedRowsChangeListener()

 grid. setSelectedRowsChangeListener (MethodBinding md);

 Added a method to retrieve the list of all registered RowSelectionListeners:

 SelectedRowsChangeListener[] grid. getSelectedRowsChangeListeners()

 Added a tag to the grid component. This tag is used to specify the method is called when row selection
checkbox is selected or un-selected.

 selectedRowsChangeListener

Related Topic

Row Selection (Section 4.7.3.5.7)

3.2.5.2.3 New Event Triggered When Row is Selected

NetAdvantage for JSF

119 NetAdvantage for JSF

This section contains information about the NetAdvantage for JSF components. This information provides you
with a better understanding of the capabilities of the components.

 Accessibility Overview (Section 4.1)

 AJAX Functionality using our Smart-Refresh Technology (on-line documentation)

 Binding JSF Components to Data (Section 4.2)

 Getting Started with the Client Side Object Model (Section 4.3)

 WebBar (Section 4.4)

 WebChart (Section 4.5)

 WebDialogWindow (Section 4.6)

 WebGrid (Section 4.7)

 WebInput (Section 4.8)

 WebMenu (Section 4.9)

 WebTab (Section 4.10)

 WebTree (Section 4.11)

4 Components

NetAdvantage for JSF

120 NetAdvantage for JSF

Section 508 (http://www.section508.gov/) of the Rehabilitation Act was amended in 1998 by Congress to
require all Federal agencies to make their electronic and information technology accessible to people with
disabilities. Since then, Section 508 compliance has not only been a requirement in government agencies, but
it’s also important when providing software solutions and designing Web pages.

Section 1194.21 of the Section 508 law specifically targets software applications and operating systems, and
contain a set of 16 rules to follow. In order to enable you to keep your Web applications and Web sites
compatible with these rules with minimal effort on your part, we've ensured that our JSF components are
compliant with the accessibility rules.

The matrix below provides a high-level outline of the accessibility support provided by our visual controls (and
related components). To learn more about an individual component’s accessibility compliance, click the name
of the component. You can also visit the Section 508 page
(http://www.infragistics.com/learn/accessibility.aspx) on our Web site for more information on our
commitment to accessibility.

4.1.1 Legend

 -- The component is completely accessible in this particular area.

 'white space' -- this particular rule does not apply to the component.

 -- The component is not entirely accessible unless you perform some sort of action.

4.1 Accessibility Overview

Component
Section 508 Compliance

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

WebBar (Section 4.4.3)

WebChart (Section 4.5.5)

WebDialogWindow (Section 4.6.4)

WebGrid (Section 4.7.4)

WebInput (Section 4.8.2)

WebMenu (Section 4.9.4)

WebTab (Section 4.10.3)

WebTree (Section 4.11.2)

NetAdvantage for JSF

121 NetAdvantage for JSF

To display data using JSF components, you can bind the components' tag attribute values, or the components
themselves, to a data source.

The way in which you bind the NetAdvantage for JSF components to data will depend on the component type,
as well as how you want the data to be displayed/updated:

 Value Binding -- With this type of binding, you bind the value of a component's tag attribute to the
property of a managed bean using expressions of the JSF expression language (EL). Value binding is useful
when you want to bind attributes or properties to dynamically calculated results. You may also want to use
value binding to bind a component to the managed bean; this would allow you to programmatically access
the component in the managed bean in the future.

 Method Binding -- With this type of binding, you bind specific tag attributes (e.g., listeners) of a
component to a method of a managed bean using expressions of the JSF EL. Unlike value binding which is
useful for dynamic retrieval and setting of properties, method binding is useful when you want an arbitrary
method (that handles navigation, validation, or event handling) to be called.

Note: For details on JSF component binding, please refer to chapter 5 of Sun's JavaServer Faces
Specification, version 1.1, which is available for download at Sun's JavaServer Faces Technology
Download (http://java.sun.com/javaee/javaserverfaces/download.html) Web site.

The sample code below demonstrates how you can bind the WebTree component to data using dataSource
property binding.

In JSP:

<ig:treeView
 dataSource="#{shared_companyDAO.companies}"
 pagesize="10"
 style="background-color: #f0f0f0; border: 1px solid silver;
 height: 200; width: 300">
 <%-- one node for each company --%>
 <ig:treeNode value="#{DATA_ROW.companyName}">
 <%-- node "customers" --%>
 <ig:treeNode dataSource="#{DATA_ROW.customers}" value="customers">
 <%-- one node for each customer --%>
 <ig:treeNode value="#{DATA_ROW.customerName}" />
 </ig:treeNode>
 <%-- node "employees" --%>
 <ig:treeNode dataSource="#{DATA_ROW.employees}" value="employees">
 <%-- one node for each employee --%>
 <ig:treeNode value="#{DATA_ROW.employeeName}" />
 </ig:treeNode>
 </ig:treeNode>
</ig:treeView>

4.2 Binding JSF Components to Data

NetAdvantage for JSF

122 NetAdvantage for JSF

A JavaScript-based object model, also known as a Client-Side Object Model (CSOM), is available on the client
for each of our NetAdvantage for JSF components. This CSOM lets you build rich, responsive, Web applications
which keep post-backs to a minimum.

Each and every component has a new tag in the form <ig:nnnnClientEvents> where nnnn is the name of the
component and you can assign your event listeners declaratively through these Client Event settings.

The following code demonstrates how to use client events for the WebDateChooser component.

In JSP:

<ig:dateChooser>
 <ig:dateChooserClientEvents popupOpening="DateChooserOpening" popupClosing="DateChooserClosing"/>
</ig:dateChooser>

DateChooserOpening and DateChooserClosing are Javascript functions defined elsewhere on your page.

Usage

The NetAdvantage for JSF CSOM events typically have two event listeners exposed per event. The naming
convention is that the events have "ing" and "ed" endings to their names. The event listener with "ing" ending is
called before the event is handled by our JSF components, allowing you to perform your own processing or even
cancelling the event. The event listeners with "ed" ending is called after the event has been processed by the
JSF component.

The following table lists each of the events associated with each NetAdvantage for JSF component.

4.3 Getting Started with the Client Side Object Model

Component Event

<ig:barClientEvents> groupExpanding

groupExpanded

groupCollapsing

groupCollapsed

<ig:chartClientEvents> dataPointClicked

<ig:checkboxClientEvents> valueChanging

valueChanged

onFocus

onBlur

<ig:checkboxClientEvents> selectionChanging

selectionChanged

onFocus

onBlur

<ig:dateChooserClientEvents> popupOpening

popupOpened

onChange

onFocus

onBlur

<ig:dropDownClientEvents> autoFilterStarting

NetAdvantage for JSF

123 NetAdvantage for JSF

autoFilterStarted

buttonMouseDown

buttonMouseOut

buttonMouseOver

valueChanging

valueChanged

focus

blue

keyDown

selectedIndexChanging

selectedIndexChanged

dropDownClosing

dropDownClosed

dropDownOpening

dropDownOpened

itemsRequested

blurItem

<ig:dropDownListClientEvents> onChange

onFocus

onBlur

<ig:dwClientEvents> ajaxRequesting

ajaxResponseCompleted

<ig:gridClientEvents> cellClicked

columnSorting

columnSorted

rowExpanding

rowExpanded

pageChanging

pageChanged

rowSelecting

rowSelected

cellUpdating

cellUpdated

columnMoving

columnMoved

columnFixing

columnFixed

ajaxRequesting

ajaxResponseCompleted

<ig:inputCurrencyClientEvents> onChange

onSelect

onFocus

onBlur

NetAdvantage for JSF

124 NetAdvantage for JSF

<ig:inputDecimalClientEvents> onChange

onSelect

onFocus

onBlur

<ig:inputEmailClientEvents> onChange

onSelect

onFocus

onBlur

<ig:inputPercentClientEvents> onChange

onSelect

onFocus

onBlur

<ig:inputRegularExpressionClientEvents> onChange

onSelect

onFocus

onBlur

<ig:menuClientEvents> itemClicked

<ig:radioButtonClientEvents> valueChanging

valueChanged

onFocus

onBlur

<ig:radioButtonListClientEvents> selectedItemChanging

selectedItemChanged

onFocus

onBlur

<ig:tabClientEvents> selectedTabChanging

selectedTabChanged

ajaxRequesting

ajaxResponseCompleted

<ig:treeClientEvents> nodeClicked

nodeExpanding

nodeExpanded

nodeCollapsing

nodeCollapsed

pageChanging

pageChanged

ajaxRequesting

ajaxResponseCompleted

NetAdvantage for JSF

125 NetAdvantage for JSF

Click the links below to find information specific to the WebBar™ components.

 About the WebBar Components (Section 4.4.1) -- Provides information about the key functionalities of
the WebBar components.

 Set the Expanded Icon (Section 4.4.2) -- Allows you to display the state of WebBar to your end users with
the use of icons.

 WebBar Accessibility Compliance (Section 4.4.3) -- This topic outlines the way in which WebBar meets
the requirements of the Section 508 standards. This accessibility compliance allows your end users,
specifically those with disabilities, to be able to access and use your Web application built using the
WebBar control.

 API Reference Guide (on-line documentation) -- The Application Programming Interface (API) Reference
Guide is the foundation for all our NetAdvantage for JSF components and offers a definitive listing of all
the NetAdvantage for JSF classes and interfaces.

4.4 WebBar

NetAdvantage for JSF

126 NetAdvantage for JSF

The WebBar™ component group consists of the Sidebar and Stackbar components, and are primarily used for for
navigation.

The Sidebar component can contain a set of SidebarGroup components, and the Stackbar component can
contain a set of StackbarGroup components. The SidebarGroup and StackbarGroup components are simple
containers that can contain any type of component. A SidebarGroup or StackbarGroup can be expanded or
collapsed by clicking on the group’s name.

The following two screenshots show the WebBar's Sidebar and Stackbar components.

4.4.1 About the WebBar Components

NetAdvantage for JSF

127 NetAdvantage for JSF

NetAdvantage for JSF

128 NetAdvantage for JSF

You can set two different icon attributes on your stack bar to display the state of the bar to your end user.

The iconURL attribute specifies the icon to be displayed to your end user when the stack bar is collapsed.

The expandedIconUrl specifies the icon to be displayed to your end user when the stack bar is expanded.

The following code example demonstrates how to set these icons.

In JSP:

<ig:stackbarGroup text="Stackbar Group Title"
 iconURL = "/img/collapseIcon"
 expandedIconUrl = "/img/expandedIcon">

4.4.2 Set the Expanded Icon

NetAdvantage for JSF

129 NetAdvantage for JSF

All of our JSF components comply with section 508, subpart 1194.21 of the Rehabilitation Act of 1973. Below is
a table containing the rules of subpart 1194.21 and how we comply with each rule.

4.4.3 WebBar Accessibility Compliance

Rules How We Comply with the Rules

(a) Infragistics' components include keyboard support for tabbing into controls and navigating within them. All
NetAdvantage for JSF components that accept focus provide keyboard support.

(b) Infragistics NetAdvantage for JSF enables individuals to customize their desktop elements, including resizing and
rearranging controls and choosing color, size and format options.

(c) NetAdvantage for JSF provides a well-defined on-screen indication of the current focus that moves among
interactive interface elements as the input focus changes with minor exceptions. The components provide hover
styles and selection styles that highlight the position of the focus on the form or page. Focus rectangles are also
used along with the system caret to indicate focus location within the elements.

(d) Infragistics NetAdvantage for JSF provides sufficient information about user interface elements and program
elements represented by images are available in text in virtually all cases.

(g) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

(i) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

(j) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

(k) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

NetAdvantage for JSF

130 NetAdvantage for JSF

Click the links below to find information specific to the WebChart™ components.

 Understanding WebChart (Section 4.5.1) -- Contains topics that will help you understand the WebChart
component.

 Chart Types (Section 4.5.2) -- Describes the different chart types available.

 Group Types (Section 4.5.3) -- Describes the different group types available.

 Using WebChart (Section 4.5.4) -- Describes how to use the different features of WebChart.

 WebChart Accessibility Compliance (Section 4.5.5) -- This topic outlines the way in which WebChart
meets the requirements of the Section 508 standards. This accessibility compliance allows your end users,
specifically those with disabilities, to be able to access and use your Web application built using the
WebChart control.

 API Reference Guide (on-line documentation) -- The Application Programming Interface (API) Reference
Guide is the foundation for all our NetAdvantage for JSF components and offers a definitive listing of all
the NetAdvantage for JSF classes and interfaces.

4.5 WebChart

NetAdvantage for JSF

131 NetAdvantage for JSF

This is a great place for you to get an introduction to the WebChart™ component, and its key features and
functionalities. The topics in this section will give you a better idea of why you would want to use the
WebChart component in your applications.

 About WebChart (Section 4.5.1.1) -- Introduces you to the WebChart component.

 WebChart Gallery (Section 4.5.1.2) -- Displays a gallery of the types of charts that can be created.

 Feature Overview (Section 4.5.1.3) -- A list of some of the key features in WebChart

4.5.1 Understanding WebChart

NetAdvantage for JSF

132 NetAdvantage for JSF

Charting is used to visually display information, presenting data in the form of graphs or tables. WebChart™ is
the JSF implementation of the charting component. The WebChart component provides a set of charts and a
framework for creating charting applications, or adding charting capability to existing data or information-
driven applications.

WebChart allows developers to set up different types of charts such as Pie (Section 4.5.2.9), Doughnut
(Section 4.5.2.6), Column (Section 4.5.2.5) and Area (Section 4.5.2.3) Charts. 2D and 3D modes are
available for the most common chart types. For more demanding Web applications, you can combine several
charts together, customize the chart legend, and capture user interactions with the chart through its
comprehensive Event Model.

Additionally charts can also be grouped into different group types that are available such as Stack (Section
4.5.3.2), Stack100 (Section 4.5.3.3), Overlay (Section 4.5.3.4) and Cluster (Section 4.5.3.1).

See the Webchart Gallery (Section 4.5.1.2) for a example of the types of charts that can be created.

4.5.1.1 About WebChart

NetAdvantage for JSF

133 NetAdvantage for JSF

There are many different types of WebCharts™ that can be created using different attributes within the
<ig:chart> tag.

WebCharts can be created using different combinations of chartType and groupType. They can be 2D or 3D, or
they can be composite charts.

Click on the following links to see the more popular 2D or 3D WebChart combinations.

 WebChart 2D Gallery (Section 4.5.1.2.1)

 WebChart 3D Gallery (Section 4.5.1.2.2)

4.5.1.2 WebChart Gallery

NetAdvantage for JSF

134 NetAdvantage for JSF

The screen shots below are some of the more popular 2D WebChart combinations.

(Images\Grouping_Lines_Chart_Named_2D.png)

4.5.1.2.1 WebChart 2D Gallery

NetAdvantage for JSF

135 NetAdvantage for JSF

(Images\Overlay_Column_Chart_Named_2D.png)

(Images\Stack_100_Area_Chart_Named_2D.png)
(Images\Stack_100_Line_Chart_Named_2D.png)

NetAdvantage for JSF

136 NetAdvantage for JSF

The screen shots below are some of the more popular 3D WebChart combinations.

 (Images\Cluster_Column_Chart_Named_3D.png)

 (Images\Column_Sizes_Named_3D.png)

 (Images\Doughnut_Chart_Named_3D.png)

(Images\Overlay_Pie_Area_Chart_Named_3D.png)

4.5.1.2.2 WebChart 3D Gallery

NetAdvantage for JSF

137 NetAdvantage for JSF

 (Images\Overlay_Column_Chart_Named_3D.png)

 (Images\Stack_100_Area_Chart_Named_3D.png)

NetAdvantage for JSF

138 NetAdvantage for JSF

 (Images\Stack_100_Line_Chart_Named_3D.png)

NetAdvantage for JSF

139 NetAdvantage for JSF

This topic offers you information about the various features available in the release of the NetAdvantage for
JSF WebChart.

Over 20 Chart Types - There are over 20 chart types available ranging from the routine (column charts, pie
charts) to the more sophisticated (candlestick charts, stack charts, cluster charts). For a detailed listing of the
available charts, see the Chart Types (Section 4.5.2) section.

AJAX-enabled - Like other NetAdvantage for JSF components, WebChart is AJAX-enabled to allow you to
perform partial refreshes of page content in response to user interaction with the chart.

Series Groups - Combine chart types to meet your requirements by grouping the data series together in ways
such as: overlay, cluster, stack or stack with totals amounting to 100 percent. For more information on chart
group types, see Group Types. (Section 4.5.3)

Data Binding - Data series can come from different data sources, and you can insert values for legends,
markers and tooltips.

Smart Rendering - An intelligent rendering engine switches between the 2D Sun® graphics library, and the 3D
Java™ bindings for OpenGL® (JOGL) API for hardware accelerated 3D graphics when supported.

Fully Customizable Look and Feel - You can easily style your chart using the CSS extensions available. For
more information, see Designing the Look and Feel (Section 5).

4.5.1.3 Feature Overview

NetAdvantage for JSF

140 NetAdvantage for JSF

The WebChart™ component provides both two-dimensional and three-dimensional chart types. Clicking on the
link below will provide you with information to help you understand how to create either a 2D or 3D chart.

 2D Charts (Section 4.5.2.1)

 3D Charts (Section 4.5.2.2)

Below is a full listing of our chart types. Depending on the type of chart that you want to use to display
graphical data in your application, click the corresponding link so you can access key information about it.

 Area Chart (Section 4.5.2.3)

 Candlestick Chart (Section 4.5.2.4)

 Column Chart (Section 4.5.2.5)

 Doughnut Chart (Section 4.5.2.6)

 Line Chart (Section 4.5.2.7)

 OHLC Chart (Section 4.5.2.8)

 Pie Chart (Section 4.5.2.9)

 RangeArea Chart (Section 4.5.2.10)

 RangeColumn Chart (Section 4.5.2.11)

 Treemap Chart (Section 4.5.2.12)

4.5.2 Chart Types

NetAdvantage for JSF

141 NetAdvantage for JSF

Two-dimensional and three-dimensional charts can be created using the WebChart™ component. It is very easy
to create both 2D and 3D WebCharts. Defining the "projectionType" attribute renders the WebChart either as a
2D WebChart or a 3D WebChart.

2D Charts
By setting the "projectionType" attribute to "2D" defines the chart as a 2D WebChart. No other attributes need
to be changed.

To create a 2D chart:

1. Set the <projectionType> attribute of the chart tag:
In JSP:

<ig:chart id="chart"
 chartType="Pie" groupType="Overlay"
 projectionType="2d"
 style="width: 420; height: 320"
 dataPointListener="#{webchart_chartPage.processDataPoint}">

To create a 2D chart in IBM® Rational® Application Developer for WebSphere Software® 7.0:

1. In Design view, select the chart component on your page.

2. In the Properties tab, select ig:chart.

3. In the Projection Type drop down list, select 2d.

4.5.2.1 2D Charts

NetAdvantage for JSF

142 NetAdvantage for JSF

NetAdvantage for JSF

143 NetAdvantage for JSF

Two-dimensional and three-dimensional charts can be created using the WebChart™ component. It is very easy
to create both 2D and 3D WebCharts. Defining the "projectionType" attribute renders the WebChart either as a
2D WebChart or a 3D WebChart.

3D Charts
To make a 3D chart, you simply need to change the projectionType attribute to "3D" and add a rotation and
perspective attribute.

The rotation attribute is used to define the x, y and z rotation of the chart in the 3D space. Although the
rotation is not required, if it is not specified the rotation will default to 0,0,0. This will effectively show the 3D
chart in a 2D perspective.

The perspective attribute is used to provide a better representation of a 3D chart on a 2D surface. The lower
the value, the more of a fisheye effect the chart will have. The range of the value is between 0 and 1.

To create a 3D chart in IBM® Rational® Application Developer for WebSphere Software® 7.0:

1. In Design view, select the chart component on your page.

2. In the Properties tab, select ig:chart.

3. Set the following properties:

 Projection Type -- 3d

 Rotation -- 30, -40, 0

 Perspective -- 0.6

4.5.2.2 3D Charts

NetAdvantage for JSF

144 NetAdvantage for JSF

NetAdvantage for JSF

145 NetAdvantage for JSF

An area chart emphasizes the amount of change over a period of time or compares multiple items. An area
chart also shows the relationship of parts to a whole by displaying the total of the plotted values.

An area chart displays series as a set of points connected by a line with the area below the line filled in. Values
are represented on the y-axis and categories are displayed on the x-axis.

An area chart visually displays a change in values by filling in the portion of the graph beneath the line
connecting various data points.

This topic will demonstrate how to create an area chart, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To create an area chart using code:

1. Open the <ig:chart> tag and set the following attributes, as shown in the JSP code below:

 id -- chart

 chartType -- Area

 groupType -- Stack100

 projectionType -- 2d

 style -- width: 420; height: 320

 dataPointListener -- #{webchart_chartPage.processDataPoint}

In JSP:

<ig:chart
 id="chart"
 chartType="Area"
 groupType="Stack100"

4.5.2.3 Area Chart

NetAdvantage for JSF

146 NetAdvantage for JSF

 projectionType="2d"
 style="width: 420; height: 320"
 dataPointListener="#{webchart_chartPage.processDataPoint}">

2. Set the caption of your chart to "2d Stack 100 Area Chart", as shown in the JSP code below.
In JSP:

<ig:caption
 position="top"
 caption="2d Stack100 Area Chart"/>

3. Set the legend of your chart with the following attributes as shown in the JSP code below:

 position -- right

 autoItems -- true

In JSP:

<ig:legend position="right"
 autoItems="true" />

4. Set the x-axis of your chart with the following attributes, as shown in the JSP code below:

 type -- x

 autoRange -- true

 autoRangeSnap -- false

 autoTickMarks -- false

 autoGridLines -- true

In JSP:

<ig:axis type="x"
 autoRange="true"
 autoRangeSnap="false"
 autoTickMarks="false"
 autoGridLines="true">

5. Set the tick marks of your chart to display the months of the year, as shown in the JSP code below:
In JSP:

<ig:tickMark value="0" tickCaption="Jan" />
<ig:tickMark value="1" tickCaption="Feb" />
<ig:tickMark value="2" tickCaption="Mar" />
<ig:tickMark value="3" tickCaption="Apr" />
<ig:tickMark value="4" tickCaption="May" />
<ig:tickMark value="5" tickCaption="Jun" />
<ig:tickMark value="6" tickCaption="Jul" />
<ig:tickMark value="7" tickCaption="Aug" />
<ig:tickMark value="8" tickCaption="Sep" />
<ig:tickMark value="9" tickCaption="Oct" />
<ig:tickMark value="10" tickCaption="Nov" />
<ig:tickMark value="11" tickCaption="Dec" />

6. Close the <ig:axis> tag, as shown in the JSP code below.
In JSP:

NetAdvantage for JSF

147 NetAdvantage for JSF

</ig:axis>

7. Set the y-axis of your chart with the following attributes, as shown in the JSP code below:

 type -- y

 autoRange -- true

 autoRangeSnap -- true

 autoGridLines -- true

In JSP:

<ig:axis type="y"
 autoRange="true"
 autoRangeSnap="true"
 autoTickMarks="true"
 autoGridLines="true"/>

8. Set the series of your chart as shown in the JSP code below:
In JSP:

<ig:series
 legendCaption="#{webchart_numbersSource.name0}"
 dataMapping="value: column0; tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse0}" />

<ig:series
 legendCaption="#{webchart_numbersSource.name1}"
 dataMapping="value: column0; tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse1}" />

<ig:series
 legendCaption="#{webchart_numbersSource.name2}"
 dataMapping="value: column0; tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse2}" />

9. Close the <ig:chart> tag, as shown in the JSP code below.
In JSP:

</ig:chart>

10. Save and run the project.

To create an area chart using RAD:

1. From the palette, drag the Chart component to your page.

2. In the Properties window, select ig:chart.

3. Set the following properties:

 Chart Type -- Area

 Data Point Listener -- #{webchart_chartPage.processDataPoint}

 Group Type -- Stack100

 Id -- chart

NetAdvantage for JSF

148 NetAdvantage for JSF

 Projection Type -- 2d

 Style -- width: 420; height: 320

4. Create other tags in JSP such as <ig:caption>, <ig:legend>, <ig:tickMark> and <ig:series> as they are not
components and are not present in the palette.
In JSP:

<ig:caption position="top" caption="2d Stack100 Area Chart"/>

<ig:legend position="right" autoItems="true" />

<ig:axis type="x" autoRange="true" autoRangeSnap="false"
 autoTickMarks="false" autoGridLines="true">
 <ig:tickMark value="0" tickCaption="Jan" />
 <ig:tickMark value="1" tickCaption="Feb" />
 <ig:tickMark value="2" tickCaption="Mar" />
 <ig:tickMark value="3" tickCaption="Apr" />
 <ig:tickMark value="4" tickCaption="May" />
 <ig:tickMark value="5" tickCaption="Jun" />
 <ig:tickMark value="6" tickCaption="Jul" />
 <ig:tickMark value="7" tickCaption="Aug" />
 <ig:tickMark value="8" tickCaption="Sep" />
 <ig:tickMark value="9" tickCaption="Oct" />
 <ig:tickMark value="10" tickCaption="Nov" />
 <ig:tickMark value="11" tickCaption="Dec" />
</ig:axis>

<ig:axis type="y" autoRange="true"
 autoRangeSnap="true" autoTickMarks="true" autoGridLines="true"/>

<ig:series
 legendCaption="#{webchart_numbersSource.name0}"
 dataMapping="value: column0; tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse0}" />

<ig:series
 legendCaption="#{webchart_numbersSource.name1}"
 dataMapping="value: column0; tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse1}" />

<ig:series

NetAdvantage for JSF

149 NetAdvantage for JSF

 legendCaption="#{webchart_numbersSource.name2}"
 dataMapping="value: column0; tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse2}" />

5. Save and run the project.

NetAdvantage for JSF

150 NetAdvantage for JSF

Candlestick charts are often used to plot stock prices, and show the stock's high, low, open and close prices for
each day.

Candlestick charts consists of visual elements called "Candles". Each candle has a "body" and a "wick".

The benefit of candlestick charts is that they signal indications of market turns earlier than other charts.

The length of the "body" of the candlestick chart indicates the span between a session's opening and closing
value of an investment. If the closing value is lower than the opening value, the body is usually a dark color,
such as black. But if the closing value is higher than the opening value, the body is usually a light color, such as
white.

The lines above and below that body are called the "wicks". The top wick is the highest price during a session
and the bottom wick is the lowest price during a session. Based on the color and the length of the body as well
as the length of the wick, the trend in the market for particular investment can be determined.

For example, a long light-colored candle body indicates the investment's share prices are in an upswing
signifying a buying trend, whereas a long dark-colored candle body indicates the investment's share prices are
in a downswing.

Moving averages provide excellent clues as to whether a particular investment's share prices are moving in the
upward or downward direction. It is calculated as the average of the last n days' prices. As the days progress on
the time-scale, the oldest day is removed and the current day is added for new average calculation. Changes in
trend can be inferred when two moving averages of different periods cross. Charts in these scenarios can have
more than one moving average, and there is flexibility in whether the moving average is to be calculated on
high, low, open or close values of the day.

This topic will demonstrate how to create a candlestick chart, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To create a candlestick chart using code:

1. Open the <ig:chart> tag and set the following attributes, as shown in the JSP code below:

4.5.2.4 Candlestick Chart

NetAdvantage for JSF

151 NetAdvantage for JSF

 id -- chart

 chartType -- Candlestick

 projectionType -- 2d

 style -- width: 420; height: 320

 dataPointListener -- #{webchart_chartPage.processDataPoint}

In JSP:

<ig:chart
 id="chart"
 chartType="Candlestick"
 projectionType="2d"
 style="width: 420; height: 320"
 dataPointListener="#{webchart_chartPage.processDataPoint}">

2. Set the caption of your chart to "2d Candlestick Chart", as shown in the JSP code below.
In JSP:

<ig:caption
 position="top"
 caption="2d Candlestick Chart"/>

3. Set the legend of your chart with the following attributes as shown in the JSP code below:

 position -- right

 autoItems -- true

In JSP:

<ig:legend position="right"
 autoItems="true" />

4. Set the x-axis of your chart with the following attributes, as shown in the JSP code below:

 type -- x

 autoRange -- true

 autoRangeSnap -- false

 autoTickMarks -- false

 autoGridLines -- true

In JSP:

<ig:axis type="x"
 autoRange="true"
 autoRangeSnap="false"
 autoTickMarks="false"
 autoGridLines="true">

5. Set the tick marks of your chart to display the months of the year, as shown in the JSP code below:
In JSP:

<ig:tickMark value="0" tickCaption="Jan" />
<ig:tickMark value="1" tickCaption="Feb" />

NetAdvantage for JSF

152 NetAdvantage for JSF

<ig:tickMark value="2" tickCaption="Mar" />
<ig:tickMark value="3" tickCaption="Apr" />
<ig:tickMark value="4" tickCaption="May" />
<ig:tickMark value="5" tickCaption="Jun" />
<ig:tickMark value="6" tickCaption="Jul" />
<ig:tickMark value="7" tickCaption="Aug" />
<ig:tickMark value="8" tickCaption="Sep" />
<ig:tickMark value="9" tickCaption="Oct" />
<ig:tickMark value="10" tickCaption="Nov" />
<ig:tickMark value="11" tickCaption="Dec" />

6. Close the <ig:axis> tag, as shown in the JSP code below.
In JSP:

</ig:axis>

7. Set the y-axis of your chart with the following attributes, as shown in the JSP code below:

 type -- y

 autoRange -- true

 autoRangeSnap -- true

 autoGridLines -- true

In JSP:

<ig:axis type="y"
 autoRange="true"
 autoRangeSnap="true"
 autoTickMarks="true"
 autoGridLines="true"/>

8. Set the series of your chart as shown in the JSP code below:
In JSP:

<ig:series legendCaption="#{webchart_numbersSource.name0}"
 dataMapping="open: column1;
 high: column2;
 low: column3;
 close: column4;
 tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse0}" />

9. Close the <ig:chart> tag, as shown in the JSP code below.
In JSP:

</ig:chart>

10. Save and run the project.

To create a candlestick chart using RAD:

1. From the palette, drag the Chart component to your page.

2. In the Properties window, select ig:chart.

NetAdvantage for JSF

153 NetAdvantage for JSF

3. Set the following properties:

 Chart Type -- Candlestick

 Data Point Listener -- #{webchart_chartPage.processDataPoint}

 Id -- chart

 Projection Type -- 2d

 Style -- width: 420; height: 320

4. Create other tags in JSP such as <ig:caption>, <ig:legend>, <ig:tickMark> and <ig:series> as they are not
components and are not present in the palette.
In JSP:

<ig:caption position="top" caption="2d Candlestick Chart"/>

<ig:legend position="right" autoItems="true" />

<ig:axis type="x"
 autoRange="true" autoRangeSnap="false"
 autoTickMarks="false" autoGridLines="true" >
 <ig:tickMark value="0" tickCaption="Jan" />
 <ig:tickMark value="1" tickCaption="Feb" />
 <ig:tickMark value="2" tickCaption="Mar" />
 <ig:tickMark value="3" tickCaption="Apr" />
 <ig:tickMark value="4" tickCaption="May" />
 <ig:tickMark value="5" tickCaption="Jun" />
 <ig:tickMark value="6" tickCaption="Jul" />
 <ig:tickMark value="7" tickCaption="Aug" />
 <ig:tickMark value="8" tickCaption="Sep" />
 <ig:tickMark value="9" tickCaption="Oct" />
 <ig:tickMark value="10" tickCaption="Nov" />
 <ig:tickMark value="11" tickCaption="Dec" />
</ig:axis>

<ig:axis type="y"
 autoRange="true" autoRangeSnap="true"
 autoTickMarks="true" autoGridLines="true" />

<ig:series legendCaption="#{webchart_numbersSource.name0}"
 dataMapping="open: column1;
 high: column2;

NetAdvantage for JSF

154 NetAdvantage for JSF

 low: column3;
 close: column4;
 tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse0}" />

5. Save and run the project.

NetAdvantage for JSF

155 NetAdvantage for JSF

A column chart shows the changes in a data series over time or compares multiple items. Types of items are
arranged horizontally and data values are plotted vertically to emphasize variation over time.

This topic will demonstrate how to create a column chart, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To create a column chart using code:

1. Open the <ig:chart> tag and set the following attributes, as shown in the JSP code below:

 id -- chart

 chartType -- Column

 groupType -- Overlay

 projectionType -- 2d

 style -- width: 420; height: 320

 dataPointListener -- #{webchart_chartPage.processDataPoint}

In JSP:

<ig:chart
 id="chart"
 chartType="Column"
 groupType="Overlay"
 projectionType="2d"
 style="width: 420; height: 320"
 dataPointListener="#{webchart_chartPage.processDataPoint}">

2. Set the caption of your chart to "2d Overlay Column Chart", as shown in the JSP code below.

4.5.2.5 Column Chart

NetAdvantage for JSF

156 NetAdvantage for JSF

In JSP:

<ig:caption
 position="top"
 caption="2d Overlay Column Chart"/>

3. Set the legend of your chart with the following attributes as shown in the JSP code below:

 position -- right

 autoItems -- true

In JSP:

<ig:legend position="right"
 autoItems="true" />

4. Set the x-axis of your chart with the following attributes, as shown in the JSP code below:

 type -- x

 autoRange -- true

 autoRangeSnap -- false

 autoTickMarks -- false

 autoGridLines -- true

In JSP:

<ig:axis type="x"
 autoRange="true"
 autoRangeSnap="false"
 autoTickMarks="false"
 autoGridLines="true">

5. Set the tick marks of your chart to display the months of the year, as shown in the JSP code below:
In JSP:

<ig:tickMark value="0" tickCaption="Jan" />
<ig:tickMark value="1" tickCaption="Feb" />
<ig:tickMark value="2" tickCaption="Mar" />
<ig:tickMark value="3" tickCaption="Apr" />
<ig:tickMark value="4" tickCaption="May" />
<ig:tickMark value="5" tickCaption="Jun" />
<ig:tickMark value="6" tickCaption="Jul" />
<ig:tickMark value="7" tickCaption="Aug" />
<ig:tickMark value="8" tickCaption="Sep" />
<ig:tickMark value="9" tickCaption="Oct" />
<ig:tickMark value="10" tickCaption="Nov" />
<ig:tickMark value="11" tickCaption="Dec" />

6. Close the <ig:axis> tag, as shown in the JSP code below.
In JSP:

</ig:axis>

7. Set the y-axis of your chart with the following attributes, as shown in the JSP code below:

NetAdvantage for JSF

157 NetAdvantage for JSF

 type -- y

 autoRange -- true

 autoRangeSnap -- true

 autoGridLines -- true

In JSP:

<ig:axis type="y"
 autoRange="true"
 autoRangeSnap="true"
 autoTickMarks="true"
 autoGridLines="true"/>

8. Set the series of your chart as shown in the JSP code below:
In JSP:

<ig:series legendCaption="#{webchart_numbersSource.name0}"
 dataMapping="value: column0; tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse0}" />

<ig:series legendCaption="#{webchart_numbersSource.name1}"
 dataMapping="value: column0; tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse1}" />

<ig:series legendCaption="#{webchart_numbersSource.name2}"
 dataMapping="value: column0; tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse2}" />

9. Close the <ig:chart> tag, as shown in the JSP code below.
In JSP:

</ig:chart>

10. Save and run the project.

To create a column chart using RAD:

1. From the palette, drag the Chart component to your page.

2. In the Properties window, select ig:chart.

3. Set the following properties:

 Chart Type -- Column

 Data Point Listener -- #{webchart_chartPage.processDataPoint}

 Group Type -- Overlay

 Id -- chart

 Projection Type -- 2d

 Style -- width: 420; height: 320

NetAdvantage for JSF

158 NetAdvantage for JSF

4. Create other tags in JSP such as <ig:caption>, <ig:legend>, <ig:tickMark> and <ig:series> as they are not
components and are not present in the palette.
In JSP:

<ig:caption position="top" caption="2d Overlay Column Chart"/>

<ig:legend position="right" autoItems="true" />

<ig:axis type="x"
 autoRange="true" autoRangeSnap="false"
 autoTickMarks="false" autoGridLines="true" >
 <ig:tickMark value="0" tickCaption="Jan" />
 <ig:tickMark value="1" tickCaption="Feb" />
 <ig:tickMark value="2" tickCaption="Mar" />
 <ig:tickMark value="3" tickCaption="Apr" />
 <ig:tickMark value="4" tickCaption="May" />
 <ig:tickMark value="5" tickCaption="Jun" />
 <ig:tickMark value="6" tickCaption="Jul" />
 <ig:tickMark value="7" tickCaption="Aug" />
 <ig:tickMark value="8" tickCaption="Sep" />
 <ig:tickMark value="9" tickCaption="Oct" />
 <ig:tickMark value="10" tickCaption="Nov" />
 <ig:tickMark value="11" tickCaption="Dec" />
</ig:axis>

<ig:axis type="y"
 autoRange="true" autoRangeSnap="true"
 autoTickMarks="true" autoGridLines="true"/>

<ig:series legendCaption="#{webchart_numbersSource.name0}"
 dataMapping="value: column0; tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse0}" />

<ig:series legendCaption="#{webchart_numbersSource.name1}"
 dataMapping="value: column0; tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse1}" />

<ig:series legendCaption="#{webchart_numbersSource.name2}"
 dataMapping="value: column0; tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse2}" />

NetAdvantage for JSF

159 NetAdvantage for JSF

5. Save and run the project.

NetAdvantage for JSF

160 NetAdvantage for JSF

A doughnut chart is a lot like a pie chart but it can hold multiple series. Like a pie chart, a doughnut chart
shows the size of items that make up a data series proportional to the total of the items in the series. Doughnut
charts display value data as percentages of the whole. Categories are represented by individual slices.

This topic will demonstrate how to create a doughnut chart, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To create a doughnut chart using code:

1. Open the <ig:chart> tag and set the following attributes, as shown in the JSP code below:

 id -- chart

 chartType -- Doughnut

 groupType -- Overlay

 projectionType -- 2d

 style -- width: 420; height: 320

 dataPointListener -- #{webchart_chartPage.processDataPoint}

In JSP:

<ig:chart
 id="chart"
 chartType="Doughnut"
 groupType="Overlay"
 projectionType="2d"
 style="width: 420; height: 320"
 dataPointListener="#{webchart_chartPage.processDataPoint}">

4.5.2.6 Doughnut Chart

NetAdvantage for JSF

161 NetAdvantage for JSF

2. Set the caption of your chart to "2d Overlay Doughnut Chart", as shown in the JSP code below.
In JSP:

<ig:caption
 position="top"
 caption="2d Overlay Doughnut Chart"/>

3. Set the legend of your chart with the following attributes as shown in the JSP code below:

 position -- right

 autoItems -- true

In JSP:

<ig:legend position="right"
 autoItems="true" />

4. Set the series of your chart as shown in the JSP code below:
In JSP:

<ig:series legendCaption="#{webchart_numbersSource.name1}"
 dataMapping="value: column0; tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse1}"/>

<ig:series legendCaption="#{webchart_numbersSource.name2}"
 dataMapping="value: column0; tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse2}" />

5. Close the <ig:chart> tag, as shown in the JSP code below.
In JSP:

</ig:chart>

6. Save and run the project.

To create a doughnut chart using RAD:

1. From the palette, drag the Chart component to your page.

2. In the Properties window, select ig:chart.

3. Set the following properties:

 Chart Type -- Doughnut

 Data Point Listener -- #{webchart_chartPage.processDataPoint}

 Group Type -- Overlay

 Id -- chart

 Projection Type -- 2d

 Style -- width: 420; height: 320

NetAdvantage for JSF

162 NetAdvantage for JSF

4. Create other tags in JSP such as <ig:caption>, <ig:legend>, and <ig:series> as they are not components and
are not present in the palette.
In JSP:

<ig:caption position="top" caption="2d Overlay Doughnut Chart"/>

<ig:legend position="right" autoItems="true" />

<ig:series legendCaption="#{webchart_numbersSource.name1}"
 dataMapping="value: column0; tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse1}"/>

<ig:series legendCaption="#{webchart_numbersSource.name2}"
 dataMapping="value: column0; tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse2}" />

5. Save and run the project.

NetAdvantage for JSF

163 NetAdvantage for JSF

A line chart emphasizes the amount of change over a period of time or compares multiple items. Data points
are plotted in series using evenly-spaced intervals and connected with a line to emphasize the relationships
between the points.

This topic will demonstrate how to create a line chart, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To create a line chart using code:

1. Open the <ig:chart> tag and set the following attributes, as shown in the JSP code below:

 id -- chart

 chartType -- Line

 groupType -- Stack

 projectionType -- 2d

 style -- width: 420; height: 320

 dataPointListener -- #{webchart_chartPage.processDataPoint}

In JSP:

<ig:chart
 id="chart"
 chartType="Line"
 groupType="Stack"
 projectionType="2d"
 style="width: 420; height: 320"
 dataPointListener="#{webchart_chartPage.processDataPoint}">

4.5.2.7 Line Chart

NetAdvantage for JSF

164 NetAdvantage for JSF

2. Set the caption of your chart to "2d Stack Line Chart", as shown in the JSP code below.
In JSP:

<ig:caption
 position="top"
 caption="2d Stack Line Chart"/>

3. Set the legend of your chart with the following attributes as shown in the JSP code below:

 position -- right

 autoItems -- true

In JSP:

<ig:legend position="right"
 autoItems="true" />

4. Set the x-axis of your chart with the following attributes, as shown in the JSP code below:

 type -- x

 autoRange -- true

 autoRangeSnap -- false

 autoTickMarks -- false

 autoGridLines -- true

In JSP:

<ig:axis type="x"
 autoRange="true"
 autoRangeSnap="false"
 autoTickMarks="false"
 autoGridLines="true">

5. Set the tick marks of your chart to display the months of the year, as shown in the JSP code below:
In JSP:

<ig:tickMark value="0" tickCaption="Jan" />
<ig:tickMark value="1" tickCaption="Feb" />
<ig:tickMark value="2" tickCaption="Mar" />
<ig:tickMark value="3" tickCaption="Apr" />
<ig:tickMark value="4" tickCaption="May" />
<ig:tickMark value="5" tickCaption="Jun" />
<ig:tickMark value="6" tickCaption="Jul" />
<ig:tickMark value="7" tickCaption="Aug" />
<ig:tickMark value="8" tickCaption="Sep" />
<ig:tickMark value="9" tickCaption="Oct" />
<ig:tickMark value="10" tickCaption="Nov" />
<ig:tickMark value="11" tickCaption="Dec" />

6. Close the <ig:axis> tag, as shown in the JSP code below.
In JSP:

</ig:axis>

NetAdvantage for JSF

165 NetAdvantage for JSF

7. Set the y-axis of your chart with the following attributes, as shown in the JSP code below:

 type -- y

 autoRange -- true

 autoRangeSnap -- true

 autoGridLines -- true

In JSP:

<ig:axis type="y"
 autoRange="true"
 autoRangeSnap="true"
 autoTickMarks="true"
 autoGridLines="true"/>

8. Set the series of your chart as shown in the JSP code below:
In JSP:

<ig:series markerBulletVisible="true"
 legendCaption="#{webchart_numbersSource.name0}"
 dataMapping="value: column0; tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse0}" />

<ig:series markerBulletVisible="true"
 legendCaption="#{webchart_numbersSource.name1}"
 dataMapping="value: column0; tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse1}" />

<ig:series markerBulletVisible="true"
 legendCaption="#{webchart_numbersSource.name2}"
 dataMapping="value: column0; tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse2}" />

9. Close the <ig:chart> tag, as shown in the JSP code below.
In JSP:

</ig:chart>

10. Save and run the project.

To create a line chart using RAD:

1. From the palette, drag the Chart component to your page.

2. In the Properties window, select ig:chart.

3. Set the following properties:

 Chart Type -- Line

 Data Point Listener -- #{webchart_chartPage.processDataPoint}

 Group Type -- Stack

 Id -- chart

 Projection Type -- 2d

 Style -- width: 420; height: 320

NetAdvantage for JSF

166 NetAdvantage for JSF

4. Create other tags in JSP such as <ig:caption>, <ig:legend>, <ig:axis>, <ig:tickMark> and <ig:series> as they
are not components and are not present in the palette.
In JSP:

<ig:caption position="top" caption="2d Stack Line Chart"/>

<ig:legend position="right" autoItems="true" />

<ig:axis type="x"
 autoRange="true" autoRangeSnap="false"
 autoTickMarks="false" autoGridLines="true" >
 <ig:tickMark value="0" tickCaption="Jan" />
 <ig:tickMark value="1" tickCaption="Feb" />
 <ig:tickMark value="2" tickCaption="Mar" />
 <ig:tickMark value="3" tickCaption="Apr" />
 <ig:tickMark value="4" tickCaption="May" />
 <ig:tickMark value="5" tickCaption="Jun" />
 <ig:tickMark value="6" tickCaption="Jul" />
 <ig:tickMark value="7" tickCaption="Aug" />
 <ig:tickMark value="8" tickCaption="Sep" />
 <ig:tickMark value="9" tickCaption="Oct" />
 <ig:tickMark value="10" tickCaption="Nov" />
 <ig:tickMark value="11" tickCaption="Dec" />
</ig:axis>

<ig:axis type="y"
 autoRange="true" autoRangeSnap="true"
 autoTickMarks="true" autoGridLines="true"/>

<ig:series markerBulletVisible="true"
 legendCaption="#{webchart_numbersSource.name0}"
 dataMapping="value: column0; tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse0}" />

<ig:series markerBulletVisible="true"
 legendCaption="#{webchart_numbersSource.name1}"
 dataMapping="value: column0; tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse1}" />

<ig:series markerBulletVisible="true"
 legendCaption="#{webchart_numbersSource.name2}"

NetAdvantage for JSF

167 NetAdvantage for JSF

 dataMapping="value: column0; tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse2}" />

5. Save and run the project.

NetAdvantage for JSF

168 NetAdvantage for JSF

An Open, High, Low, Close Chart (OHLC Chart) is used for stocks to show the opening, high, low and closing
prices for a stock. They are primarily used by technical analysts to spot trends and view stock movements
particularly on a shorter-term basis.

OHLC charts are often used by analysts to spot trend and view stock movements, particularly on a shorter term
basis.

This topic will demonstrate how to create a OHLC chart, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To create a OHLC chart using code:

1. Open the <ig:chart> tag and set the following attributes, as shown in the JSP code below:

 id -- chart

 chartType -- OHLC

 projectionType -- 2d

 style -- width: 420; height: 320

 dataPointListener -- #{webchart_chartPage.processDataPoint}

In JSP:

<ig:chart
 id="chart"
 chartType="OHLC"
 projectionType="2d"
 style="width: 420; height: 320"
 dataPointListener="#{webchart_chartPage.processDataPoint}">

4.5.2.8 OHLC Chart

NetAdvantage for JSF

169 NetAdvantage for JSF

2. Set the caption of your chart to "2d OHLC Chart", as shown in the JSP code below.
In JSP:

<ig:caption
 position="top"
 caption="2d OHLC Chart"/>

3. Set the legend of your chart with the following attributes as shown in the JSP code below:

 position -- right

 autoItems -- true

In JSP:

<ig:legend position="right"
 autoItems="true" />

4. Set the x-axis of your chart with the following attributes, as shown in the JSP code below:

 type -- x

 autoRange -- true

 autoRangeSnap -- false

 autoTickMarks -- false

 autoGridLines -- true

In JSP:

<ig:axis type="x"
 autoRange="true"
 autoRangeSnap="false"
 autoTickMarks="false"
 autoGridLines="true">

5. Set the tick marks of your chart to display the months of the year, as shown in the JSP code below:
In JSP:

<ig:tickMark value="0" tickCaption="Jan" />
<ig:tickMark value="1" tickCaption="Feb" />
<ig:tickMark value="2" tickCaption="Mar" />
<ig:tickMark value="3" tickCaption="Apr" />
<ig:tickMark value="4" tickCaption="May" />
<ig:tickMark value="5" tickCaption="Jun" />
<ig:tickMark value="6" tickCaption="Jul" />
<ig:tickMark value="7" tickCaption="Aug" />
<ig:tickMark value="8" tickCaption="Sep" />
<ig:tickMark value="9" tickCaption="Oct" />
<ig:tickMark value="10" tickCaption="Nov" />
<ig:tickMark value="11" tickCaption="Dec" />

6. Close the <ig:axis> tag, as shown in the JSP code below.
In JSP:

</ig:axis>

NetAdvantage for JSF

170 NetAdvantage for JSF

7. Set the y-axis of your chart with the following attributes, as shown in the JSP code below:

 type -- y

 autoRange -- true

 autoRangeSnap -- true

 autoGridLines -- true

In JSP:

<ig:axis type="y"
 autoRange="true"
 autoRangeSnap="true"
 autoTickMarks="true"
 autoGridLines="true"/>

8. Set the series of your chart as shown in the JSP code below:
In JSP:

<ig:series legendCaption="#{webchart_numbersSource.name0}"
 dataMapping="open: column1;
 high: column2;
 low: column3;
 close: column4;
 tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse0}" />

9. Close the <ig:chart> tag, as shown in the JSP code below.
In JSP:

</ig:chart>

10. Save and run the project.

To create a OHLC chart using RAD:

1. From the palette, drag the Chart component to your page.

2. In the Properties window, select ig:chart.

3. Set the following properties:

 Chart Type -- OHLC

 Data Point Listener -- #{webchart_chartPage.processDataPoint}

 Id -- chart

 Projection Type -- 2d

 Style -- width: 420; height: 320

NetAdvantage for JSF

171 NetAdvantage for JSF

4. Create other tags in JSP such as <ig:caption>, <ig:legend>, <ig:axis>, <ig:tickMark> and <ig:series> as they
are not components and are not present in the palette.
In JSP:

<ig:caption position="top" caption="2d OHLC Chart"/>

<ig:legend position="right" autoItems="true" />

<ig:axis type="x"
 autoRange="true" autoRangeSnap="false"
 autoTickMarks="false" autoGridLines="true" >
 <ig:tickMark value="0" tickCaption="Jan" />
 <ig:tickMark value="1" tickCaption="Feb" />
 <ig:tickMark value="2" tickCaption="Mar" />
 <ig:tickMark value="3" tickCaption="Apr" />
 <ig:tickMark value="4" tickCaption="May" />
 <ig:tickMark value="5" tickCaption="Jun" />
 <ig:tickMark value="6" tickCaption="Jul" />
 <ig:tickMark value="7" tickCaption="Aug" />
 <ig:tickMark value="8" tickCaption="Sep" />
 <ig:tickMark value="9" tickCaption="Oct" />
 <ig:tickMark value="10" tickCaption="Nov" />
 <ig:tickMark value="11" tickCaption="Dec" />
</ig:axis>

<ig:axis type="y"
 autoRange="true" autoRangeSnap="true"
 autoTickMarks="true" autoGridLines="true" />

<ig:series legendCaption="#{webchart_numbersSource.name0}"
 dataMapping="open: column1;
 high: column2;
 low: column3;
 close: column4;
 tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse0}" />

5. Save and run the project.

NetAdvantage for JSF

172 NetAdvantage for JSF

A pie chart is a circular chart divided into sectors proportional to the percentages of the whole. A pie chart
always shows a single data series, and is useful for determining which items or items in the series are most
significant.

This topic will demonstrate how to create a pie chart, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To create a pie chart using code:

1. Open the <ig:chart> tag and set the following attributes, as shown in the JSP code below:

 id -- chart

 chartType -- Pie

 groupType -- Overlay

 projectionType -- 2d

 style -- width: 420; height: 320

 dataPointListener -- #{webchart_chartPage.processDataPoint}

In JSP:

<ig:chart
 id="chart"
 chartType="Pie"
 groupType="Overlay"
 projectionType="2d"
 style="width: 420; height: 320"
 dataPointListener="#{webchart_chartPage.processDataPoint}">

4.5.2.9 Pie Chart

NetAdvantage for JSF

173 NetAdvantage for JSF

2. Set the caption of your chart to "2d Overlay Pie Chart", as shown in the JSP code below.
In JSP:

<ig:caption
 position="top"
 caption="2d Overlay Pie Chart"/>

3. Set the legend of your chart with the following attributes as shown in the JSP code below:

 position -- right

 autoItems -- true

In JSP:

<ig:legend position="right"
 autoItems="true" />

4. Set the series of your chart as shown in the JSP code below:
In JSP:

<ig:series legendCaption="#{webchart_numbersSource.name1}"
 dataMapping="value: column0; tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse0}"/>

5. Close the <ig:chart> tag, as shown in the JSP code below.
In JSP:

</ig:chart>

6. Save and run the project.

To create a pie chart using RAD:

1. From the palette, drag the Chart component to your page.

2. In the Properties window, select ig:chart.

3. Set the following properties:

 Chart Type -- Pie

 Data Point Listener -- #{webchart_chartPage.processDataPoint}

 Group Type -- Overlay

 Id -- chart

 Projection Type -- 2d

 Style -- width: 420; height: 320

NetAdvantage for JSF

174 NetAdvantage for JSF

4. Create other tags in JSP such as <ig:caption>, <ig:legend>, and <ig:series> as they are not components and
are not present in the palette.
In JSP:

<ig:caption position="top" caption="2d Overlay Pie Chart"/>

<ig:legend position="right" autoItems="true" />

<ig:series legendCaption="#{webchart_numbersSource.name1}"
 dataMapping="value: column0; tooltipCaption: caption"
 dataSource="#{webchart_numbersSource.sparse0}"/>

5. Save and run the project.

NetAdvantage for JSF

175 NetAdvantage for JSF

A range area chart behaves very much like a regular Area Chart, with the exception that both the bottom (low)
and top (high) value of a range are plotted.

This topic will demonstrate how to create a range area chart, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To create a range area chart using code:

1. Open the <ig:chart> tag and set the following attributes, as shown in the JSP code below:

 id -- chart

 chartType -- RangeArea

 groupType -- Cluster

 projectionType -- 2d

 style -- width: 420; height: 320

 dataPointListener -- #{webchart_chartPage.processDataPoint}

In JSP:

<ig:chart
 id="chart"
 chartType="RangeArea"
 groupType="Cluster"
 projectionType="2d"
 style="width: 420; height: 320"
 dataPointListener="#{webchart_chartPage.processDataPoint}">

2. Set the caption of your chart to "2d Cluster RangeArea Chart", as shown in the JSP code below.

4.5.2.10 Range Area Chart

NetAdvantage for JSF

176 NetAdvantage for JSF

In JSP:

<ig:caption
 position="top"
 caption="2d Cluster RangeArea Chart"/>

3. Set the legend of your chart with the following attributes as shown in the JSP code below:

 position -- right

 autoItems -- true

In JSP:

<ig:legend position="right"
 autoItems="true" />

4. Set the x-axis of your chart with the following attributes, as shown in the JSP code below:

 type -- x

 autoRange -- true

 autoRangeSnap -- false

 autoTickMarks -- false

 autoGridLines -- true

In JSP:

<ig:axis type="x"
 autoRange="true"
 autoRangeSnap="false"
 autoTickMarks="false"
 autoGridLines="true">

5. Set the tick marks of your chart to display the months of the year, as shown in the JSP code below:
In JSP:

<ig:tickMark value="0" tickCaption="Jan" />
<ig:tickMark value="1" tickCaption="Feb" />
<ig:tickMark value="2" tickCaption="Mar" />
<ig:tickMark value="3" tickCaption="Apr" />
<ig:tickMark value="4" tickCaption="May" />
<ig:tickMark value="5" tickCaption="Jun" />
<ig:tickMark value="6" tickCaption="Jul" />
<ig:tickMark value="7" tickCaption="Aug" />
<ig:tickMark value="8" tickCaption="Sep" />
<ig:tickMark value="9" tickCaption="Oct" />
<ig:tickMark value="10" tickCaption="Nov" />
<ig:tickMark value="11" tickCaption="Dec" />

6. Close the <ig:axis> tag, as shown in the JSP code below.
In JSP:

</ig:axis>

7. Set the y-axis of your chart with the following attributes, as shown in the JSP code below:

NetAdvantage for JSF

177 NetAdvantage for JSF

 type -- y

 autoRange -- true

 autoRangeSnap -- true

 autoGridLines -- true

In JSP:

<ig:axis type="y"
 autoRange="true"
 autoRangeSnap="true"
 autoTickMarks="true"
 autoGridLines="true"/>

8. Set the series of your chart as shown in the JSP code below:
In JSP:

<ig:series markerBulletVisible="true"
 legendCaption="#{webchart_numbersSource.name0}"
 dataMapping="low: column3; high: column2"
 dataSource="#{webchart_numbersSource.sparse0}" />

<ig:series markerBulletVisible="true"
 legendCaption="#{webchart_numbersSource.name1}"
 dataMapping="low: column3; high: column2"
 dataSource="#{webchart_numbersSource.sparse1}" />

<ig:series markerBulletVisible="true"
 legendCaption="#{webchart_numbersSource.name2}"
 dataMapping="low: column3; high: column2"
 dataSource="#{webchart_numbersSource.sparse2}" />

9. Close the <ig:chart> tag, as shown in the JSP code below.
In JSP:

</ig:chart>

10. Save and run the project.

To create a range area chart using RAD:

1. From the palette, drag the Chart component to your page.

2. In the Properties window, select ig:chart.

3. Set the following properties:

 Chart Type -- RangeArea

 Data Point Listener -- #{webchart_chartPage.processDataPoint}

 Group Type -- Cluster

 Id -- chart

 Projection Type -- 2d

 Style -- width: 420; height: 320

NetAdvantage for JSF

178 NetAdvantage for JSF

4. Create other tags in JSP such as <ig:caption>, <ig:legend>, <ig:axis>, <ig:tickMark> and <ig:series> as they
are not components and are not present in the palette.
In JSP:

<ig:caption position="top" caption="2d Cluster RangeArea Chart"/>

<ig:legend position="right" autoItems="true" />

<ig:axis type="x"
 autoRange="true" autoRangeSnap="false"
 autoTickMarks="false" autoGridLines="true" >
 <ig:tickMark value="0" tickCaption="Jan" />
 <ig:tickMark value="1" tickCaption="Feb" />
 <ig:tickMark value="2" tickCaption="Mar" />
 <ig:tickMark value="3" tickCaption="Apr" />
 <ig:tickMark value="4" tickCaption="May" />
 <ig:tickMark value="5" tickCaption="Jun" />
 <ig:tickMark value="6" tickCaption="Jul" />
 <ig:tickMark value="7" tickCaption="Aug" />
 <ig:tickMark value="8" tickCaption="Sep" />
 <ig:tickMark value="9" tickCaption="Oct" />
 <ig:tickMark value="10" tickCaption="Nov" />
 <ig:tickMark value="11" tickCaption="Dec" />
</ig:axis>

<ig:axis type="y"
 autoRange="true" autoRangeSnap="true"
 autoTickMarks="true" autoGridLines="true"/>

<ig:series markerBulletVisible="true"
 legendCaption="#{webchart_numbersSource.name0}"
 dataMapping="low: column3; high: column2"
 dataSource="#{webchart_numbersSource.sparse0}" />

<ig:series markerBulletVisible="true"
 legendCaption="#{webchart_numbersSource.name1}"
 dataMapping="low: column3; high: column2"
 dataSource="#{webchart_numbersSource.sparse1}" />

<ig:series markerBulletVisible="true"
 legendCaption="#{webchart_numbersSource.name2}"

NetAdvantage for JSF

179 NetAdvantage for JSF

 dataMapping="low: column3; high: column2"
 dataSource="#{webchart_numbersSource.sparse2}" />

5. Save and run the project.

NetAdvantage for JSF

180 NetAdvantage for JSF

A range column chart behaves very much like a regular column chart, with the exception that both the bottom
(low) and top (high) value of a range are plotted by "floating" the data point's column.

This topic will demonstrate how to create a range column chart, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To create a range column chart using code:

1. Open the <ig:chart> tag and set the following attributes, as shown in the JSP code below:

 id -- chart

 chartType -- RangeColumn

 groupType -- Overlay

 projectionType -- 2d

 style -- width: 420; height: 320

 dataPointListener -- #{webchart_chartPage.processDataPoint}

In JSP:

<ig:chart
 id="chart"
 chartType="RangeColumn"
 groupType="Overlay"
 projectionType="2d"
 style="width: 420; height: 320"
 dataPointListener="#{webchart_chartPage.processDataPoint}">

2. Set the caption of your chart to "2d Overlay RangeColumn Chart", as shown in the JSP code below.

4.5.2.11 Range Column Chart

NetAdvantage for JSF

181 NetAdvantage for JSF

In JSP:

<ig:caption
 position="top"
 caption="2d Overlay RangeColumn Chart"/>

3. Set the legend of your chart with the following attributes as shown in the JSP code below:

 position -- right

 autoItems -- true

In JSP:

<ig:legend position="right"
 autoItems="true" />

4. Set the x-axis of your chart with the following attributes, as shown in the JSP code below:

 type -- x

 autoRange -- true

 autoRangeSnap -- false

 autoTickMarks -- false

 autoGridLines -- true

In JSP:

<ig:axis type="x"
 autoRange="true"
 autoRangeSnap="false"
 autoTickMarks="false"
 autoGridLines="true">

5. Set the tick marks of your chart to display the months of the year, as shown in the JSP code below:
In JSP:

<ig:tickMark value="0" tickCaption="Jan" />
<ig:tickMark value="1" tickCaption="Feb" />
<ig:tickMark value="2" tickCaption="Mar" />
<ig:tickMark value="3" tickCaption="Apr" />
<ig:tickMark value="4" tickCaption="May" />
<ig:tickMark value="5" tickCaption="Jun" />
<ig:tickMark value="6" tickCaption="Jul" />
<ig:tickMark value="7" tickCaption="Aug" />
<ig:tickMark value="8" tickCaption="Sep" />
<ig:tickMark value="9" tickCaption="Oct" />
<ig:tickMark value="10" tickCaption="Nov" />
<ig:tickMark value="11" tickCaption="Dec" />

6. Close the <ig:axis> tag, as shown in the JSP code below.
In JSP:

</ig:axis>

7. Set the y-axis of your chart with the following attributes, as shown in the JSP code below:

NetAdvantage for JSF

182 NetAdvantage for JSF

 type -- y

 autoRange -- true

 autoRangeSnap -- true

 autoGridLines -- true

In JSP:

<ig:axis type="y"
 autoRange="true"
 autoRangeSnap="true"
 autoTickMarks="true"
 autoGridLines="true"/>

8. Set the series of your chart as shown in the JSP code below:
In JSP:

<ig:series markerBulletVisible="true"
 legendCaption="#{webchart_numbersSource.name0}"
 dataMapping="low: column3; high: column2"
 dataSource="#{webchart_numbersSource.sparse0}" />

<ig:series markerBulletVisible="true"
 legendCaption="#{webchart_numbersSource.name1}"
 dataMapping="low: column3; high: column2"
 dataSource="#{webchart_numbersSource.sparse1}" />

<ig:series markerBulletVisible="true"
 legendCaption="#{webchart_numbersSource.name2}"
 dataMapping="low: column3; high: column2"
 dataSource="#{webchart_numbersSource.sparse2}" />

9. Close the <ig:chart> tag, as shown in the JSP code below.
In JSP:

</ig:chart>

10. Save and run the project.

To create a range column chart using RAD:

1. From the palette, drag the Chart component to your page.

2. In the Properties window, select ig:chart.

3. Set the following properties:

 Chart Type -- Range Column

 Data Point Listener -- #{webchart_chartPage.processDataPoint}

 Group Type -- Overlay

 Id -- chart

 Projection Type -- 2d

 Style -- width: 420; height: 320

NetAdvantage for JSF

183 NetAdvantage for JSF

4. Create other tags in JSP such as <ig:caption>, <ig:legend>, <ig:axis>, <ig:tickMark> and <ig:series> as they
are not components and are not present in the palette.
In JSP:

<ig:caption position="top" caption="2d Overlay RangeColumn Chart"/>

<ig:legend position="right" autoItems="true" />

<ig:axis type="x"
 autoRange="true" autoRangeSnap="false"
 autoTickMarks="false" autoGridLines="true" >
 <ig:tickMark value="0" tickCaption="Jan" />
 <ig:tickMark value="1" tickCaption="Feb" />
 <ig:tickMark value="2" tickCaption="Mar" />
 <ig:tickMark value="3" tickCaption="Apr" />
 <ig:tickMark value="4" tickCaption="May" />
 <ig:tickMark value="5" tickCaption="Jun" />
 <ig:tickMark value="6" tickCaption="Jul" />
 <ig:tickMark value="7" tickCaption="Aug" />
 <ig:tickMark value="8" tickCaption="Sep" />
 <ig:tickMark value="9" tickCaption="Oct" />
 <ig:tickMark value="10" tickCaption="Nov" />
 <ig:tickMark value="11" tickCaption="Dec" />
</ig:axis>

<ig:axis type="y"
 autoRange="true" autoRangeSnap="true"
 autoTickMarks="true" autoGridLines="true"/>

<ig:series markerBulletVisible="true"
 legendCaption="#{webchart_numbersSource.name0}"
 dataMapping="low: column3; high: column2"
 dataSource="#{webchart_numbersSource.sparse0}" />

<ig:series markerBulletVisible="true"
 legendCaption="#{webchart_numbersSource.name1}"
 dataMapping="low: column3; high: column2"
 dataSource="#{webchart_numbersSource.sparse1}" />

<ig:series markerBulletVisible="true"
 legendCaption="#{webchart_numbersSource.name2}"

NetAdvantage for JSF

184 NetAdvantage for JSF

 dataMapping="low: column3; high: column2"
 dataSource="#{webchart_numbersSource.sparse2}" />

5. Save and run the project.

NetAdvantage for JSF

185 NetAdvantage for JSF

Treemap charts are used to display large hierarchical data sets in a rectangular space, which is divided into
regions and then each region is divided again for each level of the hierarchy. You can identify the data on a
treemap chart by the size and color of the region.

Treemap charts are typically used to visually the contents of a hard drive with thousands of files in 5 - 15 levels
of directories.

This topic will demonstrate how to create a treemap chart, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To create a treemap chart using code:

1. Open the <ig:chart> tag and set the following attributes, as shown in the JSP code below:

 id -- chart

 binding -- #{webchart_chartPage.chartComponent}

 chartType -- treeMap

 projectionType -- 2d

 style -- width: 420; height: 320

 dataPointListener -- #{webchart_chartPage.processDataPoint}

In JSP:

<ig:chart
 id="chart"
 binding="#{webchart_chartPage.chartComponent}"
 chartType="treeMap"
 projectionType="2d"

4.5.2.12 Treemap Chart

NetAdvantage for JSF

186 NetAdvantage for JSF

 style="width: 420; height: 320"
 dataPointListener="#{webchart_chartPage.processDataPoint}">

2. Set the caption of your chart to "Flat Treemap Chart", as shown in the JSP code below.
In JSP:

<ig:caption
 position="top"
 caption="Flat Treemap Chart"/>

3. Set the legend of your chart with the following attributes as shown in the JSP code below:

 position -- right

 autoItems -- true

In JSP:

<ig:legend position="right"
 autoItems="true" />

4. Set the series of your chart as shown in the JSP code below:
In JSP:

<ig:series legendCaption ="#{webchart_numbersSource.name0}"
 markerBulletVisible="true"
 markerCaptionVisible="true"
 dataSource="value: column0;
 tooltipCaption:caption"
 dataSource="#{webchart_numbersSource.sparse0}" />

5. Close the <ig:chart> tag, as shown in the JSP code below.
In JSP:

</ig:chart>

6. Save and run the project.

To create a treemap chart using RAD:

1. From the palette, drag the Chart component to your page.

2. In the Properties window, select ig:chart.

3. Set the following properties:

 Chart Type -- Treemap

 Data Point Listener -- #{webchart_chartPage.processDataPoint}

 Id -- chart

 Projection Type -- 2d

 Style -- width: 420; height: 320

NetAdvantage for JSF

187 NetAdvantage for JSF

4. Create other tags in JSP such as <ig:caption>, <ig:legend>, <ig:axis>, <ig:tickMark> and <ig:series> as they
are not components and are not present in the palette.
In JSP:

<ig:caption position="top" caption="Flat Treemap Chart"/>

<ig:legend position="right" autoItems="true" />

<ig:series
 legendCaption ="#{webchart_numbersSource.name0}"
 markerBulletVisible="true"
 markerCaptionVisible="true"
 dataSource="value: column0; tooltipCaption:caption"
 dataSource="#{webchart_numbersSource.sparse0}" />

5. Save and run the project.

NetAdvantage for JSF

188 NetAdvantage for JSF

The data on a WebChart™ can also be grouped into different types of arrangements to better visualize the
relationship between the different data sets.

The following is a list of the different group types that can be used within the WebChart component.

 Cluster Groups (Section 4.5.3.1)

 Stack Groups (Section 4.5.3.2)

 Stack 100 Groups (Section 4.5.3.3)

 Overlay Groups (Section 4.5.3.4)

Clicking on the link below will provide you with a short task based topic that explains how to set the group type
of a chart.

 Set Group Type of the Chart (Section 4.5.3.5)

4.5.3 Group Types

NetAdvantage for JSF

189 NetAdvantage for JSF

Cluster groups displays charts with the values of each individual item clustered together within one chart.

To create a clustered chart, set the groupType attribute to "cluster".

Below are examples of clustered charts.

4.5.3.1 Cluster Groups

NetAdvantage for JSF

190 NetAdvantage for JSF

NetAdvantage for JSF

191 NetAdvantage for JSF

NetAdvantage for JSF

192 NetAdvantage for JSF

Related Topic

Set Group Type of a Chart (Section 4.5.3.5)

NetAdvantage for JSF

193 NetAdvantage for JSF

Stacked groups show the relationship of individual items to the whole, comparing the contribution of each
value to a total across categories or time.

To create a stacked chart, set the groupType attribute to "stack".

Below are examples of a stacked column chart in 2D and 3D.

4.5.3.2 Stack Groups

NetAdvantage for JSF

194 NetAdvantage for JSF

Related Topic

Set Group Type of a Chart (Section 4.5.3.5)

NetAdvantage for JSF

195 NetAdvantage for JSF

100% stacked column charts compare the percentage each value contributes to a total across categories or over
time.

To create a 100% stacked chart, set the groupType attribute to "stack100".

Below are examples of a 100% stacked column chart in 2D and 3D.

4.5.3.3 Stack 100 Groups

NetAdvantage for JSF

196 NetAdvantage for JSF

Related Topic

Set Group Type of a Chart (Section 4.5.3.5)

NetAdvantage for JSF

197 NetAdvantage for JSF

An overlay chart essentially shows each of the series as separate charts that are overlaid, resulting in a single
charting window that has the same labels and categories.

To create an overlay chart, set the groupType attribute to "overlay".

Below are examples of an overlay column chart in 2D and 3D.

4.5.3.4 Overlay Groups

NetAdvantage for JSF

198 NetAdvantage for JSF

Related Topic

Set Group Type of a Chart (Section 4.5.3.5)

NetAdvantage for JSF

199 NetAdvantage for JSF

The data on a WebChart™ can be grouped into different types of arrangements to better visualize the
relationship between the different data sets.

This topic will demonstrate how to set the group type of your chart:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To set the group type using code:

1. Set the <groupType> attribute of the chart tag:
In JSP:

<ig:chart
 id="chart"
 chartType="Area"
 groupType="Stack100"
 projectionType="2d"
 style="width: 420; height: 320"
 dataPointListener="#{webchart_chartPage.processDataPoint}">

To set the group type using RAD:

1. In Design view, select the chart component on your page.

2. In the Properties tab, select ig:chart.

3. In the Group Type drop down list, select the group type.

4.5.3.5 Set Group Type of the Chart

NetAdvantage for JSF

200 NetAdvantage for JSF

NetAdvantage for JSF

201 NetAdvantage for JSF

This section is your gateway to important conceptual and task-based information that will help you to use the
various features and functionalities provided by the WebChart™ component.

 Appearance (Section 4.5.4.1)

 Binding WebChart to Data (Section 4.5.4.2)

 Designing the Look and Feel (Section 4.5.4.3)

 Interaction with WebChart (Section 4.5.4.4)

 Working with Axes (Section 4.5.4.5)

 Working with Markers (Section 4.5.4.6)

 Working with the Legend (Section 4.5.4.7)

4.5.4 Using WebChart

NetAdvantage for JSF

202 NetAdvantage for JSF

This section provides useful information on customizing the appearance of your charts. Click the links below to
learn about combining series, WebCharts, and WebChart types, as well as how to style your chart.

 Combining Series (Section 4.5.4.1.1)

 Combining WebCharts (Section 4.5.4.1.2)

 Combining WebChart Types (Section 4.5.4.1.3)

 Layout (Section 4.5.4.1.4)

 Object Shapes (Section 4.5.4.1.5)

 Styling Using Extended CSS (Section 4.5.4.1.6)

4.5.4.1 Appearance

NetAdvantage for JSF

203 NetAdvantage for JSF

Combining series allow you to display different series groups in one chart. By nesting series groups with other
series groups, you can create subgroups of series. To combine series, you simply define the groupType within
the <ig:seriesGroup> tag.

Each series within the <ig:seriesGroup/> tag are grouped according to the groupType attribute. If, however,
there is not a groupType defined within the <seriesGroup/>, the groupType for the series will then be inherited
from the above levels.

In JSP:

<ig:seriesGroup groupType="stack">

</ig:seriesGroup>
<ig:seriesGroup groupType="overlay">

</ig:seriesGroup>

The following screen shots show an example of grouping columns in 2D and 3D charts.

4.5.4.1.1 Combining Series

NetAdvantage for JSF

204 NetAdvantage for JSF

NetAdvantage for JSF

205 NetAdvantage for JSF

The WebChart™ component allows you to display separate charts as one chart. This allows the user to see the
data represented in different ways on one chart and compare the data easily and quickly.

You can combine WebCharts by utilizing multiple <ig:chart> tags.

In the following example, both charts inherit the same x-axis. The candlestick chart has padding on the left so
that the charts can be lined up.

In JSP:

<ig:axis type="x" autoTickMarks="true" autoGridLines="true" autoRange="true" />
<ig:chart chartType="candlestick"

</ig:chart>
<ig:chart chartType="area"

</ig:chart>

The screen shot below shows a combined chart displaying a candlestick chart and an area chart.

4.5.4.1.2 Combining WebCharts

NetAdvantage for JSF

206 NetAdvantage for JSF

The WebChart™ component allows you to layer different charts on top of each other with different data sets.

This can be used to show how a set of data can be compared to another set of data with different chart types.

You can combine WebCharts by defining the nested chartType within the <ig:series> tag. The chartType defined
in the <ig:chart> is the main chartType with the subsequent charts nested within it.

In JSP:

<ig:chart chartType="line">
...WebChart attributes for line chart
 <ig:series chartType="area" ...WebChart attributes for area chart... />
 <ig:series chartType="pie" ...WebChart attributes for pie chart... />
</ig:chart>

The following screen shots show a combination line/area/pie chart in 2D and 3D

4.5.4.1.3 Combining WebChart Types

NetAdvantage for JSF

207 NetAdvantage for JSF

NetAdvantage for JSF

208 NetAdvantage for JSF

This section discusses the layout of the legend and caption. They can be positioned by setting the position
attribute. The possible values are:

 bottom

 left

 right

 top

In JSP:

<ig:caption position="bottom"... />

4.5.4.1.4 Layout

NetAdvantage for JSF

209 NetAdvantage for JSF

Webchart™ allows you to change the look and feel of the standard series in charts such as column, pie and
doughnut.

To find out more about object shapes in different charts, click the following links.

 Column shapes (Section 4.5.4.1.5.1)

 Pie and doughnut shapes (Section 4.5.4.1.5.2)

4.5.4.1.5 Object Shapes

NetAdvantage for JSF

210 NetAdvantage for JSF

Each series within the WebChart™ component can be displayed as different shapes. This helps the user to
differentiate easily and quickly between the different series. A shapeType attribute is defined within the
<ig:series> tag.

In JSP:

<ig:series shapeType="square" ..." />

The table below describes the different column shape values.

Note: All shapes in each row of the table produce identical-looking columns in 2D charts.

The following screenshots show column shapes for both 2D and 3D charts.

4.5.4.1.5.1 Column Shapes

NetAdvantage for JSF

211 NetAdvantage for JSF

NetAdvantage for JSF

212 NetAdvantage for JSF

The WebChart™ component allows you to change the circular shape of pie and doughnut charts. This is done to
change the look and feel of the standard pie and doughnut chart. A shapeType attribute is defined within the
<ig:series/> tag.

The shapeType for pie and doughnut charts specifies the cross-section which is visible only in 3D charts.

In JSP:

<ig:series shapeType="chamfered" ..." />

The five pie and doughnut shape values are listed in the table below.

4.5.4.1.5.2 Pie and Doughnut Shapes

NetAdvantage for JSF

213 NetAdvantage for JSF

To allow specification of more complete styling attributes, a number of upward-compatible extensions have
been made to the standard CSS syntax.

Background Gradients
Extended CSS supports the background-gradient-color and background-gradient-type attributes, which can also
be used within the standard background shortcut to specify a gradient background. Transparent gradients are
fully supported.

The background gradient runs from the background-color to the background-gradient-color in the direction
specified by background-gradient-type, as shown below for a background color of black and a background
gradient color of white.

The following example shows the specification of a horizontal white-to-black gradient using Extended CSS in
the full form:

style="background-color: white; background-gradient-color: black;
 background-gradient-type: horizontal"

The following example shows specification of the same gradient using the background attribute shortcut:

style="background: white black horizontal"

Drop Shadow
Extended CSS supports the shadow-color attribute, used to add a drop shadow to displayed elements.

The following example shows the specification of a white text with a black drop shadow.

style="color: white; shadow-color: black"

4.5.4.1.6 Styling Using Extended CSS

NetAdvantage for JSF

214 NetAdvantage for JSF

Binding is implemented at the data point level. The JSP files declare a series and then bind the contents of a
series. The data source is defined in the backing bean.

The attributes that need to be set are:

 dataMapping -- Specifies the get() method on the objects of the collection to use to retrieve the individual
data points.

 dataSource -- Specifies the collection that contains the data for the chart.

In JSP:

<ig:chart chartType="column">
 <ig:series dataMapping="value: europe" dataSource="#{chartbean.dataSource}"/>
 <ig:series dataMapping="value: asia" dataSource="#{chartbean.dataSource}"/>
 <ig:series dataMapping="value: us" dataSource="#{chartbean.dataSource}"/>
</ig:chart>

If the data mapping is merged, the data model value overrides it. So in the example above, the dataSource
attribute could have been defined within the containing chart.

Binding to a Common Data Model
The following code snippet shows an example where it is assumed that all series share a common data model,
and that all data points retrieve their "x" value from the "distance" entry:

In JSP:

<ig:chart chartType="column" dataMapping="x: distance">
 <ig:series dataMapping="value: column1"
 dataSource="#{webchart_numbersSource.sparse1}"/>
 <ig:series dataMapping="value: column2"
 dataSource="#{webchart_numbersSource.sparse2}"/>
 <ig:series dataMapping="value: column3"
 dataSource="#{webchart_numbersSource.sparse3}"/>
</ig:chart>

4.5.4.2 Binding WebChart to Data

NetAdvantage for JSF

215 NetAdvantage for JSF

Click the following links to view topics written specifically to help you design the look and feel of the WebChart
component.

 Customize Column Charts (Section 4.5.4.3.1)

 Customize Pie Charts (Section 4.5.4.3.2)

 Resize 3D Pie Charts (Section 4.5.4.3.3)

4.5.4.3 Designing the Look and Feel

NetAdvantage for JSF

216 NetAdvantage for JSF

The WebChart component supports styling, which helps you to provide a consistent look and feel for your
applications that use the WebChart component. For more information see Themes, Styles and Style Classes
(Section 5.3). However, you may want to override the styling classes and use your own colors for the series on
your WebChart. This topic explains how to customize the colors on your column chart.

Note: This topic assumes that you already created a column chart. For information on how to create a
column chart, see Column Chart (Section 4.5.2.5).

When you save and run your project after completing the following steps, your chart should look similar to the
chart below.

To customize the look of a series in a column chart:

1. In the igf_chart.css file, located at INSTALL_DIRECTORY\resources\infragistics\themes\THEME_COLOR,
create color classes for the series in your column chart , as shown in the code below:

Note: THEME_COLOR is the theme specified in your web.xml file.

In CSS:

 .red {
 background: red;
 }

 .green {
 background: green;
 }

 .yellow {
 background: yellow;
 }

4.5.4.3.1 Customize Column Charts

NetAdvantage for JSF

217 NetAdvantage for JSF

2. Within the <ig:series> tag of the <ig:chart> tag, in your JSP file, set the dataStyleClass attribute to the
color classes you specified in the igf_chart.css file, as shown in the JSP code below:

In JSP:

<ig:series dataStyleclass="green"
 dataMapping="value: population" dataSource="#{chartData.asiaPopList}"/>
<ig:series dataStyleclass="yellow"
 dataMapping="value: population" dataSource="#{chartData.africaPopList}"/>
<ig:series dataStyleclass="red"
 dataMapping="value: population" dataSource="#{chartData.laCarPopList}"/>

3. Save and run your project.

NetAdvantage for JSF

218 NetAdvantage for JSF

The WebChart component supports styling, which helps you to provide a consistent look and feel for your
applications that use the WebChart component. For more information see Themes, Styles and Style Classes
(Section 5.3). However, you may want to override the styling classes and use your own colors for the series on
your WebChart. This topic explains how to customize the colors on your pie chart.

Note: This topic assumes that you already created a pie chart. For information on how to create a pie
chart, see Pie Chart (Section 4.5.2.9).

When you save and run your project after completing the following steps, your chart should look similar to the
chart below.

To customize the look of a series in a pie chart:

1. In the igf_chart.css file, located at INSTALL_DIRECTORY\resources\infragistics\themes\THEME_COLOR,
create color classes for the series in your column chart , as shown in the code below:

Note: THEME_COLOR is the theme specified in your web.xml file.

In CSS:

.red {
 color: black; shadow-color: #40ffffff;
 font-family: verdana; font-size: 10;
 border: 1 solid white; border-join-style: join-miter;
 border-cap-style: cap-round;
 background: red;
}

.green {
 color: black; shadow-color: #40ffffff;
 font-family: verdana; font-size: 10;

4.5.4.3.2 Customize Pie Charts

NetAdvantage for JSF

219 NetAdvantage for JSF

 border: 1 solid white; border-join-style: join-miter;
 border-cap-style: cap-round;
 background: green;
}

.yellow {
 color: black; shadow-color: #40ffffff;
 font-family: verdana; font-size: 10;
 border: 1 solid white; border-join-style: join-miter;
 border-cap-style: cap-round;
 background: yellow;
}

.purple {
 color: black; shadow-color: #40ffffff;
 font-family: verdana; font-size: 10;
 border: 1 solid white; border-join-style: join-miter;
 border-cap-style: cap-round;
 background: purple;
}

.blue {
 color: black; shadow-color: #40ffffff;
 font-family: verdana; font-size: 10;
 border: 1 solid white; border-join-style: join-miter;
 border-cap-style: cap-round;
 background: blue;
}

2. In your backing bean, place the following code:

In Java:

public static String[] chartColors =
 new String[] {"blue", "green", "yellow", "purple", "red"};
public static int chartColorsCounter = 0;
public String getColors()
{
 if (country.equals("Africa") return chartColors[0];
 else if (country.equals("Latin America")) return chartColors[1];
 else if (country.equals("North America") return chartColors[2];
 else if (country.equals("Asia") return chartColors[3];
 else if (country.equals("Europe") return chartColors[4];
}

3. Within the <ig:series> tag in your JSP file, set the dataStyleClass attribute to the color classes of the
igf_chart.css file, as shown in the JSP code below:

In JSP:

<ig:series
 radius="80"
 dataMapping="dataStyleClass: colors;
 legendCaption: countryName;
 explodedRadius: explodedRadius;

NetAdvantage for JSF

220 NetAdvantage for JSF

 value: population2004;
 markerCaption: countryName;
 markerCaptionVisible: captionVisible" />

4. Save and run your project.

NetAdvantage for JSF

221 NetAdvantage for JSF

You can resize your 3D pie chart using the z axis. This topic will help you to customize the size of a 3D pie
chart.

Note: This topic assumes that you already created a pie chart. For information on how to create a pie
chart, see Pie Chart (Section 4.5.2.9).

When you save and run your project after completing the following steps, your chart should look similar to the
chart below.

To customize the size of a 3D pie chart:

1. Set the following attributes of the <ig:axis> tag in your JSP file:

 type -- z

 minimumValue -- "-5"

 maximumValue -- "5"

In JSP:

<ig:axis type="z"
 minimumValue="-5"
 maximumValue="5">
</ig:axis>

2. Save and run your project.

4.5.4.3.3 Resize 3D Pie Charts

NetAdvantage for JSF

222 NetAdvantage for JSF

How to Add a ToolTip to a Series

In JSP:

<ig:series tooltipCaption="ToolTip"
 markerBulletVisible="TRUE"
 markerCaptionVisible="TRUE"
 markerCaption="Label"
 dataSource="#{webchart_populationSource.population1960}"
 dataMapping="value: population;" />

How to Add a ToolTip to a Series Dynamically

In JSP:

<ig:series radius="80"
 dataSource="#{webchart_populationSource.population1960}"
 dataMapping="tooltipCaption: captionString;
 value: population;
 markerCaption: label;
 markerCaptionVisible: labelVisible; " />

In Java:

public String getCaptionString() {
 return population.toString();
}

4.5.4.4 Interaction with WebChart

Your end user can interact with the WebChart component with the use of
a ToolTip. You can set the ToolTip to a helpful message that is displayed
to your end users when the hover over a data point in the chart. For
example, if your end user scrolls of a data segment of a pie chart, then
the ToolTip can appear as the value of the segment.

A ToolTip is attached to a data point or series in the same way as any
other attribute.

The following example code demonstrates how to add a ToolTip to your
chart.

NetAdvantage for JSF

223 NetAdvantage for JSF

This section provides you with useful information about task-based procedures on working with chart axes.

 About Axes (Section 4.5.4.5.1)

 Add an Axis (Section 4.5.4.5.2)

 Add Grid Lines to an Axis (Section 4.5.4.5.3)

 Add Tick Marks to an Axis (Section 4.5.4.5.4)

 Modify the Axis Range (Section 4.5.4.5.5)

4.5.4.5 Working with Axes

NetAdvantage for JSF

224 NetAdvantage for JSF

An axis is a line which represents one dimension upon which chart data is plotted. The WebChart components
all require at least two axes, except for the pie and doughnut chart which do not require axes. 3D charts
require a z-axis to give depth to the chart.

An axis defined at the top level will be inherited by all the other tags. If an axis is defined within the lower
tags, then it will override the inherited value.

An axis defines the scale for a series, as well as attributes for the visible axis and associated grid lines.

An axis object can define:

 A caption string which is rendered next to the axis whenever the axis is used.

 A set of marks which are drawn as tick marks whenever the axis is used.

Related Topics

Add an Axis (Section 4.5.4.5.2)

Add Grid Lines to an Axis (Section 4.5.4.5.3)

Add Tick Marks to an Axis (Section 4.5.4.5.4)

Modify the Axis Range (Section 4.5.4.5.5)

4.5.4.5.1 About Axes

NetAdvantage for JSF

225 NetAdvantage for JSF

In JSP:

<ig:axis type="x"
 autoRange = "true"
 autoTickMarks = "true"
 autoGridLines = "true" />

In Java:

 Axis xAxis = new Axis();
 xAxis.setType("X");
 xAxis.setAutoRange(true);
 xAxis.setAutoTickMarks(true);
 xAxis.setAutoGridLines(true);

4.5.4.5.2 Add an Axis

The WebChart™ component allows you to add an axis to your
chart to allow your end user to see the values quickly and easily.
For example, if your webchart displayed sales for a year, by
looking at the axis, your end user can easily see which month had
the best sales.

The following code demonstrates how to add an axis to a
WebChart.

NetAdvantage for JSF

226 NetAdvantage for JSF

In JSP:

<ig:axis type="x"
 minimumValue="0"
 maximumValue="10">
 <ig:gridLine value="1" range="10"/>
</ig:axis>

In Java:

 GridLine gridLine = new GridLine();
 gridLine.setValue(1);
 gridLine.setRange(10);

4.5.4.5.3 Add Grid Lines to an Axis

Grid lines are lines that are displayed perpendicular to an axis at
various intervals. The Gridline property of an Axis object, control
the grid lines that appear at regular intervals. You can set the
grid lines to appear automatically by setting the autoGridLines
attribute of the Axis object to True.

You can also manually set the gridLine attribute to display the
grid lines at intervals you specify. Each gridLine attribute
specifies one grid line on your chart.

The following example code demonstrates how to add grid lines
to an axis.

NetAdvantage for JSF

227 NetAdvantage for JSF

In JSP:

<ig:axis type="x">
 <ig:tickMark value="0" tickCaption="1"/>
</ig:axis>

In Java:

 TickMark tickMark = new TickMark();
 tickMark.setValue(0);
 tickMark.setTickCaption("1");

4.5.4.5.4 Add Tick Marks to an Axis

Tick marks are small marks that are displayed along an axis at
various intervals. The TickMark property of an Axis object
controls the tick marks that appear at specified intervals. You can
set the tick marks to appear automatically by setting the
autoTickMarks attribute of the Axis object to True.

You can also manually set the tickMark attribute to display the
tick marks at intervals you specify. Each tickMark attribute
specifies one tick mark on your chart.

The following example code demonstrates how to add tick marks
to an axis.

NetAdvantage for JSF

228 NetAdvantage for JSF

In JSP:

<ig:axis type="x"
 autoRange="false"
 minimumValue="10"
 maximumValue="20">
</ig:axis>

In Java:

Axis axis = new Axis();
axis.setType("X");
axis.setAutoRange(false);
axis.setMinimumValue(10);
axis.setMaximumValue(20);

4.5.4.5.5 Modify the Axis Range

On a numeric axis, the axis range is the difference in numeric
values from the beginning of the axis to the end. The range
minimum is the value at the lowest point of the axis. The range
maximum is the value at the highest point of the axis. By default,
WebChart™ will use a minimum value of zero and calculate the
maximum value for the axis range based on the data points. The
automatic calculation of an axis' minimum and maximum values
may not be appropriate for your set of data points.

For example, if your data points have a minimum value of 525,
you may want to set the minimum value of the axis to 500 instead
of zero. If you want manually set the minimum and maximum
values of the axis, you can set the Axis object's autoRange
property to False. In addition, you will also have to set the
minimumValue and maximumValue properties.

The example code demonstrates how to modify the axis range.

NetAdvantage for JSF

229 NetAdvantage for JSF

This section provides you with useful information about the Marker, as well as access to task-based procedures
on how to customize the Marker.

 About Markers (Section 4.5.4.6.1)

 Add a Marker (Section 4.5.4.6.2)

4.5.4.6 Working with Markers

NetAdvantage for JSF

230 NetAdvantage for JSF

A Marker is a visual element that displays the value of a DataPoint on your WebChart. Adding Markers to your
WebChart will help your end users immediately identify a DataPoint’s value even if the value falls between
MajorGridlines or MinorGridlines. The Markers are attributes of the Series property.

You can set the following attributes:

 markerBulletSize (JavaDocFiles\com\infragistics\faces\chart\taglib\html\SeriesTag.html) -- Specifies the
size of the bullet that appears next to the marker in pixels.

 markerBulletStyleClass (JavaDocFiles\com\infragistics\faces\chart\taglib\html\SeriesTag.html) --
Specifies the style class for the bullet.

 markerBulletType (JavaDocFiles\com\infragistics\faces\chart\taglib\html\SeriesTag.html) -- You can set
this attribute to change the default circular shape of a bullet. The values for this attribute are:

 circle

 iTriangle

 square

 star

 triangle

 markerBulletVisible (JavaDocFiles\com\infragistics\faces\chart\taglib\html\SeriesTag.html) -- Specifies
if the bullet is visible, default value is False.

 markerCaption (JavaDocFiles\com\infragistics\faces\chart\taglib\html\SeriesTag.html) -- Specifies the
text for the marker

 markerCaptionStyleClass (JavaDocFiles\com\infragistics\faces\chart\taglib\html\SeriesTag.html) --
Specifies the style class for the marker

 markerCaptionVisible (JavaDocFiles\com\infragistics\faces\chart\taglib\html\SeriesTag.html) --
Specifies if the marker is visible, default value is False

Related Topic

Add a Marker (Section 4.5.4.6.2)

4.5.4.6.1 About Markers

NetAdvantage for JSF

231 NetAdvantage for JSF

How to Add a Marker to a Series

In JSP:

<ig:series markerBulletVisible="TRUE"
 markerCaptionVisible="TRUE"
 markerCaption="Label"
 dataSource="#{webchart_populationSource.population1960}"
 dataMapping="value: population;" />

How to Add a Marker to a Series Dynamically

In JSP:

<ig:series radius="80"
 dataSource="#{webchart_populationSource.population1960}"
 dataMapping="value: population;
 markerCaption: label;
 markerCaptionVisible: labelVisible; " />

In Java:

public String getLabel() {
 return population.toString();
}

public Boolean getLabelVisible() {
 return Boolean.TRUE;
}

4.5.4.6.2 Add a Marker

You can add a Marker to a Series or to an individual DataPoint. If you
add a Marker to the Series, all DataPoints in that Series will use the
Marker; however, if you also add a Marker to one of your DataPoints,
that DataPoint will use its own Marker instead of the one you added
to the Series. You can use this feature to draw attention to a
particular DataPoint in your Series by giving the DataPoint its own
Marker.

The following example code demonstrates how to add a Marker to a
Series.

NetAdvantage for JSF

232 NetAdvantage for JSF

Related Topic

About Markers (Section 4.5.4.6.1)

NetAdvantage for JSF

233 NetAdvantage for JSF

This section provides you with useful information about the Legend, as well as access to task-based procedures
on how to customize the Legend.

 Add the Legend (Section 4.5.4.7.1)

 Position the Legend (Section 4.5.4.7.2)

4.5.4.7 Working with the Legend

NetAdvantage for JSF

234 NetAdvantage for JSF

In JSP:

<ig:legend autoItems = "TRUE" />
<ig:series radius="80"
 dataSource="#{webchart_populationSource.population1960}"
 dataMapping="value: population;
 markerCaption: label;
 markerCaptionVisible: labelVisible;
 legendCaption: legendString" />

In Java:

//Creates the Legend
Legend legend = new Legend();
legend.setAutoItems(true);

//Returns the markerCaption for each data point in the series
public String getMarkerCaption() {
 return markerCaption;
}

//Returns if marker is visible
public String getLabelVisible() {
 return labelVisible;
}

//Returns the Legend caption for each data point in the series
public String getLegendString() {
 return legendString;
}

4.5.4.7.1 Add the Legend

A legend displays information related to the data
displayed on the chart to your end user. The WebChart
control creates a Legend based on the Series or
DataPoints in your chart. To make the Legend more user
friendly, you can customize the Legend caption to specify
the data types in the series. You can do this by setting
the dataMapping attribute of the Series tag.

The following example code demonstrates how to add the
Legend.

NetAdvantage for JSF

235 NetAdvantage for JSF

Related Topic

Position the Legend (Section 4.5.4.7.2)

NetAdvantage for JSF

236 NetAdvantage for JSF

In JSP:

<ig:legend autoItems = "TRUE"
 position = "left" />

In Java:

//Creates the Legend
Legend legend = new Legend();
legend.setAutoItems(true);
legend.setPosition("Left");

Related Topic

Add the Legend (Section 4.5.4.7.1)

4.5.4.7.2 Position the Legend

The WebChart component automatically places the
Legend on the right-hand side of the chart; however, you
can also position the Legend manually.

The following example code demonstrates how to
position the Legend.

NetAdvantage for JSF

237 NetAdvantage for JSF

All of our JSF components comply with section 508, subpart 1194.21 of the Rehabilitation Act of 1973. Below is
a table containing the rules of subpart 1194.21 and how we comply with each rule.

4.5.5 WebChart Accessibility Compliance

Rules How We Comply with the Rules

(a) Infragistics' components include keyboard support for tabbing into controls and navigating within them. All
NetAdvantage for JSF components that accept focus provide keyboard support.

(b) Infragistics NetAdvantage for JSF enables individuals to customize their desktop elements, including resizing and
rearranging controls and choosing color, size and format options.

(c) NetAdvantage for JSF provides a well-defined on-screen indication of the current focus that moves among
interactive interface elements as the input focus changes with minor exceptions. The components provide hover
styles and selection styles that highlight the position of the focus on the form or page. Focus rectangles are also
used along with the system caret to indicate focus location within the elements.

(d) Infragistics NetAdvantage for JSF provides sufficient information about user interface elements and program
elements represented by images are available in text in virtually all cases.

(g) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

(i) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

(j) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

(k) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

NetAdvantage for JSF

238 NetAdvantage for JSF

If you're looking for an area that houses all of the overview/task-based information related to the
WebDialogWindow™ component, you've come to the right place. This section contains valuable information
about WebDialogWindow, ranging from what the component does and why you would want to use it in your
application, to step-by-step procedures on how to accomplish a common task using the component.

Click the links below to access important information about the WebDialogWindow component.

 About WebDialogWindow (Section 4.6.1) -- In this section you'll find any information that will help you to
better understand the functionalities of the WebDialogWindow component, as well as why you would want
to use it to as part of building your applications.

 Getting Started with WebDialogWindow (Section 4.6.2) -- In order to get you up and running as quickly as
possible with the WebDialogWindow component, we've provided you with information on how to get
started using the component (i.e., adding WebDialogWindow to a form).

 Using WebDialogWindow (Section 4.6.3) -- This section is your gateway to important task-based
information that will help you to effectively use the various features and functionalities provided by the
WebDialogWindow component.

 WebDialogWindow Accessibility Compliance (Section 4.6.4) -- This topic outlines the way in which
WebDialogWindow meets the requirements of the Section 508 standards. This accessibility compliance
allows your end users, specifically those with disabilities, to be able to access and use your Web
application built using the WebDialogWindow component.

 API Reference Guide (on-line documentation) -- The Application Programming Interface (API) Reference
Guide is the foundation for all our NetAdvantage for JSF components and offers a definitive listing of all
the NetAdvantage for JSF classes and interfaces.

4.6 WebDialogWindow

NetAdvantage for JSF

239 NetAdvantage for JSF

The WebDialogWindow™ control is able to bypass several pop-up blockers in modern browser by displaying as a
simple <DIV> section in your web page, but appearing as a pop-up window. WebDialogWindow allows you to
easily add dialog box functionality to any web application. The WebDialogWindow's content area, being a <DIV>
itself, can contain any HTML or ASP.NET object. You can display WebDialogWindow as either as either a modal
or non-modal dialog box.

With CSS based properties, you can manually customize the WebDialogWindow control by leveraging your
existing style sheets.

WebDialogWindow supports the following features:

Modal/Non-Modal Modes - WebDialogWindow allows you to set whether the control displays as modal or non-
modal. Choosing the right mode can control the flow of your application and guarantee an action from your end
user when you need one.

Header - WebDialogWindow displays a header area, which can contain text as well as several buttons including
close, minimize, and maximize to control the dialog window.

Resizing - When necessary, your end user can resize WebDialogWindow at run time.

Location - You can either manually set WebDialogWindow's start location or allow it to display automatically in
the center of your application.

Window State - Your end user can minimize or maximize WebDialogWindows, or you can hide it from your end
user altogether.

Note: JavaScript methods for the WebDialogWindow that begin with an underscore (_) are private
methods. We recommend that you do not use these private methods in your web applications as they are
not supported.

4.6.1 About WebDialogWindow

NetAdvantage for JSF

240 NetAdvantage for JSF

Before You Begin
The following steps will show you how to get started with WebDialogWindow™. You will complete a series of
steps in order to become familiar with the control's object model.

What You Will Accomplish
When you have completed the following steps, you will have successfully created your first application that
leverages the WebDialogWindow control.

Follow these Steps:
1. Open the <ig:dialogWindow> tag and set the following attributes, as shown in the JSP code below:

 style -- width:300px; height:150px

 id -- htmlDialogWindowRender1

 styleClass -- dialogWindow

In JSP:

<ig:dialogWindow style="width:300px;height:150px"
 id="htmlDialogWindowRenderer1"
 styleClass="dialogWindow">

2. Set the header of your dialog window, as well as the minimize, maximize and close buttons. The following
code demonstrates how to set the dialog windows caption and center it in the header area.
In JSP:

<ig:dwHeader captionText ="Product Not Available">
 <ig:dwMinimizeBox></ig:dwMinimizeBox>
 <ig:dwMaximizeBox></ig:dwMaximizeBox>
 <ig:dwCloseBox></ig:dwCloseBox>
</ig:dwHeader>

3. Add content to your dialog window, as shown in the code below.
In JSP:

<ig:dwContentPane>
 <f:verbatim escape="false">
 The product you selected is currently not available.
 Please check back again later.

 <div align="center">
 <button>OK</button>
 </div>
 </f:verbatim>
</ig:dwContentPane>

4. Allow your end users to resize your dialog window by setting the resizer tag as shown in the code below.

4.6.2 Getting Started with WebDialogWindow

NetAdvantage for JSF

241 NetAdvantage for JSF

In JSP:

<ig:dwResizer></ig:dwResizer>

5. Close the <ig:dialogWindow> tag, as shown in the JSP code below.
In JSP:

</ig:dialogWindow>

6. Run the project. It should look similar to the dialog window below.

NetAdvantage for JSF

242 NetAdvantage for JSF

This section is your gateway to important task-based information that will help you to effectively use the
various features and functionalities provided by WebDialogWindow™ control.

 Add a Caption to the Dialog Window's Header (Section 4.6.3.1)

 Allow the End User to Resize the Dialog Window (Section 4.6.3.2)

 Center the Dialog Window (Section 4.6.3.3)

 Display the Dialog Window (Section 4.6.3.4)

 Maintain the Header's Width on Minimize (Section 4.6.3.5)

 Make the Dialog Window Modal (Section 4.6.3.6)

 Prevent the End User from Moving the Dialog Window (Section 4.6.3.7)

 Show the Minimize and Maximize Buttons (Section 4.6.3.8)

 Using WebDialogWindow with DateChooser (Section 4.6.3.9)

4.6.3 Using WebDialogWindow

NetAdvantage for JSF

243 NetAdvantage for JSF

Every window, no matter how insignificant, needs some sort of descriptive text in the header area. This way,
end users will know, at-a-glance, what they are about to read in the window. The dialog window is no
exception, and exposes useful attributes within the <ig:dwHeader> tag to accommodate a caption in the header
area:

CaptionText – this attribute allows you to supply a descriptive string which is displayed in the header. The
captions location depends on the CaptionAlignment property.

CaptionAlignment – this attribute allows you to align the caption to the left, right, or center.

The following code demonstrates how to set the dialog windows caption and center it in the header area.

In JSP:

<ig:dwHeader captionText="Product Not Available"
 captionAlignment="center">

4.6.3.1 Add a Caption to the Dialog Window's Header

NetAdvantage for JSF

244 NetAdvantage for JSF

If you are using the dialog window as a simple prompt dialog box with a single OK button, your end users may
not need to resize it. However, if you are displaying a large amount of information, or even an entire web page
in the dialog window, the end user may need more room to comfortably view all of the dialog window's
contents. If you set the resizer attribute, the end user will be able to resize the dialog window to as large or
small as they need it to comfortably view their data. Enabling the resizer displays a small resizing image in the
lower, right corner of the dialog window. End users can grab this resizer and drag the dialog window until it is
the right size for their taste.

The following code demonstrates how to enable the resizer.

In JSP:

 <ig:dwResizer"></ig:dwResizer>

4.6.3.2 Allow the End User to Resize the Dialog Window

NetAdvantage for JSF

245 NetAdvantage for JSF

When you first place WebDialogWindow™ on your page, WebDialogWindow's initial position will default to
center. If this location of the WebDialogWindow component is not appropriate for your web page's needs, you
can always change the dialog window's initial location by setting the initialPosition attribute to manual and set
the style attribute for the location of the dialog window.

The following code demonstrates how to manually display the dialog window on the web page.

In JSP:

<ig:dialogWindow initialPosition="manual" style="left:200px;top:100px">

In Java:

dialogWindow.setInitialPosition("manual");
dialogWindow.setStyle("left:200px; top:100px;");

4.6.3.3 Center the Dialog Window

NetAdvantage for JSF

246 NetAdvantage for JSF

By default, the WebDialogWindow™ component's windowState attribute is set to Normal, which means it will
display on your web page when the page first loads. However, if you are using the dialog window as a popup
dialog box, you will need to first hide the dialog window, and then display it through a button's Click event or
some other means. Displaying the dialog window is as easy as hiding it, simply set the WindowState property to
Normal.

A common scenario is when an end user clicks a button to postback some data to the server. If there is a
problem with that data, you can display the dialog window as an error message along with a text box to allow
the end user to correct the problem. In that button's Click event, all you need to do to display the dialog
window is set WindowState to Normal.

The following code demonstrates how to display a dialog window inside a button's Click event.

1. Create a Javascript method to change the window's state to normal when a button is clicked.
In Javascript:

function igShowDialog() {
 var igJsDwNode = ig.dw.getDwJsNodeById("_id0:igDw001");
 if (igJsDwNode != null) {
 igJsDwNode.set_windowState(ig.dw.STATE_NORMAL);
 }
}

2. Set the window's state to hidden when the page initially loads.
In JSP:

<ig:dialogWindow windowState="hidden" id="igDw001">

3. Create a button that calls the javascript method when it is clicked.
In JSP:

<input type="button" onclick="igShowDialog();return false;"
 value="Show Dialog" />

4.6.3.4 Display the Dialog Window

NetAdvantage for JSF

247 NetAdvantage for JSF

If you are allowing your end users to minimize the WebDialogWindow™ controls dialog window through the
minimize box, the dialog window automatically hides the content pane and decreases the header's width to 20
pixels. If you would prefer to keep the header's width the same when it is minimized, then you will need to set
the MinimizedWidth property off the Header object. An easy way to maintain the width of the header is to set
the MinimizedWidth property to the same value as the dialog window's width.

The following code demonstrates how to set the header's width on minimize.

In JSP:

<ig:dialogHeader captionText="Dialog Caption" minimizedWidth="300">

4.6.3.5 Maintain the Header's Width on Minimize

NetAdvantage for JSF

248 NetAdvantage for JSF

There may be times when you need input from your end users and cannot continue without it. In cases like
these, you can display the WebDialogWindow™ control's dialog window as a modal dialog box. This is useful if an
error occurs and you need your end user to correct the error before they can continue. Turning the dialog
window into a modal dialog box requires you to set the modal attribute to True. Once the dialog window is
modal, the end user will not be able to interact with any other part of the web page until the dialog window is
dismissed again.

The following code demonstrates how to turn the dialog window into a modal dialog box.

In JSP:

<ig:dialogWindow modal="true">

In Java:

dialogWindow.setModal(true);

4.6.3.6 Make the Dialog Window Modal

NetAdvantage for JSF

249 NetAdvantage for JSF

If you allow your end user to have multiple dialog windows open on the web page at once, you may decide to
give them the option to lock them in place. Your end users may appreciate this option, especially if they
accidentally move a dialog window when they had it in the perfect location. This situation can arise if multiple
dialog windows are displaying different customer statistics, such as a "card view" in a presentation grid. By
setting the moveable attribute to False, the end user will not be able to move the dialog window around the
web page. You can present this ability to your end user in a "Lock Windows in Place" option, perhaps. Keep in
mind, if there are multiple dialog windows open at once, you'll have to set each moveable attribute
individually.

The following code demonstrates how to lock a dialog window in place, preventing the end user from moving it.

In JSP:

<ig:dialogWindow movable="false">

In Java:

dialogWindow.setMovable(false);

4.6.3.7 Prevent the End User from Moving the Dialog Window

NetAdvantage for JSF

250 NetAdvantage for JSF

WebDialogWindow™ allows your end users to either minimize or maximize the dialog window by using two
buttons in the header. Both found off the <ig:dwHeader> tag, the <ig:dwMaximizeBox> tag and the
<ig:dwMinimizeBox> tag allow you to display both the maximize and minimize boxes, respectively. When the
end user clicks the minimize box, the dialog window all but disappears, except for the header. The header
itself decreases its width to a default size of 20 pixels. You can modify the minimized width manually; see
Maintain the Header's Width on Minimize (Section 4.6.3.5) for more information. When the end user clicks
the maximize box, the dialog window expands until it uses all of the available screen real estate within its
parent page. The end user may wish to maximize the dialog window if there is a large amount of information in
it, or if there is another web page displaying inside.

The following code demonstrates how to display both the maximize and minimize boxes in the dialog window's
header.

In JSP:

<ig:dwHeader captionText="Dialog Header">
 <ig:dwMinimizeBox></ig:dwMinimizeBox>
 <ig:dwMaximizeBox></ig:dwMaximizeBox>
 <ig:dwCloseBox></ig:dwCloseBox>
</ig:dwHeader>

4.6.3.8 Show the Minimize and Maximize Button

NetAdvantage for JSF

251 NetAdvantage for JSF

Setting the z-index in the stylesheet:

.popStyle {
 z-index: 2000;
}

In JSP:

<ig:DateChooser id="dateChooserRenderer1"
 popupStyleClass="popStyle" />

4.6.3.9 Using WebDialogWindow with DateChooser

When you create a modal WebDialogWindow that contains a DateChooser
component, the calendar will appear behind the dialog window. This is
due to a conflict with the z-index of DateChooser and WebDialogWindow.

A solution to this conflict is to set the z-index of DateChooser to be
higher than 1000, which is the default value of the z-index of
WebDialogWindow.

To resolve the conflict of the z-indexes, all you need to do is set the
popStyleClass attribute of the <ig:dateChooser> tag to a style sheet
where the z-index is set.

The following code demonstrates how to ensure DateChooser works
correctly with WebDialogWindow.

NetAdvantage for JSF

252 NetAdvantage for JSF

All of our JSF components comply with section 508, subpart 1194.21 of the Rehabilitation Act of 1973. Below is
a table containing the rules of subpart 1194.21 and how we comply with each rule.

4.6.4 WebDialogWindow Accessibility Compliance

Rules How We Comply with the Rules

(a) Infragistics' components include keyboard support for tabbing into controls and navigating within them. All
NetAdvantage for JSF components that accept focus provide keyboard support.

(b) Infragistics NetAdvantage for JSF enables individuals to customize their desktop elements, including resizing and
rearranging controls and choosing color, size and format options.

(c) NetAdvantage for JSF provides a well-defined on-screen indication of the current focus that moves among
interactive interface elements as the input focus changes with minor exceptions. The components provide hover
styles and selection styles that highlight the position of the focus on the form or page. Focus rectangles are also
used along with the system caret to indicate focus location within the elements.

(d) Infragistics NetAdvantage for JSF provides sufficient information about user interface elements and program
elements represented by images are available in text in virtually all cases.

(g) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

(i) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

(j) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

(k) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

NetAdvantage for JSF

253 NetAdvantage for JSF

If you’re looking for an area that houses all of the overview/task-based information related to the WebGrid
component, you’ve come to the right place. This section contains valuable information about WebGrid, ranging
from what the component does and why you would want to use it in your application, to step-by-step
procedures on how to accomplish a common task using the component.

Click the links below to access important information about the WebGrid component.

 About WebGrid (Section 4.7.1) -- In this section you’ll find any information that will help you to better
understand the functionalities of the WebGrid component, as well as why you would want to use it to as
part of building your applications.

 Getting Started with WebGrid (Section 4.7.2) -- In order to get you up and running as quickly as possible
with the WebGrid control, we’ve provided you with information on how to get started using the
component.

 Using WebGrid (Section 4.7.3) -- This section is your gateway to important task-based information that
will help you to effectively use the various features and functionalities provided by the WebGrid
component.

 WebGrid Accessibility Compliance (Section 4.7.4) -- This topic outlines the way in which WebGrid meets
the requirements of the Section 508 standards. This accessibility compliance allows your end users,
specifically those with disabilities, to be able to access and use your Web application built using the
WebGrid control.

 API Reference Guide (on-line documentation) -- The Application Programming Interface (API) Reference
Guide is the foundation for all our NetAdvantage for JSF components and offers a definitive listing of all
the NetAdvantage for JSF classes and interfaces.

4.7 WebGrid

NetAdvantage for JSF

254 NetAdvantage for JSF

WebGrid is a highly functional, hierarchical, AJAX-enabled table that allows you to display your data in the
style and manner that best fits your needs.

The following is a list of the WebGrid™ components:

 GridView

 Column

 ColumnSelectRow

 RowItem

WebGrid components supports editing and a host of other features and functionalities such as:

 Automatic Paging – Automatically display and handle the First, Previous, Next, and Last buttons. You only
need to specify how many items you want to display. Smart Refresh™ transparently performs AJAX requests
to reduce the amount of Web page refreshes.

 Automatic Sorting – You can set a per-column flag to automatically sort a specific column. Smart Refresh™
transparently performs AJAX requests to reduce the amount of Web page refreshes.

 High performance – Can handle large amounts of data being transferred to and from Web-based
applications.

 Fully Customizable - WebGrid comes with a collection of professional, polished styles. You can also
customize the look you want down to every detail because WebGrid is built on our AJAZ and UIElement
bases framework. A UI element is any granular element of the WebGrid component, such as a row, column,
hover, select column, etc. Every UIElement can be styled with your CSS styles or you can choose from the
many styles that already come with the WebGrid components.

 Export to a CSV File - WebGrid allows you to export data to a Comma Separated Value (CSV) file format.

 Bound and Unbound mode – Supports binding to a JavaServer™ Faces DataMode, therefore it can be bound
to Java™ arrays, Java lists, ResultSets, or JavaBeans™ by setting the WebGrid components for bound or
unbound data rendering.

The first screen shot below shows the WebGrid components with automatic paging enabled. The second screen
shot shows the WebGrid components with automatic sorting enabled.

4.7.1 About WebGrid

NetAdvantage for JSF

255 NetAdvantage for JSF

NetAdvantage for JSF

256 NetAdvantage for JSF

Click the links below for information on how to get up and running with the WebGrid components.

 Creating WebGrid in Design View Using IBM RAD (Section 4.7.2.1)

 Creating WebGrid Using Code (Section 4.7.2.2)

4.7.2 Getting Started with WebGrid

NetAdvantage for JSF

257 NetAdvantage for JSF

Creating WebGrid using IBM® Rational® Application Developer for WebSphere 7.0 allows you to take full
advantage of the JSP page designer tools palette. This helps you to create WebGrid components easier and
quicker than ever before. You can drag the components from the palette to your JSP page, and control the
layout and size of the components. Using the Properties window, you can edit the properties of your
component and instantly see the changes in the design view, simplifying the editing process. Selecting a
component from the design view populates the Properties window with the attributes and values of that
component.

To create WebGrid in design view using IBM® Rational® Application Developer for WebSphere Software®
7.0:

1. From the palette, drag the GridView component to your page.

2. In the Properties window, under ig:gridView, select Data.

3. Set the following properties:

 Data Source: #{webgrid_employeeDAO.employees}

 Page Size: 10

4. In the Properties window, under ig:gridView, click Appearance.

5. Set the following properties:

 Fixed Column Count -- 2

 Style -- Width: 600

6. In the Design view, select the Grid Header and set the following property:

 Value -- Employee List

4.7.2.1 Creating WebGrid in Design View Using IBM RAD

NetAdvantage for JSF

258 NetAdvantage for JSF

7. The default GridView is created with two columns. From the palette, drag the Column component to your
grid to add more columns.

8. In the Design view, for each column header, set the Value property:

 For Column Header 1, set Value to First Name.

 For Column Header 2, set Value to Last Name.

 For Column Header 3, set Value to Email.

 For Column Header 4, set Value to Phone Number.

9. In the Design view, for each column, set the Value property:

 For Column 1, set Value to #{DATA_ROW.firstName}.

 For Column 2, set Value to #{DATA_ROW.lastName}.

 For Column 3, set Value to #{DATA_ROW.email}.

 For Column 4, set Value to #{DATA_ROW.phoneNumber}.

NetAdvantage for JSF

259 NetAdvantage for JSF

10. Run the project. It should look similar to the grid below.

Related Topic

Creating WebGrid Using Code (Section 4.7.2.2)

NetAdvantage for JSF

260 NetAdvantage for JSF

Creating WebGrid using code allows you to have full control over the design of your grid.

To create WebGrid using code:

1. Open the <ig:gridView> tag and set the following attributes, as shown in the JSP code below:

 dataSource -- #{webgrid_employeeDAO.employees}

 pageSize -- 10

 fixedColumns -- 2

 style -- width:600px

In JSP:

<ig:gridView
 dataSource="#{webgrid_employeeDAO.employees}"
 pageSize="10"
 fixedColumns="2"
 style="width: 600px;">

2. Set the header of your grid to "Employee List", as shown in the JSP code below.
In JSP:

<f:facet name="header">
 <h:outputText value="Employee List" />
</f:facet>

3. Set the column names of your grid to the following attributes, as shown in the JSP code below:

 Column 1: First Name

 Column 2: Last Name

 Column 3: Email

 Column 4: Phone Number

In JSP:

<ig:column>
 <f:facet name="header">
 <h:outputText value="First Name" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.firstName}" />
</ig:column>
<ig:column>
 <f:facet name="header">
 <h:outputText value="Last Name" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.lastName}" />
</ig:column>
<ig:column>
 <f:facet name="header">
 <h:outputText value="Email" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.email}" />
</ig:column>

4.7.2.2 Creating WebGrid Using Code

NetAdvantage for JSF

261 NetAdvantage for JSF

<ig:column>
 <f:facet name="header">
 <h:outputText value="Phone Number" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.phoneNumber}" />
</ig:column>

4. Close the <ig:gridView> tag, as shown in the JSP code below.
In JSP:

</ig:gridView>

5. Run the project. It should look similar to the grid below.

Related Topic

Creating WebGrid in Design View Using IBM RAD (Section 4.7.2.1)

NetAdvantage for JSF

262 NetAdvantage for JSF

This section is your gateway to important conceptual and task-based information that will help you to use the
various features and functionalities provided by the WebGrid component.

 Accessing Data (Section 4.7.3.1)

 Aggregate Functions (Section 4.7.3.2)

 Designing the Look and Feel (Section 4.7.3.3)

 Editing Data (Section 4.7.3.4)

 Navigating and Selecting (Section 4.7.3.5)

4.7.3 Using WebGrid

NetAdvantage for JSF

263 NetAdvantage for JSF

The main purpose of WebGrid is to input or display data. The first step is to bind the WebGrid component to a
data source.

Click the links below for information on how to access data with the WebGrid components.

 Data Binding Overview (Section 4.7.3.1.1)

 Bind a Hierarchical WebGrid to Data (Section 4.7.3.1.2)

 Bind WebGrid to Data (Section 4.7.3.1.3)

 Exporting Data to a CSV File (Section 4.7.3.1.4)

 Identify the Rows in a Collection (Section 4.7.3.1.5)

4.7.3.1 Accessing Data

NetAdvantage for JSF

264 NetAdvantage for JSF

Data binding plays a pivotal role in WebGrid. The fundamental principle of WebGrid is to display, edit and
manipulate data.

WebGrid can be bound to a data model through the dataSource attribute of the <ig:gridView> tag which points
to a valid data model of a backing bean. The GridView component will cycle through each row in the list
displaying each row of the grid.

The binding attribute of the <ig:gridView> tag is used when you want to use the grid as a property in the
backing bean so that the grid can be manipulated in code.

Related Topic

Accessing Data (Section 4.7.3.1)

4.7.3.1.1 Data Binding Overview

NetAdvantage for JSF

265 NetAdvantage for JSF

WebGrid displays data in hierarchical views, allowing nested grids to be attached to a column. Expandable
columns will have + or - icon allowing the end user to expand or collapse the columns. An expanded column will
show a nested grid. Nested grids can also have expandable columns allowing for unlimited depth. Nested grids
are separate object that can be independently sorted and paged as needed.

Create a facet called masterDetail and create the nested grid information within this tag.

To create a hierarchical grid.

1. Create a masterDetail facet within an <ig:column> tag.
In JSP:

<ig:column>
 <f:facet name="header">
 <h:outputText value="Purchase Orders" />
 </f:facet>
<f:facet name="masterDetail">
 <ig:gridView dataSource="#DATA_ROW.orders" pagesize="10">
 <ig:column>
 <f:facet name="header">
 <h:outputText value="Order ID" />
 </f:facet>
 <h:outputText value="$DATA_ROW.orderId" />
 </ig:column>
 </ig:gridView>
</f:facet>
</ig:column>

The following screen shot shows a hierarchical grid.

4.7.3.1.2 Bind a Hierarchical WebGrid to Data

NetAdvantage for JSF

266 NetAdvantage for JSF

NetAdvantage for JSF

267 NetAdvantage for JSF

Binding WebGrid to data populates your grid with the data from your data model.

To bind your grid to a data model.

1. Set the dataSource attribute of the <gridView> tag to point to your backing bean.
In JSP:

<ig:gridView
 dataSource="#{webgrid_automaticSortingPage.employees}"
 pageSize="10"
 fixedColumnCount="2"
 style="width:600px">

2. Update the managed-beans.xml file to define the connection between the value of the dataSource
attribute and your backing bean.
In XML:

<managed-bean>
 <description>backing bean for the page automaticSorting</description>
 <managed-bean-name>webgrid_automaticSortingPage</managed-bean-name>
 <managed-bean-class>
 com.infragistics.faces.samples.webgrid.automaticSorting.Index
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
</managed-bean>

3. Set the value attribute of the <h:outputText> tag nested within the <ig:column> tag to the property value
of the object model.
In JSP:

<ig:column sortBy="firstName">
 <f:facet name="header">
 <h:outputText value="First Name" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.firstName}" />
</ig:column>

4.7.3.1.3 Bind WebGrid to Data

NetAdvantage for JSF

268 NetAdvantage for JSF

This feature allows data to be exported from a WebGrid™ to a Comma Separated Value (CSV) file. The data to
be exported can be selected in either of the following ways.

 All the data on the current page of the WebGrid component can be exported.

 The end user can select specific rows to be exported.

 The entire WebGrid can be exported

Note The only format currently supported is CSV.

As shown in the following code example, the Export method accepts different parameters depending on the
data to be exported.
In Java:

 grid.Export(RowToExport rowToExport, ExportFormat exportFormat)

 RowToExport is a constant representing the rows to be exported such CURRENT_ROWS, SELECTED_ROWS or
ENTIRE_GRID.

 ExportFormat is a constant representing the format to export to.

To export WebGrid data to a CSV file:

The following example assumes that you have a grid created with Row Selection enabled.

For information on how to create a grid, see Getting Started with WebGrid (Section 4.7.2). For information on
how to enable row selection, see Identify the Rows in a Collection (Section 4.7.3.1.5).

1. Add a command button to your page and add an action listener to it, as shown in the example JSP code
below.
In JSP:

<h:commandButton
 value="Export"
 actionListener="#{webgrid_exportPage.onClick}">
</h:commandbutton>

2. Create the onClick method in your backing bean which calls the export method, as shown in the example
JSP code below.
In Java:

public void onClick(ActionEvent event) {
// ask the grid to export its data in CSV format
 FacesContext context = FacesContext.getCurrentInstance();
// export selected rows if any
if (getGrid().getSelectedRows().size()>0) {
 getGrid().export(DataToExport.SELECTION, ExportFormat.CSV);
 }
else {
// otherwise export the current page
 getGrid().export(DataToExport.CURRENT, ExportFormat.CSV);
 }
 context.responseComplete();

4.7.3.1.4 Exporting Data to a CSV File

NetAdvantage for JSF

269 NetAdvantage for JSF

}

3. Save and run your project.

4. After you select specific rows in your grid and click Export, the data will be exported to a CSV file.

NetAdvantage for JSF

270 NetAdvantage for JSF

An enumerator constant, DATA_ROW, has been defined for use with any NetAdvantage for JSF components that
can be bound to a data collection. The DATA_ROW constant is used to represent the row number of the data in
the collection.

As an example, consider a WebGrid component that is bound to an ArrayList of employee data. The backing
bean has a getEmployees() method that is used to get the ArrayList. Each element in the ArrayList is of type
Employee which is a simple JavaBean with getters and setters for its fields, which include firstName, lastName,
email, and phoneNumber.

The DATA_ROW constant can be used in valid value binding expression. See the Binding JSF Components to
Data (Section 4.2) for more information about value binding expressions.

In JSP:

<ig:gridView
 dataSource="#{webgrid_employeeDAO.employees}"
 pagesize="10">
 <f:facet name="header">
 <h:outputText value="Employee List" />
 </f:facet>
 <ig:column>
 <f:facet name="header">
 <h:outputText value="First Name" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.firstName}" />
 </ig:column>
 <ig:column>
 <f:facet name="header">
 <h:outputText value="Last Name" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.lastName}" />
 </ig:column>
 <ig:column>
 <f:facet name="header">
 <h:outputText value="Email" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.email}" />
 </ig:column>
 <ig:column>
 <f:facet name="header">
 <h:outputText value="Phone Number" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.phoneNumber}" />
 </ig:column>
</ig:gridView>

When the above code is executed with sample data, the following is the resulting WebGrid.

4.7.3.1.5 Identify the Rows in a Collection

NetAdvantage for JSF

271 NetAdvantage for JSF

NetAdvantage for JSF

272 NetAdvantage for JSF

A key feature of the WebGrid component is that you can display values in the column footer that are calculated
using aggregated functions. For example, you can display a running total of a column or the maximum value of
a column in the footer.

This topic will demonstrate how to display calculations in the column's footer, as illustrated in the screen shot
below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

You can perform the following functions on the values of a column:

 SUM

 COUNT

 AVERAGE

 MAXIMUM

 MINIMUM

An aggregate function is applied to every row in the data set that the grid is bound to, regardless if those rows
are displayed to the end user or not. For example, if you implement paging on your WebGrid to display ten
rows per page to your end user, the value in the column footer is calculated using every row in the data set,
not just the the rows that are displayed per page.

When using a hierarchical grid, the calculated values displayed in the column footer are associated with the
parent level only.

When your end user exports WebGrid to a Comma Separated Value (CSV) file, the result displayed in the column
footer will also be exported.

In order to take advantage of this feature, you simply add the <ig:gridAgFunction> tag to the footer facet of the
column you want the calculations to be displayed. The applyOn attribute specifies which column you want the
calculation performed on. You can specify the aggregate function by setting the type attribute of
<ig:gridAgFunction>.

4.7.3.2 Aggregate Functions

NetAdvantage for JSF

273 NetAdvantage for JSF

As with all of our components the aggregate function component can be easily styled to suit your needs. For
example, you may want the results to be displayed in a different font. You can style the appearance of the
results using the style and styleClass attributes of the <ig:gridAgFunction>

The following code demonstrates how to calculate the average value of a column.

To enable grid activation using code:

In JSP:

<ig:column>
 <f:facet name="header">
 <h:outputText value="Age" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.age}" />
 <f:facet name="footer">
 <ig:gridAgFunction id="af01" applyOn="age" type="average" styleClass="igGrid_AgFunction"/>
 </f:facet>
</ig:column>

In Java:

 HtmlGridAgFunction agFunction = new HtmlGridAgFunction();
 agFunction.setApplyOn("age");
 agFunction.setType("average");
 agFunction.setStyleClass("igGrid_AgFunction");
 column.setFooter(agFunction);

To enable grid activation using RAD:

1. From the palette, drag the GridAgFunction component to the column on your WebGrid component where
you want the calculation to be displayed.

2. In the Properties window, under ig:gridAgFunction, set the following properties:

 Apply On -- Set this property to the column you want the calculation to be performed on.

 Type -- Set this property to the type of calculation you want performed.

3. In the Properties window, under ig:gridAgFunction, click Appearance.

4. Set the Style Class property to your style class

NetAdvantage for JSF

274 NetAdvantage for JSF

NetAdvantage for JSF

275 NetAdvantage for JSF

The look and feel of a component is very important when creating an application. The "look" implies how a
component visually appears, but the "feel" implies how a component acts; thus, you receive an appealing visual
style coupled with specific functionality.

You can easily modify the visual appearance and behavior of WebGrid by changing the grid's color scheme,
applying vertical and horizontal scroll bars to your grid, and enabling resizable columns.

Click the following links to view topics written specifically to help you design the look and feel of the WebGrid
components.

 Column Moving (Section 4.7.3.3.1)

 Fixed Columns (Section 4.7.3.3.2)

 Resizable Columns (Section 4.7.3.3.3)

 Setting the Width of a Column (Section 4.7.3.3.4)

 Horizontal Scroll Bars (Section 4.7.3.3.5)

 Vertical Scroll Bars (Section 4.7.3.3.6)

 Force Vertical Scroll Bars (Section 4.7.3.3.7)

Click the following link for information on the designing the look and feel.

 Designing the Look and Feel (Section 5)

4.7.3.3 Designing the Look and Feel

NetAdvantage for JSF

276 NetAdvantage for JSF

The WebGrid™ component has built-in functionality for allowing the user to move columns. Your end user can
move a column at run-time by selecting the column and dragging it into it's new position.

By default, column moving is enabled. There may be certain situations where you do not want your end user to
move the columns within your WebGrid. For example if you have a WebGrid showing project details, you may
not want to allow your end user to move the End Date column before the Start Date column.

You can set column moving to be disabled on the entire WebGrid or on a per column basis.

To disable column moving on the entire WebGrid, you simply set the movableColumns attribute of the
<ig:gridView> to False.

If you want to disable a certain column from moving you just set the movable attribute of the <ig:column> or
<ig:columnSelectRow> to False.

The attribute movableColumns of <ig:gridView> has a higher priority than the attribute movable of
<ig:column>. For example if you set the attribute movableColumns of <ig:gridView> to False, then you can not
move the columns even if you set the movable attribute of <ig:column> to True. However, if you set the
attribute movableColumns of <ig:gridView> to True, you can disable moving individual columns by setting the
movable attribute of <ig:column> to False.

Note: If you disable column moving on your WebGrid component, then the pin icon that allows your end
user to set a column as fixed is hidden. Also your end user will not be allowed to move columns between
fixed and unfixed columns.

This topic will demonstrate how to disable column moving on your WebGrid, as illustrated in the screen shot
below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To disable column moving using code:

In the entire WebGrid component:

In JSP:

<ig:gridView
 dataSource="#{webgrid_movableColumnsPage.employees}"
 pageSize="10"
 movableColumns="false" />

4.7.3.3.1 Column Moving

NetAdvantage for JSF

277 NetAdvantage for JSF

In Java:

 HtmlGridView gridView = new HtmlGridView();
 gridView.setMovableColumns(false);

Per column basis:

In JSP:

<ig:gridView
 dataSource="#{webgrid_movableColumnsPage.employees}"
 pageSize="10"
 movableColumns="true" />

 <ig:column movable="false">
 <f:facet name="header">
 <h:outputText value="First Name" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.firstName}" />
 </ig:column>

In Java:

 HtmlGridView gridView = new HtmlGridView();
 gridView.setMovableColumns(true);

 Column columnMove = new Column();
 columnMove.setMovable(false);

To disable column moving using RAD:

In the entire WebGrid component:

1. In Design view, select the WebGrid component.

2. In the Properties window, under ig:gridView, select Appearance.

3. Deselect the Movable Columns check box.

NetAdvantage for JSF

278 NetAdvantage for JSF

Per column basis:

1. In Design view, select the Column component.

2. In the Properties window, under ig:column, select Appearance.

3. Deselect the Movable check box.

NetAdvantage for JSF

279 NetAdvantage for JSF

One of the key features of WebGrid™ is the fixed column functionality. This feature allows you to create a fixed
(non-scrolling) column so that it remains in view when the grid is scrolled horizontally.

When the end user clicks the column indicator in the header, the column will shift to the left of the grid and
will remain fixed during horizontal scrolling.

By default, the fixed column functionality is turned off.

This topic will demonstrate how to enable fixed columns on your WebGrid, as illustrated in the screen shot
below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To enable fixed columns using code:

1. Set the following attributes of the <ig:gridView> tag, as shown in the JSP code below

 allowFixedColumns -- true

 fixedColumnCount -- 2

In JSP:

<ig:gridView
 dataSource="#{webgrid_fixedColumnsPage.employees}"
 pageSize="10"
 allowFixedColumns="true"
 fixedColumnCount="2"
 style="height: 200px; width: 600px;" />

To enable fixed columns using RAD:

1. In Design view, select the WebGrid component.

2. In the Properties window, under ig:gridView, select Appearance.

4.7.3.3.2 Fixed Columns

NetAdvantage for JSF

280 NetAdvantage for JSF

3. Set the following properties:

 Allow Fixed Columns -- true

 Fixed Column Count -- 2

NetAdvantage for JSF

281 NetAdvantage for JSF

One of the key features of the WebGrid components is the ability to resize the grid. With this feature, the end
user can expand or shrink the columns of the grid for better usability. For example, if the data in a cell is too
long for the user to read, they can expand the column to see all the information in the cell.

When you enable the resizing of columns in a grid, the end user can move the mouse pointer over the column
separator in the header to drag the separator and resize the column. Each column is resized independently, and
does not affect the other columns.

This topic will demonstrate how to enable column resizing, as illustrated in the screen shot below.

To enable column resize:

1. You can configure the resizing of columns globally for the entire grid.
Set the resizableColumns attribute of the <ig:gridView> tag to true:

In JSP:

<ig:gridView dataSource="#webgrid_resizeColumnsPage.employees}"
 pageSize="10"
 fixedColumnCount="2"
 resizableColumns="true"
 style= "width: 600px">

2. You can configure each column to be resizable.
Set the resizable attribute of the <ig:column> tag to true:

In JSP:

<ig:column resizable="true">
 <f:facet name="header">
 <h:outputText value="First Name" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.firstName}" />
 </ig:column>

4.7.3.3.3 Resizable Columns

NetAdvantage for JSF

282 NetAdvantage for JSF

NetAdvantage for JSF

283 NetAdvantage for JSF

There may be certain cases where the content in your column is extremely long and you want to lessen the
width of the column containing the data.

To achieve this you have to explicitly tell the browser what to do. This can be done using the overflow style.

The following code demonstrates how to set the width of a column to 100px.

In JSP:

<ig:column resizable="false">
 <f:facet name="header">
 <h:outputText value="e-mail"></h:outputText>
 </f:facet>
 <h:outputText value="#{DATA_ROW.email}"
 style="text-overflow:ellipsis;
 overflow:hidden;
 white-space:nowrap;
 width:100px;
 display:block;">
 </h:outputText>
</ig:column>

4.7.3.3.4 Setting the Width of a Column

NetAdvantage for JSF

284 NetAdvantage for JSF

When the content of WebGrid™ exceeds the specified width, a horizontal scroll bar is displayed.

The horizontal scroll bar also appears when resizable columns is enabled on the grid or the columns.

If you are creating a grid with a large number of columns, the horizontal scroll bar will allow your end users to
easily scroll through the columns of the grid.

You can specify certain columns to be fixed, meaning that these columns are not scrollable. For example, if you
create a grid with a large number of columns and enable horizontal scrolling, and the end user is scrolls across
the grid, the data may not hold much meaning unless the end user can see the data in the first column. For this
reason, you can set the first column to be fixed.

This topic will demonstrate how to enable horizontal scroll bars, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To enable horizontal scroll bars using code:

1. Set the width attribute of the <ig:gridView> tag, as shown in the example code below.

In JSP:

<ig:gridView dataSource="#webgrid_resizeColumnsPage.employees}"
 pageSize="10"
 resizableColumns="true"
 style= "width: 600px; height: 200px">

2. If you want to a specific column to be fixed when the end user scrolls the grid, set the fixedColumnCount
attribute:

In JSP:

<ig:gridView dataSource="#webgrid_resizeColumnsPage.employees}"
 pageSize="10"

4.7.3.3.5 Horizontal Scroll Bars

NetAdvantage for JSF

285 NetAdvantage for JSF

 fixedColumnCount="2"
 resizableColumns="true"
 style= "width: 600px; height: 200px">

To enable horizontal scroll bars with fixed columns at design time using RAD:

1. In Design view, select the grid component on your page.

2. In the Properties window, select the Appearance tab under the ig:gridView header.

3. Set the following properties:

 Style: width:600px

 Fixed Column Count: 1

NetAdvantage for JSF

286 NetAdvantage for JSF

Starting in the 2007 Volume 2 release, when the content of WebGrid™ exceeds the specified height, a vertical
scroll bar is displayed. If the height attribute of the <ig:gridView> is not set, the vertical scroll bar will not
appear. When scrolling through a grid, the Header and Footer of the grid are stationary.

If you are creating a large grid, the vertical scroll bar will allow your end users to easily scroll through the data
of the grid.

This topic will demonstrate how to enable vertical scroll bars, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To enable vertical scroll bars using code:

1. Set the height attribute of the <ig:gridView> tag, as shown in the example code below:

In JSP:

<ig:gridView dataSource="#webgrid_resizeColumnsPage.employees}"
 pageSize="10"
 fixedColumnCount="2"
 resizableColumns="true"
 style= "width: 600px; height: 200px">

To enable vertical scroll bars at design time using RAD:

1. From the palette, drag a GridView component on to your page.

2. In Design view, select the grid component on your page.

3. In the Properties window, select the Appearance tab under the ig:gridView header.

4. Set the height to 200px.

4.7.3.3.6 Vertical Scroll Bars

NetAdvantage for JSF

287 NetAdvantage for JSF

NetAdvantage for JSF

288 NetAdvantage for JSF

You can force vertical scroll bars to appear on your grid regardless of the value of the height attribute. To force
vertical scroll bars you simply set the forceVerticalScrollBar attribute of the <ig:gridView> tag to True. The
default value for this attribute is False.

The following code example demonstrates how to force vertical scroll bars on your grid.

In JSP:

<ig:gridView dataSource="#webgrid_resizeColumnsPage.employees}"
 pageSize="10"
 resizableColumns="true"
 forceVerticalScrollBar ="true">

4.7.3.3.7 Force Vertical Scroll Bars

NetAdvantage for JSF

289 NetAdvantage for JSF

Click the following links to view topics written specifically to help you edit data using the WebGrid component.

 Cell Editing (Section 4.7.3.4.1)

 Cell Editing Properties (Section 4.7.3.4.2)

4.7.3.4 Editing Data

NetAdvantage for JSF

290 NetAdvantage for JSF

Occasionally, you might use a database purely for informational purposes, never modifying the data. However,
when this is not the case, you need a dependable and easy way for the end user to modify data. Modifying data
is a task that the WebGrid™ component performs.

This topic explains how to allow your end users modify the data in a cell of WebGrid using valid JSF components
such as Infragistics WebInput components.

To enable cell editing within your WebGrid, you simply add the <gridEditing> tag.

You can also set a column in an editable grid to be read only by setting the readOnly attribute of the
<ig:column> tag.

When make your grid editable, a default editor (text box) is provided for each column. However, you can also
specify your own editor. An editor is declared by setting the name attribute of the <f:facet> tag. Within the
<f:facet> tag you can declare any editor, such as <ig:dateChooser>. The following code demonstrates how to do
this.

In JSP:

<f:facet name="editor">
 <ig:dateChooser value="#{DATA_ROW.hireDate}"
 editMasks="MM/dd/yyyy"
 styleClass="igGridCellEditDate"/>
</f:facet>

Note: When using a date chooser editor, the column type should be in the same date format as the date
chooser editor. If the formats are different, use the <f:convertDataTime> tag to avoid errors when you are
saving the changes.

To enable cell editing:

1. Open the <ig:gridView> tag and set the following attributes, as shown in the JSP code below:

 dataSource -- #{webgrid_cellEditingPage.employees}

 pageSize -- 10

In JSP:

<ig:gridView
 dataSource="#{webgrid_cellEditingPage.employees}"
 pagesize="10">

2. Declare tags to enable cell editing within the tags of gridView.
In JSP:

<ig:gridEditing enableOnMouseClick="single"
 cellValueChangeListener="#{webgrid_cellEditingPage.cellValueChangeListener}" />

3. Set the header of your grid to "Employee List", as shown in the JSP code below.
In JSP:

<f:facet name="header">
 <h:outputText value="Employee List" />
</f:facet>

4.7.3.4.1 Cell Editing

NetAdvantage for JSF

291 NetAdvantage for JSF

4. Set the column names of your grid and the value of the columns to the following attributes, as shown in
the JSP code below:

 Column 1:

 Column Name -- First Name

 Column Value -- #{DATA_ROW.firstName}

 Column 2:

 Column Name -- Last Name

 Column Value -- #{DATA_ROW.lastName}

In JSP:

<ig:column>
 <f:facet name="header">
 <h:outputText value="First Name" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.firstName}" />
</ig:column>
<ig:column>
 <f:facet name="header">
 <h:outputText value="Last Name" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.lastName}" />
</ig:column>

5. Set the column names of your grid and the value of the columns to the following attributes. Also set these
columns to allow your end user to edit them using the EmailInput and DateChooser components, as shown
in the JSP code below:

 Column 1:

 Column Name -- First Name

 Column Value -- #{DATA_ROW.firstName}

 Column Editor -- InputEmail

 Column 2:

 Column Name -- Last Name

 Column Value -- #{DATA_ROW.lastName}

 Column Editor -- DateChooser

In JSP:

<ig:column style="width:200px">
 <f:facet name="header">
 <h:outputLabel value="E-mail(IG:InputEMail)" />
 </f:facet>
 <f:facet name="editor">
 <ig:inputEmail value="#{DATA_ROW.email}"
 styleClass="igGridCellEdit"
 style="width:180px;height:11px" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.email}" />
</ig:column>
<ig:column style="width:200px">

NetAdvantage for JSF

292 NetAdvantage for JSF

 <f:facet name="header">
 <h:outputText value="Hire Date" />
 </f:facet>
 <f:facet name="editor">
 <ig:dateChooser value="#{DATA_ROW.hireDate}"
 editMasks="MM/dd/yyyy"
 styleClass="igGridCellEditDate" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.hireDate}">
 <f:convertDateTime pattern="MM/dd/yyyy" />
 </h:outputText>
</ig:column>

6. Close the <ig:gridView> tag, as shown in the JSP code below.
In JSP:

</ig:gridView>

7. Run the project. It should look similar to the grid below.

Related Topic

Cell Editing Properties (Section 4.7.3.4.2)

NetAdvantage for JSF

293 NetAdvantage for JSF

This topic describes all the attributes within the cell editing tags.

Setting the <ig:gridEditing> tag allows your end users to edit your WebGrid component. This tag is nested
within the <ig:gridView> tag.

The following is a list of all the attributes within the <ig:gridEditing> tag:

 editMode - Specifies the edit mode of the WebGrid component. You can set the editMode so that either a
single cell is edited or a row is edited.

 enableOnActive - Grid activation must be enabled on your WebGrid for this attribute to work correctly.
For more information, see Grid Activation (Section 4.7.3.5.2). This attribute specifies if the cell will
become enabled if your end user activates the cell.

 enableOnKeyPress - Grid activation must be enabled on your WebGrid for this attribute to work correctly.
For more information, see Grid Activation (Section 4.7.3.5.2). This attribute allows the cell to become
editable when your end user selects it.

 enableOnF2 - Grid activation must be enabled on your WebGrid for this attribute to work correctly. For
more information, see Grid Activation (Section 4.7.3.5.2). This attribute allows the cell to become
editable when your end user presses F2.

 updateMode - Specifies the update mode of the WebGrid component. You can set the updateMode so that
either a single cell is updated or a row is updated.

 enableOnMouseClick - Specifies which mouse click initializes editing. You can set the enableOnMouseClick
to accept a double or single click. By default editing is initialized when the end user double clicks.

 rowValueChangeListener - Specifies which method is called on the server when a row value is changed.

 cellValueChangeListener - Specifies which method is called on the server when a single cell value is
changed.

The <ig:gridClientEvents> tag is used to combine all properties for client events into one tag.

The following is a list of all the attributes within the <ig:gridClientEvents> tag:

 enteringEditMode - Specifies a function to be called when a cell/row is entering in editing mode.

 enteredEditMode - Specifies a function to be called when a cell/row is entered in editing mode

 exitingEditMode - Specifies a function to be called when a cell/row is exiting from editing mode.

 exitedEditMode - Specifies a function to be called when a cell/row is exited from editing mode.

The <ig:column> tag within an editable grid can be set to non-editable using the following attribute:

 readOnly - Specifies if the column is editable. Default value is false.

Related Topic

Cell Editing (Section 4.7.3.4.1)

4.7.3.4.2 Cell Editing Properties

NetAdvantage for JSF

294 NetAdvantage for JSF

Click the following links to view topics written specifically to help you navigate through your grid and select
data from your grid.

 Change Default Setting of ColumnSelectRow (Section 4.7.3.5.1)

 Grid Activation (Section 4.7.3.5.2)

 Grid Activation Properties (Section 4.7.3.5.3)

 Load On Demand Scrolling (Section 4.7.3.5.4)

 Multi-Column Sorting (Section 4.7.3.5.5)

 Paging (Section 4.7.3.5.6)

 Row Selection (Section 4.7.3.5.7)

 SelectedRowsChangeEvent (Section 4.7.3.5.8)

 Sorting (Section 4.7.3.5.9)

 Sorting a Localized WebGrid (Section 4.7.3.5.10)

4.7.3.5 Navigating and Selecting

NetAdvantage for JSF

295 NetAdvantage for JSF

By default when using the ColumnSelectRow component, each of the checkboxes are unselected when they are
initially loaded. There are certain situations where you would want the checkboxes to be selected when they
are initially loaded. To do this you simply set the defaultSelected attribute to True in the
<ig:columnSelectRow> tag.

The following code demonstrates how to override the default setting of ColumnSelectRow

In JSP:

<ig:ColumnSelectRow defaultSelected = "true">

4.7.3.5.1 Change Default Setting of ColumnSelectRow

NetAdvantage for JSF

296 NetAdvantage for JSF

The grid activation feature allows your end user to navigate through the cells or rows in your WebGrid™ using
the keyboard or mouse and activate each cell or row.

By default, activation is disabled on the WebGrid component.

This topic will demonstrate how to enable grid activation which allows your end user to navigate through the
cells, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

Keyboard Support:

 Arrow Keys -- allows the end user to navigate up, down, right or left.

 TAB Key -- allows the end user to navigate to next cell in the row. When the last cell in the current row is
reached, pressing the TAB key will activate the first cell in the next row.

 ENTER Key -- allows the end user to navigate to the cell below the activated cell. This is used in
combination with Cell Editing. For more information, see Cell Editing (Section 4.7.3.4.1).

 SHIFT + ENTER -- allows the end user to move to the cell above the activated cell. This is used in
combination with Cell Editing. For more information, see Cell Editing (Section 4.7.3.4.1).

 SHIFT + TAB -- allows the end user to move to the previously activated cell.

Mouse Support:

 The end user can simply click on a cell or row to activate it.

To enable grid activation, you simply add the <ig:gridActivation> tag to your WebGrid component.

The following code demonstrates how to set activation on your WebGrid.

To enable grid activation using code:

In JSP:

4.7.3.5.2 Grid Activation

NetAdvantage for JSF

297 NetAdvantage for JSF

<ig:gridView dataSource="#{webgrid_activation.employees}"
 pageSize="10">
 <ig:gridActivation />
 ...
 ...
</ig:gridView>

In Java:

HtmlGridActivation ga = new HtmlGridActivation();
UIComponentHelper.setFacet(grid.getTemplateItemsBehaviors(),
 GridView.FACET_GRID_ACTIVATION, ga);

To enable grid activation using RAD:

1. From the palette, drag the GridActivation component to your WebGrid.

2. In the Properties window, under ig:gridActivation, you can view and set the properties for GridActivation.

NetAdvantage for JSF

298 NetAdvantage for JSF

This topic describes all the attributes within the <ig:gridActivation> tag.

Setting the <ig:gridActivation> tag allows your end users to navigate through the cells or rows in your WebGrid™
using the keyboard or mouse and activate each cell or row. This tag is nested within the <ig:gridView> tag.

The following is a list of all the attributes within the <ig:gridActivation> tag:

 binding - This is a standard JSF attribute. Specifies the backing bean you want to wire your components to.
This attribute can only use a value expression.
In JSP:

 <ig:gridActivation binding="#{bean.uiComponent}"/>

 Id - Specifies the unique id of the component. This attribute doesn't support value expression.
In JSP:

 <ig:gridActivation id="gridActivation1"/>

 rendered - This is a standard JSF attribute. Specifies if the component should be displayed. Can be set to
True or False. This attribute can also use a value expression.

 activeCellChangedListener - This is a Value Change Event. This attribute can only use a value expression.
In JSP:

 <ig:gridActivation activeCellChangedListener="{#webGridActivationBean.activeCellChangedListener}" />

In Java:

 public void activeCellChangedListener(ActiveCellChangedEvent event) {...}

The activeCellChangedEvent method accepts ActiveCellChangedEvent as an argument. This event extends
ValueChangeEvent.

 activeCellStyleClass - Specifies the Cascading Style Sheet (CSS) file to use on an active cell.
In JSP:

 <ig:gridActivation activeCellStyleClass="ActiveCellStyle" />

 activeColumnStyleClass - Specifies the CSS file to use on an active column.
In JSP:

 <ig:gridActivation activeColumnStyleClass="ActiveColumnStyle" />

 activeRowStyleClass - Specifies the CSS file to use on an active row. You must set <ig:columnSelectRow />
for this attribute to work.
In JSP:

 <ig:gridActivation activeRowStyleClass="ActiveRowStyle" />

Related Topic

4.7.3.5.3 Grid Activation Properties

NetAdvantage for JSF

299 NetAdvantage for JSF

Grid Activation (Section 4.7.3.5.2)

NetAdvantage for JSF

300 NetAdvantage for JSF

The WebGrid component features load-on-demand to empower users requesting large volumes of data on an
only as-requested basis. This protocol allows pages to load much more quickly as they grab only the data that is
required.

Note: You must set the height attribute of the <gridView> tag, for more information see Vertical Scroll
Bars (Section 4.7.3.3.6), so that a vertical scroll bar is displayed, allowing the end user to scroll

To enable load-on-demand within your WebGrid, you simply set the loadOnDemand attribute within the
<gridView> tag.

Setting the rowFetchSize attribute within the <gridView> tag, allows you to specify how many rows to retrieve
from the server on each load on demand.

You can set the loadOnDemand attribute to the following values:

 default -- In this mode, the WebGrid component will initially load the number of rows specified by the
rowFetchSize attribute. When the end user scrolls to the end of the visible grid section, a postback is
issued to the server, which will in turn send the number of rows specified by the rowFetchSize attribute to
the client and these rows will be appended to the rows on the client.

 partitioned -- In this mode, the WebGrid component will initially load the number of rows specified by the
rowFetchSize attribute and the vertical scroll bar is set so that it visually accomodates all rows in the
underlying data set. WebGrid is divided into virtual pages, whenever the end user scrolls to any section of
the WebGrid component, it is calculated weather the virtual page has changed. If it is changed, the
number of rows specified by the rowFetchSize attribute is retrieved from the server and displayed in the
visible body of WebGrid.

Note: When you are using load on demand, you must ensure that the total height of the number of rows
specified by the rowFetchSize attribute is larger than the CSS height that is set in the style attribute for
your WebGrid.

This topic will demonstrate how to enable load-on-demand scrolling using default mode and partitioned mode
settings, as illustrated in the screen shots below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

4.7.3.5.4 Load On Demand Scrolling

NetAdvantage for JSF

301 NetAdvantage for JSF

To enable load-on-demand scrolling using code:

1. Set the following attributes of the <ig:gridView> tag, as shown in the JSP code below

 loadOnDemand -- default

 rowFetchSize -- 10

In JSP:

<ig:gridView
 dataSource="#{webgrid_automaticPagingPage.employees}"
 loadOnDemand="default"
 rowFetchSize="10"
 pageSize ="40"
 style="height: 200px; width: 600px; margin-bottom: 40px" />

To enable load-on-demand using RAD:

1. In Design view, select the WebGrid component.

2. In the Properties window, under ig:gridView, select Appearance.

3. Set the following properties:

 Load On Demand -- Default

 Row Fetch Size -- 10

NetAdvantage for JSF

302 NetAdvantage for JSF

NetAdvantage for JSF

303 NetAdvantage for JSF

WebGrid™ allows you to enable the sorting of multiple columns. The end user can accomplish this functionality
by clicking on the first column, holding the SHIFT key, and then clicking on the second column to be sorted.

Multiple-column sorting works by allowing the first column that is sorted to take the highest precedence over
the sorting of other columns.

Enabling multi-column sorting on your WebGrid allows your end users to view their WebGrid data in the order
that they choose, giving them more control over the layout and readability of your WebGrid.

The WebGrid component automatically perform AJAX-based multi-column sorting, and refresh only the grid
portion of the Web page by using our unique Smart Refresh™ and Smart Databinding technology.

This topic will demonstrate how to enable multi-column sorting, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To enable multi-column sorting using code:

1. Set the sortingMode attribute of the <ig:gridView> tag to multi, as shown in the JSP code below.
In JSP:

<ig:gridView
 dataSource="#{webgrid_multicolumnSortingPage.employees}"
 pageSize="10"
 sortingMode="multi"
 sortListener="#{webgrid_multicolumnSortingPage.sortListener}">

2. Set the sortBy attribute of the <ig:column> tag, as shown in the JSP code below.
In JSP:

<ig:column
 sortBy ="firstName">

To enable multi-column sorting using RAD:

4.7.3.5.5 Multi-Column Sorting

NetAdvantage for JSF

304 NetAdvantage for JSF

1. In Design view, select the WebGrid component.

2. In the Properties window, under ig:gridView, select Appearance.

3. Set the Sorting Mode property to Multi.

NetAdvantage for JSF

305 NetAdvantage for JSF

With WebGrid™, you can take advantage of its paging feature. By using paging, you allow your end users to view
a specified number of rows in the grid, instead of all the data at once.

The paging functionality automatically performs AJAX-based paging, and refreshes only the grid portion of the
Web page by using our unique Smart Refresh™ and Smart Databinding technology.

The pager component allows you to navigate through your grid:

 using a First, Last, Previous and Last pattern.

 choosing a specific page.

Note: If the rows of your grid are less than the number of rows specified for each page, then the pager
component will not appear.

You can navigate through your grid using Automatic Paging or Customizable Paging.

Automatic Paging
You can configure the WebGrid components to automatically display and handle the pager component, which
allows you to directly move to specific page indexes. To enable automatic paging, simply set the pageSize
attribute of the <gridview> tag.

To enable automatic paging:

1. Set the <pageSize> attribute of the gridView tag:
In JSP:

<ig:gridView dataSource="#webgrid_resizeColumnsPage.employees}"
 pageSize="10"
 fixedColumnCount="2"
 resizableColumns="true"
 style= "width: 600px">

To enable automatic paging in IBM® Rational® Application Developer for WebSphere Software® 7.0:

1. In Design view, select the grid component on your page.

2. In the Properties tab, under ig:gridView, select Data.

3. In the Page Size box, type 10.

Customizable Paging
You can customize the display of the pager component on your grid. The following options are available:

4.7.3.5.6 Paging

NetAdvantage for JSF

306 NetAdvantage for JSF

 Display First and Last Page

 Display Previous and Next Page

 Display Page Indexes

You can also set:

 the number of rows per page

 maximum number of pages to display in the index

You can use the <ig:pager/> tag to customize your pager component.

To customize the pager component:

1. Set the <bottomPagerRendered> attribute to True within the <ig:gridView> tag to display the pager at the
bottom of the grid.
Set the <topPagerRendered> attribute to True within the <ig:gridView> tag to display the pager at the top
of the grid.
In JSP:

<ig:gridView dataSource="#webgrid_resizeColumnsPage.employees}"
 pageSize="10"
 bottomPagerRendered="true"
 topPagerRendered="true">

2. Create a facet named "topPager" or "bottomPager" within the <ig:gridView> tag.

3. Create an <ig:pager> tag.
In JSP:

<f:facet name="topPager">
 <ig:pager />
 </f:facet>

4. Set the attributes for the <ig:pager> tag.
The following attributes can be set:

 firstLastRendered -- Specifies whether or not the first and last pages are visible.

 maximumPageNumders -- Specifies the maximum number of pages to display.

 pageNumberHoverStyleClass -- Specifies the CSS class applied to a page number when the mouse
pointer hovers over it.

 pageNumberSelectedStyleClass -- Specifies the CSS class applied to a selected page number.

 pageNumbersRendered -- Specifies whether or not page numbers are visible.

 pageNumberStyleClass -- Specifies the CSS class applied to the page numbers.

 previousNextRendered -- Specifies whether or not the previous and next pages are visible.

 style -- Specifies the style for the pager.

 styleClass -- Specifies the CSS class applied to the pager.

The following example code sets the maximum number of pages to display to two and does not display the
first and last pages.

In JSP:

<ig:pager maximumPageNumbers="2"

NetAdvantage for JSF

307 NetAdvantage for JSF

 firstLastRendered="false"/>

The following screen shot shows a grid with a customized pager.

NetAdvantage for JSF

308 NetAdvantage for JSF

You can allow your end users to select a row in WebGrid™ by using a Row Selection Event and Row Selection
Listener, allowing the end user to interact with the grid and perform an action based on their selection or
deselection actions.

For example, if an end user selects a row, the information from that row selection can be displayed elsewhere
on the form.

Note: The RowSelection event fires when rows are selected or deselected. The event sends the
SelectedRowsChangedEvent arguments to the backing bean method. The passed in argument has a method
called getSelectedRowsChange, which is a list of type SelectedRowChange, and contains only the newly
selected or deselected rows (previously selected or deselected rows will not be in this list). Therefore,
you would need to loop over the list to figure out which rows were selected versus deselected, each time.

This topic will demonstrate how to enable row selection, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

Note:This topic assumes that you have a grid created. For information on how to create a grid, see
Getting Started with WebGrid (Section 4.7.2).

To enable row selection using code:

1. Bind the <selectedRowsChangeListener> attribute of the gridView tag to a method in the backing bean
In JSP:

4.7.3.5.7 Row Selection

NetAdvantage for JSF

309 NetAdvantage for JSF

<ig:gridView
 binding="#{webgrid_rowSelectionPage.grid}"
 dataKeyName="id"
 dataSource="#{webgrid_rowSelectionPage.employees}"
 pageSize="10"
 selectedRowsChangeListener="#{webgrid_rowSelectionPage.onSelectedRowsChange}" >

2. Create a <columnSelectRow /> tag and set the showSelectAll attribute to True.
In JSP:

<ig:columnSelectRow showSelectAll="true" />

To enable row selection in RAD:

1. From the palette drag the ColumnSelectRow component on to your grid.

2. In Design view, select the ColumnSelectRow component on your page.

3. Select the Show Select All check box.

4. In the Properties tab, under the ig:gridView, select Advanced.

5. In the Selected Rows Change Listener, type {webgrid_rowSelectionPage.onSelectedRowsChange}.

NetAdvantage for JSF

310 NetAdvantage for JSF

The SelectedRowsChangeEvent event now contains two additional methods, isSelectAll() and selectAllIsChecked
(). With these methods you can determine if the SelectAll checkbox is selected and also if the event was
triggered from the SelectAll checkbox or from select row checkbox.

 isSelectAll() – returns true if the state of the SelectAll checkbox has changed state, else returns false.

 selectAllIsChecked() – returns true is the SelectAll checkbox is selected, else returns false.

4.7.3.5.8 SelectedRowsChangeEvent

NetAdvantage for JSF

311 NetAdvantage for JSF

Automatic sorting is an important piece of functionality provided by the WebGrid™ components. WebGrid
automatically displays and handles the sorting for you. Your end user can sort on the columns by clicking the
column headers, allowing them to view the grid data in the order that they want. Enabling sorting on your grid
allows your end users to view their grid data in the order that they choose, giving them more control over the
layout and readability of your grid.

The WebGrid components automatically perform AJAX-based sorting, and refresh only the grid portion of the
Web page by using our unique Smart Refresh™ and Smart Databinding technology.

This topic will demonstrate how to enable sorting, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To enable sorting using code:

1. Set the "sortBy" attribute of the <ig:column> tag, as shown in the JSP code below.
In JSP:

<ig:column sortBy="firstName">
 <f:facet name="header">
 <h:outputText value="First Name" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.firstName}" />
 </ig:column>

To enable sorting using RAD:

1. In Design view, select the column on which you want to enable sorting.

2. In the Properties window, under ig:column, select Advanced.

3. In the Sort By box, type firstName.

4.7.3.5.9 Sorting

NetAdvantage for JSF

312 NetAdvantage for JSF

NetAdvantage for JSF

313 NetAdvantage for JSF

By setting the newly added attributes language, country and variant in the tag, you can sort the data based on
different languages. For example if your data was in German, you can now set the sorting based on the German
alphabet so that German characters such as the Umlaut is sorted correctly.

The language attribute accepts a two letter code as defined by ISO639.2
(http://www.loc.gov/standards/iso639-2/php/English_list.php)

The country attribute accepts a two letter code as defined by ISO 3166
(http://www.iso.org/iso/country_codes/iso_3166_code_lists/english_country_names_and_code_elements.htm)

The variant attribute is a browser specific code defined by the Java Locale API
(http://java.sun.com/j2se/1.4.2/docs/api/java/util/Locale.html).

In JSP:

<ig:gridView language=”de” variant="”WIN”" country="de">

4.7.3.5.10 Sorting a Localized WebGrid

NetAdvantage for JSF

314 NetAdvantage for JSF

All of our JSF components comply with section 508, subpart 1194.21 of the Rehabilitation Act of 1973. Below is
a table containing the rules of subpart 1194.21 and how we comply with each rule.

4.7.4 WebGrid Accessibility Compliance

Rules How We Comply with the Rules

(a) Infragistics' components include keyboard support for tabbing into controls and navigating within them. All
NetAdvantage for JSF components that accept focus provide keyboard support.

(b) Infragistics NetAdvantage for JSF enables individuals to customize their desktop elements, including resizing and
rearranging controls and choosing color, size and format options.

(c) NetAdvantage for JSF provides a well-defined on-screen indication of the current focus that moves among
interactive interface elements as the input focus changes with minor exceptions. The components provide hover
styles and selection styles that highlight the position of the focus on the form or page. Focus rectangles are also
used along with the system caret to indicate focus location within the elements.

(d) Infragistics NetAdvantage for JSF provides sufficient information about user interface elements and program
elements represented by images are available in text in virtually all cases.

(g) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

(i) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

(j) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

(k) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

NetAdvantage for JSF

315 NetAdvantage for JSF

Click the links below to find information specific to the WebInput™ components.

 About the WebInput Components (Section 4.8.1) -- Provides information about the key functionalities of
the WebInput components.

 WebInput Accessibility Compliance (Section 4.8.2) -- This topic outlines the way in which WebInput
meets the requirements of the Section 508 standards. This accessibility compliance allows your end users,
specifically those with disabilities, to be able to access and use your Web application built using the
WebInput control.

 API Reference Guide (on-line documentation) -- The Application Programming Interface (API) Reference
Guide is the foundation for all our NetAdvantage for JSF components and offers a definitive listing of all
the NetAdvantage for JSF classes and interfaces.

4.8 WebInput

NetAdvantage for JSF

316 NetAdvantage for JSF

The following is a list of the WebInput™ components:

 CheckBox (Section 4.8.1.1)

 CheckboxList (Section 4.8.1.2)

 DateChooser (Section 4.8.1.3)

 DropdownList (Section 4.8.1.4)

 InputCurrency (Section 4.8.1.5)

 InputDecimal (Section 4.8.1.6)

 InputEmail (Section 4.8.1.7)

 InputPercent (Section 4.8.1.8)

 InputRegularExpression (Section 4.8.1.9)

 RadioButton (Section 4.8.1.10)

 RadioButtonList (Section 4.8.1.11)

The WebInput components allow you to display various components in your application to enable the user to
input various types of data (e.g., dates, e-mail addresses, regular expressions) and make selections using check
boxes, radio buttons, or drop-down lists.

4.8.1 About the WebInput Components

NetAdvantage for JSF

317 NetAdvantage for JSF

The CheckBox component is used for selection in your application and has the ability to cause other
components to be updated when their values change.

AJAX is used for updating when a check box is selected.

This topic will demonstrate how to use the CheckBox component and display a value when the check box is
selected, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To create a CheckBox component using code:

1. Open the <ig:checkbox> tag and set the following attributes, as shown in the JSP code below:

 binding -- #{webinput_checkbox.checkbox1}

 label -- Marketing

 smartRefreshIds -- outputSelectedCheckbox

 valueChangeListener -- #{webinput_checkBox.onValueChange}

In JSP:

<ig:checkBox
 binding="#{webinput_checkBox.checkbox1}"
 label="Marketing"
 smartRefreshIds="outputSelectedCheckbox"
 valueChangeListener="#{webinput_checkBox.onValueChange}"/>

2. Repeat for each check box.

3. Open the <h:outputText> tag and set the following attributes as shown in the JSP code below. This is
where the values of the check boxes will be displayed:

 id -- outputSelectedCheckbox

 value -- #{webinput_checkBox.selectedCheckbox}

In JSP:

<h:outputText
 id="outputSelectedCheckbox"
 value="#{webinput_checkBox.selectedCheckbox}" />

To create a CheckBox component using RAD:

4.8.1.1 CheckBox

NetAdvantage for JSF

318 NetAdvantage for JSF

1. From the palette, drag the CheckBox component to your page.

2. In the Properties window, select ig:checkbox.

3. Set the following properties:

 binding -- #{webinput_checkbox.checkbox1}

 label -- Marketing

 smartRefreshIds -- outputSelectedCheckbox

4. In the Properties tab, under ig:checkbox, select Data.

5. In the Value Change Listener, set the value to #{webinput_checkBox.onValueChange}.

6. Repeat for each check box.

7. From the palette, under the Enhanced Faces Components, drag the Output component on to your page.

8. In the Properties window, select h:outputText.

9. Set the following properties:
Id -- outputSelectedCheckbox
Value -- #{webinput_checkBox.selectedCheckbox}
Format -- String

NetAdvantage for JSF

319 NetAdvantage for JSF

NetAdvantage for JSF

320 NetAdvantage for JSF

The CheckboxList component is used for selection purposes in your application and can also be configured to
update other components based on the values selected. The CheckboxList component is bound to values in your
backing bean.

AJAX is used for updating when a check box is selected.

This topic will demonstrate how to create a CheckboxList component, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To create a CheckboxList component using code:

1. Open the <ig:checkBoxList> tag and set the following attributes, as shown in the JSP code below:

 id -- country

 dataSource -- #{webinput_checkBoxList.countryList}

In JSP:

<ig:checkBoxList
 id = "country"
 dataSource ="#{webinput_checkBoxList.countryList}"/>

To create a CheckboxList component using RAD:

1. From the palette, drag the CheckboxList component to your page.

2. In the Properties window, select ig:checkBoxList.

3. Set Id to country

4. In the Properties tab, under ig:checkBoxList, select Data.

5. Set Data Source to #{webinput_checkBoxList.countryList}

4.8.1.2 CheckboxList

NetAdvantage for JSF

321 NetAdvantage for JSF

NetAdvantage for JSF

322 NetAdvantage for JSF

The DateChooser component combines a date-specific masked editing field with the drop down support of a
combo box. Users can enter dates directly in the control, or click the drop down button to display a calendar
for date selection.

The DateChooser component allows you to:

 set minimum and maximum limits on the date range that your end users may enter in to the combo box or
select from the calendar.

 change the appearance and style of the DateChooser component.

 specify the day format.

 specify the first day of the week to display.

The DateChooser component can also be used inside of WebGrid to provide an intuitive editing and selection
interface for grid columns that handle dates.

Note: When using the DateChooser converter, you need to extend
com.infragistics.faces.input.converter.DateTimeConverter

This topic will demonstrate how to create the DataChooser component, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To create a DateChooser component using code:

1. Open the <ig:dateChooser> tag and set the following attributes, as shown in the JSP code below:

 dayHeaderFormat -- Long

 firstDayOfWeek -- 1

 editMasks -- MM/dd/yyyy hh:mm a

 maximumDate -- 10/22/2007

 minimumDate -- 10/12/2007

 dayHoverStyleClass -- red

In JSP:

<ig:dateChooser
 dayHeaderFormat ="Long"

4.8.1.3 DateChooser

NetAdvantage for JSF

323 NetAdvantage for JSF

 firstDayOfWeek="1"
 editMasks="MM/dd/yyyy hh:mm a"
 maximumDate="10/22/2007"
 minimumDate="10/12/2007"
 dayHoverStyleclass="red"/>

To create a DateChooser component using RAD:

1. From the palette, drag the DateChooser component to your page.

2. In the Properties window, select ig:dateChooser.

3. Set the following properties:

 Edit Masks -- MM/dd/yyyy hh:mm a

 Maximum Date -- 10/22/2007

 Minimum Date -- 10/12/2007

4. In the Properties tab, under ig:checkbox, select Appearance.

5. Set the following properties:

 Day Header Format -- Long

 Day Hover Style Class -- red

 First Day Of Week -- 1

Related Topic

Set the Text of DateChooser Submit Button (Section 4.8.1.3.1)

NetAdvantage for JSF

324 NetAdvantage for JSF

There may be certain situations where the default setting on the DateChooser’s submit button is not suitable
for your web application. You may require more information to be displayed to your end user that explicitly
states what the button does.

This topic will demonstrate how to set the text of the button as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To set the button’s value using code:

In JSP:

 <ig:dateChooser buttonText="Show More Date"/>

In Java:

HTMLDateChooser dateChooser = new HTMLDateChooser();
dateChooser.setButtonText = “Show More Dates”;

To set the button’s value using RAD:

1. From the Palette, drag the DateChooser component to your page.

2. In the Design View, select the DateChooser component.

3. In the properties window, select ig:dateChooser.

4. Set the Button Text property to Show More Dates.

4.8.1.3.1 Set the Text of the Submit Button

NetAdvantage for JSF

325 NetAdvantage for JSF

NetAdvantage for JSF

326 NetAdvantage for JSF

The DropdownList component is used for selection purposes in your application and can also be configured to
update other components based on the values selected.

AJAX is used for updating when a check box is selected.

This topic will demonstrate how to create a DropdownList component, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To create a DropDownList component using code:

1. Open the <ig:dropDownList> tag and set the following attributes, as shown in the JSP code below:

 id -- country

 dataSource -- #{webinput_checkBoxList.countryList}

In JSP:

<ig:dropDownList
 id = "country"
 dataSource ="#{webinput_checkBoxList.countryList}"/>

To create a DropdownList component using RAD:

1. From the palette, drag the DropDownList component to your page.

2. In the Properties window, select ig:dropDownList.

3. Set Id to country

4. In the Properties tab, under ig:dropDownList, select Data.

5. Set Data Source to #{webinput_dropDown.countryList}

4.8.1.4 DropdownList

NetAdvantage for JSF

327 NetAdvantage for JSF

NetAdvantage for JSF

328 NetAdvantage for JSF

The InputCurrency component is used to display your end user's input in a currency format.

The InputCurrency component allows you to specify:

 the currency type.

 the maximum number of digits to be displayed after the decimal point.

 the minimum number of digits to be displayed after the decimal point.

 the maximum number of digits to be displayed before the decimal point.

 the minimum number of digits to be displayed before the decimal point.

 the maximum value allowed.

 the minimum value allowed.

This topic will demonstrate how to create the InputCurrency component, as illustrated in the screen shot
below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To create an InputCurrency component using code:

1. Open the <ig:inputCurrency> tag and set the following attributes, as shown in the JSP code below:

 value -- 0

 maximumFractionDigits -- 2

 maximumIntegerDigits -- 4

 maximumNumber -- 90

 minimumFractionDigits -- 0

 minimumIntegerDigits -- 2

 minimumNumber -- 10

 currency -- US

In JSP:

<ig:inputCurrency value="0"
 maximumFractionDigits="2"
 maximumIntegerDigits="4"
 maximumNumber="90"
 minimumFractionDigits="0"
 minimumIntegerDigits="2"
 minimumNumber="10"
 currency="US"/>

To create an InputCurrency component using RAD:

1. From the palette, drag the InputCurrency component to your page.

4.8.1.5 InputCurrency

NetAdvantage for JSF

329 NetAdvantage for JSF

2. In the Properties window, select ig:inputCurrency.

3. Set the following properties:

 Maximum Fraction Digits -- 2

 Maximum Integer Digits -- 4

 Maximum Number -- 90

 Minimum Fraction Digits -- 0

 Minimum Integer Digits -- 2

 Minimum Number -- 10

4. In the Properties tab, under ig:checkBoxList, select Appearance.

5. Set Currency to US.

NetAdvantage for JSF

330 NetAdvantage for JSF

The InputDecimal component is used to display the end user's input in decimal format.

The InputDecimal component allows you to specify:

 the maximum number of digits to be displayed after the decimal point.

 the minimum number of digits to be displayed after the decimal point.

 the maximum number of digits to be displayed before the decimal point.

 the minimum number of digits to be displayed before the decimal point.

 the maximum value allowed.

 the minimum value allowed.

This topic will demonstrate how to use the InputDecimal component, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To create an InputDecimal component using code:

1. Open the <ig:inputDecimal> tag and set the following attributes, as shown in the JSP code below:

 value -- 0

 maximumFractionDigits -- 2

 maximumIntegerDigits -- 4

 maximumNumber -- 90

 minimumFractionDigits -- 0

 minimumIntegerDigits -- 2

 minimumNumber -- 10

In JSP:

<ig:inputDecimal value="0"
 maximumFractionDigits="2"
 maximumIntegerDigits="4"
 maximumNumber="90"
 minimumFractionDigits="0"
 minimumIntegerDigits="2"
 minimumNumber="10"/>

To create an InputDecimal component using RAD:

1. From the palette, drag the InputDecimal component to your page.

2. In the Properties window, select ig:inputDecimal.

3. Set the following properties:

 Maximum Fraction Digits -- 2

4.8.1.6 InputDecimal

NetAdvantage for JSF

331 NetAdvantage for JSF

 Maximum Integer Digits -- 4

 Maximum Number -- 90

 Minimum Fraction Digits -- 0

 Minimum Integer Digits -- 2

 Minimum Number -- 10

NetAdvantage for JSF

332 NetAdvantage for JSF

The InputEmail component is used to ensure that the end user has entered a valid e-mail address.

This topic will demonstrate how to use the InputEmail component, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To create an InputEmail component using code:

1. Open the <ig:inputEmail> tag, as shown in the JSP code below:
In JSP:

<ig:inputEmail />

2. Create a commandButton, as shown in the JSP code below:
In JSP:

<h:commandButton value="Validate Email"
 title="decode inputEmail />

3. Save and run your application. Clicking on the button will automatically validate the input value.

To create an InputEmail component using RAD:

1. From the palette, drag the InputEmail component to your page.

2. From the palette, drag a command Button component to your page.

3. Save and run your application. Clicking on the button will automatically validate the input value.

4.8.1.7 InputEmail

NetAdvantage for JSF

333 NetAdvantage for JSF

The InputPercent component is used to display the end user's input as a percentage.

The InputPercent component allows you to specify:

 the maximum number of digits to be displayed after the decimal point.

 the minimum number of digits to be displayed after the decimal point.

 the maximum number of digits to be displayed before the decimal point.

 the minimum number of digits to be displayed before the decimal point.

 the maximum value allowed.

 the minimum value allowed.

This topic will demonstrate how to create the InputPercent component, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To create an InputPercent component using code:

1. Open the <ig:inputPercent> tag and set the following attributes, as shown in the JSP code below:

 value -- 0

 maximumFractionDigits -- 2

 maximumIntegerDigits -- 4

 maximumNumber -- 90

 minimumFractionDigits -- 0

 minimumIntegerDigits -- 2

 minimumNumber -- 10

In JSP:

<ig:inputPercent value="0"
 maximumFractionDigits="2"
 maximumIntegerDigits="4"
 maximumNumber="90"
 minimumFractionDigits="0"
 minimumIntegerDigits="2"
 minimumNumber="10"/>

To create an InputPercent component using RAD:

1. From the palette, drag the InputPercent component to your page.

2. In the Properties window, select ig:inputPercent.

3. Set the following properties:

 Maximum Fraction Digits -- 2

4.8.1.8 InputPercent

NetAdvantage for JSF

334 NetAdvantage for JSF

 Maximum Integer Digits -- 4

 Maximum Number -- 90

 Minimum Fraction Digits -- 0

 Minimum Integer Digits -- 2

 Minimum Number -- 10

NetAdvantage for JSF

335 NetAdvantage for JSF

The InputRegularExpression component is used to create custom validation routines on the end user's input.

This topic will demonstrate how to use the InputRegularExpression component, as illustrated in the screen shot
below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To create an InputRegularExpression component using code:

1. Open the <ig:inputRegularExpression> tag and set the following attributes, as shown in the JSP code below:

 id -- creditcard

 regularExpression -- ^((4\d{3})|(5[1-5]\d{2})|(6011))[-\s]?\d{4}[-\s]?\d{4}[-\s]?\d{4}|3[4,7]\d{13}$

In JSP:

<ig:inputRegularExpression id="creditcard"
 regularExpression="^((4\d{3})|(5[1-5]\d{2})|(6011))[-\s]?\d{4}[-\s]?\d{4}[-\s]?\d{4}|3[4,7]\d{13}$"
/>

To create an InputRegularExpression component using RAD:

1. From the palette, drag the InputRegularExpression component to your page.

2. In the Properties window, select ig:inputRegularExpression.

3. Set the following properties:

 id -- creditcard

 regularExpression -- ^((4\d{3})|(5[1-5]\d{2})|(6011))[-\s]?\d{4}[-\s]?\d{4}[-\s]?\d{4}|3[4,7]\d{13}$

4.8.1.9 InputRegularExpression

NetAdvantage for JSF

336 NetAdvantage for JSF

NetAdvantage for JSF

337 NetAdvantage for JSF

The RadioButton component is used for selection purposes in your application and can also be configured to
update other components based on the values selected. Only one button per group can be selected.

This topic will demonstrate how to use the RadioButton component and display the value when the radio button
is selected, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To create a RadioButton component using code:

1. Open the <ig:radioButton> tag and set the following attributes, as shown in the JSP code below:

 binding -- #{webinput_radioButton.radioButton1}

 groupName -- deptGroup

 label -- Marketing

 value -- radioButton1

 smartRefreshIds -- outputSelectedRadioButton

In JSP:

<ig:radioButton
 binding="#{webinput_radioButton.radioButton1}"
 groupName="deptGroup"
 label="Marketing"
 value="radioButton1"
 smartRefreshIds="outputSelectedRadioButton"/>

2. Repeat for each radio button.

3. Open the <h:outputText> tag and set the following attributes as shown in the JSP code below. This is
where the values of the radio button will be displayed:

 id -- outputSelectedRadioButton

 value -- #{webinput_radioButton.selectedRadioButton}

In JSP:

<h:outputText
 id="outputSelectedRadioButton"
 value="#{webinput_radioButton.selectedRadioButton}" />

4.8.1.10 RadioButton

NetAdvantage for JSF

338 NetAdvantage for JSF

To create a RadioButton component using RAD:

1. From the palette, drag the RadioButton component to your page.

2. In the Properties window, select ig:radioButton.

3. Set the following properties:

 Binding -- #{webinput_radioButton.radioButton1}

 Group Name -- deptGroup

 Label -- Marketing

 Smart Refresh Ids -- outputSelectedRadioButton

4. In the Properties tab, under ig:radioButton, select Data.

5. Set Value to radioButton1.

6. Repeat for each radio button.

7. From the palette, under the Enhanced Faces Components, drag the Output component on to your page.

8. In the Properties window, select h:outputText.

9. Set the following properties:
Id -- outputSelectedRadioButton
Value -- #{webinput_radioButton.selectedRadioButton}
Format -- String

NetAdvantage for JSF

339 NetAdvantage for JSF

NetAdvantage for JSF

340 NetAdvantage for JSF

The RadioButtonList component is used for selection purposes in your application and can also be configured to
update other components based on the value selected.

This topic will demonstrate how to use the RadioButtonList component, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To create a RadioButtonList component using code:

1. Open the <ig:radioButtonList> tag and set the following attributes, as shown in the JSP code below:

 id -- country

 dataSource -- #{webinput_radioButtonList.countryList}

In JSP:

<ig:radioButtonList
 id = "country"
 dataSource ="#{webinput_radioButtonList.countryList}"/>

To create a RadioButtonList component using RAD:

1. From the palette, drag the RadioButtonList component to your page.

2. In the Properties window, select ig:radioButtonList.

3. Set Id to country

4. In the Properties tab, under ig:radioButtonList, select Data.

5. Set Data Source to #{webinput_radioButtonList.countryList}

4.8.1.11 RadioButtonList

NetAdvantage for JSF

341 NetAdvantage for JSF

NetAdvantage for JSF

342 NetAdvantage for JSF

All of our JSF components comply with section 508, subpart 1194.21 of the Rehabilitation Act of 1973. Below is
a table containing the rules of subpart 1194.21 and how we comply with each rule.

4.8.2 WebInput Accessibility Compliance

Rules How We Comply with the Rules

(a) Infragistics' components include keyboard support for tabbing into controls and navigating within them. All
NetAdvantage for JSF components that accept focus provide keyboard support.

(b) Infragistics NetAdvantage for JSF enables individuals to customize their desktop elements, including resizing and
rearranging controls and choosing color, size and format options.

(c) NetAdvantage for JSF provides a well-defined on-screen indication of the current focus that moves among
interactive interface elements as the input focus changes with minor exceptions. The components provide hover
styles and selection styles that highlight the position of the focus on the form or page. Focus rectangles are also
used along with the system caret to indicate focus location within the elements.

(d) Infragistics NetAdvantage for JSF provides sufficient information about user interface elements and program
elements represented by images are available in text in virtually all cases.

(g) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

(i) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

(j) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

(k) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

NetAdvantage for JSF

343 NetAdvantage for JSF

Click the links below to find information specific to the WebMenu™ components.

 About the WebMenu Components (Section 4.9.1) -- Provides information about the key functionalities of
the WebMenu components.

 Create a WebMenu Component (Section 4.9.2) -- Contains a short, task-based topic that explains how to
create a WebMenu component.

 Expand or Collapse WebMenu with Mouse Events (Section 4.9.3) -- This topic explains how to control
how the WebMenu opens or closes.

 WebMenu Accessibility Compliance (Section 4.9.4) -- This topic outlines the way in which WebMenu
meets the requirements of the Section 508 standards. This accessibility compliance allows your end users,
specifically those with disabilities, to be able to access and use your Web application built using the
WebMenu control.

 API Reference Guide (on-line documentation) -- The Application Programming Interface (API) Reference
Guide is the foundation for all our NetAdvantage for JSF components and offers a definitive listing of all
the NetAdvantage for JSF classes and interfaces.

4.9 WebMenu

NetAdvantage for JSF

344 NetAdvantage for JSF

The following is a list of the WebMenu™ components:

 Menu

 MenuItem

 MenuItemCheckMark

 MenuItemSeparator

The WebMenu component allows you to customize the look and feel of the following UI elements:

 Appearance of the menu bar

 Default appearance of menu items nested inside a menu bar

 Hover appearance of menu items nested inside a menu bar

 Appearance of menus (other than the menu bar)

 Default appearance of menu items

 Hover appearance of menu items

Check marks or radio buttons can be displayed next to a menu item. They can also be grouped so that only one
menu item is selected at a time.

4.9.1 About the WebMenu Components

NetAdvantage for JSF

345 NetAdvantage for JSF

The WebMenu component is a container component that displays MenuItems.

This topic will demonstrate how to create a WebMenu component, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To create a WebMenu component using code:

1. Open the <ig:menu> tag and set the id property to menu1, as shown in the JSP code below:
In JSP:

<ig:menu id="menu1">

2. Add a menu item and set the following properties:

 value -- File

 actionListener -- #{webmenu_overview.onItemClick}

In JSP:

<ig:menuItem value="File"
 actionListener="#{webmenu_overview.onItemClick}">

3. The following menuItems are nested within the top level menuItem File, so they will appear as a drop
down menu. Add the nested menuItems and set the following properties:

 menuItem 1

 value -- New

 actionListener -- #{webmenu_overview.onItemClick}

 menuItem 2

 value -- Open

 actionListener -- #{webmenu_overview.onItemClick}

 menuItem 3

 value -- Save

 actionListener -- #{webmenu_overview.onItemClick}

4.9.2 Create a WebMenu Component

NetAdvantage for JSF

346 NetAdvantage for JSF

 menuItem 4

 value -- Save As

 actionListener -- #{webmenu_overview.onItemClick}

 Create a menuItemSeparator

 menuItem 5

 value -- Print

 iconUrl -- /resources/print.gif

 hoverIconUrl -- /resources/printhover.gif

 actionListener -- #{webmenu_overview.onItemClick}

 menuItem 6

 value -- Print Preview

 iconUrl -- /resources/printpreview.gif

 hoverIconUrl -- /resources/printpreviewhover.gif

 actionListener -- #{webmenu_overview.onItemClick}

 Create a menuItemSeparator

 menuItem 7

 value -- Exit

 actionListener -- #{webmenu_overview.onItemClick}

In JSP:

<ig:menuItem value="New"
 actionListener="#{webmenu_overview.onItemClick}" />
<ig:menuItem value="Open"
 actionListener="#{webmenu_overview.onItemClick}" />
<ig:menuItem value="Save"
 actionListener="#{webmenu_overview.onItemClick}" />
<ig:menuItem value="Save As"
 actionListener="#{webmenu_overview.onItemClick}" />
<ig:menuItemSeparator />
<ig:menuItem value="Print"
 iconUrl="/resources/print.gif"
 hoverIconUrl="/resources/printhover.gif"
 actionListener="#{webmenu_overview.onItemClick}" />
<ig:menuItem value="Print Preview"
 iconUrl="/resources/printpreview.gif"
 hoverIconUrl="/resources/printpreviewhover.gif"
 actionListener="#{webmenu_overview.onItemClick}" />
<ig:menuItemSeparator />
<ig:menuItem value="Exit"
 actionListener="#{webmenu_overview.onItemClick}" />

4. Close the top level <ig:menuItem> tag.
In JSP:

 </ig:menuItem>

5. Repeat to add more menu items.

NetAdvantage for JSF

347 NetAdvantage for JSF

6. Close the <ig:menu> tag.
In JSP:

 </ig:menu>

To create a WebMenu component using RAD:

1. From the palette, drag the Menu component to your page.

2. The default Menu is created with two menu items.

3. From the palette, drag the MenuItem component to your Menu to add more menu items.

4. In the Properties tab, set Id to menu1.

5. Expand your menu from the Outline tab, then select Menu Item 1.

6. In the Properties tab, under ig:menuItem, select Advanced.

NetAdvantage for JSF

348 NetAdvantage for JSF

7. Set Action Listener to #{webmenu_overview.onItemClick}.

8. In the Properties tab, under ig:menuItem, select Data.

9. Set Value to File.

10. From the palette, drag the MenuItem component to the File menu item to add nested menu items.

11. Expand the File menu item from the Outline tab.

12. Set the following properties for each menu item:

 menuItem 1

 Value -- New

 Action Listener -- #{webmenu_overview.onItemClick}

 menuItem 2

 Value -- Open

 Action Listener -- #{webmenu_overview.onItemClick}

 menuItem 3

 Value -- Save

 Action Listener -- #{webmenu_overview.onItemClick}

 menuItem 4

 Value -- Save As

 Action Listener -- #{webmenu_overview.onItemClick}

 Create a menuItemSeparator

 menuItem 5

 Value -- Print

 Icon Url -- /resources/print.gif

 Hover Icon Url -- /resources/printhover.gif

 Action Listener -- #{webmenu_overview.onItemClick}

 menuItem 6

NetAdvantage for JSF

349 NetAdvantage for JSF

 Value -- Print Preview

 Icon Url -- /resources/printpreview.gif

 Hover Icon Url -- /resources/printpreviewhover.gif

 Action Listener -- #{webmenu_overview.onItemClick}

 Create a menuItemSeparator

 menuItem 7

 Value -- Exit

 Action Listener -- #{webmenu_overview.onItemClick}

13. Repeat to add more menu items.

NetAdvantage for JSF

350 NetAdvantage for JSF

The expandOn and collapseOn attributes of the <ig:menu> and <ig:menuItem> tag specifies how to control
when the menu items opens or closes through mouse events.

Currently, the expandOn attribute accepts a mouse over event or a mouse left click event as values.

The collapseOn attribute accepts a mouse hover out event or a mouse click out event as values.

You can set these attributes at the parent level, so that all the children menu items will inherit the setting or
you can set it for each individual menu item.

The following code demonstrates how to open a menu item by using the mouse left click event.

In JSP:

<ig:menuItem expandOn="leftMouseClick">
 <ig:menuItem> ...
 <ig:menuItem> ...
</ig:menuItem>

4.9.3 Expand or Collapse WebMenu with Mouse Events

NetAdvantage for JSF

351 NetAdvantage for JSF

All of our JSF components comply with section 508, subpart 1194.21 of the Rehabilitation Act of 1973. Below is
a table containing the rules of subpart 1194.21 and how we comply with each rule.

4.9.4 WebMenu Accessibility Compliance

Rules How We Comply with the Rules

(a) Infragistics' components include keyboard support for tabbing into controls and navigating within them. All
NetAdvantage for JSF components that accept focus provide keyboard support.

(b) Infragistics NetAdvantage for JSF enables individuals to customize their desktop elements, including resizing and
rearranging controls and choosing color, size and format options.

(c) NetAdvantage for JSF provides a well-defined on-screen indication of the current focus that moves among
interactive interface elements as the input focus changes with minor exceptions. The components provide hover
styles and selection styles that highlight the position of the focus on the form or page. Focus rectangles are also
used along with the system caret to indicate focus location within the elements.

(d) Infragistics NetAdvantage for JSF provides sufficient information about user interface elements and program
elements represented by images are available in text in virtually all cases.

(g) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

(i) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

(j) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

(k) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

NetAdvantage for JSF

352 NetAdvantage for JSF

Click the links below to find information specific to the WebTab™ components.

 About the WebTab Components (Section 4.10.1) -- Provides information about the key functionalities of
the WebTab components.

 Create a WebTab Component (Section 4.10.2) -- Contains a short, task-based topic that explains how to
create a WebTab component.

 WebTab Accessibility Compliance (Section 4.10.3) -- This topic outlines the way in which WebTab meets
the requirements of the Section 508 standards. This accessibility compliance allows your end users,
specifically those with disabilities, to be able to access and use your Web application built using the
WebTab control.

 API Reference Guide (on-line documentation) -- The Application Programming Interface (API) Reference
Guide is the foundation for all our NetAdvantage for JSF components and offers a definitive listing of all
the NetAdvantage for JSF classes and interfaces.

4.10 WebTab

NetAdvantage for JSF

353 NetAdvantage for JSF

The following is a list of the WebTab™ components:

 TabView

 TabItem

The WebTab component allows you to customize the look and feel of the following UI elements:

 Default appearance of a TabView

 Default appearance of a TabItem

 Hover appearance of TabItems

 Selected appearance of TabItems

 Disabled TabItems

These components support a nested TabView, providing the ability to display tabs within tabs for the more
complex configurations that your application may require.

4.10.1 About the WebTab Components

NetAdvantage for JSF

354 NetAdvantage for JSF

The WebTab component contains a TabView component and a TabItem component. The TabView component is
a container component that displays TabItems.

WebTab automatically and transparently sends AJAX requests to fetch TabItems On-Demand.

This topic will demonstrate how to use the WebTab component, as illustrated in the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To create a WebTab component using code:

1. Open the <ig:tabView> tag, as shown in the JSP code below:
In JSP:

<ig:tabView>

2. Add a tab item, set the value property to Main Features
In JSP:

<ig:tabItem value="Main Features">

3. Enter the content to be displayed in that tab. Close the tab item.
In JSP:

 <f:verbatim escape="false">
 This is the Main Features Tab
 </f:verbatim>
</ig:tabItem>

4. Create another tab item, set the following properties:

 value -- Disabled Tab

 disabled -- true

In JSP:

 <ig:tabItem value="Disabled Tab" disabled="true">

5. Close the <ig:tabView> tag.
In JSP:

 </ig:tabView>

To create a WebTab component using RAD:

1. From the palette, drag the TabView component to your page.

2. The default TabView is created with two tab items. From the palette, drag the TabItem component to your
TabView to add more tab items.

4.10.2 Create a WebTab Component

NetAdvantage for JSF

355 NetAdvantage for JSF

3. Expand your TabView from the Outline tab, then select Tab Item 1.

4. In the Properties tab, under ig:tabItem, select Data.

5. Set Value to Main Features.

6. From the Outline Tab, select Tab Item 2.

7. In the Properties tab, under ig:tabItem, select Appearance.

8. Select the Disabled check box.

NetAdvantage for JSF

356 NetAdvantage for JSF

9. In the Properties tab, under ig:tabItem, select Data.

10. Set Value to Disabled.

NetAdvantage for JSF

357 NetAdvantage for JSF

All of our JSF components comply with section 508, subpart 1194.21 of the Rehabilitation Act of 1973. Below is
a table containing the rules of subpart 1194.21 and how we comply with each rule.

4.10.3 WebTab Accessibility Compliance

Rules How We Comply with the Rules

(a) Infragistics' components include keyboard support for tabbing into controls and navigating within them. All
NetAdvantage for JSF components that accept focus provide keyboard support.

(b) Infragistics NetAdvantage for JSF enables individuals to customize their desktop elements, including resizing and
rearranging controls and choosing color, size and format options.

(c) NetAdvantage for JSF provides a well-defined on-screen indication of the current focus that moves among
interactive interface elements as the input focus changes with minor exceptions. The components provide hover
styles and selection styles that highlight the position of the focus on the form or page. Focus rectangles are also
used along with the system caret to indicate focus location within the elements.

(d) Infragistics NetAdvantage for JSF provides sufficient information about user interface elements and program
elements represented by images are available in text in virtually all cases.

(g) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

(i) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

(j) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

(k) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

NetAdvantage for JSF

358 NetAdvantage for JSF

Click the links below to find information specific to the WebTree™ components.

 About the WebTree Components (Section 4.11.1) -- Provides information about the key functionalities of
the WebTree components.

 WebTree Accessibility Compliance (Section 4.11.2) -- This topic outlines the way in which WebTree
meets the requirements of the Section 508 standards. This accessibility compliance allows your end users,
specifically those with disabilities, to be able to access and use your Web application built using the
WebTree control.

 API Reference Guide (on-line documentation) -- The Application Programming Interface (API) Reference
Guide is the foundation for all our NetAdvantage for JSF components and offers a definitive listing of all
the NetAdvantage for JSF classes and interfaces.

4.11 WebTree

NetAdvantage for JSF

359 NetAdvantage for JSF

The following is a list of the WebTree™ components:

 TreeView

 TreeNode

These components allow you to perform various tasks, including:

 add items to the TreeView

 add nested items to the TreeView

 customize the TreeView’s look and feel

 change a TreeView item’s icon or label

The WebTree components provide AJAX-enabled automatic paging. They can automatically display and handle
the First, Previous, Next, and Last buttons. You simply need to set a property to specify how many nodes you
want your end users to page though using a single mouse-click. The pager automatically displays if the tree has
more nodes that that which is specified in the page size. The Smart Refresh™ technology on which the
automatic paging is based eliminates postbacks and reduces network traffic.

Note: When collapsing a node, a server call is not issued as the data is already on the client-side,
therefore the CollapseListener on the server will get queued and will get called but not immediately.
Also, any subsequent expands after the initial expand will not call the server-side's listener method
immediately.

4.11.1 About the WebTree Components

NetAdvantage for JSF

360 NetAdvantage for JSF

All of our JSF components comply with section 508, subpart 1194.21 of the Rehabilitation Act of 1973. Below is
a table containing the rules of subpart 1194.21 and how we comply with each rule.

4.11.2 WebTree Accessibility Compliance

Rules How We Comply with the Rules

(a) Infragistics' components include keyboard support for tabbing into controls and navigating within them. All
NetAdvantage for JSF components that accept focus provide keyboard support.

(b) Infragistics NetAdvantage for JSF enables individuals to customize their desktop elements, including resizing and
rearranging controls and choosing color, size and format options.

(c) NetAdvantage for JSF provides a well-defined on-screen indication of the current focus that moves among
interactive interface elements as the input focus changes with minor exceptions. The components provide hover
styles and selection styles that highlight the position of the focus on the form or page. Focus rectangles are also
used along with the system caret to indicate focus location within the elements.

(d) Infragistics NetAdvantage for JSF provides sufficient information about user interface elements and program
elements represented by images are available in text in virtually all cases.

(g) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

(i) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

(j) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

(k) Infragistics NetAdvantage for JSF provides functionality that conforms to this criteria.

NetAdvantage for JSF

361 NetAdvantage for JSF

To enable a consistent end-user experience, the NetAdvantage for JSF components have been designed to share
a number of style-related attributes and behaviors. Click the links below for information on the attributes
common to almost all the NetAdvantage for JSF components.

 Enabling and Disabling Components (Section 5.1) – Explains how you can visually disable a WebInput
component.

 Setting Component ToolTips (Section 5.2) – Shows you how to set a ToolTip for a WebInput component.

 Themes, Styles and Style Classes (Section 5.3) - Provides information on how to apply themes and use the
style and styleClass attributes.

 Apply a Style Class to a JSF Component (Section 5.4) -- Provides a short, task-based topic that explain
how to apply a style class to a JSF component.

 Apply a Style to a JSF Component (Section 5.5) -- Provides a short, task-based topic that explain how to
apply a style to a JSF component.

 Apply a Theme to a JSF Component (Section 5.6) -- Provides a short, task-based topic that explain how
to apply a theme to a JSF component.

 Override Themes (Section 5.7) -- Provides a short, task-based topic that explain how to override themes.

5 Designing the Look and Feel

NetAdvantage for JSF

362 NetAdvantage for JSF

All the NetAdvantage for JSF components that accept user input (i.e., the WebInput components (Section
4.8.1)) also support global enabling and disabling. Unless specified otherwise, components are enabled.

In general, end users cannot interact with a disabled component in any way, and the component appears
visually disabled.

Note: The detailed appearance of the disabled component depends on the component’s style.

The sample code below demonstrates how to disable a component.

In Java:

DateChooser dateChooser = new DataChooser();
boolean disabled=dateChooser.isDisabled();
dateChooser.setDisabled(false);

In JSP:

<ig:DateChooser disabled="false"
 <%-- other attributes as required --%>
</ig:DateChooser>

Note: The Enabled status can be bound in the standard way using the “#{…}” notation.

5.1 Enabling and Disabling Components

NetAdvantage for JSF

363 NetAdvantage for JSF

All the NetAdvantage for JSF components that accept user input (i.e., the WebInput™ components) also support
a ToolTip (i.e., a small yellow box containing descriptive text that appears when the end user hovers the mouse
over the component).

The sample code below demonstrates how to set a ToolTip for a component.

In Java:

 DateChooser dateChooser = new DateChooser();
 String ToolTip=dateChooser.getToolTip();

In JSP:

 <ig:DateChooser ToolTip="blue"
 <%-- other attributes as required --%>
 </igDateChooser>

Note: The ToolTip value can be bound in the standard way using the “#{…}” notation.

5.2 Setting Component ToolTips

NetAdvantage for JSF

364 NetAdvantage for JSF

You can use the available themes, as well as the style attribute and the styleClass attribute to define the look
and feel of your application.

Themes
The NetAdvantage for JSF components support a set of predefined application-wide themes that correspond to
styles commonly used in Web applications. These themes help to maintain a consistent look and feel throughout
your application. For more information, see Apply a Theme to a JSF component (Section 5.6).

Styles
You can use the style attribute to define the style of the NetAdvantage for JSF components. You specify the
style within the style attribute, and the style applies only to the specific component. When you specify the
style attribute for a component, you override the application-wide theme. For example, if the style attribute is
defined within a <column> tag, then only that column will have that style applied to it. For more information,
see Apply a Style to a JSF component (Section 5.5).

Style Classes
You can use the styleClass attribute to define the style of the component. Create the style specifications within
the igf_grid.css file of your specified theme. Then, using the styleClass attribute, you can implement the style.
When you specify the styleClass attribute for a component, you override the application-wide theme. If you
want to implement a particular style frequently, you would use the styleClass attribute instead of the style
attribute. For more information, see Apply a Style Class to a JSF component (Section 5.4).

Related Topics

Apply a Theme to a JSF component (Section 5.6)

Apply a Style to a JSF component (Section 5.5)

Apply a Style Class to a JSF component (Section 5.4)

5.3 Themes, Styles and Style Classes

NetAdvantage for JSF

365 NetAdvantage for JSF

The styleClass attribute defines the look and feel of your JSF components by allowing you to change the
appearance of the component such as font, color and position. Applying the styleClass attribute to your
component is different from overriding a theme as the style is only reflected when you call that class.

The following example, using the WebGrid component, creates a class that changes the color to red, the class
is called from the column component.

To apply styles to WebGrid:

1. Add the following style class to the igf_grid.css file of your specified theme:
In CSS:

.igRedColumn {
 border-bottom: 1px solid #C1C1C1;
 padding: 5px 10px 5px 10px;
 text-align: left;
 color : red;
 white-space: nowrap;
}

2. Add the styleClass attribute to the <h:outputText> tag:
In JSP:

<h:outputText styleClass="igRedColumn" value="#{DATA_ROW.firstName}" />

3. The column font has changed to red.

5.4 Apply a Style Class to a JSF Component

NetAdvantage for JSF

366 NetAdvantage for JSF

The style attribute defines the look and feel of your JSF components by allowing you to change the appearance
of the grid such as font, color and position of the grid components. You can define the style attribute of a
component directly in your JSP page and it will apply only to that component in that page. Applying the style
attribute to your component is different from overriding a theme as the change is not reflected application-
wide.

This topic will demonstrate how to change the font color of the first column of a grid to red, as illustrated in
the screen shot below:

 using code

 at design time using IBM® Rational® Application Developer for WebSphere Software® 7.0

To apply the style using code:

In JSP:

<h:outputText style="color: red" value="#{DATA_ROW.firstName}" />

To apply the style at design time using RAD:

1. In Design view, click the column on the grid component on your page.

5.5 Apply a Style to a JSF Component

NetAdvantage for JSF

367 NetAdvantage for JSF

2. In the Properties window, next to the Style: Props box, click the edit button.

3. Click the button next to the Color field, and select Red from the color palette that appears.

4. Click OK.

NetAdvantage for JSF

368 NetAdvantage for JSF

Applying a theme to your application is a great vehicle for maintaining a consistent look and feel throughout
your application. For example, specifying the Appletini theme applies a light green color to the JSF
components.

You specify the theme in the web.xml file, located in the WEB-INF folder.

Note: The themes are case-sensitive. By default, the Blue theme is applied to NetAdvantage for JSF
components.

To apply the Appletini theme to a JSF component:

1. Open the web.xml file.

2. Add a new <context-param> element under the root element <web-app>, as shown in the XML excerpt
below.
In XML:

<context-param>
 <param-name>com.infragistics.faces.THEME</param-name>
 <param-value>Appletini</param-value>
</context-param>

3. To change the theme modify the text of the <param-value> element.

5.6 Apply a Theme to a JSF Component

NetAdvantage for JSF

369 NetAdvantage for JSF

If you have applied the available NetAdvantage for JSF themes to your application, but want to change a
specific part of the theme, you need to override the theme.

For example if you applied the Blue theme to your grid but wanted the grid to have a 'grid-like' appearance
with the columns separated by a line, you can simply override the settings in the igf_grid.css file of the Blue
theme.

The following screen shot shows the grid before the Blue theme is overridden.

To override the column settings of a theme:

1. Add a border to the grid column header class.
In CSS:

.igGridColumnHeader {
background-color: #e6e6e6;
 border-bottom: 1px solid #C1C1C1;
 border-right: 1px solid #C1C1C1;
 padding: 5px 10px 5px 10px;
 font-weight: bold;
 text-align: left;
 color : #052684;
 white-space: nowrap;
}

2. Add a border to the grid column class.
In CSS:

.igGridColumn {
 border-bottom: 1px solid silver;
 border-right: 1px solid #C1C1C1;
 padding: 5px 10px 5px 10px;

5.7 Override Themes

NetAdvantage for JSF

370 NetAdvantage for JSF

 white-space: nowrap;
}

3. Run the application. Your grid should look similar to the grid below, with the columns divided, giving a
more grid-like appearance.

NetAdvantage for JSF

371 NetAdvantage for JSF

The NetAdvantage for JSF components come with a very robust and powerful Asynchronous JavaScript and XML
(AJAX) framework. AJAX requests are performed behind the scenes and they eliminate full Web page
refreshes.We refer to this as our Smart-Refresh® technology. This enables you to create better, faster, and
more user-friendly web applications. Using the Smart-Refresh technology eliminates the need for you to write
JavaScript code to perform AJAX requests; instead all you need to do is simply add the smartRefreshIds
attribute to your NetAdvantage for JSF component.

For situations where you are using core JSF components or HTML tags, you can use the smartSubmit() method.

The smartRefreshIds attribute accepts a comma-separated list of all the IDs of the components you want
updated. These IDs can belong to NetAdvantage® for JSF components, core JSF components such as or regular
HTML tags.

The following topics describe different usages of the Smart-Refresh technology:

 Use Smart-Refresh technology with NetAdvantage for JSF components (on-line documentation)

 Use Smart-Refresh technology with core JSF components (on-line documentation)

 Use Smart-Refresh technology without NetAdvantage for JSF components (on-line documentation)

The following topic is an in-depth tutorial guiding you through creating a web application that implements the
Smart-Refresh technology to perform AJAX requests.

 WebInput Tutorial (Section 7.2.5)

6 Smart Refresh Technology

NetAdvantage for JSF

372 NetAdvantage for JSF

You can also perform AJAX requests using the smart-refresh technology from any core JSF component or even
from an ordinary HTML tag. In situations like this, you can simply call the smartSubmit() method.

Note: In order to avail ourselves to the smartSubmit() method, which is part of the Smart-Refresh
technology used to perform AJAX requests, a NetAdvantage for JSF component must be present on your
web page.

The smartSubmit() method accepts the following parameters:

 eventSource – The component that is calling the AJAX request. Cannot be null.

 eventName – A name associated with the event. Can be null.

 eventArguments – A set of arguments to be passed to the server. Can be null.

 smartRefreshComponents –The list of components to be updated. Cannot be null.

 jsCallback – The JavaScript method that is called when the AJAX request completes. Can be null.

The following code demonstrates how to call the smartSubmit() method from an HTML tag.

In JSP:

<input
 Id=”myButton”
 type=”button”
 value =”Update Time”
 onclick=”ig.smartSubmit(‘AJAXFromHTMLForm’, null, null, ‘AJAXFromHTMLForm:showTime

Related Topics

Using Smart-Refresh Technology with NetAdvantage for JSF Components (Section 6.2)

Using Smart-Refresh Technology without NetAdvantage for JSF Components (Section 6.3)

6.1 Using Smart-Refresh Technology with Core JSF Components

NetAdvantage for JSF

373 NetAdvantage for JSF

Using the Smart-Refresh technology with NetAdvantage for JSF components ensures that only the components
you specify will update, not the entire page.

Consider a page that contains two dropdown menus. One has an ID of States and it is populated with all of the
states of a country. The other dropdown menu has an ID of Cities and its content is based upon whatever is
currently selected from the States dropdown menu. Whenever the end user selects a State from the States
dropdown, the page will normally perform a full page postback and at that time, when the page is reloaded,
the Cities dropdown will be populated with the Cities that belong to the selected State.

If you set the smartRefreshIds attribute of the States dropdown to the value “Cities”, the Cities dropdown will
update using the Smart-Refresh technology.

The following code demonstrates how to implement this scenario.

In JSP:

<ig:dropDownList
 id="States"
 dataSource="#{dropdown.statesData}"
 binding="#{dropdown.statesList}"
 smartRefreshIds="Cities"
/>
<ig:dropDownList
 id="Cities"
 dataSource="#{dropdown.citiesData}"
 binding="#{dropdown.citiesList}"
/>

Related Topics

Using Smart-Refresh Technology with Core JSF Components (Section 6.1)

Using Smart-Refresh Technology without NetAdvantage for JSF Components (Section 6.3)

6.2 Using Smart-Refresh Technology with NetAdvantage for JSF
Components

NetAdvantage for JSF

374 NetAdvantage for JSF

There may be certain situations where you want to use our Smart-Refresh technology to perform AJAX requests
on a page where you do not have NetAdvantage for JSF components present. In order to achieve this you simply
add the following JavaScript code snippet below the tag on your page. This references the necessary JavaScript
files to complete seamless AJAX requests.
In JSP:

<script
 type="text/JavaScript"
 src="/INSTALL_DIR/resources/infragistics/scripts/igf_bootstrap.js"
>
</script>
<script type="text/JavaScript">
<!--
 igBootstrap("/INSTALL_DIR/resources/infragistics/scripts/", "/INSTALL_DIR/resources/infragistics/themes/blue/");
//-->
</script>
<script type="text/JavaScript">
<!--
 var smartRefreshSupport = true;
//-->
</script>

Related Topics

Using Smart-Refresh Technology with Core JSF Components (Section 6.1)

Using Smart-Refresh Technology with NetAdvantage for JSF Components (Section 6.2)

6.3 Using Smart-Refresh Technology without NetAdvantage for
JSF Components

NetAdvantage for JSF

375 NetAdvantage for JSF

This section contains series of step-by-step tutorials that explain key features of the NetAdvantage for JSF
components and how to get create projects within the IBM® Rational® Application Developer for
WebSphere® 7.0 IDE.

 IBM RAD Tutorials (Section 7.1)

 JSF Component Tutorials (Section 7.2)

7 Tutorial Programs

NetAdvantage for JSF

376 NetAdvantage for JSF

The following tutorials explain how to create a JSF project within the IBM® Rational® Application Developer for
WebSphere® 7.0 IDE and how to bind your project to data in JSF using IBM RAD.

Click on the following links for more information.

 Create a JSF Project Using IBM RAD (Section 7.1.1)

 Data Binding and Method Binding in JSF using IBM RAD (Section 7.1.2)

7.1 IBM RAD Tutorials

NetAdvantage for JSF

377 NetAdvantage for JSF

Before You Begin
IBM® Rational® Application Developer for WebSphere® 7.0 provides a solid and reliable framework for
developing Java Server Faces (JSF) applications.

What You Will Accomplish
This topic shows you how to create a Java Server Faces (JSF) project using IBM RAD. This topic also draws your
attention to the files automatically generated by IBM RAD.

Follow these Steps
1. Open the IBM RAD IDE.

2. On the File menu, point to New and click Other...

3. In the New wizard, select Dynamic Web Project, then click Next.

7.1.1 Create a JSF Project Using IBM RAD

NetAdvantage for JSF

378 NetAdvantage for JSF

4. In the first page of the New Dynamic Web Project wizard, enter the following information, and click Next:

 Project name - Enter a name for the project. In this walkthrough we will name the project
FacesProjectTutorial.

 Project contents - If you want the new project to be created in a workspace other than the current
one, deselect the "Use default" check box, and click Browse... to navigate to the new workspace. By
default, the "Use default" check box is selected.

 Target Runtime - Select a target server for your application. If your server is not listed in the drop-
down list, click New... to navigate to a new server.

 Configurations - From the drop-down list, select Faces Project for myfaces support.

 EAR Membership - If you want to add Web components to an enterprise application (EAR file), select
the "Add project to an EAR" check box. To select a different EAR project, click New... to browse to the
project.

NetAdvantage for JSF

379 NetAdvantage for JSF

5. In the Project Facets page of the wizard, ensure that the Base Faces Support and JSTL options are
selected. Click Next.

NetAdvantage for JSF

380 NetAdvantage for JSF

6. In the Web Module page of the wizard, check that the defaults are acceptable. Click Finish.

NetAdvantage for JSF

381 NetAdvantage for JSF

Note: If you are not in the Web Perspective, you will be prompted to switch to it. Click Yes.

7. By default the Web Diagram Editor window appears. Close this file.

8. From the Project Explorer, expand the following nodes:

 FacesProjectTutorial

 WebContent

 WEB-INF

Note: Within the WEB-INF folder, RAD has automatically generated a faces-config.xml file.

9. From the Project Explorer, select the FacesProjectTutorial.

10. On the File menu, point to New and click Other...

11. From the Select a wizard page, expand the Web node and select WebPage.

NetAdvantage for JSF

382 NetAdvantage for JSF

12. Click Next.

13. In the first page of the New Web Page wizard, enter a name for your page and select the JSP template. In
this walkthrough we will name the page, ExamplePageOne.

NetAdvantage for JSF

383 NetAdvantage for JSF

14. Click Finish.

15. From the Project Explorer, expand the following nodes:

 Java Resources:src

 pagecode

There are two java files within the pagecode package, ExamplePageOne.java which is the backing bean for
the JSP page we created and PageCodeBase.java which is the base class for all the backing beans
generated by RAD.

Note: If you look at the faces-config.xml file you can see that the association between the JSP page
and the backing bean is automatically generated.

NetAdvantage for JSF

384 NetAdvantage for JSF

16. Open ExamplePageOne.jsp in design view.

17. From the palette, under the Enhanced Faces Component node, drag the Input component to your page.

18. Open ExamplePageOne.java. As you can see RAD has generated the getter methods. Note that they are
protected. The setter methods are not created automatically. If you want to set this component
dynamically, you can add the following method.
In Java:

NetAdvantage for JSF

385 NetAdvantage for JSF

public void setText1(HtmlInputText)
{
 text1 = x;
}

19. You have successfully created a JSF project using IBM RAD.

20. Save and run your project.

NetAdvantage for JSF

386 NetAdvantage for JSF

Before You Begin
This topic assumes that you already created a JSF project. For information on how to create a JSF project, see
Create a JSF Project Using IBM RAD (Section 7.1.1).

What You Will Accomplish
After completing the steps in this tutorial, you will have performed data binding and method binding in a JSF
project using IBM® Rational® Application Developer for WebSphere® 7.0. You will have created an input
component, radio button component and a drop down menu component that is bound to data.

Follow These Steps
1. From the Project Explorer, expand the following nodes:

 FacesProjectTutorial

 Java Resources: src

 pagecode

2. Open ExamplePageOne.java, add the following code:

In Java:

 /* Add a new private string called name */
 private String name;

3. IBM RAD can generate the getter and setter methods. Right click within ExamplePageOne.java. On the
context menu, point to Source and select Generate Getters and Setters...

7.1.2 Data Binding and Method Binding in JSF using IBM RAD

NetAdvantage for JSF

387 NetAdvantage for JSF

4. In the getName method, hard code the return value to Red.

In Java:

 /* Set the return value to Red */
 public String getName() {
 return "Red";
 }

Note: The getName() method is used to set the value in the JSP page. The setName() method is used
to update the value when the JSP page is submitted.

5. You must then bind the JSP page and the backing bean together. Open the ExamplePageOne.jsp file and
set the value attribute of your input component. In the following code, the expression #
{pc_ExamplePageOne} binds the input component to the name attribute in the backing bean.
pc_ExampleOne refers to an entity in the faces-config.xml file which in turn points to the correct class.

Note: JSF can automatically locate the getter method for the name attribute.

In JSP:

<h:inputText

NetAdvantage for JSF

388 NetAdvantage for JSF

 id="text1"
 styleClass="inputText"
 value="#{pc_ExamplePageOne.name}">
 </h:inputText>

6. Save and run your application. At this point you can see Red displayed within the input component,
regardless of what your end user does.

7. The following code changes the getName() method so that it sets the name attribute to Red if the name
attribute is null, otherwise it will set the name attribute to the value inputted by your end user.

In Java:

public String getName() {
 if(null == name)
 return "Red";
 else
 return name;
}

8. Add a submit button to the ExamplePageOne.jsp file. Switch to design view. From the palette, under the
Enhanced Faces Component node, drag the Button - Command component to your page.

NetAdvantage for JSF

389 NetAdvantage for JSF

9. From the Properties window, set the button type to Submit.

10. Add a radio button group to the ExamplePageOne.jsp file. From the palette, under the Enhanced Faces
Component node, drag the Radio Button Group component to your page.

NetAdvantage for JSF

390 NetAdvantage for JSF

11. You must then bind the JSP page and the backing bean together. Open the ExamplePageOne.jsp file and
set the value attribute of your radio button group component. In the following code, the expression #
{pc_ExamplePageOne.carTypes} binds the radio button group component to the carTypes attribute in the
backing bean.

In JSP:

<h:selectOneRadio disabledClass="selectOneRadio_Disabled"
 enabledClass="selectOneRadio_Enabled" id="radio1"
 styleClass="selectOneRadio">
 <f:selectItems value=”#{pc_ExamplePageOne.carTypes}” />
</h:selectOneRadio>

12. Open the ExamplePageOne.java file, add the following code to add the getCarTypes() method.

Note: When working with radio buttons you can use a List or a Map to load the data. If you use a List
type, you must use objects of type SelectItem. However, this is a JSF specific type and your
collection won't be usable outside a JSF context. A more flexible approach is to use a Map type.

In Java:

Method using List
public ArrayList getCarTypes() {
 ArrayList x = new ArrayList();
 x.add(new SelectItem("Ford"));
 x.add(new SelectItem("Chevy"));
 x.add(new SelectItem("GM"));
 x.add(new SelectItem("Honda"));
 return x;
}

Method using Map
public Map getCarTypes() {
 TreeMap x = new TreeMap();

NetAdvantage for JSF

391 NetAdvantage for JSF

 x.put("Ford", "FD");
 x.put("Chevy", "CH");
 x.put("GM", "GM");
 x.put("Honda", "HN");
 return x;
}

13. Save and run your application. Your application should look similar to the screen shot below.

14. Add a radio drop down menu to the ExamplePageOne.jsp file. From the palette, under the Enhanced Faces
Component node, drag the Combo Box component to your page.

15. Open the ExamplePageOne.jsp file in Source view. Within the <h:selectOneMenu> tag, add the following
code:

In JSP:

 <f:selectItems value="#{pc_ExamplePageOne.drivers}" />

NetAdvantage for JSF

392 NetAdvantage for JSF

16. Open the ExamplePageOne.java file and add the following code:
In Java:

public Map getDrivers() {
 TreeMap x = new TreeMap();
 x.put("Joe", "123");
 x.put("Bob", "456");
 x.put("Don", "789");
 x.put("Ray", "321");
 x.put("Sam", "654");
 x.put("Ken", "987");
 return x;
}

17. Open the ExamplePageOne.jsp file.

18. Within the <h:selectOneRadio> tag, set the value attribute. This code binds data to the radio button group
component so you can save your end users input value.

In JSP:

<h:selectOneRadio disabledClass="selectOneRadio_Disabled"
 enabledClass="selectOneRadio_Enabled" id="radio1"
 styleClass="selectOneRadio"
 value="#{pc_ExamplePageOne.carType}">

19. Within the <h:selectOneMenu> tag, set the value attribute. This code binds data to the drop down menu
component so you can save your end users input value.

In JSP:

<h:selectOneMenu id="menu1" styleClass="selectOneMenu"
 value="#{pc_ExamplePageOne.driver}">

20. Open the ExamplePageOne.java file. Add the following code:

In Java:

private String carType, driver;

public String getCarType() {
 if(carType== null) carType="";
 return carType;
}

public void setCarType(String carType) {
 this.carType = carType;
}

public String getDriver() {
 if(driver == null) driver="";
 return driver;
}

NetAdvantage for JSF

393 NetAdvantage for JSF

public void setDriver(String driver) {
 this.driver = driver;
}

21. Save and run your application. It should look similar to the screen shot below.

NetAdvantage for JSF

394 NetAdvantage for JSF

This section contains series of step-by-step tutorials that explain key features of the NetAdvantage for JSF
components.

 Running the Tutorial Programs (Section 7.2.1)

 WebBar (Section 7.2.2)

 WebChart (Section 7.2.3)

 WebGrid (Section 7.2.4)

 WebInput (Section 7.2.5)

 IBM RAD Tutorials (Section 7.1)

7.2 JSF Component Tutorials

NetAdvantage for JSF

395 NetAdvantage for JSF

All walkthroughs for the project are located in the install_Dir/documentation/tutorials folder. For each
tutorial, there is a subfolder, as well as a folder for JARs that the tutorials depend upon. Each tutorial contains
a build.xml file that can be used to build a WAR file, and deploy it to an Apache® Tomcat server.

Note: The walkthroughs assume that the application server is Tomcat and that the Tomcat server is
located in its default install location. In addition, it is assumed that the Infragistics JARs and resource
directories are located in the default install location. If you need to deploy the tutorial to an application
server other than Tomcat and/or the JARs and resource directories are located in a different location on
your system, you must update the build.xml file.

The following is a list of the main tasks in the build.xml file:

 compile -- Compiles all the code in the src directory.

 build_war -- Builds the WAR file for the tutorial program and puts it in the dist directory within the
tutorials folder.

 deployToLocalTomcat -- Builds the WAR file and deploys it to a local instance of Tomcat.

Each walkthrough contains a src directory that contains the backing beans, and any other classes that the
tutorials depend upon. The config directory contains the JSP™ pages, and a WEB-INF directory that contains the
configuration files for the JSF application.

7.2.1 Running the Tutorial Programs

NetAdvantage for JSF

396 NetAdvantage for JSF

In this section, you’ll find a step-by-step procedure that walks you through a scenario that is common when
using the WebBar control:

 Using WebBar (Section 7.2.2.1)

7.2.2 WebBar

NetAdvantage for JSF

397 NetAdvantage for JSF

The tutorial will show you how to build components at run time as the components are rendered, using
WebBar™ components. The components will be created in the Java server-side code of the backing bean,
instead of using tags to create the components in the JSP page. This is useful if either the content or the
format of the component is not known until run time.

For information on running the following walkthrough, see Running the Tutorial Programs (Section 7.2.1).

Note: The full source code and resources needed to build and deploy this tutorial can be found in the
Install_Dir/documentation/tutorials/DynamicWebBar directory.

 Creating the Backing Bean - Part 1 of 4 (Section 7.2.2.1.1)

 Creating the JSP Page - Part 2 of 4 (Section 7.2.2.1.2)

 Configuring the Application - Part 3 of 4 (Section 7.2.2.1.3)

 Deploying the Application - Part 4 of 4 (Section 7.2.2.1.4)

7.2.2.1 Using WebBar

NetAdvantage for JSF

398 NetAdvantage for JSF

First, you need to create the backing bean that will be used to create the SidebarGroups and its sub-items
required by the Web page. These groups and items will created in a Java class called DynamicSiderbarGroups.

Note: The full source code and resources needed to build and deploy this tutorial can be found in the
Install_Dir/documentation/tutorials/DynamicWebBar directory.

A member variable will be used to to access the Sidebar as follows:

In Java:

private Sidebar m_bar;

The WebBar is modeled using NetAdvantage for JSF's sidebar component and is called m_bar. In order to
provide the Web page with access to these objects, you must provide setters and getters that follow the
JavaBean standard.

In Java:

public Sidebar getSidebar() {
 return m_bar;
}

public void setSidebar(Sidebar bar) {
 m_bar = buildSideBar(bar);
}

The sidebar's setter calls the buildSideBar method. This method sets some of the size of the sidebar
component, and creates the SidebarGroups.

In Java:

private Sidebar buildSideBar(Sidebar bar)
{
 boolean isInitialised = bar.getAttributes().get(IS_INITIALISED)!=null;

 if (!isInitialised) {
 // Get a reference to the JSF Application,
 // we need it to create value bindings later-on
 Application application = FacesContext.getCurrentInstance().getApplication();
 UIViewRoot viewRoot = FacesContext.getCurrentInstance().getViewRoot();

 /* Create Infragistics SidebarGroup */
 // Set the Sidebar's width and height
 bar.getAttributes().put("style","width: 400px; height: 300px;");
 // Create SidebarGroup
 HTMLSidebarGroup aGroup =
 createInfragisticsSidebarGroup("Infragistics", application, viewRoot);

 // Add the newly created SidebarGroup to the Sidebar's children list
 bar.getChildren().add(aGroup);

7.2.2.1.1 Creating the Backing Bean Part - 1 of 4

NetAdvantage for JSF

399 NetAdvantage for JSF

 /* Create JSF SidebarGroup */
 // Create SidebarGroup
 aGroup = createJSFSidebarGroup("JSF Information", application, viewRoot);

 // Add the newly created SidebarGroup to the Sidebar's children list
 bar.getChildren().add(aGroup);

 // Set a flag so that we know the tree is initialised
 bar.getAttributes().put(IS_INITIALISED, new Boolean(true));
 }
 return(bar);
}

The buildSideBar method makes a call to createInfragisticsSidebarGroup or createJSFSidebarGroup method
depending upon which SidebarGroup is being created. Both of these methods have similar functionality by
creating a group and populating it with HTMLLinks.

In Java:

private HTMLSidebarGroup createInfragisticsSidebarGroup(
 String sidebarGroupNameStr, Application application, UIViewRoot viewRoot)
{
 // Create SidebarGroup, set the Text value, and expand the group
 HTMLSidebarGroup aSidebarGroup = (HTMLSidebarGroup)
 application.createComponent(HTMLSidebarGroup.COMPONENT_TYPE);
 aSidebarGroup.setText(sidebarGroupNameStr);
 aSidebarGroup.setExpanded(true);
 aSidebarGroup.setId(viewRoot.createUniqueId());

 /* Create some Links to display in the group */
 HTMLLink aLink1 = (HTMLLink)application.createComponent(HTMLLink.COMPONENT_TYPE);
 aLink1.setId(viewRoot.createUniqueId());
 aLink1.setURL(
 "http://www.infragistics.com/Corporate/press/PressReleasesViewer.aspx?Id=123");
 aLink1.setValue("Infragistics NetAdvantage JSF Press Release");
 aSidebarGroup.getChildren().add(aLink1);

 HTMLLink aLink2 = (HTMLLink)application.createComponent(HTMLLink.COMPONENT_TYPE);
 aLink2.setId(viewRoot.createUniqueId());
 aLink2.setURL(
 "http://www.infragistics.com/products/NetAdvantage/JSF/Default.aspx");
 aLink2.setValue("Infragistics JSF Home");
 aSidebarGroup.getChildren().add(aLink2);

 HTMLLink aLink3 = (HTMLLink)application.createComponent(HTMLLink.COMPONENT_TYPE);
 aLink3.setId(viewRoot.createUniqueId());
 aLink3.setURL("http://help.infragistics.com/JSF/");
 aLink3.setValue("Infragistics JSF Online Help");
 aSidebarGroup.getChildren().add(aLink3);

 return(aSidebarGroup);
}

private HTMLSidebarGroup createJSFSidebarGroup(String sidebarGroupNameStr,

NetAdvantage for JSF

400 NetAdvantage for JSF

 Application application, UIViewRoot viewRoot)
{
 //Create SidebarGroup, set the Text value, and expand the group
 HTMLSidebarGroup aSidebarGroup = (HTMLSidebarGroup)
 application.createComponent(HTMLSidebarGroup.COMPONENT_TYPE);
 aSidebarGroup.setText(sidebarGroupNameStr);
 aSidebarGroup.setExpanded(true);
 aSidebarGroup.setId(viewRoot.createUniqueId());

 /* Create some Links to display in the group */
 HTMLLink aLink1 = (HTMLLink)application.createComponent(HTMLLink.COMPONENT_TYPE);
 aLink1.setId(viewRoot.createUniqueId());
 aLink1.setURL(
 "http://www.jsfcentral.com/listings/P11170;
 jsessionid=800015B9EAE2A0BB927D13962BD01340");
 aLink1.setValue("JSF Central - NetAdvantage JSF Press Release");
 aSidebarGroup.getChildren().add(aLink1);

 HTMLLink aLink2 = (HTMLLink)application.createComponent(HTMLLink.COMPONENT_TYPE);
 aLink2.setId(viewRoot.createUniqueId());
 aLink2.setURL("http://www.artima.com/forums/flat.jsp?forum=276&thread=170012");
 aLink2.setValue("Java Community News - NetAdvantage JSF Press Release");
 aSidebarGroup.getChildren().add(aLink2);

 return(aSidebarGroup);
}

Related Topic

Creating the JSP Page - Part 2 of 4 (Section 7.2.2.1.2)

NetAdvantage for JSF

401 NetAdvantage for JSF

The next step is to create a JSP™ page (dataBind.jsp) that calls the backing bean to get its groups and items
that was created in Creating the Backing Bean - Part 1 of 4 (Section 7.2.2.1.1).

Note: The full JSP code, source code, and resources needed to build and deploy this tutorial can be found
in the Install_Dir/documentation/tutorials/DynamicWebBar directory.

The following code demonstrates how to data bind a WebBar in the JSP file. See the Code Explanation section
further below for a description of the code.

In JSP:

<ig:sidebar
 id="dynGroups"
 binding="#{webbar_dynamic.sidebar}" >
</ig:sidebar>

Code Explanation
The following is an explanation of the above code.

The <ig:sidebar> tag creates the Sidebar component. This tag has two properties:

 id="dynGroups" -- This property assigns an ID to the Sidebar component, which we can use in the backing
bean.

 binding="#{webbar_dynamic.sidebar}" -- This property binds the Sidebar method of the backing bean to the
Sidebar component.

To create the Sidebar component at design time using IBM® Rational® Application Developer for
WebSphere® 7.0®:

1. From the palette, drag the Sidebar component to your page.

2. In the Properties window, select ig:sidebar.

3. Set the following properties:

 Binding -- #{webbar_dynamic.sidebar}

 Id -- dynGroups

Related Topic

7.2.2.1.2 Creating the JSP Page - Part 2 of 4

NetAdvantage for JSF

402 NetAdvantage for JSF

Updating the Configuration Files - Part 3 of 4 (Section 7.2.2.1.3)

NetAdvantage for JSF

403 NetAdvantage for JSF

This topic continues from Creating the JSP Page - Part 2 of 4 (Section 7.2.2.1.2).

Configuration of this application is relatively simple. Because this is a one-page application, the only files that
need to be updated are the following:

 web.xml

 managed-beans.xml

The other JSF configuration files (navigation.xml and faces-config.xml) do not need to be changed.

web.xml
For the web.xml file, the following entries need to be added to enable the Faces Servlet and define several JSF
parameters.

In XML:

<!-- Faces Servlet -->
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup> 1 </load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <URL-pattern>*.faces</URL-pattern>
 </servlet-mapping>

 <context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>server</param-value>
 </context-param>

 <context-param>
 <param-name>javax.faces.CONFIG_FILES</param-name>
 <param-value>/WEB-INF/navigation.xml,/WEB-INF/managed-beans.xml</param-value>
 </context-param>

managed-beans.xml
The managed-beans.xml file must be updated to define the connection between the alias used in the JSP file
and the DynamicSiderbarGroups backing bean. To do this, add the entry below.

In XML:

<managed-bean>
 <description>
 backing bean used by all samples. Returns a list of employees
 </description>
 <managed-bean-name>webbar_dynamic</managed-bean-name>

7.2.2.1.3 Configuring the Application - Part 3 of 4

NetAdvantage for JSF

404 NetAdvantage for JSF

 <managed-bean-class>
 com.infragistics.faces.samples.websidebargroup.DynamicSiderbarGroups
 </managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
</managed-bean>

Related Topic

Deploying the Application - Part 4 of 4 (Section 7.2.2.1.4)

NetAdvantage for JSF

405 NetAdvantage for JSF

This topic continues from Configuring the Application - Part 3 of 4 (Section 7.2.2.1.3).

Deploying the application is simply a matter of putting all the files in the correct location. Below is a brief
description of the names and locations of the key files. The Apache® Ant build file included in the
Install_Dir/documentation/tutorials/DynamicWebBar directory contains tasks to create the WAR file and deploy
it to an Apache Tomcat server. If your environment is different, you must update the build file.

 /resources -- Contains some of the default images used by the controls

 /resources/infragistics -- Contains the JavaScripts needed by the components.

 /resources/infragistics/themes -- Contains a set of theme subfolders. Each subfolder contains all the CSS
files and image files required by the components. (The default theme is blue.)

 WEB-INF

 lib – Contains all the JAR files that this application depends on, including a JAR file that contains the
DynamicSiderbarGroups class.

 web.xml

 managed-beans.xml

 navigation.xml

 faces-config.xml

 dataBind.jsp – The main page that contains the searchable employee grid.

 index.jsp – The home page which simply redirects the user to the dataBind page through the Faces Servlet.

7.2.2.1.4 Deploying the Application - Part 4 of 4

NetAdvantage for JSF

406 NetAdvantage for JSF

In this section, you’ll find step-by-step procedures that walks you through scenarios that are common when
using the WebChart control:

 Creating a WebChart (Section 7.2.3.1)

 Dynamically Create a WebChart (Section 7.2.3.2)

7.2.3 WebChart

NetAdvantage for JSF

407 NetAdvantage for JSF

This section contains a multi-part walkthrough that explains the key features of WebChart™.

For the tutorial, three different type of charts will be created; a pie chart, line chart and column chart. The
charts will be based on some UN population data that shows the population by continent for the years between
1950 and 2004. This tutorial will be very useful in showing how to associate data with a chart component and
how the different attributes of the chart component can be used to produce the desired result.

For information on running the following walkthrough, see Running the Tutorial Programs (Section 7.2.1).

Click the links below for access to the multi-part tutorial:

 Creating the Chart Data (Section 7.2.3.1.1)

 Creating the Backing Bean (Section 7.2.3.1.2)

 Creating the JSP Pages (Section 7.2.3.1.3)

 Configuring the XML (Section 7.2.3.1.4)

 Deploying the Application (Section 7.2.3.1.5)

7.2.3.1 Creating a WebChart

NetAdvantage for JSF

408 NetAdvantage for JSF

Before the backing bean and the JSP pages can be created, the data needs to be formatted in a way that will
be understood by the WebChart™ component.

The table below shows the data that will be used for the charts throughout this tutorial.

For the different charts, the data needs to be formatted in different ways due to the nature of the chart.

 Creating Chart Data for Pie Chart (Section 7.2.3.1.1.1)

 Creating Chart Data for Line and Column Charts (Section 7.2.3.1.1.2)

7.2.3.1.1 Creating Chart Data

Country Name 1950 1960 1970 1980 1990 2000 2004

Africa 224 282 364 479 636 812 887

Latin America/Caribbean 167 219 285 362 444 523 554

North America 172 204 232 256 283 315 328

Asia 1396 1699 2140 2630 3169 3676 3860

Europe 547 604 656 392 721 728 729

Oceania (Australia, New Zealand, South Pacific) 13 16 20 23 27 31 33

NetAdvantage for JSF

409 NetAdvantage for JSF

In this tutorial, the pie chart is used to show the relative population of the continents for a given year. So the
data for a pie chart needs to be composed of a series of data points from a specific year (i.e., a column of data
from the table).

To create the data for the pie chart a class called PopulationData is created. This class represents the data for
a row of the table.

The entire source code for the PopulationData class is available in the following file:

Install_Dir/documentation/tutorial/Chart/src/com/infragistics/samples/chart/PopulationData.java

In the backing bean, a list of PopulationData(m_dataSource) will be created that will contain the data for each
continent. By calling the get method for the year you want to show, you will be able to retrieve the data for
the pie chart for any given year, as shown in the example below.

In Java:

PopulationData popData = new PopulationData("Africa", 224, 282, 364, 479,
636, 812, 887, 2.2, 38.0, 15.0);
m_dataSource.add(popData);

popData = new PopulationData("Latin America & Caribbean", 167, 219, 285,
362, 444, 523, 554, 1.4, 22.0, 6.0);
m_dataSource.add(popData);

7.2.3.1.1.1 Creating Chart Data for Pie Chart

NetAdvantage for JSF

410 NetAdvantage for JSF

The column chart and line chart will be used to show the growth of the population of the continents over time.
The data for these types of chart requires a series of points for each continent for each year (i.e., a series for
each row of the table).

To create the data for the column chart and line chart, a class called PopulationSeriesData is created, which
represents a year and population number for a specific country.

The entire source code for the PopulationSeriesData class is available in the following file:

Install_Dir/documentation/tutorial/Chart/src/com/infragistics/samples/chart/PopulationSeriesData.java

In the backing bean a list of PopulationSeriesData is created for each continent. This means that the backing
bean will have a get method for each of these populations lists.

In the following example, code for the PopulationSeriesData for Asia will be returned.

In Java:

public List getAfricaPopList() {
return m_africaPopList;
}

When this data is plotted, the year will be used for the x-axis and the population data will be used for the y-
axis.

7.2.3.1.1.2 Creating Chart Data for Line and Column Chart

NetAdvantage for JSF

411 NetAdvantage for JSF

The entire source code for this backing bean is available in the following file:

Install_Dir/documentation/tutorials/Chart/src/com/infragistics/samples/chart/ChartDataMB.java

The backing bean will use the population data created in the Creating Chart Data (Section 7.2.3.1.1) section.

The backing bean is fairly simple because all it has to do is create the data structures needed to create the
different charts.

The main method in the backing bean used to create the data for the chart is called createChartData(), which
creates the chart data for the pie, column, and line charts.

Besides creating the data for the chart, the backing bean contains a number of getter methods to retrieve the
different collections of chart data.

Pie Chart Data
The getDataSource() method retrieves the data list needed for the pie chart.

Line and Column Data
There are also methods for retrieving the data for the column and line charts for each continent. For example,
the getAsiaPopList() method retrieves the PopulationSeriesData for Asia. There are similar methods for each
continent.

7.2.3.1.2 Creating the Backing Bean

NetAdvantage for JSF

412 NetAdvantage for JSF

The next step in this tutorial is to create three different JSP pages, one for each chart type.

The JSP pages in this tutorial show simple charts but can be modified and extended fairly easily by changing the
different attributes of the WebChart component. For example, by changing the chartType attribute, you can
see the different types of charts.

By changing the groupType attribute, you can see how different group types such as Stack, Stack100, Overlay
and Grouped can affect each chart type.

To create a combination chart that contains combination chart types, simply specify different chart types for
each of the series.

 Simple Pie Chart (Section 7.2.3.1.3.1)

 Grouped Column Chart (Section 7.2.3.1.3.2)

 Simple Line Chart (Section 7.2.3.1.3.3)

7.2.3.1.3 Creating the JSP Pages

NetAdvantage for JSF

413 NetAdvantage for JSF

The JSP source code for the pie chart shows how to create a simple 2D pie chart. To make a 3D pie chart, you
simply need to change the projectionType attribute to "3D", and add a rotation and perspective attribute.

The following code demonstrates how to create a pie chart in the JSP file

In JSP:

<ig:chart
 chartType="pie" groupType="cluster" projectionType="3d"
 rotation="-40, -20, 0" perspective="0.6"
 style="width: 520; height: 520">

 <ig:caption caption="Population by Continent 2004"/>
 <ig:series dataMapping="styleClass: style; value: population2004;
 markerCaption: countryName; markerCaptionVisible: captionVisible"
 dataSource="#{chartData.dataSource}" />
</ig:chart>

To create a pie chart at design time using IBM® Rational® Application Developer for WebSphere Software®
7.0:

1. From the palette, drag the Chart component to your page.

2. In the Properties window, select ig:chart.

3. Set the following properties:

 Chart Type -- Pie

 Group Type -- Cluster

 Perspective -- 0.6

 Rotation -- -40, -20, 0

 Projection Type -- 3d

4. Create other tags in JSP such as <ig:series> and <ig:caption> as they are not components and are not
present in the palette.
In JSP:

<ig:caption caption="Population by Continent 2004"/>

7.2.3.1.3.1 Simple Pie Chart

NetAdvantage for JSF

414 NetAdvantage for JSF

<ig:series dataMapping="styleClass: style; value: population2004;
 markerCaption: countryName; markerCaptionVisible: captionVisible"
 dataSource="#{chartData.dataSource}" />

The following screen shot shows a 3D pie chart.

NetAdvantage for JSF

415 NetAdvantage for JSF

The JSP code for the column chart shows how to create a simple column chart.

The WebChart™ component for this chart is similar to the pie chart but with the following differences:

 <ig:axis> -- An x- and y-axis now needs to be defined.

 <ig:series> -- Because this is a group column chart, there needs to be one series specified for each
continent.

 chartType -- The chartType is now a column and specified in the series tag.

Note: To reduce the number of attributes specified in the series tag, you can specify chartType attribute
in the <ig:chart> tag. Since the series tags are nested inside the <ig:chart> tag the chartType property will
default to the value specified in the <chart> tag.

The following code demonstrates how to create a column chart in the JSP file

In JSP:

<ig:chart
 groupType="cluster" projectionType="2d"
 style="width: 520; height: 520">

 <ig:axis type="x" autoRange="true" autoGridLines="true" />
 <ig:axis type="y" autoRange="true" autoGridLines="true" />

 <ig:caption caption="Population by Continent 1950-2004" position="top"/>
 <ig:series chartType="column" dataMapping="value: population"
 dataSource="#{chartData.asiaPopList}"/>
 <ig:series chartType="column" dataMapping="value: population"
 dataSource="#{chartData.africaPopList}" />
 <ig:series chartType="column" dataMapping="value: population"
 dataSource="#{chartData.laCarPopList}" />
 <ig:series chartType="column" dataMapping="value: population"
 dataSource="#{chartData.namericaPopList}" />
 <ig:series chartType="column" dataMapping="value: population"
 dataSource="#{chartData.europePopList}" />
 <ig:series chartType="column" dataMapping="value: population"
 dataSource="#{chartData.oceaniaPopList}" />
</ig:chart>

To create a column chart at design time using IBM® Rational® Application Developer for WebSphere
Software® 7.0:

1. From the palette, drag the Chart component to your page.

2. In the Properties window, select ig:chart.

3. Set the following properties:

 Chart Type -- Column

 Group Type -- Cluster

 Projection Type -- 2d

7.2.3.1.3.2 Grouped Column Chart

NetAdvantage for JSF

416 NetAdvantage for JSF

 Style -- width:520; height:520;

4. Create other tags in JSP such as <ig:series>, <ig:axis> and <ig:caption> as they are not components and are
not present in the palette.
In JSP:

<ig:axis type="x" autoRange="true" autoGridLines="true"/>
<ig:axis type="y" autoRange="true" autoGridLines="true" />
<ig:caption caption="Population by Continent 1950-2004" position="top"/>
<ig:series chartType="column"
 dataMapping="value: population"
 dataSource="#{chartData.asiaPopList}"/>
<ig:series chartType="column"
 dataMapping="value: population"
 dataSource="#{chartData.africaPopList}"/>
<ig:series chartType="column"
 dataMapping="value: population"
 dataSource="#{chartData.laCarPopList}"/>
<ig:series chartType="column"
 dataMapping="value: population"
 dataSource="#{chartData.namericaPopList}"/>
<ig:series chartType="column"
 dataMapping="value: population"
 dataSource="#{chartData.europePopList}"/>
<ig:series chartType="column"
 dataMapping="value: population"
 dataSource="#{chartData.oceaniaPopList}"/>

The following screen shot shows a column chart:

NetAdvantage for JSF

417 NetAdvantage for JSF

NetAdvantage for JSF

418 NetAdvantage for JSF

The JSP code for the line chart is very similar to the column chart. The only real difference is the chartType
attribute.

The following code demonstrates how to create a line chart in the JSP file

In JSP:

<ig:chart
 groupType="overlay" projectionType="2d" style="width: 520; height: 520">

 <ig:axis type="x" autoRange="true" autoGridLines="true" />
 <ig:axis type="y" autoRange="true" autoGridLines="true" />

 <ig:caption caption="Population by Continent" position="top" />

 <ig:series chartType="area" dataMapping="value: population; "
 dataSource="#{chartData.africaPopList}" />
 <ig:series chartType="area" dataMapping="value: population; "
 dataSource="#{chartData.laCarPopList}" />
 <ig:series chartType="column" dataMapping="value: population; "
 dataSource="#{chartData.namericaPopList}" />
 <ig:series chartType="line" dataMapping="value: population; "
 dataSource="#{chartData.asiaPopList}" />
 <ig:series chartType="line" dataMapping="value: population; "
 dataSource="#{chartData.europePopList}" />
 <ig:series chartType="line" dataMapping="value: population; "
 dataSource="#{chartData.oceaniaPopList}" />
</ig:chart>

To create a line chart at design time using IBM® Rational® Application Developer for WebSphere Software®
7.0:

1. From the palette, drag the Chart component to your page.

2. In the Properties window, select ig:chart.

3. Set the following properties:

 Chart Type -- Line

 Group Type -- Overlay

 Projection Type -- 2d

 Style -- width:520; height:520;

7.2.3.1.3.3 Simple Line Chart

NetAdvantage for JSF

419 NetAdvantage for JSF

4. Create other tags in JSP such as <ig:series>, <ig:axis> and <ig:caption> as they are not components and are
not present in the palette.
In JSP:

<ig:axis type="x" autoRange="true" autoGridLines="true" />
<ig:axis type="y" autoRange="true" autoGridLines="true" />
<ig:caption caption="Population by Continent" position="top" />
<ig:series chartType="area"
 dataMapping="value: population; "
 dataSource="#{chartData.africaPopList}" />
<ig:series chartType="area"
 dataMapping="value: population; "
 dataSource="#{chartData.laCarPopList}" />
<ig:series chartType="column"
 dataMapping="value: population; "
 dataSource="#{chartData.namericaPopList}" />
<ig:series chartType="line"
 dataMapping="value: population; "
 dataSource="#{chartData.asiaPopList}" />
<ig:series chartType="line"
 dataMapping="value: population; "
 dataSource="#{chartData.europePopList}" />
<ig:series chartType="line"
 dataMapping="value: population; "
 dataSource="#{chartData.oceaniaPopList}" />

The following screen shot shows a line chart:

NetAdvantage for JSF

420 NetAdvantage for JSF

NetAdvantage for JSF

421 NetAdvantage for JSF

Configuration of this tutorial is simple. Because this is a one-page application, the only files that need to be
updated are the web.xml and the managed-beans.xml files. The other JSF configuration files (navigation.xml
and faces-config.xml) do not need to be changed.

The XML files are available in the following folder:

Install_Dir/documents/tutorial/Chart/WEB-INF

For the web.xml file, the following entries need to be added to enable the faces servlet and define various JSF
parameters.

In XML:

<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup> 1 </load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <URL-pattern>*.faces</URL-pattern>
 </servlet-mapping>

 <context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>server</param-value>
 </context-param>
 <context-param>
 <param-name>javax.faces.CONFIG_FILES</param-name>
 <param-value>/WEB-INF/navigation.xml,/WEB-INF/managed-beans.xml</param-value>
 </context-param>

The managed-beans.xml file must be updated to define the connection between the alias used in the JSP file
and the ChartDataMB backing bean. The following entry needs to be added to the XML file.

In XML:

<managed-bean>
 <description>Backing bean for the WebChart</description>
 <managed-bean-name>chartData</managed-bean-name>
 <managed-bean-class>
 com.infragistics.samples.chart.ChartDataMB
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
</managed-bean>

7.2.3.1.4 Configuring the XML

NetAdvantage for JSF

422 NetAdvantage for JSF

Deploying the application is basically a matter of putting all the necessary files in the correct location. The ANT
build file included in the Install_Dir/documents/tutorial/Chart directory contains the tasks needed to create
the WAR file and deploy it to an Apache Tomcat server. If your environment is different, then simply update
the build file.

The following is a list of the names and locations of the key files:

 resources -- Contains some of the default images used by the controls

 infragistics -- Contains the JavaScripts files needed by the components.

 themes -- Contains a set of theme subfolders. Each theme subfolder contain all the CSS style
sheets and image files needed by the components. (The default theme is blue.)

 WEB-INF

 lib -- Contains all the JAR files that this application depends on, including a JAR file that contains the
EmployeeDAO class.

 web.xml
 managed-beans.xml
 navigation.xml
 faces-config.xml

 simplePieChart.jsp --A page with a simple pie chart.
 groupedColumn.jsp -- A page with a grouped column chart.
 simplePieLine.jsp -- A page with a simple line chart.
 index.jsp -- A home page with links to the three chart pages.

7.2.3.1.5 Deploying the Application

NetAdvantage for JSF

423 NetAdvantage for JSF

This section contains a multi-part walkthrough that explains how to create a WebChart dynamically. For the
tutorial, a pie chart will be created. The chart will be based on some UN population data that shows the
population by continent for the years between 1950 and 2004.

This tutorial will be very useful in showing how to create a WebChart through the backing bean and how the
different attributes of the chart component can be used to produce the desired result.

For information on running the following walkthrough, see Running the Tutorial Programs (Section 7.2.1).

Click the links below for access to the multi-part tutorial:

 Creating the JSP Page (Section 7.2.3.2.1)

 Creating the Backing Bean (Section 7.2.3.2.2)

 Configuring the XML (Section 7.2.3.2.3)

7.2.3.2 Dynamically Create a WebChart

NetAdvantage for JSF

424 NetAdvantage for JSF

The JSP source code for the pie chart shows simply binds the chart to your backing bean.

In JSP:

<ig:chart
 id = "chartRenderer1"
 binding = "#{pc_ChartPage.chartRenderer1}">
</ig:chart>

Related Topic

Creating the Backing Bean (Section 7.2.3.2.2)

7.2.3.2.1 Creating the JSP Page

NetAdvantage for JSF

425 NetAdvantage for JSF

The entire source code for this backing bean is available in the following file:

Install_Dir/documentation/tutorials/Chart/src/com/infragistics/samples/chart/ChartDataMB.java

The backing bean will set the properties for the chart.

The main method in the backing bean used to dynamically create the chart is called buildChart().

The following code shows how to create a WebChart in the backing bean.

In Java:

//get method for the chart
public HtmlChart getChartRenderer1() {
 if (chartRenderer1 == null) {
 chartRenderer1 = (HtmlChart) findComponentInRoot
 ("chartRenderer1");
 }
 return chartRenderer1;
}

//set method for the chart
public void setChartRenderer1(HtmlChart chartRenderer1) {
 this.chartRenderer1 = buildChart(chartRenderer1);
}

//Method that builds the chart
public HtmlChart buildChart(HtmlChart chart){
 //Set properties on the chart
 chart.setProjectionType("3d");
 chart.setRotation("-50, 0, 0)");
 chart.setPerspective(0.0F);
 chart.setStyle("width:680px;height:350px");
 chart.setGroupType("Overlay");
 chart.setPaneStyle("width:630px;height:350px");

 //Create x Axis
 Axis xAxis = new Axis();
 xAxis.setType(AxisType.X.toString());
 xAxis.setParent(chart);

 //Create y Axis
 Axis yAxis = new Axis();
 yAxis.setType(AxisType.Y.toString());
 yAxis.setParent(chart);

 //Create z Axis
 Axis zAxis = new Axis();
 zAxis.setType(AxisType.Z.toString());
 zAxis.setMinimumValue(-2);
 zAxis.setMaximumValue(2);
 zAxis.setParent(chart);

 //Set chart type and group type
 chart.setChartType(ChartType.PIE.toString());

7.2.3.2.2 Creating the Backing Bean

NetAdvantage for JSF

426 NetAdvantage for JSF

 chart.setGroupType(SeriesGroupType.Overlay.toString());

 //Create the data for the chart
 Series pieSeries = new Series();
 NumbersSource numbers = new NumbersSource();
 pieSeries.setDataSource(new ListDataModel(ns.getSparse0()));
 pieSeries.setMarkerCaptionVisible(Boolean.FALSE);
 pieSeries.setRadius(new Integer(170));

 pieSeries.setParent(chart);

 //Set the legend properties
 Legend legend = new Legend();
 legend.setAutoItems(true);
 legend.setPosition("RIGHT");
 legend.setStyle("height:350px");
 legend.setParent(chart);

 chart.dataBind(FacesContext.getCurrentInstance());

 return chart;
}

Related Topic

Configuring the XML (Section 7.2.3.2.3)

NetAdvantage for JSF

427 NetAdvantage for JSF

Configuration of this tutorial is simple. Because this is a one-page application, the only files that need to be
updated are the web.xml and the managed-beans.xml files. The other JSF configuration files (navigation.xml
and faces-config.xml) do not need to be changed.

The XML files are available in the following folder:

Install_Dir/documents/tutorial/Chart/WEB-INF

For the web.xml file, the following entries need to be added to enable the faces servlet and define various JSF
parameters.

In XML:

<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup> 1 </load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <URL-pattern>*.faces</URL-pattern>
 </servlet-mapping>

 <context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>server</param-value>
 </context-param>
 <context-param>
 <param-name>javax.faces.CONFIG_FILES</param-name>
 <param-value>/WEB-INF/navigation.xml,/WEB-INF/managed-beans.xml</param-value>
 </context-param>

The managed-beans.xml file must be updated to define the connection between the alias used in the JSP file
and the ChartPage backing bean. The following entry needs to be added to the XML file.

In XML:

<managed-bean>
 <description>Backing bean for the WebChart</description>
 <managed-bean-name>chartRenderer1</managed-bean-name>
 <managed-bean-class>
 com.infragistics.samples.chart.ChartPage
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
</managed-bean>

7.2.3.2.3 Configuring the XML

NetAdvantage for JSF

428 NetAdvantage for JSF

Deploying the application is basically a matter of putting all the necessary files in the correct location. The ANT
build file included in the Install_Dir/documents/tutorial/Chart directory contains the tasks needed to create
the WAR file and deploy it to an Apache Tomcat server. If your environment is different, then simply update
the build file.

The following is a list of the names and locations of the key files:

 resources -- Contains some of the default images used by the controls

 infragistics -- Contains the JavaScripts files needed by the components.

 themes -- Contains a set of theme subfolders. Each theme subfolder contain all the CSS style
sheets and image files needed by the components. (The default theme is blue.)

 WEB-INF

 lib -- Contains all the JAR files that this application depends on.
 web.xml
 managed-beans.xml
 navigation.xml
 faces-config.xml

 ChartPage.jsp

7.2.3.2.4 Deploying the Application

NetAdvantage for JSF

429 NetAdvantage for JSF

In this section, you’ll find step-by-step procedures that walk you through scenarios that are common when
using the WebGrid control:

 Connect a WebGrid to a Data Source (Section 7.2.4.1)

 Create a Dynamic Hierarchical WebGrid (Section 7.2.4.2)

 Create a Fixed Column WebGrid (Section 7.2.4.3)

 Create a Hierarchical WebGrid (Section 7.2.4.4)

 Dynamically Create a Fixed Column WebGrid (Section 7.2.4.5)

 Dynamically Update Data in a WebGrid (Section 7.2.4.6)

 Working with Facelets (Section 7.2.4.7)

7.2.4 WebGrid

NetAdvantage for JSF

430 NetAdvantage for JSF

This tutorial will explain the key steps that you need to know to get up and running with WebGrid™
components. Although this tutorial is specific to WebGrid, the concepts are valid for most of the NetAdvantage
for JSF components.

The goal of this tutorial is to show you how to connect WebGrid to a data source. In the tutorial, the data
source will be a simple list of employee data (first name, last name, e-mail address, and phone number).

For information on running the following walkthrough, see Running the Tutorial Programs (Section 7.2.1).

Note: The full source code and resources needed to build and deploy this tutorial can be found in the
Install_Dir/documentation/tutorials/Grid directory.

 Creating the Backing Bean - Part 1 of 4 (Section 7.2.4.1.1)

 Creating WebGrid and Binding to a Backing Bean - Part 2 of 4 (Section 7.2.4.1.2)

 Updating the Configuration Files - Part 3 of 4 (Section 7.2.4.1.3)

 Deploying the Application - Part 4 of 4 (Section 7.2.4.1.4)

7.2.4.1 Connect a WebGrid to a Data Source

NetAdvantage for JSF

431 NetAdvantage for JSF

To model the list of employees, we will create a Java class called EmployeeDAO.

Note: The full source code and resources needed to build and deploy this tutorial can be found in the
Install_Dir/documentation/tutorials/Grid directory.

The data that will be bound to the grid will be retrieved from a List object. In this tutorial, for simplicity
purposes, the data for the list is retrieved from a static array in the class. In a real-world application, the data
would most likely come from another data source such as a database.

In Java:

/** List of employees to be displayed in the grid*/
private static List employees = null;

The employees list is simply a list of Employee objects. The Employee class is a JavaBean that consists of fields
for the first name, last name, e-mail address, and phone number.

To provide the WebGrid™ components with access to the employee list, you must provide a getter that follows
the JavaBean standard.

In Java:

public List getEmployees() {
 return employees;
}

That is all the code that is needed for the backing bean. The getEmployees() method will be used by the
WebGrid™ to display the data as needed.

Related Topic

Creating WebGrid and Binding to a Backing Bean - Part 2 of 4 (Section 7.2.4.1.2)

7.2.4.1.1 Creating the Backing Bean - Part 1 of 4

NetAdvantage for JSF

432 NetAdvantage for JSF

The next step is to create a JSP™ page (dataBind.jsp) that will display a WebGrid™ component and bind it to
the backing bean that was created in Creating the Backing Bean - Part 1 of 4 (Section 7.2.4.1.1).

Note: The full JSP code, source code, and resources needed to build and deploy this tutorial can be found
in the Install_Dir/documentation/tutorials/Grid directory.

The following code demonstrates how to create a WebGrid component in the JSP file. See the Code Explanation
section further below for a description of the code.

In JSP:

<ig:gridView
 dataSource="#{webgrid_employeeDAO.employees}"
 pagesize="10">
 <f:facet name="header">
 <h:outputText value="Employee List" />
 </f:facet>
 <ig:column>
 <f:facet name="header">
 <h:outputText value="First Name" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.firstName}" />
 </ig:column>
 <ig:column>
 <f:facet name="header">
 <h:outputText value="Last Name" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.lastName}" />
 </ig:column>
 <ig:column>
 <f:facet name="header">
 <h:outputText value="Email" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.email}" />
 </ig:column>
 <ig:column>
 <f:facet name="header">
 <h:outputText value="Phone Number" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.phoneNumber}" />
 </ig:column>
</ig:gridView>

Code Explanation
The following is a list of the steps that occur in the above code.

1. The first tag ig:gridView creates the WebGrid component. This tag has two properties

 dataSource= "#{webgrid_employeeDAO.employees} -- This property binds the Employees list of the

7.2.4.1.2 Creating WebGrid and Binding to a Backing Bean - Part 2
of 4

NetAdvantage for JSF

433 NetAdvantage for JSF

backing bean to the WebGrid component.

 pagesize="10" -- This property indicates to the WebGrid component to display 10 rows per page.

3. The next block of code specifies a header area in WebGrid where you can place a title for the data being
shown.

4. The next block of code is a series of ig:column tags that are used to define the column header and data
value for each column of the WebGrid component. For this example, the data value for each column is a
simple outputText component that is bound to one of the fields of the Employee object. The DATA_ROW
part of the value binding is a built-in constant that is used to enumerate the rows of the grid when it is
rendered. See Identify the Rows in a Collection (Section 4.7.3.1.5) for more information.

Note: The WebGrid component is simply a container so the data value for a column can be represented by
any type of component, including drop-down lists, check boxes, inputText fields, etc.

To create WebGrid in design view using IBM® Rational® Application Developer for WebSphere Software®
7.0:

1. From the palette, drag the GridView component to your page.

2. In the Properties window, under ig:gridView, select Data .

3. Set the following properties:

 Data Source: #{webgrid_employeeDAO.employees}

 Page Size: 10

4. In the Design view, select the Grid Header and set the following property:

 Value -- Employee List

5. The default GridView is created with two columns. From the palette, drag the Column component to your
grid to add more columns.

6. In the Design view, for each column header, set the Value property:

NetAdvantage for JSF

434 NetAdvantage for JSF

 For Column Header 1, set Value to First Name.

 For Column Header 2, set Value to Last Name.

 For Column Header 3, set Value to Email.

 For Column Header 4, set Value to Phone Number.

7. In the Design view, for each column, set the Value property:

 For Column 1, set Value to #{DATA_ROW.firstName}.

 For Column 2, set Value to #{DATA_ROW.lastName}.

 For Column 3, set Value to #{DATA_ROW.email}.

 For Column 4, set Value to #{DATA_ROW.phoneNumber}.

Related Topic

Updating the Configuration Files - Part 3 of 4 (Section 7.2.4.1.3)

NetAdvantage for JSF

435 NetAdvantage for JSF

This topic continues from Creating WebGrid and Binding to a Backing Bean - Part 2 of 4 (Section 7.2.4.1.2).

Configuration of this JSF application is relatively simple. Because this is a one-page application, the only files
that need to be updated are the web.xml and the managed-beans.xml files. The other JSF configuration files
(navigation.xml and faces-config.xml) do not need to be changed. For the web.xml file, you must add the
following entries to enable the Faces Servlet and define several JSF parameters.

In XML:

<!-- Faces Servlet -->
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup> 1 </load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <URL-pattern>*.faces</URL-pattern>
 </servlet-mapping>

 <context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>server</param-value>
 </context-param>

 <context-param>
 <param-name>javax.faces.CONFIG_FILES</param-name>
 <param-value>/WEB-INF/navigation.xml,/WEB-INF/managed-beans.xml</param-value>
 </context-param>

The managed-beans.xml file needs to be updated to define the connection between the alias used in the JSP
file and the EmployeeDAO backing bean. To do this, we add the entry below.

In XML:

<managed-bean>
 <description>Returns a list of employees</description>
 <managed-bean-name>webgrid_employeeDAO</managed-bean-name>
 <managed-bean-class>com.infragistics.faces.samples.data.EmployeeDAO
 </managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
</managed-bean>

Related Topic

Deploying the Application - Part 4 of 4 (Section 7.2.4.1.4)

7.2.4.1.3 Updating the Configuration Files - Part 3 of 4

NetAdvantage for JSF

436 NetAdvantage for JSF

This topic continues from Updating the Configuration Files - Part 3 of 4 (Section 7.2.4.1.3).

Deploying the application is simply a matter of building the WAR file with all the pieces in the correct location.
Below is a brief description of the names and locations of the key files. The Apache® Ant build file that is
included in the Install_Dir/documentation/tutorials/Grid directory contains tasks to create the WAR file and
deploy it to an Apache Tomcat server. If your environment differs, simply update the build file.

 /resources -- Contains some of the default images used by the controls

 /resources/infragistics -- Contains the JavaScripts needed by the components.

 /resources/infragistics/themes -- Contains a set of theme subfolders. Each subfolder contains all the CSS
files and image files required by the components. (The default theme is blue.)

 WEB-INF

 /lib -- Contains all the JAR files that this application depends on, including a JAR file that contains the
EmployeeDAO class.

 web.xml

 managed-beans.xml

 navigation.xml

 faces-config.xml

 dataBind.jsp -- The main page that contains the searchable employee grid.

 index.jsp -- The home page which simply redirects the user to the dataBind page through the Faces
Servlet.

When you run the application, WebGrid will appear similar to the following screen shot.

7.2.4.1.4 Deploying the Application - Part 4 of 4

NetAdvantage for JSF

437 NetAdvantage for JSF

Using the MasterDetail facet in a column of the grid on a JSP™ page will allow you to create a hierarchical grid
that will contain your data. However, this assumes that the hierarchy of the data is static and known when the
page is being designed. If data is more dynamic, and the hierarchy can change based on user input, then coding
the hierarchy using the JSP tags will not work. This tutorial will show you how to create a dynamic hierarchical
grid that can change based on user input.

For this tutorial, we are going to create a hierarchical grid to display information about a playlist of songs. The
list will be arranged in either of the following orders based on user input:

 Artist > Year > Song

 Year > Artist > Song

The page will contain a drop-down list to allow the end user to select between the different ways to display the
hierarchical data. It will also contain a hierarchical grid comprised of three levels.

For information on running the following walkthrough, see Running the Tutorial Programs (Section 7.2.1).

Note: The full source code and resources needed to build and deploy this tutorial can be found in the
Install_Dir/documentation/tutorials/Dynamic HGrid directory.

The Dynamic Hierarchical Grid tutorial is a multi-part tutorial:

 Creating the Data Structure for the Playlist - Part 1 of 5 (Section 7.2.4.2.1)

 Creating the Backing Bean - Part 2 of 5 (Section 7.2.4.2.2)

 Creating the JSP Page - Part 3 of 5 (Section 7.2.4.2.3)

 Configuring the Application - Part 4 of 5 (Section 7.2.4.2.4)

 Deploying the Application - Part 5 of 5 (Section 7.2.4.2.5)

7.2.4.2 Create a Dynamic Hierarchical WebGrid

NetAdvantage for JSF

438 NetAdvantage for JSF

Before we can create the backing bean and JSP™ page, we need to create the hierarchical data structure for
our play list data.

In the source code for this example, there are a number of classes in the com.infragistics.faces.samples.hgrid
package that are used to define data structure. The MusicData class is the main data class. This class is used to
contain information about each of the songs in the play list. The MusicData class contains fields for the song
name, artist name, album title, song length, etc.

The MusicData class also contains a field called "sublist". The sublist field is meant to be a link to a list of other
music data. The data for the hierarchical grid is simply a set of nested lists of music data. For example, if the
end user wants to display the playlist data by Artist > Year >Song, you would perform the following steps to
create the data needed for the hierarchical grid:

1. Create an artist list of music data containing a list of unique artists.

2. For each entry in the artist list, create a year sub-list of music data containing the years of the artist's
songs.

3. Add the year sub-list to the artist list entry.

4. For each entry in the year sub-list, create a song sub-list of music data containing song data for the year
for that artist.

5. Add this song sub-list to the year list entry.

The music data is read from the MyMusic.csv file. The PlayListReader class contains a readPlayList that reads all
the song information from the file and converts it into a list of music data. The PlayList class contains a set of
utility methods to filter a set of music data by artist or year and create the sub-lists needed to create the
different hierarchies. The HierMusicData class contains two public methods to create the lists needed by the
hierarchical grid to display the music data by Artist > Year >Song, or Year > Artist > Song.

For a complete understanding of the playlist data structure, refer to the source code and unit tests for this
tutorial.

Related Topic

Creating the Backing Bean - Part 2 of 5 (Section 7.2.4.2.2)

7.2.4.2.1 Creating the Data Structure for the Play list - Part 1 of 5

NetAdvantage for JSF

439 NetAdvantage for JSF

The backing bean for this tutorial will use the play list data structure to dynamically create the hierarchical
grid.

The Web page will contain two main components:

 drop-down list to allow the end user to choose how to display the music data

 hierarchical grid to display the music data

The drop-down list value is modeled using a standard JSF UIInput class and is called listType. The hierarchical
grid is modeled using the Infragistics GridView component and is called m_hgrid.

In Java:

/** Grid used to show music data*/
private GridView m_hgrid;
/** value used to determine which type of hierarchy to create */
UIInput listType = null;

The hierarchical grid is created dynamically by the buildGrid method. This method is called each time the
setHGrid method is called.

In Java:

/**
* Dynamically builds the hierarchical grid
*
* @param grid
* @return
*/
private GridView buildGrid(GridView grid) {
 System.out.println("building Grid");

 if(m_musicListType.equals("year"))
 {
 grid = buildYearGrid(grid);
 }
 else if(m_musicListType.equals("artist"))
 {
 grid = buildArtistGrid(grid);
 }
 return grid;
}

Based on which type of grid the end user wants to display, this method will call either the buildYearGrid() or
buildArtistGrid() method.

The buildArtistGrid() method builds the hierarchical grid to display the Artist > Year > Song data. It does this by
doing the following

1. Clears the current grid clearGrid();

2. Creates a new set of music data from the csv file createMusicData();

7.2.4.2.2 Creating the Backing Bean - Part 2 of 5

NetAdvantage for JSF

440 NetAdvantage for JSF

3. Binds the grid to the music data

4. Creates a single column in the grid to show the artist name createArtistColumn()

The createArtistColumn() method creates the artist column and the nested sub-grid to show the year data for
this artist. The nested sub-grid is created by the createNestedYearGrid() method. This method creates a grid
with one column to show the years for the artist's songs. This grid also has a sub-grid of the song for that year
for that artist. This sub-grid is create by createNestedSongGrid() method.

In Java:

/**
* Creates a top level column to display the artist name from the music list
* It also creates a nested grid showing all the years of the songs by
* each artist
*
* @param colNameStr
* @param valueBindingStr
* @param application
* @param viewRoot
* @return
*/
private Column createArtistColumn(String colNameStr,
 String valueBindingStr,
 Application application,
 UIViewRoot viewRoot) {
 Column aColumn = (Column) application
 .createComponent(Column.COMPONENT_TYPE);
 GridView nestedGrid = createNestedYearGrid(application, viewRoot);
 aColumn.setMasterDetail(nestedGrid);
 // Create the col header name value
 UIOutput colName = (UIOutput) application
 .createComponent(UIOutput.COMPONENT_TYPE);
 colName.setValue(colNameStr);
 // colName.setId(viewRoot.createUniqueId());

 // Create the output text tag used to show the value of the column
 HTMLOutputText colValue = (HTMLOutputText) application
 .createComponent(HTMLOutputText.COMPONENT_TYPE);
 colValue.setValueBinding("value", application
 .createValueBinding(valueBindingStr));

 // set the header for the column
 aColumn.setHeader(colName);
 // aColumn.setHeader(headerMenu);
 aColumn.getAttributes();

 // Add the HTML output text field to show the column value for each row
 aColumn.getChildren().add(colValue);

 return (aColumn);
}

The createNestedYearGrid() method returns a GridView component. To create the nested grid in the artist
column, you simply need to call the column's setMasterDetail() method passing the GridView component
created by the createNestedYearGrid() method. The rest of the createArtistColumn() method creates the

NetAdvantage for JSF

441 NetAdvantage for JSF

template for the column header and value to display in the column.

The buildYearGrid() method follows a similar pattern to the buildArtistGrid() method except that it creates the
hierarchical grid in a different order using the createYearColumn() and createNestedArtistGrid() methods.

The drop-down list that is used to change the type of hierarchical grid is hooked up to a valueChangeListener
onChange() in the backing bean. Each time the users selects an item in the drop-down list, this method gets
called.

In Java:

public void onChange(ValueChangeEvent event) {
 System.out.println("Drop Down changed");
 m_musicListType = listType.getValue().toString();
 createMusicData();
 m_hgrid.getAttributes().put(IS_INITIALISED,
 new Boolean(false));
 buildGrid(m_hgrid);
}

This method does the following:

1. Gets the value chosen from the drop-down list and sets the musicListType parameter.

2. Recreates the music data to match the format of the hierarchy selected.

3. Sets the IS_INITIALISED string to False so the grid will reinitialize itself.

4. Calls the buildGrid() method to rebuild the grid.

For more details on the methods of the backing bean, refer to the source code for this tutorial.

Related Topic

Creating the JSP Page - Part 3 of 5 (Section 7.2.4.2.3)

NetAdvantage for JSF

442 NetAdvantage for JSF

The next step is to create a JSP™ page (hgrid.jsp) that will display the components and bind the values and
actions to the backing bean.

Note: The full JSP code, source code and resources needed to build and deploy this tutorial can be found
in the Install_Dir/documents/tutorial/Dynamic HGrid directory.

Besides the standard HTML and tags, the JSP contains the tags for the drop-down list and GridView component.

In JSP:

<f:view>
 <h:form>
 <h:panelGroup styleclass="main" >
 <h:panelGroup styleclass="section">
 <h:panelGrid columns="2" >
 <h:outputText value="Select How to Order Hierarchy: " />
 <ig:dropDownList id="listView"
 dataSource="#{musicBean.listViewType}"
 binding= "#{musicBean.listType}"
 valueChangeListener="#{musicBean.onChange}"
 smartRefreshIds="musicGrid" />
 </h:panelGrid>
 </h:panelGroup>
 <h:panelGroup styleclass="section">
 <ig:gridView id="musicGrid" binding="#{musicBean.hgrid}" />
 </h:panelGroup>
 </h:panelGroup>
 </h:form>
</f:view>

The drop-down list is an Infragistics drop-down list and uses the following parameters to connect it to a backing
bean.

 dataSource="#{ musicBean.listViewType}" – Used to bind the list of types of hierarchical grids
getListViewType() method of the MusicDataMB class.

 binding="#{ musicBean.listType}" – Binds the value of the selected item of the drop-down list to the
listType member variable of the MusicDataMB class.

 valueChangeListener="#{musicBean.onChange}" – Causes the onChange method of the MusicDataMB class to
be called when the value of the drop-down list changes.

 smartRefreshIds="musicGrid" – A comma-delimited list of other JSF components that get updated when the
drop-down list is changed or updated. This means that each time the drop-down list is updated, the
musicGrid will be updated.

The hierarchical grid is an Infragistics GridView component and is specified using the following two parameters:

 id="musicGrid"

 binding="#{musicBean.hgrid}"

The binding parameter connects the grid to the backing bean and causes the setHgrid() method in the backing
bean to get called each time the grid needs to be refreshed.

7.2.4.2.3 Creating the JSP Page - Part 3 of 5

NetAdvantage for JSF

443 NetAdvantage for JSF

Related Topic

Configuring the Application - Part 4 of 5 (Section 7.2.4.2.4)

NetAdvantage for JSF

444 NetAdvantage for JSF

Configuration of this application is simple. Because this is a one-page application, the only files that need to be
updated are the web.xml and the managed-beans.xml files. The other JSF configuration files (navigation.xml
and faces-config.xml) do not need to be changed.

For the web.xml file, the following entries need to be added in order to enable the Faces Servlet and define
several JSF parameters.

In XML:

<!-- Faces Servlet -->
<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup> 1 </load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <URL-pattern>*.faces</URL-pattern>
 </servlet-mapping>

 <context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>server</param-value>
 </context-param>

 <context-param>
 <param-name>javax.faces.CONFIG_FILES</param-name>
 <param-value>
 /WEB-INF/navigation.xml,/WEB-INF/managed-beans.xml
 </param-value>
 </context-param>

The managed-beans.xml file must be updated to define the connection between the alias used in the JSP file
and the MusicDataMB backing bean. To do this, we add the following entry.

In XML:

<managed-bean>
 <description>backing bean used by menu grid </description>
 <managed-bean-name>musicBean</managed-bean-name>
 <managed-bean-class>
 com.infragistics.faces.samples.hgrid.MusicDataMB
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

Related Topic

7.2.4.2.4 Configuring the Application - Part 4 of 5

NetAdvantage for JSF

445 NetAdvantage for JSF

Deploying the Application - Part 5 of 5 (Section 7.2.4.2.5)

NetAdvantage for JSF

446 NetAdvantage for JSF

Deploying the application involves putting all the files in the correct location. Below is a brief description of
the names and locations of the key files. The Ant build file included in the
Install_Dir/documentation/tutorial/Dynamic HGrid directory contains tasks to create the WAR file and deploy it
to an Apache® Tomcat server. If your environment is different, simply update the build file.

 resources – Contains some of the default images used by the controls.

 infragistics – Contains the JavaScripts needed by the components.

 themes – Contains a set of theme subfolders. Each theme subfolder contain all the CSS style
sheets and image files needed by the controls. (The default theme is blue.)

 WEB-INF

 lib – Contains all the JAR files that this application depends on, including a JAR file that contains the
EmployeeDAO class.

 web.xml

 managed-beans.xml

 navigation.xml

 faces-config.xml

 hgrid.jsp – The main page that contains the hierarchical grid.

 index.jsp – The home page, which simply redirects the user to the hgrid page through the Faces Servlet.

7.2.4.2.5 Deploying the Application - Part 5 of 5

NetAdvantage for JSF

447 NetAdvantage for JSF

The WebGrid™ components are capable of displaying fixed columns. This tutorial will show you how to create a
Web page that shows a grid with the first two columns as fixed for scrolling purposes.

For information on running the following walkthrough, see Running the Tutorial Programs (Section 7.2.1).

Note: The full source code and resources needed to build and deploy this tutorial can be found in the
Frozen Columns sample.

 Creating the Backing Bean - Part 1 of 4 (Section 7.2.4.3.1)

 Creating the JSP Page - Part 2 of 4 (Section 7.2.4.3.2)

 Configuring the Application - Part 3 of 4 (Section 7.2.4.3.3)

 Deploying the Application - Part 4 of 4 (Section 7.2.4.3.4)

7.2.4.3 Create a Fixed Column WebGrid

NetAdvantage for JSF

448 NetAdvantage for JSF

The Fixed Columns tutorial uses the EmployeeDAO class for its data. This class is used in most of the samples.

Note: The full source code and resources needed to build and deploy this tutorial can be found in the
Frozen Columns sample.

The data that will be bound to the grid will be retrieved from a List object. In this tutorial, the data for the list
is retrieved from a static array in the class. In a real-world application, the data would most likely come from
another data source such as a database.

In Java:

/** List of employees to be displayed in the grid*/
private static List employees = null;

The employees list is a list of Employee objects. The Employee class is a JavaBean that consists of fields for the
first name, last name, e-mail address, and phone number.

To provide the WebGrid™ components with access to the employee list, you must provide a getter that follows
the JavaBean standard.

In Java:

public List getEmployees() {
 return employees;
}

That is all the code that is needed for the backing bean. The getEmployees() method will be used by the
WebGrid components to display the data as needed.

Related Topic

Creating the JSP Page - Part 2 of 4 (Section 7.2.4.3.2)

7.2.4.3.1 Creating the Backing Bean - Part 1 of 4

NetAdvantage for JSF

449 NetAdvantage for JSF

The next step is to create a JSP™ page (dataBind.jsp) that will display a WebGrid™ component and bind it to
the backing bean that was created in Creating the Backing Bean - Part 1 of 4 (Section 7.2.4.3.1).

Note: The full JSP code, source code, and resources needed to build and deploy this tutorial can be found
in the Frozen Columns sample.

The following code demonstrates how to create a WebGrid component in the JSP file. See the Code
Explanation section further below for a description of the code.

In JSP:

<ig:gridView
 dataSource="#{webgrid_employeeDAO.employees}"
 pagesize="10"
 fixedColumns="2"
 style="width: 600px;">
 <f:facet name="header">
 <h:outputText value="Employee List" />
 </f:facet>
 <ig:column>
 <f:facet name="header">
 <h:outputText value="First Name" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.firstName}" />
 </ig:column>
 <ig:column>
 <f:facet name="header">
 <h:outputText value="Last Name" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.lastName}" />
 </ig:column>
 <ig:column>
 <f:facet name="header">
 <h:outputText value="Email" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.email}" />
 </ig:column>
 <ig:column>
 <f:facet name="header">
 <h:outputText value="Phone Number" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.phoneNumber}" />
 </ig:column>
</ig:gridView>

Code Explanation
The above code is the same as the code in the Basic Tutorial JSP Page (Section 7.2.4.1.2) except for the
addition of two tags.

 The fixedColumns tag is used to define the number of columns to be locked for scrolling purposes. The grid
starts at the left-most column and locks the number columns you have specified. Since the number is 2 in

7.2.4.3.2 Creating the JSP Page - Part 2 of 4

NetAdvantage for JSF

450 NetAdvantage for JSF

the code, the first two columns in the grid will be locked for scrolling.

Note: If you want to lock the last two columns in your grid, you need to reorganize your columns so
that your last two columns are your first two columns.

 The style tag is used to specify the width for the grid; it is a standard tag. It is required that you set the
width, otherwise the scrollbars won't display.

To create a grid at design time using IBM® Rational® Application Developer for WebSphere® 7.0:

1. From the palette, drag the GridView component to your page.

2. In the Properties window, under ig:gridView, select Data .

3. Set the following properties:

 Data Source: #{webgrid_employeeDAO.employees}

 Page Size: 10

4. In the Properties window, under ig:gridView, click Appearance.

5. Set the following properties:

 Fixed Column Count -- 2

 Style -- Width: 600

6. In the Design view, select the Grid Header and set the following property:

 Value -- Employee List

NetAdvantage for JSF

451 NetAdvantage for JSF

7. The default GridView is created with two columns. From the palette, drag the Column component to your
grid to add more columns.

8. In the Design view, for each column header, set the Value property:

 For Column Header 1, set Value to First Name.

 For Column Header 2, set Value to Last Name.

 For Column Header 3, set Value to Email.

 For Column Header 4, set Value to Phone Number.

9. In the Design view, for each column, set the Value property:

 For Column 1, set Value to #{DATA_ROW.firstName}.

 For Column 2, set Value to #{DATA_ROW.lastName}.

 For Column 3, set Value to #{DATA_ROW.email}.

 For Column 4, set Value to #{DATA_ROW.phoneNumber}.

NetAdvantage for JSF

452 NetAdvantage for JSF

Related Topic

Configuring the Application - Part 3 of 4 (Section 7.2.4.3.3)

NetAdvantage for JSF

453 NetAdvantage for JSF

This topic continues from Creating the JSP Page - Part 2 of 4 (Section 7.2.4.3.2).

Configuration of this application is relatively simple. Because this is a one-page application, the only files that
need to be updated are the following:

 web.xml

 managed-beans.xml

The other JSF configuration files (navigation.xml and faces-config.xml) do not need to be changed.

web.xml
For the web.xml file, the following entries need to be added to enable Faces Servlet and define several JSF
parameters.

In XML:

<!-- Faces Servlet -->
<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup> 1 </load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <URL-pattern>*.faces</URL-pattern>
</servlet-mapping>

<context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>server</param-value>
</context-param>

<context-param>
 <param-name>javax.faces.CONFIG_FILES</param-name>
 <param-value>/WEB-INF/navigation.xml,/WEB-INF/managed-beans.xml</param-value>
</context-param>

managed-beans.xml
The managed-beans.xml file must be updated to define the connection between the alias used in the JSP file
and the EmployeeDAO backing bean. To do this, we add the entry below.

In XML:

<managed-bean>
 <description>Returns a list of employees</description>
 <managed-bean-name>webgrid_employeeDAO</managed-bean-name>

7.2.4.3.3 Configuring the Application - Part 3 of 4

NetAdvantage for JSF

454 NetAdvantage for JSF

 <managed-bean-class>
 com.infragistics.faces.samples.data.EmployeeDAO
 </managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
</managed-bean>

Related Topic

Deploying the Application - Part 4 of 4 (Section 7.2.4.3.4)

NetAdvantage for JSF

455 NetAdvantage for JSF

This topic continues from Updating the Configuration Files - Part 3 of 4 (Section 7.2.4.3.3).

Deploying the application is simply a matter of putting all the files in the correct location. Below is a brief
description of the names and locations of the key files.

 /resources -- Contains some of the default images used by the controls

 /resources/infragistics -- Contains the JavaScripts needed by the components.

 /resources/infragistics/themes -- Contains a set of theme subfolders. Each subfolder contains all the CSS
files and image files required by the components. (The default theme is blue.)

 WEB-INF

 /lib -- Contains all the JAR files that this application depends on, including a JAR file that contains the
EmployeeDAO class.

 web.xml

 managed-beans.xml

 navigation.xml

 faces-config.xml

 dataBind.jsp -- The main page that contains the searchable employee grid.

 index.jsp -- The home page which simply redirects the user to the dataBind page through the Faces
Servlet.

7.2.4.3.4 Deploying the Application - Part 4 of 4

NetAdvantage for JSF

456 NetAdvantage for JSF

The WebGrid™ components can show related data in hierarchical structure. This tutorial will show you how to
create a Web page that shows a grid displaying data hierarchically.

For information on running the following walkthrough, see Running the Tutorial Programs (Section 7.2.1).

Note: The full source code and resources needed to build and deploy this tutorial can be found in the
Hierarchical Grid Sample.

 Creating the Backing Bean - Part 1 of 4 (Section 7.2.4.4.1)

 Creating the JSP Page - Part 2 of 4 (Section 7.2.4.4.2)

 Configuring the Application - Part 3 of 4 (Section 7.2.4.4.3)

 Deploying the Application - Part 4 of 4 (Section 7.2.4.4.4)

7.2.4.4 Create a Hierarchical WebGrid

NetAdvantage for JSF

457 NetAdvantage for JSF

The first thing that needs to be done is to create the backing bean that will be used to model the data and
actions required by the Web page. The Web page contains only one component -- the WebGrid component,
which displays hierarchical data.

To model this component, we will create three Java classes called Index, BaseGridPage, Company, and DAO.

Note: The full source code and resources needed to build and deploy this tutorial can be found in the
Hierarchical Grid Sample.

Index.java
The Index class extends the BaseGridPage.

In Java:

import com.infragistics.faces.samples.webgrid.BaseGridPage;

public class Index extends BaseGridPage {

}

BaseGridPage.java
The BaseGridPage class contains the getters that are called to fetch the data out of the DAO.java file.

In Java:

import com.infragistics.faces.samples.data.DAO;

public class BaseGridPage {
 public List getCompanies() {
 return DAO.getCompanies();
 }

 public List getEmployees() {
 return DAO.getEmployees();
 }

 public void sortListener(SortEvent evnt) {
 System.out.println("A SortEvent has been fired");
 }
}

DAO.java
The DAO class contains the data that is being shown in the grid, and contains the calls to the Company.java file

7.2.4.4.1 Creating the Backing Bean - Part 1 of 4

NetAdvantage for JSF

458 NetAdvantage for JSF

that creates all the company objects and related employee objects. This class also keeps a static member of
type List that contains all the company objects once they are created.

In Java:

private static List cachedCompanies = null;

The getCompanies method is called by the BaseGridPage class, and checks to see if the companies have been
loaded into the static list. If it hasn't been loaded, it makes a call to the buildCompanies method.

In Java:

public static List getCompanies() {
 if (cachedCompanies==null) {
 cachedCompanies=buildCompanies();
 }

 return cachedCompanies;
}

The buildCompanies method creates the company objects, and returns them to the getCompanies method.

In Java:

private static List buildCompanies() {
 List result = new ArrayList();
 for (int i=0; i<companies.length; i++) {
 Company company =
 new Company(
 i+1,
 companies[i][0],
 companies[i][1],
 companies[i][2]
);
 result.add(company);
 }
 return result;
}

Company.java
The Company class contains the definition of a company. The key code in this class is how it makes calls to
create employees, and how it relates those employees to each company. To create that relation, each company
has a list of employees.

In Java:

private List employees;

NetAdvantage for JSF

459 NetAdvantage for JSF

The employees list is populated by the getEmployees method in the Company class. This method makes a call
to the initEmployees method, which itself calls the getEmployees method from the DAO class.

In Java:

public List getEmployees() {
 if (employees==null)
 employees = initEmployees();
 return employees;
}

private List initEmployees() {
 List result = new ArrayList();
 if (employees==null) {
 Iterator tmp = DAO.getEmployees().iterator();
 while (tmp.hasNext()) {
 Person aPerson = (Person) tmp.next();
 if ((this.getId()%10)==(aPerson.getId()%10)) {
 result.add(aPerson);
 }
 }
 }
 return result;
}

Related Topic

Creating the JSP Page - Part 2 of 4 (Section 7.2.4.4.2)

NetAdvantage for JSF

460 NetAdvantage for JSF

This topic continues from Creating the Backing Bean - Part 1 of 4 (Section 7.2.4.4.1).

The next step is to create a JSP™ page (dataBind.jsp) that will display the components and bind the values and
actions to the backing bean.

Note: The full JSP code, source code and resources needed to build and deploy this tutorial can be found
in the Hierarchical Grid Sample.

To display the hierarchical company and employee data, NetAdvantage for JSF’s WebGrid™ will be used. As
shown in the JSP code below, the WebGrid components have two bindings:

 dataSource= "#{webgrid_hierarchicalGridPage.companies}" -- This binding binds the companies list of the
backing bean to the WebGrid components.

 dataSource= "#{DATA_ROW.employees.}" -- This binding binds the employees list of the backing bean to
another set of WebGrid components, shown when the expansion indicator is selected.

In JSP:

<ig:gridView
 dataSource="#{webgrid_hierarchicalGridPage.companies}"
 pagesize="5">
 <f:facet name="header">
 <h:outputText value="Company List" />
 </f:facet>
 <ig:column>
 <f:facet name="masterDetail">
 <ig:gridView
 dataSource="#{DATA_ROW.employees}"
 pagesize="4">
 <f:facet name="header">
 <h:outputText value="Employees List" />
 </f:facet>
 <ig:column sortBy="firstName">
 <f:facet name="header">
 <h:outputText value="First Name" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.firstName}" />
 </ig:column>
 <ig:column>
 <f:facet name="header">
 <h:outputText value="Last Name" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.lastName}" />
 </ig:column>
 <ig:column>
 <f:facet name="header">
 <h:outputText value="Email" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.email}" />
 </ig:column>
 <ig:column>
 <f:facet name="header">
 <h:outputText value="Phone Number" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.phoneNumber}" />

7.2.4.4.2 Creating the JSP Page - Part 2 of 4

NetAdvantage for JSF

461 NetAdvantage for JSF

 </ig:column>
 </ig:gridView>
 </f:facet>
 </ig:column>
 <ig:column>
 <f:facet name="header">
 <h:outputText value="Company Name" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.name}" />
 </ig:column>
 <ig:column>
 <f:facet name="header">
 <h:outputText value="City" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.city}" />
 </ig:column>
 <ig:column>
 <f:facet name="header">
 <h:outputText value="Country" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.country}" />
 </ig:column>
</ig:gridView>

To create the hierarchical grid, do the following:

1. Create the initial or parent grid, and bind it to a data source. Then create all of its columns.

2. In the parent grid, directly after setting the header, create a column tag, which has a facet tag with its
Name attribute set to "masterDetail".

Note: The location of the column containing the facet tag controls where the expansion indicator
column will appear in your grid. For example, if you place this column as the third column in your
grid, the expansion indicator will be located in the third column when the grid renders.

3. In between the facet tags created in step 2, create a WebGrid, and set its dataSource property to
DATA_ROW.employees, and create all of its columns.

Related Topic

Configuring the Application - Part 3 of 4 (Section 7.2.4.4.3)

NetAdvantage for JSF

462 NetAdvantage for JSF

This topic continues from Creating the JSP Page - Part 2 of 4 (Section 7.2.4.4.2).

Configuration of this application is relatively simple. Because this is a one-page application, the only files that
need to be updated are the following:

 web.xml

 managed-beans.xml

The other JSF configuration files (navigation.xml and faces-config.xml) do not need to be changed.

web.xml
For the web.xml file, the following entries need to be added to enable Faces Servlet and define several JSF
parameters.

In XML:

<!-- Faces Servlet -->
<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup> 1 </load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <URL-pattern>*.faces</URL-pattern>
</servlet-mapping>

<context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>server</param-value>
</context-param>

<context-param>
 <param-name>javax.faces.CONFIG_FILES</param-name>
 <param-value>
 /WEB-INF/navigation.xml,/WEB-INF/managed-beans.xml
 </param-value>
</context-param>

managed-beans.xml
The managed-beans.xml file must be updated to define the connection between the alias used in the JSP file
and the Index backing bean. To do this, we add the entry below.

In XML:

<managed-bean>
 <description>backing bean for the page hierarchicalGrid</description>

7.2.4.4.3 Configuring the Application - Part 3 of 4

NetAdvantage for JSF

463 NetAdvantage for JSF

 <managed-bean-name>webgrid_hierarchicalGridPage</managed-bean-name>
 <managed-bean-class>
 com.infragistics.faces.samples.webgrid.hierarchicalGrid.Index
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
</managed-bean>

Related Topic

Deploying the Application - Part 4 of 4 (Section 7.2.4.4.4)

NetAdvantage for JSF

464 NetAdvantage for JSF

This topic continues from Configuring the Application - Part 3 of 4 (Section 7.2.4.4.3).

Deploying the application is simply a matter of putting all the files in the correct location. Below is a brief
description of the names and locations of the key files.

 /resources -- Contains some of the default images used by the controls

 /resources/infragistics -- Contains the JavaScripts needed by the components.

 /resources/infragistics/themes -- Contains a set of theme subfolders. Each subfolder contains all the CSS
files and image files required by the components. (The default theme is blue.)

 WEB-INF

 lib – Contains all the JAR files that this application depends on, including a JAR file that contains the
Index, Company, DAO, and BaseGridPage classes.

 web.xml

 managed-beans.xml

 navigation.xml

 faces-config.xml

 dataBind.jsp – The main page that contains the hierarchical grid.

 index.jsp – The home page which simply redirects the user to the dataBind page through the Faces Servlet.

7.2.4.4.4 Deploying the Application - Part 4 of 4

NetAdvantage for JSF

465 NetAdvantage for JSF

Creating a set of fixed columns in a grid is just a matter of setting the fixedColumnCount attribute on the grid
in the JSP page. Creating fixed columns this way is fairly static. Although a user can make an unfixed column
fixed by dragging it to the fixed area of the grid this can be difficult if the grid is wide. This tutorial will show
how to dynamically create a fixed column grid that will have a menu in the column header that will allow the
user to easily fix or unfix a column.

For this tutorial we are going to create a grid to display information about a list of songs. There will be columns
for Artist, Album, Song, Year, Length of Song, Track Num, and Date Added. On the top of each column will be a
menu that the user can select to make the column fixed or unfixed. If a user makes a fixed column unfixed it
will be moved to the left most column of the unfixed area of the grid. If the user make an unfixed column fixed
it will be moved to the right most column of the fixed area of the grid.

For information on running the following walkthrough, see Running the Tutorial Programs (Section 7.2.1).

Note: The full source code and resources needed to build and deploy this tutorial can be found in the
Install_Dir/documents/tutorial/FixedColumns directory.

 Creating the Backing Bean - Part 1 of 4 (Section 7.2.4.5.1)

 Creating the JSP Page - Part 2 of 4 (Section 7.2.4.5.2)

 Configuring the Application - Part 3 of 4 (Section 7.2.4.5.3)

 Deploying the Application - Part 4 of 4 (Section 7.2.4.5.4)

7.2.4.5 Dynamically Create a Fixed Column WebGrid

NetAdvantage for JSF

466 NetAdvantage for JSF

NetAdvantage for JSF

467 NetAdvantage for JSF

The backing bean for this tutorial will use to dynamically create the fixed column grid. The Web page will
contain a grid that has menus in the column headers

The grid is created dynamically by the buildGrid() method. This method is called anytime the setGrid() method
is called. This method dynamically builds the grid column by column based on data in two column lists
m_fixedColumnList and m_unfixedColumnList. This list contains the data needed to build the fixed and unfixed
columns of the grid respectively. The data source bound to the list is just a set of list of MusicData. For a brief
description of the MusicData structure see part 1 of the Dynamic Hierarchical grid tutorial.

In Java:

private GridView buildGrid(GridView grid)
{
 Boolean isInitialised = null;
 Object attr = grid.getAttributes().get(IS_INITIALIZED);
 if (attr != null)
 {
 isInitialised = (Boolean) (attr);
 }
 else
 {
 isInitialised = new Boolean(false);
 }
 if (!isInitialised)
 {
 clearGrid();
 // create the data for the grid
 createMusicData();

 // get a reference to the JSF Application,
 // we need it to create value bindings later-on
 Application application = FacesContext.getCurrentInstance().getApplication();
 UIViewRoot viewRoot = FacesContext.getCurrentInstance().getViewRoot();

 // bind the grid to display a list of data
 grid.setValueBinding("dataSource", application
 .createValueBinding("#{fixedColumn.musicData}"));

 // set style with width of the grid if this is not set
 // the scroll bar for the unfixed column will not show
 ValueBinding vb = application.createValueBinding("#{fixedColumn.gridStyle}");
 grid.setValueBinding("style", vb);

 // display 10 items at a time
 grid.setPageSize(10);

 //Add fixed columns to the grid
 for(int i = 0; i < m_fixedColumnList.size(); i++)
 {
 ColumnData coldata = (ColumnData)m_fixedColumnList.get(i);
 String vbExpression = "#{DATA_ROW." + colData.getGetter() + "}";
 Column aColumn = createColumn(colData.getName(), vbExpression, application,
 viewRoot);
 aColumn.setSortBy(colData.getGetter());
 grid.getTemplateItems().add(aColumn);

7.2.4.5.1 Creating the Backing Bean - Part 1 of 4

NetAdvantage for JSF

468 NetAdvantage for JSF

 }
 //Set number of fixed columns
 grid.setFixedColumnCount(m_fixedColumnList.size());
 // Add unfixed columns to the grid
 for(int i = 0; i < m_unfixedColumnList.size(); i++)
 {
 ColumnData coldata = (ColumnData)m_unfixedColumnList.get(i);
 String vbExpression = "#{DATA_ROW." + colData.getGetter() + "}";
 Column aColumn = createColumn(colData.getName(), vbExpression, application,
 viewRoot);
 aColumn.setSortBy(colData.getGetter());
 grid.getTemplateItems().add(aColumn);
 }

 grid.getAttributes().put(IS_INITIALIZED,
 new Boolean(true));
 }
 return (grid);
}

The buildGrid() method uses the createColumn() method to create each column object. The createColumn()
method in turn calls the createHeaderMenu() method to create the menu for each header. This method
dynamically builds the menu for each column header based on the column name. The method creates a method
binding for each menu item “Fix Column” and “UnFix Column”. When the user selects these menu items the
method associated with them is called.

In Java:

private HTMLMenu createHeaderMenu(String colName, Application application,
 UIViewRoot viewRoot)
{
 MethodBinding fixedActionListener = application.createMethodBinding(
 "#{fixedColumn.setColumnFixed}",
 new Class[] { javax.faces.event.ActionEvent.class });

 MethodBinding unfixedActionListener = application.createMethodBinding(
 "#{fixedColumn.setColumnUnfixed}",
 new Class[] { javax.faces.event.ActionEvent.class });

 // Create the menu for the column header
 HTMLMenu menu = (HTMLMenu) application.createComponent(HTMLMenu.COMPONENT_TYPE);

 //Create menu item using column name
 MenuItem menuItem = (MenuItem)
 application.createComponent(MenuItem.COMPONENT_TYPE);
 menuItem.setValue(colName);

 //Create menu sub items for the two menu options
 MenuItem menuSubItem = (MenuItem)
 application.createComponent(MenuItem.COMPONENT_TYPE);

 //menuSubItem.setId(viewRoot.createUniqueId());
 menuSubItem.setValue("Fix Column");
 menuItem.getChildren().add(menuSubItem);

NetAdvantage for JSF

469 NetAdvantage for JSF

 //set actionlistener to respond to menu event
 menuSubItem.setActionListener(fixedActionListener);

 menuSubItem = (MenuItem) application.createComponent(MenuItem.COMPONENT_TYPE);

 //menuSubItem.setId(viewRoot.createUniqueId());
 menuSubItem.setValue("UnFix Column");
 menuItem.getChildren().add(menuSubItem);
 menuSubItem.setActionListener(unfixedActionListener);

 //add the menu item to the menu
 menu.getChildren().add(menuItem);

 return(menu);
}

The "Fix Column" menu item calls the setColumnFixed() method and the "UnFix Column" menu item calls the
setColumnUnfixed() method. All these methods do is to move the column data between the m_fixedColumnList
and m_unfixedColumnList based whether the column is being fixed or unfixed and then rebuilds the grid.

In Java:

/**
* Sets the selected column to be unfixed in the grid
* by moving the column data of the selected column
* to the unfixed list.
*
* @param event
*/
public void setColumnUnfixed(ActionEvent event)
{
 MenuItem selectedMenu = (MenuItem)event.getSource();
 MenuItem colMenu = (MenuItem)selectedMenu.getParent();
 String colName = colMenu.getValue().toString();
 moveToUnfixedList(colName);
 System.out.println("UnFixing Column " + colName);
 //rebuild to grid to reset the columns
 m_grid.getAttributes().put(IS_INITIALIZED,
 new Boolean(false));
 buildGrid(m_grid);
}

For more details on the methods of the backing bean take a look at the source code for this tutorial.

Related Topic

Creating the JSP Page - Part 2 of 4 (Section 7.2.4.5.2)

NetAdvantage for JSF

470 NetAdvantage for JSF

The next step is to create a JSP page (fixedColumns.jsp) that will display the components and bind the values
and actions to the backing bean. (Note: The full JSP code, source code and resources needed to build and
deploy this tutorial can be found in the Install_Dir/documents/tutorial/FixedColumns directory.)

Besides the standard HTML and tags the JSP contains the tags the GridView component.

In JSP:

<f:view>
 <h:form>
 <h:panelGroup>
 <h:panelGroup binding="#{fixedColumn.topPanel}">
 </h:panelGroup>
 <h:panelGroup>
 <ig:gridView id="musicGrid"
 binding="#{fixedColumn.grid}" >
 </ig:gridView>
 </h:panelGroup>
 </h:panelGroup>
 </h:form>
</f:view>

The grid is an Infragistics GridView component is and is specified using to parameters id=”musicGrid” and
binding="#{fixedColumn.grid}" The binding parameter connects the grid to the backing bean and will cause the
setGrid() method in the backing bean to get called anytime the grid needs to be refreshed.

Related Topic

Configuring the Application - Part 3 of 4 (Section 7.2.4.5.3)

7.2.4.5.2 Creating the JSP Page - Part 2 of 4

NetAdvantage for JSF

471 NetAdvantage for JSF

Configuration of this application is simple. Because this is a one-page application, the only files that need to be
updated are the web.xml and the managed-beans.xml files. The other JSF configuration files (navigation.xml
and faces-config.xml) do not need to be changed. For the web.xml file, the following entries need to be added
to enable faces servlet and define some JSF parameters.

In XML:

<!-- Faces Servlet -->
<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup> 1 </load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <URL-pattern>*.faces</URL-pattern>
 </servlet-mapping>

 <context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>server</param-value>
 </context-param>

 <context-param>
 <param-name>javax.faces.CONFIG_FILES</param-name>
 <param-value>/WEB-INF/navigation.xml,/WEB-INF/managed-beans.xml</param-value>
 </context-param>

The managed-beans.xml file must be updated to define the connection between the alias used in the JSP file
and the FixedColumnMB backing bean. To do this we add the following entry.

In XML:

<managed-bean>
 <description>backing bean used by menu grid </description>
 <managed-bean-name>fixedColumn</managed-bean-name>
 <managed-bean-class>
 com.infragistics.faces.samples.fixedColumn.FixedColumnMB
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

Related Topic

7.2.4.5.3 Configuring the Application - Part 3 of 4

NetAdvantage for JSF

472 NetAdvantage for JSF

Deploying the Application - Part 4 of 4 (Section 7.2.4.5.4)

NetAdvantage for JSF

473 NetAdvantage for JSF

Deploying the application is just a matter of putting all the files in the correct location. Below is a brief
description of the names and locations of the key files. The ant build file included in the
Install_Dir/documents/tutorial/Dynamic HGrid directory contains tasks to create the WAR file and deploy it to
a Tomcat server. If your environment is different, simply update the build file.

 resources – Contains some of the default images used by the controls

 infragistics – Contains the JavaScripts needed by the components.

 themes – Contains a set of theme sub-folders. Each theme sub-folder contain all the CSS style
sheets and image files needed by the controls. (The default theme is blue.)

 WEB-INF

 lib – Contains all the JAR files that this application depends on, including a JAR file that contains the
EmployeeDAO class.

 web.xml

 managed-beans.xml

 navigation.xml

 faces-config.xml

 fixedColumn.jsp – Main page that contains the hierarchical grid.

 index.jsp – Home page which simply redirects the user to the fixedColumn page through the FacesServlet.

7.2.4.5.4 Deploying the Application - Part 4 of 4

NetAdvantage for JSF

474 NetAdvantage for JSF

The WebGrid™ components have the ability to dynamically update the data displayed based on changes in the
data bound to WebGrid. This tutorial will show you how to create a Web page that filters a set of data in a
WebGrid component based on text entered in a text box. The Web page that will be created will contain a grid
that displays a list of employee data (first name, last name, e-mail address, and phone number). The Web page
will also contain a text box and a Search button. If the end user enters all or part of an employee’s first name,
and then clicks the Search button, the data in WebGrid will be filtered based on the first name entered.

For information on running the following walkthrough, see Running the Tutorial Programs (Section 7.2.1).

Note: The full source code and resources needed to build and deploy this tutorial can be found in the
Install_Dir/documentation/tutorials/GridSearch directory.

 Creating the Backing Bean - Part 1 of 4 (Section 7.2.4.6.1)

 Creating the JSP Page - Part 2 of 4 (Section 7.2.4.6.2)

 Configuring the Application - Part 3 of 4 (Section 7.2.4.6.3)

 Deploying the Application - Part 4 of 4 (Section 7.2.4.6.4)

7.2.4.6 Dynamically Update Data in a WebGrid

NetAdvantage for JSF

475 NetAdvantage for JSF

The first thing that needs to be done is to create the backing bean that will be used to model the data and
actions required by the Web page. The Web page will contain three main components:

 the WebGrid component to display employee data

 a text box to input the employee’s first name

 a search button that will be used to initiate the search

To model these components, we will create a Java class called EmployeeDAO.

Note: The full source code and resources needed to build and deploy this tutorial can be found in the
Install_Dir/documentation/tutorials/GridSearch directory.

A member variable will be used to model the text box and WebGrid as follows:

In Java:

/** Handle to the first name search input field*/
private UIInput m_searchStr = null;
/** Handle to the grid component on the page*/
private GridView m_employeeGridView = null;

The text box is modeled using the standard JSF UIInput class and is called m_searchStr. WebGrid is modeled
using NetAdvantage for JSF's gridView component and is called m_employeeGridView. In order to provide the
Web page with access to these objects, you must provide setters and getters that follow the JavaBean
standard.

In Java:

public GridView getEmployeeGridView() {
 return m_employeeGridView;
}

public void setEmployeeGridView(GridView employeeGridView) {
 m_employeeGridView = employeeGridView;
}
public UIInput getSearchStr(){
 return(m_searchStr);
}
public void setSearchStr(UIInput searchStr){
 m_searchStr = searchStr;
}

The data that will be bound to the grid will be retrieved from a List object. In this tutorial, for simplicity
purposes, the data for the list is retrieved from a static array in the class. If this had been a real-world
application, the data would most likely have come from another data source such as a database.

In Java:

/** List of employees that will be display in the grid*/
private static List employees = null;

7.2.4.6.1 Creating the Backing Bean - Part 1 of 4

NetAdvantage for JSF

476 NetAdvantage for JSF

The Search button is not modeled in the EmployeeDAO class because we do not need to access its value or
properties. The only thing that has to be modeled for the Search button is the action that will take place when
the button is clicked. To do this, we create an applySettings method that will be called when the Search button
is clicked.

In Java:

/**
* Action method called when the Search button is pressed
* This method gets the search string from the input field
* and then filters the employee list by first name
* using the search string
*
* @param event
*/
public void applySettings(ActionEvent event){
 //Reset list to full value
 buildEmpList();
 //Get value of first name search string
 String searchStr = m_searchStr.getValue().toString();
 if(searchStr.length() > 0)
 {
 filterEmpList(searchStr);
 }
 m_employeeGridView.dataBind();
}

This method first resets the employees list so that it contains all possible employees. The next step that occurs
is the search string is retrieved from the text box. If the searchStr is empty, then nothing is done; otherwise
the filterEmpList() method is called. The filterEmpList() method creates a new employees list that contains
only the employees whose first name matches the search criteria. After the filterEmpList() method is complete,
the dataBind() method of m_employeeGridView is called. This causes WebGrid to get the filtered version of the
employees list and update its display.

Related Topic

Creating the JSP Page - Part 2 of 4 (Section 7.2.4.6.2)

NetAdvantage for JSF

477 NetAdvantage for JSF

This topic continues from Creating the Backing Bean - Part 1 of 4 (Section 7.2.4.6.1).

The next step is to create a JSP™ page (dataBind.jsp) that will display the components and bind the values and
actions to the backing bean.

Note: The full JSP code, source code and resources needed to build and deploy this tutorial can be found
in the Install_Dir/documentation/tutorials/GridSearch directory.

A standard JSF inputText tag is used to enter the search string as show here.

In JSP:

<h:inputText value=""
 binding="#{webgrid_employeeDAO.searchStr}"/>

The inputText component contains a binding expression to bind this component to the searchStr variable of the
EmployeeDAO backing bean whose alias is “webgrid_employeeDAO”, as defined in the managed-beans.xml file.

The Search button is represented by the standard JSF commandButton. As shown below, the commandButton is
connected to the applySettings method of the backing bean through the actionListener tag.

In JSP:

<h:commandButton
 actionListener="#{webgrid_employeeDAO.applySettings}"
 value="Search">
</h:commandbutton>

To display the employee data, NetAdvantage for JSF’s WebGrid™ will be used. As shown in the JSP code below,
WebGrid has two bindings. The first binding (binding = "#{webgrid_employeeDAO.employeeGridView}") provides
the backing bean with access to the WebGrid so that it can be updated when the employee data changes. The
second binding (dataSource= "#{webgrid_employeeDAO.employees}") binds the employees list of the backing
bean to WebGrid.

In JSP:

<ig:gridView binding="#{webgrid_employeeDAO.employeeGridView}"
 dataSource="#{webgrid_employeeDAO.employees}"
 pageSize="10">
 <f:facet name="header">
 <h:outputText value="Employee List" />
 </f:facet>
 <ig:column sortBy="firstName">
 <f:facet name="header">
 <h:outputText value="First Name" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.firstName}" />
 </ig:column>
 <ig:column sortBy="lastName">
 <f:facet name="header">
 <h:outputText value="Last Name" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.lastName}" />

7.2.4.6.2 Creating the JSP Page - Part 2 of 4

NetAdvantage for JSF

478 NetAdvantage for JSF

 </ig:column>
 <ig:column sortBy="email">
 <f:facet name="header">
 <h:outputText value="Email" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.email}" />
 </ig:column>
 <ig:column sortBy="phoneNumber">
 <f:facet name="header">
 <h:outputText value="Phone Number" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.phoneNumber}"/>
 </ig:column>
</ig:gridView>

Related Topic

Configuring the Application - Part 3 of 4 (Section 7.2.4.6.3)

NetAdvantage for JSF

479 NetAdvantage for JSF

This topic continues from Creating the JSP Page - Part 2 of 4 (Section 7.2.4.6.2).

Configuration of this application is relatively simple. Because this is a one-page application, the only files that
need to be updated are the following:

 web.xml

 managed-beans.xml

The other JSF configuration files (navigation.xml and faces-config.xml) do not need to be changed.

web.xml
For the web.xml file, the following entries need to be added to enable Faces Servlet and define several JSF
parameters.

In XML:

<!-- Faces Servlet -->
<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup> 1 </load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <URL-pattern>*.faces</URL-pattern>
</servlet-mapping>

<context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>server</param-value>
</context-param>

<context-param>
 <param-name>javax.faces.CONFIG_FILES</param-name>
 <param-value>/WEB-INF/navigation.xml,/WEB-INF/managed-beans.xml</param-value>
</context-param>

managed-beans.xml
The managed-beans.xml file must be updated to define the connection between the alias used in the JSP file
and the EmployeeDAO backing bean. To do this, we add the entry below.

In XML:

<managed-bean>
 <description>Returns a list of employees</description>
 <managed-bean-name>webgrid_employeeDAO</managed-bean-name>
 <managed-bean-class>
 com.infragistics.faces.samples.data.EmployeeDAO
 </managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>

7.2.4.6.3 Configuring the Application - Part 3 of 4

NetAdvantage for JSF

480 NetAdvantage for JSF

</managed-bean>

Related Topic

Deploying the Application - Part 4 of 4 (Section 7.2.4.6.4)

NetAdvantage for JSF

481 NetAdvantage for JSF

This topic continues from Configuring the Application - Part 3 of 4 (Section 7.2.4.6.3).

Deploying the application is simply a matter of putting all the files in the correct location. Below is a brief
description of the names and locations of the key files. The Apache® Ant build file included in the
Install_Dir/documentation/tutorials/GridSearch directory contains tasks to create the WAR file and deploy it to
an Apache Tomcat server. If your environment is different, you must update the build file.

 /resources -- Contains some of the default images used by the controls

 /resources/infragistics -- Contains the JavaScripts needed by the components.

 /resources/infragistics/themes -- Contains a set of theme subfolders. Each subfolder contains all the CSS
files and image files required by the components. (The default theme is blue.)

 WEB-INF

 lib – Contains all the JAR files that this application depends on, including a JAR file that contains the
EmployeeDAO class.

 web.xml

 managed-beans.xml

 navigation.xml

 faces-config.xml

 dataBind.jsp – The main page that contains the searchable employee grid.

 index.jsp – The home page which simply redirects the user to the dataBind page through the Faces Servlet.

7.2.4.6.4 Deploying the Application - Part 4 of 4

NetAdvantage for JSF

482 NetAdvantage for JSF

The NetAdvantage for JSF® components have the ability to run in Facelets. This tutorial will show you how to
create a sortable grid of employee data that will be displayed on a Facelet page.

Using JSF components in a Facelet application is very similar using them on a JSF page. The main difference
with an application that uses Facelets is the way you create the individual pages. Facelets allows the creation
of templates, which provide a basic layout and format for a page. Each individual page then references a
template and fills in the required pieces to complete the page.

For information on running the following walkthrough, see Running the Tutorial Programs (Section 7.2.1).

Note: The full source code and resources needed to build and deploy this tutorial can be found in the
Knowledge Base 10003 (http://devcenter.infragistics.com/Support/KnowledgeBaseArticle.aspx?
ArticleID=10003) directory.

 Creating the Backing Bean - Part 1 of 5 (Section 7.2.4.7.1)

 Creating the Template - Part 2 of 5 (Section 7.2.4.7.2)

 Creating the JSP Page - Part 3 of 5 (Section 7.2.4.7.3)

 Configuring the Application - Part 4 of 5 (Section 7.2.4.7.4)

 Deploying the Application - Part 5 of 5 (Section 7.2.4.7.5)

7.2.4.7 Working with Facelets

NetAdvantage for JSF

483 NetAdvantage for JSF

To model the list of employees, we will create a Java class called EmployeeDAO.

Note: The full source code and resources needed to build and deploy this tutorial can be found in the
Knowledge Base 10003 (http://devcenter.infragistics.com/Support/KnowledgeBaseArticle.aspx?
ArticleID=10003)

The data that will be bound to the grid will be retrieved from a List object. In this tutorial, for simplicity
purposes, the data for the list is retrieved from a static array in the class. In a real-world application, the data
would most likely come from another data source such as a database.

In Java:

/** List of employees to be displayed in the grid*/
private static List employees = null;

The employees list is simply a list of Employee objects. The Employee class is a JavaBean that consists of fields
for the first name, last name, e-mail address, and phone number.

To provide the WebGrid™ components with access to the employee list, you must provide a getter that follows
the JavaBean standard.

In Java:

public List getEmployees() {
 return employees;
}

That is all the code that is needed for the backing bean. The getEmployees() method will be used by the
WebGrid to display the data as needed.

Related Topic

Creating the JSP Page - Part 3 of 5 (Section 7.2.4.7.3)

7.2.4.7.1 Creating the Backing Bean - Part 1 of 5

NetAdvantage for JSF

484 NetAdvantage for JSF

The next step is to create a template file (common.xHTML) that contains the basic format and style that we
want to use for the page. The template contains a parameter for the page header and page body that needs to
be specified by each page the uses this template. The full code of this template is shown below.

Note: The template contains the <h:form> tags inside the body tags. This is required for the AJAX
functionality of our NetAdvantage for JSF to work.

Note: The full source code and resources needed to build and deploy this tutorial can be found in the
Knowledge Base 10003 (http://devcenter.infragistics.com/Support/KnowledgeBaseArticle.aspx?
ArticleID=10003)

In JSP:

<body bgcolor="#ffffff">
 <h:form>
 <table style="border:1px solid #CAD6E0" align="center"
 cellpadding="0" cellspacing="0" border="0" width="400">
 <tbody>
 <tr>
 <td class="header" height="42" align="center" valign="middle"
 width="100%" bgcolor="#E4EBEB">
 <ui:insert name="pageHeader">Page Header</ui:insert>
 </td>
 </tr>
 <tr>
 <td height="1" width="100%" bgcolor="#CAD6E0"></td>
 </tr>
 <tr>
 <td width="100%" colspan="2">
 <table width="100%" style="height:150px" align="left"
 cellpadding="0" cellspacing="0" border="0">
 <tbody>
 <tr>
 <td align="center" width="100%" valign="middle">
 <ui:insert name="body">Page Body</ui:insert>
 </td>
 </tr>
 </tbody>
 </table>
 </td>
 </tr>
 <tr>
 <td colspan="2" valign="bottom" height="1" width="100%"
 bgcolor="#CAD6E0"></td>
 </tr>
 </tbody>
 </table>
</h:form>
</body>

7.2.4.7.2 Creating the Template - Part 2 of 5

NetAdvantage for JSF

485 NetAdvantage for JSF

Code Explanation
The above code defines the template, which outlines the basic format and style that we want to use for the
page. The following list the key sections defined in the template code.

1. The template contains a parameter for the page header and page body that needs to be specified by each
page that uses this template.

 pageHeader insert -- inserts the information that you specify in the tags in your facelet page.

 body insert -- inserts the information you specify in your body tags in your facelet page.

NetAdvantage for JSF

486 NetAdvantage for JSF

The next step is to create a facelet page (employees.xHTML) that will display a WebGrid component and bind it
to the backing bean that was created in Creating the Backing Bean - Part 1 of 5 (Section 7.2.4.7.1). We also
reference the template file called common.xHTML that was created in Creating the Template - Part 2 of 5
(Section 7.2.4.7.2). See the Code Explanation section further below for a description of the code.

Note: The full JSP code, source code, and resources needed to build and deploy this tutorial can be found
in the Knowledge Base 10003 (http://devcenter.infragistics.com/Support/KnowledgeBaseArticle.aspx?
ArticleID=10003#Code%20Explanation)

In JSP:

<HTML xmlns="http://www.w3.org/1999/xHTML"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:h="http://java.sun.com/jsf/HTML"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:fmt="http://java.sun.com/jstl/fmt"
 xmlns:acegijsf="http://sourceforge.net/projects/jsf-comp/acegijsf"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:ig="http://www.infragistics.com/faces/netadvantage">

<ui:composition template="/templates/common.xHTML">
 <ui:define name="pageTitle">Infragistics Grid Test</ui:define>
 <ui:define name="pageHeader">Employee List</ui:define>
 <ui:define name="body">
 <ig:gridView
 dataSource="#{employeeDAO.employees}"
 pagesize="10">
 <f:facet name="header">
 <h:outputText value="Employees:" />
 </f:facet>
 <ig:column sortBy="firstName">
 <f:facet name="header">
 <h:outputText value="First Name" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.firstName}" />
 </ig:column>
 <ig:column sortBy="lastName">
 <f:facet name="header">
 <h:outputText value="Last Name" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.lastName}" />
 </ig:column>
 <ig:column sortBy="email">
 <f:facet name="header">
 <h:outputText value="Email" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.email}" />
 </ig:column>
 <ig:column sortBy="phoneNumber">
 <f:facet name="header">
 <h:outputText value="Phone Number" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.phoneNumber}" />

7.2.4.7.3 Creating the JSP Page - Part 3 of 5

NetAdvantage for JSF

487 NetAdvantage for JSF

 </ig:column>
 </ig:gridView>
 </ui:define>
</ui:composition>
</HTML>

Code Explanation
The following is a list of the steps that occur in the above code.

1. The tag ig:gridView creates the WebGrid component. This tag has the following two properties:

 dataSource= "#{webgrid_employeeDAO.employees} -- This property binds the Employees list of the
backing bean to the WebGrid component.

 pagesize="10" -- This property indicates to the WebGrid component to display 10 rows per page.

2. The next block of code specifies a header area in the WebGrid component where you can place a title for
the data being shown.

3. The next block of code is a series of ig:column tags that are used to define the column header and data
value for each column of the WebGrid component. For this example, the data value for each column is a
simple outputText component that is bound to one of the fields of the Employee object. The DATA_ROW
part of the value binding is a built-in constant that is used to enumerate the rows of the grid when it is
rendered. See Identify the Rows in a Collection (Section 4.7.3.1.5) for more information.

Note: The WebGrid component is simply a container so the data value for a column can be represented by
any type of component, including drop-down lists, check boxes, inputText fields, etc.

Related Topic

Configuring the Application - Part 4 of 5 (Section 7.2.4.7.4)

NetAdvantage for JSF

488 NetAdvantage for JSF

This topic continues from Creating the JSP Page - Part 3 of 5 (Section 7.2.4.7.3).

Configuration of this application is relatively simple. Because this is a one-page application, the only files that
need to be updated are the following:

 web.xml

 managed-beans.xml

The other JSF configuration files (navigation.xml and faces-config.xml) do not need to be changed.

web.xml
For the web.xml file, the following entries need to be added to enable Faces Servlet and define several JSF
parameters.

In XML:

<!-- Faces Servlet -->
<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup> 1 </load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <URL-pattern>*.faces</URL-pattern>
</servlet-mapping>

<context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>server</param-value>
</context-param>

<context-param>
 <param-name>javax.faces.CONFIG_FILES</param-name>
 <param-value>/WEB-INF/navigation.xml,/WEB-INF/managed-beans.xml</param-value>
</context-param>

<context-param>
 <param-name>facelets.LIBRARIES</param-name>
 <param-value>
 /WEB-INF/taglib/netAdvantage.facelet.taglib.xml
 </param-value>
</context-param>

managed-beans.xml
The managed-beans.xml file must be updated to define the connection between the alias used in the JSP file
and the EmployeeDAO backing bean. To do this, we add the entry below.

7.2.4.7.4 Configuring the Application - Part 4 of 5

NetAdvantage for JSF

489 NetAdvantage for JSF

In XML:

<managed-bean>
 <description>Returns a list of employees</description>
 <managed-bean-name>webgrid_employeeDAO</managed-bean-name>
 <managed-bean-class>
 com.infragistics.faces.samples.data.EmployeeDAO
 </managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
</managed-bean>

Related Topic

Deploying the Application - Part 5 of 5 (Section 7.2.4.7.5)

NetAdvantage for JSF

490 NetAdvantage for JSF

This topic continues from Configuring the Application - Part 4 of 5 (Section 7.2.4.7.4).

Deploying the application is simply a matter of putting all the files in the correct location. Below is a brief
description of the names and locations of the key files.

 /resources -- Contains some of the default images used by the components.

 /resources/infragistics -- Contains the JavaScript needed by the components.

 /resources/infragistics/themes -- Contains a set of theme subfolders. Each subfolder contains all the CSS
files and image files required by the components. (The default theme is blue.)

 WEB-INF

 lib – Contains all the JAR files that this application depends on, including a JAR file that contains the
EmployeeDAO class.

 web.xml

 managed-beans.xml

 navigation.xml

 faces-config.xml

 dataBind.jsp – The main page that contains the searchable employee grid.

 index.jsp – The home page which simply redirects the user to the dataBind page through the Faces Servlet.

7.2.4.7.5 Deploying the Application - Part 5 of 5

NetAdvantage for JSF

491 NetAdvantage for JSF

In this section, you’ll find a step-by-step procedure that walks you through a scenario that is common when
using the WebInput control.

 Using Smart Refresh (Section 7.2.5.1)

7.2.5 WebInput

NetAdvantage for JSF

492 NetAdvantage for JSF

The WebInput™ components that are used for selection (i.e., CheckBox, CheckBoxList, DropDownList,
RadioButton, and RadioButtonList) have the ability to cause other components to be updated when their values
change. This tutorial will show you how to create a Web page that will update an output text field and a grid
when a value is selected from a drop-down list.

For information on running the following walkthrough, see Running the Tutorial Programs (Section 7.2.1).

Note: The full source code and resources needed to build and deploy this tutorial can be found in the
Install_Dir/documentation/tutorials/SmartRefresh directory.

 Creating the Backing Bean - Part 1 of 4 (Section 7.2.5.1.1)

 Creating the JSP Page - Part 2 of 4 (Section 7.2.5.1.2)

 Configuring the Application - Part 3 of 4 (Section 7.2.5.1.3)

 Deploying the Application - Part 4 of 4 (Section 7.2.5.1.4)

7.2.5.1 Using Smart Refresh

NetAdvantage for JSF

493 NetAdvantage for JSF

First, you need to create the backing bean that will be used to model the data and actions needed by the Web
page. The Web page will contain four main components:

 an output text field to display the country and city selected

 a drop-down list for the list of countries

 a drop-down list for the list of cities

 a WebGrid component to display employee data

When a country is selected from the country drop-down list, the output text is updated to show which country
was selected. In addition, the list of cities in the city drop-down list is updated. When a city is selected from
the city drop-down list, the output text is updated to show which city was selected, and a grid is displayed
showing a list of employee data for the selected country and city.

To model these components, we will create a Java class called SelectItemListBean.

Note: The full source code and resources needed to build and deploy this tutorial can be found in the
Install_Dir/documentation/tutorials/SmartRefresh directory.

A member variable will be used to model the output text field, drop-down lists values, and WebGrid™
component as follows:

In Java:

/** Handle to the value selected in the city drop down list */
private UIInput city = null;

/** Handle to the value selected in the country drop down list */
private UIInput country = null;

/** Handle to the grid used to display the employee data */
private GridView employeeGridView = null;

/** Handle to the text field used to display the output text */
private UIOutput textOutput = null;

The values selected in the drop-down list are represented by the standard JSF UIInput class and are called "city"
and "country". The text that displays the selected country and city is represented by a standard JSF UIOutput
class. The WebGrid component is modeled using NetAdvantage for JSF’s gridView component and is called
employeeGridView. In order to provide the Web page with access to these objects, the standard setters and
getters are provided.

There are also three other get methods.

 getCountryList() method -- Used by the country drop-down list to retrieve a list of countries.

 getCityList() method -- Used by the city drop-down list to retrieve a list of cities.

 getEmployeeList() -- Used by the grid to retrieve a list of employees for the selected country and city.

In Java:

7.2.5.1.1 Creating the Backing Bean - Part 1 of 4

NetAdvantage for JSF

494 NetAdvantage for JSF

public List getCountryList()
{
 return SelectItemDAO.getCountryList();
}

public List getCityList()
{
 String[] countries = getSelectedCountries();
 List ret = new ArrayList();

 if(countries!=null)
 {
 for(int i=0; i<countries.length; ++i)
 {
 ret.addAll(SelectItemDAO.getCityList(countries[i]));
 }
 }
 return ret;
}

public List getEmployeeList()
{
 List employeeList=new ArrayList();
 String[] cities = getSelectedCities();

 if(cities!=null)
 {
 EmployeeDAO employeeDAO = new EmployeeDAO();

 for(int i=0; i<cities.length; ++i)
 {
 if(cities[i].equals("CA"))
 {
 employeeList.addAll(employeeDAO.getCamberraList());
 continue;
 }
 if(cities[i].equals("SY"))
 {
 employeeList.addAll(employeeDAO.getSydneyList());
 continue;
 }
 if(cities[i].equals("BR"))
 {
 employeeList.addAll(employeeDAO.getBristolList());
 continue;
 }
 if(cities[i].equals("LO"))
 {
 employeeList.addAll(employeeDAO.getLondonList());
 continue;
 }
 if(cities[i].equals("CH"))
 {
 employeeList.addAll(employeeDAO.getChicagoList());
 continue;
 }
 if(cities[i].equals("SF"))

NetAdvantage for JSF

495 NetAdvantage for JSF

 {
 employeeList.addAll(employeeDAO.getSanFranciscoList());
 continue;
 }
 }
 }
 return employeeList;
}

In order to react to the updates to the country and city drop-down lists, two methods need to be created so
that they can be connected to the ValueChange vent for each drop-down list.

In Java:

public void onChangeCity(ValueChangeEvent event)
{
 // rebind the dataGrid
 this.employeeGridView.dataBind();
}

public void onChangeCountry(ValueChangeEvent event)
{
 // rebind the dataGrid
 employeeGridView.dataBind();
}

Both of these methods simply cause the grid to refresh its data based on the updates to the country or city.

In addition to the SelectItemListBean class, there are also three other classes needed for this example:

 Employee -- This class is a simple JavaBean used to represent the data associated with a single employee
(first name, last name, e-mail address, and phone number).

 EmployeeDAO -- This class is used to represent a list of employees from a particular city. This class
contains a static set of arrays of the employees and a getter for each of the possible cities.

 SelectItemDAO -- This class is used to represent the list of countries and cities listed in the two drop-down
lists. This class has only the following two getters:

 getCountryList() -- Retrieves the list of countries.

 getCityList() -- Returns the list of cities of the selected country.

Related Topic

Creating the JSP Page - Part 2 of 4 (Section 7.2.5.1.2)

NetAdvantage for JSF

496 NetAdvantage for JSF

This topic continues from Creating the Backing Bean - Part 1 of 4 (Section 7.2.5.1.1).

The next step is to create a JSP™ page (smartRefresh.jsp) that will display the components and bind the values
and actions to the backing bean.

Note: The full JSP code, source code and resources needed to build and deploy this tutorial can be found
in the Install_Dir/documentation/tutorials/SmartRefresh directory.

For the country drop-down list, we will use the Infragistics drop-down list as follows:

In JSP:

<ig:dropDownList id="countryDropDown"
 dataSource="#{webinput_dropDown.countryList}"
 binding="#{webinput_dropDown.country}"
 valueChangeListener="#{webinput_dropDown.onChangeCountry}"
 smartRefreshIds="cityDropDown,employeeGridView,textOutput"
 />

Where:

 dataSource="#{webinput_dropDown.countryList}" -- Binds the list of countries from the getCountryList()
method of the SelectItemListBean class.

 binding="#{webinput_dropDown.country}" -- Binds the value of the selected item in the drop-down list to
the country member variable of the SelectItemListBean class.

 valueChangeListener="#{webinput_dropDown.onChangeCountry}" -- Causes the onChangeCountry method of
the SelectItemListBean class to be called whenever the value of the drop-down list changes.

 smartRefreshIds="cityDropDown,employeeGridView,textOutput" -- Is a comma-delimited list of other JSF
components that get updated when the drop-down list is changed or updated. This means that each time
the country drop-down list is updated, the city drop-down list will refresh its city list; the grid will be
refreshed with the latest data; and the text displaying the selected country and city will be updated.

The city drop-down list uses the Infragistics drop-down list with similar arguments.

In JSP:

<ig:dropDownList id="cityDropDown"
 dataSource="#{webinput_dropDown.cityList}"
 binding="#{webinput_dropDown.city}"
 valueChangeListener="#{webinput_dropDown.onChangeCity}"
 smartRefreshIds="employeeGridView,textOutput"
 />

To display the employee data, Infragistics’ WebGrid will be used. As shown in the JSP code below, WebGrid has
two bindings. The first binding = "#{ webinput_dropDown.employeeGridView}" provides the backing bean with
access to the WebGrid so that it can be updated when the country or city drop down lists are changed. The
second binding dataSource= "#{webinput_dropDown.employees}" binds the employees list of the backing bean
to WebGrid.

In JSP:

7.2.5.1.2 Creating the JSP Page - Part 2 of 4

NetAdvantage for JSF

497 NetAdvantage for JSF

<ig:gridView id="employeeGridView"
 binding="#{webinput_dropDown.employeeGridView}"
 dataSource="#{webinput_dropDown.employeeList}">
 <f:facet name="header">
 <h:outputText value="Employee List" />
 </f:facet>
 <ig:column>
 <f:facet name="header">
 <h:outputText value="First Name" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.firstName}" />
 </ig:column>
 <ig:column>
 <f:facet name="header">
 <h:outputText value="Last Name" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.lastName}" />
 </ig:column>
 <ig:column>
 <f:facet name="header">
 <h:outputText value="Email" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.email}" />
 </ig:column>
 <ig:column>
 <f:facet name="header">
 <h:outputText value="Phone Number" />
 </f:facet>
 <h:outputText value="#{DATA_ROW.phoneNumber}" />
 </ig:column>
</ig:gridView>

To create a JSP page using Smart Refresh at design time using IBM® Rational® Application Developer for
WebSphere Software® 7.0:

1. From the palette, under the Enhanced Faces Component, drag the Output component to your page.

2. In the Properties window, select h:outputText .

3. Set the following properties:

 Id -- textOutput

 Value -- #{webinput_dropDown.textValue}

NetAdvantage for JSF

498 NetAdvantage for JSF

4. From the palette, under the Enhanced Faces Component, drag the Output component to your page.

5. In the Properties window, select h:outputText .

6. Set the Value to "Choose a country:".

7. From the palette, drag the DropDownList component to your page.

8. In the Properties window, select ig:dropDownList.

9. Set the following properties:

 Binding -- #{webinput_dropDown.country}

 Id -- countryDropDown

 Smart Refresh Ids -- cityDropDown, employeeGridView, textOutput

10. In the Properties window, under ig:dropDownList, select Data .

11. Set the following properties:

 Data Source -- #{webinput_dropDown.countryList}

 Value Change Listener -- #{webinput_dropDown.onChangeCountry}

12. From the palette, under the Enhanced Faces Component, drag the Output component to your page.

13. In the Properties window, select h:outputText .

14. Set the Value to "Choose a city:".

15. From the palette,drag the DropDownList component to your page.

16. In the Properties window, select ig:dropDownList.

17. Set the following properties:

 Binding -- #{webinput_dropDown.city}

 Id -- cityDropDown

 Smart Refresh Ids -- employeeGridView, textOutput

NetAdvantage for JSF

499 NetAdvantage for JSF

18. From the palette, drag the GridView component to your page.

19. In the Properties window, select ig:gridView.

20. Set the following properties:

 Binding -- #{webinput_dropDown.employeeGridView}

 Id -- employeeGridView

21. In the Properties window, under ig:gridView, select Data .

22. Set the following property:

 Data Source: #{webgrid_dropDown.employeeList}

23. In the Design view, select the Grid Header and set the following property:

 Value -- Employee List

24. The default GridView is created with two columns. From the palette, drag the Column component to your
grid to add more columns.

NetAdvantage for JSF

500 NetAdvantage for JSF

25. In the Design view, for each column header, set the Value property:

 For Column Header 1, set Value to First Name.

 For Column Header 2, set Value to Last Name.

 For Column Header 3, set Value to Email.

 For Column Header 4, set Value to Phone Number.

26. In the Design view, for each column, set the Value property:

 For Column 1, set Value to #{DATA_ROW.firstName}.

 For Column 2, set Value to #{DATA_ROW.lastName}.

 For Column 3, set Value to #{DATA_ROW.email}.

 For Column 4, set Value to #{DATA_ROW.phoneNumber}.

27. Save your project.

Related Topic

Configuring the Application - Part 3 of 4 (Section 7.2.5.1.3)

NetAdvantage for JSF

501 NetAdvantage for JSF

This topic continues from Creating the JSP Page - Part 2 of 4 (Section 7.2.5.1.2).

Configuration of this application is relatively simple. Because this is a one-page application, the only files that
need to be updated are the web.xml and the managed-beans.xml files. The other JSF configuration files
(navigation.xml and faces-config.xml) do not need to be changed. For the web.xml file, the following entries
need to be added to enable Faces Servlet and define several JSF parameters.

In XML:

<!-- Faces Servlet -->
<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup> 1 </load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <URL-pattern>*.faces</URL-pattern>
</servlet-mapping>

<context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>server</param-value>
</context-param>

<context-param>
 <param-name>javax.faces.CONFIG_FILES</param-name>
 <param-value>/WEB-INF/navigation.xml,/WEB-INF/managed-beans.xml</param-value>
</context-param>

The managed-beans.xml file must be updated to define the connection between the alias used in the JSP file
and the SelectItemListBean backing bean. To do this, we add the following entry.

In XML:

<managed-bean>
 <description>
 Backing bean for the frames sample
 </description>
 <managed-bean-name>webinput_dropDown</managed-bean-name>
 <managed-bean-class>
 com.infragistics.faces.samples.webinput.shared.SelectItemListBean
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
</managed-bean>

Related Topic

7.2.5.1.3 Configuring the Application - Part 3 of 4

NetAdvantage for JSF

502 NetAdvantage for JSF

Deploying the Application - Part 4 of 4 (Section 7.2.5.1.4)

NetAdvantage for JSF

503 NetAdvantage for JSF

This topic continues from Updating the Configuration Files - Part 3 of 4 (Section 7.2.4.1.3).

Deploying the application is simply a matter of putting all the files in the correct location. Below is a brief
description of the names and locations of the key files. The Apache® Ant build file that is included in the
Install_Dir/documentation/tutorials/SmartRefresh directory contains tasks to create the WAR file and deploy it
to an Apache Tomcat server. If your environment is different, you must update the build file.

 /resources -- Contains some of the default images used by the controls

 /resources/infragistics -- Contains the JavaScripts needed by the components.

 /resources/infragistics/themes -- Contains a set of theme subfolders. Each subfolder contains all the CSS
files and image files required by the components. (The default theme is blue.)

 WEB-INF

 /lib -- Contains all the JAR files that this application depends on, including a JAR file that contains the
EmployeeDAO class

 web.xml

 managed-beans.xml

 navigation.xml

 faces-config.xml

 smartRefresh.jsp – The main page that contains the drop-down lists and employee data grid.

 index.jsp – The home page which simply redirects the user to the smartRefresh page through the Faces
Servlet.

7.2.5.1.4 Deploying the Application - Part 4 of 4

NetAdvantage for JSF

504 NetAdvantage for JSF

	Getting Started
	Welcome to NetAdvantage for JSF
	Supported Software
	IDE Support
	IBM RAD
	Installing the NetAdvantage for JSF Plug-In for IBM RAD
	Setting Up Your Application in IBM RAD
	Upgrading the NetAdvantage for JSF Plug In for IBM RAD

	Eclipse

	Portal Support
	JBoss Portal
	WebLogic Portal
	WebSphere Portal

	NetAdvantage for JSF Components, JSF 1.1 and JSF 1.2
	Deploying Your Application
	Deploying Your Application
	Files and Folders Required for Deployment
	Changing the Location of the Resource Files

	Installing and Deploying the Samples
	Apache Tomcat
	BEA WebLogic
	IBM WebSphere
	JBoss
	Sun Java System Application Server
	Facelets Support

	Managing the License
	Localization
	Getting Support

	Known Issues and Breaking Changes
	Known Issues and Breaking Changes in 2008 Volume 2
	Known Issues and Breaking Changes in 2008 Volume 1
	Known Issues and Breaking Changes in 2007 Volume 2

	What's New
	What's New in 2009 Volume 1
	Expanded Icon Added to WebBar
	New Client-Side Object Model
	New Methods Added to SelectedRowsChangeEvent
	You Can Now Change the Default Setting of ColumnSelectRow
	You Can Now Expand or Collapse WebMenu with Mouse Events
	You Can Now Export an Entire WebGrid to CSV
	You Can Now Force a Vertical Scroll Bar
	You Can Now Set the Text of DateChooser Submit Button
	You Can Now Sort a Localized WebGrid

	Revision History
	What's New in 2008 Volume 2
	Full Support for JSF 1.2
	WebGrid 2008.2
	Aggregate Functions Support
	Grid Activation
	You Can Now Disable Column Moving

	What's New in 2008 Volume 1
	AJAX is Now Supported Within Portal Environments
	New Treemap Chart
	New WebDialogWindow Component
	WebGrid 2008.1
	Improved Functionality for Fixed Columns
	WebGrid Allows Load-On-Demand Scrolling
	WebGrid Supports Multi-Column Sorting
	You Can Edit Cells in Your WebGrid

	What's New in 2007 Volume 2
	New Support for IBM RAD and NetBeans IDEs
	WebGrid 2007.2
	WebGrid Columns Can Be Resized
	WebGrid Now Supports Vertical Scroll Bars

	What's New in 2007 Volume 1
	WebChart 2007.1
	New WebChart Component

	WebGrid 2007.1
	Data from WebGrid Can Now Be Exported to a CSV File

	What's New in 2006 Volume 2
	Facelet and Portal Support 2006.2
	JSF Components Now Support Facelets and Portals

	WebGrid 2006.2
	Columns and Headers Can Now Be Fixed
	Display Grid Data in a Hierarchical View
	New Event Triggered When Row is Selected

	Components
	Accessibility Overview
	Binding JSF Components to Data
	Getting Started with the Client Side Object Model
	WebBar
	About the WebBar Components
	Set the Expanded Icon
	WebBar Accessibility Compliance

	WebChart
	Understanding WebChart
	About WebChart
	WebChart Gallery
	WebChart 2D Gallery
	WebChart 3D Gallery

	Feature Overview

	Chart Types
	2D Charts
	3D Charts
	Area Chart
	Candlestick Chart
	Column Chart
	Doughnut Chart
	Line Chart
	OHLC Chart
	Pie Chart
	Range Area Chart
	Range Column Chart
	Treemap Chart

	Group Types
	Cluster Groups
	Stack Groups
	Stack 100 Groups
	Overlay Groups
	Set Group Type of the Chart

	Using WebChart
	Appearance
	Combining Series
	Combining WebCharts
	Combining WebChart Types
	Layout
	Object Shapes
	Column Shapes
	Pie and Doughnut Shapes

	Styling Using Extended CSS

	Binding WebChart to Data
	Designing the Look and Feel
	Customize Column Charts
	Customize Pie Charts
	Resize 3D Pie Charts

	Interaction with WebChart
	Working with Axes
	About Axes
	Add an Axis
	Add Grid Lines to an Axis
	Add Tick Marks to an Axis
	Modify the Axis Range

	Working with Markers
	About Markers
	Add a Marker

	Working with the Legend
	Add the Legend
	Position the Legend

	WebChart Accessibility Compliance

	WebDialogWindow
	About WebDialogWindow
	Getting Started with WebDialogWindow
	Using WebDialogWindow
	Add a Caption to the Dialog Window's Header
	Allow the End User to Resize the Dialog Window
	Center the Dialog Window
	Display the Dialog Window
	Maintain the Header's Width on Minimize
	Make the Dialog Window Modal
	Prevent the End User from Moving the Dialog Window
	Show the Minimize and Maximize Button
	Using WebDialogWindow with DateChooser

	WebDialogWindow Accessibility Compliance

	WebGrid
	About WebGrid
	Getting Started with WebGrid
	Creating WebGrid in Design View Using IBM RAD
	Creating WebGrid Using Code

	Using WebGrid
	Accessing Data
	Data Binding Overview
	Bind a Hierarchical WebGrid to Data
	Bind WebGrid to Data
	Exporting Data to a CSV File
	Identify the Rows in a Collection

	Aggregate Functions
	Designing the Look and Feel
	Column Moving
	Fixed Columns
	Resizable Columns
	Setting the Width of a Column
	Horizontal Scroll Bars
	Vertical Scroll Bars
	Force Vertical Scroll Bars

	Editing Data
	Cell Editing
	Cell Editing Properties

	Navigating and Selecting
	Change Default Setting of ColumnSelectRow
	Grid Activation
	Grid Activation Properties
	Load On Demand Scrolling
	Multi-Column Sorting
	Paging
	Row Selection
	SelectedRowsChangeEvent
	Sorting
	Sorting a Localized WebGrid

	WebGrid Accessibility Compliance

	WebInput
	About the WebInput Components
	CheckBox
	CheckboxList
	DateChooser
	Set the Text of the Submit Button

	DropdownList
	InputCurrency
	InputDecimal
	InputEmail
	InputPercent
	InputRegularExpression
	RadioButton
	RadioButtonList

	WebInput Accessibility Compliance

	WebMenu
	About the WebMenu Components
	Create a WebMenu Component
	Expand or Collapse WebMenu with Mouse Events
	WebMenu Accessibility Compliance

	WebTab
	About the WebTab Components
	Create a WebTab Component
	WebTab Accessibility Compliance

	WebTree
	About the WebTree Components
	WebTree Accessibility Compliance

	Designing the Look and Feel
	Enabling and Disabling Components
	Setting Component ToolTips
	Themes, Styles and Style Classes
	Apply a Style Class to a JSF Component
	Apply a Style to a JSF Component
	Apply a Theme to a JSF Component
	Override Themes

	Smart Refresh Technology
	Using Smart-Refresh Technology with Core JSF Components
	Using Smart-Refresh Technology with NetAdvantage for JSF Components
	Using Smart-Refresh Technology without NetAdvantage for JSF Components

	Tutorial Programs
	IBM RAD Tutorials
	Create a JSF Project Using IBM RAD
	Data Binding and Method Binding in JSF using IBM RAD

	JSF Component Tutorials
	Running the Tutorial Programs
	WebBar
	Using WebBar
	Creating the Backing Bean Part - 1 of 4
	Creating the JSP Page - Part 2 of 4
	Configuring the Application - Part 3 of 4
	Deploying the Application - Part 4 of 4

	WebChart
	Creating a WebChart
	Creating Chart Data
	Creating Chart Data for Pie Chart
	Creating Chart Data for Line and Column Chart

	Creating the Backing Bean
	Creating the JSP Pages
	Simple Pie Chart
	Grouped Column Chart
	Simple Line Chart

	Configuring the XML
	Deploying the Application

	Dynamically Create a WebChart
	Creating the JSP Page
	Creating the Backing Bean
	Configuring the XML
	Deploying the Application

	WebGrid
	Connect a WebGrid to a Data Source
	Creating the Backing Bean - Part 1 of 4
	Creating WebGrid and Binding to a Backing Bean - Part 2 of 4
	Updating the Configuration Files - Part 3 of 4
	Deploying the Application - Part 4 of 4

	Create a Dynamic Hierarchical WebGrid
	Creating the Data Structure for the Play list - Part 1 of 5
	Creating the Backing Bean - Part 2 of 5
	Creating the JSP Page - Part 3 of 5
	Configuring the Application - Part 4 of 5
	Deploying the Application - Part 5 of 5

	Create a Fixed Column WebGrid
	Creating the Backing Bean - Part 1 of 4
	Creating the JSP Page - Part 2 of 4
	Configuring the Application - Part 3 of 4
	Deploying the Application - Part 4 of 4

	Create a Hierarchical WebGrid
	Creating the Backing Bean - Part 1 of 4
	Creating the JSP Page - Part 2 of 4
	Configuring the Application - Part 3 of 4
	Deploying the Application - Part 4 of 4

	Dynamically Create a Fixed Column WebGrid
	Creating the Backing Bean - Part 1 of 4
	Creating the JSP Page - Part 2 of 4
	Configuring the Application - Part 3 of 4
	Deploying the Application - Part 4 of 4

	Dynamically Update Data in a WebGrid
	Creating the Backing Bean - Part 1 of 4
	Creating the JSP Page - Part 2 of 4
	Configuring the Application - Part 3 of 4
	Deploying the Application - Part 4 of 4

	Working with Facelets
	Creating the Backing Bean - Part 1 of 5
	Creating the Template - Part 2 of 5
	Creating the JSP Page - Part 3 of 5
	Configuring the Application - Part 4 of 5
	Deploying the Application - Part 5 of 5

	WebInput
	Using Smart Refresh
	Creating the Backing Bean - Part 1 of 4
	Creating the JSP Page - Part 2 of 4
	Configuring the Application - Part 3 of 4
	Deploying the Application - Part 4 of 4

