
Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

AddFlow for Silverlight V 2.0 Tutorial

January 2014

Lassalle Technologies

http://www.lassalle.com

- page 1 -

http://www.lassalle.com/

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

CONTENTS

1) Introduction .. 5

2) Last Version enhancements .. 6
2.1 Version 2.0 .. 6

• 2.1.1 A major change ... 6
2.1.1.1 C # changes .. 6
2.1.1.2 XAML changes ... 6

• 2.1.2 New features .. 7
2.1.2.1 Virtualization .. 7
2.1.2.2 Bird view ... 7
2.1.2.3 IsFixedSize ... 7
2.1.2.4 Grid ... 7
2.1.2.5 IsContextHandle .. 7

2.2 Version 1.5 .. 7

2.3 Version 1.4 .. 8
• 2.3.1 Version 1.4.2 .. 8
• 2.3.2 Version 1.4.1 .. 8
• 2.3.3 Version 1.4.0 .. 8

2.4 Version 1.3 .. 8

2.5 Version 1.2 .. 8

2.6 Version 1.1 .. 9

3) Getting Started ... 10
3.1 Installation .. 10

3.2 AddFlow Assemblies ... 10

3.3 Licensing ... 11
• 3.3.1 Type of licenses ... 11
• 3.3.2 How it works? .. 11

4) Interactive creation of a diagram 13
4.1 Overview ... 13

4.2 Create a diagram interactively ... 13
• 4.2.1 Draw a node ... 13
• 4.2.2 Draw a link ... 13
• 4.2.3 Stretch a link .. 15
• 4.2.4 Draw a reflexive link ... 16
• 4.2.5 Multiselection ... 16
• 4.2.6 Node rotation .. 17
• 4.2.7 Change properties of a node or a link ... 18
• 4.2.8 Adjust the link origin and destination points ... 18
• 4.2.9 Change the destination or the origin node of a link ... 19

5) Programmatic creation of a diagram 20
5.1 Overview ... 20

5.2 Diagram creation .. 21
• 5.2.1 Our first program ... 21
• 5.2.2 Node Properties ... 25
• 5.2.3 Link Properties .. 25

- page 2 -

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

• 5.2.4 Changing property values .. 26
• 5.2.5 Default property values .. 27
• 5.2.6 Stretching the links ... 31

5.3 Displaying an image in a node .. 33

5.4 Displaying link intersections .. 33

5.5 Displaying link labels ... 34

5.6 Selection of items .. 36
• 5.6.1 Interactive selection ... 36
• 5.6.2 Programmatic selection: ISelectable interface ... 36
• 5.6.3 SelectedItems collection ... 37
• 5.6.4 Selection event .. 37

5.7 In-place edition for nodes .. 37

5.8 Diagram navigation .. 37

5.9 Zooming .. 38
• 5.9.1 Programmatic zoom .. 38
• 5.9.2 Interactive zoom .. 38
• 5.9.3 Bird view ... 38

5.10 Serialization ... 39

5.11 Exporting a diagram in XAML .. 41

5.12 Printing ... 41

5.13 Customizing the user interface .. 41
• 5.13.1 Customizing the handles .. 41
• 5.13.2 Customizing the connection of links to a node .. 44

5.13.2.1 Generalities ... 44
5.13.2.2 Customizing pins ... 45
5.13.2.3 Customizing the Connector .. 46

6) Avanced topics .. 49
6.1 Undo/Redo ... 49

• 6.1.1 General features .. 49
• 6.1.2 Updating the user interface ... 49
• 6.1.3 Grouping basic actions ... 49
• 6.1.4 What can be undone and redone? .. 49
• 6.1.5 Undo/Redo customization ... 50
• 6.1.6 Undo/Redo API .. 52

6.2 Automatic Graph Layout ... 53
• 6.2.1 Hierarchic layout .. 53

6.2.1.1 Purpose ... 53
6.2.1.2 Code example .. 54
6.2.1.3 Limitation ... 54
6.2.1.4 Side Effect .. 54

• 6.2.2 Orthogonal layout ... 55
6.2.2.1 Purpose ... 55
6.2.2.2 Code example .. 55
6.2.2.3 Limitation ... 55
6.2.2.4 Side Effect .. 55

• 6.2.3 Symmetric layout ... 56
6.2.3.1 Purpose ... 56
6.2.3.2 Code example .. 56
6.2.3.3 Limitation ... 56
6.2.3.4 Side Effect .. 56

• 6.2.4 Series-parallel layout ... 57
6.2.4.1 Purpose ... 57

- page 3 -

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

6.2.4.2 Code example .. 58
6.2.4.3 Limitation ... 58
6.2.4.4 Side Effect .. 58

• 6.2.5 Tree layout ... 58
6.2.5.1 Purpose ... 58
6.2.5.2 Code example .. 59
6.2.5.3 Limitation ... 59
6.2.5.4 Side Effect .. 60

6.3 Data Customization ... 61
• 6.3.1 Framework's Tag property ... 61
• 6.3.2 Attached properties .. 61
• 6.3.3 Derivation of Node and Link classes .. 61

6.4 Conversion guide from previous versions 62
• 6.4.1 Introduction .. 62

6.4.1.1 Removed Features .. 62
6.4.1.2 Features that work differently .. 62
6.4.1.3 Renamed features ... 62

• 6.4.2 Conversion guide from AddFlow ActiveX .. 62
6.4.2.1 AddFlow properties ... 62
6.4.2.2 AddFlow methods ... 64
6.4.2.3 AddFlow events .. 65
6.4.2.4 Node properties ... 66
6.4.2.5 Node methods .. 67
6.4.2.6 Link properties ... 67
6.4.2.7 Link methods ... 68

• 6.4.3 Conversion guide from AddFlow for .NET ... 69
6.4.3.1 AddFlow properties ... 69
6.4.3.2 AddFlow methods ... 70
6.4.3.3 AddFlow events .. 70
6.4.3.4 Node properties ... 71
6.4.3.5 Node methods .. 72
6.4.3.6 Link properties ... 72
6.4.3.7 Link methods ... 73

- page 4 -

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

1) Introduction
AddFlow for Silverlight is a general purpose Flowcharting/Diagramming Silverlight component, which
lets you quickly build flowchart-enabled Silverlight applications.

AddFlow for Silverlight allows the creation and the manipulation of two-dimensional diagrams (a.k.a
graphs). An AddFlow diagram is a set of objects called nodes (also called vertices or entities) that can
be linked each other with links (also called edges, arcs or relations). These diagrams can be created
programmatically or interactively.

Each time you need to graphically display interactive diagrams, you should consider using AddFlow, a
royalty-free control that offers unique support to create diagrams interactively or programmatically:
workflow diagrams, database diagrams, communication networks, organizational charts, process
flows, state transitions diagrams, CTI applications, CRM (Customer Relationship Management), expert
systems, graph theory, quality control diagrams, …

AddFlow is runtime royalty free.

It has been created with VS 2012 and Silverlight 5.

Purpose of this tutorial

This tutorial provides information on:

• creating diagrams programmatically, using the AddFlow control and classes
• creating diagrams interactively
• installing AddFlow for Silverlight
• licensing

Who should use this tutorial?

This guide is intended for application programmers building Silverlight applications.

Samples

AddFlow for Silverlight is installed with one demo sample written in C#: DemoFlow. The source code
of DemoFlow is provided.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

2) Last Version enhancements

2.1 Version 2.0
2.1.1 A major change

In previous versions, AddFlow was a control consisting in a Border element containing a Scrollviewer
element containing a Canvas panel.

Now, it is just a Canvas panel. And you have the possibility to place it yourself in a Scrollviewer
element.

2.1.1.1 C # changes

Programmatically, the consequences are minor in your C# code. In fact it just means that the Diagram
property is removed. Instead of writing for instance:

IEnumerable<Node> nodes = addflow.Diagram.Children.OfType<Node>();

you will write:

IEnumerable<Node> nodes = addflow.Children.OfType<Node>();

Therefore you replace addflow.Diagram.Children by addflow.Children that is all.

2.1.1.2 XAML changes

In the xaml definition of AddFlow, you will have to replace:

 <af:AddFlow x:Name="addflow"
 Background="White" />

by:

<Border x:Name="Border"
 BorderBrush="Red"
 BorderThickness="2"
 CornerRadius="2" >
 <ScrollViewer x:Name="ScrollViewer"
 HorizontalScrollBarVisibility="Auto"
 VerticalScrollBarVisibility="Auto"
 Padding="1"
 Background="White"
 BorderBrush="Transparent"
 BorderThickness="0"
 Margin="1"
 IsTabStop="False"
 TabNavigation="Once">
 <af:AddFlow x:Name="addflow"
 Background="White" />
 </ScrollViewer>
</Border>

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

2.1.2 New features

2.1.2.1 Virtualization

The new property IsVirtualizing determines whether virtualizing mode is allowed. This is a UI
virtualization, which collapses all items outside the viewable area, thus enhancing the performance
while manipulating the items. This feature is demonstrated in the “Stress” example in the demo.

2.1.2.2 Bird view

The new BirdView property returns an object managing a bird view popup window allowing scrolling
and zooming the diagram (see paragraph #5.9.3.Bird view|outline)

2.1.2.3 IsFixedSize

The new property IsfixedSize determines whether the size of the addflow canvas is fixed or if it
depends on the size of the diagram. It is false by default.

2.1.2.4 Grid

Now, you may show or hide a grid (GridDraw, GridColor, GridSnap, GridSize properties)

2.1.2.5 IsContextHandle

The Node and Link IsContextHandle property determines if a context handle ooo is displayed when
the node or the link is selected.

When the context handle is clicked, a ContextHandleClicked event is fired, allowing you for instance
to display a context menu or a dialog box.

By default, the IsContextHandle property is false. Also, if the addflow CanShowContextHandle
property is false, context handles will not be displayed, whatever the value of the isContexthandle
property of each item may be.

There is an example of the use of this event in the "State diagram" example and in the
"Social network" example of the demo. In the second example, only nodes have a context handle.

2.2 Version 1.5
The demo shows how to make blincking items.

The algorithm used for the license checking is now FIPS compliant.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

2.3 Version 1.4
2.3.1 Version 1.4.2

This new release offers new properties (TextBlockBorder, TextAngleMode, TextXOffset,
TextYOffset) allowing greater flexibility in the way link labels are displayed. See the paragraph 5.5.

2.3.2 Version 1.4.1

The version 1.4.1 adds the possibility to zoom the diagram interactively with the mouse if the
MouseSelection property of the AddFlow control is set to MouseSelection.Zoom.

It adds also two properties SelectionBoxStyle and ZoomingBoxStyle allowing defining the style of
the rectangle used when selection items or zooming interactively with the mouse (demonstrated in the
“Stress” example in the demo)

2.3.3 Version 1.4.0

This new release provides a rotation feature. Nodes can be rotated.

If the CanRotateNode property of AddFlow is true (which is the case by default) and if the
IsRotatable property of a node is true (which is the case by default), a node can be rotated
programmatically, using the node RotationAngle property or interactively, using a handle placed at
the right of the node.

You may change the look of this rotation handle using the RotateHandleStyle property.

When rotating nodes interactively, the SelectedNodesRotating event is fired and the IsRotatingNode
property of AddFlow is true.

2.4 Version 1.3
This new release has been created with VS 2010 and Silverlight 4.

2.5 Version 1.2
This new release provides the following new features:

• Panning mode

If you set the MouseSelection property to MouseSelection.Pan, you enter in panning mode:
you can scroll the diagram directly with the mouse (don't need to use the scrollbars)

• New properties

PinDst and PinOrg properties allowing to get the origin and destination pin of a link.

• New events

SelectedNodesLayouting and SelectedLinkStretching events. The first event is used in the
file PageRigidLinks.xaml.cs

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

2.6 Version 1.1
This new release provides the following new features:

• Link intersections

AddFlow uses a powerful algorithm to find intersections between the link segments. If the
CanShowJumps property of the AddFlow control is true then jumps will be displayed at the
intersection of this link with other links.

• In-place edition for nodes

If the CanEditMode property of the AddFlow control is true and if the IsEditable property of
the node is also true (which is the case by default), then you can interactively edit the text
inside the node. If it is the case, then the IsInEditMode property of the node is true.

• Dash line for links

The StrokeDashArray property allows drawing a link with a dashes line style.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

3) Getting Started
3.1 Installation

The AddFlow for Silverlight installation package is a Windows Installer file. It is the same file for the
evaluation version and the full version. However, when you install it, you install the evaluation version.
As explained in the Licensing section if you purchase the product, you will receive a license key
allowing turning the evaluation version into the full version.

In the AddFlow for Silverlight installation folder, it creates 3 subdirectories: Bin, Doc and Demo:

• The Bin subdirectory contains the AddFlow and LayoutFlow assemblies.
• The Doc subdirectory contains the help file, the tutorial, the readme file and the license

agreement.
• The Demo subdirectory contains the C# source code of the DemoFlow sample that

demonstrates AddFlow for Silverlight. It contains also the source code of:

- Lassalle.AlgoFlow, a dll providing some graph algorithms.

- Lassalle.Silverlight.Arrows, a dll providing some predefined arrow geometries.

TIP: The source code of each of these dll (AlgoFlow, Arrow) is installed with AddFlow.

3.2 AddFlow Assemblies
Following is the list of the AddFlow for Silverlight extensions, including AddFlow itself. All these
assemblies are installed with AddFlow for Silverlight.

Assembly Description

Lassalle.Silverlight.Flow.dll The AddFlow for Silverlight control

Lassalle.Silverlight.Flow.Layout.dll The LayoutFlow dll is a set of Graph layout algorithms. It is
an extension of AddFlow. It can be purchased separately.

TIP: Is the source code of AddFlow or LayoutFlow available?

The source code, written in C# is not provided. However you can purchase a license of the source
code.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

3.3 Licensing

3.3.1 Type of licenses

Notice that you can purchase either:

• an AddFlow for Silverlight Standard license. This license does not include LayoutFlow. If you
try to execute a graph layout algorithm, you will face sometimes a nag screen.

• an AddFlow for Silverlight Professional license. This license includes LayoutFlow. You can
execute the graph layout algorithms provided by LayoutFlow without any restriction.

3.3.2 How it works?

The evaluation version

When you install AddFlow for Silverlight, you install in fact an evaluation version of AddFlow. (And you
install also an evaluation version of LayoutFlow)

If you generate ("compile") an application that uses this evaluation version of AddFlow for Silverlight,
then any attempt to use this application will display an evaluation label explaining that it has been
generated only with an evaluation version of AddFlow.

In the following example, you can see the evaluation label displayed at the top of the diagram.

And if you execute one of the graph layout methods provided by the LayoutFlow dll, you will face
sometimes a nag screen:

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

The full version

To get the full version of AddFlow, you have to purchase an AddFlow license. In such a case, you will
receive an AddFlow license key (also called serial number or license number).

Now, it depends of the type of license you have purchased.

• If you have just purchased a Standard license of AddFlow for Silverlight, the license key will
alllow you removing the evaluation label. However you will continue facing the nag screen if
you try to execute a graph layout method.

• If you have just purchased a Professional license of AddFlow for Silverlight, no nag screen will
be displayed if you execute a graph layout method.

WARNING: How to use the license key ?

You will receive the instructions about how to use the license key when you will order the product. If
you do not receive them, do not hesitate to contact us to obtain them.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

4) Interactive creation of a diagram
4.1 Overview

The interactive creation of diagrams is mouse-based. It includes:

• the creation of nodes and links (including reflexive links)

• the selection of nodes and links (including multi-selection)

• the resizing of nodes

• the moving of nodes

• the stretching of links (the possibility to add or remove segments in a link)

• the possibility to change the origin or the destination of a link

• In place edition for nodes

Moreover, many properties allow customizing the interactive behavior of an AddFlow control. For
instance, you can prevent the user to create reflexive links with the CanReflexLink property or to
move nodes with the CanMoveNode properties.

And a set of methods and properties allow implementing a powerful Undo/Redo feature.

4.2 Create a diagram interactively
4.2.1 Draw a node

Bring the mouse cursor into the control, press the left button, move the mouse and release the left
button. You have created an elliptic node. This node is selected: that's why 8 handles (little squares)
are displayed.

The 8 handles allow resizing the node (the handle at the right allows rotating it). If you want to move
the node, you bring the mouse cursor into the node (but not in the center), press the left button, move
the mouse and release the left button.

4.2.2 Draw a link

Draw a second node.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

Then bring the mouse cursor above the second node. A small circle handle is then displayed at the
center of the selected node.

Bring the mouse over this small circle handle, press the left button, move the mouse towards the other
node. When the mouse cursor is into the other node, release the left button. The link has been
created. And it is selected: 3 handles are displayed in the link.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

As you can see, the link stretching handles are also displayed as little rectangles. By default, those
handles are small rectangles as for the nodes above. But we can change the style of those handles.
The DemoFlow sample provided with AddFlow shows many distinct ways to display the node resizing
handles and the link stretching handles.

4.2.3 Stretch a link

Bring the mouse cursor into the link handle in the middle of the link, press the left button, move the
mouse and release the left button. You have created a new link segment. It has now 5 handles
allowing you to add or remove segments. (The handle at the intersection of two segments allows you
to remove a segment: you move it with the mouse so that the two segments are aligned and when
these two segments are approximately aligned, release the left button).

Create another segment

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

4.2.4 Draw a reflexive link

Select a node by clicking on it. Then bring the mouse cursor above the small diamond handle at the
center of the selected node. Press the left button, move the mouse outside the selected node, then
move it inside the selected node again, then release the left button. You have created a reflexive link,
i.e. a link whose origin and destination are the same.

4.2.5 Multiselection

You can select several nodes or links by clicking them with the mouse and simultaneously pressing
the shift or control key.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

You can also select links or nodes and links.

There is another way to perform multiselection, using the MouseSelection property and assigning it
the MouseSelection.Selection value. Then you can select several nodes and links: you bring the
mouse cursor into the AddFlow control, press the left button, move the mouse and release the left
button. All nodes or links inside the selection rectangle are selected. Then you can unselect some
nodes by clicking them with the mouse and simultaneously pressing the shift or control key. You can
select them again by using the same method.

4.2.6 Node rotation

Bring the mouse cursor into the handle iplaced at the right of a node, press the left button, move the
mouse and release the left button. You have rotated the node.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

4.2.7 Change properties of a node or a link

Interactively, without adding any code, you can change the position and the size of a node. You can
add segments to a link or remove them. To change other properties (shape, styles, colors, behaviors,
etc) of a node or a link, you have to write some code.

4.2.8 Adjust the link origin and destination points

By default, you cannot adjust the extremities of the links. For instance, if you select a link and bring the
mouse cursor into the last (or the first) handle of this link, press the left button, move the mouse in
another place then relinquish the mouse button, the link springs back again, retrieving its initial
position.

However, you can change this behavior by using the InConnectionMode property of the destination
node of the link and the OutConnectionMode property of the origin node of the link.

In such a case, if you bring the mouse cursor, for instance, into the last handle of the link, press the
left button, move the mouse and release it, you'll see that you have defined a new destination position
for the link. If you move the destination node, the new link destination position keeps on following the
node.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

But, as you will see later in this tutorial, you can also use another way to create links by using pins.

4.2.9 Change the destination or the origin node of a link

You can change interactively the destination or the origin of a link.You bring the mouse cursor into the

third link handle (near the arrow head), press the left button, move the mouse until the isolated node
and release the left button.

The new destination of the link has changed.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

5) Programmatic creation of a diagram
5.1 Overview

In this chapter we will focus on how to create a diagram programmatically.

The main class is the AddFlow class that derives from the Canvas class.

An AddFlow diagram contains two kinds of objects, Node objects and Link objects. A Link object
allows linking two nodes. It is a line that leaves the origin node and comes to the destination node. A
link cannot exist without its origin and destination nodes. If one of these two nodes is removed, the link
is also removed.

The Node class derives from the ContentControl class whereas the Link class derives from the Control
class.

You can obtain the collection of the objects contained in the canavs by using the Children property
that includes all the nodes, all the links and also all other UIElement objects that could be included in
the panel.

This Children property is important since it is the only way to obtain the list nodes and links of
AddFlow. The good news is that you can use the new LINQ technology to select the set of objects you
wish. For instance,

if you wish to select all nodes in an IEnumerable object:

IEnumerable<Node> nodes = addflow.Children.OfType<Node>();

then, if for instance, you wish to draw them with a red color:

foreach (Node node in nodes)
 this.EmphasizeNode(node, new SolidColorBrush(Colors.Red));

or if you prefer selecting all the nodes in an array:

var nodes = addflow.Children.OfType<Node>().ToArray();
foreach (Node node in nodes)
 this.EmphasizeNode(node, new SolidColorBrush(Colors.Red));

Same thing for the links:

IEnumerable<Link> links = addflow.Children.OfType<Link>();
foreach (Link link in links)
 this.EmphasizeLink(link, new SolidColorBrush(Colors.Red));

If you wish selecting all the nodes that are selectable:

var nodes = addflow.Children.OfType<Node>().Where(
 node => node.IsSelectable == true);
foreach (Node node in nodes)
 this.EmphasizeNode(node, new SolidColorBrush(Colors.Red));

or if you wish selecting all the links that are stretchable:

var links = addflow.Children.OfType<Link>().Where(
 link => link.IsStretchable == true);
foreach (Link link in links)
 this.EmphasizeLink(link, new SolidColorBrush(Colors.Red));

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

5.2 Diagram creation

5.2.1 Our first program

Using Visual Studio .NET, select the menu item File | New | Project.... In the Add New Project dialog
box, select the Visual C# project type, then choose Silverlight Application, change the project name
to AddFlowSilverlightTutorial1 and click ok.

In the “Add Silverlight Application” dialog box, uncheck the checkbox.

Right-click in the References item underneath the project name and select Add Reference from the
context menu. Then, use the Browse... button to search for the Lassalle.Silverlight.Flow.dll and select
it.

The initial XAML description of the main application window MainPage.xaml is the following:

<UserControl x:Class="SilverlightApplication1.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot" Background="White">

 </Grid>
</UserControl>

Let us replace it by the following XAML code:

<UserControl x:Class="SilverlightApplication1.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:af="clr-namespace:Lassalle.Silverlight.Flow;assembly=Lassalle.Silverlight.Flow"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot" Background="White">
 <af:AddFlow x:Name="addflow" Background="White" />
 </Grid>
</UserControl>

If you compile and run this application, you will see that it allows to create interactively nodes and
links. Nodes can be moved and resized. Links can be stretched.

However you cannot scroll the diagram. So let us add a ScrollViewer containing AddFlow and also a
red Border containg the ScrollViewer.

<UserControl x:Class="SilverlightApplication1.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:af="clr-
namespace:Lassalle.Silverlight.Flow;assembly=Lassalle.Silverlight.Flow"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

 <Grid x:Name="LayoutRoot" Background="White">
 <Border x:Name="Border"
 BorderBrush="Red"
 BorderThickness="2"
 CornerRadius="2" >
 <ScrollViewer x:Name="ScrollViewer"
 HorizontalScrollBarVisibility="Auto"
 VerticalScrollBarVisibility="Auto"
 Padding="1"
 Background="White"
 BorderBrush="Transparent"
 BorderThickness="0"
 Margin="1"
 IsTabStop="False"
 TabNavigation="Once">
 <af:AddFlow x:Name="addflow"
 Background="White" />
 </ScrollViewer>
 </Border>
 </Grid>
</UserControl>

Now, as soon as you create some nodes, scrollbars are appearing.

Now, we are going to create a diagram with C# code. Let us open the code-behind file
MainPage.xaml.cs.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;

namespace SilverlightApplication1
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 }
 }
}

Let us replace it by the following:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;
using Lassalle.Silverlight.Flow;

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

namespace SilverlightApplication1
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 this.CreateDiagram1();
 }

 private void CreateDiagram1()
 {
 // Create 3 nodes
 Node node1 = this.addflow.AddNode(20, 20, 50, 50, "First node");
 Node node2 = this.addflow.AddNode(135, 85, 62, 50, "Second node");
 Node node3 = this.addflow.AddNode(20, 115, 50, 50, "Third node");

 // Create 3 links
 Link link1 = this.addflow.AddLink(node1, node2, "link 1");
 Link link2 = this.addflow.AddLink(node2, node2, "link 2");
 Link link3 = this.addflow.AddLink(node2, node3, "link 3");
 }
 }
}

If we compile and execute this program, it will create the following diagram:

In this diagram, the nodes and links receive default property values. For instance, the nodes have an
elliptical shape. The links are composed of one line terminated by an arrow. The link 2 is reflexive and
by default, it is created with 3 segments. The drawing color is black. The text color is black.

We are going to enhance this diagram.

However, let us focus on the way nodes and links are created. First we create the nodes then we
create the links. This is because a link cannot exist without its origin and destination nodes.

To create a node, you have to use the AddNode method. There is no other method. However, there
are 4 versions of this method. There is a version of AddNode that takes only the first 4 parameters.
For instance, to create the first node, you could have written:

Node node1 = this.addflow.AddNode(20, 20, 50, 50);
node1.Text = "First node";

There is also a version of AddNode that takes just one parameter of Node type.

Node node1 = new Node(20, 20, 50, 50, "First node");
this.addflow.AddNode(node1);

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

To create a link, you have to use the AddLink method. There is no other method. However there is 3
versions of AddLink. There is a version of AddLink that takes only the 2 first parameters. For instance,
to create the first link, you could have written:

Link link1 = this.addflow.AddLink(node1, node2);
link1.Text = "link 1";

There is also a version of AddLink that takes just one parameter of Link type.

 Link link1 = new Link(node1, node2, "link 1");
 this.addflow.AddLink(link1);

Notice that we are not forced to memorize each node reference. Using LINQ, we could rewrite
CreateDiagram1 as follows:

 private void CreateDiagram1()
 {
 // Create 3 nodes
 this.addflow.AddNode(20, 20, 50, 50, "First node");
 this.addflow.AddNode(230, 85, 70, 50, "Second node");
 this.addflow.AddNode(20, 160, 50, 50, "Third node");

 // We use LINQ to select in an array all the nodes.
 var nodes = this.addflow.Children.OfType<Node>().ToArray();

 // Create 3 links
 this.addflow.AddLink(nodes[0], nodes[1], "link 1");
 this.addflow.AddLink(nodes[1], nodes[1], "link 2");
 this.addflow.AddLink(nodes[1], nodes[2], "link 3");
 }

Notice that you could also write it using the “one parameter versions of AddNode and Addlink”:

private void CreateDiagram11()
{

 // Create 3 nodes
 Node node1 = new Node(20, 20, 50, 50, "First node");
 Node node2 = new Node(230, 85, 70, 50, "Second node");
 Node node3 = new Node(20, 160, 50, 50, "Third node");
 this.addflow.AddNode(node1);
 this.addflow.AddNode(node2);
 this.addflow.AddNode(node3);

 // Create 3 links
 Link link1 = new Link(node1, node2, "link 1");
 Link link2 = new Link(node2, node2, "link 2");
 Link link3 = new Link(node2, node3, "link 3");
 this.addflow.AddLink(link1);
 this.addflow.AddLink(link2);
 this.addflow.AddLink(link3);

 }

or, using a more compact style:

 private void CreateDiagram12()
 {
 // Create 3 nodes
 this.addflow.AddNode(new Node(20, 85, 50, 50, "First node"));
 this.addflow.AddNode(new Node(230, 85, 70, 50, "Second node"));
 this.addflow.AddNode(new Node(20, 160, 50, 50, "Third node"));

 // We use LINQ to select in an array all the nodes of the canvas.
 var nodes = this.addflow.Children.OfType<Node>().ToArray();

 // Create 3 links
 this.addflow.AddLink(new Link(nodes[0], nodes[1], "link 1"));

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

 this.addflow.AddLink(new Link(nodes[1], nodes[1], "link 2"));
 this.addflow.AddLink(new Link(nodes[1], nodes[2], "link 3"));
 }

In the DemoFlow sample provided with AddFlow, we generally use this method.

5.2.2 Node Properties

The node properties are described in the Lassalle.Silverlight.Flow namespace in the AddFlow help
file. Many of them are inherited from the ContentControl class.

We can group them in 5 categories:

 Layout properties: Location, Size, RotationAngle

 Appearance properties: Content, ImageUri, ImageHorizontalAlignment,
ImageVerticalAlignment

 Node label properties: Text, TextHorizontalAlignment, TextVerticalAlignment, TextBlock

 Graph properties: the Links collection property that allow getting all the links (in and out) of
the node.

 Behaviour properties: IsSelected, IsSelectable, IsXMoveable, IsYMoveable, IsXSizeable,
IsYSizeable, IsLinkingOver, IsEditable, IsRotatable, IsContext.

 Connection properties defining how a link is attached to a node: InConnectionMode,
OutConnectionMode and Connector

5.2.3 Link Properties

The link properties are described in the Lassalle.Silverlight.Flow namespace in the AddFlow help
file. Many of them are inherited from the Control class.

 We can group them in 4 categories:

 Appearance properties: PathGeometry, HitPathGeometry, LineStyle RoundedCornerSize,
Stroke, StrokeThickness, StrokeDashArray, JumpSize.

 Link label properties: Text, TextPlacementMode, TextAngleMode, TextXPosition,
TextYPosition, TextXOffset, TextYOffset, TextBlockBorder, TextBlock

 Arrow head properties: ArrowDstGeometry, ArrowOrgGeometry, ArrowDstFill,
ArrowOrgFill, ArrowDstX, ArrowDstY, ArrowOrgX, ArrowOrgY, ArrowDstWidth,
ArrowDstHeight, ArrowOrgWidth, ArrowOrgHeight, ArrowOrgAngle, ArrowDstAngle

 Graph properties: the Org property returns/sets the reference of the origin node of the link
whereas the Dst property returns/sets the reference of the destination node of the link.

 Behaviour properties: IsSelected, IsSelectable, IsStretchable, IsContext

WARNING: There is also the Points collection. A link is composed of several segments defined by a
collection of points. However, you should not use this collection directly except for serialization
purposes. To manipulate the collection the link points, you should use instead the methods
AddPoint, RemovePoint, ClearPoints, SetPoint, GetPoint and CountPoints.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

5.2.4 Changing property values

Now let us replace the CreateDiagram1 method by the following CreateDiagram2 method:

 private void CreateDiagram2()
 {
 string xamlRectangle =
 "<Rectangle
xmlns='http://schemas.microsoft.com/winfx/2006/xaml/presentation' Stroke='Blue'
StrokeThickness='3' Fill='LightYellow' />";
 string xamlDocument =
 "<Path
xmlns='http://schemas.microsoft.com/winfx/2006/xaml/presentation' Stroke='Orange'
Fill='LightYellow' Stretch='Fill' Data='M 0,0 H 60 V 40 C 30,30 30,50 0,40 Z' />";

 // Create 3 yellow nodes.
 // The first and second nodes are rectangular
 // and the third one has a Document shape style.
 this.addflow.AddNode(20, 20, 50, 50, "First node",
 XamlReader.Load(xamlRectangle));
 this.addflow.AddNode(230, 85, 70, 50, "Second node",
 XamlReader.Load(xamlRectangle));
 this.addflow.AddNode(20, 160, 50, 50, "Third node",
 XamlReader.Load(xamlDocument));

 // We use LINQ to select in an array all the nodes of the canvas.
 var nodes = this.addflow.Children.OfType<Node>().ToArray();

 // Create 3 links with distinct colors and arrows
 // The first link has a green arrow.
 // The second link has a Bezier style
 // The third link has a “HVH” style.
 Link link = this.addflow.AddLink(nodes[0], nodes[1], "link 1");
 link.Foreground = new SolidColorBrush(Colors.Blue);
 link.Stroke = new SolidColorBrush(Colors.Red);
 link.ArrowDstGeometry = MakeMyArrowGeometry();

 link = this.addflow.AddLink(nodes[1], nodes[1], "link 2");
 link.Foreground = new SolidColorBrush(Colors.Blue);
 link.Stroke = new SolidColorBrush(Colors.Blue);
 link.LineStyle = LineStyle.Bezier;
 link.ArrowDstGeometry = MakeMyArrowGeometry();

 link = this.addflow.AddLink(nodes[1], nodes[2], "link 3");
 link.Foreground = new SolidColorBrush(Colors.Blue);
 link.Stroke = new SolidColorBrush(Colors.Blue);
 link.LineStyle = LineStyle.HVH;
 link.ArrowDstGeometry = MakeMyArrowGeometry();
 }

 static Geometry MakeMyArrowGeometry()
 {
 PathGeometry pathGeometry = new PathGeometry();

 PathFigure pathFigure = new PathFigure();
 pathFigure.IsClosed = true;
 pathFigure.StartPoint = new Point(4, 4);

 LineSegment lineSegment = new LineSegment();
 lineSegment.Point = new Point(0, 0);
 pathFigure.Segments.Add(lineSegment);

 LineSegment lineSegment2 = new LineSegment();
 lineSegment2.Point = new Point(16, 8);
 pathFigure.Segments.Add(lineSegment2);

 LineSegment lineSegment3 = new LineSegment();

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

 lineSegment3.Point = new Point(0, 16);
 pathFigure.Segments.Add(lineSegment3);

 pathGeometry.Figures.Add(pathFigure);
 return pathGeometry;
 }

and add the namespace delcaration at the beginning of the file :

using System.Windows.Markup;

If we compile and execute this program, you will see that now, our nodes and links have distinct
appearances (colors, shapes, styles, etc).

Notice the call to the AddNode method with 6 parameters.

 this.addflow.AddNode(20, 20, 50, 50, "First node", XamlReader.Load(xamlRectangle));

The last parameter is the content of the node (do not forget that the Node class derives from the
ContentControl class). If you omit this parameter (as in the CreateDiagram1 example), then the
content is an ellipse with a black stroke and a white filling color.

Notice however that to specify the content of each node, we had to do it for each node, even if the
content is the same.

It is the same thing for the links. For instance, in the previous example, we have defined a blue color
for each link.

For a big diagram, this may be annoying to repeat always the same code for each object.

Fortunately, AddFlow allows using default property values that apply to all the next created nodes or
links.

5.2.5 Default property values

Firs of all, let us replace the xaml code in the file MainPage.xaml by the following XAML code:

<UserControl x:Class="SilverlightApplication1.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:af="clr-
namespace:Lassalle.Silverlight.Flow;assembly=Lassalle.Silverlight.Flow"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

 <UserControl.Resources>
 <Style TargetType="af:Link" x:Key="linkStyle">
 <Setter Property="Stroke" Value="Blue"/>
 <Setter Property="Foreground" Value="Blue"/>
 <Setter Property="ArrowDstGeometry" Value="M3,4 L0,0 12,4 0,8 Z"/>
 </Style>
 </UserControl.Resources>

 <Grid x:Name="LayoutRoot" Background="White">
 <Border x:Name="Border"
 BorderBrush="Red"
 BorderThickness="2"
 CornerRadius="2" >
 <ScrollViewer x:Name="ScrollViewer"
 HorizontalScrollBarVisibility="Auto"
 VerticalScrollBarVisibility="Auto"
 Padding="1"
 Background="White"
 BorderBrush="Transparent"
 BorderThickness="0"
 Margin="1"
 IsTabStop="False"
 TabNavigation="Once">
 <af:AddFlow x:Name="addflow"
 Background="White"
 LinkStyle="{StaticResource linkStyle}" />
 </ScrollViewer>
 </Border>
 </Grid>
</UserControl>

As you can see we have added a Resources section containing the definition of a style for links. This
style is defined in the AddFlow declaration: LinkStyle="{StaticResource linkStyle}"

Now let us replace the CreateDiagram2 method by the following CreateDiagram3 method:

private void CreateDiagram3()
 {

 string xamlRectangle =
 "<Rectangle

xmlns='http://schemas.microsoft.com/winfx/2006/xaml/presentation'
Stroke='Blue' StrokeThickness='3' Fill='LightYellow' />";

 string xamlDocument =
 "<Path

xmlns='http://schemas.microsoft.com/winfx/2006/xaml/presentation'
Stroke='Orange' Fill='LightYellow' Stretch='Fill'
Data='M 0,0 H 60 V 40 C 30,30 30,50 0,40 Z' />";

 this.addflow.XamlNodeContent = xamlRectangle;

 // Create 3 yellow nodes.
 // The second node is rectangular
 // and the third one has a Document shape style.
 this.addflow.AddNode(20, 20, 50, 50, "First node");
 this.addflow.AddNode(230, 85, 70, 50, "Second node");

 this.addflow.AddNode(20, 160, 50, 50, "Third node",
 XamlReader.Load(xamlDocument));

 // We use LINQ to select in an array all the nodes of the canvas.
 var nodes = this.addflow.Children.OfType<Node>().ToArray();

 // Create 3 links with distinct colors and arrows
 // The first link is red.
 // The second link has a Bezier style
 // The third link has a “HVH” style.
 Link link = this.addflow.AddLink(nodes[0], nodes[1], "link 1");
 link.Stroke = new SolidColorBrush(Colors.Red);

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

 link = this.addflow.AddLink(nodes[1], nodes[1], "link 2");
 link.LineStyle = LineStyle.Bezier;

 link = this.addflow.AddLink(nodes[1], nodes[2], "link 3");
 link.LineStyle = LineStyle.HVH;
 }

If we compile and execute this new program, it will create the same diagram. However, our program is
smaller because we have defined default property values for nodes and links.

For instance, writing:

this.addflow.XamlNodeContent = xamlRectangle;

indicates that all the nodes that have the content defined in the xaml string xamlRectangle.

Then you just need to specify the property values that differ from the defaults.

Notice that these default properties have also an interactive effect. Not only the nodes created
programmatically will have the content defined in the xaml string xamlRectangle but also the nodes
created interactively with the mouse. This may be interesting or not, depending on what you intend to
do.

For the links, we have defined a style in the file page.xaml:

<Style TargetType="af:Link" x:Key="linkStyle">
 <Setter Property="Stroke" Value="Blue"/>
 <Setter Property="Foreground" Value="Blue"/>
 <Setter Property="ArrowDstGeometry" Value="M3,4 L0,0 12,4 0,8 Z"/>
 </Style>

This style is the default style for the links, as indicated in the Addflow xaml definition

 <af:AddFlow x:Name="addflow"
 Background="White"
 LinkStyle="{StaticResource linkStyle}" />

When you create a link programmatically or interactively, it will have a blue color and its associated
label will have also a blue color.

In the DemoFlow sample, there are also many examples of node styles. For instance, in the
PageFlowChart.xaml, we define the following style:

<Style TargetType="af:Node" x:Key="decisionStyle">
 <Setter Property="InConnectionMode" Value="Pin" />
 <Setter Property="OutConnectionMode" Value="Pin" />
 <Setter Property="ContentTemplate">
 <Setter.Value>
 <DataTemplate>
 <Polygon Stroke="Black" Stretch="Fill"

Points="0,20 30,0 60,20 30,40">
 <Polygon.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
 <LinearGradientBrush.GradientStops>
 <GradientStop Color="White" Offset="0" />
 <GradientStop Color="Yellow" Offset="1" />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Polygon.Fill>
 </Polygon>
 </DataTemplate>
 </Setter.Value>
 </Setter>

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

</Style>

We could have decided to set this style as the default node style in the AddFlow control xaml
definition:

<af:AddFlow x:Name="addflow"
 Background="White"
 LinkStyle="{StaticResource linkStyle}"

 NodeStyle="{StaticResource decisionStyle}" />

However, as other nother node styles are defined, we have preferred to use this style in the code:

this.addflow.NodeStyle = this.Resources["decisionStyle"] as Style;
this.addflow.AddNode(112, 128, 144, 48, "Timer1\r\n= true ?",

XamlReader.Load(xamlLosange));
this.addflow.AddNode(96, 224, 176, 80,

"Check if a\r\nprevious(encoding)\r\nsession failed",
XamlReader.Load(xamlLosange));

this.addflow.AddNode(96, 352, 176, 80,
"Check if newly\r\nupdated files",
XamlReader.Load(xamlLosange));

We set the default node style and then we create 3 nodes. Those 3 nodes will have this style as
demonstrated in the following figure:

Notice that we could have also choosen to assign the style to each node instead of using the AddFlow
node style property:

Node node1 = this.addflow.AddNode(112, 128, 144, 48,
"Timer1\r\n= true ?",
XamlReader.Load(xamlLosange));

node1.Style = this.Resources["decisionStyle"] as Style;
Node node2 = this.addflow.AddNode(96, 224, 176, 80,

"Check if a\r\nprevious(encoding)\r\nsession failed",
XamlReader.Load(xamlLosange));

node2.Style = this.Resources["decisionStyle"] as Style;
Node node3 = this.addflow.AddNode(96, 352, 176, 80,

"Check if newly\r\nupdated files",
XamlReader.Load(xamlLosange));

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

node3.Style = this.Resources["decisionStyle"] as Style;

As the style defines the node shape to be a losange, you may think that it is not necessary to define
the content to be losange. And in this case, it is true. But it is not always the case. In the case where
you do not use pins to create links (node.InConnectionMode = ConnectionMode.Center), a link should
be directed towards the destination node center and should stop at the node border. But if you do not
define the node content to be a losange, its content is considered to be an ellipse (the default content)
and you obtain a link as in the the following diagram,

If you define the content to be a losange (you don't need to specify brush), the you would obtain:

5.2.6 Stretching the links

We would like to add segments to our links. The following CreateDiagram4 method demonstrates how
to do that.

 private void CreateDiagram4()
 {

 string xamlRectangle =
 "<Rectangle

xmlns='http://schemas.microsoft.com/winfx/2006/xaml/presentation'
Stroke='Blue' StrokeThickness='3' Fill='LightYellow' />";

 string xamlDocument =

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

 "<Path
xmlns='http://schemas.microsoft.com/winfx/2006/xaml/presentation'
Stroke='Orange' Fill='LightYellow' Stretch='Fill'
Data='M 0,0 H 60 V 40 C 30,30 30,50 0,40 Z' />";

 this.addflow.XamlNodeContent = xamlRectangle;

 // Create 3 yellow nodes.
 // The second node is rectangular
 // and the third one has a Document shape style.
 this.addflow.AddNode(20, 20, 50, 50, "First node");
 this.addflow.AddNode(230, 85, 70, 50, "Second node");
 this.addflow.AddNode(20, 160, 50, 50, "Third node",
 XamlReader.Load(xamlDocument));

 // We use LINQ to select in an array all the nodes of the canvas.
 var nodes = this.addflow.Children.OfType<Node>().ToArray();

 // Create 3 links with distinct colors and arrows
 // The first link is red.
 // The second link has a Bezier style
 // The third link has a “HVH” style.
 Link link = this.addflow.AddLink(nodes[0], nodes[1], "link 1");
 link.Stroke = new SolidColorBrush(Colors.Red);

 // Add 2 points (therefore 2 segments) to this first link
 link.AddPoint(new Point(120, 70));
 link.AddPoint(new Point(160, 20));

 link = this.addflow.AddLink(nodes[1], nodes[1], "link 2");
 link.LineStyle = LineStyle.Bezier;

 // Stretch this reflexive link
 link.SetPoint(new Point(180, 10), 1);
 link.SetPoint(new Point(300, 10), 2);

 link = this.addflow.AddLink(nodes[1], nodes[2], "link 3");
 link.LineStyle = LineStyle.HVH;
 }

If we compile and execute this program, you will see that first link has now 3 segments and the
reflexive link is bigger.

To add segments to a link or to alter its shape, you have to use the AddPoint method collection of the
link.

You can add points (and therefore segments) to the link 1 because its link line style is Polyline. You
could also do that it its link line style was Spline. However, for the other cases (for instance Bezier as

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

for the link 2), you cannot add points. You can however still modify the position of the points, using the
SetPoint method.

The rules for managing the link collection of points are the following:

• After its insertion in the diagram, a link has at least 2 points.
• You cannot remove these 2 points. The Count property of the Points collection is always

superior or equal to 2.
• You can add or delete points only if the link line style is Polyline or Spline. In other case, the

number of link points is fixed. For instance, if the link line style is Bezier, then it has 4 points in
any case.

• You can change the first point of the Points collection only if the OutConnectionMode
property of the origin node is NOT set to ConnectionMode.Center.

• You can change the last point of the Points collection only if the InConnectionMode property
of the destination node is NOT set to ConnectionMode.Center.

• You can change each other point of the Points collection in any case.

5.3 Displaying an image in a node
You can associate an image to a node with the ImageUri property.

The WorkFlow example in the DemoFlow sample shows how to that. It first creates 3 Image objects
(see the CreateWorkFlowDiagramExample method)

Uri imageUri1 = new Uri("../Images/phone.png", UriKind.Relative);
Uri imageUri2 = new Uri("../Images/mail.png", UriKind.Relative);
Uri imageUri3 = new Uri("../Images/disc.png", UriKind.Relative);

Then, to assign an image to a node, you have just to write for instance:

node.ImageUri = imageUri1;

5.4 Displaying link intersections
AddFlow uses a poweful algorithm to find intersections between the link segments.

If the CanShowJumps property of the AddFlow control is true then jumps will be displayed at the
intersection of this link with other links.

However, this will not work if the link is a curved link (Bezier or Spline).

The size of jumps is determined by the value of the JumpSize property of the link. If this value is 0,
then no jump will be displayed.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

5.5 Displaying link labels
The following table gives the list of all properties available to manage the link labels.

Text Sets or returns the text label associated with the link.

TextBlock Returns the TextBlock associated with the link and used to
display the link label

TextBlockBorder Returns the Border containing the link TextBlock

TextPlacementMode Returns/sets the TextPlacementMode style of the text of the link.

TextAngleMode Sets or returns the TestAngleMode style of the label on the link.

TextXPosition Returns/sets the x coordinate of the position of the link text.

TextYPosition Returns/sets the y coordinate of the position of the link text.

TextXOffset Returns/sets the x value of the offset of the link text.

TextYOffset Returns/sets the y value of the offset of the link text.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

In the default xaml description of a link, the following code defines the link label:

<Border Name="TextBlockBorder" Canvas.Left="{TemplateBinding TextXPosition}"
 Canvas.Top="{TemplateBinding TextYPosition}">
 <TextBlock Name="TextBlock" Text="{TemplateBinding Text}" IsHitTestVisible="True" />
</Border>

As you can see, the label string (given by the Text property) is displayed in a TextBlock (TextBlock
property) contained in a Border control (TextBlockBorder property). The Border control is placed at a
position given by the TextXPosition and TextYPosition properties.

By default, the TextBlockBorder is not visible so you just see the text. But you may choose to make it
visible to emphasize the label or make it opaque instead of transparent. This is demonstrated in the
«State Diagram» example of the demo (see the files PageStateDiagram.xaml and
PageStateDiagram.xaml.cs)

The values of the TextXPosition and TextYPosition properties is determined by the
TextPlacementMode, TextAngleMode, TextXOffset and TextYOffset properties.

The TextPlacementMode property may have two values:

• MiddleSegment. The text is placed at the middle of the medium segment of the link.

• MiddleLine. The text is placed at the middle of the link line (default)

The TextAngleMode property may have two values:

• Horizontal. The text is displayed horizontally, whatever the angle of the link may be (default).

• LineAngle. The text is rotated to follow the link angle.

Both TextPlacementMode, TextAngleMode properties determine a position for link label. Then, you
may alter this position using the TextXOffset and TextYOffset properties.

Note that the default values for TextXOffset and TextYOffset is 10. If you wish to display the label
above the link, then should set both properties to 0.

In the demo program provided with AddFlow, only the first example («State Diagram»: see the files
PageStateDiagram.xaml and PageStateDiagram.xaml.cs) is using values distinct from the default
values for the TextXOffset and TextYOffset properties.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

 In the second example («Flowchart Diagram»: see the files PageFlowchart.xaml and
PageFlowchart.xaml.cs), the property TextAngleMode is to LineAngle so that the labels are rotated
to follow the link angle.

5.6 Selection of items
5.6.1 Interactive selection

You can select an item (a node or a link) interactively by clicking it with the mouse.

You can also select several items interactively by clicking them with the mouse and simultaneously
pressing the shift or control key.

Or you can select items with a selection rectangle, if the MouseSelection property is set to
MouseSelection.Selection. In this last case, you bring the mouse cursor into the AddFlow control,
press the left button, move the mouse and release the left button. All nodes or links partly inside the
selection rectangle are selected. Then you can unselect some nodes by clicking them with the mouse
and simultaneously pressing the shift or control key. You can select them again by using the same
method.

FAQ: How to select interactively a link with the mouse?

If the link is made of one or several segments, then if you want to select it with the mouse, you have
just to click near one of its segments. If the link is a Bezier or a Spline curve, then you have just to
click near the curve.

5.6.2 Programmatic selection: ISelectable interface

Both Node and Link classes implement the ISelectable interface:

• A node or a link can be selected either interactively, either programmatically using its
IsSelected property, for instance:

node1.IsSelected = true;
node2.IsSelected = true;
link1.IsSelected = true;

• If the IsSelectable property of a node or a link is false, then it is no more possible to select it.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

5.6.3 SelectedItems collection

The SelectedItems collection property of AddFlow allows getting each selected item. For instance:

// Make each selected nodes red
IEnumerable<Node> selnodes = this.addflow.SelectedItems.OfType<Node>();
foreach (Node node in selnodes)

node.BorderBrush = new SolidColorBrush(Colors.Red);

WARNING: there is a difference with previous versions (the ActiveX version or the Windows Form
version). In the Silverlight version, there is not any notion of a “current” (or “active”) item and
therefore there is not any property like SelectedNode, SelectedLink or SelectedItem. When several
items (nodes or links) are selected, you cannot designate one that could be the current one.
However, you can implement a “current item” feature. You have just to emphasize the first item of the
SelectedItems collection. This is demonstrated in the State diagram example of the DemoFlow
sample.

5.6.4 Selection event

The SelectionChanged event is fired each time the selection status of an item is changed.

However, you can avoid that by setting the CanSendSelectionChangedEvent property to false.

5.7 In-place edition for nodes
If the CanEditMode property of the AddFlow control is true and if the IsEditable property of the node
is also true (which is the case by default), then you can interactively edit the text inside the node. If it is
the case, then the IsInEditMode property of the node is true.

Notice that the Node class offers also 3 new methods for doing in-place edition: BeginEdit, EndEdit
and CancelEdit.

And the Addflow class offers also 3 new events: BeforeEdit, AfterEditEdit and CancelEdit.

Any in-place edition can be undone and redone.

5.8 Diagram navigation
AddFlow provides four and only four properties to navigate in a diagram (“Network traversals”). Notice
that these properties described here are demonstrated in the “Navig” diagrams in the DemoFlow
sample provided with AddFlow.

We have already spoken of these properties.

 Children. It is the collection of all the objects contained in the AddFlow canvas. Therefore it
includes all nodes and links but also all other objects you may add in the diagram. See the
paragraph 5.1 to see how to retrieve a list of nodes or links using the LINQ technology.

 Links. It is the collection of links coming to or leaving a node.

 Org. It is the origin node of a link.

 Dst. It is the destination node of a link.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

5.9 Zooming

5.9.1 Programmatic zoom

The Zoom property allows zooming a diagram. It is a double value representing the zoom factor. Its
default value is equal to 1. Notice that the zoom is isotropic ensuring a 1:1 aspect ratio.

The ZoomRectangle method allows zooming and scrolling a view to fit a specified rectangular portion
of the diagram. The zoom is isotropic.

TIP: How to autofit the diagram; i.e. how to adjust the zoom to its maximum while still keeping
all the shapes (nodes, links etc.) in view?

You can implement this feature using the ZoomRectangle method and the Extent property:

Size size = this.addflow.Extent;
this.addflow.ZoomRectangle(new Rect(0, 0, size.Width, size.Height));

5.9.2 Interactive zoom

Notice that you may also zoom the diagram interactively with the mouse if the MouseSelection
property of the AddFlow control is set to MouseSelection.Zoom. The user brings the mouse cursor
into the AddFlow control, press the left button, move the mouse (which draws a rectangular area) and
then release the left button: this has the effect of zooming and scrolling the view to fit the rectangular
area.

5.9.3 Bird view

The BirdView property returns an object managing a bird view popup window allowing scrolling and
zooming the diagram.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

The Show and Hide methods of the BirdView object allow showing or hiding the bird view popup
window.

5.10Serialization
AddFlow does not provide any serialization feature. However, the “Save XAML” example in the
DemoFlow sample shows how to deals with serialization (see the file PageSerialize.xaml.cs). More
precisely, it shows how to store data on the Client, using:

• the Isolated Storage area

• XML

• LINQ

You know that LINQ can be used to perform queries against XML. For that, you need to add a
refererence to the System.Xml.Linq DLL.

The methods to save/load a diagram are the followings:

static void SaveLocalFile(AddFlow addflow)
{
 using (IsolatedStorageFile store =

IsolatedStorageFile.GetUserStoreForApplication())
 {
 using (IsolatedStorageFileStream fs = store.CreateFile(@"diagram.xml"))
 {
 XElement xElement = PageSaveXaml.SaveXML(addflow);
 xElement.Save(fs);
 }
 }
}

static void LoadLocalFile(AddFlow addflow)

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

{
 using (IsolatedStorageFile store =

IsolatedStorageFile.GetUserStoreForApplication())
 {
 using (IsolatedStorageFileStream fs =

store.OpenFile(@"diagram.xml", FileMode.Open))
 {
 XElement xElement = XElement.Load(fs);
 PageSaveXaml.LoadXML(addflow, xElement);
 }
 }
}

The SaveXML file allows serializing the diagram in a XML file. The LoadXML file allows creating the
diagram from the XML file.

Notice that in this example, we do not save the xaml content of a nodeor a link. We just save a type
that is used when re-creating the diagram from the XML file. We use an attached property to assign a
type to a node and another attached property to assign a type to a link.

For instance when creating the diagram, we use the following line of code to assign a type to a node:

PageSaveXaml.SetNodeType(node, NodeType.Ellipse);

This type is saved when serializing the node as you can see in the GetNodesXML method (for links, it
is the method GetLinksXML)

static XElement GetNodesXML(AddFlow addflow, IEnumerable<Node> nodes)
{
 return new XElement("Nodes",
 from node in nodes
 select new XElement("Node",
 new XAttribute("Left", node.Location.X),
 new XAttribute("Top", node.Location.Y),
 new XAttribute("Width", node.Size.Width),
 new XAttribute("Height", node.Size.Height),
 new XAttribute("ZOrder", addflow.Children.IndexOf(node)),
 new XAttribute("NodeType", PageSaveXaml.GetNodeType(node)),
 string.IsNullOrEmpty(node.Text) ?

null : new XElement("Text", node.Text)
)
);
}

When de-serializing the diagram, the type is used to associate the correct content to a node. This is
demonstrated in the following DeserializeNode method.

private static Node DeserializeNode(AddFlow addflow, XElement nodeXML)
{
 double width = Double.Parse(nodeXML.Attribute("Width").Value,
 CultureInfo.InvariantCulture);
 double height = Double.Parse(nodeXML.Attribute("Height").Value,
 CultureInfo.InvariantCulture);
 double left = Double.Parse(nodeXML.Attribute("Left").Value,
 CultureInfo.InvariantCulture);
 double top = Double.Parse(nodeXML.Attribute("Top").Value,
 CultureInfo.InvariantCulture);
 int zorder = int.Parse(nodeXML.Attribute("ZOrder").Value);
 NodeType nodeType = (NodeType)Enum.Parse(typeof(NodeType),

 nodeXML.Attribute("NodeType").Value, false);

 Node node = addflow.AddNode(left, top, width, height, null);
 if (node != null)
 {
 PageSaveXaml.SetZorderSerial(node, zorder);
 PageSaveXaml.SetNodeType(node, nodeType);

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

 if (nodeXML.Element("Text") != null)
 node.Text = nodeXML.Element("Text").Value;
 switch (nodeType)
 {
 case NodeType.Ellipse:
 node.Content = XamlReader.Load(PageSaveXaml.xamlEllipse);
 break;
 case NodeType.Losange:
 node.Content = XamlReader.Load(PageSaveXaml.xamlLosange);
 break;
 case NodeType.Document:
 node.Content = XamlReader.Load(PageSaveXaml.xamlDocument);
 break;
 }
 }
 return node;
}

5.11Exporting a diagram in XAML
AddFlow itself does not provide any exporting feature.

However, Silverlight allows you rendering the content of a control to a bitmap. The key to generating a
bitmap is the WriteableBitmap class found in System.Windows.Media.Imaging as in the following
code:

WriteableBitmap wb = new WriteableBitmap(this.addflow, null);
this.image1.Source = wb;

5.12Printing
AddFlow itself does not provides any printing feature. However, the DemoFlow sample shows how to
print a diagram in one page.

5.13Customizing the user interface

5.13.1Customizing the handles

If you look at the different diagram examples provided in the DemoFlow sample, you will see that the
handles used to resize a node or to stretch a link are not same.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

For changing the style of the node resizing handles, you can use the ResizeHandleStyle property of
AddFlow. For changing the style of the rotation handle, you can use the RotateHandleStyle property
of AddFlow. And for changing the style of the link stretching handles, you can use the
StretchHandleStyle property of AddFlow. The type of these properties is Style. And you can define a
style in xaml.

For instance the following styles are defined in the file PageStateDiagram.xaml:

<Style TargetType="af:ResizeHandle" x:Key="resizeHandle">

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

 <Setter Property="Width" Value="10"/>
 <Setter Property="Height" Value="10"/>
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="af:ResizeHandle">
 <Grid>
 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name="CommonStates">
 <vsm:VisualStateGroup.Transitions>
 <vsm:VisualTransition

 GeneratedDuration="00:00:00.1" To="MouseOver"/>
 </vsm:VisualStateGroup.Transitions>
 <vsm:VisualState x:Name="Normal"/>
 <vsm:VisualState x:Name="MouseOver">
 <Storyboard>
 <DoubleAnimationUsingKeyFrames

 Storyboard.TargetName="contentPresenter"
 Storyboard.TargetProperty="Opacity">

 <SplineDoubleKeyFrame
KeyTime="00:00:00" Value="0.5"/>

 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 </vsm:VisualStateManager.VisualStateGroups>

 <ContentPresenter x:Name="contentPresenter">
 <Ellipse Stretch="Fill" Fill="Yellow" Stroke="Navy"/>
 </ContentPresenter>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

<Style TargetType="af:RotateHandle" x:Key="rotateHandle">
 <Setter Property="Width" Value="24"/>
 <Setter Property="Height" Value="8"/>
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="af:RotateHandle">
 <Grid>
 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name="CommonStates">
 <vsm:VisualStateGroup.Transitions>
 <vsm:VisualTransition
 GeneratedDuration="00:00:00.1" To="MouseOver"/>
 </vsm:VisualStateGroup.Transitions>
 <vsm:VisualState x:Name="Normal"/>
 <vsm:VisualState x:Name="MouseOver">
 <Storyboard>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName="contentPresenter"
 Storyboard.TargetProperty="Opacity">
 <SplineDoubleKeyFrame
 KeyTime="00:00:00" Value="0.5"/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 </vsm:VisualStateManager.VisualStateGroups>

 <ContentPresenter x:Name="contentPresenter">
 <Path Data="M 2,4 A 2,2 0 0 1 2,0 H 4 A 2,2 0 0 1 4,4 Z"
 Fill="Yellow" Stroke="Navy" Stretch="Fill" />
 </ContentPresenter>
 </Grid>
 </ControlTemplate>

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

 </Setter.Value>
 </Setter>
</Style>

<Style TargetType="af:StretchHandle" x:Key="stretchHandle">
 <Setter Property="Width" Value="10"/>
 <Setter Property="Height" Value="10"/>
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="af:StretchHandle">
 <Grid>
 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name="CommonStates">
 <vsm:VisualStateGroup.Transitions>
 <vsm:VisualTransition

 GeneratedDuration="00:00:00.1" To="MouseOver"/>
 </vsm:VisualStateGroup.Transitions>
 <vsm:VisualState x:Name="Normal"/>
 <vsm:VisualState x:Name="MouseOver">
 <Storyboard>
 <DoubleAnimationUsingKeyFrames

 Storyboard.TargetName="contentPresenter"
 Storyboard.TargetProperty="Opacity">

 <SplineDoubleKeyFrame
KeyTime="00:00:00" Value="0.5"/>

 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 </vsm:VisualStateManager.VisualStateGroups>

 <ContentPresenter x:Name="contentPresenter">
 <Ellipse Stretch="Fill" Fill="Yellow" Stroke="Navy"/>
 </ContentPresenter>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

This style says that the handle is a yellow ellipse and that when the mouse enters over this handle, the
opacity of this handle changes.

Then, to use these styles, you have just to assign them to the ResizeHandleStyle,
RotateHandleStyle and StretchHandleStyle properties of the AddFlow control:

<af:AddFlow x:Name="addflow" Grid.Row="1" Background="White"
 ResizeHandleStyle="{StaticResource resizeHandle}"
 RotateHandleStyle="{StaticResource rotateHandle}"
 StretchHandleStyle="{StaticResource stretchHandle}"
 LinkStyle="{StaticResource linkBezier}"

 SelectionChanged="addflow_SelectionChanged" />

5.13.2Customizing the connection of links to a node

5.13.2.1 Generalities

The way a link is connected to a node is managed by this node. Each node has 4 properties for this
purpose: InConnectionMode, OutConnectionMode, Connector and ConnectorStyle.

The type of the InConnectionMode and OutConnectionMode properties is ConnectionMode. It is an
enumeration that defines how the link is connected to the node.

Member Comment

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

Center Default. The link is directed towards the centre of the node.

Anywhere The link last (or first) point can be placed anywhere.

Pin A pin a must be use to connect a link to the node.

The Connector property is read-only. It returns a Connector object. This object manages the set of
the pins that can be used to connect links. The Connector class exposes the Pins property that
returns the collection of Pin objects used by the node. By default, the node connector has only one pin
placed at the center of the node. However, as explained later in this paragraph, you may customize a
connector so that it contains several pins placed anywhere in the node.

The Pin class exposes the 3 following properties:

Property Type Description
Position Point Returns/sets the position of a pin

In bool Determines if the pin accepts "in" links

Out bool Determines if the pin accepts "out" links

5.13.2.2 Customizing pins

When the mouse is over a node, a pin (connector) is displayed at the center of the node. It allows
creating a link leaving this node towards another node. By default this pin is a circle but you can
customize it.

For changing the style of the pin, you can use the PinStyle property of AddFlow. The type of this
property is Style. And you can define a style in xaml.

For instance, the following style is defined in the file PageStateDiagram.xaml:

<Style TargetType="af:Pin" x:Key="pinStyle">
 <Setter Property="Width" Value="12" />
 <Setter Property="Height" Value="12" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="af:Pin">
 <Grid Name="PART_Root" >
 <Rectangle Stroke="Orange" Fill="Yellow" Opacity="0.5"/>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

Then, to use these styles, you have just to assign them to the PinStyle property of the AddFlow
control:

<af:AddFlow x:Name="addflow" Grid.Row="1" Background="White"
 ResizeHandleStyle="{StaticResource resizeHandle}"
 StretchHandleStyle="{StaticResource stretchHandle}"
 PinStyle="{StaticResource pinStyle}"

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

 LinkStyle="{StaticResource linkStyle}"/>

Instead of being a circle, it is a yellow rectangle.

5.13.2.3 Customizing the Connector

By default, the node connector contains only one pin placed at the center of the node. However, you
can change this default style, using the ConnectorStyle property of AddFlow. This demonstrated in the
PageFlowChart.xaml file where you can find the definition of the following style:

<Style TargetType="af:Connector" x:Key="connectorStyle">
 <Setter Property="HorizontalContentAlignment" Value="Stretch" />
 <Setter Property="VerticalContentAlignment" Value="Stretch" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="af:Connector">
 <Grid Margin="-6" Name="PART_Root" >
 <af:Pin x:Name="pin0"
 VerticalAlignment="Center" HorizontalAlignment="Left" />
 <af:Pin x:Name="pin1"
 VerticalAlignment="Center" HorizontalAlignment="Right" />
 <af:Pin x:Name="pin2"
 VerticalAlignment="Top" HorizontalAlignment="Center" />
 <af:Pin x:Name="pin3"
 VerticalAlignment="Bottom" HorizontalAlignment="Center" />
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

WARNING: The pins must have a name and this name must be “pin0”, “pin1”, “pin2” etc...

Then, to use this style, you have just to assign it to the ConnectorStyle property of the AddFlow
control:

<af:AddFlow x:Name="addflow" Grid.Row="1" Background="White"
 ResizeHandleStyle="{StaticResource resizeHandle}"
 StretchHandleStyle="{StaticResource stretchHandle}"
 LinkStyle="{StaticResource linkStyle}"
 ConnectorStyle="{StaticResource connectorStyle}"
 PinStyle="{StaticResource pinStyle}" />

The resulting connector has four pins.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

Notice however that the InConnectionMode and OutConnectionMode properties of the node must be
set to ConnectionMode.Pin to be able to use those pins to create links. For instance, the definition of
the node style must contains the lines:

 <Setter Property="InConnectionMode" Value="Pin" />
 <Setter Property="OutConnectionMode" Value="Pin" />

(Remember that the pins are visible only when the mouse is over the node)

The file PageConnectors.xaml provide another example where each node has 6 "out" pins and 6 "in"
pins.

<Style TargetType="af:Connector" x:Key="connectorStyle">
 <Setter Property="HorizontalContentAlignment" Value="Stretch" />
 <Setter Property="VerticalContentAlignment" Value="Stretch" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="af:Connector">
 <Grid Margin="5.5,12,5.5,12" Name="PART_Root" >
 <Grid.RowDefinitions>
 <RowDefinition Height="30" />
 <RowDefinition Height="30" />
 <RowDefinition Height="30" />
 <RowDefinition Height="30" />
 <RowDefinition Height="30" />
 <RowDefinition Height="30" />
 </Grid.RowDefinitions>
 <af:Pin x:Name="pin0" Grid.Row="0"
 Style="{StaticResource outPinStyle}"
 VerticalAlignment="Center" HorizontalAlignment="Right" />
 <af:Pin x:Name="pin1" Grid.Row="1"
 Style="{StaticResource outPinStyle}"
 VerticalAlignment="Center" HorizontalAlignment="Right" />
 <af:Pin x:Name="pin2" Grid.Row="2"
 Style="{StaticResource outPinStyle}"
 VerticalAlignment="Center" HorizontalAlignment="Right" />
 <af:Pin x:Name="pin3" Grid.Row="3"
 Style="{StaticResource outPinStyle}"
 VerticalAlignment="Center" HorizontalAlignment="Right" />
 <af:Pin x:Name="pin4" Grid.Row="4"
 Style="{StaticResource outPinStyle}"
 VerticalAlignment="Center" HorizontalAlignment="Right" />
 <af:Pin x:Name="pin5" Grid.Row="5"

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

 Style="{StaticResource outPinStyle}"
 VerticalAlignment="Center" HorizontalAlignment="Right" />
 <af:Pin x:Name="pin6" Grid.Row="0"
 Style="{StaticResource inPinStyle}"
 VerticalAlignment="Center" HorizontalAlignment="Left" />
 <af:Pin x:Name="pin7" Grid.Row="1"
 Style="{StaticResource inPinStyle}"
 VerticalAlignment="Center" HorizontalAlignment="Left" />
 <af:Pin x:Name="pin8" Grid.Row="2"
 Style="{StaticResource inPinStyle}"
 VerticalAlignment="Center" HorizontalAlignment="Left" />
 <af:Pin x:Name="pin9" Grid.Row="3"
 Style="{StaticResource inPinStyle}"
 VerticalAlignment="Center" HorizontalAlignment="Left" />
 <af:Pin x:Name="pin10" Grid.Row="4"
 Style="{StaticResource inPinStyle}"
 VerticalAlignment="Center" HorizontalAlignment="Left" />
 <af:Pin x:Name="pin11" Grid.Row="5"
 Style="{StaticResource inPinStyle}"
 VerticalAlignment="Center" HorizontalAlignment="Left" />
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

Here again, the InConnectionMode and OutConnectionMode properties of the node must be set to
ConnectionMode.Pin. This can be done in the definition of the node style:

<Style TargetType="af:Node" x:Key="nodeStyle">
 <Setter Property="InConnectionMode" Value="Pin" />
 <Setter Property="OutConnectionMode" Value="Pin" />
 <Setter Property="ContentTemplate">
 <Setter.Value> …

The “out” pins are orange whereas the “in” pins are green.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

6) Avanced topics
6.1 Undo/Redo

6.1.1 General features

AddFlow has a property named TaskManager of type TaskManager that provides a powerful
multilevel Undo/Redo feature. The history length is limited only by available memory. However, you
can limit it yourself with the UndoLimit property of the TaskManager class. You can also
enable/disable the undo/redo with the CanUndoRedo property of AddFlow.

6.1.2 Updating the user interface

Some properties and methods allow you to properly update the user interface. The CanUndo and
CanRedo methods will tell you if there is something to undo or redo and therefore will allow you to
grey out the menu options. The RedoCode and UndoCode properties return a code that describes
the action waiting to be redone or undone. This will allow your application to give descriptions of the
actions on the undo and redo history.

6.1.3 Grouping basic actions

Every basic action has a code. However, the BeginAction and EndAction methods allow you to
define a group of actions and to assign a code to this group. This is useful if for instance, in your
application, the user can open a dialog box allowing changing several properties of a node (for
instance, its text, its shape and its filling color). You will certainly wish to allow the user to undo these 3
basic actions in one time.

Notice that you can also stop recording actions with the SkipUndo method and also clear the
Undo/Redo buffer with the Clear method.

Another interesting method is the AddToLastAction method. For instance, it allows grouping some
actions with the last recorded action or group of actions.

Notice that you have to call the EndAction to terminate the group of actions.

6.1.4 What can be undone and redone?

The rule is the following: every interactive action that changes a diagram can be undone or redone.
This includes actions like moving or resizing nodes or stretching links or changing a text.

However, making a selection does not change the document so you will not be able to undo a
selection. Changing properties of the AddFlow control (zoom, grid, default filling color, etc) does not
change the document too. Therefore, it will not be possible to undo these actions. And finally, file, print
and export operations are clearly not undoable.

WARNING: there is a difference with the previous versions (ActiveX version or the Windows Form
version). In the Silverlight version, only the interactive actions can be undone and redone. In the
previous versions, all actions changing a node or a link could be undone or redone. For instance, you
could undo a change of the XMoveable property of a node. In the Silverlight version, you will have to
write a custom task to be able to undo a change of the IsXMoveable property. This is explained in the
following paragraph.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

6.1.5 Undo/Redo customization

The undo/redo can be customized. For that, you have to create a custom Task class by deriving the
Task class and then you can insert it in the Undo/Redo buffer with the SubmitTask method. The file
PageCustomUndo.xaml.cs of the DemoFlow project shows how to do that: if you select a node, you
can change its text and its text color. And then, you can undo this action.

For doing that, we have created a class deriving from the Task class. This new class implements the
task consisting in changing both the node text and node text color (to make the things simple, you can
only select 3 colors: blue, red or green)

internal class NodePropertiesTask : Task
{
 private string oldText;
 private Brush oldForeground;
 private Node node;

 private NodePropertiesTask() { }

 internal NodePropertiesTask(Node node, string oldText, Brush oldForeground)
 {
 this.Code = (Lassalle.Silverlight.Flow.Action)1002;
 this.node = node;
 this.oldText = oldText;
 this.oldForeground = oldForeground;
 }

 public override void Redo()
 {
 this.Undo();
 }

 public override void Undo()
 {
 string oldText = this.node.Text;
 this.node.Text = this.oldText;
 this.oldText = oldText;

 Brush oldForeground = this.node.Foreground;
 this.node.Foreground = this.oldForeground;
 this.oldForeground = oldForeground;
 }
}

When the user click on the “Submit” button, the text and the text color are assigned to the selected node.The
code is the following:

private void CommandSubmit_Click(object sender, RoutedEventArgs e)
{
 if (this.addflow.SelectedItems.Count > 0)
 {
 ISelectable item = this.addflow.SelectedItems[0];
 if (item is Node)
 {
 Node node = item as Node;
 this.addflow.TaskManager.SubmitTask(

new NodePropertiesTask(node, node.Text, node.Foreground));
 node.Text = textBoxNodeText.Text;
 switch (comboBoxColor.SelectedIndex)
 {
 case 0:
 node.Foreground = new SolidColorBrush(Colors.Blue);
 break;
 case 1:
 node.Foreground = new SolidColorBrush(Colors.Red);
 break;

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

 case 2:
 node.Foreground = new SolidColorBrush(Colors.Green);
 break;
 }
 }
 }
}

As you can see, before the node receives new values for its Text and Foreground properties, you can
find the following code line:

this.addflow.TaskManager.SubmitTask(
new NodePropertiesTask(node, node.Text, node.Foreground));

This causes the new custom action to be registered in the list of tasks (undo/redo buffer).

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

6.1.6 Undo/Redo API

The following table gives the list of all properties and methods available to manage the undo/redo
feature.

AddToLastAction Add the following actions in the last group of actions

BeginAction Start a group of actions that can be undone in one time.

CanRedo Indicates if there is an action that can be redone.

CanUndo Indicates if there is an action that can be undone.

CanUndoRedo Determines whether undo/redo is allowed.

Clear Clears the undo/redo buffer.

EndAction Terminate a group of actions that can be undone in one time.

Redo Redo, if possible, the last action.

RedoCode Returns the code of the next redoable action.

RedoItem Returns the item involved in the next redoable action

SkipUndo Determines whether the following actions are recorded in the undo manager.

SubmitTask Submit a task (or action) that can be undone and redone.

RemoveLastTask Remove the last task that has been added in the undo list.

Undo Undo, if possible, the last action.

UndoCode Returns the code of the next undoable action.

UndoItem Returns the item involved in the next undoable action.

UndoLimit Sets and returns the number of undo commands that can be performed.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

6.2 Automatic Graph Layout
The primary purpose of an automatic graph layout feature is to offer a way to display graphs or flow
charts in a reasonable manner, following some aesthetic rules.

AddFlow does not provide directly any automatic graph layout feature. However, we propose
LayoutFlow which provides a set of 5 graph layout algorithms:

o Hierarchic layout
o Orthogonal layout
o Symmetric layout
o Series Parallel layout
o Tree layout

Each of these graph layout algorithms performs a layout on a graph. Performing a layout automatically
positions its nodes (also called vertices) and links (also called edges).

Typically, you can first create your nodes and links inside AddFlow, using the AddFlow API, giving
each node a random or a (0,0) position. Then you call the layout method of the graph layout control of
your choice. This method will position the nodes and the links in a reasonable manner in the AddFlow
control, following some aesthetic rules that depend on the chosen control (hierarchical, symmetric,
orthogonal...).

Remarks

• Currently, LayoutFlow is an AddFlow extension and you cannot use it without AddFlow. If you
just want to perform a layout on a graph without displaying them in an AddFlow control (for
instance because you have already a way to display the diagram), then you can use both a
hidden AddFlow control and LayoutFlow to do that. In such a case, AddFlow is just used to
store the logical structure of the graph and to retrieve via its API, the resulting positions of its
nodes and links.

• The DemoFlow sample installed with AddFlow shows how to use each graph layout
component.

• Reflexive links are not taken into account by layout algorithms. Reflexive links are just
translated to follow their origin (and also destination) node.

TIP: How to manage so that the layout algorithm applies only to a subset of the graph?

LayoutFlow provides an attached property: IsLogical. Only the nodes and links whose IsLogical
property is true are involved in each layout. This will allow you to make the layout algorithm to ignore
some nodes or links. By default, the IsLogical property is true.

6.2.1 Hierarchic layout

6.2.1.1 Purpose

This algorithm performs a hierarchical layout on a graph. The hierarchical layout arranges vertices in
horizontal layers. The order of the nodes on the layers is chosen so that the number of crossings is
kept as small as possible.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

- Hierarchic layout -

6.2.1.2 Code example

The following code is all you need to do to perform a hierarchical layout:

LayoutFlow.TreeLayout(this.addflow,
50, // Sets the distance between adjacent levels
50, // Sets the distance between adjacent nodes
Orientation.North,
new Size(20, 20), // Margin
0); // No limitation in the number of nodes in a level

This code supposes that you have a form containing an AddFlow control. You create the graph in the
AddFlow control, either interactively, either programmatically (in this case, giving each node a random
position or a (0,0) position). Then you apply the layout to this graph. And each bode will be placed at a
reasonable position.

6.2.1.3 Limitation

It works with any graph, connected or not.

6.2.1.4 Side Effect

After the layout execution:

• the line style of the links is Polyline

• the InConnectionMode property of the destination node of a link is set to Center.

• the OutConnectionMode property of the origin node of a link is set to Center.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

6.2.2 Orthogonal layout

6.2.2.1 Purpose

This algorithm performs an orthogonal layout on a graph. The layout is orthogonal since it produces an
orthogonal drawing where each link is drawn as a polygonal chain of alternating horizontal and vertical
segments. The algorithm used is the Biedl and Kant algorithm.

- Orthogonal layout -

6.2.2.2 Code example

The following code is all you need to do to perform an orthogonal layout:

LayoutFlow.OrthogonalGridLayout(this.addflow,
Orientation.North,
new Size(40, 40), // The horizontal and vertical grid size
nodeSizeRatio, // The node size (in percentage of the grid size)
new Size(20, 20)); // Margin

6.2.2.3 Limitation

It works with any graph, connected or not.

Note however that this algorithm is making generous use of space and the resulting layout is good
only with small graphs.

6.2.2.4 Side Effect

After the layout execution:

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

• the size of the nodes is changed. If the graph is a graph of maximum degree four, then each
node has the same size (determined by the GridSize property). If the degree of a node is
higher than four, then the height of the node is expanded.

• the line style of the links is Polyline.

• the InConnectionMode property of the destination node of a link is set to Anywhere.

• the OutConnectionMode property of the origin node of a link is set to Anywhere.

6.2.3 Symmetric layout

6.2.3.1 Purpose

This algorithm performs a symmetric layout on a graph. This layout produces a high degree of
symmetry and is particularly useful for undirected graphs, where the directions of the links are not
important. It is using a force-directed algorithm (the GEM method of Frick, Ludwig and Mehldau)
where a graph is viewed as a system of bodies with forces acting between the bodies.

- Symmetric layout -

6.2.3.2 Code example

The following code is all you need to do to perform a symmetric layout on a graph:

LayoutFlow.SymmetricLayout(this.addflow,
50, // Sets the distance between nodes
new Size(20, 20)); // Margin

6.2.3.3 Limitation

It works with any graph, connected or not. However, it is recommended to work only with small graphs
(less than 200 nodes) because it is using a force-directed method and force-directed methods are
using considerable computational resources.

6.2.3.4 Side Effect

After the layout execution:

• the line style of the links is Polyline and each link is composed of only one segment.

• the InConnectionMode property of the destination node of a link is set to Center.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

• the OutConnectionMode property of the origin node of a link is set to Center.

6.2.4 Series-parallel layout

6.2.4.1 Purpose

This algorithm performs a series-parallel layout on a graph. The SP layout applies only to a specific
subset of graphs: series-parallel digraph (more precisely, a set of series-parallel diagraphs). A series-
parallel digraph is defined recursively as follows.
A digraph consisting of two nodes, a source s and a sink t joined by a single link is a series-parallel
digraph.
If G1 and G2 are series-parallel digraphs, so are the digraphs constructed by each of the following
operations:
- the parallel composition: identify the source of G1 with the source of G2 and the sink of G1 with the
sink of G2.
- the series composition: identify the sink of G1 with the source of G2.

We use an algorithm (described in the book "Drawing Graphs" Michael Kaufmann - Dorothea Wagner)
that allows drawing series-parallel digraphs with as much symmetry as possible.

- SP layout: DrawingStyle = BusOrthogonalDrawing

- SP layout: DrawingStyle = StraightLine -

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

- SP layout: DrawingStyle = VisibilityDrawing -

6.2.4.2 Code example

The following code is all you need to do to perform a series-parallel layout on a graph:

LayoutFlow.SeriesParallelLayout(this.addflow,
DrawingStyle.BusOrthogonalDrawing,
Orientation.North,
 80, // Sets the distance between adjacent levels
 80, // Sets the distance between adjacent nodes
 new Size(30, 30), // The vertex size
 new Size(20, 20)); // Margins

If the graph is not a set of series-parallel digraph, an exception is generated.

6.2.4.3 Limitation

The layout applies only to a specific subset of graphs: series-parallel digraphs. One of the
requirements is that this diagram has only one starting node and only one ending node. However, it is
not actually a limitation. If, for instance, the number of ending nodes is greater than one, then a
workaround is to create a dummy node and create a link from each ending node to this dummy node,
then execute the layout and then delete the dummy node (which causes all the dummy links to be
deleted too).

6.2.4.4 Side Effect

After the layout execution:

• the line style of the links is Polyline. Moreover, if the DrawingStyle property is not
BusOrthogonalDrawing, then each link is composed of only one segment.

• the InConnectionMode property of the destination node of a link is set to Center.

• the OutConnectionMode property of the origin node of a link is set to Center.

6.2.5 Tree layout

6.2.5.1 Purpose

This algorithm performs a tree layout on a graph. This layout applies only to a specific subset of
graphs: rooted trees. In such a graph, no node may have more than one parent. It offers two drawing
styles (DrawingStyle property).

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

• If the DrawingStyle is Layered, then the drawing of the tree occupies as little space as
possible while satisfying certain aesthetics: nodes at the same level of the tree are placed on
the same line and a parent is centred over its children.

• If the DrawingStyle is Radial, then the root of the tree is placed at the origin and the layers are
concentric circles centred at the origin.

- Tree layout: DrawingStyle = Layered -

- Tree layout: DrawingStyle = Radial -

6.2.5.2 Code example

The following code is all you need to do to perform a tree layout on a graph:

LayoutFlow.TreeLayout(this.addflow,
50, // Layer distance
50, // Vertex distance
DrawingStyle.Layered,
Orientation.North,
new Size(20, 20)); // Margin

If the graph is not a forest of rooted trees, an exception is generated.

6.2.5.3 Limitation

The layout applies only to a specific subset of graphs: rooted trees. More precisely, the layout applies
to forests (sets of rooted trees).

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

6.2.5.4 Side Effect

After the layout execution:

• the line style of the links is Polyline

• the InConnectionMode property of the destination node of a link is set to Center.

• the OutConnectionMode property of the origin node of a link is set to Center.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

6.3 Data Customization
6.3.1 Framework's Tag property

Nodes and links provide a Tag which can be used to reference any object.

6.3.2 Attached properties

Attached properties is an extensibilty mechanism that can be used for storing any data with each node
or each link.

This feature is used in the AlgoFlow component whose source code is installed with AddFlow.

For instance, when you write a depth first search algorithm to visit all the nodes of a graph, you need a
boolean variable to mark a node as "visited". You can use an attached property for that. You can
declare it as follows:

 static readonly DependencyProperty IsVisitedProperty =
 DependencyProperty.RegisterAttached("IsVisited", typeof(bool),

typeof(Connect), new FrameworkPropertyMetadata(false));

public static bool GetIsVisited(DependencyObject item)
 {
 if (item == null)
 return false;
 return (bool)item.GetValue(IsVisitedProperty);

}

public static void SetIsVisited(DependencyObject item, bool value)
{

if (item != null)
item.SetValue(IsVisitedProperty, value);

}

Then you can use it to mark a node as visited:

Connect.SetIsVisited(node, true);

6.3.3 Derivation of Node and Link classes

Using inheritance, you can create a new class by adding to or otherwise modifying an existing class.
You can do that with the Node and Link classes and add custom data to each class.

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

6.4 Conversion guide from previous versions

6.4.1 Introduction

As you will see, some features are removed, some features are working differently and some features
are renamed.

6.4.1.1 Removed Features

• The link jumps (intersection display) feature will be implemented in the next version (with a
faster algorithm).

• Routing (should be added in a future version)

• In Place edition (should be added in a future version)

• Tooltips

6.4.1.2 Features that work differently

• Node shapes and link arrows are implemented using geometries.

• The Nodes and Items collections disappear because we prefer to use the LINQ technology, as
explained at the beginning of the paragraph 4.

• The ReadXml and WriteXml methods (used in the .NET version) disappear because AddFlow
does not offer any serialization feature: you have to use your own method to serialize a
diagram (the good news is that this is demonstrated in the PageSerialize.xaml.cs file)

6.4.1.3 Renamed features

The name of many boolean properties (except the properties that start with the «Can» prefix like
CanMoveNode) starts with the «Is» prefix. For instance, the Selected property is renamed IsSelected.
This is a trend in the Silverlight/WPF world.

Some events have been also renamed. For instance, AfterAddLink is renamed LinkCreated.

We have done so because it is the wording used in the Silverlight/WPF world.

6.4.2 Conversion guide from AddFlow ActiveX

6.4.2.1 AddFlow properties

Remark: many properties of the ActiveX control allows defining default behaviors or styles for nodes
and links. For instance, the FillColor allows defining the default filling color for nodes. In the Silverlight
version, you can define default properties for nodes and links using the NodeStyle and LinkStyle
properties (of type Style).

AddFlow ActiveX AddFlow for Silverlight
AdjustOrg addflow.NodeStyle
AdjustDst addflow.NodeStyle
Alignment addflow.NodeStyle
AllowArrowKeys None
ArrowDst addflow.LinkStyle
ArrowMid None

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

ArrowOrg addflow.LinkStyle
Autorouting None
AutoSize None
AutoScroll addflow.CanDragScroll
BackColor addflow.Background
BackMode None
BackPicture None
BorderStyle None
CanChangeDst addflow.CanChangeDst
CanChangeOrg addflow.CanChangeOrg
CanDrawNode addflow.CanDrawNode
CanDrawLink addflow.CanDrawLink
CanFireError None
CanMoveNode addflow.CanMoveNode
CanMultiLink addflow.CanMultiLink
CanReflexLink addflow.CanReflexLink
CanSizeNode addflow.CanSizeNode
CanStretchLink addflow.CanStretchLink
CanUndoRedo addflow.CanUndoRedo
CustomShapeIndex None
CustomShapes None (but see PageShapes;xaml)
DisplayHandles None (but see PageGenealogy.xaml)
DrawColor addflow.NodeStyleand addflow.LinkStyle
DrawStyle None
DrawWidth addflow.NodeStyleand addflow.LinkStyle
EditMode None
Ellipsis None
FillColor addflow.NodeStyle
Font addflow.NodeStyle and addflow.LinkStyle
TextColor addflow.NodeStyle and addflow.LinkStyle
GridColor None
GridStyle None
Hidden None
JumpSize None
LastUserAction None
LinkCreationMode None
LinkingHandleSize addflow.StretchThumStyle
LinkStyle addflow.LinkStyle
LogicalOnly None
MaxDegree None
MaxInDegree None
MaxOutDegree None
MouseIcon addflow.Cursor
MousePointer addflow.Cursor
MultiSel None
Nodes None (use LINQ)
NoPrefix None
OrientedText None
OrthogonalDynamic None
PicturePosition addflow.NodeStyle
Pictures None
PointedArea None
PointedLink None

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

PointedNode None
ProportionalBars None
ReadOnly addflow.IsEnabled
RedoCode addflow.TaskManager.RedoCode
RemovePointAngle addflow.RemovePointDistance
Repaint None
Rigid None
RoundedCorner None
RoundedCornerSize None
RouteGrain None
RouteMinDistance None
RouteStartMethod None
ScrollBars None
ScrollTrack None
ScrollWheel None
SelectAction addflow.MouseSelection
SelectedLink addflow.SelectedItem
SelectedNode addflow.SelectedItem
SelectionHandleSize addflow.ResizeHandleStyle
SelectMode None
SelLinks addflow.SelectedItems
SelNodes addflow.SelectedItems
Shadow None
ShadowColor None
Shape None
ShapeOrientation None
ShowGrid None
ShowJump None
ShowPropertyPages None
ShowToolTip None
SkipUndo addflow.TaskManager.SkipUndo
SnapToGrid Addflow.GridSnap
SizeArrowDst addflow.LinkStyle
SizeArrowMid None
SizeArrowOrg addflow.LinkStyle
StretchingPoint None
Tag addflow.Tag
Transparent None
UndoCode addflow.TaskManager.UndoCode
UndoSize addflow.TaskManager.UndoLimit
XExtent addflow.Extent
XGrid addflow.GridSize
XScroll None (see ScrollViewer property)
XShadowOffset None
XZoom addflow.Zoom
YExtent addflow.Extent
YGrid addflow.GridSize
YScroll None (see ScrollViewer property)
YShadowOffset None
YZoom addflow.Zoom

6.4.2.2 AddFlow methods

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

AddFlow ActiveX AddFlow for Silverlight
BeginAction addflow.TaskManager.BeginAction
CanPaste None
CanRedo addflow.TaskManager.CanRedo
CanUndo addflow.TaskManager.CanUndo
Copy None
DeleteSel addflow.Delete
DeleteMarked None
DisplayPropertyPage None
EndAction addflow.TaskManager.EndAction
ExportPicture None
GetLinkAtPoint None
GetNodeAtPoint None
GetVersion None
IsChanged addflow.IsChanged
IsSelChanged None
LoadFile None (see paragraph about Serialization)
LoadMemory None (see paragraph about Serialization)
Paste None
Redo addflow.TaskManager.Redo
Refresh None
SaveFile None (see paragraph about Serialization)
SaveImage None
SaveMemory None (see paragraph about Serialization)
SelectAll Addflow.SelectAll
SelectRectangle None
SetChangedFlag addflow.ResetChangedFlag
SetSelChangedFlag None
StartEdit None
Undo addflow.TaskManager.Undo
ZoomRectangle None

6.4.2.3 AddFlow events

AddFlow ActiveX AddFlow for Silverlight
AfterAddLink addflow.LinkCreated

AfterAddNode addflow.NodeCreated

AfterEdit Addflow.AfterEdit

AfterMove None
AfterResize None
AfterSelect None
AfterStretch None
BeforeAddLink None

BeforeAddNode None

BeforeChangeDst addflow.DstChanging

BeforeChangeOrg addflow.OrgChanging

BeforeEdit addflow.BeforeEdit

Error Addflow.Error
Scroll None

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

6.4.2.4 Node properties

AddFlow ActiveX AddFlow for Silverlight
Alignment node.TextHorizontalAlignment, node.TextVerticalAlignment
AutoSize None
BackMode None
DrawColor None (node.Content)
DrawStyle None (node.Content)
DrawWidth None (node.Content)
EditMode Node.IsInEditMode
FillColor None (node.Content)
Font node.FontFamily, node.FontSize, etc...
ForeColor node.Foreground
Height node.Size.Height
Hidden Node.Visibility
Index None
InLinks None
Key None
Left node.Location.X
Links node.Links
Logical None
Marked None
MaxDegree None
MaxInDegree None
MaxOutDegree None
Moveable None
OutLinks None
Picture Node.ImageUri
PictureIndex None
PicturePosition node.ImageHorizontalAlignment, node.ImageVerticalAlignment
Selectable node.IsSelectable
Selected node.IsSelected
Shadow None
Shape None (node.Content)
ShapeOrientation None
Sizable None
Tag Node.Tag
TagVariant None
Text node.Text
Tooltip None
Top node.Location.Y
Transparent None
UserData None
Width node.Size.Width
xMoveable node.IsXMoveable
xTextMargin None (node.Content)
xScrollable None
xSizeable node.IsXSizeable
yMoveable node.IsYMoveable
yTextMargin None (node.Content)
yScrollable None
ySizeable node.IsYSizeable
ZOrder Use Addflow methods SendToBack, BringToFront, SendBackward,

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

BringForward

ZOrderIndex Use Addflow methods SendToBack, BringToFront, SendBackward,
BringForward

6.4.2.5 Node methods

AddFlow ActiveX AddFlow for Silverlight
Clone None
EnsureVisible None
GetLinkedNode None
PropertyPage None

6.4.2.6 Link properties

AddFlow ActiveX AddFlow for Silverlight
AdjustDst link.Dst.InConnectionMode
AdjustOrg link.Org.OutConnectionMode
ArrowDst link.ArrowDstGeometry, link.ArrowDstAngle, link.ArrowDstFill, etc...
ArrowMid None
ArrowOrg link.ArrowOrgGeometry, link.ArrowOrgAngle, link.ArrowOrgFill, etc...
BackMode None
DrawColor link.Stroke
DrawStyle link.DashStyle
DrawWidth link.StrokeThickness
ExtraPoints link.Points
Dst link.Dst
Font link.FontFamily, link.FontSize
ForeColor link.Foreground
Hidden Link.Visibilty
InIndex None
Key None
LinkStyle link.LineStyle
Logical None
Marked None
Org link.Org
OrientedText None
OrthogonalDynamic None
OutIndex None
Rigid None
RoundedCorner link.RoundedCornerSize
Selectable link.IsSelectable
Selected link.IsSelected
ShowJump None
SizeArrowDst link.ArrowOrgWidth, link.ArrowOrgHeight
SizeArrowMid None
SizeArrowOrg link.ArrowGeometryOrg
Stretchable link.IsStretchable
Tag Link.Tag
TagVariant None (see previous paragraph about Data Customization)
Text link.Text
TextSegment None
Tooltip None
UserData None

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

ZOrder Use Addflow methods SendToBack, BringToFront, SendBackward,
BringForward

ZOrderIndex Use Addflow methods SendToBack, BringToFront, SendBackward,
BringForward

6.4.2.7 Link methods

AddFlow ActiveX AddFlow for Silverlight
Clone None
EnsureVisible None
PropertyPage None
Reverse None

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

6.4.3 Conversion guide from AddFlow for .NET

6.4.3.1 AddFlow properties

AddFlow for .NET AddFlow for Silverlight
BackColor addflow.Background
BorderStyle None
CanChangeDst addflow.CanChangeDst
CanChangeOrg addflow.CanChangeOrg
CanDrawNode addflow.CanDrawNode
CanDragScroll addflow.CanDragScroll
CanDrawLink addflow.CanDrawLink
CanFireError None
CanMoveNode addflow.CanMoveNode
CanMultiLink addflow.CanMultiLink
CanReflexLink addflow.CanReflexLink
CanSizeNode addflow.CanSizeNode
CanStretchLink addflow.CanStretchLink
CanUndoRedo addflow.CanUndoRedo
DisplayHandles None
DefLinkProp addflow.LinkStyle
DefNodeprop addflow.NodeStyle
Extent addflow.Extent
Grid.Color addflow.GridColor
Grid.Draw addflow.GridDraw
Grid.Style None
Grid.Size addflow.GridSize
Grid.Snap addflow.GridSnap
Items None (use LINQ)
JumpSize addflow.CanShowJump and link.JumpSize
LinkCreationMode None
LinkingHandleSize addflow.StretchHandleStyle
MouseAction addflow.MouseSelection
MultiSel None
Nodes None (use LINQ)
Images None
PointedArea None
PointedItem None
RedoCode addflow.TaskManager.RedoCode
RemovePointAngle addflow.RemovePointDistance
SelectedItem None
ScrollPosition None (see ScrollViewer property)
SelectionHandleSize addflow.ResizeHandleStyle
SelectedItems addflow.SelectedItems
ShowToolTips None
SkipUndo addflow.TaskManager.SkipUndo
StretchingPoint None
UndoCode addflow.TaskManager.UndoCode
UndoSize addflow.TaskManager.UndoLimit
Zoom addflow.Zoom

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

6.4.3.2 AddFlow methods

AddFlow for .NET AddFlow for Silverlight
AddLink addflow.AddLink
AddToLastUserAction addflow.TaskManager.AddToLastUserAction
BeginAction addflow.TaskManager.BeginAction
BeginUpdate None
CanRedo addflow.TaskManager.CanRedo
CanUndo addflow.TaskManager.CanUndo
CreateLink addflow.AddLink
DeleteSel addflow.Delete
EndAction addflow.TaskManager.EndAction
EndUpdate None
ExportMetafile None
GetDiagramSize None
GetItemAt None
GetItemsInRectangle None
IsChanged None
IsSelChanged None
Redo addflow.TaskManager.Redo
ReadXML None (see paragraph about Serialization)
Render None
ResetUndoRedo addflow.TaskManager.Clear
SelectAll addflow.SelectAll
SelectRectangle None
SetChangedFlag addflow.ResetChangedFlag
SetSelChangedFlag None
StartEdit Node.BeginEdit
SubmitTask addflow.TaskManager.SubmitTask
Undo addflow.TaskManager.Undo
WriteXML None (see paragraph about Serialization)
ZoomPoint None
ZoomRectangle None

6.4.3.3 AddFlow events

AddFlow for .NET AddFlow for Silverlight
AfterAddLink addflow.LinkCreated

AfterAddNode addflow.NodeCreated

AfterChangeDst addflow.DstChanged

AfterChangeOrg addflow.OrgChanged

AfterEdit Addflow.AfterEdit

AfterMove None
AfterRemoveLink addflow.NodeDeleted

AfterRemoveNode addflow.LinkDeleted

AfterResize None
AfterSelect None
AfterStretch None
BeforeAddLink None

BeforeAddNode None

BeforeChangeDst addflow.DstChanging

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

BeforeChangeOrg addflow.OrgChanging

BeforeEdit Addflow.BeforeEdit

BeforeReadXMLLink None (see paragraph about Serialization)

BeforeReadXMLNode None (see paragraph about Serialization)

BeforeRemoveLink None

BeforeRemoveNode None

BeforeWriteXMLLink None (see paragraph about Serialization)

BeforeWriteXMLNode None (see paragraph about Serialization)

CancelEdit Addflow.CancelEdit

DiagramOwnerDraw None

Error addflow.Error

ExtentChange None

LinkOwnerDraw None

NodeOwnerDraw None
SelectionChange addflow.SelectionChanged
ReadXMLLinkExtraData None (see paragraph about Serialization)
ReadXMLNodeExtraData None (see paragraph about Serialization)
WriteXMLLinkExtraData None (see paragraph about Serialization)
WriteXMLNodeExtraData None (see paragraph about Serialization)

6.4.3.4 Node properties

AddFlow for .NET AddFlow for Silverlight
Alignment node.TextHorizontalAlignment, node.TextVerticalAlignment
AutoSize None
BackMode None
DrawColor None (node.Content)
DrawStyle None (node.Content)
DrawWidth None (node.Content)
EditMode Node.IsInEditMode
FillColor None (node.Content)
Font node.FontFamily, node.FontSize, etc...
ForeColor node.Foreground
Height node.Size.Height
Hidden Node.Visibility
Index None
InLinks None
Left node.Location.X
Links node.Links
Logical None
OutLinks None
ImageIndex node.ImageUri
ImageLocation None
ImagePosition node.ImageHorizontalAlignment, node.ImageVerticalAlignment
Selectable node.IsSelectable
Selected node.IsSelected
Shadow None
Shape None (node.Content)
Tag Node.Tag
Text node.Text
TextMargin None

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

Tooltip None
Top node.Location.Y
Transparent None
Width node.Size.Width
xMoveable node.IsXMoveable
xSizeable node.IsXSizeable
yMoveable node.IsYMoveable
ySizeable node.IsYSizeable

ZOrder Use Addflow methods SendToBack, BringToFront, SendBackward,
BringForward

6.4.3.5 Node methods

AddFlow for .NET AddFlow for Silverlight
Clone None
BringIntoView None
GetLinkedNode None
Remove None

6.4.3.6 Link properties

AddFlow for .NET AddFlow for Silverlight
AdjustDst link.Dst.InConnectionMode
AdjustOrg link.Org.OutConnectionMode
ArrowDst link.ArrowDstGeometry, link.ArrowDstAngle, link.ArrowDstFill, etc...
ArrowMid None
ArrowOrg link.ArrowOrgGeometry, link.ArrowOrgAngle, link.ArrowOrgFill, etc...
BackMode None
DrawColor link.Stroke
DrawStyle None
DrawWidth link.StrokeThickness
Points link.Points
Dst link.Dst
Font link.FontFamily, link.FontSize etc...
TextColor link.Foreground
Hidden Link.Visibility
Line.Style link.LineStyle
Line.OrthogonalDynamic None
Line.RoundedCorner link.RoundedCornerSize
Logical None
Org link.Org
OrientedText None
Rigid None
Selectable link.IsSelectable
Selected link.IsSelected
Jump link.JumpSize
Stretchable link.IsStretchable
Tag Tag
Text link.Text
TextSegment None
Tooltip None

ZOrder Use Addflow methods SendToBack, BringToFront, SendBackward,
BringForward

Copyright (c) 2009-2014 Lassalle Technologies. All Rights Reserved

6.4.3.7 Link methods

AddFlow for .NET AddFlow for Silverlight
Clone None
EnsureVisible None
Reverse None

	1) Introduction
	2) Last Version enhancements
	2.1 Version 2.0
	2.1.1 A major change
	2.1.1.1 C # changes
	2.1.1.2 XAML changes

	2.1.2 New features
	2.1.2.1 Virtualization
	2.1.2.2 Bird view
	2.1.2.3 IsFixedSize
	2.1.2.4 Grid
	2.1.2.5 IsContextHandle

	2.2 Version 1.5
	2.3 Version 1.4
	2.3.1 Version 1.4.2
	2.3.2 Version 1.4.1
	2.3.3 Version 1.4.0

	2.4 Version 1.3
	2.5 Version 1.2
	2.6 Version 1.1

	3) Getting Started
	3.1 Installation
	3.2 AddFlow Assemblies
	3.3 Licensing
	3.3.1 Type of licenses
	3.3.2 How it works?

	4) Interactive creation of a diagram
	4.1 Overview
	4.2 Create a diagram interactively
	4.2.1 Draw a node
	4.2.2 Draw a link
	4.2.3 Stretch a link
	4.2.4 Draw a reflexive link
	4.2.5 Multiselection
	4.2.6 Node rotation
	4.2.7 Change properties of a node or a link
	4.2.8 Adjust the link origin and destination points
	4.2.9 Change the destination or the origin node of a link

	5) Programmatic creation of a diagram
	5.1 Overview
	5.2 Diagram creation
	5.2.1 Our first program
	5.2.2 Node Properties
	5.2.3 Link Properties
	5.2.4 Changing property values
	5.2.5 Default property values
	5.2.6 Stretching the links

	5.3 Displaying an image in a node
	5.4 Displaying link intersections
	5.5 Displaying link labels
	5.6 Selection of items
	5.6.1 Interactive selection
	5.6.2 Programmatic selection: ISelectable interface
	5.6.3 SelectedItems collection
	5.6.4 Selection event

	5.7 In-place edition for nodes
	5.8 Diagram navigation
	5.9 Zooming
	5.9.1 Programmatic zoom
	5.9.2 Interactive zoom
	5.9.3 Bird view

	5.10 Serialization
	5.11 Exporting a diagram in XAML
	5.12 Printing
	5.13 Customizing the user interface
	5.13.1 Customizing the handles
	5.13.2 Customizing the connection of links to a node
	5.13.2.1 Generalities
	5.13.2.2 Customizing pins
	5.13.2.3 Customizing the Connector

	6) Avanced topics
	6.1 Undo/Redo
	6.1.1 General features
	6.1.2 Updating the user interface
	6.1.3 Grouping basic actions
	6.1.4 What can be undone and redone?
	6.1.5 Undo/Redo customization
	6.1.6 Undo/Redo API

	6.2 Automatic Graph Layout
	6.2.1 Hierarchic layout
	6.2.1.1 Purpose
	6.2.1.2 Code example
	6.2.1.3 Limitation
	6.2.1.4 Side Effect

	6.2.2 Orthogonal layout
	6.2.2.1 Purpose
	6.2.2.2 Code example
	6.2.2.3 Limitation
	6.2.2.4 Side Effect

	6.2.3 Symmetric layout
	6.2.3.1 Purpose
	6.2.3.2 Code example
	6.2.3.3 Limitation
	6.2.3.4 Side Effect

	6.2.4 Series-parallel layout
	6.2.4.1 Purpose
	6.2.4.2 Code example
	6.2.4.3 Limitation
	6.2.4.4 Side Effect

	6.2.5 Tree layout
	6.2.5.1 Purpose
	6.2.5.2 Code example
	6.2.5.3 Limitation
	6.2.5.4 Side Effect

	6.3 Data Customization
	6.3.1 Framework's Tag property
	6.3.2 Attached properties
	6.3.3 Derivation of Node and Link classes

	6.4 Conversion guide from previous versions
	6.4.1 Introduction
	6.4.1.1 Removed Features
	6.4.1.2 Features that work differently
	6.4.1.3 Renamed features

	6.4.2 Conversion guide from AddFlow ActiveX
	6.4.2.1 AddFlow properties
	6.4.2.2 AddFlow methods
	6.4.2.3 AddFlow events
	6.4.2.4 Node properties
	6.4.2.5 Node methods
	6.4.2.6 Link properties
	6.4.2.7 Link methods

	6.4.3 Conversion guide from AddFlow for .NET
	6.4.3.1 AddFlow properties
	6.4.3.2 AddFlow methods
	6.4.3.3 AddFlow events
	6.4.3.4 Node properties
	6.4.3.5 Node methods
	6.4.3.6 Link properties
	6.4.3.7 Link methods

