ECO Services

Copyright (c) 2007-2009. All rights reserved.

ECO Services

Table of Contents

Overview

IEcoServiceProvider

Terminology

Standard ECO services

I[ExternalldService
IStateService
IDirtyListService

IlUndoService
StartTransaction, RollbackTransaction, and CommitTransaction
Undo blocks
Working with the undo service

Working with an undo block
IObjectFactoryService
IVariableFactoryService

Query services
IOcIPsService

OCL operations supported by 10clIPsService
+

Allinstances
Average
Difference
Div

Exists
ForAll

Implies

10
12
15

16

18

22
25
28
28
28
29
29
29
30
30
30
31
31
31
32
32
32
33
33
34

ECO Services

Includes 34
Intersection 34
ISEmpty 35
IsNull 35
Length 36
MaxValue 36
MinValue 36
Mod 37
Not 37
NotEmpty 38
OrderBy 38
OrderDescending 39
OrderGeneric 39
Reject 40
Select 40
Size 40
SqlLike 41
SqglLikeCaselnsensitive 41
Sum 42
ToLower (String) 42
ToUpper(String) 43
Union 43
IOclIService 44
OCL operations supported by IOclService 48
- 49
+ 50
AllinstancesAtTime 50
AllLoadedObjects 51
AllISubClasses 51
AllSuperClasses 51
AssociationEnds 52
AsString 52
At 52
AtTime 53
Attributes 53
Collection operations 53
Compare 61
Constraints 62
Create 63
Date and time operations 66
EmptyList 83

Existing 83

ECO Services

Externalld 84

If 84
Let 84
Mathematical operations 85
MaxLength 94
ModifiedSinceTimeStamp 94
NewGuid 95
ObjectFromExternalld 95
ObjectTimeStamp 95
OclAsType 96
OclIsKindOf 96
OcllsTypeOf 97
Parse 97
SafeCast 98
State machine operations 98
String operations 101
SuperTypes 124
TimeSpan operations 124
TaggedValue 124
ToByte 125
ToDouble 125
ToIntl6 125
Tolnt32 125
ToSByte 126
ToSingle 126
ToUInt16 126
ToUInt32 127
ToUInt64 127
TypeName 127
Xor 127
IActionLanguageService 128
Operations support by IActionLanguageService 128
Clear 128
Add 129
Create 129
Delete 129
Remove 129
RemoveAt 130
ITypeService 130
InstalledOperations 131
Creating a string operation 131

Creating a collection operation 132

ECO Services

IPersistenceService 133
Multi user concurrency 139
IExtentService 139
IVersionService 141
ICacheContentService 144
Subscriptions 144
ITypeSystemService 147
IModelElement 149
IPackage 149
ITaggedValue 151
IStructuralFeature 151

IClass 152
Registering custom services 159
Replacing standard ECO services 160
Replacing the ExternalldService 160

A validating IPersistenceService 160

Index a

1.1 IEcoServiceProvider ECO Services

Overview

The ECO framework has been designed in such a way that business logic and framework logic are kept as separate as
possible. For example, examining the generated source code for an ECO class will not reveal methods such as “Delete” or
“Refresh”, as you might expect to find. Keeping framework methods out of our business classes is an important step towards
making our source code more readable and manageable. Having a clear and almost invisible separation means that when
we inspect the source code of our business classes we only see methods relating to the logical functioning of the class in
question. This clearly makes our source code easier to understand, refactor, and debug.

This document will cover two aspects of ECO services. First it will cover the most commonly used services implemented by
the ECO framework itself, afterwards it will show how you may create and consume your own services and also show how
separating functionality into services can improve your code by separating logic and making it easier to write unit tests.

IEcoServiceProvider

The IEcoServiceProvider is an interface that is realized by the EcoSpace class and is the entry point for retrieving a
reference to a previously registered service. The EcoSpace class itself additionally provides a shortcut to the default
services, the following code snippet will check if there are currently any class instances that have modified persistent
members which need to be saved to the data storage.

i f (EcoSpace.DirtyList.HasDirtyCObjects())

This same code could be achieved using the IEcoServiceProvider.GetEcoService<T>() generic method. This example is
slightly longer than the previous example but illustrates how to retrieve a registered service without relying on the EcoSpace
to have a short-cut property, for example when you register your own custom service.

i f (EcoSpace. Get EcoServi ce<I Di rtyLi st Servi ce>().HasDirtyCbjects())

Note: The EcoSpace class itself does not implement IEcoServiceProvider. The interface is actually implemented by another
class which the EcoSpace owns an instance of.

Retrieving services within a business class

ECO business classes are designed so that they may be used in one or more applications, and therefore may be
instantiated by one or more different descendants of EcoSpace. When retrieving services from within a business class
method it is necessary to go via the IEcoServiceProvider interface.

if
(this.Asl Cbject().ServiceProvider. Get EcoServi ce<l Di rtyLi st Servi ce>(). HasDi rtyCbhj ects())

1.2 Terminology

ECO Services

1. AslObject() - This is the entry point to the "ECO world" from a business class. It accesses various support functionality
for an object instance within the EcoSpace (they are not implemented by the class itself). The item of interest is the
ServiceProvider property.

2. ServiceProvider - This provides access to the IEcoServiceProvider in order to obtain references to registered services.
This reference happens to also be the instantiated EcoSpace which owns the business class instance, however, it is
recommended that additional features be implemented via services in order to prevent a strong dependency upon a
specific EcoSpace type.

Terminology

As this document discusses both UML models and the source code produced there will be a number of terms which may be
used to describe what is essentially the same thing, the term used will depend upon the context. For example, when
describing Person.FirstName in the context of UML modeling the term "Attribute” would be used, when in the context of
source code the term "Property" will be used. The following table is a list of terms and their meanings

UML model Source
code

Attribute Property

Association | Property
end

Single role

Multi role Property

Element Object
instance

Property

Description

The term "Attribute” will never be used to refer to the System.Attribute class. System.Attribute will
be referred to by its fully qualified name if necessary.

A reference from one modeled class to another is always done via associations and not attributes.
Each association has two ends in UML, and either two or one in source code depending on whether
or not the association is navigable in both directions.

A single role is an association end which links to at most one instance.

A multi role is an association end which links to a list of instances, allowing it to hold zero to many
references.

This term is used to describe either an instance of a modeled object or one of its property values.

2.1 |IExternalldService ECO Services

Standard ECO services

The following services are created and registered automatically whenever you create a new instance of an EcoSpace. These
services are an interface to the features that ECO implements as standard such as persistence, in-memory transactions, and
S0 on.

A number of the ECO services have overloaded methods where parameters of the type IObject are replaced with a
parameter of type IObjectProvider. IObject is what is known as an "object locator”, the way in which ECO references
instances of ECO business classes internally. I0bject is obtained from an instance of a business class like so

| Obj ect obj ect Locator = personl. Asl Cbj ect () ;

whereas the actual object instance is retrieved from the object locator like so

Person p = obj ectLocat or. Get Val ue<Per son>() ;

The business class itself implements 10bjectProvider, so it then becomes possible to write code in either of the two following
ways:

[/ Passi ng | Obj ect
SomeEcoSer vi ce. DoSonet hi ng(per sonl. Asl Qoj ect ());

/| Passing the business class instance itself (IObjectProvider)
SoneEcoSer vi ce. DoSonet hi ng(per sonl);

When there are overloads for both parameter types | shall illustrate the IObjectProvider approach only, just to save from
having to type .AslObject() needlessly.

Note that when ECO services need to read or modify property values of object instances it does not require the use of
reflection. How the values are manipulated depends upon whether or not the model specifies that the property has user code
associated with it, additional code which needs to be executed in addition to manipulating the ECO cached values.

Has Action taken
user
code

True ECO will direct all property access via the object instance itself. To identify which property the service requires
some auto-generated code is created in order to get/set property values via an integer index.

False | ECO will access the cache directly, bypassing the object instance completely.

2.1 |IExternalldService ECO Services

|[ExternalldService

Every business class instance within an EcoSpace is uniquely identifiable. Whether this is by an ECO generated object id, or
a single/multi part primary key on a database. ECO requires a unique identifier so that it can perform persistence operations
on the correct object when updating the database. Using the IExternalldService it is possible to either retrieve a string
representation of an object instance's unique identifier, or to provide such a string representation and have ECO provide an
object instance, if the object has not already been cached it will first be retrieved from the data storage.

The Qbj ect For1d() and | dFor Obj ect () methods of the IExternalldService may be used to hold weak references to
objects, or to pass business class instance references between different EcoSpace instances. This is especially prevalent in
ECO powered web service / web application projects where you may wish to use a pool of EcoSpaces and therefore might
not always working with the same EcoSpace instance across different page requests. If there is more than one EcoSpace in
your web application's/service's EcoSpace pool (which is recommended) then the flow in Figure 05 illustrates a likely
scenario.

/" EcoSpace pool

NiewPerson.aspx

/ EcoSpace A \A// ™
//_'-'_._._-_-_‘-‘-‘-“_‘—\-_‘
L } A
[EdilPerson.aspx
__/""_'_'_._‘_‘_‘_‘_‘“-\.
EcoSpace B ™

%)4

:

A user views an object in ViewPerson.aspx and then decides to edit that object, at which point they are redirected to
EditPerson.aspx. Storing the Person object in a session is an incorrect approach because the Person instance belongs to
EcoSpace A, whereas EditPerson.aspx was allocated EcoSpace B from the pool. Instead of holding ECO business class
instances between page requests the web application/service should instead hold the "ID" of the object, which is retrieved
using | Ext er nal 1 dSer vi ce. | dFor Cbj ect () . The receiving page should retrieve an object instance from its allocated
EcoSpace using the mirror method | Ext er nal | dSer vi ce. Obj ect For 1 d().

~A
. J

Although this service is used primarily for web applications/web services, there are many more possible applications. Any
time the identification of an ECO business class instance needs to be stored in some way this service is the answer.
Additionally when developing an ECO WinForms application you may wish to use multiple instances of your application's
EcoSpace so that cached data is released as soon as an individual form is closed, the ExternalldService is an excellent way
of passing object identities between these forms.

/1 Sending the ID of an object in Fornl
string personl D = EcoSpace. Ext ernal | ds. | dFor Cbj ect (per son) ;
SonmeQt her For m Edi t Per son(per sonl D) ;

2.2 IStateService ECO Services

/I Retrieving the object fromthe ID
Person p = EcoSpace. Ext ernal | ds. Obj ect For | d(per sonl D) . Get Val ue<Per son>() ;

Object ID structure

The structure of these ID's is always in the format { O assl| D} ! { | nst ancel D}, an ID identifying the class, followed by an
exclamation mark, followed by an ID identifying the instance itself. There are two points at which the ID for an object may
change

1. A new instance is persisted
» Before - newla791bdee-7cae-4cd6-882d-c983274a65ea!0
o After-0!1
2. The model is changed and the application rerun
« Before - 0!1
o After- 211

Note: The instance ID is an integer by default, but may be another data type such as a Guid depending on how you
configure your persistence.

In the first case the ID is constructed by representing the class ID as the string $news$ followed by a Guid, and the instance
ID as zero. The purpose of this is to prevent the ID of an new instance from being passed to another EcoSpace instance
before it is persisted. When passing object references using external ID's the target EcoSpace is able to locate the object
either in its cache or by fetching it from the data storage. If the ID being passed is a reference to a new instance then the
target EcoSpace instance has no way of locating the object. Once the new instance has been persisted its ID will change to
the format in the second example.

In the second example the ID is constructed by representing the class ID as an integer and the instance ID as the key the
instance was assigned when it was first persisted to the data storage. The class ID is determined by locating the class in the
model's list of classes. The list is sorted so that it remains in a predictable order, however, when the model is changed this
can lead to classes appearing in the list or being removed from the list and can therefore cause the class index to change.

External ID's were designed only to be used for short-term references in order to pass instance references between
EcoSpace instances. Therefore it is not recommended that these ID's be held onto long term, for example

« Storing the ID in a config file.
« Storing the ID in a persistent property (associations are better suited for this purpose anyway).
» Using the external ID as a parameter in a URL which might later be archived by search engines.

It is possible to replace the ExternalldService if you wish to ensure that external ID's do not change when the model changes
if you require it. This is a technique that will be demonstrated later in this document. See Replacing the ExternalldService (&
see page 160) for details.

2.2 IStateService ECO Services

|StateService

Whenever a new instance of a business class is created or an existing instance is modified ECO keeps track of these kinds
of actions so that it later knows how to update the data storage. The IStateService provides a way of accessing these states.

bool IsNew(IObjectProvider obj)

If the ECO business class instance passed has been created and not yet persisted to the data storage this will return true.
Once the object has been persisted this method will always return false, even if the object is later modified and requires its
changes to be persisted.

bool IsDirty(IProperty property)

If IsNew() returns true for the object instance that owns the property then this method will always return true. If the member
in question has not been modeled as persistent (it is transient or derived) then this method will return false.

If the member has been modeled as persistent and has a change which needs updating to the data storage this method will
return true. In the case of simple members such as Int32 and String the result will depend simply on whether or not a change
has been made. When the member is an association it is not considered dirty (modified) if it is not embedded. Here are
some scenarios which illustrate this last point:

1. Neither end is marked as embedded in the model. An additional table will be created in the database with the name of the
association "DriverCurrentVehicle".

0.1 DriverCurrent'/ehicle 0.1
Driver - Vehicle
a CurrertDriver Currenteticle |3

Driver driver = new Driver (EcoSpace);
Vehi cl e vehicl e = new Vehi cl e(EcoSpace) ;

/1 Get the property references for use with ECO services
| Property driverCurrentVehicleProp = driver. Asl Obj ect().Properties["CurrentVehicle"];
| Property vehicleCurrentDriverProp = vehicle.Asl Object().Properties["CurrentDriver"];

//Both return true because the object itself is new
Debug. Wit elLi ne(EcoSpace. States. I sDirty(driverCurrent Vehicl eProp));
Debug. Wi telLi ne(EcoSpace. States. |sDirty(vehicleCurrentDriverProp));

EcoSpace. Updat eDat abase() ;
driver. Current Vehicle = vehicle;

//Both return fal se because neither end is enbedded
Debug. Wit elLi ne(EcoSpace. States. |sDirty(driverCurrent Vehicl eProp));
Debug. Wi telLi ne(EcoSpace. States. |sDirty(vehicleCurrentDriverProp));

2. The Driver end of the association is marked as embedded. The Vehicle table in the database will have an additional
column named "CurrentDriver" which holds the ID of the driver instance.

2.2 IStateService ECO Services

0.1 DriverCurrent'/ehicle 0.1
Driver - Vehicle
a CurrertDriver Currentvehicle |3

Driver driver = new Driver (EcoSpace);
Vehi cl e vehicl e = new Vehi cl e(EcoSpace) ;

/1 Get the property references for use with ECO services
| Property driverCurrentVehicleProp = driver.Asl Object().Properties["CurrentVehicle"];
| Property vehicleCurrentDriverProp = vehicle.Asl Qbject().Properties["CurrentDriver"];

//Both return true because the object itself is new
Debug. WitelLi ne(EcoSpace. States. IsDirty(driverCurrent Vehicl eProp));
Debug. Wit elLi ne(EcoSpace. St ates. | sDirty(vehicl eCurrentDriverProp));

EcoSpace. Updat eDat abase() ;
driver. Current Vehi cl e = vehi cl g;

// Returns fal se because it is not enbedded

Debug. Wi telLi ne(EcoSpace. States. |sDirty(driverCurrent Vehicl eProp));

// Returns true because the ID of the Driver is enbedded into this class's table
Debug. Wi telLi ne(EcoSpace. States. |sDirty(vehicleCurrentDriverProp));

3. The Order end of the association is marked as embedded. The OrderLine table in the database will hold the column
referencing which order it belongs to.

0.1 Orderlines o.*
Order - OrderLine
a Crder Lines (3

O der order = new O der(EcoSpace);
O der Li ne orderLine = new OrderLine(EcoSpace) ;

/1 Get the property references for use with ECO services
| Property orderLi nesProp = order. Asl Obj ect().Properties["Lines"];
| Property orderLineO derProp = orderlLine.Asl Cbject().Properties["Oder"];

//Both return true because the object itself is new
Debug. Wit elLi ne(EcoSpace. St ates. | sDirty(orderLinesProp));
Debug. Wi telLi ne(EcoSpace. St ates. | sDirty(orderLi neOrderProp));

EcoSpace. Updat eDat abase() ;
order. Li nes. Add(or der Li ne) ;

/I Returns fal se because it is not enbedded

Debug. Wit elLi ne(EcoSpace. St ates. | sDirty(orderLinesProp));

/I Returns true because the ID of the Order is enbedded into this class's table
Debug. Wit elLi ne(EcoSpace. St ates. | sDirty(orderLi neOrderProp));

4. Neither end of this association may be embedded because both ends are multiple (not all databases support multi-values
in a single column). An additional table is created in the database with the name of the association (FoodLikedBY) in order

to maintain the associations.
0.+ FoodLikedBy o.*
g """ [iedsy Foodlied |8

Person wal | is = new Person(EcoSpace);
Food cheese = new Food(EcoSpace);

/1 Get the property references for use with ECO services

2.3 IDirtyListService ECO Services

| Property personFoodLi kedProp = wal lis. Asl Cbj ect (). Properties["FoodLi ked"];
| Property foodLi kedByProp = cheese. Asl Obj ect (). Properties["LikedBy"];

//Both return true because the object itself is new
Debug. Wi telLi ne(EcoSpace. St at es. | sDi rty(per sonFoodLi kedPr op)) ;
Debug. Wi telLi ne(EcoSpace. St ates. | sDirty(foodLi kedByProp));

EcoSpace. Updat eDat abase() ;
wal | i s. FoodLi ked. Add(cheese) ;

// Returns fal se because neither end nay be enbedded
Debug. Wit eLi ne(EcoSpace. States. | sDirty(personFoodLi kedProp)) ;
Debug. Wi telLi ne(EcoSpace. St ates. | sDirty(foodLi kedByProp));

bool IsDirty(IObjectProvider obj)

If any of the properties for the passed object instance are considered dirty or the object instance is new or marked as deleted
then this method will return true, otherwise there are no changes to persist to the data storage and this method will return
false.

Per son person = new Person(EcoSpace);
[/WIIl return true because the object is new
Debug. Wi teLi ne(EcoSpace. States. |sDirty(person));

EcoSpace. Updat eDat abase() ;
[/WI1 return fal se, the object remains unaltered since it was persisted
Debug. Wit eLi ne(EcoSpace. States. |sDirty(person));

person. Asl Obj ect (). Del ete();
//WIIl return true, the object has not been renpbved fromthe data storage since del eted
Debug. Wit elLi ne(EcoSpace. St ates. | sDirty(person));

EcoSpace. Updat eDat abase() ;
[IWI1l return false, the object cannot be dirty now that it no | onger exists
Debug. Wit elLi ne(EcoSpace. St ates. | sDirty(person));

IDirtyListService

Whenever a persistent object is created, modified, or deleted, it is considered to be"Dirty"; this means that it has in some
way been altered. This Dirty state is an indication that the data storage needs to be updated in order to reflect the changes
made to the object instance in question.

Using the IDirtyListService interface the dirty list service enables the developer to obtain a list of objects that have been
modified. Note that the "Dirty" state is reserved for persistent objects only, object instances of a class marked as Transient in
the model are never saved to the persistence storage and therefore cannot have such a state. Additionally, if the EcoSpace
has no persistence defined then all classes are considered to be Transient regardless of how they have been defined in the
model, in such a case the IDirtyListService will never hold any object references.

IObjectList AllDirtyObjects()

This method returns an IObjectList containing an 10bject for each dirty object held within the EcoSpace. This list is
immutable, meaning that if you try to modify it using Remove() for example a System.InvalidOperationException will be
thrown. The size of this list will alter as more objects become dirty, the data storage is updated marking some objects as
non-dirty, or as a result of objects becoming dirty/non-dirty due to in-memory transactions being rolled back or reapplied -

2.4 lUndoService ECO Services StartTransaction, RollbackTransaction,

see lUndoService (@ see page 9).

bool HasDirtyObjects()

If ALl Di rtyCbj ects().Count is greater than zero then this method will return true, otherwise it will return false indicating
that there are no dirty objects to persist to the data storage.

void Subscribe(ISubscriber subscribe)

Passing an instance of ISubscriber to this method will cause the | Subscri ber. Recei ve method to be executed whenever
the number of objects held in the Al | Di rt yCbj ect s() list alters. This is a useful global hook to perform tasks on objects
that have been modified, for example to provide on-screen validation.

lUndoService

Using the IUndoService the programmer is able to perform in-memory transactions on objects within the EcoSpace. These
transactions may be committed, reversed, or reapplied at any point ensuring that if an operation fails the state of all affected
objects is returned to a specific state.

To use a classic example; if a funds transfer is initiated from bank account "A" to bank account "B" two operations must take
place. The balance of account "A" must decrease by the transaction value and the balance of account "B" must increase by
the transaction value. This kind of atomic operation has been available in all good databases for quite some time now, but
the ECO undo service allows the same kind of atomic operation to be performed in-memory as well, eliminating the need to
reload object contents from the data storage if you wish to abandon a set of changes.

The undo service provides two main pieces of functionality. Firstly it provides named undo-blocks; changes within the undo
block may be reversed or reapplied repeatedly. Secondly it provides in-memory transaction support, which internally uses
the undo-block functionality to provide nested St art Tr ansact i on, Rol | backTr ansacti on, and Conmi t Tr ansact i on
methods.

The undo blocks are also affected by the persistence service (& see page 133) whenever an update is performed.

StartTransaction, RollbackTransaction, and
CommitTransaction

This first example will demonstrate how to perform an in-memory transaction on a number of objects within the EcoSpace.
The example will transfer a given amount of money from one bank account to another, it will adjust the CurrentBalance of
each account and additionally create a transaction object to record the transfer. If an exception of some kind occurs within
the transfer method then all changes will be rolled back, otherwise the in-memory transaction will be committed.

2.4 lUndoService ECO Services Undo blocks

9 BankAccount |AccountDebited TranzfersOut 9 FundsTransfer
*
attributes ! 0 attributes
+ Balance: decimal + Amount: decimal
operations
+ TransferFuncsi..)
AccountCredited Tranzfersin
1 0.+

public class FundsTransfer

{

public static void TransferFunds(| EcoServi ceProvi der serviceProvider, BankAccount
debi t Account, BankAccount creditAccount, deci nal anpunt)
{
[/ Perform paraneter validation here
| UndoSer vi ce undoServi ce = servi ceProvi der. Get EcoSer vi ce<l UndoSer vi ce>() ;
undoSer vi ce. Start Transacti on();
try
{ _ .
FundsTransfer transfer = new FundsTransfer(serviceProvider);
transf er. Account Debi t ed = debi t Account ;
transfer. Account Credited = creditAccount;
transfer. Anbunt = anount;
debi t Account . Bal ance -= anpunt;
credi t Account . Bal ance += anount;

//Performoverdraft validation etc here
catch

undoSer vi ce. Rol | backTr ansacti on() ;
t hr ow;

undoSer vi ce. Conmi t Transacti on() ;

1. Areference to the IlUndoService is obtained.
2. An in-memory transaction is started.

3.
4

A new FundsTransfer object is created to record the transfer.

. The FundsTransfer object is associated with the debit and credit accounts.
5.

The balances of both the credit and debit accounts are modified.

If all goes as expected the EcoSpace will have a new FundsTransfer object to persist to the data storage along with modified
account balances. If any exception is thrown during the operation the in-memory transaction is rolled back restoring the
EcoSpace to its former state, the FundsTransfer object will no longer exist and the two accounts in question will remain
unaltered.

Undo blocks

Undo blocks provide a mechanism similar to transactions, in fact the transaction mechanism internally uses undo blocks.
Whenever a modification is made to an ECO element (object / property) ECO will check if there is an active undo block. If an
undo block is found, and the element in question is not already in the active undo block, ECO will record the elements
original value in the undo block. In the case of a property the original value will be recorded, in the case of an IObject its
state will be recorded (new, existing, deleted).

10

2.4 lUndoService ECO Services Undo blocks

UndoList

#1 — Create a new person

/ Person \
Firsthame = Peter
LastMame = Marris

#2 — Create a new undo block named “Test”

/

#3 — Change FirstName to “John"
(This stores the onginal value in the undo block)

/ Person \
FirstiName = John
LastName = Morris

#4 - Change LastMame to “Smith”™
(Onginal value is also stored in the undo block)

/ Person \ Test \
K Firsthame = John) \\\ Firsthame was originally Peter)

LastName = Smith k LastiName was criginally Morris

Holding a collection of elements plus their original states allows the changes recorded in an undo block to be reversed,
restoring the EcoSpace to the exact state it was in at the point the undo block was created. The undo service may hold
multiple undo blocks, only the topmost undo block is considered to be active therefore changes made within the EcoSpace
will always be applied only to the topmost undo block, new undo blocks are always placed at the top of the undo list. This
makes it possible to have multiple separate transactions being performed within the EcoSpace at the same time, each with
the ability to be independently reversed or reapplied.

One example use of the undo service is when working with multiple forms against a single EcoSpace instance. Each form
could own its own undo block and move it to the top of the list (thus making it active) whenever that form is focused. This
would make it possible to track changes made by an individual form and then undo / redo those changes or update the data
storage with those changes only. Note that it is recommended to have one EcoSpace instance per form whenever possible.

Creating an undo block

Undo blocks in ECO are identified using a unique block name. Although it is possible to hold a reference to an undo block
using an IUndoBlock it is only advisable to hold such a reference for a short period of time; only as a local variable for
example. The reasoning is quite simple, undo blocks may be removed from the undo service completely (effectively
"committed"), accessing the undo block by name will correctly return null whereas holding onto an IUndoBlock reference
would result in your application performing operations on an undo block that is no longer valid.

To ensure that block names are unique, the undo service provides the Get Uni queBl ockNane method. Executing this
method will provide your application with a block name that is guaranteed to be unique.

int i = 1;
while (i++ <= 3)
{
string uni queName = EcoSpace. Undo. Get Uni queBl ockNanme(" Test ") ;

EcoSpace. Undo. St art UndoBl ock(uni queNane) ;
MessageBox. Show(uni queNane) ;

}

11

2.4 lUndoService

ECO Services Working with the undo service

In this example the application creates three undo blocks. Rather than hard-coding the block name as "Test" the application
asks the undo service to return a unique name using "Test" only as a suggested name. The output of the program as each
iteration of the loop is executed is as follows; Test, Testl, Test2.

Note that if the application makes a modification to an object in the EcoSpace and there are no undo blocks present ECO
will automatically create an undo block named "Unnamed", trying to create an undo block with a name that is already in use
will result in a System.InvalidOperationException being thrown.

Working with the undo service

Undo operations

Using the UndoBl ock method it is possible to reverse any changes that have been made since the undo block was
activated; i.e. when it became the undo block at the top of the UndoList. Calling UndoBI ock will perform the following actions

1. Move the block into the RedoList

2. Store the new values instead of the original values, so that the changes may be reapplied later if necessary

3. Restore the original values. This includes modified members, and also created / deleted object instances

7~ UndoList

/ Undo block E

.

.
S
J

/ Undo block C

N

RedoList
1: Move block to Redolist /- Undo block D \
LastName was modified to Smitu
2: Store new values in case
of a Redo instruction / Undo block B \

3: Restore original values K j
/~ UndoblockA ™\

-

—)

/ Per‘son \

FirstMame = John
LastMarme = Morris

Person personl = new Person(EcoSpace);

personl. First Name = "Peter";
personl. Last Nane = "Morris";

EcoSpace. Undo. St art UndoBl ock("D") ;
/ /' Updat e undo bl ock D with Last Name=Morri s
personl. Last Nane = "Snmith";

// Restore LastNane to Morris

// Record nodified Last Nane as Smith
// Move bl ock to RedoLi st

EcoSpace. Undo. UndoBl ock("D");

12

2.4 lUndoService ECO Services Working with the undo service

You may also use the UndoLat est method to undo the block at the top of the UndolList.

Redo operations

Once a block is in the RedolList it is possible to reapply its changes using the RedoBl ock method. Whereas an undo
operation reinstates the original state a redo operation will reinstate the modifications made. Calling RedoBIl ock will perform

the following actions

1. Move the block back to the UndoList
2. Store the very original values in case UndoBl ock is executed again

3. Restore the modified values

'd UndoList ™ RedoList

\\ 1: Move block to Undolist

Undo block D

2: Store original values in
case of an Undo instruction

LastName was originally Morriz

R

3: Restore modified values

Undo block B

Undo block E \\

Undo block C \

/
N
/ Undo black A
"

(T T

-
J
D
J)

// Person \

FirstMame = John
LastMame = Smith
#regi on Code from undo exanpl e

Person personl = new Person(EcoSpace);
personl. First Name = "Peter";
personl. Last Nane = "Morris";

EcoSpace. Undo. St art UndoBl ock("D") ;
/ /' Updat e undo bl ock D with Last Name=Morri s
personl. Last Nane = "Snmith";

// Restore LastNane to Morris

// Record nodified Last Nane as Snmith
// Move bl ock to RedoLi st

EcoSpace. Undo. UndoBl ock("D");

#endr egi on

// Restore nodified val ue Last Name=Snith
// Record original value LastName=Morris
/I Move bl ock back to UndoLi st
EcoSpace. Undo. RedoBl ock("D") ;

You may also use the RedoLat est method to redo the block at the top of the RedoList.

13

2.4 lUndoService ECO Services Working with the undo service

Moving blocks

Blocks in the UndoList/RedoList may be rearranged. The purpose of this is to bring a different undo block to the top of the list
in order to make it active. As mentioned earlier this is useful for example if you wish to track changes made by the user on a
form by form basis so that they may be undone/redone independently of each other. Both the UndoList and RedoList
implement a MoveBl ock(int currentlndex, int new ndex) method.

There is a restriction which must be adhered to when moving blocks. When multiple blocks A,B,C contain information about
the same element it makes sense logically to undo changes only in the order C,B,A and to redo changes only in the order
A,B,C. To enforce this rule ECO will always attempt to move the specified block to the top of its list before either undoing or
redoing its contents. If any blocks above the block being moved contain any common elements the process is aborted with a
System.InvalidOperationException. The following example illustrates this point

EcoSpace. Undo. St art UndoBl ock("A");
Person personl = new Person(EcoSpace);
personl. First Name = "Peter";

// Create a new block at the top of the |ist
EcoSpace. Undo. St art UndoBl ock("B") ;
personl. Fi rst Nane = "John";

[/ Uncreate personl - this cannot be done due to undo bl ock B
EcoSpace. Undo. UndoBl ock("A");

/I Revert personl.FirstNanme to "Peter"
EcoSpace. Undo. UndoBIl ock("B");

In this example it is not possible to undo the changes in block A first because block B is above it and contains a common
element. If this were permitted it would result in block B remaining in the list holding undo information about an object that no
longer exists. To determine whether or not it is possible to move a block to a specific location use the CanMoveBl ock(i nt
currentl ndex, int new ndex) method of either the UndoList or RedoList. If your intention is to undo or redo a block
rather than to simply move it then you can use either CanRedoBl ock(string bl ockNane) or CanUndoBl ock(string
bl ockNan®) .

To move a block to the top of the UndoList/RedoList you may use the lists' MoveToTop(stri ng bl ockNanme) methods.

Merging blocks

Both the UndoList and RedoList contain a MergeBlocks(string destinationBl ockNane, string
sour ceBl ockNane) method. When two blocks are merged the information stored in the source block is added to the
destination block and then the source block is removed from the list. If both blocks contain information one of these pieces of
information must take priority. The following table describes how this priority is determined

List used Action taken
UndolList The oldest information takes priority, the change that occurred latest is discarded.
RedolList The newest information takes priority, the change that occurred earliest is discarded.

As with moving blocks there is a similar restriction. When two blocks are merged ECO will check the contents of each block
between them, if any of those blocks contain an element common to either the source or destination block then the merge
will not be permitted. The method CanMer geBl ock(i nt currentlndex, int new ndex) will indicate whether the
merging of two undo blocks is possible.

14

2.4 lUndoService ECO Services Working with an undo block

Removing blocks

Using UndoBl ock and RedoBl ock removes the undo block from its owning list but also inserts it into the opposite list.
There are two ways in which an undo block is removed from a block list permanently, without being moved to another list.

1. The data storage is updated - Any block containing changes for any of the objects updated to the data storage will be
removed automatically.

2. Manual removal - Executing a list's RenoveBl ock(string bl ockNanme) method will remove the block with the
specified name, executing Cl ear Al | UndoBI ocks will clear both the UndoList and the RedolList.

Once a block has been removed it cannot be manually re-added to the undo mechanism.

Working with an undo block

Undo blocks expose a limited number of features via the IlUndoBlock interface.

Retrieving an undo block
An lUndoBlock reference may be obtained from either the UndoList or the RedoList either by name or index.

private void buttonl _Cick(object sender, EventArgs e)

{
EcoSpace. Undo. St art UndoBl ock("1 n UndoList");

//Create a block and nove it to the RedolLi st
EcoSpace. Undo. St art UndoBl ock("1 n RedoList");
EcoSpace. Undo. UndoLat est () ;

/I Show by nane
ShowBl ockName(EcoSpace. Undo. UndoLi st[" I n UndoList"]);
ShowBl ockNane(EcoSpace. Undo. RedoLi st["In RedoList"]);

[/ Show by i ndex
ShowBl ockNane(EcoSpace. Undo. UndoLi st 0

)
ShowBl ockName(EcoSpace. Undo. RedoLi st[0]);

—_—

[/ Non- exi stent by nane
ShowBl ockNane(EcoSpace. Undo. RedoLi st["This does not exist"]);

[/ Non- exi stent by index
ShowBl ockNanme(EcoSpace. Undo. RedoLi st[99]) ;
}

private void ShowBl ockNane(| UndoBl ock undoBl ock)

i f (undoBl ock == null)
MessageBox. Show(" <nul | >");
el se
MessageBox. Show(undoBl ock. Nane) ;

Retrieving an undo block using an invalid name or index will return null.

15

2.5 IObjectFactoryService ECO Services

Members of lUndoBlock
* Name - The name give to the undo block.
» ContainsChanges - Returns false if the undo block is empty, otherwise returns true.
» GetChangedObjects() - Returns an IObjectList. Each IObject is the identity of the object instance that has been modified.

» Subscribe(ISubscriber subscriber) - The subscriber is notified whenever the contents of the undo block change, when the
undo block moves between the RedoList and UndoList, or the when undo block is removed from the undo service
altogether.

|ObjectFactoryService

This service provides an alternative way of creating instances of modeled classes. Ordinarily a new instance of a modeled
class is created in an application like so

/| EcoSpace i npl enents | EcoServiceProvider, so we can pass the EcoSpace
O der Li ne newLi ne = new Or der Li ne(EcoSpace) ;
Current Order. Li nes. Add(newLi ne) ;

or to create an instance from a method of another modeled class like so

[/ Busi ness cl asses don't have an EcoSpace, so we pass the | EcoServiceProvider
O der Li ne newLi ne = new OrderLine(this.Asl Object().ServiceProvider);
t hi s. Li nes. Add(newLi ne) ;

Creating a new object instance is so trivial that it may seem unnecessary to have a service for this purpose, however, the
object factory service makes it easy to create instances of modeled classes when the type is not know until runtime, or is
determined by reading model information.

Creating an object instance

The first approach is the one most similar to the previous example. An instance will be created by passing the System.Type.

| Obj ect I nstance i nstance = EcoSpace. Obj ect Fact ory. Cr eat eNewObj ect (t ypeof (Person));
Person personl = instance. Get Val ue<Person>();

First an IObjectinstance is created by instructing the object factory service to create a type of Person. Next the Person
instanced is retrieve from the IObjectinstance object locator. Note that the IObjectinstance reference may be used as a
parameter for various other service methods; it is also possible to use personl.AslObject() to retrieve the IObjectinstance.

The second approach is to use a string to identify the name of the class to create. Unlike the previous approach this
approach will not cause a compile error if you change the name of the Person class.

| Obj ect I nstance instance = EcoSpace. Obj ect Fact ory. Cr eat eNewCbj ect (" Person") ;

The final approach creates an instance identified by an IClass. An IClass is an interface holding information about a specific

16

2.5 IObjectFactoryService ECO Services

class in the model, this instance holds additional information regarding persistency etc. This is covered in the type system
service (@ see page 147) section of this document.

Person Contactinformation
¥} Person Contactinformation | @
attributes - attributes
+ FrstName: string 1 0. + Name: siring
+ LasiName: string + [TypeName: string

TelephoneNumber 8 EmailAddress 8 PostalAddress

attributes attributes attributes
+Number: string +Address: string + Address: string
+ PostalCode: string

In the model above the Person class may now contain multiple pieces of contact information. The Contactinformation class
itself is abstract so cannot be instantiated, the subclasses TelephoneNumber, EmailAddress, and PostalCode are all
concrete classes and therefore may be instantiated and associated with a person. When the user interface offers the user
the opportunity to add some contact information for a Person it would be nice if the possible types were determined
automatically rather than having to hard code them and have to remember to update the code each time a new kind of
contact information was added to the model. This is where the IClass comes in. The following code example will show how
to perform this task; it will use some code from a service which has not get been covered so feel free to skip directly to the
point in the example where the instance is created.

. Y
ol Contact information for: Peter Morris EIEI&_&J

First name Peter

Last name Morris
Name | Type |
Home Postal address
Waork Telephone

i [o 1

ErmailAddress
PostalAddress

| TelephoneMumber |

private void ButtonNewContactlnformati on_Cick(object sender, EventArgs e)
{

//d ear the context menu
Cont ext Cr eat eCont act I nformation. I tens. C ear();

/1 Find the base |d ass
| d ass contactlnformationCl ass =
EcoSpace. TypeSyst em Get C assByType(t ypeof (Cont act | nf or mati on));

// Recursively add all types
Addd assToMenu(cont act | nf or mat i onCl ass) ;

17

2.6 IVariableFactoryService ECO Services

/| Show t he nenu
Poi nt popupPoi nt = new Poi nt (Butt onNewCont act | nformati on. Wdth / 2,
But t onNewCont act | nf or nati on. Hei ght / 2);
Cont ext Cr eat eCont act | nf or mat i on. Show(But t onNewCont act | nf or mati on, popupPoi nt) ;

}
private void Addd assToMenu(| Cl ass contact | nformati onC ass)
{
//1f this is not abstract then create a nenu item
if (!contactlnformati onCl ass. | sAbstract)
{
var nenultem = new Tool StripMenul t em(cont act | nf or mati onCl ass. Nane) ;
Cont ext Cr eat eCont act I nf or mati on. | t enms. Add(nenul t en) ;
menul tem Tag = contact | nformati onC ass;
menultem Cl i ck += Menul t enCreat ed ass_d i ck;
}

/I Now recursively add any sub cl asses
foreach (1C ass subd ass in contactlnfornmati onCl ass. SubTypes)
Addd assToMenu(subd ass);
}

private void MenultenCreateC ass_Cl i ck(obj ect sender, EventArgs e)
{
//Normal |y we woul d pass the type to a specific formto edit
//but for this exanple we will just add directly to the Iist
Tool Stri pMenul t em nenul tem = (Tool Stri pMenul t en) sender ;
| G ass contactlnfod ass = (Id ass) nenul tem Tag;

I/ Create the new instance based on | d ass

| Obj ect I nstance i nstance = EcoSpace. Obj ect Fact ory. Cr eat eNewObj ect (cont act | nf oCl ass) ;
Cont act | nformati on newCont actl nfo = i nstance. Get Val ue<Cont act | nformati on>();

Cur r ent Per son. Cont act | nf or mat i on. Add(newCont act | nf 0) ;

IVariableFactoryService

This service enables the develper to create a number of IElement based objects which may then be used in various different
parts of the ECO framework. The |Element interface is prevalent throughout the ECO framework as it is used to represent
instances of modeled classes (IObject ultimately descends from IElement), property values (Int32, String, etc), and
association ends (IObjectList). These variables may then be used in various other services, for example the OCL Service
may evaluate OCL expressions which include variable names (a bit like parameterized queries). Although in most
circumstances it is anticipated that the developer will want to use a handle for declaring variables this service allows you to
create variables in code, which is useful in methods of modeled classes where you have no design surface onto which to
drop a VariableHandle etc.

Creating a constant

A constant is most useful when adding an event derived column to an ECO handle. One very useful implementation of this
functionality is when you have a many to many association between two classes and wish to show the user a selection of
options with a check box, checking the check box will add the item to the association whereas unchecking the check box will
remove the option from the association.

18

2.6 IVariableFactoryService ECO Services

Bookings Extras |g BookingOption

o o0~ attributes
N + Description: string

Booking

The model above allows a single instance of BookingOption to be associated with many bookings, and for a booking to have
many BookingOption instances (extras). The following user interface displays a booking form with a list of all available
BookingOption instances rather than only the ones associated with the booking in question.

ot Booking extras for #123542 = &]

Inc Description
Additional baggage allowance
K Executive club access
0 First class
[T |Free transfer

1. An expression handle was added with the expression "BookingOption.allinstances".
2. The columns were edited and a new EventDerivedColumn was added using the drop down list on the Add button.

3. The DeriveValue and ReverseDeriveValue events on this expression handle were implemented like so

private void ehBooki ngOpti ons_Deri veVal ue(obj ect sender, DeriveEventArgs e)

/] Get the BookingOption in question

Booki ngOpti on opti on = e. Root El enent . Get Val ue<Booki ngOpti on>();
switch (e.Nane)

case "Included":
//Result is true if this option is in CurrentBooking. Extras
bool islncluded = Current Booki ng. Extras. Cont ai ns(opti on);
// Create the bool ean constant and specify it as the result
e. Resul t El enent = EcoSpace. Vari abl eFact ory. Cr eat eConst ant (i sl ncl uded) ;

//Addi tional: We need to tell ECO to update the ticks in the boxes whenever
//the size of CurrentBooking. Extras changes

/101: Cet the | Property for CurrentBooking. Extras

i nt propl ndex = Booki ng. Eco_Loopbackl ndi ces. Ext ras_Menber | ndex;

| Property extrasProperty =

Cur r ent Booki ng. Asl Qbj ect (). Properti es. Get ByLoopbackl ndex(pr opl ndex) ;
//02: Subscribe to it

extrasProperty. Subscri beToVal ue(e. Resubscri beSubscri ber);
br eak;

defaul t:
t hrow new Not | npl enent edExcepti on(e. Nane) ;
}

}

private voi d ehBooki ngOpti ons_ReverseDeriveVal ue(obj ect sender, ReverseDeriveEvent Args e)

/] Get the BookingOption in question
Booki ngOpti on opti on = e. Root El enent . Get Val ue<Booki ngOpti on>();
switch (e.Nange)

case "l ncluded":

19

2.6 IVariableFactoryService ECO Services

bool islncluded = (bool)e. Val ue;
//Add or renpve it fromthe list. This will update the
/U automatically because when we derived the val ue we
/[subscribed to CurrentBooki ng. Extras
i f (islncluded)
Cur r ent Booki ng. Extras. Add(opti on);
el se
Cur r ent Booki ng. Ext ras. Renove(opti on);
br eak;

def aul t:
t hrow new Not | npl enent edExcepti on(e. Nane) ;

Creating a list of objects

When creating an 10bjectList you have the option of either allowing 10bject instances representing any modeled class, or
ones which represent a specific modeled class and its subclasses only. To create an untyped object list you would use the
Cr eat eUnt ypedObj ect Li st (bool al | owbupl i cat es) method, this kind of list is useful when you wish to update the
data storage with a collection of objects rather than updating all dirty objects.

/'l Create three peopl e

Person personl = new Person(EcoSpace);
Person person2 = new Person(EcoSpace);
Person person3 = new Person(EcoSpace);

/'l Create the object |ist
| Vari abl eFact oryServi ce vfs = EcoSpace. Vari abl eFact ory;
| Obj ect Li st obj ect sToPersi st = vfs. CreateUntypedObj ect Li st (fal se);

/1 Add only the locators for personl and person3
obj ect sToPer si st . Add(personl. Asl hj ect());
obj ect sToPer si st. Add(per son3. Asl Cbj ect());

// Now update the data storage with only those two objects
EcoSpace. Per si st ence. Updat eDat abaseW t hLi st (obj ect sToPer si st) ;

To create a typed object list you would use either

» CreateTypedObjectList(Type type, bool allowDuplicates)
« CreateTypedObjecitList(IClass umlIClass, bool allowDuplicates)

The first accepts a .NET Type whereas the second accepts an IClass representing the modeled class to use, this IClass
reference may be obtained from the model at runtime using the type system service (@ see page 147). This kind of list is
useful when you require a strongly typed list of objects, for example if you wish to create a list in code rather than using an
OCL (@ see page 22) expression and then present that list to the user via a ReferenceHandle. In this case a grid is
connected to rhRoot which has its StaticValueTypeName property set to Col | ecti on(Per son) .

[/ Create three people

Person personl = new Person(EcoSpace);
personl. First Name = "Peter";

personl. Last Nane = "Morris";

Per son person2 = new Person(EcoSpace);
person2. Fi rst Name = "John";

person2. Last Nane = "Snith";

Person person3 = new Person(EcoSpace);
person3d. Fi rst Nane = "Fred";

per son3. Last Name = "Jones";

20

2.6 IVariableFactoryService ECO Services

|/l Create the object |ist
| Vari abl eFact oryServi ce vfs = EcoSpace. Vari abl eFact ory;
| Obj ect Li st obj ect sToPresent = vfs. CreateTypedObj ect Li st (typeof (Person), true);

//Add only the |ocators to the |ist
obj ect sToPresent . Add(personl. Asl hj ect());
obj ect sToPresent . Add(per son2. Asl Chj ect ());
obj ect sToPresent . Add(per son3. Asl Ghj ect());
obj ect sToPresent . Add(per son2. Asl Cbj ect());
obj ect sToPresent . Add(per sonl. Asl Cbject());
/I Now present the list to the user interface
r hRoot . Set El enent (obj ect sToPresent) ;

[&2 Form1 (=]] |
FirstMame | LastMame |
Peter Marris
John Smith
Peter Smith
Smith
> o |

Creating a variable list

A variable list is a collection of values cross referenced by name. Variable lists are useful when you need to execute an OCL
expression which refers to multiple object instances. For example the following expression would select all bookings for a
specific customer and flight combination, note that the prefix var _ is purely optional and only used here for clarity

Pr oper t yBooki ng. al | I nst ances- >sel ect (cust onmer = var_Cust oner)->sel ect (flight =
var _Fl i ght)

The above expression could have been implemented with constants rather than variables, in fact when you create a variable
list you may add constants or variables. However, variable lists may also be used in a similar way to how query parameters
work in a SQL statement within a standard DB application.

| Vari abl eFact oryServi ce vfs = EcoSpace. Vari abl eFact ory;

/'l Create three people

Person personl = new Person(EcoSpace);
personl. First Nanme = "Peter";

personl. Last Nane = "Morris";

Per son person2 = new Person(EcoSpace);
person2. Fi r st Name = "John";

person2. Last Nane = "Snith";

Person person3 = new Person(EcoSpace);
person3d. Fi rst Nane = "Fred";

per son3. Last Name = "Jones";

EcoSpace. Updat eDat abase() ;

// Create the variabl e
| Modi fi abl eVari abl eLi st vari abl es = vfs. CreateVari abl eLi st ();
| El enent | ast NaneVar = vfs.CreateVariabl e(typeof (string));

21

2.7 Query services ECO Services

vari abl es. Add("var _Last Nane", | ast NaneVar);

/I Define a |list of values to | oop through

string[] lastNames = new string[] {"Morris", "Smth", "Jones"};

[/ Define the OCL expression using var_Last Nanme

string ocl = "Person. alllnstances->sel ect(lastNane = var_Last Nane)";

[/ Now | oop through each val ue
foreach (string currentlLastNane in | astNanmes)

/] Set the val ue of the variable
| ast NaneVar . AsCbj ect = current Last Nane;
/| Execute the query
| Li st <Per son> peopl e = EcoSpace. Ccl Ps. Execute(nul |, variables, ocl, -1,
0) . Get Asl Li st <Person>();
// Now show t he result
foreach (Person currentPerson in people)
{
string message = string. Format ("{0} -> {1} {2}",
current Last Nane,
curr ent Per son. Fi r st Narne,
current Per son. Last Nane) ;
MessageBox. Show(message) ;
}

}

The above example creates a variable of type System.String, the return value of CreateVariable is an IElement. The variable
is then added to a variable list with the name var _Last Nane. Within the loop it is possible to set the value of the variable by
setting | ast NaneVar . AsCbj ect . When the OCL expression is evaluated the text var _Last Name will substituted with the
variable's value instead. Just like query parameters this approach prevents the developer from having to escape special
query characters in order to ensure the query always remains valid (see SQL Injection -
http://en.wikipedia.org/wiki/SQL_injection, see also http://xkcd.com/327).

The important parameters being passed to Ccl Ps. Execut e are vari abl es and ocl. The other parameters will be
explained in the IOclPsService (@ see page 25) section.

Query services

These ECO services process queries that are based on the Object Constraint Language (OCL) in order to retrieve
information from the ECO cache. When an EcoSpace is persistent ECO will also translate the OCL query into the query
language of the data storage (usually SQL) to ensure that the data necessary to process the query is loaded into the ECO
cache.

As not all OCL operations are supported by all target data storages OCL query support is cleanly separated into three
distinct services. Each service is described in a particular order; the service being described is capable of processing a
superset of any previously described OCL services.

Format of OCL expressions

All OCL expressions start with a root context. This context may be a modeled class type, an instance of a modeled class, a
single element (such as an integer or string), or a collection. The following expression shows how to use the modeled
Person class to start the expression, and return all instances of that class:

Per son. al | | nst ances

22

2.7 Query services ECO Services

The above expression would result in a collection of Person instances. From this context it is possible to either perform a
collection operation or a member operation. Like many OOP languages to identify a member the context and member name
are separated by a period, collection operations are separated by the token ->

/' Returns the first person in the collection
Person. al | | nst ances->first

//Returns the DateO'Birth of the first person in the collection
Person. al | I nstances->first.dateOBirth

When a member name is appended directly to a collection the OCL parser will automatically iterate through each element
within the collection and return a collection of the member specified.

//Returns a collection of DateTime, one for each person in the collection
Person. al | I nst ances. dateCfBirth

OCL expressions with a specific context

It is possible to evaluate OCL expressions on an individual instance of a modeled class. For example when defining OCL
based validity constraints on a class those expressions would be evaluated in the context of an instance of that class. When
evaluating against an instance the context is assumed to be that instance. The keyword self may be used within the
expression to identify the root object

self.dateOBirth

The self keyword is case sensitive and must always be written in lowercase. When evaluating an expression against a root
this does not mean that the OCL expression must start with that root object. At any point within an OCL expression it is
possible to reference a modeled class by its name and use that as the context of the expression.

//using self other than as the context of the expression
//self references an instance of Custoner
Booki ng. al | | nst ances- >sel ect (bookedBy = sel f)

// Returns the sane result as
sel f. booki ngs

The above two expressions will return the same result. The first expression is less efficient than the second as it will first
retrieve all instances of Booking and then filter the list down to only those booked by the root object (Customer), the second
expression uses the Customer as the context of the expression to find its bookings which results in retrieving only bookings
assigned to this Customer and not having to filter the list afterwards.

Changing context within an expression

In the previous examples you can see that you can switch the context to a class despite having a root object to evaluate
against. It is in fact possible to switch the context to a class at any point within an expression

sel f. event sAt t ended- >i nt er secti on(
Event. al | | nst ances- >or der Descendi ng(dat e) - >subSequence(1, 5)
)
This more complicated expression uses a Customer as the root to evaluate the expression against (and therefore by default
the initial context). It switches the context to all events attended by that customer and then filters that event list down to
include only the last 5 events held. The last 5 events held are determined by selecting all Event instances, ordering the
collection by their date (descending), and then selecting the top 5.

23

2.7 Query services ECO Services

Members with the same name as a class

Event

Event

+

Bookings | 0.

Bookings 1
Booking
0.* Customer

Bookings 0.*

Payment

Payment

d

In this simple model it makes sense that the association from a booking to the Payment class should be named "Payment",
the association from a booking to the event should be named "Event”, and that the association from Booking to Customer
should be named "Customer".

When evaluating an expression such as the following (using Customer as the root)

booki ngs- >or der By(dat e)

it is quite clear that the start of the expression refers to the member Customer.Bookings. When evaluating an expression that
starts with a member that has the same name as a class in your model it is not clear whether you intend the OCL evaluator
to interpret the token as the member name or if you intend to switch the context to another class.

//Error - Event is interpreted as a cl ass
event. cancel | ed

In such a case you would precede the member name explicitly with the keyword self.

‘ sel f. event. cancel | ed

By now you may have noticed that all of the examples in this section use a lowercase initial letter for members and an
uppercase initial letter for class names. This is a standard in the OCL and although it is not enforced in ECO it does help to
clarify your intentions. It is good practise to precede association names with the self keyword when the association name is
singular (event) rather than plural (events).

Aliases

Building on the following example of explicitly identifying a token as a member and not a class there is a situation where it is
not logical to precede the member name with the self keyword. The following OCL expression returns a collection of events
a Customer has bookings for.

//Using a custoner instance as the root
sel f. booki ngs. event

In this expression it is clear that the token "event" refers to the association Booking.Event because it is connected directly
with a period, identifying it as a member; the previous expression would return a collection of Event instances. However, the
following expression (using a Booking as the root) is not valid and will not evaluate at all.

sel f. booki ngs- >sel ect (event . cancel | ed)

This expression will not evaluate because the token "event" is not preceded with a period, identifying it as a member of
Booking, but unlike in the previous scenario it is not possible to precede "event" with the self keyword because self will
always refer to the root that the expression is being evaluated against; in this case that would be an instance of Customer,
and Customer does not have an Event association.

The solution to this is to use an alias for each booking, so that the "event" token can be replaced with "alias.event" which

24

2.7 Query services ECO Services IOclPsService

then clearly identifies it as a member and not a class. Aliases are identified with the | (pipe) symbol and look like this

//Long fornat
sel f. booki ngs- >sel ect (cur rent Booki ng | current Booki ng. event . cancel | ed)

/[Shorter fornmat
sel f. booki ngs->sel ect (b | b.event.cancell ed)

Comparisons

Comparisons in the OCL are made using a single equals sign.

‘ sel f. booki ngs- >sel ect (dat e = Dat eTi ne. t oday)

|IOclPsService

OclPs is an abbreviation for Object Constraint Language - (evaluated in) Persistent Storage. The I0clPsService translates
OCL expressions into the data storage specific query language (usually SQL) in order to perform queries without first having
to load object contents into the local ECO cache. The |OclPsService never retrieves any object data, instead it always
returns a result type of IObjectList, which is a list of "object locators", an object's contents are not loaded until you reference
the .NET object from the locator, for example

| Obj ect nyLocator = { retrieved from sonewhere el se };
//ECO W || ensure the object is |oaded if not already
Consol e. Wi teLi ne(myLocat or. Get Val ue<Per son>(). Fi r st Nane) ;

This is an important detail because it means that the only information returned from the data storage is a list of object ID's
rather than the entire contents of the objects. Without this ability evaluating OCL could prove to be very expensive. Take a
simple harmless looking OCL query such as the following

Person. al | | nst ances- >sel ect (dateOfBirth = #1978-01-01)

If this query were to be evaluated in memory ECO would first have to load every instance of the Person class into memory
and then filter the list down to only those with the specific date of birth. If there were millions of Person objects in the data
storage this would obviously require a lot of memory and also a lot of network bandwidth.

1. [DB] Select FirstName, LastName, etc from Person;

2. [ECO] Receive row data for millions of Person objects

3. [ECO] Filter the list where the DateOfBirth matches

4. [App] Receive a collection of object locators that match the criteria

When this same query is executed with the 10cIPsService the filtering will be performed by the data storage and only the
ID's of the matching objects will be returned.

1. [DB] Select FirstName, LastName, etc from Person WHERE DateOfBirth = {format specific to the database};
2. [ECO] Receive only the IDs of only the rows that match the critera
3. [App] Receive a collection of object locators that match the criteria

Note: The ECO component "OclPsHandle" uses the 10cIPsService to execute its expression.

25

2.7 Query services ECO Services IOclPsService

As you can see there is a big gain from using the IOclPsService when there is a large number of objects involved such as
SomeCl ass. al | | nst ances where it is anticipated there will be a lot of object instances (Country. al | | nst ances would
be okay, but Person.alllnstances might prove problematic). This also includes "rooted" queries such as
sel f. Resi dent s where "self" is in instance of Country, in this case it is anticipated that a country is likely to have many
residents so you woud really want any ->sel ect (. .. .) to be performed in the data storage rather than in memory.

Restrictions of the IOclPsService

1. It does not | It is important to note that as the filtering is performed by the data storage it is only capable of providing

take into a list of objects that have been persisted. If for example you were to modify the DateOfBirth of an
account already persisted Person in your local EcoSpace cache so that it does not match the date #1978-01-01,
unsaved and then not persist those changes, when you execute the OclPs expression
changes. Person. al | I nstances->sel ect (dateO'Birth = #1978-01-01) the result would still include

the modified Person. There is a way of ensuring the collection represents both changes that have and
have not yet been persisted using the in-memory OCL expression Al | LoadedObj ect s, which will be
covered in the section 10clService (@ see page 44).

2. ltcanonly | The result type is always an IObjectList. This means that it is not possible to end your OCL query with

return a operators such as - >si ze to return the number of items in the list, nor can you for example return a list
collection of | Of unique values using - >col | ect (dateO Birth).

object

locators.

3. Is supports | It is not possible to map all OCL operations to SQL for example. As a consequence not all OCL

only a operations are supported.
subset of
OCL.

4. Derived Members in the model marked as derived are calculated in-memory upon request. These values are
members never persisted to the data storage and as a consequence it is not possible to use them in OCL
are not expressions evaluated by this service.
supported.

Executing queries

This service has a number of overloaded methods for evaluating OCL expressions, each of which is named Execut e().
The most simple overload accepts only an OCL expression to evaluate.

| Obj ectLi st | ocators;
string query = "Person. al | | nstances->sel ect (dateOfBirth = #1978-01-01)";
| ocat ors = EcoSpace. Ccl Ps. Execut e(query) ;

The above example selects the object locators only for the Person objects that were born on January the 1st, 1978. Note
that no Person data is returned from this query. Any time you access | ocat or . AsCbj ect or | ocat or. Cet Val ue<T> the
individual object will be loaded. To retrieve multiple objects in as few DB trips as possible you can either use the
Get Asl Li st <T>() method on the result or use the Ensur eRange() method on the IPersistenceService (@ see page 133)
to pre-load. Note that evaluating an in-memory query against the result using the 1OclService will also fetch object data into
the local EcoSpace cache. The following example not only identifies which Person objects match the criteria but also loads
the objects' contents into the cache.

| Li st <Per son> peopl e;

string query = "Person. al | | nstances->sel ect (dateOfBirth = #1978-01-01)";
peopl e = EcoSpace. Ccl Ps. Execut e(query) . Get Asl Li st <Per son>() ;

26

2.7 Query services ECO Services IOclPsService

The next overload is similar to the first except that it additionally takes two integer parameters.

Name Type Purpose
maxAnswers Int32 Limits the number of object locators returned.
offset Int32 Zero based index of the first object in the list to return.

This overload is useful for either data paging (in which case you should have an - >or der By(...) operation in your OCL
expression to ensure a consistent order) or simply to reduce the number of objects returned on a search screen for example.

i nt maxAnswers = 50;

| Li st <Per son> peopl e;
string query = "Person. al |l I nstances->sel ect (dateO'Birth = #1978-01-01)";
peopl e = EcoSpace. Ccl Ps. Execut e(query, naxAnswers, 0). Get Asl Li st <Person>();

The next overload expects not only an OCL expression to evaluate but also a root context to evaluate it against. The root is
an IElement, which means that the context could be either a single instance of a modeled business class or a collection of
instances. The root provided is always referenced as the OCL keyword sel f in expressions. Note that although IElement
can be used to represent other values such as strings, integers, and dates it is not possible to use these as a root context for
evaluating an OclPs expression.

Cty city ={ retrieved from sonewhere el se };

| Li st <Per son> peopl e;

string query = "self.residents->sel ect(dateOBirth = #1978-01-01)";

peopl e = EcoSpace. Ccl Ps. Execute(city. Asl Obj ect (), query). Get Asl Li st <Person>();

/*

Equi val ent to SQ

sel ect FirstNanme, LastNanme, etc from Person

where City = 132232 and DateOBirth = { DB specific date format};
*/

It is not mandatory to use the root context as the root of the OCL evaluation. The following example produces the same
result as the previous example despite starting the OCL expression with Per son. al | | nst ances.

City city ={ retrieved from sonewhere el se };

| Li st <Per son> peopl e;

string query = "Person. alllnstances->select(city = self)->select(dateOBirth =
#1978-01-01)";

peopl e = EcoSpace. Ccl Ps. Execute(city. Asl Obj ect (), query). GetAslLi st<Person>();

The final overload accepts a number of additional parameters.

Name Type Purpose
root IElement Acts as a context for the keyword sel f in OCL expressions. This parameter may be
null.

variableList | IExternalVariableList This parameter provides a variable list which is used when parsing the OCL
expression. Any unidentified part of the expression that looks like it should be a literal
value is checked against this variable list to see if it is a named value. This parameter

may be null.
expression | String The OCL expression to evaluate.
maxAnswers | Int32 The total number of answers to return.

27

2.7 Query services ECO Services IOclPsService

offset Int32 The zero based index of the first result to return.

The IVariableFactoryService (@ see page 18) section of this document provides an example for the use of this overload.

OCL operations supported by I0cIPsService

+
Source Int32
Parameters Int32 value
Result Int32

Description

Returns the result of adding the specified value to the source.

Example

1+ 2

Notes

Additional overloads exist for Int64 and Double.

Source Int32

Parameters Int32 value

Result Int32
Description

Returns the result of subtracting the specified value from the source.

Example

3002

Notes

Additional overloads exist for Int64 and Double.

28

2.7 Query services ECO Services

I0cIPsService

*
Source Int32
Parameters Int32 factor
Result Int32

Description
Returns the result of multiplying the source by the factor.

Example

5* 5
Notes
Additional overloads exist for Int64 and Double.
Source Int32
Parameters Int32 divisor
Result Int32

Description
Returns the result of dividing the source by the divisor.

Example

10/ 2
Notes
Additional overloads exist for Int64 and Double.
<
Source <Any>
Parameters <Any> value
Result Boolean

29

2.7 Query services

Description

Returns true if the source is less than the parameter.

ECO Services

I0cIPsService

Returns true if the source is equal to the parameter.

Example
6 < 12
<
Source <Any>
Parameters <Any> value
Result Boolean
Description
Returns true if the source is less than or equal to the parameter.
Example
6 <= 12
<>
Source <Any>
Parameters <Any> value
Result Boolean
Description
Returns true if the source is not equal to the parameter.
Example
6 <> 12
Source <Any>
Parameters <Any> value
Result Boolean
Description

30

2.7 Query services

ECO Services

I0cIPsService

Example
1 =1
>
Source <Any>
Parameters <Any> value
Result Boolean
Description
Returns true if the source is greater than the parameter.
Example
12 > 6
>=
Source <Any>
Parameters <Any> value
Result Boolean
Description
Returns true if the source is greater than or equal to the parameter.
Example
|12 >= 6
Allinstances
Source <Type>
Parameters
Result Collection(<Instance>)
Description

Returns all instances of the source type. The type can be a business class such as Person. In OCL and EAL the type can
also be an enumeration type used in the model such as Gender or OrderState

31

2.7 Query services ECO Services IOclPsService

Example

’ Person. al | | nst ances

Average
Source Collection(Decimal)
Parameters
Result Decimal
Description

Returns the average of a collection of numerical values.

Example

Per son. al | | nst ances. age- >aver age

Notes

Additional overloads exist for Int32, Int64, and Double; each of which return Double and not Decimal.

Difference
Source Collection(<Any>)
Parameters Collection(<Any>) value
Result Collection(<Any>)

Description

Returns a copy of the source collection minus all elements in the parameter.

Example

var _Personl. fri ends->di fference(var_Person2. friends)

Notes

To remove a single element see Excluding.

Div
Source Int32
Parameters Int32 divisor
Result Int32

32

2.7 Query services ECO Services IOclPsService

Description

Returns the result of dividing the source by the divisor.

Example
10 div 2
Exists
Source Collection(<Any>)
Parameters Boolean expression
Result Boolean
Description

Returns true if the parameter results in true for any of the items in the collection.

Example
sel f.friends->exists(f | f.Gender = Gender:: Ml e)

Notes

The syntax within the brackets is similar to a lambda expression, where each item in the Collection(Person) is assigned the
alias "f" for the rest of the expression.

ForAll
Source Collection(<Any>)
Parameters Boolean expression
Result Boolean

Description

Returns true if the parameter results in true for every item in the collection.

Example
self.friends->forAll (f | f.Gender = Gender:: Ml e)

The person in question only has male friends.

33

2.7 Query services ECO Services IOclPsService
Implies
Source Boolean
Parameters Boolean comparison
Result Boolean
Description

The following table shows possible permutations and the result.

Source Parameter Result

False False True

False True True

True False False

True True True
Example

If a Weather class has two boolean attributes "Raining" and "Cloudy" the following constraint would ensure that it must be

cloudy in order for it to be raining.

raining inplies cloudy

Includes
Source Collection(<Any>)
Parameters <Any> value
Result Boolean

Description
Returns true if the parameter exist in the source.

Example

sel f. friends->i ncl udes(sel f. Fat her)

The person in question is friends with his/her father.

Intersection

Source Collection(<Any>)
Parameters Collection(<Any>) value
Result Collection(<Any>)

34

2.7 Query services ECO Services IOclPsService

Description

Returns a collection of all elements in the source that are also in the parameter.

Example

sel f. debtors->i ntersection(sel f.creditors)

Returns a collection of people who are both debtors and creditors.

ISEmpty
Source Collection(<Any>)
Parameters
Result Boolean
Description

Returns true if a collection has no elements in it.

Example

sel f. debt or s- >i sEnpty

Returns True if the person has no debtors.

Notes

ISsEmpty may also be used on an association to a single object to check if it has a value. It is recommended that ISEmpty is
used in such a case rather than comparing the associated object with nil.

sel f.linkToSi ngl ebject = nil [lncorrect]
sel f.1inkToSi ngl eObj ect ->i sEnpty [Correct]

IsNull
Source <Any>
Parameters
Result Boolean
Description

Returns true if the source is null.

Example

sel f.firstNane.isNull

35

2.7 Query services ECO Services IOclPsService

Notes

To check an association to a single object use iISEmpty.

Length
Source String
Parameters
Result Int32
Description

Returns the length of a string.

Example

Person. al | | nst ances->sel ect (firstNane. |l ength < 2)

MaxValue
Source Collection(Int32)
Parameters
Result Int32
Description

Returns the largest value found in the source collection.

Example

Person. al | | nst ances- >sel ect (hei ght = Person. al | | nst ances. hei ght - >nmaxVal ue)

Selects all of the tallest people.

Notes

Additional overloads exist for Int64, Double, and Decimal.

MinValue
Source Collection(Int32)
Parameters
Result Int32

36

2.7 Query services ECO Services

Description

Returns the minimum value found in the source.

Example

I0cIPsService

Per son. al | | nst ances- >sel ect (hei ght = Person. al | | nst ances. hei ght - >m nVal ue)

Selects all of the shortest people.

Notes

Additional overloads exist for Int64, Double, and Decimal.

Mod
Source Int32
Parameters Int32 modulo
Result Int32
Description

Returns the result of performing a modulus on the source using the modulo.

Example

17 nod 10

Returns 7.

Not

Source
Parameters

Result

Boolean

Boolean

Description

Returns the result of performing a logical NOT operation on the source.

Example

User. al | I nst ances- >sel ect (not suspended)

37

2.7 Query services ECO Services IOclPsService

NotEmpty
Source Collection(<Any>)
Parameters
Result Boolean

Description

Returns true if a collection has at least one element in it.

Example

sel f . debt or s- >not Enpty

Returns True if the person has debtors.

Notes

NotEmpty may also be used on an association to a single object to check if it has a value. It is recommended that NotEmpty
is used in such a case rather than comparing the associated object with nil.

sel f.1inkToSi ngl eCbject <> nil [Incorrect]
sel f. i nkToSi ngl eObj ect - >not Enpty [Correct]

OrderBy
Source Collection(<Any>)
Parameters <Any> expression
Result Collection(<Any>)

Description

Returns a collection based on the source which has been ordered into ascending order based on the value in the parameter.

Example
’ sel f. debt or s- >or der By(ol dest Unpai dDebt) ‘

Returns all debtors in order of the debtor with the oldest unpaid debt first.

’ sel f. debt or s- >or der By (| ast Nanme, firstNane) ‘

Returns all debtors ordered by their last name, for debtors with the same last name, the first name is used as a secondary
key

Notes

Using OrderBy it is possible to order by multiple keys, but only in ascending order. To order by multiple items in different
directions, use OrderGeneric.

38

2.7 Query services ECO Services IOclPsService

OrderDescending

Source Collection(<Any>)

Parameters <Any> expression

Result Collection(<Any>)
Description

Returns a collection based on the source which has been ordered into descending order based on the value in the
parameter.

Example

sel f . debt or s- >or der Descendi ng(anpunt Oned)

Returns all debtors in order of the debtor with the greatest amount of debt first.

Notes

Using OrderDescending it is possible to order by multiple keys, but only in ascending order. To order by multiple items in
different directions, use OrderGeneric.

OrderGeneric

Source Collection(<Any>)

Parameters <Any> expression
SortDirection direction

Result Collection(<Any>)

Description

Returns a collection based on the source which has been ordered as specified by the parameters. OrderGeneric takes a
minimum of two parameters; the first identifies the sort expression, and the second identifies the sort direction (ascending or
descending). These two parameters may be repeated multiple times in order to provide sorting by multiple items.

Example

sel f. debt or s- >or der Generi c(ol dest Unpai dDebt, Ccl SortDirection::ascendi ng, anpunt Oned,
Ccl Sort Di rection: : descendi ng)

Returns all debtors primarily in order of the debtor with the oldest unpaid debt first, and then secondarily by the debtor
owning the highest amount of money.

OldestUnpaidDebt AmountOwed
2008-01-01 1000.00
2008-01-01 800.00
2008-01-01 700.00

39

2.7 Query services ECO Services IOclPsService

2008-02-01 1000.00
2008-02-01 550.00
Reject
Source Collection(<Any>)
Parameters Boolean expression
Result Collection(<Any>)
Description

Returns a collection based on the source excluding any elements where the boolean expression evaluated to True.

Example

’ sel f.friends->reject(age < 18)

This is functionally equivalent to the following

’ sel f.friends->sel ect (age >= 18)

Select
Source Collection(<Any>)
Parameters Boolean expression
Result Collection(<Any>)

Description

Returns a collection based on the source including only elements where the boolean expression evaluated to True.

Example

’User.alllnstances->sel ect(u | u.firstName = 'Peter')->select(u | u.lastName = 'Morris') ‘

Returns all users with the name "Peter Morris".

this is equivalent to

’User.allInstances->se|ect(u | (u.firstName = 'Peter') and (u.lastNane = 'Mrris')) ‘
Size
Source Collection(<Any>)
Parameters
Result Int32

40

2.7 Query services ECO Services IOclPsService

Description

Returns the size of a collection.

Example

Person. al | I nstances->sel ect(p | p.friends->size >= 5)

Returns all people with 5 or more friends.

SqlLike
Source String
Parameters String pattern
Result Boolean

Description

Returns True if the source matches the pattern specified in the parameter. This is similar to the LIKE statement in SQL.

Example

Person. al | | nst ances->sel ect(p | p.|astNane. sql Li ke(' %orris'))

Returns a collection of people who have a last name ending with "orris".

Notes

When evaluated in memory, this operation is case sensitive, but some databases treats the LIKE operator as a
caseinsensitive operator. For guaranteed case insensitivity, use sglLikeCaselnsensitive

% is used to denote a match with zero or more unknown letters

_ is used to denote a match with exactly one unknown letter.

Value Match
Morris True
Norris True
Orris False

SqlLikeCaselnsensitive

Source String
Parameters String pattern
Result Boolean

41

2.7 Query services ECO Services IOclPsService

Description

Returns True if the source matches the pattern specified in the parameter. This is similar to the LIKE statement in SQL but
case insensitive.

Example

Per son. al | | nst ances- >sel ect (| ast Nane. sql Li keCasel nsensitive(' %orris'))

Returns a collection of people who have a last name ending with "orris", regardless of case.

Notes

Unlike the SqlLike operation the comparison is case insensitive.

Value Match

Morris True

Norris True

Orris True

Sum

Source Collection(Int32)

Parameters

Result Int32
Description

Returns the sum of the values in the collection

Example

Person. al | | nst ances- >sel ect (debt s. val ue- >sum > 10000)

Selects all people who have a debt of at least 10,000.

Notes

Additional overloads exist for Int64, Double, and Decimal.

ToLower (String)

Source String
Parameters
Result String

42

2.7 Query services ECO Services IOclPsService

Description

Converts a string value to lower case.

Example

Per son. al | | nst ances- >sel ect (first Nane.toLower = 'peter')

Returns people with the first name "Peter", "pETeR" or any other case-variation of "peter".

Notes

When selecting you may wish to use SqlLikeCaselnsensitive as it permits the use of wildcards. The ToLower operation is
mostly used for presenting data in a user interface in a specific format.

ToUpper(String)

Source String

Parameters

Result String
Description

Converts a string value to upper case.

Example

Per son. al | | nst ances- >sel ect (fi rst Nane. toLower = ' PETER)

Returns people with the first name "Peter".

Notes

When selecting you may wish to use SglLikeCaselnsensitive as it permits the use of wildcards. The ToUpper operation is
mostly used for presenting data in a user interface in a specific format.

Union
Source Collection(<Any>)
Parameters Collection(<Any>) value
Result Collection(<Any>)

Description

Returns a collection of all elements in the source combined with all elements in the parameter.

43

2.7 Query services ECO Services IOclService

Example

sel f. debt or s- >uni on(sel f.creditors)

Returns a collection of people who are either a debtors or creditors of a person.

IOclService

Ocl is an abbreviation for Object Constraint Language. The 10clService evaluates OCL expressions in memory. Objects are
fetched from the data storage automatically if they are required in order to evaluate the expression passed, the following
expression evaluated against a PurchaseOrder would automatically load all PurchaseOrderLine objects related to the order
if they were not already loaded into the local EcoSpace cache.

sel f.lines.val ue->sum

Due to the fact that the 10clService evaluates in memory it is advisable that you do not evaluate expressions such as
Cl ass. al | I nst ances unless you are certain that there will be an acceptable number of instances. For example evaluating
Country. al | I nstances would be acceptable whereas evaluating an expression such as
St ockMovenent . al | | nst ances would most likely be unacceptable due to the fact that you cannot guarantee that over
time there will not be millions of StockMovement objects.

It is important to note that even OCL expressions which return a small number of results may still load a large number of
objects into the local EcoSpace cache.

‘ St ockMovenent . al | | nst ances->sel ect (i d = 123456789)

. [DB] Select {names of columns} from StockMovement

. [ECO] Receive row data for millions of StockMovement objects
. [ECO] Store the data in the local EcoSpace cache

. [ECO] Filter the list where the id matches

a A W N P

. [App] Receive a collection of object locators that match the criteria, in this case a single object out of over 100 million
objects

When such an expression is required it is advisable to use the I0cIPsService (@ see page 25) instead.

Evaluating OCL expressions

This service has a number of overloaded methods for evaluating OCL expressions, each of which is named Eval uat e() .
The most simple overload accepts only an OCL expression to evaluate.

EcoSpace. Ccl . Eval uate("1 + 2"); ‘

The next overload accepts an additional parameter identifying a context for the evaluation.

44

2.7 Query services ECO Services IOclService

Name Type Purpose

root | IElement Identifies an element to be used as the context for the evaluation and also to determine the value to use
wherever the evaluator encounters the keyword sel f in the expression.

For in-memory evaluations the context may be any kind of IElement
¢ Value types such as Int32, String, etc
¢ Instances of modeled classes (as per the following example)

¢ A collection of IElement such as a list of instances or a list of values

Person personl = new Person(EcoSpace);
personl. DateOf' Bi rth = Dat eTi ne. Today;
EcoSpace. Ccl . Eval uat e(per sonl. Asl Cbj ect (), "age + 1")

The next overload accepts provides a way of identifying multiple values as parameters

Name Type Purpose

root IElement Identifies an element to be used as the context for the evaluation.
expression String The OCL expression to evaluate.

variableList | IExternalVariableList | A collection of variables to use when parsing the OCL expression.

Per son personl = new Person(EcoSpace);
personl. DateO' Bi rth = Dat eTi ne. Today;

| Modi fi abl eVari abl eLi st vars = EcoSpace. Vari abl eFactory. Creat eVari abl eLi st () ;
var s. AddConst ant ("var _Years", 2);

EcoSpace. Ccl . Eval uat e(per sonl. Asl Cbj ect (), "age + var_Years", vars);

Note: There is an additional overload which is the same as this except it does not have the initial r oot parameter.

Evaluating and subscribing

The 10clService has a number of overloaded methods named Eval uat eAndSubscri be() . These methods are essentially
the same as the Eval uat e methods except that they additionally take two parameters of the type | Subscri ber. The
subscription mechanism is covered in more detail in the subscriptions (@ see page 144) section of this document so will not
be covered in great depth here. The only method that involves subscriptions which will be covered here is the
Get Der i vedEl enent () method.

As ECO parses an OCL expression to evaluate it it accesses various element values held within the local cache, elements
such as object instances, attributes, and roles are known as domain elements because they are physical parts of the
modeled domain (Person, Person.FirstName, Person.LastName, etc). When an OCL expression returns a domain element
you can be sure that whenever the value of the element changes your result will also change, for example:

Per son personl = new Person(EcoSpace);
personl. First Name = "Fred";

string ocl = "firstNane";
| El enent result El ement = EcoSpace. Ccl . Eval uat e(per sonl. Asl Gbj ect (), ocl);

45

2.7 Query services ECO Services IOclService

personl. First Name = "Peter";
MessageBox. Show("resul t El enent value = " + resultEl enent. Get Val ue<string>());

At the point the evaluation is performed the person's first name is "Fred", the element returned by the evaluation is stored in
the local variable r esul t El ement . The person's first name is then changed to "Peter" and a message box is then used to
show the value held by the element returned earlier.

|

resultElement value = Peter

Here you see that the message box shows the new value "Peter" and not the initial value "Fred". This is because the result
of the evaluation was a domain element, meaning that the expression identified a member of a class rather than merely a
calculated value. To clarify this take a look at the following example

Per son personl = new Person(EcoSpace);
personl. First Name = "Fred";
personl. Last Nane = "Morris";

string ocl = "firstName + ' ' + | astNane";
| El enent result El ement = EcoSpace. Ccl . Eval uat e(per sonl. Asl Cbj ect (), ocl);

personl. First Name = "Peter";
MessageBox. Show("resul t El ement value = " + resul t El enent. Get Val ue<string>());

|

resultElement value = Fred Morris

Here you see that the message box now shows the result as it would have been at the time of evaluation rather than
reflecting any changes made since. This is because the result is evaluated as the values of two domain elements combined
together with a single space between them, the result itself is not a domain element but a new element constructed solely for
the purpose of holding the result. If you require the value of your element to change to reflect modifications after it was
evaluated you can use the Get Der i vedEl enent () method.

Person personl = new Person(EcoSpace);
personl. First Nane = "Fred";
personl. Last Nane = "Morris";

string ocl = "firstName + ' ' + | ast Nanme";
| El enent resultEl enent = EcoSpace. Ccl . Eval uat e(per sonl. Asl Obj ect (), ocl);
| El enent deri vedEl enent = EcoSpace. Ccl . Get Deri vedEl enent (per sonl. Asl Cbj ect (), ocl);

personl. First Nanme = "Peter";
MessageBox. Show("resul t El enent value = " + resultEl enent. Get Val ue<string>());
MessageBox. Show(" Deri vedEl ement value = " + derivedEl enent. Get Val ue<string>());

46

2.7 Query services ECO Services IOclService

resultElement value = Fred Morris DerivedElement value = Peter Morris

Here you can see that the derived element's value changes as the values it is derived from change. Subscriptions (@ see
page 144) are covered in another part of this document.

Combining evaluations

It is sometimes necessary to evaluate expressions in memory due to one or more of the following reasons:

1. You need to select on a derived (calculated) member or the result of a method, and the I0clPsService does not support
this functionality.

2. You need to include new and/or modified object instances in the local EcoSpace cache that also meet this criteria.

The following OCL example illustrates this point.

Person

a

attributes
+ DateOfBirth: DateTime
+ FirstName: string
+ LastName: string
operations
+ GetAge: int

Get Age() is defined as a method with IsQuery=True. This is a useful trick for when you want to create a calculated member
in code but not all of the elements involved in calculating its result are capable of notifying subscribers when they change - in
this example there is no way to subscribe to DateTime.Today using an ECO ISubscriber so a method is created instead with
IsQuery set to True so that the 10clService knows it may execute the query without causing any side affects.

public int GetAge()
{
Dat eTi ne today = Dat eTi me. Today;
int result = today. Year - DateO'Birth. Year;
i f (today.DayCf Year < DateOf Birth. DayOF Year)
resul t--;
return result;
}

Now consider the following OCL expression:

Person. al | | nst ances- >sel ect (firstNane. sql Li keCasel nsensitive(' Pete%))->sel ect (Cet Age()
>= 18)

It is not possible to evaluate this expression using the 10clPsService because part of the expression refers to the method
Get Age() . It is also not recommended that this expression is evaluated using the 1OclService as this would load all
instances of the Person class into memory in order to evaluate the rest of the expression, and this could be very detrimental

47

2.7 Query services ECO Services IOclService

to system performance if there are many object instances. The solution to this is to perform two expression evaluations, one
against each of the two services.

string psCriteria =

"Person. al | | nst ances" +

"->sel ect (firstName. sql Li keCasel nsensitive(' Pete%))";
| Obj ect Li st peopl e = EcoSpace. Ccl Ps. Execut e(psCriteria);

string menoryCriteria = "sel f->sel ect (Get Age() >= 18)";
peopl e = EcoSpace. Ccl . Eval uat e(peopl e, nenoryCriteria);

| Li st<Person> result = peopl e. Get Asl Li st <Per son>();

The above code example first executes part of the expression as SQL and loads into memory only a collection of object
locators, one for each object in the data storage that matched the criteria
firstName. sql Li keCasel nsensitive(' Pete%). The list of object locators is then used as the context for an
in-memory evaluation to filter the collection down to only people who are at least 18 years old at the time of evaluating the
expression. The problem with this example is that only objects identified as a match by the database will be considered for
inclusion by the IOclIService, this is because we are providing a specific list of object locators and then starting the
expression with the sel f keyword. If there are instances of the Person class in the local cache which have not yet been
saved then the data base has no way of knowing about this instance and including its object locator in the initial result;
likewise if a previously saved object has been modified and the changes not yet saved the final result will not include objects
which should be there.

One useful side affect of using the IOcIPsService to retrieve a list of object locators is that these objects are then considered
to be "loaded" even though we only have an object locator (identity of the object) and not the actual data for those objects.
This is useful because there is an OCL operation available in the 10cIService named Al | LoadedObj ect s which can be
used to evaluate expressions only against objects that have already had their identity loaded into the cache.

// Execute the query to | oad object |ocators into nenory
string psCriteria =

"Person. al | | nstances" +

"->sel ect (firstName. sqgl Li keCasel nsensitive(' Pete%))";
EcoSpace. Ccl Ps. Execute(psCriteria);

/I Now eval uate only on objects al ready | oaded

string menoryCriteria =
"Person. al | Loadedbj ect s" +
"->sel ect (firstName. sql Li keCasel nsensitive(' Pete%))" +
"->sel ect (Cet Age() >= 18)";

| El enent peopl e = EcoSpace. Ccl . Eval uat e(nenoryCriteria);

| Li st<Person> result = peopl e. Get Asl Li st <Per son>();

This is exactly the kind of approach you will see on the EcoDataSource component when creating ECO powered web
applications, where it is possible to specify both a PsExpression property for evaluating the query as SQL on the database
and also an Expression property which is evaluated against the result of the PsExpression.

OCL operations supported by 10clService

The IOclService supports all of the IOclPsService operations (@ see page 28) plus the following additional operations.

48

2.7 Query services ECO Services IOclService

Source DateTime

Parameters TimeSpan value

Result DateTime
Description

Returns the source DateTime with the specified TimeSpan parameter subtracted from it.

Example

self.dateOfBirth - #00:01

Source DateTime

Parameters DateTime

Result TimeSpan
Description

Subtracts the DateTime parameter from the source and returns a TimeSpan.

Example

dat eRet urned - dateHired

Source TimeSpan

Parameters TimeSpan

Result TimeSpan
Description

Subtracts the parameter from the source and returns a TimeSpan.

Example

endTinme - startTinme

49

2.7 Query services ECO Services IOclService

+
Source DateTime
Parameters TimeSpan value
Result DateTime

Description

Returns the source DateTime with the specified TimeSpan parameter added to it.

Example
sel f.dateOFBirth + #08: 30

Source TimeSpan

Parameters TimeSpan

Result TimeSpan
Description

Returns the source TimeSpan with the specified TimeSpan parameter added to it.

Example
’ endTine > (startTime + #01: 00)

AlllInstancesAtTime

Source <Type>

Parameters Int32 versionNumber

Result Collection(<Instance>)
Description

Returns all instances of the source type for the given version number. See the IVersionService (@ see page 141) for more
details.

Example

Person. al | | nst ancesAt Ti me(0)

Returns a historical view of all Person instances that existed after the first ever call to UpdateDatabase.

50

2.7 Query services ECO Services IOclService

AllLoadedObjects

Source <Type>

Parameters

Result Collection(<Instance>)
Description

Returns all instances of the source type that have already been loaded into the local cache. This list will also include objects
that have had their unique ID (object locator) loaded but not yet had their data contents loaded. No additional object locators
will be retrieved from the data storage, however, accessing a member value via code or OCL will ensure that the instance's
member data is in the cache.

Example

Per son. al | LoadedObj ect s

Returns all instances of Person that have already been loaded.

AllSubClasses

Source <Type>

Parameters

Result Collection(String)
Description

Returns the names of all classes descended from the source type.

Example

’ Per son. al | SubCl asses

AllSuperClasses

Source <Type>

Parameters

Result Collection(String)
Description

Returns the names of all classes the source type descends from.

51

2.7 Query services

Example

ECO Services

IOclService

’ Per son. al | Super Cl asses

AssociationEnds

Source <Type>

Parameters

Result Collection(String)
Description

Returns the names of all properties of the class that are association ends to another modeled class. This list includes both
navigable and non-navigable association ends, and also includes association ends inherited from all super classes.

Example

’ Per son. associ at i onEnds

AsString
Source <Any>
Parameters
Result String
Description

Represents the source as a string. When the source is an instance of a class it will evaluate the Default String

Representation expression of the class.

Example

’ self.dateOBirth.asString

At
Source Collection(<Any>)
Parameters Int32 index
Result <Any>
Description

Returns the item within the collection at the specified index. The lower bound of the index is 1.

52

2.7 Query services ECO Services IOclService

Example

Person. al | | nst ances- >at (1)

Notes

To specify a zero based index use ->at0

AtTime
Source <Object>
Parameters Int32 versionNumber
Result <Object>

Description

Returns a historical view of the source object at the point in time identified by the version number. See the IVersionService
(= see page 141) for more details.

Example
sel f.at Ti me(0)

Returns a historical view of the source object that existed after the first ever call to UpdateDatabase.

Attributes
Source <Type>
Parameters
Result Collection(String)
Description

Returns a collection of strings, each one being the name of a modeled property (UML attribute) on the specified class type.
The list will contain attributes modeled on the current class plus any inherited from its base class; the list will not include any
association ends.

Example

| El enent attri butes;

attri butes = EcoSpace. Ccl . Evaluate("C ass_1.attri butes");

foreach (string current in attributes. GetAslList<string>())
MessageBox. Show(current);

Collection operations

53

2.7 Query services ECO Services IOclService

Append
Source Collection(<Any>)
Parameters <Any> value
Result Collection(<Any>)

Description

Returns the source collection with the parameter added to it.

Example

var _cust omer 1. or der s- >append(var _cust oner 2. or der s)

Returns a collection of orders from customerl with a single order from customer2 appended to the end of the list.

AsBag
Source Collection(<Any>)
Parameters
Result Collection(<Any>)
Description

Evaluates the source and returns a collection based upon it that is capable of holding duplicate entries. By default
associations are Sets, meaning that they do not allow duplicate values. This operation does not alter the source collection, it
merely changes the context.

Example

//Products will only appear once
var _order 1.l ines. product - >i ncl udi ng(var _order 2. | i nes. product)

[/ Duplicate products may appear
var _order 1. |ines. product - >asBag- >i ncl udi ng(var _order 2. |i nes. product)

This operation is not very useful in ECO. It is implemented as a part of complying with the OCL specification. In ECO, all
object lists have an explicit order order.

AsCommalist

Source Collection(String)

Parameters

Result String
Description

Takes a collection of strings as a source and returns a single string containing each of the values in the collection separated
by commas.

54

2.7 Query services ECO Services IOclService

Example

City city = new G ty(EcoSpace);

Per son personl = new Person(EcoSpace);
personl.City = city;
personl. FirstNane = "Peter";

Person person2 = new Person(EcoSpace);
person2.City = city;
person2. Fi rst Name = "Fred";

string ocl = "sel f.people.firstName->asComali st";
string result =

EcoSpace. Ccl . Eval uat e(city. Asl oject (), ocl). GetVal ue<string>();
MessageBox. Show(resul t);

Returns the value

Peter, Fred

AsSeparatedList

Source Collection(String)

Parameters String separator

Result String
Description

Takes a collection of strings as a source and returns a single string containing each of the values in the collection separated
by the specified separator.

Example

City city = new G ty(EcoSpace);

Person personl = new Person(EcoSpace);
personl.City = city;
personl. First Name = "Peter";

Person person2 = new Person(EcoSpace);
person2.City = city;
person2. First Nane = "Fred";

string ocl = "self.people.firstNane->asSeparatedList('+')";
string result =

EcoSpace. Ccl . Eval uate(city. Asl Cbj ect (), ocl). GetVal ue<string>();
MessageBox. Show(resul t);

Returns the value

Pet er +Fr ed

55

2.7 Query services

ECO Services

IOclService

AsSequence
Source Collection(<Any>)
Parameters
Result Collection(<Any>)
Description

Evaluates the source and returns a copy of the that permits manual reordering. Reordering the resulting element does not

affect the source.

AsSet
Source Collection(<Any>)
Parameters
Result Collection(<Any>)
Description

Returns a collection based on the source with all duplicates removed.

Example

sel f.orders.|ines. product - >asSet

Returns a distinct list of products sold to a specific customer.

Example

Per son personl = new Person(EcoSpace);
personl. First Name = "Peter";

Per son person2 = new Person(EcoSpace);
person2. First Name = "Fred";

| Obj ect Li st origi nal Peopl e =
EcoSpace. Vari abl eFactory. Creat eT
ori gi nal Peopl e. Add(per sonl. Asl Cbj ect

ypedObj ect Li st (t ypeof (Person),
())
ori gi nal Peopl e. Add(per sonl. Asl Obj ect ())
())
()

ori gi nal Peopl e. Add(per son2. Asl Cbj ect
ori gi nal Peopl e. Add(per son2. Asl| Cbj ect

string ocl = "self->asSet";
| El enent result =
EcoSpace. Ccl . Eval uat e(ori gi nal Peopl e, ocl);
| Li st <Person> peopl e = result. CetAsl Li st <Person>();
foreach (Person person in people)
MessageBox. Show(per son. Fi r st Nane) ;

true);

Will show only two message boxes.

56

2.7 Query services ECO Services IOclService

Collect
Source Collection(<Any>)
Parameters expression
Result Collection(<Any>)

Description

A new collection is created, and for each element in the source the parameter is added.

Example

private void TestColl ect ()
{
CreateOrder(1);
CreateOrder(2);
Creat eOrder (3);

| El ement result;
result = EcoSpace. Ccl . Eval uate("Order. al | I nstances->col |l ect(o |
0. or der Li nes->si ze)");
foreach (int value in result.GetAslList<int>())
MessageBox. Show(val ue. ToString());

}
private void CreateOrder(int count)
{
Order order = new O der(EcoSpace);
for (int i =0; i < count; i++)
O derLine Iine = new O derLine(EcoSpace);
i ne. Order = order;
}
}

If multiple arguments are specified in the collect-operation, the result will be a collection of tuples:

’ Person. al | | nst ances->col | ect (firstName, |astNane) ‘

Will return a collection of tuples of pairs of strings

’ Per son. al | | nst ances->col | ect (firstName, |astNane, friends->sel ect(friends->size > 5))‘

Will return a collection of tuples that contains the firstname, lastname and a list of friends with more than 5 friends.

Count
Source Collection(<Any>)
Parameters <Any>
Result Int32

Description

Returns the number of occurances of the parameter in within the source collection.

sel f.friends.friends->count(self)

cal cul ates how many of a persons friends who have the person listed as a friend.

57

2.7 Query services ECO Services IOclService

Excluding
Source Collection(<Any>)
Parameters <Any> value
Result Collection(<Any>)

Description

Returns a copy of the source minus the value specified in the parameter.

Example

Per son. al | | nst ances- >excl udi ng(sel f)

FilterOnType

Source Collection(<Object>)

Parameters Type requiredType

Result Collection(<Object>)
Description

Returns a copy of the source; excluding any elements that are not of the type specified and not descended from the type
specified.

Example

Action
a 0.1 Actions{@

I

FilaSystemAction

a DatabaseAction
R ¥

8 BackupDatabaseAction ‘ ‘.j RestoreDatabaseAction ‘

sel f.actions->filterOnType(Dat abaseActi on)

Returns all associated actions that are either DatabaseAction, BackupDatabaseAction, or RestoreDatabaseAction.

First
Source Collection(<Any>)
Parameters
Result <Any>

58

2.7 Query services

Description

Returns the first element of the source collection.

Example

ECO Services

IOclService

sel f.actions->first

IncludesAll
Source Collection(<Any>)
Parameters Collection(<Any>) value
Result Boolean
Description

Returns true if every element in the parameter exists in the source.

Example

sel f.friends->i ncl udesAl | (var _Person2. fri ends)

All of var_Person2's friends are also the friends of the current person.

Including
Source Collection(<Any>)
Parameters <Any> value
Result Collection(<Any>)
Description

Returns a copy of the source plus the value specified in the parameter.

Example

soneCont ext . peopl e- >i ncl udi ng(var _Per son)

IndexOf
Source Collection(<Any>)
Parameters <Any> value
Result Int32
Description

Returns the index of the parameter within the source collection. The first result in the collection is 1, if the parameter is not

within the collection zero will be returned.

59

2.7 Query services ECO Services IOclService

Example

sel f. purchaseOr der.|ines->i ndex(f (sel f)

If PurchaseOrder.Lines is an ordered association then this OCL expression is a reliable way of determining the line number
on the PurchaseOrderLine class.

Notes

To return a zero based index use ->indexOf0

Last
Source Collection(<Any>)
Parameters
Result <Any>
Description

Returns the last element of the source collection.

Example

sel f.acti ons->| ast

Prepend
Source Collection(<Any>)
Parameters <Any> itemToAdd
Result Collection(<Any>)

Description

Returns the source collection with the addition of the itemToAdd, which appears as the first element within the result.

SubSequence
Source Collection(<Any>)
Parameters « Int32 firstindex
* Int32 numberOfltems
Result Collection(<Any>)

Description

Returns a subset of the source collection, starting at the first index specified and containing no more than the number of
items specified. The first index available is 1.

60

2.7 Query services ECO Services IOclService

SymmetricDifference

Source Collection(<Any>)

Parameters Collection(<Any>) comparison

Result Collection(<Any>)
Description

Returns a collection of all items that appear in only the source or parameter, excluding any items that appear in both.

Compare
Source Int32
Parameters Int32 comparison
Result Int32

Description

Compares the source to the parameter and returns either

-1 | The source is less than the specified value.

0 | The source and parameter are equal.

1 | The source is greater than the specified value.

Example

age. Conpar e(18)

Notes

Overloads exist for Decimal, DateTime, TimeSpan, and String.

Source String

Parameters String comparison

» Boolean ignoreCase

Result Int32

Description

Performs the same task except allows you to perform a case-insensitive comparison.

61

2.7 Query services ECO Services IOclService

Source String
Parameters « Int32 firstCharacterPositionOfSource
e String comparison
« Int32 firstCharacterPositionOfComparison

¢ Int32 lengthOfSubstringOfComparison

Result Int32

Description

A substring of the source is used instead of the whole value using ClrSubstring (@ see page 102). It is then compared to a
substring of the parameter.

Source String

Parameters « Int32 firstCharacterPositionOfSource
« String comparison
» Int32 firstCharacterPositionOfComparison
* Int32 lengthOfSubstringOfComparison

« Boolean ignoreCase

Result Int32

Description

Identical to the previous overload except that the comparison may be made in a case insensitive manner.

Constraints

Source <Object>

Parameters

Result Collection(Boolean)
Description

Evaluates each of the constraints on the specified business object. The return value itself isn't of much use, but it does
provide a way of quickly determining the validity of an object's state.

Example

sel f.constraints->select(c | not c)->i sEnpty

62

2.7 Query services

Returns True if the object has no broken constraints.

Create

ECO Services

IOclService

This operation creates a value of a specific type. This enables your OCL to be specific about the type of value you are
identifying in the expression.

Example

sel f. enpl oyees- >sel ect (sal ary >= Deci nal . Cr eat €(52000. 12))

In the OclPsService the Create operation may be used with the following types.

Type
DateTime

Parameters
---Overload 01---
* Int64 numberOfTicks

---Overload 02---
+ Int32 year

* Int32 month

* Int32 day
---Overload 03---
e Int32 year

* Int32 month

* Int32 day

* Int32 hour

* Int32 minute

* Int32 second

---Overload 04---
e Int32 year

* Int32 month

* Int32 day

* Int32 hour

* Int32 minute

* Int32 millisecond

63

2.7 Query services ECO Services

Decimal | ---Overload 01---
» Single value
---Overload 02---
» Double value
---Overload 03---
* Int32 value
---Overload 04---
* UInt32 value
---Overload 05---
* Int64 value
---Overload 06---

» UlInt64 value

---Overload 07---
* Int32 1o

e Int32 mid

e Int32 hi

» Boolean isNegative

IOclService

64

2.7 Query services

ECO Services

Guid ---Overload 01---

String value

---Overload 02---

Uint32 a
Uint16 b
Uintl6 c
Byte d
Byte e
Byte f
Byte g
Byte h
Byte i
Byte j
Byte k

---Overload 03---

Int32 a
Int16 b
Int16 c
Byte d
Byte e
Byte f

Byte g
Byte h
Byte i

Byte j

Byte k

IOclService

65

2.7 Query services ECO Services

TimeSpan | ---Overload 01---
* Int64 numberOfTicks
---Overload 02---

* Int32 hours

* Int32 minutes
* Int32 seconds
---Overload 03---

* Int32 days

* Int32 hours

* Int32 minutes
* Int32 seconds
---Overload 04---
* Int32 days

* Int32 hours

* Int32 minutes
* Int32 seconds

* Int32 milliseconds

String « Char characterToRepeat

* Int32 numberOfTimesToRepeat

IOclService

Date and time operations

AddDays
Source DateTime
Parameters Double days
Result DateTime
Description
Returns the source with the specified number of days added to it.
Example
start Ti me. AddDays(7)
AddHours
Source DateTime
Parameters Double hours
Result DateTime

66

2.7 Query services ECO Services

Description

Returns the source with the specified number of hours added to it.

Example

IOclService

start Ti me. AddHour s(2. 5)

AddMilliseconds

Source DateTime

Parameters Double milliseconds

Result DateTime
Description

Returns the source with the specified number of milliseconds added to it.

Example

startTi me. AddM | | i seconds(100)

AddMinutes
Source DateTime
Parameters Double minutes
Result DateTime

Description

Returns the source with the specified number of minutes added to it.

Example

’ start Ti me. AddM nut es(45)

AddMonths
Source DateTime
Parameters Int32 months
Result DateTime

Description

Returns the source with the specified number of months added to it.

67

2.7 Query services ECO Services IOclService

Example

start Ti me. AddMont hs(1)

AddSeconds
Source DateTime
Parameters Double seconds
Result DateTime

Description

Returns the source with the specified number of seconds added to it.

Example

’ start Ti me. AddSeconds(30)

AddTicks
Source DateTime
Parameters Int64 ticks
Result DateTime

Description

Returns the source with the specified nhumber of ticks added to it. The Int64 parameter is the number of 100-nanosecond
ticks to add.

Example

start Ti me. AddTi cks(1000)

AddYears
Source DateTime
Parameters Int32 years
Result DateTime

Description

Returns the source with the specified number of years added to it.

Example

dat eOf Bi rt h. AddYear s(100)

68

2.7 Query services ECO Services

IOclService

Date

Source DateTime

Parameters

Result DateTime
Description

Returns only the date part of a specified DateTime value.
Example

self.dateOBirth. date

Notes

It is possible to obtain the current date using the following OCL

’ Dat eTi ne. Now. Dat e ‘
or
’ Dat eTi ne. Today ‘
Day

Source DateTime

Parameters

Result Int32
Description

Returns the day number of the date.
Example

#2025- 12- 21. day
Returns 21.
Days

Source TimeSpan

Parameters

Result Int32

69

2.7 Query services ECO Services

Description

Returns the number of whole days in the time span.

Example

IOclService

Ti meSpan. Create(99, 12, 00, 00).days

Returns 99.
DayOfYear
Source DateTime
Parameters
Result Int32
Description

Returns the day number of the year.

Example

#2025- 12- 21. dayr Year

Returns 355.

DaysInMonth

Source DateTime

Parameters e [Nt32 year

¢ |nt32 month

Result Int32

Description

Returns the number of days in the specified month.

Example

Dat eTi ne. days| nMont h(2000, 2)

Returns 29.

70

2.7 Query services

ECO Services

Duration
Source TimeSpan
Parameters
Result TimeSpan
Description

Returns the duration of the source time span. The result will always be a positive.

Example

Ti meSpan. Creat e(-12, 00, 00).duration

Returns 12:00:00.

FormatDateTime

Source DateTime
Parameters String formatString
Result String
Description
Returns the source data formatted using the specified format string.
Example
Dat eTi ne. now. f or mat Dat eTi me(' yyyy- Mt dd hh: nm ss')
FromBinary
Source DateTime
Parameters Int64 serializedDateTimeValue
Result DateTime
Description

Recreates a DateTime value from a serialized value.

Example

Dat eTi ne. Fr onBi nar y(Dat eTi me. Now. ToBi nary)

71

2.7 Query services ECO Services

IOclService

FromDays
Source TimeSpan
Parameters Double numberOfDays
Result TimeSpan

Description

Creates a new TimeSpan from the number of days specified.

Example

Ti meSpan. f r onDays(99. 5)

Returns 99:12:00:00.

FromFileTime

Source DateTime

Parameters Int64 fileDateTime

Result DateTime
Description

Converts a file system date / time value to a DateTime.

Example

Dat eTi ne. fronFi | eTi me(sel f.fil eDat eTi me)

FromFileTimeUtc

Source DateTime

Parameters Int64 fileDateTime

Result DateTime
Description

Converts the specified Windows file time to an equivalent UTC time.

Example

Dat eTi ne. fronFi | eTi nreUt c(sel f.fil eDateTi ne)

72

2.7 Query services ECO Services

IOclService

FromHours
Source TimeSpan
Parameters Double numberOfHours
Result TimeSpan

Description

Creates a new TimeSpan from the number of hours specified.

Example

Ti meSpan. f r onHour s(36)

Returns 1:12:00:00.

FromMilliseconds

Source TimeSpan
Parameters Double numberOfMilliseconds
Result TimeSpan

Description

Creates a new TimeSpan from the number of milliseconds specified.

Example

Ti meSpan. fronM | | i seconds(1000)

Returns 00:00:01.

FromMinutes

Source TimeSpan
Parameters Double numberOfMinutes
Result TimeSpan

Description

Creates a new TimeSpan from the number of minutes specified.

Example

Ti meSpan. f ronM nut es(1. 5)

73

2.7 Query services ECO Services

Returns 00:01:30.

IOclService

FromSeconds
Source TimeSpan
Parameters Double numberOfSeconds
Result TimeSpan

Description

Creates a new TimeSpan from the number of seconds specified.

Example

Ti meSpan. f r onSeconds(90)

Returns 00:01:30.

FromTicks
Source TimeSpan
Parameters Int64 ticks
Result TimeSpan

Description

Creates a new TimeSpan from the number of ticks specified.

Hour
Source DateTime
Parameters
Result Int32
Description

Returns the hour part of the source.

Hours
Source TimeSpan
Parameters
Result Int32

74

2.7 Query services

Description

Returns the hour part of the source.

ECO Services

IOclService

InDateRange
Source DateTime
Parameters » DateTime firstDate
» DateTime lastDate
Result Boolean
Description

Returns True if the source DateTime is >= firstDate and <= lastDate.

Example

Dat eTi ne. t oday. addDays(1))

sel f. appoi nt nent s- >sel ect (a | a. dueDat e. i nDat eRange(Dat eTi ne. t oday,

InTimeRange

Source TimeSpan

Parameters » TimeSpan firstTime
e TimeSpan lastTime

Result Boolean

Description

Returns True if the source TimeSpan is >= firstTime and <= lastTime.

Example

sel f .t odaysAppoi nt nent s- >sel ect (a |
Dat eTi ne. now. addHour s(1))

a.start Ti ne. i nTi neRange(Dat eTi ne. now,

IsDaylightSavingTime

Source DateTime

Parameters

Result Boolean
Description

Returns a value indicating whether a specified date and time is within a daylight saving time period.

Example

Dat eTi ne. now. i sDayl i ght Savi ngTi ne

75

2.7 Query services

ECO Services

IOclService

IsLeapYear
Source <Static operation> DateTime
Parameters
Result Boolean
Description

Returns a value indicating whether a specified year is a leap year.

Example

Dat eTi ne. | sLeapYear (2008)

Millisecond

Source
Parameters

Result

DateTime

Int32

Description

Returns a number between 0 and 999 indicating the milliseconds part of the specified DateTime.

Milliseconds

Source
Parameters

Result

TimeSpan

Int32

Description

Returns a number between 0 and 999 indicating the milliseconds part of the specified TimeSpan.

Minute
Source DateTime
Parameters
Result Int32
Description

Returns a number between 0 and 59 indicating the minute part of the specified DateTime.

76

2.7 Query services ECO Services IOclService

Minutes
Source TimeSpan
Parameters
Result Int32
Description

Returns a number between 0 and 59 indicating the minute part of the specified TimeSpan.

Month
Source DateTime
Parameters
Result Int32
Description

Returns a number between 1 and 12 indicating the month of the specified DateTime.

Negate
Source TimeSpan
Parameters
Result TimeSpan
Description

Returns the negated value of the source. A positive TimeSpan will be result in a negative, and a negative in a positive.

Now
Source <Static operation> DateTime
Parameters
Result DateTime
Description

Returns the current date and time.

Example

Dat eTi ne. now

77

2.7 Query services ECO Services

IOclService

Second
Source DateTime
Parameters
Result Int32
Description

Returns a number between 0 and 59 indicating the second part of the specified DateTime.

Seconds
Source TimeSpan
Parameters
Result Int32
Description

Returns a number between 0 and 59 indicating the second part of the specified TimeSpan.

SumTime
Source Collection(TimeSpan)
Parameters
Result TimeSpan
Description

Produces a TimeSpan that is a sum of all entries in the collection.

Ticks
Source DateTime
Parameters
Result Int64
Description

Returns the total number of ticks that represent the source value.

Notes

An overload also exists for TimeSpan.

78

2.7 Query services ECO Services IOclService

Time
Source DateTime
Parameters
Result TimeSpan
Description

Returns the time part of the source.

TimeOfDay
Source DateTime
Parameters
Result TimeSpan
Description

Returns the time part of the source.

TimeStampToTime

Source Int32
Parameters

Result DateTime
Description

This object-versioning operation will take an object time-stamp number (integer) and return the date and time at which the
time stamp was created.

Example

sel f. obj ect Ti meSt anp. ti neSt anpToTi ne

This example retrieves the current time stamp for the object instance (the last time it was modified) and returns the date and
time of that time stamp.

TimeToTimeStamp

Source DateTime
Parameters

Result Int32
Description

This object-versioning operation will take a date and time and return the appropriate time-stamp number that corresponds.

Example

79

2.7 Query services ECO Services

IOclService

Dat eTi ne. now. addDays(-1).ti meToTi neSt anp

ToBinary
Source DateTime
Parameters
Result Int64
Description

Serializes the source to a 64 bit integer.

Today
Source <Static operation> DateTime
Parameters
Result DateTime
Description

Returns only the date part of the current date.

ToFileTime
Source DateTime
Parameters
Result Int64
Description

Returns the source converted to a Windows file system date/time.

ToFileTimeUtc

Source DateTime
Parameters

Result Int64
Description

Returns the source converted to a Windows file system date/time.

ToLocalTime

Source DateTime
Parameters
Result DateTime
Description

Returns the source converted to a local date/time.

80

2.7 Query services ECO Services

ToLongDateString

IOclService

Source
Parameters

Result

DateTime

String

Description

Uses the Windows regional settings to convert the source into a long date string.

ToLongTimeString

Source
Parameters

Result

DateTime

String

Description

Uses the Windows regional settings to convert the source into a long time string.

ToShortDateString

Source

Parameters

Result

DateTime

String

Description

Uses the Windows regional settings to convert the source into a short date string.

ToShortTimeString

Source

Parameters

Result

DateTime

String

Description

Uses the Windows regional settings to convert the source into a short time string.

TotalDays

Source

Parameters

Result

TimeSpan

Double

Description

Returns the total number of days in the source, including the fractional part.

81

2.7 Query services ECO Services

IOclService

TotalHours
Source TimeSpan
Parameters
Result Double
Description

Returns the total number of hours in the source, including the fractional part.

TotalMilliseconds

Source TimeSpan
Parameters

Result Double
Description

Returns the total number of milliseconds in the source, including the fractional part.

TotalMinutes

Source TimeSpan
Parameters

Result Double
Description

Returns the total number of minutes in the source, including the fractional part.

TotalSeconds

Source TimeSpan
Parameters

Result Double
Description

Returns the total number of seconds in the source, including the fractional part.

ToUniversalTime

Source DateTime
Parameters
Result DateTime
Description

Returns the source converted to a coordinated universal time.

82

2.7 Query services

ECO Services

IOclService

UtcNow
Source <Static operation> DateTime
Parameters
Result DateTime
Description

Returns the current date and time expressed as universal coordinated time.

Example

Dat eTi nme. ut cNow

Year
Source DateTime
Parameters
Result Int32
Description
Returns the whole number of years in the source.
EmptyList
Source <Type>
Parameters
Result Collection(<Object>)
Description
Returns a strongly typed collection of the specified type, the result will have no elements in it.
Example

OCL for an association may look something like this

if (sone condition) then

sel f.orders
el se
O der. enpt yLi st
endi f
Existing

Source <Instance>
Parameters
Result Boolean

83

2.7 Query services ECO Services IOclService

Description

Returns true if the object still exists (and false if it has been deleted)

Externalld
Source <Instance>
Parameters
Result String
Description

Returns the Externalld of the source. See the External ID Service (@ see page 4).

If

Provides a way of providing conditional evaluation.

Example

if (sone condition)
sel f.orders
el se
O der . enpt yLi st
endi f

Notes

Since every OCL expression needs to have a value, the "else-clause" of an if-statement is not optional as it is in most
programming languages. The OCL evaluator will only evaluate the result of either the "then-clause" or the "else-clause"
depending of the condition.

Let

The "Let" operation identifies the value of a variable in a statement.

The syntax for the let-statement is:

| et <vari abl ename> = <expressi on> i n <expressi on>

The variable will be assigned the value of the first expression and can be referenced any number of times in the second
expression

For example

’ | et naneToFind = 'Peter' in Person.alllnstances->select(firstNane = naneToFi nd) ‘

is the equival ent of

’ Person. al | | nst ances- >sel ect (first Nane = ' Peter') ‘

This operator is useful for repeated use of a val ue.

| et val ueToUse = (sone costly OCL evaluation) in
Conpany. al | | nst ances- >sel ect (
(rel evant Menber > val ueToUse) or (ot herRel evant Menmber > val ueToUse)
)

If the evaluation of the value is costly then using the "let" operation prevents you from
having to eval uate the value nore than once.

84

2.7 Query services ECO Services

Mathematical operations

Abs

IOclService

Source
Parameters

Result

Int16

Int16

Description

Returns the absolute value of a number.

Example

sel f. debt . abs

Notes

Additional overloads exist for SByte, Int16, Int16, Single, Double, and Decimal.

AcosS

Source

Parameters

Result

Double

Double

Description

Using the source as a Cosine value this operation will return its corresponding angle.

Example

sel f. cosi neVal ue. acos

Asin

Source
Parameters

Result

Double

Double

Description

Using the source as a Sine value this operation will return its corresponding angle.

85

2.7 Query services ECO Services IOclService

Example

sel f. si neVal ue. asi n

Atan
Source Double
Parameters
Result Double
Description

Using the source as a tangent this operation will return its corresponding angle.

Example

’ sel f. tangent. at an

Atan?2
Source Double
Parameters Double yCoOrdinate
Result Double

Description

Uses the source as a relative X coordinate and the parameter as a relative Y coordinate. Using this coordinate the tangent is
calculated and its corresponding angle is returned.

Example

sel f. xposi tion. at an2(yposi ti on)

BigMul
Source Int32
Parameters Int32 factor
Result Int64

Description

Multiplies the source by the factor and returns an Int64. This operation should be used when the source is an Int32 but the
result is expected to be too large to be represented by an Int32.

86

2.7 Query services ECO Services

IOclService

Ceiling
Source Double
Parameters
Result Double
Description

Rounds the source up to the closest whole number.

Notes

An overload also exists for Decimal.

Cos
Source Double
Parameters
Result Double
Description

Using the source as an angle this operation will return its corresponding Cosine value.

Example

sel f . angl e. cos

Cosh
Source Double
Parameters
Result Double
Description

Using the source as an angle this operation will return its corresponding hyperbolic Cosine value.

Example

sel f. angl e. cosh

Exp

Source Double

Parameters Double power

87

2.7 Query services

Result

ECO Services

IOclService

Double

Description

Returns the source raised to the specified power.

Example

| 2. Exp(8)

Returns 256.

Floor

Source

Parameters

Result

Double

Double

Description

Rounds the source down to the closest whole number.

Notes

An overload also exists for Decimal.

IsInfinity

Source

Parameters

Result

Single

Boolean

Description

Returns a value indicating whether the specified number evaluates to negative or positive infinity.

Notes

An additional overload exists for Double.

IsNaN

Source

Parameters

Result

Single

Boolean

88

2.7 Query services ECO Services

Description

Returns a value indicating whether the specified number evaluates to not a number (NaN).

Notes

An additional overload exists for Double.

IsNegativelnfinity

IOclService

Source
Parameters

Result

Single

Boolean

Description

Returns a value indicating whether the specified number evaluates to negative infinity.

Notes

An additional overload exists for Double.

IsPositivelnfinity

Source

Parameters

Result

Single

Boolean

Description

Returns a value indicating whether the specified number evaluates to positive infinity.

Notes

An additional overload exists for Double.

Log

Source

Parameters

Result

Double

Double

Description

Returns the natural (base e) logarithm of a specified number.

89

2.7 Query services ECO Services IOclService

Source Double

Parameters Double newBase

Result Double
Description

Returns the natural (base e) logarithm of a specified number in a specified base.

Logl0
Source Double
Parameters
Result Double
Description

Returns the base 10 logarithm of a specified number.

Max
Source Int32
Parameters Int32 comparison
Result Int32
Description

Compares the source with the parameter and returns the greater of the two values.

Example
| 1. max(2)

Notes
Additional overloads exist for SByte, Byte, Int16, UInt16, UInt32, Int64, UInt64, Single, Double, and Decimal.

Min
Source Int32
Parameters Int32 comparison
Result Int32

90

2.7 Query services ECO Services IOclService

Description

Compares the source with the parameter and returns the lesser of the two values.

Example
| 2.min(1)

Notes
Additional overloads exist for SByte, Byte, Int16, UInt16, UInt32, Int64, UInt64, Single, Double, and Decimal.

Neg ate
Source Decimal
Parameters
Result Decimal
Description

Returns the negated value of the source. A positive value will be result in a negative, and a negative in a positive.

Pow
Source Double
Parameters Double exponent
Result Decimal

Description

Returns the source raised to the power of the specified exponent.

Remainder
Source Decimal
Parameters Decimal divisor
Result Decimal

Description

Divides the source by the specified divisor and returns the remainder.

91

2.7 Query services ECO Services IOclService

Round
Source Decimal
Parameters
Result Decimal
Description

Returns the result of rounding the source to the nearest whole number.

Source Decimal

Parameters Int32 fractionalDigits

Result Decimal
Description

Returns the result of rounding the source to the specified number of fractional digits.

Notes

An overload also exists for Double.

Sin
Source Double
Parameters
Result Double
Description

Using the source as an angle this operation will return its corresponding Sine value.

Example

sel f.angle.sin

Sinh
Source Double
Parameters
Result Double

92

2.7 Query services ECO Services IOclService

Description

Using the source as an angle this operation will return its corresponding hyperbolic Sine value.

Example

sel f. angl e. si nh

Sqart
Source Double
Parameters
Result Double
Description

Returns the square root of the source.

Tan
Source Double
Parameters
Result Double
Description

Using the source as an angle this operation will return its corresponding Tangent value.

Example

sel f.angle.tan

Tanh
Source Double
Parameters
Result Double
Description

Using the source as an angle this operation will return its corresponding hyperbolic Tangent value.

Example

sel f. angl e. t anh

93

2.7 Query services ECO Services

IOclService

Truncate
Source Decimal
Parameters
Result Decimal
Description

Returns the whole number part of the source, any fractional part is discarded.

Notes

An overload exists for Double.

MaxLength
Source <String attribute>
Parameters
Result Int32
Description

Returns the maximum value length a string property may hold, as defined in the model.

Example

Person instance = new Person(EcoSpace);
i nt maxLength = ecoSpace. Ccl . Eval uat e(i nst ance. Asl Obj ect (),
"sel f.firstNane. maxLengt h") . Get Val ue<i nt >();

Notes

This OCL operation can be useful for ensuring maximum lengths are not exceeded in your Ul. Simply add an additional
column to your ECO handle for each string attribute on your class with the expression "self.<member name>.maxLength" - it
is then possible to databind the MaxLength of a TextBox for example to this value rather than hard-coding it and having to

manually update if the model changes.

ModifiedSinceTimeStamp

Source
Parameters

Result

<Instance>

Int32 timeStamp

Boolean

94

2.7 Query services ECO Services IOclService

Description

Returns True if the instance has been modified on or after the specified time stamp, otherwise False. This OCL operation
supports the object versioning mechanism.

NewGuid

Source

Parameters

Result

<Static operation> Guid

Guid

Description

Returns a new Guid.

Example

‘"here is a new guid' +Gui d. NewGui d. asStri ng

ObjectFromExternalld

Source
Parameters

Result

<Type>
string externalld

<Instance>

Description

Returns the object with the given persistent ID. The ID consists of the class type and the primary key of the object, and may
be obtained using the Externalld (@ see page 84) operation. This operation is useful in ASP.NET applications where the ID
of an object is passed as a query parameter in a URL.

Example

Per son. obj ect Fr omExt er nal 1 d(var _Ext er nal | d)

This expression is very useful to use in an EcoDataSource on an ASP.Net page where the variable var_Externalld can be
bound to a parameter in the URL.

ObjectTimeStamp

Source <Instance>

Parameters

Result Int32
Description

Returns the version time stamp of the source. This value will typically be Int32.MaxValue, except when you use a historical
object version as the source.

95

2.7 Query services ECO Services IOclService

OclAsType
Source <Instance>
Parameters
Result <Instance>
Description

Casts the source to the specified sub-class.

Example

Based ass. al | | nst ances->first.ocl AsType(Subd ass) . attributeOnSubd ass

Source Collection(<Instance>)

Parameters

Result Collection(<Instance>)
Description

Casts the source collection to the specified sub-class.

Example

BaseCl ass. al | I nst ances. ocl AsType(SubCl ass) . attri but eOnSubCl ass

Notes

An InvalidCastException will be thrown if the source cannot be cast to the specified type.

OclIsKindOf
Source <Instance>
Parameters <Type>
Result Boolean

Description

Returns True if the source may be type cast to the type specified as a parameter.

96

2.7 Query services ECO Services IOclService

Example

[/ True. SubCl ass nay be cast to a Based ass.
bool subd assl ski ndOf BaseCl ass = EcoSpace. Ccl . Eval uat e(
subd ass. Asl Obj ect (),

"sel f.ocl | skKindOf (BaseCl ass) ") . Get Val ue<bool >();

// Fal se. Based ass may not be cast to a SubC ass

bool based assl sKi ndOf SubCl ass = EcoSpace. Ccl . Eval uat e(
baseC ass. Asl Obj ect (),

"sel f.ocl | ski ndOf (SubCl ass) ") . Get Val ue<bool >();

OcllsTypeOf
Source <Instance>
Parameters <Type>
Result Boolean
Description

Returns True if the source is an instance of the type specified by the parameter.

Example

[/ True. subClass is an instance of the Subd ass type.
bool subd assl sTypeOf SubCl ass = EcoSpace. Ccl . Eval uat e(
subd ass. Asl Obj ect (),

"sel f.ocl | sTypeOf (SubCl ass) ") . Get Val ue<bool >();

//Fal se. subC ass is not an instance of the BaseC ass type, despite being descended
from Based ass.

bool subCd assl sTypeOf BaseCl ass = EcoSpace. Ccl . Eval uat e(
subCl ass. Asl Obj ect (),

"sel f.ocl | sTypeOf (Based ass) ") . Get Val ue<bool >();

Parse
Source <Static operation> <Type>
Parameters String value
Result <Instance of Type>

Description

The Parse operation executes the static Parse(String) method on the specified type. This operation is available on all
standard .NET types that implement the method.

Example

Dat eTi ne. Par se(' 2001- 01- 31")
Dat eTi ne. Par se(' 2001- 01- 31T12: 30: 59')
Byt e. Parse(' 255')

97

2.7 Query services ECO Services IOclService

SafeCast
Source <Instance>
Parameters <Type>
Result <Instance>

Description

Casts the source to the specified type. If the source is not compatible with the type the operation will silently fail and return
null/nil.

Example

var based ass = new Based ass(EcoSpace) ;
var subCl ass =
EcoSpace. Ccl . Eval uat e(
baseC ass. Asl Obj ect (),
"sel f.saf eCast (SubCl ass) ") . Get Val ue<SubC ass>();

Results in subClass being null.

Source Collection(<Instance>)

Parameters <Type>

Result Collection(<Instance>)
Description

Casts each instance in the source collection to the specified type. If the source is not compatible with the type the operation
will silently fail and add null/nil for the individual instance before continuing with the next instance in the source.

Example

var baseCd ass = new BaseC ass(EcoSpace) ;
var subC ass = new Subd ass(EcoSpace) ;
var subd assLi st Count =
EcoSpace. Ccl . Eval uat e(
baseCl ass. Asl Obj ect (),
"Based ass. al | | nst ances. saf eCast (SubCl ass) ")
. Get AsCol | ecti on() . Count;

Results in subClassListCount holding the value 2, the resulting collection holds a valid object and a nil reference.

State machine operations

OclGetStates

Source <Instance>
Parameters
Result Collection(String)

98

2.7 Query services ECO Services 10clService

Description

Given a source instance this operation will return a string for each state the object is in.

Example
Result

¢ Authoring
Result

¢ Reviewing.CheckingGrammar

99

2.7 Query services ECO Services IOclService

If the state machine contains parallell states, the result from this operation can contain more than one state.

OclGetTriggers

Source <Instance>

Parameters

Result Collection(String)
Description

Given a source instance this operation will return a string for each available trigger depending on its current state. Guard
expressions are not evaluated in order to include/exclude triggers from the result.

Example
Reviewing
-5 ReviewingRedion
L
CheckingSpelling
Reject
== Rejected
Publizh SpelingCheckead
[rat. self Author. AutoPublizh Aicles]
- Ty CheckingGrammar
GrammarChecked
®
Puiblish
[zelf Author AutoPublizhiicles]
Published
Result
* GrammarChecked
* Reject
OcllIsInState
Source <Instance>
Parameters EnumLiteral StateName
Result Boolean
Description

Given a source instance and the name of a state this operation will return True or False depending on whether or not the
instance's state machine is in that state.

100

2.7 Query services ECO Services IOclService

Example
Reviewing
-5 ReviewinoRedion
L
CheckingSpelling
- Reject
Rejected
Publizh SpelingChecked
[nat. s&lf Author. AutoPublizhArticles]
- Authoring CheckingGrammar
GrammarChecked
®
Puklizh
[=elf Author AutoPublishAicles]
Published
[/ True

bool isReview ng =
EcoSpace. Ccl . Eval uat e(
article. Asl oj ect (),
"sel f.ocl|slnState(#Revi ewi ng)"). Cet Val ue<bool >();

[/ True
bool isChecki ngG ammar =
EcoSpace. Ccl . Eval uat e(
article. Asl oj ect (),
"sel f.oclIslnState(#Checki ngG anmar) ") . Get Val ue<bool >();

[/ Fal se
bool isPublished =
EcoSpace. Ccl . Eval uat e(
article. Asl bj ect (),
"sel f.ocl|slnState(#Published)"). Cet Val ue<bool >();

String operations

Chars
Source String
Parameters Int32 index
Result Char

Description

Returns the character at the specified index of the source. The index is zero based.

101

2.7 Query services ECO Services

Example

IOclService

'Hel | o' . chars(0)

ClrSubstring

Source String
Parameters Int32 firstindex
Result

String

Description

Uses the CLR String.Substring routine to return a substring of the source.

Example

"Hel |l o' . substring(2)

Returns "llo".

Source String

Parameters Int32 firstindex

Int32 length

Result String

Description

Uses the CLR String.Substring routine to return a substring of the source.

Example

"Hel | o' . substring(2, 2)

Returns "II".

Concat

Source String
Parameters String value
Result

String

102

2.7 Query services ECO Services IOclService

Description

Returns the result of appending the parameter to the source.

Example
"Hell o' . concat (' World')

Notes

Additional overloads exist to enable you to specify between one and three values to append to the end of the source.

Contains
Source String
Parameters String value
Result Boolean

Description

Returns True if the text specified exists within the source.

Example

"Hell o' .contains('llo")

EndsWith
Source String
Parameters String value
Result Boolean

Description

Returns True if the source ends with the string specified.

Example
"Hell o' . endsWth('lo")

Returns True.

103

2.7 Query services ECO Services IOclService

Format
Source String
Parameters » String source
» Object value
Result String

Description

Uses the .NET String.Format method on the source to produce a new string. The "value" parameter may be repeated
multiple times.

Example

String.format (' The tinme now is {0:g}', DateTi ne. Now)

GetNumericValue

Source Char

Parameters

Result Double
Description

Converts the specified numeric Unicode character to a double-precision floating point number.

IndexOf
Source String
Parameters Char character
Result Int32

Description

Uses the CLR String.Substring routine. Returns the index of the first occurrence of the specified Unicode character in the
source string.

Example

'Hello".indexOf('e")

Source String

Parameters String subString

104

2.7 Query services ECO Services IOclService

Result Int32

Description

Uses the CLR String.Substring routine. Returns the index of the first occurrence of the specified sub string in the source
string.

Example

'Hello".indexOf('llo")

Source String

Parameters ¢ Char character

¢ |nt32 startPosition

Result Int32

Description

Uses the CLR String.Substring routine. Returns the index of the first occurrence of the specified Unicode character in the
source string. The search starts at the specified zero-based character position.

Example

'Hello hello'.indexOf('I', 4)

Source String

Parameters * String subString

* Int32 startPosition

Result Int32

Description

Uses the CLR String.Substring routine. Returns the index of the first occurrence of the specified sub string in the source
string. The search starts at the specified zero-based character position.

Example

'Hello hello".indexOf(ll", 4)

105

2.7 Query services ECO Services IOclService

Source String

Parameters » Char character
¢ |nt32 startPosition
¢ Int32 subStringLength

Result Int32

Description

Uses the CLR String.Substring routine. Returns the index of the first occurrence of the specified Unicode character in the
source string. The search starts at the specified zero-based character position and only inspects the specified number of
characters.

Example

'Hello hello'.indexOf(l', 5, 3)

Source String

Parameters « String subString
e Int32 startPosition
¢ Int32 subStringLength

Result Int32

Description

Uses the CLR String.Substring routine. Returns the index of the first occurrence of the specified sub string in the source
string. The search starts at the specified zero-based character position and only inspects the specified number of characters.

Example

'Hello hello'.indexOf(ll', 5, 5)

Insert
Source String
Parameters « Int32 startPosition
» String stringTolnsert
Result String

Description
Returns a new string by inserting the parameter string into the source at the specified zero-based index.

Example
"Hel o' .insert(2, 'I")

106

2.7 Query services ECO Services IOclService

IsControl
Source Char
Parameters
Result Boolean
Description

Indicates whether a specified Unicode character is categorized as a control character.

Example

sel f.firstNane. chars(0).isControl

Source <Static operation> Char
Parameters « String value
¢ Int32 index
Result Boolean
Description

Indicates whether the character at the specified position in a specified string is categorized as a control character.

Example

Char.isControl (' Sone string with a control character', 2)

IsDigit
Source Char
Parameters
Result Boolean
Description

Indicates whether a Unicode character is categorized as a decimal digit.

Example

self.dateOBirth.asString.chars(2).isDigit

107

2.7 Query services ECO Services IOclService

Source <Static operation> Char
Parameters + String value
¢ |nt32 index
Result Boolean
Description

Indicates whether the character at the specified position in a specified string is categorized as a decimal digit.

Example

Char.isDigit('ABC9', 3)

IsHighSurrogate

Source Char
Parameters

Result Boolean
Description

Indicates whether the specified Char object is a high surrogate.

Example

sel f.firstNane.chars(0).isHi ghSurrogate

Source <Static operation> Char
Parameters - String value
¢ Int32 index
Result Boolean
Description

Indicates whether the Char at the specified position in a string is a high surrogate.

Example

Char.isH ghSurrogate(' Hell o', 0)

IsLetter
Source Char
Parameters
Result Boolean

108

2.7 Query services ECO Services

Description

Indicates whether a Unicode character is categorized as an alphabetic letter.

Example

IOclService

sel f.firstNane.chars(0).isLowSurrogate

Source <Static operation> Char
Parameters « String value
¢ Int32 index
Result Boolean
Description

Indicates whether the character at the specified position in a specified string is categorized as an alphabetic character.

Example

Char.isLetter('0123A", 4)

IsLetterOrDigit

Source Char

Parameters

Result Boolean
Description

Indicates whether a Unicode character is categorized as an alphabetic letter or a decimal digit.

Example

sel f.firstNane.chars(0).isLetterODigit

Source <Static operation> Char
Parameters « String value

¢ Int32 index
Result Boolean

109

2.7 Query services ECO Services IOclService

Description

Indicates whether the character at the specified position in a specified string is categorized as an alphabetic character or a
decimal digit.

Example
Char.islLetterODigit('-ABl12-', 0)

IsLower
Source Char
Parameters
Result Boolean
Description

Indicates whether the specified Unicode character is categorized as a lowercase letter.

Example

sel f.firstNane. chars(0).isLower

Source <Static operation> Char
Parameters e String value
e Int32 index
Result Boolean
Description

Indicates whether the character at the specified position in a specified string is categorized as a lowercase letter.

Example

Char.isLower (' Lower', 1)

IsLowSurrogate
Source Char
Parameters
Result Boolean
Description

Indicates whether the specified Char is a low surrogate.

110

2.7 Query services ECO Services IOclService

Example

sel f.firstNane.chars(0).isLowSurrogate

Source <Static operation> Char
Parameters « String value
e Int32 index
Result Boolean
Description

Indicates whether the Char at the specified position in a string is a low surrogate.

Example

Char.isLowSurrogate(' Hell o', 0)

IsNormalized

Source String

Parameters

Result Boolean
Description

Indicates whether this string is in a particular Unicode normalization form.

ISNullOrEmpty

Source String

Parameters

Result Boolean
Description

Indicates whether the specified String object is a null reference or an empty string.

IsNumber
Source Char
Parameters
Result Boolean

111

2.7 Query services ECO Services

Description

Indicates whether a Unicode character is categorized as a number.

Example

IOclService

sel f.firstNane.chars(0).isNunber

Source <Static operation> Char
Parameters « String value
¢ Int32 index
Result Boolean
Description

Indicates whether the character at the specified position in a specified string is categorized as a number.

Example

Char . i sNunber (' 123", 0)

IsPunctuation

Source Char

Parameters

Result Boolean
Description

Indicates whether a Unicode character is categorized as a punctuation mark.

Example

sel f.firstNane.chars(0).isPunctuation

Source <Static operation> Char
Parameters « String value

¢ Int32 index
Result Boolean

112

2.7 Query services ECO Services IOclService

Description

Indicates whether the character at the specified position in a specified string is categorized as a punctuation mark.

Example

Char.isPunctuation('Hello world!"', 11)

IsSeparator
Source Char
Parameters
Result Boolean
Description

Indicates whether a Unicode character is categorized as a separator character.

Example

sel f.firstNane. chars(0).isSeparat or

Source <Static operation> Char
Parameters e String value
e Int32 index
Result Boolean
Description

Indicates whether the character at the specified position in a specified string is categorized as a separator character.

Example

Char.isSeparator('\t', 0)

IsSurrogate
Source Char
Parameters
Result Boolean
Description

Indicates whether the specified Char is a low surrogate.

113

2.7 Query services ECO Services

Example

IOclService

sel f.firstNane.chars(0).isSurrogate

Source <Static operation> Char
Parameters « String value
e Int32 index
Result Boolean
Description

Indicates whether the Char at the specified position in a string is a low surrogate.

Example

Char.isSurrogate(' Hello', 0)

IsSurrogatePair

Source Char
Parameters

Result Boolean
Description

Indicates whether the two specified Chars form a surrogate pair. .

Example

sel f.firstNane.chars(0).isSurrogatePair(self.firstNane.chars(1))

Source <Static operation> Char
Parameters « String value
e Int32 index
Result Boolean
Description

Indicates whether two adjacent Chars at the specified position form a surrogate pair.

Example

Char . i sSurrogat ePair(sel f.firstName, 0)

114

2.7 Query services ECO Services IOclService

IsSymbol
Source Char
Parameters
Result Boolean
Description

Indicates whether a Unicode character is categorized as a symbol.

Example

sel f.firstNanme. chars(0).isSynbol

Source <Static operation> Char
Parameters « String value
¢ Int32 index
Result Boolean
Description

Indicates whether the character at the specified position in a specified string is categorized as a symbol.

Example

Char.isSynbol ("1 + 1 = 2', 2)

IsU pper
Source Char
Parameters
Result Boolean
Description

Indicates whether the specified Unicode character is categorized as a uppercase letter.

Example

sel f.firstNane. chars(0).isUpper

115

2.7 Query services ECO Services IOclService

Source <Static operation> Char
Parameters + String value
e Int32 index
Result Boolean
Description

Indicates whether the character at the specified position in a specified string is categorized as a uppercase letter.

Example

Char . i sUpper (' Upper', 0)

IsWhiteSpace

Source Char

Parameters

Result Boolean
Description

Indicates whether the specified Unicode character is categorized as a white space letter.

Example

sel f.firstNane. chars(0).isWiteSpace

Source <Static operation> Char
Parameters « String value
e Int32 index
Result Boolean
Description

Indicates whether the character at the specified position in a specified string is categorized as a white space letter.

Example

Char.i sWiiteSpace(' Hello worl d', 5)

116

2.7 Query services ECO Services IOclService

LastindexOf

Source String

Parameters String value

Result Boolean
Description

Reports the index position of the last occurrence of a specified string within the source string.

Example
self.firstNane.|astlndexCOF('.")

Source String

Parameters » String value
* Int32 position

Result Boolean

Description

Reports the index position of the last occurrence of a specified string within the source string. This overload searches a
sub-string of the source, the substring will be the first character (position 0) up to and including the position specified.

Example
sel f.firstNane.|astlndexOf('."', 5)
Source String
Parameters « String value
¢ Int32 startindex
¢ Int32 length
Result Boolean
Description

Reports the index position of the last occurrence of a specified string within the source string. This overload searches a
sub-string of the source, the substring will be the character specified by the startindex with the specified length.

117

2.7 Query services ECO Services IOclService

Example
sel f.firstName. | astlndexCOf('."', 3, 10)
Normalize
Source String
Parameters
Result String
Description

Returns a new string whose binary representation is in a particular Unicode normalization form.

Pad
Source String
Parameters « Int32 newLength
» String paddingString
Result String

Description

Returns a new string based on the source with a guaranteed minimum length. If the source is shorter than the specified new
length it will be left-padded with the specified text, if it is already equal to or longer than the specified new length the result
will be the same as the source.

Example

//returns 21212Hel | o
"Hel | o' . pad(10, '12')

PadLeft
Source String
Parameters Int32 newLength
Result String

Description

Returns a new string based on the source with a guaranteed minimum length. If the source is shorter than the specified new
length the left of the string be padded with spaces, if it is already equal to or longer than the specified new length the result
will be the same as the source.

Example
| " Hell o' . padLeft (6) |

Returns " Hello"

| "Hello . padleft(3) |

Returns "Hello"

118

2.7 Query services ECO Services IOclService

Source String
Parameters Int32 newLength
Char paddingCharacter
Result String
Description

Returns a new string based on the source with a guaranteed minimum length. If the source is shorter than the specified new
length the left of the string be padded with the specified character, if it is already equal to or longer than the specified new
length the result will be the same as the source.

Example
"Hel | o' . padLeft (10, "a'.chars(0))

Returns "aaaaaHello"

PadRight
Source String
Parameters Int32 newLength
Result String

Description

Returns a new string based on the source with a guaranteed minimum length. If the source is shorter than the specified new
length the right of the string be padded with spaces, if it is already equal to or longer than the specified new length the result
will be the same as the source.

Example
| " Hell o' . padRi ght (6) |

Returns "Hello "

"Hel | o' . padRi ght (3)
| |

Returns "Hello"

Source String
Parameters Int32 newLength
Char paddingCharacter
Result String
Description

Returns a new string based on the source with a guaranteed minimum length. If the source is shorter than the specified new
length the right of the string be padded with the specified character, if it is already equal to or longer than the specified new
length the result will be the same as the source.

119

2.7 Query services ECO Services IOclService

Example

'Hello'.padRight(10, 'a’.chars(0))

Returns "Helloaaaaa"

PostPad
Source String
Parameters Int32 newLength
String paddingString
Result String

Description

Returns a new string based on the source with a guaranteed minimum length. If the source is shorter than the specified new
length the right of the string be padded with the specified padding string, truncating the result if necessary. If the source is
already equal to or longer than the specified new length the result will be the same as the source.

RegExpMatch
Source String
Parameters String pattern
Result Boolean

Description

Evaluates the specified pattern against the source and returns whether or not the source matches the pattern.

For information of the syntax for regular expression, please refer to the .net framework documentation.

Remove
Source String
Parameters Int32 firstCharToRemove
Result String

Description

Removes the end of the source string from the firstCharToRemove onwards and returns the result.

Example
"Hell o Worl d!'' . Renove(5)

Returns "Hello"

Source String

Parameters Int32 firstCharToRemove
Int32 numberOfCharsToRemove

120

2.7 Query services ECO Services IOclService

Result String

Description

Removes the specified number of characters from the source string starting from firstCharToRemove.

Example

"Hello Worl d!''. Renove(5, 6)

Returns "Hello!"

Replace
Source String
Parameters String textToFind
String textToReplace
Result String

Description

Returns a string based on the source but with all occurences of textToFind replaced with textToReplace.

Example

"Hello Worl d!'' . Repl ace(' World', 'nother')

Returns "Hello mother!"

StartsWith
Source String
Parameters String value
Result Boolean

Description

Returns True if the text specified starts with the value specified.

Example

"Hell o' .startsWth('He')

StrToDate
Source String
Parameters
Result DateTime

121

2.7 Query services ECO Services

Description

Uses DateTime.Parse to convert the source to a DateTime.

StrToDateTime

IOclService

Source
Parameters

Result

String

DateTime

Description

Uses DateTime.Parse to convert the source to a DateTime.

StrTolnt

Source
Parameters

Result

String

Int32

Description

Uses Int32.Parse to convert the source to an Int32.

StrToTime

Source

Parameters

Result

String

TimeSpan

Description

Uses TimeSpan.Parse to convert the source to a TimeSpan.

SubString
Source String
Parameters Int32 startindex
Int32 length
Result String

Description

Returns a sub string of the source.

122

2.7 Query services

ToLower (Char)

ECO Services

IOclService

Source
Parameters

Result

Char

Char

Description

Converts a char value to lower case.

Example

sel f. product Code. chars(1).toLower

ToUpper (Char)

Source
Parameters

Result

Char

Char

Description

Converts a char value to upper case.

Example

sel f. product Code. chars(1).toUpper

ToLowerlnvariant

Source

Parameters

Result

String

String

Description

Converts a string to lower case using casing rules of the invariant culture.

Example

sel f. product Code. t oLower | nvar i ant

Notes

An overload exists for Char.

ToUpperinvariant

Source

Parameters

Result

String

String

123

2.7 Query services ECO Services

Description

Converts a string to upper case using casing rules of the invariant culture.

Example

IOclService

sel f. product Code. t oUpper | nvari ant

Notes

An overload exists for Char.

Trim
Source String
Parameters
Result String
Description

Returns the source with all leading and trailing white space characters removed.

Example

sel f. product Code. trim

SuperTypes
Source Type
Parameters
Result Collection(String)

Description

Returns a list of class names, one for each supertype of the source.

TimeSpan operations

TaggedValue

Source <Instance>
Parameters String taggedValueName
Result String

Description

Finds a tagged value with the specified name defined against the instance's class (or one of its super classes) and returns

the value defined in the model.

124

2.7 Query services ECO Services IOclService

ToByte
Source Decimal
Parameters
Result Byte
Description

If the source is within the range Byte.MinValue .. Byte.MaxValue the result will be a byte, otherwise a

System.TargetinvovationException will be thrown (with an inner exception type of System.OverflowException). Any fractional

value will be discarded.

ToDouble
Source Decimal
Parameters
Result Double
Description

If the source is within the range Double.MinValue Double.MaxValue the result will be a Double, otherwise a

System.TargetInvovationException will be thrown (with an inner exception type of System.OverflowException). Any fractional

value will be discarded.

Tolnt1l6
Source Decimal
Parameters
Result Int16
Description
If the source is within the range Intl6.MinValue .. Intl6.MaxValue the result will be an Intl6, otherwise a

System.TargetInvovationException will be thrown (with an inner exception type of System.OverflowException). Any fractional

value will be discarded.

Tolnt32
Source Decimal
Parameters
Result Int32
Description

If the source is within the range Int32.MinValue .. Int32.MaxValue the result will be an Int32, otherwise a
System.TargetlnvovationException will be thrown (with an inner exception type of System.OverflowException). Any fractional

value will be discarded.

125

2.7 Query services ECO Services IOclService

Tolnt64
Source Decimal
Parameters
Result Int64
Description
If the source is within the range Int64.MinValue .. Int64.MaxValue the result will be an Int64, otherwise a

System.TargetinvovationException will be thrown (with an inner exception type of System.OverflowException). Any fractional

value will be discarded.

ToSByte
Source Decimal
Parameters
Result SByte
Description

If the source is within the range SByte.MinValue .. SByte.MaxValue the result will be a signed byte, otherwise a
System.TargetInvovationException will be thrown (with an inner exception type of System.OverflowException). Any fractional

value will be discarded.

ToSingle
Source Decimal
Parameters
Result Single
Description

If the source is within the range Single.MinValue Single.MaxValue the result will be a Single, otherwise a
System.TargetInvovationException will be thrown (with an inner exception type of System.OverflowException). Any fractional

value will be discarded.

ToUInt16
Source Decimal
Parameters
Result Uintl6
Description

If the source is within the range Ulntl6.MinValue .. UIntl6.MaxValue the result will be an UlIntl6, otherwise a

System.TargetlnvovationException will be thrown (with an inner exception type of System.OverflowException). Any fractional

value will be discarded.

126

2.7 Query services ECO Services IOclService

ToUInt32
Source Decimal
Parameters
Result Uint32
Description

If the source is within the range UInt32.MinValue .. UInt32.MaxValue the result will be an UInt32, otherwise a

System.TargetinvovationException will be thrown (with an inner exception type of System.OverflowException). Any fractional

value will be discarded.

ToUInte4
Source Decimal
Parameters
Result Uint64
Description

If the source is within the range Ulnt64.MinValue Uint64.MaxValue the result will be an UlInt64, otherwise a

System.TargetInvovationException will be thrown (with an inner exception type of System.OverflowException). Any fractional

value will be discarded.

TypeName
Source <Type>
Parameters
Result String
Description

Returns the class name of the source type.

Xor
Source Boolean
Parameters Boolean comparison
Result Boolean
Description

Returns the result of performing a logical exclusive OR on the source and parameter

Example
fal se xor false = fal se

127

2.7 Query services ECO Services IActionLanguageService

fal se xor true = true
true xor false = true
true xor true = fal se

IActionLanguageService

The Action Language Service is an OCL based expression executor. As well as the OclPs and Ocl commands, which have
no side effects, this service is additionally capable of executing statements which alter object state. The Action Language
Service is particularly useful when designing state machines. For example when an Article enters a Published state it makes
sense to set the article's PublishedDate to the current date and time.

This would be achieved by setting an Entry Action on the Published state with a simple action language expression

I Published |
Internal transitions ‘

entry /publishedDate := DateTime.now

Assignments in the action language service are made using the token :=

Operations support by IActionLanguageService

The IActionLanguageService supports all of the 10cIPsService operations (@ see page 28), all of the 10clServiceOperations
(= see page 48) operations, and the following additional operations.

Clear

Source Collection(<Any>)
Parameters

Result

Description

Removes all elements from the source collection.

Notes
The source must be a member of a modeled class.

//Valid
sel f. orderLi nes->cl ear

//lnvalid
sel f. orderLi nes->sel ect (val ue < 100) - >cl ear

128

2.7 Query services ECO Services IActionLanguageService

Add
Source Collection(<Any>)
Parameters <Any> instanceToAdd
Result Collection(<Any>)
Description

Adds the parameter to the source.

Notes

The source must be a member of a modeled class.
//Valid
sel f. orderLi nes->add(OrderLi ne. Create)

//1lnvalid
sel f. orderLi nes->sel ect (val ue < 100) - >add(O der Li ne. Cr eat e)

Create

Source <Type>
Parameters

Result <Instance>

Description

Creates an instance of the specified modeled class.

Example

’ Person. Creat e

Delete

Source <Type>
Parameters

Result Boolean

Description

Deletes the specified object instance.

Remove
Source Collection(<Any>)
Parameters <Any> instanceToRemove
Result Collection(<Any>)
Description

129

2.7 Query services ECO Services ITypeService

Removes the specified parameter from the source collection.

Notes
The source must be a member of a modeled class.

//Valid
sel f. orderLi nes- >renpve(sel f. orderLines->l ast)

//1nvalid
sel f. orderLi nes->sel ect (val ue < 100) - >r enove(sel f. order Li nes->| ast)

RemoveAt
Source Collection(<Any>)
Parameters <Any> indexToRemove
Result Collection(<Any>)
Description

Removes the item at the specified index from the source collection.

Notes
The source must be a member of a modeled class.

//Valid
sel f. orderLi nes->r emoveAt (1)

//1nvalid
sel f. orderLi nes->sel ect (val ue < 100) - >r enpoveAt (1)

ITypeService

The type service allows you to perform various functions on the OCL evaluator, such as determining the result type of an
expression or registering new OCL operations. The members of the ITypeService are implemented directly on each of the
three OCL services. So instead of obtaining an ITypeService from the EcoSpace you would use the equivalent method on
the OCL service.

Determining if the result of an expression is read-only

When evaluating an OCL expression the result of that evaluation is either mutable or read-only. A result is mutable if the
expression results in a domain member (a member of a class) and that member is not read-only.

//Mitable, this is a domai n nenber (nodel ed)
sel f. firstNane

// Read-only, because this is an expression derived froma domai n nenber
sel f.firstNane.toUpper

/| Read-only, because the value is assigned by the DB
/'l sel f.uni quel D

To determine whether or not an expression is readonly use the ExpressionlsReadOnly method on the appropriate OCL
service.

130

2.7 Query services ECO Services ITypeService

| Classifier classifier = EcoSpace. TypeSyst em Get Cl assByType(typeof (Person));
bool readonly = EcoSpace. Ccl . Expr essi onl sReadOnl y(" person”, classifier,
fal se). Get Val ue<bool >();

Determining model information from an expression

If the expression results in a domain element (Person.FirstName for example) it is possible to get information about the
member as follows

| Classifier classifier = EcoSpace. TypeSyst em Get Cl assByType(typeof (Person));
| Structural Feature nodel | nformati on = EcoSpace. Ccl . Expr essi onMbdel | nf o("sel f. firstNane",
classifier, false);

If the expression does not result in a domain element null will be returned. IStructuralFeature is described in the API help.

InstalledOperations

Each OCL service implements a different set of OCL operations. It is possible to discover a list of installed operations for a
given OCL service using the InstalledOclOperations property. This property will contain an entry for every installed operation,
in addition it will contain operations with duplicate names when an operation has many overloads.

foreach (1Ccl Qperation currentOperation in EcoSpace. Ccl Ps. | nst al | edCcl Oper at i ons)
Consol e. Wit eLi ne(current Qper ati on. Nane) ;

Creating a string operation

Custom OCL operations may only be registered in the IOclService and IActionLanguageService. This is due to the fact that
these are evaluated in memory, to implement an 10cIPsService operation would involve a way to translate the operation to
SQL, and this functionality is not currently supported in ECO. There is a class named OclOperationBase which may be used
to simplify the process of creating custom OCL operations, when descending from this base class you only need to override
two methods; Init and Execute.

The following example illustrates how to create an operation which reverses a string.

public class ReverseStringQperation : Ccl Operati onBase
{
/I Recommended approach. Have a static nethod that registers the operation into
//the correct OCL services
/'l (as some nay be intended for the Action Language Service only)
public static void Install Qperation(l EcoServiceProvider serviceProvider)

if (serviceProvider == null)
t hrow new Argument Nul | Excepti on(" Servi ceProvi der");

ReverseStringQOperation i npl = new ReverseStringQOperation();
servi ceProvi der. Get EcoServi ce<l Ccl Servi ce>(). I nstall Operation(inpl);
servi ceProvi der. Get EcoSer vi ce<I| Acti onLanguageServi ce>().Install Operation(inpl);

}

//Called when the OCL operation is installed
protected override void Init()
{

[/ Define the operation nane

string operati onNane = "reverse";

/] Specify the source nust be a string
| Ccl Type sourceType = Support. StringType;

[/lnitialise using
/1l Operation nane
// Paraneters - The first is the source

131

2.7 Query services ECO Services ITypeService

/! Return type - In this case the sane as the source
Internal I nit(

oper at i onNaneg,

new | Ccl Type[] { sourceType },

sour ceType) ;

}

/| Execut ed when the operation needs to be processed

public override void Eval uate(l Ccl Oper ati onPar anet ers ocl Par anet er s)

{
//Get the first value (the source) as an element, and cast it to a string
string val ue = ocl Paranet ers. Val ues[0] . El ement . Get Val ue<stri ng>();

//Use a StringBuilder to reverse the string's characters

StringBuil der resultBuilder = new StringBuilder();

for (int index = value.Length - 1; index >= 0; index--)
resul t Bui | der. Append(val ue[i ndex]);

//Create a constant |Element representing the reversed string
| El ement result =
Support . Vari abl eFact ory. Cr eat eConst ant (resul t Bui | der. ToString());

//Set the result of the operation
ocl Par anet ers. Resul t. Set OmedE!l enent (resul t);

}

This example would be used like so

//You should install operations in the EcoSpace constructor!
Rever seStri ngOper ati on. | nst al | Oper ati on(EcoSpace) ;

string reversed =
EcoSpace. Ccl . Eval uat e(" Person. al | I nst ances->first.firstNane.reverse"). Get Val ue<stri ng>(

)i

Creating a collection operation

The following operation shows how to create an operation based on a collection, and also how to specify additional
parameters. Unlike the ReverseStringOperation example the Internallnit method is called with an
OclResultTypeDeduceMethod parameter for the result type instead of an 10cIType. This informs the evaluator to deduce the
result type from the source.

public class Sanpl eCol | ecti onOperation : Ccl Operati onBase
{
|/ Regi ster the operation
public static void Install Operation(lEcoServiceProvider serviceProvider)

if (serviceProvider == null)
t hrow new Argunent Nul | Excepti on(" Servi ceProvi der");

Sanpl eCol | ecti onOperation i npl = new Sanpl eCol | ecti onOperation();
servi ceProvi der. Get EcoSer vi ce<I| Ccl Servi ce>().Install Operation(inpl);
servi ceProvi der. Get EcoSer vi ce<I Act i onLanguageServi ce>(). I nstal | Operation(inpl);

}

//lnitialise the operation details
protected override void Init()
{

[/ The operation nane

string operationNane = "sanpl e";

// The source nmust be a |ist
| Ccl Type sourceType = Support. Li st Type;

[/ 1st paraneter nust be an integer (nunber of sanples)
| Ccl Type nunber O Sanpl esType = Support. | nteger Type;

132

2.8 IPersistenceService ECO Services

publ

/I Return type is the sanme as the source, but allow duplicates.
/1 This is because the source might be a collection of strings
Ccl Resul t TypeDeduceMet hod resul t Type = Ccl Resul t TypeDeduceMet hod. Sour ceAsBag;

|/ Regi st er

Internal I nit(
oper at i onNane,
new | Ccl Type[] { sourceType, nunber O Sanpl esType },
resul t Type);

ic override void Eval uat e(l Ccl Oper ati onPar anet ers ocl Par anet er s)

// Get the source as a collection
| El enent Col | ecti on source =
ocl Par anmet er s. Val ues[0] . El enent . Get AsCol | ection();

/] CGet the nunber of sanples to take
i nt nunber O Sanpl es ocl Par anmet er s. Val ues[1] . El enent . Get Val ue<i nt >() ;
i f (nunber OF Sanpl es sour ce. Count)

nunmber OF Sanpl es sour ce. Count ;

v i

doubl e currentl ndex = 0O;
doubl e stepSize = source. Count / (doubl e)nunber O Sanpl es;

// Create an elenent to hold the result
| El enent Col | ection result =
(1 El enent Col | ecti on) Support . Creat eNewVari abl e(ocl Par anet ers. Resul t. Ccl Type) ;

// Add sanples to the result
whi | e (nunber O Sanpl es > 0)
{
i nt readl ndex = (int)Mth. Round(currentlndex);
i f (readl ndex >= source. Count)
readl ndex = source. Count - 1;
resul t. Add(source[readl ndex]);
nunmber OF Sanpl es- - ;
current | ndex += stepSi ze;

ocl Par anet ers. Resul t. Set OmedE!l enent (resul t);

IPersistenceService

The persistence service is responsible for mediating between the EcoSpace and the data storage. Rather than a
create/retrieve/update/delete approach ECO's persistence service implements create/update/delete via a single instruction
to update the data storage, ECO's internal state management will track which type of operation is appropriate based on
actions performed against the local object cache (creating a new object, modifying an object, or deleting an object); freeing
the developer from having to concern themself with which type of call to make.

Persisting changes to the data storage

The most simple way to update an object to the data storage is to call the UpdateDatabase method with a single object.

/Il Create a new person and persist it
Person personl = new Person(EcoSpace);
EcoSpace. Per si st ence. Updat eDat abase(per sonl);

// Modi fy an existing person and persist the changes
personl. Fi rst Nane = "John";

133

2.8 IPersistenceService ECO Services

EcoSpace. Per si st ence. Updat eDat abase(per sonl);

/1 Del ete an existing person and persist the deletion
personl. Asl Obj ect (). Del ete();
EcoSpace. Per si st ence. Updat eDat abase(per sonl);

Whenever an UpdateDatabase is performed ECO will additionally remove any undo or redo blocks held by the undo service
(= see page 9) which reference the object that is having its changes persisted. This is in order to prevent the consumer of
the business model from making changes, persisting the changes, and then undoing those changes in the local cache;
effectively making the local cache out of sync with the data storage.

Usually the application consuming the business model is solely responsible for deciding when to update the data storage,
but sometimes part of the business logic dictates that an update made by the model should be persisted immediately. For
example, if your business model implements a custom form of pessimistic locking

publi ¢ bool AcquireLock(Pessim sticlLock | ock)
{
/101: Throw an exception if |ock.LockedBy is not null
//02: Unload the | ock object to nmake it current
//03: Set |ock.LockedBy to the current user
/104: Attenpt to update the database
//05: Catch any optinistic |ocking exception
}

In the preceding pseudo code it is necessary to update the data storage immediately in order to ensure the custom
pessimistic lock is required. If there is an active undo block then the changes performed here will be recorded by that block,
the call to UpdateDatabase will then remove the block from the undo service to prevent further use of it, which could cause a
problem for the application using the model as it would rightly expect the undo block to still be present. The correct approach
would therefore be

publi ¢ bool AcquireLock(Pessimn sticlLock | ock)

{
/101: Throw an exception if |ock.LockedBy is not null
/102: Unload the | ock object to make it current

[/** Start a new undo bl ock

//103: Set |ock.LockedBy to the current user
/104: Attenpt to update the database

/105: Catch any optinistic |ocking exception

//** I n case of an exception renove the undo bl ock
//fromthe undo service

Another operation performed by ECO is to ensure that any update to the data storage is logical. If we refer back to the driver
vehicle model from earlier in this document we can see that the following source code is a complete logical operation

0.1 CrriverCurrent/ehicle 0.1
Driver " Vehicle
a CurrentDriver Currentvehicle |3

Driver driverl = new Driver(EcoSpace);
Vehi cl e vehicl el = new Vehi cl e(EcoSpace) ;

EcoSpace. Per si st ence. Updat eDat abase(dri ver1);

134

2.8 IPersistenceService ECO Services

But the following example is not a complete logical operation

Driver driverl = new Driver (EcoSpace);
Vehi cl e vehicl el = new Vehi cl e(EcoSpace) ;

// Create an associ ati on between the two new obj ects
driver 1. Current Vehicle = vehicl el;

EcoSpace. Persi st ence. Updat eDat abase(dri ver1);

This is code is not a complete logical operation because there is a reference from driverl to vehiclel which has not yet been
persisted. In order to ensure the update operation is a complete logical unit ECO will make a call to the EnsureEnclosure
method on the persistence service, which ensures that all objects required to make the update are also included in the
update.

In this example the enclosure occurs because the vehicle refers to an object that has not been persisted, but enclosure may
also occur when a reference changes. In the Driver/Vehicle model it is likely that one of the ends of the association is
marked as embedded. If the Driver end of the association is marked as embedded it means that the primary key of the
Driver is embedded into the table holding the Vehicle data, so the Vehicle table would have a column named "Driver".

Driver

Primary key Name
1234 John Smith

Vehicle

Primary key RegistrationNumber Driver
4321 DE 51 RED 1234

driverl. CurrentVehicle = null;
EcoSpace. Persi st ence. Updat eDat abase(dri ver1);

In the preceding data tables you can see that the driver "John Smith" is currently assigned the vehicle "DE 51 RED". In the
code snippet John Smith (a.k.a. driverl) has had his vehicle unassigned. The changes made to driverl are then persisted
but in order to make the update complete "DE 51 RED" must also be updated as it is Vehicle's database table that actually
holds the reference.

Note: It is possible that neither end of the association is marked as embedded, resulting in a "link table" in the database
holding the primary key of each side of the association. This is common in many-to-many associations and quite rare in
one-to-one associations.

Persisting a collection of objects' changes

It is also possible to persist changes to multiple instances as a single database operation. The UpdateDatabaseWithList
method accepts an |ObjectList parameter which may be obtained in a number of ways, the most commonly used are

135

2.8 IPersistenceService ECO Services

Updating all changes

| Obj ectList dirtyObjects = EcoSpace.DirtyList. AllDirtyObjects();
EcoSpace. Per si st ence. Updat eDat abaseW t hLi st (di rt yCbj ect s) ;

Note: This code is the equivalent of EcoSpace.UpdateDatabase()

Updating changes captured by an undo block

string bl ockName = Gui d. NewGui d(). ToString();
EcoSpace. Undo. St art UndoBl ock(bl ockNane) ;

/I Make changes here

| UndoBl ock undoBl ock = EcoSpace. Undo. UndolLi st [bl ockNane] ;
| Obj ectList dirtyCbjects = undoBl ock. Get ChangedObj ect s() ;
EcoSpace. Per si st ence. Updat eDat abaseW t hLi st (di rt yCbj ect s) ;

Unloading object contents

Unloading an instance of a business class simply removes its loaded property values from the local EcoSpace cache. An
object cannot be unloaded if its class has been modeled as Transient, if the EcoSpace has no persistence (which effectively
makes all instances Transient), an instance can also only be unloaded if it is unmodified.

EcoSpace. Per si st ence. Unl oad(per sonl);

It is possible to query whether or not an object's contents have been loaded using the IsLoaded method:

| Obj ectList objects =
if (! EcoSpace Per si st ence. | sLoaded(obj ects[0]))

The IObjectList in this case would most likely be the result of evaluating an OCL expression. It would be pointless obtaining
the 10bject reference using personl.AslObject(), I0bject is merely an object-locator whereas personl would be of the
modeled "Person" type, and in order to have a reference to the modeled type the object's contents would first need to be
loaded into the local EcoSpace cache.

Efficiently retrieving lists of objects

Assaociations in ECO are lazy fetched, meaning that an associated object is only loaded if it is accessed.

Vehi cl e vehiclel = {Sone code to retrieve a single vehicle};

/'l Accessing its driver will load the driver fromthe data storage
Driver driverl = vehiclel.Driver;

If the association is a multi-role then only the object locators are loaded when the property is first accessed, the contents of
the objects are loaded when an attempt is made to access an individual object in the collection.

Custoner custonmerl = {Some code to retrieve a single custoner};

136

2.8 IPersistenceService ECO Services

/'l Accessing the custoner's purchase orders will retrieve IDs only
i f (customerl. Orders. Count > 0)

/' Accessing an order by index will |oad the single order's contents
PurchaseOrder orderl = custonerl. Orders[0];

}

Iterating through a list of orders using a for loop would be inefficient as it would result in a single data storage fetch per order
in the collection. ECO has a number of techniques for improving the performance of fetching associated objects. The first,
and most simple, is to use an enumerator to loop through the elements.

/1 Ef ficient approach, using an enunerator indicates your intention

//to use multiple orders in the collection. ECOw | |oad the associ ated
|/ objects in batches of 50.

foreach (var currentOrder in customerl. Orders)

[/l nefficient approach, using a specific index does not reveal any intention
//to use nmultiple associ ated orders, so ECO | oads only the order at the

[/ specified index.

for (int i =0; i < custonerl. Orders. Count; i++)

Pur chaseOrder currentOrder = custonerl. Orders[i];

}

The same applies when you evaluate an OCL expression to retrieve a collection of objects. ECO will firstly only retrieve
object IDs from the data storage, it will only load the objects' contents when you attempt to access them.

//Only IDs are retrieved fromthe data storage
| Obj ectList |ist = EcoSpace. Ccl Ps(" Custoner. al |l | nstances->sel ect (i sActive)");

/1 The first custonmer in the list will have its contents | oaded fromthe data storage
Custoner custonmerl = |ist[0].GetVal ue<Custoner>();

An |0bjectList is merely a collection of object locators which may be converted to instances of modeled classes. Because of
this when you use an enumerator you are iterating object locators and not instances of modeled classes; as a consequence
using an enumerator will not automatically fetch object contents because the step to retrieve the class instance is an
additional one:

//Retrieve object ID s
| ObjectList list = ...;

foreach (1 Qbject locator in list)
/1Single operation within the |oop to convert to an

//instance of a nodel ed cl ass
Cust oner current Custonmer = | ocator. Get Val ue<Cust oner >();

}

If your intention is to iterate over the instances referred to by these object locators (rather than merely to use the list as the
context for a second OCL evaluation) it is possible to instruct ECO to pre-load the objects in the locator list.

| ObjectList list = ...;

/| Easi est way, if you intend to iterate over all instances.

137

2.8 IPersistenceService ECO Services Multi user concurrency

/1 This pre-loads the objects and returns an |List of the
/lrel evant type.

| Li st <Customer> customers = |ist.GetAslLi st <Cust oner>();

Or alternatively to pre-load only a subset

| ObjectList list = ..

//Pre-load a subset of the objects in the |ocator I|ist.

int firstlndex = 0;
int lastlndex = list.Count / 2;
EcoSpace. Per si st ence. Ensur eRange(list, firstlndex, |astlndex);

Efficiently loading related objects

The previous section shows how to efficiently load objects either in a locator list, or associated from a single object. There

are circumstances where your code needs to perform a nested loop; for example to loop through every PurchaseOrder of
every customer in a list.

// Exanmple 1: Using OCL to elimnate the need for an outer |oop
string ocl = "Custoner. alllnstances->sel ect (i sActive).orders";

var orders = EcoSpace. Ccl Ps. Execut e(ocl). Get Asl Li st <Pur chaseOrder>();

// Exanmpl e 2: Pre-loading an association on a |list of object |ocators

| Obj ectList |ist = EcoSpace. Ccl Ps. Execut e(" Cust onmer. al | I nst ances- >sel ect (i sActive)");
EcoSpace. Per si st ence. Ensur eRel at edCbj ects(list, "Orders");

Related Topics

For information regarding the GetAllwithCondition see the Version Service (@ see page 141).

138

2.9 |IExtentService ECO Services

Multi user concurrency

TODO

|[ExtentService

Each instance of an EcoSpace contains an extent for every class in the model. If a request to IExtentService.Alllnstances is
made, or if an OCL expression is evaluated that specifies "SomeClass.Allinstances" an object locator will be created for
every instance in the data storage and held in the extent service. Any subsequent request to the extent service for the same
information will return this cached collection rather than accessing the data storage again. Access is only made to the data
storage again if

1. The extent for the specific class has not yet been requested for this EcoSpace instance.

2. The extent service of the current EcoSpace has previously been instructed by the programmer to unload the extent for the
specified class.

Note that the extent service's state is unique per EcoSpace and not shared amongst multiple EcoSpaces. So if two
EcoSpace instances request the extent for the same class they will both make a request to the data storage.

The extend manages two pieces of information:

Type Description
Allinstances This is a list of object locators, one for each instance of the specified type.

AllLoadedInstances | This again is a list of object locators. Instead of being one locator for every instance of the specified
type it contains a list of all previously retrieved customer locators.

For example, if you were to navigate to a customer via one of its purchase orders this would result in
the customer's locator being added to the AllLoadedInstances list for the Customer class.

/1 Get all previously | oaded custoners
i nt | oadedCust oner Count = EcoSpace. Extents. Al | Loadedl nst ances(t ypeof (Cust oner)). Count ;

/1 Get a locator list for all custoners - data storage access is required
| Obj ect Li st custonerLocators = EcoSpace. Extents. Al |l I nstances(typeof (Custoner));

//Cet a locator list for all customers - not data storage access required

| Obj ect Li st custonerLocators2 = EcoSpace. Extents. Al |l | nst ances(typeof (Cust oner)) ;

Unloading an extent

An EcoSpace instance should be thought of as a unit of work, or as the equivalent of a database transaction. It is for this
reason that the extents are cached, so that behaviour is predictable and to improve performance. There may sometimes be
circumstances where you wish to invalidate the extent for a specific class.

139

2.10 IVersionService ECO Services

//1nvalidate the extent for Customer
| d ass cl assToUnl oad = (I Cl ass) EcoSpace. TypeSystem Cet C assi fi er ByType(typeof (Cust oner));
EcoSpace. Ext ent s. Unl oad(cl assToUnl oad) ;

If for example you are writing a WinForm application which has an ExpressionHandle with the expression
"Customer.allinstances", unloading the extent for the Customer class will cause the ExpressionHandle to reevaluate and
display any new instances that may have been created by other users. Unloading the extent does not unload any objects'
data contents.

Subscribing to changes

It is possible to subscribe to two events of the extent service. Using the SubscribeToObjectAdded method it is possible to
register an observer which will be called back each time a new locator is added to the extent service. This could be due to
creating a new instance of a class or due to loading an existing instance from the data storage.

/1A sinple class to show a nessage box containing the class nanme of
//the | ocator added
public class NewObj ect Notifier : SubscriberAdapt er Base

publ i ¢ NewObj ect Noti fi er(obj ect actual Subscri ber)
base (actual Subscri ber)
{

}

protected overri de voi d DoRecei ve(obj ect sender, EventArgs e, object
act ual Subscri ber)
{
var args = (El ement ChangedEvent Args) e;
MessageBox. Show(ar gs. El enent . Ur Type. Nan®) ;

}

/| Exanpl e usage
|/ Create the subscriber
var subscriber = new NewCbhjectNotifier(this);

[/ Subscribe to | ocators being added for any class, this is achieved
//using the "ECOWdel Root" class, which is the superclass of all
//classes within the nodel .

EcoSpace. Ext ent s. Subscri beToObj ect Added(subscri ber, "ECOwbdel Root");

To subscribe to locators being removed you may use the SubscribeToObjectRemoved. This method is almost the mirror of
SubscribeToObjectAdded. Instead of triggering whenever an object is created or loaded the subscriber is triggered
whenever an object is deleted. The trigger is executed as soon as customer.AslObject().Delete() is executed, rather than
when a deleted object is updated using the persistence service (which causes the object locator to be relinquished).

Note that the subscriber is not triggered when an extent is unloaded, nor when an object's contents are unloaded. Unloading
an object's contents merely causes the local cached data values to be unloaded, it does not result in the EcoSpace
relinquishing the locator for the object (the object's identity is still known).

140

2.10 IVersionService ECO Services

IVersionService

Using the version service via the IVersionService interface, the developer is able to retrieve historical information about
objects that have been identified as "Versioned" in the ECO model.

Object instances of classes that have been marked as Versioned are treated differently by the ECO persistence mechanism.
By default each object within the database will have two additional columns, "TimeStampStart" and "TimeStampStop".
These columns identify the life span of versioned objects.

Each time UpdateDatabase is executed a new integer timestamp is value allocated, and the current date/time recorded
against it. These integers are used to identify at which date/time a versioned object instance is created, modified, or deleted.
When a new object instance is created the current timestamp is entered into its TimeStampStart column, and 2147483647 is
entered into its TimeStampStop column, this records when the object came into existence, and the high TimeStampStop
indicates that this row in the database is the current "live" data for the object.

TimeStampStart TimeStampStop ECO_ID FullName
10 2147483647 5 Miss Jane Smith

When a versioned object is modified the TimeStampStop column of the live row is updated to the current timestamp value,
and a new row is inserted into the table. This new row has the same ECO_ID (the unique identifier for an ECO object
instance), the current timestamp for TimeStampStart, and the new modified attribute values.

TimeStampStart TimeStampStop ECO_ID | FullName
10 10 5 Miss Jane Smith
11 2147483647 5 Mrs Jane Jones

Finally, when a versioned object is deleted, the TimeStampStop column of the live row is updated with the current timestamp
- 1.

TimeStampStart TimeStampStop ECO_ID FullName
10 10 5 Miss Jane Smith
11 11 5 Mrs Jane Jones

To enable versioning on a class you must

1. Set Versioned = True on the class in the modeler.

2. Set the following properties to True on the PersistenceMapper that your EcoSpace uses
» UseClockLog
e UseTimestampColumn
* UseTimestampTable

There is also a VersionGranularity property on the persistence mapper. If set to its default value time span of 00:00:00 a new
version will be created for every call to UpdateDatabase. If set higher it is possible to instruct ECO to consider changes to

141

2.10 IVersionService ECO Services

the same object within a specific window of time to be considered the same update, and not to create a new version of the
object being updated.

Retrieving a historical version of an object instance

To retrieve a historical version of an instance you will first need to convert a specific date and time to a version number.
Once you have the correct version number it is simple to retrieve the historical version of that object, all historical object
versions are read only.

/1 Specify the date and tine
var pointlnTime = new DateTime(...);

/] Convert the date/tine to a version nunber
i nt versionNunber = EcoSpace. Ver si oni ng. Ver si onAt Ti ne(poi nt I nTi ne) ;

Person personl = {Sone code to get a custoner instance};
Person historical =

EcoSpace. Ver si oni ng. Get Ver si on(ver si onNumnber ,
cust oner 1. Asl Obj ect ()) . Get Val ue<Per son>() ;

MessageBox. Show(st ri ng. For mat (" Changed from {0} to {1}",
hi storical . Ful | Nane, personl. Ful | Nan®e)) ;

Showing all changes to an object

The GetChangePointCondition method creates an instance of AbstractCondition, which may then be used with the
persistence service to retrieve a full history of an individual object. Starting from an ECO WinForms application add the
following code to the constructor of your form.

// Create a person
Per son personl = new Person(EcoSpace);

/1 Set the person's nane and update the database

personl. Ful | Nane = "M ss Jane Smith";
EcoSpace. Updat eDat abase() ;

/1Sl eep for 1 second
Thr ead. Sl eep(1000) ;

[/ Change the person's nanme and update the database
personl. Ful | Nane = "M's Jane Jones";
EcoSpace. Updat eDat abase() ;

Assuming you have correctly versioned the Person class and set up versioning on the EcoSpace's persistence this code will
create two versions of a person when the application starts. To display this history in a WinForm DataGrid execute the
following steps

1. Set rhRoot.StaticValueTypeName to "Collection(Person)" - without the quotes.
2. Add a DataGrid to your form, and use rhRoot as its data source.

3. Add the following additional code to the bottom of your form's constructor

var condition =
EcoSpace. Ver si oni ng. Get ChangePoi nt Condi t i on(
r hRoot . El enent, //Object to be retrieved
0, //Earliest version to retrieve

142

2.10 IVersionService ECO Services

EcoSpace. Ver si oni ng. Current Versi on //Latest version to retrieve

DE

/I Retrieve all versions of this person
| Obj ect Li st historical Versions =
EcoSpace. Persi st ence. Get Al | Wt hCondi ti on(condi ti on);

/1 Set the reference handle to hold the |ist of versions
r hRoot . Set El enent (hi stori cal Versi ons) ;

Running the application should give you a form that looks similar to the following illustration. Note that you cannot use the
XML persistence for this example.

o5l ECO versioning E@IJ_&J

FullMame
» Miss Jane Smith

Mrs Jane Jones

Adding each version's date and time

To show the date and time of each version we first need to add a code-derived column to the expression handle

. Bring up the Columns editor on rhRoot.

. Click the drop-down arrow to the right of the "Add" button and select "EventDerivedColumn".

1

2

3. Name the column VersionTimeStamp.

4. Set its TypeName property to System.DateTime.
5

. Click OK.

Now that the code-derived column has been added add the following code to the DeriveValue event of rhRoot.

private void rhRoot DeriveVal ue(obj ect sender, DeriveEventArgs e)

switch (e. Nange)
{
case "VersionTi meStanp":
//Get the current version nunber of the current row
// Each row wi |l have a different version nunber
i nt versi onNunber = EcoSpace. Ver si oni ng. El enent Ver si on(e. Root El enent) ;

// Convert the version nunber to a date/time
Dat eTi ne ti meStanp = EcoSpace. Ver si oni ng. Ti meFor Ver si on(ver si onNumber) ;

//Set this date/tine as the value to display in the data grid

e. Resul t El enent = EcoSpace. Vari abl eFact ory. Cr eat eConst ant (ti meSt anp) ;
br eak;

defaul t:
t hrow new Not | npl ement edExcept i on(e. Nane) ;

143

2.12 Subscriptions ECO Services

Once you have added the new column to the data grid you should see something like the following when you run the
application.

a5l ECO versioning | = | (B |-

FullMame ersion Time Stamp
3 Miss Jane Smith 04 January 2009 15:12:32
Mrs Jane Jones 04 January 2009 15:12:33

ICacheContentService

Subscriptions

When creating a business model it is often necessary to create members that have no persistent value but are instead
calculated from other values. ECO supports this feature via "Derived" members. When creating a model it is possible to
mark a property / association as Derived, indicating to ECO that the value needs to be calculated. When an attempt is made
to read the value of a derived member ECO will perform the necessary actions to calculate its value. The calculated value is
then stored away in the local cache, so that what it is read again no further calculations are required.

If calculating the value of the derived member is costly then storing the result in the cache will obviously save resources
whenever the value is read again. However, if the calculated value where just to be stored away indefinitely it could easily
become "stale." For example if Person.FullName were to be derived using the following OCL expression

salutation + ' ' + givenNane + ' ' + fam | yName

If the value of any of these three members changes then rereading a stale cached value would result in an incorrect result.
This is where the ECO subscription mechanism comes in.

In the OCL derived member example above as ECO parses the OCL expression above in order to calculate the result it will
need to access various members of the model; in this case Person.Salutation, Person.GivenName, and
Person.FamilyName. Each derived member has its own "subscriber", as the ECO OCL evaluator accesses the value of a
member it adds this subscriber to a list of parties interested in knowing when the member's value changes.

Once the subscriptions have been placed with the relevant members and the result determined the derived member's value
will be cached. Subsequent reads of the derived member will return the cached value. When one of the three members in
the expression change they will notify every subscriber that has been registered with them. In this case the only subscriber
will be the one owned by FullName, when this subscriber's Receive() method is executed it will invalidate its cached value.

144

2.12 Subscriptions ECO Services

Any subsequent attempt to read the value of the derived member will see that there is no cached value for it and cause the
OCL evaluator to reprocess the expression and replace any required subscriptions.

Subscribing to derived members

A derived member may use any type of member as part of its calculated value. Associations, persistent members, transient
members, and also other derived members. Take a simple class as an example, consisting of only three members.

Name Type Derivation code
Transientl Transient

Derived1l | Code private string Derived1Derive()
derived {

System.Diagnostics.Debug.WriteLine(" Model: Calculating Derived1");
return "D1 + " + Transientl;

}
Derived2 | Code private string Derived2Derive()
derived {

System.Diagnostics.Debug.WriteLine(" Model: Calculating Derived2");
return "D2 + " + Derived1;

}

now consider the following application code

private void ReadDerivedl(Cd ass_1 instance)
Syst em Di agnosti cs. Debug. Wit eLi ne("App: Readi ng derivedl");
System Di agnosti cs. Debug. WiteLine(" Result =" + instance.Derivedl);
}
private void ReadDerived2(C ass_1 instance)
{
Syst em Di agnosti cs. Debug. Wit eLi ne("App: Readi ng derived2");
System Di agnosti cs. Debug. WiteLine(" Result =" + instance.Derived2);
}
private voi d ChangeTransient(C ass_1 instance, string val ue)
{
Syst em Di agnosti cs. Debug. Wi teLi ne("App: Changing transientl to " + val ue);
i nstance. Transi ent1 = val ue;
}

These instructions have only been made into methods in order to log how the application is using the domain object, and to
make the steps easier to demonstrate.

Step | Instruction Output

1 ChangeTransient(instance, App: Changing transientl to Hello world
"Hello world");

2 ReadDerivedl(instance); App: Reading derivedl

Model: Calculating Derived1
Result = D1 + Hello world

145

2.12 Subscriptions ECO Services

3 ReadDerived2(instance); App: Reading derived2
Model: Calculating Derived2
Result = D2 + D1 + Hello world
4 ChangeTransient(instance, App: Changing transientl to Goodbye world
"Goodbye world");
5 ReadDerived2(instance); App: Reading derived2
Model: Calculating Derived2
Model: Calculating Derived1
Result = D2 + D1 + Goodbye world

1. The transient member has its value changed. This is just to start with a meaningful value. It has no effect on derived
members as none of them have been accessed yet and therefore have not placed any subscriptions.

2. The value of Derivedl is read. This calculation is based only on Transientl. The value is calculated and stored in the local
cache. Derivedl places a subscription on Transientl.

3. The value of Derived? is read. This calculation is based only on Derived1. When the value of Derivedl is read ECO sees
that it has previously been calculated and cached, the calculation is not performed again, instead the cached value is
returned. Derived2 places a subscription on Derivedl.

4. The transient member is modified. As a consequence a change notification is sent to all of its subscribers.
1. Derived1 receives a notification that one of the members it has subscribed to has been modified.

. Derived1 invalidates its cached value.

. Derived1 notifies all of its subscribers that its value has possibly changed.

. Derived?2 receives a notification that one of the members it has subscribed to has been modified.

a A~ W DN

. Derived2 invalidates its cached value.
5. The value of Derived?2 is read.
1. There is no cached value for Derived2 so its value is recalculated.
. Derived2 reads the value of Derivedl
. There is no cached value for Derived1 so its value is recalculated.

. Derived1's value is cached.

a A 0N

. Derived?2's value is cached.

Auto subscription

As mentioned previously the OCL evaluator will automatically subscribe to any members it accesses during evaluation of an
expression. In the previous example however the values were accessed via source code and not an evaluator, so how were
the subscriptions placed?

All member values are stored in a local cache. Whenever a read/write is performed on a .NET instance of a modeled ECO
class the property uses the local ECO cache to read/write the value. This means that ECO is fully aware of any time a value
is touched, and as a result is able to identify which elements make up a derived member. When an attempt is made to
access a derived member ECO performs the following steps

1. If there is a cached value.
1. Return the cached value.
2. Finish.

2. If the member has an OCL expression.

146

2.13 ITypeSystemService ECO Services

1. Evaluate the expression.

2. Place subscriptions on accessed elements.

3. Store the result in the cache.

4. Return the cached value.

5. Finish.

3. Find a method named <MemberName>Derive.
1. The members subscriber is pushed onto the IAutoSubscriptionService's stack.
2. The <MemberName>Derive method is executed.

3. Any access to an element in the cache checks the ActiveSubscriber in the auto subscription service, and registers it as
a party interested in being notified when the element's value changes.

. The <MemberName>Derive method returns a result.

. The member's subscriber is removed from the auto subscription service's stack.
. Cache the result.

. Finish.

~N o 0o b~

ITypeSystemService

The type system services allows your application to inspect your model in great detail at runtime.

Short example - Identifying all classes used by an EcoSpace

The first and most simple example shows how to identify all classes used by the EcoSpace. If the EcoSpace uses multiple
class packages this list will include all classes of all packages used.

Customer 0.*
Customer o Order
[F] 1 Orders|@

b Order
1

OrderLines
0=

1
OrderLine Product
0 Product
Products.

0.

ProductCategorys
0.*

a ProductCategory

foreach (I1d ass c in ecoSpace. TypeSystem Al | C asses)
Trace. Wi teLine(c. Nane) ;

The output from the preceding source code (viewed in the Debug->Windows->Output window in Visual Studio) is as follows

ECOVbdel Root
Cust oner
O der

147

2.13 ITypeSystemService ECO Services

IModelElement

O der Li ne

Pr oduct

Pr oduct Cat egory

Pr oduct Cat egor yPr oduct s

In the output you will see five class names you would expect to see after looking at the UML diagram for the model but there
are two additional names you may not have expected, the first and last in the list. When ECO builds a runtime representation
of your model it inspects it for a common superclass from which all classes ultimately descend, if no such class exists ECO
will add an ECOModelRoot class which acts as an equivalent of System.Object for your model.

The other unexpected class was ProductCategoryProducts. When you model a many to many association (in this case
between Product and ProductCategory) ECO creates an implicit association class based on the name given to the
association. You wont see a business class source file generated for this class, it is actually created as an embedded class
of the package, this class exists only to provide additional meta-information to ECO at runtime and for creating database
structures. Of course if you explicitly define an association class between Product and ProductCategory you will get a full

business class generated in which you may define additional members.

Changing the source code as follows

foreach (1 Cass ¢ in ecoSpace. TypeSystem Al | d asses)
Trace. Wi teLi ne(
string. Format ("Name={0} Inplicit={1} IsLink={2}",
c.Nane, c.Islnplicit, c.IsLinkC ass)
)

Will provide the following data, which | have formatted as a table.

Name Implicit
ECOModelRoot True
Customer False
Order False
OrderLine False
Product False
ProductCategory False
ProductCategoryProducts True

IsLink
False
False
False
False
False
False

True

In the following UML diagrams | have used the following colour scheme.

1. Grey : Elements which are created once when the details of the runtime model is first established.

2. Purple : Elements which hold meta information about values which may be created at runtime, such as variables and

constants created by the IVariableFactoryService (@ see page 18).

148

2.13 ITypeSystemService ECO Services IPackage

IModelElement

winterfaces winterfaces
IParameter Wertex

winterfaces

IPackage

winterfaces

IRegion

winterfaces sinterfacen —l winterfaces
lAssociation IModelElement J IStateMachine
winterfaces winterfaces
IFeature IEnumerationLiteral

winterfaces winterfaces
IConstraint ICIassifier

The IModelElement interface is the base interface for almost all ECO model meta information. This interface allows you to
determine the Name of the element, which Package it belongs to, and a collection of OCL constraints. The modeler also
permits IModelElement descendants such as classes and their members to have tagged values (@ see page 151) assigned
to them which may be read at runtime.

IPackage

winterfaces
IPackage

A list of packages used by an EcoSpace may be obtained using from the EcoSpace.TypeSystem.AllPackages property.
Each package contains a collection of classes and associations that were modeled within it.

foreach (1Package package in ecoSpace. TypeSystem Al | Packages)

Debug. Wit eLi ne(
string. Format ("I D={0} O asses={1} Associ ati ons={2}",
package. | d, package. d asses. Count, package. Associ ati ons. Count)

The output from the preceding code would be something like

‘ | D={ SonreGUI D} C asses=5 Associ ati ons=4

Based on the simple Customer/Order model defined at the start of this section you will see there are five explicitly modeled
classes and four associations. If you think back to the early source code example there were two additional classes
ECOModelRoot and ProductCategoryProducts, these do not appear within the Classes collection because they were not
explicitly modeled. Adding the following code within the above loop

149

2.13 ITypeSystemService ECO Services IPackage

foreach (1Package package in ecoSpace. TypeSystem Al | Packages)

/] Previ ous code onmitted
foreach (1 Model El enent el enent in package. OwmnedEl enent s)
Debug. Wit eLi ne(
string. Format (" El enent={0} Type={1}", el enent.Nane, el enent. CGet Type(). Nane)

DE

Will result in the following output

| D={ SoneGUI D} O asses=5 Associ ati ons=4
El enent =Or der Type=Um Cl ass
El ement =Pr oduct Cat egory Type=Uml O ass
El enent =Or der Li ne Type=Unl Cl ass
El enent =Pr oduct Type=Um d ass
El enent =Cust oner Type=Um C ass
El enent =Or der Cust omer Type=Unl Associ ati on
El enent =Or der Li neOr der Type=Um Associ ati on
El ement =Or der Li nePr oduct Type=Um Associ ati on
El ement =Pr oduct Cat egor yPr oduct s Type=Unl Associ ati on

Note how ProductCategoryProducts is merely an association. This is because the information within an IPackage reflects
how exactly how you modeled it. When ECO initialises its runtime model it is necessary to implicitly create items in order to
make the model execute. For example | mentioned earlier how an ECOModelRoot class is created if there isn't a single
common super class for all classes in a package, if the EcoSpace were to consume two modeled packages which had no
dependencies upon each other then there couldn't possibly be a common super class. In this case ECO would certainly
need to create an implicit super class (akin to a persistent System.Object), but which IPackage would this super class belong
to? The answer is that it wouldn't belong to either. The IPackages' meta-information remains unaltered, it is the EcoSpace's
run meta-information that hold this implicit class, along with implicit classes for associations.

The previous output lists five classes and four associations. The output from the following source code (which uses the
EcoSpace's TypeSystem)

foreach (1 Cass ¢ in EcoSpace. TypeSystem Al | C asses)
Debug. Wi teLine("C ass=" + c. Nane);

will show seven classes

Cl ass=ECOWbdel Root

Cl ass=Cust oner

Cl ass=Or der

C ass=Order Li ne

Cl ass=Pr oduct

Cl ass=Pr oduct Cat egory

Cl ass=Pr oduct Cat egor yPr oduct s

ECOModelRoot was added to the EcoSpace's runtime TypeSystem to cater for not having a common super class. In
addition to having an association named ProductCategoryProducts there is also an implicit association class created. The
reason this association class needs to exist is quite obvious. When changes are made to objects' state within an EcoSpace
ECO identifies which instances' changes need to be persisted to the datastore by identifying each modified instance as
"Dirty" (modified). When it comes to modifying associations in a one-to-one or a one-to-many association the ID of the linked

150

2.13 ITypeSystemService ECO Services IClass

instance is stored in a single end of the association (e.g. the Order identity is embedded into the OrderLine). So adding an
OrderLine to an Order will mark the OrderLine dirty and not the order, so ECO knows that only the OrderLine needs to be
persisted to the datastore.

There are two scenarios however where neither end of the association is considered dirty. In a many-to-many association
neither side of the association is considered dirty because a database table can typically only hold single values, so neither
side's database table can hold a collection of identities. In such a situation it is common practise when writing a database
application to create a link table, consisting of two IDs (one for each side of the association). By creating the implicit class for
a many-to-many association ECO is doing the same thing, not only does it identifying the fact that a link table is required
within the database but it also enables ECO to identify which parts of the association are dirty (A1--B1 was removed, A1--B2
was added). When modifying a many-to-many association only instances of this link-class are considered dirty.

The other scenario is the case where neither side of an association is embedded. This means that the identity of neither side
of the association is stored in the opposite side. In this case ECO will again create an implicit link class for storing the
association.

ITaggedValue

ITaggedValue is a name/value pair of two strings. Anything implementing IModelElement has a collection of tagged values
which may be obtained via its TaggedValues property. Elements such as classes, properties, and methods may be
decorated with hamed values using the modeler during design time; these tagged values may then be read at runtime by the
application.

For example if you select a class (Classl) in the model, click the TaggedValues editor, and then add a tagged value with the
name "MyCompany.DisplayName" the tagged value could be read as follows

| Cass ¢ = EcoSpace. TypeSyst em Get Cl assByType(typeof (C assl));
| TaggedVal ue tv = c. GetltenByTag(" M/Conpany. Di spl ayNanme") ;
SoneLabel . Text = tv. Val ue;

IStructuralFeature

A structural feature is anything on a class which holds state information. A method on a class holds no state and is therefore
not a structural feature. Any modeled element on a class which produces a property in the generated code is considered a
structural feature, this could be either an IAttribute or an IAssociationEnd.

This interface provides information about the state holder such as whether it is persistent / derived / transient, if it is derived /
derived settable, and the IClassifier which represents the .NET type of the member. The members of IStructuralFeature ,
IAttribute, and IAssociationEnd are quite straight forward so wont be covered in this document, for more information about
these interfaces please read the APl documentation.

151

2.13 ITypeSystemService ECO Services IClass

IClass

winterfaces
IModelElement

| winterfaces | | winterfaces

IClaszifier IFeaturedType

7
-

-~
-

winterfaces
IClass
The IClass interface holds meta-information about classes. As an IModelElement it is possible to identify all tagged values
assigned to it during modeling.

Hierarchy

IClass has properties named SuperTypes and SubTypes. Although in .NET you can only descend your class from a single
class the decision was made to make SuperTypes multiple in order to conform to the UML specification, SuperTypes will
always contain zero or one entries. SubTypes on the other hand may obviously contain any number of entries.

|L1 MyExplicitSuperClass ‘

/N

ChildClass1 ChildClass2
: e |

]

|ﬂ GrandChildClass1 ‘ ‘ GrandChildClass2 | ‘ﬂ GrandChildClass3 ‘

GrandChildClass4 ‘

a 5]

Given the previous model it is possible to map the structure at runtime using the following recursive source code.

publ i c voi d Qut put EcoSpaceH erarchy()
{

//Only if we have at |east one class
i f (EcoSpace. TypeSystem Al | Cl asses. Count > 0)
/1 Qut put the super class
Qut put Cl assHi erarchy(0, EcoSpace. TypeSystem Al | Cl asses[0]);

}
private void Qutputd assHi erarchy(int indent, |1C ass currentC ass)
{

string i ndent Text = new string(' ', indent);

Debug. Wi telLi ne(i ndent Text + currentCl ass. Nane) ;

[/ Qut put each sub type

foreach (1 ass childC ass in currentd ass. SubTypes)

Qut put Cl assHi erarchy(i ndent + 2, childd ass);

}

This code would result in the following ouptut

M/Expl i ci t Super O ass
Chi | dd ass1

152

2.13 ITypeSystemService ECO Services IClass

G andChi | dd ass1

G andChi | dd ass?2
Chi | dCl ass?2

G andChi | dCl ass3

G andChi | dd ass4

The AllClasses property is always sorted into a hierarchical order. A sub type will never have a lower index in the collection
than its super type, ultimately the IClass at index zero will always be the root class for the entire runtime model, whether it is
implicitly created or explicitly created as in this example.

Model hierarchy
winterfaces
IModelElement

interfaces winterfaces [1 AllstructuralFeatures
IClassifier IFeaturedType |

winterfaces
IFeature
£

W

winterfaces

g | IStructuralFeature
vy
-
-~
-~
ainterfaces | AllMethods [T winiarracen
IClass IClass 0.z IMethod

In addition to being an IModelElement the IClass interface also descends from IFeaturedType. This type is used for modeled

classes and for adhoc query classes when executing a query in OCL or LINQ which returns a tuple (collection of data rather
than instances of modeled types).

Order
a

attributes
a8 e e Customer 0.*| + Number: Autolnc
attributes 1 Orders| + TotalValue: decimal
+ Name: string operations
+ AddProduct{..)
+ RemoveProduct(..}

b Order
1
OrderLines
0.*
OrderLine . Product
= 1
attributes attributes

+ /LineValue: decimal N - stri
+ ProductPrice: decimal . Uﬂ;-lli‘e.' s rlzg imal
+ QuantityOrdered: int | = Product nitfrice. decima

Products
0.*

ProductCategorys
0=

a ProductCategory

attributes
+ Name: string

Using the IFeaturedType.AllStructuralFeatures property and the IClass.AllMethods properties it is possible to determine the
structure of a class.

public voi d ShowOrderd assStruct ure()
{

Qut put Cl assStruct ure(EcoSpace. TypeSystem Al | Cl asses. Get |t enByNane("Order"));

private void QutputC assStructure(ld ass current C ass)

foreach (IFeature feature in currentd ass. All Struct ural Feat ur es)

153

2.13 ITypeSystemService ECO Services IClass

Debug. Wit eLi ne(
string. Format ("Feature - {0} {1} {2}",
feature.Visibility,
f eat ur e. Nane,
f eat ur e. Feat ur eType)

})i
foreach (1 Method nmethod in currentC ass. Al | Met hods)

Debug. Wit eLi ne(
string. Format ("{0} {1}",
met hod. Visibility,
nmet hod. Nane)
)

Output

Feature - Public_ Custonmer Associ ati onEnd
Feature - Public_ O derLines Associati onEnd
Feature - Public_ Nunber Attribute

Feature - Public_ Total Value Attri bute

Met hod - Public_ AddProduct

Met hod - Public_ RenpbveProduct

Association classes

If the class reference is an association class, either implicit or explicit, its Association property will identify the association it
represents.

0.* Allergies
Person Food
[F) PeopleWithAllergies 0.2|@

FoodAller
3 ay

attributes
+ Severity: AllergySeverity

With a reference to the FoodAllergy's IClass it is possible to obtain the IAssociation reference it represents and obtain
additional information about the association; such as whether the association is derived / transient / persistent, or to obtain
information about the classes at either end of the association (Person / Food) and the multiplicity of the association ends.

154

2.13 ITypeSystemService ECO Services IClass

Class features

winterfaces
IModelElement
winterfaces
IFeature

winterfaces winterfaces 1 ReturnType -
I5tructuralFeature IMethod winterfaces

0.1 IClassifier

p— G 1 Parameters [interfaces

‘ e ‘ | e e ‘ g +| IParameter

lAttribute lAssociationEnd

When accessing IClass.AllStructuralFeatures the result will contain structural features modeled in the class and all structural
features it inherits from its ancestor classes. Iterating this collection of IStructuralFeature will give every structural feature
available to the class, if you wish to iterate only structural features introduced by the current you can use the

FirstOwnStructuralFeaturelndex property.

| ass ¢
for (int

}

| Structural Feature f = c. All Structural Features[i];
Consol e. Wi teLi ne(f. Nane);

EcoSpace. TypeSyst em Get Cl assByType(t ypeof (Based ass));
= c. FirstOmnStructural Featurel ndex; i < c.All Structural Features. Count; i ++)

Class meta-data example

This example uses the previous Customer/Order model.

a Order
attributes
O Customer 0.*| + Number: Autolnc
attributes 7 Orderg| * TotaMalue: decimal
+ Name: string operations

+ AddProduct(..)
+ RemoweProduct(..}

'Order
1
OrderLines.
0.
OrderLi
a8 reertine Product
attributes 8

attributes
+ Name: string
+ UnitPrice: decimal

+/LineValue: decimal
+ ProductPrice: decimal
+ QuantityOrdered: int | = Product

Products
0.*

ProductCategorys
0.*

ProductCategory

attributes
+ Mame: string

publ i c For ml(EcoPr oj ect 20. EcoPr oj ect 20EcoSpace ecoSpace)

155

2.13 ITypeSystemService ECO Services

IClass

// Code om tted

| d ass ¢ = EcoSpace. TypeSyst em Get C assByType(typeof (Order));
Qut put C assl nfo(c);

A class is considered to be either Persistent or Transient, c.Persistent reflects the persistence state of the class. The
DefaultStringRepresentation is the expression that is evaluated whenever the "asString" OCL expression is evaluated

against an object instance.

private void Qutputd asslnfo(ld ass c)
{
Consol e. WiteLine("Nanme : {0}", c.Nane);
Consol e. WitelLine(" Persistent : {0}", c.Persistent);
Consol e. WiteLine(" DefaultStringRepresentation : {0}",
c. Def aul t St ri ngRepr esentati on) ;

Consol e. Wi teLine(" Methods");
Qut put G assMet hods(c) ;

Consol e. WiteLine(" Attributes");
Qut put Cl assAttri butes(c);

Consol e. WiteLi ne(" Association ends");
CQut put Cl assAssoci ati onEnds(c) ;

}
[Qut put]
Narme : Order

Persistent : True
Def aul t St ri ngRepresentation : sel f. Nunmber

IClass.AllMethods contains method information for each modeled method on the class. This will contain inherit methods, but

not methods which were not added via the modeler.

private void Qutput C assMet hods(1 Cl ass c)
foreach (I Method min c. Al Met hods)

Consol e. Wi teLine(" Narme : {0}", m Nane);
if (mReturnType != null)

Consol e. Wi teLi ne(" Returns : {0}", m ReturnType. Nane);
el se

Consol e. Wi teLi ne(" Returns : void");

Qut put Met hodPar anet ers(m ;
}
private void Qutput Met hodParanet ers(| Met hod m
foreach (lParameter p in m Paraneters)

Consol e. Wi teLine(" Paranmeter {0} of type {1} - direction {2}",
p. Type. Nanme, p. Ki nd);
}

m Nane,

[Qut put]
Met hods
Nanme : AddProduct
Returns : void
Par amet er AddProduct of type Product - direction In

156

2.13 ITypeSystemService ECO Services IClass

Nanme : RenpveProduct
Returns : void
Par amet er RenoveProduct of type Product - direction In

As with AllMethods only members added to the class via the modeler will appear in AllStructuralFeatures. The list will
contain both inherited and introduced members. The output of the following code is the result of inspecting the OrderLine
class rather than the Order class, because the OrderLine class has a derived member. The AllStructuralFeatures list will
contain both IAttributes and IAssociationEnds, the example code filters the list to show only IAttributes using the LINQ

"OfType" filter.

private void QutputC assAttributes(lCl ass c)
{
foreach (1 Attribute a in c. Al Structural Features. O Type<l Attribute>())
{
Consol e. Wi teLine(" Narme : {0} of type {1}", a.Name, a.Type_. Nane);
Consol e. Wi teLi ne(" Persistent : {0}", a.Persistent);
if (a.lsDerived)
{
Consol e. Wi teLi ne(" Derived and settable : {0}", a.lsReverseDerived);
if (a.DeriveAndSubscribeMethod != null)
Consol e. Wi teLine(" Derived using nethod : {0}",
a. Deri veAndSubscri beMet hod. Nane) ;
el se
Consol e. Wi teLine(" Deri ved using expression : {0}",
a. TaggedVal ues. Get | t enByTag(" Eco. Deri vati onOCL") . Val ue) ;
}
}
[Qut put]
Attributes
Nanme : ProductPrice of type System Deci nal
Persistent : True
Name : LineVal ue of type System Deci nal
Persistent : Fal se
Derived and settable : Fal se
Derived using expression : quantityOrdered * productPrice
Name : QuantityOrdered of type System | nt 32
Persistent : True

The following code outputs meta information about IAssociationEnds on the Order class. As with the previous IAttribute

example the list is filtered using LINQ.

private voi d Qutputd assAssoci ati onEnds(| C ass c¢)
foreach (I AssociationEnd a in c.All Structural Feat ures. O Type<l Associ ati onEnd>())
{
Consol e. Wi teLi ne(" Name : {0}", a.Nane);
Consol e. Wi teLine(" Persistent : {0}", a.Persistent);
if (a.lsDerived)
Consol e. Wi teLi ne(" Derived and settable : {0}", a.lsReverseDerived);
if (a.DeriveAndSubscribeMethod != null)
Consol e. Wi teLine(" Derived using nethod : {0}",
a. Deri veAndSubscri beMet hod. Nane) ;
el se
Consol e. Wi teLine(" Deri ved using expression : {0}",
a. TaggedVal ues. Get | t emByTag(" Eco. Deri vati onOCL") . Val ue) ;
}

157

2.13 ITypeSystemService ECO Services IClass

Consol e. Wi teLine(" Navi gabl e : {0}", a.lsNavigable);
Consol e. Wi teLi ne(" Miltiplicity : {0}..{1}", a.Miltiplicity.Lower,
a.Multiplicity. Upper);
}
}
[Qut put]

Associ ati on ends

Nane : Cust oner
Persistent : True
Navi gabl e : True
Miltiplicity : 1..1

Name : Lines
Persistent : True
Navi gabl e : True
Miltiplicity : 0..2147483647

If the association where derived the output would reveal how it is derived, either as an OCL expression or via a method call.
In addition it would also indicate whether the member is derived and settable (IsReverseDerived). This is also available on
IAttribute as it is inherited from IStructuralFeature.

158

ECO Services

Registering custom services

159

4.2 A validating IPersistenceService ECO Services

Replacing standard ECO services

Replacing the ExternalldService

A validating IPersistenceService

Constraints in ECO are not enforced by default. This is because it is up to the application developer to decide when to
evaluate constraints and also how to handle constraints when they are broken. One approach is to prevent the user from
saving changes when there are broken constraints, however a sensible backup strategy is to ensure there are no broken
constraints when the datastorage is updated; this protects the persistent data from becoming corrupted if the application

developer neglects to enforce constraints at a single point in the application.

The easiest way to replace the IPersistenceService for an EcoSpace is to descend a new class from
ChainedPersistenceServiceBase class. In this following code sample you will see the following

1. A constructor is added accepting the IEcoServiceProvider. This is done so that references to other services may be
obtained where necessary.

2. The NextPersistenceService property is set. This ensures that all persistence requests are passed on to the real
implementer.

3. UpdateDatabaseWithList<T> is overridden. This is so that the objects being updated may be validated first.

the

This method uses the DroopyEyes.EcoExtensions.Validation.ModeledConstraintProvider class to obtain constraints for a

given instance, this class is used to simplify the example.

public class ValidatingPersistenceService : Chai nedPersi stenceServi ceBase

{

readonl y | EcoServi ceProvi der ServiceProvider;

public ValidatingPersistenceService(l EcoServi ceProvider serviceProvider)
base()

if (serviceProvider == null)
t hrow new Argument Nul | Excepti on(" Servi ceProvi der");

/] Save the service provider reference, and set NextPersistenceService

Servi ceProvi der = serviceProvi der;
Next Per si st enceServi ce = Servi ceProvi der. Get EcoSer vi ce<| Per si st enceServi ce>();

}

public override voi d Updat eDat abaseWt hLi st <T>(| Enuner abl e<T> |i st)
{

var constraintProvider = new Mdel edConstrai nt Provi der();

foreach (1 Qoject instance in |ist)

{

//1gnore del eted objects

160

4.2 A validating IPersistenceService ECO Services

i f (instance. Del eted)
conti nue;

//Get a list of |IConstraint instances for the object being updated

var constraints = new List<l| Constraint>();
constrai nt Provi der. Get Constr ai nt sFor Cbj ect (i nst ance, constraints);

//Find the first broken constraint
var brokenConstraint = constraints.FirstODefault(c => !c.IsValid);

/1lf a constraint is broken throw an exception show ng the
/] obj ect class + the constraint nane

i f (brokenConstraint != null)
t hrow new Exception(i nstance. AsQbj ect. Get Type(). Nanme + ":" +
br okenConstrai nt. Nane) ;

}
base. Updat eDat abaseW t hLi st <T>(li st);

To install the service register it when the EcoSpace becomes active by overriding the Active property.

public override bool Active

{
get

{
}

set

return base. Acti ve;

base. Active = val ue;
if (Active)
Regi st er EcoSer vi ce<| Per si st enceSer vi ce>(new
Val i dat i ngPer si st enceServi ce(this));

}
}

When an attempt is made to call UpdateDatabase on an EcoSpace where one of the objects has a broken constraint an
exception will be thrown with a message similar to

Person : FullName required

161

Index

- 28,49

*29

/29

+ 28, 50

A validating IPersistenceService 160
Abs 85

Acos 85

Add 129

AddDays 66
AddHours 66
AddMilliseconds 67
AddMinutes 67
AddMonths 67
AddSeconds 68
AddTicks 68
AddYears 68

Allinstances 31

ECO Services

AllinstancesAtTime 50
AllLoadedObijects 51
AllISubClasses 51
AllSuperClasses 51
Append 54

AsBag 54
AsCommalList 54
Asin 85
AsSeparatedList 55
AsSequence 56
AsSet 56
AssociationEnds 52
AsString 52

At 52

Atan 86

Atan2 86

AtTime 53

Attributes 53
Average 32

BigMul 86

Ceiling 87

Chars 101

Clear 128
ClrSubstring 102
Collect 57
Collection operations 53
Compare 61
Concat 102
Constraints 62
Contains 103
Cos 87

Cosh 87

Count 57

Create 63, 129

Creating a collection operation 132

Creating a string operation 131

Date 69

Date and time operations 66
Day 69

DayOfYear 70

Days 69

DaysInMonth 70

Delete 129

Difference 32

Div 32

Duration 71

EmptyList 83
EndsWith 103
Excluding 58
Existing 83
Exists 33

Exp 87
Externalld 84

FilterOnType 58
First 58

Floor 88

ForAll 33

Format 104
FormatDateTime 71
FromBinary 71
FromDays 72
FromFileTime 72
FromFileTimeUtc 72
FromHours 73
FromMilliseconds 73
FromMinutes 73
FromSeconds 74
FromTicks 74

GetNumericValue 104

ECO Services

Hour 74
Hours 74

IActionLanguageService 128
ICacheContentService 144
IClass 152
IDirtyListService 8
IEcoServiceProvider 1
IExtentService 139
IExternalldService 4

If 84

IModelElement 149
Implies 34

Includes 34

IncludesAll 59

Including 59
InDateRange 75
IndexOf 59, 104

Insert 106
InstalledOperations 131
Intersection 34
InTimeRange 75
IObjectFactoryService 16
I0cIPsService 25
10clService 44

IPackage 149
IPersistenceService 133
IsControl 107
IsDaylightSavingTime 75
IsDigit 107

ISEmpty 35
IsHighSurrogate 108
IsInfinity 88

IsLeapYear 76

IsLetter 108
IsLetterOrDigit 109
IsLower 110
IsLowSurrogate 110
IsNaN 88

IsNegativelnfinity 89
IsNormalized 111

IsNull 35

ISNullOrEmpty 111
IsNumber 111
IsPositivelnfinity 89
IsPunctuation 112
IsSeparator 113
IsSurrogate 113
IsSurrogatePair 114
IsSymbol 115
IStateService 6
IStructuralFeature 151
IsUpper 115
IsWhiteSpace 116
ITaggedValue 151
ITypeService 130
ITypeSystemService 147
IlUndoService 9
IVariableFactoryService 18

IVersionService 141

Last 60
LastindexOf 117
Length 36

Let 84

Log 89

Log10 90

Mathematical operations 85
Max 90
MaxLength 94
MaxValue 36
Millisecond 76
Milliseconds 76
Min 90

Minute 76
Minutes 77
MinValue 36
Mod 37

ECO Services

ModifiedSinceTimeStamp 94
Month 77

Multi user concurrency 139

Negate 77, 91
NewGuid 95
Normalize 118
Not 37
NotEmpty 38
Now 77

ObjectFromExternalld 95

ObjectTimeStamp 95

OCL operations supported by IOclPsService 28
OCL operations supported by IOclService 48
OclAsType 96

OclGetStates 98

OclGetTriggers 100

OclisInState 100

OclisKindOf 96

OclIsTypeOf 97

Operations support by IActionLanguageService 128

OrderBy 38
OrderDescending 39
OrderGeneric 39

Overview 1

Pad 118
PadLeft 118
PadRight 119
Parse 97
PostPad 120
Pow 91
Prepend 60

Query services 22

RegExpMatch 120

Registering custom services 159
Reject 40

Remainder 91

Remove 120, 129

RemoveAt 130

Replace 121

Replacing standard ECO services 160
Replacing the ExternalldService 160
Round 92

SafeCast 98

Second 78

Seconds 78

Select 40

Sin 92

Sinh 92

Size 40

SqlLike 41
SqglLikeCaselnsensitive 41
Sqrt 93

Standard ECO services 3
StartsWith 121

StartTransaction, RollbackTransaction, and
CommitTransaction 9

State machine operations 98
String operations 101
StrToDate 121
StrToDateTime 122
StrTolnt 122
StrToTime 122
Subscriptions 144
SubSequence 60
SubString 122

Sum 42

SumTime 78
SuperTypes 124

SymmetricDifference 61

ECO Services

TaggedValue 124
Tan 93

Tanh 93

Terminology 2

Ticks 78

Time 79

TimeOfDay 79
TimeSpan operations 124
TimeStampToTime 79
TimeToTimeStamp 79
ToBinary 80

ToByte 125

Today 80

ToDouble 125
ToFileTime 80
ToFileTimeUtc 80
Tolntl6 125

Tolnt32 125

Tolnt64 126
ToLocalTime 80
ToLongDateString 81
ToLongTimeString 81
ToLower (Char) 123
ToLower (String) 42
ToLowerlnvariant 123
ToSByte 126
ToShortDateString 81
ToShortTimeString 81
ToSingle 126
TotalDays 81
TotalHours 82
TotalMilliseconds 82
TotalMinutes 82
TotalSeconds 82
ToUInt16 126
ToUInt32 127
ToUInt64 127
ToUniversalTime 82
ToUpper (Char) 123
ToUpper(String) 43

ECO Services

ToUpperinvariant 123
Trim 124
Truncate 94

TypeName 127

U

Undo blocks 10
Union 43
UtcNow 83

W

Working with an undo block 15

Working with the undo service 12

X

Xor 127

Y

Year 83

	ECO Services
	Table of Contents
	Overview
	IEcoServiceProvider
	Terminology

	Standard ECO services
	IExternalIdService
	IStateService
	IDirtyListService
	IUndoService
	StartTransaction, RollbackTransaction, and CommitTransaction
	Undo blocks
	Working with the undo service
	Working with an undo block

	IObjectFactoryService
	IVariableFactoryService
	Query services
	IOclPsService
	OCL operations supported by IOclPsService
	+
	-
	*
	/
	<
	<=
	<>
	=
	>
	>=
	AllInstances
	Average
	Difference
	Div
	Exists
	ForAll
	Implies
	Includes
	Intersection
	IsEmpty
	IsNull
	Length
	MaxValue
	MinValue
	Mod
	Not
	NotEmpty
	OrderBy
	OrderDescending
	OrderGeneric
	Reject
	Select
	Size
	SqlLike
	SqlLikeCaseInsensitive
	Sum
	ToLower (String)
	ToUpper(String)
	Union

	IOclService
	OCL operations supported by IOclService
	-
	+
	AllInstancesAtTime
	AllLoadedObjects
	AllSubClasses
	AllSuperClasses
	AssociationEnds
	AsString
	At
	AtTime
	Attributes
	Collection operations
	Compare
	Constraints
	Create
	Date and time operations
	EmptyList
	Existing
	ExternalId
	If
	Let
	Mathematical operations
	MaxLength
	ModifiedSinceTimeStamp
	NewGuid
	ObjectFromExternalId
	ObjectTimeStamp
	OclAsType
	OclIsKindOf
	OclIsTypeOf
	Parse
	SafeCast
	State machine operations
	String operations
	SuperTypes
	TimeSpan operations
	TaggedValue
	ToByte
	ToDouble
	ToInt16
	ToInt32
	ToSByte
	ToSingle
	ToUInt16
	ToUInt32
	ToUInt64
	TypeName
	Xor

	IActionLanguageService
	Operations support by IActionLanguageService
	Clear
	Add
	Create
	Delete
	Remove
	RemoveAt

	ITypeService
	InstalledOperations
	Creating a string operation
	Creating a collection operation

	IPersistenceService
	Multi user concurrency

	IExtentService
	IVersionService
	ICacheContentService
	Subscriptions
	ITypeSystemService
	IModelElement
	IPackage
	ITaggedValue
	IStructuralFeature
	IClass

	Registering custom services
	Replacing standard ECO services
	Replacing the ExternalIdService
	A validating IPersistenceService

	Index

