
Performance Analysis for Web Services
Understanding application performance in the era of Service-Oriented Architectures

CompuwareCorporation

The growth of applications using the .NET platform has
generated an increased emphasis on performance measurement

and analysis. Distributed applications, while much more flexible and
potentially more scalable than monolithic ones, have characteristics
that make it more difficult to achieve the goals of high performance
and scalability. In such applications, performance issues may not
manifest themselves in the individual components, but rather in
the integrated application.

The problem arises both in the individual components within the
Service-Oriented Architecture (SOA) and in their interactions with
one another. Individual components, such as the application client
or the Web service, may include computationally expensive code
and bottlenecks that don’t manifest themselves during unit testing,
because the functionality is correct. And if they’re not tested
together, these issues may live on until the application is in
production. Once separately developed components are integrated
into the full application, performance bottlenecks may result from
interactions between them.

These problems are especially common in distributed applications
employing an SOA. In the case of traditional distributed
components utilizing COM or CORBA, processing tended to be
more synchronous, or at least more tightly coupled, which in turn
can result in performance more in line with that of the individual
components. In the case of asynchronous and loosely coupled Web
services, there could well be significant differences in the ability of
the SOA to provide the performance and scalability required by the
application. This is true whether the front-end is a web page or a
WinForms-rich client.

Developers who have worked primarily on stand-alone applications
or tightly coupled clients may lack direct experience in the
performance considerations needed by web-based distributed
applications using services as a part of an SOA. In fact, many

application developers may be surprised at the need to analyze
performance and tune individual components, including Web
services in a .NET application.

This doesn’t represent a deficiency or limitation of .NET, but rather
the reality of the trade-offs required to obtain the flexibility inherent
in an SOA. Application developers simply assume that the Web
services comprising the SOA will meet the performance needs of the
client application, and typically measure performance only from the
standpoint of that client.

In reality, individual Web services may themselves have
performance problems or other limitations that prevent them from
providing a rapid response to client applications. Even if the Web
service has been fully tuned, interaction with other Web services
within the context of the SOA, and with multiple client
applications, may reveal problems that were hidden when
testing the individual service.

Web services adapt the traditional web programming model for use
from all sorts of applications, not just browser-based ones. These
applications are loosely coupled and remarkably interoperable
because they can be called from any location that is reachable with
a URL or URI, and are not limited by the calling conventions of a
specific language. So performance problems within collections of
Web services may extend beyond web applications to include any
application that makes use of the SOA.

Microsoft positions ASP.NET as a natural technology for
implementing Web services based on the Microsoft .NET
Framework. The ASP.NET Web services infrastructure provides an
API for Web services based on mapping SOAP messages to method
invocations. ASP.NET Web services support requests from clients
using SOAP over HTTP, as well as with HTTP GET or POST
operations. ASP.NET Web services automatically generate WSDL

12418_4.qxd 7/12/04 3:05 PM Page 1

2

files for Web services development efforts. Developers can also use
ASP.NET Web services to implement a Web service SOAP listener
that waits for service requests and accesses a business facade
implemented as a COM component or as a managed code class.

Even though Web services using the .NET platform are
straightforward to implement, they haven’t been proven to stand
up to the performance requirements of a wide variety of production
uses. That’s not to say that they won’t or can’t, but rather that this
type of application model represents a significant unknown in
practice. And clearly, this is critical from the standpoint of designing
and implementing an enterprise SOA. Understanding the
performance strengths and limitations of the Web services model
in general, and of individual Web services implementations in
particular, is necessary in order to rely upon them as the backbone
of an enterprise architecture.

Where to measure performance

There are two aspects to measuring and evaluating the performance
of an application composed of one or more Web services. The first
is the throughput of the Web service itself—its ability to accept a
request and provide a response in accordance with required
performance parameters. On a larger scale, it’s also the ability to
actually have a transaction throughput that the component was
designed to meet. We know that as “scalability,” although it’s
difficult to test true scalability prior to integrating all application
components and functionality.

The second aspect is the ability to evaluate the performance of
the application in the aggregate, including the Web service. This
includes not only the ability of the Web service to respond, but also
how that response is coordinated with the responsiveness of the
application as a whole. While the focus may be specifically on the
performance of the Web service component, it must be analyzed
within the context of the entire application.

Why? First, because that’s the type of performance the end-user
will experience. While the profiling data collected from developer
tests doesn’t easily correlate to the end-user experience, it can be
representative of how the application will be used in practice.
Second, bottlenecks may be exposed that may not be apparent from
looking at the Web service separate from the client application.
While they are loosely coupled, there can still be dependencies that
affect overall performance, especially if the application is working
with multiple Web services within the SOA.

To accomplish these goals, it’s necessary to measure the performance
of all of the application components simultaneously, during the same
testing run, and correlate those disparate measurements into an
integrated view. While the Web service may appear to perform
acceptably within its own context, resource or processing issues,
synchronization problems, networking or data throughput, and
bottlenecks may prevent it from reaching its potential.

Unit testing during development

Unit testing a Web service presents the first significant challenge.
As a practical matter, it requires an external stimulus to initiate
execution, so it isn’t as simple to call the service, as you would a
DLL, or link it in, as you would a library.

Fortunately, using the Web services wizard in Visual Studio .NET
has the side effect of creating a web page front-end for functional
testing purposes, and it works well enough to initiate unit testing
also. Otherwise, you would have to write your own call method into
the service.

Unit testing should cover both functional and performance testing.
Functional testing involves exercising the operations which compose
the service, to ensure that they behave as specified. Whether you
employ an automated test management system or conduct these
unit tests manually, keeping track of code coverage is important to
determine what code you’ve tested and how much you’ve tested it.
Many developers already do this, and while Web services open
certain challenges, the process is largely familiar.

The goal of performance testing is to identify slow code and
potential bottlenecks. For developers with experience in monolithic
or tightly coupled applications, this is often simply a matter of
noting that the application doesn’t perform as expected, isolating
the component responsible and fine-tuning the code. It’s not quite
like that when building a loosely coupled application with
Web services.

Profiling a .NET Web service, however, is a necessary part of the
development process, even if you’re just a consumer of an existing
service. Since you’re not looking at performance or scalability testing
of the entire application at this point, you can initiate profiling early
in the development cycle.

12418_4.qxd 7/12/04 3:05 PM Page 2

3

At a minimum, profiling should collect two types of information:
execution time and the number of times code executes
(see Figure 1).

The reason for the first is readily apparent—so that you can quickly
identify parts of the code that seemingly execute more slowly than
others. It’s not necessarily indicative of poorly performing code
because it may just be performing a computationally intensive
operation that can’t be improved upon. However, information
on the performance of your code could justify a closer look at
specific operations.

The number of times code is executed can also be indicative of poor
performance, but in a different sense. A single line or method may
execute in an acceptable amount of time, but may be inefficient in
the sense that a single call to that operation does too little work for
too much overhead. The trick is to find the optimum amount of data
that can be processed most efficiently.

Analyzing performance and diagnosing issues

Profiling a .NET Web service frequently requires looking at both
managed and unmanaged code simultaneously because all but the
most trivial calls into native code must undergo a mode transition.
The mode transition, which is the physical process of moving data
between the managed and unmanaged modes of operation, typically
requires about two-dozen instructions. The second cost is
marshalling the data to move across the boundary. Marshalling
is computationally expensive, and the more data you move back
and forth, the more expensive it becomes. Tests have indicated
that marshalling complex data can involve up to several
thousand instructions.

Alternatively, within the Microsoft model, Web services can
also be unmanaged. Existing or new COM components can be
used to implement the business facade, business logic and data
access layers. Using Windows Server 2003, developers and
system administrators can allow existing COM+ applications to
be called using XML/SOAP by simply checking a configuration
box. COM components also can be used as a part of a managed
.NET Web service.

Figure 1. Compuware DevPartner
Studio performance analysis lets

you see the execution times
associated with each line of code,

as well as the number of times that
line was executed.

12418_4.qxd 7/12/04 3:05 PM Page 3

4

Therefore, you may be making unmanaged calls from your .NET
Web service, whether you are using it as a gateway to call COM
objects, making platform calls or using prepackaged native
components. Profiling both managed and unmanaged calls together
gives you a comprehensive view of the Web service, and most
important, a view of the performance cost of mode transitions.
You should also look at the number of times you’re crossing the
managed/unmanaged boundary. Because this process is so
computationally expensive, you should seek to reduce the number
of times it occurs (see Figure 2).

The granularity of your profiling should be at least to the method
level, and preferably to the individual line of code. At the method
level, you can quickly get a view of what operations your code
spends most of its time performing.

Figure 2. Compuware DevPartner Studio automatic error detection counts the number of transitions between managed
and unmanaged code.

12418_4.qxd 7/12/04 3:05 PM Page 4

5

In addition to obtaining the execution time and number of calls, you
should also be able to analyze your code in several different views of
performance, including percent of time in both method and
children. Walking the call stack is an excellent way of determining
what resources, .NET services and OS services your Web service
uses, and how expensive those services are (see Figure 3).

Modifying Web service performance

Once you have identified slow code, the next step is to address those
issues. One popular technique for addressing how data is passed
between the application and the Web service is to carefully monitor
and optimize the amount of data transmitted in each SOAP call.

In this circumstance, one change you can consider is whether your
code should be “chatty” or “chunky.” As the names imply, chatty
calls are those that occur often and pass little data, while chunky
calls occur less frequently but do more work when they do occur.
While at first glance it might appear that large calls to the service
are more efficient, that’s not necessarily true. A chatty interface
passing less complex data more often may turn out to be less
computationally expensive because its marshalling isn’t as complex.

How do you determine whether or not you should use chatty or
chunky calls to your service? There’s no easy way that applies to all
circumstances; it depends on the amount of data and frequency of
calls. The best action is to prototype both the type of interface and
the performance profile. By investing a little time early in the
development phase, you can ensure you made the right performance
choice and do not have to go back and make substantial changes
after you deliver a working application.

That’s not to say that you might not have to go back and make
adjustments to your calls once the application is done. For example,
you may find that in certain Web services features, chunky calls are
more efficient because of the overall volume of calls. Prototyping
your data and calls ahead of time, however, gives you better ability
to determine the optimum amount of data to exchange with your
Web services in individual transactions.

Another common problem is that certain .NET services can be
computationally expensive. At first glance, it may appear you have
little control over what the .NET Framework does, however, the
framework is rich in features and there are often multiple ways of
obtaining the services you need. Alternatively, the framework calls

Figure 3. Compuware DevPartner Studio performance analysis provides a call graph that lets you visually track
performance bottlenecks back to the offending method.

12418_4.qxd 7/12/04 3:05 PM Page 5

CompuwareCorporation

To learn more about Compuware DevPartner, visit
www.compuware.com/products/devpartner/default.htm

Compuware Corporation Corporate Headquarters
One Campus Martius
Detroit, MI 48226

For regional and international office contacts, please visit our web site at www. c o m p u w a re . c o m

C o m p u w a re is a leading global
p rovider of software pro d u c t s
and professional services which
IT organizations use to develop,
integrate, test and manage the
performance of the applications
that drive their businesses.

Our software products help
optimize every step in the
application life cycle—fro m
defining re q u i rements to
supporting production service
levels—for web, distributed
and mainframe platforms.

Our services professionals work
at customer sites around the
world, sharing their re a l - w o r l d
perspective and experience to
deliver an integrated, re l i a b l e
s o l u t i o n .

Please contact us to learn more
about how our compre h e n s i v e
p roducts and services can
help your organization impro v e
p ro d u c t i v i t y, create higher
quality applications and ensure
performance in pro d u c t i o n .

C o m p u w a re products and professional services—delivering quality applications

All Compuware products and services listed within are trademarks or registered trademarks
of Compuware Corporation. Java and all Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.
All other company or product names are trademarks of their respective owners.
© 2004 Compuware Corporation 7/04

you use may do more work than you actually need. You won’t know
any of this unless you have complete profiling information on child
behavior from your own methods.

Taking the uncertainty out of SOA performance

Web services represent the potential to reuse code components as
features across multiple applications simultaneously. The loosely
coupled model and XML/SOAP communications standard is simple
to understand and implement, but the performance implications
are not yet well understood. In particular, it’s unclear how a Web
service used simultaneously by multiple applications will respond
to such asynchronous requests.

This uncertainty is magnified when an SOA is considered. Multiple
interacting Web services, with one or more servicing multiple client
applications, may have performance issues that simply can’t be
detected while developing individual components in isolation.
You have to look at the SOA and its applications as a complete
system, rather than a set of parts.

You’re going to be feeling your way in building and testing the
performance of Web services. That makes it important to profile
these services, both by themselves and within the context of the
entire application or applications, to determine where slow code
and bottlenecks may reside. In doing so, you can address those
issues by changing the calls to or within the Web service, modifying
expensive database calls, simplifying complex code paths or using
other techniques.

12418_4.qxd 7/12/04 3:05 PM Page 6

