
© 2007 MiG InfoCom AB

MiG Calendar™ Getting Started Guide
__

Release 2.0

Mikael Grev & Ellen Bergdahl

MiG Calendar Getting Started Guide Page 1 / 32

© 2007 MiG InfoCom AB

MiG InfoCom AB
S:t Olofsgatan 28a
753 32 Uppsala
Sweden

www.miginfocom.com

COPYRIGHT © 2005 MiG InfoCom AB.
All rights reserved.

Java is a trademark registered ® to Sun Microsystems.
http://java.sun.com

MiG Calendar Getting Started Guide Page 2 / 32

http://www.miginfocom.com/

© 2007 MiG InfoCom AB

Document Revision History

Version Date Comments

0.9 December 2004 Preview Release

1.0 January 2005 Initial Release

1.1 February 2005 Updated for version 5.2

1.2 December 2006 Updated for version 5.5

2.0 January 2007 Updated for version 6.0

MiG Calendar Getting Started Guide Page 3 / 32

© 2007 MiG InfoCom AB

Table of Contents

Getting Started Guide................................ 6

Preface.. 6

Resources and Developer Support....................................... 6
Contacting Support via Email..6

Contacting support via online forums.................................6

MiG Calendar Product Site..6

Bug Reports...6

Setting up MiG Calendar for usage....................................... 8
Classpath...8

Add License Code..8

Setting up a Swing Application... 8

Examples...9

What Approach to Use?..9
JavaBeans..9

Manual Approach..9

Themed Approach... 10

The Themed Approach... 10
The ThemeDateAreaContainer...10

Visual Date Range...11

Theme Properties..11

Themes and Updating..12

Headers...13

Activities..14

Customizing how Activities Look and Feel.........................15

Customizing Activities Size and Position...........................16

Grid Structure...17

Customizing Grid Lines.. 17

Segments for Nonlinear Time..18

Month View..20

Categories..21

MiG Calendar Getting Started Guide Page 4 / 32

© 2007 MiG InfoCom AB

The Manual Approach...21
Filter Rows and Categories... 24

Customizing how Activities Look and Feel..........................26
Provide your own AShape...27

Decorators...30
The Basics..30

For DefaultDateArea and AbstractDateHeaders..................30

Examples of Decorators Included.....................................30

Getting and Setting Properties...31

Deploying applications with the component.......................32

Continued Reading...32

MiG Calendar Getting Started Guide Page 5 / 32

© 2007 MiG InfoCom AB

Getting Started Guide

Preface

This document aims at providing enough information to get
started using the MiG Calendar component in your
application. The MiG Calendar Tutorial contains information on
how the component is structured including a overview of its
different parts.

The MiG Calendar API JavaDoc will provide details and should be
used as a reference. It can be found at the web site indicated
below and should also normally be installed adjacent to this
document.

Many IDE:s (Integrated Development Environment) of today
have good support for inline help using JavaDocs. The
standard HTML JavaDocs for the MiG Calendar component is
installed by default and can also be obtained from the site as
described below. We highly recommend using this feature as
it increases productively when creating applications with this
component.

Although all developers independent of prior experience can
benefit from reading this document, general knowledge of
the standard Java API and OOP (Object Oriented
Programming) will help understand some of the details and
why they are implemented in a certain way.

Resources and Developer Support

MiG InfoCom AB provides support through email and the
online forums. Information and updated tutorials will be
made available on the MiG Calendar product site

Contacting Support via Email
 support@miginfocom.com

Contacting support via online forums
 www.miginfocom.com/forum/

MiG Calendar Product Site
 www.migcalendar.com or
 www.miginfocom.com

Bug Reports

MiG Calendar Getting Started Guide Page 6 / 32

file:///C:/Development/Java/Projects/migcalendar/docs/www.migcalendar.com/
file:///C:/Development/Java/Projects/migcalendar/docs/www.migcalendar.com/
mailto:support@miginfocom.com

© 2007 MiG InfoCom AB

Via Email or forums as indicated above.

MiG Calendar Getting Started Guide Page 7 / 32

© 2007 MiG InfoCom AB

Setting up MiG Calendar for usage

Classpath
In order to use the calendar component your application
needs to find it. How to do this depends entirely on you
environment but normally you add it to your classpath,
possibly in the project settings in your IDE. The file to make
available is migcalendar.jar or migcalendarbean.jar.

Note! From v5.5 You should use migcalendarbean.jar for
development and migcalendar.jar for deployment. They
differ only by the fact that the latter has more information in
the file, such as all the property editors needed for visual
development. migcalendar.jar contains the whole
component but all the unnecessary information is removed to
provide the smallest possible file. migcalendar.jar is
about half the size of migcalendarbean.jar.

Add License Code
Since the product you are using is commercial it will need to
be fed a license code before it can be used. This license code
should be entered before any usage if the component is
commenced or the component will enter evaluation mode.

This is normally done in your application's main(...)
method or some other place that is run very early in the
startup sequence. This is done like this

com.miginfocom.util.LicenseValidator.setLicenceKey(File/String/InputStream);

Setting up a Swing Application
I order to show the MiG Calendar component you will have to
create a a normal Swing application. How to do that is
outside the scope if this tutorial but it can be done in just a
few lines. See the Swing trail in the Java Tutorial at Sun
Microsystems site. It is currently located at:

http://java.sun.com/docs/books/tutorial/uiswing/index.html

The examples below will assume that you have a basic Swing
application up and working so that you have a workplace (a

MiG Calendar Getting Started Guide Page 8 / 32

http://java.sun.com/docs/books/tutorial/uiswing/index.html

© 2007 MiG InfoCom AB

JPanel for instance) to add the component to. You can also
look at the end of this guide which contains a complete
working example.

If everything was done correctly as described above you
should now be able to use the component.

There was a demo application, including source code,
installed with the component. You can use that as reference
material and modify it as you see fit.

Examples
There are examples showing how to use the JavaBeans. They
are installed in the installation folder under examples. E.g.
C:\Program Files\MiG
InfoCom\MiGCalendar6\examples

What Approach to Use?

This is one of the first questions you have to ask yourself.
There are three main approaches but from v6.0 the preferred
one is the JavaBean approach.

JavaBeans
This is from v6.0 of MiG Calendar the preferred approach. It
means using the JavaBeans in com.miginfocom.beans
package (there are currently 15 beans). There is a separate
guide how to use these beans installed with this document
called "Visual JavaBeans". It contains everything you need to
know.

There is also a Flash Movie on www.migcalendar.com that
shows shows how the beans work in an IDE.

It should also be noted that even though you don't use an
IDE for "visual" programming the beans is probably still the
best choice since there is less to learn to get started and the
are as powerful an either approached below.

Note that you can use the Manual approach outlined below in
almost any case you want even more power than the beans
provide.

Manual Approach
If you want to start from scratch and have complete control
you will probably want to got the non-themed, or manual,
way. This will be the exception though, since the themed
version is very flexible yet simpler to use.

You will have to add headers, decorators, activity layouts,
grid properties and a lot of other stuff manually. It is not as
daunting as it may sound but a quite thorough read through

MiG Calendar Getting Started Guide Page 9 / 32

http://www.migcalendar.com/

© 2007 MiG InfoCom AB

of the DefaultDateArea and DateAreaContainer
javadocs is a definitely recommended.

All properties that can be set and changed for the
DefaultDateArea is outside the context of this getting
started guide, for more information see the API JavaDoc.

Themed Approach
Note! From v6.0 of the component this approach isn't
recommended! Please use the JavaBeans approach. The
section about themes below is still worth the reading as the
base component is still the same and concepts translated to
the other approaches.

The advantage of the themed version is that a lot of
configuration is taken care of with the default settings for the
CalendarTheme. The theme can also be changed, preferably
before the component is created, in one place and that will
migrate to the correct part automatically. For instance you
can set the background for a Header without knowing
anything about how to get a hold of, or even create and
inject, the header. The only thing you need is the correct
key, and the keys are thoroughly documented, which makes
finding it easy.

The downside is that the simplicity to use it hampers the
control somewhat. Since the theme classes (e.g.
ThemeDateAreaContainer and ThemeDateArea) creates
all headers, grid lines specifications, grid segments etc, you
will have a harder time tweaking the creation of them than
you might with the manual versions. Normally this is not a
problem, the theme has so many different properties that
you will probably not even use them all, but there are
situations where you might need more control.

It should be noted that it is still possible to change and tweak
the themed components, especially if auto update for the
Theme is turned off, but what should be changed and when is
a bit less clear.

The themed versions of the classes are actually subclasses of
the manual ones. They read from the Theme and set and
reset properties on its base class when creating it, and
possibly for every change depending on if the theme is set to
auto update changes or not.

The Themed Approach

The ThemeDateAreaContainer
To create a component and to show it is really easy. Just

MiG Calendar Getting Started Guide Page 10 / 32

© 2007 MiG InfoCom AB

create a ThemeDateAreaContainer and it will create and
use the default CalendarTheme settings to create
everything. The default settings are somewhat minimalistic
though, so it won't be very pretty. The “myContext” theme
context is just a key so we know how to get a handle to the
created theme later. The constructor will create a Theme of
the type CalendarTheme and register it in the Themes
singleton class for us, using the provided context as the key.

ThemeDateAreaContainer container = new ThemeDateAreaContainer(“myContext”);

Visual Date Range
If you want to specify between which dates the date area
should be shown you change the visual range:

long startMillis = new GregorianCalendar(...).getTimeInMillis();
long endMillis = new GregorianCalendar(...).getTimeInMillis();
DateRange visibleRange = new DateRange(startMillis, endMillis, true, null, null);
container.getDateArea().setVisibleDateRange(visibleRange);

Theme Properties
If you want to change the properties of the theme, here is

MiG Calendar Getting Started Guide Page 11 / 32

Illustration 1 Default Theme settings

© 2007 MiG InfoCom AB

how you do that. It will set a green background. Not pretty,
but we know if it works..

Theme theme = Themes.getTheme("myContext");
theme.putValue(CalendarTheme.KEY_GENERIC_BACKGROUND, Color.GREEN);

Themes and Updating
How come the date area is updated even though we only
changed the theme? The default setting for the theme, which
is interpreted by the ThemeDateAreaContainer, is that
changes should be migrated to the container and date area.
This is convenient since you don't have to explicitly tell those
classes to update themselves. If you have many changes in a
batch, you may want turn it of and handle the updating
yourself for greater speed.

Depending on what you changed, here are some methods to
use for explicitly force an update. They reload/recreate
different amounts of information. Read the javadocs for
further information.

ThemeDateAreaContainer.recreateAll();
ThemeDateArea.reloadStartupStructureFromTheme();
ThemeDateArea.reloadFromTheme();
ThemeDateArea.recreateAll();

MiG Calendar Getting Started Guide Page 12 / 32

Illustration 2 Horrible green background

© 2007 MiG InfoCom AB

Headers
There are no headers in the default theme, so let's add one.
Since we normally want to set the headers before the
container is created, so it doesn't have to be recreated
directly, we change the code a bit to create the theme
beforehand.

Theme theme = new CalendarTheme("myContext");
CellDecorationRow headerRow = new CellDecorationRow(

DateRange.RANGE_TYPE_DAY,
new DateFormatList("E' 'dd'/'M"),
new AtFixed(20f),
new Font("SansSerif", Font.PLAIN, 12)

);
GridLineRepetition gridLines = new GridLineRepetition(1, new Color(220, 220, 220));
String mainKey = CalendarTheme.KEY_HEADER_;
theme.addToList(mainKey + "North/CellDecorationRows#", headerRow);
theme.addToList(mainKey + "North/GridLines/PrimaryDim#", gridLines);
container = new ThemeDateAreaContainer("myContext");

The code above are using the simplest of the constructors to
create the header row. A lot more can be specified including
mouse over paints, row count, size and label positioning
within the header cell. The keys used are explained in the
javadocs for CalendarTheme and since they are list keys
(ends with a #) the theme's addToList(..) method should
be used.

MiG Calendar Getting Started Guide Page 13 / 32

Illustration 3 Header at top

© 2007 MiG InfoCom AB

To make the header it a bit snazzier let's use a
ShapeGradientPaint object provided with this component.
Exchange the headerRow object above with:

ShapeGradientPaint headerBackground = new ShapeGradientPaint(
new Color(235, 235, 235),
new Color(255, 255, 255),
90, 0.7f, 0.6f, false

);
CellDecorationRow headerRow = new CellDecorationRow(

DateRange.RANGE_TYPE_DAY,
new DateFormatList("E' 'dd'/'M"),
new AtFixed(20f),
AbsRect.FILL,
headerBackground,
Color.DARK_GRAY,
new DefaultRepetition(),
new Font("SansSerif", Font.PLAIN, 12)

);

Activities
OK, now we have a date area that shows a grid of a week
with a header that shows the week days and dates. Next we'll
show how to add some activities (E.g. an Event or 'Todo') to
the date area. First we should create an Activity and add it
to the ActivityDepository.

MiG Calendar Getting Started Guide Page 14 / 32

Illustration 4 Header with snazzy look

© 2007 MiG InfoCom AB

ImmutableDateRange actRange = new ImmutableDateRange(
 System.currentTimeMillis(), DateRange.RANGE_TYPE_HOUR, 4, null, null
);
Activity activity = new DefaultActivity(actRange, new Integer(1234));
activity.setSummary("Hello, World!");
ActivityDepository.getInstance().addBrokedActivity(activity, null);

Note that activity support is turned off by default; This
means that you will have to turn it on in order to see the
activities. You do that with:

container.getDateArea().setActivitiesSupported(true);

Customizing how Activities Look and Feel
How the activities look like can't be changed with the theme.
They are drawn with a Decorator like everything else but
only the layer index in which the activities are drawn can be
changed with the CalendarTheme. The size and position
can be changed with the theme since those are properties of
the ActivityLayout system and not how if looks.

See Customizing how activities look and feel under the
manual section below for an explanation on how to change

MiG Calendar Getting Started Guide Page 15 / 32

Important!

Illustration 5 Added an activity

© 2007 MiG InfoCom AB

the look of an ActivityView.

Customizing Activities Size and Position
There are currently three different ActivityLayouts
delivered with the component; FlexGridLayout,
HideLayout and TimeBoundsLayout. They can all be
customized to great extent using the theme.

Under the CalendarTheme.KEY_LAYOUTS_AUTO_INSTALL
list key you can add your own layouts if needed. With the
Theme Editor you can configure and reorder the built in
layouts. See the Theme Editor Tutorial for more information on
how to do this.

To set a layout with a little more space around the activity
than default add these rows just before you create the
container:

TimeBoundsLayout layout = new TimeBoundsLayout(
new AtFixed(15), new AtStart(15), new AtEnd(-15), 15);

theme.removeAllFromList(CalendarTheme.KEY_LAYOUTS_AUTO_INSTALL);
theme.addToList(CalendarTheme.KEY_LAYOUTS_AUTO_INSTALL, layout);

We removed all other layouts first so we know that this is the
one that will be used for all ActivityViews.

You can have multiple layouts active at the same time and

MiG Calendar Getting Started Guide Page 16 / 32

Illustration 6 Reduced layout bounds

© 2007 MiG InfoCom AB

the ActivityLayoutBroker set in the DateArea will
chose which ActivityLayout that will layout which
ActivityView. You can even install you own
ActivityLayoutBroker under the key
CalendarTheme.KEY_LAYOUTS_BROKER. The default value
of null will use the DefaultDateArea as the broker.

More on activity layouts in the MiG Calendar Tutorial.

Grid Structure
The DateArea uses a DateGrid to map points in time to
screen coordinates and also to manage the underlaying
table-like structure. The grid is recreated by the DateArea
when the structure changes. Increasing the visible range or
row size specifications would for instance recreate the grid.

How much time one row/column spans and in which direction
time primarily flows are two of the key properties of the grid.
Grid line and grid row sizes and paints are also maintained
by the DateArea and is changeable from the
CalendarTheme.

There is a startup part in the CalendarTheme; it contains
information on how the grid should be structured when the
DateArea is first created. It can later be changed by calling
methods on the DateArea.

Customizing Grid Lines
Let's say that we want odd grid lines to be a bit brighter
since they only show 30 min boundaries.

Grid lines are repetition specifications evaluated in the order
they exist in the property list stored under the key:

 String primGLKey = CalendarTheme.KEY_GRID_GRIDLINES_ + “PrimaryDim#”;

Default there is a GridLineRepetition that says: 'start at
grid line 0 and accept every grid line, setting color to gray
and width to 1'.

We can leave that repetition be and insert a new repetition
that goes something like: 'start at index 1 and accept every
second grid line, setting color to light gray and width to 1'.
Since this repetition is before the default one it is evaluated
first. It will only specify a 'hit' on odd grid lines though,
making them light gray. All other grid lines will be caught by
the second, default, rule making all other grid lines darker
gray.

MiG Calendar Getting Started Guide Page 17 / 32

Tip!

© 2007 MiG InfoCom AB

You can easily insert repetitions that just changes a single
grid line, for instance the first or last or around lunch or
whatever. You can even reference them from the last grid
line making them very flexible to work with even if you don't
know beforehand how many you have. You could even say
that the middle 15% of the grid lines should be five pixels
wide and painted yellow..

Here are some code that make odd grid lines lighter a lighter
gray:

String glKey = CalendarTheme.KEY_GRID_GRIDLINES_ + “PrimaryDim#”;
GridLineRepetition glRep = new GridLineRepetition(1, 2, 1, new Color(245, 245, 245));
theme.addToList(glKey, 0, glRep); // add at index 0 to make first key in the list

Segments for Nonlinear Time
Normally time between, say, 08.00 and 18.00 (06.00 pm) is
the most interesting when it comes to planning, especially for
work. The most common solution to this is to show this time
and let the user scroll to times before and after this more
interesting time period. This has a number of problems, the
most obvious is that you have to scroll both up and down to
see if there is anything planned early morning or late night.

MiG Calendar has a unique and elegant solution to this
problem. It supports nonlinear time, per row or for a group of
rows, in both primary and/or secondary dimension. So what
does it mean? It means that you can, for instance, make the
rows denoting 00.00 – 08.00 take up less space per minute

MiG Calendar Getting Started Guide Page 18 / 32

Illustration 7 Even/odd grid lines

© 2007 MiG InfoCom AB

than say 08.00-18.00 and then 18.00 – 24.00 can take up
less space per minute again.

You do this by dividing rows (wither in the primarily or
secondary dimension) into GridSegments and giving those
segments sizes, either absolute or relative. The
GridSegments can have min/preferred/max sizes set on
them ensuring a very flexible layout independent of the
container size. You can for instance specify that a
GridSegment should: 'prefer a size of 10% of available
bounds, but be no less than 2 pixels and no bigger than 10
pixels'.

Here is a some code that makes grid rows 0 to 15 (00.00 –
08.00) occupy 10% of available bounds but no less than 1
pixel and no more than 4 pixels.

AtFixed min = new AtFixed(1);
AtFraction preferred = new AtFraction(0.1f); // Preferred can be absolute or relative
AtFixed max = new AtFixed(4);
GridSegment segment = new GridSegment(16, min, preferred, max);
theme.addToList(CalendarTheme.KEY_GRID_SEGMENTS_ + "PrimaryDim#", 0, segment);

As the GridSegments are also in a list, and there is a default
one at index 0 we add this new one before and as such
defines the first segment to be 16 rows with the provided
size constraints.

Note that even though the activities have equal lengths time
wise the one in the compressed time is shorter.

MiG Calendar Getting Started Guide Page 19 / 32

Illustration 8 Non-linear time

© 2007 MiG InfoCom AB

Reducing the number of grid lines, or rather setting their size
to zero, in the compressed time as well as other
improvements are left as an exercise to the reader. Here is a
screen shot on how it can look if you make some more
adjustments. The theme shown here are one of the example
themes delivered with the component, so they are free, and
encouraged, to dissect and experiment on.

Month View
If we wanted to show five weeks in a month like view, we
would do something like the following. Note that you will at
least have to remove the segment code from above or the
grid will be very small.

final int dayType = DateRangeI.RANGE_TYPE_DAY;
final int weekType = DateRangeI.RANGE_TYPE_WEEK;
final int primDir = SwingConstants.HORIZONTAL;
theme.putValue(CalendarTheme.KEY_STARTUP_PRIMARY_DIM_CELL_TYPE, dayType);
theme.putValue(CalendarTheme.KEY_STARTUP_PRIMARY_DIM_DIRECTION, primDir);
theme.putValue(CalendarTheme.KEY_STARTUP_PRIMARY_DIM_TYPE_COUNT, 1);
theme.putValue(CalendarTheme.KEY_STARTUP_SECONDARY_DIM_WRAP_BOUNDARY, weekType);
theme.putValue(CalendarTheme.KEY_STARTUP_VISUAL_RANGE_TYPE, weekType);
theme.putValue(CalendarTheme.KEY_STARTUP_VISUAL_RANGE_COUNT, 5);

You should now have enough information to go and test
some of the other features of the MiG Calendar. All keys are
documented in the Technical Documentation and the javadocs

MiG Calendar Getting Started Guide Page 20 / 32

Illustration 9 Structure changed to show five weeks in month view

© 2007 MiG InfoCom AB

for CalendarTheme.

Categories
The Themed approach doesn't support Categories. Category
rows and a category header must be added though the
manual approach below. It is still possible to use the themes
approach and the in code add the category header.

The Manual Approach

Even though almost all types of applications can be created
using the themed approach described above, you sometimes
need more control and less automation. Doing it manually is
not hard, but it will be more verbose since you have to create
and add all supporting objects, such as Decorators,
ActivityLayouts and date/time rounders for activities.
There are also a whole slew of properties to change if
needed, something that can be cumbersome doing manually.

Everything that exists in the CalendarTheme can also be set
manually. Some objects that should be created and added
have their properties spread out over multiple properties. You
will also have to know where that object should be injected,
for instance Headers should be added to the
DateAreaContainer but ActivityLayouts should be
added to DefaultDateArea.

You will have to read the MiG Calendar Tutorial to get to know
what objects to use and where to put them.

To create a non-themed version of the component here's
how:

DefaultDateArea dateArea = new DefaultDateArea();
DateAreaContainer container = new DateAreaContainer(dateArea);

MiG Calendar Getting Started Guide Page 21 / 32

© 2007 MiG InfoCom AB

We only see a white background. That is because we haven't
installed (added) any Decorators yet (or rather
GridDecorators, which extends the interface Decorator
with the ability to get the GridContainer).

Lets add grid lines first:

GridLineDecorator glDecorator = new GridLineDecorator(dateArea, 60);
dateArea.addDecorator(glDecorator);

MiG Calendar Getting Started Guide Page 22 / 32

Illustration 11 With GridLineDecorator

Illustration 10 Empty DateAreaContainer

© 2007 MiG InfoCom AB

If you run it now the grid lines will show. 60 is the relative
layer in which this decorator will be painted. Lower layer will
be painted first and thus be overwritten by higher layers.

Notice that the default visible count and type is different from
the one provided by the default CalendarTheme. Here the
default is to show six weeks in a month-like view.

We didn't actually tell the decorator how the grid lines should
look like, GridLineDecorator will get that information
from the DateGrid object for every repaint.

Another important decorator is the
ActivityViewDecorator. It is a special one since it's
actually a inner class of DefaultDateArea. It is so simply
because it has no meaning outside of that class and it need
access to it's members. It is not added by default (none area)
so we have to add it. The syntax for creating an inner class
may seem a bit strange. Here is how you add it:

AtFixed forcedSize = new AtFixed(16);
TimeBoundsLayout layout = new TimeBoundsLayout(

new AtFixed(2), new AtStart(2), new AtEnd(-2), 2,
forcedSize, forcedSize, forcedSize

);
dateArea.addActivityLayout(layout);
dateArea.addDecorator(dateArea.new ActivityViewDecorator(70));

MiG Calendar Getting Started Guide Page 23 / 32

Illustration 12 With an ActivityDecorator

© 2007 MiG InfoCom AB

As you see we also had to add an ActivityLayout.
Otherwise the ActivityView would not get laid out in the
grid, and thus be invisible. We also set the min, preferred
and max size to 16 pixels. The size is referring to the
secondary dimension (vertical here) since the start and size
in the primary dimension is depending on the date range of
the Activity.

What if we want the activity to horizontally (the primary
dimension) be rounded to a full day, so that it would be more
like a list in every day cell? We just visually round it, or
rather set a DateRangeRounder in the
TimeBoundsLayout.

BoundaryRounder dayRounder = new BoundaryRounder(DateRangeI.RANGE_TYPE_DAY);
layout.setVisualDateRangeRounder(dayRounder);

Filter Rows and Categories
Every column/row in the grid can be divided into sub rows.
These sub rows can be divided further into sub rows so it is
basically hierarchical. These sub rows are usually filtered in
some way to only show a certain kind of activities so they
appear separate from each other. This is for instance how the
TV-schedule is done in the demo application.

MiG Calendar Getting Started Guide Page 24 / 32

Illustration 13 Visually rounded to day

© 2007 MiG InfoCom AB

You can write your own filter code to filter on whatever, but
normally Categories are used as filters. Since categories are
also hierarchical it is quite easy to map a category tree, or
part there of, to sub rows.

The simplest way to do this is to set CategoryFilters on
the DefaultDateArea. The creator class that creates the
DateGrid will pick this up and create sub rows
automatically. You can also exchange the date grid creator
itself to create the rows as you want but that is an advanced
approach.

Below is a code snippet that shows how to set up three sub
rows rows in every main row in the grid.

// (id, name, parentID)
Category mark = new Category(new Integer(0), "Mark", null);
Category susan = new Category(new Integer(1), "Susan", null);
Category michael = new Category(new Integer(2), "Michael", null);
// (category, includeSubCategories, acceptUncategorized)
CategoryFilter[] peopleFilter = new CategoryFilter[] {
 new CategoryFilter(mark, false, false),
 new CategoryFilter(susan, false, false),
 new CategoryFilter(michael, false, false)
};
defaultDateArea.setRowFilters(peopleFilter);
dateAreaContainer.revalidate();

The date area does not by default show a category header to
show the names of the filtered rows from above, one have to
add a SubRowGridHeader for that. This header has much in
common with the date headers, only it shows a sub row
property (such as the name) rather than the date. They are
very flexible in that a category header can contain multiple
rows with cells that can be merged in very flexible ways. The
simplest way to experiment with this is to use the
North/WestCategoryHeader JavaBeans with a visual IDE
such as JFormDesigner or netBeans.

Here is some code to set up an example category header. It
is taken from the demo application and can be viewed in a
context there.

DateArea dateArea = mainCalendarContainer.getDateArea();
int size = 15;
SubRowGridHeader header = new SubRowGridHeader(dateArea, 1, new Color(220, 220, 220),
 size, 1, SwingConstants.TOP);
header.setBackgroundPaint(new ShapeGradientPaint(new Color(230, 230, 230),
 new Color(250, 250, 250), 90, 1, 0.5f, false));
DefaultSubRowLevel row = new DefaultSubRowLevel("$gridRowName$",

MiG Calendar Getting Started Guide Page 25 / 32

© 2007 MiG InfoCom AB

 new AtFixed(size),
 AbsRect.FILL,
 null,
 Color.DARK_GRAY,
 null,
 999,
 new Font("sansserif", Font.PLAIN, 11),
 null,
 AtFraction.CENTER,
 AtFraction.CENTER,
 TextAShape.TYPE_SINGE_LINE,
 DefaultSubRowLevel.APPLY_TO_ALL
);
row.setTextAntiAlias(GfxUtil.AA_HINT_ON);
header.addDecorator(new SubRowHeaderDecorator(header, row, 100, true));
header.addDecorator(new GridLineDecorator(header, 110));
mainCalendarContainer.setHeader(header, DateAreaContainer.NORTH, 1);

Customizing how Activities Look and Feel

The default installed Decorator that paints the
ActivityViews uses the in the DateArea specified
ActivityViewRenderer (which is an interface). That
renderer can easily be exchanged for something completely
different, but it is a ShapeRenderer by default.

MiG Calendar Getting Started Guide Page 26 / 32

Illustration 14: Date area with category filter rows and a Category
Header

© 2007 MiG InfoCom AB

You basically have two choices if you want to customize how
the activities are painted:

1. Provide a custom AShape that looks like you want. This is
the preferred choice for almost any use case. AShapes
have build in support for mouse and key event handling
and DefaultDateArea will support that. How to get the
ShapeRenderer to use your new AShape will be shown
later.

2. Write your own ActivityViewRenderer. This is very
simple to do, but it can be hard to enable user interaction
with the rendered views since it has to be done manually.

Provide your own AShape
Creating an AShape that works and looks good is easy.
Creating one that look equally good in all sizes and aspect
rations is a bit harder since it usually includes setting
conditional visibility on some parts and size/position
constrains on other parts. For a full primer on AShapes set
the AShape Tutorial and the MiG Calendar Technical Specification
documents.

Rectangle shape = new Rectangle(0, 0, 1, 1);
//Ellipse2D shape = new Ellipse2D.Float(0, 0, 1, 1); // Alternative.
FillAShape box = new FillAShape("fill", shape, AbsRect.FILL, Color.BLUE, null);
RootAShape root = new RootAShape(box);

The root object is the shape to use. AShapes are stored in a
hierarchy with a RootAShape at the top. The root shape can
be viewed as the handle for the whole shape and must exist
at the very top of the hierarchy tree.

Notice that the FillShape itself doesn't impose what
geometry it should fill, that is provided in the constructor and
can be any Java2D Shape, including GeneralPath and our
own version with better, constrainable, coordinates types;
PolygonShape.

As always, to see exactly what the arguments mean and
what the objects can do see the MiG Calendar Technical
Specification.

Now we need to tell our component how to use our newly
created AShape. As it turns out, this can be done in more
than one way.

1. Exchange the Decorator in DefaultDateArea for your
own. The most flexible solution, but much of the boiler
plate work that is handled automatically by

MiG Calendar Getting Started Guide Page 27 / 32

© 2007 MiG InfoCom AB

DefaultDateArea has to be remade by you.

2. Exchange ActivityViewRenderer in the
DefaultDateArea with a proprietary one that uses the
new shape when painting. Also very flexible but much
easier to implement since you will be provided with the
ActivityViews to paint and the total bounds. There is
nothing 'AShape' about this approach though, you can use
pure Java2D if you like.

3. Get the DefaultAShapeProvider from the the
ActivityViewRenderer, which we know is a
AShapeRenderer, and instruct it to use a some other
RootAShape for some paintContext.
DefaultAShapeProvider uses the paintContext of
the Activity to look up a RootAShape to return. There
are both a map for the actual renderer and a fall back
global map. Look at the JavaDoc for
DefaultAShapeProvider for how to do this. Then just
set the paintContext on the activities to the same
context as you mapped in in the renderer and everything
will be handled automatically. You can even use the static
method
DefaultAShapeProvider.setShapeGlobally(..) to
set it, which is the simplest solution. The null context in
the global map will give you the global fall back shape and
the only installed by default. That one can be exchanged
to make the mapping for the whole application.

There are quite a few different ways to inject your own
RootAShape that should be used for painting those
activities. Which way you choose depends on how late in the
decision process you want to inject it. Earlier gives you more
choice on the actual implementation and later gives you
more help from the framework, and you have to used a
RootAShape.

Here is the outline of the process of painting the
ActivityViews, as short as possible:

The GridDecorator that is installed in the
DefaultDateArea to paint the activities is a
ActivityViewDecorator. It is using a AShapeRenderer
to do the actual painting. That renderer gets the
RootAShape to use from its DefaultAShapeProvider.
That factory always has a default RootAShape to return
(from the global map with paintContext null), and you
can even change that one. On the actual
DefaultAShapeProvider you can change the mapping
between a paintContext and a RootAShape, you can also
change it globally with a static method.

MiG Calendar Getting Started Guide Page 28 / 32

Explanation

© 2007 MiG InfoCom AB

At last, some code. First #2:

DefaultDateArea dateArea = (DefaultDateArea) container.getDateArea();
AShapeRenderer r = (AShapeRenderer) dateArea.getActivityViewRenderer();
r.getShapeProvider().settShape(root, null);
container.getDateArea().recreateActivityViews(); // The views caches the shapes..
or
DefaultAShapeProvider.setShapeGlobally(root, null); // Changes for ALL

This will add the root shape we created a bit up. It will be a
blue rectangle filling the exact bounds of the date range it
represents. It can not be interacted with since we haven't set
any interactions on it, see the AShape Tutorial for information
on how to do this.

If all we want to do is fill blue rectangles there is a faster
way, the #2 in the list above. It might be used to paint a
great number of read only activities with extreme speed.

// Setting a new renderer as defined below.
container.getDateArea().setActivityViewRenderer(new BlueRectangleRenderer());
// add outside a method declaration in your class
static class BlueRectangleRenderer implements ActivityViewRenderer
{
 private final Insets REPAINT_MARGIN = new Insets(1, 1, 1, 1);
 public void paint(Graphics2D g2, Rectangle bounds, TimeSpanList actViewList)
 {
 Paint oldPaint = g2.getPaint();
 g2.setColor(Color.BLUE);
 Rectangle clip = g2.getClipBounds();

 for (int ix = 0, ixSz = actViewList.size(); ix < ixSz; ix++) {
 ActivityView actView = (ActivityView) actViewList.get(ix);
 Rectangle[] actBnds = actView.getBounds();
 if (actBnds != null) {
 for (int i = 0; i < actBnds.length; i++) {
 Rectangle actBnd = actBnds[i];
 if(actBnd != null && clip.intersects(actBnd)) {
 g2.fill(actBnd); // The actual paint code! Exchange for something better...
 }
 }
 }
 }
 g2.setPaint(oldPaint);
 }
 public Insets getRepaintMargin()
 {
 return REPAINT_MARGIN;
 }
}

You now have the basics for changing the AShapes for you

MiG Calendar Getting Started Guide Page 29 / 32

© 2007 MiG InfoCom AB

own, and even for implementing you own proprietary paint
algorithm.

In the demo source that was installed with the component
you can look at AShapeCreator source code. It contains
some example AShapes.

Decorators

The Basics
You have already used a couple of decorators above, but here
area a more thorough explanation.

A Decorator is a generic interface that encapsulates how to
paint something. A GridDecorator is a sub interface and
used to decorate things relative to a Grid. They have an
layerIndex that denotes how to order them is a repaint
cycle. Lower indexed decorators will be painted before higher
indexed ones, making higher indexed decorators appear on
top.

They can also interact with the user since the container of
them should offer all InputEvents (such as MouseEvents
and KeyEvents) to the decorators. Event notification stops if
a decorator consumes the event. If no decorator consumes it
it would normally mean that the container if the decorators
should process it. The code that processes the InputEvents
in the decorators should as always be very fast to not
introduce delays in the GUI.

For DefaultDateArea and AbstractDateHeaders
Currently decorators are use in these two classes and their
sub classes. DecoratorSupport is a class that handles
them and can be utilized should you choose to use them for
other purposes.

Examples of Decorators Included
The Decorator hierarchy is one of the more extensive
hierarchies in the MiG Calendar component. This is done to
minimize code duplication. For a UML diagram of this
structure see the MiG Calendar Technical Specification.

CellLabelDecorator – Draws labels in the cells of the
Grid.

DateSeparatorDecorator – Draws separator lines
between date boundaries in the grid. For instance dividing
months in a month view.

EvenFieldFillDecorator – To fill different backgrounds

MiG Calendar Getting Started Guide Page 30 / 32

© 2007 MiG InfoCom AB

for even/odd date ranges. For instance every other month
can have a yellowish background.

GridLineDecorator – Draws the grid lines in a Grid.

HeaderShapeGridDecorator – Draws the labels for
headers. Very flexible and can merge cells. Also manages
mouse over and press interactions.

ImageDecorator – A generic decorator to place images
somewhere on the Grid.

NoFitShapeDecorator – Paints a custom aligned AShape
in cells that had ActivityViews that couldn't fit.

OccupiedDecorator – Merges the date ranges for the
ActivityViews and draws/fills the background, or some of
it, for when there is at least on if them.

There are currently about 20 decorators, though some are
abstract. It is also very easy to write you own since getting
the positions for dates/cells is trivial courtesy of the
DateGrid object.

Getting and Setting Properties

Generally the MiG Calendar component follows the standard
get/set pattern. Since DateArea, or probably more often the
DefaultDateArea, is normally contained by a
DefaultDateContainer its properties will not be shown in
a RAD (Rapid Application Development) IDE. You will have to
manually get the DateArea with a call like this:

DateArea dateArea = container.getDateArea();

The dateArea object is the one that contains most
properties to change. See the MiG Calendar Technical
Specification for a list of the properties. Since the
DateAreaContainer is almost always used as the container
to host a DateArea and Headers it is like it is the object you
will need a reference to to get a hold of other important
objects.

The DateArea also contains another important object, the
DateGrid. It contains the information on how to convert
between cells, dates/times and pixel positions. It contains a
lot of convenience methods for this.

MiG Calendar Getting Started Guide Page 31 / 32

© 2007 MiG InfoCom AB

Deploying applications with the component

The only file you need is migcalendar.jar . You might
have to include whatever themes you have made and
possible AShape XML files as well, but that is completely
depending on you particular setup.

It is important that you read the license agreement that is
included with this component as it contains information of
what you as a customers can and can not do.

Continued Reading

This Getting Started guide has given you the basics for
experimenting on your own. First stop should probably be the
Theme Editor since that is a utility that can change almost
any of the component's properties and the results are shown
immediately.

If you have requirements that can not be met by the
properties in the theme you must resort to writing code in
order to customize it further. Almost all aspects of the
component can be exchanged and/or overridden to extend
just about everything. This is by design. To be able to do this
you will need to have a thorough understanding of how the
different parts fits together. The MiG Calendar Tutorial and the
API JavaDocs is a must read for doing this. Also, the support
forums at http://www.miginfocom.com/forum/ can be used
to ask questions.

When you have gotten acquainted with the component you
are welcome to make feature requests. The MiG Calendar
component consists of the Calendar part, the Theme Editor
and the AShape framework. Suggestions for any one of them
are appreciated and those should also be posted in the
forums, linked above, so that others can see and comment
on them.

MiG Calendar Getting Started Guide Page 32 / 32

http://www.miginfocom.com/forum/

