
© 2007 MiG InfoCom AB

AShape™ Developer Manual
__

Release 1.1

Mikael Grev & Ellen Bergdahl

AShape Developer Manual Page 1 / 25

© 2007 MiG InfoCom AB

MiG InfoCom AB
S:t Olofsgatan 28a
753 32 Uppsala
Sweden

www.miginfocom.com

COPYRIGHT © 2007 MiG InfoCom AB.
All rights reserved.

Java is a trademark registered ® to Sun Microsystems.
http://java.sun.com

AShape Developer Manual Page 2 / 25

http://www.miginfocom.com/

© 2007 MiG InfoCom AB

Document Revision History

Version Date Comments

0.9 December 2004 Preview Release

1.0 January 2005 Initial Release

1.1 January 2007 Updated for release 6.0

AShape Developer Manual Page 3 / 25

© 2007 MiG InfoCom AB

Table of Contents

MiG Calendar Tutorial.................................6

Preface.. 6

Resources and Developer Support....................................... 6

Contacting Support via Email..6

Contacting support via online forums.................................6

Bug Reports...6

AShape Structural Overview.. 8

The Basics..8

Class Hierarchy...8

Tree Structured.. 9

Usage Patterns.. 9

Pattern #1. Like a Normal Component...............................9

Pattern #2. Like a Stamp...10

The AShape Classes... 10

The Paint Process.. 12

Layouts..13

The Layout Cycle...13

The Layouts..13

DefaultAShapeLayout...13

CutEdgeAShapeLayout...14

RowAShapeLayout...14

Rolling Your Own...14

Interactions...14

Note! From v6.0 of the component there is a simpler and
more flexible way to interact with the shapes. See the
Listening for MouseEvents section below.......................... 15

The Basics..15

Usage Pattern...15

AShape Developer Manual Page 4 / 25

© 2007 MiG InfoCom AB

AShape Properties...16

Interactor...16

Overrides...17

Interaction...17

InteractionBroker..18

Command..18

CommandSet..18

Expression..18

Static Overrides..18

Putting it All Together..19

Listening for Mouse Events...19

Animations...20

The Basics..20

Animation..21

The Animator..21

Time Lines..21

Functions...22

Swing Interoperability... 22

The Basics..22

JComponents in AShapes... 22

AShapes in JComponents... 23

Cursors..23

Events...23

Continued Reading...25

AShape Developer Manual Page 5 / 25

© 2007 MiG InfoCom AB

MiG Calendar Tutorial

Preface

This document aims to provide information on how to
develop applications that uses AShapes.

The AShape API JavaDoc will provide details and should be used
as a reference. It can be found at the web site indicated
below and should also normally be installed adjacent to this
document.

Many IDE:s (Integrated Development Environment) of today
have good support for inline help using JavaDocs. The
standard HTML JavaDocs for the AShape framework is

installed by default and can also be obtained from the site as
described below. We highly recommend using this feature as
it increases productively when creating applications with this
component. Many things are only documented in the
JavaDocs.

Although all developers independent of prior experience can
benefit from reading this document, general knowledge of
the standard Java API and OOP (Object Oriented
Programming) will help understand some of the details and
why they are implemented in a certain way.

Resources and Developer Support

MiG InfoCom AB provides support through email and the
online forums. Information and updated tutorials will be
made available on the AShape product site

Contacting Support via Email
 support@miginfocom.com

Contacting support via online forums

 www.miginfocom.com/forum/

Bug Reports
Via Email or forums as indicated above.

AShape Developer Manual Page 6 / 25

mailto:support@miginfocom.com

© 2007 MiG InfoCom AB

AShape Developer Manual Page 7 / 25

© 2007 MiG InfoCom AB

AShape Structural Overview

The Basics

To understand how this component works you must have an
understanding on both the class hierarchy, which is really
simple, and the tree like structure the objects are stored in
when they are created. It is important to understand the
distinction between class inheritance and tree structure the
objects are ordered in.

Class Hierarchy

As you can see the class hierarchy is simple to understand,
yet very powerful. The objects should almost exclusively be
handled by their interface type AShape. This ensures that the

implementation can be exchanged at any time, say of you
want to exchange the TextAShape for your own

implementation at a later time.

AbstractAShape adds a lot of boiler plate functionality for

the sub classes. It implements almost everything from the
AShape interface and a lot more. This includes:

• Property handling with override support (explained below)

• Layout and paint cycle management

AShape Developer Manual Page 8 / 25

© 2007 MiG InfoCom AB

• Reference and actual bounds handling

• Hit shape storing and processing

• Layer and paint order handling

• Interactions

The concrete AShape classes, such as FillAShape, only

have to implement the paint method that actually draws the
shape in a provided Graphics2D object. This means that if

you want to write your own shape classes it can easily be
done, yet they will still have all the features that
AbstractAShape provides.

Tree Structured

The shapes are combined in a tree structure just like
Components in Swing or SWT. There is always a
RootAShape at the top. It has some additional information

that is used for the whole tree. Then one just add sub shapes
to the root shape, and probably sub shapes to the sub shapes
as well. A sub shape node's bounds is always relative to it's
parents bounds. Exactly what bounds a sub shape will get is
dependent on the ActivityLayout set on the parent as
well as its own PlaceRect. A PlaceRect is a rectangle that

denotes a difference to another rectangle, in this case to its
parent's bounds.

There are currently three different concrete implementations
of a PlaceRect. And that is AbsRect, AlignRect and
AspectRatioRect. They all have a little different approach

on how to specify the relativeness to the parent's bounds.

Building simple as well as complex shapes this way is much
like how it's done in Swing. There are just different types of
layouts and Swing lacks the PlaceRect functionality.

In the demo directory created in the installation directory
there is a class called AShapeCreator. It contains a lot of
code that creates different types of AShapes. Some simple

and some complex ones.

Usage Patterns

Pattern #1. Like a Normal Component

This is a one-to-one relationship in that you create one

AShape Developer Manual Page 9 / 25

© 2007 MiG InfoCom AB

AShape (or rather one AShape hierarchy with a RootAShape
at the top) for every entity you want to decorate i.e. a UML
package box or an ActivityView in a date component.

This way is simple but if there are a great number of entities
to paint there will be as many AShape hierarchies, which

consumes resources. This is how Swing works.

If only one or only a very small number of entities should be
painted, such as GUI buttons, this is the preferred method
since each AShape has it's own reference handle and can be

changed and managed directly without switching
Interactors during the paint process (explained below).

The AShapes should be created with shared (same) graphics
primitives that are immutable, such as Fonts, Colors,
Paints and (usually) Images, to save resources.

Pattern #2. Like a Stamp

This is much like CellRenderers in Swing where you reuse
the same Component for all cells in for instance a JTable.

This reduces the resource strain especially regarding memory
consumption and startup time. This approach is often called a
Flyweight Pattern.

The drawback is that you have to manage a number of
lightweight “peer” objects, called Interactors, which

contains the specific information for the entity to paint. You
don't have to do this if you don't want to but if you don't,
every entity will be painted exactly the same (but they may
have different reference bounds) with no possibility to
interact with any one of them. They will be totally generic.

The Interactor contains information about the state of the

entity to paint. For instance if the outline color of the
currently painted AShape should be darker/brighter than the

others because the mouse hovers over it. Basically you
switch in the Interactors that belongs to the entity you are

just about to paint.

See Interactors further down for information on how this
works.

The AShape Classes

Below is an overview of all concrete AShape classes. Almost

AShape Developer Manual Page 10 / 25

Tip!

© 2007 MiG InfoCom AB

all non-paint functionality is implemented in
AbstractAShape and thus not repeated for the subclasses

below.

RootAShape – Must always be at the root of all AShape
hierarchies, much like Container in Swing. Contains some

extra methods and fields that applies to the whole tree.

VectorAShape – Wraps a normal Java2D Shape object and
gives it attributes such as Paint and anti-aliasing hints. Is

abstract.

FillAShape – Extends VectorAShape (above) to provide

filling support for the shapes.

DrawAShape - Extends VectorAShape (above) to provide

outline drawing support for the shapes.

TextAShape – For drawing text within some bounds. Can be

rotated (+90 or -90 degrees) and set to wrap or not. A lot of
attributes exist that makes it powerful and flexible to use.

FittingTextAShape – Subclass of TextAShape that

checks the available strings one by one and draws the first
one that fits the given bounds. Can be used if you have more
than one possible text to draw, (e.g. “Sunday”, “Sun” and
“S”) and want to paint the biggest one that fits.

ImageShape – For drawing and possibly stretching images.

Can cache an arbitrary number of stretched versions of the
image.

SlicedImageAShape – Extends ImageAShape and takes a
normal Image and slice it up in a 3x3 slices. These slices are

then stretched or tiled in a very flexible way to accommodate
for the common case where you have a template image that
you want to stretch to any size but where the border pixels
should be treated in a different way than the center slice.
This is a very common technique for themed GUI:s.

FilterAShape – A generic abstract base class for drawing

filtered images, i.e. blurred or edge enhanced. Provides
caching and slicing (through a SlicedImage) to improve

performance in orders of magnitude, especially for
rectangular, edge filtered, images/shapes such as shadows.
Subclasses need only provide a BufferedImageOp, so

creating enhanced image shapes is done in a snap.

FeatherAShape – Extends FilterAShape with a feather

AShape Developer Manual Page 11 / 25

© 2007 MiG InfoCom AB

(Gaussian Blur) algorithm. It takes another AShape object as

the object to blur which makes it very flexible.

DividerAShape – A simple shape to use as a divider

(horizontal or vertical). Made simple to be very quick and
easy to create.

JComponentAShape – A special kind of shape that can
contain a normal JComponent. There are no special magic
here, it just sets the JComponent's bounds. Repaints are

handled automatically since its parent should be the same
parent as the JComponentShape is drawn onto.

ContainerAShape – Does not paint anything itself, it is just
to be used to group a number of AShapes. All AShapes can

be container shapes but this one is simple and paints
nothing.

The Paint Process

The actual layout and paint process is much like the one in
Sun's Swing architecture except that it happens every repaint
and it doesn't invalidate any “dirty areas” as Swing does.

The steps as they normally happen in list form:

1. Some controller (maybe your code, maybe a
AShapeComponent which is included) decides the
reference bounds the RootAShape should have and sets it
with a call to setReferenceBounds(Rectangle).

2. If the AShape is to be used as a “stamp”, and thus will be
painting several entities, the Interactor(s) belonging to
the currently decorated entity (i.e. an ActivityView) will
be set on the RootAShape with
setInteractors(Interactor[]).

3. RootAShape.paint(..) is called to start the layout +

paint process.

4. The RootAShape calls layout() on itself to first do a

layout run where all sub shapes' reference bounds are
calculated and set.

5. The AShapeLayout installed will layout the children and
then call layout() on them to make them layout them

selves. This process makes sure that the whole tree will be

AShape Developer Manual Page 12 / 25

© 2007 MiG InfoCom AB

laid out. All AShapes in the tree can have their own
AShapeLayout. DefaultAShapeLayout is the one used

if none is set explicitly.

6. The ARootShape calls paintSubTree() on all its first

level children. This paints that sub tree depth first. When
all of the RootAShape's first level children has been

called, the whole tree has been painted.

7. The hit areas for the just painted shapes (that have the hit
area reporting turned on) are collected and stored in the
Interactors that are of type MouseKeyInteractor
(normally only one). The MouseKeyInteractor will
make use of this information to listen for MouseEvents
and/or KeyEvents and when a “hit/mouse

hover/whatever” happens, maybe change something. See
Interactors below.

The hit areas will only be reported for AShapes that has
the property AShape.A_REPORT_HIT_AREA, which is
Boolean.FALSE by default. If it is set to false, or not

set at all, no mouse interaction will be possible with this
sub shape. Only enable it for the sub shapes that needs it
though, since calculating them uses some resources.

8. Repeat all for next entity or end if done.

Layouts

The Layout Cycle

The AShapes are laid out every time it is painted. How this

cycle works is explained above.

The Layouts

There are three AShapeLayouts delivered with this

component.

DefaultAShapeLayout

A very simple layout, which is also the default one. It offers
the sub shapes the parent's actual bounds and let them place
themselves relative to that. For instance if all sub shapes had
the PlaceRect AbsRect.FILL set, they would all have the

the same actual bounds as their parent, all overlapping each
other. In short, the siblings (first level sub shapes) doesn't

AShape Developer Manual Page 13 / 25

Important!

© 2007 MiG InfoCom AB

depend on each other in any way, only on its parent.

CutEdgeAShapeLayout

Layout the sub shapes according to the following algorithm:

1. The bounds of the parent is offered to the shape in turn to
get laid out.

2. The actual abounds that that shape will use (depending on
its PlaceRect normally) is cut of from the parents

bounds and the bounds left are offered to the next sub
shape. This then repeats until all sub shapes has gotten
laid out.

What this means is that no sub shape will overlap. This works
much like a DockingLayout (sometimes called EdgeLayout)
and is normally used as one. The sub shapes to be “docked”
should have their PlaceRect cut of the correct piece. There
is an optimized constructor for this in AbsRect (which
implements PlaceRect).

RowAShapeLayout

A layout not unlike BoxLayout in Swing, but much more

flexible. It lays out the sub shapes in one row, with the size
in the non laid out dimension set to match that of the parent.

The size in the laid out dimension can be absolute or relative
and have min/preferred/max sizes set. This makes it very
flexible, especially since it asks the sub shapes what is their
min/preferred/max size, if that information isn't set directly
for the RowAShapeLayout.

It will not make the sum of the sub shapes larger that its own
size.

This layout can be used for creating a list of icons for
instance.

Rolling Your Own

It is very easy to make your own ShapeLayout. You either
implement ShapeLayout directly and write the two methods
it specifies or if the the AbstractAShapeLayout's size

estimation is adequate you just extend it to implement the
actual layout algorithm.

Interactions

AShape Developer Manual Page 14 / 25

© 2007 MiG InfoCom AB

Note! From v6.0 of the component there is a simpler and more
flexible way to interact with the shapes. See the Listening for
MouseEvents section below.

The Basics

Interactors are used to connect the AShapes to the rest of

the application. They are very flexible and there exist many
implementations to interact with different types of outside
events.

The whole util.interaction package denotes a very

extensible and highly decoupled way to say what you want to
happened, to what, and when.

Also check the Static Overrides section below as it is a
simpler way to change the properties on an AShape in

dynamic way. It is a simpler and more flexible way to handle
overrides in some ways but there are things you can't do with
them, for instance starting and stopping animations on
specific timer events.

Usage Pattern

Normally you have an Interactor (or many) that is

connected to the entity (the interacted) you are interacting
with (such as a button or activity) and usually also to some
source of events, such as a JComponent or a Timer. The
Interactor contains a number of Interactions which

specify what to do when something happens. For instance:
“Change the color to blue when clicked on with the mouse”.

All Interactors will process the events sent to them and check
if there are any Interactions that needs attention (i.e. if
it's a “trigger” for the Interaction). All Interactions that is
triggered will be evaluated with the Expression set on it.
That Expression can denote just about anything, for

instance if the mouse is over it.

If the Expression is evaluated to true its associated
Command(s) will be run using the InteractionBroker set
on the Interactor.

The above algorithm is using a lot of different parts in a very
decoupled framework. Almost any concrete implementation
of an InteractionBroker can be connected to any type of
Interactor for instance. This is very powerful but can be a

bit hard to grasp since you can't count on the types of the
classes to see what belongs to what.

AShape Developer Manual Page 15 / 25

Tip!

© 2007 MiG InfoCom AB

TheJavaDocs of the difference classes will specify what it's
used for and what information it needs to do that. There are
also some static helper methods in AShapeUtil that helps

to create some if the more used interactions, such as setting
a Cursor for a mouse over event.

AShape Properties

All properties for an AShape are stored as a name/value pair
in a Map. This means that the AShape has very few
dedicated get/set method pairs, it has instead PropertyKey
constants for accessing the properties (you can also have
your own key names of you want).

The downside if this is that type checking for the properties
isn't possible and the API is rather sparse.

The upside is that this is very extensible and powerful when
combined with overrides, as explained below. It is also very
simple to subclass and make your own AShapes since you

can use the already existing property constants or just
provide new ones, which is a one-liner.

Another positive thing is that it's automatically persistable to
XML through the API of the AbstractAShape and the beans

XML persistence technology introduced in Java SDK 1.4.
There are even convenience methods in AShapeUtil that
makes loading and saving of AShapes a one-liner. As long as
you store the AShape's properties with the provided
putAttibute(..)/getAttribute() methods, they will be

possible to override (explained below) and automatically
persistable to XML.

Please see the API JavaDocs for information on the properties
and the expected types. Every AShape subclass has a list of

properties it uses. Most properties (as are defined directly in
the AShape interface. Some that are only interesting to a

specific implementation, may be defined in that particular
class.

Interactor

The Interactor is the central place where everything is
connected. It contains the InteractionBroker,
Interactions and is the posting point for InputEvents.
All other parts are retrievable from the Interactor or it's

contained objects. Below are the components that is
aggregated in the Interactor.

AShape Developer Manual Page 16 / 25

© 2007 MiG InfoCom AB

Overrides

A unique feature of AShape is that of overrides. Since every
property of an AShape is stored in a PropertyKey/value

map it is very easy to intercept the getting and setting of
every property. One such interception is the notion of
overrides.

For every retrieval of a property, e.g. Paint, PlaceRect,
Font and such, all Interactors are asked if they have an

overridden object to return for that particular property name.
This means that is is very simple to exchange all, a sub set
or just one of the properties for an AShape without actually

changing it's state, and without changing properties that is
unknown at the time of writing. The only thing you change is
the Interactor since it contains the override Map.

This is for instance how normally you would set a different
color for a mouse over:ed AShape, you set an override for
the background paint on the corresponding Interactor.

This will work both for the one-to-one pattern as well as the
stamp pattern, as described above.

With this override pattern it is also very easy to restore the
original value, you just restore (remove) the override and the
original value is visible once again. This means that there is
no need to save the original value and late restore it.

The reason the you can't just set the new value on the
AShape itself is that it is normally used as a rubber stamp

and for instance the shape can be used to paint all Activities
in a date area (this is even the normal case). If for instance a
new color was set on the shape when it was mouse over:ed
then all activities would change color. The override is
connected to the interacted through the Interactor so it is

overriding that property only for one paint (the mouse
over:ed one).

Interaction

An interaction is a concrete class that describes a trigger
that, when it happens, the framework should check the
validity of an Expression. If that Expression is evaluated
to true it also contains a Command(s) that should be

executed. It isn't more complicated than that since it is very
generic, yet is is powerful just because it can describe almost
any if-then constellation.

AShape Developer Manual Page 17 / 25

© 2007 MiG InfoCom AB

InteractionBroker

It is the interpreter of Commands. Since Commands are very
generic something is needed to interpret what that Command
wants to do, if that is not contained in the Command itself.

Command

The Command is a concrete class and contains a generic

(again) description of something to do. It consists of the
command string, a property/value pair that may be use to
explain it further, and a target.

CommandSet

A collection of link Commands. Is an interface and is
implemented by DefaultCommand. It is used to chain

multiple commands together for one interaction. You can use
CompositeCommand for this.

Expression

An Expression is something that can be evaluated to true
or false. The only thing you have for sure is a
PropertyProvider that you can use to get values for
certain properties. Expression is an interface and the

concrete implementations provides some context to which
properties is interesting and how they should be evaluated.

For instance the LogicalExpression denotes a comparison

algorithm where you provide a property name and a value
that is should relate to with anyone of it's ten operators (e.g.
equals, is_null and in_collection). The actual object to
compare the give value to is gotten from the mandatory
PropertyProvider.

Since the PropertyProvider can be different for every

evaluation this makes for a great way to describe expressions
like: “If the object that the mouse is over right now is named
background”. Currently ActivityInteractor and
MouseKeyInteractor implement the PropertyProvider
interface and will thus pass them self as the
PropertyProvider to the Expression's evaluate method.

This means they can return property values for things like a
list of named areas the mouse was over when it was pressed
(MouseKeyInteractor.PROP_MOUSE_PRESSED_LIST).

Static Overrides

Static overrides is a simple and very extensible way to

AShape Developer Manual Page 18 / 25

© 2007 MiG InfoCom AB

control overrides without the need for the Command pattern
described above. It means that you can call a static method
on the ActivityInteractor class to set an
OverrideFilter that contains code that either override a

property or not. Here is some example code:

String shapeName = AshapeUtil.DEFAULT_OUTLINE_SHAPE_NAME;
ActivityInteractor.setStaticOverride(shapeName, AShape.A_PAINT, new OverrideFilter() {
 public Object getOverride(Object subject, Object defaultObject)
 {
 Activity activity = ((ActivityView) subject).getModel();
 if (activity.getStates().isStateSet(GenericStates.SELECTED_BIT))
 return Color.RED;
 return defaultObject;
 }
});

The code adds an override filter that is checking if the
Activity is selected, and if it is, returns the color red. If the
activity isn't selected it returns the default object which is the
normal color in this case.

The code above can be altered in many ways to
programatically alter how AShapes look depending on some

condition of the "subject" it is decorating.

Putting it All Together

This package has a lot of different parts, and what parts that
can be combined together to make a meaningful interaction
specification is not entirely obvious. Therefore you should
probably look at the demo application and the source code
for AShapeUtil, which contains a lot of static AShape
creation methods.

Listening for Mouse Events

This is new for v6.0 if MiG Calendar component. It offers the
same observer pattern for MouseEvents that Swing has. You
can easily just listen for instance for mouse over events and
change the color (or whatever) using your custom code. This
is much easier than specifyin this with Interactors as you

had to do pre 6.0.

This is easier to understand with some example code:

AShape Developer Manual Page 19 / 25

© 2007 MiG InfoCom AB

myAShape.addMouseListener(new MouseInteractionListener() {
 public void mouseInteracted(MouseInteractionEvent e) {
 if (e.getEventKey() == MouseKeyInteractor.MOUSE_OVER_CHANGE) {
 String shapeName = AShapeUtil.DEFAULT_OUTLINE_SHAPE_NAME;
 MouseKeyInteractor inter = e.getMouseKeyInteractor();
 PropertyKey moListKey = MouseKeyInteractor.PROP_MOUSE_OVER_LIST;
 if (MouseInteractionEvent.isShapeInList(shapeName, moListKey)) {
 inter.addOverride(shapeName, AShape.A_PAINT, "myid", Color.RED);
 } else {
 inter.removeOverrideById("myid");
 }
 }
 }
});

The code checks if the outline shape for the default shape is
in the "mouse over:ed" list. If it is; an override for the Paint
is is set to Red. If not; the override is removed (if there) to

expose the original paint again effectively making a mouse
over effect. The "myid" is just the id of the override so we

can remove it later.

The MouseKeyInteractor contains references to the the

keys for the different event types as well as the keys for
retrieving the List(s) and values that contains state

information such as which is the topmost mouse over:ed
AShape name.

There is a lot of state information contained in the
MouseInteractionEvent. You can listen for just about anything
and react to this with a reference to the Interactor that

can adjust the state (by adding an override) for that
particular AShape "stamp".

Animations

The Basics

The ashapes.animation.* package contains all that is
needed to create animated Ashapes. They can even be

animated when for instance the user mouse-overs it. It
consists of an Animator that controls an Animations over a
TimeLine to produce the result.

The framework is based on the absolute time and not delay
between frames. This but gives much better quality since
even a very slow target environment will play the animations
in absolute time, they will never lag behind. If the computer

AShape Developer Manual Page 20 / 25

© 2007 MiG InfoCom AB

can't keep up, for whatever reason, frames are dropped to
keep up rather than played in turn.

Time lines can also progress non-linear. This means that you
can provide any custom Function that will outline the

progress of the animation. For instance it can slow down or
accelerate. It can even have advance sinus-like equations to
make animations oscillate.

Animation

Animation is an interface that describes how one object
fades into another, given a value between 0.0 and 1.0
(float). Subclasses provides the actual implementation that
does the transformation. For instance ColorAnimation can
“animate” between two Colors.

The AbstractAnimation class that all current Animations

subclass provides for caching the values if the frame count is
provided. This is normally a must for animating Image
transitions for instance but it can of course be turned off.

The Animator

The Animator class is an abstract class that provides basic

boiler plate functionality for controlling an animation. The
OverrideAnimator is the default implementation and it

provides everything needed to animate some aspect of an
AShape through overrides (as explained above). It does the

animating in an indirect manner, by overriding properties on
the AShape. It uses its own Thread to set overrides in the
Interactor, which means that for instance one activity can

(optionally) be animated when mouse over:ed. Setting the
override triggers a repaint and the next frame will be shown.

This method of animation means that any property of
AShape that can be overridden can be animated, and since

all properties can be overridden, they can all be animated.

There are seven different types of Animations delivered with
the framework and it is very simple to write your own. You
just have to extend AbstractAnimation and write one

method that returns the object that corresponds to the
float value (0..0 to 1.0).

Time Lines

A TimeLine denotes how frame numbers should relate to

absolute time. It has duration (time), tick count, repetition

AShape Developer Manual Page 21 / 25

© 2007 MiG InfoCom AB

type/count and a Function. It manages this information

including the ability to pause, stop, reverse and resume
animations.

Time lines are ever changing objects since there state is a
function of time + earlier state, which progresses outside our
control. To be able to read multiple properties from a
TimeLine its state is "freezable" and when frozen they will

not change and you can read multiple values that will be
correct in relation to each other. You will probably not have
to bother with this though, but it is a feature needed to write
precise Animators for instance.

Functions

This framework has the possibility to map frames to absolute
time non-linearly. This means that it is easy to do
accelerated fade ins and outs and to, for instance, create
oscillating animations. The default Function is
LinearFunction which maps time and frame in a linear
fashion. Also provided is a class ExpFunction which maps

frames and time in exponentially, making it simple to make
accelerated or retarding animations.

Swing Interoperability

The Basics

Swing is the standard GUI framework provided by Sun
Microsystems and is used to create user interfaces in Java.
The AShape component interacts with Swing both ways. It
can be used within a Swing JComponent and any
JComponent can be contained in a AShape and still be used

the normal way.

JComponents in AShapes

There is a special AShape thatcan contain a JComponent,
namely JComponentAShape. It will set the bounds of the
“wrapped” JComponent to the same as it would get itself

and as such provides a transparent glue to have a
JComponent in an AShape. There are no special
requirements on the JComponent other than it still, as all
JComponents, need a valid parent. Normally this should be
the same Component that the AShape itself is painted on.

AShape Developer Manual Page 22 / 25

© 2007 MiG InfoCom AB

AShapes in JComponents

Also for this, reversed, use case there exist a special class,
AShapeComponent. It is a JComponent that:

• Forwards InputEvents (MouseEvents and KeyEvents to
the “wrapped” AShape's Interactor(s) for processing

before itself handles them (if not consumed).

• Adapts the Swing repaint cycle to migrate to that of the
AShape's.

• Registers itself to listen for InteractionEvents on the
AShape and when they occur re-dispatches them to
listeners added to the AShapeComponent.

• Installs the normal types of Interactors on the wrapped
AShape, if desired.

• Handles the actual JComponent to be positioned relative
to. This means that AShapeComponent can be used as

any type of renderer component, for instance a
Component returned by TableCellRenderer or
TreeCellRenderer. This opens up for having AShapes
in JTrees and JTables!

Cursors

Mouse cursors is a property of the Component class. Every
AShape can have a Cursor attribute set on it with the key
AShape.A_MOUSE_CURSOR.

Interactions have to be installed on the AShapes to actually
transfer this set Cursor to the Component on which it is

rendered. It can be done manually but calling
AShapeUtil.enableMouseOverCursor(RootAShape
root) is the easiest way. It installs Interactions to set
the Cursor depending of which sub shape the mouse is over.

Since there is no way in Swing to know which is the default
Cursor for a certain point in the Component the cursor can

not be restored when it leaves the shape. You must listen for
MouseEntered events in the Component that is drawing the
AShapes and set the Cursor to the desired one. The
AShape framework will send synthesized MouseEntered and
MouseExited events to the Component when the mouse
exit and enter the hit area of a AShape.

Events

AShape Developer Manual Page 23 / 25

Note!

© 2007 MiG InfoCom AB

Interactors are the objects responsible for dispatching and
processing InputEvents. This is normally done by the
MouseKeyInteractor with a
DefaultInteractionBroker as the receiver of the
Commands run when an Interaction should occur.

How does the MouseKeyInteractor get the events? The
simple fact is that it doesn't. The Container in which the
AShape is to be painted (for instance the
AShapeComponent as explained above) has to provide them
to the Interactors.

This could be done automatically by the Interactor but it

would break some applications that also listens on the
Events very early in the dispatching process so this way is

more compatible, but you will have to remember to do it if
you provide your own Component container. Here is the code
from AShapeComponent that forwards the InputEvents to
the Interactors of the AShape. Note that all
Interactors of all decorated entities must be notified. This
method will override the processEvent() of the
Component class to first re-dispatch them to the
Interactors.

/** Overridden to let all activity views have fist chance to interact with the events
and
 * if they are consumed disregard them for further processing.
 * @param e The event.
 */
protected void processEvent(AWTEvent e)
{
 if (e instanceof InputEvent) {
 Interactor[] interactors = rootShape.getInteractors();
 if (interactors != null) {
 InputEvent ie = (InputEvent) e;
 for (int i = 0; i < interactors.length; i++)
 interactors[i].processEvent(ie);

 if (ie.isConsumed())
 return;
 // Resets the Cursor. Only needed if the AShape changes it in the first place
 if (e instanceof MouseEvent) {
 if((MouseEvent) e).getID() == MouseEvent.MOUSE_ENTERED)
 setCursor(null); // Whatever cursor that is to be used
 }
 }
 }
 super.processEvent(e);
}

AShape Developer Manual Page 24 / 25

© 2007 MiG InfoCom AB

Continued Reading

This document has given you the basics for experimenting on
your own. There are currently no GUI tool, such as a vector
paint application, to experiment with all the different aspects
of the AShapes. It is therefore suggested that you set up a

basic Swing application that just shows an
AShapeComponent and set a RootAShape with AShapes

that you can easily change and experiment with.

If you have requirements that can not be met by the
properties for the built in AShape types you must resort to

writing code in order to customize it further. Almost all
aspects of an AShape can be exchanged and/or overridden to

extend just about everything. This is by design. To be able to
do this you will need to have a thorough understanding of
how the different parts fits together. The API JavaDoc is a
must read for doing this. Also, the support forums at
http://www.miginfocom.com/forum/ can be used to ask

questions.

When you have gotten acquainted with the component you
are welcome to make feature requests. Suggestions for the
AShape component are appreciated and those should be

posted in the forums.

AShape Developer Manual Page 25 / 25

http://www.miginfocom.com/forum/

