
© 2005 MiG InfoCom AB

MiG Themes™ Developer's Guide
__

Release 1.0

Mikael Grev & Ellen Bergdahl

MiG Themes Developer's Guide Page 1 / 12

© 2005 MiG InfoCom AB

MiG InfoCom AB
S:t Olofsgatan 28a
753 32 Uppsala
Sweden

www.miginfocom.com

COPYRIGHT © 2005 MiG InfoCom AB.
All rights reserved.

Java is a trademark registered ® to Sun Microsystems.
http://java.sun.com

MiG Themes Developer's Guide Page 2 / 12

http://www.miginfocom.com/

© 2005 MiG InfoCom AB

Document Revision History

Version Date Comments

0.9 December 2004 Preview Release

1.0 January 2005 Initial Release

MiG Themes Developer's Guide Page 3 / 12

© 2005 MiG InfoCom AB

Table of Contents

MiG Themes Developer's Guide................................. 5

Preface.. 5

Resources and Developer Support... 6
Contacting Support via Email... 6

Contacting support via online forums... 6

MiG Theme's Product Site (soon).. 6

Bug Reports... 6

How Themes work.. 7
Overview.. 7

Theme Context.. 7

Capabilities... 7

Keys... 8

List Keys... 8

Linked Keys.. 9

Load and Save... 9

The Theme Editor... 9
Custom Editor Panels.. 9

Extending Theme Editor... 10

Making Your Own Themes.. 10
Suggested Key Pattern... 10

Immutable Values.. 12

Shared Capabilities.. 12

MiG Themes Developer's Guide Page 4 / 12

© 2005 MiG InfoCom AB

MiG Themes Developer's Guide

Preface

This document aims at providing information about how to develop
applications that uses the MiG Themes component.

The MiG Themes Technical Specification will provide details and should
be used as a reference. It can be found at the web site indicated below
and should also normally be installed adjacent to this document.
Currently the UML JavaDoc is used a the technical specification. It will
be converted to a PDF at a later time.

Many IDE:s (Integrated Development Environment) of today have
good support for inline help using javadocs. The standard HTML
javadocs for the MiG Themes component are installed by default and
can also be obtained from the site as described below. We highly
recommend using this feature as it increases productively when
creating applications with this component.

Although all developers independent of prior experience can benefit
from reading this document, general knowledge of the standard Java
API and OOP (Object Oriented Programming) will help understand
some of the details and why they are implemented in a certain way.

MiG Themes Developer's Guide Page 5 / 12

© 2005 MiG InfoCom AB

Resources and Developer Support

MiG InfoCom AB provides support through email and the online
forums. Information and updated tutorials will be made available on
the MiG Themes product site

Contacting Support via Email
 support@miginfocom.com

Contacting support via online forums
 www.miginfocom.com/forum/

MiG Theme's Product Site (soon)
 www.miginfocom.com/migthemes/
Bug Reports
Via Email or forums as indicated above.

MiG Themes Developer's Guide Page 6 / 12

file:///C:/Development/Java/Projects/migcalendar/docs/www.miginfocom.com/migthemes/
mailto:support@miginfocom.com

© 2005 MiG InfoCom AB

How Themes work

NOTE! As of v6.0 of the MiG Calendar Component it is recommended to
use the JavaBean approach.

Overview
A Theme in this component is a collection of properties that may be
hierarchical and the values have to conform to certain capabilities. The
properties can be linked to each other to make several properties have
a single edit point. A special kind of property may contain a list of
values, all with the same capabilities. The list will maintain the insertion
order.

The key is a string that looks much like a path to a file. E.g.
“Look/Background/color”. The keys are normally defined as
static strings, but they can also be dynamically created.

The value of a property is of type Object, but it is type checked at
runtime through one of more PropertyCapability objects
assigned to the property or hierarchy of properties.

Theme objects are typically stored in the Themes object which has
static accessor methods. You provide a context string which
identifies the theme to get. There can be different Themes of the
same type and/or of different types stored in the Themes object.

You typically subclass Theme to define your own theme. This is a
simple process and you basically only supply the information needed
to define the keys, the rest is handled by the abstract Theme class.

All Themes are editable with the GUI Theme Editor application. The
Theme Editor can also be seamlessly incorporated into you own
applications since it is contained in a normal JPanel. If you have a
custom value object an XxxPropertyEditor can very easily be
written to enable visual editing of that value. All boiler plate code is
implemented in AbstractPropertyEditor (which extends
PropertyEditorSupport, the JavaBeans standard editor type),
you only have to provide the components to show and edit the value.

Theme Context
The theme context is a String that identifies a particular Theme
instance. It is used as a token, or key, to get the theme from the
Themes.getInstance(context)static method. This is so that
the theme reference don't have to be passed around all the time and
that the actual implementation can be changed at any time.

MiG Themes Developer's Guide Page 7 / 12

© 2005 MiG InfoCom AB

Capabilities
A property in the Theme can have any number of
PropertyCapability objects assigned to it. These capabilities
outlines which type of object that property can hold, including if it can
be null. The capability specifies the class type of the value and if it is
a Comparable also a valid range.

Every store of properties, including loading of them, checks that the
capabilities for a property isn't broken. This ensures that the Theme is
always legal in terms of the types of value for the properties.

The legal PropertyEditors to use for visually editing a property
value in a Theme will be selected on the property capabilities that are
registered for that key. If there are many different property capabilities,
which is quite normal, all of them will be selectable to edit the value.
This is a lot more flexible than the normal JavaBeans
PropertySupport classes, since they only can be coupled to one
specific class type.

Keys
The keys are really just simple strings and they need not be any
special at all to work. However the Theme Editor and the Theme class
will recognize a hierarchy among the keys if formatted in a special
way. Organizing the keys into hierarchies will enable them to

• be shows visually in a tree structure in the Theme Editor. This
makes browsing them much simpler.

• have capabilities set on a whole sub tree. Saves resources and
simplifies changes.

• create a sub tree from one or more array of keys, making it
possible to set up large structurally repeating trees with ease.

• give context to keys. The key “Header/North/color” have
better and more definable structure than “northHeaderColor”
would have.

Also see under Making Your Own Themes below for further
information about the key hierarchy and folder keys.

List Keys
List keys are a special type of key that allow for an ordered list of key,
which still comply with the given capabilities. If the key wouldn't be
treated in a special way the capabilities would only be able to specify
that it should be of type java.util.List, now the list elements
will be validated instead.

MiG Themes Developer's Guide Page 8 / 12

© 2005 MiG InfoCom AB

List keys ends with a hash (#) to differentiate them from normal keys.
Special methods exists in the base class Theme to handle them.
Example key: “Grid/rowHeight#”.

Linked Keys
A key can be linked to another key, or rather the value of a key is
linked to the value of another key. This is to create one edit point for
when you don't want to have unique objects for every key. You could
for instance like all keys that denotes the foreground colors for week
days to a “WeekDay/defaultWeekDayColor” key. That way you
can change them all by changing that key, you don't have to change all
seven. You can also just set for instance the Sunday key to
Color.RED and that will only affect Sunday.

Load and Save
The Themes class has load and save methods to/from Files, URLs
and Streams. It is using the standard JavaBeans XMLEncoder and
XMLDecoder for the transformation to XML. This ensures you can
load the themes from any application that is run on JDK 1.4 or later
without extra classes. The only thing you need is the very small .jar
from this component and your particular Theme class. This also
ensures that there is no vendor lock-in.

If you are storing objects in the theme that haven't got a XML
persistence delegate (most interesting Sun JDK classes do) you can
simply add a delegate for your class to IOUtil.

PersistenceDelegates can be written to accommodate for any
type of object. Sun Microsystems hosts good tutorials on the subject.
They are typically one-liners for normal types of objects, or a few lines
for more complex ones. If you follow the common get/set pattern for
properties in your classes, and provide a public empty constructor,
they are even automatically XML persistable, you don't have to do
anything to make it work.

The Theme Editor

The Theme Editor is a GUI application to visually edit your themes. It
can edit any theme that extends the class Theme and complies with
the simple rules on how to make a theme.

You can load, save and edit themes. There are also a few settings
available from the menus, but they should be self explanatory.

Custom Editor Panels

MiG Themes Developer's Guide Page 9 / 12

© 2005 MiG InfoCom AB

<Information pending for MiG Theme Editor component release>

Extending Theme Editor
<Information pending for MiG Theme Editor component release>

Making Your Own Themes

Making your own theme that is editable in the Theme Editor and/or be
usable programmatically from your application is easy. Just follow
these simple steps:

• Create a class that extends Theme or a subclass of Theme.

• Define a set of key that should be used as public static
final String objects. This is not strictly necessary, but it will
probably simplify things and minimize typing errors.

Normally in the constructor:

• For every key in the theme create one or many
PropertyCapabiliy objects and set them on the key (or a
parent folder key, more on that later) with any of Theme's
setCapabilities(..) methods.

• For every key in the theme set a default value with any of Theme's
setDefaultValue(..) methods. Note that also a default
value of null should explicitly be set since it differs from no value.

• Call Theme.transferDefaultsToTheme() to actually set
the theme to it's default values.

Your done.

Suggested Key Pattern
It is possible to create a String constant for every key in the theme, but
if keys somewhat repetitive (which they usually are to some degree)
there are a couple of convenience methods in the Theme class that
you can use.

Lets say you have four headers, North, South, East and West,
which all have three Color properties: Outer, Middle and
Inner. You could make model this with 12 explicitly created keys:

public static final String HEADER_NORTH_OUTER_COLOR “Header/North/outerColor”;
public static final String HEADER_NORTH_MIDDLE_COLOR = “Header/North/middleColor”,
public static final String HEADER_NORTH_INNER_COLOR = “Header/North/innerColor”,

MiG Themes Developer's Guide Page 10 / 12

© 2005 MiG InfoCom AB

public static final String HEADER_SOUTH_OUTER_COLOR = “Header/South/outerColor”
and so on for eight more rows...

This wouldn't be very simple to index in a loop, since there in no notion
of which keys denote NORTH or which are OUTER. Here is another
way to make them more indexable:

public static final String[] DIRECTIONS_ = {“North/”, “South/”, “East/”, “West/”};
public static final String[] PLACE_KEYS = {“outerColor”, “middleColor”, “innerColor”};
public static final String HEADER_ = “Header/”

Now the keys are more loop friendly, your application can use a nested
for loop to get the colors and set them on the correct header object.

The Theme methods understands this as well, both for setting
capabilities and default values. For setting the capabilities for all keys
in you custom Theme you can use:

String[][] keyArr = new String[][] {DIRECTIONS_, PLACE_KEYS}
setCapabilities(HEADER_, keyArr, <the capability to set>);

That would have to be written out in 12 very similar lines if all keys
where defined as unique fields.

If you have a whole sub tree that only consists of keys with the exact
same capabilities you need only to set one capability on the parent
folder key. In this scenario it would mean setting it only on the
“Header/” key would work. Actually “Header/” is not a key, it is a
folder key. Folder keys can't be used on their own, or store property
values, but they can sometimes be used to denote a sub tree of
properties.

setCapabilities(HEADER_, <the capability to set>);

Note that if you do this you can not have a key with at different
capability named for instance “Header/size”, since that is in the
same sub tree as “Header/”. You can have it if you explicitly set the
capabilities for that key though.

MiG Themes Developer's Guide Page 11 / 12

© 2005 MiG InfoCom AB

The algorithm to find the capabilities for a certain key is to check the
key itself and then recursively try with the closest parent folder key,
then its parent and so on.

In the same way it is easy to set default values in a structured way with
the command:

String[][] keyArr = new String[][] {DIRECTIONS_, PLACE_KEYS}
setDefaultValue(HEADER_, keyArr, <the default value(s) to set>);

With default values you can not set it only on the folder key, every key
has to have its own default value.

Immutable Values
The values in the theme should always be treated as Immutable. You
should never get a value from the theme and change that value for
whatever reason. You should always make a copy of it first.

If the value in the theme should be changed a new value should be
created and set in the theme. The reasons for this are many but
mainly:

• To be able to track changes in the theme. If the values in the there
are changed while n the theme the theme will not know they've
changed and can not notify it's listeners.

• To be able to use the same value for many keys. This is to save
resources, mainly memory. It also reduces startup time since not
as many objects has to be created up front.

• Immutable values are thread safe.

If possible only object types that really are immutable, and thus can't
be changed, should be used. This will make subtle bugs less likely.
But even if that is not possible, great care should be taken to never
change an object that are in the theme.

Shared Capabilities
The PropertyCapability is considered immutable and can be
shared for more than one key. If the theme contains many keys with
the same capabilities the actual same objects should be used to save
resources. Capabilities for common object types, such as Insets,
Boolean, and Color, have public static references in the
Theme class that can, and should, be used.

MiG Themes Developer's Guide Page 12 / 12

