
© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

EurekaLog 7.x.x
user manual

EurekaLog 7 DocumentationI

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Table of Contents

Foreword 0

Part I Welcome to EurekaLog 7 2

Part II What's New in EurekaLog 7.0 4

Part III Introduction 8

... 101 Features / Editions

... 142 How to buy

... 163 Support

Part IV Quick start tutorials 20

... 201 Installation

.. 23Using EurekaLog with Delphi Standard/Personal/Turbo/Starter editions

.. 31Installation for non-admin user account

.. 31Installation for AppWave or w ithout IDE installed

... 332 How to use EurekaLog

... 03 Video Tutorials

... 384 EurekaLog's basics

... 405 Basic terms (definitions/dictionary)

Part V Basic procedures 45

... 01 Video Tutorials

... 452 Selecting application type

... 463 Configuring bug report

.. 48Configuring call stack

... 524 Configuring dialogs

... 535 Configuring sending report

.. 55Selecting send method

... 586 Configuring project itself

Part VI Typical scenarios 68

... 681 Reporting

... 702 Debugging

Part VII Solving bugs in your code 72

... 721 Bug reports

.. 74General section

.. 78Call Stack section

... 79Call stacks

... 81How to read call stacks

... 83Call stack formats

... 85Multi-threaded call stacks

... 95Searching bug’s location

... 96Final notes on call stack

IIContents

II

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

... 97Searching bug’s reason

.. 99Modules section

.. 99Processes

.. 100Assembler

.. 103CPU

.. 105Screenshot

.. 105Additional files

... 1052 Managing bug reports in issue tracker

.. 107Bug trackers setup

... 108FogBugz setup

... 115Using HTTP upload

... 119Mantis setup

... 134BugZilla setup

... 143JIRA setup

.. 153Using unsupported bug tracker software

.. 155Customizing feedback

.. 158Security Considerations

... 1603 EAccessViolation

... 1664 Leaks

... 1715 Memory problems

... 1746 Hangs and deadlocks

Part VIII Customizing EurekaLog 180

... 1801 EurekaLog options

.. 180Static options

.. 183Dynamic options

... 183Variables

... 185Filters

... 1892 Coding

.. 189Changing options at run-time

.. 190Custom attributes

.. 192Events

.. 195Subclassing

.. 211Low-level handlers

.. 212Modifying code of EurekaLog itself

Part IX Frequently Asked Questions (FAQ) 215

... 2151 General FAQ

... 2172 Default files names and locations

... 2183 File formats

Part X Integral parts 221

... 2211 EurekaLog IDE expert

... 2222 Interface

.. 222IDE menu items (IDE commands)

.. 225Project options

... 227Import / export settings

... 228Using variables

... 230Changing default properties

.. 230IDE options

... 2343 Options

.. 234General page

EurekaLog 7 DocumentationIII

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

.. 237Features page

... 237Call Stack page

... 240BugID page

... 243Debug information page

... 244Nested exceptions page

... 246Multi-threading page

... 250Memory problems page

... 255Enabling memory/resource leaks features for C++ Builder

... 255Resource leaks page

... 257Hang detection page

... 259Restart&Recovery page

... 259External tools

.. 264Bug report page

... 266Bug report content page

.. 267Dialogs page

... 268MessageBox

... 271MS Classic

... 279EurekaLog

... 292Console

... 295System log reporting

... 296WEB

... 300Window s Error Reporting

.. 302Report sending page

... 304Sending options page

... 309Shell send

... 314Simple MAPI

... 315MAPI

... 316SMTP client

... 319SMTP server

... 320HTTP upload

... 321FTP upload

... 322FogBugz

... 327Mantis

... 331BugZilla

... 335JIRA

.. 339Localization page

.. 341Advanced page

... 343Exceptions f ilters page

... 344Editing exception f ilter

... 349Build options page

... 351Build events page

... 352Code page

... 352Hooks page

... 354Dialogs page

... 355Debug information page

... 355Send engines page

... 356Custom/Manual page

.. 3573rd party page

.. 357Statistics

... 3634 Application types

.. 365VCL Forms Application

.. 366CLX Forms Application

.. 366FireMonkey application

.. 366VCL Control Panel Application

.. 367VCL NT Service Application

.. 367VCL CGI Application

.. 367VCL ISAPI Application

.. 368VCL IntraWeb Application

IVContents

IV

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

.. 368Console Application

.. 368DLL

.. 369DLL (standalone)

.. 370Package

.. 370Unsupported application types

... 3705 Dialogs

.. 371(none)

.. 371RTL

.. 373Message box

.. 377Windows Classic

.. 379EurekaLog

.. 382Console

.. 384System log

.. 386WEB

.. 389WER

... 3906 Send engines

.. 391Shell

.. 393Simple MAPI

.. 396MAPI

.. 397SMTP client

.. 398SMTP server

.. 398HTTP upload

.. 404FTP upload

.. 404FogBugz

.. 406Mantis

.. 407BugZilla

.. 408JIRA

... 4097 Debug information providers

.. 410EurekaLog

.. 410.map file

.. 411TD32

.. 411Exports table

.. 412JCL

.. 412Dbg/Pdb

.. 413madExcept

... 4138 Variables

Part XI Advanced topics 421

... 4211 BugID

... 4212 Compiling your project with EurekaLog

.. 423EurekaLog post-process compilers

.. 424Minimum parameters needed

.. 426Post-processing without (re)compilation

.. 429Using EurekaLog with automated builds

.. 429Delphi 2007+

.. 431FinalBuilder

.. 432ecc32/emake command line options

... 4393 Working with configurations

.. 440Storing EurekaLog options

... 442EurekaLog options syntax

.. 443Using external configuration

.. 445Compiling your project w ith and without EurekaLog

.. 448Different EurekaLog settings for 'Debug' and 'Release' profiles

.. 449Read-only projects

.. 450Sharing EurekaLog settings in project group

EurekaLog 7 DocumentationV

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

.. 451Reconfiguring EurekaLog for manual control

... 4554 Using EurekaLog in DLL

.. 455Introduction

... 455What is DLL

... 456What is exception

... 457How DLLs report about failures

.. 457What is the proper way to handle exceptions in DLL

... 458Framew ork

... 459System or 3rd party API

... 467Your ow n API

... 470Creating bug reports for DLL exceptions

.. 473Using exception tracer tool in DLLs

... 474Single instance of exception tracer

... 480Multiple instances of exception tracer

.. 484Using exception tracer w ith frameworks in DLLs

... 484Single instance of exception tracer

... 487Multiple instances of exception tracer

.. 488Using exception tracer w ith COM objects

.. 495Using EurekaLog with DLLs post-processed by 3rd party tools (JCL, madExcept, etc.)

.. 496Using EurekaLog with non-Embarcadero DLLs

.. 504Using Microsoft DbgHelp DLL

... 5085 Configuring project for leaks detection

.. 508About leak detection

.. 512Configurations

... 512Typical application

... 513DLLs

... 513Shared memory manager

... 514Packaged project

... 5146 Using EurekaLog with other software

.. 515Debuggers and profilers

.. 516Debug information converters

.. 519Digital signature tools

.. 520EXE packers, EXE cryptors, EXE protectors

.. 524Localization software

.. 524Shared memory manager

.. 526Using EurekaLog with DLLs post-processed by 3rd party tools (JCL, madExcept, etc.)

.. 527Using EurekaLog with non-Embarcadero DLLs

... 5357 System logging setup

.. 536System Log

.. 537Registering Event Source

.. 543Configuring dialog

.. 543Using dynamic content w ith System Log

... 5478 Multi-threaded applications

.. 547Creating threads

... 548CreateThread Function

... 549BeginThread Function

... 551BeginThreadEx Function

... 553TThread Class

... 559TThreadEx class

... 562Anonymous threads

... 565Framew orks

... 566Thread Pools

.. 568Enabling EurekaLog for background threads

... 569Automatic / options

... 570Manual / code

... 5739 Using Windows Error Reporting

VIContents

VI

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

... 57310 Working with minidumps

... 57311 Nested/Chained exceptions

... 57812 Stack tracing: RAW method and frame-based method

... 58313 Stack tracing: deferred vs. immediate

... 58514 EurekaLog for shareware developers

... 58815 What's the difference between SSL and TLS send modes?

... 58916 Memory leaks detection limitations

... 58917 Resource leaks detection limitations

.. 590List of functions

... 59118 Internal Errors

Part XII Troubleshooting 596

... 01 Troubleshooter

... 5962 Installation problems

.. 598Manual installation

.. 603Where to find EurekaLog

.. 604EurekaLog IDE Setup

.. 604IDE names mapping

... 6053 Uninstallation problems

... 6064 Enabling EurekaLog problems

.. 610Verifying that EurekaLog was enabled

... 6135 EurekaLog run-time problems

... 6146 Breakpoints

... 07 Knowledge base

... 6158 Other problems

Part XIII Tools 617

Part XIV Recompilation (Enterprise) 619

... 6191 Files layout

... 6202 Recompilation

Part XV Compatibility 624

... 6241 6.x -> 7.x

.. 627Upgrage guide

... 6332 5.x -> 6.x

.. 634What's New in EurekaLog 6.0

.. 634What's New in EurekaLog 6.1

... 6363 4.5.x -> 5.x

... 6374 4.x -> 4.5.x

... 6375 3.x -> 4.x

Part XVI License 639

Index 641

Part

I

Welcome to EurekaLog 7 2

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

1 Welcome to EurekaLog 7

EurekaLog helps you to
find and resolve bugs in
your code, including
exceptions, leaks and
hangs.

EurekaLog is the exception tracer tool (what's this?) that gives your application the
ability to catch all bugs in your code and generates a detailed log with the call stack, which
includes unit, class, method and line number information (example). This information is
also logged to a file and may optionally be forwarded to you (application developer) via
Internet.

Getting started

New users
View Introduction or Screenshots
Study Quick Start Tutorials or Video Tutorials to familiarize yourself with the very basics
of the EurekaLog
You can read Basic terms if you're new to exception handling
You can read Typical scenarios to get idea on how to use EurekaLog to troubleshot
problems
You can study manuals on basic procedures to continue learn about EurekaLog
There are plenty of help and demos available! You can find them in EurekaLog's Start
Menu folder. Also don't forget to check out our FAQ section
In case of any problems - see our Troubleshooting section

Users upgrading from previous version
Study changes in EurekaLog
Even if you are an experienced EurekaLog user, please run through the Introduction
and Quick Start Tutorials sections quickly to get up to speed with what has changed in
the latest version of the EurekaLog
Study migration guide , migration reference and typical scenarios
You can read description of EurekaLog's integral parts or study code's reference

40

8

8

20

40

68

45

215

596

4

8

20

627 624 68

221

http://www.eurekalog.com/screenshots_delphi.php
http://www.eurekalog.com/tutorials_delphi.php
http://www.eurekalog.com/tutorials_delphi.php

Part

II

What's New in EurekaLog 7.0 4

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

2 What's New in EurekaLog 7.0

EurekaLog 7 includes new features, enhancements and changes in the following areas:

(see most recent changelog here)

EurekaLog

(in random order)
Improved: Main change - EurekaLog's core was rewritten (refactored) to allow more easy
modification and remove hacks.
Improved: New plugin-like architecture now allows you to exclude unused code.
Improved: New plugin-like architecture now allows you to easily extends EurekaLog.
Improved: Greatly extended documentation.
Improved: Installer is now localized.
Improved: Greatly speed ups creation of minimal bug report (with most information
disabled).
Changed: EurekaLog's root IDE menu was relocated to under Tools and extended with
new items.
Added: New examples.
Added: New tools .
Added: Support for DBG/PDB formats of debug information (including symbol server
support and auto-downloading).
Added: Support for madExcept debug information (experimental).
Added: WER (Windows Error Reporting) support.
Added: Full unicode support.
Added: Professional and Trial editions: added source code (interface sections only)
Improved: Dialogs - new options and new customization possibilities:

Added: All GUI dialogs: ability to test dialog directly from configuration dialog by
displaying a sample window with currently specified settings.
Improved: All GUI dialogs: dialogs are DPI-awared now (auto-scale for different DPI).
Added: MessageBox dialog: added detailed mode (shows a compact call stack).
Added: MessageBox dialog: added ability for asking a send consent.
Added: MessageBox dialog: added support to switch to "native" message box for
application.
Added: MS Classic dialog: added control over "user e-mail" edit's visibility.
Added: MS Classic dialog: added ability to personalize dialog view with application's
name and icon.
Added: MS Classic dialog: added ability to show terminate/restart checkbox initially
checked.
Added: EurekaLog dialog: added ability to personalize dialog view with application's
name and icon.
Added: EurekaLog dialog: added ability to show terminate/restart checkbox initially
checked.
Added: EurekaLog dialog: added ability to switch back to non-detailed view.
Added: WEB dialog: added new tags to customize bug report page.
Improved: WEB dialog: improved support for unicode and charset.
Added: New dialog type: RTL dialog.
Added: New dialog type: console output.
Added: New dialog type: system logging.
Added: New dialog type: Windows Error Reporting.

Improved: Sending - new options and new customization possibilities:
Added: All send methods: added ability to setup multiple send methods.
Added: All send methods: added ability to change send method order.
Added: All send methods: added separate settings for each send method.
Added: All send methods: ability to test send method directly from configuration
dialog by sending a demo bug report.
Added: SMTP client send method: added SSL support.
Added: SMTP client send method: added TLS support.
Added: SMTP client send method: added option for using real e-mail address.

617

http://www.eurekalog.com/showchangelog_delphi.php

EurekaLog 7 Documentation5

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Added: SMTP server send method: added option for using real e-mail address.
Added: HTTP upload send method: added support for custom backward feedback
messages.
Added: FTP upload send method: added creating folders on FTP (like remote
ForceDirectories).
Added: Mantis send method: added API support (MantisConnect, out-of-the-box since
Mantis 1.1.0, available as add-on for previous versions).
Added: Mantis send method: added support for custom "Count" field.
Added: Mantis send method: added options for controlling duplicates.
Added: Mantis send method: added support for SSL/TLS.
Added: FogBugz send method: added API support (out-of-the-box since ForBugz 7,
available as add-on for FogBugz 6).
Added: FogBugz send method: EurekaLog will update "Occurrences" field (count of
bugs).
Added: FogBugz send method: EurekaLog will respect "Stop reporting" option
(BugzScout's setting).
Added: FogBugz send method: EurekaLog will respect "Scout message" option
(BugzScout's setting).
Added: FogBugz send method: EurekaLog will store client's e-mail as issue's
correspondent.
Added: FogBugz send method: added options for controlling duplicates.
Added: FogBugz send method: added support for "Area" field.
Added: FogBugz send method: added support for SSL/TLS.
Added: BugZilla send method: added API support.
Added: BugZilla send method: added support for custom "Count" field.
Added: BugZilla send method: added options for controlling duplicates.
Added: BugZilla send method: added support for SSL/TLS.
Added: New send method: Shell (mailto protocol).
Added: New send method: extended MAPI.

Added: Support for separate code and debug info injection.
Added: Ability to use custom units before EurekaLog's units.
Added: Support for external configuration file in IDE expert.
Added: Now EurekaLog stores only those project options which are different from
defaults (to save disk space and reduce noise in project file).
Added: Now EurekaLog stores project options sorted (alphabet order).
Added: Separate settings for saving modules and processes lists to bug report.
Added: Support for taking screenshots of multiple monitors.
Added: More screenshot customization options.
Added: More control over bug report's file names.
Added: New environment variables.
Added: Deleting .map file after compilation.
Added: Support for different .dpr and .dproj file names.
Improved: memory leaks detection feature - new options and new customization
possibilities:

Added: Ability to track memory problems without activation of leaks checking.
Added: Support for sharing memory manager.
Added: Support for tracking leaks in applications built with run-time packages.
Added: Option to zero-fill freed memory.
Added: Option to enable leaks detection only when running under debugger.
Added: Option for manual activation control for leaks detection (via command-line
switches).
Added: Option to select stack tracing method for memory problems.
Added: Option to trigger memory leak reporting only for large leaked memory's size.
Added: Option to control limit of number of reported leak.
Added: CheckHeap function to force check of heap's consistency.
Added: DumpAllocationsToFile function to save information about allocated memory
to log file.
Added: Registered leaks feature.
Added: Run-time control over memory leak registering.
Added: New recognized leak type: String (both ANSI and Unicode are supported).
Added: Memory features support for C++ Builder.

Added: Resource leaks detection feature.

http://sourceforge.net/projects/mantisconnect/
http://sourceforge.net/projects/mantisconnect/
http://sourceforge.net/projects/mantisconnect/
http://sourceforge.net/projects/mantisconnect/
http://sourceforge.net/projects/mantisconnect/
http://sourceforge.net/projects/mantisconnect/

What's New in EurekaLog 7.0 6

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Improved: Compilation speed increased.
Added: Support for generics in debug information.
Added: Chained/nested exceptions support.
Added: Wait Chain Traversal support.
Added: Support for named threads.
Added: Additional information for threads in call stack.

EurekaLog Viewer

See What's new in EurekaLog Viewer section!

Compatibility issues

See the Changes from 6.x version section!

Features list

See the "Features" page!

624

10

Part

III

Introduction 8

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

3 Introduction

EurekaLog helps you to find and resolve bugs in your code, including exceptions, leaks and
hangs.

EurekaLog is the exception tracer tool that gives your application (GUI, Console, Web, etc.)
the ability to catch all bugs in your code and generates a detailed log with the call stack,
which includes unit, class, method and line number information as shown in the image
below. This information shown is also logged to a file and may optionally be forwarded to
you via Internet.

EurekaLog 7 Documentation9

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Examples of typical EurekaLog dialogs

EurekaLog is easy to use because it is fully integrated into the Delphi/C++Builder IDE. You
can just enable EurekaLog for your application and rebuild your application - that's it: now
you have all additional powers of EurekaLog!

EurekaLog does not affect the performance of your application, as it only executes when an
exception is raised. It increases the compiled file size by about 0.5% - 4% (this space is
needed to store some additional, compressed and encoded, debugging information).
EurekaLog doesn't require any additional files to work. You have to distribute only your
single executable.

EurekaLog is compatible with Delphi 3, 4, 5, 6, 7, 2005, 2006, 2007, 2010, XE, XE2, XE3,
XE4, XE5, XE6, XE7, XE8, 10 Seattle, 10.1 Berlin (*), and with C++Builder 5, 6, 2006, 2007,
2010, XE, XE2, XE3, XE4, XE5, XE6, XE7, XE8, 10 Seattle, 10.1 Berlin (**). It works on
Windows platforms, from Windows 95 to Windows 10 (***) - both for Win32 and Win64,
including support for Wine, ReactOS and virtual machines. It supports any type of
application (****).

It comes with full source (only Enterprise version), full money back guarantee, is
royalty free, and freely updatable!

Don't waste anymore time and money debugging your applications: now EurekaLog
debugs them for you.

See Features / Editions topic for further details.
See Installation topic for installation process.
See How to use EurekaLog for enabling EurekaLog in your applications.

(*) Delphi 1 and 2 are not supported. Personal, Turbo and Starters editions are supported . Delphi
3 is supported by EurekaLog 4, 5 and 6 only.
(**) C++ Builder 1, 3 and 4 are not supported. C++ Builder 5 is supported by EurekaLog 6 only.
(***) Windows 95, 98, ME and NT are supported by EurekaLog 4, 5 and 6 only.
(****) EurekaLog comes with predefined templates "out-of-the-box" for common application's types.
Some application types doesn't have predefined settings and require you to setup them manually or

10

20

33

23

Introduction 10

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

to write additional code.

3.1 Features / Editions

EurekaLog contains all the features that you need in a bug resolution system.

It comes in 3 editions:

Trial - it's fully functional edition with (one and only) additional limitation: any application,
which is compiled with Trial edition of EurekaLog will expire after 30 days. There will be
error message box after 30 days and application will exit. Trial itself may be used for
infinite time. This edition can be used to evaluate EurekaLog. You can not use this edition
for any commercial development.
Professional - it's fully function edition. This is minimum edition to do actual work except
evaluating (including commercial development).
Enterprise - it's the same as Professional edition, except it additionally offers full source
code of EurekaLog.

Please note that we also have different license types:

Single license - single developer.
Company license - unlimited company developers at one geographical address.
Corporate license - unlimited company developers at unlimited geographical addresses.

EurekaLog also grants you access to all previous EurekaLog versions (4, 5 and 6).

See How to buy topic for more information about license's differences.

If you have any questions - just ask us !

See the following table for edition's differences.

Edition's differences Trial Pro Ent

Expiration

Compiled application will expire and refuse to run after 30 days
since its compilation

Source code

Source code's interface sections ("headers")

Full source code (*)

(*) While we offer full source code for EurekaLog itself, source code or scripts for external tools
may be not available in general installation. This includes setup/build scripts and digital certificate.
Please also note that some external tools (like EurekaLog Viewer) requires DevExpress suite for
recompilation. You don't need DevExpress to use EurekaLog, but you'll need it if you want to
recompile some EurekaLog tools by yourself. EurekaLog itself can be recompiled on any IDE
without any additional requirements.

Common features Trial Pro Ent

Supported languages & Operating Systems

Delphi versions 3-7, 2005-2010, XE, XE2, XE3, XE4, XE5, XE6,
XE7, XE8, 10 Seattle, 10.1 Berlin (*)

C++Builder versions 5-6, 2006-2010, XE, XE2, XE3, XE4, XE5,
XE6, XE7, XE8, 10 Seattle, 10.1 Berlin (**)

Windows 95,98,ME,NT,2000/2003/2008/2008 R2/2012/2012
R2/XP/Vista/7/8/8.1/10, ReactOS, Wine (***)

Application types: ANY (****)

(*) Delphi 1 and 2 are not supported. Personal, Turbo and Starter editions are supported . Delphi

14

16

23

EurekaLog 7 Documentation11

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

3 is supported by EurekaLog 4, 5 and 6 only.
(**) C++ Builder 1, 3 and 4 are not supported. C++ Builder 5 is supported by EurekaLog 4, 5 and
6 only.
(***) Windows 95, 98, ME and NT are supported by EurekaLog 4, 5 and 6 only.
(****) Some application types may require additional actions.

Common features

EurekaLog contains all the features that you need in a bug resolution system:

Detailed bug report about each exception, leak or hang;
Bug report includes call stack with unit names, class names, routine names, and line
numbers;
Extensive run-time and environment information is logged into bug report;
RAW dump and disassembly information;
Easy integration, no need to write code;
No additional files needed (no DLLs, no .map files, no .tds files);
Packing and encryption of all information;
No performance loss (unless exception occurs);
Full unicode support;
Win32 and Win64 support;
VCL, CLX, FMX (FireMonkey) support;
Supports any application kind: GUI, CGI, WinCGI, ISAPI, IntraWeb, COM, Multi-
Thread, etc.;
Full support for .exe packers and protectors;
Support for modern cutting-edge features (nested exceptiond, Wait Chain Traversal,
etc.);
Easy and powerfull customization;
Many helper tools;
Sending bug report to developers (e-mail, HTTP, FTP, bug trackers);
SSL/TLS support for all send methods;
Support for Mantis, FogBugz, BugZilla; More to come...

Full features list

Common info
Delphi versions: 4-7, 2005-2010, XE-XE8, 10 Seattle, 10.1 Berlin (including Personal,
Turbo and Starter editions)
C++Builder versions: 6, 2006-2010, XE-XE8, 10 Seattle, 10.1 Berlin (including Turbo and
Starter editions)
Application type: any
Windows versions: 2000/2003/2008/2008 R2/2012/2012 R2/XP/Vista/7/8/8.1/10
Other OS: ReactOS, Wine
Frameworks: VCL/CLX/FMX (FireMonkey)
Code size: 400-800 Kb (depends on your settings)
Data size: 1%-12% (depends on your settings)
Performance decrease: 0%-5% (depends on your settings)
Unicode support
ZLib compression
TEA 128-bit data encryption
Full and easy customization
Additional useful tools
Extensive documentation
Lots of demos

IDE
Full integration with Delphi/C++Builder/RAD Studio IDEs
F1 context help
Opening source file and positioning text cursor to error line - by double-clicking in error
dialogs

Introduction 12

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Test both dialogs and sending right in project options dialog
Support for searching error location even after source file modifications
Support for __history folder (can show older copy of source)
Tools integration in IDE
Revisited IDE menu, options and dialogs
Pre- and post-build events (can run custom applications)
Command-line compilation support
Unicode support

Documentation
CHM Help file
Printable PDF manual
On-line interactive documentation

Features
Catch any exception (unhandled, handled, safecall, tread, initialization/finalization)
Catch any memory leak
Catch any resource leak
Catch any hang or deadlock
Nested exceptions support
Wait Chain Traversal support
Multi-threading features
Track exception duplicates via BugID value
Can sort error by "popularity" ("count" field in web trackers)
Customizable error dialogs and error web-pages
Exception filters allow customizations without writing code
Environment variables (and pseudo-variables) can be used to create run-time dependent
options
Options can be customized in run-time
Events can be used for arbitrary customizations
Custom classes can be used for 3rd party extensions
Restart&Recovery options

Applications
VCL Forms
DLLs (both standalone and integrated with EurekaLog-enabled host application)
BPLs (packages)
Console
Control panel applets
Win32 Services
ISAPI
CGI
WinCGI
IntraWeb
ActiveX
COM-applications
Multi-threaded
Indy
Applications compiled with run-time packages
Support for .exe compressors
Support for .exe protectors
ANY other application kind!

Bug reports
Bug report collects information about exception, application and run-time environment
Bug report can be saved to disk, displayed in dialog or sent to developer
Common information includes info about application, faulted module, system, hardware,
user, etc.
Call stacks of any thread
Loaded modules list
Running processes list
Code disassembly

EurekaLog 7 Documentation13

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

CPU state
Memory and stack dumps
Plain-text, packed or XML formats
Can include screenshots (PNG), last web-page (for web apps.) or arbitrary files
Can include custom data (provided by your code)
Can be packed (ZIP) and encrypted (TEA); Encrypted reports can be decrypted by Viewer
tool
Unicode support
Full customization

Dialogs
Type: None (disables error dialog)
Type: RTL (to use default dialog)
Type: Console (writes to console)
Type: MessageBox
Type: MS Classic
Type: EurekaLog
Type: Bug report view (EurekaLog detailed)
Type: "Enter steps to reproduce"
Type: HTML page
Type: System Log
Type: WER (Windows Error Reporting)
Option to enter "step to reproduce" text
Option to specify e-mail
Option to terminate or restart application
Option to send or not send bug report
Option to attach or not attach screenshot
Custom "Help" button
Custom "Support" link
Customizable auto-close
Can use icon and name of host application
Auto-open and auto-position source code file in IDE by double-clicking on call stack items
DPI-awared
Localizable
Unicode and RTL support
Full customization

Sending
Type: mailto: protocol
Type: Simple MAPI
Type: MAPI
Type: SMTP Client
Type: SMTP Server
Type: HTTP upload (custom script)
Type: FTP upload
Type: FogBugz
Type: Mantis
Type: BugZilla
Type: WER (Windows Error Reporting)
Compression and encryption (all except mailto:)
Full SSL/TLS support (SMTP, HTTP, web trackers, WER)
Your code can supply custom web-fields for web trackers and HTTP upload
Can send via multiple methods
Visual feedback during sending
Unicode support
Backward feedback feature: report if bug was fixed, ask for more information (HTTP and
web tracker software only)
Full customization

Debug information formats
Type: EurekaLog
Type: .map

Introduction 14

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Type: Turbo Debugger (TD32/TDS)
Type: DLL exports table (heuristic)
Type: DBG
Type: PDB
Type: JEDI (.jdbg/JCL)
Type: madExcept (experimental)
Auto-downloading system debug information
Fully customizable
Encrypted even with no password
Can be protected by password (encrypted reports can be decrypted by Viewer)

Localization
Full support for localization software
No localization tool is required
Resourcestrings
Translate-function (GetText-style)
Customize text right in project options
Named collections for translated texts
Unicode support

Tools
Bug Reports Viewer
Address Lookup
Error Lookup
Threads Snapshot
Executable Modules Analyzer
Standalone Settings Editor

Viewer
EurekaLog Viewer Tool to view bug reports
Viewer can decrypt encrypted reports
Report printing
Viewer can work as "viewer" or as bug tracker software (collect bug reports into
database)
Supports plain-text or FireBird database
Auto-download reports from folder or e-mail account
Can eliminate duplicate bug reports
Shows screenshots inside bug reports
Shows additional files inside bug reports
Shell integration
Support user accounts (for FireBird database only)

Misc.
Supports generics in your code (debug information)
FastMM compatibility
Shared memory manager compatibility
Support for any 3rd party memory manager (some EurekaLog features may be disabled)
Multi-monitor support (screenshots)
Option to reduce executable file size (remove relocs)
Option to detect executable file changes
Command-line compilation support
FinalBuilder support
Vista and UAC friendly

3.2 How to buy

We accept eight types of payment: Secure Online (Credit Card), Fax, Phone, Wire Transfer,
Mail / Check / Money Order, PayPal, Purchase Order and Bank Transfer. You can also order
via our world wide resellers (see the full list), so EurekaLog may be available in your local

http://www.eurekalog.com/buy.php
https://www.eurekalog.com/resellers.php
https://www.eurekalog.com/resellers.php
https://www.eurekalog.com/resellers.php
https://www.eurekalog.com/resellers.php

EurekaLog 7 Documentation15

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

currency and/or by other payment methods.

There are three license types:

Single license - single developer.
Company license - unlimited company developers at one geographical address.
Corporate license - unlimited company developers at unlimited geographical addresses.

Please refer to complete license text for more information about license differences.

EurekaLog also have three editions:

Trial - it's fully functional edition with (one and only) additional limitation: any application,
which is compiled with Trial edition of EurekaLog will expire after 30 days. There will be
error message box after 30 days and application will exit. Trial itself may be used for
infinite time. This edition can be used to evaluate EurekaLog. You can not use this edition
for any commercial development.
Professional - it's fully function edition. This is minimum edition to do actual work except
evaluating (including commercial development).
Enterprise - it's the same as Professional edition, except it additionally offers full source
code of EurekaLog.

See Features topic for more information about license's differences.

Delivery
When you buy EurekaLog, you IMMEDIATELY receive download instructions via email. An
account on our site will be created for you. You can login in our area for the registered
customers here by using your e-mail address as login (you can find your password in the
registration e-mail). EurekaLog do not use any license information except your account
(login/password pair). I.e. your account data is your license information.

Get access to earlier versions
EurekaLog 7 is the current version of EurekaLog. With EurekaLog, you also get free access
to licenses for older versions – EurekaLog 4, EurekaLog 5, and EurekaLog 6. Download links
to installers of earlier versions will be available in your control panel after purchase. Please
note that old versions are no longer developed nor supported. They are provided only for
backward compatibility purposes. You can use them, if you need support old systems
(Delphi 3, Windows 95, Windows 98, Windows ME, Windows NT).

License
The EurekaLog license is royalty-free.
See the complete license text .

Guarantee
FULL MONEY BACK GUARANTEE.
All EurekaLog versions are covered by 60-day money-back guarantee.
If you are not satisfied with your purchase for any reason, just ask for your money back and
you will be refunded.

Update Policy
All updates (to minor and major versions) within 1 year are fully free.
All updates (to minor and major versions) after first year are sold with 50% discount (for
1 more year).
Updates to a different license type of the same major version are sold at only price
difference (example: from Single Professional version to Company Enterprise).

Note: Please note that update policy stated above is applicable to current EurekaLog
version only (i.e. EurekaLog 7). For owners of previous EurekaLog versions - please, refer
to upgrade policy for your EurekaLog version.

639

10

639

http://www.eurekalog.com/
http://www.eurekalog.com/
https://www.eurekalog.com/login.php

Introduction 16

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Support
All EurekaLog versions are covered by full and unlimited support .

Partner discounts
Ordering EurekaLog you receive discounts for other partner products (see partners page for
further details).

3.3 Support

All EurekaLog versions are covered by full and unlimited support.

Where?
There are many ways to contact EurekaLog's team:

support sending form: http://www.eurekalog.com/support.php
forums: http://news.eurekalog.com/
knowledge base (KB): http://support.eurekalog.com/index.php?/Knowledgebase/List/
sending e-mail to support@eurekalog.com
using our support system directly
there are also IM contacts, listed on support form page

The best option is to use support sending form (http://www.eurekalog.com/support.php).

That's because you can select type of your request, so it will go directly to appropriate
category in our internal support system (the very similar way is to use our support system -
it provides a little more detailed options, but setting them wrong can slow down your ticket
processing).

You can use our forum, if you want to discuss your issue in public (all other ways of
conversation keeps your messages private, not accessible by other users) or if you want to
hear opinions from other customers of EurekaLog (and not only from EurekaLog team). In
all other cases it is best to select another way.

The sending e-mail (while looking very convenient) is not a best choice. That's because e-
mails must be sorted and inserted into queues manually. So, if you send us a e-mail with
support request, it first needs to be redirected to appropriate ticket's queue and only then
answered by staff. Other reason: you may forget to specify about what version of
EurekaLog you're talking, so your request may be placed in wrong queue (like Delphi/C++
Builder instead of .NET), so it may takes days (spend in strange conversation), until we
realize mistake. In other words, if you want to get reply faster - it is better to use support
sending form and specify proper options.

Our internal support system also have external interface, so you can use it directly. It
provides you most options, but probably it is too much for majority of our customers. It can
be also used to troubleshot problems with your support tickets (see below).

Of course, you can also use IM client to ask questions. But it is better to use it to ask short
questions, which requires simple answer. Like "Is there any plan for XXX?". Such answer
can be answered very fast. It is not a good idea to ask questions like "I'm trying to do XXX.
I do YYY and ZZZ. I'm getting AAA instead of BBB. What am I doing wrong?". It is best to
send this question via support sending form (it is also a good idea to attach screenshots
and demo).

What to write?
It is very important part, as it may greatly speed up/slow down processing of your request.

16

http://www.eurekalog.com/partners.php
http://www.eurekalog.com/buy.php
http://www.eurekalog.com/support.php
http://news.eurekalog.com/
http://support.eurekalog.com/index.php?/Knowledgebase/List/
mailto:mailto:support@eurekalog.com
http://support.eurekalog.com/
http://support.eurekalog.com/
http://support.eurekalog.com/
http://www.eurekalog.com/support.php
http://www.eurekalog.com/support.php
http://www.eurekalog.com/support.php
http://www.eurekalog.com/support.php
http://support.eurekalog.com/
http://support.eurekalog.com/
http://support.eurekalog.com/
http://news.eurekalog.com/
http://news.eurekalog.com/
http://www.eurekalog.com/support.php
http://www.eurekalog.com/support.php
http://www.eurekalog.com/support.php
http://support.eurekalog.com/
http://support.eurekalog.com/
http://www.eurekalog.com/support.php
http://www.eurekalog.com/support.php
http://www.eurekalog.com/support.php

EurekaLog 7 Documentation17

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

First, simple rules about choosing options for your ticket (if you use support sending form):
select appropriate category for your request.

If you have question about prices, warranty, licenses, upgrades, your registered previous
account/e-mail, etc, etc - you should place it to "Sales" category.
If you have question about EurekaLog usage, how to do XXX, does it support YYY,
problems, bugs, etc, etc - you should place it to "Support" category.
Place your question in "General" category only if it is really a general question. Like "Are
there any plans for EurekaLog for PocketPC"? In other case, your ticket will be redirected
to other category, and you just lose your time waiting.

Other important part is the message itself.

PLEASE, specify your versions and editions of EurekaLog, IDE and Windows. We do not
ask you for license details, but remember that support staff do not have telepathic abilities
and they can't read your thoughts. If you don't point this, then you will slow down
processing, as the very first reply may be like this: "Excuse me, are we talking about Delphi
or C++ Builder here?". BTW, it is good idea to reinstall EurekaLog, using the latest available
RC version. That's because your issue may be already fixed. You may also send a request
and check a new version while request is processed.

Of course, your message should be quite clear about what you want us to do.

Other piece is demo or steps to reproduce. Many of our clients think: "gosh, it is so simple,
just do XXX and you'll see what I mean". Except when we do this on our machines - nothing
happens. That's because client uses some option or event handler. So it is a good idea to
reproduce your issue in just empty VCL application with one TButton and "raise
Exception.Create('Test');" in its OnClick. If you try to do that, you may often unable to get
test application behave like desired. And if you look deeper - you may notice differences
between test application and your application (options, events, etc), that caused your
issue. That way you'll be able to solve it by yourself (BTW, we recommend to use import/
export buttons to transfer your EurekaLog's settings between projects). Doing a little work
before sending question can save you days of conversation.

Of course, there can be cases, when you're unable to reproduce your issue in new
application. In that case just mention it: "I wasn't able to reproduce it in a test project" and
don't forget to attach your project's settings, screenshots, etc - anything, that can give a
hint.

Hint: instead of screenshooting every page of your EurekaLog's options, you may just
export your settings to .eof file and send it to us (there is "Export" button in EurekaLog's
options dialog).

Well, it is totally fine to state your requests as "I've assigned exception event, but it is not
getting called. What am I doing wrong?", but be prepared to long conversation in that case.

Using native languages?
If you don't speak English, then you can write in your native language. EurekaLog staff will
use some translator to translate your request and answers to appropriate language. But it
is not recommended. If you only know English a little, you may say your request as you can
in English and repeat it on your native language. That's because it's hard to understand
machine translations. So if your request was short-formulated and was badly translated by
auto-translator - we'll simply not understand you. So attaching your request in bad, but still
"human-produced" English may greatly help.

Some of you may write in native language even if you're capable of speaking English - if you
know, that someone from EurekaLog team speaks on that language too. Well, this is still a
not so good idea. As your request may be answered by different people, and sometimes we
discuss certain issues together, so it is good to keep conversation in English, so everyone
can read it (without need to use machine translator).

So there can be cases of some misunderstanding. If you think that somebody don't get your
actual request - please, try to explain in other words or in more details.

Introduction 18

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

I'm not getting any response?
Unfortunately, sometimes this happens. Really, we may miss your reply and so your thread
may be forgotten, but we can assure you, that this is really a rare case. In most other
cases there is lost e-mail or similar case. If you have not received expected reply in
reasonable amount of time (say, a week) - send your message again!

If you use e-mails, then there can be chances that reply was marked as spam or was
rejected due to suspicious attachment. Please, check you trash/spam folder (or similar) in
your e-mail client. Do not hesitate to send reply again, if you suspect that your reply can be
lost.

Please note, that we use GMail for delivering e-mails, so be sure that your messages do not
contain illegal attachments (you can rename files or pack them into 7z-archive).

If you use our support system (note, that your e-mails are redirected to our support system
too) - then it is the best case, as you can check status of your request in any time. First,
note, that every time your request is registered, you should get automatic response like
this:

Thank you for contacting us. This is an automated response sent to you in order to
confirm the receipt of your message. We will attend to your ticket as soon as possible.
We've listed the details of the ticket you created below for your records. When replying,
please keep the ticket's ID in the subject to ensure that your replies are tracked
correctly.

Ticket ID: your-ticket-ID-here
Subject: your-subject-here
Department: Delphi-Support
Priority: Low
Status: Open

You can check the status of or reply to this ticket online at: http://
support.eurekalog.com/
Please use the following credentials when accessing your account with us:

Email: your-e-mail-here
Password: your-password-here

If you don't receive this reply (and it is not in your "spam" folder) in few hours - resend your
request immediately! You may also try to use different contact method.

So, if you didn't receive any reply for long period of time - you can check the entire history
at http://support.eurekalog.com/. Just enter your e-mail and password, which were
provided in automatic reply. You'll see all your and staff replies, so you can check if all
replies were delivered correctly.

If you think there is a problem with delivering on our side - do not hesitate to make
complaints.

http://mail.google.com/
http://mail.google.com/support/bin/answer.py?answer=6590
http://mail.google.com/support/bin/answer.py?answer=6590
http://support.eurekalog.com/
http://support.eurekalog.com/
http://support.eurekalog.com/

Part

IV

Quick start tutorials 20

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

4 Quick start tutorials

EurekaLog is really easy to use!

Just install it and enable it for your project! You don't need to write a single line of
code for most application types.

Take a look at basic procedures topic, if you're looking for something more interesting.

See also for concept and theory:
EurekaLog's basics
Terms

4.1 Installation

This article is part of Quick start tutorials series. Please refer to different guides for the
following specific cases:

You want to install EurekaLog for AppWave/All-Access versions of Delphi/C++ Builder
You want to install EurekaLog for limited IDE edition (Personal, Turbo, Starter)
You want to install EurekaLog on machine without IDE installed
You want to install EurekaLog for different user account
You want to install EurekaLog for virtualized IDE

Otherwise (i.e. you're typical user, you want to install EurekaLog for classic Delphi/C++
Builder IDE) - continue reading.

Download the latest version of EurekaLog from our site.

You can use trial version to evaluate EurekaLog.
If you've already bought EurekaLog - you can download your version from our area for
the registered customers.

See also edition differences .

1. Before installing EurekaLog, you must close all Delphi/C++Builder/RAD Studio/
AppMethod instances.

2. Run the EurekaLog installation program:

20 33

45

38

40

20

31

23

31

31

31

10

http://www.eurekalog.com/
http://www.eurekalog.com/
http://www.eurekalog.com/downloads_delphi.php
http://www.eurekalog.com/downloads_delphi.php
https://www.eurekalog.com/login.php
https://www.eurekalog.com/login.php
https://www.eurekalog.com/login.php

EurekaLog 7 Documentation21

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Installation wizard started

Note: installer will ask you to uninstall old EurekaLog versions before continue. You can
continue without uninstallation, if you want to have both EurekaLog versions installed.

3. Select one or more Delphi/C++Builder versions you wish to install:

Features selection

Quick start tutorials 22

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Installer will show you only available IDEs - based on your installed IDEs as written in
system registry. You can check/uncheck appropriate checkboxes to install or don't install IDE
support (set of .dcu files, .bpl, etc). There is individual set of .dcu/.obj/.hpp/.bpl files for each
IDE.

Don't see your IDE version?

Source files (if available in your edition of EurekaLog) are installed by using separate
checkbox "Source code" below. Source files are identical for all IDEs. There is only 1 set of
files.

4. Follow installation wizard's steps until the installation will be complete.
5. EurekaLog is ready to use. You can find links in Start Menu:

Installed EurekaLog in Start menu

6. Run Delphi or C++ Builder and enable EurekaLog for some or all of your projects .

Note: you can use "Manage" start menu item to enable/disable EurekaLog in particular IDEs
after installing.

596

33

EurekaLog 7 Documentation23

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

"Manage" tool from Start menu

Each installed and supported IDE will be present by roll-up category panel. You can expand
category for each IDE by clicking on it. You'll see info about EurekaLog in this IDE and
available options.

See also:
Problems?
What's next?
Where to find EurekaLog?
Using EurekaLog with Delphi Personal/Turbo/Starter editions
Installing EurekaLog for non-administrative user accounts
Installation for application virtualization (AppWave) or without IDE installed

4.1.1 Using EurekaLog with Delphi Standard/Personal/Turbo/Starter editions

Borland/CodeGear/Embarcadero has several very limited editions of Delphi and C++ Builder
which are designed for beginners and IT hobbyists. This article discusses possible pitfalls in
using EurekaLog on these IDEs:

Delphi 7 Personal
Turbo Delphi/C++Builder Explorer
Turbo Delphi/C++Builder Professional
Delphi/C++Builder XE/XE2/XE3/XE4/XE5/XE6/XE7/XE8 Starter

Common information
EurekaLog installer contains precompiled .dcu and .obj files. These files are used when you
compile your applications. Therefore, there is no requirement to has command-line compiler
in IDE.

596

33

603

23

31

31

Quick start tutorials 24

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Note: EurekaLog installer also contains .pas files, but they are used only as reference. .pas
files are not used for projects compilation by default. Owners of Enterprise (full source-
code) edition of EurekaLog can delete .dcu/.obj files and use .pas files instead. Users of
Trial and owners of Professional edition are not able to compile .pas files (because they
contain only interface sections, but not implementation).

EurekaLog is compiled against the latest service/update pack for each IDE, so be sure to
install the latest available update for your IDE before installing EurekaLog. You can get the
latest update for your IDE from your EDN account under "My registered user downloads"
section.

EurekaLog requires processing of compiled executables (post-processing). Typically this is
done by installing IDE extension to handle this issue automatically. See for more info .
Therefore your IDE must have ability to install 3rd party extensions.

However, there is a second way to achieve this - by calling EurekaLog command-line tools
manually. You don't need to install IDE extensions for this way. More on this below.

There are no limitations on number of supported IDEs in EurekaLog, so you can install
EurekaLog for, say, Delphi 7 Personal, Turbo Delphi and Delphi XE3 Starter simultaneously.

Delphi 7 Personal, Turbo Delphi Explorer and Delphi XE3 Starter in EurekaLog installer

This will install all necessary files for the selected IDEs:
Set of precompiled .dcu files for each selected IDE
IDE expert and run-time package for each IDE (.bpl)
Command-line tools for each IDE (ecc32.exe/emake.exe)
Single set of common source files (.pas)

All these files are the same as files for Delphi Professional/Enterprise/Architect/Ultimate.
There are no differences in installing EurekaLog for, say, Turbo Delphi and Delphi 2006
Professional.

Notes:
Personal, Turbo and Starter IDE's editions can be installed on the single machine.
You can not install two Turbo's or two Starter's on the same machine. So, you can not
have Delphi and C++ Builder personalities for the same IDE.

38

http://cc.embarcadero.com/myreg
http://cc.embarcadero.com/myreg
http://cc.embarcadero.com/myreg
http://cc.embarcadero.com/myreg
http://cc.embarcadero.com/myreg

EurekaLog 7 Documentation25

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

It's important to not confuse Turbo Explorer and Turbo Professional editions of Delphi and
C++ Builder. These IDEs has significantly different limitations for installing EurekaLog.

Turbo Professional and Starter editions
Both Turbo Professional and Starter editions of Delphi and C++ Builder allow to install and
use 3rd party IDE extensions. Therefore you don't need any special actions to use
EurekaLog in these IDEs. Just install EurekaLog as usual. You will see EurekaLog menu
items in IDE. All your project will be post-processed automatically.

Turbo Explorer and Personal editions
Turbo Explorer edition do not allow you to install 3rd party IDE extensions. EurekaLog will
install all necessary files (as outlined above), however IDE will refuse to load EurekaLog's
IDE expert:

Turbo Explorer refuses to load EurekaLog IDE expert due to licensing limitations

Therefore EurekaLog menu items will be unavailable. Automatic post-processing of your
projects (required for EurekaLog to function) will be disabled.

Delphi 7 Personal edition allows you to install 3rd party IDE extensions. However, it lacks
required components (.bpl packages) for EurekaLog IDE Expert.

Quick start tutorials 26

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Delphi Personal reports that EurekaLog IDE expert is unable to load due to missing
components

(This error message may be confusing, as it reports "missing file" issue as if it is related to
EurekaLogExpert.bpl file. This is wrong interpretation: EurekaLogExpert.bpl file exists. This
error message says that EurekaLogExpert.bpl is unable to load because its required files
are not found - such as soaprtl70.bpl, etc.)

Again, IDE features of EurekaLog will be inaccessible (unless you have missed Delphi 7 .bpl
files from somewhere else).

Note: You can remove EurekaLog IDE expert by using "Start/Programs/EurekaLog 7/
Manage" menu item and clicking on "Install EurekaLog 7 (without IDE expert)" button under
your IDE name.

Workaround for Turbo Explorer/Personal editions
The workaround is explained in great details in our help here (specifically, see "Post-
processing without (re)compilation " section). Let's do only a quick overview in this article
and provide a practical example.

The example will use Delphi 7 Personal, but the same things should be applicable to other
IDEs.

First, you need to create a new application and add necessary EurekaLog's units to your
application. Use "Project/View Source" command to open .dpr file and add at least
EMemLeaks, EResLeaks and ExceptionLog7 units to your uses clause:

421

426

EurekaLog 7 Documentation27

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Adding EurekaLog code to your project

Important note: order of units is important. These units must be listed first - as shown
above.

These are the minimum units for EurekaLog to work correctly. However, you may want to
add more units - such as EDialogWinAPIMSClassic for error dialog in MS Classic style,
EAppVCL for hooks on Forms unit, EDebugExports to show functions from DLLs in call stacks,
ESendAPIMantis to submit bug reports to Mantis bug tracker, etc.

Quick start tutorials 28

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Typical units for VCL forms application

Second, you need to setup project options for debugging. Please see "Configuring project
" article. That article will explain what options are required - you should enable them for

your project.

Third, you need to create configuration for EurekaLog. Use "Start/Programs/EurekaLog 7/
Tools/Settings Editor" menu item to launch standalone editor for EurekaLog settings. Setup
EurekaLog options as you desire and click on "Save" button to save all options to .eof file.

Now you can place a button in your application to raise exception (to test EurekaLog) and
compile your application. It's better to make a "build" for first time, not just "compile". Your
project will be compiled with EurekaLog and debugging options, but EurekaLog will be in
disabled state. You can run your application, it will be fully functional, but exceptions will be
handled by RTL/VCL, not by EurekaLog.

58

EurekaLog 7 Documentation29

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Application with disabled EurekaLog

Final step is to post-process your executable . This step should inject debug information
and EurekaLog's options into your executable. To do that - create text file with .bat
extension (say, "Build.bat") and with the following content:

@echo off
"C:\Program Files\Borland\Delphi7\Bin\ecc32.exe" "--el_alter_exe=C:\Program Files
\Borland\Delphi7\Projects\Project1.dpr;C:\Program Files\Borland\Delphi7\Projects
\Project1.exe" "--el_config=C:\Program Files\Borland\Delphi7\Projects\Project1.eof"
pause

Notes:
Adjust file names and paths as necessary;
You can also use relative file paths;
Exact location of .bat file does not matter - as long as all file paths point to correct files;
Typically you place .dpr/.eof/.bat files in the same folder;
Last command (pause) is optional.

Now you have to run this .bat file each time after compiling your project.

426

Quick start tutorials 30

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Successful post-processing by ecc32.exe tool

Run your application now. If you do everything correctly - EurekaLog will be active, and
exceptions will be handled by EurekaLog.

Same application after post-processing: EurekaLog is active

EurekaLog 7 Documentation31

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Additional limitations
Unaccessible functions
Some auxiliary EurekaLog functions may be unaccessible due to missing units from
Personal/Turbo/Starter edition.

Debugging
Obviously, you will not be able to debug your applications directly if you do manual post-
processing (Delphi Personal and Turbo Explorer). That's because you have to compile your
project, then call .bat file to post-process, then run the project. But this last step (running)
will rebuild your project if you run it under debugger. So, you have the following options:

(For EurekaLog) Compile -> post-process -> run outside of IDE
(For debugging) Compile -> run under debugger
(For both) Try to use Run/Load process command or Run/Attach to process command
(For both) Upgrade your IDE

Note: this limitation is true only for older IDEs. Newer IDEs has build events for project, so
you may call ecc32/emake from these build events .

See also:
Installing EurekaLog

4.1.2 Installation for non-admin user account

Please, read normal installation instructions first.

To install EurekaLog under limited user account (non-administrator) - please follow these
steps:
1. Install EurekaLog as usual - by launching installer under administrator account.
2. Use Start Menu / Programs / EurekaLog / Manage menu item to enable EurekaLog in your

IDEs. Run it under the same administrator account (with elevation). Expand category for
your IDE and click on "Install EurekaLog 7 (recommended)" button. This will copy
necessary files. You should take this step only once.

3. Switch to limited user account.
4. Use Start Menu / Programs / EurekaLog / Manage menu item to enable EurekaLog in your

IDEs. Run it under limited user account. Expand category for your IDE and click on "Install
EurekaLog 7 (recommended)" button. This will perform per-user registration. Repeat this
step for any other user account. You can register/unregister EurekaLog on per-user basis.

See also:
Installation for application virtualization (AppWave) or without IDE installed
Using EurekaLog with Delphi Personal/Turbo/Starter editions

4.1.3 Installation for AppWave or without IDE installed

General concepts
Application virtualization is software technology that encapsulates application software
from the underlying operating system on which it is executed. A fully virtualized application
is not installed in the traditional sense, although it is still executed as if it were. The
application behaves at runtime like it is directly interfacing with the original operating
system and all the resources managed by it, but can be isolated or sandboxed to varying
degrees. In this context, the term "virtualization" refers to the artifact being encapsulated
(application), which is quite different to its meaning in hardware virtualization, where it
refers to the artifact being abstracted (physical hardware).

Examples of application virtualization technologies are: AppWave, Windows XP Mode, Wine,
BoxedApp, Citrix XenApp, Novell ZENworks Application Virtualization, Endeavors
Technologies Application Jukebox, Microsoft Application Virtualization, VMware ThinApp, etc.

Embarcadero AppWave

429

20

20

20

31

23

Quick start tutorials 32

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

AppWave Store is an app store for Windows which uses application virtualization to avoid
the hassles and risks of the usual Windows install process. The idea is that purchasing
apps for Windows will be as simple as installing an app on a mobile using the Apple app
store or Android Market. The underlying technology was developed to simplify deployment
of Embarcadero’s tools. The All-Access subscription includes a tool box application that lets
you run tools using “InstantOn”, which means no installation, just click and run.

In addition to the standard installation executables for AppWave applications, Embarcadero
provides AppWave Apps versions of each product. Through the Embarcadero AppWave
Store you also have access to many free apps from other parties. Apps simplify deployment
and enable side-by-side versioning. When AppWave Browser is not running in Turbo mode,
such as in a locked-down desktop environment, Apps are ideal because they do not affect
system files or system registry settings.

AppWave Apps run within their own space without sharing DLLs or system-wide settings
that could conflict with other applications. Application data, including configuration and
license information, is stored locally on the hard disk, separate from the executable itself.
AppWave Apps run on the local machine and are launched from the network using AppWave
Browser. Apps launched from AppWave Browser benefit from application streaming because
the application will begin to open before the product has been fully downloaded. However,
if you need frequent access to an application, you should download and run the file locally,
which is typically faster than running it from AppWave.

Technical issues
EurekaLog installer may be unable to gain access to settings and configuration of
virtualized Delphi or C++ Builder IDE (such as IDEs with All-Access licenses, AppWave
versions of classic IDEs). This depends on exact solution which you're using to virtualize
applications. For example, AppWave version of Delphi is isolated from host machine/OS, so
EurekaLog installer will not be able to "see" it during the installation.

Normally, you should try to run EurekaLog installer within virtualized environment, so
EurekaLog installer may get access to IDE's settings. Otherwise EurekaLog installer would
act as if there is no IDE installed (since it can not detect virtualized IDE).

Installation guide
There are two possible methods available:

Option A: Please, refer to documentation on your virtualization software to know about
running two applications (i.e. Delphi/C++ Builder IDE and EurekaLog installer) within the
same virtualized environment (sandbox). EurekaLog installer will be able to detect installed
IDE and install and register EurekaLog properly when it is running in the same environment
as IDE itself. Installation process should not be different from normal installation (with
respect to specifics of used application virtualization solution).

Option B:
(You can also use this option to install EurekaLog on machine without any IDE installed,
or when IDE installation is corrupted)
You can instruct EurekaLog installer to install necessary files even there is no IDE installed.
Of course, EurekaLog installer will not be able to properly register EurekaLog into (non-
existent/invisible) IDE - you still have to perform manual installation . To force-install files
for a specific IDE - please, run EurekaLog installer with the following command-line
switches:

/Force_MV

where:
M is either 'D' or 'C' - to indicate Delphi or C++ Builder IDE

V is integer version of IDE. You can determinate integer version of your IDE by using this

table .

For example, to install EurekaLog files for AppWave version of Delphi XE4:

20

598

604

EurekaLog 7 Documentation33

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

EurekaLog7-Enterprise.exe /Force_D18

To install files for RAD Studio XE4 (i.e. both Delphi XE4 and C++ Builder XE4):

EurekaLog7-Enterprise.exe /Force_D18 /Force_C18

To install files for Delphi 7 with corrupted installation/registration:

EurekaLog7-Enterprise.exe /Force_D7

EurekaLog installer will act as if IDE was detected - i.e. installer will show you normal
checkboxes for IDE's files during such installation. You should see a typical set of all
necessary files (i.e. .dcu/.obj, .bpl, etc.) after installation - assuming that you did not cleared
checkboxes.

Please note that EurekaLog's Manage tool will not work - because it will not see installed
IDE(s). You have to register EurekaLog manually . That is (simplified instructions):
1. (Optional) Copy necessary files to location where your IDE (or your build tool) can see it.
2. Specify paths to EurekaLog files:

a. Add %EUREKALOG%\Lib\%PLATFORM%\Release\%IDENAME%\, %EUREKALOG%\Lib
\Common and %EUREKALOG%\Source\Extras\ folders to "Library Paths"/"Search Paths"
option.

b. Add %EUREKALOG%\Source\ folder to "Browsing Paths" option.
c. Add %EUREKALOG%\Lib\Win32\Debug\%IDENAME%\ folder to "Debug DCU paths"

option.
d. Add %EUREKALOG%\Lib\Common\ folder to "Include paths" option.

3. (Optional) Register EurekaLog IDE expert by installing (registering) EurekaLogExpert.bpl
package.

4. (Optional) Register EurekaLog Events component by installing (registering)
EurekaLogComponent.bpl package.

Please, see manual installation guide for more detailed information.

See also:
Installation for non-admin user account
Using EurekaLog with Delphi Personal/Turbo/Starter editions
Manual installation
Installation issues

4.2 How to use EurekaLog

This article is part of Quick start tutorials series.

Important Note: dropping EurekaLog component on your form is not enough! You have to
configure EurekaLog for your project. EurekaLog component is used to react to certain
events in EurekaLog-enabled projects. The component will do nothing on its own.

Short answer:

To enable EurekaLog in your application:
1. Save your project.
2. Check "Activate EurekaLog" option.
3. Select application type.
4. Rebuild your project.

Done!

P.S. You have to install EurekaLog before using it.

Long answer:

First, save your project before enabling EurekaLog.

598

598

31

23

598

596

20

20

Quick start tutorials 34

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

To enable EurekaLog for your application - you need to go to Project / EurekaLog options
(see also):

EurekaLog project options in IDE menu

Don't see EurekaLog menu items?

And to enable "Activate EurekaLog" checkbox:

222

596

EurekaLog 7 Documentation35

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

General page in EurekaLog project options

You also should select type of your application from drop-down list:

Selecting type of your application

See supported application types to get more information about each position.

You must recompile your Delphi/C++Builder projects in order to use EurekaLog with
them:

234

363

363

Quick start tutorials 36

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Rebuild your project

EurekaLog will automatically apply all necessary changes to make your projects EurekaLog-
enabled.

Done!

Now run your application and observe how your application handles exceptions now:

Before

EurekaLog 7 Documentation37

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

After

See also:
Problems?
What's next?

See demos in Start Menu (Start / Programs / EurekaLog 7 / Demos)
Reading and understanding bug reports
Common actions / basic procedures
FAQ

IDE menu items
Compiling your project with EurekaLog

606

72

45

215

222

421

Quick start tutorials 38

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

4.4 EurekaLog's basics

This article is part of Quick start tutorials series.

EurekaLog is injected in your application to work. This includes EurekaLog's code and
EurekaLog's data. Both are equally needed for EurekaLog to work.

EurekaLog's code is usual Delphi/C++ Builder units, which consists of .pas/.dcu files. Code
contains EurekaLog's logic. Most important part of which is exception hooking code. You
include EurekaLog code by including EurekaLog's unit into your project (uses clause).
Usually this is done automatically when you enable EurekaLog for your project via
"Project" / "EurekaLog project options" menu item.

EurekaLog's data consists of EurekaLog's options for your application and debug
information . Options are needed to properly setup and configure EurekaLog's behavior
on startup. Debug information is needed to build human-readable call stacks in bug
reports. EurekaLog's data is injected by post-processing compiled executable with
EurekaLog (either by IDE expert or by command-line compiler). Usually this is done
automatically when you enable EurekaLog for your project via "Project" / "EurekaLog
project options" menu item.

To summarize the whole process:

20

40

EurekaLog 7 Documentation39

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Build application process with EurekaLog enabled

The resulting executable file will look like this:

Quick start tutorials 40

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Final EurekaLog-enabled executable

You can see EurekaLog code+data.

For more information about compiling your application with EurekaLog see these articles .

4.5 Basic terms (definitions/dictionary)

This article is part of Quick start tutorials series.

This is short dictionary of terms used in this help file.

Bug - (see also: Error) is a software defect. It is the common term used to describe an
error, flaw, mistake, failure, or fault in a computer program or system that produces an
incorrect or unexpected result, or causes it to behave in unintended ways. Most Bugs
arise from mistakes and errors made by people in either a program's source code or its
design, and a few are caused by compilers producing incorrect code. A program that
contains a large number of Bugs, and/or Bugs that seriously interfere with its
functionality, is said to be buggy. Reports detailing Bugs in a program are commonly
known as Bug reports, fault reports, problem reports, trouble reports, change requests,
and so forth. Many people mistakes Exceptions for Bugs and visa versa, but it's obviously
wrong, since Leak is an Bug too. And not all Exceptions are real Bugs in your code. For
example, you can handle out of disk space exceptions in your code and ask user to free
disk. There is no bug in your code.

Bug report - (see also: Unhandled exception) a report about possible Bug in the
application. It usually contains information about Exception or Leak. Bug report usually
contains one or more Call stacks and some information about system itself and
application. Bug reports are stored in files. Often one file can hold multiple Bug reports.
EurekaLog's Bug reports have .el, .elp, .elx file extensions. The .el files are usual text

421

20

EurekaLog 7 Documentation41

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

files, which can be opened in any text editor. However, EurekaLog Viewer can be used to
view them in more convenient way. See also: reading and understanding bug reports .

Call stack - stack data structure that stores information about the active subroutines of
the application. This kind of stack is also known as an execution stack, control stack, run-
time stack, or machine stack, and is often shortened to just "the stack". Call stack is a
central piece of information in any Bug report. Call stack is a sequence of addresses
(mostly with textual description - see Debug information), which leads us to place of the
problem (Exception or Leak). See also: Call stacks .

Chained exception - (see also: Nested exception) is Exception which was raised inside
Exception handler.

Deadlock - a situation when two or more threads are waiting for each other infinite. Such
cases are Bugs in the application. This is a special case of Hang.

Debug information - (see also: Injecting) is information about link between machine's
binary code (.exe/.dll/.bpl file) and source code (.pas file). It's used to build human-
readable Call stacks. Debug information is necessary for EurekaLog to function. It's
generated by linker and is saved into .map or .tds files. It's injected into your Executable
during post-processing stage . See also: EurekaLog's basics .

EDD - see Exception Driven Development.

Error - (see also: Exception) see Bug. Many people mistakes Exceptions for Errors and
visa versa, but it's obviously wrong, since Leak is an Error too. And not all Exceptions
are real Errors in your code. Sometimes Error can be used as synonym of Exception, not
Bug. It's usually best to avoid this term due to its vague meaning. Use either Bug or
Exception.

Exception - this is an event which interrupts normal execution path of your code and
passes control to Exception handler. Also, Exception is a object which describe exception
event. The process of generating Exception and interrupting your code is called "raising
exception" or "throwing exception". Exceptions are raised in case of unexpected or
unusual cases. Sometimes (but not always!) Exceptions are Errors. For example, "access
denied" exception when opening text document in text editor is not a bug in your code,
there is nothing to fix. On the other hand, "access violation" exception during the same
process of opening is clearly your bug. Exceptions can be Handled or Unhandled.
Exceptions also can be Hardware or Software.

Exception Driven Development (EDD) - is a software development process that relies on
the capturing software crash and hang data from end-users. You ship your software and
analyze incoming bug reports, fix few top bugs and release an update. Repeat iteration
again. See also: typical use of EurekaLog . This approach is not self-suffice and it can
and should be combined with other technics, such as TDD, DDD, XP/Agile, etc.

Exception handler - (see also: Exception) is a piece of code which gets control when an
Exception was raised. It's usually not Hook. Exception handler either perform cleanup
(try-finally) or Exception handling (try-except).

Exception handling - (see also: Exception) usually refers to the process of "dealing with
Exceptions". Exception handling includes processing of Exception such as logging,
showing error message, using fallback actions and so forth. Exception is destroyed after
Exception handling is finished. Exception handling occurs inside try-except blocks. See
also Handled exception and Unhandled exception.

Exception log - see Bug report.

Exception tracer - (see also: Exception) a tool which install Hooks and intercepts the
raising of Exceptions and allow user to create Bug report for each Unhandled exception.
Often Exception tracers have additional functionality. Like collecting information, debug
features, Leaks reporting and so on. EurekaLog is an Exception tracer tool.

Executable - see Executable module.

72

79

421 38

68

Quick start tutorials 42

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Executable module - in short, it's .exe, .dll or .bpl file. Basically, it's your compiled project.
It's any file that can be executed (can run code).

Freeze - see Hang.

Handled exception - (see also: Exception) is an Exception, which was handled by
Exception handling process. I.e. this is Exception which was processed by Exception
handler.

Hang - this is situation when application stops responding. This can be a Bug in
application, but not always. Permanent (endless) Hang is always a Bug. A special case of
Hang is Deadlock.

Hardware exception - (see also: Exception, Software exception) is an Exception, which
is triggered by hardware (like CPU, for example). This type of Exception are async
Exceptions - they can be raised at any place and any time. Access violation
(EAccessViolation) is an example of Hardware exception. In Delphi: all Hardware
exceptions are wrapped into exception class delivered from EExternalException.

Hook - a block of code which is called instead or before other code's block. A special case
of Hook is a simple event/event handler. Usually documented way to call some
interceptor code is called "event" and handler is called "event handler". If there is no
documented way to intercept code - then it's called Hooking and Hook.

Hooking - (see also: Hook) the process of installing and using Hooks. Sometimes it's
called Injecting, when it specifically refers to undocumented way to intercept code.

Injecting - have different meaning. Can refer to Hooking (as the process of installing
Hooks) or to the process of embedding Debug information into Executable module.

Leak - is a Bug in application when application consumes some kind of resource but is
unable to release it back to the operating system. If this resource is memory - then Leak
is called Memory leak.

Memory leak - (see also: Leak) is a type of Leak when application captures and don't
release memory (usually meaning virtual memory).

Module - see Executable module.

Nested exception - (see also: Chained exception) is the original exception, which has
triggered Chained exception.

Resource leak - (see also: Leak) any Leak which is not Memory leak. "Resource" can be
bitmaps, kernel objects and even other types of "memory".

Software exception - (see also: Exception, Hardware exception) is an Exception, which
is triggered by the code. This type of Exception are sync Exceptions - they can be raised
only at specific places, when code has command to raise Exception. EStreamError is an
example of Software exception. This is most common Exception type in applications.

Unhandled exception - (see also: Exception) may have different meaning. Usually,
Unhandled exception is an Exception which is not Handled exception. However, the
amounts of "handling" meaning produces different usage cases of "Unhandled
exception" term. Default meaning is this: Unhandled exception escapes any handling
code and elevates up to operating system code. Such Exceptions means unavoidable
death of the process (application) - unless there is some Hook for Unhandled exceptions.
This is a usual meaning of Unhandled exception in standard applications. However, when
application is enabled by Exception tracer, Unhandled exception gets second meaning -
it now usually means Exception that escapes your Exception handlers and it's caught by
Exception tracer (usually via Hooks). Event though technically Exception is Handled
exception in this case - it's still can be called Unhandled exception. The first case is
named "real unhandled exception" in this case. It's a very rare case for application with
Exception tracer.

EurekaLog 7 Documentation43

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Unit - Delphi's .pas file or C++ Builder's .cpp file.

Part

V

EurekaLog 7 Documentation45

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

5 Basic procedures

After you've enabled EurekaLog for your application - you probably want to configure it,
so EurekaLog will better suit your needs.

Usually, our customers do these kind of configurations:
They set type of their project / application .
They configure bug report (like file storing and content).
They configure error dialogs (like changing appearance or disabling dialog at all).
They configure sending report to developer (to receive feedback from field-deployed
applications).
And they adjust the settings of the project itself (to improve detalization of the bug
reports).

The best way to ensure satisfaction is to insert an artificial "bug" in your application and
ensure that EurekaLog behaves as you expect and want. And if it's not - then adjust
EurekaLog's settings .

If you write a GUI application - we recommend to place a button on main form and place this
code to it's OnClick handler:

procedure TForm1.Button1Click(Sender: TObject);
begin
 raise Exception.Create('Test exception for EurekaLog');
end;

Clicking on such button should invoke EurekaLog's processing and you could check its
behaviour on your machine - before deploying application to the clients.

If you configure your application to catch leaks - you can use this code to test EurekaLog's
behaviour for leaks:

procedure TForm1.Button2Click(Sender: TObject);
begin
 AllocMem(10240);
end;

Note: it's important to test both exceptions AND leaks, because their processing is very
different.

See also:
Customizing EurekaLog
Video Tutorials

5.2 Selecting application type

This article is a part of basic procedures .

Selecting application type is the first action that you should do for your project.

33

45

46

52

53

58

225

180

45

363

http://www.eurekalog.com/tutorials_delphi.php
http://www.eurekalog.com/tutorials_delphi.php

Basic procedures 46

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Selecting a type of your project

You can find this settings on the very first page in EurekaLog project settings: General page
.

Once you enabled EurekaLog for your project , you need to expand the "Project type"
combo box, then select a most-appropriated value for your project.

This will changes your project settings for the selected type.

Please, see Application types for more information about each available option.

Now you can set other settings:
General options
Configuring bug report
Configuring dialogs
Configuring sending
Configuring project
Video Tutorials

5.3 Configuring bug report

This article is a part of basic procedures .

When any error occurs (like unhandled exception or leak) - EurekaLog generates a so-called
bug report . This report can be saved to file and/or send to you (as developer of
application). One file can holds many bug reports. See this article for more information
about bug reports.

Bug report includes one or more call stacks, some information about application and system,
and also may include additional files (like screenshot or current opened document in your
application, etc).

Saving bug report to file
You can save bug report to file. Saving bug report is enabled by default, so you actually
need to disable it, if you don't want/need it. Saving bug report is useful, when you want to
analyze the problem after application was closed.

Note: it is recommended to use System Log for Win32 service applications .

To enable or disable saving bug report to file - go to "Bug report" section in EurekaLog
project options and enable or disable "Save bug report to file" option.

Usually EurekaLog bug report file have extensions of .el, .elp or .elx - depending on
format of bug report. Only .el file extension is available for saving reports - meaning a
simple text bug report. Other types of reports (.elx and .elp) are intendant only for sending
to developers .

234

33

363

234

46

52

53

58

45

40

72

535

264

225

218

53

http://www.eurekalog.com/tutorials_delphi.php
http://www.eurekalog.com/tutorials_delphi.php

EurekaLog 7 Documentation47

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

You can configure saving bug report to file on the same page.

First, you can specify a folder to store bug report. Default is a subfolder in "%APPDATA%
\Neos Eureka S.r.l\Bug reports\" (see also). Empty string means default path (i.e. the
same folder - "%APPDATA%\Neos Eureka S.r.l\Bug reports\").

Note: you can open this folder with bug reports by opening Start / Programs / EurekaLog /
Bug reports menu item.

If you want to save bug report to the same folder as executable module - use ".\" folder.
You can also use any other relative path, like this for example: ".\Reports".

Note: if your selected folder will be write-protected at run-time, EurekaLog will revert it to
default. If path doesn't exist - it will be created.

All bug reports are saved in the same file, so new bug reports do not overwrite old reports -
they appended to the end of the same file. You can specify a maximum amount of reports,
which one file can hold. By default it's 32 (it's "Max reports in one file" option). A typical
default bug report has 100 Kb in size, so 32 reports will take approximately 3,2 Mb at
maximum. When limit is reached (by count, not by size), the oldest report (which is stored
first) will be deleted.

If you don't need or want to store multiple reports - you can specify a value of 1. This will
emulate case "new report overwrites old". This behaviour is a good idea for developer's
machine.

Since capacity of file can be limited, you may be interested in storing information with
maximal usefulness. For example, you may don't want for this file to hold a 32 bug reports
of the very same error, which occurs 5 times a day. You can enable "Do not save duplicate
errors" option to take care of this situation. When this option is enabled - file will contain
only unique bug reports. If current bug reports represents an problem, which was already
saved in the file - the file will not be appended with new bug report. Instead, a error's
count will be increased as +1. How EurekaLog knows, which reports are duplicates and
which are not? It uses a so-called Bug ID . Reports with the same Bug ID's values are
treated as equal (even though they aren't - obviously, their date-times are different).
Reports with different Bug IDs will be saved to file anyway.

Option "Delete file at version change" may be useful, if you don't want to get old bug
reports, when you've released a new version of your application. If you enable this option -
then be sure to use version information in your project and to increase it with new build/
release. Once enabled, this option will delete bug report's file, if it holds reports from
previous version of your application.

Configuring bug report's content
Call stack is a central piece of information inside any bug report. Since it plays such
important role - there are many options and features for call stacks. Because there is a lot
of information to describe these options - this information is separated into its own article

.

You can configure other information (not call stack; auxiliary information) which you want to
include in the bug report. Just go to "Bug report / Content" section in EurekaLog project
options and enable or disable parts of information to include in bug report.

While some people tends to enable everything - it may be not be a very good idea.
Collecting information takes time. Collecting everything will result in freezing your error
dialogs for short amount of time. Is it really needed? If your application doesn't work with
printer - why collect printer information? If your application doesn't communicate with other
applications - what can be useful in processes list?

Usually, it's a lot better to include only required information - disable everything and enable
only option which can be useful for your kind of application. For example, a Win32 service
can collect information about current account and its privileges. A text editor with printing
feature can capture information about installed printer. An application with extensive

217

421

48

266

225

Basic procedures 48

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

graphic work can include a monitor and video-card information. And so on.

Also, be aware that your application may be considered as harmful (spy-ware) by
customers, if it collects extensive information which is definitely not needed (like monitor
information for non-GUI applications).

Note: project options may affect bug report detalization .

See also:
Configuring call stack
Bug report options
Bug reports
System Logging setup
Configuring dialogs
Configuring sending
Configuring project
Customizing EurekaLog
Video Tutorials

5.3.1 Configuring call stack

Call stack is a central piece of information in any bug report. Call stack is a stack data
structure that stores information about the active subroutines of the application. Call stack
is a sequence of addresses (mostly with textual description), which leads us to place of the
problem. This kind of stack is also known as an execution stack, control stack, run-time stack,
or machine stack, and is often shortened to just "the stack".

Two main sources of information for call stack:
1. Stack tracing method (run-time);
2. Debug information (design-time).

Stack tracing method collects return addresses at run-time and defines list of entries in call
stack. Debug information establishes correspondence between RAW addresses and source
code. It is generated at design-time. It defines human-readable form of call stack:

1. Executable's code -> Exception -> Stack Tracing Method -> list of RAW addresses;
2. List of RAW addresses -> Debug Information Provider + Debug Information (executable's

data) -> human-readable call stack.

Stack tracing methods
Stack tracing method scans CPU stack and retrieves all found return addresses. The result
will be a list of RAW pointers. Each pointer in the list is a return address - i.e. it points to
some location in code section. Stack tracing method determinates list of addresses.
Different tracing methods may produce different lists.

To learn more about different stack tracing methods - see this article .

Stack tracing method can be configured here .

Debug information
Debug information is information about link between machine's binary code (.exe/.dll/.bpl
file) and source code (.pas file). It is used to build human-readable call stacks. Debug
information is necessary for EurekaLog to function. It is generated by linker and is saved
into .map or .tds files. It is injected into your executable during post-processing stage .
Debug information can be generated by various tools (compilers/linkers), and in different
formats. EurekaLog must know debug information format in order to use debug information
in that format. Code which knows some debug information format and is able to read debug
information in this format is called "Debug Information Provider".

EurekaLog supports the following debug information providers . Debug information can
also be converted from one format to another by using special tools .

Debug information providers can be configured here .

58

48

264

72

535

52

53

58

180

578

237

421

409

516

355

http://www.eurekalog.com/tutorials_delphi.php
http://www.eurekalog.com/tutorials_delphi.php

EurekaLog 7 Documentation49

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Note: debug information itself is not configured in EurekaLog's options. It must be
configured via compiler/linker/converter's options. See also: configuring project for
EurekaLog . Or it can be supplied by debug information converters . See also: using
EurekaLog with 3rd party tools .

Other important considerations for call stacks

Call stacks for chained exceptions
Chained exception is an exception which occurs during processing of another exception .
That "another" (original) exception is called "nested exception". For example:

try

 // Low-level error (a.k.a. original, first, bottom, inner, nested)
 raise ERangeError.Create('Invalid item index');
except

 // High-level error (a.k.a. introduced, last, top, outer, chained)
 raise EFileLoadError.CreateFmt('Error loading file %s', [FileName]);
end;

As you can see, low-level exception (nested) is the exception you're interested in. It
indicates a reason for failure. This is what you typically want to be logged. Chained
exception is triggered by original exception and provides more descriptive error message.
So, you typically want to show it to user as error message.

Thus, typically you want first exception to be logged, but last exception to be shown to end
user. Classic/default Delphi and C++ Builder behavior is to work only with last exception
always. Default settings for EurekaLog is to log original (nested) exception, but show
chained exception to user.

To learn more about chained/nested exceptions support in Delphi/C++ Builder and
EurekaLog - see this article .

Chained exceptions can be configured here .

Important note: this feature require EurekaLog to be able to track life-time of exception
objects. Therefore, it's highly recommended that you enable the following options:

"Enable extended memory manager" option
"Use low-level hooks" option
"Capture stack only for exceptions from current module" option

Otherwise it's recommended that you keep all options on this page into "Classic" position,
or EurekaLog may show information about wrong exceptions. Exceptions passed between
executable modules (i.e. from/to DLLs) will probably won't be able to work properly with this
feature. However, exceptions that are converted to error code/HRESULT/etc. when passed
between modules boundaries will work OK.

Multiple call stacks in a single bug report / Bug reports for multi-threaded applications
A single bug report may contain more than one call stack. Additional call stacks may be
created for leaks or background threads.

See this article to learn more about leak reports. See this article to learn more about
multi-threaded applications.

Deferred and immediate call stacks
EurekaLog must collect information about exception when this exception is raised
(information such as call stack, time, etc.). Collecting this information will take some time.
This may become a performance issue if your application raises exceptions too often - and
handles them immediately (i.e. it uses exceptions as part of its normal execution path). This
would mean that even though information for exceptions is collected, but it is not used -
since bug report is not created (because application handles exceptions by itself). Then
enabling EurekaLog will introduce slowdown for such application.

We recommend to review your code and avoid raising exceptions too often (i.e. avoid using
exception as part of normal execution path; use exceptions only for errors/rare conditions).

58 516

514

40

573

244

250

259

237

166 547

Basic procedures 50

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

A typical fixes for your code include:
Avoid raising exception when you can pre-check error-condition. For example, it's better
to use TryStrToInt or StrToIntDef instead of StrToInt + try/except block;
Do not raise exception for non-errors. If you still need to do this - consider creating
custom exception class for this purpose and exclude exception from EurekaLog (see next
item);
You can create custom exception classes for your purposes. You can mark some exception
classes as "ignored" for EurekaLog. You can do this via filters , events (specifically:
OnRaise), attributes , or low-level handlers ;
You can also add SetEurekaLogStateInThread(0, False) and
SetEurekaLogStateInThread(0, True) around blocks of code which can raise exceptions
intensively, but your code handles all these exceptions.

However, x86-32 platform has unique architecture: a call stack may be build later - during
exception handling step. This feature can give a performance gain, because exception
tracer now may build call stack later - at handling state, it's not strictly necessary to build
call stack when exception is raised. Thus, there will be a huge performance boost, if most of
raised exceptions are handled by your code and not reach default handler (which will create
a bug report and, thus, a call stack).

This feature is enabled by default, but it is only applicable to Win32 platform.

See this article to learn more about deferred and immediate call stacks.

Exceptions in DLLs
The default good practice when working with exceptions and DLLs is not to let any
exception escape DLL . That's because DLL and exe can be written in different
programming languages, and caller may not know how to handle (and release) exception
object from callee. That's why by default EurekaLog is configured to handle only exceptions
inside current executable.

It's highly recommended to follow best practices . However, you still may want to handle
DLL's exceptions in exe (or visa versa). For example, if you're 100% sure that both DLL and
exe is written in the same programming language (and is compiled by the same compiler's
version). Then you can instruct EurekaLog to catch exceptions from other modules. You can
enable this behavior by disabling "Capture stack only for exceptions from current module"
option .

Note: you should probably disable chained exceptions support for DLLs that let
exceptions escape DLL and be handled by the caller (see above). This feature requires
ability to track life time of exceptions objects. This is not possible for general case (e.g. host
and DLL are compiled by different compilers and there is no assist from RTL for tracking
exception objects). This feature may work in some specific configurations.

See also FAQ below to learn more about building call stacks for DLLs.

How to...
...show RTL and VCL units in call stack?
Set "Detalization level" option to "Show any (including RAW addresses)" or "Show items
with procedure name (DLLs)".

...show RTL and VCL units with line numbers in call stack?
Enable "Use Debug DCUs" option and build the project (make/compile is not enough).

...hide RTL and VCL units in call stack?
Disable "Use Debug DCUs" option, set "Detalization level" option to "Show items with
unit name (BPLs)" or "Show only items with full info (line number available)", and build the
project (make/compile is not enough).

...show RTL and VCL units in call stack for packaged applications?
Enable "JEDI (JclDebug)" option . Distribute *.jdbg files (along with *.bpl files) with your
application.

Notes:

185 192

190 211

583

455

457

237

573

237

237

355

http://docwiki.embarcadero.com/Libraries/en/System.SysUtils.TryStrToInt
http://docwiki.embarcadero.com/Libraries/en/System.SysUtils.StrToIntDef
http://docwiki.embarcadero.com/Libraries/en/System.SysUtils.StrToInt
http://docwiki.embarcadero.com/RADStudio/en/Compiling
http://docwiki.embarcadero.com/RADStudio/en/Compiling
http://docwiki.embarcadero.com/RADStudio/en/Compiling
http://docwiki.embarcadero.com/RADStudio/en/Compiling
http://docwiki.embarcadero.com/RADStudio/en/Compiling
http://docwiki.embarcadero.com/RADStudio/en/Compiling
http://docwiki.embarcadero.com/RADStudio/en/Compiling
http://docwiki.embarcadero.com/RADStudio/en/Compiling

EurekaLog 7 Documentation51

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

*.jdbg files can be found in \bin folder of your IDE installation;
*.jdbg files are not available for very old Delphi/C++ Builder versions.

...show JCL/JVCL units in call stack for packaged applications?
Enable "JEDI (JclDebug)" option . Enable "Packages / Create MAP files / Create JEDI
Debug Informations" and "Packages / Create MAP files / Insert JEDI Debug Informations
into the libraries" options during installation of JCL/JVCL.

...capture exceptions from DLLs?
Disable "Capture stack only for exceptions from current module" option . Enable "DLL
export table" option or provide debug information for DLL by compiling DLL project with
EurekaLog ("DLL" profile).

Normally this practice is not recommended. Recommended practice is to handle exceptions
within the same module and pass error condition (flag, error code, HRESULT, etc.) to the
caller . See also: using EurekaLog with DLLs .

...how to work with call stacks in COM application?
See this article .

...show system DLL functions in call stack?
Enable "DLL export table" option .

...show system DLL functions (including internal functions) in call stack?
See this article .

...hide system DLL functions in call stack?
Disable "DLL export table" option , disable "Microsoft DBG/PDB" option , and set
"Detalization level" option to any value except "Show any (including RAW addresses)"
and "".

...show custom DLL/package functions in call stack?
Enable "DLL export table" option .

Note: this question is independent from "How to capture exceptions from DLLs" question
above.

See also this article .

...show custom DLL/package functions with line numbers in call stack?
Compile your DLL or package project with EurekaLog (use "DLL" profile for DLL and
"Package" profile for packages).

Note: "Standalone DLL" profile can also be used for DLL, but it is designed for different
usage case (such as COM, plugins or any other usage of EurekaLog-enabled DLL inside
non-EurekaLog-enabled host).

...show custom DLL functions with line numbers in call stack (DLL is compiled by non-
Embarcadero compiler)?
a). [Microsoft Visual Studio only] Enable "Microsoft DBG/PDB" option , set "Debug
Information Format" option in your Visual Studio DLL project to "Program Database" (/Zi
option for ompiler) or "Program Database for Edit And Continue" (/ZI option for compiler),
enable "Generate debug info" option in your Visual Studio DLL project (/DEBUG option for
linker). Distribute generated .pdb file with your .dll file. Note: it is not possible to create an
.exe or .dll that contains debug information. Debug information is always placed in a .pdb
file.

or:

b). Enable "Microsoft Dbg/PDB" option , set "Debug Information Format" option in your
Visual Studio DLL project to "Program Database" (/Zi option for ompiler) or "Program
Database for Edit And Continue" (/ZI option for compiler), enable "Generate debug info"
option in your Visual Studio DLL project (/DEBUG option for linker). Post-process your DLL
file with EurekaLog command-line compiler . Use NUL as project file name for --
el_alter_exe switch and don't forget to add --el_source=PDB switch. You also have to

355

237

355

368

457 455

488

355

504

355 355

237

355

495

368

370

369

480

355

355

426

http://msdn.microsoft.com/en-us/library/958x11bc.aspx
http://msdn.microsoft.com/en-us/library/958x11bc.aspx
http://msdn.microsoft.com/en-us/library/958x11bc.aspx
http://msdn.microsoft.com/en-us/library/958x11bc.aspx
http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx
http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx
http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx
http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx
http://msdn.microsoft.com/en-us/library/958x11bc.aspx
http://msdn.microsoft.com/en-us/library/958x11bc.aspx
http://msdn.microsoft.com/en-us/library/958x11bc.aspx
http://msdn.microsoft.com/en-us/library/958x11bc.aspx
http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx
http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx
http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx
http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx

Basic procedures 52

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

create .eof file for your DLL and specify path to it via --el_config option. Note: most options
in .eof file will be ignored. Only design-time options will have effect (such as password
encryption for debug information, etc.).

See this article for more details.

...minimize information in debug information/call stack (for shareware applications)?
Enable "Do not store class/procedure names" option .

See this article for more information.

...hide certain routines from call stack?
Wrap such routines in {$D-} { routine code here } {$D+}.

See this article for more information.

See also:
Configuring bug report
Using EurekaLog in multi-threaded applications
EurekaLog's basics
Configuring project for EurekaLog
Compiling with EurekaLog
Using EurekaLog with exceptions in DLLs
Multi-threaded call stacks
Stack tracing: RAW method and frame-based method
Stack tracing: deferred vs. immediate
Nested/chained exceptions
Using Microsoft DbgHelp DLL
Debug information settings
Using debug information converters
EurekaLog for shareware developers

5.4 Configuring dialogs

This article is a part of basic procedures .

When any error occurs (like unhandled exception or leak) - EurekaLog generates a bug
report, which you configured on previous step . EurekaLog also shows an error dialog -
it's some kind of dialog or output, which tells the user about error.

You can configure dialogs at "Dialogs" section in EurekaLog project's options .

Usually a dialog is set automatically when you select a type of your application . In some
cases you have only single meaningful type of dialog available. But in most cases you can
change a default dialog to some other dialog.

Just select a dialog's type from combo box and set additional dialog display options.

There are many dialogs available - here is a short list of available dialogs:

Dialog Where applicable Description
(none) Any application's type Dialog that does nothing

at all. It doesn't show
anything.

RTL Any application's type Standard application's
error dialog.

MessageBox Visual applications only Displays error message
via
Windows.MessageBox
function.

MS Classic Visual applications only Displays error message
in MS Windows XP-style
dialog.

496

243

585

585

46

547

38

58

421

455

85

578

583

573

504

243

516

585

45

46

267 225

45

371

371

373

377

EurekaLog 7 Documentation53

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

EurekaLog Visual applications only Displays error message
in EurekaLog-style
dialog.

Console Console applications only Displays error by
outputting it to console
(error output).

System log reporting Any application's type Outputs error message
to system log (event
log).

WEB Web applications only Displays error in
returned HTML page.

Windows Error Reporting Any application's type Elevates error to OS.

Note: some dialogs have meaning (and can work) only in certain application types. For
example, attempt to use console dialog in VCL GUI application will result in error. Other
dialogs may require additional setup. For example, a system logging requires you to
register an event source for your application. See dialogs for more information.

You can know more about each dialog's options by reading Dialogs descriptions or by
clicking on the dialog's link in the table above.

See also:
Dialogs options
Configuring bug report
System Logging setup
Configuring sending
Configuring project
Customizing EurekaLog
Video Tutorials

5.5 Configuring sending report

This article is a part of basic procedures .

If you're waiting for your clients to tell you about problems in your application - then you
see only a tiny fraction of all problems with your application . That's why you need to
build an exception and error reporting facility. And EurekaLog is able to help you with that
task: it can send a bug report about each problem in your application, deployed on clients'
machines. Reports can be send automatically, silently or with client's approval. You have a
bunch of send methods available.

You can configure this behaviour at "Sending" section in EurekaLog project's options .

You should select one or more sending methods - by checking check-box on the left:

One sending method selected

You need also to setup selected method in the right part. Each method has its own unique

379

382

384

535

386

389

370

370

267

46

535

53

58

180

45

68

302 225

http://www.eurekalog.com/tutorials_delphi.php
http://www.eurekalog.com/tutorials_delphi.php

Basic procedures 54

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

options. Usually, you just need to fill details about your account (like login / password).

All default build-in methods can be divided into two categories:
1. E-mail based. These methods send bug report inside e-mail message to your e-mail

address.
2. Web based. These methods uploads bug report via HTTP or FTP protocols (including bug-

trackers with web interface).

Shell, Simple MAPI, MAPI, SMTP Client and SMTP Server are e-mail based send methods.
HTTP upload, FTP upload, BugZilla, FogBugz, Mantis and JIRA are web based send
methods.
BugZilla, FogBugz, Mantis and JIRA are web-trackers.

Unfortunately, there is no best sending method - each way have its own advantages and
drawbacks. Please, see Selecting send method to pick a method which matches your
needs.

Note: you can select more than one send method and change methods order. If first
method will fail sending, the second selected method will be used. If second method will fail
too, the third method will be used. And so on, until send will success or there will be no
send methods left. The sending phase is considered to be "OK", if one method was able to
send report. If all methods had failed - then sending phase will be considered as "failed".

Common "gotcha's" for sending bug reports
Here are some points which are worth looking for:

Try to avoid non-ASCII characters (those which code is above 128) in host/URLs, account
names, passwords, etc. While most recent environments offer full support for localized
names and characters, older platforms may limit EurekaLog capability to use them. For
example, using Cyrillic account name in Delphi 7 will break sending on Italian Windows -
because ANSI string will be treated in wrong code page.
Use several send methods for best delivery results. See Selecting send method for
more info. It's best to use one method of your choice and back it up with one of few e-
mail sending methods. Thus, if one method fails - another one will succeed. If you use
web-tracker as your primary method - often you can configure it to parse e-mails too .
Create a new account specifically for sending reports. NEVER use main/personal/
administrator account for bug report submission. Create a new e-mail account (if it's
possible - limit its rights to send only). Create a new FTP account (limit its rights to upload
files to specified folder only). Create new web-tracker account (limit its rights to
submitting reports only).
Create a new "project" or account for each of your products. Do not mix several products
with one account. For example, create different "projects" in bug-tracker software for
each of your software products.
Test sending before deploying. Test it with both exceptions and leaks. Test it for new and
closed reports. Be sure that sending process meets your expectations.
Before upgrading/changing your end of bug report submission (HTTP upload script, FTP
configuration, bug tracker software, etc) - be sure to test this new environment. Ensure
that new configuration allows old versions of your application to report bugs (if you still
need these bug reports). For this reason be extra careful to use "hosted" solution -
because you may not control server software changes.
There are events for customizing sending: such as OnAttachedFilesRequest,
OnZippedFilesRequest, and OnCustomWebFieldRequest.

What's next?
After you start receiving bug reports "from the field" - it's time to read them and solve
the bugs .

See also:
Sending options
Managing bug reports in issue tracker
Security Considerations
Configuring bug report

55

55

153

72

72

302

105

158

46

EurekaLog 7 Documentation55

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Configuring dialogs
Configuring project
Customizing EurekaLog
Video Tutorials
Customizing EurekaLog

5.5.1 Selecting send method

Unfortunately, there is no best sending method for your bug reports - each way have its
own advantages and drawbacks.

Important note: there are events for customizing sending: such as
OnAttachedFilesRequest, OnZippedFilesRequest, and OnCustomWebFieldRequest.

First, let's start with common properties for each group:

E-mail methods
Advantages:

Simple and familiar.
Can be send manually (good as "last resort measure").
Clients most likely have e-mail access, so sending have good chances to succeed.
Good for basic support for unsupported web-trackers (see also).

Drawbacks:
Depends on client's environment. You can't control it.
No backward feedback - you can't tell customer that this problem is already solved.
No bug report management (however, you can use EurekaLog Viewer to collect
reports from e-mail account).

Web methods
Advantages:

Simple and controllable.
May be customizable.
Simple setup.
SSL/TLS support.

Drawbacks:
May be blocked by firewall.
No bug report management.
User e-mail address is optional.
Require hosting or server.

Web-trackers methods
Advantages:

Powerfull and customizable.
Bug report management.
SSL/TLS support.

Drawbacks:
May be blocked by firewall.
Requires setup.
Require hosting or server + database.
User e-mail address is optional.
Requires setup for each your project.

Note: bug trackers and e-mail methods are close-related: bug trackers are usually able to
parse incoming e-mails and insert them as issues into database. Thus, you can get non-
supported bug tracker working (by setuping it to parse e-mails and setup e-mail sending
in EurekaLog). Also, web trackers usually can generate e-mail notifications about new
issues.

52

58

180

180

53

153

617

153

http://www.eurekalog.com/tutorials_delphi.php
http://www.eurekalog.com/tutorials_delphi.php

Basic procedures 56

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Now, let's take a look at each method (common advantages/drawbacks aren't listed). Only
major points are listed below. For detailed pros/cons of each method - please see
description of each method .

E-mail: Shell (mailto protocol)
Advantages:

Available always
Drawbacks:

High amount of limitations (not customizable, no attaches, etc.)

Conclusion: good for "last resort" measure, but have many limitations.

Note: due to "no way to get real send result" - it's best to place this method last, if you
select several methods.

E-mail: Simple MAPI
Advantages:

Most common protocol for 3rd party e-mail clients
Drawbacks:

Obsolete protocol, not supported by modern Outlook

Conclusion: good for e-mail sending with using client configuration.

E-mail: MAPI (also known as "Extended MAPI" or "MAPI 1.0")
Advantages:

Supported by Outlook and Exchange
Drawbacks:

Not supported by other e-mail clients

Conclusion: good as alternative for SMAPI in case your clients use Outlook/Exchange.

E-mail: SMTP client
Advantages:

Most reliable e-mail protocol
Drawbacks:

You must store your real e-mail account details (login/password) in your application

Conclusion: only good if other methods are blocked. But if you can afford storing password -
then it will be better than SMTP server.

E-mail: SMTP server
Advantages:

Most powerful method with low limitations
Drawbacks:

It's usually blocked by ISPs to block spam software

Conclusion: good method with low limitations, but only if it's not blocked by client's firewall
or ISP.

Web: HTTP
Advantages:

Simple and highly customizable.
Drawbacks:

A lot of custom work to get anything above simple upload functionality.

390

391

393

396

397

398

398

EurekaLog 7 Documentation57

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Conclusion: good as base for building custom sending. For simple file uploads - FTP is a
preferred way.

Web: FTP
Advantages:

Minimum efforts to setup (among all web methods, including web-trackers), very reliable
Drawbacks:

No other functionality except simple bug reports upload

Conclusion: good if you need simple and reliable file send (upload). Often it is better than e-
mail methods.

Web-trackers
No additional points, except common items listed above in the "Web-trackers methods"
section. Please read through descriptions of each bug tracker . There are also setup
manuals available. You can read through manual to get idea of bug tracker's capabilities
and working process.

See also:
Detailed description of each send method .
Comparison of issue-tracking systems.

Conclusion: best if you need a complete bug tracking solution. For simple file sending HTTP
or FTP is preferable.

Remarks:
(*) That's because, if you have two e-mail client installed (say, Windows Mail and Outlook) -
both will definitely support mailto protocol, but only one can support simple MAPI, so you
may launch non-default e-mail client (which is not configured). For example, if you have
Outlook 2010 as your default e-mail client and you use simple MAPI - it will launch Windows
Mail client, because Outlook 2010 doesn't support simple MAPI. The same example holds
true for MAPI, if you use Windows Mail as your default e-mail client (because Windows Mail
doesn't support MAPI).

Recommended order of send methods
1. The method of your choice (like HTTP or Web-tracker)
2. SMTP Server or SMTP Client (depending on whenever can you store your account details

in application or not)
3. MAPI or Simple MAPI or both
4. Shell (mailto)

If you don't want (or can't) use some method in this list - just exclude it and place the rest
in this order. For example, if you want "mail only" delivery - use this:

1. SMTP Server
2. MAPI
3. Simple MAPI
4. Shell

This is just recommendation, not final rule. For example, you may use this sequence:

1. Mantis.
2. Shell.

It's your choice, it's up to you.

Note: usually there is no big reason to enable both SMTP client and SMTP server modes.
Use either first or second, but not both. I.e. if you can afford storing the password from
your real e-mail account in application - use SMTP client. Otherwise use SMTP server.

404

390

105

390

http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems

Basic procedures 58

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

See also:
Configuring sending
Description of available send methods
Using unsupported bug tracker software
Managing bug reports in issue tracker
Security Considerations
Customizing EurekaLog

5.6 Configuring project itself

This article is a part of basic procedures .

You can improve detalization of your bug reports by selecting the proper project options.
This articles explain various project options related to debugging and a recommended
choices.

Short answer:
1. To solve problems with non-working, partial or misleading call stack - clear .map, .tds and

.dcu files of your project and be sure to:
(Delphi) enable "Compiler"/"Debug information", "Linker"/"Map file" = "Detailed".
(C++ Builder) enable "C++ Compiler"/"Debugging"/"Debug information", "C++
Compiler"/"Debugging"/"Debug line number information", "C++ Linker"/"Full debug
information", "C++ Linker"/"Output"/"Map file" = "Detailed segment map".

2. To increase help level of EurekaLog:
(Delphi) enable "Compiler"/"Stack frames", "Compiler"/"Range checking" and
"Compiler"/"Use Debug DCUs" options and make "Project"/"Build all".
(C++ Builder) disable "C++ Linker"/"Output"/"Map with mangled names" option,
enable CodeGuard for you application (some options may conflict with EurekaLog).

Note: exact options names and locations depend on your IDE version. The specific option
may be called differently or be located in other place in your IDE.

For best results it's recommended to disable packages in application (if possible) and turn
off dynamic RTL - C++ only (if possible).

Long answer:

Note: we'll talk about project options in this article. We will not talk about EurekaLog
project options. You can open project options via "Project" / "Options" IDE menu command.

Warning: please, remember that you need to make a full build (and not just "compile"), if
you change any of these options.

We're interested in "Compiling" and "Linking" pages:

53

390

153

105

158

180

45

http://docwiki.embarcadero.com/RADStudio/en/Using_CodeGuard_to_Debug_C%2B%2B_Applications_Index
http://docwiki.embarcadero.com/RADStudio/en/Using_CodeGuard_to_Debug_C%2B%2B_Applications_Index
http://docwiki.embarcadero.com/RADStudio/en/Using_CodeGuard_to_Debug_C%2B%2B_Applications_Index
http://docwiki.embarcadero.com/RADStudio/en/Using_CodeGuard_to_Debug_C%2B%2B_Applications_Index
http://docwiki.embarcadero.com/RADStudio/en/Using_CodeGuard_to_Debug_C%2B%2B_Applications_Index

EurekaLog 7 Documentation59

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Compiling page (Delphi)

Basic procedures 60

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

C++ Compiler/Debugging page (C++ Builder)

On "Compiling" page, we are interested in:
Debug information + Local Symbols + Symbol reference info (Delphi only)
Debug information + Debug line number info (C++ Builder only)
Stack Frames (Delphi only)
I/O Checking (Delphi only)
Overflow checking (Delphi only)
Range checking (Delphi only)

EurekaLog 7 Documentation61

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Linking page (Delphi)

Basic procedures 62

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

C++ Linker page (C++ Builder)

EurekaLog 7 Documentation63

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

C++ Linker/Output page (C++ Builder)

On "Linking" page, we are interested in:
Map file
(Full) Debug Information (this option is known as "Include TD32 debug info" in old IDE
versions)
Map with mangled names (C++ Builder only)
Include remote debug symbols (Delphi only)

What do these options mean?
The most important settings are set of options "Debug information" ("Compiling" page).

The program is array of machine's (CPU) instructions - which are just bytes (numbers). The
source code is a text file. The question: how does the debugger know, when he needs to
stop, when you are setting a breakpoint in your source? Where is correspondence between
raw numbers and human-readable text?

This correspondence is a debug information . Roughly speaking, the debug information is
set of instructions like: "the machine codes no. 1056-1059 correspond to line 234 of Unit1".
The debugger works thanks to such debug info.

And these options? They controls the generation of debug information for your units.

The debug information is stored in dcu-files together with its compiled code. I.e. the very
same Unit1.pas can be compiled into different dcu-files (with or without debug information).
The debug information increases compilation time, size of dcu-files, but it does not affect
size or speed of resulting application (i.e. debug information is not included into
application).

There are cases, when you want to have debug information in your files or (at least) near
them. For example: if you are going to do remote debugging or debugging of external

40

Basic procedures 64

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

process. OR if you want to have human-readable call-stack in your exception diagnostic tool
(EurekaLog).

EurekaLog takes care of injecting debug information into your executable. This work is
performed by IDE expert or command-line compiler .

However, project options affects detalization of debug information. So, you need to set
project options properly to maximize result.

Let's do a short overview what these options do (see also: Compiling page and Linking
page in Delphi's help and C++ Compiler page and C++ Linker page in C++ Builder's help).
Most important options are marked in bold.

"Debug information" – that is the debug info itself. You should enable this option if you
want to do step-by-step debugging or have call stacks with names. EurekaLog IDE expert
enables this option automatically for you. But don't forget to enable it, if you don't use
IDE expert.
"Local symbols" (Delphi only) – it is "addon" for usual debug information. This is
correspondence between program's data and variables names in source code. You need
to enable this option if you want to see and change variables. Also, call stack window in
Delphi can display function's arguments with this option.
"Reference info" (Delphi only) – this is additional information for code editor, which allows
him to display detailed information about identificators. For example: where were a
variable declared.
"Debug line number info" (C++ Builder only) - it is "addon" for usual debug information.
It adds information about line numbers in source files. EurekaLog IDE expert enables this
option automatically for you. But don't forget to enable it, if you don't use IDE expert.

Those options are very close related and usually there is no need to enable or disable only
one of them - they are switched together.

"Use Debug DCUs" (Delphi only) - this very important option switches compilation
between using debug and release versions of standard Delphi's units. If you were
attentive, then you could notice that real pas-files in Delphi's Source folder are never
used during compilation. Instead, the precompiled files (in dcu) are used. They are taken
from Lib or Lib\Debug folders. This trick greatly decreases compilation time. Because dcu
can be compiled with and without debug information - there are two sets of dcus in Lib
folder. By toggling this option you'll specify which one Delphi should use for you. If you
switch this option off - then you won't be able to debug standard Delphi code or see
detailed call stack for it. EurekaLog doesn't enable this option for you, because it
seriously alters debugging experience - you should enable this option manually for
release production.
"Stack Frames" (Delphi only) - this option controls stack frames generation. If the option
is off then stack frames won't be generated unless they are needed. If the option is on -
then stack frames will be generated always. Stack frames are used for frame-based
stack-tracing method . I.e. it is used for building call stack. In usual application stack
frames are generated almost everywhere.
"Range checking" (Delphi only) - this is a very useful helper for debugging problems with
array-based structures. With it, compiler will insert additional checks (for strings, arrays,
etc), which checks the correctness of indexes. If you (by mistake) pass an invalid index -
the exception of type ERangeError will be generated. And you can find your error. If the
option is off then there is no additional code. Enabling this option slightly increases size of
your application and slows down it execution. It is recommended to turn this option for
debugging only. CodeGuard can serve as alternative to this option in C++ Builder.
"Overflow checking" (Delphi only) - it is somehow similar to "Range checking", except
checking code checks overflows in arithmetic operations. If result of operation is not
suitable for storage variable - then exception EIntOverflow will be raised. For example:
we have a byte variable, which holds 255 now. And we add 2 to it. There should be 257,
but it can not be stored in byte variable, so real result will be 1. That is integer overflow.
"I/O Checking" (Delphi only) - this option is used for working with "files in Pascal-
style" (AssignFile, Reset, etc).
"Map file" - by enabling this option you tell the Delphi's linker to create a separate .map
file along with your executable. Map file contains human-readable representation of
debug information. Different settings for this option controls the detalization level of
output. Usually, there is no need to change it to anything, which differs from "Off" or

221 423

578

http://docwiki.embarcadero.com/RADStudio/en/Compiling
http://docwiki.embarcadero.com/RADStudio/en/Compiling
http://docwiki.embarcadero.com/RADStudio/XE/en/Linking
http://docwiki.embarcadero.com/RADStudio/XE/en/Linking
http://docwiki.embarcadero.com/RADStudio/en/C%2B%2B_Compiler_Debugging
http://docwiki.embarcadero.com/RADStudio/en/C%2B%2B_Compiler_Debugging
http://docwiki.embarcadero.com/RADStudio/en/C%2B%2B_Compiler_Debugging
http://docwiki.embarcadero.com/RADStudio/en/C%2B%2B_Linker
http://docwiki.embarcadero.com/RADStudio/en/C%2B%2B_Linker
http://docwiki.embarcadero.com/RADStudio/en/C%2B%2B_Linker

EurekaLog 7 Documentation65

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

"Detailed". The map-file is used by various tools as primary source of debug information.
For example, EurekaLog automatically turns this option on and uses map-file to create a
debug information in its own format and then injects it into application. That is why you
rarely need to change this option manually.
"Debug Information" (Linker page, new Delphi)/"Include TD32 debug info" (old
Delphi)/"Full debug information" (C++ Builder) - this option embeds debug information
for external debugger in TD32 format into your application. You may need this option if
you use "Run"/"Attach to process" and Delphi can not find debug information. Also,
EurekaLog uses TD32 info to complete missing information in C++ Builder. Note, that size
of your Delphi application can increase 5-10 times by enabling this option (C++ Builder
writes information in separate .tds file), unless you enable "Place debug information in
separate TDS file" option.
"Include remote debug symbols" - very similar to previous option, but this creates a rsm-
file with debug information for Delphi remote debugger. You need this option, if you want
to do remote debugging.

Note, that some of these options can be enabled not only globally, but also separately for
each unit (several options can affect single routines or, even, lines of code). This is done by
using usual compiler directives (you can see them in help). For example, "Stack Frames" is
controlled by {$W+} and {$W-} and Debug information from Compiling page is controlled
by {$D+} and {$D-}.

So, we can give a recommendations for different use cases by summarizing all this info.
These recommendations are written down below. Settings which differs from defaults are
marked in bold (i.e. you should toggle items in bold manually).

Usual application, without EurekaLog

1. BASE SETTINGS FOR EACH PROFILE
All debug options ("Debug information" (Compiler), "Local symbols", "Reference info")
does not affect the resulting application and do not disturb us - so you usually should
keep them always on.
"Use Debug DCUs" - set it as you like (depending on: "do you want to debug standard
Delphi code or not?").
There is no need to turn on "Stack Frames" option - turn it off.
There is no need for map-files - turn it off.

2a. DEBUG PROFILE
Turn ON "Range checking" and (optionally) "Overflow checking".
"Include TD32 debug info" - enable it only if you use "Attach to process" while debugging.
"Include remote debug info" - enable it only if you want to use remote debugger.

2b. RELEASE PROFILE
Turn off "Range checking", "Overflow checking", "Include TD32 debug info" and "Include
remote debug info".

EurekaLog-enabled application

1. BASE SETTINGS FOR EACH PROFILE
All debug options ("Debug information" (Compiler), "Local symbols", "Reference info")
should be definitely turned on. Otherwise, call stack functionality won't be working.
There is no need to turn off "Stack Frames" option - turn it ON.
Generation of map-file should be turned ON, but EurekaLog's expert takes cares of it.
Generation of TD32 information should be turned ON for C++ Builder, but EurekaLog's
expert takes cares of it.

2a. DEBUG PROFILE
"Use Debug DCUs" - set it as you like.
Turn ON "Range checking" and (optionally) "Overflow checking".
"Include TD32 debug info" - enable it only if you use "Attach to process" while debugging.
"Include remote debug info" - enable it only if you want to use remote debugger.

http://docwiki.embarcadero.com/RADStudio/en/Stack_frames_(Delphi)
http://docwiki.embarcadero.com/RADStudio/en/Stack_frames_(Delphi)
http://docwiki.embarcadero.com/RADStudio/en/Stack_frames_(Delphi)
http://docwiki.embarcadero.com/RADStudio/en/Stack_frames_(Delphi)
http://docwiki.embarcadero.com/RADStudio/en/Stack_frames_(Delphi)
http://docwiki.embarcadero.com/RADStudio/en/Stack_frames_(Delphi)
http://docwiki.embarcadero.com/RADStudio/en/Stack_frames_(Delphi)
http://docwiki.embarcadero.com/RADStudio/en/Stack_frames_(Delphi)
http://docwiki.embarcadero.com/RADStudio/en/Debug_information_(Delphi)
http://docwiki.embarcadero.com/RADStudio/en/Debug_information_(Delphi)
http://docwiki.embarcadero.com/RADStudio/en/Debug_information_(Delphi)
http://docwiki.embarcadero.com/RADStudio/en/Debug_information_(Delphi)
http://docwiki.embarcadero.com/RADStudio/en/Debug_information_(Delphi)
http://docwiki.embarcadero.com/RADStudio/en/Debug_information_(Delphi)
http://docwiki.embarcadero.com/RADStudio/en/Debug_information_(Delphi)
http://docwiki.embarcadero.com/RADStudio/en/Debug_information_(Delphi)
http://docwiki.embarcadero.com/RADStudio/en/Debug_information_(Delphi)
http://docwiki.embarcadero.com/RADStudio/en/Debug_information_(Delphi)
http://docwiki.embarcadero.com/RADStudio/en/Debug_information_(Delphi)

Basic procedures 66

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

2b. RELEASE PROFILE
Turn ON "Use Debug DCUs" option.
Turn off "Range checking", "Overflow checking", "Include TD32 debug info" and "Include
remote debug info".

Note: if you don't do many index-based operations (so additional checks will not slow down
your code) - then it may be a good idea to always keep "Range checking" on.

Note: your code or 3rd party code (i.e.: non-standard components) may use compiler
directives in source code, which affect the options above. For example, a component may
have {$D-} directive inside its .pas units to exclude itself from debugging. Obviously, doing
so will prevent EurekaLog from getting descriptions for this component. You may need to
change the source code and edit/remove such directives.

See also:
Configuring bug report
Configuring dialogs
Configuring sending
Customizing EurekaLog

46

52

53

180

Part

VI

Typical scenarios 68

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

6 Typical scenarios

This section describes various scenarios of using EurekaLog. This should help you to get
some ideas how to use it to help you troubleshot issues.

The described scenarios tells you about most common and typical uses. However,
EurekaLog's capabilities are not limited to described scenarios. Sometimes our customers
do some non-standard and even crazy things with EurekaLog. Check out our site (namely,
blog and forums) to know some cool tricks.

Typical use of EurekaLog includes:
Using EurekaLog to automate bug reporting (your's clients side)
Using EurekaLog to debug bugs at developer's machine (your side)

6.1 Reporting

This article is part of Typical scenarios series.

This is the primary target of EurekaLog. EurekaLog is exception tracer tool, which collects
information about occurred problems (such as exceptions, hangs and leaks) in your
application and notify you (as developer) about these issues.

Debugging in small scale
Debugging a single program run by a single user on a single computer is a well understood
problem. It may be arduous, but follows general principles: when a user reproduces and
reports an error, the programmer attaches a debugger to the running process and
examines program state to deduce where algorithms or state deviated from desired
behavior. When tracking particularly onerous bugs the programmer can resort to restarting
and stepping through execution with the user’s data or providing the user with a version of
the program instrumented to provide additional diagnostic information. Once the bug has
been isolated, the programmer fixes the code and provides an updated program.

Debugging in large scale
Debugging in the large is harder. When the number of software components in a single
system grows to the hundreds and the number of deployed systems grows to the millions,
strategies that worked in the small, like asking programmers to triage individual error
reports, fail. With hundreds of components, it becomes much harder to isolate the root
cause of an error. With millions of systems, the sheer volume of error reports for even
obscure bugs can become overwhelming. Worse still, prioritizing error reports from millions
of users becomes arbitrary and ad hoc.

Back in old days programming teams struggled to scale with the volume and complexity of
errors. Then there were tools invented, which could help to diagnose crashes in software,
automatically collect a stack trace and upload this bug report to developer's server.

With EurekaLog data you can identify common real-world customer problems and provide a
real-time solution to your customers. While customer support calls provide information
about common issues, they do not always provide enough granular detail to debug the
actual code. Further, support records indicate those problems which prompted calls — they
do not indicate every instance of a crash.

Large number's law
Broad-based trend analysis of error reporting data shows that across all the issues that
exist on the affected Windows platforms and the number of incidents received:
1. 80 percent of customer issues can be solved by fixing 20 percent of the top-reported

bugs.
2. Addressing 1 percent of the top bugs would address 50 percent of the customer

issues.
The same analysis results are generally true on a company-by-company basis too
(according to Microsoft's researches in error collecting).

68

70

68

http://www.eurekalog.com/
http://www.eurekalog.com/

EurekaLog 7 Documentation69

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

If you could remove humans from the critical path and scale the error reporting mechanism
to admit huge numbers of error reports, then you could use the law of large numbers to
your advantage. For example, you didn’t need to collect all error reports, just a statistically
significant sample. And you didn’t need to collect complete diagnostic samples for all
occurrences of an error with the same root cause, just enough samples to diagnose the
problem and suggest correlation. Moreover, once you had enough data to allow us to fix
the most frequently occurring errors, then their occurrence would decrease, bringing the
remaining errors to the forefront. Finally, even if you made some mistakes, such as
incorrectly diagnosing two errors as having the same root cause, once you fixed the first
then the occurrences of the second would reappear and dominate future samples.

Automate reporting
If you're waiting around for users to tell you about problems with your application, then
you're seeing only a tiny fraction of all the problems that are actually occurring. Most users
won't bother telling you about problems. They'll just quietly stop using your application.

That's why it's important to setup an exception and error reporting facility. It's your
responsibility to ensure escape plan, if something will go wrong with your software. I.e. you
not only need to protect users from errors, but you also need to protect yourself from your
errors too. Errors are inevitable, and you must be prepared before they start happens. The
situation will be pretty dire at this point, but some disaster recovery is possible, if you plan
ahead.

You should also maintain a searchable and sortable database of errors somewhere. You
need to have a central place where all of your errors are aggregated, a place which is
visited by all your developers every day. Thus, bug reports will be de-facto TODO list for
your team. You could also broadcast an error email notification to every developer. Or
maybe have every crash automatically open a bug ticket in your bug tracking software.

Developing cycle
Once you have a detailed report on every crash, you can sort that data by frequency and
spend your coding effort resolving the most common problems. Remember: fixing 20 percent
of the top reported bugs solves 80 percent of customer issues.

If you don't have a central database of your bugs - then you can't sort bugs by "popularity".
If you fix a bug that no actual user will ever encounter, what have you actually fixed? Given
a limited pool of developer time, it's a way too better to allocate time toward fixing most hot
problems.

1. Ship your software.
2. Get as many users as possible.
3. Study the bug reports, which users generate.
4. Use bug reports to focus on the most problematic areas of your code.
5. Fix few top bugs.
6. Make new version of your software, deploy it.
7. Repeat the process.

This data-driven feedback loop is so powerful you'll have (at least from the users'
perspective) a rock-stable application in a sane number of iterations.

Conclusion
Automated bug reports are one of the most powerful form of feedback from your customers.
The actual problems, with stack traces and other information, are collected for you,
automatically and silently.

The sooner you can get your code out of your code editor and present it to real users - the
sooner you'll have date to improve your software. Surely, it's very important to do as much
as possible to fix bugs before shipping. The sooner you detect bug - the lower will be cost
of its fixing.

Typical scenarios 70

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

However, your software will ship with bugs anyway. Everyone's software does. The
question isn't how many bugs you will ship with, but how fast can you fix those bugs?

If your will practice the above mentioned approach (which is Exception Driven Development
- EDD), the answer will be simple - you can improve your software almost in no time at all.

Note: the term "Exception Driven Development" was invented by Jeff Atwood.

See also:
Managing bug reports in issue tracker
Using EurekaLog for debugging

6.2 Debugging

This article is part of Typical scenarios series.

Though EurekaLog's primary target is to collect reports "from the fields" , but many our
customers use EurekaLog for other purposes. Most common side use is to debug bugs in
applications directly on developer's machine. While Delphi and C++ Builder offer you a
powerful debugger, which has many features and it's able to help you to solve almost any
issue, but some people find EurekaLog to be more simple solution. I.e. they use EurekaLog
to aid debugging on developer's machines.

Thus, EurekaLog offers some additional features, designed specifically to be used as part of
developing and debugging stage. Thought they can be used in deployment release version
of your software - it's highly unrecommended. If you do this - be sure to test your
application to be comfortable for end-user.

Such "for debug only" features includes:
Memory leaks checking (please note that other memory features (non leaks related)
are perfectly fine to be used in final release).
Resource leaks checking .
Handled exception catching .

Please note: since EurekaLog's primary target is to collect reports at run-time on your
client's machine - some of EurekaLog's features has lesser power than features in purely
debugging software. For example, EurekaLog should use fast-enough approaches, as
opposed to using heavy debugging code.

This means that sometimes it's better to use other software on your developer machine -
such as Delphi's debugger (did you know that it has memory breakpoints?), debugging
memory manager (FastMM in full debug mode, SafeMM, etc) or profiler (AQTime, etc). Those
software is especially designed to be used as helpers at debugging stage. They typically
are more powerful than EurekaLog, but because of this they can't be used as part of your
release version - and that's EurekaLog's area .

Conclusion: typically you can try to use EurekaLog in debug version of your application to
quickly locate issues. If EurekaLog is unable to help you - just switch to "heavy debugging"
software.

105

70

68

68

250

255

341

68

68

http://www.codinghorror.com/
http://www.codinghorror.com/

Part

VII

Solving bugs in your code 72

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

7 Solving bugs in your code

This set of articles is not related to EurekaLog, but helps you to find and solve bugs in your
applications.

We have the following articles available:
Understanding bug reports
o Understanding call stacks
Managing bug reports in issue tracker
Common issues:

EAccessViolation
Leaks
Memory problems
Hangs and deadlocks

See also:
Configuring call stack

7.1 Bug reports

Bug report is a report about possible Bug in the application. It usually contains information
about Exception or Leak. Bug report usually contains one or more Call stacks and some
information about system itself and application.

Bug reports are stored in files. EurekaLog's Bug reports have .el, .elp, .elx file extensions.
The .el files are usual text files, which can be opened in any text editor:

Notepad showing content of Project4.el file

Textual bug reports (.el) contain human-readable description of the problem, which can be
analyzed by developer to get the idea what was going wrong. Such reports can be saved
locally or sent to developers. Such reports can be viewed in any text viewer/editor.
However, you can also use EurekaLog Viewer tool to view these files in a more
convenient way:

72

78

105

160

166

171

174

48

617

EurekaLog 7 Documentation73

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

EurekaLog Viewer tool showing content of the same Project4.el file

Textual bug reports can hold only text. You can't add files to such bug reports. .elp
(EurekaLog Packed) format is capable of holding both text report and any additional files -
such as screenshots, logs, currently opened files, etc. Packed bug reports (.elp) can not be
viewed by text editors - because this bug report format is binary format. These bug reports
can be viewed in EurekaLog Viewer tool. .elp files can be sent to developers, these files are
not saved locally.

Notes:
.elp-file is renamed zip-file which holds .el report and any additional files;
.elp-file is used only for sending bug reports to developers (via e-mail, bug tracker, etc.).
Local bug reports can be only in .el format. This means that you can not include
screenshot or any additional files into local report.

Bug report contain information about running application when it encountered a bug. This
information can be split in the following categories:

Information about bug (exception or leak) itself - such as error message, location's
address, CPU state, etc. This information is most important in bug reports and it's used to
resolve bug.
Information about application in general - such as version information of executable,
name, description, etc. This information is used to identify application which encountered
a bug.
Information about current user - such as name, e-mail, etc. This information is used to
identify user that sent the report. This information can also be used to contact user later
for more infos.
Information about run-time environment - such as loaded DLLs, installed hardware,
running processes, etc. This is auxiliary information which is used to make guesses when
searching for bug's reason.

All of the above can also be divided into two mutually exclusive groups:
Immediate. This information is captured when the problem occurs. This includes error
message and type, address, call stack, CPU state, etc.
Delayed. This information is captured when bug report is created. Examples are list of
loaded DLLs, running modules, hardware info, etc.

Immediate information is collected right away (when exception raised or leak found) -
because it's very important to capture as much of detailed and precise information about
the problem as possible. On the other hand, capturing any piece of information takes time.
Thus it's not wise to capture ALL information right when exception or leak is detected - due
to performance reasons. Not all exceptions will be reported as bugs, and leaks are usually
grouped into a single report. That's why some information is captured later: when final bug
report is created. This information doesn't change very rapidly (harware info, running

Solving bugs in your code 74

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

processes, etc.), so a bit later snapshot will be close enough.

EurekaLog's bug report contain the following sections:
General - this section includes all non-list (i.e. single valued) information: error
message, user's infor, computer's info, etc. All other sections contain specialized lists;
Call Stack - this section includes one or more call stacks. Call stack is a sequence of
addresses (mostly with textual description) which leads us to place of the problem;
Modules - this section includes list of the loaded DLLs in the current process;
Processes - this section includes list of running processes on the current machine;
Assembler - this section includes machine code listing near problem's location;
CPU - this section includes CPU dump;
Screenshot (.elp only) - this section shows screenshot of a running application when it
encountered a bug;
Files (.elp only) - this section shows list of attached files.

Usually, analyzing of bug report is starting with reading and understanding call stack .
However, there are some specific issues when you need to start with auxiliary information
in bug report - such as leaks .

See also:
Configuring bug report
Configuring call stack
Managing bug reports in issue tracker
How to save/capture ZIP/ELP file
How to always create ZIP/ELP file

7.1.1 General section

Any EurekaLog's bug report contain the general section which holds single-valued
information:

Exception:

 2.2 Address: 005CBFB4
 2.5 Type : Exception
 2.6 Message: Error Message.
 2.7 ID : 8F800000
 2.11 Sent : 0

User:

 3.2 Name : Alex
 3.3 Email: sample@example.com

Steps to reproduce:

 8.1 Text: I clicked on "Crash" button

Example of a short General section

Exactly which information will be included into bug report is configured in options .
Exception's address, type, message and BugID (2.2, 2.5, 2.6, and 2.7) are mandatory
pieces in any EurekaLog's bug report and can not be removed. Any other information can be
enabled or disabled:

Application:

 1.1 Start Date : Sat, 17 Aug 2013 19:15:47 +0400
 1.2 Name/Description: Project10.exe
 1.3 Version Number : 1.0.1.15
 1.4 Parameters : /TestCrash
 1.5 Compilation Date: Sat, 17 Aug 2013 19:15:30 +0400

74

78

99

99

100

103

105

105

78

166

46

48

105

266

http://pastebin.com/3irtZ3iU
http://pastebin.com/3irtZ3iU
http://pastebin.com/3irtZ3iU
http://pastebin.com/3irtZ3iU
http://pastebin.com/3irtZ3iU
http://pastebin.com/WBYbtbSn
http://pastebin.com/WBYbtbSn
http://pastebin.com/WBYbtbSn
http://pastebin.com/WBYbtbSn
http://pastebin.com/WBYbtbSn
http://pastebin.com/WBYbtbSn

EurekaLog 7 Documentation75

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 1.6 Up Time : 2 second(s)

Exception:

 2.1 Date : Sat, 17 Aug 2013 19:15:50 +0400
 2.2 Address : 00000000007F0D43
 2.3 Module Name : Project10.exe
 2.4 Module Version: 1.0.1.15
 2.5 Type : ETestException
 2.6 Message : This is a test exception.
 2.7 ID : 68260000
 2.8 Count : 1
 2.9 Status : New
 2.10 Note :
 2.11 Sent : 0

User:

 3.1 ID : Alex
 3.2 Name : Alexander
 3.3 Email : sample@example.com
 3.4 Company : Neos Eureka S.r.l.
 3.5 Privileges: SeShutdownPrivilege - OFF
 SeChangeNotifyPrivilege - ON
 SeUndockPrivilege - OFF
 SeIncreaseWorkingSetPrivilege - OFF
 SeTimeZonePrivilege - OFF

Active Controls:

 4.1 Form Class : TForm9
 4.2 Form Text : Form9
 4.3 Control Class: TButton
 4.4 Control Text : Button7

Computer:

 5.1 Name : TEST-PC
 5.2 Total Memory : 4293558272 (4.00 Gb)
 5.3 Free Memory : 1398812672 (1.30 Gb)
 5.4 Total Disk : 274875805696 (256.00 Gb)
 5.5 Free Disk : 128265609216 (119.46 Gb)
 5.6 System Up Time : 6 hour(s), 38 minute(s), 25 second(s)
 5.7 Processor : Intel(R) Core(TM) i7-3930K CPU @ 3.20GHz
 5.8 Display Mode : 1827 x 1000, 32 bit
 5.9 Display DPI : 96
 5.10 Video Card : VirtualBox Graphics Adapter (driver 4.2.14.0 - RAM
67108864)
 5.11 Printer : Microsoft XPS Document Writer (driver 6.0.6002.18005)
 5.12 Virtual Machine: VirtualBox

Operating System:
--
 6.1 Type : Microsoft Windows Vista (64 bit)
 6.2 Build # : 6002
 6.3 Update : Service pack 2
 6.4 Language: English
 6.5 Charset : 0

Network:

Solving bugs in your code 76

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 7.1 IP Address: 192.168.001.243
 7.2 Submask : 255.255.255.000
 7.3 Gateway : 192.168.001.001
 7.4 DNS 1 : 192.168.001.001
 7.5 DNS 2 : 000.000.000.000
 7.6 DHCP : ON

Steps to reproduce:

 8.1 Text: I clicked on "Crash" button

Example of a large General section

Usually, information in general section is used to identify application, crashed module, error
(type/message), and user. It also contains bunch of run-time information (such as hardware
info, OS info, etc.). Run-time information (along with modules and processes) serves
as auxiliary information when analyzing call stack and assembler /CPU dump .

All captions can be localized in options . Values are identified by numbers (like 1.1,
1.2, ...8.1). Values are non-localizable. All values are gathered through OS's information
functions and appears "as is" in bug reports.

All date-time values are shown in local time zone. There is time-zone shift attached to each
date-time value ("+0400" in the example above - which reads as "+4 hours 00 minutes from
GMT/UTC, i.e. subtract 4 hours to get UTC time").

Memory and disk values are shown in precise and compact form. Precise form is used for
machine or when you need exact value. Compact form is used as more human-readable - to
get estimate quickly.

Application block displays information about application - that is .exe file. If your project is a
DLL - then this block will show information about host process, not about your DLL.

Start Date value shows when application was launched. This values is saved on
application's startup and is inserted into bug reports unmodified;
Name/Description value shows .exe's file name (without path) and description extracted
from version information (if available). "File description" field is used as source for
description. Full path can be obtained from Modules section of bug report;
Version Number value shows .exe's version information (if available). dwFileVersion field
from VS_FIXEDFILEINFO structure is used as source;
Parameters value shows any command-line arguments passed to application (without exe
file itself). This value comes from GetCommandLine function;
Compilation Date value shows date/time when application was compiled. This information
is stored inside executable when it's compiled;
Up Time value shows how long application is running. This is delta between Start Date
value and current time. This value is not stored anywhere, it is calculated when bug
report is created.

Note: EurekaLog duplicates "Compilation Date" value inside its information block injected
inside executable. Thus, you will get exact and correct compilation time value even if exe
header was modified. Please note that some compilers (including old Borland compilers) fails
to setup a proper compilation time in PE headers. This means that you may get strange
values from non-EurekaLog enabled files (for example, when running your DLL inside non-
EurekaLog host).

Exception block contains information about raised exception. This block will contain dummy
values for hangs and leaks.

Date value shows exact moment when exception (or leak, or hang) was detected;
Address value shows address of machine instruction which raised the exception. Note
that this is logical exception address, see CPU section for description;
Module Name shows file name and description for module to which Address value
belongs. This value is formed by the same rules as Name/Description value from
Application block (see above), but it's gathered from a module which raised exception -
which may be or may be not a main exe file;

99 99

78 100 103

339

99

103

http://msdn.microsoft.com/en-us/library/windows/desktop/ms646997(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms683156(v=vs.85).aspx

EurekaLog 7 Documentation77

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Module Version value is the same as Version Number value from Application block, but it is
taken from exception module;
Type value is class name of exception object;
Message value is error message - that is a value of Message property from exception
object;
ID value shows Bug ID . Bug ID is a hash which unique identifies exception/leak/hang;
Count value shows how many times this exception was raised. Typically this value is 1,
but it can be more if this exception was raised multiple times before bug report was sent.
Please note that this value is not affected by other exceptions raised before this one
(that is exceptions with other Bug IDs);
Status value indicate bug tracker's status of the exception. This is obsolete value which
exists for backward-compatibility reasons. Older versions of EurekaLog used plain text
files as bug database, and this field was used as "New/Opened/Resolved" column;
Note value is the same as Status value - it's obsolete. It was used to hold arbitrary
remarks about exception in plain-text database;
Sent value indicate if this report was sent to developers or not. 0 indicate that report was
not sent.

User block contains information about user account running application:
ID value shows current user account name. This value comes from GetUserName function;
Name value shows full user name (if possible). This value is gathered from multiple
sources in the registry;
Email value shows e-mail of the user. This value is supplied by MS Classic error dialog;
Company value shows "Registered Company" value gathered from the registry;
Privileges value shows account privileges of running process;

Active Controls block shows information about keyboard focus in GUI applications:
Form Class value shows window class of foreground window. Foreground window is
determinated by calling GetForegroundWindow function;
Form Text value shows caption of foreground window;
Control Class value shows window class of focused control. Focused control is
determinated by calling GetFocus function;
Control Text value shows caption/text of focused control.

Computer block shows hardware information. Values in this block are self-explanatory.

Note: Virtual Machine value is filled only when application is running outside of the
debugger. That's because probing for virtual machines requires application to try to execute
invalid instructions which will raise exceptions (such as "Invalid Instruction" or "Privileged
instruction") when application is run on real hardware. So, virtual machine checks are
disabled when application is debugged to reduce annoying from raised probing exceptions.

Operating System block shows OS information:
Type value shows human-readable name of OS. This value can only show OS known to
EurekaLog when application was compiled. This field will show a generic "Windows
8.7" (this is just an example) for any unknown OS version;
Build value shows OS build. This value comes from dwBuildNumber field of GetVersionEx
function;
Update value shows installed service pack. This value comes from wServicePack field of
GetVersionEx function;
Non-Unicode Language value shows string representation of GetSystemDefaultLangID
function. This value is known as "Language for non-Unicode programs" for the user;
Charset/ACP value shows default user locale charset and ANSI code page. These are
value of ciCharset and ciACP fields of CharsetInfo structure which is obtained through
GetLocaleInfo function for default code page (LOCALE_IDEFAULTANSICODEPAGE) of
LOCALE_USER_DEFAULT locale. ciACP field matches GetACP function.
Install language value shows string representation of GetSystemDefaultUILanguage
function. This value is known as "Install Language" for the system;
UI language value shows string representation of GetUserDefaultUILanguage function.
This value is known as "UI Language" for the user;

Note: Microsoft can return false information for backward compatibility reasons. For
example, new versions of OS may report themselves as sub-versions of previous OS
version. Or it may report service pack 2 being installed when there was no SP released at

421

377

http://msdn.microsoft.com/en-us/library/windows/desktop/ms724432(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms633505(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms646294(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724451(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724451(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd318120(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd317750(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd318101(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd373901(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd373901(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd318070(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd318123(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd318137(v=vs.85).aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/02/13/72476.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/02/13/72476.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/02/13/72476.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/02/13/72476.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/02/13/72476.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/02/13/72476.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/02/13/72476.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/02/13/72476.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/02/13/72476.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/02/13/72476.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/02/13/72476.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/02/13/72476.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/02/13/72476.aspx

Solving bugs in your code 78

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

all (SP 2 is a most popular SP for Windows XP). Application Compatibility layer of OS may
also affect these values.

Network block shows network information. Values in this block are self-explanatory. Each
network adapter will produce a vertical section of values.

Steps to reproduce block shows feedback text from user:
Text value is supplied by MS Classic or EurekaLog error dialogs. Usually this is
"steps to reproduce" text - that is a textual description entered by end user which
explains what user was doing when error occurred.

Custom information block shows information supplied by your code via
OnCustomDataRequest event handler. Please note that you still have to enable custom
information in bug report content options .

See also:
Understanding bug reports
Understanding call stacks

7.1.2 Call Stack section

Call stack - stack data structure that stores information about the active subroutines of the
application. This kind of stack is also known as an execution stack, control stack, run-time
stack, or machine stack, and is often shortened to just "the stack". Call stack is a central
piece of information in any Bug report. Call stack is a sequence of addresses (mostly with
textual description), which leads us to place of the problem (Exception or Leak).

EurekaLog generates bug reports which can be saved to file and/or send to
developers (you). Default form of bug report is a text file with .el extension. It can be
opened in any text editor. EurekaLog also has Viewer tool which helps you to work with
bug reports. Bug report can be also stored in packed form (.elp file) or XML-encoded form
(.elx).

No matter which form bug report takes - it always contains the same information. The
central part of any bug report is a call stack .

Call Stack Information:

|Address |Module |Unit |Class |Procedure/Method|Line |

|*Exception Thread: ID=9984; Parent=0; Priority=0 |
|Class=; Name=MAIN |
|DeadLock=0; Wait Chain= |
Comment=
005CBFB4
74658A61
005C16FF
005C1742
005C1A6D
005D46AD

Example of a typical call stack in bug report

There may be multiple call stacks in a single bug report. There is always one call stack
minimum - for exception's thread, for hanged thread, or for a leaked resource. But there can
be more than one. For example, multi-threaded application can include call stacks of other
running threads. And there may be more than one leak, so there will be one call stack per
each leak in bug report.

Call stacks can be configured in corresponding options dialog .

377 379

266

72

78

72 46

53

79

237

EurekaLog 7 Documentation79

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Working with any bug report usually goes in this way:
1. You start with understanding call stack
2. You search for bug's location
3. You search for bug's reason

See also:
Configuring call stack
Understanding bug reports

7.1.2.1 Call stacks

This article is a part of working with bug reports .

Call stack is a central piece of information in any bug report. Call stack is a sequence of
addresses (mostly with textual description), which leads us to place of the problem
(exception or memory problem).

Here are examples of call stacks in different forms:

Delphi’s call stack (View/Debug Windows/Call Stack)

Call Stack Information:
--
|Address |Module |Unit |Class |Procedure/Method |Line |
--
*Exception Thread: ID=8820; Priority=0; Class=; [Main]
004D316F
76BCF6A5
76BCF6B1
76BC8ABF
76BCF6A5
76BCF6B1
77AA8502
76BF7B8D
76BD078F
76BD0AF5
76BB8C6B
76BD0697
76BD0681
76BB8C6B
76BD078F
76BBE001
76BD005B
76BD0051

81

95

97

48

72

72

40

Solving bugs in your code 80

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

|004D499D|Project8.exe|Project8.dpr| | |17[4]|
--

EurekaLog’s call stack (raw text)

EurekaLog’s call stack (EurekaLog Viewer)

4CC5B7 [Unit15.pas][Unit15][Unit15.B][35]
4CC5C4 [Unit15.pas][Unit15][Unit15.A][39]
4CC5DC [Unit15.pas][Unit15][Unit15.TForm15.FormCreate][43]
4C0CCB [Forms][Forms.TCustomForm.DoCreate]
4C0913 [Forms][Forms.TCustomForm.AfterConstruction]
4C08E8 [Forms][Forms.TCustomForm.Create]
4CA539 [Forms][Forms.TApplication.CreateForm]
4CD986 [Project14][Project14.Project14][14]
75B94911 [BaseThreadInitThunk]
770FE4B6

FastMM’s call stack

(00087A8C){Project1.exe} [00488A8C] Unit1.B (Line 40, "Unit1.pas" + 1) + $5
(00087ABC){Project1.exe} [00488ABC] Unit1.A (Line 44, "Unit1.pas" + 0) + $0
(00055523){Project1.exe} [00456523] Controls.TWinControl.WndProc + $513
(0003AA8C){Project1.exe} [0043BA8C] StdCtrls.TButtonControl.WndProc + $6C
(00055673){Project1.exe} [00456673] Controls.DoControlMsg + $23
(00055523){Project1.exe} [00456523] Controls.TWinControl.WndProc + $513
(00068584){Project1.exe} [00469584] Forms.TCustomForm.WndProc + $594
(00054C3C){Project1.exe} [00455C3C] Controls.TWinControl.MainWndProc + $2C
(00025724){Project1.exe} [00426724] Classes.StdWndProc + $14

EurekaLog 7 Documentation81

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

(0005561F){Project1.exe} [0045661F] Controls.TWinControl.DefaultHandler + $D7
(00055523){Project1.exe} [00456523] Controls.TWinControl.WndProc + $513
(0003AA8C){Project1.exe} [0043BA8C] StdCtrls.TButtonControl.WndProc + $6C
(00025724){Project1.exe} [00426724] Classes.StdWndProc + $14

JCL’s call stack

main thread ($7c):
3ecf8ea9 +0000 mshtml.dll
7c90e470 +0010 ntdll.dll KiUserCallbackDispatcher
7e42b1a6 +000a USER32.dll DestroyWindow
0086ad33 +001f Project1.exe OleCtrls 640 +11 TOleControl.Destroy
008715c9 +00a1 Project1.exe DHTMLEdit 5225 +16 TCustomDHTMLEdit.Destroy
00533c11 +008d Project1.exe Controls 7737 +16 TWinControl.Destroy
004ee915 +0039 Project1.exe ComCtrls 5666 +6 TTabSheet.Destroy
00533c11 +008d Project1.exe Controls 7737 +16 TWinControl.Destroy
004edb52 +005e Project1.exe ComCtrls 5144 +5 TCustomTabControl.Destroy
004eef15 +0049 Project1.exe ComCtrls 5889 +3 TPageControl.Destroy
00533c11 +008d Project1.exe Controls 7737 +16 TWinControl.Destroy
00510770 +0028 Project1.exe Forms 2644 +3 TScrollingWinControl.Destroy
005116a9 +00f9 Project1.exe Forms 3246 +33 TCustomForm.Destroy
7c90e485 +0009 ntdll.dll KiUserExceptionDispatcher
7ca2b137 +00b4 SHELL32.dll SHGetFileInfoW

madExcept's call stack

So, as you can see: call stack always contains very similar information, which don’t depend
on tool created it (well, there are all different applications in the above examples, so don’t
try to compare them).

Now it's time to learn how to read call stacks .

See also:
Reading and understanding bug reports
Configuring call stack
How to read call stack
Multi-threaded call stacks
Call stack formats
Searching bug's location
Final notes on call stack
Searching bug's reason

7.1.2.2 How to read call stacks

This article is a part of working with bug reports .

Call stack is set of lines, which is usually read from top to bottom - meaning moving from
current locations to callers. The bottom line was executed first. The top line is executed last
and it is the current routine.

For example, if you have this call stack (short pseudo form):

DoSomething
DoWork
Run

This means that Run procedure was executed first. Run called DoWork, which in turn called
DoSomething. DoSomething encountered an error - and this call stack was created. The code
for such call stack may look like this:

81

72

48

81

85

83

95

96

97

72

Solving bugs in your code 82

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

procedure DoSomething;
begin

 PInteger(nil)^ := 0; // <- exception here,

 // call stack was created from this point
end;

procedure Run;

 procedure DoWork;
 begin
 DoSomething;
 end;

begin
 DoWork;
end;

In other words, this call stack means that execution of your code goes through this way:
Run -> DoWork -> DoSomething -> error.

Each line in call stack can contain this information (some parts are optional and may be
missed in the specific call stack format):

Code address. Those are values like 004D316F or 76BCF6A5 (and also with '$' or '0x'
prefix - like $004D316F or 0x004D316F). This is an absolute address in HEX-form of the
code, which contains a routine's call. This value is present almost always, unless it's
replaced with textual description (unit and routines names).
Stack address. Those are values like 0018F628 or 0228FF84. It is an address (in HEX
format) inside thread's stack, where code address was found. This value is present very
rarely. Usually it follows or precedes code address.
Executable module name. Those are values like 'Project1.exe' and 'ntdll.dll'. It's a file
name of executable module, which contains code address. In rare cases can be '' (empty
string) - that is, the code doesn't belong to any module (like run-time generated, self-
modified code, etc). Such case is rare in typical application.
Code offset. Those are values like 000D316F or +D316F. It's a difference (usually in HEX
format) between code address and base address of executable module name. For
example, base address of exe is usually 00400000, which means that offset for code
address 004D316F is D316F - because 00400000 + 000D316F = 004D316F. Sometimes
this value represents offset from start of code section. Code section itself has offset of
$1000, so in this case - code offset D216F means 00400000 + 00001000 + 000D316F =
004D316F.
Unit name. Those are values like 'Project1' or 'Project1.dpr', 'Unit1.pas' and so forth. It's
the name of Delphi or C++ Builder unit, which contains code, associated with code
address. Can be '' (empty string), if there is no debug information available to set "code
address" <-> "pas source" correspondence.
Class name. Those are values like 'TForm1' or 'TMyClass'. It's name of class, which
contains method with code address. Can be empty if there is no debug information
available or if code address belongs to usual function or procedure (not to method).
Sometimes can be combined with next item.
Method or routine name. Those are values like 'Button1Click', 'DoSomething', etc. It's the
name of method, procedure or function, which contains code address. Can be empty, if
there is no debug information.
Line number. Those are values like 39, 458, 31958, etc. It's # of line in .pas/.dpr/.cpp file,
which compiles into code address. Can be 0, if there is no debug information.
Line number offset. Those values like +0, +1, +5, etc. It's difference (usually in DEC)
between line number and first line in current method (in lines). For example, if code
address points to third line in procedure DoSomething, which starts at line 89, then line
number will be 92 and line number offset will be +3 (since 89 + 3 = 92). There can be +/-1
line difference, depending on how lines are calculated. A detailed explanation on offsets
can be found in this article .
Code offset from procedure's start. Those values like +16, + $5 or +$0. Usually it's in
HEX format. It's difference between code address and address of first line in current

578

EurekaLog 7 Documentation83

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

method (in bytes).

See next part to know how to extract these part of information from various formats of
call stacks or skip to article about searching bug's location .

See also:
Multi-threaded call stacks
Configuring call stack
Reading and understanding bug reports
Call stacks
Call stack formats
Searching bug's location
Final notes on call stack
Searching bug's reason

7.1.2.2.1 Call stack formats

This article is a part of working with bug reports .

Here is how you can extract call stack information from various formats of call stacks.

Delphi
Code address. It's a first part of the line in form ':7796d0e9' (starting with ':'). This value
is usually missed - unless line represents code without debug information (like system
DLLs, for example).
Stack address. Not specified.
Executable module name. If code address is specified, then this is value right after code
address - for example ':7796d0e9 kernel32'. If code address is not specified, then this
value is omitted.
Code offset. Not specified.
Unit name. First word in line, if code address is not present. For example, 'Forms'. If code
address is present, then this value is skipped.
Class name. Follows unit name after '.'. For example, 'Forms.TCustomForm'.
Method or routine name. If code address is present - follows executable module name.
For example, ':7796d0e9 kernel32.BaseThreadInitThunk'. Otherwise it follows class
name (if present) or unit name (if class name is not present). For example,
'Forms.TCustomForm.Create'.
Line number. Not specified.
Line number offset. Not specified.
Code offset from procedure's start. If code address is specified, then this is last value in
form: '+ 0x12'. For example, ':7796d0e9 kernel32.BaseThreadInitThunk+ 0x12'. If code
address is not specified, then this value is not present.

EurekaLog (raw text)
Code address. It's a value in 'Address' column.
Stack address. It's a value in 'Stack' column.
Executable module name. It's a value in 'Module' column.
Code offset. It's a value in 'Offset' column. It's offset from module start (i.e. including
$1000 offset for code's section).
Unit name. It's a value in 'Unit' column.
Class name. It's a value in 'Class' column.
Method or routine name. It's a value in 'Procedure/method' column.
Line number. It's first number in 'Line' column. For example, '33[3]'.
Line number offset. It's number inside [] in 'Line' column. For example, '33[3]'.
Code offset from procedure's start. Not specified.

EurekaLog (Viewer)
Code address. It's a value in 'Address' column.
Stack address. It's a value in 'Stack' column.

83

95

85

48

72

79

83

95

96

97

72

81

Solving bugs in your code 84

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Executable module name. It's a value in 'Module' column.
Code offset. It's a value in 'Offset' column. It's offset from module start (i.e. including
$1000 offset for code's section).
Unit name. It's a value in 'Unit' column.
Class name. It's a value in 'Class' column.
Method or routine name. It's a value in 'Procedure/method' column.
Line number. It's a value in 'Line' column.
Line number offset. It's a value in 'Rel.line' column.
Code offset from procedure's start. Not specified.

FastMM
Code address. It's a first number in line. For example, '4C0913'.
Stack address. Not specified.
Executable module name. Not specified.
Code offset. Not specified.
Unit name. Unit file name is a first word inside [], follows code address. May be skipped if
not available. For example, '4C0913 [Forms]'. Unit name is also a first word inside next []
pair. For example, '4C0913 [Forms][Forms.TCustomForm.AfterConstruction]'.
Class name. Follows unit name after '.'. For example, '4C0913 [Forms]
[Forms.TCustomForm.AfterConstruction]'.
Method or routine name. Follows class name (if present) or unit name (if class name is
not present, but unit name is present). '.'-separated. For example, '4C0913 [Forms]
[Forms.TCustomForm.AfterConstruction]'. May also follow code address, if unit name is
not present. For example, '75B94911 [BaseThreadInitThunk]'.
Line number. Number inside last's []. For example, '4CC5DC [Unit15.pas][Unit15]
[Unit15.TForm15.FormCreate][43]'.
Line number offset. Not specified.
Code offset from procedure's start. Not specified.

JCL
Code address. It's a first number in []. Usually follows executable module name. For
example, '(00087ABC){Project1.exe} [00488ABC]'.
Stack address. Not specified.
Executable module name. It's a first word in {}. Follows code offset, if it's present.
Otherwise it's a first value in the line. For example, '(00087ABC){Project1.exe}'.
Code offset. First value in line, if present. It's inside (). For example, '(00087ABC)'. This is
offset from start of code section (i.e. it doesn't include $1000 offset).
Unit name. First word in line without any kind brackets. For example, '(00087ABC)
{Project1.exe} [00488ABC] Unit1'.
Class name. Follows unit name after '.'. For example, '(00055523){Project1.exe}
[00456523] Controls.TWinControl'.
Method or routine name. Follows class name (if present) or unit name (if class name is
not present, but unit name is present). '.'-separated. For example, '(00087ABC)
{Project1.exe} [00488ABC] Unit1.A'.
Line number. It's number after "Line" word. For example, '(00087ABC){Project1.exe}
[00488ABC] Unit1.A (Line 44)'
Line number offset. Follows line number and unit file name. Has a form of '+ 1'. For
example, '(00087ABC){Project1.exe} [00488ABC] Unit1.A (Line 44, "Unit1.pas" + 0)'.
Code offset from procedure's start. Follows ()-part with line number information. Has a
form of '+ $6C'. For example, '(00087ABC){Project1.exe} [00488ABC] Unit1.A (Line 44,
"Unit1.pas" + 0) + $0'.

madExcept
Code address. It's a first part of the line. For example, '0086ad33'.
Stack address. Not specified.
Executable module name. It a first word in line. It follows code offset. Space-delimited
from other parts. For example, '0086ad33 +001f Project1.exe'.
Code offset. Not specified.
Unit name. Second word in line, follows executable module name. For example,

EurekaLog 7 Documentation85

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

'0086ad33 +001f Project1.exe OleCtrls'. May be skipped if not available.
Class name. Follows line number information. Class and method names are last
information in the line. For example, '0086ad33 +001f Project1.exe OleCtrls 640 +11
TOleControl.Destroy'.
Method or routine name. Follows class name (if present) or line numbers section (if class
name is not present, but unit name is present). For example, '0086ad33 +001f
Project1.exe OleCtrls 640 +11 TOleControl.Destroy'.
Line number. Number which follows unit name. For example, '0086ad33 +001f
Project1.exe OleCtrls 640 +11'.
Line number offset. It follows line number. Has a form '+16'. For example, '0086ad33
+001f Project1.exe OleCtrls 640 +11'.
Code offset from procedure's start. It follows code address. Has a form '+0009'. For
example, '0086ad33 +001f'.

Now, when you have all information, it's time to put it in use and try to find bug's location
.

See also:
Multi-threaded call stacks
Reading and understanding bug reports
Call stacks
How to read call stack
Searching bug's location
Final notes on call stack
Searching bug's reason

7.1.2.2.2 Multi-threaded call stacks

This article is a part of working with bug reports .

Important note: please read Using EurekaLog in multi-threaded applications article
before reading this article.

Call stacks in multi-threaded applications contain additional information.

For example:

95

85

72

79

81

95

96

97

72

547

Solving bugs in your code 86

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Exception in background thread (GUI)

Call Stack Information:

|Address |Module |Unit |Class |Procedure/Method |
Line

|*Exception Thread: ID=2940; Parent=3696; Priority=0
 |
|Class=TMyThread; Name= (Unit1.TMyThread.Execute)
 |
|DeadLock=0; Wait Chain=
 |
|Comment=
 |
--
0069209C
77[0]
006920CA
82[2]
00692080
69[1]
004DCA96
14569[12]
004094AC
21627[45]
005919AE
2852[5] |

EurekaLog 7 Documentation87

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

|0056F32B|Project1.exe|EThreadsManager | |ThreadWrapper |
611[11] |
|75B9F26F|kernel32.dll|kernel32 | |BaseThreadInitThunk |
 |
|00692075|Project1.exe|Unit1 |TForm1 |Button2Click |
63[2]

Calling Thread: ID=3696; Parent=0; Priority=0
 |
|Class=; Name=MAIN
 |
|DeadLock=0; Wait Chain=thread: [0E70 / 3696] is blocked
 |
|Comment=
 |
--
76718390
 |
|006811AB|Project1.exe|Vcl.Forms |TApplication|HandleMessage |
10238[1] |
|006814D9|Project1.exe|Vcl.Forms |TApplication|Run |
10376[26] |
|0069BCFD|Project1.exe|Project1 | |Initialization |
22[4] |
|75B9F26F|kernel32.dll|kernel32 | |BaseThreadInitThunk |
 |

Exception in background thread (text)

It contains 2 call stacks: one per each thread. There are two threads in this application:
main thread and a background thread based on TThread class. There was exception raised
in the background thread.

This example illustrates several multi-threaded features of EurekaLog:

Call stacks for multiple threads
Bug report contains a single call stack by default. This call stack is created for thread which
raised the exception. Such thread is called "Exception thread". This is the only thread in
single-threaded application (it will be main thread for single-threaded application).
Sometimes you may be interested in other threads, you may want to know what other
threads are doing when exception had occurred. You can capture call stacks of other
threads in application by checking "Capture stack of RTL threads" or "Capture stack of
Windows threads" options .

Notes:
there may be multiple call stacks for leak reports. There will be one call stack per each
found leak. This behavior is customizable here . This behavior is not related to multi-
threading;
capturing call stack of an external thread requires thread's suspending. In rare case this
can cause deadlock issues (for example: thread may be suspended when it is running
memory allocation function; thus, any further memory alloc/release operation will block
application forever). Do not enable this option until really needed.

Different call stacks types
EurekaLog marks call stacks as:

Exception thread. This is thread which raised the exception. There can be only one

246

250

Solving bugs in your code 88

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

exception thread in any bug report. This thread is listed first. It is mandatory; any other
threads are optional;
Calling thread. This is parent thread for exception thread. Normally, there is only one
calling thread in bug report. There may be more than one calling thread if exception
occurred inside synchronized routine (see below). This thread follows exception thread in
the list. It's optional. It will be not shown if this thread was terminated before exception
or if the corresponding "Capture stack of XYZ threads" option is turned off.
Running thread. Any other thread is called "running thread". Main thread can also be a
running thread. All running threads are listed after exception thread and calling thread(s)
(if any).

Note: the meaning of exception and calling threads are changed significantly for exceptions
within synchronized methods (see below).

Different thread types
EurekaLog can recognize the following thread types:

RTL theads. These are threads created by Delphi/C++ Builder code. Such threads are
created via:
o TThread or TThreadEx class;
o BeginThread or BeginThreadEx function.
Windows threads. Any other threads are considered as "Windows threads". Such threads
are created via CreateThread function.

It's recommended to create your own threads via TThreadEx class or via BeginThreadEx
 function (or via any other function which use TThread or BeginThread to create

threads). Do not use CreateThread function to create threads. This will allow you to
distinguish between your threads and system threads (system or 3rd party code may
create additional threads in your application for background/service tasks).

If you're using TThread(Ex) approach - then EurekaLog will be able to extract (child) class
name and show it in the call stack's header as "Class=TMyThread".
If you're using BeginThread(Ex) or CreateThread approach - then EurekaLog will be able
to extract thread function and show it in the call stack's header as "Name= (ThreadProc)".
Thread function's name will be printed in parentheses (see "Naming threads" below to
know more about "Name" parameter). Thread function's name will always be Execute
method for TThread approach.

Naming threads
You can name threads to simplify debugging. Since you can run multiple threads with the
same thread class (or thread function) - this means that you can not distinguish between
these threads by using only class name (or thread function's name). You need some
additional marker. Such marker is a thread name.

You can supply thread name directly to TThreadEx class or BeginThreadEx function:

553 559

549 551

559

551 553 549

559 551

http://msdn.microsoft.com/en-us/library/windows/desktop/ms682453(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682453(v=vs.85).aspx

EurekaLog 7 Documentation89

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

uses
 EBase;

 TH := BeginThread(nil, 0, MyThreadProc, Args, 0, TID, 'This is my thread');

// or:

type
 TMyThread = class(TThreadEx)

 // ...
 protected
 procedure Execute;

 // ...
 end;

procedure TMyThread.Execute;
begin
 inherited;

 // ...
end;

 Thread := TMyThread.Create(False, 'This is my thread');

If you are not using TThreadEx/BeginThreadEx - then you can name a thread from the
thread itself. You can set thread's name by using NameThread function from
EThreadsManager unit. You should call this function as a very first action inside thread
function (for BeginThread) or Execute method (for TThread). Thread name can be arbitrary
string, so you can append any parameters that you need to distinguish between threads.
For example:

{$IFDEF EUREKALOG}
uses
 EThreadsManager;
{$ENDIF}

type
 PThreadArguments = ^TThreadArguments;
 TThreadArguments = record
 FileName: String;

Solving bugs in your code 90

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 // ... any other arguments
 end;

function MyThreadProc(Parameter: Pointer): Integer;
var
 Args: TThreadArguments;
begin
 Args := PThreadArguments(Parameter)^;
 Dispose(PThreadArguments(Parameter));

 {$IFDEF EUREKALOG}NameThread('FileName=' + Args.FileName);{$ENDIF}

 // ... actual thread's code goes there
end;

...

var
 Args: PThreadArguments;
 TID: Cardinal;
 TH: THandle;
begin
 Args := AllocMem(SizeOf(TThreadArguments));

 Args.FileName := Edit1.Text;

 TH := BeginThread(nil, 0, MyThreadProc, Args, 0, TID);

 if TH = 0 then
 Dispose(Args)
 else
 CloseHandle(TH);
end;

Any thread name will be shown in the call stack's header as "Name=your-thread-
name" (without parentheses; part inside parentheses is a name of thread function - see
above). For the example (the one directly above) it will be:

Name=FileName=C:\Sample.txt (MyThreadProc)

(assuming that Edit1.Text holds 'C:\Sample.txt' string)

Note: main thread will always have a name "MAIN".

Indicating creator of the thread
Since you can run multiple threads with the same thread class (or thread function) and with
the same arguments from multiple locations - this means that you can not distinguish
between these threads by using class name (or thread function's name) and any properties
of the thread itself. You need to use name of thread's creator.

EurekaLog appends creator of the thread to the end of thread's call stack. Typically this is a
single entry below "BaseThreadInitThunk" system function. For example, this example of the
call stack shows that TMyThread was created in Unit1.TForm1.Button2Click method, line 63:

Call Stack Information:

|Address |Module |Unit |Class |Procedure/Method |
Line |

EurekaLog 7 Documentation91

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

|*Exception Thread: ID=2940; Parent=3696; Priority=0
 |
|Class=TMyThread; Name= (Unit1.TMyThread.Execute)
 |
|DeadLock=0; Wait Chain=
 |
|Comment=
 |
--
0069209C
77[0]
<-
...
....->
75B9F26F
 |
|00692075|Project1.exe|Unit1 |TForm1 |Button2Click |
63[2]
----------|

Notes:
call stack of the creator thread is not captured by EurekaLog, only single entry (immediate
caller) is captured;
call stack of the calling thread is not the call stack for the creator. Do not confuse these
call stacks. Calling thread indicate state of creator's thread after thread creation had
occurred;
do not confuse last line in thread's call stack ("creator") as belonging to the thread itself.
This code was executed by different thread (indicated by "Parent"). This line was not
executed by the thread itself.

Indicating threads options
EurekaLog lists some options of threads, such as:

ID value contains TID (Thread ID). This is system value that unique identifies threads
within the system. Do not confuse TID with thread's handle - those are totally different
things. TID (together with PTID - see below) can be used to check relations between
threads;
Parent value contain PTID (Parent Thread ID). This is ID of thread which created this
thread. This value is always 0 for the main thread. Please note that thread identified by
PTID may be already finished and terminated when exception had occurred;
Priority value indicate thread's priority as returned by GetThreadPriority function.

Wait Chain Traversal feature support
EurekaLog has support for WCT (Wait Chain Traversal) feature available since Windows
Vista. WCT is a mechanism for debugging blocked threads and processes, and detecting
deadlocks.

Using WCT, debugging software can analyze executing processes and report on the state
of threads, including information such as what a blocked thread is waiting for and whether
a deadlock condition exists. Debugging software can analyze and then reports the state of
threads. A thread's state (unblocked, blocked, or deadlocked) is reported as a wait chain. A
wait chain is an alternating directed graph of threads and synchronization objects. In the
graph, an edge from a thread to an object indicates that the thread is waiting for the
object; an edge from an object to a thread indicates that the thread is the current owner of
the object. For example, the following wait chain represents a thread (Thread A) that is
blocked waiting for a mutex object that is owned by Thread B.

http://msdn.microsoft.com/en-us/library/windows/desktop/ms683235(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms683235(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/cc308560.aspx
http://msdn.microsoft.com/en-us/library/cc308560.aspx
http://msdn.microsoft.com/en-us/library/cc308560.aspx

Solving bugs in your code 92

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Thread A -> Mutex 1 -> Thread B

As illustrated here, the first node in a wait chain is the thread being analyzed and the
remaining nodes are the elements (synchronization objects, processes, threads, and so
on), if any, that are directly or indirectly causing the thread to block. The simplest wait chain
reflects a thread that is not blocked. It is composed of a single node, representing the
unblocked thread. A blocked thread is represented by a wait chain containing multiple
nodes that is non-cyclic: that is, there are no two nodes in the chain that represent the
same thread or object. When a thread is deadlocked, the wait chain that represents it is
cyclic. Consider the scenario where Thread A owns Object 1 and is blocked waiting for
Object 2, while Thread B owns Object 2 and is blocked waiting for Object 1. The wait chain
is as follows:

Thread A -> Object 2 -> Thread B -> Object 1 -> Thread A

Note that Thread A appears twice. The second node for Thread A could be replaced by an
edge (->) that connects Object 1 to the first Thread A node, creating a loop that represents
the cyclic dependency.

EurekaLog shows 1 in "Deadlock" value if deadlock (cyclic dependency) was detected for
this thread. Otherwise "Deadlock" value is 0;
EurekaLog shows thread's wait chain in "Wait chain" value. Simplest wait chains (that is
wait chain which consists of a single node) are not shown ("Wait chain" value will be
empty).

WCT feature is accessible only on Windows Vista and above. "Deadlock" and "Wait chain"
values will be empty on older OS versions.

Parenting threads
EurekaLog lists TID ("ID") and PTID ("Parent") values to help you identify child/parent
threads. Additionally, a parent thread for exception thread is marked as "Calling thread"
and is shown below exception thread for your convenience. It will be not shown if this
thread was terminated before exception or if the corresponding "Capture stack of XYZ
threads" option is turned off.

Merging call stacks for Synchronize
EurekaLog will merge call stacks of main thread and invoking thread (that is the thread
which called Synchronize method) when possible. The result may look like this:

http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.Synchronize
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.Synchronize

EurekaLog 7 Documentation93

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Exception inside synchronized routine (GUI)

Call Stack Information:

|Address |Module |Unit |Class |Procedure/Method
Line

|*Exception Thread: ID=400; Parent=0; Priority=0
 |
|Class=; Name=MAIN
 |
|DeadLock=0; Wait Chain=thread: [0190 / 400] is blocked
 |
|Comment=
 |
--
0069211C
81[1]
0069214F
85[1]
004DC958
14525[30]
--
--------------|

Solving bugs in your code 94

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

|Calling Thread: ID=2072; Parent=400; Priority=0
 |
|Class=TMyThread; Name= (Unit1.TMyThread.Execute)
 |
|DeadLock=0; Wait Chain=
 |
|Comment=
 |
--
004DD5A2
15085[38]
006920B8
71[3]
004DCA96
14569[12]
004094AC
21627[45]
005919BE
DefaultThreadHandleException
0056F32B
611[11]
75B9F26F
00692085
63[2]
--

Calling Thread: ID=400; Parent=0; Priority=0
 |
|Class=; Name=MAIN
 |
|DeadLock=0; Wait Chain=thread: [0190 / 400] is blocked
 |
|Comment=
 |
--
76718390
006811AB
10238[1]
006814D9
10376[26]
0069BCFD
22[4]
75B9F26F

Same exception in text

The above example should be translated as:
there are two threads in application: main thread (ID = 400) and background/worker
thread (ID = 2072). Although there are 3 call stacks in the report, but there are only two
unique threads (as indicated by IDs). There are two call stacks for main thread (ID =
400): first call stack is exception thread and it was created inside Synchronize call, second
call stack is usual call stack for main thread;
worker thread (ID = 2072) was launched from Unit1.TForm1.Button2Click line 63[2]. This
is indicated by last line in call stack for thread #2072 - right below system's
BaseThreadInitThunk. Main thread does not have creator - this is indicated by

EurekaLog 7 Documentation95

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

BaseThreadInitThunk being the last in the second call stack for the main thread (ID =
400);
worker thread (ID = 2072) called Synchronize method. This is indicated by presence of
TThread.Synchronize at the top of the call stack for thread #2072;
task from Synchronize method was executed by main thread (ID = 400). Task is DoWork
method from TMyThead class. This is indicated by TThread.DoWork above CheckSynchronize
call for main thread (ID = 400);
there was exception raised in DoCrash routine which was called from TMyThread.DoWork.
This is indicated by exception call stack - which is the first call stack for main thread (ID =
400);
main thread waits for window message (i.e. it is processing messages; it's inside
message loop). This is indicated by last call stack for main thread (ID = 400).

Notes:
First call stack for main thread ("exception thread") does not represent any real-time
information. Main thread is doing message pumping at the current moment - as indicated
by the second call stack for main thread. Exception thread shows some older state of main
thread - that is the state when main thread was doing tasks for Synchronize. In other
words, there are two call stacks for the single thread (main thread): one represents the
past and second represents the current moment.
"Exception thread" is not a real exception thread. The handled exception was (re-)raised by TThread.Synchronize wrapper which was called from the background thread. This means that exception thread is the background thread, not the main thread (as call stack suggests). However, main thread is still considered as exception thread.
Call stacks for manual synchronization (such as SendMessage into main thread) will not be
merged.
This feature supports merging call stacks for any exceptions that was re-raised into
another thread. Synchronize calls is just a sub-case of generic cross-thread exceptions.
This feature supports any TThread-descendant - such as AsyncCalls or
OmniThreadLibrary.

See also:
Using EurekaLog in multi-threaded applications
Multi-threadeding options

7.1.2.3 Searching bug’s location

This article is a part of working with bug reports .

1. When GUI is available
If you're working in Delphi, browse EurekaLog error dialog or use a EurekaLog viewer - you
can just double click on any line in call stack. You'll be moved to that location. Very simple.

Few notes here:
1. A compiled application must match source files. Otherwise you will be moved to wrong

location. What you can do to minimize chances for this to happen:
Open target unit in IDE. That's if you have multiple versions of the same unit.
EurekaLog is capable of using your __history folder, but in some cases you may need
to extract files manually.
You may need to restore older version of file from SVN.

2. IDE must be launched and source files must be available (either opened or could be
found by IDE).

3. IDE and application (error dialog or EurekaLog Viewer) must reside under the same
security boundary (same user account and same elevation level under UAC).

2. When line number is available
When GUI doesn't work or not available, but you have line numbers in call stack - you need
to open unit in IDE manually and use Search / Go to line number command in IDE main
menu. Enter line number and press OK - you'll be moved to line location.

If you can't find a unit version, which matches your compiled application, then you may try
to use line number offset. Open unit and find target procedure or method. Move down
manually for line number offset lines. That will be your location.

547

246

72

http://andy.jgknet.de/blog/bugfix-units/asynccalls-29-asynchronous-function-calls/
https://code.google.com/p/omnithreadlibrary/

Solving bugs in your code 96

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

3. When procedure/method name is available
If you don't have line numbers information or this information is obsolete (doesn't match
source), but you have a subroutine name - you can find subroutine in target unit and try to
guess, where the call was. For example, if you have such call stack

DoSomething
DoWork
Run

And your DoWork routine looks like this:

procedure DoWork;
var
 X: Integer;
begin
 Prepare;
 DoSomething(-1);
 for X := 1 to 5 do
 DoSomething(X);
 Done;
end;

Then you can guess that call stack either points to first call DoSomething(-1) or second call
DoSomething(X). But it doesn't point to Prepare or Done.

5. When code address is available
Next fallback case is raw code address. There can be two options: either you have a code
address OR you have module name and code offset.

Note: you don't need a base address of the module.

In either case you need to run IDE, open your project, run it and put it on pause (Run /
Pause). Now, use the Search / Go to address command. Enter absolute code address.
Don't forget to add '$', if you enter HEX.

Note: if you have code offset and module name, you need to calculate code address first.
Go to View / Debug windows / Modules to open Modules window. Find your module here
and get its base address. Now add a code offset to this address (include a $1000, if
needed) - this will be your final code address.

When you press OK - you'll be moved to exact location. If it's possible - you'll see a source
code (.pas file). If not (say, no debug information available) - you'll see a CPU debugger.

Second case (having a code offset + module name) is better than first case (having code
address). Even though you have to make calculations first, but first case doesn't allow you
to find location, if module on your machine is loaded at different location than module on
client's machine.

See also:
Reading and understanding bug reports
Call stacks
How to read call stack
Call stack formats
Final notes on call stack
Searching bug's reason

7.1.2.4 Final notes on call stack

This article is a part of working with bug reports .

72

79

81

83

96

97

72

EurekaLog 7 Documentation97

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Here are few moments, which you should have in mind, when you are going to read call
stacks.

First: one bug-report file may contain several bug-reports, and one bug-report may contain
several call stacks (for example: one call stack for each thread). So, before actually reading
– make sure, that you’re going to read the required (“the one”) call stack.

Usually, call stacks should be read from the bottom to the top, if you want to go in
execution order (that is: from top to bottom, if you rather want to "unwind" from error's
location): the first called routine is placed at their bottom. The next called routine is above
it, on the next line. And so on. A current location (the last called routine) is located at the
top of call stack (call stack’s first line). Sometimes current location indicate the location of
the problem (but it is not always so – see searching bug's reason), and the rest of the
call stack indicate execution path – i.e. the way, how we got to the current place.

First few routines (from bottom) usually are system’s ones or belongs to Delphi’s RTL and,
therefore, aren’t very interesting. Often there are only partial information available for them
– due to partial or missing debug information. Examples are things like
'BaseThreadInitThunk', 'Controls.TWinControl.WndProc' and so on. And sometimes the call
stack itself has a limited depth (length/capacity) – i.e. it can not contain more than N lines or
M characters. In that case the bottom part is simply cut.

On the other side: top part of the call stack may mention some RTL tool routines along with
error’s location and your code. That depends on many factors. For example, it depends on
stage (level of processing), at which exception was caught and the call stack was created.
The examples of such tool routines are RTL’s exception processing helpers (like
KiUserExceptionDispatcher), GetMem’s calls, etc, etc.

Some tools also may specially add an additional line to the very top of the call stack. This
line represents the exact error’s location, if it is available (for example, it is an code
instruction’s address for exceptions). If this is the case, then if call stack already contains
this address as its first line, then nothing happens. But if there are lines with RTL’s tool
routines at the top – then this address will be duplicated in the call stack. First time it’ll be
listed in the very first line (as special added) and the second time it’ll be listed few lines
below in the call stack (after RTL’s tool routines).

The next thing: you should know that on x86-32 there is no reliable way to build exact
call stack. All methods use some kind of assumptions, heuristics and guessing. And
sometimes methods may be confused, so you may have a false-positive entries in call stack
or missed entries. See also: different stack tracing methods .

So, if you’re analyzing the call stack and see strange thing (“Hey? What the…? This routine
can not be called here by my code!”) – you should take this into account and suppose that:
either there is call missed or there is unnecessary (false-positive) call. You should also
remember about this difference, if you use call stack in your application directly (for
example, to get textual description of your caller).

Now, if you've read and understand this - you may call yourself an expert with call stacks
(well, a bit of a practice will not hurt).

See also:
Reading and understanding bug reports
Call stacks
Stack tracing: RAW method and frame-based method
How to read call stack
Call stack formats
Searching bug's location
Searching bug's reason

7.1.2.5 Searching bug’s reason

This article is a part of working with bug reports .

97

578

72

79

578

81

83

95

97

72

Solving bugs in your code 98

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Following call stack... or not?
In many cases the reason for the problem may be obvious - all you need to do is to follow a
call stack in the bug report and you get your buggy code. The only thing left in to
analyze variables in that lines, check assumptions, conditions and figure how to fix it.

However, not always call stack points you to a problem. This is especially true for the Access
Violation exception . For example - suppose that you have a memory-corruption bug in
your application. Buggy code may run without a visible problem and just corrupt some other
memory. And the actual exception will be raised later, when fully unrelated code will be
executed. Now you have Access Violation and call stack, which points to some innocent
code, which have nothing to do with the original problem.

You should just mindfully analyze the situation and do not blame unrelated code.

Some types of bug-reports can not point to the problem by definition. For example - memory
problems (leaks and corruption). Memory manager just can not scan the entire memory pool
for problems at every machine instruction in your application. What’s more: it is not possible
to scan entire pool on every request to memory manager either. As there is a lot of used
memory in every application. So, if you’ll scan all memory at every call to memory manager,
then your performance will be near zero.

That’s why memory manager usually checks only blocks, which are directly related to the
current operation. For example, when we ask to free memory, then memory manager will
check only this block for corruption. Note: it’ll check only this block, not all allocated blocks.
Next example: we’re asking for memory. So, memory manager will go through available
“free” blocks and pick suitable one. Before returning it to us, memory manager will scan it to
check, that no one have wrote into that block while it was free. See how to solve memory
problems .

That is why problems with memory will be raised later, and not in the moment, when they
actually occurred.

Another example is memory leak .

Using other information in the bug report
Apart from call stack - there may be other information available in the bug reports. You can
extract hints to the problem from this auxiliary information. The most important are
information about CPU register and memory dumps. Sometimes you may extract information
about variables from these pieces. Of course, it requires assembler knowledge, but it can
be very handy sometimes.

Actually, the memory dumps can be useful even for un-experienced programmer. For
example, the dump of memory leak can tell you, what data was there at run-time. Of, you
can see, say, a string’s data instead of object’s layout and so you can trace where did this
string go and find the source of memory corruption.

Unfortunately, it is really difficult to give some general advices here – almost every case
require individual approach. When you suggest (guess) what the situation can be at run-
time in your application - then the additional information in the report can help you to check
this guess.

Well, an example. The very strange access violation at, seemingly, usual place at function’s
call. You may notice that your application was launched in Windows 2000 (that is field in the
bug report). And you do know, that you didn’t tested your application on this system. So,
you dig a little deeper and discover, that used function do not exists in Windows 2000, and
so this is the reason for the problem (say, you’ve imported the function via GetProcAddress,
but didn’t check for errors).

See also:
Reading and understanding bug reports
Call stacks
How to read call stack

95

160

171

166

72

79

81

EurekaLog 7 Documentation99

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Call stack formats
Searching bug's location

7.1.3 Modules section

Modules section of bug report contain list of loaded executables (i.e. single host exe and all
DLLs). This list can be disabled in options .

Note: modules list is automatically disabled for reporting leaks.

Modules Information:

|Handle |Name |Description |Version |Size |
Modified |Path |

|00400000|Project1.exe| |1.0.0.0 |16512079|2013-
08-17 19:15:26|C:\Projects |
|76A90000|user32.dll |Multi-User USER API Client DLL|6.0.6002.18005|820224 |2009-
04-11 20:22:43|C:\Windows\System32\|
|76CB0000|kernel32.dll|Windows NT BASE API Client DLL|6.0.6002.18704|1210368 |2012-
09-28 20:34:50|C:\Windows\System32\|
|76FF0000|ntdll.dll |NT Layer DLL |6.0.6002.18881|1585256 |2013-
07-09 16:04:30|C:\Windows\System32\|
|77190000|psapi.dll |Process Status Helper |6.0.6001.18000|16896 |2008-
01-21 06:50:47|C:\Windows\System32\|
....

Example of a modules list (list is shortened)

The list contains the following columns:
Handle value indicate base address of loaded module. This value can be used to calculate
offsets (or convert offsets to absolute addresses). Entire list is sorted on that column.
Host exe have base address of $400000. This value have 8 hex-characters for 32-bit bug
reports and 16 hex-characters for 64-bit code;
Name value indicate file name of loaded module without path;
Description value shows module's description extracted from version information (if
available). "File description" field is used as source for description;
Version value shows module's version information (if available). dwFileVersion field from
VS_FIXEDFILEINFO structure is used as source;
Size value shows size of exe/DLL file in bytes;
Modified value shows file's modification time in local time zone;
Path value shows folder which contain loaded module. Path and name values form a full
file name.

See also:
Understanding bug reports
Understanding call stacks

7.1.4 Processes

Processes section of bug report contain list of running processes. This list can be disabled
in options .

Note: processes list is automatically disabled for reporting leaks.

Processes Information:

83

95

266

72

78

266

http://msdn.microsoft.com/en-us/library/windows/desktop/ms646997(v=vs.85).aspx

Solving bugs in your code 100

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

|ID |Name |Description |Version |Memory |Priority|
Threads|Path |

|0 |[System Process]| | |0 | |2
 | |
|4 |System | | |0 |Normal |100
 | |
|320|TSVNCache.exe |TortoiseSVN cache |1.8.0.24401 |11210752|Normal |11
 |C:\TortoiseSVN\bin\ |
|364|taskeng.exe |Task Scheduler Engine|6.0.6002.18342|11407360|Normal |11
 |C:\Windows\System32\|
|404|svchost.exe | | |0 |Normal |20
 | |
|608|Project1.exe | |1.0.0.0 |0 |Normal |20
 |C:\Projects\ |
...

Example of a processes list (list is shortened)

The list contains the following columns:
ID value shows Process ID (PID). PID is unique system value that identifies running
process within the system. List is sorted by this column;
Name value shows process name - that is a name of exe file. This value may be not
available for some system processes. Please note that name of the process can be
available, but full file name (i.e. path and name) and some other values can still be not
available;
Description value shows description extracted from version information of host exe for the
process (if available). "File description" field is used as source for description. This value is
typically missed for system processes, because current process have no access to open
system processes for retrieving information;
Version value shows version information of host exe (if available). dwFileVersion field
from VS_FIXEDFILEINFO structure is used as source. This value is typically missed for
system processes, because current process have no access to open system processes for
retrieving information;
Memory value indicate process working set size in bytes. Please note that this value is
not virtual memory of the process. This value is typically missed for system processes,
because current process have no access to open system processes for retrieving
information;
Priority value shows current process priority;
Threads value shows number of running threads inside process;
Path value shows folder which contain host exe. Path and name values form a full file
name. This value is typically missed for system processes, because current process have
no access to open system processes for retrieving information.

See also:
Understanding bug reports
Understanding call stacks

7.1.5 Assembler

Assembler section shows disassembler machine code near exception. This section can be
disabled in options .

Note: assembler section is automatically disabled for reporting leaks.

Disassembler listing does not provide any new information as compared to other
information in bug report - because it simply duplicate content of your executable, but
presents it in human-readable form. But this section can still be useful, because it saves you
time on disassembling your exe/DLL file.

72

78

266

http://msdn.microsoft.com/en-us/library/windows/desktop/ms646997(v=vs.85).aspx

EurekaLog 7 Documentation101

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Assembler Information:
--
; Base Address: $7F0000, Allocation Base: $400000, Region Size: 61440
; Allocation Protect: PAGE_EXECUTE_WRITECOPY, Protect: PAGE_EXECUTE_READ
; State: MEM_COMMIT, Type: MEM_IMAGE
;
;
; Unit9.TForm9.Button7Click (Line=747 - Offset=0)
; ---
00000000007F0D20 55 PUSH RBP
00000000007F0D21 4883EC20 SUB RSP, $20
00000000007F0D25 488BEC MOV RBP, RSP
00000000007F0D28 48894D30 MOV [RBP+$30], RCX
00000000007F0D2C 48895538 MOV [RBP+$38], RDX
;
; Line=748 - Offset=16
; --------------------
00000000007F0D30 488B0DA9ACC5FF MOV RCX, [REL -$003A5357] ; ($000000000044B9E0)
Exception Data as ANSI: '¨ºD'; Data as UNICODE: '모D'
00000000007F0D37 B201 MOV DL, 1
00000000007F0D39 4C8D0520000000 LEA R8, [REL $00000020] ; ($00000000007F0D60)
Unit9.TForm9.Button7Click (Line=749) UNICODE: 'Error Message'
00000000007F0D40 E84BEBC6FF CALL -$3914B5 ; ($000000000045F890)
System.Exception.Create
00000000007F0D45 4889C1 MOV RCX, RAX
00000000007F0D48 E823C3C1FF CALL -$3E3CDD ; ($000000000040D070)
System._RaiseExcept <-- EXCEPTION
;
; Line=749 - Offset=45
; --------------------
00000000007F0D4D 488D6520 LEA RSP, [RBP+$20]
00000000007F0D51 5D POP RBP

Example of disassembly output

Exception address will be listed in the middle of disassembly listing and marked with "<--
EXCEPTION" comment. Listing will go 15 CPU instructions in both directions (up/down) from
exception address or until start/end of routine is found.

Note: exact value of exception address can be found in General section or CPU
section.

Assembler section uses asm syntax compatible with Delphi's asm-blocks with minor
exceptions (see below):

Each line starts with absolute address of that CPU instruction inside the module. Address
is represented as 8 hex-characters for 32-bit code or 16 hex-characters for 64-bit code;
The next part is RAW dump which shows exact bytes of CPU instruction. These are 2 hex-
characters per byte. Exact length of this block can vary depending on actual CPU
instruction. For example, for x86-32 and x86-64 this can be from 2 hex-characters (1 byte)
up to 30 hex-characters (15 bytes - which is maximum length of CPU instruction for x86).
Raw bytes can be used to manually disassemble code* (see remark below);
Central piece is CPU instruction and (optional) arguments. Assembly syntax follows Delphi
compiler with minor exceptions. Please note that instructions will use addresses and
offsets instead of textual identifiers;
Each line may end with optional comment block. This optional comment can show:
o Exception line mark. "<-- EXCEPTION". This mark indicate address of CPU instruction

which raised the exception. This mark can be shown only once per entire listing;
o Absolute address. This value is shown if instruction references relative address and

absolute address can be calculated. For example, MOV, JMP, and CALL instructions
("CALL -$3E3CDD ; ($000000000040D070)"). This value can also be shown for indirect
values;

o Identifier. This value is shown if there is debug information available for that address.

74 103

103

Solving bugs in your code 102

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

For example: "CALL -$3E3CDD ; System._RaiseExcept". This value usually indicate
routine's name and line for JMP and CALL instructions, but can also indicate code blocks
for try/except statements. Please note that this value can show useless information for
data references - if this data is stored inside code section, for example: "LEA R8, [REL
$00000020] ; Unit9.TForm9.Button7Click (Line=749)";

o String data. This value is shown when instruction references AnsiString or UnicodeString
constant. For example: "LEA R8, [REL $00000020] ; UNICODE: 'Error Message'". This
value can not be false-positive, because EurekaLog analyzes string's header;

o Character data. This value is shown if instruction references some memory that can be
interpreted as string (PAnsiChar and PWideChar). Note that this case does not include
AnsiString and UnicodeString constants, because these were covered in previous item.
This value is often false-positive because EurekaLog only checks for data to be
readable and zero-terminated. Still, this value can be useful. For example, for
MessageBox's text/captions. Example: "LEA RDX, [REL $000000BD] ; Data as ANSI:
'E'; Data as UNICODE: 'Error'". This value is always shows ANSI and Unicode
interpretation of data. This value also shows references to code section, because PChar
constants are often encoded right in code section.

CPU instructions are grouped in source lines. Each source line is marked with comment block
above CPU instructions. Comment block indicate routine name, line number and byte offset.
Each value is listed only if it was changed from previous line. For example, routine name is
not shown if current line belongs to the same routine as previous line.

There is also a special comment block at the top of the section which shows general
information about code page to which disassembled code belongs.

Note: disassembly listing uses ;-style comments instead of usual Delphi's //-style
comments.

Absolute and relative addressing
EurekaLog's disassembler follows rules of Delphi's disassembler. For example, x86-32
assembler uses absolute addressing by default, but x86-64 assembler uses relative
addressing by default. For example: "MOV EAX, [$10]". This instruction will be compiled into
"MOV EAX, [ABS $10]" by 32-bit assembler. But the same instruction will be compiled into
"MOV EAX, [REL $10]" (which means "MOV EAX, [RIP + $10]") by 64-bit assembler.

Delphi assembler supports ABS and REL modifier to alter addressing mode. It does not
support [RIP + $10] or [$ + $10] syntax. ABS modifier is shown as + sign by Delphi's
disassembler. For example, "MOV EAX, [ABS $10]" instruction will be disassembled by Delphi
as "MOV EAX, [+$10]".

EurekaLog's disassembler always use REL and ABS modifiers to indicate addressing mode.
REL/ABS modifiers are omitted for 32-bit code.

x86-64 is extension of x86-32. Thus, x86-64 tries to be compatible with x86-32 as much as
possible. Still, there are differences - such as addressing mode. x86-32 prefers absolute
addressing, while x86-64 prefers relative addressing to simplify writing PIC (Position
Independent Code). This means that 64-bit code requires much less fix-ups when loading
DLL to address which is different from preferred base address of this DLL. That's because
64-bit instructions works with relative addresses, so it doesn't use absolute addresses
which needs to be fixed if code is loaded to another address.

Summary:

MOV [sym], RAX ; absolute for 32-bit, relative for 64-bit
MOV [REL sym], RAX ; relative
MOV [RIP + sym], RAX ; relative, not supported by Delphi
MOV [$ + sym], RAX ; relative, not supported by Delphi
MOV [ABS sym], RAX ; absolute
MOV [+ sym], RAX ; absolute, Delphi disassembler only

EurekaLog 7 Documentation103

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

64-bit values
Most 64-bit instructions works with 32-bit values. In 64-bit mode, immediates (that is,
contants) and displacements (that is, offsets) are generally only 32 bits wide.

1.The only instruction which takes a full 64-bit immediate is: "MOV reg64, imm64". For
example: "MOV RBX, $1234567890ABCDEF". Any other form of immediate will be 32-bit only
(zero-extended to 64-bit prior to use, if needed).

2.The only instructions which take a full 64-bit displacement is loading or storing, using
MOV, AL, AX, EAX or RAX (but no other registers) to an absolute 64-bit address. For
example: "MOV RAX, [ABS $1234567890ABCDEF]". Address must be 64-bit absolute address
(no registers are allowed in the effective address, and the address cannot be RIP-
relative). Recipient register must be some form of AX register. Any other form of
displacement will be 32-bit only (sign-extended prior to use, if needed).

The above means that you can not JMP or CALL to 64-bit absolute location specified with
constant. JMP and CALL can only jump to a relative location within +/- 2 Gb from current
instruction. If you need to jump to arbitrary 64-bit location then you have to use at least
two instructions or indirect addressing:

MOV RAX, $1234567890ABCDEF
JMP RAX

or:

JMP [REL 0]
DB $12, $34, $56, $78, $90, $AB, $CD, $EF

(*) Note: automatic disassembling may be not possible in the following cases:
EurekaLog's disassembler may encounter unknown instruction's opcode. Currently there
is support for Intel's and AMD's opcodes up to SSE 4.1 (including AMD's 3DNow opcodes).
Newer opcodes will be not recognized. Currently there is no support for VEX and XOP
opcodes (except for a few). There is no support for 3rd party opcodes (such as special
virtual machine opcodes);
x86 architecture does not allow you to "move backward". I.e. you can't get 100% correct
address of previous CPU instruction by having address of some valid CPU instruction. This
makes 100% correct disassembling of code BEFORE exception address impossible.
EurekaLog uses educated guesses (such as debug information or trying to walk forward
from some address before exception), but these guesses may sometimes fail. This means
that while exception address and listing below it will always be 100% accurate, but listing
above exception address may show wrong values.

See also:
CPU section
Understanding bug reports
Understanding call stacks

7.1.6 CPU

CPU section shows state of CPU when exception was raised. This section can be disabled
in options .

Notes:
CPU section is automatically disabled for reporting leaks;
Capturing CPU state requires installing of low-level hooks .

CPU section contains 3 parts:
1. Registers
2. Stack dump
3. Memory dump

Registers

103

72

78

266

349

Solving bugs in your code 104

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Registers block contains list of CPU general-purpose registers (EAX-EDX or RAX-R15),
including two index registers (ESI-EDI or RSI-RDI) and two stack pointer registers (ESP-EBP
or RSP-RBP).

EIP/RIP register shows current instruction pointer. This is exact instruction which raised
exception. It will be some instruction inside Kernel32.RaiseException function for software
exceptions. It will be any other CPU instruction for hardware exceptions.

FLG value shows content of EFLAGS/RFLAGS service register.

EXP and STK values shows used addresses for exception address and stack. See section
below on explanation.

Stack dump
Stack dump block shows dump of memory used by CPU stack. Left column shows
addresses, right column shows data stored in stack. Stack is taken from STK position.

Memory dump
Memory dump block shows dump of memory starting from EXP address. Usually this is code
section, which is represented in a human-readable form inside Assembler section .

Real and logical exception address
Hardware exceptions (such as access violation or divide by zero) ara always raised by failed
instruction. Thus, exception address for hardware exception points to failed instruction. For
example:

var
 P: PInteger;
 E: Extended;
begin
 P := nil;

 P^ := 0; // <- access violation exception here

 E := 0;
 E := 5 / E; // <- division by zero exception here
end;

Both exceptions in the above code will have unique exception address pointing to failed
CPU instruction. Thus, you can easily identify failed code for hardware exception.

On the other hand, any software exception is raised from a single place:
Kernel32.RaiseException function. This means that all software exceptions will use the same
address, which makes it quite useless. Consider the following code:

Read(F, Data);
if IOResult <> 0 then
 raise EUnableToReadFile.Create('There was an error reading file');
if Data = 0 then
 raise EInvalidStorageData.Create('File is corrupted, invalid data found');

This code raises two software exceptions. Both exceptions will be raised by the same
Kernel32.RaiseException function (which is called by Delphi's "raise" keyword). This makes
exception address useless because it does not point to failed code.

For this reason: EurekaLog uses logical exception address which is indicated by EXP value
above and also listed as exception address in General section . Logical exception address
is equal to real exception address for all hardware exceptions. However, this address
points to appropriate "raise" construction for all software exceptions. This makes it behave
similar to hardware exceptions - that is, now exception address always point to failed
instruction.

The similar ideas can be applied to stack. STK value indicate stack pointer value for

100

74

EurekaLog 7 Documentation105

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

exception which is normally would be ESP/RSP register, but it can be altered for software
exceptions to exclude calls of service routines (that is "raise", RaiseException, stack
collection routines, etc.).

See also:
Assembler section
Understanding bug reports
Understanding call stacks

7.1.7 Screenshot

ELP bug reports may contain additional files along with usual textual bug report. Additional
files may be supplied by your code (for example, to include configuration file or currently
opened document) or it can be a screenshot. Screenshot is not different from any other
attached files, but it can be displayed by EurekaLog Viewer tool. EurekaLog Viewer consider
additional file to be a screenshot if it has "Screenshot.png" or "BugReport.png" file name.

EurekaLog can automatically take screenshot of your application or desktop. This behavior
can be set here .

Screenshot is sent as separate file in 256-color (8-bit) PNG format (if screenshot creation
was enabled, of course). Maximum screenshot file size is typically less than 150 Kb for full
screen. Typical file size is around 20 Kb (when saving one average window only). Active
control or active window are indicated by bounding red rectangle. Screenshot will contain
mouse cursor, if mouse cursor was positioned inside captured screen area. Your
application's windows may be covered by other applications. This is especially true for
"Capture active window only (may belong to other process)" mode. Screenshot may contain
data from multiple monitors (capturing entire desktop or capturing window which is placed
across few monitors). Any area outside of any monitors (if it exists) will be filled with black
color.

See also:
Understanding bug reports
Understanding call stacks

7.1.8 Additional files

ELP bug reports may contain additional files along with usual textual bug report. Additional
files may be supplied by your code (for example, to include configuration file or currently
opened document). You can specify static files (such as configuration files) in options or
add files at run-time via OnZippedFilesRequest event handlers.

Note:
A special case of additional files is a screenshot ;
You can also use OnAttachedFilesRequest event handler to attach additional files with
bug report. This is different from OnZippedFilesRequest event handler which adds file
inside bug report.

See also:
Screenshot
Understanding bug reports
Understanding call stacks
OnZippedFilesRequest
OnAttachedFilesRequest

7.2 Managing bug reports in issue tracker

Common use case includes the following actions:

1. You need to create "project" in your bug tracker software. One "project" for each of your
products or component, which you want to track individually. Optionally you need to assign
category and/or other classification to "project" (it depends on your bug tracker software).

100

72

78

304

72

78

304

105

105

72

78

Solving bugs in your code 106

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

2. You need to create "submitter" (reporter) account, which will be used to submit reports.
Limit its rights as much as possible. Typically submitter account needs rights to create new
bug reports, list and view existing reports (to determinate if issue was already closed) and
update/comment existing issue (to change "number of occurrences"/"count" and similar
information in existing report). Exact rights depends on your bug tracker software. We
recommend to setup account with minimum rights and test send. Increase account's rights
in case of insufficient privileges. Test sending again. Repeat until you'll get successful work.
See also: Security Considerations .

Notes:
Be sure to test 3 kind of sending:
o send new report (previously unknown issue);
o send same report twice (reporting known problem);
o send report, when issue was closed (to test "bug closed" case).
You need to do this action only once. However, optionally you can create one submitter
account for each "project" (see below). But this is optional.

It is also a good idea to block changes into this account (i.e. disable possibility for the
account to alter its password, delete itself, etc.). That is because your EurekaLog-enabled
executable will store account details in order to be able to submit reports, which means
account details can be stolen and used for malicious actions. See also: Security
Considerations .

3. Assign "submitter" account to each of your "projects".

Note: it's highly recommended to create standalone category and/or "projects" for
automatic submissions. Create another "project" to manage manually created issues. You
can move issues between two "projects". This will help to isolate manual and automatic
submissions. This is especially useful, if you give many rights to "submitter" account.
Separating into two "projects" will ensure that "submitter" account can't mess with your
important information. It has access only to "projects" for automatic submissions. However,
this is optional action. See also: Security Considerations .

4. Create custom informational fields and assign them to your "projects". Exact details
depends on your bug tracker software. For example, you can create "count" field for Mantis,
BugZilla and JIRA (FogBugz already has such field). Another useful field is e-mail contact.
You need to do this action only once.

5. Setup e-mail notifications, if needed.

6. Enter bug tracker details into EurekaLog configuration of your projects.

Common "gotcha's" for using bug tracker software
Here are some points which are worth looking for:

Try to avoid non-ASCII characters (those which code is above 128) in host/URLs, account
names, passwords, etc. While most recent environments offer full support for localized
names and characters, older platforms may limit EurekaLog capability to use them. For
example, using Cyrillic account name in Delphi 7 will break sending on Italian Windows -
because ANSI string will be treated in wrong code page.
Create a new account specifically for sending reports. NEVER use main/personal/
administrator account for bug report submission. See also: Security Considerations .
Create a new "project" or account for each of your products. Do not mix several products
with one account. For example, create different "projects" in bug-tracker software for
each of your software products. See also: Security Considerations .
Test sending before deploying. Test it with both exceptions and leaks. Test it for new and
closed reports. Be sure that sending process meets your expectations.
Before upgrading/changing your end of bug report submission (HTTP upload script, FTP
configuration, bug tracker software, etc) - be sure to test this new environment. Ensure
that new configuration allows old versions of your application to report bugs (if you still
need these bug reports). For this reason be extra careful to use "hosted" solution -
because you may not control server software changes.
There are events for customizing sending: such as OnAttachedFilesRequest,

158

158

158

158

158

EurekaLog 7 Documentation107

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

OnZippedFilesRequest, and OnCustomWebFieldRequest.

See also:
Using unsupported bug-tracker
Detailed walkthough for setup
Security Considerations

Sending algorithm
When you deploy EurekaLog-enabled application to your clients - your application will send
you bug reports about each found problem "from the field". Application will try to log in to
your bug tracker server, then it search for current bug (to see if this is known issue or not).
If issue wasn't found - application creates a new issue and assign it to specified account. If
issue was found (reporting known bug) - application will read report to determinate its
status (closed or not). If issue isn't closed - application will edit it to update "count" field,
upload bug report (optional) and do similar actions (can be set in options - see options for
bug tracker sending). If issue is already closed - application will do nothing.

If you've enabled corresponding options - application will display a success/error/"this bug
is fixed" message. See also: Customizing Feedback .

Working with bug reports
Common bug resolving path is as following: first, application reports about found bug.
You'll see new issue/ticket in your bug tracker software (either you visit it regularly or
receive e-mail notifications about new problems). Now you can start to study problem, bug
report, search for solution. While you're working on the issue, your application will continue
to reporting about this problem. Basic reporting includes updating "count" field, but you can
also enable gathering additional bug reports, if you like.

Notes:
Alternatively, when you're in tight time conditions, you can let bug reports to be collected.
As the time pass, you'll see which bugs occur most often. So, you can start working on 1-
2 "top-bugs". Typically, solving small percentage of your bugs (from your "top" list) solve
over 50% of users' problems . Thus, you can save your time (by delaying solving rare
bugs) and still have great user's satisfaction.
Report submission for specific issue will continue until this issue is closed.

Eventually, you'll fix bug (or find it to be "unfixable"/"no action required" in some cases).
When this happens, you need to release an update to your software and publish it, say, on
your web-site. Then you "close" bug in your bug tracker. When your (old) application
encounter this bug again and attempt to submit a bug report - it will discover that this
problem is already solved and will tell user to get an update, so he'll no longer get this
problem.

Basic messages includes common generic phrases, but you can create a custom feedback
messages .

See also:
Selecting send method
Configuring sending
Security Considerations
Exception Driven Development
Customizing feedback
Detailed setup manual for supported bug trackers

7.2.1 Bug trackers setup

Please refer to a guide specific to your bug tracker tool:
FogBugz setup
Mantis setup
BugZilla setup
JIRA setup

153

107

158

155

68

68

155

55

53

158

68

155

107

108

119

134

143

Solving bugs in your code 108

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

See also:
Managing bug reports in issue tracker
Selecting send method
Configuring sending
Security Considerations
Exception Driven Development
Customizing feedback

7.2.1.1 FogBugz setup

This article is part of Managing bug report in issue tracker series.

See managing bug reports in issue tracker for common information. Please, read it first.
For common information and setup of FogBugz itself - please see this article . The text
below assumes that you already completed FogBuz installation.

Below are detailed steps for recommended FogBugz setup for automatic bug report
submission. Before going through setup - make sure to upgrade your FogBugz to the latest
version.

Some steps below are optional, some steps must be executed only once (like custom fields
creation), other are executed from time to time (like creating new projects for your new
products).

Full list of necessary actions contains:
1. Creating custom fields (single act)
2. Creating user accounts (single act or per product)
3. Creating projects and setting it up (single act or per product)
4. EurekaLog setup (per product)
5. Testing (as required)

Please note that all actions below are just examples. It's recommendation, but it's not
necessary to be absolutely like that. You may use another configuration.

Creating custom fields
1. (Admin/Site configuration) Create custom field to improve usefulness of EurekaLog. Most
important field is "Version" - to store version of your application (name must be exactly like
this, if you want EurekaLog to auto-fill it; otherwise you will need to fill it manually). Other
suggested custom field is "Computer" (to store platform information). Again, field name
must match or you'll need to manually fill it.

Suggested setup for custom fields

Creating user accounts
1. (Admin/Users) Create new use account for bug report submission. Make it normal or
community user. E-mail can be anything. It may be good idea to use dummy e-mail address

105

55

53

158

68

155

105

105

404

EurekaLog 7 Documentation109

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

(i.e. non-existent e-mail). You may want to create additional accounts for each of your
products - for increased security (you can join users in group to simplify control).

Note: you can use anonymous access for bug report submissions (see also). However,
currently anonymous user is not supported in FogBugz API (see also). You may also
consider using HTTP upload send method to upload report directly to anonymous bug
report page for reporting anonymously. Even though limited, anonymous submitting is
more secure, since access password isn't stored in your EurekaLog-enabled applications, so
end-user can't mess with settings.

Now, back to using real using and full access to FogBugz API.

Creating new user

2. After creating user - click on its name in user list to edit. Turn off e-mail notifications, set
settings to defaults, select "English" and "GMT":

398

115

https://blog.fogcreek.com/better-community-user-support/
https://blog.fogcreek.com/better-community-user-support/
http://fogbugz.stackexchange.com/questions/8572/using-fogbugz-api-without-logging-in
http://fogbugz.stackexchange.com/questions/8572/using-fogbugz-api-without-logging-in

Solving bugs in your code 110

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Suggested settings for auto-reported account

3. You can create new group for all bug submission user accounts (Admin/Groups):

Creating new group

4. After group creation - add users to it:

EurekaLog 7 Documentation111

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Adding user to group

5. (Optional, but strongly recommended; only for latest FogBugz versions) Go to your
account create new API token:

Creating new API token for bug reporter account

Once API token was created - select it and copy to buffer. You will need to enter it into
EurekaLog configuration later.

You may create additional tokens.

Creating projects
1. (Admin/Projects) Create project for your product. You may also create several projects -
one for each of your products. In this case you may want to create common master project.
You can use master project to clone settings to many projects. You can also group projects
into a group. Be sure to set appropriate access rights for users (depends on your choice for
bug report submission: normal user, community user or anonymous):

Solving bugs in your code 112

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Example of project for bug report submission

Example above illustrates setting access rights for the following cases:
All normal users
Special group of user for bug reporting
Single account
All community users
Anonymous user

Please, select only minimum necessary access rights and remove any other.

2. Create area for the projects. If you don't need area - use "Misc" area. If you already
have area - assign it. If you have master-project - you can clone project to get pre-set
settings.

3. Set any other project properties as needed.

4. (Admin/Workflows) Create custom workflow to limit rights:

EurekaLog 7 Documentation113

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Suggested settings for the workflow for bug reporting projects

Assign workflow to your projects.

EurekaLog setup
1. Enter FogBugz details into EurekaLog configuration of your projects:

Solving bugs in your code 114

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

ForBugz settings filled into EurekaLog options

Important Note: we recommend to use API keys (tokens) when possible. If you are still
going to use login/password pair (for example, you are using old FogBugz version, which
does not have API keys) - use your user name as login. Even though FogBugz asks for e-
mail address as login, we've found out that it's perfectly fine to have several users with
same e-mail account, and login with user names instead of e-mail addresses.

2. Set any additional/common send options .

3. Set/fill custom fields. EurekaLog has support for automatic managing of "Version",
"Computer", "Correspondent" and "BugID" fields. You just need to set corresponding check
boxes and field name in EurekaLog options. For other custom fields you need to fill them
manually, for example:

uses
 EEvents, ESysInfo;

procedure SetCustomFields(const ACustom: Pointer; const ASender: TObject; const AWebFields: TStrings; var ACallNextHandler: Boolean);
begin
 AWebFields.Values['plugin_customfields_at_fogcreek_com_licensev5'] := GetYourApplicationLicense;
end;

initialization
 RegisterEventCustomWebFieldsRequest(nil, SetCustomFields);
end.

4. Add any custom data, additional attached files, write necessary event handlers, set
exception filters, etc, etc.

304

EurekaLog 7 Documentation115

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Testing
1. Test sending. You can do this right in the EurekaLog send options dialog - by clicking
on "Test..." button. This will send test bug report.

Suggested actions are:
1. Click on "Test..." button to test sending and creating of a new bug issue in FogBugz.
2. Resolve any found issues (access denied, wrong values in fields, etc).
3. Once successful and there is new issue in FogBugz - click on "Test..." button again.

This should test updating project.
4. Resolve any found issues (access denied, etc).
5. Once successful - close existing test issue in FogBugz. Optionally - set the BugScout

status (see customizing feedback).
6. Click on "Test..." button again. This should test sending old (already fixed) bugs.
7. Ensure there is no error messages, no problems. You should get "success, this bug is

fixed" kind of behaviour. Exact behaviour depends on your settings.
8. Delete test issue in FogBugz after testing.

These actions should test that sending is actually working.

2. Now it's time to test your application-specific sending.

1. Place debug code in your application to raise test exception and cause a test leak (if
you've enabled leaks collecting).

2. Run your application and invoke this test code.
3. Let application crash and process bug (show dialog, send bug report, etc).
4. Ensure that behaviour is expected.
5. Ensure that you get all files and additional information in FogBugz.
6. Remove test code from your application.

Now your application is ready for deployment.

See also:
Managing bug reports in issue tracker
Security Considerations
Customizing feedback

7.2.1.1.1 Using HTTP upload

This article is part of Managing bug report in issue tracker series.

FogBugs allows you to submit reports anonymously without using API. This is an
alternative method to submit bug reports.

Note: anonymous submitting may be disabled - please, refer to your FogBugz configuration
and documentation.

However, FogBugz doesn't allow you to login anonymously via FogBugz API . So, the only
choice for anonymous reporting is to submit report directly to web form (web-form for
anonymous users is available at this URL: https://your-account.fogbugz.com/default.asp?
pg=pgPublicEdit - with user logged off).

Warning: each sent report will be tracked individually - as new issue in FogBugz.
Occurrences field will be 1 always, for all such reports.

Alternatively, you can use BugzScout submission. This way also allows anonymous access,
but it also automates merging similar reports. However, file attaches are not supported.

Below are examples for each method.

Web-form
First, start with specifying HTTP upload method:

302

155

105

158

155

105

404

108

http://fogbugz.stackexchange.com/questions/16/how-do-i-delete-cases
http://fogbugz.stackexchange.com/questions/16/how-do-i-delete-cases
http://fogbugz.stackexchange.com/questions/16/how-do-i-delete-cases
http://fogbugz.stackexchange.com/questions/16/how-do-i-delete-cases
http://fogbugz.stackexchange.com/questions/16/how-do-i-delete-cases
http://help.fogcreek.com/the-fogbugz-api/bugzscout

Solving bugs in your code 116

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Typical HTTP upload setup for submitting report anonymously in FogBugz

URL is "your-account.fogbugz.com/default.asp?pre=preSubmitBug" (without

quotes).

Second, you need to supply custom fields (it's only an example - use your own values for
fields):

uses
 EEvents, ETypes, EClasses, ESend, ESendWebHTTP;

procedure SetCustomFields(const ACustom: Pointer; const ASender: TObject; const AWebFields: TStrings; var ACallNextHandler: Boolean);

 function ComposeTitle(const AOptions: TEurekaModuleOptions): String;
 var
 BugAppVersion: String;
 BugType: String;
 BugID: String;
 begin
 BugAppVersion := AOptions.CustomField[sifBugAppVersion];
 BugType := AOptions.CustomField[sifBugType];
 BugID := AOptions.CustomField[sifBugID];

 if BugAppVersion <> '' then
 Result := Format('%s (Bug %s; v%s)', [BugType, BugID, BugAppVersion])
 else
 Result := Format('%s (Bug %s)', [BugType, BugID]);
 end;

 function ComposeMessage(const AOptions: TEurekaModuleOptions): String;

EurekaLog 7 Documentation117

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 var
 TrackerAppendText: Boolean;
 BugText: String;
 ReproduceText: String;
 Message: String;
 begin
 TrackerAppendText := AOptions.SendFogBugzAppendText;
 BugText := AOptions.CustomField[sifBugText];
 ReproduceText := AOptions.CustomField[sifStepsToReproduce];
 Message := AOptions.CustomField[sifMessage];

 if TrackerAppendText then
 Result := BugText + sLineBreak + sLineBreak + Message
 else
 if ReproduceText <> '' then
 Result := BugText + sLineBreak + sLineBreak + ReproduceText
 else
 Result := BugText;
 end;

var
 Options: TEurekaModuleOptions;
 AttachedFiles: TStringList;
begin
 Options := nil;
 AttachedFiles := TStringList.Create;
 try
 if ASender is TELUniversalSender then
 begin
 Options := TELUniversalSender(ASender).Options;
 AttachedFiles.Assign(TELUniversalSender(ASender).AttachedFiles);
 end
 else
 Options := TEurekaModuleOptions.Create('');

 // hidden fields:
 AWebFields.Values['command'] := 'new';
 AWebFields.Values['honeyInput'] := '';
 AWebFields.Values['honeyTextArea'] := '';
 AWebFields.Values['ixScreenshot'] := '-1';
 AWebFields.Values['dblTimeStamp'] := FloatToStr(Now);
 AWebFields.Values['fPublic'] := '1';
 AWebFields.Values['OK'] := 'OK';

 // fixed fields:
 AWebFields.Values['sTitle'] := ComposeTitle(Options);
 AWebFields.Values['sEvent'] := ComposeMessage(Options);
 AWebFields.Values['sCustomerEmail'] := Options.CustomField[sifUserEMail];
 AWebFields.Values['sVersion'] := Options.CustomField[sifBugAppVersion];
 AWebFields.Values['sComputer'] := Options.CustomField[sifMachineID];
 AWebFields.Values['nFileCount'] := IntToStr(AttachedFiles.Count);
 Options.CustomField[sifHTTPFileNameTemplate] := 'File%d';

 // editable fields - refer to page source (https://your-account.fogbugz.com/default.asp?pg=pgPublicEdit)
 AWebFields.Values['ixProject'] := '3';
 AWebFields.Values['ixArea'] := '8';

Solving bugs in your code 118

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 finally
 FreeAndNil(AttachedFiles);
 if not (ASender is TELUniversalSender) then
 FreeAndNil(Options);
 end;
end;

initialization
 RegisterEventCustomWebFieldsRequest(nil, SetCustomFields);
end.

Done!

Note: study submission form's page source to get information on field names and values.
Form is available at https://your-account.fogbugz.com/default.asp?pg=pgPublicEdit with
user logged off.

BugzScout
First, start with specifying HTTP upload method. It's the same as above, only this time URL
is "your-account.fogbugz.com/scoutSubmit.asp" (without quotes).

Second, you need to supply custom fields (it's only an example - use your own values for
fields):

uses
 EEvents, ETypes, EClasses, ESend, ESendWebHTTP;

procedure SetCustomFields(const ACustom: Pointer; const ASender: TObject; const AWebFields: TStrings; var ACallNextHandler: Boolean);

 function ComposeTitle(const AOptions: TEurekaModuleOptions): String;
 var
 BugAppVersion: String;
 BugType: String;
 BugID: String;
 begin
 BugAppVersion := AOptions.CustomField[sifBugAppVersion];
 BugType := AOptions.CustomField[sifBugType];
 BugID := AOptions.CustomField[sifBugID];

 if BugAppVersion <> '' then
 Result := Format('%s (Bug %s; v%s)', [BugType, BugID, BugAppVersion])
 else
 Result := Format('%s (Bug %s)', [BugType, BugID]);
 end;

 function ComposeMessage(const AOptions: TEurekaModuleOptions): String;
 var
 TrackerAppendText: Boolean;
 BugText: String;
 ReproduceText: String;
 Message: String;
 begin
 TrackerAppendText := AOptions.SendFogBugzAppendText;
 BugText := AOptions.CustomField[sifBugText];
 ReproduceText := AOptions.CustomField[sifStepsToReproduce];
 Message := AOptions.CustomField[sifMessage];

 if TrackerAppendText then

EurekaLog 7 Documentation119

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 Result := BugText + sLineBreak + sLineBreak + Message
 else
 if ReproduceText <> '' then
 Result := BugText + sLineBreak + sLineBreak + ReproduceText
 else
 Result := BugText;
 end;

var
 Options: TEurekaModuleOptions;
 AttachedFiles: TStringList;
begin
 Options := nil;
 AttachedFiles := TStringList.Create;
 try
 if ASender is TELUniversalSender then
 begin
 Options := TELUniversalSender(ASender).Options;
 AttachedFiles.Assign(TELUniversalSender(ASender).AttachedFiles);
 end
 else
 Options := TEurekaModuleOptions.Create('');

 AWebFields.Values['ScoutUserName'] := 'AutoReporter';
 AWebFields.Values['ScoutProject'] := 'Bug reports';
 AWebFields.Values['ScoutArea'] := 'Misc';
 AWebFields.Values['Description'] := ComposeTitle(Options);
 AWebFields.Values['Extra'] := ComposeMessage(Options);
 AWebFields.Values['Email'] := Options.CustomField[sifUserEMail];
 AWebFields.Values['ForceNewBug'] := '0';
 AWebFields.Values['ScoutDefaultMessage'] := 'html Default Message';
 AWebFields.Values['FriendlyResponse'] := '1';
 finally
 FreeAndNil(AttachedFiles);
 if not (ASender is TELUniversalSender) then
 FreeAndNil(Options);
 end;
end;

initialization
 RegisterEventCustomWebFieldsRequest(nil, SetCustomFields);
end.

Done!

Note: see BugzScout documentation and BugzScout sample to get information on field
names.

See also:
FogBugz description
FogBugz setup

7.2.1.2 Mantis setup

This article is part of Managing bug report in issue tracker series.

See managing bug reports in issue tracker for common information. Please, read it first.
For common information and setup of Mantis itself - please see this article . The text
below assumes that you already completed Mantis installation.

404

108

105

105

406

http://help.fogcreek.com/7566/bugzscout-for-automatic-crash-reporting
http://help.fogcreek.com/7566/bugzscout-for-automatic-crash-reporting
http://help.fogcreek.com/wp-content/uploads/2013/07/BugzScout.zip
http://help.fogcreek.com/wp-content/uploads/2013/07/BugzScout.zip

Solving bugs in your code 120

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Below are detailed steps for recommended Mantis setup for automatic bug report
submission. Before going through setup - make sure to upgrade your Mantis to the latest
version (or at least 1.2.7) - there are some important bugs fixed.

Some steps below are optional, some steps must be executed only once (like custom fields
creation), other are executed from time to time (like creating new projects for your new
products) and the rest are executed regularly (like creating product versions).

Full list of necessary actions contains:
1. Creating custom fields (single act)
2. Creating user accounts (single act or per product)
3. Creating projects and setting it up (single act or per product)
4. EurekaLog setup (per product)
5. Testing (as required)
6. Maintaining project (regularly or from time to time)

Please note that all actions below are just examples. It's recommendation, but it's not
necessary to be absolutely like that. You may use another configuration.

Creating custom fields
1. (Manage/Manage Custom Fields) Create custom field to improve usefulness of
EurekaLog. Most important field is "Count" - to store number of sent/occurred problems. Its
type should be "Numeric" (integer); field name can be arbitrary, like "Occurrences", "Bug
count", "Popularity", "Incidents", "Hit Count", etc. Other suggested custom fields are:
"BugID" (to store BugID and search issues) and "e-mail" ("user e-mail", which is typically
entered in MS Classic error dialog). "BugID" field should be text field ("String"), "e-mail"
field should be either "String" type or "E-mail" type. Again, field names can be anything.

We strongly recommend to create at least "Count" and "BugID" fields.

Example: three new custom fields

377

EurekaLog 7 Documentation121

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Suggested setup for "Count" field

Solving bugs in your code 122

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Suggested setup for "BugID" field

EurekaLog 7 Documentation123

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Suggested setup for "e-mail" field

2. Create any other additional fields as you need/like (you can submit values for custom
fields at run-time via OnCustomWebFieldsRequest event).

Creating user accounts

1. (Manage/Manage Users) Create new use account for bug report submission. Make it
"updater" or "reporter" level. "Reporter" level can only report about new bugs (create new
bug reports). "Updater" level can alter existing bug reports - for example, updating "Count"
field (see above). You may want to create additional accounts for each of your products - for
increased security. Use your e-mail to setup initial password. Once password is set, you can
set e-mail to any value.

Solving bugs in your code 124

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Creating new user

Setting new password for the user

2. Once password is set - log off and log in as this user. Go to "My account" / "Preferences"
and clear e-mail notifications, set default project, switch language to "English", and time
zone to "UTC":

EurekaLog 7 Documentation125

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Setting properties of submitter account

3. (Optional, but strongly recommended; only for latest Mantis versions) Go to "My
account" / "API Tokens" and create new API token:

Solving bugs in your code 126

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Creating new API token for bug reporter account

New API token was created

Once API token was created - select it and copy to buffer. You will need to enter it into
EurekaLog configuration later.

You may create additional tokens.

4. Now, log off and log in again as administrator. Go to managing user and turn on
"protected" checkbox for this user account (which means that user will not be able to
change password); turn off "Notify user".

EurekaLog 7 Documentation127

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Make bug reporting account "protected"

Additionally, you may change e-mail field to dummy e-mail address.

[Optionally] And assign user to project (you may need to make this step after project was
created - see below).

Solving bugs in your code 128

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Assigning user to project

Repeat these steps for each bug submitter user account which you've created.

Note: Mantis also support anonymous logins. See also. Anonymous user is predefined user
with "anonymous" or "guest" name and without the password. However, since Mantis
supports protected users (which can't alters their account settings), anonymous posting is
not recommended.

http://www.mantisbt.org/wiki/doku.php/mantisbt:enabling_anonymous_access
http://www.mantisbt.org/wiki/doku.php/mantisbt:enabling_anonymous_access

EurekaLog 7 Documentation129

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Creating projects
1. (Manage/Manage Projects) Create project for your product. You may create it as private
(thus, it won't be visible to users except those who are explicitly assigned for it). You may
also create several projects - one for each of your products. In this case you may want to
create them as sub-projects of common master project. You can use master project to
setup versions/category/etc and copy these settings to sub-projects. Be sure to assign
reporter user account as "reporter" or "updater".

Creating new project for bug reports

2. Create category for the projects. If you don't need category - create something like
"Auto-report" category. If you already have category - assign it. If you have master-project
- you can copy categories from it.

3. Create versions for the project. If you don't use versioning (highly unrecommended) - you
can skip this step. If you have master-project - you can copy versions from it.

You should create new version for each release of your software. I.e. when you release
(publish on site, send to custom, etc) "YourSoftware 1.0.0.0" - you need to create "1.0.0.0"
version. When you release update: "YourSoftware 1.0.1.0" - you need to add "1.0.1.0"
version.

Version strings can be arbitrary like "1", "1.0", "1.0.1", "1.0.1.0" or even "1.0.1.0 beta 3".
However, it's recommended to use four-number versions with optional textual description,
for example: "1.0.1.0" and "1.0.1.0 beta 3".

Note: if you don't want to edit project each time you release new version - you can create
versions for the future use. I.e. when you release "YourSoftware 1.0.0.0" - you can create
"1.0.0.0", "1.0.1.0", "1.0.2.0", "1.0.3.0"..."1.0.10.0" versions.

For example:

Solving bugs in your code 130

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Batch-creating versions for future use

When reporting - version are taken from file's version information, so you must supply the
corresponding version in description of your .exe or .dll files.

Note: if file's version information doesn't match created project versions - EurekaLog will try
to use closest match. If there is nothing similar - field will be empty.

Version can be marked as "released". You should do this for all released versions of your
software. Marking version as "Released" will lead to its appearance in "Product Version"
field. In other words, all versions are always shown in "Target Version" field. Only released
versions are shown in "Product Version" field. If you create many versions, but don't mark
them as "Released" - then "Product Version" field will be empty.

Important Note: EurekaLog will look only for "Released" versions. Be sure to mark version
of your .exe as "Released".

4. [Optional] (Manage/Manage Configuration/Workflow Thresholds, per-project) Setup
project access rights - limit actions to minimum for "reporter" and "updater" levels:

EurekaLog 7 Documentation131

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Changing rights configuration

5. [Optional] (Manage/Manage Configuration/Manage Columns, per-project/per-user) Setup
columns for better information view:

Solving bugs in your code 132

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Adding custom fields to columns

Example of customized columns in "View issues"

This example above uses the following column list (custom fields are taken from example of
custom fields above):

selection, edit, priority, custom_Count, id, custom_BugID, bugnotes_count, severity,
status, ...

Most important field is "Count" (if you've created it) - sorting by "Count" will show you
"bugs TOP 5", i.e. most popular bugs should be fixed first.

EurekaLog setup
1. Enter Mantis details into EurekaLog configuration of your projects:

EurekaLog 7 Documentation133

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Mantis settings filled into EurekaLog options

Important Note: we recommend to use API tokens when possible. Please note, that you
have to enter your login (username) even if you are using API token. In any way, always
use your username as login, do not use your e-mail.

2. Set any additional/common send options .

3. Set/fill custom fields. EurekaLog has support for automatic managing of "Count", "BugID",
"E-Mail" fields. You just need to enter field names in EurekaLog options. For other custom
fields you need to fill them manually, for example:

uses
 EEvents, ESysInfo;

procedure SetCustomFields(const ACustom: Pointer; const ASender: TObject; const AWebFields: TStrings; var ACallNextHandler: Boolean);
begin
 AWebFields.Values['License'] := GetYourApplicationLicense;
end;

initialization
 RegisterEventCustomWebFieldsRequest(nil, SetCustomFields);
end.

4. Add any custom data, additional attached files, write necessary event handlers, set
exception filters, etc, etc.

Testing
1. Test sending. You can do this right in the EurekaLog send options dialog - by clicking
on "Test..." button. This will send test bug report.

304

302

Solving bugs in your code 134

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Suggested actions are:
1. Click on "Test..." button to test sending and creating of a new bug issue in Mantis.
2. Resolve any found issues (access denied, wrong values in fields, etc).
3. Once successful and there is new issue in Mantis - click on "Test..." button again. This

should test updating project.
4. Resolve any found issues (access denied, etc).
5. Once successful - close existing test issue in Mantis (as "Closed" or "Resolved").

Optionally - add a note with special tags (see customizing feedback).
6. Click on "Test..." button again. This should test sending old (already fixed) bugs.
7. Ensure there is no error messages, no problems. You should get "success, this bug is

fixed" kind of behaviour. Exact behaviour depends on your settings.
8. Delete test issue in Mantis after testing.

These actions should test that sending is actually working.

2. Now it's time to test your application-specific sending.

1. Place debug code in your application to raise test exception and cause a test leak (if
you've enabled leaks collecting).

2. Run your application and invoke this test code.
3. Let application crash and process bug (show dialog, send bug report, etc).
4. Ensure that behaviour is expected.
5. Ensure that you get all files and additional information in Mantis.
6. Remove test code from your application.

Now your application is ready for deployment.

Maintaining projects
1. You need to create or update project versions when you ship new release of your
software. If you've created a batch of versions in Mantis for future use - you may skip it until
you've run out of versions.

See also:
Managing bug reports in issue tracker
Security Considerations
Customizing feedback

7.2.1.3 BugZilla setup

This article is part of Managing bug report in issue tracker series.

See managing bug reports in issue tracker for common information. Please, read it first.
For common information and setup of BugZilla itself - please see this article . The text
below assumes that you already completed BugZilla installation.

Below are detailed steps for recommended BugZilla setup for automatic bug report
submission. Before going through setup - make sure to upgrade your BugZilla to the latest
version.

Some steps below are optional, some steps must be executed only once (like custom fields
creation), other are executed from time to time (like creating new projects for your new
products) and the rest are executed regularly (like creating product versions).

Full list of necessary actions contains:
1. Creating custom fields (single act)
2. Creating user accounts (single act or per product)
3. Creating projects and setting it up (single act or per product)
4. EurekaLog setup (per product)
5. Testing (as required)
6. Maintaining project (regularly or from time to time)

Please note that all actions below are just examples. It's recommendation, but it's not

155

105

158

155

105

105

407

EurekaLog 7 Documentation135

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

necessary to be absolutely like that. You may use another configuration.

Creating custom fields
1. (Administration/Custom Fields) Create custom field to improve usefulness of EurekaLog.
Most important field is "Count" - to store number of sent/occurred problems. Its type should
be "Integer"; field name can be arbitrary, like "Occurrences", "Bug count", "Popularity",
"Incidents", "Hit Count", etc. Other suggested custom fields are: "BugID" (to store BugID
and search issues) and "e-mail" ("user e-mail", which is typically entered in MS Classic error
dialog). Both fields should be text fields. Do not use "Bug ID" field type for "BugID" field.
Again, field names can be anything.

We strongly recommend to create at least "Count" field.

Example: two new custom fields

Suggested setup for "Count" field

377

Solving bugs in your code 136

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Suggested setup for "e-mail" and "BugID" fields

2. Create any other additional fields as you need/like (you can submit values for custom
fields at run-time via OnCustomWebFieldsRequest event).

Creating user accounts
1. (Administration/Users) Create new use account for bug report submission. Create it with
disabled e-mail notifications:

Creating new user

2. Log off and log in as this user. Go to "Preferences" and clear e-mail notifications, set
default settings and switch language to "English":

EurekaLog 7 Documentation137

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Setting properties of submitter account - general

Solving bugs in your code 138

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Setting properties of submitter account - e-mail notifications

3. (Optional, but strongly recommended; only for latest BugZilla versions) Go to Preferences
/ API Keys and create new API token:

Creating new API token for bug reporter account

EurekaLog 7 Documentation139

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

New API key was created

Once API key was created - select it and copy to buffer. You will need to enter it into
EurekaLog configuration later.

You may create additional token keys.

4. Now, log off and log in again as administrator.

Repeat these steps for each bug submitter user account which you've created.

5. You can also create a new group of users and include all bug-reporting user accounts
into that group (Administration/Groups):

Creating new user group for bug reporting

Note: by default "editbugs" group is assigned to all users. You may want to exclude your
bug reporting account from "editbugs" - to do this, edit "editbugs" group and remove
default regular expression ".*". Include all necessary users to that group.

6. Open bug reporting user account and include it into a bug reporting group:

Solving bugs in your code 140

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Suggested group setup for bug reporting user accounts

Repeat this for all bug reporting accounts.

Creating projects
1. (Administration/Products) Create project for your software product (projects are called
products in BugZilla). You may create several projects - one for each of your software
products.

Creating new project for bug reports

2. Create components for the projects. If you don't need components - create something
like "General" or "unspecified" component. Typically component is used for identification of
the part of your software product.

3. Create versions for the project. If you don't use versioning (highly unrecommended) - you
can skip this step.

You should create new version for each release of your software. I.e. when you release
(publish on site, send to custom, etc) "YourSoftware 1.0.0.0" - you need to create "1.0.0.0"
version. When you release update: "YourSoftware 1.0.1.0" - you need to add "1.0.1.0"
version.

Version strings can be arbitrary like "1", "1.0", "1.0.1", "1.0.1.0" or even "1.0.1.0 beta 3".
However, it's recommended to use four-number versions with optional textual description,
for example: "1.0.1.0" and "1.0.1.0 beta 3".

Note: if you don't want to edit project each time you release new version - you can create

EurekaLog 7 Documentation141

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

versions for the future use. I.e. when you release "YourSoftware 1.0.0.0" - you can create
"1.0.0.0", "1.0.1.0", "1.0.2.0", "1.0.3.0"..."1.0.10.0" versions.

For example:

Components and versions

When reporting - version are taken from file's version information, so you must supply the
corresponding version in description of your .exe or .dll files.

4. Setup project access rights - limit actions to members of auto-reporting group:

Example of limited rights configuration

Detailed view of group access rights to the project

Note: by default bug reporting user accounts will have access to all other projects, unless
these projects has group with "Entry" assigned. I.e. by default project has no group
assigned - this means world access to project. You should explicitly add group to project to
exclude other users (non-members) from accessing project.

EurekaLog setup
1. Enter BugZilla details into EurekaLog configuration of your projects:

Solving bugs in your code 142

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

BugZilla settings filled into EurekaLog options

Important Note: we recommend to use API keys (tokens) when possible. If you are still
going to use login/password pair (for example, you are using old BugZilla version, which
does not have API keys) - use your e-mail as login.

2. Set any additional/common send options .

3. Set/fill custom fields. EurekaLog has support for automatic managing of "Count", "BugID"
and "E-Mail" fields. You just need to enter field names in EurekaLog options. For other
custom fields you have to fill them manually, for example:

uses
 EEvents, ESysInfo;

procedure SetCustomFields(const ACustom: Pointer; const ASender: TObject; const AWebFields: TStrings; var ACallNextHandler: Boolean);
begin
 AWebFields.Values['cf_license'] := GetYourApplicationLicense;
end;

initialization
 RegisterEventCustomWebFieldsRequest(nil, SetCustomFields);
end.

4. Add any custom data, additional attached files, write necessary event handlers, set
exception filters, etc, etc.

304

EurekaLog 7 Documentation143

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Testing
1. Test sending. You can do this right in the EurekaLog send options dialog - by clicking
on "Test..." button. This will send test bug report.

Suggested actions are:
1. Click on "Test..." button to test sending and creating of a new bug issue in BugZilla.
2. Resolve any found issues (access denied, wrong values in fields, etc).
3. Once successful and there is new issue in BugZilla - click on "Test..." button again.

This should test updating project.
4. Resolve any found issues (access denied, etc).
5. Once successful - close existing test issue in BugZilla (as "RESOLVED"). Optionally -

add a note with special tags (see customizing feedback).
6. Click on "Test..." button again. This should test sending old (already fixed) bugs.
7. Ensure there is no error messages, no problems. You should get "success, this bug is

fixed" kind of behaviour. Exact behaviour depends on your settings.
8. Delete test issue in BugZilla after testing.

These actions should test that sending is actually working.

2. Now it's time to test your application-specific sending.

1. Place debug code in your application to raise test exception and cause a test leak (if
you've enabled leaks collecting).

2. Run your application and invoke this test code.
3. Let application crash and process bug (show dialog, send bug report, etc).
4. Ensure that behaviour is expected.
5. Ensure that you get all files and additional information in BugZilla.
6. Remove test code from your application.

Now your application is ready for deployment.

Maintaining projects
1. You need to create or update project versions when you ship new release of your
software. If you've created a batch of versions in BugZilla for future use - you may skip it
until you've run out of versions.

See also:
Managing bug reports in issue tracker
Security Considerations
Customizing feedback

7.2.1.4 JIRA setup

This article is part of Managing bug report in issue tracker series.

See managing bug reports in issue tracker for common information. Please, read it first.
For common information and setup of JIRA itself - please see this article . The text below
assumes that you already completed JIRA installation.

Below are detailed steps for recommended JIRA setup for automatic bug report submission.
Before going through setup - make sure to upgrade your JIRA to the latest version.

Some steps below are optional, some steps must be executed only once (like custom fields
creation), other are executed from time to time (like creating new projects for your new
products) and the rest are executed regularly (like creating product versions).

Full list of necessary actions contains:
1. Creating custom fields (single act)
2. Creating user accounts (single act or per product)
3. Creating projects and setting it up (single act or per product)
4. EurekaLog setup (per product)
5. Testing (as required)

302

155

105

158

155

105

105

408

https://wiki.mozilla.org/Bugzilla:FAQ#Is_it_possible_to_delete_bug_reports.3F
https://wiki.mozilla.org/Bugzilla:FAQ#Is_it_possible_to_delete_bug_reports.3F
https://wiki.mozilla.org/Bugzilla:FAQ#Is_it_possible_to_delete_bug_reports.3F
https://wiki.mozilla.org/Bugzilla:FAQ#Is_it_possible_to_delete_bug_reports.3F
https://wiki.mozilla.org/Bugzilla:FAQ#Is_it_possible_to_delete_bug_reports.3F

Solving bugs in your code 144

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

6. Maintaining project (regularly or from time to time)

Please note that all actions below are just examples. It's recommendation, but it's not
necessary to be absolutely like that. You may use another configuration.

Creating custom fields
1. (Administration/Custom Fields) Create custom field to improve usefulness of EurekaLog.
Most important field is "Count" - to store number of sent/occurred problems. Its type should
be "Number" (integer); field name can be arbitrary, like "Occurrences", "Bug count",
"Popularity", "Incidents", "Hit Count", etc. Other suggested custom fields are: "BugID" (to
store BugID and search issues) and "e-mail" ("user e-mail", which is typically entered in MS
Classic error dialog). Both fields should be text fields. Again, field names can be
anything.

We strongly recommend to create at least "Count" and "BugID" fields.

Example: two new custom fields

2. Create any other additional fields as you need/like (you can submit values for custom
fields at run-time via OnCustomWebFieldsRequest event).

Creating user accounts
1. (Administration/Users) Create new use account for bug report submission. Create it with
disabled e-mail notification:

377

EurekaLog 7 Documentation145

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Creating new user

Important Note: please remember username of new account. You will be using it later -
when entering login credentials into EurekaLog. Do not use e-mail or full name.

2. Click on "Edit groups" link and add user into developers group (users group have read-
only access; developers group have read-write access; administrators group have full
control access):

Including account into groups

3. Repeat these steps for each bug submitter user account which you want to create.

4. You can also create a new group and/or role and include all bug-reporting user accounts
into that group (Administration/Groups and Administration/Roles):

Solving bugs in your code 146

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Creating new user group for bug reporting

Creating new role for bug reporting

Associating role with group

5. Open bug reporting user account and include it into a bug reporting group:

EurekaLog 7 Documentation147

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Suggested group setup for bug reporting user accounts

Repeat this for all bug reporting accounts.

Creating projects
1. (Administration/Projects) Create project for your software product. You may create
several projects - one for each of your software products.

Creating new project for bug reports

2. (Optional) Create components for the projects. Typically component is used for
identification of the part of your software product.

Creating component(s) for the project

3. Create versions for the project. If you don't use versioning (highly unrecommended) - you
can skip this step.

Solving bugs in your code 148

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

You should create new version for each release of your software. I.e. when you release
(publish on site, send to custom, etc) "YourSoftware 1.0.0.0" - you need to create "1.0.0.0"
version. When you release update: "YourSoftware 1.0.1.0" - you need to add "1.0.1.0"
version.

Version strings can be arbitrary like "1", "1.0", "1.0.1", "1.0.1.0" or even "1.0.1.0 beta 3".
However, it's recommended to use four-number versions with optional textual description,
for example: "1.0.1.0" and "1.0.1.0 beta 3".

Note: if you don't want to edit project each time you release new version - you can create
versions for the future use. I.e. when you release "YourSoftware 1.0.0.0" - you can create
"1.0.0.0", "1.0.1.0", "1.0.2.0", "1.0.3.0"..."1.0.10.0" versions.

For example:

Versions

When reporting - version are taken from file's version information, so you must supply the
corresponding version in description of your .exe or .dll files.

Note: EurekaLog will use closest match. It will also look only for "released" versions.

Important Note: EurekaLog will look only for "Released" versions. Be sure to mark version
of your .exe as "Released".

4. Setup project access rights: permissions and roles.

Enabling external access to bug tracker
1. (Administration/General Configuration) Enable access to bug tracker via API calls:

EurekaLog 7 Documentation149

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Enable "Accept remote API calls" option

Note: this option is enabled by default on JIRA cloud accounts. It is also may be unavailable
in some JIRA server installations. Please, refer to documentation for your JIRA version for
more information.

EurekaLog setup
1. Enter JIRA details into EurekaLog configuration of your projects:

Solving bugs in your code 150

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

JIRA settings filled into EurekaLog options

Important Note: use your username as login. Do not use e-mail of full name. You are
specifying username when creating account for reporting:

EurekaLog 7 Documentation151

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Username when creating new account

If you forgot your username, you can always find it in your profile or user management:

Solving bugs in your code 152

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Locating username of already created accounts

2. Set any additional/common send options .

3. Set/fill custom fields. EurekaLog has support for automatic managing of "Count", "BugID"
and "E-Mail" fields. You just need to enter field names in EurekaLog options. For other
custom fields you have to fill them manually, for example:

uses
 EEvents, ESysInfo;

procedure SetCustomFields(const ACustom: Pointer; const ASender: TObject; const AWebFields: TStrings; var ACallNextHandler: Boolean);
begin
 AWebFields.Values['License'] := GetYourApplicationLicense;
end;

initialization
 RegisterEventCustomWebFieldsRequest(nil, SetCustomFields);
end.

4. Add any custom data, additional attached files, write necessary event handlers, set
exception filters, etc, etc.

Testing
1. Test sending. You can do this right in the EurekaLog send options dialog - by clicking
on "Test..." button. This will send test bug report.

Suggested actions are:
1. Click on "Test..." button to test sending and creating of a new bug issue in JIRA.
2. Resolve any found issues (access denied, wrong values in fields, etc).
3. Once successful and there is new issue in JIRA - click on "Test..." button again. This

should test updating project.

304

302

EurekaLog 7 Documentation153

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

4. Resolve any found issues (access denied, etc).
5. Once successful - close existing test issue in JIRA (as "Resolved"). Optionally - add a

comment with special tags (see customizing feedback).
6. Click on "Test..." button again. This should test sending old (already fixed) bugs.
7. Ensure there is no error messages, no problems. You should get "success, this bug is

fixed" kind of behaviour. Exact behaviour depends on your settings.
8. Delete test issue in JIRA after testing.

These actions should test that sending is actually working.

2. Now it's time to test your application-specific sending.

1. Place debug code in your application to raise test exception and cause a test leak (if
you've enabled leaks collecting).

2. Run your application and invoke this test code.
3. Let application crash and process bug (show dialog, send bug report, etc).
4. Ensure that behaviour is expected.
5. Ensure that you get all files and additional information in JIRA.
6. Remove test code from your application.

Now your application is ready for deployment.

Maintaining projects
1. You need to create or update project versions when you ship new release of your
software. If you've created a batch of versions in JIRA for future use - you may skip it until
you've run out of versions.

See also:
Managing bug reports in issue tracker
Security Considerations
Customizing feedback

7.2.2 Using unsupported bug tracker software

This article is part of Managing bug report in issue tracker series.

EurekaLog supports these send methods . However you may need to send your bug
reports into another bug/issue tracking software which is not presented in the list of
supported bug trackers. This doesn't mean that you can't use your bug tracker software
with EurekaLog at all - you actually can.

E-mail delivery
First method to try is to use e-mail delivery. EurekaLog supports wide range of e-mail
sending methods and you can choose one or several methods for delivery bug reports to
you. Many bug tracker software includes feature of inserting incoming e-mail as tickets into
bug tracker's database - either as integral feature or as 3rd party plugin.

Typically, you need:
1. Create new e-mail account for bug reports collection.
2. Setup your bug tracker software to pick up e-mail from that account (please, refer to

documentation of your bug tracker software).
3. Setup e-mail delivery in your EurekaLog-enabled application.

Your bug tracker software may require e-mail messages to be in some predefined format -
to avoid inserting spam e-mails into database. In this case you need to appropriately setup
e-mail body in EurekaLog's project settings.

Here are examples of e-mail delivery features in bug trackers which are supported by
EurekaLog.

FogBugz
Mantis (external plugin)

155

105

158

155

105

390

http://discuss.techinterview.org/help/topics/customers/Handlingincomingcustomere.html
http://www.mantisbt.org/bugs/view.php?id=4286

Solving bugs in your code 154

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

BugZilla
JIRA

Surely, usually you don't need to use these interfaces for the mentioned bug trackers -
because EurekaLog has support for API of these bug trackers. But these links are examples
only. It gives you an idea what to search in the documentation of your bug tracker. It
serves as starting point for studying.

Search documentation of your bug tracker software for terms "incoming e-mails", "e-mail
reporting", "e-mail reports", "e-mail cases", "customer e-mails", etc. You can also ask your
bug tracker's support about existence of such feature. You can mention reference to this
article, which is available online at http://www.eurekalog.com/help/eurekalog/
unsupported_bug_tracker.php

Web-form HTTP posting
Another method to try is HTTP upload method . This method is like posting web-form.
Some bug trackers allow anonymous bug reporting, which typically includes a web-page
which anyone can use to report issues. Usually anonymous reporting is disabled by default
(if it exists at all).

You can:
1. Enable anonymous reporting - which makes this web-form accessible.
2. Study this page source to retrieve names of expected fields and possible values.
3. Once you figure out required information:

setup HTTP upload method in EurekaLog
add OnCustomWebField event handler to supply fields and values as required by
web-form

There are two examples available here .

Search documentation of your bug tracker software for terms "anonymous reports",
"anonymous cases", "anonymous users", "anonymous submitting", "web form", etc. You
can also ask your bug tracker's support about existence of such feature. You can mention
reference to this article, which is available online at http://www.eurekalog.com/help/
eurekalog/unsupported_bug_tracker.php

Note: web-form posting is subject to dependence of UI changes. For example, if you're
using web-access method - then you may need to use name like "Root project/Your project"
to use project created as sub project; category can be specified as "[All Projects] General";
custom field in Mantis will be like "custom_field_1", "custom_field_2", etc.; custom fields in
BugZilla have form like "cf_count", "cf_mail", etc. Again, you should look at the page's
source to get these names.

Limitations
Surely, work with unsupported bug tracker will be limited.

Here is the list of possible limitations:
no end-user feedback: you may not be able to report back status of bug ticket to end
client (like "closed"/"resolved"/"opened") - see also customizing feedback
no file attaches: you may be not able to attach bug report files (i.e. use only text
messages)
no duplication management: each bug report may create new ticket in your bug tracker
software
no user management: reports most likely are anonymous

These limitations are examples. It's not necessary that you'll encounter them. It depends
on your bug tracker software and its features.

Manual Solution
Finally, there is always an option of manual implementation for your bug tracker. Refer to
documentation of your bug tracker to learn about its API. Refer to ESendAPIxyz.pas files

398

115

155

http://www.bugzilla.org/docs/3.0/html/api/email_in.html
https://confluence.atlassian.com/display/JIRA/Creating+Issues+and+Comments+from+Email

EurekaLog 7 Documentation155

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

to learn about reference implementation in EurekaLog. Implement API support in your bug
tracker in a standalone unit (follow existing code for supported bug tracker as example).
Configure your sending method at run-time.

See also:
Managing bug reports in issue tracker
Customizing feedback
Customizing EurekaLog
Security Considerations

7.2.3 Customizing feedback

This article is part of Managing bug report in issue tracker series.

Important note: there are events for customizing sending: such as
OnAttachedFilesRequest, OnZippedFilesRequest, and OnCustomWebFieldRequest.

Simple customization includes changing message to fixed static message. For example,
message can specify location, where to get patches/updates for your software.

You can do this by changing message in localization options .

More advanced approach includes using of dynamic messages and custom HTML-feedback
pages. You can include custom message for each bug or open a web-browser with specified
page to display extended message or ask user for more information.

To give you feeling of capabilities that you can use - here is an example of application
feedback as implemented in Windows Error Reporting :

Custom feedback page in Windows Solution Center

You can customize your feedback messages either by using special tags or by using bug
tracker features - see below.

Mantis, BugZilla and HTTP upload
Mantis, BugZilla and HTTP upload do not have any special features for customizing
feedback. However, you can use special HTML tags.

Mantis/BugZilla: when you're about to close bug - you need to close it with adding
message/note. You can write your internal comments (they will not be reported to

105

155

180

158

105

339

573

Solving bugs in your code 156

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

your users) and you can optionally insert a customization tags.

Note: special tags must be placed in last comment to the issue.

HTTP upload: when you've finished processing uploaded files (HTTP form's data) -
generate a HTML page with customization tags.

Currently, EurekaLog supports only 2 tags out-of-the-box: EurekaLogStatus and
EurekaLogReply.

EurekaLogStatus tag must contain an integer value, which represents operation status
(TSendResult type). Most typically used values are srSent, srBugClosed, srInvalidInsert
and srUnknownError. srSent and srBugClosed are considered as success status. All other
codes are considered as failure. If this tag isn't used, the srSent is the default.

Note: it's important to use numeric value (like, '0', '1', '$1'), not name itself (like 'srSent').

You can use this tag to alter status of sending, but usually you omit this tag.

EurekaLogReply tag contains arbitrary string, which will be used as custom message,
describing the operation. If this tag isn't used, the message will be default, as usual. If
status of the operation is the success (srSent or srBugClosed), then this message will
appear in SuccessMessage field of TResponse record. If status is failure - message will appear
in ErrorMessage field. Message will be displayed to user, if you've enabled corresponding
options.

Alternatively, you can insert a http:// or https:// link into message. In this case EurekaLog
will open a web-browser for this link without showing any other message. Showing HTML
page can be used to present "pretty" message, detailed instructions or other advanced
messages. For example, if "bug" is not a bug in your software, but problem in run-time
configuration, you can insert the URL to your knowledge base article, which describes
solution. Another example - you can't solve bug with existing bug report's information. Thus,
you close bug and use an URL to web-page, where you ask user to submit more
information.

Example of using (example illustrate text of notes which are appending to the issue in bug
tracker):

Simple message example

Fixed #304

Inserted additional checks.

SVN commit:
Core.pas
Consts.pas
Design/Designer.pas

<EurekaLogReply>This issue is fixed!
Go to www.example.com to download new version.</EurekaLogReply>

URL example #1

Fixed #304

Not our bug.

<EurekaLogReply>http://www.example.com/kb/issue304.html</
EurekaLogReply>

URL example #2

Fixed #304

EurekaLog 7 Documentation157

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Can't solve :(Need more info!

<EurekaLogStatus>0</EurekaLogStatus>
<EurekaLogReply>https://www.example.com/
ask_for_configuration_and_opened_file.html</EurekaLogReply>

Last example alters send status from default srBugClosed to srSent.

See also: HTTP upload to get more examples of customizing feedback for HTTP upload
method.

FogBugz
FogBugz have feature of controlling field reporting. This feature is used with FogBugz's
BugzScout software - a tool to gather report "from the fields". But EurekaLog is perfectly
capable of using the same control mechanism.

First, report submission can be stopped at any time by selecting "Stop reports" option:

Disabling bug report collecting for issue

You can also re-enable report collecting by selecting "Continue reporting. Of course, report
collection will be stopped, once issue is closed.

Second, you can use "Scout message" to set a custom message for closed bug reports. This
option acts the same as EurekaLogReply tag above. You can either put a simple message
here or specify an URL to the web-page. You specify developers comments and end-user
message separately: use standard note form to create new developer comment and use
"Scout message" to set custom end-user feedback message.

398

http://www.fogcreek.com/fogbugz/docs/60/topics/customers/BugzScout.html

Solving bugs in your code 158

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

See also:
Managing bug reports in issue tracker
Exception Driven Development
HTTP upload
Customizing EurekaLog

7.2.4 Security Considerations

This article is part of Managing bug report in issue tracker series.

1. Storing credentials inside your executable is not secure

EurekaLog requires valid credentials (login/password pair or API token) to send bug reports
to your bug tracker software (or as e-mail via SMTP client). This means that login/password/
API token must be stored in your executable. While EurekaLog never stores login/
password/API token as plain text (passwords are always stored encrypted), but your
executable still needs to run on client's machines. This means that your executable is under
control of your clients. Someone may use network sniffer to extract password/API token. Or
someone may attach a debugger to your executable and wait for EurekaLog to decrypt
password/API token before sending bug report. While this is not a common thing - it can be
done. Your password or API token may be retrieved, even though it is not a simple task.

Important Conclusion: storing passwords inside your executable is not secure!

2. You can avoid storing passwords in your executable

The most bullet-proof solution is just do not store any passwords in your executable. Of
course, this would also means that you can not use any send method which requires you to
know login/password pair. This leave us with the following send methods:

Shell (mailto)
Simple MAPI
MAPI
SMTP Server
HTTP (anonymous)

Shell and (S)MAPI methods use client's e-mail client to send e-mails. Therefore, EurekaLog
will use client's account for sending, no need to provide your own account.

SMTP Server method does not require any credentials at all. The down side is that method
is often blocked by firewalls and/or ISPs - as it is a great way to send spam. And even if you
manage to send e-mail via SMTP Server method - it will most likely be marked as
"spam"/"malware"/"fake" message by recipient's e-mail server. You will have to setup
explicit rule to exclude such e-mails from spam filter.

HTTP method is a best choice here - as it does not require any credentials and usually safe
with firewalls/ISPs, but it will require you to write code (script) to receive submitted bug
reports.

While those are not exactly bug tracker send methods, but you still can use them to post
bugs to your bug tracker. For example, you may set up your bug tracker to pick up e-mails
from certain address and insert them as reports . And HTTP script may use bug tracker's
API to insert bugs .

In some cases, your bug tracker may provide a ready-to-use HTTP facade. For example,
FogBugz provide options for BugzScout and anonymous sending , JIRA has Issue
Collector.

Important Conclusion: you can hide your bug tracker (e.g. credentials) behind a facade
(either e-mail of HTTP web-form).

105

68

398

180

105

391

393

396

398

398

153

115

115

https://confluence.atlassian.com/adminjiraserver071/using-the-issue-collector-802592637.html
https://confluence.atlassian.com/adminjiraserver071/using-the-issue-collector-802592637.html

EurekaLog 7 Documentation159

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

3. Minimize impact of discovering your passwords

While the above mentioned send methods are resistant against password stealing, but
often it is not a convenient way to submit reports. Those methods also have limitations: you
may be not able to count duplicate reports and receive feedback . An exception to this
is HTTP sending, which can act as facade to your bug tracker. You can hide actual login/
password for bug tracker in your HTTP receiving script. See these examples .

Therefore, most EurekaLog's customers use a compromise way. The idea is that you store
password in your executable, but you limit things that you can actually do with this
password. Obviously, you should not use your administrator account for sending reports.

Important Conclusion: never use your administrator password in EurekaLog
configuration.

What you can do to reduce impact of a leaked password:

Create a separate account for automatic submission of bug reports
You should always create a new account, which you will use with EurekaLog. Limit this
account as much as possible. Allow it to read issues, create issues and modify issues
(restrict modification to "Count" field only - if such fine access restriction is supported). Limit
it to one project only - the one which is used to receive bug reports.

This will prevent attacker from altering administrator settings of your bug tracker, alter
other accounts, edit other projects, etc.

The most customizable bug tracker in this aspect is Mantis - as it allows you to create
account, which will not be able to modify its own profile. Mantis have very rich access-
limiting capabilities. The most non-customizable bug tracker is FogBugz - while it have very
nice UI, but it have little customization abilities. Other bug trackers are in between. Please,
refer to a specific guide for configuration of your bug tracker to learn more.

Protect your account used for automatic submission when possible
If your bug tracker or send method allows to disable changing account - use this
opportunity. For example, Mantis allows you to mark account as "Protected", which means
its settings and password can not be modified.

Use API tokens when possible
You can use API tokens instead of passwords (if your bug tracker allow that). While this
does not remove threat completely, it will greatly reduce risks - because it is usually not
possible to alter settings/password without entering account password (which will not be
stored in executable when you are using API tokens). Additionally, you may create and
revoke API tokens for single reporter account as you like.

Use two-factor auth when possible
Some systems allow you to use two-factor authentication to log in your account. Use this
when possible. This is similar to API tokens. Usually you would need to do two things:
1. Enable two-factor auth for your account. This will block access to attacker, who retrieved

password from your application - since attacker would have access to password, but not
the second key.

2. Create application-specific password. This will allow EurekaLog to send reports.
Application-specific password allows using service, but does not allow logging in.

A good example is so-called "2-step verification" in Google (GMail). Once you enable it for
your account - you won't be able to log in to your account from external application, as
logging in would require to enter code from SMS sent to your phone (alternatively you can
use application or hardware key). However, you can enter your account settings and create
so-called "App Password". App Passwords are used to access accounts from applications
which do not support two-factor auth. In other words, you can enter App Password to
EurekaLog project settings for SMTP Client send method - and EurekaLog will be able to
use your account to send e-mails. However, even if attacker extract App Password from
your EurekaLog-enabled executable - he would not be able to log in to your GMail account,
as this will require to know key from SMS, GAuth application or hardware token.

68 155

115

107

397

https://www.google.com/landing/2step/
https://www.google.com/landing/2step/
https://support.google.com/accounts/answer/1066447
https://support.google.com/accounts/answer/6103523
https://support.google.com/accounts/answer/6103523
https://support.google.com/accounts/answer/185833
https://support.google.com/accounts/answer/185833
https://support.google.com/accounts/answer/185833
https://support.google.com/accounts/answer/185833

Solving bugs in your code 160

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Create a separate project for automatic submission
You should create a new "project" specifically for receiving bug reports. In other words, you
should create two "projects" in your bug tracker for each EurekaLog-enabled application:
use one "project" to receive automated reports and use second "project" for manual
managing (bugs, new features requests, etc.). You can either move issues between two
projects or make references from one project to another.

This will prevent attacker from messing with your sensitive data. Since auto-reporter
account will have access only to one "project" (the one which you use to receive bug
reports) - the attacker will not be able to view/edit second project (which you use to work
manually) or any other project on your bug tracker.

See also:
Managing bug reports in issue tracker
Detailed walkthough for setup
Using unsupported bug tracker
HTTP upload
Exception Driven Development

7.3 EAccessViolation

What is an Access Violation
Every computer program uses memory for running. Memory is consumed by every variable in
your program. It can be form, component, object, array, record, string or simple integer.
Memory can be allocated automatically for certain types of variables (such as integer or
static arrays), the other types require manual control of memory (for example, dynamic
arrays). Essentially, from the point of operating system, each variable is characterized by its
address (i.e. - location) and size.

Roughly speaking, program uses 3 "types" of memory: area for global variables, the stack
and the heap.

Memory for global variables is allocated by OS loader when executable module is loading
and it is freed when module is unloading. Global variables are those, which declared outside
of class or any routine. The stack is used for allocating memory for local variables (which are
declared in some function or procedure) and auxiliary data (such as return addresses or
exception handlers). The heap is used for storing dynamic data (such as objects, dynamic
arrays, strings, etc.).

Note, that for variables of dynamic types (such as dynamic arrays, strings, objects or
components) - though the variable itself is stored in global area or stack, but its data is
always allocated on the heap and it (often) require manual control.

Regardless of who allocates memory for the variable (you manually, or the compiler
automatically), memory for each variable must be allocated before its using, and later (when
the variable is no longer needed) it should be freed.

Sometimes there can be a situation, where your application trying to get access to certain
memory location, which wasn't allocated or was already released - due to bugs in your
code. When such things happens - the CPU raises an exception of class EAccessViolation.
The usual text for this error is as follows: "Access violation at address XXX in module 'YYY'.
Write/read of address ZZZ". Though there is the one simple reason for this kind of error,
the real situations for it can be very different.

Looking for source code line of Access Violation
So, what should you do with access violation? Well, first you should try to identificate a
source line in your code, where it appears.

If you are getting EAccessViolation while running under debugger:

105

107

153

398

68

http://en.wikipedia.org/wiki/Stack-based_memory_allocation
http://en.wikipedia.org/wiki/Stack-based_memory_allocation
http://en.wikipedia.org/wiki/Dynamic_memory_allocation#Dynamic_memory_allocation
http://en.wikipedia.org/wiki/Dynamic_memory_allocation#Dynamic_memory_allocation

EurekaLog 7 Documentation161

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

A typical debugger's notification about access violation exception

Then you should just click "Break" (it is called "Ok" in older Delphi's versions) and the
debugger will point you to source line immediately. Additionally you can take a look at call
stack by choosing View/Debug Windows/Call stack from Delphi's main menu:

A typical call stack as displayed by IDE debugger

This window shows you a call stack - the trace of executing to current code's point. You
should read this from top to bottom. The current location is marked by little blue arrow. You
can also double-click on line to go to a particular location. For example, if you double-click on
"Unit12.Test" line - debugger will show you location where exception was raised.

If you are using an exception tracer tool (such as EurekaLog) then there would be a bug-
report instead of usual error message. You can see a call stack in the report (call stack view
can differ due to different building algorithm):

Solving bugs in your code 162

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

A typical EurekaLog report about exception

You can see there the same information. And you also can double-click on lines to go to that
locations in IDE code editor.

Okay, finding the error's location - this is only half of the case. Determination why there is
an error in this line - it is the second half of the case.

Looking for the Access Violation's reason by analyzing the code
If you got an error while using debugger, then it is quite simple - you should place a
breakpoint to your problem-line and check all variables and expressions in this line after
breakpoint's hit - and here it is, the reason for access violation. Just use the debugger.

If there is only a bug-report - then you should use your telepathic abilities to find out the
truth. Those psychic powers are comes with experience and we can help you a little with it -
by giving you a list of most common mistakes, which can lead to EAccessViolation
exceptions.

1. First, there are all kinds of errors of accessing an array's element outside of its borders.
For example, the typical newbie's mistake can look like this:

var
 X: Integer;
...

 for X := 1 to Length(List) do // wrong! Should be: for X := 0 to Length(List) - 1 do
 begin

 // ... do something with List[X]
 end;

So, if your problem line contains [] - there is a good reason to validate your expression
inside [].

Usually, you should catch errors of this sort at development/testing stage by using "Range
Check Errors" option. The point is that such errors are very dangerous, because they may
go unnoticed, even more than that - they can destroy the stack, so that you can not get the
location of the error. But more on this later.

2. All kinds of messing with arguments. Usually those are untyped parameters and buffer-
overflow errors:

EurekaLog 7 Documentation163

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

var
 S1: array of Integer;
 S2: String;
...

 // Wrong:

 Stream.ReadBuffer(S1, 256); // this corrupts the S1 pointer

 // Correct:

 Stream.ReadBuffer(S1[0], 256); // this reads data into S1 array

 // Wrong:

 FillChar(S2, Length(S2), 0); // this damages the S2 pointer

 // Correct:

 FillChar(Pointer(S2)^, Length(S2), 0); // this clears the S2 string by filling it with zeroes

Usually these errors are catched immediately upon function call. You should just examine a
function's documentation to figure out what you did wrong. Check: what function expects to
receive and what actually you give to it.

3. Passing data between modules. Well, newbies likes to pass data (especially String)
between exe and DLL, without caring much about two different memory managers in
modules.

These errors are usually detected at development time.

4. Wrong declaration of functions, which are imported from DLL. The most common mistake
is wrong calling convention. If you are getting EAccessViolation just by calling a function
from DLL - just carefully verify its declaration. Be sure, that its signature is correct and you
didn't forget about stdcall or cdecl.

Though these errors usually detected at development stage, there can be cases, when
wrong declaration will make it at production code.

5. Missing of proper synchronization, when working with threads. If you are using more
than one thread in your application, then there can be troubles. For example, you can not
access a VCL objects from another thread as VCL is not thread-safe - you should use
Synchronize for this. Actually, the problem is encountered when one thread changes the
data, which is used by another thread - and that becomes a complete surprise for the
second thread.

Unfortunately, the problems with thread are the most complex ones. They are very hard to
diagnose. The best you can do is to guarantee, that such things can not happen. If you are
in doubt - place you code in synchronize or guard it by critical section, when working with
shared variables. Sometimes programmer uses CreateThread instead of BeginThread or
TThread and forgets about changing IsMultiThreaded variable.

6. Calling a function via invalid procedural variable. For example:

var
 Lib1, Lib2: HMODULE;
 Proc: procedure;
...

 Lib1 := LoadLibrary('MyDll.dll'); // one piece of code loads DLL. It can be in different thread
...
 Lib2 := GetModuleHandle('MyDll.dll');

 Proc := GetProcAddress(Lib2, 'MyProc'); // there is no checks! There can be no function named 'MyProc'

 Proc; // Proc can be = nil -> there will be an Access Violation
...

 FreeLibrary(Lib1); // some code unloads library
...

 Proc; // though Proc <> nil, its code is no longer available

Solving bugs in your code 164

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 // that is why there will be an AV.

The whole case is very similar to the next situation.

7. Calling of methods or any other access of objects/components, which wasn't created yet
or were already released. You should consider this reason if there is some object variables
in your problem line of code. Especially, if you do a manual allocate or free of objects
somewhere in your program.

The one part of the problem is that when you destroy an object, its variable is not cleared
automatically - it continues to point at invalid memory location. The other part is that local
variables are not initialized to zero and contains trash at function's call. The last part: there
can be multiple reference to one object/component via different variables. Here are few
examples:

var
 Str: TStringList;
...

 Str.Add('S'); // Mistake! We forget to create an object by calling Str := TStringList.Create;
...
 Str := TStringList.Create;
 Str.Add('S');
...

 Str.Free; // We destroyed the object, but the Str still points to old location
...

 if Str.Count > 0 then // Mistake! An access to already released object

All such memory access errors are dangerous as they may be unnoticed. For example, we
can access a deleted object, but our memory manager still wasn't return memory to the
system, so our access can be successful.

It's recommended to use FreeAndNil to destroy objects or (better yet) to use interfaces
instead of objects - because interfaces are auto-managed types, which will be released
automatically.

The situation with local arrays is even worse: the point is that local arrays are allocated in
the stack, so there is large areas of available memory at its borders. To make things worse:
this memory is heavily used by application (as oppose to the memory, which were released
by the object destruction).

For example:

EurekaLog 7 Documentation165

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

procedure TForm1.Button1Click(Sender: TObject);
var
 S: array [0..1] of Integer;
 I: Integer;
begin

 I := 2; // suppose, that I is somehow calculated in you application

 // and suppose that there is a bug, and I gets wrong value.

 S[I] := 0; // this line will damage the return address of Button1Click in the stack

end; // there will be EAccessViolation at this line, because the address of the caller is lost

procedure TForm1.Button2Click(Sender: TObject);
var
 S: array [0..1] of Integer;
 I: Integer;
begin

 I := -6; // suppose, there is another wrong value.
 try

 S[I] := 1; // instead of changing an array, we damages an exception handler frame, which was set by try
 S[I + 1] := 2;
 S[I + 2] := 3;

 Abort; // there would be a full crash, without any message.

 // The exception manager detect a damaged stack and will terminate application immediately
 except
 ShowMessage('Aborted');
 end;
end;

procedure TForm1.Button3Click(Sender: TObject);
var
 S: array [0..1] of Integer;
 I: Integer;
begin

 I := -1; // yes, another invalid value for I

 S[I] := 1; // we damages the stack again, but there won't be any EAccessViolation or side effect!
end;

It is very treacherous situation, isn't it? Depending on how we messed up with the array's
index, we can get:
a). Application, which produces the correct results.
b). Application, which produces the wrong results.
c). Application, which raises an exception.
d). Application, which crashes.
To make things worse: the very same application can display any of the above behavior,
depending on external conditions, such as OS and Delphi's version, user actions before
error and so on.

That is why it is extremely important to use "Range Check Errors" option while you develop
and testing your application.

Well, you can also enable it for production code, if you isn't sure that your testing was good
enough.

So what exactly should we do with access violation? Well, we have a source line, so we
should just look through above mentioned cases and try to apply them to our line of code:

Do we have the [] in our line? If so: can there be an invalid index here?
Are there any work with objects? If so: check the logic - is there a too early object's
release?
Do we use a DLL? If so: is a function declaration correct? Does all dynamic data
exchanges properly handle?

Solving bugs in your code 166

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

and so on.

There can be a great help if we can also use few hints from the data.

Looking for Access Violation's reason by analyzing the data
First, we can retrieve some useful information from error's message itself. Let's remember
it:

Access violation at address XXX in module 'YYY'. Write/read of address ZZZ.

Okay, the address XXX points to exact location of code, where exception was raised. This is
the same address, which is used by Delphi's debugger and EurekaLog to point you to your
line of code. The executable module for this address is also displayed in the error message -
as YYY. Usually it is your exe, DLL or some system/third-party DLL. Sometimes, however,
there can be cases when XXX do not hold any meaningful value. For example, if there is no
YYY in the message of if XXX looks suspicious (less then $400000 or greater than $7FFFFFFF
on x86-32), then you definitely have problems either with stack corruption (for example, "c"
item from the previous section), of call of invalid function (item 6 or, sometimes, 4 from
previous section).

The next useful piece of information is "write" or "read" word. The "write" means that the
exception occurred during writing, the "read" means that, well, the problem while reading
(quite obvious, isn't it?). That means, that we only need to check write or read parts in the
problem source line. For example, if the problem line is "P := W" then we should check P if
there was "write" word and check W if there was "read" word in the error's message.

And the last hint comes from ZZZ. Actually, we do not care about exact value, but rather
about if it is small or large. "Small values" are something like $00000000, $0000000A or
$00000010. The "large values" are, for example, $00563F6A, $705D7800 and so on. So, if
ZZZ is small - then your code tried to access an object via nil reference. If ZZZ is large -
then your code tried to access an object via non-nil invalid pointer. In the first case you
should check: why do you try to use nil pointer (or who is the bad guy, who set pointer to
nil). In the second case you should search for bad guy, who released the object, but
doesn't clear the variable itself.

Apart from error's message, there can be another information, which comes from assembly
and CPU tabs in EurekaLog's bug-report.

You can see the assembly listing of your program on the "Assembler" tab. It is provided
here only for convenience - that way you do not have to search it somewhere else. This is
no additional information there. But on the "CPU" tab - you can see the status of CPU's
registers, (part of) the stack and (part of) the memory at the moment of exception raising.

For example, we can look at the assembler listing and see that the problem line involves,
say, EAX and EDX registers. We can check that EAX is 0 on CPU tab, which means that we
are trying to assign value via nil pointer. Then we take a look at the line of source code,
which we learned from the call stack, and we will know the name of the variable. And here's
the reason for you: the variable, used in assignment, was = nil.

Of course, to work with this information you need a minimum knowledge of assembler, but it
is a quite powerful tool.

7.4 Leaks

While any error in your application is always bad, there are types of errors, which can be
not visible in certain environments. For example, memory or resources leaks errors are
relatively harmless on client machines and can be deadly on servers.

Memory leaks are a class of bugs where the application fails to release memory when no
longer needed. Over time, memory leaks affect the performance of both the particular
application as well as the operating system. A large leak might result in unacceptable
response times due to excessive paging. Eventually the application as well as other parts of
the operating system will experience failures.

EurekaLog 7 Documentation167

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Windows will free all memory allocated by the application on process termination, so short-
running applications will not affect overall system performance significantly. However, leaks
in long-running processes like services or even Explorer plug-ins can greatly impact system
reliability and might force the user to reboot Windows in order to make the system usable
again.

Applications can allocate memory on their behalf by multiple means. Each type of allocation
can result in a leak if not freed after use. Here are some examples of common allocation
patterns:

Allocation via Delphi memory manager wrapper (GetMem, AllocMem, etc)
Direct allocations from the operating system via the VirtualAlloc function
Heap memory via the HeapAlloc function
Kernel handles created via Kernel32 APIs such as CreateFile, CreateEvent, or
CreateThread, hold kernel memory on behalf of the application
GDI and USER handles created via User32 and Gdi32 APIs (by default, each process has a
quota of 10'000 handles)

Item 1 is called "memory leak" in EurekaLog; items 2-5 are called "resource leak" in
EurekaLog.

Why leaks are bad and do I always need to release all memory?
Generally speaking, often mem-leak does not mean any visible problem to a user:
application still works. Mem-leaks? So what? Program still do all tasks, that I need from it.
This is especially true for client applications: cause they work for a limited amount of time.
So mem-leak is not scary - since all memory will be reclaimed at application's exit (refer to
Jeffrey Richter's book on native code for more info) and so all leaks will be removed too. No,
I don't mean that you don't need to fight mem-leaks here: mem-leak is always bad. It is
just that mem-leaks aren't that fatal. Of course, this is not applicable for server applications.
Server applications work for long period of time, so even minor leak will be deadly.

Some other question, which is close related to above, is: "if all memory is reclaimed upon
app's shutdown - can I skip cleanup for global variables? They still will be deleted by
automatic cleanup from OS!"

Well, the formal answer is: "you can do it". This is correct and you really can do it. But "can"
does not mean "should". Obviously, there will be no technical problems with that approach.
So, why is this bad?

Because you can't find a real mem-leaks, if you do like this. If you don't pedantically clean all
of your resources - you will get a bunch of mem-leak reports. Well, leaks "by design":
technically it's a leak (since resource wasn't released), but it is not a logical leak. Since you
know, that those aren't reports about real mem-leaks - you will ignore them. And the
problem is that if there will be a report about real leak - you may just miss it.

That's why it is a common "good rule" to always clean your resources. Unfortunately, there
can be cases, when you can't do that. Those are very rare cases, but it can happen. But
general rule is: always clean your resources, if you can do it. Don't rely on system's cleanup
to throw out garbage for you. This will greatly simplify your life in the future.

Wrong approach
When newbie is inspired of the idea of catching memory leaks - he usually opens the Task
Manager and watches "Mem usage" column.

So far so good, but then he suddenly notices that this column behaves very strange, even
in a simple application: the memory is not decreasing when closing forms, but decreases at
minimizing application, etc, etc. A good question: why does newbie think that this column
represents memory allocated by his code? If you open "View"/"Select columns" menu - you'll
see many other counters, which also matches "memory definition".

So, I'll open a little secret here: the "Mem Usage" column in Task Manager represents
amount of RAM, occupied by your application. This value is not the memory, allocated by
your code (you can figure out this by yourself, when you first encounter disappearing of

Solving bugs in your code 168

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

memory at minimizing - of course, no one is going to free your memory without your
permission). Your application can use less RAM, then your code allocates, since it can be
swapped out to page file. And besides, RAM is spend for code too - namely, for system
libraries. System libraries are loaded in every process, but there is only one copy of each
DLL in system's memory! (I mean only code here). This value is also called "Working Set".
You can see many memory-related values in Task Manager by configuring columns. Or you
can use Process Explorer tool (add more columns into process list view too).

So let leave our Task Manager for a while and take a look at Pascal. How Delphi manages
its memory? All memory in Delphi application is controlled by memory manager. You can
change the memory manager in your application by calling SetMemoryManager. That means
that you can detect memory leaks very easy - by installing analyzer stub for memory
manager.

What does it mean that your application has a memory leak? Well, this means that your
code allocates some memory (object, string, array, etc) and forgets to release it. Forgetting
about memory's block means that this memory will still be there at application's exit.

So, to catch all memory leaks you need to enumerate all busy memory blocks at
application's exit. Every such block will represent a memory leak.

Using EurekaLog to find memory leaks
EurekaLog has a functionality of catching memory leaks too. It is off by default - because it
is not free for your application. Enabling this functionality means a little slow down and
increased memory usage . This feature has its limits , but it can be very useful for
debugging memory leaks on client's machines.

Note: memory leaks catching feature in EurekaLog is made as light-weight - to minimize
performance/resource impact on your application. Thus, you can use it in your application
deployed on end-user machines. However this means that EurekaLog provides less
information than debugging solutions. The primary target of EurekaLog is to let you know
about the problems. Surely, you can use EurekaLog to debug problems too, but it can be
not suffice in some cases. So you may need to use other debugging tool which is designed
to debug problems, not to report them "from the fields".

In any case, to enable this feature - you need to check "Catch memory leaks" option on
"Memory problems" tab :

589 589

250

http://technet.microsoft.com/en-us/sysinternals/bb896653
http://technet.microsoft.com/en-us/sysinternals/bb896653

EurekaLog 7 Documentation169

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Memory debugging options

There are bunch of options which controls memory leaks checks activation and its
behaviour. See this section for more details about each option.

Anyway, if you activate memory leaks checks and there will be a memory leak in your
application at run-time - there will be a usual error dialog at application's exit:

Memory leaks in MS Classic style dialog

250

Solving bugs in your code 170

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Memory leaks in EurekaLog style dialog

Memory leaks in detailed dialog

As you can see: all memory leaks will be gathered in one single report, which can be send
to you as any other EurekaLog report. The only differences from other kinds of reports are:
no CPU and Assembler tabs and no calling of event handlers.

How to resolve memory leaks
Many people seems to miss the whole point of mem-leak reports. Typical approach of
working with bug report for many people is to open code location from call stack and
analyzing it. The problem is: memory leak report does not point to the problem.

Note: be sure to read Reading and understanding bug report first, especially Searching
bug's location part.

Let's think for a second: what is a leak? Leak is... well, it is when we allocate something
and do not release/free it. So, mem-leak report can (and, actually, will) contain that
"something" - a resource; and it contains "allocation" - i.e. call stack to line of code, which
allocates resource. But where is our problem? An actual problem is sitting at "release/free"
moment! A tool can not know: where did you (your code) planned to release resource.
That's why report contain only information about allocation. There is no direct information

72

97

EurekaLog 7 Documentation171

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

on the problem in the report.

What does it mean, "the problem is in release"? It means, that either we lost pointer to
resource or we do have a pointer, but our release routine wasn't called for some reason.
And those are points, which you should look at.

So, what should you do with mem-leak report? Well, you first need to follow call stack and
find code. But the next thing is different (comparing to exception bug report): you don't
need to analyze this line. You need:
1. Note, what resource was allocated here (object, string, array, memory block, etc...).
2. Find, where this resource should be released "by plan" (call do destructor, out of scope,

explicit free call, etc...).
3. Found reason, why resource wasn't release at founded location.
As it was already said: there can be 2 reasons for item 3 - either we lost reference or we
missed the call.

Delphi's bugs
Before starting doing anything - make sure, that the problem really exists: run your
application in wild run without debugger. This will eliminate any possible false mem-leaks
like this.

Aside from IDE's bugs, there can be bugs in RTL/VCL too: example. It can be direct bugs
(and there is change for their fix in next Delphi version - example), or things that just can't
be fixed. Anyway, both cases introduce a mem-leaks in your application and your code has
nothing to do with it.

So what can you do here? Putting patching apart - the only thing you can do is to ignore
them (since you can't fix them). Yes, this is a workaround. You don't fix a problem - you just
hide it, so you can concentrate on problems, which you can fix. The main danger here is
overuse of such routines: do NOT add all mem-leaks as "registered" - don't forget that this
will not fix the problem!

Best Practices
Certain coding and design practices can limit the number of leaks in your code:

Use managed data types with reference counting and smart pointers wrappers for non-
managed types and functions (you will need to write your own wrapper classes).
Be aware of leak patterns with managed types: circular references between objects.
Avoid using multiple exit paths from a function. Allocations assigned to variables at
function scope should be freed in one particular block at the end of the function.
Use try/finally blocks to ensure (guarantee) finalization and dispose of memory and
resources.
Be careful with type-less functions in RTL. Any code which works with untyped argument
must be carefully analyzed for leaks possibility.

See also:
Configuring project for leaks detection
Other memory problems
Memory leaks settings
Resource leaks settings
EurekaLog memory leaks detection limitations
EurekaLog resource leaks detection limitations

7.5 Memory problems

How to diagnose and fix memory problem
If you have memory corruption issue and you got a report for it - this report will be a simple
indication that you have a problem. You won't be able to fix the problem by using this
report. Why? Because any such report is a note that the problem had occurred somewhere
and some time ago. It's somehow similar to memory leaks - and we've already discussed it
earlier . The problem is that nobody can scan each CPU instruction and ask: "is this

508

171

250

255

589

589

166

http://qc.embarcadero.com/wc/qcmain.aspx?d=73762
http://qc.embarcadero.com/wc/qcmain.aspx?d=73762
http://qc.embarcadero.com/wc/qcmain.aspx?d=36652
http://qc.embarcadero.com/wc/qcmain.aspx?d=23063

Solving bugs in your code 172

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

command going to corrupt my memory?" That's why all checks are performed from time to
time at certain checkpoints. Besides, only special data can be validated automatically. For
example, if we take mem-leaks case - the checkpoints are calls of memory manager's
routines and verified data are internal structures and freed memory. But even in that
simplest case memory manager does not scan the entire memory pool on each request,
limiting check to one memory block in question only. This is a usual trade-off between speed
and functionality.

Okay, so, having a report, you will know that there is a problem. But you don't know where
is it. You have a chance to locate it in the case of memory leaks, but not in the case of
memory corruption. That's because you have some references to code for leaks, but
references to code for memory corruptions are total off-topic. The real culprit-code can sit a
million instructions away in space and time from the code, which crashed because of it, and
there is no references to it. That's why the very first thing, that you should try to do
(wherever you have a report or just crash/hang) is to try to reproduce the problem.
Sometimes you can do it easily; sometimes it is possible, but hard to do; and often it is just
not possible at all.

If you've managed to reproduce the problem - then it is a very simple case. Just debug your
application as much as you want. The most useful tools here will be memory breakpoints.
General strategy is simple: you need to find a moment, when memory is committed, but is
not corrupted yet. You place a break-point on the memory (yes, Delphi's debugger can do it;
we'll not discuss it here - please, refer to other resources or Delphi's help) and you just run
your application. As soon as this break-point fire - you'll find the culprit for memory
corruption. Make yourself at home and take your time: analyze the call stack, variables, etc,
etc - the situation is under your control.

So, to put it short: the main question here is to locate the problem (assuming you can
reproduce it at all). We'll discuss the different methods below, which you can use to locate
the problem. Some of them you can use always - both in debug and release version. Some
of them are only applicable to debug version.

If you aren't able to solve the problem (either you can't reproduce it or you can reproduce,
but can't locate it) – then the only options is to use passive methods. I.e. things, which
aren't directed to your particular issue, but rather helps you to improve your code - that
way after improvements you'll be able to diagnose the problem or it may be that the
problem will go away without doing anything specific. For example, if your code is chaotic
mix of totally unrelated routines calls without slightest sign of logic - you can spend half a
year looking for the reason (and still not solve it). Or you can spend few months to refactor/
improve your code - and then hunt down and fix not only this problem, but other issues too,
which you've spotted because your code becomes much clearer.

Problem's locating (active methods)
First at all, you should analyze, what can be your problem. There are two main cases here:
dynamic memory (heap) or the stack. Depending on the answer you may use methods for
the heap or for the stack. For example, using debugging memory manager can help you
with the memory corruptions in the heap, but it can do nothing about stack corruptions. If
you aren't sure about it - just use all methods.

1. Using debugging memory manager (heap). Debugging memory manager is any memory
manager, which provides additional features for debugging memory problems. Searching for
memory leaks and searching for memory corruption bugs use the very similar approach.
EurekaLog's case: these checks are enabled on memory problems page . Other options
may affect the results too, but these ones are primary options for memory corruption
checks. Just enable additional options and run your application, until debug memory
manager will catch a problem.

Please note that EurekaLog uses light-weight methods, which are fast and can be used on
end-user machines. However, these methods may be not enough for you to local
debugging. In this case you should use specialized heavy-debugging code - like FastMM,
SafeMM, AQTime, etc. This will show down your application a lot and you can not use it on
end-users machines, but you can stress-test your application locally, at developer's
machine.

250

EurekaLog 7 Documentation173

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

2. Enabling debugging options (stack and heap). We mentioned this before too. The
main option here is "Range check errors", which allows you to catch out of range errors in
array-based data structures (note, that this option have a bug in old Delphi's versions).
Besides this option, you may want to disable inlining and optimization (to simplify
debugging and to avoid bugs like this). Unfortunately, Delphi's compiler do not have a more
generic option for checking stack's state like others compilers have.

3. Forced checkpoints (stack and heap). As already mentioned, any report about memory
problem reports only about moment of detection, not about the problem itself. You must
locate the problem. But how can you do it? Obviously, you need to find a point, when
problem is not occurred yet (memory is not corrupted); find the point, when memory is
corrupted. Therefore, the problem will sit somewhere between those two points. Each of
these moments will be a checkpoint. By moving (or creating) checkpoints - you can reduce
code's area with problem until you locate it. Sometimes, those checkpoints are created
automatically. For example, debugging memory manager validates memory block each time
its routine is called for this block. For the stack: it can be routine leave. Since you
successfully leave the routine - this means that return address wasn't damaged, so there
was no stack corruption (at least some type of it). If those automatically created
checkpoints aren't suffice to locate the problem (or they aren't created at all) - then you
need to create them manually.

We have an option to force check manually for the heap. You can call CheckHeap routine for
EurekaLog. You force memory manager to scan the entire memory pool for corruptions by
calling this routine (obviously, only consistence of internal info/headers can be validated,
not the data inside memory blocks). By putting calls to this function around the code - you
put explicit checkpoints. Start with calling them periodically. Once you found a problem
between two calls - move them closer to each other, until you locate the problem.

You can also switch to SafeMM for even more debug control.

4. Debug checks (stack and heap). It's not always possible to use or set checkpoints as
discussed in previous item. For example, no one can check consistency of your information,
all automated tools can check only their info, not yours. That's why you may need to
validate your info manually. Well, it's simple: just place as many checks as you want around
your code. Put Assert's call everywhere. Check every thing, that you're able to check. Once
you found a problem between two Assert's call - move them closer to each other, just like in
checkpoint's case. As soon as you reduce a gap enough to acquire the address of corrupted
memory - you're done. Just run your application until the moment before problem and put a
memory-breakpoint on this address (see also below).

5. Avoiding local variables (stack). Since we don't have much tools for the stack - you can
move the problem elsewhere by avoiding local variables: try to use global variables (just for
test, of course) or (better yet) put all local variables into record, which you allocate
dynamically in the heap. This will move the problem to another area, where we have some
handy tools (your favorite debugging memory manager).

6. Problem with threads (heap). Multi-threading usually does not affect stacks, but it can
be a reason for many hard-to-detect problems with global or heap's data (well, not multi-
threading by itself, but rather synchronization errors). Debugging of multi-threaded
application is large and complex thing, so it won't be discussed there - please, see other
resources.

7. Memory breakpoints (stack and heap). If you'll found an specific address for memory,
which was corrupted, things will become much easier. All you need to do now is to use
memory breakpoints. Memory breakpoints is handy ability of Delphi's debugger, which
allows you to put breakpoint on memory, just like you do this for code. A memory
breakpoint triggers, when some code accesses memory. Use Delphi's help to learn details
on how to use them.

So, you have a memory's address. Run your application until the moment, when this
memory will be available (allocated). It should be in the valid state at this moment. Place a
memory breakpoint on it. And run your application. When breakpoint fires - check the code,
which caused it. You'll find the culprit eventually.

So, if you wasn't able to solve your problem with the above methods - then the only thing

225

http://qc.embarcadero.com/wc/qcmain.aspx?d=10176
http://qc.embarcadero.com/wc/qcmain.aspx?d=10176
http://qc.embarcadero.com/wc/qcmain.aspx?d=10176
http://qc.embarcadero.com/wc/qcmain.aspx?d=10176
http://qc.embarcadero.com/wc/qcmain.aspx?d=10176
http://qc.embarcadero.com/wc/qcmain.aspx?d=10176
http://qc.embarcadero.com/wc/qcmain.aspx?d=10176
http://qc.embarcadero.com/wc/qcmain.aspx?d=83354
http://qc.embarcadero.com/wc/qcmain.aspx?d=83354

Solving bugs in your code 174

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

left is:

Prevention of problems with memory (passive methods)
1. Avoid low-level code. It's simple: scan all your code, looking for calls of low-level routines
(which aren't type-safe, therefore have a high chance of corrupting memory). Double-check
all usage cases. Replace low-level code with high-level counterpart, if you can do it. It's
better to do it slow and safe/correct than do it fast, but incorrect.

2. Check code for being unicode-ready. Most common error is confusing length and size - i.e.
size of buffer in characters and size of buffer in bytes.

3. Use wrappers. Separate all API code into separate unit/class, which you can validate as
single entity. You'll reduce searching area and simplify code by placing suspicious/potential
troublesome code in the same place.

4. Code review by other developer. It's well-know fact, that your eyes see only things,
which you brains want to see. That's why it's good thing to give your code to colleague -
sometimes he/she can spot obvious problem, which you can't solve for few hours/days.

Actually, this section is endless. There are many books, which tells you how to write a good
quality code. And they do this in more details, than we can do it here. That's why we won't
list anything further - just give you some advice: read "smart" books. Consider the text
above only as short example. You can improve yourself and your code by reading books and
blogs. Many problems will be easier to spot or they can disappear eventually.

7.6 Hangs and deadlocks

Hangs - User Perspective
Users like responsive applications. When they click a menu, they want the application to
react instantly, even if it is currently printing their work. When they save a lengthy
document in their favorite word processor, they want to continue typing while the disk is
still spinning. Users get impatient rather quickly when the application does not react in a
timely fashion to their input.

A programmer might recognize many legitimate reasons for an application not to instantly
respond to user input. The application might be busy recalculating some data, or simply
waiting for its disk I/O to complete. However, from user research, we know that users get
annoyed and frustrated after just a couple of seconds of unresponsiveness. After 5
seconds, they will try to terminate a hung application. Next to crashes, application hangs
are the most common source of user disruption when working with GUI applications.

There are many different root causes for application hangs, and not all of them manifest
themselves in an unresponsive UI. However, an unresponsive UI is one of the most
common hang experiences, and this scenario currently receives the most operating system
support for both detection as well as recovery. Windows automatically detects, collects
debug information, and optionally terminates or restarts hung applications. Otherwise, the
user might have to restart the machine in order to recover a hung application.

Hangs - Operating System Perspective
When an application (or more accurately, a thread) creates a window on the desktop, it
enters into an implicit contract with the Desktop Window Manager (DWM) to process
window messages in a timely fashion. The DWM posts messages (keyboard/mouse input
and messages from other windows, as well as itself) into the thread-specific message
queue. The thread retrieves and dispatches those messages via its message queue. If the
thread does not service the queue by calling GetMessage, messages are not processed, and
the window hangs: it can neither redraw nor can it accept input from the user. The
operating system detects this state by attaching a timer to pending messages in the
message queue. If a message has not been retrieved within 5 seconds, the DWM declares
the window to be hung. You can query this particular window state via the IsHungAppWindow
API.

Detection is only the first step. At this point, the user still cannot even terminate the

http://msdn.microsoft.com/en-us/library/windows/desktop/ms644936(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms633526(v=vs.85).aspx

EurekaLog 7 Documentation175

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

application - clicking the X (Close) button would result in a WM_CLOSE message, which
would be stuck in the message queue just like any other message. The Desktop Window
Manager assists by seamlessly hiding and then replacing the hung window with a 'ghost'
copy displaying a bitmap of the original window's previous client area (and adding "Not
Responding" to the title bar). As long as the original window's thread does not retrieve
messages, the DWM manages both windows simultaneously, but allows the user to interact
only with the ghost copy. Using this ghost window, the user can only move, minimize, and -
most importantly - close the unresponsive application, but not change its internal state.

The Desktop Window Manager does one last thing; it integrates with Windows Error
Reporting, allowing the user to not only close and optionally restart the application, but also
send valuable debugging data back to Microsoft. You can get this hang data for your own
applications by signing up at the Winqual website.

See also: WER .

Hangs - EurekaLog Perspective
EurekaLog's hang detection works similarly to system's one. If you enable hang detection

 - then EurekaLog will create a new thread on startup of your application. This "hang
detection" thread will constantly ask UI thread to process a WM_NULL message - this is the
message that do nothing. So it can be used for window polling. If an application window is
hung, it will not be able to process the WM_NULL message. So, EurekaLog will detect a hang.

Note: operating system does not send WM_NULL messages to your threads. OS doesn't need
this, because it already have all information available (information about last sent message
and delay times). However, EurekaLog has no access to this information - thus, it must
send WM_NULL message to detect hangs.

This technique works only in GUI applications (the same as technique used by operating
system) and only for main thread (because GUI in VCL, CLX and FMX applications are
restricted to main thread).

However, if your particular application allow some way to detect hangs - you may use
RaiseFreezeException function to trigger hang detection. For example, if you spawn a
background thread (to offload heavy work and let GUI remain responsive), and if you did
not get reply from your background thread in sane amount of time - then you can consider
your background thread as hanged, and you can call RaiseFreezeException function to
invoke freeze detection dialog.

If your application is running on Vista+ system (e.g. Windows Vista, Windows 7, Windows 8,
Windows 8.1, Windows 10, etc.) - then EurekaLog will use Wait Chain Traversal (WCT) API
to detect deadlocks between threads. Live locks are not detected.

Once EurekaLog detects hang or deadlock in application - it raises a special constructed
exception. This immediately triggers a standard exception processing, which invokes
EurekaLog, displays a error dialog, sends report, etc.

Hangs - Developer Perspective
The operating system and EurekaLog defines an application hang as a UI thread that has
not processed messages for at least 5 seconds (for OS) or 60 seconds (default for
EurekaLog). Obvious bugs cause some hangs, for example, a thread waiting for an event
that is never signaled, and two threads each holding a lock and trying to acquire the
others. You can fix those bugs without too much effort. However, many hangs are not so
clear. Yes, the UI thread is not retrieving messages - but it is equally busy doing other
'important' work and will eventually come back to processing messages.

However, the user perceives this as a bug. The design should match the user's
expectations. If the application's design leads to an unresponsive application, the design
will have to change. Finally, and this is important, unresponsiveness cannot be fixed like a
code bug; it requires upfront work during the design phase. Trying to retrofit an
application's existing code base to make the UI more responsive is often too expensive. The
following design guidelines might help:

573

257

http://msdn.microsoft.com/en-us/library/windows/desktop/ms632637(v=vs.85).aspx

Solving bugs in your code 176

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Make UI responsiveness a top-level requirement; the user should always feel in control of
your application
Ensure that users can cancel operations that take longer than one second to complete
and/or that operations can complete in the background; provide appropriate progress UI
if necessary
Queue long-running or blocking operations as background tasks (this requires a well-
thought out messaging mechanism to inform the UI thread when work has been
completed)
Keep the code for UI threads simple; remove as many blocking API calls as possible
Show windows and dialogs only when they are ready and fully operational. If the dialog
needs to display information that is too resource-intensive to calculate, show some
generic information first and update it on the fly when more data becomes available. A
good example is the folder properties dialog from Windows Explorer. It needs to display
the folder's total size, information that is not readily available from the file system. The
dialog shows up right away and the "size" field is updated from a worker thread

Unfortunately, there is no standard simple way to design and write a responsive
application. Windows and Delphi do not provide a simple asynchronous framework that
would allow for easy scheduling of blocking or long-running operations. The following
sections introduce some of the best practices in preventing hangs and highlight some of the
common pitfalls. However, there are some 3rd party frameworks and solutions available,
which can help you with developing smooth applications. Please look for information about
AsyncCalls, TasksEx and OTL.

Best Practices
Keep the UI Thread Simple
The UI thread's primary responsibility is to retrieve and dispatch messages. Any other kind
of work introduces the risk of hanging the windows owned by this thread.

Do:
Move resource-intensive or unbounded algorithms that result in long-running operations
to worker threads
Identify as many blocking function calls as possible and try to move them to worker
threads; any function calling into another DLL should be suspicious
Make an extra effort to remove all file I/O and networking API calls from your worker
thread. These functions can block for many seconds if not minutes. If you need to do any
kind of I/O in the UI thread, consider using asynchronous I/O
Be aware that your UI thread is also servicing all single-threaded apartment (STA) COM
servers hosted by your process; if you make a blocking call, these COM servers will be
unresponsive until you service the message queue again

Do not:
Wait on any kernel object (like Event or Mutex) for more than a very short amount of
time; if you have to wait at all, consider using MsgWaitForMultipleObjects, which will
unblock when a new message arrives
Share a thread's window message queue with another thread by using the
AttachThreadInput function. It is not only extremely difficult to properly synchronize
access to the queue, it also can prevent the Windows operating system from properly
detecting a hung window
Use TerminateThread on any of your worker threads. Terminating a thread in this way will
not allow it to release locks or signal events and can easily result in orphaned
synchronization objects
Call into any 'unknown' code from your UI thread. This is especially true if your application
has an extensibility model; there is no guarantee that 3rd-party code follows your
responsiveness guidelines
Make any kind of blocking broadcast call; SendMessage(HWND_BROADCAST) puts you at the
mercy of every ill-written application currently running

Implement Asynchronous Patterns
Removing long-running or blocking operations from the UI thread requires implementing an
asynchronous framework that allows offloading those operations to worker threads.

EurekaLog 7 Documentation177

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Do:
Use asynchronous window message APIs in your UI thread, especially by replacing
SendMessage with one of its non-blocking peers: PostMessage, SendNotifyMessage, or
SendMessageCallback
Use background threads to execute long-running or blocking tasks. Use the new thread
pool API to implement your worker threads
Provide cancellation support for long-running background tasks. For blocking I/O
operations, use I/O cancellation, but only as a last resort; it's not easy to cancel the
'right' operation

Use Locks Wisely
Your application or DLL needs locks to synchronize access to its internal data structures.
Using multiple locks increases parallelism and makes your application more responsive.
However, using multiple locks also increases the chance of acquiring those locks in different
orders and causing your threads to deadlock. If two threads each hold a lock and then try
to acquire the other thread's lock, their operations will form a circular wait that blocks any
forward progress for these threads. You can avoid this deadlock only by ensuring that all
threads in the application always acquire all locks in the same order. However, it isn't
always easy to acquire locks in the 'right' order. Software components can be composed,
but lock acquisitions cannot. If your code calls some other component, that component's
locks now become part of your implicit lock order - even if you have no visibility into those
locks.

Things get even harder because locking operations include far more than the usual
functions for Critical Sections, Mutexes, and other traditional locks. Any blocking call that
crosses thread boundaries has synchronization properties that can result in a deadlock. The
calling thread performs an operation with 'acquire' semantics and cannot unblock until the
target thread 'releases' that call. Quite a few User32 functions (for example SendMessage),
as well as many blocking COM calls fall into this category.

Worse yet, the operating system has its own internal process-specific lock that sometimes
is held while your code executes. This lock is acquired when DLLs are loaded into the
process, and is therefore called the 'loader lock.' The DllMain function always executes
under the loader lock; if you acquire any locks in DllMain (and you should not), you need to
make the loader lock part of your lock order. Calling certain Win32 APIs might also acquire
the loader lock on your behalf - functions like LoadLibraryEx, GetModuleHandle, and
especially CoCreateInstance.

Do:
Design a lock hierarchy and obey it. Add all the necessary locks. There are many more
synchronization primitives than just Mutex and CriticalSections; they all need to be
included. Include the loader lock in your hierarchy if you take any locks in DllMain
Agree on locking protocol with your dependencies. Any code your application calls or that
might call your application needs to share the same lock hierarchy
Lock data structures not functions. Move lock acquisitions away from function entry points
and guard only data access with locks. If less code operates under a lock, there is less of
a chance for deadlocks
Analyze lock acquisitions and releases in your error handling code. Often the lock
hierarchy if forgotten when trying to recover from an error condition
Replace nested locks with reference counters - they cannot deadlock. Individually locked
elements in lists and tables are good candidates
Be careful when waiting on a thread handle from a DLL. Always assume that your code
could be called under the loader lock. It's better to reference-count your resources and let
the worker thread do its own cleanup (and then use FreeLibraryAndExitThread to
terminate cleanly)
Use the Wait Chain Traversal if you want to diagnose your own deadlocks

Do not:
Do anything other than very simple initialization work in your DllMain function. Especially
do not call LoadLibraryEx or CoCreateInstance
Write your own locking primitives. Custom synchronization code can easily introduce
subtle bugs into your code base. Use the rich selection of operating system and Delphi's
RTL synchronization objects instead
Do any work in the constructors and destructors for global variables, they are executed

Solving bugs in your code 178

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

under the loader lock

Be Careful with Exceptions
Exceptions allow the separation of normal program flow and error handling. Because of this
separation, it can be difficult to know the precise state of the program prior to the exception
and the exception handler might miss crucial steps in restoring a valid state. This is
especially true for lock acquisitions that need to be released in the handler to prevent
future deadlocks.

Do:
Use try/finally pattern with locks to ensure releasing lock on exceptions
Be careful with the code executing in exception handler; the exception might have leaked
many locks, so your handler should not acquire any

Do not:
Handle native exceptions if not necessary or required. If you use native exception
handlers for reporting or data recovery after catastrophic failures, consider using the
EurekaLog or default operating system mechanism of Windows Error Reporting instead

This article is based on Preventing Hangs in Windows Applications

http://msdn.microsoft.com/en-us/library/dd744765(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd744765(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd744765(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd744765(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd744765(VS.85).aspx

Part

VIII

Customizing EurekaLog 180

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

8 Customizing EurekaLog

Note: this is advanced article on customizing EurekaLog. Novice and beginners can start
with Basic procedures tutorial instead.

EurekaLog 7 offers many ways for customizing behavior and visual appearance (error
dialogs).

You can use one or more of the following methods (all methods are listed starting with most
high-level/easy-to-use to low-level/hard-to-use):

1. EurekaLog options :
a. Static options
b. Dynamic options :

i. Variables
ii. Filters

2. Coding :
a. Changing options at run-time
b. Custom attributes
c. Events
d. Subclassing
e. Low-level handlers
f. Modifying code of EurekaLog itself

See also:
Customizing feedback

8.1 EurekaLog options

EurekaLog options is the most simple way to affect on EurekaLog . They were specifically
designed for that purpose. Most customizations can be done by using options:

Static options
Dynamic options

See also:
Coding

8.1.1 Static options

EurekaLog stores per-project configuration in options file for your project (it's .dproj/.cbproj
for new Delphi/C++ Builder versions). Each time you build your project with EurekaLog -
these options are inserted into final .exe file (or DLL). Then EurekaLog's code can use these
options at run-time.

Therefore, you can set options during design-time - and they will be accounted when
application is run. In other words, EurekaLog project options works exactly as standard
project options dialog.

To view/edit options - you must first open a project in your IDE. Then you should use
"Project"/"EurekaLog options" menu command:

45

180

180

183

183

185

189

189

190

192

195

211

212

155

180

180

183

189

EurekaLog 7 Documentation181

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Opening EurekaLog project options

(You can also invoke this command if you don't have opened project, but then you'll edit
default options for each new project).

The dialog itself is similar to project options dialog from Delphi/C++ Builder:

Customizing EurekaLog 182

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

EurekaLog project options

You can see options categories on the left part (TreeView). Click on any category or sub-
category to view and/or change options inside this category.

With this dialog you may change EurekaLog behaviour - to save bug report to disk or not,
and where to save it, and what will be inside bug report, and should it be sent to you (as
developer), and many other things.

Options are preset to fulfil common needs of developers. As you may guees, not always
these "common needs" is what you specifically need in your own project. So we suggest
you just to walk through options dialog to get yourself familiar with available options and
alter them as you need. Each options has a detailed description in our help system. Yes, F1
works, if you've installed local help files during installation of EurekaLog (which is by
default). But you may always visit our online help or just press F1 . Moreover, each option
has short explanation in the hint. Just hover option's control with mouse cursor and wait a
little:

225

http://www.eurekalog.com/help/eurekalog/project_options.php
http://www.eurekalog.com/help/eurekalog/project_options.php
http://www.eurekalog.com/help/eurekalog/project_options.php

EurekaLog 7 Documentation183

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Popup hint with explanation of the option under the mouse cursor

Conclusion:
+ easy to use, no coding is necessary
- options are static (i.e. set at design time)

See also:
Dynamic options
Project options
External options
Customizing EurekaLog

8.1.2 Dynamic options

There are two additional features to mitigate "static" negative effect of options:
Variables
Filters

8.1.2.1 Variables

Environment variables are a set of dynamic named values that can affect the way
running processes will behave on a computer. They can be said in some sense to create the
operating environment in which a process runs. For example, an environment variable with
a standard name can store the location that a particular computer system uses to store
temporary files - this may vary from one computer system to another. A process which
invokes the environment variable by (standard) name can be sure that it is storing
temporary information in a directory that exists and is expected to have sufficient space.

You can use environment variables in any text values in your project settings. You can
insert variable by using "Variables" window. Variable is inserted as special tag. When you
run your application at run-time, any variable value will be replaced with actual value, which
is calculated at run-time.

For example, if you set your folder for saving bug-report to "%APPDATA%\MyBugReports" then
your bug reports will be saved to C:\Users\UserName\AppData\Roaming\MyBugReports\ or C:

\Documents and Settings\UserName\Application Data\MyBugReports - depending on real

value of %APPDATA% variable at run-time.

183

225

443

180

180

183

185

413

Customizing EurekaLog 184

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Note: variables names are case-insensitive.

When you're in your EurekaLog project options (see above), you can click on "Variables"
button at dialog's bottom:

"Variables" button in EurekaLog project options

Click on this button and you will see such window:

"Variables" dialog

"Copy" button will close the window with copying selected variable into clipboard.
Alternatively: you can just double-click on variable in the list.
"Close" button will close the window without any action.

Suggested action's sequence:
1. Open "Variables" window.
2. Select variable that you want to use.
3. Click "Copy" (or double-click variable). Dialog will be closed.
4. Paste variable name from clipboard (Ctrl + V or Shift + Ins) to target setting's edit box.

EurekaLog 7 Documentation185

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Notes:
This dialog suggests you only build-in special pseudo-variables (those with names started
with "_") and commonly used variables. However, you can use any environment variable
(even if it's not listed in this dialog).
You can also use relative file paths. For example, any path which starts with . (dot) will be
relative to your current executable (regardless of actual current folder, which may be
changed, say, by system open dialog). For example, ".\BugReport.el" means file in the
same folder as your executable.

See more:
Explanation of environment variables (with the list of available variables)

So, while variables is an easy way to add some dynamic behaviour to EurekaLog options,
their powers are limited. There may be no variable for your specific need or it may be not
applicable to desired options (such as checked/unchecked option kind). In this case - you
can set up/alter options from code .

See also:
Filters
Customizing EurekaLog
Coding

8.1.2.2 Filters

Exception filter is a filter which can alter EurekaLog's behavior based on some properties of
exception. It is a easy way to customize EurekaLog on per-exception basis without writing
code. Exception filters can be configured here .

Usually exceptions are identified by exception's class name (such as 'Exception',
'EAccessViolation', 'EStreamReadError', etc.). You can also identify exception by source
location or values of properties. And you can identify exception by its type (handled or
unhandled). Once exception is identified - you can change handler for it (none, RTL or
EurekaLog), dialog class (to any of existing dialog classes), override error message, set
action (restart or terminate) or mark exception as "expected". Remember, that you can also
use environment variables.

Exception filters are applied before processing exception. Filters are applied in order from
top to bottom. First matched filter is applied.

413

189

185

180

189

343

Customizing EurekaLog 186

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Example of 3 exceptions filters added to options

EurekaLog 7 Documentation187

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Exception Identification Page

Customizing EurekaLog 188

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Altering Behavior Page

Most typical usage for exceptions filters include:
Completely ignore particular exception type. This is useful for such exceptions as EAbort.
You may use similar exception types in your code, so now you can use exception filters
feature to completely hide such exceptions. Set handler to "none". No error dialog will be
shown. No bug report will be created.
Excluding certain exceptions from EurekaLog's processing. For example, when disk free
space is low and you try to create or write a file - an exception about insufficient disk
space will be raised. You usually want this exception to be shown as error to the end
user (so he/she can free some disk space and retry the operation), rather than
generating bug report (and optionally sending it to you). That's because this exception is
not a bug in your code, there is nothing to fix. So you may create filter for such exceptions
(they are called "expected" exceptions). Set handler to RTL, and this exception will be
handled as usual (by showing error message), but no EurekaLog work will be done for it
(no EurekaLog error dialog, no bug reports, etc.).
Some exceptions (such as access violation) are low-level. Their message contains some
technical information, but it's completely useless for most users (which are not
programmers). Seeing such "cryptic" error messages may be confusing ("gosh, what
should I do with it? Is it even a error? Or it asks me something that I don't understand?"),

EurekaLog 7 Documentation189

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

so it may be useful to hide them. It's better to show more user-friendly message like
"Sorry, there was a error in application. Please, let us know about this problem and
restart application." Such message is far more descriptive. It explains what happenned
(an error) and what to do (report to developers and restart application). You may create
exception filters for such exceptions, set handler to "EurekaLog" and override a error
message. You may additionally enable termination/restart features for these exceptions.
Note: message override affects only error message in visual dialogs. Bug reports always
contain information about original exception (with original error message).

There may be other use for exception filters (just use your imagination). But the above are
the most popular ones.

Important note: your exception classes must be real classes. You can not use aliases. For
example:

type
 EMyException1 = class(Exception);
 EMyException2 = Exception;

You can specify 'EMyException1' as exception class name. However, 'EMyException2' will not
work. Because there is no such class. You should use 'Exception' instead.

Important note: ensure that features specified in exception filters will be available at run-
time. For example, if your application uses MS Classic-styled exception dialog by default and
you want to switch to EurekaLog-styled dialog for some exceptions by using exception
filters - then be sure to include code for EurekaLog dialog into your application .

Note: exceptions filter can also be created from code . Also, exception filters can be
replaced with custom attributes .

See also:
Exception filters options
Variables
Customizing EurekaLog
Coding

8.2 Coding

While the previously discussed methods do not require writing code and provide some
degree of dynamic changes at run-time , they are still limited and not suitable for custom,
not common cases. So, when you have specific need that can't be satisfied by the discussed
methods - then you'll have to write some code:

Changing options at run-time
Custom attributes
Events
Subclassing
Low-level handlers
Modifying code of EurekaLog itself

See also:
Customizing EurekaLog

8.2.1 Changing options at run-time

One of the simplest customizations is changing EurekaLog options from the code.
ExceptionLog7 unit declares global function CurrentEurekaLogOptions. This function
returns TEurekaModuleOptions class (which is declared in EClasses unit), which contains
properties corresponding to EurekaLog's options. I.e. almost each property (that you can
change in EurekaLog project options dialog) is presented as property in
TEurekaModuleOptions class.

For example, you may write a program which is able to work either as Win32 service or as

354

189

190

343

183

180

189

180

183

189

190

192

195

211

212

180

180

225

Customizing EurekaLog 190

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

GUI front end - depending on the way it was launched. You probably want to have different
bug reports for each of this mode. And Win32 service can't have visual error dialogs.
Obviously, this can't be solved by setting options at design-time, since trigger event
happens at run-time. So, you setup common options at design time and write such code,
which sets the differences:

uses
 ETypes, EClasses, ExceptionLog7;

...

initialization

 if IsWin32Service then
 begin
 CurrentEurekaLogOptions.OutputPath := '%APPDATA%\MySoftware\Win32Service\';
 CurrentEurekaLogOptions.ExceptionDialogType := edtService;
 end
 else
 begin
 CurrentEurekaLogOptions.OutputPath := '%APPDATA%\MySoftware\GUIFrontEnd\';
 CurrentEurekaLogOptions.ExceptionDialogType := edtMSClassic;
 end;

end.

Notes:
Some options (such as build options) affects compilation stage. Thus, they can't be
changed at run-time when file was already compiled.
Some options (such as leaks control) requires special rules for setting up . That's
why they are controlled with other means, not with options class. However, 90% of
options can be freely changed via this class.
Needless to say that you may use environment variables and exception filters from
code too. You can alter exception filters via CurrentEurekaLogOptions.ExceptionsFilters
property.

CurrentEurekaLogOptions is a global function which contains default options for your
application in run-time. It affects all exceptions and all threads. Typically, you alter these
options at startup (either in initialization section of some unit or in begin/end of .dpr file).

Often there is need to alter option only for some exceptions. EurekaLog provides additional
feature for this: events and event hanlders .

Important note: ensure that features specified by your code will be available at run-time.
For example, if your application uses MS Classic-styled exception dialog by default and you
want to switch to EurekaLog-styled dialog with your code - then be sure to include code for
EurekaLog dialog into your application . The same is true for send engines . Hooks
and debug information providers are registered on startup and could not be customized
at run-time.

See also:
Coding
Customizing EurekaLog
Configuring project for leaks detection

8.2.2 Custom attributes

New Delphi and C++ Builder IDEs offer extented RTTI with support of custom attributes.
EurekaLog is able to use custom attributes to alter behaviour for exception types. This is
similar to exception filters . Using exception filters is simple, but sometimes it's not very
convenient. So, instead you can define EurekaLog behaviour right when you declare

349

250 508

183 185

192

354 355 352

355

189

180

508

185

http://docwiki.embarcadero.com/RADStudio/en/Attributes_Index
http://docwiki.embarcadero.com/RADStudio/en/Attributes_Index

EurekaLog 7 Documentation191

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

exception classes (this code will be ignored if there is no EurekaLog installed).

Custom attributes are declared in EClasses unit. The following attributes are declared:

type
 EurekaLogHandler = class(TCustomAttribute)
 strict private
 FHandler: TFilterHandlerType;
 public
 constructor Create(Value: TFilterHandlerType);
 property Handler: TFilterHandlerType read FHandler;
 end;

 EurekaLogMessage = class(TCustomAttribute)
 strict private
 FMessage: String;
 public
 constructor Create(Value: String);
 property Message: String read FMessage;
 end;

 EurekaLogAction = class(TCustomAttribute)
 strict private
 FAction: TFilterActionType;
 public
 constructor Create(Value: TFilterActionType);
 property Action: TFilterActionType read FAction;
 end;

 EurekaLogDialog = class(TCustomAttribute)
 strict private
 FDialog: TExceptionDialogType;
 public
 constructor Create(Value: TExceptionDialogType);
 property Dialog: TExceptionDialogType read FDialog;
 end;

 EurekaLogExpected = class(TCustomAttribute)
 strict private
 FURL: String;
 FContext: Integer;
 FBugID: TBugID;
 public
 constructor Create(const AContextNumber: Integer = -1;
 const AURL: String = ''; const ABugID: TBugID = 0);
 property URL: String read FURL;
 property Context: Integer read FContext;
 property BugID: TBugID read FBugID;
 end;

Here is a sample on how to use them:

type

 // ETestException will be ignored by EurekaLog and

 // it always will be handled by your application

Customizing EurekaLog 192

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 // (as if EurekaLog would be disabled)
 [EurekaLogHandler(fhtRTL)]
 ETestException = class(Exception);

 // Exception message will be replaced
 [EurekaLogMessage('Sorry, there was an error.')]
 ECustomMessage = class(Exception);

 // Switch dialog to EurekaLog-Detailed style
 [EurekaLogDialog(edtEurekaLogDetailed)]
 EDialogException = class(Exception);

 // Mark exception as expected
 [EurekaLogExpected()]
 EMyException1 = class(Exception);

 // Mark exception as expected, assign help topic ID = 1234,

 // show "Help" button in dialogs
 [EurekaLogExpected(1234)]
 EMyException2 = class(Exception);

 // Mark exception as expected, assign online help topic (URL),

 // show "Help" button in dialogs
 [EurekaLogExpected(0, 'http://www.example.com/kb/low_memory.asp')]
 EMyException3 = class(Exception);

 // Mark exception as expected, assign fixed BugID
 [EurekaLogExpected(-1, '', $C4F10001)]
 EMyException4 = class(Exception);

You get the idea - when you declare exception type, you can add attributes to it. Each
attribute will modify EurekaLog behavior for exceptions of this class only. This works the
same as exception filters (actually, internally custom attributes just creates new filter
rule).

To learn more about custom attributes - visit RAD Studio help.

Important note: ensure that features specified by your code will be available at run-time.
For example, if your application uses MS Classic-styled exception dialog by default and you
want to switch to EurekaLog-styled dialog with your code - then be sure to include code for
EurekaLog dialog into your application . The same is true for send engines . Hooks
and debug information providers are registered on startup and could not be customized
at run-time.

See also:
Filters
Coding
Customizing EurekaLog

8.2.3 Events

EurekaLog's event is similar to standard Delphi/C++ Builder events, such as OnClick for
TButton. Event handler is callback procedure or method, which you regiter for some event.
EurekaLog will call your event handler (i.e. your code) each time this event occurs. There
are many events available. Most commonly used are OnExceptionNotify and
OnExceptionAction.

Important note: event handlers will not be called during leaks processing. That is because
leaks detection happens AFTER finalizing application. See Configuring project for leaks

185

354 355 352

355

185

189

180

http://docwiki.embarcadero.com/RADStudio/en/Attributes_Index
http://docwiki.embarcadero.com/RADStudio/en/Attributes_Index
http://docwiki.embarcadero.com/RADStudio/en/Attributes_Index

EurekaLog 7 Documentation193

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

detection for more info.

Note: each event handler is declared as both method or procedure. You can use either
option, there is no difference between method and procedure, so you can use whatever
you want.

There are two ways of registering your code as event handler. The most simple way is to
use TEurekaLogEvents component. This component is similar to standard
TApplicationEvents component. Just drop it on the form and assign handlers by using
"Events" page in Object Inspector:

TEurekaLogEvents component on the form and one event hanlder assigned

While this is very simple way, you should be aware that your event handlers will be
registered as long as host form lives. Thus, your event handler will not be invoked for
events during initialization/finalization of your application. For this reason:

While there is no limitation on TEurekaLogEvents components in one application and no
restrictions on the form (it can be main form and any child/auxilary form), we recommend
to use main form as host for TEurekaLogEvents component whenever possible.
We recommend using component only for such events that depends on your host form.
For example, event hanlder may add currently opened document to bug report. Such
event handler is best registered with component. We don't recommend using component
for more generic event handlers. Use code registration (see below).

Note: registering event handler via component will create/use event handler as method of
the object (i.e. form), not as callback procedure.

Second method to register event handler is to call RegisterEventName function, where Name

is a name of event. For example, you may use such code:

508

http://docwiki.embarcadero.com/Libraries/en/Vcl.AppEvnts.TApplicationEvents
http://docwiki.embarcadero.com/Libraries/en/Vcl.AppEvnts.TApplicationEvents

Customizing EurekaLog 194

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

unit Unit1;

interface

...

implementation

uses
 EEvents;

// Some your routine to add a message to application log
procedure AddToLog(const AMessage: String);
begin
 ...
end;

// Your handler for OnExceptionNotify event
procedure MyHandler(const ACustom: Pointer; AExceptionInfo: TEurekaExceptionInfo;
 var AHandle: Boolean; var ACallNextHandler: Boolean);
begin
 if AExceptionInfo.ExceptionClass = 'EMyException' then
 begin
 AddToLog(AExceptionInfo.CallStack.ToString);
 AHandle := False;
 end;
end;

initialization

 RegisterEventExceptionNotify(nil, MyHandler);

end.

This sample event handler will log call stack of each exception of EMyException type, and it
will disable EurekaLog's processing for these exceptions.

As you can see - you need to write all code by yourself (i.e. handler registration and
procedure header/prototype). All events are declared in EEvents unit.

Note: you may unregister registered event handler by using UnregisterEventName function,

but it's not required.

That's almost all for events and event handlers, but we must discuss one more important
thing. Once exception is raised, EurekaLog options are captured from
CurrentEurekaLogOptions function. Each exception is accompanied by TEurekaExceptionInfo
class, which contains property and options for each exception. Further changes in
CurrentEurekaLogOptions will not affect already raised exceptions. Threfore, your changes
of CurrentEurekaLogOptions inside any event handler for exceptions will have no effect for
current exception. It will affect only future exceptions. To change options of current
exceptions - use Options property of TEurekaExceptionInfo class. For example:

EurekaLog 7 Documentation195

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

unit Unit1;

interface

...

implementation

uses
 EEvents;

// Your handler for OnExceptionNotify event
procedure MyHandler(const ACustom: Pointer; AExceptionInfo: TEurekaExceptionInfo;
 var AHandle: Boolean; var ACallNextHandler: Boolean);
begin

 // The same as exception filter for EMyException which changes dialog to "EurekaLog" style
 if AExceptionInfo.ExceptionClass = 'EMyException' then
 AExceptionInfo.Options.ExceptionDialogType := edtEurekaLog;
end;

initialization

 RegisterEventExceptionNotify(nil, MyHandler);

end.

The similar concern is applied for many other objects in EurekaLog. Such as dialogs, send
engines, log report builders, call stack classes, etc. They all have Options property, which is
captured from their "parent" or CurrentEurekaLogOptions if there is no "parent".

To summarize:
Event hanlders offer you unlimited ability for customizing EurekaLog, but only within
certain points of interest (i.e. events). You can't alter whole processing logic by using
only event handlers.

Important note: ensure that features specified by your code will be available at run-time.
For example, if your application uses MS Classic-styled exception dialog by default and you
want to switch to EurekaLog-styled dialog with your code - then be sure to include code for
EurekaLog dialog into your application . The same is true for send engines . Hooks
and debug information providers are registered on startup and could not be customized
at run-time.

See also:
List of available events
Coding
Customizing EurekaLog
Configuring project for leaks detection

8.2.4 Subclassing

When event handlers are not enough, you need to override parts of EurekaLog's code
to fulfill your needs. For example, if you want to alter icon in error dialogs or replace dialog
as whole, if you want to change processing (exchange order of saving bug report and
sending it), etc. or if you want to extend EurekaLog (like add new dialog or new send
method) - then you can't use event handlers, because there is no event for that. But what
you can do is to replace or extend EurekaLog's code with your own.

High level code of EurekaLog is done as classes. Therefore, if you need to alter minor point
in EurekaLog (adjust it a little), then you may create your own class as child class to
standard EurekaLog class, override some virtual method, write your own behavior code, call

195

354 355 352

355

189

180

508

192

Customizing EurekaLog 196

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

inherited method to get standard behavior, and so on. I.e. the usual things that you may
do with tree of classes. Or you may write your own class completely from scratch (inheriting
from base abstract class).

Note: please note that EurekaLog classes are constantly evolving (unlike events). There
are new methods and features introduced as time passes. Therefore your code that uses
sub-classing may need to be adjusted for new EurekaLog versions.

For that reason classes are described much less in documentation than other methods.
Because they are used much rarely and changes more often. To study what you can do with
classes you will have to read interface sections of units with declaration of classes. There
you can see class inheritance, interesting methods to override, etc. You can do this even in
EurekaLog's editions without full source code. We provide .pas headers for your reference
(see "Source" folder of your EurekaLog installation).

The common rule is: if class can be only one (like log builder class), then class type is
registered via global class variable. All you have to do is to write your own class and assign
it to variable during initialization. Otherwise, if there may be various classes (like dialogs or
send engines), then you have to create your own class, register it in global list via various
RegisterSomething functions (they are declared in the same place as base abstract

classes), and switch EurekaLog to use your class via options.

Let's see some code examples to make things clear.

Example #1: replacing dialog icon.
EurekaLog offers you feature to use generic error icon or icon of your application for error
dialogs. However, you may want to use some other icon for that. There is no such feature in
EurekaLog, but you can easily fix that with such code:

EurekaLog 7 Documentation197

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

unit Unit1;

interface

// ...

implementation

uses
 EBase, ECore, EModules, EListView, EDialog, EDialogWinAPIMSClassic;

{$R *.dfm}

// To test our customization code
procedure TForm1.Button1Click(Sender: TObject);
begin
 raise Exception.Create('Error Message');
end;

type

 // Our child class - inheriting from standard TMSClassicDialog
 TMSClassicDialogCustom = class(TMSClassicDialog)
 private

 FCustomIcon: HBITMAP; // our new icon
 protected

 // Init/done:
 procedure WindowInit; override;
 procedure WindowDone; override;

 // Replacing icon drawing:
 function Paint(const ADC: HDC; const ARect: TRect): Integer; override;
 end;

{ TMSClassicDialogCustom }

procedure TMSClassicDialogCustom.WindowInit;
var
 Ico: HIcon;
begin
 inherited;

 Ico := LoadIcon(HInstance, 'CUSTOMICON');
 FCustomIcon := IcoToBmp(Ico, GetStockObject(WHITE_BRUSH), 32, 32);
end;

function TMSClassicDialogCustom.Paint(const ADC: HDC; const ARect: TRect): Integer;
begin
 Result := inherited;
 DrawBmp(ADC, FCustomIcon, MonitorLeft, MonitorTop, 32, 32);
end;

procedure TMSClassicDialogCustom.WindowDone;
begin
 DeleteObject(FCustomIcon);
 inherited;
end;

initialization

Customizing EurekaLog 198

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 if IsEurekaLogInstalled then
 begin

 // You have to register dialog before using it:
 RegisterDialogClass(TMSClassicDialogCustom);

 // Once registered - now you can use it in options:
 CurrentEurekaLogOptions.ExceptionDialogType := TMSClassicDialogCustom.ClassName;
 end;

end.

Obviously, this code replaces icon for one particular dialog type (MS Classic style). If you
want to alter icon for several classes, then you have to write more your own child classes.

Example #2: replacing content of bug reports.
Recently we got a request from a customer. They use their own system to collect and sort
bug reports generated by EurekaLog. Previously they worked with EurekaLog 6, but then
upgraded to EurekaLog 7. Bug reports from EurekaLog 7 has slightly different structure
than reports from EurekaLog 6 (new fields and columns). Therefore, new format of bug
report file breaks their old code. Of course, they can update/improve their code or... switch
EurekaLog to produce bug reports in old format. This can also be useful if you're migrating
to EurekaLog from other exception tracers solutions (such as JCLDebug/JCLHookExcept,
madExcept or Exception Magic). You can force EurekaLog to generate bug report in the
format of your previous solution, so you won't have to re-write other code. Obviously, there
is no such build-in feature in EurekaLog.

Here is a simple code that creates bug report in format of EurekaLog 6:

EurekaLog 7 Documentation199

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

uses
 EConsts, ETypes, EClasses, ECallStack, EException, EEvents, ELogBuilder;

type

 // EurekaLog 6 format will be altered from default EurekaLog 7 format,

 // that's why we inherit from EurekaLog 7 builder class and

 // replace only some methods
 TEurekaLog6Builder = class(TLogBuilder)
 public
 function CreateGeneralText: String; override;
 function CreateCallStackText: String; override;
 end;

{ TEurekaLog6Builder }

// Replace header of the bug report (to change "7" to "6" in header)
function TEurekaLog6Builder.CreateGeneralText: String;
begin
 Result := inherited;
 Result := 'EurekaLog 6' + Copy(Result, Pos(sLineBreak, Result), MaxInt);
end;

// Replace call stack (remove new columns)
function TEurekaLog6Builder.CreateCallStackText: String;
var
 Stack: TEurekaCallStack;
 Formatter: TEurekaBaseStackFormatter;
begin
 Stack := nil;
 try
 if CallStack <> nil then
 begin
 Stack := TEurekaCallStack.Create;

 Stack.Assign(CallStack);

 Stack.Formatter.Assign(Options);
 Stack.Formatter.CaptionHeader :=
 Options.CustomizedExpandedTexts[mtDialog_CallStackHeader] + EHeaderSuffix;
 end;

 Formatter := TEurekaStackFormatterV6.Create;
 try
 Formatter.Assign(Options);
 Formatter.CaptionHeader :=
 Options.CustomizedExpandedTexts[mtDialog_CallStackHeader] + EHeaderSuffix;

 Result := CallStackToString(Stack,
 Options.CustomizedExpandedTexts[mtDialog_CallStackHeader] + EHeaderSuffix,

Customizing EurekaLog 200

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 Formatter);
 finally
 FreeAndNil(Formatter);
 end;
 finally
 FreeAndNil(Stack);
 end;
end;

// Rename .el files to old .elf files
procedure CustomizeFileNames(const ACustom: Pointer; AExceptionInfo: TEurekaExceptionInfo;
 const AFileType: TEurekaLogFileType; var AFileName: String; var ACallNextHandler: Boolean);
begin
 if AnsiLowerCase(ExtractFileExt(AFileName)) = '.el' then
 AFileName := ChangeFileExt(AFileName, '.elf');
end;

initialization

 // Register bug report builder:
 LogBuilderClass := TEurekaLog6Builder;

 // Register event handler for file names:
 RegisterEventCustomFileName(nil, CustomizeFileNames);

end.

This sample uses a combination of custom class and event handler to reach the desired
goal.

Example #3: override original class.
Suppose that you want to alter original behavior/class, but don't want to create a new
class (with new name), because this will require you to alter options as well. Instead, you
want just to set up options at design time and provide altered behavior at run-time.

For example, when you post bug to Mantis, a issue title is composed. EurekaLog does not
provide way to alter it, because it's used to identify tickets. You may want to alter it (say, by
appending more info, so title becomes more descriptive). Here is how you can do that:

EurekaLog 7 Documentation201

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

uses
 EConsts,
 ESend,
 ESendAPIMantis;

type

 // Trick: use the same class name as original class

 // You'll have to append unit name to class ident to avoid compiler confusion
 TELTrackerMantisSender = class(ESendAPIMantis.TELTrackerMantisSender)
 protected
 function ComposeTitle: String; override;
 end;

// This is a default implementation of the method,

// you can replace it with arbitrary code
function TELTrackerMantisSender.ComposeTitle: String;
begin
 if BugAppVersion <> '' then
 Result := Format('%s (Bug %s; v%s)', [BugType, BugID, BugAppVersion])
 else
 Result := Format('%s (Bug %s)', [BugType, BugID]);
 Log(Format('Title = ''%s''', [Result]));
end;

initialization

 // Register send class to be the first in the list.

 // Default class (by EurekaLog) will be listed later.

 // Any search for class by name will find our class, because it's listed first

 RegisterSenderFirst(TELTrackerMantisSender); // <- Notice "First" in the name

end.

With this trick you don't have to change options. You can just set options at design-time.
The important part here is to register your class first, which is archived by using registering
function with "First" suffix.

Note: please note that this is not recommended way to work with tickets in Mantis. We
suggest you to create custom fields for your project (this is done in Mantis configuration).
Fill custom fields with information (this is done in EurekaLog configuration). And show some
of these fields in list of tickets (this is done in Mantis configuration). That way you will
archive the desired effect (to see more info about each ticket in list), but also additionally
gain some benefits: you will be able to sort/filter by custom fields, you will not break default
EurekaLog tickets identification.

Example #4: a custom dialog.
You may be not satisfied by standard EurekaLog dialogs, so you may want to use your own
dialog. Here is what you need to do: create class inheriting from abstract TBaseDialog class
(EDialog unit), register it, and set ExceptionDialogType option. This example is similar to
example #1. But this time we create dialog from scratch, we're not using ready classes.

The following sample shows four new dialog classes. Actually, this is just a code from
EurekaLog itself, but it's short and simple to illustrate the point:

Customizing EurekaLog 202

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

uses
 EDialog, EClasses, ETypes;

type

 // "Empty" dialog that does nothing at all
 TNullDialog = class(TBaseDialog)
 protected
 procedure Beep; override;
 function ShowModalInternal: TResponse; override;
 public
 class function ThreadSafe: Boolean; override;
 end;

 // MessageBox dialog
 TMessageBoxDialog = class(TBaseDialog)
 protected
 function ShowModalInternal: TResponse; override;
 procedure Beep; override;
 public
 class function ThreadSafe: Boolean; override;
 end;

 // A variant of MessageBox with more detailed message (with call stack)
 TMessageBoxDetailedDialog = class(TMessageBoxDialog)
 protected
 function ExceptionMessage: String; override;
 end;

 // "Default" dialog - dialog that invokes standard dialog (non-EurekaLog)
 TRTLHandlerDialog = class(TBaseDialog)
 protected
 procedure Beep; override;
 function GetCallRTLExceptionEvent: Boolean; override;
 function ShowModalInternal: TResponse; override;
 end;

{ TNullDialog }

procedure TNullDialog.Beep;
begin

 // does nothing - no beep needed
end;

// Main method: do nothing, return success
function TNullDialog.ShowModalInternal: TResponse;
begin
 SetReproduceText(ReproduceText);

 Result.SendResult := srSent;
 Result.ErrorCode := ERROR_SUCCESS;
 Result.ErrorMessage := '';
end;

// Indicate that we can be called from any thread

EurekaLog 7 Documentation203

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

// (this should be False for VCL/CLX/FMX dialogs)
class function TNullDialog.ThreadSafe: Boolean;
begin
 Result := True;
end;

{ TMessageBoxDialog }

procedure TMessageBoxDialog.Beep;
begin

 // does nothing - beep is invoked by Windows.MessageBox in

Customizing EurekaLog 204

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 // TMessageBoxDialog.ShowModalInternal
end;

// Main method
function TMessageBoxDialog.ShowModalInternal: TResponse;
var
 Flags: Cardinal;
 Msg: String;
begin

 // Set default result
 Result.ErrorCode := ERROR_SUCCESS;
 Result.ErrorMessage := '';
 if SendErrorReportChecked then
 Result.SendResult := srSent
 else
 Result.SendResult := srCancelled;

 // Prepare message to show
 Msg := ExceptionMessage;
 if ShowSendErrorControl then
 begin
 Msg := Format(Options.CustomizedExpandedTexts[mtSend_AskSend], [Msg]);
 Flags := MB_YESNO;
 end
 else
 Flags := MB_OK;
 Flags := Flags or MB_ICONERROR or MB_TASKMODAL;
 if SendErrorReportChecked or (not ShowSendErrorControl) then
 Flags := Flags or MB_DEFBUTTON1
 else
 Flags := Flags or MB_DEFBUTTON2;

 // Call actual MessageBox and set result
 case MessageBox(Msg,
 Options.CustomizedExpandedTexts[mtDialog_Caption],
 Flags) of
 0: Result.ErrorCode := GetLastError;
 IDYes:
 Result.SendResult := srSent;
 IDNo:
 Result.SendResult := srCancelled;
 end;

 // Save error code/error message for failures
 if Result.ErrorCode <> ERROR_SUCCESS then
 begin
 Result.SendResult := srUnknownError;
 Result.ErrorMessage := SysErrorMessage(Result.ErrorCode);
 end
 else
 SetReproduceText(ReproduceText);
end;

// Can be called from any thread
class function TMessageBoxDialog.ThreadSafe: Boolean;
begin
 Result := True;

EurekaLog 7 Documentation205

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

end;

{ TRTLHandlerDialog }

// Indicate desire to invoke RTL handler
function TRTLHandlerDialog.GetCallRTLExceptionEvent: Boolean;
begin
 Result := True;
end;

function TRTLHandlerDialog.ShowModalInternal: TResponse;
begin
 SetReproduceText(ReproduceText);

 Result.SendResult := srRestart; // means "call RTL handler"
 Result.ErrorCode := ERROR_SUCCESS;
 Result.ErrorMessage := '';
end;

procedure TRTLHandlerDialog.Beep;
begin

 // Does nothing - transfer work to RTL handler
end;

{ TMessageBoxDetailedDialog }

// This one is a bit more complex - we want to add call stack to error message.

// However, default form is not very readable with variable-width fonts.

// That's why first we need a way to format call stack in another way.

type

 // Our new formatter
 TMessageBoxDetailedFormatter = class(TEurekaBaseStackFormatter)
 protected
 function GetItemText(const AIndex: Integer): String; override;
 function GetStrings: TStrings; override;
 end;

// Forms one line of call stack
function TMessageBoxDetailedFormatter.GetItemText(const AIndex: Integer): String;
var
 Cache: TEurekaDebugInfo;
 Info: PEurekaDebugInfo;
 ModuleName, UnitName, RoutineName, LineInfo: String;
begin
 Info := CallStack.GetItem(AIndex, Cache);

 ModuleName := ExtractFileName(Info^.Location.ModuleName);
 UnitName := Info^.Location.UnitName;

 if UnitName = ChangeFileExt(ModuleName, '') then
 UnitName := ''
 else
 UnitName := '.' + UnitName;

 RoutineName := CallStack.ComposeName

Customizing EurekaLog 206

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 (Info^.Location.ClassName, Info^.Location.ProcedureName);
 if RoutineName <> '' then
 RoutineName := '.' + RoutineName;

 if Info^.Location.LineNumber > 0 then
 LineInfo := Format(',%d[%d]',

EurekaLog 7 Documentation207

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 [Info^.Location.LineNumber, Info^.Location.ProcOffsetLine])
 else
 LineInfo := '';

 Result := ModuleName + UnitName + RoutineName + LineInfo;
end;

// Formats entire call stack
function TMessageBoxDetailedFormatter.GetStrings: TStrings;
var
 ThreadID: Cardinal;
 I: Integer;
 Line: String;
 Stack: TEurekaBaseStackList;
begin
 if not Assigned(FStr) then
 begin
 FStr := TStringList.Create;
 FModified := True;
 end;
 if FModified then
 begin
 Stack := CallStack;
 CalculateLengths;
 FStr.BeginUpdate;
 try
 FStr.Clear;
 FStr.Capacity := Stack.Count;

 if Stack.Count > 0 then
 begin
 ThreadID := Stack.Items[0].ThreadID;
 for I := 0 to Stack.Count - 1 do
 begin
 if (Stack.Items[I].Location.Module <> 0) and
 (Stack.Items[I].Location.DebugDetail in [ddUnit..ddSourceCode]) and
 (Stack.Items[I].ThreadID = ThreadID) then
 begin
 Line := GetItemText(I);
 if (FStr.Count <= 0) or (FStr[FStr.Count - 1] <> Line) then
 FStr.Add(Line);
 end;
 end;
 end;
 finally
 FStr.EndUpdate;
 end;
 FModified := False;
 end;
 Result := FStr;
end;

// Append call stack to error message
function TMessageBoxDetailedDialog.ExceptionMessage: String;
const
 MaxLines = 15;
var

Customizing EurekaLog 208

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 Formatter: TMessageBoxDetailedFormatter;
 Stack: TEurekaBaseStackList;
begin

 {$WARNINGS OFF}

 // Abstract methods are intended here.

 // It is like assert: they should not be called.
 Formatter := TMessageBoxDetailedFormatter.Create;

 {$WARNINGS ON}
 try

 if Assigned(CallStack) then
 Formatter.Assign(CallStack.Formatter);
 Formatter.CaptionHeader := '';

 Stack := nil;
 try
 if CallStack <> nil then
 begin
 Stack := TEurekaStackList.Create;
 Stack.Assign(CallStack);
 while Stack.Count > MaxLines do
 Stack.Delete(Stack.Count - 1);
 end;
 Result := inherited ExceptionMessage + sLineBreak + sLineBreak +
 CallStackToString(Stack, '', Formatter);
 finally
 FreeAndNil(Stack);
 end;
 finally
 FreeAndNil(Formatter);
 end;
end;

...

initialization

 RegisterDialogClass(TNullDialog);
 RegisterDialogClass(TMessageBoxDialog);
 RegisterDialogClass(TMessageBoxDetailedDialog);
 RegisterDialogClass(TRTLHandlerDialog);

end.

As you can see, the central method here is ShowModalInternal. It does all the work. It's
abstract and must be overwritten in child classes. All other methods of TBaseDialog are
virtual, but not abstract. They contain default behavior. You can override them to alter
behavior, but you don't have to. Base dialog class contains large number of helpers
(methods and properties). All that dialog needs to do is to invoke these methods in right
order. Therefore any child class can use powerful tools to quickly build new dialog.

Note: there is another abstract dialog class - TWinAPIDialog from EDialogWinAPI unit. It's
useful if you want to create new dialog based on direct WinAPI calls, rather than using
ready functions or frameworks (VCL/CLX/FMX).

Important note: dialog class is responsible for almost whole exception processing. That's
because "dialog" don't have to be visual. Think about Win32 service, system log, WER
(Windows Error Reporting), etc. So, this is not always possible to distinguish between
"error dialog" and "exception processing". That's why these concepts are both controlled by

EurekaLog 7 Documentation209

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

single "dialog" class. As we saw above, a major method for visual dialog is
ShowModalInternal method. But real entry point is Execute method. Default implementation
goes like this:

Customizing EurekaLog 210

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

function TBaseDialog.Execute: TResponse;
var
 CanSaveReport: Boolean;
begin
 try
 SaveCurrentEnvironment;
 try
 SetupFileNames;
 FDuplicate := CalcDuplicatedException(FCanSend);

 if not Restarted then
 begin
 MakeScreenshot;
 AddCustomData;
 if DeleteLogAtVersionChange then
 DeleteOldLog;
 SetReproduceText('');
 if PresaveReport and SaveLogFile then

 SaveBugReport; // Pre-save to get log in case of crash in dialog
 Beep;
 end
 else
 FSaved := (PresaveReport and SaveLogFile);
 Result := ShowModal;

 // Restart dialog?
 if Result.SendResult = srRestart then
 Exit;

 // Save bug report
 CanSaveReport := SaveLogFile and
 (
 Succeeded(Ord(Result.SendResult)) or
 (Result.SendResult = srCancelled) or
 (not PresaveReport)
);
 if CanSaveReport then

 SaveBugReport; // Re-save to update changed fields (like reproduce text)

 if Succeeded(Ord(Result.SendResult)) and CanSend then
 begin
 PrepareFilesForSend;

 Result := SendBugReport;

 if Failed(Ord(Result.SendResult)) then
 begin
 if CopyLogInCaseOfError then
 CopyReportToClipboard;
 if SaveCompressedCopyInCaseOfError then
 SavePackedCopy;
 end
 else
 if DeleteLogAfterSuccessfulSend then
 DeleteCurrentLog;

 ShowSendResult(Result);

EurekaLog 7 Documentation211

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 if CanSaveReport then
 UpdateSendInformationInLog(Result.SendResult);
 end
 else
 begin
 DoEventExceptionAction(ExceptionInfo, atSendCancelled);
 if CanSaveReport then
 UpdateSendInformationInLog(srCancelled);
 end;

 finally
 RestoreCurrentEnvironment;
 end;

 CheckTermination;
 if Options.CustomFieldBool[difTerminateApplication] then
 TerminateApplication;
 except
 on E: Exception do
 begin
 Result.ErrorCode := ERROR_GEN_FAILURE;
 Result.ErrorMessage := E.Message;
 Result.SendResult := srUnknownError;
 end;
 end;
end;

As you can see, there is the whole processing of exceptions: saving bug report, displaying
dialog, updating bug report with new values (e-mail/steps to reproduce), sending report,
restarting application. You rarely need to alter this method, rather you will override
methods which are called by it. This method is shown here just to illustrate the point that
dialog controls more than just visual behavior.

As final words on sub-classing - here is the list of classes, units and functions for this (as of
EurekaLog 7.0.02):

Base dialog class: EDialog.TBaseDialog.
Dialog class registration: EDialog.RegisterDialogClass.
Base send engine class: ESend.TELUniversalSender.
Send engine class registration: ESend.RegisterSender.
Base debug information provider class: EClasses.TELDebugInfoSource.
Debug information provider registration: EDebugInfo.RegisterDebugInfoSource.
Base call stack class: ECallStack.TEurekaBaseStackList.
Default call stack class: ECallStack.EurekaCallStackClass.
Specific call stack classes: ECallStack.TracerMethodsClasses.
Base log builder class: ELogBuilder.TBaseLogBuilder.
Default log builder class: ELogBuilder.LogBuilderClass.
Base hung detection thread class: EFreeze.TFreezeThread.
Default hung detection thread class: EFreeze.FreezeThreadClass.

See also:
Events
Coding
Customizing EurekaLog

8.2.5 Low-level handlers

Classes are used by high level code in EurekaLog. Sometimes customizations of high
level code is not enough. Luckily, EurekaLog 7 offers you a way to change almost anything.
Low level points for customizations are presented by global variables of procedural types.
These procedural variables are invoked by EurekaLog, and it points to EurekaLog code by

192

189

180

195

Customizing EurekaLog 212

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

default. You may write your own code and write pointer to it into these variables.

Note: these global variables are not documented and never will be. You can use them on
your own risk.

Here is the list of available low-level customization possibilities:
EInject unit:
o EventUnhandledExceptionFilter
o EventExceptProc
o EventExceptClsProc
o EventExceptObjProc
o EventRaiseExceptionProc
o EventGetExceptionStackInfoProc
o EventGetStackInfoStringProc
o EventCleanUpStackInfoProc
o EventExceptionDispatcher
o EventIndyThreadHandleException
EExceptionHook unit:
o _IsUnexpected
ELowLevel unit:
o _InitDoneErrorHandler
o _SafeExecLog
o _ConsoleLogger
EHook unit:
o _GetSymbolAddr
EBase unit:
o _InternalError
o _AllowBypassInternalErrors
o _RaiseExpected
o _OnPanic
EAppType unit:
o _CustomMessageBox
o _GetMainWnd
Almost all routines in EMemLeaks and EResLeaks units.
EThreadsManager unit:
o _GetRealAddresses

There are some other points to override default handlers, but they are almost useless for
customizations, since they are used for very specific EurekaLog's needs.

The most important thing about low level handlers is that the initialization order is
important. It's highly not recommended to alter these variables during actual work of your
application. You should modify handlers only during initialization/finalization process. It's
also strictly recommended to save previous handler before installing your own handler and
revert it back (uninstall) on finalization.

See also:
Coding
Customizing EurekaLog
Configuring project for leaks detection
Internal errors

8.2.6 Modifying code of EurekaLog itself

When nothing else helps - you can alter source code of EurekaLog. Of course, it's
possible only if you have edition with full source code (all other methods of customizations
listed previously are applicable for any edition of EurekaLog).

You can alter EurekaLog code to absolutely every behavior that you want. Then you need
to recompile it for these changes to take effect. See also: how to recompile EurekaLog .

Please note that any upgrading or reinstalling EurekaLog will overwrite EurekaLog files,

189

180

508

591

211

180

619

EurekaLog 7 Documentation213

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

thus your customizations will be lost (unless you made a backup). You'll have to re-
implement all customizations each time you upgrade EurekaLog. For this reason use this
method as last resort measure only. Prefer the above discussed methods whenever
possible. If you still has to modify EurekaLog sources - please, let us know why you do that.
We can add your customizations in EurekaLog, so you won't need to re-insert them into
source code each time you upgrade (of course, this is only possible if your customizations
has some value for other developers).

http://www.eurekalog.com/support.php
http://www.eurekalog.com/support.php
http://www.eurekalog.com/support.php

Part

IX

EurekaLog 7 Documentation215

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

9 Frequently Asked Questions (FAQ)

This section covers some problems that are frequently encountered by users of EurekaLog.

The questions are organized in the following categories:
General FAQ
Default file's locations
File formats

9.1 General FAQ

Question: What I need to make EurekaLog-enabled application?
Answer: Install EurekaLog , open your project, enable EurekaLog in options , build
your application, done! Now you can get extensive information about problems in your
application.

You may also want to adjust default application settings. However, our defaults were
carefully choosen to be satisfying for most typical cases.

Question: Do I need to distribute any additional files for application compiled with
EurekaLog?
Answer: No. EurekaLog-enabled applications are self-contained . All code and data are
injected into executable module, so you don't need any additional files. No DLLs, no .map
files, no .tds files.

Question: Does EurekaLog-enabled application require Internet connection?
Answer: No. You don't need Internet access to run your applications. You can disable
sending bug reports and store all reports only locally (or even don't store at all - just show
error dialogs).

Question: Do I need Internet connection for my developer machine?
Answer: No. You don't need Internet access on your machine either. EurekaLog do not
check license online. EurekaLog installer is self-contained. You can also disable online
checking for new EurekaLog version.

Question: How does EurekaLog work?
Answer: EurekaLog integrates itself with Delphi's and C++ Builder's IDE.
When you build your projects: EurekaLog injects all required data into your final executable
modules.
When you run your application: EurekaLog installs hooks to catch raising of exceptions and
memory allocations.
When exception is raised: EurekaLog collects information about exception.
When memory is allocated: EurekaLog collects information about memory block.
EurekaLog collects information about environment and builds bug reports on your request,
when exception is handled or when application exits. EurekaLog uses injected data to build
human-readable call stacks to show you address, module name, unit name, class name,
routine name and line number. All this behaviour is FULLY customizable.

More details .

Question: But will EurekaLog work, if I compile project from command line? We have
build script on our build server.
Answer: Yes. It's possibly to use EurekaLog with command-line compilation. Please refer to
our documentation for more information.

Question: How much does EurekaLog increase compiled file size?
Answer: That depends on your desired settings. There is a trade-off: better bug reports
detalization require more information injected, smaller file size means less available

215

217

218

20 33

38

38

421

Frequently Asked Questions (FAQ) 216

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

information. For example, you may want to include information for code from RTL and VCL;
or you may want to exclude it and only supply information for your own code. Typical range
of file size increase vary in range 1%-12%. Injected information is always packed and
encrypted (EurekaLog uses ZLib and TEA).

See our guide on project settings .

Question: Can EurekaLog decrease an application's performance?
Answer: That depends on your application, but usually - no. That's because EurekaLog is
not active in your application at all - until exception will be raised. When exception is raised
- EurekaLog collects information. So, if your application raises a lot of exceptions - then yes,
EurekaLog can slightly slow down its execution. Note that over-using of exceptions is a bad
practice in general. You can solve this by disabling EurekaLog for particular exceptions or for
particular code blocks.

There are also memory problems tracing features in EurekaLog. You can disable them for
best performance (it will be unaffected). If you enable such features - EurekaLog will collect
information about memory blocks in your application. This can slow down your application.
Exact estimates depends on your application (how often it allocates/releases memory).
Typical slow down is about 5%.

Question: Does EurekaLog work with DLLs and BPLs?
Answer: Yes, it does. EurekaLog also have predefined templates of settings for DLLs and
BPLs .

Question: Is there application type which EurekaLog do not support?
Answer: Probably no. We have templates (typical settings) for all common application types

. And even if there is no template for your application type - you can just set up options
manually. If there is no ready-to-use hook for your application type - you need to invoke
EurekaLog from your global exception handler .

Question: Does EurekaLog work with COM-based applications?
Answer: Yes, it does. There is "Catch SafeCall exceptions" option , which is designed to
catch exceptions in any COM object.

Question: What does EurekaLog do when it intercepts an error?
Answer: That depends on type of your application. EurekaLog can display error dialog (for
GUI-based applications), EurekaLog can write text into console (for console-based
applications), EurekaLog can silently log error to system log (for non-visual applications like
Win32 services or web-server applications), EurekaLog can produce error HTML page (for
web-applications). This behaviour can be fully customized. You can also use your own
dialogs.

EurekaLog can also store bug report into file and send it to you (developer) via e-mail, HTTP
or FTP upload, and submit to bug tracker software.

Question: Is EurekaLog compatible with .exe compression/protection software?
Answer: Yes, EurekaLog is FULLY compatible with .exe compression/protection software, so
you can use those tools without any restrictions. EurekaLog have wide range of
customization options.
There are options to keep .map file untouched (if it's required by protection software).
There are options to disable hooks installation (hooks installation can be detected as
application's crack).
There are options to use hi-level or low-level hooks (trade detalization for better
compatibility).

Question: I do not want to expose my internal code information (routine names, etc.)
Answer: No problem! You can protect your information with password , you can exclude
certain code blocks from inclusion (by using {$D-}/{$D+} compiler directives), or you can

225

250

363

363

370

341

234

352

349

243

EurekaLog 7 Documentation217

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

include only unit names and line numbers (but not class and routine names).

Question: What is the file's extension for bug reports?
Answer: It is *.EL for plain-text reports, *.ELP for packed reports (can include screenshot
and additional files), *.ELX for XML reports. You can select desired format in options.

Question: How many errors can EurekaLog store in the file log?
Answer: There are no special limits.

Question: Can EurekaLog work in unattended environments?
Answer: Yes, there is no problem. You can disable visual feedback (error dialogs, send
progress, etc.), you can set up logging, you can set up automatic bug report sending, you
can set up auto-restart options.

Question: Can I ignore exception from 3rd party framework (some badly written code)?
Answer: Yes, of course. You can set up exception filter(s) to ignore particular exception
or you can disable EurekaLog for certain code blocks.

Question: What about locatization to other languages?
Answer: No problem. We support any localization tool or even no using localization tool at
all. There are wide translation options available. You can localize resourcestrings, you can
use Translate-like function (GetText-style) or you can just set up translated strings in
options .

Question: Can I ask for feature to add? How about more information in bug reports?
Answer: Yes, sure - we love to hear feedback! You can ask us to add specific feature and
additional information. We will add most popular and frequently asked features into next
releases of EurekaLog. Unfortunately, not all features can be added. However, EurekaLog
allows easy customization. There are many event handlers. So often you can add your
desired features by yourself even without having full source code!

Oh, and we have OnCustomDataRequest event, which you can use to insert arbitrary
information into bug reports. And you can also add additional files, of course.

Question: My question is not listed here?
Answer: Take a look at our video tutorials or code samples.

9.2 Default files names and locations

Short descrtiption
1. All working files (temp files) are placed in unique subfolder in %TEMP% folder.
2. All saved bug reports go to %APPDATA%\Neos Eureka S.r.l\EurekaLog\Bug Reports
3. A fallback packed bug report is saved to My documents folder.

Details
1. Working files
All working files (bug report, screen shot, packed report or XML report) are placed in unique
subfolder in %TEMP% folder. Subfolder is deleted when exception processing will be done.

For example, a working bug report is stored at this path:
Windows XP: C:\Documents and Settings\UserName\Local Settings\Application
Data\Temp\{F62795F2-D5A2-4A5D-A90C-BB55A687F050}\BugReport.el

Windows 7: C:\Users\UserName\AppData\Local\Temp\{F62795F2-D5A2-4A5D-A90C-
BB55A687F050}\BugReport.el

{F62795F2-D5A2-4A5D-A90C-BB55A687F050} is random generated unique subfolder. It will
be deleted after exception processing finishes.

243

343

339

http://www.eurekalog.com/tutorials_delphi.php
http://www.eurekalog.com/tutorials_delphi.php
http://pastebin.com/u/RandomClear
http://pastebin.com/u/RandomClear

Frequently Asked Questions (FAQ) 218

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Other working files are stored in the same folder, but named:

BugReport.elp - packed bug report
BugReport.xml - XML bug report
BugReport.png - screenshot
BugReport.mdmp - minidump
BugReport.html - HTML page (web applications)

(see also)

Any additional files that may be saved in this folder will be deleted after exception
processing finishes.

Those files are not created until needed.

2. Saved bug report
When "Save bug report to file" option is enabled, bug report is saved to this file:
Windows XP: C:\Documents and Settings\UserName\Application Data\Neos
Eureka S.r.l\EurekaLog\Bug Reports\Project1.exe\Project1.el

Windows 7: C:\Users\UserName\AppData\Roaming\Neos Eureka S.r.l\EurekaLog
\Bug Reports\Project1.exe\Project1.el
Local system account (same bitness): C:\Windows\System32\config\systemprofile
\AppData\Roaming\Neos Eureka S.r.l\EurekaLog\Bug Reports\Project1.exe
\Project1.el
Local system account (32-bit service on 64-bit system): C:\Windows\SysWOW64\config
\systemprofile\AppData\Roaming\Neos Eureka S.r.l\EurekaLog\Bug Reports
\Project1.exe\Project1.el

Notes:
1. File name (the one without path) can be different, if additional options were enabled (like

"Add computer name");
2. This folder can be customized in project's options . It's "Bug report's folder" option .

Default value is "%AppData%\Neos Eureka S.r.l\EurekaLog\Bug Reports\%
_ThisModuleName%\". Empty string means the same value. If you want to save bug

report in the same folder as .exe file - you can use this value: ".\". You can also use any

relative file path like this, for example: ".\Reports\".

3. If your custom save path will be write-protected at run-time, EurekaLog will revert it back
to default (%AppData%\Neos Eureka S.r.l\EurekaLog\Bug Reports\%
_ThisModuleName%\).

3. Send-failure report
When "Save bug report's copy in case of send failure" option is enabled and sending of bug
report didn't work, bug report is saved to this file:
Windows XP: C:\Documents and Settings\UserName\My documents\Project1.elp

Windows 7: C:\Users\UserName\Documents\Project1.elp

See also:
File formats

9.3 File formats

Actual formats in EurekaLog 7
Extens

ion
Description

.eof Project's options (see also).

.eot Localized texts (messages collection).

.el Bug report in text format (see also).

.elx Bug report in XML format (renamed XML).

.elp Bug report in packed format (renamed ZIP).

.fdb EurekaLog Viewer's default FireBird database.

218

225 264

218

227

339

46

EurekaLog 7 Documentation219

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

.mdmp Process mini-dump.

.html HTML page (web applications).

Obsolete formats from EurekaLog 6
Extens

ion
Description

.elf Bug report in text format.

.dat The same as .elf. It was used as database by EurekaLog Viewer.

.xml Bug report in XML format.

.zip Bug report in packed format.

Part

X

EurekaLog 7 Documentation221

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

10 Integral parts

Here is a list of key parts of EurekaLog:
IDE expert
Command-line compiler (advanced use only)
Application types
VCL components
Dialogs
Debug info providers
Send engines
Events
Variables
Tools

10.1 EurekaLog IDE expert

EurekaLog installs a .bpl packages into IDE. This adds a EurekaLog component and installs
an IDE expert.

"IDE expert" is a special term. IDE expert is a library or a package, which extends IDE
by using special published interfaces. Those interfaces are called OpenTools API (OTA).

So, why EurekaLog needs that expert, and when you don't need it?

EurekaLog installs IDE expert to do the following:
Adds menu items to invoke EurekaLog.
Allows you to edit global / IDE EurekaLog options .
Allows you to edit project's EurekaLog options .
Performs a post-processing of your project .

"EurekaLog" / "post-processing" stage during compilation. Notice "EurekaLog:" prefix
on second line.

Don't see EurekaLog IDE expert working?

Now, back to the question: can you don't use IDE expert? Yes - you can uninstall IDE
expert, if you don't want/need it. For example, you don't want to install EurekaLog on
build's server. That's totally OK.

Here is what you can use instead:
Adds menu items to invoke EurekaLog - you can add shortcuts to Tools menu manually,
or you can run EurekaLog parts from the Start / Programs menu.
Allows you to edit global / IDE EurekaLog options - you can use an external Debug

221

423

363

370

409

390

413

617

222

230

225

421

596

Integral parts 222

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Symbols Setup tool to setup global EurekaLog settings, which are not related to IDE.
Allows you to edit project's EurekaLog options - you can use an external settings editor

 to edit options in projects or .eof files.
Performs a post-processing of your project - you can invoke a EurekaLog command-line
compiler to do post-processing manually . An alternative (easiest) way is to use MS-
Build on Delphi 2007+ or FinalBuilder .

See also:
Compiling your project with EurekaLog
Reconfiguring EurekaLog for manual control

10.2 Interface

EurekaLog windows:
IDE menu options :

EurekaLog project options
EurekaLog global options

See also:
Tools

10.2.1 IDE menu items (IDE commands)

EurekaLog places new menu items in IDE under Project and Tools root menu items:

617

617

423 451

429 431

421

451

222

225

230

617

EurekaLog 7 Documentation223

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

EurekaLog menu items in Project menu

Integral parts 224

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

EurekaLog menu items in Tools menu

Please note that exact location and items may be different - it depends on your
environment (installed IDE experts).

Don't see those menu items? Check if EurekaLog is properly installed . Don't need these
items? See alternatives .

There can be the following IDE menu items:
Project / EurekaLog options - this command opens EurekaLog's settings for current
project . If there is no current project, this command opens options for default project.
This command should not be confused with Tools / EurekaLog / EurekaLog IDE options
command (see below).
Tools / EurekaLog / View exception log - this command opens EurekaLog Viewer with
opened bug report for current project. If such bug report doesn't exists - no action taken
(there will be informational message).
Tools / EurekaLog / IDE options - opens EurekaLog settings . This is global settings
for EurekaLog. It's different from Project / EurekaLog options command, which opens
settings for current project only. I.e. Project / EurekaLog options command invokes
global settings, Tools / EurekaLog / EurekaLog IDE options command invokes per-
project settings.
Tools / EurekaLog / Address lookup - this command is analog of Start menu's shortcut
for Address Lookup tool .

604

221

225

230

617

EurekaLog 7 Documentation225

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Tools / EurekaLog / Error lookup - this command is analog of Start menu's shortcut for
 Error lookup tool .
Tools / EurekaLog / PE Analyzer - this command is analog of Start menu's shortcut for
 PE Analyzer tool .
Tools / EurekaLog / Threads snapshot - this command is analog of Start menu's
shortcut for Thread Snapshot tool .
Tools / EurekaLog / Viewer - this command is analog of Start menu's shortcut for
EurekaLog Viewer tool.
Tools / EurekaLog / Send feedback - this command opens your default e-mail client to
allow you to share your feedback, opinions, make a suggestion or report a bug. Please,
use the next command (Need help? Get support!) for asking questions.
Tools / EurekaLog / Need help? Get Support! - this command opens your default
internet browser to allow you to ask a question to our tech-support.
Tools / EurekaLog / EurekaLog Video Tutorial - launches a video tutorial for new users.
Tools / EurekaLog / EurekaLog Help - opens EurekaLog help file.
Tools / EurekaLog / About EurekaLog - shows standard "About" window. You can see a
version of installed EurekaLog here.

See also:
EurekaLog tools

10.2.2 Project options

This is EurekaLog project's options dialog (do not confuse EurekaLog project options
dialog with EurekaLog IDE options dialog.):

EurekaLog project options

You can open it via Project / EurekaLog options command (see also):

617

617

617

617

230

222

Integral parts 226

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Opening EurekaLog project options

Don't see EurekaLog menu items?

Don't use EurekaLog IDE expert?

Please save your project before invoking this command.

This dialog allows you to edit project options, which are specific for EurekaLog. I.e. it allows
you to edit EurekaLog options per project. There also another options dialog, which allows
you to set global / IDE options for EurekaLog - it's located under Tools / EurekaLog / IDE
options (see also).

The project options dialog works like any other dialog with OK and Cancel buttons. These
options are stored in your project configuration - so be sure not to delete it. For example,
Delphi 7 stores project configuration in .dof file. Delphi 2006 stores configuration in .bdsproj
file. Delphi XE stores configuration in .dproj file.

If you don't want to store EurekaLog's options in project configuration - you can export
them to external .eof file and use an external settings editor to edit them (see also

).

596

221

230

227 617

421

EurekaLog 7 Documentation227

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

This dialog have 3 parts:
Buttons panel (bottom part)
Menu (left tree)
Options tabs (central part)

Bottom part with buttons is used for usual actions like OK, Cancel and Help (note: you can
also press an F1 button). There are also buttons for:

Importing and exporting project options
Using variables
Editing default project properties

Central part displays an options category, which is selected in the left menu. Therefore its
content is different for different selected categories .

See also:
EurekaLog project options
Using EurekaLog options for customizing EurekaLog
Working with EurekaLog configuration

10.2.2.1 Import / export settings

This is discussion of EurekaLog project's options .

You can export EurekaLog to external file and import settings from such files. EurekaLog
uses ".eof" file extension to store external configuration. .eof-files are just renames text

ini files .

Options' exporting and importing are useful in the following cases:
You want to transfer settings from one project to another. In this case you can open first
project, export settings to file, then open second project and import options from file.
Delete external (temporary) .eof-file after that.
You want to store EurekaLog configuration outside of project's file (for example - to share
same configuration between several projects). See this article for more info.
You want to specify alternative configuration to EurekaLog's post-processor . See also:
command-line options (you're interested in --el_config option).

.eof-files also can be edited outside of IDE either in text-editor or EurekaLog standalone
Settings Editor tool.

Note: you may want to use common configuration instead of copying settings (import/
export) between multiple projects. See also: using external configuration .

Open EurekaLog's project's settings .

You can find "Import" and "Export" buttons at the dialog's bottom:

"Import" and "Export" buttons in EurekaLog project options dialog

Click on "Export" button to save current project's options to (new) external .eof-file.
Click on "Import" button to replace all current options with options from (existing) external
.eof-file.

Default folder for saving .eof files (i.e. folder for "Import configuration" and "Export
configuration" dialogs) is %AppData%\Neos Eureka S.r.l\EurekaLog\Profiles\ (e.g.

like C:\Users\UserName\AppData\Roaming\Neos Eureka S.r.l\EurekaLog
\Profiles\). Any .eof file placed in that location will appear as "custom" project type .

227

228

230

234

234

180

439

225

440

443

423

432

443

225

363

Integral parts 228

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

"Project type" option shows two .eof files

.eof files outside of the above mentioned folder will not appear in "Project type" option.

Apart from %AppData%\Neos Eureka S.r.l\EurekaLog\Profiles\ folder, a typical

places to store .eof files are folder or sub-folder of your project.

See also:
Storing EurekaLog options
EurekaLog project's options
Compiling your project with EurekaLog
Using external configuration
Working with EurekaLog configuration

10.2.2.2 Using variables

This is discussion of EurekaLog project's options .

You can use environment variables in any text values in your project settings. You can
insert variable by using "Variables" window. Variable is inserted as special tag. When you
run your application at run-time, any variable value will be replaced with actual value, which
is calculated at run-time.

For example, if you set your folder for saving bug-report to "%APPDATA%\MyBugReports" then
your bug reports will be saved to C:\Users\UserName\AppData\Roaming\MyBugReports\ or C:
\Documents and Settings\UserName\Application Data\MyBugReports - depending on real
value of %APPDATA% variable at run-time.

Note: variables names are case-insensitive.

When you're in your EurekaLog project options , you can click on "Variables" button at
dialog's bottom:

440

225

421

443

439

225

413

225

EurekaLog 7 Documentation229

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

"Variables" button in EurekaLog project options

Click on this button and you will see such window:

"Variables" dialog

"Copy" button will close the window with copying selected variable into clipboard.
Alternatively: you can just double-click on variable in the list.
"Close" button will close the window without any action.

Suggested action's sequence:
Open "Variables" window.
Select variable that you want to use (see Variables for description).
Click "Copy" (or double-click variable). Dialog will be closed.
Paste variable name from clipboard (Ctrl + V or Shift + Ins) to target setting's edit box.

Note: this dialog suggests you only build-in special pseudo-variables (those with names
started with "_") and commonly used variables. However, you can use any environment
variable (even if it's not listed in this dialog). See also: environment variables .

413

413

Integral parts 230

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

See also:
Variables
EurekaLog project's options

10.2.2.3 Changing default properties

This is discussion of EurekaLog project's options .

Important Note: this feature exists for backward compatibility. We do not recommend to
use it. Consider using custom profiles instead .

Default project settings is the settings which are applied automatically to each new created
project (only if EurekaLog IDE expert is installed).

EurekaLog's configuration of default project is stored in the same location as IDE's
configuration of default project, but in another file: file extension is changed to .eof. For
example:
C:\Users\User\AppData\Roaming\Embarcadero\BDS\8.0\DefProject.eof - Delphi XE (IDE
default project configuration is stored in DefProject.bdsproj)
C:\Program Files\Borland\Delphi 7\Bin\DefProj.eof - Delphi 7 (IDE default project
configuration is stored in DefProj.dof)

You can edit this configuration either by opening it in the text editor or standalone
EurekaLog configuration editor, or directly from IDE.

To edit default project configuration: open EurekaLog's project options and check the
"Default" checkbox at the dialog's bottom-left corner. This checkbox will be checked by
default if there is no project. For example:

"Default" checkbox is checked and disabled, if there is no active project

"Default" checkbox is unchecked and enabled, if you're editing project's options

Edit project's settings as you like, check the "Default" checkbox and close dialog with the
"OK" button. Current settings will be saved as defaults.

Note: if you have an active project opened - its settings will be changed as well.

See also:
EurekaLog project's options

10.2.3 IDE options

This is EurekaLog IDE options dialog (do not confuse EurekaLog IDE options dialog with
EurekaLog project options dialog.):

413

225

225

227

221

225

225

225

EurekaLog 7 Documentation231

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

EurekaLog IDE options

You can open it via Tools / EurekaLog / IDE options command (see also):222

Integral parts 232

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Opening EurekaLog IDE options

Don't see EurekaLog menu items?

Don't use EurekaLog IDE expert?

This dialog allows you to edit global EurekaLog options. There is also another options
dialog, which allows you to set per-project settings for EurekaLog - it's located under
Project / EurekaLog options (see also).

The IDE options dialog works like any other dialog with OK and Cancel buttons. These
options are stored in the registry (under HKEY_CURRENT_USER).

1. "Automatically check for updates" option will check for new version of EurekaLog
available once in specified number of days. We recommend you to keep this option on and
update EurekaLog when new version will be available. When new version of EurekaLog is
found, you will be prompted with such dialog at IDE's startup:

596

221

225

EurekaLog 7 Documentation233

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Found a new EurekaLog's version

"Yes" button will open your default browser on EurekaLog's site, where you can get a new
version of EurekaLog. You can continue to work in IDE.
"No" button will just continue work without opening browser.

2. "Catch EurekaLog IDE Expert errors" option installs hooks in IDE to catch problems
within EurekaLog IDE expert. When this option is enabled: each unhandled exception for
EurekaLog IDE expert will generate bug report which can be send to developers (us).
Exceptions for IDE itself and for other extensions are not changed. When this option is
disabled: any unhandled exception for EurekaLog IDE expert will generate a simple error
dialog only (message box) without bug report and additional info.

Enable this option to create bug reports about problems in EurekaLog (you can send these
reports to us).
Disable this option to improve EurekaLog IDE expert speed (only a little) and to improve
compatibility with other 3rd party software.

Note: you need to restart IDE for this option to take effect.

3. "DbgHelp.dll path" option specifies full file name to DbgHelp DLL. You can find it in
EurekaLog's installation folder (like: C:\Program Files (x86)\Neos Eureka S.r.l\EurekaLog
7\dbghelp.dll). You can also change this path to alternative library. This is DLL from
Debugging tools for Microsoft Windows. It's used in MS Debug stack tracing method and MS
Debug info provider.

4. "Cache" option specifies read-write folder to be used as cache for debug info symbols.
It's empty by default, which means disabled feature. You can click on "Use defaults" button
to set default preference (which is sub-folder in your %APPDATA%, for example: C:\Users
\User\AppData\Roaming\Neos Eureka S.r.l\EurekaLog\SYMBOLS) or select your own folder.
Be sure that this folder is writable and disk have some free space (up to 500 Mb). This
cache folder is used by MS Debug info provider to store debug symbols for system libraries.

5. "Debug symbol sources" option specifies debug info sources for MS Debug info provider.
You can add one or more sources here by using edit-box and buttons below. Source can be
local folder (like: C:\Symbols), shared network path (like: \\server\symbols) or URL of
symbol's server (like: http://server/symbols). It's empty by default, which means disabled
feature. You can click on "Use defaults" button to set default preference (which is default
Microsoft's symbol server: http://msdl.microsoft.com/download/symbols) or select your
own sources.

See also:
MS Debug info provider
Enabling debug information for Windows DLLs

412

504

http://msdn.microsoft.com/en-us/windows/hardware/gg463009
http://msdn.microsoft.com/en-us/windows/hardware/gg463009
http://msdn.microsoft.com/en-us/windows/hardware/gg463009
http://msdn.microsoft.com/en-us/windows/hardware/gg463009
http://msdn.microsoft.com/en-us/windows/hardware/gg463009
http://server/symbols)

Integral parts 234

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

10.3 Options

There are the following categories available:
General
Features
Bug report
Dialogs
Sending
Localization
Advanced
3rd party

Note: description of almost every option contains name of corresponding property of
TEurekaModuleOptions class. For example:

1. "Save bug report to file" (.SaveLogFile) option enables saving...

This means that you can change this option at run-time by altering .SaveLogFile property of
either global CurrentEurekaLogOptions or local Options property of exception object in
event handlers.

If there is no mention of corresponding property - this means that either this option can not
be changed at run-time (e.g. option affects only compilation - for example, stripping
relocation tables, or encrypting injecting debug information; or option can not be changed
after initial setup - for example, using low-level hooks, or installing memory manager filter to
catch leaks), or option is changed by other means (for example, leaks and memory options
are changed by routines in EMemLeaks unit; hang detection options are changed by routines
in EFreeze unit).

See also:
IDE EurekaLog project options dialog
Import / Export settings
Using variables
Changing default properties

10.3.1 General page

This is "General" page in EurekaLog project's options .

234

237

264

267

302

339

341

357

225

227

228

230

225

EurekaLog 7 Documentation235

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

General options

General page contains EurekaLog activation options. If you need to enable/disable
EurekaLog in your application - you can do it here.

1. "Activate EurekaLog" option enables EurekaLog in your project. Check this checkbox to
enable EurekaLog in your application and uncheck it to disable EurekaLog for your
application. See also: enabling EurekaLog in your application and Compiling your project
with and without EurekaLog .

This checkbox sets status of EurekaLog (active or not). It acts as "meta-switch" for
checkboxes in "Advanced setup" group box. Usually, you don't need to set advanced
options manually: just check/uncheck "Activate EurekaLog" checkbox and set your
application type - that's all.

Change checkboxes in "Advanced setup" only when you need a custom/non-standard
behaviour.

Note: switching "Activate EurekaLog" option may be not an appropriate way to compile
your project with and without EurekaLog .

2. "Project type" option selects type of your application . See also: enabling EurekaLog
in your application .

Note: this option will load all custom saved external configurations, which were saved to
default folder on export (via "Export" button). See Working with configurations and
Compiling your project with and without EurekaLog for more information. Custom
configurations will be listed at the end of the list.

Advanced options - use for custom setups:

33

445

363

445

363

33

439

445

Integral parts 236

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

3. "Add EurekaLog's code" option includes EurekaLog's units in your application. Click on
"Customize" button to select which units include in your application. You can uncheck this
checkbox, if you don't want to include EurekaLog's code in current executable.

4. "Add module's options" option adds EurekaLog project options to your application. You
set EurekaLog project options in this dialog . Including EurekaLog's options is necessary
for EurekaLog to function. You can uncheck this checkbox, if you don't want to include
EurekaLog's code in current executable.

Note: this option must be set if you check either "Add EurekaLog's code" or "Add debug
information" options.

5. "Add debug information" option injects debug information in EurekaLog's format into
your application. Debug information is necessary to build a human-readable call-stack and
get textual descriptions of code's locations. You can uncheck this checkbox if you plan to
use debug information in other format.

6. "Delete service files after compilation" option allows you to clean up your project from
unnecessary files. EurekaLog asks linker to generate .map/.tds/.drc files to read debug
information from them. Once debug information is injected - these files are no longer
needed. This option can be used to delete them automatically. See EurekaLog's basics
for more information. You can turn this option off to keep files untouched (if you want them
for other 3rd party software). See also: External tools options page .

Important Note: enabling this option may prevent other tools from functioning. Specifically,
enabling this option prevents source-code debugging in C++ Builder .

7. "Use external configuration" option allows you to use EurekaLog configuration in
external .eof file instead of configuration inside project. Checking this option will disable all
other options in this dialog . You also need to specify .eof file to use. You can use "..."
button to select file and "Edit" button to edit settings in external file (the last action
requires file association with .eof files). See also: using external configuration . You can
use %_IDESrc% environment variable to specify locations relative to your project's
folder.

8. "Command-line" option is read-only. It's for informational purposes only. This edit box
shows command-line to run to enable EurekaLog in your project after compilation (if you're
compiling outside of IDE). Please, see Compiling your project with EurekaLog article for
more information. This edit box will indicate "N\A" if there is no project opened.

This option is affected by "Use external configuration", "Debug output" and "Calculate
stats" options.

Note: you don't need to run this command if you compile your project in IDE with EurekaLog
IDE expert installed.

9. "Debug output" option will enable detailed debug mode for output from EurekaLog
command-line compiler . Detailed output will appear in IDE's Messages window ("Build"
tab).

Use this option for diagnostic purposes. Disable for normal daily usage.

10. "Calculate stats" option will collect statistics about EurekaLog's work and your compiled
application. You have to rebuild the project to collect statistics. Collected stats will appear in
IDE's Messages window ("Build" tab). You can also view them at "Statistics" tab . Build
stats are not saved when project is closed.

Note: enabling both "Calculate stats" and "Debug output" options will greatly increase
amount of collected statistics.

See also:
EurekaLog's basics

225

40

38

259

614

225

443

413

421

221

423

357

38

EurekaLog 7 Documentation237

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Enabling EurekaLog in your applications
Basic procedures
Application types
Typical scenarios
Migration guide
Compiling your project with EurekaLog
Working with EurekaLog configuration
External tools options page

10.3.2 Features page

This is root category for core and additional features of EurekaLog.

These features are:
Call Stack
Debug information
Nested/Chained exceptions
Multi-threading
Memory problems
Resource leaks
Hang detection
Restart&Recovery
External tools

10.3.2.1 Call Stack page

This is "Call Stack" page in EurekaLog project's options .

Call Stack options

Options on "Call Stack" page allow you to customize EurekaLog behavior related to call
stacks in bug reports.

1. "Capture stack only for exceptions from current

33

45

363

68

624

421

439

259

237

243

244

246

250

255

257

259

259

225

Integral parts 238

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

module" (.csoCaptureOnlyModuleExceptions) option allows you to speed up execution by
ignoring all exceptions outside of your executable module.

Since normal practice for exceptions is to handle them within the same module -
exceptions usually do not leave module (i.e. they are not shared between modules). This
means that you're usually interested only in exceptions from the same module. This option
allows you to ignore any other exception.

Note: this option is extremely useful in applications with plug-ins (including COM modules).

It's recommended to keep this option checked when possible. Disable this option for
packaged applications or other application types which includes sharing exceptions
between modules. However, consider using (checking) "But still capture stack for Delphi
exceptions from external modules" option instead of unchecking this option.

2. "But still capture stack for Delphi exceptions from external
modules" (.csoCaptureDelphiExceptions) option excludes Delphi exceptions from "Capture
stack only for exceptions from current module" option.

Checked: Delphi exceptions are always captures - regardless of executable module which
raises it
Unchecked: all exceptions from external modules are ignored

Note: this option has no effect if "Capture stack only for exceptions from current module"
option is not checked.

3. "Capture stack of EurekaLog-enabled threads" (.csoShowELThreads) option includes call
stacks of all EurekaLog-enabled threads in application - regardless of thread type. By
default only exception thread is captured.

"EurekaLog-enabled thread" term refers to thread with enabled per-thread EurekaLog. You
can enable EurekaLog in any thread by calling SetEurekaLogStateInThread function or
just simply create threads with TThreadEx or BeginThreadEx . See Enabling EurekaLog
for background threads for more details.

Turn this option off for single-threaded application.
Turn this option on for multi-threaded application.

Note: capturing call stack of an external thread requires thread's suspending. In rare case
this can cause deadlock issues (for example: thread may be suspended when it is running
memory allocation function; thus, any further memory alloc/release operation will block
application forever). Do not enable this option until really needed. See Using EurekaLog in
multi-threaded applications for more details.

Taking call stack of additional threads will also require more time during exception
processing.

4. "Capture stack of RTL threads" (.csoShowRTLThreads) option includes call stacks of all
RTL threads in application. By default only exception thread is captured.

"RTL threads" means threads started with TThread or BeginThread.

It is recommended to keep this option off and use TThreadEx and BeginThreadEx or
SetEurekaLogStateInThread together with "Capture stack of EurekaLog-enabled threads"
option instead.
Turn this option on to capture call stack of external RTL threads (that is threads started by
3rd party code without your control).

Note: capturing call stack of an external thread requires thread's suspending. In rare case
this can cause deadlock issues (for example: thread may be suspended when it is running
memory allocation function; thus, any further memory alloc/release operation will block
application forever). Do not enable this option until really needed. See Using EurekaLog in
multi-threaded applications for more details.

Taking call stack of additional threads will require more time during exception processing.

457

570

559 551

568

547

559 551

547

http://docwiki.embarcadero.com/VCL/en/Classes.TThread
http://docwiki.embarcadero.com/VCL/en/System.BeginThread

EurekaLog 7 Documentation239

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

5. "Capture stack of Windows threads" (.csoShowWindowsThreads) option includes call
stacks of all non-RTL threads in application. By default only exception thread is captured.

"Windows threads" means threads started with CreateThread.

It is recommended to keep this option off and use TThreadEx and BeginThreadEx or
SetEurekaLogStateInThread together with "Capture stack of EurekaLog-enabled threads"
option instead. Alternatively, you may use "Capture stack of RTL threads" option instead.
Turn this option on to capture call stack of external Windows threads (that is threads
started by 3rd party code without your control).
Never start your own thread with CreateThread function.

Note: capturing call stack of an external thread requires thread's suspending. In rare case
this can cause deadlock issues (for example: thread may be suspended when it is running
memory allocation function; thus, any further memory alloc/release operation will block
application forever). Do not enable this option until really needed. See Using EurekaLog in
multi-threaded applications for more details.

Taking call stack of additional threads will require more time during exception processing.

6. "Trace method" (.csoAllowedRenderMethods) option selects method for creating/building
call stack. This option is applicable to x86-32 only, it has no effect for x86-64 platform.

The following methods are supported:
x86-32:
o EurekaLog 7: stack frames
o EurekaLog 7: RAW (recommended)
o Memory debugger: stack frames (fast)
o Memory debugger: RAW
o Compatibility: EurekaLog 6
o Compatibility: JCL (stack frames)
o Compatibility: JCL (RAW)
o Compatibility: Microsoft (requires external DLL)
o Compatibility: madExcept (requires madExcept installed)
x86-64:
o OS tracing

6.1. "EurekaLog 7" methods are default for EurekaLog 7. This is recommended choice for
new projects. This is new and improved EurekaLog stack tracing method. Improvements are
done for filtering out false-positive calls. Chose these methods to get more adjusted call
stack. Chose EurekaLog 6 method (see item 4.3 below) to get unfiltered call stack.

There are RAW and stack frame methods. See this explanation for differences between
stack frames and RAW. RAW method includes all items from stack frames method and adds
more.

6.2. "Memory debugger" methods are lightweight and fast methods which are used by
memory and resource profiling features of EurekaLog. It has to be as fast as possible, so it
lacks advanced checks and may introduce many inaccurate and false-positive entries.

See this explanation for differences between stack frames and RAW.

6.3. "Compatibility" methods are methods for compatibility with legacy and 3rd party code.
It's not recommended to use these methods in new projects. Use these methods only for
old code, which may expect certain call stack items.

Microsoft stack tracing method requires DbgHelp DLL. See: Using Microsoft's DbgHelp DLL
.

madExcept stack tracing method requires madExcept installed. You will need also to include
EStackTracingMadExcept unit into your project file.

7. "Delay call stack creation until handle stage" option postpones analyzing exception for

559 551

547

578

578

504

http://msdn.microsoft.com/en-us/library/windows/desktop/ms682453(v=vs.85).aspx

Integral parts 240

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

later stages of processing (if possible).

Please, see this article for detailed explanation of delayed (deferred) call stacks.

Enable this option for better performance.
Disable this option for better detalization and compatibility.

Notes:
enabling some advanced features of EurekaLog (such as handling safecall exceptions,
using exception filters with "Exception Kind" <> "All", etc.) may require creating call stack
earlier than usual (for example: to detect if exception is raised within safecall wrapper),
so this option will have no effect.
carefully use this option for multi-threaded application. Deferred call stack creation means
that call stacks of other (non-exception) threads will be captured much later - when
original exception is handled/processed. Therefore, call stacks of other threads will not
represent threads states when exception occurred.

8. "Detalization level" option indicate which items should be included in call stack:
.csoShowInvalid - Show any (including RAW addresses)
.csoShowPointers - Show any item belong to executable module (unknown locations
within DLL)
.csoShowDLLs - Show items with procedure name (DLLs)
.csoShowBPLs - Show items with unit name (BPLs)
Show only items with full info (line number available)

First list's item will not restrict call stack's item at all. Everything will be added. Each
following list's item restricts added call stack's items. Last list's item is most restrictive: only
locations with full debug information available will be added to call stack. See these articles
for examples:

Configuring call stack
Using EurekaLog with DLL compiled with 3rd party compiler

Recommended value is "Show items with procedure name (DLLs)" or "Show items with unit
name (BPLs)".

Important Note: "Show any (including RAW addresses)" value is not recommended to be
used in typical application. This value is intended to be used with dynamically generated
code. Such code has no debug information available and it does not belong to any
executable module, but rather it is allocated in dynamic memory (heap) or CPU stack. Use
"Show any item belong to executable module (unknown locations within DLL)" instead of
"Show any (including RAW addresses)" for applications that do not generate code
dynamically.

Note: "Show any (including RAW addresses)" and "Show any item belong to executable
module (unknown locations within DLL)" values will disable speed optimizations .

See also
Configuring call stack
Customizing debug information
RAW and stack frames methods
Call stacks
Using EurekaLog in multi-threaded applications
Chained exceptions
Using Microsoft's DbgHelp DLL
Using EurekaLog in DLL
Using EurekaLog with DLL compiled by 3rd party compiler (Microsoft Visual Studio, etc.)

10.3.2.2 BugID page

This is "Bug ID" page in EurekaLog project's options .

583

48

496

259

48

243

578

79

547

573

504

455

496

225

EurekaLog 7 Documentation241

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

BugID options

These options allow you to customize BugID generation without need to write your own
event handlers. Each option on this page will include (when checked) or exclude (when
unchecked) corresponding information from BugID generation. In other words, if some
option is checked - then two exceptions will be considered to be the same if both have the
same information (and exceptions will be considered to be different - if information is
different). If some option is unchecked - then it will have no effect on comparison of
exceptions.

Important Note: if all options on this page are disabled - then each exception will have an
unique BugID.

1. "Project ID" option will include Project ID (PID). Project ID is a GUID value which is
unique for each project. It is used by EurekaLog to identify projects. Different projects are
supposed to have different project IDs.

By default - project ID is extracted from .dproj, .bdsproj, .cproj files and then stored in base
configuration (.eof file). You may specify project ID manually by using ecc32 with --el_pid
switch .

It is usually a good idea to enable this option when you are going to send reports to bug
tracker or any other type of centralized storage. That way exceptions from one project will
not be mixed with exceptions from other project.

2. "Exception module ID/name" option will include Module ID of executable module in
which exception has occurred. Module ID is module name for non-EurekaLog modules, it is
GUID (Project ID) for EurekaLog modules.

If you turn this option off - be sure you are using some other options to identify exception.

421

432

Integral parts 242

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

3. "Exception module version" option will include version number. Version information is
taken from executable version info block.

If you enable this option - then same exception from different versions of your application
will be considered as two different exceptions. This is useful option to be used with bug
trackers or any other system which sorts bug reports by version.

4. "Exception module compilation date/time" option will include compilation date/time of
exception's module.

This option is very similar to "Exception module version" option. Usually you should add a
version information to your modules and use "Exception module version" option instead.
Use "Exception module compilation date/time" option only when you are working with
modules without version information.

5. "Exception class (and error codes for some exception types)" option will include name
of exception object's class (such as 'EAccessViolation', etc.). Additionally, some

exception types (such as EOSError or EDatabaseError, etc.) will include an error code or

error message - to distinguish between different exceptions of the same class.

If you turn this option off - be sure you are using some other options to identify exception.

6. "Exact exception message" option will include text message from exception object.

Since exception message may include localized parts (such as messages from OS or your
own localizations) as well as variable parts (such as file names in message text) - it is not a
good idea to enable this option, because changes in localization, environment will make
same exception to become two different exceptions. Enable this option only if receive
merged reports for different exceptions and you have no other option. We strongly
recommend to use OnCustomBugID event to provide custom BugID instead of using this
option.

7. "Location: Exact exception address" option will include RAW offset (in bytes) from
beginning of exception module.

If you enable this option - then same exception from different compilations of your
application will be considered as two different exceptions (unless recompilation will produce
exactly the same executable).

This option can be used with either "Exception module version" or "Exception module
compilation date/time" (or both) options enabled, as well as replacement for both of these
options.

8. "Location: Approximate location" option will include unit name, class name, function
name, but will not include address, offset or any line number information. This option allows
to identify exception even if source code is changed.

If you enable this option - be sure to also enable identification by exception class and/or
message.

9. "Location: Location" option will include unit name, class name, function name and offset
in lines from first line of the function. This allows to identify exception line even if source
code before exception function is changed, but it will not identify exception if function itself
was changed.

10. "Location: Exact location" option will include full information: unit name, class name,
function name, and line number. This will allow to identify exception after any possible
recompilation, but not after source code changes.

11. "Call Stack: Only items with line numbers" option will include only call stack items with
line numbers present. This usually means Delphi source code only (even from other
modules). Items will be included as: unit, class, function, line offset (e.g. same as with
"Location: Location" option).

EurekaLog 7 Documentation243

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

You may use this option to ignore calls to system DLLs or even RTL/VCL code (if you have
"Use Debug DCUs" option disabled).

Note: first item (exception address) is ignored. Use "Location" options above to include/
exclude call stack's exception entry.

12. "Call Stack: Only items from exception module" option will include only call stack items
from exception module. Items will be included as: unit, class, function, line offset (e.g. same
as with "Location: Location" option).

You may use this option to include calls from RTL/VCL code if you have "Use Debug DCUs"
option disabled, but ignore calls to system DLLs.

Note: first item (exception address) is ignored. Use "Location" options above to include/
exclude call stack's exception entry.

13. "Call Stack: Full" option will include all call stack items from current thread. Items will
be included as: unit, class, function, line offset (e.g. same as with "Location: Location"
option).

This will usually lead to duplicating exceptions, because call stack will be different on
different machines/environments/OS.

Note: first item (exception address) is ignored. Use "Location" options above to include/
exclude call stack's exception entry.

14. "Allow EurekaLog to use user-defined "custom" low word" option instructs
EurekaLog to use CRC-32 (4 bytes) instead of CRC-16 (2 bytes). Enabling this option will
give you less possible collisions, but disable custom part of BugID.

Note: OnCustomBugID event will not be called if this option is turned on.

See also:
BugID

10.3.2.3 Debug information page

This is "Debug information" page in EurekaLog project's options .

Debug information options

Options on "Debug information" page allow you to customize EurekaLog debug information
options.

1. "Do not store Class/Procedure names" option disables storing names of classes,
methods, functions and procedures inside executables. Unit names and line numbers are
still saved.

Enable this option to minimize executable size and increase shareware protection.
Disable this option for best detalization.

2. "Debug information encryption password" option specifies password to encrypt all
injected debug information. EurekaLog uses TEA cipher to encrypt all debug information.

If you set this option - you will not be able to view call stacks and assembly info in bug
reports, it will be encrypted. To view encrypted report - you must use EurekaLog Viewer

421

421

225

Integral parts 244

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

tool and specify password.

Use this option if you don't want for end-users to view information about your executable.

Notes:
Empty password does not mean that debug information will be injected in clear text. It
still will be encrypted and packed (even with empty password). Empty password just
allows you to view this information in error dialogs and bug reports in clear text. Non-
empty password will prevent that.
You can also supply a valid password to application at run-time to decrypt debug
information on the go. When valid password is supplied - call stack in bug report and
dialog will be displayed as clear text, even though debug information will still be stored
encrypted. Currently there are three methods to specify decryption password at run-time:
o EurekaLog automatically caches debug information passwords on your developer

machine (that is - on PC which was used to edit/save settings with password). That
way call stacks will always be decrypted on your developer machine, because
EurekaLog will retrieve decryption password from cache. Running your application on
any other machine (e.g. production, clients, etc.) will show encrypted call stacks,
because no decryption password is available.

o Use OnPasswordRequest event. You can either ask user, read registry, or return hard-
coded password (however, do not hard-code passwords for production!).

o Use --el_password=your-password command-line option when launching your

application.

See also:
Configuring call stack
Debug information providers
EurekaLog for shareware developers
Using EurekaLog with DLLs post-processed by 3rd party tools (JCL, madExcept, etc.)
Using EurekaLog with non-Embarcadero DLLs (Microsoft Visual Studio, etc.)

10.3.2.4 Nested exceptions page

This is "Nested exceptions" page in EurekaLog project's options .

Nested exceptions options

Chained exception is an exception which occurs during processing of another exception .
That "another" (original) exception is called "nested exception". For example:

try

 raise ERangeError.Create('Invalid item index'); // <- low-level error (a.k.a. original, first, bottom, inner, nested, root)
except

617

48

409

585

495

496

225

40

EurekaLog 7 Documentation245

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 raise EFileLoadError.CreateFmt('Error loading file %s', [FileName]); // <- high-level error (a.k.a. introduced, last, top, outer, chained)
end;

Note: for more information about nested/chained exeptions - see this article .

As you can see, low-level exception is the exception you're interested in. It indicates a
reason for failure. This is what you typically want to be logged. Chained exception is
triggered by original exception and provides more descriptive error message. So, you
typically want to show it to user as error message. Thus, typically you want first exception
to be logged, but last exception to be shown to end user.

Classic/default Delphi and C++ Builder behaviour is to work only with last exception
always.

Delphi 2009+ only: starting with Delphi 2009 - there was new features introduced to
exceptions in RTL. Support for chained exceptions was added. There are new properties
BaseException and InnerException as well as special raising construct. In this model, you
need to use RaiseOuterException or ThrowOuterException to preserve original exception
when raising new exception. EurekaLog implements similar model with the same properties,
except it doesn't require you to use special raising construct. Any exception raising
automatically saves previous (original) exception in InnerException property. This feature
available on all supported IDE versions.

Options on "Nested exceptions" page allow you to customize EurekaLog behaviour related
to nested/chained exceptions.

Important note: this feature require EurekaLog to be able to track life-time of exception
objects. Therefore, it's highly recommended that you enable the following options:

"Enable extended memory manager" option
"Use low-level hooks" option
"Capture stack only for exceptions from current module" option

Otherwise it's recommended that you keep all options on this page into "Classic" position,
or EurekaLog may show information about wrong exceptions.

1. "Log first (bottom) exception" (.NestedExceptionStack) option force EurekaLog to use
original exceptions (nested root) for logging. This includes class, message, call stack, BugID
and other exception-related properties to be stored in log file, shown in "detailed" dialogs
and/or sent over network. This option doesn't affect any other visual appearance. If there is
no nested exception - this option will have no effect, the behavior will be the same as if
"Log last (top) exception" would be selected. This option is recommended option for
typical application.

2. "Log last (top) exception" (.NestedExceptionStack) option force EurekaLog to use
chained exceptions for logging. This includes class, message, call stack, BugID and other
exception-related properties to be stored in log file, shown in "detailed" dialogs and/or sent
over network. This option doesn't affect any other visual appearance. Use this option for
backward-compatible behavior.

3. "Show first (bottom) exception" (.NestedExceptionMessage) option force EurekaLog to
use original exceptions (nested root) for visual display. This includes error messages,
dialogs and other visual interactions with user. This option doesn't affect logging. If there is
no nested exception - this option will have no effect, the behavior will be the same as if
"Show last (top) exception" would be selected.

4. "Show last (top) exception" (.NestedExceptionMessage) option force EurekaLog to use
chained exceptions for visual display. This includes error messages, dialogs and other visual
interactions with user. This option doesn't affect logging. This is recommended option for
most application types.

5. "Show all exceptions" (.NestedExceptionMessage) option force EurekaLog to show
messages from all currently active exceptions (each message on new line). This includes
error messages, dialogs and other visual interactions with user. This option doesn't affect
logging. This is default behavior of Delphi and C++ Builder applications starting with Delphi
2009, but it's generally not recommended (unless you want extra-detailed error display).

573

250

259

237

http://docwiki.embarcadero.com/VCL/en/SysUtils.Exception.BaseException
http://docwiki.embarcadero.com/VCL/en/SysUtils.Exception.InnerException
http://docwiki.embarcadero.com/VCL/en/SysUtils.Exception.RaiseOuterException
http://docwiki.embarcadero.com/VCL/en/SysUtils.Exception.RaiseOuterException
http://docwiki.embarcadero.com/VCL/en/SysUtils.Exception.RaiseOuterException
http://docwiki.embarcadero.com/VCL/en/SysUtils.Exception.RaiseOuterException
http://docwiki.embarcadero.com/VCL/en/SysUtils.Exception.ThrowOuterException

Integral parts 246

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

6. "Custom" (.CustomExceptionMessage) option allows you to override any exception
message with custom string. This option is used for error messages, dialogs and other
visual interactions with user. This option doesn't affect logging. Specifying a message will
override any exception message with the specified string. Use this option to hide
implementation details from end-user. Message overriding can also be done by using
exception filters or custom attributes .

7. "Use exception's custom message if available" (.UseExceptionComments) option allow
you to override exception message with custom string individually for each exception. This
option is used for error messages, dialogs and other visual interactions with user. This
option doesn't affect logging. It can be combined with any of the previous options (items 3-
6).

Each exception has associated "additional info" field. You can store any information in that
field. It's like Tag field, except it has String type.

If this option is checked and there is any value in that field - it will be used instead of
actual exception message.
If this option is unchecked or field is empty - Message property will be used.

You can use this feature to override original message with custom message, but still
preserve original information. This override is used only for visual display. Log files are
unaffected.

This feature allows you to use per-exception override (see also "Override Exception
Message" option). If you want to override all messages - just use "Custom" option
above.

Note: some error dialogs like WER and system logging do not display error message
to user (instead, they log exception details). Thus, such dialog are unaffected by the
options above (items 3-7).

See also:
Configuring call stack
Chained exceptions

10.3.2.5 Multi-threading page

This is "Multi-threading" page in EurekaLog project's options .

185 190

344

389 384

48

573

225

http://docwiki.embarcadero.com/VCL/en/Classes.TComponent.Tag
http://docwiki.embarcadero.com/VCL/en/SysUtils.Exception.Message

EurekaLog 7 Documentation247

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Multi-threading options

Options on "Multi-threading" page allow you to customize EurekaLog's multi-threading
behavior.

1. "Capture stack of EurekaLog-enabled threads" (.csoShowELThreads) option includes call
stacks of all EurekaLog-enabled threads in application - regardless of thread type. By
default only exception thread is captured.

"EurekaLog-enabled thread" term refers to thread with enabled per-thread EurekaLog. You
can enable EurekaLog in any thread by calling SetEurekaLogStateInThread function or
just simply create threads with TThreadEx or BeginThreadEx . See Enabling EurekaLog
for background threads for more details.

Turn this option off for single-threaded application.
Turn this option on for multi-threaded application.

Note: capturing call stack of an external thread requires thread's suspending. In rare case
this can cause deadlock issues (for example: thread may be suspended when it is running
memory allocation function; thus, any further memory alloc/release operation will block
application forever). Do not enable this option until really needed. See Using EurekaLog in
multi-threaded applications for more details.

Taking call stack of additional threads will also require more time during exception
processing.

2. "Capture stack of RTL threads" (.csoShowRTLThreads) option includes call stacks of all
RTL threads in application. By default only exception thread is captured.

"RTL threads" means threads started with TThread or BeginThread.

It is recommended to keep this option off and use TThreadEx and BeginThreadEx or
SetEurekaLogStateInThread together with "Capture stack of EurekaLog-enabled threads"
option instead.

570

559 551

568

547

559 551

http://docwiki.embarcadero.com/VCL/en/Classes.TThread
http://docwiki.embarcadero.com/VCL/en/System.BeginThread

Integral parts 248

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Turn this option on to capture call stack of external RTL threads (that is threads started by
3rd party code without your control).

Note: capturing call stack of an external thread requires thread's suspending. In rare case
this can cause deadlock issues (for example: thread may be suspended when it is running
memory allocation function; thus, any further memory alloc/release operation will block
application forever). Do not enable this option until really needed. See Using EurekaLog in
multi-threaded applications for more details.

Taking call stack of additional threads will require more time during exception processing.

3. "Capture stack of Windows threads" (.csoShowWindowsThreads) option includes call
stacks of all non-RTL threads in application. By default only exception thread is captured.

"Windows threads" means threads started with CreateThread.

It is recommended to keep this option off and use TThreadEx and BeginThreadEx or
SetEurekaLogStateInThread together with "Capture stack of EurekaLog-enabled threads"
option instead. Alternatively, you may use "Capture stack of RTL threads" option instead.
Turn this option on to capture call stack of external Windows threads (that is threads
started by 3rd party code without your control).
Never start your own thread with CreateThread function.

Note: capturing call stack of an external thread requires thread's suspending. In rare case
this can cause deadlock issues (for example: thread may be suspended when it is running
memory allocation function; thus, any further memory alloc/release operation will block
application forever). Do not enable this option until really needed. See Using EurekaLog in
multi-threaded applications for more details.

Taking call stack of additional threads will require more time during exception processing.

4. "Pause all EurekaLog-enabled threads during exception handling" (.boPauseELThreads)
option will force EurekaLog to suspend all threads with enabled EurekaLog before
processing (handling) exception, and resume these threads when processing (handling) will
be completed.

Use this option if you don't want for other exception to occur in multi-threaded applications
when you're displaying error dialog. Alternative to this option is to properly setup exception
handling for threads (serialize) or to use restart options .

Note: in rare case suspending threads can cause deadlock issues (for example: thread may
be suspended when it is running memory allocation function; thus, any further memory
alloc/release operation will block application forever). Do not enable this option until really
needed. See Using EurekaLog in multi-threaded applications for more details.

5. "Don't pause EurekaLog service threads" (.boDoNotPauseELServiceThread) option
excludes internal EurekaLog service threads (such as freeze detection thread, etc.) from list
of threads for suspending.

6. "Pause all RTL threads during exception handling" (.boPauseRTLThreads) option will
force EurekaLog to suspend all threads in your application created with TThread or
BeginThread before processing (handling) exception, and resume these threads when
processing (handling) will be completed.

Use this option if you don't want for other exception to occur in multi-threaded applications
when you're displaying error dialog. Alternative to this option is to properly setup exception
handling for threads (serialize) or to use restart options .

Notes:
It is recommended to keep this option off and use "Pause all EurekaLog-enabled
threads during exception handling" instead.
In rare case suspending threads can cause deadlock issues (for example: thread may be
suspended when it is running memory allocation function; thus, any further memory alloc/
release operation will block application forever). Do not enable this option until really
needed. See Using EurekaLog in multi-threaded applications for more details.

547

559 551

547

259

547

259

547

http://msdn.microsoft.com/en-us/library/windows/desktop/ms682453(v=vs.85).aspx
http://docwiki.embarcadero.com/VCL/en/Classes.TThread
http://docwiki.embarcadero.com/VCL/en/System.BeginThread

EurekaLog 7 Documentation249

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

7. "Don't pause main thread" (.boDoNotPauseMainThread) option excludes main thread from
list of threads for suspending. Use this option if your event handlers are going to make
synchronize calls into main thread.

Note: this option has no effect if "Pause all RTL threads during exception handling" and
"Pause all EurekaLog-enabled threads during exception handling" options are not
enabled.

8. "Pause all Windows threads during exception handling" (.boPauseWindowsThreads)
option is equivalent to "Pause all RTL threads during exception handling" option, except
this option will suspend/resume threads created with CreateThread function. Those threads
are usually system service threads.

Use this option if you don't want for other exception to occur in multi-threaded applications
when you're displaying error dialog. Alternative to this option is to properly setup exception
handling for threads (serialize) or to use restart options .

Note: in rare case suspending threads can cause deadlock issues (for example: thread may
be suspended when it is running memory allocation function; thus, any further memory
alloc/release operation will block application forever). Do not enable this option until really
needed. See Using EurekaLog in multi-threaded applications for more details.

9. "Auto-handle TThread exceptions" option enables backward-compatible EurekaLog 6
behavior for threads. When you enable this option - EurekaLog will automatically handle
exception in TThread. Default behavior is not to handle exception, but allow it to be saved
in TThread.FatalException property, which can be analyzed/handled by caller thread.

Warning: enabling this option may result in multiple error dialogs at the same time (if
several exception occur in multiple threads) and interfere with custom processing of
TThread.FatalException property.

Notes:
It's not recommended to use this option. You should implement proper error handling for
threads instead. See Using EurekaLog in multi-threaded applications for more details.
EurekaLog has to be enabled for the background threads.

10. "Default EurekaLog state in new threads" option specifies default EurekaLog state for
new background threads:

If this option is set to "Enabled" - new threads will have EurekaLog enabled. It is not
recommended value.
If this option is set to "Disabled" - new threads will have EurekaLog disabled. It is
recommended value.
If this option is set to "Enabled for RTL threads, disabled for Windows threads" - threads
created with BeginThread or TThread will have EurekaLog enabled, threads created with
CreateThread will have EurekaLog disabled.

You can turn EurekaLog on/off on per-thread basis by using SetEurekaLogStateInThread
function.

You can use this option to enable/disable EurekaLog for threads which you have no control
of. Like system worker threads, thread pool, etc. You can always change per-thread
EurekaLog state manually from your code.

It's highly recommended to keep this option into "Disabled" state and enable EurekaLog
manually in your threads only - to avoid EurekaLog processing in 3rd party threads. See
Using EurekaLog in multi-threaded applications for more details.

Important Note: Try to never use "Enabled" option as it will enable EurekaLog for all
threads in your application - including internal system threads. Use "Enabled for RTL
threads, disabled for Windows threads" instead of "Enabled" when possible.

See also:
Using EurekaLog in multi-threaded applications

259

547

547

547

547

http://msdn.microsoft.com/en-us/library/windows/desktop/ms682453(v=vs.85).aspx
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.FatalException

Integral parts 250

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Multi-threaded call stacks
Configuring call stack

10.3.2.6 Memory problems page

This is "Memory problems" page in EurekaLog project's options .

Memory debugging options

EurekaLog is capable to track many problems with heap memory (dynamically allocated
memory).

1. "Enable extended memory manager" option enables EurekaLog's filter for memory
manager. Installing debugging filter allow EurekaLog to perform additional checks. You must
turn this option on, if you want to use debugging memory features of EurekaLog.

Notes:
(C++ Builder only): C++ Builder requires special setup for this option to work. See using
memory feature with C++ Builder .
EurekaLog uses memory manager filter to track life-time of exception objects.
This option is required for some other EurekaLog's features to work (like "Catch handled
exceptions" and nested/chained exceptions).

Important note: it is recommended to always keep this option on, unless you need shared
memory manager and need to communicate with module without EurekaLog's memory
manager (or without EurekaLog at all) and without FastMM (EurekaLog is compatible with
FastMM). We highly do not recommend to turn this option off on RAD Studio 2007 and
earlier.

See also: using with shared memory manager .

You also need to enable at least 1 sub-option to get real work from this option. If you just
enable "Enable extended memory manager" option, but don't select any sub-options -
there will be no additional checks running.

85

48

225

255

524

EurekaLog 7 Documentation251

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

2. "Catch memory problems" option enables checking for memory mis-use. Once wrong
memory operation is detected - an exception will be raised. If you turn off this option - you
code may perform invalid memory operation and continue running without noticing.

Memory mis-use includes the following:
double-free (releasing same memory twice);
cross-module operations (releasing memory allocated in other module - without using
shared memory manager);
heap buffer overflow (writing over memory block's borders);
calling virtual methods of already deleted object;
out of memory errors.

You can use EMemLeaks.MemLeaksErrorsToIgnore global variable to exclude certain checks
(such as out of memory errors).

Enabling this feature has very little impact on the speed and memory consumption. It
requires allocating few ten bytes more for each allocation.

Notes:
it is recommended to always keep this option on;
this option can work without leaks checking.

3. "Fill freed memory with zeros" option fills memory block with zeros on its release.

I.e. if this option is unchecked and you release a memory block - it will be left untouched
(contains old data). So, if you try to access it again (bug, access after release) - this will be
successful. If this option is checked and you release a memory block - this memory block will
be erased (zeroed). Thus, any code which access memory block after release will get zeros
instead of actual data - increasing chances to raise exception.

Enabling this feature has very little impact on the speed.

Notes:
it is recommended to always keep this option on;
this option can work without leaks checking;
EurekaLog does not support checks for using memory blocks after free.

4. "Share memory manager" option enables installation of shared memory manager.

If you need to share memory manager or if you've already used shared manager before
using EurekaLog - turn this option on. If there will be shared memory manager already
present (installed by another module) - your module will use installed one. Your settings for
memory manager will be ignored in this case.

This option allows sharing of the memory manager between .exe and DLLs which were also
compiled with EurekaLog and this option enabled. This allows you to pass strings and
dynamic arrays to DLL functions (and receive them from DLLs), provided that all modules are
compiled with EurekaLog and this option enabled. Sharing will only work if the module that
is supposed to share the memory manager was compiled with the "Share memory
manager" or "Use existing shared memory manager" option set.

Notes:
if .exe is single threaded and DLL is multi-threaded - then you must set the IsMultiThread
variable in .exe to True, otherwise it will crash when a thread contention occurs.
statically-linked DLL are initialized before .exe, so the main application may end up using
memory manger from a statically loaded DLL and not the other way around.
EurekaLog is capable of using FastMM's shared memory manager. You can safely mix
modules with FastMM's shared memory manager and EurekaLog's shared memory
manager. EurekaLog's memory features may be disabled in this case.
if you're using shared memory manager - it's best to keep DLL and .exe compiled in the
same Delphi or C++ Builder version. That's because format of internal data structures (like
long string header) changes between compiler versions.

See also: using with shared memory manager .524

Integral parts 252

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

5. "Use existing shared memory manager" option works the same as "Share memory
manager" option, except it doesn't install shared memory manager, if there is no other
shared memory manager set. I.e. your module will use installed shared memory manager,
but will not install new one.

Note: use this option with caution, because statically-linked DLLs are loaded before .exe,
so there may be unexpected initialization order. This leads to case, when some DLLs do not
use installed shared memory manager. For this reason - consider using only "Share memory
manager" option for common cases.

6. "Catch memory leaks" option enables memory leaks checking. Memory leak is a memory
block which wasn't released. Usually it's a bug in your application.

If this option is unchecked - there will be no additional checks performed. If this option is
checked and your application doesn't have any memory leak bugs - there will be no
difference in application's behaviour. If this option is checked and your application has
leaked the memory - there will be a usual EurekaLog's error message on application's
shutdown. This error message will use dialog and send option as set in EurekaLog's
options.

Note: it's recommended to always keep this and "Active only when running under
debugger" options on.

Note: memory leak detection have some limitations .

7. "Active only when running under debugger" option alters activation behaviour of "Catch
memory leaks" option.

If this option is checked - memory leak detection will only be activated when running
application under debugger (like IDE). This can be useful if you want to debug your
applications on developer's machine, but do not want to annoy end-users with useless
error reports (because in most cases memory leaks don't bother end-users).

Note: it's recommended to always keep this option on, unless you're creating a server or
service application.

8. "Allow manual activation control" option alters activation behaviour of "Catch memory
leaks" option. If this option is checked - memory leak detection can be manually turned on
or off via command-line switches.

Use "/EL_EnableMemoryLeaks" to enable memory leak detection.
Use "/EL_DisableMemoryLeaks" to disable memory leak detection.
Use "/EL_DisableMemoryFilter" to disable extended memory manager (see option #1
above).

If this option is unchecked - these command-line switches are ignored. If this option is
checked - these command-line switches will turn on or off memory leaks detection.
Command-line switches will override any other check for memory leak detection activation.

This option can be used with "Active only when running under debugger" option.

This option is useful, when you want to temporary enable memory leaks detection - for
example, you can activate "Active only when running under debugger" option and deploy
your application to end customers without bothering them with leaks error report. However,
if some customer will report problems with memory usage - you can always advise to use
command-line switch to enable memory leaks detection.

Note: it's not possible to enable extended memory manager via command-line switches.

9. "Group child memory leaks with its parent" option hides child leaks from reports.

Leak of object is parent leak. Leak of object's field is child leak. For example:

type

589

EurekaLog 7 Documentation253

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 TComplexLeakObject = class
 private
 FData: Pointer;
 public
 constructor Create;
 destructor Destroy; override;
 end;

{ TComplexLeakObject }

constructor TComplexLeakObject.Create;
begin
 inherited;

 FData := AllocMem(10240);
end;

destructor TComplexLeakObject.Destroy;
begin
 if Assigned(FData) then
 begin
 FreeMem(FData);
 FData := nil;
 end;

 inherited;
end;

var
 LeakedObject: TComplexLeakObject;
begin
 LeakedObject := TComplexLeakObject.Create;
end;

This code will create 2 leaks: 1 for LeakedObject and 1 for LeakedObject.FData. If "Group
child memory leaks with its parent" option is unchecked - you'll get report about 2 different
leaks:

"Group child memory leaks with its parent option" is unchecked

If this option is checked - you'll get report only about 1 leak (LeakedObject).
LeakedObject.FData will be hidden and size of LeakedObject.FData's leak will be added to
LeakedObject's leak:

Integral parts 254

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

"Group child memory leaks with its parent option" is checked

This option is heuristic.
Turn this option on to minimize large reports.
Turn this option off to get detailed reports.

Note: this option is able to group leaks which are only created within constructor of parent
object. If you assign object's fields outside of the constructor - these leaks will not be
grouped.

10. "RAW stack tracing" option switches EurekaLog to use RAW tracing method for building
call stacks for memory issues. By default EurekaLog uses frame-based tracing method.

RAW stack tracing can show more complete call stacks, but it's significantly slower. See
also: RAW method and frame-based method .

Turn on for best detalization.
Turn off for best performance.

Note: it's recommended keep this option unchecked, until you face problem which you can't
solve without more detailed call stack.

Warning: do not ship your product to clients with "RAW stack tracing" option enabled.
Performance of your application will be significantly lower.

11. "Hide RTL/VCL leaks" option hides known RTL/VCL leaks. There are some leaks which
are "by design" or are bugs in old Delphi/C++ Builder versions. You can't fix them, but you
can ignore them.

Turn on to hide expected leaks or leaks from RTL/VCL bugs.
Turn off for better detalization.

Note: if you found another "known bug" of Delphi/C++ Builder - please, send us a
description and demo, so we'll be able to exclude this leak from reporting and improve our
"Hide RTL/VCL leaks" option.

12. "Minimal memory leak size to report" option allows you to ignore small leaks.

If you set this value to 0 - EurekaLog will report all leaks. If you set it to some value > 0 -
EurekaLog will only report leaks, if total leaked memory's size is greater than (or equal to)
the specified value.

Set to 0 to increase detalization.
Increase value to decrease report's noise.

13. "Maximum leak number to report" option allow you to limit count of reported memory
leaks. This is useful option, if situation is so bad so your application generates huge amount
of leaks.

If you set this value to 0 - EurekaLog will report all leaks (use with caution). If you set it to
some value > 0 - EurekaLog will only report this number of leaks, ignore all other leaks. I.e.
EurekaLog will report only first <N> leaks, where N is entered value.

Use this option to limit size of memory leak reports, to avoid creation of huge bug reports
(and avoid temporary hung at shutdown, when EurekaLog will busy creating report).

Increase value to increase detalization level.

578

http://www.eurekalog.com/support.php
http://www.eurekalog.com/support.php
http://www.eurekalog.com/support.php
http://www.eurekalog.com/support.php
http://www.eurekalog.com/support.php
http://www.eurekalog.com/support.php

EurekaLog 7 Documentation255

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Decrease value to reduce noise and decrease report's size.

See also:
Enabling memory features for C++ Builder
Configuring project for leaks detection
Other additional features
Memory leaks limitations
Solving memory leaks
Solving memory problems
Using EurekaLog and 3rd party shared memory manager

10.3.2.6.1 Enabling memory/resource leaks features for C++ Builder

In order to use EurekaLog's memory features (like heap corruption checks or memory leaks
detection) or resource leak detection feature in your C++ Builder application - you must
perform special setup of your application.

Please, follow these steps:
1. Enable memory features or resource features in EurekaLog's options for your

project .
2. (for memory leaks only) Go to "Project"/"Options"/"C++ Linker" and set "Dynamic RTL"

option to False.
3. (optional, recommended) Go to "Project"/"Options"/"Packages" and set "Build with run-

time packages" option to False.
4. Copy EMemLeaksBCB.cpp file to your project folder, if it doesn't exist yet (this file is

originally located in \Lib\Common subfolder of your EurekaLog installation).
5. Add EMemLeaksBCB.cpp file from your project's folder to the project.
6. Go to "Project"/"Options"/"Build order" and move EMemLeaksBCB.cpp file to be the first

unit (on top).
7. Open project's source ("Project"/"View source") and add USEOBJ("EMemLeaksBCB.cpp")

before any USEFORM directives, for example:

//---

#include <vcl.h>

USEOBJ("EMemLeaksBCB.cpp"); // <- added
#pragma hdrstop
#include <tchar.h>

//---
USEFORM("Unit9.cpp", Form9);

//---
...

8. Make a full build ("Project"/"Build"); not just compile or make.

See also:
Memory features settings
Resource leaks settings
Memory leaks detection limitations
Resource leaks detection limitations

10.3.2.7 Resource leaks page

This is "Resource leaks" page in EurekaLog project's options .

255

508

237

589

166

171

524

250 255

225

250

255

589

589

225

Integral parts 256

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Resource leaks detection options

EurekaLog is capable to track resource leaks - dynamically allocated resources other than
memory .

1. "Catch resource leaks" option enables resource leaks checking. Resource leak is a
handle of some object which wasn't released. Usually it's a bug in your application.

If this option is unchecked - there will be no additional checks performed. If this option is
checked and your application doesn't have any resource leak bugs - there will be no
difference in application's behaviour. If this option is checked and your application has
leaked the resource - there will be a usual EurekaLog's error message on application's
shutdown. This error message will use dialog and send option as set in EurekaLog's
options.

Note: resource leak detection have some limitations .

Note: resource leaks detection works only with supported functions .

2. "Active only when running under debugger" option alters activation behaviour of "Catch
resource leaks" option.

If this option is checked - resource leak detection will only be activated when running
application under debugger (like IDE). This can be useful if you want to debug your
applications on developer's machine, but do not want to annoy end-users with useless
error reports (because in most cases resource leaks don't bother end-users).

Note: it's recommended to always keep this option on, unless you're creating a server or
service application.

3. "Allow manual activation control" option alters activation behaviour of "Catch resource
leaks" option. If this option is checked - resource leak detection can be manually turned on
or off via command-line switches.

Use "/EL_EnableResourceLeaks" to enable resource leak detection.
Use "/EL_DisableResourceLeaks" to disable resource leak detection.

If this option is unchecked - these command-line switches are ignored. If this option is
checked - these command-line switches will turn on or off resource leaks detection.
Command-line switches will override any other check for resource leak detection activation.

This option can be used with "Active only when running under debugger" option.

This option is useful, when you want to temporary enable resource leaks detection - for
example, you can activate "Active only when running under debugger" option and deploy
your application to end customers without bothering them with leaks error report. However,
if some customer will report problems with memory/resource usage - you can always advise
to use command-line switch to enable resource leaks detection.

Note: it's recommended to always keep this option on.

4. "RAW stack tracing" option switches EurekaLog to use RAW tracing method for building

250

589

590

EurekaLog 7 Documentation257

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

call stacks for resource leaks. By default EurekaLog uses frame-based tracing method.

RAW stack tracing can show more complete call stacks, but it's significantly slower. See
also: RAW method and frame-based method .

Turn on for best detalization.
Turn off for best performance.

Note: it's recommended keep this option unchecked, until you face problem which you can't
solve without more detailed call stack.

Warning: do not ship your product to clients with "RAW stack tracing" option enabled.
Performance of your application will be significantly lower.

5. "Hide RTL/VCL leaks" option hides known RTL/VCL leaks. There are some leaks which
are "by design" or are bugs in old Delphi/C++ Builder versions. You can't fix them, but you
can ignore them.

Turn on to hide expected leaks or leaks from RTL/VCL bugs.
Turn off for better detalization.

Note: if you found another "known bug" of Delphi/C++ Builder - please, send us a
description and demo, so we'll be able to exclude this leak from reporting and improve our
"Hide RTL/VCL leaks" option.

See also:
Enabling resource features for C++ Builder
Configuring project for leaks detection
Other additional features
Resource leaks limitations

10.3.2.8 Hang detection page

This is "Hang detection" page in EurekaLog project's options .

Hang detection options

This page allows you to configure hang and deadlock detection feature in EurekaLog.

1. "Activate UI hang detection with timeout" option enables EurekaLog to monitor running
application for hangs . A timeout (in seconds) indicate how long UI must be unresponsive
to be detected as "hang".

High values will result in longer hang detection.
Low values will result in false-positive triggering.

Recommended value is 4 seconds.

Notes:

578

255

508

237

589

225

174

http://www.eurekalog.com/support.php
http://www.eurekalog.com/support.php
http://www.eurekalog.com/support.php
http://www.eurekalog.com/support.php
http://www.eurekalog.com/support.php
http://www.eurekalog.com/support.php

Integral parts 258

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

System default timeout for hang detection is 5 seconds. Thus system hang detection
dialog may be triggered before EurekaLog's hang detection, if you would set timeout
value to large values (larger than 5 seconds).
EurekaLog is able to detect hang of only the main thread on pre-Vista systems.
EurekaLog uses SendMessageTimout function to detect whenever main thread is not able
to receive messages (i.e. it hangs).
EurekaLog is able to detect deadlock between any EurekaLog-enabled threads on Vista+
systems. EurekaLog uses Wait Chain Traversal (WCT) to detect whenever there is a
deadlock between two or more EurekaLog-enabled threads.
All EurekaLog-enabled threads are included in hang bug report - regardless of "Capture
stack of EurekaLog-enabled threads" option .

2. "Disable under debugger" (.FreezeDisableUnderDebugger) option will disable hang
detection feature if you run your application under debugger. The hang detection will be
enabled when application run outside of IDE/debugger.

Note: this option has no effect if "Activate UI hang detection with timeout" option is not
checked.

Important note: it is recommended to enable this option when debugging your application.
Time spend in the debugger will be accounted for non-responding time of your application.
Thus, a hang report may be triggered while you are debugging your application. Use this
option to avoid such false-positive reports.

3. "Capture stack of RTL threads" (.csoShowRTLThreads) option includes call stacks of all
RTL threads in application. By default only hanged thread and EurekaLog-enabled threads
are captured.

"RTL threads" means thread started with TThread or BeginThread.

It is recommended to keep this option off and use TThreadEx and BeginThreadEx or
SetEurekaLogStateInThread.
Turn this option on to capture call stack of external RTL threads (that is threads started by
3rd party code without your control).

Note: capturing call stack of an external thread requires thread's suspending. In rare case
this can cause deadlock issues (for example: thread may be suspended when it is running
memory allocation function; thus, any further memory alloc/release operation will block
application forever). Do not enable this option until really needed. See Using EurekaLog in
multi-threaded applications for more details.

Taking call stack of additional threads will require more time during exception processing.

4. "Capture stack of Windows threads" (.csoShowWindowsThreads) option includes call
stacks of all non-RTL threads in application. By default only hanged thread and EurekaLog-
enabled threads are captured.

"Windows threads" means thread started with CreateThread.

It is recommended to keep this option off and use TThreadEx and BeginThreadEx or
SetEurekaLogStateInThread. Alternatively, you may use "Capture stack of RTL threads"
instead.
Turn this option on to capture call stack of external Windows threads (that is threads
started by 3rd party code without your control).

Note: capturing call stack of an external thread requires thread's suspending. In rare case
this can cause deadlock issues (for example: thread may be suspended when it is running
memory allocation function; thus, any further memory alloc/release operation will block
application forever). Do not enable this option until really needed. See Using EurekaLog in
multi-threaded applications for more details.

Taking call stack of additional threads will require more time during exception processing.

See also:

246

559 551

547

559 551

547

http://technet.microsoft.com/en-us/library/cc978614.aspx
http://technet.microsoft.com/en-us/library/cc978614.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644952(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644952(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms681622(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms681622(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms681622(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms681622(v=vs.85).aspx
http://docwiki.embarcadero.com/VCL/en/Classes.TThread
http://docwiki.embarcadero.com/VCL/en/System.BeginThread
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682453(v=vs.85).aspx

EurekaLog 7 Documentation259

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Hangs and deadlocks

10.3.2.9 Restart&Recovery page

This is "Restart&Recovery" page in EurekaLog project's options .

Restart and recovery options

Options on "Restart&Recovery" page allow you to customize EurekaLog behavior for
restarting application on errors.

1. "None/Restart/
Terminate" (.AutoCrashOperation, .AutoCrashNumber, .AutoCrashMinutes) option specifies
action to trigger when more than specified number of errors occurs in less than specified
amount of time interval. None option will disable this feature. Restart option will
automatically restart application. Terminate option will automatically close application.

Use this option to automatically restart/terminate application in case of "exception spam" -
i.e. when large numbers of exception occurs in a short amount of time.

Notes:
This option is independent from error dialogs. If you want restart options to be controlled
by end-user - then setup appropriate options for dialogs, do not enable this feature. It's
not recommended to enable both options (restart in dialogs and this feature) to avoid
confusion for end-users.
When number of errors is set to 1 - application will be restarted/terminated after first
exception regardless of timeout.
Only unhandled exceptions (i.e. processed by EurekaLog) are counted. If exception is not
handled by EurekaLog - it will not be counted. Thus, it's perfectly possible to build
application with heavy exception usage.
This is global counter. Be extra careful to use it in multi-threaded applications, as
exceptions from multiple threads will be counted within the same timeout interval. For
example, if you set to terminate application after 10 errors within 1 minute, and you have
10 threads, and each thread will raise 1 exception - then your application will be
terminated.
This setting specify "time window" to monitor exceptions. It is designed to close
application if it is "rushed" with exceptions. This is very similar to "Show restart checkbox
after N error" setting in dialogs. For example, if there is 10 exceptions total, one
exception each second - then application will be terminated after 10 seconds, even
though this setting says "Terminate after 10 errors in 1 minute" - because this is what
just happened: you get your 10 exception within 1 minute time window.
EurekaLog may terminate your application regardless of these options when it
encounters a fatal problem. For example, out of memory error or memory corruption will
generate bug report and terminate your application - because it is not possible to
continue normal execution after memory problems.

10.3.2.10 External tools

This is "External tools" page in EurekaLog project's options .

174

225

225

Integral parts 260

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

External tools options

Options on "External tools" page allow you to customize EurekaLog behavior for integration
with other 3rd party software. This page contains options from other pages.

1. "Delete service files after compilation" option allows you to clean up your project from
unnecessary files. EurekaLog asks linker to generate .map/.tds/.drc files to read debug
information from them. Once debug information is injected - these files are no longer
needed. This option can be used to delete them automatically. See EurekaLog's basics
for more information. You can turn this option off to keep files untouched (if you want them
for other 3rd party software).

Turn this option off for external debuggers, profilers and debug information convertor tools
(such as map2dbg).

2. "Reduce file size" option removes relocation table from file. This reduces file's size for
about 10% (however, enabling EurekaLog also increases file's size).

It's recommended to always keep this option on.

Note: this option have no effect for DLL and packages.

Technical explanation
When you compile a DLL (or a package which is a Delphi-specific DLL in disguise), the
linker includes what is known as a relocation table. This table includes information about
what addresses must be fixed up by the OS loader in the (likely) event that the DLL
must be loaded at a different address than its intended-at-compile/link-time base
address. You see, all DLLs come with a base address that is the "ideal" loading address
of that module. The OS will try to load the DLL at this address to avoid the overhead of
runtime rebasing (patching the in-memory pages of the DLL forces it to be paged in from
disk and prevents cross-process sharing of the DLL pages). That's why you should set
the Image base option in the Linker page of the project options of DLL and package
projects. The default Image base that Delphi uses is $00400000 for both applications,
DLLs and packages - and thus by default all DLLs and packages will need to be rebased
- as that address is reserved for the process' EXE file.

The implication is that an EXE file will always be loaded at the fixed virtual address
$00400000 and that it will never need to be rebased. Alas, it doesn't really need its
relocation table and we can safely remove it, shrinking the size of the .EXE without
affecting its behavior or performance.

3. "Check file corruption" option adds check for file corruption in your project. If you enable

38

EurekaLog 7 Documentation261

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

this option, EurekaLog will calculate a CRC checksum of the compiled file and store it inside
file. EurekaLog will also read this checksum from file on its startup (launch). If your
executable was modified, EurekaLog will display an appropriate message and shutdown
your application immediately:

EurekaLog detected changes in executable file

You can use this option to ensure that your code wasn't modified.

Notes:
CheckSum field in the IMAGE_OPTIONAL_HEADER structure is used to store CRC value inside
executable file.
This option checks file on disk, not running process image.
Enabling this option will slow down loading and startup times on your executable. The
bigger your executable file will be - the larger will be startup time: because the entire file
must be read at startup.

Turn off for digitally signed files, packers or protectors.

4. "Use speed optimizations" option enables caching of kernel information to improve
performance of stack tracing.

Turn off for packers and protectors.

Note: this option will be automatically disabled when "Detalization level" option is set to
"Show any (including RAW addresses)" or "Show any item belong to executable module
(unknown locations within DLL)" value.

It is recommended to keep this option unchecked unless you suffer from slow work of your
application.

5. "Use low-level hooks" option allows or forbids using of low-level hooks.

Using low-level hooks allows you to capture low-level information such as CPU state. Low-
level hooks are also required for additional WER functionality. However, a documented way
of installing low-level hook is available only in Windows XP and later. For older OS -
undocumented hack will be used. If this option is unchecked - EurekaLog will use RTL
functionality and will not install low-level hooks.

Notes:
Low-level hooks will always be used on Delphi 2007 and below, since RTL support for
handling exception was only introduced in Delphi 2009.
Using of low-level hooks may introduce compatibility issues with 3rd party protection
software with anti-crack detection.
EurekaLog uses different implementation on Windows 2000 and Windows XP and above:
o Windows 2000: use SEH - inject hook into KiUserExceptionDispatcher (undocumented

hack).
o Windows XP+: use VEH - add handler via documented API.

237

Integral parts 262

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

This option controls only collecting information stage ("raise"). This option has no effect
on other places. For example, hooks for handling exception are controlled by these
options .

Turn off for packers and protectors.

Important note: turning off low-level hooks means that EurekaLog will not install additional
hooks for API functions. This means that EurekaLog will not intercept important system
calls. For example, EurekaLog will not hook ExitThread function, which means EurekaLog will
not know when a thread exits. This will lead to thread information stored forever - until
application terminates. You can call internal _NotifyThreadGone or _CleanupFinishedThreads
functions to notify EurekaLog about thread's termination. Such manual notifications can be
avoided by using EurekaLog's wrappers (TThreadEx , for example).

6. "Delay call stack creation until handle stage" option postpones analyzing exception for
later stages of processing.

Please, see this article for detailed explanation of delayed (deferred) call stacks.

Enable this option for better performance.
Disable this option for better detalization and compatibility.

Note: enabling some advanced features of EurekaLog (such as handling safecall
exceptions, using exception filters with "Exception Kind" <> "All", etc.) may require creating
call stack earlier than usual (for example: to detect if exception is raised within safecall
wrapper), so this option will have no effect.

7. "Handle every SafeCall exception" option is used to catch safecall-exceptions with
EurekaLog. This option is useful in COM servers, COM applications and other interface-
related code.

When this option is off - safecall exceptions will be handled by default processing which
usually means losing information about error location.
When this option is on - safecall exceptions will be handled by EurekaLog and then by
default processing.

Usually it's a good idea to disable error dialogs and visual feedback for safecall exceptions
since these exception will be handled by calling code (which will display error message).

Notes:
Each safecall exception is considered to be handled exception. Keep that in mind when
you setup exception filters or write event handlers.
This option has no effect if "Catch handled exceptions" option is enabled (see below).
This option requires extended memory manager enabled.
It's a good idea to include fix for QC report #81725 when you use "Handle every
SafeCall exception" option.
Internally, "Handle every SafeCall exception" option installs hook for
ComObj.HandleSafeCallException routine (when low-level hooks are allowed) or scans
exception's call stack for _HandleAutoException routine (when low-level hooks are not
installed). The later can cause building call stack for all exceptions even with "deferred call
stacks" option set.

Alternative for this option is to invoke EurekaLog manually from your SafeCallException
handler.

See also:
Using EurekaLog in COM applications

8. "Catch handled exceptions" option will enable EurekaLog for all exceptions. By default
EurekaLog processes only exceptions which are unhandled (see handled/unhandled terms
definitions).

It's not recommended to use this option. That's because "handled" for exception means
that this exception is expected and it was handled by code. Therefore, it's better to setup
proper exception handling in your code. This option is used primary as last resort measure

352

559

583

250

352

488

40

http://docwiki.embarcadero.com/Libraries/en/System.TObject.SafeCallException
http://docwiki.embarcadero.com/Libraries/en/System.TObject.SafeCallException

EurekaLog 7 Documentation263

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

to work with "bad" code (the code which hides unhandled exceptions).

Be sure to setup proper exception filtering when you enable this option. Often it's a good
idea to disable error dialogs and visual feedback for handled exceptions.

Notes:
You should use "Handle every SafeCall exception" option for safecall-exceptions instead
of "Catch handled exceptions" option.
This option requires extended memory manager enabled.

9. "Capture stack only for exceptions from current
module" (.csoCaptureOnlyModuleExceptions) option allows you to speed up execution by
ignoring all exceptions outside of your executable module.

Since normal practice for exceptions is to handle them within the same module -
exceptions usually do not leave module (i.e. they are not shared between modules). This
means that you're usually interested only in exceptions from the same module. This option
allows you to ignore any other exception.

Note: this option is extremely useful in applications with plug-ins (including COM modules).

It's recommended to keep this option checked when possible. Disable this option for
packaged applications or other application types which includes sharing exceptions
between modules.

10. "Customize code hooks" option allows you to select code hooks specific for
application type . Disable hooks for packers and protectors.

11. "Configure external tools run" option allows you to specify commands to invoke during
building process . You can place a call to external tool (such as packer, protector or
debug information converter).

Delphi 2009+: order of actions during project's compilation is as follows:
1. EurekaLog pre-build event
2. IDE pre-build event
3. Project compile and link
4. IDE post-build event
5. EurekaLog link (post-processing)
6. EurekaLog post-build event

Note: you must post-process executable with EurekaLog first, and only after this - you can
post-process executable with packer/protector/digital signature tool. On the other hand,
debug information converter may be run before or after EurekaLog's post-processing - it
doesn't matter (as long as debug information is present and untouched).

12. "Customize debug information providers" option allows you to customize debug
information reader classes ("providers") . You may want to enable additional providers to
be able read debug information supplied by external tools.

13. "Customize memory manager" option allows you to customize debugging memory
manager . It's highly recommended to keep "Enable extended memory manager" option
turned on (you can disable other memory checking options if you want to). Installing filter
on memory manager will allow EurekaLog to track life-time of exceptions objects without
need to install code hooks.

See also:
Using EurekaLog with external software
Using EurekaLog in COM applications
Code hooks
Build events
Debug information providers

250

457

352

363

351

355

250

514

488

352

351

355

Integral parts 264

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

10.3.3 Bug report page

This is "Bug report" page in EurekaLog project's options .

Bug report options

Bug report page contains local exception logging options. You can enable/disable saving
bug reports to file here. See this article for more information about bug reports.

1. "Save bug report to file" (.SaveLogFile) option enables saving full exception information
report into a file. This file is plain-text report file, which can be viewed in any text editor or
special viewer application: EurekaLog Viewer. Bug report contains information specified on
Bug report content page. Single file can contains multiple problem reports.

2. "Bug report's location" (.OutputPath) option specifies path on file system, where you
want to save bug report. Default is a project's subfolder in "%APPDATA%\Neos Eureka S.r.l
\Bug reports\" (see also). Empty string means default path (i.e. the same folder - "%
APPDATA%\Neos Eureka S.r.l\Bug reports\"). You can use environment variables to
specify dynamic-changed paths.

This option can specify folder only (ends with path separator - '/'). In this case: default file
name ("your-project.el" - for example: "Project1.el") will be used. Alternatively, you can
specify both path + file name. In this case: specified custom file name will be used. Note
that you also can alter file name by using the following 3 options (see below).

If you want to save bug report to the same folder as executable module - use ".\" folder.
You can also use any other relative path, like this for example: ".\Reports". Do not save
bug report to .exe's folder, if you install your application to Program Files. Use exe's folder
only for mobile applications (for example: runnable from flash sticks).

Notes:
1. You can open default folder with bug reports by opening Start / Programs / EurekaLog /

Bug reports menu item (for current user account only).
2. If your selected folder will be write-protected at run-time, EurekaLog will revert it to

default. If path doesn't exist - it will be created.

Important Note: %APPDATA% folder is specific to user account. Each user account has its own
%APPDATA% folder. EurekaLog will use %APPDATA% folder of user running your executable. For
example, if you are writing a Win32 Service application - such application is run by "Local
System" account by default. "Local System" account has its own %APPDATA% folder, for
example: "C:\WINDOWS\system32\config\systemprofile\AppData" or "C:\WINDOWS\SysWOW64
\config\systemprofile\AppData" (depending on bitness of your application and operating
system).

3. "Add BugID" (.loAddBugIDInLogFileName) option alters default file name by appending a
Bug ID value to it. Bug ID is a hash value of type and location of the problem. Exceptions

225

72

266

217

413

421

EurekaLog 7 Documentation265

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

with the same Bug ID is considered to be the same.

Use this option to generate a more customized/unique bug report's file names.

Example: "Project1_A5810000.el".

Warning: checking this option will result in multiple log files for your project (one file for
each exception kind). It's recommended to keep this option checked off (unchecked).

Note: there is a similar option which is applied to name of send bug report only. You may
consider using it instead of this option.

4. "Add client's computer name" (.loAddComputernameInLogFileName) option alters default
file name by appending a name of client's machine value to it. All non-allowed file name
characters will be replaced with safe replace character ('_').

Use this option to generate a more customized/unique bug report's file names.

Example: "Project1_Alex_Notebook.el".

Note: there is a similar option which is applied to name of send bug report only. You may
consider using it instead of this option.

5. "Add current date-time" (.loAddDateInLogFileName) option alters default file name by
appending a current date-time value to it ('yyyymmddhhnnss').

Use this option to generate a more customized/unique bug report's file names.

Example: "Project1_20110609005134.el".

Warning: checking this option will result in multiple log files for your project (one file for
each exception occurrence). It's recommended to keep this option checked off (unchecked).

Note: there is a similar option which is applied to name of send bug report only. You may
consider using it instead of this option.

6. "Max. reports in one file" (.ErrorsNumberToSave) option allows you to limit capacity of a
single file. It specifies how many reports can be hold in 1 reports. Once limit is exceeded,
oldest report in file will be deleted and new report will be saved as last report. Value of 0
means unlimited bug report file. Typical values can be 0, 1, 32, 256, 9999, etc.

Setting this option to 1 is almost equivalent of (non-existed) "delete log file before
exception" option.

7. If you enable the "Do not save duplicate errors" (.loNoDuplicateErrors) option - then
file will contain only unique bug reports, count field (2.8) will contain number of
occurrences for each exception (if fields is present, otherwise duplicate count information is
omitted and lost). When this option is unchecked - all reports will be saved, count field (2.8)
will always be 1 for all reports.

Notes:
Report uniqueness is established via Bug ID property. Bug ID is a hash value of type
and location of the problem. Exceptions with the same Bug ID is considered to be the
same.
Usually you should set a limit for maximum reports in one file greater than 1 to get useful
results from this option. If you set limit to 1 - this option will have almost zero effect.
This option doesn't require count field (2.8) to be included into bug report. However,
usually you use these two options at the same time.
This option affects only local bug report file. It does not affect sending .

8. "Delete file at version change" (.loDeleteLogAtVersionChange) option deletes bug
report file, when application's version change. This is useful when you store multiple reports
in a single file and don't want a "noise" from old version of your application.

304

304

304

266

421

302

Integral parts 266

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

This option has no effect, if:
you limited capacity of bug report's file to 1 report.
you doesn't specify version information for your project.
you doesn't include application version into bug report (field 1.3).

See also:
Bug report content page
Configuring bug report
Configuring call stack
Bug reports

10.3.3.1 Bug report content page

This is "Bug report content" page in EurekaLog project's options .

Bug report content options

Bug report content page specifies information to include into bug report. You can enable/
disable information blocks here. See this article for more information about bug reports.

1. "Store this information in the bug report" (.soXYZ) option controls gathering of

information in general section of bug report. These are generic information pieces, which
mostly describes run-time environment. Only section two ("Exception") is specific to the
problem.

You command EurekaLog to gather and include into report piece of information by checking
checkbox on the left from this information name. Most options can be enabled and disabled,
but there are few options, which are required and can't be disabled. These options are
marked with "(*)".

266

266

46

48

72

225

72

EurekaLog 7 Documentation267

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

"Select all" and "Unselect all" buttons can be used to quickly set/clear full selection.

Warning: your application may be considered as harmful (spy-ware) by customers, if it
collects extensive information which is definitely non needed (like monitor information for
non-GUI applications).

2. "Save modules list" (.loSaveModulesSection) option includes information about all
loaded DLLs and BPLs ("modules") into bug report.

Note: this option is automatically disabled for reporting leaks.

3. "Save processes list" (.loSaveProcessesSection) option includes information about all
running processes into bug report.

Note: this option is automatically disabled for reporting leaks.

4. "Save CPU information" (.loSaveAssemblerAndCPUSections) option includes information
about CPU state (flags, registers, etc) and disassembly information in bug report. This
option requires installed low-level hook .

Note: this option is automatically disabled for reporting leaks.

See also:
Bug report options page
Bug reports :
o General section
o Modules section
o Processes section
o Assembler section
o CPU section
Configuring bug report
Configuring call stack

10.3.4 Dialogs page

This is "Dialogs" page in EurekaLog project's options .

349

264

72

74

99

99

100

103

46

48

225

Integral parts 268

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Dialog tab with "MS Classic" dialog selected

This page contains one combo-box to select dialog type in your application. The rest of the
area is changed depending on your dialog's choice.

Select appropriate dialog type for your application from "Dialog
type" (.ExceptionDialogType) combo-box and specify all other options for the specific dialog
type:

(none) - have no customizable options (see: no dialog ; edtNone)
RTL - have no customizable options (see: RTL dialog ; edtRTL)
MessageBox
MS Classic
EurekaLog
Console
System log reporting
WEB
Windows Error Reporting

See also:
Dialogs to get more information about each dialog type

1. "Test" button allows you to test current settings. Click on this button to view how error
dialog will be displayed in your application at run-time. You can use this button to quick-
preview/test settings without need to close options dialog, compile your application, etc.

Note: actual exact behavior and visual aspect of dialog may be different in run-time
because of your event-handlers or run-time environment. For example, you may see "Send
report" button in preview, but not at run-time - because you raise duplicate exception at
run-time and sending duplicates is disabled.

Important note: EurekaLog will automatically include code for the selected dialog into your
application. However, code for other dialogs will not be included. This is important if you're
going to change dialog type at run-time (via custom code , event handlers , custom
attributes , or exception filters). You should manually add code for each dialog that
you want to use at run-time.

See also:
Dialogs description
Dialogs configuration:
o MessageBox
o MS Classic
o EurekaLog
o Console
o System log reporting
o WEB
o Windows Error Reporting
Dialogs code configuration

10.3.4.1 MessageBox

This is setup options for MessageBox dialog (edtMessageBox, edtMessageBoxDetailed).
They are located at Dialogs tab .

371

371

268

271

279

292

295

296

300

370

189 192

190 185 354

370

268

271

279

292

295

296

300

354

373

267

EurekaLog 7 Documentation269

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

MessageBox dialog options

Note: error messages in dialogs are controlled by nested exceptions behaviour options .

1. "Ask user for send consent" (.edoShowSendErrorReportOption) option will ask user for
their consent before sending bug report to developer - by showing question "Do you want
to send report" and presenting "Yes" and "No" buttons.

This option has no effect if you haven't specified any sending methods. In this case you'll
see only one "OK" button. For example:

Asking for consent is unchecked or there is no sending method available

Asking for consent is checked and sending method present

2. Default choice is selected by enabling/disabling "Default choice: send
report" (.edoSendErrorReportChecked) option. If this option is checked - the default choice
is "send the report". If this option is unchecked - then the default choice is "do NOT send
the report". Default choice affects which button (option) will be highlighted/selected when
dialog is shown.

3. "Detailed mode" (.ExceptionDialogType = edtMessageBoxDetailed) option switches
between standard mode and detailed mode. Standard mode shows error message only.
Detailed mode shows error message and compact call stack. For example:

244

Integral parts 270

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Standard mode

Detailed mode

4. "Use native message box when possible" (.dlgMsgBoxUseNative) option turns on and off
"native" style. By default "native" style is the same Windows.MessageBox function.
However, some types of application (currently it's a console and web) overrides this to
custom routines. For example, "native" message box in console application - it's an output
to console. A "native" message box for IntraWeb application - it's a scripted dialog (via
WebApplication.ShowMessage). For example:

EurekaLog 7 Documentation271

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

"Use native message box" is off

"Use native message box" is on

5. "Right-To-Left" option enables Right-To-Left layout. This is global option that affects all
EurekaLog run-time dialogs. Unchecked position indicate left-to-right layout (default),
checked position indicate right-to-left layout used in some middle eastern languages. This
option can also be altered at design-time via Localization page . This option can also be
altered at run-time by changing CurrentEurekaLogOptions.CustomizedTexts[mtRTLDialog].

See also:
MessageBox dialog for general description of this dialog's type
Nested (chained) exceptions

10.3.4.2 MS Classic

This is setup options for MS Classic dialog (edtMSClassic). They are located at Dialogs
tab .

339

373

244

377

267

http://en.wikipedia.org/wiki/Right-to-left
http://en.wikipedia.org/wiki/Right-to-left

Integral parts 272

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

MS Classic dialog options

Note: error messages in dialogs are controlled by nested exceptions behaviour options .

1. "Ask user for send consent" (.edoShowSendErrorReportOption) option will ask user for
their consent before sending bug report to developer - by showing "Please tell us about the
problem" and presenting "Send Error Report" and "Don't send" buttons.

This option has no effect if you haven't specified any sending methods. In this case you'll
see only one "OK" button. For example:

Asking for consent is unchecked or there is no sending method available

244

EurekaLog 7 Documentation273

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Asking for consent is checked and sending method present

2. Default choice is selected by enabling/disabling "Default choice: send
report" (.edoSendErrorReportChecked) option. If this option is checked - the default choice
is to send the report. If this option is unchecked - then the default choice is NOT to send the
report. Default choice affects which button (option) will be highlighted/selected when dialog
is shown.

3. "Show 'click here' link" (.edoShowDetailsButton) option adds a "To see what data the
error report contains, click here." line to the dialog. A "click here" part is a hyper-link which
opens a EurekaLog style dialog in "detailed" mode. For example:

"Show 'click here' link" option is unchecked

"Show 'click here' link" option is checked

4. "Ask user for steps to reproduce" (.loAppendReproduceText) option shows a memo with
"What were you doing when the problem happened (optional)?" header. For example:

"Ask user for steps to reproduce" option is unchecked

379

Integral parts 274

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

"Ask user for steps to reproduce" option is checked

5. "Show e-mail control" (.edoShowEMailControl) option shows the edit for user's e-mail
address. You can get/set this e-mail manually by using GetUserEMail and SetUserEmail
functions. For example:

"Show e-mail control" option is unchecked

"Show e-mail control" option is checked

6. "Mandatory e-mail" (.edoMandatoryEMail) option will not allow user to close dialog
without entering a proper e-mail. This option have no effect if e-mail input control is not
visible. Use this option to force user to specify e-mail. This options is useful if you perform
delayed/queued report sending manually. For example, you store your bug report in folder,
then some application pick up/send/process this folder - and you want bug reports to have
end user e-mail for contacting it.

7. "Only when sending" (.edoMandatoryEMailOnlyWhenSending) option modifies mandatory

EurekaLog 7 Documentation275

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

e-mail option. When this option is disabled - e-mail will always be required. When this
option is enabled - e-mail will be optional if user closes dialog without sending report. Use
this option if you want user e-mail specified, and you perform sending immediately (via
EurekaLog).

8. "Show a custom 'Help' button" (.edoShowCustomButton) option shows a "Help" button in
the left-bottom corner of the dialog. You can assign your code on this button via the
OnCustomButtonClick event.

"Show a custom 'Help' button" option is unchecked

"Show a custom 'Help' button" option is checked

Note: while the proposed usage for this button is to act as "Help on this error" button, but
you can freely implement any other behavior. You can implement arbitrary behavior by
assigning OnCustomButtonClick event, and you can change caption of this button by either
altering localization options at design-time or assigning a new value to
CurrentEurekaLogOptions.CustomizedTexts[mtDialog_CustomButtonCaption].

9. "Replace 'Application' with real application name" (.edoUseRealName) option will replace
"application" word in all messages on the error dialog with FileDescripton field from version
information of main executable (not from module where exception has occurred) - so called
"real application name" (in this article). The usual places for such replacements include:

Window's caption is replaced to real application name.
"The application has encountered a problem" in the header.
"Restart application" - a checkbox to restart application.
"Terminate application" - a checkbox to terminate application.
"We have created an error report that you can send to help us improve application" - a
description for send consent's asking.

If there is no version information available or FileDescription field is empty - then this option
will have no effect and you'll see the standard "application" instead of description.

In the example below: the FileDescription field of main .exe contains 'Sample Application'
string.

339

Integral parts 276

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

"Replace 'application' with real application name" option is unchecked

"Replace 'application' with real application name" option is checked

Usually this option is used together with "Replace error icon with real application icon"
option (see below) to get a fully personalized view.

10. "Replace error icon with real application icon" (.edoUseRealIcon) option will replace
standard IDI_ERROR icon to icon of the main .exe (i.e. the first icon). For example:

"Replace error icon with real application icon" option is unchecked

EurekaLog 7 Documentation277

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

"Replace error icon with real application icon" option is checked

Usually this option is used together with "Replace 'application' with real application name"
option (see above) to get a fully personalized view.

11. "Modal window" (.edoShowModal) option makes error dialog modal. Modal means that
only error dialog will be accessible. All other windows in current thread will be disabled
(user will not be able to interact with them). Windows from other processes and from other
threads within the same process will be accessible. When this option is unchecked - no
other windows will be disabled.

Note: usually it's not good idea to uncheck "Owner window" option when "Modal window"
option is checked.

12. "Owner window" (.edoOwnedWindow) option makes error dialog an owned window to
currently active window (owner window). Here: Owner-Owned relation is used in system's
meaning (as relation between two HWND) as opposed to Delphi's meaning (as relation
between two TComponent).

Checked: error dialog will be displayed as owned window to currently active window. If
there is no active window - this option will have no effect. Being owned places several
constraints on a window. Generally, owner-owned windows act as group. For example, an
owned window is always above its owner in the z-order. Both owner and owned windows
"share" the same button on taskbar (actually, owned window do not have taskbar button).
An owned window is hidden when its owner is minimized.
Unchecked: error dialog will not be related to any other window. It will be standalone
window.

Note: usually it's not good idea to uncheck "Owner window" option when "Modal window"
option is checked.

13. "Right-To-Left" option enables Right-To-Left layout. This is global option that affects all
EurekaLog run-time dialogs. Unchecked position indicate left-to-right layout (default),
checked position indicate right-to-left layout used in some middle eastern languages. This
option can also be altered at design-time via Localization page . This option can also be
altered at run-time by changing CurrentEurekaLogOptions.CustomizedTexts[mtRTLDialog].

14. "Show dialog in Top-Most state" (.edoShowInTopMostMode) option sets the
HWND_TOPMOST position to error dialog. If this option is checked then error window will
appear above all other non-TopMost windows. If this option is unchecked then
HWND_TOPMOST will not be set. Instead, a timer is run. This timer will call
SetForegroundWindow for error dialog, if it was covered by any other process's windows.
Windows from other processes can cover error window. Windows from current process,
which are created after error dialog can cover error dialog too. This timer doesn't work in
TopMost mode.

15. "Do nothing" / "Show 'Restart' checkbox" / "Show 'Terminate' checkbox" after N
errors (.TerminateBtnOperation, .ErrorsNumberToShowTerminateBtn, .edoRestartChecked)
option controls the visibility of "restart" and "terminate" checkboxes:

339

http://en.wikipedia.org/wiki/Right-to-left
http://en.wikipedia.org/wiki/Right-to-left

Integral parts 278

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

"Do nothing" option is selected or error count is less than the specified count.

"Show 'Terminate' checkbox" options is selected and error count is more than the
specified count.

The "Checked" option controls if this checkbox is initially checked or unchecked. If "Checked"
option is checked, then when MS Classic dialog appears with restart/terminate checkbox
visible - this checkbox will be checked. And the opposite: if the "Checked" option is not
checked, then restart/terminate checkbox will be unchecked, when dialog appears. Of
course, this option have no effect, if checkbox is not visible (for example, if you select "Do
nothing" option).

A "after N errors" part is controls, when to show restart/terminate checkbox. Again, this
part is ignored, if you select "Do nothing" option. Value of 0 means that restart/terminate
checkbox will be visible always. Value of 1 means that checkbox will be displayed only in
second error dialog. Value of 2 means that you got two error dialog without checkbox and
3rd dialog will have it. And so on.

At run-time: when user checks restart/terminate checkbox, then your application will be
restarted or terminated after closing error dialog and saving and sending bug report (if
enabled). If user unchecks the checkbox - then your application will continue to run.

16. "Close every exception dialog after M seconds" (.AutoCloseDialogSecs) option allows
you to automatically close exception dialogs after timeout of inactivity. Value of 0 means
disabling of such feature - i.e. each dialog may be closed only manually by user (via clicking
on dialog's buttons). Any other value (> 0) means that dialog will be closed after that
amount of seconds, passed since its popup. For example, if you specify 180 seconds - then
dialog will be closed exactly after 3 minutes, if user didn't closed it before.

This option is useful to auto-close error dialogs in possible non-interactive scenarios. Note,
that it may be preferable to select other dialog type (non-GUI) in such cases.

Note: this option specifies the delay of user's inactivity. If user moves mouse, presses
buttons or generates any other input in dialog - auto-close timer will reset. Therefore,
setting this option to, say, 5 seconds does not mean that dialog will be closed after 5
seconds. It may stay for, say, 1 minute - but only if user is working with it. Dialog will be
closed after 5 seconds if user is away (not moving mouse, etc.).

EurekaLog 7 Documentation279

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

See also:
MS Classic dialog for general description of this dialog's type
Nested (chained) exceptions

10.3.4.3 EurekaLog

This is setup options for EurekaLog dialog (edtEurekaLog, edtEurekaLogDetailed). They
are located at Dialogs tab .

EurekaLog dialog options

Note: error messages in dialogs are controlled by nested exceptions behaviour options .

1. "Ask user for send consent" (.edoShowSendErrorReportOption) option will ask user for
their consent before sending bug report to developer - by showing "Send this error via
Internet" checkbox.

This option has no effect if you haven't specified any sending methods. In this case you'll
see only one "OK" button. For example:

Asking for consent is unchecked or there is no sending method available

377

244

379

267

244

Integral parts 280

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Asking for consent is checked and sending method present

2. A default choice (checked or cleared) is selected by enabling/disabling "Default choice:
send report" (.edoSendErrorReportChecked) option. If this option is checked - the default
choice is to send the report. If this option is unchecked - then the default choice is NOT to
send the report. This affects the initial state of "Send this error via Internet" checkbox.

3. "Show 'Attach screenshot' option" (.edoShowAttachScreenshotOption) option will add
the "Attach a screenshot image" checkbox to the dialog. This option has no effect if "Ask
user for send consent" option is not checked, the sending method is not selected or getting
screenshots is disabled from send options .

Show attach screenshot option is unchecked or other conditions aren't hold

Show attach screenshot option is checked and other conditions were completed

This checkbox controls whenever a screenshot in included into bug report for send or not.

4. A default state (checked or cleared) for "Attach a screenshot image" checkbox is selected
via "Default choice: attach screenshot" (.edoAttachScreenshotChecked) option.

5. "Show 'Details' button" (.edoShowDetailsButton) option will show a "Details" button
which switches dialog to detailed mode. If dialog is already in detailed mode, then this
button will switch dialog back to non-detailed mode.

304

EurekaLog 7 Documentation281

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

"Show 'Details' button" option is unchecked

"Show 'Details' button" option is checked

Detailed mode shows full bug report:

EurekaLog dialog in detailed mode with "Show 'Details' button" option unchecked

Integral parts 282

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

EurekaLog dialog in detailed mode with "Show 'Details' button" option checked

6. You can control whenever dialog is initially showed in standard or detailed mode by
switching "Default: detailed mode" (.ExceptionDialogType = edtEurekaLogDetailed) option.

7. "Ask for steps to reproduce" (.loAppendReproduceText) option will ask user for
additional description of the problem in a separate window:

Standalone window asking for "step to reproduce"

This window appears after closing of EurekaLog error dialog. After user clicks on OK button,

EurekaLog 7 Documentation283

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

EurekaLog will perform usual processing (saving and sending), which depends on options
selected in original EurekaLog style dialog.

8. "Ask for steps only when sending" (.loAppendReproduceTextOnlyWhenSending) option
changes behaviour or "Ask for steps to reproduce" option. It has no effect if "Ask for steps
to reproduce" option is unchecked. If "Ask for steps to reproduce" option is checked, then
you can disable showing "steps to reproduce" window when "Send report via Internet"
checkbox is unchecked at run-time - by checking "Ask for steps only when sending" option.
In other words, "Ask for steps only when sending" option is unchecked: ask always. "Ask
for steps only when sending" option is checked: ask only when "Send report via Internet" is
checked too.

9. "Require e-mail for
sending" (.edoShowEMailControl
, .edoMandatoryEMail, .edoMandatoryEMailOnlyWhenSending) option will additionally ask
user's e-mail before sending the bug report. This option have no effect if sending is disabled
or if a user has selected NOT to send a bug report.

Standalone window asking for user's e-mail

Same window if both "Require e-mail for sending" and "Ask user for steps to reproduce"
options are enabled

Entering e-mail is mandatory. This dialog will not appear if e-mail was already specified
earlier - for example, in previous error dialog, or e-mail was entered in another EurekaLog-
enabled application or even another instance of the same application (EurekaLog saves
user's e-mail in registry, you can work with it via GetUserEMail and SetUserEmail functions).

Integral parts 284

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

10. "Show a custom 'Help' button" (.edoShowCustomButton) option shows a "Help" button
in the left-bottom corner of the dialog. You can assign your code on this button via the
OnCustomButtonClick event.

"Show a custom 'Help' button" option is unchecked

"Show a custom 'Help' button" option is checked

Note: while the proposed usage for this button is to act as "Help on this error" button, but
you can freely implement any other behavior. You can implement arbitrary behavior by
assigning OnCustomButtonClick event, and you can change caption of this button by either
altering localization options at design-time or assigning a new value to
CurrentEurekaLogOptions.CustomizedTexts[mtDialog_CustomButtonCaption].

11. "Modal window" (.edoShowModal) option makes error dialog modal. Modal means that
only error dialog will be accessible. All other windows in current thread will be disabled
(user will not be able to interact with them). Windows from other processes and from other
threads within the same process will be accessible. When this option is unchecked - no
other windows will be disabled.

Note: usually it's not good idea to uncheck "Owner window" option when "Modal window"
option is checked.

12. "Owner window" (.edoOwnedWindow) option makes error dialog an owned window to
currently active window (owner window). Here: Owner-Owned relation is used in system's
meaning (as relation between two HWND) as opposed to Delphi's meaning (as relation
between two TComponent).

Checked: error dialog will be displayed as owned window to currently active window. If
there is no active window - this option will have no effect. Being owned places several
constraints on a window. Generally, owner-owned windows act as group. For example, an
owned window is always above its owner in the z-order. Both owner and owned windows
"share" the same button on taskbar (actually, owned window do not have taskbar button).
An owned window is hidden when its owner is minimized.
Unchecked: error dialog will not be related to any other window. It will be standalone
window.

Note: usually it's not good idea to uncheck "Owner window" option when "Modal window"
option is checked.

13. "Right-To-Left" option enables Right-To-Left layout. This is global option that affects all
EurekaLog run-time dialogs. Unchecked position indicate left-to-right layout (default),
checked position indicate right-to-left layout used in some middle eastern languages. This

339

http://en.wikipedia.org/wiki/Right-to-left
http://en.wikipedia.org/wiki/Right-to-left

EurekaLog 7 Documentation285

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

option can also be altered at design-time via Localization page . This option can also be
altered at run-time by changing CurrentEurekaLogOptions.CustomizedTexts[mtRTLDialog].

14. "Show dialog in Top-Most state" (.edoShowInTopMostMode) option sets the
HWND_TOPMOST position to error dialog. If this option is checked then error window will
appear above all other non-TopMost windows. If this option is unchecked then
HWND_TOPMOST will not be set. Instead, a timer is run. This timer will call
SetForegroundWindow for error dialog, if it was covered by any other process's windows.
Windows from other processes can cover error window. Windows from current process,
which are created after error dialog can cover error dialog too. This timer doesn't work in
TopMost mode.

15. "Use EurekaLog 'look and feel'" (.edoUseEurekaLogLookAndFeel) option allows you to
change visual dialog style like this:

"Use EurekaLog 'look and feel'" option is unchecked

"Use EurekaLog 'look and feel'" option is checked

This allows you to visually get attention to your error dialogs. This modification works for
detailed mode too:

339

Integral parts 286

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Both "Use EurekaLog 'look and feel'" and "Default: detailed mode" options are checked

16. "Show 'Copy to clipboard' option" (.edoShowCopyToClipOption) option shows a "Copy
to clipboard" checkbox.

"Show 'Copy to clipboard' button" option is unchecked

"Show 'Copy to clipboard' button" option is checked

At run-time: user can check "Copy to clipboard" checkbox to get full bug report to be copied
into clipboard, so he can insert it into a e-mail or a text file manually.

For example:

EurekaLog 7 Documentation287

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

A Windows Notepad with bug report, inserted from clipboard

17. "Auto-size columns" (.edoAutoSize) option will automatically resize columns to fit
column's content. User still be able to resize column manually. If this option is disabled -
columns will not be resized, columns will keep previously saved widths.

18. "Replace 'Application' with real application name" (.edoUseRealName) option will
replace "application" word in all messages on the error dialog with FileDescripton field from
version information of main executable (not from module where exception has occurred) -
so called "real application name" (in this article). The usual places for such replacements
include:

Window's caption is replaced to real application name.
"An error has occurred during application execution" in the header in detailed mode.

If there is no version information available or FileDescription field is empty - then this option
will have no effect and you'll see the standard "application" instead of description.

In the example below: the FileDescription field of main .exe contains 'Sample Application'
string.

Integral parts 288

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

"Replace 'application' with real application name" option is unchecked

"Replace 'application' with real application name" option is checked

Usually this option is used together with "Replace error icon with real application icon"
option (see below) to get a fully personalized view.

19. "Replace error icon with real application icon" (.edoUseRealIcon) option will replace
standard IDI_ERROR icon to icon of the main .exe (i.e. the first icon). For example:

EurekaLog 7 Documentation289

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

"Replace error icon with real application icon" option is unchecked

"Replace error icon with real application icon" option is checked

Usually this option is used together with "Replace 'application' with real application name"
option (see above) to get a fully personalized view.

20. "Do nothing" / "Show 'Restart' checkbox" / "Show 'Terminate' checkbox" after N
errors (.TerminateBtnOperation, .ErrorsNumberToShowTerminateBtn, .edoRestartChecked)
options controls the visibility of "restart" and "terminate" checkboxes:

"Do nothing" option is selected or error count is less than the specified count.

"Show 'Terminate' checkbox" options is selected and error count is more than the
specified count.

The "Checked" option controls if this checkbox is initially checked or unchecked. If "Checked"
option is checked, then when EurekaLog dialog appears with restart/terminate button
visible - this button will be default. And the opposite: if the "Checked" option is not checked,
then a default button will be OK button, when dialog appears. Of course, this option have
no effect, if button is not visible (for example, if you select "Do nothing" option).

Integral parts 290

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

A "after N errors" part is controls, when to show restart/terminate checkbox. Again, this
part is ignored, if you select "Do nothing" option. Value of 0 means that restart/terminate
button will be visible always. Value of 1 means that button will be displayed only in second
error dialog. Value of 2 means that you got two error dialog without button and 3rd dialog
will have it. And so on.

At run-time: when user clicks restart/terminate button, then your application will be
restarted or terminated after closing error dialog and saving and sending bug report (if
enabled). If user clicks OK button - then your application will continue to run.

21. "Close every exception dialog after M seconds" (.AutoCloseDialogSecs) option allows
you to automatically close exception dialogs after timeout of inactivity. Value of 0 means
disabling of such feature - i.e. each dialog may be closed only manually by user (via clicking
on dialog's buttons). Any other value (> 0) means that dialog will be closed after that
amount of seconds, passed since its popup. For example, if you specify 180 seconds - then
dialog will be closed exactly after 3 minutes, if user didn't closed it before.

This option is useful to auto-close error dialogs in possible non-interactive scenarios. Note,
that it may be preferable to select other dialog type (non-GUI) in such cases.

Note: this option specifies the delay of user's inactivity. If user moves mouse, presses
buttons or generates any other input in dialog - auto-close timer will reset. Therefore,
setting this option to, say, 5 seconds does not mean that dialog will be closed after 5
seconds. It may stay for, say, 1 minute - but only if user is working with it. Dialog will be
closed after 5 seconds if user is away (not moving mouse, etc.).

22. "Foreground tab" (.ForegroundTab) specifies the default active tab in detailed view
when dialog is showed. For example:

Foreground tab is set to "Call-stack"

EurekaLog 7 Documentation291

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Foreground tab is set to "General"

This option has no effect if detailed mode is never shown.

23. "Support URL" (.SupportURL) option allows you to specify an URL, which will be shown
in error dialog as hyper-link. Empty value means "do not show hyper-link". For example:

"Support URL" option is empty

"Support URL" option is set to http://www.example.com/

At run-time: user can click on that hyper-link and EurekaLog will open a default browser
with specified URL. Dialog itself will not be closed.

Note: support URL may include any variable . For example, you may specify the following413

Integral parts 292

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

URL: "https://bugs.example.com/view.php?find=%_BugID%" (without quotes). When

user click on support URL, EurekaLog will open the following URL in user's default browser:
https://bugs.example.com/view.php?find=CFAC0000 (where "CFAC0000" - is just an

example of Bug ID ; it will be different in your case). This allows you to dynamically
customize support page.

See also:
EurekaLog dialog for general description of this dialog's type
Nested (chained) exceptions

10.3.4.4 Console

This is setup options for console dialog (edtConsole, edtConsoleDetailed,
edtConsoleDump). They are located at Dialogs tab .

Console dialog options

Note: error messages in dialogs are controlled by nested exceptions behaviour options .

1. "Ask user for send consent" (.edoShowSendErrorReportOption) option will ask user for
their consent before sending bug report to developer - by showing "Do you want to send
report to developers about this problem?" message.

This option has no effect if you haven't specified any sending methods. In this case you'll
see only error message. For example:

Asking for consent is unchecked or there is no sending method available

421

379

244

382

267

244

EurekaLog 7 Documentation293

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Asking for consent is checked and sending method present

This option will be automatically disabled, if you use output redirection at run-time.

2. Default choice is selected by enabling/disabling "Default choice: send
report" (.edoSendErrorReportChecked) option. If this option is checked - the default choice
is to send the report. If this option is unchecked - then the default choice is NOT to send the
report.

3. "Detailed mode" (.ExceptionDialogType = edtConsoleDetailed) option includes a
compact call stack to the error message. For example:

Standard mode

Integral parts 294

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Detailed mode

4. "Bug report dump" (.ExceptionDialogType = edtConsoleDump) option replaces error
message and a call stack with a copy of the bug report. For example:

Dump mode is unchecked

EurekaLog 7 Documentation295

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Dump mode is checked

If you enable this mode - it may be a good idea to disable some parts of bug report
(especially modules and processes lists), because large bug report will not fit into console.
This may not matter, if you use output redirection.

See also:
Console dialog for general description of this dialog's type
Nested (chained) exceptions

10.3.4.5 System log reporting

This is setup options for system log dialog (edtService). They are located at Dialogs tab
.

System log dialog options

Warning: you must register your application as event source before using this dialog.

1. "Computer name" (.EventLogComputer) option identifies a computer to log error
message. This is the first parameter to be passed to OpenEventLog. Leave this option
empty to use the current machine.

2. "Event source name" (.EventLogName) option identifies event source to log error

382

244

384

267

537

http://msdn.microsoft.com/en-us/library/aa363672(VS.85).aspx

Integral parts 296

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

message. This is the second parameter to be passed to OpenEventLog. This is the name
which you've used during your application's registration in system event log. This
parameter is required.

3. "Category ID" (.EventLogCategory) option is optional parameter which specifies a
category for error message. Leave it empty if you don't use categories. Category ID is
established during application's registration .

4. "Message ID" (.EventLogEventID) option identifies a message to use when logging error
message. This parameter is required. Message ID is established during application's
registration .

To use system event log you must do at least the following:
Register your application in system event log .
Specify "event source name" in system log reporting dialog.
Specify "message ID" in system log reporting dialog .

This is absolute minimum to make it to work.

Tip: Message ID usually have form of $C002XXXX. Where XXXX is ID of your event (such

as 1, 2, etc.) in hexadecimal form.

See also:
Configuring system log dialog
System log dialog for general description of this dialog's type
Setup system logging
Registering event source

10.3.4.6 WEB

This is setup options for WEB dialog (edtWEB). They are located at Dialogs tab .

WEB dialog options

537

537

537

537

543

543

384

535

537

386 267

http://msdn.microsoft.com/en-us/library/aa363672(VS.85).aspx

EurekaLog 7 Documentation297

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Note: error messages in dialogs are controlled by nested exceptions behaviour options .

1. "HTTP Error Code" (.WebErrorCode) option specifies value of HTTP Status Code to be
returned to client's web browser when exception is occurred.

Most typical values are either 200 (default) or 500:
200 status code means success/OK, and it is a usual status code to be returned to client
when web application produces content page without any error. Use this status code to
produce error message as normal web pages.
500 error code means internal server error, and it is a typical error code to be returned
when something goes wrong with web application. Use this or any other error code to
indicate failure to client's web browser.

Important note: some web application implementations (server or browser) may ignore
actual page content for status codes like 500 error code. This means that customized HTML
page (see "HTML layout" option below) will be ignored. Use 200 status code for such
cases.

Note: not all web application supports returning custom status code for error page. Support
for this feature depends on used framework, its version and its configuration.

2. "HTML layout" (.HTMLLayout) option specifies an HTML page template to be send to client
in case of error during its request's processing. E.g. this is an error HTML page. You can put
any text here, the resulting page will be exactly the same as you specified here. You can
customize error HTML page to match your web-site.

The target text's encoding is determinated by meta "content-type" HTML tag (note
"charset=UTF-8" in this example):

<head>
 <meta http-equiv="content-type" content="TEXT/HTML;charset=UTF-8" />
</head>

It can be anything supported by the host OS. For example: iso-8859-1, Windows-1252,
windows-1251 or even UTF-8, unicode or unicodeFFFE. See this list of supported encodings
for Windows platform.

Notes:
It's a good idea to use either <%CONTENT_TYPE%> (see below) or fixed "content-type"
HTML meta tag with UTF-8 encoding.
If you specify fixed encoding - then dialog will adjust HTTP headers as needed.
Old Delphi versions supports only ANSI encodings. So even if you specify one of unicode
encodings (like UTF-8 or any other) - you will be able to show only characters in current
code page (even though result page will be properly encoded in unicode). You won't be
able to use full range of unicode and mix, say, Latin, Japanese and Cyrillic in the same
text.

If encoding is missing in HTML page template - then dialog will use encoding from Response
object. If it's missed too - then dialog will use UTF-8 as default.

Page customization via tags
You can also use some special tags, which looks like this: <%TAG%>. If you insert such tag
in template's text, it will be replaced with actual value at run-time. There is a hint for
common used tag right at dialog's settings page.

Note: tags are case-insensitive.

Supported tags:

<%CONTENT_TYPE%>
This tag is replaced with Response.ContentType property. Use this tag in <head> part to
indicate proper encoding. You can enter fixed meta "content-type" HTML tag or you can use

244

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://msdn.microsoft.com/en-us/library/aa752010(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa752010(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa752010(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa752010(VS.85).aspx

Integral parts 298

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

<%CONTENT_TYPE%> to indicate current encoding.

Example:

 <meta http-equiv="content-type" content="TEXT/HTML;charset=UTF-8" />

Note that <%CONTENT_TYPE%> is expanded to full meta content HTML tag, not just to
"charset=X" part.

EurekaLog 7 Documentation
It's standard error caption for error dialogs. It can be customized on localization page .
Usually it's used in <title> HTML tag, but it actually can be used anywhere.

Example:

Error occurred

<%EXCEPTION_CLASS%>
It's class name of exception object. It can be used anywhere.

Example:

EAccessViolation

<%EXCEPTION_MESSAGE%>
It's exception message. It can be used anywhere.

Example:

Access violation at address 0216942E in module 'ISAPI.dll'. Write of address 00000000

<%EXCEPTION_LOCATION%>
This is a short textual description for exception address. Indicates point of exception's
raising. It can be used anywhere.

Example:

(000D842E){ISAPI.dll } [0216942E] MainISAPI.Error (Line 41, "MainISAPI.pas") + $2

<%BUG_ID%>
This is Bug ID value from bug report. It's extremely useful to identify a problem in bug
report file. Can be used anywhere.

Example:

824B0000

We recommend that you use the following model in the production for security reasons:
don't expose any information on error page, place only a generic message like:

<p>The server application has encountered an error with <%BUG_ID%> code. We're sorry for any inconveniences.</p>
<p>Please, contact server's administrator.</p>

You can analyze full bug report from logs (bug report file) - as administrator.

Note: even if you don't specify this tag anywhere - dialog will automatically append a
hidden comment to page's source with Bug ID's value.

For example:

 ... (other page content)
 </body>
</html>

<!-- EurekaLog page ID: CC2F96D8 -->

339

421

EurekaLog 7 Documentation299

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

<!-- EurekaLog Bug ID: 824B0000 -->

Page ID is just a random number to distinct one page from another. Bug ID is Bug ID's
value.

<%CALL_STACK%>
This is a compact form of call stack from bug report. Can be useful for quick diagnostic. It's
highly recommended to hide this information in release version of your application for
security reasons. The call stack is wrapped in <pre> HTML tag, so it can be used only inside
<body> HTML tag.

Example:

<pre>
 - ISAPI.dll.MainISAPI.Error,41[4]
 - ISAPI.dll.MainISAPI.GoToError,82[1]
 - ISAPI.dll.MainISAPI.RaiseException,87[1]
 - ISAPI.dll.MainISAPI.TModule.Action,97[5]
 - ISAPI.dll.HTTPApp.TWebActionItem.DispatchAction
 - ISAPI.dll.HTTPApp.TCustomWebDispatcher.DispatchAction
 - ISAPI.dll.HTTPApp.TCustomWebDispatcher.HandleRequest
 - ISAPI.dll.HTTPApp.TDefaultWebAppServices.InvokeDispatcher
 - ISAPI.dll.HTTPApp.TDefaultWebAppServices.HandleRequest
 - ISAPI.dll.WebReq.TWebRequestHandler.HandleRequest
 - ISAPI.dll.ISAPIApp.TISAPIApplication.HttpExtensionProc
 - ISAPI.dll.ISAPIApp.HttpExtensionProc
</pre>

<%FILE_NAME%>
Full file name to bug report file. Can be used anywhere.

Example:

C:\inetpub\wwwroot\logs\ISAPI.el

<%BUG_REPORT%>
Full bug report enclosed in <pre> HTML tag.

WARNING: never show this information in production for security reasons.

Example:

<pre>EurekaLog 7.0.0.63 alpha 1 RC

Application:

 1.1 Start Date : Fri, 15 Apr 2011 22:34:24 +0359
 1.2 Name/Description: w3wp.exe - (IIS Worker Process)
 1.3 Version Number : 7.5.7601.17514
 1.4 Parameters : -m 0 -t 20
 1.5 Compilation Date: Sat, 30 Dec 1899 00:00:00 +0359
 1.6 Up Time : 10 minute(s), 7 second(s)

Exception:

 2.1 Date : Fri, 15 Apr 2011 22:44:32 +0359
 2.2 Address : 0236942E
 2.3 Module Name : ISAPI.dll
 2.4 Module Version:
 2.5 Type : EAccessViolation

Integral parts 300

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 2.6 Message : Access violation at address 0236942E in module 'ISAPI.dll'. Write of address 00000000
 2.7 ID : 7D390000
 2.8 Count : 1
 2.9 Status : New
 2.10 Note :

... (other information in bug report - cut for compactness)

00D3EFF4: 00000000 023694FE: FF C3 E9 FF CA F2 FF EB F0 8D 45 E8 50 A1 70 DB E.P.p.
00D3EFF8: 00000000 0236950E: 37 02 89 45 E0 C6 45 E4 00 8D 55 E0 33 C9 B8 DC 7..E..E...U.3...
00D3EFFC: 00D3F018 0236951E: 95 36 02 E8 92 43 F5 FF 8B 45 E8 B9 4C 00 00 00 .6...C...E..L...
</pre>

<%HTML_TAG%>
This is obsolete tag used only for backward compatibility. Do not use it in new applications.

See also:
WEB dialog for general description of this dialog's type
Nested (chained) exceptions

10.3.4.7 Windows Error Reporting

This is setup options for WER dialog (edtWER). They are located at Dialogs tab .

WER dialog options

1. "Pass through unhandled exceptions" (.WERPassThroughUnhandled) option enables
special mode for real unhandled exceptions . Once checked, this option will redirect such
exceptions directly to the system, ignoring any application's processing code. All other
exceptions will be processed as usual.

In other words, if you check this option - then all your customizations will be ignored (for
real unhandled exceptions only).

This option is useful to get exact state of the application by using minidumps , since all
processing are ignored. So you can get the closest possible image of the problem.

This option requires low-level hooks injection in order to work properly.

386

244

389 267

40

573

EurekaLog 7 Documentation301

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

2. "Pass through critical exceptions" (.WERPassThroughUnexpected) option do the same
thing as "Pass through unhandled exceptions", but do this for "critical" exceptions. Critical
exception are the exceptions which you should not handle at all. This includes exceptions
such as access violations. All other exceptions (like EStreamError) will behave as usual.

Warning: you won't be able to catch critical exceptions with try/except blocks. Bug report
will be send and application will be terminated immediately upon critical exception raising.
All other exceptions will behave normally.

This option has no effect if "Pass through unhandled exceptions" option is not checked.

3. "Personalize report" (.WERCustomizeReport) option will report basic information and
description of the application to the system error processing. If not checked - system will
extract information on its own. Usually the results of both methods are very close.

4. "Honor recovery" (.WERSubmitHonorRecovery) option follows any recovery registration for
the application. This option is related to Restart & Recovery API in Windows Vista+. If this
option is unchecked - WER will not perform any registered recovery activities.

5. "Honor restart" (.WERSubmitHonorRestart) option follows any restart registration for the
application. This option is related to Restart & Recovery API in Windows Vista+. If this
option is unchecked - WER will not perform any registered restart activities.

6. Unchecking the "Allow archive report" (.WERSubmitNoArchive) option will disable report's
archiving.

7. "Allow queue report" (.WERSubmitNoQueue) option allows to queue report for later send,
if sending is not possible now. If this option is unchecked - report will never be queued. If
there is adequate user consent the report is sent to Microsoft immediately; otherwise, the
report is discarded. The report is discarded for any action that would require the report to
be queued. For example, if the computer is offline when you submit the report, the report is
discarded. Also, if there is insufficient consent (for example, consent was required for the
data portion of the report), the report is discarded.

8. "Force queue" (.WERSubmitQueue) option adds the report to the WER queue without
notifying the user. The report is queued only - reporting (sending the report to Microsoft)
occurs later based on the user's consent level.

9. "Send out of process" (.WERSubmitOutOfProcess) option spawns another process to
submit the report. The calling thread is blocked until the function returns.

10. "Add registered data" (.WERSubmitAddRegisteredData) option adds the data registered
by WerSetFlags, WerRegisterFile, and WerRegisterMemoryBlock to the report.

11. "Show close UI" (.WERSubmitNoCloseUI) option displays dialog this "Close application"
button:

Dialog for the "Show close UI" option

http://msdn.microsoft.com/en-us/library/bb513629(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb513619(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb513620(VS.85).aspx

Integral parts 302

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

If this option is unchecked - there will be no such dialog. Other dialogs (like sending report
and searching for the solution) will be present.

12. "Show debug" (.WERSubmitShowDebug) option shows a "Debug" button to launch and
attach a default debugger.

"Show debug" option is checked

This option has no effect if "Show close UI" option is not checked.

13. "Start minimized" (.WERSubmitStartMinimized) option runs initial UI as minimized and
flashing.

See also:
WER dialog for general description of this dialog's type
Using Windows Error Reporting
WERReportSubmit function

10.3.5 Report sending page

This is "Sending" page in EurekaLog project's options .

389

573

225

http://msdn.microsoft.com/en-us/library/bb513628(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb513628(VS.85).aspx

EurekaLog 7 Documentation303

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Sending tab with "Shell" send engine selected

This page consists of two parts: there is a list of available send engines on the left. The rest
of the area is changed depending on your send engine's choice.

You can select (enable) one or several sending methods for your application. If you select
more than one method - each send method will be executed one after another until
successful send occurs. You can change order of sending via move up/move down buttons.

Select one or more send methods for your application by checking appropriate checkboxes
and specify all other options for the specific send method:

Shell
Simple MAPI
MAPI
SMTP client
SMTP server
HTTP
FTP
FogBugz
Mantis
BugZilla
JIRA

You can test sending of currently selected method with current options by clicking on "Test"
button in the bottom-left corner.

There are also additional sending options available on sub-category: Sending options .

309

314

315

316

319

320

321

322

327

331

335

304

Integral parts 304

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Important Note: Test sending will be carried out by IDE or Setting Editor Tool, not by your
real application. This means that IDE/Settings Editor Tool must have Internet access, must
not be blocked by firewall. It also means that application and exception names and version
will be different from your real application. You can use "Custom/Manual" page to add
the following overrides:

_BugAppVersion="7.1.1.41"
_BugID="3E860000"
_BugIDSource="settingseditor.exe settingseditor.exe eeurekaconnectiontestexception"
_BugText="(Error Message) This is a demo bug report from EurekaLog connection testing."
_BugType="EEurekaConnectionTestException"
_EL_Build="7.1.1.41"
_EL_EMail="example@example.com"
_EL_MachineID="BUILD-PC"
_EL_OSBuild="6002 (6.0.6001.18000)"
_EL_OSType="Microsoft Windows Vista (64 bit)"
_EL_Platform="Windows x86-64"
_EL_StepsToReproduce="(Steps to reproduce) I've clicked on \qTest\q button on \qSending\q tab"

Those overrides will not be saved in your executable, you can use them only for testing.

Note: You may alter send methods at run-time with .SenderClasses property. For example,
you may clear .SenderClasses property and then use .AddSenderClass helper method to
add one or more send methods.

See also:
Send engines to get more information about each send method
Selecting sending method
Security Considerations

10.3.5.1 Sending options page

This is "Sending/Options" page in EurekaLog project's options .

356

390

55

158

225

EurekaLog 7 Documentation305

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Sending options tab

Warning: options on this page have no effect if no send method was selected.

1. "Show send progress" (.sndShowSendDialog) option enables send progress dialog which
indicates sending process:

You should uncheck this option for non-GUI dialogs.

2. "Show success message" (.sndShowSuccessMsg) option shows informational message
box, if sending was succeeded:

302

Integral parts 306

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

General send success message

You should uncheck this option for non-GUI dialogs.

3. "Only "bug closed"-message" (.sndShowSuccessBugClosedOnlyMsg) option alters
previous option ("Show success message"). If both "Show success message" and "Only
"bug closed"-message" options are checked - EurekaLog will show informational message
only if sending was succeeded AND bug in question was closed. The displayed message will
show either generic "bug is fixed, update your software" message or custom response
message (if supplied):

General "bug closed" message

Custom "bug closed" message
(supplied by bug-tracker)

EurekaLog 7 Documentation307

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Notes:
Not all send methods supports detection of bug report fixing. For example, any e-mail
send method is unable to perform such checking.
Not all send methods supports custom "closed" messages. For example, HTTP upload is
unable to do this unless you write a custom script which supplies a custom feedback.
If "Only "bug closed"-message" option is unchecked - then EurekaLog will show both
types of "success" messages.
If "Show success message" option is unchecked - then "Only "bug closed"-message"
option has no effect and EurekaLog will not show any "success" messages.

4. "Show failure message" (.sndShowFailureMsg) option shows informational message box,
if sending has failed:

Generic send failure message
(error message is not available)

Send error when error message is available

You should uncheck this option for non-GUI dialogs.

5. "Send in separate thread" (.sndSendInSeparatedThread) option will send report in
background worker thread. Exception thread will wait for this background thread to finish
sending. Exception thread will update UI (process messages).

Check this option to get smooth UI during sending.
Uncheck this option is you are not using UI dialogs.

6. "Delete bug report after sending" (.sndDeleteFileAfterSend) option deletes local bug
report file (you can set its saving here) after successful sending. If user selected not to
send report or if the report sending wasn't successful - bug report file will not be deleted.
There is also a similar "Delete file at version change" option .

264

264

Integral parts 308

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

7. "Screenshot capture" (.sndScreenshot) option (combobox with different options)
specifies how EurekaLog will capture a screenshot:

"Do not take screenshot" (ssNone) - do not capture/store/send screenshot at all. Use this
for non-GUI applications or if you don't need screenshot.
"Capture active window only (may belong to other process)" (ssForegroundWindow) -
capture window from GetForegroundWindow.
"Capture my application's active window only" (ssActiveWindow) - capture window from
GetActiveWindow. Usually it's the best option for typical GUI application.
"Capture my application's windows only" (ssApplication) - capture part of desktop
which is bounded to rectangle of all your (visible) windows. It's possible that other
applications will be caught in this rectangle. It's recommended option if you have non-
modal windows with important information.
"Capture primary monitor's workarea" (ssWorkarea) - capture primary monitor without
task bar or any other desktop panels. Some sensitive information from other applications
can be caught with this option. Use with care (your application may be classified as
spyware).
"Capture primary monitor's screen" (ssPrimary) - capture the entire primary monitor's
screen. Some sensitive information from other applications can be caught with this option.
Use with care (your application may be classified as spyware).
"Capture the entire screen (full desktop)" (ssDesktop) - capture the entire Windows
desktop (multiple monitors). This option works exactly as "Capture primary monitor's
screen" on any single-monitor system. Some sensitive information from other applications
can be caught with this option. Use with care (your application may be classified as
spyware).

Screenshot is sent as separate file in 256-color (8-bit) PNG format (if screenshot creation
was enabled, of course). Maximum screenshot file size is typically less than 150 Kb for full
screen. Typical file size is around 20 Kb (when saving one average window only).

Notes:
Active control or active window are indicated by bounding red rectangle.
Screenshot will contain mouse cursor, if mouse cursor was positioned inside captured
screen area.
Your application's windows may be covered by other applications. This is especially true
for "Capture active window only (may belong to other process)" mode.
Screenshot may contain data from multiple monitors (capturing entire desktop or
capturing window which is placed across few monitors). Any area outside of any monitors
(if it exists) will be filled with black color.

8. "Send entire bug report file with multiple reports" (.sndSendEntireLog) option specifies
content of .el/.elx file. If this option is unchecked - then sent bug report file will contain only
1 bug report - the one from current problem. If this option is checked - then bug report file
will contain exact copy of locally saved bug report file which may contain some old reports.

This option has no effect, if you do not save bug report locally or if you limit it to 1 bug
report.

Note: it's best to enable "Delete bug report after sending" option, if you enabled this
option.

9. "Send report in XML format" (.sndSendXMLLogCopy) option instructs EurekaLog to send
.elx file instead of .el file. .el file is plain-text report. .elx is XML bug report.

10. "Send last HTML page" (.sndSendLastHTMLPage) option includes a last HTML page (if
available). This option has effect only for web applications (ISAPI, (Win)CGI, IntraWeb, etc).

11. "Additional files" (.AttachedFiles) option specifies additional files to include into sent
bug report. You can use ';' to separate files. You can use environment variables to
access special folders. You can use relative file paths to access application's folder (useful
for portable applications). For example: 'Configs\Master.ini;%APPDATA%\MySoftware
\Config.ini' - this value will attach two files. One file is Master.ini file in Configs subfolder
of exe's directory. Second file will be Config.ini file from roaming application folder.

You can also specify this option at run-time. Or you can use OnZippedFilesRequest event

413

http://msdn.microsoft.com/en-us/library/ms633505(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms646292(VS.85).aspx

EurekaLog 7 Documentation309

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

handlers.

Please note that this option will include files inside bug report when "Pack send files into
single file" option is checked. To attach more files near bug report - use
OnAttachedFilesRequest event.

Note: current application directory have no effect on relative paths in this option. All relative
paths are always resolved with application folder.

12. "Pack send files into single file" (.sndPack) option sends one single .elp file instead of
bunch of files (.el/.elx, .png, .html and any additional files). This option is recommended for
sending multiple files. You can turn it off for your convenience, if you send a single .el file (no
screenshot, no XML, no additional files, etc).

Note: some send methods doesn't support sending multiple files, so this option may be
required. For this reason it's recommended to keep it checked, until you're sure about send
files count.

13. "Add BugID to file name" (.sndAddBugIDInFileName) option alters default file name by
appending a Bug ID value to it. Bug ID is a hash value of type and location of the
problem. Exceptions with the same Bug ID is considered to be the same.

Use this option to generate a more customized/unique bug report's file names.

Example: "Project1_A5810000.elp".

14. "Add client's computer name to file name" (.sndAddComputerNameInFileName) option
alters default file name by appending a name of client's machine value to it. All non-allowed
file name characters will be replaced with safe replace character ('_').

Use this option to generate a more customized/unique bug report's file names.

Example: "Project1_Alex_Notebook.elp".

15. "Add current date-time to file name" (.sndAddDateInFileName) option alters default file
name by appending a current date-time value to it ('yyyymmddhhnnss').

Use this option to generate a more customized/unique bug report's file names.

Example: "Project1_20110609005134.elp".

16. "Pack with password" (.ZipPassword) option encrypts .elp file (which is actually a ZIP
archive) with specified password. Use this option to protect .elp files during sending. You
don't need this option if you use SSL/TLS.

Notes:
This option doesn't guarantee full protection, since password is stored inside your
executable file. Even if it's encrypted - it's still stored inside .exe, so it can be stolen.
It's not the same as bug report content's password.

See also:
Report sending setup page
Configuring sending report
Bug report setup page
OnAttachedFilesRequest
OnZippedFilesRequest
Security Considerations

10.3.5.2 Shell send

This is setup options for Shell send method (also known as "mailto: protocol";
esmShellClient). They are located at Sending tab .

421

302

53

264

158

391

302

Integral parts 310

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Shell send method options

1. "Address(es)" (.SendShellTarget) option specifies target e-mail address to send bug
report to. Specify here your e-mail address for bug reports harvesting. Multiple e-mail
addresses are allowed (separate them with "," or ";"), but this is usually not a good idea,
since not every e-mail client software support this.

2. "E-mail subject" (.SendShellSubject) option specifies header (subject) for all sent bug
reports. You can specify generic static text here (like 'Bug report for Project X') or use a %tag
% to generate dynamic subject to distinguish one bug report from another. See using
variables for more info.

3. "E-mail message" (.SendShellMessage) option is optional text of e-mail message (body).
You can enter here any text, use variables or just leave this field empty. Bug report text will
appear here automatically.

4. "Append bug report text in the message text" option appends bug report text to the e-
mail message (body). If e-mail body is empty - e-mail will consist of bug report text only. If
you've entered non-null text - the first will be your text, the next will be bug report text.

This option is always checked for Shell send method, you can't turn it off - because this
send method doesn't support attaching files, so there is no other way to send bug report,
except inserting it into message.

5. "Use ShellExecuteEx" (.SendShellUseShellExecute) option defines which method should
application use to run mailto links.

228

EurekaLog 7 Documentation311

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Checked: use ShellExecuteEx function to open mailto link.
Unchecked: use CreateProcess function to open mailto link.

ShellExecuteEx is restricted to INTERNET_MAX_URL_LENGTH (about 2048) characters.
CreateProcess is restricted to 32'767 characters.

However, when using CreateProcess function - application must manually resolve mailto
protocol registration to obtain executable of mail application. This may or may not be the
same application as used by ShellExecuteEx function.

Check this option to get maximum compatibility.
Uncheck this option to get maximum information length.

6. "UTF-8 encode" (.SendShellUTF8) option encodes subject and message in UTF-8
encoding (unicode). If this option is unchecked - these strings will be send as ANSI (in
current ANSI encoding). Check this option to send extended characters outside of current
ANSI page. Uncheck this option to use old and compatible ANSI encoding. The issue with
that option is that not every e-mail client supports UTF-8 in mailto protocol. If e-mail client
doesn't support UTF-8 and you've checked this option - resulting mail will contain non-
English text in invalid encoding. For example:

Incorrect: "UTF-8" option is checked, but e-mail client doesn't support UTF-8

https://msdn.microsoft.com/en-us/library/windows/desktop/bb762154(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb762154(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v=vs.85).aspx

Integral parts 312

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Correct: "UTF-8" option is checked and e-mail client supports UTF-8

Note: some e-mail clients may support or don't support UTF-8 in mailto protocol depending
on their settings. For example, Outlook have "Allow UTF-8 support for mailto: protocol"
option, which is located in "Advanced" section of Outlook's options:

EurekaLog 7 Documentation313

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

UTF-8 support option for the mailto: protocol in Outlook 2010

Note: enabling "UTF-8" option may decrease limit on maximum e-mail length due to multi-
byte character encoding.

7. "Message encode" (.SendShellEncode) option enables %-encoding for some characters,
as required by mailto protocol specification. You can uncheck this option, if you have some
problems with e-mail clients.

Suppose you're opening URL "mailto:example@example.com&subject=Hello%20World".
Internet Explorer decodes the URL, but the Windows "Run..." command does not. For
example, if the link above is followed through Internet Explorer, the command line would
be:

"C:\Program Files\EMailClient\client.exe" "mailto:example@example.com&subject=Hello
World"

If this link is followed through Windows Explorer, the Windows Run command, or some
other application, the command line would be:

"C:\Program Files\EMailClient\client.exe" "mailto:example@example.com&subject=Hello
%20World"

The "Message encode" option is used to switch between these two cases:
"Message encode" is off: "mailto:example@example.com&subject=Hello World"
"Message encode" is on: "mailto:example@example.com&subject=Hello%20World"

See also:
Shell send method for general description of this send method
General send options

391

304

http://www.ietf.org/rfc/rfc2368.txt
http://www.ietf.org/rfc/rfc2368.txt
http://www.ietf.org/rfc/rfc2368.txt

Integral parts 314

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Configuring send method
Security Considerations

10.3.5.3 Simple MAPI

This is setup options for Simple MAPI send method (esmSimpleMAPI). They are located at
Sending tab .

Simple MAPI send method options

1. "Address(es)" (.SendSMAPITarget) option specifies target e-mail address to send bug
report to. Specify here your e-mail address for bug reports harvesting. Multiple e-mail
addresses are allowed (separate them with "," or ";").

2. "E-mail subject" (.SendSMAPISubject) option specifies header (subject) for all sent bug
reports. You can specify generic static text here (like 'Bug report for Project X') or use a %tag
% to generate dynamic subject to distinguish one bug report from another. See using
variables for more info.

3. "E-mail message" (.SendSMAPIMessage) option is optional text of e-mail message (body).
You can enter here any text, use variables or just leave this field empty.

4. "Append bug report text in the message text" (.SendSMAPIAppendLogs) option appends
bug report text to the e-mail message (body). If e-mail body is empty - e-mail will consist of
bug report text only. If you've entered non-null text - the first will be your text, the next will
be bug report text.

53

158

393

302

228

EurekaLog 7 Documentation315

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Checking this option will remove bug report file from attached files. Any other separately
attached files (if any) are not affected. Unchecking this option will result into attaching bug
report file as standard attach.

See also:
Simple MAPI send method for general description of this send method
General send options
Configuring send method
Security Considerations

10.3.5.4 MAPI

This is setup options for MAPI send method (esmMAPI). They are located at Sending tab
.

Simple MAPI send method options

1. "Address(es)" (.SendMAPITarget) option specifies target e-mail address to send bug
report to. Specify here your e-mail address for bug reports harvesting. Multiple e-mail
addresses are allowed (separate them with "," or ";").

2. "E-mail subject" (.SendMAPISubject) option specifies header (subject) for all sent bug
reports. You can specify generic static text here (like 'Bug report for Project X') or use a %tag
% to generate dynamic subject to distinguish one bug report from another. See using
variables for more info.

393

304

53

158

396

302

228

Integral parts 316

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

3. "E-mail message" (.SendMAPIMessage) option is optional text of e-mail message (body).
You can enter here any text, use variables or just leave this field empty.

4. "Append bug report text in the message text" (.SendMAPIAppendLogs) option appends
bug report text to the e-mail message (body). If e-mail body is empty - e-mail will consist of
bug report text only. If you've entered non-null text - the first will be your text, the next will
be bug report text.

Checking this option will remove bug report file from attached files. Any other separately
attached files (if any) are not affected. Unchecking this option will result into attaching bug
report file as standard attach.

See also:
MAPI send method for general description of this send method
General send options
Configuring send method
Security Considerations

10.3.5.5 SMTP client

This is setup options for SMTP client send method (esmSMTPClient). They are located at
Sending tab .

SMTP client send method options

1. "Address(es)" (.SendSMTPClientTarget) option specifies target e-mail address to send
bug report to. Specify here your e-mail address for bug reports harvesting. Multiple e-mail
addresses are allowed (separate them with "," or ";").

396

304

53

158

397

302

EurekaLog 7 Documentation317

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

2. "E-mail subject" (.SendSMTPClientSubject) option specifies header (subject) for all sent
bug reports. You can specify generic static text here (like 'Bug report for Project X') or use a
%tag% to generate dynamic subject to distinguish one bug report from another. See using
variables for more info.

3. "E-mail message" (.SendSMTPClientMessage) option is optional text of e-mail message
(body). You can enter here any text, use variables or just leave this field empty.

4. "Append bug report text in the message text" (.SendSMTPClientAppendLogs) option
appends bug report text to the e-mail message (body). If e-mail body is empty - e-mail will
consist of bug report text only. If you've entered non-null text - the first will be your text,
the next will be bug report text.

Checking this option will remove bug report file from attached files. Any other separately
attached files (if any) are not affected. Unchecking this option will result into attaching bug
report file as standard attach.

5. "From field" (.SendSMTPClientFrom) option specifies your e-mail address. It's your real e-
mail account on e-mail server, which will be used to send bug reports. It can be the same
as "Address(es)" option, but it doesn't have to.

6. "Use user-supplied e-mail" (.SendSMTPClientUseRealEMail) option allows you to
substitute your real e-mail address with customer's e-mail (which can be set via some error
dialogs or SetUserEMail function). If you turn this option on - you will see customer's e-
mail in FROM field in bug reports. This is convenient. But usually you need to keep this
option unchecked, since most e-mail servers will not allow you to send e-mails as from other
people.

7. "Host / server" (.SendSMTPClientHost) option specifies e-mail server to use. Please,
refer to your e-mail server's support/help to get this value. Usually, if you have
account@domain.com, then this value could be smtp.domain.com, mail.domain.com or
mx.domain.com.

8. "Port" (.SendSMTPClientPort) option specified TCP port number. Again, refer to your e-
mail server's support/help to get this value. Typical values are 25, 587 and 465.

7. "SSL" (.SendSMTPClientSSL) and "TLS" (.SendSMTPClientTLS) options enabled secure
mode for e-mail server. Check one of these options only if your e-mail server requires it.
Please, see this article to know more about these mode differences. Usually, it's best to
turn on "TLS" checkbox, even if your e-mail server doesn't require it.

8. "UserID / login" (.SendSMTPClientLogin) option specifies your login on e-mail server.
Usually, it's the same as your e-mail or part of it before @. For example, if you have
account@domain.com, then your login will be either account or account@domain.com.

9. "Password" (.SendSMTPClientPassword) option is your password on e-mail server.
Currently EurekaLog supports AUTH LOGIN and AUTH PLAIN authentication methods.

Warning: your real account's data will be stored inside application. Even if it's encrypted -
it's still stored inside .exe, so it can be stolen. DO NOT use your personal e-mail for this.
Create a new special account for bug reporting via this method (and be sure to protect it
against e-mail change or hi-jacking).

Examples of setup for different common e-mail servers

GMail
FROM field: your-account@gmail.com or your-account@your-domain (for customized GMail
accounts)
Host / server: smtp.gmail.com
Port: 587
SSL: False

228

370

588

Integral parts 318

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

TLS: True
Login: your-account@gmail.com or your-account@your-domain (the same as "FROM field")
Password: your-password

Notes:
Port 25 will not work.
Alternatively, you can use port 465 with SSL enabled (TLS disabled).
Account name (i.e. without domain part) sometimes can be accepted as login, but we
recommend to specify full e-mail address as login.
You must enter "application password" instead of account password, if you're using two-
factor authentication. We strongly recommend to enable this additional protection, if
you use SMTP client mode in your applications.

See also: Configuring other mail clients and Security Considerations .

HotMail (Microsoft Live)
FROM field: your-account@hotmail.com or your-account@live.com or your-account@msn.com
Host / server: smtp.live.com
Port: 587
SSL: False
TLS: True
Login: your-account@hotmail.com or your-account@live.com or your-account@msn.com (the
same as "FROM field")
Password: your-password

Alternatively, you can use port 25 with the rest of the settings to be the same.

See also: Problems with access to Hotmail from other e-mail clients (specifically: Send and
receive Windows Live Hotmail e-mails with mail clients).

Yahoo!
FROM field: your-account@yahoo.com
Host / server: smtp.mail.yahoo.com
Port: 465
SSL: True
TLS: False
Login: your-account
Password: your-password

Note: you need Yahoo! Mail Plus account to use external e-mail client.

See also: How to access Yahoo! Mail Plus using an email reader.

AOL / AIM
FROM field: your-account@aol.com or your-account@aim.com
Host / server: smtp.aol.com or smtp.aim.com (depending on your account type)
Port: 587
SSL: False
TLS: True
Login: your-account
Password: your-password

See also: Read and Send AOL/AIM E-mail with Other E-mail Applications.

Note: some e-mail servers with web UI requires you to explicitly allow access to mail from
3rd party clients in e-mail account settings. Please, refer to help or support services of your
e-mail server.

See also:
SMTP client send method for general description of this send method
General send options
Differences between SSL and TLS modes
Configuring send method

158

397

304

588

53

http://mail.google.com/support/bin/answer.py?answer=13287
http://mail.google.com/support/bin/answer.py?answer=13287
http://mail.google.com/support/bin/answer.py?answer=13287
http://mail.google.com/support/bin/answer.py?answer=13287
http://windowslivehelp.com/solutions.aspx?categoryid=3bb8e263-8810-483f-9865-520317751005
http://windowslivehelp.com/solutions.aspx?categoryid=3bb8e263-8810-483f-9865-520317751005
http://windowslivehelp.com/solutions.aspx?categoryid=3bb8e263-8810-483f-9865-520317751005
http://windowslivehelp.com/solutions.aspx?categoryid=3bb8e263-8810-483f-9865-520317751005
http://windowslivehelp.com/solutions.aspx?categoryid=3bb8e263-8810-483f-9865-520317751005
http://windowslivehelp.com/solutions.aspx?categoryid=3bb8e263-8810-483f-9865-520317751005
http://windowslivehelp.com/solutions.aspx?categoryid=3bb8e263-8810-483f-9865-520317751005
http://windowslivehelp.com/solutions.aspx?categoryid=3bb8e263-8810-483f-9865-520317751005
http://windowslivehelp.com/solutions.aspx?categoryid=3bb8e263-8810-483f-9865-520317751005
http://windowslivehelp.com/solution.aspx?solutionid=a485233f-206d-491e-941b-118e45a7cf1b
http://windowslivehelp.com/solution.aspx?solutionid=a485233f-206d-491e-941b-118e45a7cf1b
http://windowslivehelp.com/solution.aspx?solutionid=a485233f-206d-491e-941b-118e45a7cf1b
http://windowslivehelp.com/solution.aspx?solutionid=a485233f-206d-491e-941b-118e45a7cf1b
http://windowslivehelp.com/solution.aspx?solutionid=a485233f-206d-491e-941b-118e45a7cf1b
http://windowslivehelp.com/solution.aspx?solutionid=a485233f-206d-491e-941b-118e45a7cf1b
http://windowslivehelp.com/solution.aspx?solutionid=a485233f-206d-491e-941b-118e45a7cf1b
http://windowslivehelp.com/solution.aspx?solutionid=a485233f-206d-491e-941b-118e45a7cf1b
http://windowslivehelp.com/solution.aspx?solutionid=a485233f-206d-491e-941b-118e45a7cf1b
http://windowslivehelp.com/solution.aspx?solutionid=a485233f-206d-491e-941b-118e45a7cf1b
http://help.yahoo.com/l/us/yahoo/mail/classic/mailplus/pop/pop-14.html
http://help.yahoo.com/l/us/yahoo/mail/classic/mailplus/pop/pop-14.html
http://help.yahoo.com/l/us/yahoo/mail/classic/mailplus/pop/pop-14.html
http://help.yahoo.com/l/us/yahoo/mail/classic/mailplus/pop/pop-14.html
http://help.yahoo.com/l/us/yahoo/mail/classic/mailplus/pop/pop-14.html
http://help.yahoo.com/l/us/yahoo/mail/classic/mailplus/pop/pop-14.html
http://help.yahoo.com/l/us/yahoo/mail/classic/mailplus/pop/pop-14.html
http://help.yahoo.com/l/us/yahoo/mail/classic/mailplus/pop/pop-14.html
http://help.yahoo.com/l/us/yahoo/mail/classic/mailplus/pop/pop-14.html
http://help.yahoo.com/l/us/yahoo/mail/classic/mailplus/pop/pop-14.html
http://about.aol.com/faq/openmailaccess#othermail
http://about.aol.com/faq/openmailaccess#othermail
http://about.aol.com/faq/openmailaccess#othermail
http://about.aol.com/faq/openmailaccess#othermail
http://about.aol.com/faq/openmailaccess#othermail
http://about.aol.com/faq/openmailaccess#othermail
http://about.aol.com/faq/openmailaccess#othermail
http://about.aol.com/faq/openmailaccess#othermail
http://about.aol.com/faq/openmailaccess#othermail

EurekaLog 7 Documentation319

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Security Considerations

10.3.5.6 SMTP server

This is setup options for SMTP server send method (esmSMTPServer). They are located at
Sending tab .

SMTP server send method options

1. "Address(es)" (.SendSMTPServerTarget) option specifies target e-mail address to send
bug report to. Specify here your e-mail address for bug reports harvesting. Multiple e-mail
addresses are allowed (separate them with "," or ";").

2. "E-mail subject" (.SendSMTPServerSubject) option specifies header (subject) for all sent
bug reports. You can specify generic static text here (like 'Bug report for Project X') or use a
%tag% to generate dynamic subject to distinguish one bug report from another. See using
variables for more info.

3. "E-mail message" (.SendSMTPServerMessage) option is optional text of e-mail message
(body). You can enter here any text, use variables or just leave this field empty.

4. "Append bug report text in the message text" (.SendSMTPServerAppendLogs) option
appends bug report text to the e-mail message (body). If e-mail body is empty - e-mail will
consist of bug report text only. If you've entered non-null text - the first will be your text,
the next will be bug report text.

Checking this option will remove bug report file from attached files. Any other separately

158

398

302

228

Integral parts 320

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

attached files (if any) are not affected. Unchecking this option will result into attaching bug
report file as standard attach.

5. "From field" (.SendSMTPServerFrom) option specifies your e-mail address. It's can be any
valid e-mail address, which will be used as "sender" to send bug reports. It can be the
same as "Address(es)" option, but it doesn't have to. This doesn't have to be real e-mail
account. It can be anything.

6. "Use user-supplied e-mail" (.SendSMTPServerUseRealEMail) option allows you to
substitute your real e-mail address with customer's e-mail (which can be set via some error
dialogs or SetUserEMail function). If you turn this option on - you will see customer's e-
mail in FROM field in bug reports. This is convenient. Usually, you want to keep this option
checked.

Important Note: you can use CurrentEurekaLogOptions.CustomHELO option to alter name to
be passed to HELO/EHLO SMTP command.

See also:
SMTP server send method for general description of this send method
General send options
Configuring send method
Security Considerations

10.3.5.7 HTTP upload

This is setup options for HTTP upload send method (wsmHTTP). They are located at
Sending tab .

Note: HTTP upload can be used as received for bug tracker. See example for FogBugz .

HTTP upload send method options

1. "URL" (.SendHTTPURL) option specifies target URL for file upload. Usually, it's script name
on web server. See description of HTTP upload method for discussion of upload scripts.
Do not add here "http://" or ":80" parts here. Specify only domain name (or IP), path and
script name. Example: www.example.com/folder/upload.php

Warning: be sure to setup adequate maximum upload file limits in your web-server/script
configuration. Otherwise sending may fail on large bug reports.

2. "Port" (.SendHTTPPort) option specifies HTTP port on web server. It's 80 by default. Other
common value is 8080. For SSL/TLS it's usually 443.

3. "SSL / TLS" (.SendHTTPSSL) option enabled secure mode (HTTPS protocol). Don't forget
to adjust port number, if you change this checkbox.

370

398

304

53

158

398

302

115

398

EurekaLog 7 Documentation321

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

4. "BasicAuth" (.SendHTTPAuthLogin, .SendHTTPAuthPassword) options specify account
details for Basic-Auth type authentication. Usually these fields are blank. Fill them, if you use
Basic-Auth on your web server.

Warning: your real account's data will be stored inside application. Even if it's encrypted -
it's still stored inside .exe, so it can be stolen. Create a new special account for bug
reporting via this method.

5.
"Proxy" (.SendHTTPProxyHost
, .SendHTTPProxyPort, .SendHTTPProxyLogin, .SendHTTPProxyPassword) options specify proxy
details. You can leave them blank to use system-provided settings. Or you can fill these
values to set custom proxy.

See also:
HTTP upload send method for general description of this send method
General send options
Configuring send method
HTTP upload setup for FogBugz
Security Considerations

10.3.5.8 FTP upload

This is setup options for FTP upload send method (wsmFTP). They are located at Sending
tab .

FTP upload send method options

1. "URL" (.SendFTPURL) option specifies target URL for file upload. Usually, folder on file
server. Do not add here "ftp://" or ":21" parts here. Specify only domain name (or IP) and
path. Example: www.example.com/folder/

2. "Port" (.SendFTPPort) option specifies FTP port on file server. It's 21 by default.

3. "Passive mode" (.SendFTPPassiveMode) option enables so-called "FTP passive mode",
which is more friendly to client's firewall/NAT/network configuration than standard (active)
mode.

FTP can be run in active or passive mode, which determine how the data connection is
established. In active mode, the client sends the server the IP address and port number on
which the client will listen, and the server initiates the TCP connection. This is a default
standard mode. However, in situations where the client is behind a firewall and unable to

398

304

53

115

158

404

302

Integral parts 322

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

accept incoming TCP connections, passive mode may be used. In this mode the client sends
a PASV command to the server and receives an IP address and port number in return. The
client uses these to open the data connection to the server. It's recommended to enable
passive mode to bypass client's NAT/firewall.

4. "FTP account" (.SendFTPLogin, .SendFTPPassword) options specify your account details on
FTP server.

Warning: your real account's data will be stored inside application. Even if it's encrypted -
it's still stored inside .exe, so it can be stolen. Create a new special account for bug
reporting via this method.

Note: EurekaLog doesn't support SFTP protocol.

5.
"Proxy" (.SendFTPProxyHost
, .SendFTPProxyPort, .SendFTPProxyLogin, .SendFTPProxyPassword) options specify proxy
details. You can leave them blank to use system-provided settings. Or you can fill these
values to set custom proxy.

See also:
FTP upload send method for general description of this send method
General send options
Differences between "SSL mode" and "TLS mode"
Configuring send method
Security Considerations

10.3.5.9 FogBugz

This is setup options for FogBugz send method (wsmFogBugz). They are located at
Sending tab .

Note: you may consider using HTTP upload method for FogBugz instead of using
FogBugz API. See FogBugz setup for more detailed description; see FogBugz: using HTTP
upload for detailed manual on HTTP Upload setup for FogBugz.

404

304

588

53

158

404

302

398

108

115

EurekaLog 7 Documentation323

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

FogBugz send method options

1. "URL" (.SendFogBugzURL) option specifies target URL for your ForBugz installation. Do not
add here "http://" or ":80" parts here. Specify only domain name (or IP) and path.
Example: www.example.com/fogbugz/ or account.fogbugz.com

Warning: be sure to setup adequate maximum upload file limits in your web-server/
FogBugz configuration. Otherwise sending may fail on large bug reports.

2. "Port" (.SendFogBugzPort) option specifies HTTP port on web server. It's 80 by default.
Other common value is 8080. For SSL/TLS it's usually 443. Port will be set automatically to
80/443 by default.

3. "SSL / TLS" (.SendFogBugzSSL) option enabled secure mode (HTTPS protocol). Port will
be set automatically to 80/443 by default. Don't forget to adjust port number, if you are
using alternative port number.

4. "Login" (.SendFogBugzLogin) and "Password" (.SendFogBugzPassword) options specify
your account on FogBugz server. This account will be used to submit bug reports. You can
use API token instead of password - leave login field blank in this case.

Warning: your real account's data will be stored inside application. Even if it's encrypted -
it's still stored inside .exe, so it can be stolen. DO NOT use FogBugz admin account here.
Create a new special account for bug reporting via this method. Limit its rights to submitting
only. As alternative - you can always use anonymous submission or BugzScout - that
way you will not store any credentials in your application.

Note: it is a good idea to disable e-mail notifications for this account.

5.
"Proxy" (.SendFogBugzProxyHost

115

Integral parts 324

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

, .SendFogBugzProxyPort, .SendFogBugzProxyLogin, .SendFogBugzProxyPassword) options
specify proxy details. You can leave them blank to use system-provided settings. Or you can
fill these values to set custom proxy.

6. "BasicAuth" (.SendFogBugzBasicAuthLogin, .SendFogBugzBasicAuthPassword) options
specify account details for Basic-Auth type authentication. Usually these fields are blank. Fill
them, if you use Basic-Auth on your web server.

7. "Connect" button will try to connect to your FogBugz server using the specified URL/port/
credentials. If you made mistake in your configuration - an error message will be displayed.
In case of success - field below will be populated from configuration of your bug tracker.

8. "Project" (.SendFogBugzProject) options specifies project name to store bug reports. It's
mandatory.

9. "Assign to" (.SendFogBugzOwner) option specifies owner account name. If this option is
empty, all submitted bug reports will be assigned to default account (which is usually a
submitter account). If you enter here any account name (it could be the same as "Login"
option) - all submitted bug reports will be assigned to this account.

Note: this option is ignored, if submitted bug report already exists (submitting a known
issue).

10. "Category" (.SendFogBugzCategory) option specifies category for submitted reports. If
this option is empty, all submitted bug report will belong to default category (which is
usually "Bug" category). If you enter any category name here - all submitted bug reports
will belong to the specified category.

11. "Area" (.SendFogBugzArea) option specifies area for submitted reports. If this option is
empty, all submitted bug report will be assigned to default area (which is usually "Misc"
area). If you enter any area name here - all submitted bug reports will be assigned to the

EurekaLog 7 Documentation325

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

specified area.

12. "BugID field name" (.SendFogBugzBugIDFieldName) option specified name of custom
field which EurekaLog can use to store BugID. While name can be a "user-friendly"-name
(such as 'Bug ID') - we strongly recommend to use "internal"-name (such as

'plugin_customfields_at_fogcreek_com_bugidv21'). Leave empty if you don't need

standalone place to store BugID. It is purely optional, as EurekaLog will use internal
BugzScout hash for merging.

13. "Use e-mail fields" (.SendFogBugzUseEMail) option enables storing client's e-mail as
"Correspondent" in ticket.

14. "Use computer field" (.SendFogBugzUseComputer) option instructs EurekaLog to use first
custom field in FogBugz: "Computer". Disable this option, if you've renamed this field and/or
use it for other purposes.

15. "Use version field" (.SendFogBugzUseVersion) option instructs EurekaLog to use second
custom field in FogBugz: "Version". Disable this option, if you've renamed this field and/or
use it for other purposes.

16. "Upload bug report files for duplicates until bug is
closed" (.SendFogBugzUploadFilesForDups) option allows you to collect all bug reports. If
this option is unchecked (default): only first bug report is uploaded and stored. All other bug
reports for the same problem (identified by BugID) will be discarded. Only "Occurrences"
field will be increased. If this option is checked: bug reports for the same problem will be
uploaded to issue.

Notes:
if you check this option be sure to have a lot of hard disk space to store all bug reports.
bug reports will not be uploaded, once the issue is closed or resolved.
you can disable bug report collection at any time, using BugzScout options of the issue:

Integral parts 326

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Disabling bug report collecting for issue

17. "Append bug report text to description" (.SendFogBugzAppendText) option allows you to
insert bug report's text into "Description" field. It's convenient, if you need to peek bug
report without downloading bug report file. You can turn this option off, if you don't need
this behaviour.

Note: checking this option will not disable bug report file upload. File will still be attached.

18. "Append only call stack instead of full report" (.SendFogBugzUseCallStackAsBugReport)
option alters previous option. Disabled: full bug report text will be added (e.g. general
section, call stack, modules, processes, CPU/assembler, etc.); Enabled: only call stack will
be added (you will still be able to view full bug report by downloading file attach).

19. "Append bug opening link to "Success" message" (.SendFogBugzAllowLinks) option
will add a link to view bug report on FogBugz to message dialog after successful send. So
end user (client) will be able to view status of the report on your bug tracker (read-only
limited access).

This option has no effect if successful message dialog is disabled. Turn this option on for
public bug trackers. Turn this option off for private bug trackers.

EurekaLog 7 Documentation327

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

"Append bug opening link to "Success" message" option is enabled

"Append bug opening link to "Success" message" option is disabled

Note: active hyper-link will work on Windows Vista or later. It will be displayed as plain text
on Windows XP and earlier.

See also:
FogBugz send method for general description of this send method
General send options
Configuring send method
Security Considerations
Managing bug reports in FogBugz
FogBugs setup
Using HTTP upload with FogBugz

10.3.5.10 Mantis

This is setup options for Mantis send method (wsmMantis). They are located at Sending
tab .

404

304

53

158

105

108

115

406

302

Integral parts 328

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Mantis send method options

1. "URL" (.SendMantisURL) option specifies target URL for your Mantis installation. Do not
add here "http://" or ":80" parts here. Specify only domain name (or IP) and path.
Example: www.example.com/mantis/

Warning: be sure to setup adequate maximum upload file limits in your web-server/Mantis
configuration. Otherwise sending may fail on large bug reports.

2. "Port" (.SendMantisPort) option specifies HTTP port on web server. It's 80 by default.
Other common value is 8080. For SSL/TLS it's usually 443. Port will be set automatically to
80/443 by default.

3. "SSL / TLS" (.SendMantisSSL) option enabled secure mode (HTTPS protocol). Port will be
set automatically to 80/443 by default. Don't forget to adjust port number, if you are using
alternative port number.

4. "Login" (.SendMantisLogin) and "Password" (.SendMantisPassword) options specify your
account on Mantis server. This account will be used to submit bug reports. Do not specify e-
mail or full user name as login, use only user name. You can use API token instead of
password - however, you still have to supply a valid login (user name).

Warning: your real account's data will be stored inside application. Even if it's encrypted -
it's still stored inside .exe, so it can be stolen. DO NOT use Mantis admin account here.
Create a new special account for bug reporting via this method. Limit its rights to submitting
only.

Note: it is a good idea to disable e-mail notifications for this account. It is a good idea to
make this account "protected".

5. "BasicAuth" (.SendMantisBasicAuthLogin, .SendMantisBasicAuthPassword) options
specify account details for Basic-Auth type authentication. Usually these fields are blank. Fill
them, if you use Basic-Auth on your web server.

EurekaLog 7 Documentation329

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

6.
"Proxy" (.SendMantisProxyHost
, .SendMantisProxyPort, .SendMantisProxyLogin, .SendMantisProxyPassword) options specify
proxy details. You can leave them blank to use system-provided settings. Or you can fill
these values to set custom proxy.

7. "Connect" button will try to connect to your Mantis server using the specified URL/port/
credentials. If you made mistake in your configuration - an error message will be displayed.
In case of success - field below will be populated from configuration of your bug tracker.

8. "Project" (.SendMantisProject) options specifies project name to store bug reports. It's
mandatory.

9. "Assign to" (.SendMantisOwner) option specifies owner account name. If this option is
empty, all submitted bug reports will be unassigned (and their state will be "new"). If you
enter here any account name (it could be the same as "Login" option) - all submitted bug
reports will be assigned to this account (and their state will be "assigned").

Note: this option is ignored, if submitted bug report already exists (submitting a known
issue).

10. "Category" (.SendMantisCategory) option specifies category for submitted reports. It
can be optional or mandatory - it depends on your Mantis version and project configuration.

11. ""Count" field name" (.SendMantisCountFieldName) option specifies name of custom
field, which EurekaLog will use for bug report counting. By default, Mantis doesn't have any
"occurrences" or "count" fields, so you can't know how many times bug has occurred. To
workaround this problem, you can create a custom field in Mantis configuration, which you
will use for this purpose. You can enter name of this field here - and EurekaLog will use it to
count bugs.

Note: we highly recommend to create and use this field.

Integral parts 330

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

12. ""E-mail" field name" (.SendMantisEMailFieldName) option specifies name of custom
field, which EurekaLog will use to store e-mail of user who sent (original) report. By default,
Mantis doesn't have such field. You can either create a custom field in Mantis configuration,
which you will use for this purpose; or you can simply extract e-mail from bug report (file
attach).

13. ""BugID" field name" (.SendMantisBugIDFieldName) option specifies name of custom
field, which EurekaLog will use to store BugID. By default, Mantis doesn't have such field.
You can create a custom field in Mantis configuration, which you will use for this purpose.
When field is specified - it will be used by EurekaLog to search/merge reports. Otherwise
title (summary) is used for merging.

Note: we highly recommend to create and use this field.

12. "Upload bug report files for duplicates until bug is
closed" (.SendMantisUploadFilesForDups) option allows you to collect all bug reports. If this
option is unchecked (default): only first bug report is uploaded and stored. All other bug
reports for the same problem (identified by BugID) will be discarded. Only "count" field will
be increased (if it was configured). If this option is checked: bug reports for the same
problem will be uploaded to issue.

Notes:
if you check this option be sure to name bug report files in unique way to avoid file names
duplicates. Also, be sure to have a lot of hard disk space to store all bug reports.
bug reports will not be uploaded, once the issue is closed or resolved.
you can also stop collecting files by changing status to "confirmed" or "acknowledged".

13. "Append bug report text to additional information" (.SendMantisAppendText) option
allows you to insert bug report's text into "Additional information" field. It's convenient, if
you need to peek bug report without downloading bug report file. You can turn this option
off, if you don't need this behaviour.

Note: checking this option will not disable bug report file upload. File will still be attached.

14. "Append only call stack instead of full report" (.SendMantisUseCallStackAsBugReport)
option alters previous option. Disabled: full bug report text will be added (e.g. general
section, call stack, modules, processes, CPU/assembler, etc.); Enabled: only call stack will
be added (you will still be able to view full bug report by downloading file attach).

15. "Append bug opening link to "Success" message" (.SendMantisAllowLinks) option will
add a link to view bug report on Mantis to message dialog after successful send. So end
user (client) will be able to view status of the report on your bug tracker (login is required).

This option has no effect if successful message dialog is disabled. Turn this option on for
public bug trackers. Turn this option off for private bug trackers.

"Append bug opening link to "Success" message" option is enabled

EurekaLog 7 Documentation331

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

"Append bug opening link to "Success" message" option is disabled

Note: active hyper-link will work on Windows Vista or later. It will be displayed as plain text
on Windows XP and earlier.

See also:
Mantis send method for general description of this send method
General send options
Configuring send method
Security Considerations
Managing bug reports in Mantis
Mantis setup

10.3.5.11 BugZilla

This is setup options for BugZilla send method (wsmBugZilla). They are located at
Sending tab .

406

304

53

158

105

119

407

302

Integral parts 332

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

BugZilla send method options

1. "URL" (.SendBugZillaURL) option specifies target URL for your BugZilla installation. Do
not add here "http://" or ":80" parts here. Specify only domain name (or IP) and path.
Example: www.example.com/bugzilla/

Warning: be sure to setup adequate maximum upload file limits in your web-server/BugZilla
configuration. Otherwise sending may fail on large bug reports.

2. "Port" (.SendBugZillaPort) option specifies HTTP port on web server. It's 80 by default.
Other common value is 8080. For SSL/TLS it's usually 443. Port will be set automatically to
80/443 by default.

3. "SSL / TLS" (.SendBugZillaSSL) option enabled secure mode (HTTPS protocol). Port will
be set automatically to 80/443 by default. Don't forget to adjust port number, if you are
using alternative port number.

4. "Login" (.SendBugZillaLogin) and "Password" (.SendBugZillaPassword) options specify
your account on BugZilla server. This account will be used to submit bug reports. You can
use API token instead of password - leave login field blank in this case.

Warning: your real account's data will be stored inside application. Even if it's encrypted -
it's still stored inside .exe, so it can be stolen. DO NOT use BugZilla admin account here.
Create a new special account for bug reporting via this method. Limit its rights to submitting
only.

Note: it is a good idea to disable e-mail notifications for this account.

5. "BasicAuth" (.SendBugZillaBasicAuthLogin, .SendBugZillaBasicAuthPassword) options

EurekaLog 7 Documentation333

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

specify account details for Basic-Auth type authentication. Usually these fields are blank. Fill
them, if you use Basic-Auth on your web server.

6.
"Proxy" (.SendBugZillaProxyHost
, .SendBugZillaProxyPort, .SendBugZillaProxyLogin, .SendBugZillaProxyPassword) options
specify proxy details. You can leave them blank to use system-provided settings. Or you can
fill these values to set custom proxy.

7. "Connect" button will try to connect to your BugZilla server using the specified URL/port/
credentials. If you made mistake in your configuration - an error message will be displayed.
In case of success - field below will be populated from configuration of your bug tracker.

8. "Project" (.SendBugZillaProject) options specifies project name to store bug reports.
It's mandatory.

9. "Assign to" (.SendBugZillaOwner) option specifies owner account name. If this option is
empty, all submitted bug reports will be assigned to default account (configured in BugZilla
options). If you enter here any account name - all submitted bug reports will be assigned to
this account.

Note: this option is ignored, if submitted bug report already exists (submitting a known
issue).

10. "Component" (.SendBugZillaComponent) option specifies category for submitted reports.
It can be optional or mandatory - it depends on your BugZilla version and project
configuration.

11. ""Count" field name" (.SendBugZillaCountFieldName) option specifies name of custom
field, which EurekaLog will use for bug report counting. By default, BugZilla doesn't have

Integral parts 334

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

any "occurrences" or "count" fields, so you can't know how many times bug has occurred.
To workaround this problem, you can create a custom field in BugZilla configuration, which
you will use for this purpose. You can enter name of this field here - and EurekaLog will use
it to count bugs.

Note: we highly recommend to create and use this field.

12. ""E-mail" field name" (.SendMantisEMailFieldName) option specifies name of custom
field, which EurekaLog will use to store e-mail of user who sent (original) report. By default,
BugZilla doesn't have such field. You can either create a custom field in BugZilla
configuration, which you will use for this purpose; or you can simply extract e-mail from bug
report (file attach).

13. ""BugID" field name" (.SendMantisBugIDFieldName) option specifies name of custom
field, which EurekaLog will use to store BugID. By default, BugZilla doesn't have such field.
You can create a custom field in BugZilla configuration, which you will use for this purpose. It
is purely optional, as EurekaLog will use internal alias for merging.

14. "Use hardware field" (.SendBugZillaUseHardware) option instructs EurekaLog to use
"Hardware" field in BugZilla. Disable this option, if you've customized this field and/or use it
for other purposes. You can also fill this field manually instead of automatic generation by
EurekaLog.

15. "Use OS field" (.SendBugZillaUseOS) option instructs EurekaLog to use "OS" field in
BugZilla. Disable this option, if you've customized this field and/or use it for other purposes.
You can also fill this field manually instead of automatic generation by EurekaLog.

16. "Use version field" (.SendBugZillaUseVersion) option instructs EurekaLog to use
"Version" field in BugZilla. Disable this option, if you've customized this field and/or use it for
other purposes. You can also fill this field manually instead of automatic generation by
EurekaLog.

Note: you must enter valid versions into BugZilla's configuration. You also need to store
version information in your executables to fill this field.

17. "Upload bug report files for duplicates until bug is
closed" (.SendBugZillaUploadFilesForDups) option allows you to collect all bug reports. If
this option is unchecked (default): only first bug report is uploaded and stored. All other bug
reports for the same problem (identified by BugID) will be discarded. Only "count" field will
be increased (if it was configured). If this option is checked: bug reports for the same
problem will be uploaded to issue.

Notes:
if you check this option be sure to name bug report files in unique way to avoid file names
duplicates. Also, be sure to have a lot of hard disk space to store all bug reports.
bug reports will not be uploaded, once the issue is closed or resolved.
you can also stop collecting files by changing status to "VERIFIED" or "IN_PROGRESS".

18. "Append bug report text to additional information" (.SendBugZillaAppendText) option
allows you to insert bug report's text into "Description" field. It's convenient, if you need to
peek bug report without downloading bug report file. You can turn this option off, if you
don't need this behaviour.

Note: checking this option will not disable bug report file upload. File will still be attached.

19. "Append only call stack instead of full
report" (.SendBugZillaUseCallStackAsBugReport) option alters previous option. Disabled:
full bug report text will be added (e.g. general section, call stack, modules, processes, CPU/
assembler, etc.); Enabled: only call stack will be added (you will still be able to view full bug
report by downloading file attach).

20. "Append bug opening link to "Success" message" (.SendBugZillaAllowLinks) option
will add a link to view bug report on BugZilla to message dialog after successful send. So
end user (client) will be able to view status of the report on your bug tracker (login is
required).

EurekaLog 7 Documentation335

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

This option has no effect if successful message dialog is disabled. Turn this option on for
public bug trackers. Turn this option off for private bug trackers.

"Append bug opening link to "Success" message" option is enabled

"Append bug opening link to "Success" message" option is disabled

Note: active hyper-link will work on Windows Vista or later. It will be displayed as plain text
on Windows XP and earlier.

See also:
BugZilla send method for general description of this send method
General send options
Configuring send method
Security Considerations
Managing bug reports in BugZilla
BugZilla setup

10.3.5.12 JIRA

This is setup options for JIRA send method (wsmJIRA). They are located at Sending tab
.

407

304

53

158

105

134

408 302

Integral parts 336

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

JIRA send method options

1. "URL" (.SendJIRAURL) option specifies target URL for your JIRA installation. Do not add
here "http://" or ":80" parts here. Specify only domain name (or IP) and path. Example:
www.example.com/jira/

Warning: be sure to setup adequate maximum upload file limits in your web-server/JIRA
configuration. Otherwise sending may fail on large bug reports.

2. "Port" (.SendJIRAPort) option specifies HTTP port on web server. It's 80 by default. Other
common value is 8080. For SSL/TLS it's usually 443. Port will be set automatically to 80/443
by default.

3. "SSL / TLS" (.SendJIRASSL) option enabled secure mode (HTTPS protocol). Port will be
set automatically to 80/443 by default. Don't forget to adjust port number, if you are using
alternative port number.

4. "Login" (.SendJIRALogin) and "Password" (.SendJIRAPassword) options specify your
account on JIRA server. This account will be used to submit bug reports. Do not specify e-
mail or full user name as login, use only username. You can find your username in your JIRA
profile.

Warning: your real account's data will be stored inside application. Even if it's encrypted -
it's still stored inside .exe, so it can be stolen. DO NOT use JIRA admin account here.
Create a new special account for bug reporting via this method. Limit its rights to submitting
only.

Note: it is a good idea to disable e-mail notifications for this account.

EurekaLog 7 Documentation337

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

5.
"Proxy" (.SendJIRAProxyHost
, .SendJIRAProxyPort, .SendJIRAProxyLogin, .SendJIRAProxyPassword) options specify proxy
details. You can leave them blank to use system-provided settings. Or you can fill these
values to set custom proxy.

6. "Connect" button will try to connect to your JIRA server using the specified URL/port/
credentials. If you made mistake in your configuration - an error message will be displayed.
In case of success - field below will be populated from configuration of your bug tracker.

7. "Project" (.SendJIRAProject) options specifies project name to store bug reports. It's
mandatory. Project name is case-insensitive, do not specify project key as name.

8. "Issue type" (.SendJIRAIssueType) option specifies issue type to create. Mandatory.
Default is "Bug".

9. "Assign to" (.SendJIRAOwner) option specifies owner account name. If this option is
empty, all submitted bug reports will be assigned to default account (configured in JIRA
options). If you enter here any account name - all submitted bug reports will be assigned to
this account. Do not specify full user name as login, use only username.

Note: this option is ignored, if submitted bug report already exists (submitting known
issue).

10. "Component" (.SendJIRAComponent) option specifies component for submitted reports.
It's optional.

Integral parts 338

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

11. ""Count" field name" (.SendJIRACountFieldName) option specifies name of custom field,
which EurekaLog will use for bug report counting. By default, JIRA doesn't have any
"occurrences" or "count" fields, so you can't know how many times bug has occurred. To
workaround this problem, you can create a custom field in JIRA configuration, which you will
use for this purpose. You can enter name of this field here - and EurekaLog will use it to
count bugs.

12. ""E-mail" field name" (.SendJIRAEMailFieldName) option specifies name of custom field,
which EurekaLog will use to store e-mail of user who sent (original) report. By default, JIRA
doesn't have such field. You can either create a custom field in JIRA configuration, which you
will use for this purpose; or you can simply extract e-mail from bug report (file attach).

13. ""BugID" field name" (.SendJIRABugIDFieldName) option specifies name of custom field,
which EurekaLog will use to store BugID. By default, JIRA doesn't have such field. You can
create a custom field in JIRA configuration, which you will use for this purpose. When field is
specified - it will be used by EurekaLog to search/merge reports. Otherwise title (summary)
is used for merging.

Note: we highly recommend to create and use this field.

14. "Upload bug report files for duplicates until bug is
closed" (.SendJIRAUploadFilesForDups) option allows you to collect all bug reports. If this
option is unchecked (default): only first bug report is uploaded and stored. All other bug
reports for the same problem (identified by BugID) will be discarded. Only "count" field will
be increased (if it was configured). If this option is checked: bug reports for the same
problem will be uploaded to issue.

Notes:
if you check this option be sure to name bug report files in unique way to avoid file names
duplicates. Also, be sure to have a lot of hard disk space to store all bug reports.
bug reports will not be uploaded, once the issue is closed or resolved.
you can also stop collecting files by changing status to "In progress".

15. "Append bug report text to additional information" (.SendJIRAAppendText) option
allows you to insert bug report's text into "Description" field. It's convenient, if you need to
peek bug report without downloading bug report file. You can turn this option off, if you
don't need this behaviour.

Note: checking this option will not disable bug report file upload. File will still be attached.

15. "Append only call stack instead of full report" (.SendJIRAUseCallStackAsBugReport)
option alters previous option. Disabled: full bug report text will be added (e.g. general
section, call stack, modules, processes, CPU/assembler, etc.); Enabled: only call stack will
be added (you will still be able to view full bug report by downloading file attach).

16. "Append bug opening link to "Success" message" (.SendJIRAAllowLinks) option will
add a link to view bug report on BugZilla to message dialog after successful send. So end
user (client) will be able to view status of the report on your bug tracker (login is required).

This option has no effect if successful message dialog is disabled. Turn this option on for
public bug trackers. Turn this option off for private bug trackers.

EurekaLog 7 Documentation339

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

"Append bug opening link to "Success" message" option is enabled

"Append bug opening link to "Success" message" option is disabled

Note: active hyper-link will work on Windows Vista or later. It will be displayed as plain text
on Windows XP and earlier.

See also:
JIRA send method for general description of this send method
General send options
Configuring send method
Security Considerations
Managing bug reports in JIRA
JIRA setup

10.3.6 Localization page

This is "Localization" page in EurekaLog project's options .

408

304

53

158

105

143

225

Integral parts 340

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Localization options

This page allows you to translate EurekaLog to another language.

1. "Messages". The list of messages can be used to select individual message text.

2. "Text". Once line is selected - you can edit text in memo control.

3. "Collection" option can be used to save localized texts into a file, which can be used
later or copied to another machine.

To load message texts from existing file - select it from "Collection" combobox. "Default"
position will revert all texts to default (English). "Custom" position is selected automatically
when you edit existing collection:

When "Collection" option shows "Custom" - all localized texts will be saved to your
configuration.
When "Collection" option shows any other value - localized texts are not saved to your
project configuration. Instead a collection name will be saved. Please note that your
machine must have corresponding .etf file. Otherwise collection will be reset to "Default".

Click on "Save as" button to save collection of message texts into a new or existing .etf file.
Existing collection file will be overwritten. Simply enter a name: do not specify file extension
or any special characters - such as:

\ / : * ? " < > | . , ;
Alternatively, you can also specify a full file name (with .etf extension) to save collection to a
different folder. You can use %_IDESrc% environment variable to specify paths relative
to your project's folder. For example:

%_IDESrc%Localizations\English.etf
This will save collection into "Localizations" sub-folder of your project.

Important Note: any already saved localized texts in your project's configuration are

413

EurekaLog 7 Documentation341

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

ignored - unless "Collection" option is set to "Custom" or collection's file could not be found.

Use these options to translate EurekaLog's messages to another language. You can use
these options if you do not use any localization software. However, if you're using some
sort of localization solution - then you should switch this to "Default" and use your
localization software (such as ITE, TsiLang, dxGetText, etc.).

All message texts in EurekaLog come through this path:

resourcestring -> OnTranslate -> Options -> UI

1. Any message text starts as string in resources section of executable. You can change
these lines with translation software tool, which is able to work with resource (such as
ITE, TsiLang, etc.).

2. Then each text is passed to OnTranslate event (EStrConsts unit). You can assign your
own handler to translate texts. Use this event for translation software which supports
GetText-like function (such as dxGetText).

3. Then each text is passed to module options, where it can be overridden by localization
options (set on "Localization" tab in EurekaLog project options). You can also alter it at
run-time via indexed .CustomizedTexts property.

4. Final result is displayed in UI.

Note: "Right-To-Left" value under "Dialogs (common)" section defines Left-To-Right or Right-
To-Left layout for all EurekaLog run-time dialogs. Value of 0 indicate left-to-right layout
(default), value of 1 indicate right-to-left layout used in some middle eastern languages.
This option can also be altered at design-time via Dialogs page (for example). This
option can also be altered at run-time by changing
CurrentEurekaLogOptions.CustomizedTexts[mtRTLDialog].

10.3.7 Advanced page

This is "Advanced" page in EurekaLog project's options .

Advanced options

This page allows you to set advanced EurekaLog options. There are also some sub-
categories:

Exception filters
Build options
Code injection
Custom/manual options setup

1. "Use main module options" option will load options from host .exe file (when available).
This option have no effect for .exe and BPL files, it's only applicable for DLLs. It is used
when you want to share single options between many DLLs. You must compile your .exe
and DLL in compatible versions of EurekaLog when you use this option.

It's not recommended to use this option. Consider using DLLs without EurekaLog's code
instead. Alternatively you can use external options file to share options between
projects.

2. "Handle every SafeCall exception" option is used to catch safecall-exceptions with
EurekaLog. This option is useful in COM servers, COM applications and other interface-
related code.

267 271

225

343

349

352

356

368

443

Integral parts 342

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

When this option is off - safecall exceptions will be handled by default processing which
usually means losing information about error location.
When this option is on - safecall exceptions will be handled by EurekaLog and then by
default processing.

Usually it's a good idea to disable error dialogs and visual feedback for safecall exceptions
since these exception will be handled by calling code (which will display error message).

Notes:
Each safecall exception is considered to be handled exception. Keep that in mind when
you setup exception filters or write event handlers.
This option has no effect if "Catch handled exceptions" option is enabled (see below).
This option requires extended memory manager enabled.
It's a good idea to include fix for QC report #81725 when you use "Handle every
SafeCall exception" option.
Internally, "Handle every SafeCall exception" option installs hook for
ComObj.HandleSafeCallException routine (when low-level hooks are allowed) or scans
exception's call stack for _HandleAutoException routine (when low-level hooks are not
installed). The later can cause building call stack for all exceptions even with "deferred call
stacks" option set.

Alternative for this option is to invoke EurekaLog manually from your SafeCallException
handler.

See also:

Using EurekaLog in COM applications

3. "Call RTL OnException event" option will invoke default processing for exception after
processing exception by EurekaLog. Use this option to get default behaviour (such as error
dialogs), but still use EurekaLog features.

Usually it's a good idea to disable error dialogs and visual feedback when enabling this
option.

It's not recommended to use this option. It's primary used for backward compatibility with
old EurekaLog versions. New code should consider using RTL error dialog instead.

4. "Catch handled exceptions" option will enable EurekaLog for all exceptions. By default
EurekaLog processes only exceptions which are unhandled (see handled/unhandled terms
definitions).

It's not recommended to use this option. That's because "handled" for exception means
that this exception is expected and it was handled by code. Therefore, it's better to setup
proper exception handling in your code. This option is used primary as last resort measure
to work with "bad" code (the code which hides unhandled exceptions).

Be sure to setup proper exception filtering when you enable this option. Often it's a good
idea to disable error dialogs and visual feedback for handled exceptions.

Note: you should use "Handle every SafeCall exception" option for safecall-exceptions
instead of "Catch handled exceptions" option.
Note: this option requires extended memory manager enabled.

5. "Save a ZIP file copy in case of send failure" (.boSaveCompressedCopyInCaseOfError)
option will save bug report file copy in "My Documents" folder if sending fail. Use this option
to allow end user to send bug report manually to you if send fails (for some reason). This
option has no effect if no sending method was set up.

6. "Copy log text in case of send error" (.boCopyLogInCaseOfError) option will copy bug
report text into Windows clipboard if sending fail.

See also:
Exception filters

250

352

488

371

40

250

343

http://docwiki.embarcadero.com/Libraries/en/System.TObject.SafeCallException
http://docwiki.embarcadero.com/Libraries/en/System.TObject.SafeCallException

EurekaLog 7 Documentation343

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Build options
Code injection
External tools options
Custom/manual options setup
Using EurekaLog in COM applications

10.3.7.1 Exceptions filters page

This is "Advanced/Exception filters" page in EurekaLog project's options .

Exception filters options

This page allows you to set up exception filters. Exception filter is a filter which can alter
EurekaLog's behavior based on some properties of exception. It is a easy way to customize
EurekaLog on per-exception basis without writing code .

1. "Activate Exceptions Filters" (.ActivateFilters) option enables or disables exception
filters globally. Exceptions filter below will have no effect when this option is disabled.

2. "Exception Filters" (.ExceptionsFilters) option defines one or more exception filter.

Usually exceptions are identified by exception's class name. You can also identify exception
by source location. And you can identify exception by its type (handled or unhandled). Once
exception is identified - you can change handler for it (none, RTL or EurekaLog), dialog class
(to any of existing dialog classes), override error message or set action (restart or
terminate). Exception filters are applied before processing exception. Filters are applied in
order from top to bottom. First matched filter is applied.

When exceptions filters are not enough - you have to write code (event handlers).

Click on "Add" button to add new filter .

349

352

259

356

488

225

185

344

Integral parts 344

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Select existing filter and click on "Remove" button to delete selected filter.
You can double-click on existing filter to edit (modify) selected filter .
You can use "Move up"/"Move down" buttons, Ctrl + Up/Ctrl + Down or simple mouse
dragging to re-order filters.

Note: sometimes it's more easier to use custom attributes instead of exception filters.

Important note: ensure that features specified in exception filters will be available at run-
time. For example, if your application uses MS Classic-styled exception dialog by default and
you want to switch to EurekaLog-styled dialog for some exceptions by using exception
filters - then be sure to include code for EurekaLog dialog into your application .

See also:
Editing exception filter
Using exception filters for customizing EurekaLog
Using custom attributes

10.3.7.1.1 Editing exception f ilter

This is exception filter dialog which is used to add or edit exception filters .

Dialog consists of two pages:

344

190

354

344

185

190

343

EurekaLog 7 Documentation345

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Exception Identification Page

Exception Identification Page contains filter options which are used to find matched
exception. When exception occurs:
1. EurekaLog walks through all available exception filters.
2. Each filter is compared against current exception.
3. If current exception matches "identification" properties of exception filter - search is over

and filter is applied to exception.

Available options are:

1. "Exception Class" option specifies exception class name. This is mandatory option. Filter
will be applied only for exceptions of the specified class. You can pick predefined classes
from combo-box (such as EAbort or EAccessViolation) or enter your own classes (such as
EMyException). If you want to catch all exceptions - specify "Exception" class.

Important note: your exception classes must be real classes. You can not use aliases. For
example:

Integral parts 346

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

type
 EMyException1 = class(Exception);
 EMyException2 = Exception;

You can specify 'EMyException1' as exception class name. However, 'EMyException2' will not
work. Because there is no such class. You should use 'Exception' instead.

2. "Exception Kind" option specifies whenever this filter will be applicable to unhandled
exceptions, handled exceptions, SafeCall exceptions or all of them. This is mandatory
option.

SafeCall exceptions are considered to be handled exceptions. "Handled" value will catch
any kind of handled exception - regardless of it being SafeCall exception. "SafeCall" value
will catch only SafeCall exceptions, but no other handled exceptions.

Tip: Filter is applicable for all exceptions by default. Different processing for handled and
unhandled exceptions may be confusing, so it's recommended to avoid it when possible.

Note: this option is ignored if your application do not process handled or SafeCall
exceptions.

3. "Exception Module Name" option specifies name of file for executable module. Such as
'Project1.exe' or 'BugDLL.dll'. This option is optional. Filter will be applied only to exceptions
raised from the specified module.

Notes:
You must specify file name only without any file path.
Module name comparison follows case sensitivity of host OS.
This option uses ExceptionAddress property to determinate module name.
This option does not require debug information to work.

4. "Exception Unit Name" option specifies unit name. Such as 'SysUtils', 'Unit1', 'Project1',
etc. This option is optional. Filter will be applied only to exceptions raised from the specified
unit.

Notes:
This option uses ExceptionAddress property to determinate unit name.
This option requires debug information to work.

5. "Source Class Name" option specifies class name. Such as 'TFileStream', 'TForm1', etc.
This option is optional. Filter will be applied only to exception raised by methods of the
specified class.

Notes:
This option uses ExceptionAddress property to determinate class name.
This option requires debug information to work.

6. "Procedure/Method Name" option specifies function or method name. Such as 'Create',
'Destroy', 'Read', 'Button1Click', etc. This option is optional. Filter will be applied only to
exceptions raised by specified method or function.

Notes:
This option uses ExceptionAddress property to determinate function/procedure/method
name.
This option requires debug information to work.

7. "Exception Properties" option specifies set of properties to match. This option is
optional. Filter will be applied to exceptions which have specified properties with exact the
same values.

Properties should be entered as: one property on single line.
Each line must have "name=value" form (as indicated on the screenshot above).
String values must be enclosed in double quotes.

EurekaLog 7 Documentation347

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Use \q to insert double-quote inside string value.
Enumerated types must be entered as integers.

Important note: this option can only work with Delphi/C++ Builder exceptions with RTTI info
available! Standard exception classes usually do not have RTTI information.

Altering Behavior Page

Altering Behavior Page contains filter options which alters exceptions. These options are
applied to exception altering its properties and/or behavior. Options are applied only for
matched filter.

Note: at least one of the options on this tab must be changed. Otherwise filter will do
nothing.

Available options are:

1. "Set Handler to" option allow you to define who should handle exception:
"None" handler will ignore exception. I.e. exception will not be handled at all. This handler

Integral parts 348

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

will not allow you to edit any additional options. This case is used for such exceptions as
EAbort.
"RTL" handler will pass exception to default processing. This is the same as if EurekaLog
would be disabled. This handler will not allow you to edit any additional options. This case
is used for "expected" exceptions, which do not require bug report creation.
"EurekaLog" handler will pass exception to EurekaLog. This is default in EurekaLog-
enabled application. This handler also allow you to specify additional options (see below).
This is default and recommended case for most exception classes.

2. "Override Exception Message" option allow you to override exception message. Leave
this field empty to use original exception message. You can use this option to supply user-
friendly error message (such as "Sorry, there was an error. Please, restart application")
instead of low-level error message (such as "Access violation in module Project1.exe at
address 123456"). This option affects only visual dialogs. Bug report will contain original
exception message. See also "Exception Message" option .

Note: you can use environment variables in this field, so you can also insert original
exception message as part of your customized message (for example: "Sorry, there was an
error. Please, restart application. Low-level error message: %_ExceptMsg%").

3. "Change Dialog to" option allow to change default dialog (as set in EurekaLog project
options) to any available dialog class.

4. "Action after exception" option allow you to perform restart action after processing
exception. This is useful for exceptions like access violation. You may want to terminate/
restart your application after such exceptions to avoid induced exceptions.

5. "Expected Exception Context ID" option allow you to assign Context ID to exception.
This is integer value which is expected to be ID of help topic describing exception.

Notes:
Setting this option to any positive value (or -1) will convert exception to "expected"
exception. Expected exception display error dialogs, but does not generate bug reports. 0
(default) will not mark exception as "expected".
Set this property to a valid ID of help topic. If you do not have help topic for exception,
but want to mark exception as "expected" - then set this option to -1.
Use either "Expected Exception Context ID" option or "Expected Exception URL" option,
but not both.
Expected exception with valid Context ID (positive) or valid URL will cause "Help" button
to be shown in error dialogs.

6. "Expected Exception URL" option allow you to assign URL for the exception. This URL is
expected to point to online help or Knowledge Base topic/article describing exception.

Notes:
Setting this option to any non-empty value will convert exception to "expected"
exception. Expected exception display error dialogs, but does not generate bug reports.
Set this property to a valid URL of online help topic. If you do not have help topic for
exception, but want to mark exception as "expected" - then use "Expected Exception
Context ID" option and set it to -1, keep "Expected Exception URL" option empty.
Use either "Expected Exception Context ID" option or "Expected Exception URL" option,
but not both.
Expected exception with valid Context ID (positive) or valid URL will cause "Help" button
to be shown in error dialogs.

7. "Exception BugID" option allow you to specify fixed BugID for this exception. If this value
is 0 - BugID will be generated automatically. If this value is not 0 - automatic generation will
be disabled. Specified BugID will be used.

Note: you can use both decimal (1234567890) and hexadecimal ($C7D40000) forms.

Warning: be extra careful when assigning this value. Your value may overlap with
automatically generated BugIDs. Best strategy is to utilize user part of BugID (low word).
See BugID for more info.

244

421

EurekaLog 7 Documentation349

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

See also:
Configuring exception filters
Using exception filters
BugID

10.3.7.2 Build options page

This is "Advanced/Build options" page in EurekaLog project's options .

Build options

This page allows you to specify additional project build options.

1. "Reduce file size" option removes relocation table from file. This reduces file's size for
about 10% (however, enabling EurekaLog also increases file's size).

It's recommended to always keep this option on.

Note: this option have no effect for DLL and packages.

Technical explanation
When you compile a DLL (or a package which is a Delphi-specific DLL in disguise), the
linker includes what is known as a relocation table. This table includes information about
what addresses must be fixed up by the OS loader in the (likely) event that the DLL
must be loaded at a different address than its intended-at-compile/link-time base
address. You see, all DLLs come with a base address that is the "ideal" loading address
of that module. The OS will try to load the DLL at this address to avoid the overhead of
runtime rebasing (patching the in-memory pages of the DLL forces it to be paged in from
disk and prevents cross-process sharing of the DLL pages). That's why you should set
the Image base option in the Linker page of the project options of DLL and package
projects. The default Image base that Delphi uses is $00400000 for both applications,
DLLs and packages - and thus by default all DLLs and packages will need to be rebased
- as that address is reserved for the process' EXE file.

The implication is that an EXE file will always be loaded at the fixed virtual address
$00400000 and that it will never need to be rebased. Alas, it doesn't really need its
relocation table and we can safely remove it, shrinking the size of the .EXE without
affecting its behavior or performance.

See also: External tools options page .

2. "Check file corruption" option adds check for file corruption in your project. If you enable
this option, EurekaLog will calculate a CRC checksum of the compiled file and store it inside
file. EurekaLog will also read this checksum from file on its startup (launch). If your
executable was modified, EurekaLog will display an appropriate message and shutdown
your application immediately:

343

185

421

225

259

Integral parts 350

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

EurekaLog detected changes in executable file

You can use this option to ensure that your code wasn't modified.

Turn on for additional checks.
Turn off for best performance.

Warning: do not enable this option, if you're going to digitally sign your executable, to
protect it with executable protector, or to pack it with executable packer. All 3 cases are not
compatible with this option. Moreover, its use is redundant: each of 3 actions contain their
own analogs of EurekaLog's "Check file corruption" option, so this option is not needed at
all.

Notes:
CheckSum field in the IMAGE_OPTIONAL_HEADER structure is used to store CRC value inside
executable file;
this option checks file on disk, not running process image;
enabling this option will slow down loading and startup times on your executable. The
bigger your executable file will be - the larger will be startup time: because the entire file
must be read at startup.

See also: External tools options page .

3. "Use low-level hooks" option allows or forbids using of low-level hooks.

Using low-level hooks allows you to capture low-level information such as CPU state. Low-
level hooks are also required for additional WER functionality. However, a documented way
of installing low-level hook is available only in Windows XP and later. For older OS -
undocumented hack will be used. If this option is unchecked - EurekaLog will use RTL
functionality and will not install low-level hooks.

Note: low-level hooks will always be used on Delphi 2007 and below, since RTL support for
handling exception was introduced in Delphi 2009.

Note: using of low-level hooks may introduce compatibility issues with 3rd party protection
software.

Note: EurekaLog uses different implementation on Windows 2000 and Windows XP and
above:

Windows 2000: use SEH - inject hook into KiUserExceptionDispatcher (undocumented
hack).
Windows XP+: use VEH - add handler via documented API.

Note: this option controls only collecting information stage ("raise"). This option has no
effect on other places. For example, hooks for handling exception are controlled by these
options .

Turn on for best detalization.

259

352

EurekaLog 7 Documentation351

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Turn off for best compatibility.

See also: External tools options page .

See also:
Code hooks
Build events
Advanced options
External tools options page
Using EurekaLog with external software

10.3.7.2.1 Build events page

This is "Advanced/Build events" page in EurekaLog project's options .

Build events options

This page allows you to specify external application to be executed during application's
build process. See also: External tools options page .

1. "Pre-build event command line" option specifies command that is to be performed
before the project build starts.

2. "Post-build event command line (on successful build)" option specifies command that
is to be performed after the build has successfully completed.

3. "Post-build event command line (on failed build)" option specifies command that is to
be performed after the build has failed.

Notes:
You can use environment variables to customize command-line with variable parts. For
example, to specify final exe file name. The following additional pseudo-variables are
available to be used in build events:

_IDEProject - full file name of project file. Example: C:\Project\Project.dproj
_IDESource - full file name of source code file of project. Example: C:\Project\Project.dpr
_IDEConfig - full file name of EurekaLog options file. Example: C:\Project\Project.dproj or
C:\Project\Project.eof
_IDETarget - full file name of final executable. Example: C:\Project\Win32\Debug
\Project.exe
_IDESrc - file name only of the project. Example: Project.dproj
_IDEDst - output folder (with trailing path delimiter). Example: .\Win32\Debug\

Don't forget that you need to enclose variable name in %, for example: %_IDEProject%.

Don't forget to use " for file names with spaces within. Since you don't know exact values
for variables - we strongly recommend to enclose variable names in quotes, for example:
"%_IDEProject%".

Relative file paths are relative to project's folder.
A common mistake is to confuse success/failure post-build events.
These actions will be executed only when building application with EurekaLog. If you build
your application with standard ways and then post-process result with EurekaLog - these
actions will not be executed.

259

352

351

341

259

514

225

259

413

Integral parts 352

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Delphi 2009+: IDE has similar options. If you're using EurekaLog in RAD Studio 2009 IDE or
newer - it's recommended to use IDE's build events instead of EurekaLog's events. IDE
events will be executed always, EurekaLog's events will be executed only when you compile
your project with EurekaLog's help.

Delphi 2009+: order of actions during project's compilation is as follows:
1. EurekaLog pre-build event
2. IDE pre-build event
3. Project compile and link
4. IDE post-build event
5. EurekaLog link (post-processing)
6. EurekaLog post-build event

Note: you can insert a post-processing call to ecc32/emake to IDE's post-build event.
EurekaLog IDE expert will skip its own post-processing for already processed executables.

See also:
IDE build events
Build options
Advanced options
Environment variables
External tools options page
Using EurekaLog with external software

10.3.7.3 Code page

This is "Code" page in EurekaLog project's options .

These are options for EurekaLog's code customizations. Each sub-category offers options to
include or remove part of EurekaLog's code for executable.

The sub-categories are:
Hooks
Dialogs
Debug information
Send methods

See also:
Configuring call stack

10.3.7.3.1 Hooks page

This is "Advanced/Code/Hooks" page in EurekaLog project's options .

426

349

341

413

259

514

225

352

354

355

355

48

225

http://docwiki.embarcadero.com/RADStudio/en/Build_Events
http://docwiki.embarcadero.com/RADStudio/en/Build_Events
http://docwiki.embarcadero.com/RADStudio/en/Build_Events
http://docwiki.embarcadero.com/RADStudio/en/Build_Events
http://docwiki.embarcadero.com/RADStudio/en/Build_Events

EurekaLog 7 Documentation353

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Hooks code options

Each option includes hooks for specific cases (i.e. Pascal units). You should enable option to
install hook (and invoke EurekaLog) or disable option to remove hook. See also: External
tools options page .

"Console" - for console applications.
"VCL Forms" - for applications with Forms or VCL.Forms unit.
"Control Panel" - for applications with CtlPanel unit.
"NT Service" - for applications with SvcMgr unit.
"CGI" - for applications with CGIApp unit.
"ISAPI" - for applications with ISAPIApp unit.
"IntraWeb" - for applications with IntraWeb units.
"CLX" - for applications with QForms unit.
"FMX" - for applications with FMX.Forms unit.

Usually these settings are set by selecting type of your application . You rarely need to
change them.

Additional hooks are not tied to specific application type and may be used in any
application. However, all of these options installs code hook - thus, they may be
incompatible with some EXE cryptors, packers, protectors. Additional hooks may be
customized by you depending on your needs.

1. "Auto-handle TThread exceptions" - option enables backward-compatible EurekaLog 6
behavior for threads. When you enable this option - EurekaLog will automatically handle
exception in TThread. Default behavior is not to handle exception, but allow it to be saved
in TThread.FatalException property, which can be analyzed/handled by caller thread.

Warning: enabling this option may result in multiple error dialogs at the same time (if
several exception occur in multiple threads).

Note: it's not recommended to use this option. You should implement proper error handling
for threads instead.

2. "DLL callbacks to host" option allows DLL to use exception manager from main module.
This option is used with "DLL" profile when you need to call methods from exception
manager (since there is no exception manager in DLL).

Warning: do not use this option for "Standalone DLL" profile or any other profiles except
"DLL".

This options is turned on automatically for DLL profile. Usually you don't need to manage it

259

363

http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.FatalException

Integral parts 354

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

manually.

This option can be used without EurekaLog in current module.

For more information: see using EurekaLog with DLLs .

3. "Map OS errors to exception classes" option converts all exceptions of EOSError class to
(new) exception classes (from EMapWin32 unit). For example, there will be EOSAccessDenied
exception raised instead of EOSError with ErrorCode = 5. This option will replace exception
classes globally in all application. Old filtering code (i.e. "on E: EOSError do") should still
work, because all new exception classes descend from EOSError. You can use this option to
create exception filters for OS errors.

It's recommended to keep this option enabled.

This option also can be used without EurekaLog in current module.

4. "Fix TObject.SafeCallException for hardware exceptions" option fixes bug from Quality
Central bug report #81725.

TObject.SafeCallException works only for Delphi exceptions. If there is a hardware
exception raised in safecall-method (like access violation or div by zero) -
TObject.SafeCallException will be ignored, instead the fixed code of E_UNEXPECTED
($8000FFFF) will be used.

With current implementation it is impossible to alter this behaviour except of using ugly
workarounds.

The problem seems to be in System._HandleAutoException routine. This routine does
not call TObject.SafeCallException if exception in question is not Delphi exception.

Enable this option for COM applications or any other applications which use safecall-
exceptions.

This option can be used without EurekaLog in current module.

Notes:
This option has effect only for Win32 platform. It has no effect for 64bit code or MacOS.
You probably would want to enable "Handle every SafeCall exception" option for COM
applications too.

See also:
Application types
External tools options page
Using EurekaLog with external software

10.3.7.3.2 Dialogs page

This is "Advanced/Code/Dialogs" page in EurekaLog project's options .

484

341

363

259

514

225

http://qc.embarcadero.com/wc/qcmain.aspx?d=81725
http://qc.embarcadero.com/wc/qcmain.aspx?d=81725
http://qc.embarcadero.com/wc/qcmain.aspx?d=81725
http://qc.embarcadero.com/wc/qcmain.aspx?d=81725
http://qc.embarcadero.com/wc/qcmain.aspx?d=81725

EurekaLog 7 Documentation355

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Dialogs code options

Each option includes code for specific dialog (i.e. Pascal unit). Usually these options are set
automatically when you change dialog type . You can include additional dialogs if you
want to change them from code (i.e. at run-time) or via exception filters.

See also:
Available dialogs
Configuring dialogs

10.3.7.3.3 Debug information page

This is "Advanced/Code/Debug information" page in EurekaLog project's options .

Debug information providers code options

Each option includes code for specific debug information providers (i.e. Pascal unit). You can
change these options to include more providers in your application.

Note: support for madExcept is experimental.

See also:
Using EurekaLog with DLLs post-processed by 3rd party tools (JCL, madExcept, etc.)
Using EurekaLog with non-Embarcadero DLLs (Microsoft Visual Studio, etc.)
Configuring call stack
Using Microsoft DbgHelp DLL
Debug information providers
External tools options page
Using EurekaLog with external software

10.3.7.3.4 Send engines page

This is "Advanced/Code/Send engines" page in EurekaLog project's options .

267

370

267

225

495

496

48

504

409

259

514

225

Integral parts 356

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Send engines code options

Each option includes code (i.e. Pascal unit) for specific send engine. Usually these options
are set automatically when you change send options . You can include additional send
engines if you want to change them from code at run-time.

See also:
Send methods

10.3.7.4 Custom/Manual page

This is "Custom/Manual" page in EurekaLog project's options .

Options

This page allows you to manually edit, add or remove any EurekaLog project option. You
can use this page to add new options to your project.

304

390

225

EurekaLog 7 Documentation357

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Warning: be extra careful when editing options manually. Options will be used "as is".

See EurekaLog options for more details about rules of encoding options. Please note
that [Exception Log] header should not be present on this page.

Notes:
Options are sorted for your convenience, but new options can be entered and placed in
any order. There is no need to preserve sort order.
Options with names started with "_" will not be saved into executable. Those are design-
time only options, they are saved in project options, but not injected into final executable.
Examples of such options are _BugAppVersion, _BugID, etc.
We suggest to use "Custom_" prefix for your own keys. EurekaLog will never have any
option name, starting with "Custom_". Thus, your names will not collide with EurekaLog
settings.
You can retrieve any option at run-time via
CurrentEurekaModuleOptions.CustomField['Option-Name'].

See also:
Syntax for editing EurekaLog options
Storing EurekaLog options
Working with configurations

10.3.8 3rd party page

This page is reserved for 3rd party extensions of EurekaLog (EurekaLog's plugins).

10.3.9 Statistics

This is "Statistics" page in EurekaLog project's options .

442

302

442

440

439

225

Integral parts 358

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Project build stats

This page displays stats about last project build.

This is optional page. It is displayed only when viewing/editing project options in IDE. It will
be hided if no project is opened or when viewing/editing options in standalone Settings
Editor tool.

Note: the stats are not collected by default. Additionally, the stats are not saved when
project is closed. You have to enable stats collection and rebuild the project to view stats:
enable stats collection by checking "Calculate stats" option (and, optionally, "Debug
output" option) at "General" page. Then rebuild the project and view "Statistics" page.

Sample output of statistics:

Project statistics for build on 2015-03-26 10:16:32/10:16:54
 for Project1.dproj project.
ID: 5C127973-0405-4D56-BBF0-C3778C51B0E9
Output: C:\Projects\Win32\Debug\Project1.exe

 Overall size stats:
 Without EL: 14'088'258
 With EL: 15'183'066
 EL total size diff: +1'094'808 (+7.77%)
 EL code size diff: +1'008'792 (+7.16%)
 EL data size diff: +86'016 (+0.61%)
 Size details (1'341'513 bytes):
 EL code size: 1'008'792
 EClasses: 178'096
 EUnmangling: 69'996
 ECallStack: 53'804
 ESysInfo: 49'420
 EDialog: 45'172
 ELogBuilder: 37'276
 EMapWin32: 32'472
 EExceptionManager: 31'064
 EMemLeaks: 25'124
 EThreadsManager: 24'336
 EZip: 24'232
 EException: 23'168
 EPEImage: 23'092
 EDebugEL: 22'616
 EStrConsts: 21'516
 ExceptionLog7: 19'804
 EResLeaks: 19'572
 EModules: 17'616
 EDialogWinAPIEurekaLogDetailed: 16'700
 ELogManager: 15'016
 ETools: 13'592
 EExceptionHook: 12'348
 EDialogWinAPIEurekaLog: 11'208
 EDebugInfo: 9'948
 ETypes: 9'516
 EHook: 9'444
 EXMLBuilder: 9'272
 EStackTracing: 9'068
 EDialogWinAPI: 8'644
 EInfoFormat: 8'388
 EDialogWinAPIMSClassic: 7'984

234

EurekaLog 7 Documentation359

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 EBase: 7'684
 EListView: 7'008
 EInject: 6'860
 ECompatibility: 6'716
 EConfig: 6'144
 ELowLevel: 5'968
 ESend: 5'832
 EEvents: 5'776
 EEncoding: 5'768
 EExceptionInfo: 5'724
 EExceptionInfoGeneric: 5'396
 EZLib: 4'948
 ELowLevelClasses: 4'884
 EAppType: 4'520
 ESpecificDelphi: 4'348
 EFreeze: 4'304
 ESendMailShell: 4'196
 EInternalDebug: 3'840
 EOSApiList: 3'820
 ECore: 3'748
 EWCTSupport: 3'672
 EDialogSendWinAPI: 3'504
 EHash: 3'436
 EDebugExports: 3'332
 EPNG: 2'976
 EScreenshot: 2'768
 EDLLs: 2'492
 EDialogWinAPIStepsToReproduce: 2'064
 EFileMemory: 1'976
 EExceptionInfoDelphiUnicode: 1'760
 EDialogSend: 1'720
 EDisAsm: 1'636
 ENT: 1'544
 EEncrypt: 1'516
 EAppVCL: 1'288
 ESendMail: 1'164
 EExceptionInfoDelphi2: 1'128
 EExceptionInfoDelphiANSI: 1'124
 EWCT: 1'088
 EMLang: 584
 EFixSafeCallException: 428
 EMonitors: 344
 EPChars: 240
 EConsts: 20
 Debug info size: 332'721
 Uncompressed: 807'722
 Symbols size: 58
 Functions size: 4
 Stripped size: -249'856
 Debug information details (807'722 bytes):
 Units: 468
 Procedures: 22'009
 Lines: 152'554
 Names: 22'009
 1 byte (2-5-N): 116'676 (116'676 bytes)
 1 byte (3-3-P): 8'169 (8'169 bytes)
 2 bytes (7-5-V): 20'090 (40'180 bytes)

Integral parts 360

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 4 bytes (16-12-V): 4'908 (19'632 bytes)
 8 bytes (16-16-V): 0 (0 bytes)
 16 bytes (32-32-V): 4'699 (75'184 bytes)
 Total time: 00:00:13.101
 Compilation time: 00:00:03.952
 Prepare time: 00:00:00.051
 Post-process time: 00:00:09.092
 Events time: 00:00:00.006
 Memory usage:
 Allocated: 103'242'467
 RAM: 340'996'096
 Private: 338'440'192
 Virtual: 470'593'536

 Analyzing file "C:\Projects\W in32\Debug\Project1.exe":

Target: x86-32

Module's version: 1.0.0.0
File size: 15183066
Module's description:
File creation: 2015-03-26 10:14:54
File last write: 2015-03-26 10:16:34
File last access: 2015-03-26 10:16:33
Compilation date: 2015-03-26 10:16:44

Is Borland image: True
Is EurekaLog image: True
Is JclDebug image: False
Is MadExcept image: False
Is TD32 image: False
Is DWARF image: False
Is Stab image: False

Has .eldbg file: False
Has .jdbg file: False
Has .mad file: False
Has .map file: False
Has .tds file: False
Has .dbg file: False
Has .pdb file: False

EurekaLog code version: 7.2.0.0 Enterprise
EurekaLog data version: 7.0.07
Code Machine ID: D86FE1F598FB4242A796223D6909B720
Data Machine ID: 1EE7EC2155D37048A92392BEF05DABA5
Data Project ID: 7379125C0504564DBBF0C3778C51B0E9
EurekaLog's data size: 333143
 in % of original size: 2.24%

EurekaLog options:
Activate=1
atFixSafeCallException=1
atVCL=1
atWin32=1
CompatibilityMode=0
Debug=1

EurekaLog 7 Documentation361

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

DeleteMapAfterCompile=1
Encrypt Password=""
EurekaLog Version=7007
idEurekaLog=1
idEurekaLogDetailed=1
idMSClassic=1
idStepsToReproduce=1
InjectCode=1
InjectInfo=1
InjectOptions=1
loEnableMMDebugMode=1
ProjectID="{5C127973-0405-4D56-BBF0-C3778C51B0E9}"
Stats=1
TextsCollection=""

EurekaLog symbols:
 ID: 11 (System.Classes.initialization), Address: 002CC550, Size: 144
 ID: 12 (System.Classes.finalization), Address: 00076A54, Size: 208
 ID: 13 (System.Variants.finalization), Address: 000579FC, Size: 192
 ID: 14 (System.SysUtils.initialization), Address: 002CC3CC, Size: 164
 ID: 15 (System.SysUtils.finalization), Address: 0004B9FC, Size: 404
 ID: 16 (System.finalization), Address: 0000B38C, Size: 104
 ID: 24 (InvokeRegistry.Init), Address: 0027A9F4, Size: 60
 ID: 25 (System.Win.ComObj.HandleSafeCallException), Address: 00136728, Size: 300

Module type: exe

Sections:
 11536602 bytes (75%) [004C6000] .debug (INIT DATA, READ)
 3105280 bytes (20%) [00001000] .text (CODE, EXECUTE, READ)
 459264 bytes (3%) [00455000] .rsrc (INIT DATA, READ)
 51200 bytes (0%) [002FB000] .data (INIT DATA, READ, WRITE)
 17408 bytes (0%) [0040F000] .idata (INIT DATA, READ, WRITE)
 8704 bytes (0%) [002F8000] .itext (CODE, EXECUTE, READ)
 2560 bytes (0%) [00414000] .didata (INIT DATA, READ, WRITE)
 512 bytes (0%) [00417000] .rdata (INIT DATA, READ)
 512 bytes (0%) [00415000] .edata (INIT DATA, READ)
 0 bytes (0%) [00308000] .bss (READ, WRITE)
 0 bytes (0%) [00416000] .tls (READ, WRITE)
 0 bytes (0%) [00418000] .reloc (READ, WRITE)

Resources:
 333143 bytes (2%) RCDATA ELDATA
 61223 bytes (0%) GROUP_ICON MAINICON (x5)
 40356 bytes (0%) STRINGTABLE (x57)
 2724 bytes (0%) RCDATA PACKAGEINFO
 2088 bytes (0%) BITMAP EL_SEND
 1332 bytes (0%) DIALOG EL_MS_DIALOG
 1320 bytes (0%) BITMAP EL_DLL
 1320 bytes (0%) BITMAP EL_NET
 714 bytes (0%) MANIFEST #1
 618 bytes (0%) DIALOG EL_DIALOG
 320 bytes (0%) VERSION #1
 308 bytes (0%) GROUP_CURSOR #32764 (x1)
 308 bytes (0%) GROUP_CURSOR #32765 (x1)
 308 bytes (0%) GROUP_CURSOR #32763 (x1)
 308 bytes (0%) GROUP_CURSOR #32761 (x1)

Integral parts 362

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 308 bytes (0%) GROUP_CURSOR #32762 (x1)
 308 bytes (0%) GROUP_CURSOR #32767 (x1)
 308 bytes (0%) GROUP_CURSOR #32766 (x1)
 280 bytes (0%) DIALOG EL_REQUEST
 248 bytes (0%) BITMAP EL_MINUS
 248 bytes (0%) BITMAP EL_PLUS
 240 bytes (0%) RCDATA TFORM5
 232 bytes (0%) BITMAP EL_PAS
 232 bytes (0%) BITMAP EL_BPL
 232 bytes (0%) BITMAP EL_VCL
 192 bytes (0%) DIALOG EL_TAB_PROCESSESLIST
 192 bytes (0%) DIALOG EL_TAB_MODULESLIST
 192 bytes (0%) DIALOG EL_TAB_CALLSTACK
 188 bytes (0%) DIALOG EL_TAB_CPU
 188 bytes (0%) DIALOG EL_TAB_ASSEMBLER
 188 bytes (0%) DIALOG EL_TAB_GENERAL
 182 bytes (0%) DIALOG EL_SERVER
 16 bytes (0%) RCDATA DVCLAL
 2 bytes (0%) RCDATA PLATFORMTARGETS

Units:
 410980 bytes (2%) System.Classes (System.Classes.pas)
 388976 bytes (2%) Vcl.Themes (Vcl.Themes.pas)
 300912 bytes (1%) System.Rtti (System.Rtti.pas)
 178024 bytes (1%) EClasses (EClasses.pas)
 130600 bytes (0%) Vcl.Controls (Vcl.Controls.pas)
 121960 bytes (0%) Vcl.Forms (Vcl.Forms.pas)
 109092 bytes (0%) Vcl.Themes (System.Generics.Collections.pas)
 91912 bytes (0%) System.SysUtils (System.SysUtils.pas)
 72796 bytes (0%) Vcl.Graphics (Vcl.Graphics.pas)
 71724 bytes (0%) System.Rtti (System.Generics.Collections.pas)
 69996 bytes (0%) EUnmangling (EUnmangling.pas)
 69056 bytes (0%) System.Classes (System.Generics.Collections.pas)
 62072 bytes (0%) System.Classes (System.Generics.Collections.pas)
 57120 bytes (0%) System (System.pas)

... // cut to save space

EurekaLog's units: EAppType, EAppVCL, EBase, ECallStack,
EClasses,
ECompatibility, EConfig, EConsts, ECore, EDebugEL, EDebugExports,
EDebugInfo,
EDialog, EDialogSend, EDialogSendWinAPI, EDialogWinAPI,
EDialogWinAPIEurekaLog,
EDialogWinAPIEurekaLogDetailed, EDialogWinAPIMSClassic,
EDialogWinAPIStepsToReproduce, EDisAsm, EDisAsmX8632, EDisAsmX8632Defs,
EDLLs,
EEncoding, EEncrypt, EEvents, EException, EExceptionHook,
EExceptionInfo,
EExceptionInfoDelphi2, EExceptionInfoDelphiANSI,
EExceptionInfoDelphiUnicode,
EExceptionInfoGeneric, EExceptionManager, EFileMemory,
EFixSafeCallException,
EFreeze, EHash, EHook, EInfoFormat, EInject, EInterfaces,
EInternalDebug,
EListView, ELogBuilder, ELogManager, ELowLevel, ELowLevelClasses,
EMapWin32,

EurekaLog 7 Documentation363

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

EMemLeaks, EMLang, EModules, EMonitors, ENT, EOSApiList, EPChars,
EPEImage,
EPNG, EResLeaks, EScreenShot, ESend, ESendMail, ESendMailShell,
ESpecificDelphi,
EStackTracing, EStrConsts, ESysInfo, EThreadsManager, ETools, ETypes,
EUnmangling, EWCT, EWCTSupport, ExceptionLog7, EXMLBuilder, EZip, EZLib

Classes:
 105184 bytes (0%) EClasses.TEurekaModuleOptions
 35404 bytes (0%) Vcl.Controls.TWinControl
 32080 bytes (0%) Vcl.Forms.TCustomForm
 28504 bytes (0%) EDialog.TBaseDialog
 25316 bytes (0%) Vcl.Controls.TControl
 21832 bytes (0%) Vcl.Forms.TApplication
 21352 bytes (0%) EException.TEurekaExceptionInfo
 18492 bytes (0%) System.Classes.TStream
 18304 bytes (0%) Vcl.Themes.TArray
 17880 bytes (0%) ECallStack.TEurekaBaseStackList
 17728 bytes (0%) Vcl.Themes.TUxThemeStyle
 17704 bytes (0%) System.Classes.TArray
 17232 bytes (0%) Vcl.Themes.{System.Generics.Collections}TList
 <Vcl.Themes.TPair<System.string,Vcl.Themes.TStyleManager.TSourceInfo>>
 17088 bytes (0%) System.Classes.TReader
 16992 bytes (0%) System.Classes.{System.Generics.Collections}TList
 <System.Classes.TPair<System.string,System.Classes.TPersistentClass>>
 16976 bytes (0%) Vcl.Themes.{System.Generics.Collections}TList
 <Vcl.Themes.TPair<System.string,Vcl.Themes.TSysStyleHookClass>>
 16936 bytes (0%) System.Rtti.{System.Generics.Collections}TList
 <System.Rtti.TPair<System.TypInfo.PTypeInfo,System.string>>
 16928 bytes (0%) System.Classes.{System.Generics.Collections}TList
 <System.Classes.TPair<System.Integer,System.Classes.IInterfaceList>>
 16656 bytes (0%) Vcl.Themes.{System.Generics.Collections}TList
 <Vcl.Themes.TChildControlInfo>

... // cut to save space

10.4 Application types

What is an "application type"?
"Application type" is just a template of settings and code. You can specify application type
for your project in EurekaLog's project options :

Application type selector in EurekaLog project options

234

Integral parts 364

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

When you select a project type - some settings of your project will be changed accordingly
to selected application's type. See list of types below for more information.

"Supported application type" means that EurekaLog has predefined template "out-of-
the-box".
"Unsupported application type" means that EurekaLog doesn't have a template for this
kind of application. You need setup it manually.
"Custom application type" means that template was defined by developer (you).

Supported types
EurekaLog supports the following types of applications "out-of-the-box":

VCL:
VCL GUI application - this is for projects with Forms unit.
FireMonkey application - this is for projects with FMX.Forms unit.
Control Panel application - this is for projects with CplApplet unit. There is a second
option for projects with both Forms and CplApplet units.
NT Service application - this is for projects with SvcMgr unit.
CGI application - this is for projects with CGIApp unit.
ISAPI application - this is for projects with ISAPIApp unit.
IntraWeb application - this is for projects with IntraWeb unit.

Console application - this is for console projects.
DLL - this is for DLL projects, which are used in EurekaLog-enabled application.
Standalone DLL - this is for the DLL projects, which are used in non-EurekaLog
enabled application.
Package - this is for package projects.
CLX application - this is for projects with QForms unit.

Unsupported types
For other types of applications you need to select options manually. Just select "Custom
settings / unsupported type" option and set the other necessary options. You also may
need to write some code. See unsupported applications for more information.

Custom types
You can set EurekaLog options and export them to external .eof file (see also: Working
with configurations). Custom configurations (i.e. saved in .eof files) will appear at the
end of "Project type" combo-box, provided it was saved into default location (i.e. you did
not change folder in "Export configuration" dialog):

365

366

366

367

367

367

368

368

368

369

370

366

370

227

439

EurekaLog 7 Documentation365

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

"Project type" option shows two custom .eof files

Note: The path for loading custom configurations is %AppData%\Neos Eureka S.r.l
\EurekaLog\Profiles\ (e.g. like C:\Users\UserName\AppData\Roaming\Neos Eureka S.r.l
\EurekaLog\Profiles\).

Selecting any of "custom" values from "Project type" option will load configuration from
corresponding .eof file into your project. All options in your project will be replaced with
values from .eof file. Using custom configurations allows you to quickly switch between
configurations in 2 mouse clicks.

See also:
Unsupported application types
Compiling your project with and without EurekaLog
Working with configurations

10.4.1 VCL Forms Application

VCL Forms Application profile includes the following options:

1. Add EurekaLog's code = True;
2. Add module's options = True;
3. Add debug information = True;
4. Delete .map file after compilation = True;
5. Include hooks for Forms.TApplication.HandleException;
6. Include DLL exports debug information provider;
7. Include JCL debug information provider;
8. Dialog = MS Classic;
9. Include EurekaLog + EurekaLog Detailed dialogs;
10. Send report visual feedback: on;

(bold lines are mandatory for profile; normal lines are optional - they are set by default, but
can be altered later)

370

445

439

Integral parts 366

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

This profile is for standalone EurekaLog-enabled VCL Forms applications. EurekaLog code
and data will be injected into target EXE file.

10.4.2 CLX Forms Application

CLX Forms Application profile includes the following options:

1. Add EurekaLog's code = True;
2. Add module's options = True;
3. Add debug information = True;
4. Delete .map file after compilation = True;
5. Include hooks for QForms.TApplication.HandleException;
6. Include DLL exports debug information provider;
7. Include JCL debug information provider;
8. Dialog = MS Classic;
9. Include EurekaLog + EurekaLog Detailed dialogs;
10. Send report visual feedback: on;

(bold lines are mandatory for profile; normal lines are optional - they are set by default, but
can be altered later)

This profile is for standalone EurekaLog-enabled CLX Forms applications. EurekaLog code
and data will be injected into target EXE file.

Note: this profile can only be used in Delphi 6-7 and C++ Builder 6.

10.4.3 FireMonkey application

FireMonkey Application profile includes the following options:

1. Add EurekaLog's code = True;
2. Add module's options = True;
3. Add debug information = True;
4. Delete .map file after compilation = True;
5. Include hooks for FMX.Forms.TApplication.HandleException;
6. Include DLL exports debug information provider;
7. Include JCL debug information provider;
8. Dialog = MS Classic;
9. Include EurekaLog + EurekaLog Detailed dialogs;
10. Send report visual feedback: on;

(bold lines are mandatory for profile; normal lines are optional - they are set by default, but
can be altered later)

This profile is for standalone EurekaLog-enabled FMX applications. EurekaLog code and
data will be injected into target EXE file.

Note: this profile can only be used in Delphi/C++ Builder XE2 or above.

10.4.4 VCL Control Panel Application

VCL Control Panel Application profile includes the following options:

1. Add EurekaLog's code = True;
2. Add module's options = True;
3. Add debug information = True;
4. Delete .map file after compilation = True;
5. Include hooks for CtlPanel.TAppletApplication.HandleException;
6. Include DLL exports debug information provider;
7. Include JCL debug information provider;
8. Dialog = MS Classic;
9. Include EurekaLog + EurekaLog Detailed dialogs;
10. Send report visual feedback: on;

VCL Control Panel Application with VCL forms additionally includes:

EurekaLog 7 Documentation367

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

11. Include hooks for Forms.TApplication.HandleException;

(bold lines are mandatory for profile; normal lines are optional - they are set by default, but
can be altered later)

This profile is for standalone EurekaLog-enabled VCL Control Panel applications. EurekaLog
code and data will be injected into target DLL file (.cpl).

Note: your project must be DLL, not exe.

10.4.5 VCL NT Service Application

VCL NT Service Application profile includes the following options:

1. Add EurekaLog's code = True;
2. Add module's options = True;
3. Add debug information = True;
4. Delete .map file after compilation = True;
5. Include hooks for SvcMgr.TApplication.HandleException;
6. Include DLL exports debug information provider;
7. Include JCL debug information provider;
8. Dialog = None;
9. Send report visual feedback: off;

(bold lines are mandatory for profile; normal lines are optional - they are set by default, but
can be altered later)

This profile is for standalone EurekaLog-enabled VCL Win32/Win64 Services. EurekaLog
code and data will be injected into target EXE file.

Note: it's recommended to use system logging dialog as explained in this article .

10.4.6 VCL CGI Application

VCL CGI Application profile includes the following options:

1. Add EurekaLog's code = True;
2. Add module's options = True;
3. Add debug information = True;
4. Delete .map file after compilation = True;
5. Include hooks for CGIApp.TApplication.HandleException;
6. Include hooks for HTTPApp.TCustomWebDispatcher.HandleException;
7. Include hooks for WebReq/WebBroker.TWebRequestHandler.HandleException;
8. Include DLL exports debug information provider;
9. Include JCL debug information provider;
10. Dialog = Web;
11. Send report visual feedback: off;

(bold lines are mandatory for profile; normal lines are optional - they are set by default, but
can be altered later)

This profile is for standalone EurekaLog-enabled VCL web CGI-based applications.
EurekaLog code and data will be injected into target EXE file.

10.4.7 VCL ISAPI Application

VCL ISAPI Application profile includes the following options:

1. Add EurekaLog's code = True;
2. Add module's options = True;
3. Add debug information = True;
4. Delete .map file after compilation = True;
5. Include hooks for ISAPIApp.TApplication.HandleException;
6. Include hooks for HTTPApp.TCustomWebDispatcher.HandleException;
7. Include hooks for WebReq/WebBroker.TWebRequestHandler.HandleException;

535

Integral parts 368

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

8. Include DLL exports debug information provider;
9. Include JCL debug information provider;
10. Dialog = Web;
11. Send report visual feedback: off;

(bold lines are mandatory for profile; normal lines are optional - they are set by default, but
can be altered later)

This profile is for standalone EurekaLog-enabled VCL web ISAPI-based applications.
EurekaLog code and data will be injected into target DLL file.

Note: your project must be DLL, not exe.

10.4.8 VCL IntraWeb Application

VCL IntraWeb Application profile includes the following options:

1. Add EurekaLog's code = True;
2. Add module's options = True;
3. Add debug information = True;
4. Delete .map file after compilation = True;
5. Include hooks for IWServerControllerBase.TIWServerControllerBase.DoException;
6. Include hooks for HTTPApp.TCustomWebDispatcher.HandleException;
7. Include DLL exports debug information provider;
8. Include JCL debug information provider;
9. Dialog = Web;
10. Send report visual feedback: off;

(bold lines are mandatory for profile; normal lines are optional - they are set by default, but
can be altered later)

This profile is for standalone EurekaLog-enabled VCL web IntraWeb applications. EurekaLog
code and data will be injected into target EXE/DLL file.

10.4.9 Console Application

Console Application profile includes the following options:

1. Add EurekaLog's code = True;
2. Add module's options = True;
3. Add debug information = True;
4. Delete .map file after compilation = True;
5. Include DLL exports debug information provider;
6. Include JCL debug information provider;
7. Dialog = Console;
8. Send report visual feedback: on;

(bold lines are mandatory for profile; normal lines are optional - they are set by default, but
can be altered later)

This profile is for standalone EurekaLog-enabled console applications. EurekaLog code and
data will be injected into target EXE file.

Note: your application must be console application.

10.4.10 DLL

DLL profile includes the following options:

1. Add EurekaLog's code = False;
2. Add module's options = True;
3. Add debug information = True;
4. Delete .map file after compilation = True;
5. Dialog = None;

(bold lines are mandatory for profile; normal lines are optional - they are set by default, but

EurekaLog 7 Documentation369

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

can be altered later)

This profile is for DLL which is supposed to be used in any EurekaLog-enabled application.
No EurekaLog code will be injected in this project. Only EurekaLog's data will be injected
into target DLL file.

You should install host callbacks into DLL, if you want to handle exceptions in DLLs with
creating EurekaLog bug reports - so DLL can call into host and ask it to create bug report.
EurekaLog offers EAppDLL unit for this task (see Delphi example in this article). Non-
Embarcadero DLLs should implement a similar service OR handle exceptions by themselves
(without EurekaLog's assist).

Note: your project must be DLL, not exe.

Important notes:
1. DLL profile is designed to exclude EurekaLog code from executable. This means that most
EurekaLog options will have no effect for a project with DLL profile. For example, dialog
settings will be ignored, since there is no dialog code in DLL compiled with this profile.
Dialog code will be in EurekaLog-enabled host. Thus, you should adjust options of the host.
However, some options will still affect DLL. For example, application type hooks (such as
VCL forms, etc.), memory manager , compilation options , and debug information
options .

2. Do not include EurekaLog units into project compiled with DLL profile. This is not
supported and may have unexpected results. In particular, do not link DLL project with
EurekaLogCore run-time package.

See also:
Standalone DLL profile
Using EurekaLog in DLLs
Single instance of exception tracer

10.4.11 DLL (standalone)

Standalone DLL profile includes the following options:

1. Add EurekaLog's code = True;
2. Add module's options = True;
3. Add debug information = True;
4. Delete .map file after compilation = True;
5. Include DLL exports debug information provider;
6. Include JCL debug information provider;
7. Dialog = None;
8. Send report visual feedback: off;

(bold lines are mandatory for profile; normal lines are optional - they are set by default, but
can be altered later)

This profile is for DLL which is supposed to be used in any non-EurekaLog-enabled
application. EurekaLog code and data will be injected into target DLL file.

It's generally a good idea not to let exceptions escape DLLs compiled with this profile.
Otherwise a caller (.exe file) may not know how to properly release resources associated
with exception from DLL.

Note: your project must be DLL, not exe.

See also:
DLL profile
Using EurekaLog in DLLs
Multiple instances of exception tracer

474

352

250 349

243

369

455

474

457

368

455

480

Integral parts 370

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

10.4.12 Package

Package profile includes the following options:

1. Add EurekaLog's code = False;
2. Add module's options = True;
3. Add debug information = True;
4. Delete .map file after compilation = True;
5. Dialog = None;

(bold lines are mandatory for profile; normal lines are optional - they are set by default, but
can be altered later)

This profile is for packages. No EurekaLog code will be injected in this project. Only
EurekaLog's data will be injected into target BPL file. EurekaLog's code should reside in .exe
file (recommended) or should be included as run-time package (EurekaLogCore.bpl).

Note: your project must be package (.bpl), not exe, not DLL.

10.4.13 Unsupported application types

"Unsupported" application type doesn't really mean that you can not use EurekaLog
with your application. It just means that EurekaLog doesn't have appropriate template for
your application and you'll need to write some code. Nothing scary.

Basically, you need to find some kind of "OnException" event and invoke EurekaLog to
handle current exception. For example, VCL and FMX applications have global Application
object with OnException event. A console application can use explicit try/except block
around code. A IntraWeb application has DoException event in ControllerBase. Many Indy
objects have their own OnException events. And so on. Just refer to framework
documentation to find the proper event for handling exceptions.

To perform exception handling (processing) - call
ExceptionManager.ShowLastExceptionData function (EExceptionManager unit).

10.5 Dialogs

You can select an appropriate dialog type for your application .

There are many dialogs available:

Dialog Where applicable Description
(none) Any application's type Dialog that does nothing

at all. It doesn't show
anything.

RTL Any application's type Standard application's
error dialog.

MessageBox Visual applications only Displays error message
via
Windows.MessageBox
function.

MS Classic Visual applications only Displays error message
in MS Windows XP-style
dialog.

EurekaLog Visual applications only Displays error message
in EurekaLog-style
dialog.

Console Console applications only Displays error by
outputting it to console
(error output).

System log reporting Any application's type Outputs error message
to system log (event
log).

WEB Web applications only Displays error in
returned HTML page.

363

52

371

371

373

377

379

382

384

386

http://docwiki.embarcadero.com/Libraries/en/Vcl.Forms.TApplication
http://docwiki.embarcadero.com/Libraries/en/Vcl.Forms.TApplication.OnException
http://docwiki.embarcadero.com/Libraries/en/Vcl.Forms.TApplication.OnException

EurekaLog 7 Documentation371

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Windows Error Reporting Any application's type Elevates error to OS.

You can know more about each dialog by clicking on each dialog in the table above.

No dialog can be selected when you don't need any error reporting. Usually, in this case
you save bug report to file or send bug report to developer . Without dialog these
actions will be performed automatically without need for user to act.

RTL dialog invokes default application's error dialog after executing EurekaLog's
processing (like saving bug report and sending it). It's a good choice to add
EurekaLog to your application without affecting any visual aspect.

MessageBox , MS Classic and EurekaLog dialogs can be used almost in any
application - though it may be not a very good idea to use them in services or web
applications (even though you may use it and sometimes it will even work). These dialog
types usually works good in GUI or console applications.

System log reporting is usually used in service or web applications. It records error
message to system event log.

Console and WEB dialogs are special - they are applicable only to corresponding
application's type. That's because other application types don't have a connected output for
these dialogs. Console dialog write error message to std_error output. WEB dialog sends a
HTML page with error to the client (when possible).

WER (Windows Error Reporting) is a special dialog, which invokes default OS processing
and shows system error dialog.

See also:
Configuring dialogs
Configuring dialog options

10.5.1 (none)

This is a "dialog" which means "do not show dialog at all".

It's usually used when you don't want to interact with user (like: non-interactive services or
web-applications). If you set this dialog for your application then it will not show error
dialog to the user, instead there will be a standard exception processing: like saving bug
report and/or sending report to developer .

This "dialog" will store an empty "steps to reproduce" text, uses default user e-mail and
perform report sending (as if the user has clicked on "Send" button) and sends screenshot,
if it was created (specified in send options).

Default user information is extracted via GetUserEMail, GetUserFullName and GetUserName
functions. You can set default user e-mail by calling SetUserEmail function.

It's not recommended to use this dialog type for sending reports in application which
interacts with user. That's because this dialog type sends report silently, without any
confirmation from user.

Constant: edtNone.

See also:
RTL dialog
Other dialogs

10.5.2 RTL

This is standard error dialog in your application. Exact visual appearance depends on your
application's type. For example:

389

371

46 53

371

46 53

373 377 379

384

382 386

389

52

267

46 53

304

371

370

Integral parts 372

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

VCL Forms application: exception is handled by Application.ShowException

Console application: exception is not handled. Application terminates with $0EEDFADE
error code.

It's usually used when you don't want to change existing visual experience at all, but want
to add EurekaLog's capabilities to your application. If you set this dialog for your application
then it will perform EurekaLog's tasks like saving bug report and/or sending report to
developer and then invoke default error processing as if EurekaLog isn't here.

Note: Unlike any other dialogs, this dialog invokes EurekaLog's tasks first and only then
invokes standard error dialog - that's because standard error processing may include
application's termination, so reverse order will not invoke EurekaLog at all. Take this into
account if you want to show messages about send status - they will be showed before
error message itself.

This dialog will store an empty "steps to reproduce" text, uses default user e-mail and
perform report sending (as if the user has clicked on "Send" button) and sends screenshot,
if it was created (specified in send options).

Default user information is extracted via GetUserEMail, GetUserFullName and GetUserName
functions. You can set default user e-mail by calling SetUserEmail function.

This dialog is not customizable. If you want a customized behaviour - you need to use one
of EurekaLog's dialogs instead.

Constant: edtRTL.

See also:
(none) dialog

46

53

304

370

371

EurekaLog 7 Documentation373

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

WER dialog
Other dialogs

10.5.3 Message box

This is a wrapper for Windows.MessageBox function. It is an efficient, simple and reliable
dialog type.

Note: error messages in dialogs are controlled by nested exceptions behaviour options .

This dialog type displays error message in a popup window: the default message box. For
example:

EurekaLog's MessageBox dialog in standard mode

Compare it with the default error message in VCL Forms application (see also: RTL dialog
):

Standard error message in VCL Forms application

You can enable "Detailed mode" to get a little more descriptive error message - by including
a compact call stack:

389

370

244

371

Integral parts 374

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

EurekaLog's MessageBox dialog in detailed mode

If you uncheck the "Use native message box" option - then the error message will always
be displayed via Windows.MessageBox function. If you check the "Use native message box"
option - then the error message will be displayed via EAppType.MessageBox function.

What does it mean? By default "native" style is the same Windows.MessageBox function.
However, some types of application (currently it's a console and web) overrides this to
custom routines. For example, "native" message box in console application - it's an output
to console. A "native" message box for IntraWeb application - it's a scripted dialog (via
WebApplication.ShowMessage).

Here is how it looks for console application:

"Use native message box" is unchecked

EurekaLog 7 Documentation375

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

"Use native message box" is checked

Both "Use native message box" and "Detailed mode" are checked

Message box type dialog is never ask user for e-mail or "steps to reproduce". The default
behaviour is to store empty "steps to reproduce", use default user e-mail and send
screenshot, if it was created (specified in send options). Default user information is
extracted via GetUserEMail, GetUserFullName and GetUserName functions. You can set
default user e-mail by calling SetUserEmail function.

If you setup report sending and enable "Ask user for send consent" option - then
message box will ask user for their consent before sending bug report to developer - by
showing question "Do you want to send report" and presenting "Yes" and "No" buttons.

If "Ask user for send consent" option is unchecked - then message box will looks like above.
If "Ask user for send consent" option is checked - message box will looks like this:

304

53

Integral parts 376

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Non detailed mode with asking for consent

Detailed mode with asking for consent

EurekaLog 7 Documentation377

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Non detailed console application with "native" message box and asking for consent

Default choice is selected by enabling/disabling "Default choice: send report" option. If this
option is checked - the default choice is "send the report". If this option is unchecked - then
the default choice is "do NOT send the report".

Note: what's the difference between console dialog type and message box dialog type
with "native" mode? The message box dialog tries to be as much similar to popup message
box window as possible. I.e. it displays the same information and it asks for confirmation -
pressing "Enter" in console is like clicking on "OK" button in the message box. On the other
hand, console dialog type doesn't try to be similar to anyone. It displays its own set of
information and it doesn't wait for user, until it needs user's answer.

Constants: edtMessageBox, edtMessageBoxDetailed.

See also:
MessageBox dialog options
Console dialog
MS Classic dialog
EurekaLog dialog
Other dialogs
Nested (chained) exceptions

10.5.4 Windows Classic

This is a dialog type which is similar to classical Windows Error Reporting error dialog in
Windows XP. This dialog is written with WinAPI (no VCL) and it's a preferred dialog in your
GUI applications.

Note: error messages in dialogs are controlled by nested exceptions behaviour options .

Dialog have wide range of options:

382

268

382

377

379

370

244

244

Integral parts 378

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Minimalistic view of MS Classic dialog type

MS Classic with all options checked

For comparison: here is both original Windows Error Dialog and EurekaLog dialog on
Windows XP with classic themes:

Original MS error dialog

EurekaLog 7 Documentation379

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

EurekaLog's MS Classic style dialog in maximum compatibility mode

This dialog type sends screenshot, if it was created (specified in send options).

Constant: edtMSClassic.

See also:
MS Classic dialog options
EurekaLog dialog
Other dialogs
Nested (chained) exceptions

10.5.5 EurekaLog

This is a dialog type which is visually similar to MessageBox , but have much more
customizable options. This dialog is written with WinAPI (no VCL) and it's a preferred dialog
in development environments, where you need much options.

The dialog also have so-called "detailed" form which displays bug report. See this article
for more information about bug reports.

It may be not a good idea to use it for end-user application, since this dialog is a bit too
technical, so it may be not very user-friendly for non-advanced users.

Note: error messages in dialogs are controlled by nested exceptions behaviour options .

Dialog have wide range of options:

Minimalistic view of EurekaLog dialog

304

271

379

370

244

373

72

244

Integral parts 380

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

EurekaLog dialog with all options checked

EurekaLog dialog with "EurekaLog style"

EurekaLog dialog in detailed mode with all options unchecked

EurekaLog 7 Documentation381

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

EurekaLog dialog in detailed mode with all options checked

Compare it with typical MessageBox dialog :

A typical MessageBox dialog

A typical EurekaLog dialog

And here is a comparison with MS Classic dialog :

373

377

Integral parts 382

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

MS Classic dialog type

EurekaLog dialog type

Constant: edtEurekaLog, edtEurekaLogDetailed.

See also:
EurekaLog dialog options
MS Classic dialog
MessageBox dialog
Other dialogs
Nested (chained) exceptions
Bug reports

10.5.6 Console

Console dialog is dialog which can only be used in console-based application. This dialog
outputs error message to STD_ERROR_HANDLE (by default it's the same as
STD_OUTPUT_HANDLE).

Note: error messages in dialogs are controlled by nested exceptions behaviour options .

279

377

373

370

244

72

244

EurekaLog 7 Documentation383

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Standard console dialog

Console dialog in detailed mode

Console dialog in "dump report" mode

Integral parts 384

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Console dialog in detailed mode and asking for send consent

Note: what's the difference between console dialog type and message box dialog type with
"native" mode ? The message box dialog tries to be as much similar to popup message
box window as possible. I.e. it displays the same information and it asks for confirmation -
pressing "Enter" in console is like clicking on "OK" button in the message box. On the other
hand, console dialog type doesn't try to be similar to anyone. It displays its own set of
information and it doesn't wait for user, until it needs user's answer.

"Dump report" mode shows the entire bug report. See this article for more information
about bug reports.

Constants: edtConsole, edtConsoleDetailed, edtConsoleDump.

See also:
Console dialog options
MessageBox dialog
Other dialogs
Nested (chained) exceptions
Bug reports

10.5.7 System log

System log dialog behaves like no dialog , except it additionally records exception to
system event log . This dialog type is usually used in service-like applications (like Win32
services, web-applications and so on).

This dialog type has no visual appearance in your application. Here is standard system
event viewer with one record from system log dialog:

373

72

292

373

370

244

72

371

535

EurekaLog 7 Documentation385

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

System event log with new event about exception in EurekaLog-enabled application

You can't just switch your application to this dialog - it requires additional setup steps :
your application must register itself in the system event log in order for this to work
properly. If you fail to perform a proper registering - then event log will be displayed
incorrectly for your application, for example:

535

537

Integral parts 386

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

The same event in system log, but without proper application's registration

Please, refer to system logging setup article to know more about your application's
registration.
Please, refer to system log dialog options article to know more about configuring the
dialog itself.

Constant: edtService.

See also:
System logging setup
System log dialog options
(none) dialog
Other dialogs

10.5.8 WEB

WEB dialog is a special dialog which behaves like no dialog , except it also sends HTML
page with error message back to client in web applications. Web application include CGI
applications (both console and WinCGI), ISAPI applications, IntraWeb applications or any
other HTTPApp-based application.

Warning: if there will be error during stage other than processing client's request (like:
application's initialization or shutdown) - there will be no HTML page, since there is no client
connected. So be sure that you've enabled and setup bug report saving . Be sure that
bug report folder is writable under user account, which is used to run your application.

535

543

535

295

371

370

371

46

EurekaLog 7 Documentation387

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Note: error messages in dialogs are controlled by nested exceptions behaviour options .

This dialog type has no visual appearance in your application. Here is a browser with error
message from your web-application:

244

Integral parts 388

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Google Chrome shows error page about exception which occurred during HTTP-request

The example error message above uses the following HTML page template:

<html>

 <head>

 <%content_type%>

 <title>EurekaLog 7 Documentation</title>

 </head>

 <body>

 <h1>Internal Application Error</h1>

 <p><%EXCEPTION_MESSAGE%></p>

 <p><hr width="100%"></p>

 <p>The exception details were saved to log file. Contact site administrator.</p>

 <p><hr width="100%"></p>

 <p>Additional information is below.</p>

 <p>Class: <%exception_class%>

 Message: <%exception_message%>

 Location: <%exception_location%>

 Call stack: <%call_stack%>

 Bug report: <%file_name%></p>

 <p><hr width="100%"></p>

 <p><%bug_report%></p>

 </body>

</html>

The HTML source of the result looks like this:

<html>

 <head>

 <meta http-equiv="content-type" content="TEXT/HTML;charset=UTF-8" />

 <title>Error occurred</title>

 </head>

 <body>

 <h1>Internal Application Error</h1>

 <p>Access violation at address 0216942E in module 'ISAPI.dll'. Write of address 00000000</p>

 <p><hr width="100%"></p>

 <p>The exception details were saved to log file. Contact site administrator.</p>

 <p><hr width="100%"></p>

 <p>Additional information is below.</p>

 <p>Class: EAccessViolation

 Message: Access violation at address 0216942E in module 'ISAPI.dll'. Write of address 00000000

 Location: (000D842E){ISAPI.dll } [0216942E] MainISAPI.Error (Line 41, "MainISAPI.pas") + $2

 Call stack: <pre>

 - ISAPI.dll.MainISAPI.Error,41[4]
 ...
 - ISAPI.dll.ISAPIApp.HttpExtensionProc
</pre>

 Bug report: C:\inetpub\wwwroot\cgi-bin\ISAPI.el</p>

 <p><hr width="100%"></p>

 <p><pre>EurekaLog 7.0.0.63 alpha 1 RC

...
0157ECF0: 0157ED0C 0216951E: 95 16 02 E8 92 43 F5 FF 8B 45 E8 B9 4C 00 00 00 C...E..L...
</pre></p>

 </body>

</html>

<!-- EurekaLog page ID: CC2F96D8 -->

EurekaLog 7 Documentation389

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

<!-- EurekaLog Bug ID: 7D390000 -->

Note: it may be a good idea to hide information about occurred problem in application's
release version, showing only generic message "The exception details were saved
to log file. Contact site administrator" and logging bug report to file. Showing

too much error details may compromise your security.

Constant: edtWeb.

See also:
WEB dialog setup
(none) dialog
Other dialogs
Nested (chained) exceptions

10.5.9 WER

WER (Windows Error Reporting) dialog is a standard system error dialog. This dialog is
preferred dialog in your application, if you can afford it (see using WER for more info).
Otherwise you can use the MS Classic dialog instead.

Visual appearance and behaviour of this dialog depends on host OS and host OS's settings.
It doesn't depend on your application, though you have some options to change (see
customization).

Windows Error Reporting on Windows 7

296

371

370

244

573

377

300

Integral parts 390

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Windows Error Reporting on Windows XP

This dialog invokes system error processing. It works on any supported OS , but it's
highly dependent on host OS's capabilities.

Notes:
1. This dialog sends bug report to Microsoft's server using the standard procedure. Any

sending method that you setup in EurekaLog's options will be ignored. However, you still
can send your custom files (this feature may be not supported on all OSs).

2. The capabilities of this dialog depends on host OS. Not all options are available for all
OSs. Please, refer to MSDN articles.

3. Usually it's not a good idea to use this kind of dialog for reporting leaks.
4. Your application will be terminated after this dialog, so be sure to setup some restart and

recovery options.

Constant: edtWER.

See also:
WER dialog options
Using WER
RTL dialog
MS Classic dialog
Other dialogs
MSDN: Windows Error Reporting

10.6 Send engines

You can setup sending report to developer (you) via one or several available methods .

There are many send methods available:

Send
metho

d

Type Based on Description

Shell e-
mail

SMTP Send e-mail via ShellExecute function (mailto: protocol).

Simple
MAPI

e-
mail

SMTP Send e-mail via Simple MAPI protocol.

MAPI e-
mail

SMTP Send e-mail via MAPI protocol.

SMTP
client

e-
mail

SMTP Send e-mail via SMTP client (similar to usual e-mail client
software).

10

300

573

371

377

370

53

391

393

396

397

http://msdn.microsoft.com/en-us/library/bb513641(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb513641(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb513641(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb513641(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb513641(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb513641(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb762153(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa767737(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa767737(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd296734(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd296734(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd296734(VS.85).aspx
http://msdn.microsoft.com/en-us/library/cc765775.aspx
http://msdn.microsoft.com/en-us/library/cc765775.aspx

EurekaLog 7 Documentation391

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

SMTP
server

e-
mail

SMTP Send e-mail via fake SMTP server.

HTTP
uploa
d

WEB HTTP + any
scripting lang,
CGI or ISAPI

Send bug report file via script on HTTP server.

FTP
uploa
d

WEB FTP Direct bug report file's upload on FTP server.

FogBu
gz

Bug
track
er

HTTP + ASP.NET
(Win)/PHP (*nix)
+ XML

Send bug report to FogBugz bug tracker.

Mantis Bug
track
er

HTTP + PHP +
SOAP

Send bug report to Mantis bug tracker.

BugZill
a

Bug
track
er

HTTP + Perl +
XML-RPC

Send bug report to BugZilla bug tracker.

JIRA Bug
track
er

HTTP + JAVA +
JSON

Send bug report to JIRA bug tracker.

You can know more about each send method by clicking on each method in the table above.

See also:
Selecting best send method
Comparison of issue-tracking systems
Security Considerations
Configuring sending
Configuring send options
Using unsupported bug tracker software

10.6.1 Shell

This method sends bug report via ShellExecute(...,
'mailto:example@example.com?subject=error&body=report', ...).

The mailto URI scheme, as registered with the Internet Assigned Numbers Authority (IANA),
defines the scheme for Simple Mail Transfer Protocol (SMTP) email addresses. Though its
use is not strictly defined, URLs of this form are intended to be used to open the new
message window of the user's email client when the URL is activated, with the address as
defined by the URL in the "To:" field.

The software mechanism activated by the link requires that a default email client be
established on the computer. This must be a local program, typically using the SMTP
protocol to send outbound mail. With the rise in use of webmail-based email, many
computers lack local email client software. Alternatively, email client software may have
been preinstalled by the computer vendor, but never used or configured.

This is the same protocol, which is used to send mails from web site in browser. For
example:

398

398

404

404

406

407

408

55

158

53

302

153

http://www.fogcreek.com/fogbugz/
http://www.fogcreek.com/fogbugz/
http://www.fogcreek.com/fogbugz/
http://www.mantisbt.org/
http://www.mantisbt.org/
http://www.mantisbt.org/
http://www.bugzilla.org/
http://www.bugzilla.org/
http://www.bugzilla.org/
http://www.atlassian.com/software/jira/
http://www.atlassian.com/software/jira/
http://www.atlassian.com/software/jira/
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://msdn.microsoft.com/en-us/library/aa767737(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa767737(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa767737(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa767737(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa767737(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa767737(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa767737(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa767737(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa767737(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa767737(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa767737(VS.85).aspx

Integral parts 392

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

mailto link in web-browser

HTML source code for example above

Examples of e-mail clients with mailto protocol support: Windows Mail, Outlook Express,
Outlook, Mozilla Thunderbird, The Bat!. Well, most e-mail clients support it.

Advantages:
Available (almost) always, since it's very easy to implement and it's included in basic
operation system configuration.
Have very high chances to succeed, since it uses client's configuration to send e-mail and
client most likely have e-mail client installed and configured (and if not - client still can
save bug report to file and send it via other way).
User uses his real e-mail address, so you can always contact him for more info.
Most common e-mail programs support mailto protocol.
Good for basic support for unsupported web-trackers (see also).

Drawbacks:
Depends on client's environment. You can't control it.
No backward feedback - you can't tell customer that this problem is already solved.
No bug report management.
UI interaction: requires user to click on "Send" in their e-mail clients. Automatic send
without user actions is not possible.
Can be canceled.
Not customizable at all.
Limitation on message size (command-line size limitation).
Unable to send any files - message text only.
Unicode is rarely supported.
Poor (non-strict) implementation of protocol may result in encoding problems.
Always "succeed", no way to get real send result.
Launched in separate window (application).
SSL/TLS support may be not present.

Warning: Use this method as last sending method only. Do not insert it in the middle of
send methods sequence.

E-mail client is registered under HKEY_CLASSES_ROOT\mailto registry key
(HKEY_CURRENT_USER\SOFTWARE\Classes\mailto or HKEY_LOCAL_MACHINE\SOFTWARE\Classes

153

http://msdn.microsoft.com/en-us/library/cc144109(VS.85).aspx
http://msdn.microsoft.com/en-us/library/cc144109(VS.85).aspx
http://msdn.microsoft.com/en-us/library/cc144109(VS.85).aspx
http://msdn.microsoft.com/en-us/library/cc144109(VS.85).aspx
http://msdn.microsoft.com/en-us/library/cc144109(VS.85).aspx
http://msdn.microsoft.com/en-us/library/cc144109(VS.85).aspx
http://msdn.microsoft.com/en-us/library/cc144109(VS.85).aspx
http://msdn.microsoft.com/en-us/library/cc144109(VS.85).aspx

EurekaLog 7 Documentation393

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

\mailto):

Outlook 2010 is registered as the handler for mailto protocol

Registration as the default Start menu email application is not equivalent to registration as
the system default email client or the registered mailto handler:

The system default email client is started when the user clicks "Read e-mail" from the
Internet Explorer Tools menu.
The registered mailto handler is started when the user clicks a URL of the form
mailto:someone@example.com.
The Start menu email application is started when the user clicks the e-mail icon on the
Start menu.
If no default Start menu email application is specified, the e-mail icon on the Start menu
launches the system default email client.

You can test it manually by typing "mailto:example@example.com?
subject=test&body=test" (without quotes) in Start/Run dialog box:

Start / Run dialog with "mailto:" URL

Constant: esmShellClient.

See also:
Shell method options
Other send methods
Selecting send method
Security Considerations

10.6.2 Simple MAPI

Simple MAPI is a subset of 12 functions (compared to MAPI), which enable developers to
add basic messaging functionality to their Windows-based applications. Simple MAPI

309

390

55

158

396

http://msdn.microsoft.com/en-us/library/dd203067(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd203067(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd203067(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd203067(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd203067(VS.85).aspx

Integral parts 394

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

includes functions to support sending and receiving messages:
Log onto the messaging system.
Compose new messages, add and resolve recipients, send messages.
Retrieve and read messages from the inbox.

The Simple MAPI functions can be called from any application that supports both making API
calls as well as the structures and data-types used by Simple MAPI, such as Delphi, C, C++,
Visual Basic, and Visual Basic for Applications (VBA).

For more information specific to Simple MAPI see the following KnowledgeBase articles:
105964 PC MAPI: Simple MAPI Common Technical Questions and Answer (FAQ)
239576 INFO: Developer Support Limitations with Outlook Express

Examples of e-mail clients with Simple MAPI protocol support: Windows Mail, Outlook
Express, Outlook (no longer supported since Outlook 2007), Mozilla Thunderbird, The Bat!

Advantages:
It's simple protocol, which is relatively easy to implement (supported by most e-mail
clients).
Most common e-mail programs support Simple MAPI protocol.
Have good chances to succeed, since it uses client's configuration to send e-mail and
client most likely have e-mail client installed and configured (and if not - client still can
save bug report to file and send it via other way).
User uses his real e-mail address, so you can always contact him for more info.
Launched as modal window in your application.
Good for basic support for unsupported web-trackers (see also).
No problems with 32<->64 interoperability.

Drawbacks:
Depends on client's environment. You can't control it.
No backward feedback - you can't tell customer that this problem is already solved.
No bug report management.
Obsolete protocol, which may be unavailable in the next versions of operating system
(modern versions of Outlook do not support it).
UI interaction: requires user to click on "Send" in their e-mail clients. Automatic send
without user actions is not possible.
Even if user has e-mail client installed and configured - this e-mail client software still may
not implement Simple MAPI protocol.
Little customization possibilities.
No unicode support.
Can be canceled.
May be confusing for user (*).
SSL/TLS support may be not present.

E-mail client register itself with Simple MAPI protocol by creating a sub-key in
HKEY_LOCAL_MACHINE\Software\Clients\Mail\ registry key and setting default value for
HKEY_LOCAL_MACHINE\Software\Clients\Mail\ to your sub-key name (use
HKEY_CURRENT_USER for local user only). For example:

153

396

http://support.microsoft.com/kb/105964
http://support.microsoft.com/kb/239576
http://msdn.microsoft.com/en-us/library/office/dd941355.aspx
http://msdn.microsoft.com/en-us/library/office/dd941355.aspx
http://msdn.microsoft.com/en-us/library/office/dd941355.aspx
http://msdn.microsoft.com/en-us/library/office/dd941355.aspx
http://msdn.microsoft.com/en-us/library/office/dd941355.aspx
http://msdn.microsoft.com/en-us/library/ee873200(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ee873200(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ee873200(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ee873200(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ee873200(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ee873200(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ee873200(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ee873200(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ee873200(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ee873200(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ee873200(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ee873200(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ee873200(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ee873200(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ee873200(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ee873200(VS.85).aspx

EurekaLog 7 Documentation395

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Windows Live Mail is registered as simple MAPI client

DLLPath value specifies DLL for simple MAPI, DLLPathEx value specifies DLL for (extended)
MAPI.

Simple MAPI client loads MAPI32.dll library from System folder. This is a MAPI stub, which
reads the above mentioned registry settings, loads proper simple MAPI DLL and redirects all
calls to it.

You can test it manually by using Simple MAPI console test application from Microsoft:

Interface of Simple MAPI test tool

http://msdn.microsoft.com/en-us/library/ee909493(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ee909493(VS.85).aspx
http://support.microsoft.com/kb/171096
http://support.microsoft.com/kb/171096
http://support.microsoft.com/kb/171096
http://support.microsoft.com/kb/171096
http://support.microsoft.com/kb/171096
http://support.microsoft.com/kb/171096
http://support.microsoft.com/kb/171096

Integral parts 396

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Remarks:
(*) That's because, if you have two e-mail client installed (say, Windows Mail and Outlook) -
both will definitely support mailto protocol, but only one can support simple MAPI, so you
may launch non-default e-mail client (which is not configured). For example, if you have
Outlook 2010 as your default e-mail client and you use simple MAPI - it will launch Windows
Mail client, because Outlook 2010 doesn't support simple MAPI.

Constant: esmSimpleMAPI.

See also:
Simple MAPI method options
(Extended) MAPI send method
Differences between Simple MAPI and Extended MAPI
Other send methods
Selecting send method
Security Considerations
Building MAPI Applications on 32-Bit and 64-Bit Platforms

10.6.3 MAPI

MAPI (also known as Extended MAPI or MAPI 1.0) - The Messaging Application Program
Interface - is a messaging architecture and a Component Object Model based API for
Microsoft Windows. MAPI allows client programs to become (e-mail) messaging-enabled, -
aware, or -based by calling MAPI subsystem routines that interface with certain messaging
servers. While MAPI is designed to be independent of the protocol, it is usually used with
MAPI/RPC, the proprietary protocol that Microsoft Outlook uses to communicate with
Microsoft Exchange.

Simple MAPI is a subset of 12 functions which enable developers to add basic messaging
functionality. Extended MAPI allows complete control over the messaging system on the
client computer, creation and management of messages, management of the client mailbox,
service providers, and so forth. Simple MAPI ships with Microsoft Windows as part of
Outlook Express/Windows Mail while the full Extended MAPI ships with Office Outlook and
Exchange.

In addition to the Extended MAPI client interface, programming calls can be made indirectly
through the Simple MAPI API client interface, through the Common Messaging Calls (CMC)
API client interface, or by the object-based CDO Library interface. These three methods are
easier to use and designed for less complex messaging-enabled and -aware applications.
(Simple MAPI and CMC were removed from Exchange 2003.)

MAPI includes facilities to access message transports, message stores, and directories.

Examples of e-mail clients with MAPI protocol support: Outlook, Exchange.

Advantages:
Have good chances to succeed, if e-mail client supports this protocol - since it uses client's
configuration to send e-mail.
User uses his real e-mail address, so you can always contact him for more info.
Can deliver reports automatically. No UI.
Good for basic support for unsupported web-trackers (see also).

Drawbacks:
Depends on client's environment. You can't control it.
No backward feedback - you can't tell customer that this problem is already solved.
No bug report management.
This is complex protocol. Many things can go wrong.
There can be problems with x32 <-> x64 interoperability, since 3rd party DLL must be
loaded in your process.
This protocol is implemented very rarely (MAPI is used only by Outlook and Exchange).
Can be canceled.
May be confusing for user (*).

314

396

390

55

158

393

153

397

http://support.microsoft.com/kb/200018
http://support.microsoft.com/kb/200018
http://support.microsoft.com/kb/200018
http://support.microsoft.com/kb/200018
http://support.microsoft.com/kb/200018
http://support.microsoft.com/kb/200018
http://support.microsoft.com/kb/200018
http://msdn.microsoft.com/en-us/library/office/dd941355.aspx
http://msdn.microsoft.com/en-us/library/office/dd941355.aspx
http://msdn.microsoft.com/en-us/library/office/dd941355.aspx
http://msdn.microsoft.com/en-us/library/office/dd941355.aspx
http://msdn.microsoft.com/en-us/library/office/dd941355.aspx
http://msdn.microsoft.com/en-us/library/office/dd941355.aspx
http://msdn.microsoft.com/en-us/library/office/dd941355.aspx
http://msdn.microsoft.com/en-us/library/office/dd941355.aspx
http://msdn.microsoft.com/en-us/library/dd941355.aspx
http://msdn.microsoft.com/en-us/library/dd941355.aspx
http://msdn.microsoft.com/en-us/library/dd941355.aspx
http://msdn.microsoft.com/en-us/library/dd941355.aspx
http://msdn.microsoft.com/en-us/library/dd941355.aspx
http://msdn.microsoft.com/en-us/library/dd941355.aspx
http://msdn.microsoft.com/en-us/library/dd941355.aspx
http://msdn.microsoft.com/en-us/library/dd941355.aspx
http://msdn.microsoft.com/en-us/library/dd941355.aspx

EurekaLog 7 Documentation397

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

SSL/TLS support may be not present.

MAPI client loads MAPI32.dll library from System folder. This is a MAPI stub, which reads the
registry settings, loads proper MAPI DLL and redirects all calls to it.

You can test MAPI by using OutlookSpy and MFCMapi tools.

Remarks:
(*) That's because, if you have two e-mail client installed (say, Windows Mail and Outlook) -
both will definitely support mailto protocol, but only one can support MAPI, so you may
launch non-default e-mail client (which is not configured). For example, if you have Windows
Mail as your default e-mail client and you use MAPI - it will launch Outlook 2010 client,
because Windows Mail doesn't support MAPI.

Constant: esmMAPI.

See also:
MAPI method options
Simple MAPI send method
Differences between Simple MAPI and Extended MAPI
Other send methods
Selecting send method
Security Considerations
Building MAPI Applications on 32-Bit and 64-Bit Platforms

10.6.4 SMTP client

SMTP client method is just a usual e-mail client software inside your application - the only
differences is that it's "send only" (no receive) and very simple. As any other real e-mail
client (like Outlook, The Bat!, etc) it requires a real account (e-mail and password).

Advantages:
No additional client software or configuration necessary.
Emulates real e-mail software client. Most reliable e-mail delivery method.
Can deliver reports automatically. No UI.
SSL/TLS support.
Good for basic support for unsupported web-trackers (see also).

Drawbacks:
No backward feedback - you can't tell customer that this problem is already solved.
No bug report management.
Can be blocked by firewall or client's ISP, since you don't use settings of user's e-mail
application (some ISPs require to use their SMTP relay servers to send e-mails outside).
"FROM" field is (almost) always your account.
User e-mail is optional.
You must store your account details (login/password) in your application. Real e-mail
account is required, since it's actually a real e-mail client inside application.

Warning: your real account's data will be stored inside application. Even if it's encrypted -
it's still stored inside .exe, so it can be stolen. DO NOT use your personal e-mail for this.
Create a new special account for bug reporting via this method (and be sure to protect it
against e-mail/password change or hi-jacking).

Currently EurekaLog supports AUTH LOGIN and AUTH PLAIN authentication methods.

Typically, you should use either SMTP server or SMTP client, but not both methods
simultaneously.

Constant: esmSMTPClient.

See also:

315

393

390

55

158

153

398

http://msdn.microsoft.com/en-us/library/ee909493(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ee909493(VS.85).aspx
http://www.dimastr.com/outspy/
http://mfcmapi.codeplex.com/
http://support.microsoft.com/kb/200018
http://support.microsoft.com/kb/200018
http://support.microsoft.com/kb/200018
http://support.microsoft.com/kb/200018
http://support.microsoft.com/kb/200018
http://support.microsoft.com/kb/200018
http://support.microsoft.com/kb/200018
http://msdn.microsoft.com/en-us/library/office/dd941355.aspx
http://msdn.microsoft.com/en-us/library/office/dd941355.aspx
http://msdn.microsoft.com/en-us/library/office/dd941355.aspx
http://msdn.microsoft.com/en-us/library/office/dd941355.aspx
http://msdn.microsoft.com/en-us/library/office/dd941355.aspx
http://msdn.microsoft.com/en-us/library/office/dd941355.aspx
http://msdn.microsoft.com/en-us/library/office/dd941355.aspx
http://msdn.microsoft.com/en-us/library/office/dd941355.aspx

Integral parts 398

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

SMTP client method options
SMTP server send method
Other send methods
Selecting send method
Security Considerations
Differences between SSL and TLS modes

10.6.5 SMTP server

SMTP server method creates a temporary e-mail server (like real e-mail server of AOL Mail,
GMail, HotMail, Yahoo Mail, etc), except it exists only during sending bug report (i.e. it's fake
e-mail server). Since SMTP server stores user accounts in itself (no need to pass any
account's data to 3rd party service) - you don't need to create any real e-mail accounts:
fake SMTP server can use fake e-mail account.

Once created, fake SMTP server will connect to other (real) SMTP server, which serves
target (recipient) account, saying: "Hi, I'm e-mail server and my account (it's fake, but you
don't know this) just sent a new email for one of your account, here it is". After
transmission, the fake SMTP server will be destroyed, and real SMTP server will notify
recipient about new incoming e-mail.

Note: since SMTP server is fake, it has high chances to be recognized as spam (and, thus,
being rejected), so be sure to setup bypass filters in your e-mail account, so e-mail server
will not use spam filtering on such e-mails. Also, be sure to setup some other backup send
method.

Advantages:
No additional client software or configuration necessary.
No need to store your account details (compared to SMTP client), since server is fake.
Can deliver reports automatically. No UI.
Can fabricate "FROM" field, so it'll match user's e-mail.
Good for basic support for unsupported web-trackers (see also).

Drawbacks:
No backward feedback - you can't tell customer that this problem is already solved.
No bug report management.
Can be blocked by firewall or client's ISP. This has the highest chances among all e-mail
based methods (some ISPs require to use their SMTP relay servers to send e-mails
outside).
Real e-mail servers may don't like such fake stray e-mail servers.

Typically, you should use either SMTP server or SMTP client , but not both methods
simultaneously.

Constant: esmSMTPServer.

See also:
SMTP server method options
SMTP client send method
Other send methods
Selecting send method
Security Considerations
Differences between SSL and TLS modes

10.6.6 HTTP upload

HTTP send method uploads bug report via HTTP protocol to web server. It uses HTTP POST
method. I.e. it's very similar to filling a form on web page and clicking on "Submit" button. In
order to work, this method requires special script on web server side, which will
receive bug reports.

316

398

390

55

158

588

397

153

397

319

397

390

55

158

588

EurekaLog 7 Documentation399

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

During HTTP send, EurekaLog sends bug report and additional files (if specified) as standard
upload. For example, you can use the following PHP script, which uses standard $_FILES
array to process uploaded files:

<?php

 foreach($_FILES as $key=>$value)

 {
 $uploaded_file = $_FILES[$key]['tmp_name'];
 // Writable folder:

 $server_dir = 'C:\\upload\\'; // example for Windows

// $server_dir = 'upload/'; // example for *nix

 $server_file = $server_dir.basename($_FILES[$key]['name']);

 // Move the uploaded file to the Server uploaded directory...

 if (move_uploaded_file($uploaded_file, $server_file))

 {
 // Here is your code...

 // You can process uploaded files here, if you want/need to

 }
 }

?>

You can place this code to .php file (like upload.php) and place this file to your web server
(like http://example.com/upload.php), and then specify this URL in HTTP send options
(without "http://").

Warning: be sure to setup adequate maximum upload file limits in your web-server/script
configuration. Otherwise sending may fail on large bug reports.

You can also provide additional data via OnCustomWebFieldsRequest event handler. For
example, assign such event hanlder:

uses
 EEvents;

procedure AddApplicationName(const ACustom: Pointer; ASender: TObject { TELWebSender }; AWebFields: TStrings; var ACallNextHandler: Boolean);
begin
 AWebFields.Values['Application'] := AnsiLowerCase(ExtractFileName(ParamStr(0)));
end;

initialization
 RegisterEventCustomWebFieldsRequest(nil, AddApplicationName);
end.

Then, you can access your new "Application" field from your script. For PHP it will be
$_REQUEST["Application"] or $_POST["Application"].

You don't have to use PHP. You can use script on any other scripting language (like
ASP.NET). The above code is just simple example. The point is that such upload is standard
file upload, there is no default functionality to handle it, so you need to write some code to
handle it. How you do that, what amount of work you'll do - it's up to you.

See also examples below for more advanced script usage.

Advantages:
Simple setup.
Highly customizable.

320

http://example.com/upload.php

Integral parts 400

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Little chances to be blocked by firewall (almost everybody have internet access, which
means HTTP access).
Can deliver backward feedback (via custom scripts).
SSL/TLS support.

Drawbacks:
No bug report management (by default).
User e-mail address is optional.
A lot of custom work to get anything above basic upload functionality.
Requires hosting or HTTP server.

Currently EurekaLog supports only HTTP Basic-AUTH (basic access authentication)
authentication method.

You can test any of your scripts by using HTML page on your web server (say, test.htm file):

<html>

 <body>

 <form enctype="multipart/form-data" action="upload.php" method="POST">

 <input type="hidden" name="MAX_FILE_SIZE" value="30000" />

 Send this file: <input name="userfile" type="file" />

 <input type="submit" value="Send File" />

 </form>

 </body>

</html>

(of course, you must replace "upload.php" with your data; you don't have to place this page
on web server, you can run it locally - in this case action parameter will be like this:
action="http://example.com/upload.php")

You can also add some debugging output to your scripts. For example (this is modified
example of the PHP script above):

<?php

 foreach($_FILES as $key=>$value)

 {
 $uploaded_file = $_FILES[$key]['tmp_name'];
 $server_dir = 'c:\\writable\\';
 $server_file = $server_dir . basename($_FILES[$key]['name']);

 echo $uploaded_file;

 echo $server_file;

 if (move_uploaded_file($uploaded_file, $server_file))

 {
 echo 'Ok';

 }
 else

 {
 echo 'Fails';

 }

 }

?>

Just don't forget to remove debug code before real using!

EurekaLog 7 Documentation401

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

It's also possible to get a feedback from upload script . Script can set custom message to
show and upload status (like "OK", "error" and "bug fixed"). It's done by generating a HTML
output with special tags. Currently, EurekaLog supports only 2 tags out-of-the-box:
EurekaLogStatus and EurekaLogReply. To use these tag, you must generate a HTML in
your script like this:

<?php

 foreach($_FILES as $key=>$value)

 {
 $uploaded_file = $_FILES[$key]['tmp_name'];
 $server_dir = 'c:\\writable\\';
 $server_file = $server_dir . basename($_FILES[$key]['name']);

 move_uploaded_file($uploaded_file, $server_file);

 }

 echo '<html>';

 echo '<head>';

 echo '<META HTTP-EQUIV="CONTENT-TYPE" CONTENT="TEXT/HTML; CHARSET=UTF-8">';

 echo '<title>Bug submission</title>';

 echo '</head>';

 echo '<body>';

 echo 'Thank you!
';

 echo '</body>';

 echo '</html>';

?>

And you can add these two tags in any place inside this HTML. You can enclose these tags
in comments to prevent them from appearing in HTML itself, for example:

<?php

 foreach($_FILES as $key=>$value)

 {
 $uploaded_file = $_FILES[$key]['tmp_name'];
 $server_dir = 'c:\\writable\\';
 $server_file = $server_dir . basename($_FILES[$key]['name']);

 move_uploaded_file($uploaded_file, $server_file);

 }
?>

<html>

 <head>

 <META HTTP-EQUIV="CONTENT-TYPE" CONTENT="TEXT/HTML; CHARSET=UTF-8">

 <title>Bug submission</title>

 </head>

<body>

<!--

Place here any EurekaLog-specific tags

<EurekaLogReply>Thank you for your feedback!</EurekaLogReply>

-->

155

Integral parts 402

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Thank you!

</body>

</html>

<?php

?>

EurekaLogStatus tag must contain an integer value, which represents operation status
(TSendResult type). Most typically used values are srSent, srBugClosed, srInvalidInsert
and srUnknownError. srSent and srBugClosed are considered as success status. All other
codes are considered as failure. If this tag isn't used, the srSent is the default.

Note: it's important to use numeric value (like, '0', '1', '$1'), not name itself (like 'srSent').

You can use this tag to alter status of sending, but usually you omit this tag.

EurekaLogReply tag contains arbitrary string, which will be used as custom message,
describing the operation. If this tag isn't used, the message will be empty. If status of the
operation is the success (srSent or srBugClosed), then this message will appear in
SuccessMessage field of TResponse record. If status is failure - message will appear in
ErrorMessage field.

Alternatively, you can insert a http:// or https:// link into message. In this case EurekaLog
will open a web-browser for this link without showing any other message. Showing HTML
page can be used to present "pretty" message, detailed instructions or other advanced
messages. For example, if "bug" is not a bug in your software, but problem in run-time
configuration, you can insert the URL to your knowledge base article, which describes
solution. Another example - you can't solve bug with existing bug report's information. Thus,
you close bug and use an URL to web-page, where you ask user to submit more
information.

For example:

<?php

// place any initialization code here

?>

<html>

 <head>

 <META HTTP-EQUIV="CONTENT-TYPE" CONTENT="TEXT/HTML; CHARSET=UTF-8">

 <title>Bug submission</title>

 </head>

<body>

Thank you!

<!--

<?php

 $fail = TRUE;

 $newbug = TRUE;

 foreach($_FILES as $key=>$value)

 {
 $uploaded_file = $_FILES[$key]['tmp_name'];
 $server_dir = 'c:\\writable\\';
 $server_file = $server_dir . basename($_FILES[$key]['name']);

EurekaLog 7 Documentation403

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 echo 'Submitted: ' . basename($_FILES[$key]['name']) . '
';

 if (!move_uploaded_file($uploaded_file, $server_file))

 break;

 else

 $fail = FALSE;

 }

 if ($fail)

 {
 echo '<EurekaLogStatus>$8000FFFF</EurekaLogStatus>';

 echo '<EurekaLogReply>Sorry, something goes wrong! Please, report this to admin@example.com</EurekaLogReply>';

 }
 else

 {

 // <- here: determinate if uploaded file(s) contains already fixed bug or not; set $newbug for check's result

 if ($newbug)

 {
 echo '<EurekaLogStatus>0</EurekaLogStatus>';

 echo '<EurekaLogReply>Thank you for your feedback! We will try to fix this as soon as possible!</EurekaLogReply>';

 }
 else

 {
 echo '<EurekaLogStatus>1</EurekaLogStatus>';

 echo '<EurekaLogReply>Thank you for your feedback! This error was already fixed! ';

 echo 'Please, go to www.example.com and download a new version.</EurekaLogReply>';

 }
 }

?>

-->

</body>

</html>

<?php

// place any finalization code here

?>

See also: customizing feedback .

Note: remember - you don't have to use PHP. PHP is selected only as example language.
You can write receiver-script in any language: ASP, .NET, (Win)CGI, etc. Just handle the
standard file uploads and return some HTML page. That's all.

For example, you can use FogBugz anonymous report page as HTTP form to receive
EurekaLog reports .

Constant: wsmHTTP.

155

115

Integral parts 404

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

See also:
HTTP method options
FTP upload method
Other send methods
Selecting send method
Security Considerations
FogBugz setup
Customizing feedback

10.6.7 FTP upload

FTP send method uploads bug report file to remote folder on FTP server. It's almost like
usual file copying, except it "copies" file to remote location.

Advantages:
Simple and controllable.
Almost no customizations.
Minimum efforts to setup (among all web methods, including web-trackers)
Little chances to be blocked by firewall (almost everybody have internet access, which
usually means FTP access too).
SSL/TLS support (currently not supported by EurekaLog).

Drawbacks:
May be blocked by firewall.
No bug report management.
User e-mail address is optional.
No backward feedback - you can't tell customer that this problem is already solved.
Requires hosting or FTP server.

You can test FTP uploads by using any fully-functional FTP client software (web-browsers
aren't suitable: they don't support upload functionality).

Notes:
EurekaLog doesn't support SFTP protocol; only FTP is supported.
Currently EurekaLog supports only FTP; FTPS is not supported.

Constant: wsmFTP.

See also:
FTP method options
HTTP upload method
Other send methods
Selecting send method
Security Considerations

10.6.8 FogBugz

This send method creates a new issue on FogBugz bug tracker (see demo).

A bug tracking system is a software application that is designed to help quality assurance
and programmers keep track of reported software bugs in their work. It may be regarded
as a type of issue tracking system.

Many bug-tracking systems, such as those used by most open source software projects,
allow users to enter bug reports directly. Other systems are used only internally in a
company or organization doing software development. Typically bug tracking systems are
integrated with other software project management applications.

Having a bug tracking system is extremely valuable in software development, and they are
used extensively by companies developing software products. Consistent use of a bug or
issue tracking system is considered one of the "hallmarks of a good software team".

320

404

390

55

158

108

155

321

398

390

55

158

http://www.fogcreek.com/fogbugz/
http://www.fogcreek.com/fogbugz/
http://www.fogcreek.com/fogbugz/
https://www.fogcreek.com/fogbugz/try/

EurekaLog 7 Documentation405

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

This method requires some preparation actions, before you can use it:
1. You need to get web server with ASP.NET and database running or have a hosting with

ASP.NET and database support. You can get it with FogBugz, if you buy FogBugz as
service.

2. (Optional) You need to download FogBugz and upload it on web-server (either hosting or
self-server). This step is optional, if you use FogBugz hosting services.

3. (Optional) You need to run through FogBugz installer. This step is optional, if you use
FogBugz hosting services.

Important note: EurekaLog uses FogBugz XML API to access FogBugz. BugzScout is not
used by EurekaLog with "FogBugz" send method, however you can use BugzScout with
HTTP send method .

4. You need to setup FogBugz:
create projects (for each of your products).
create "reporter" account (warning: don't use administrator account for reporting
issues).

5. Fill FogBugz details in your EurekaLog-enabled application.

You also need to setup sending options and test sending . To test send - place a button,
which raises exception. Let EurekaLog handle it and perform sending. Ensure that it's
working as expected. Send report again to check how duplicates are handled. Adjust any
options, if needed. Change status of issue to "closed" and retry sending. Ensure that it
works as expected.

Advantages:
Powerfull and customizable.
Bug report management.
Can be get as paid service with 0 setup time.
SSL/TLS support.
Easy to use.

Drawbacks:
Paid software.
May be blocked by firewall.
Requires setup .
Requires hosting OR web (http) server + database service.
User e-mail address is optional.
Requires setup for each your project.
Setup options and access rights may be not detailed enough.

Note: you may consider using HTTP upload method for FogBugz instead of using
FogBugz API. See FogBugz setup for more detailed description; see FogBugz: using HTTP
upload for detailed manual on HTTP Upload setup for FogBugz.

Constant: wsmFogBugz.

See also:
FogBugz:

Feature list
Demo
Installation instructions
Hosting
Self-server version
Comparison of issue-tracking systems

FogBugz method options
Managing bug reports
FogBugz setup
Other send methods
Selecting send method
Security Considerations

115

108

108

398

108

115

322

105

108

390

55

158

http://www.fogcreek.com/fogbugz/for-your-server.html
http://www.fogcreek.com/fogbugz/for-your-server.html
http://www.fogcreek.com/fogbugz/pricing.html
http://www.fogcreek.com/fogbugz/pricing.html
http://www.fogcreek.com/fogbugz/pricing.html
http://www.fogcreek.com/fogbugz/pricing.html
http://www.fogcreek.com/fogbugz/pricing.html
http://www.fogcreek.com/fogbugz/pricing.html
http://www.fogcreek.com/fogbugz/pricing.html
http://www.fogcreek.com/fogbugz/features/
http://www.fogcreek.com/fogbugz/features/
https://www.fogcreek.com/fogbugz/try/
http://fogbugz.stackexchange.com/questions/6883
http://fogbugz.stackexchange.com/questions/6883
http://www.fogcreek.com/fogbugz/pricing.html
http://www.fogcreek.com/fogbugz/for-your-server.html
http://www.fogcreek.com/fogbugz/for-your-server.html
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems

Integral parts 406

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Using HTTP upload with FogBugz

10.6.9 Mantis

This send method creates a new issue on Mantis bug tracker (see demo).

A bug tracking system is a software application that is designed to help quality assurance
and programmers keep track of reported software bugs in their work. It may be regarded
as a type of issue tracking system.

Many bug-tracking systems, such as those used by most open source software projects,
allow users to enter bug reports directly. Other systems are used only internally in a
company or organization doing software development. Typically bug tracking systems are
integrated with other software project management applications.

Having a bug tracking system is extremely valuable in software development, and they are
used extensively by companies developing software products. Consistent use of a bug or
issue tracking system is considered one of the "hallmarks of a good software team".

This method requires some preparation actions, before you can use it:
1. You need to get web server with PHP and database running or have a hosting with PHP

and database support.
2. (Optional) You need to download Mantis and upload it on web-server (either hosting or

self-server). This step is optional, if you use Mantis hosting services.
3. (Optional) You need to run through Mantis installer. This step is optional, if you use

Mantis hosting services.

Important note: EurekaLog uses SOAP API to access Mantis. SOAP API is enabled by
default, but you need to make sure it was not disabled. Please refer to Mantis
documentation for more information. Also be aware that SOAP implementation in Mantis has
several bugs - see our knowledgebase.

4. You need to setup Mantis:
create projects (for each of your products).
create "reporter" account (warning: don't use administrator account for reporting
issues).
create custom field for "counting" bug reports.

5. Fill Mantis details in your EurekaLog-enabled application.

You also need to setup sending options and test sending . To test send - place a button,
which raises exception. Let EurekaLog handle it and perform sending. Ensure that it's
working as expected. Send report again to check how duplicates are handled. Adjust any
options, if needed. Change status of issue to "closed" (or "resolved") and retry sending.
Ensure that it works as expected.

Advantages:
Powerfull and customizable.
Bug report management.
Freeware (hosting cost not included).
SSL/TLS support.
Full control over access rights and user/project options.

Drawbacks:
May be blocked by firewall.
Requires setup .
Requires hosting OR web (http) server + database service.
User e-mail address is optional.
Requires setup for each your project.
Huge amount of options is hard to configure.

Constant: wsmMantis.

115

119

119

http://www.mantisbt.org/
http://www.mantisbt.org/
http://www.mantisbt.org/
http://www.mantisbt.org/demo/
http://www.mantisbt.org/hosting.php
http://www.mantisbt.org/hosting.php
http://www.mantisbt.org/hosting.php
http://www.mantisbt.org/hosting.php
http://www.mantisbt.org/hosting.php
http://www.mantisbt.org/hosting.php
https://support.eurekalog.com/index.php?/Knowledgebase/List/Index/10/report-sending
https://support.eurekalog.com/index.php?/Knowledgebase/List/Index/10/report-sending
http://www.mantisbt.org/hosting.php

EurekaLog 7 Documentation407

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

See also:
Mantis:

Feature list
Demo
Evaluation (Instant Mantis)
Hosting services
Installation instructions
FAQ
Comparison of issue-tracking systems

Mantis method options
Managing bug reports
Mantis setup
Other send methods
Selecting send method
Security Considerations

10.6.10 BugZilla

This send method creates a new issue on BugZilla bug tracker (see demo).

A bug tracking system is a software application that is designed to help quality assurance
and programmers keep track of reported software bugs in their work. It may be regarded
as a type of issue tracking system.

Many bug-tracking systems, such as those used by most open source software projects,
allow users to enter bug reports directly. Other systems are used only internally in a
company or organization doing software development. Typically bug tracking systems are
integrated with other software project management applications.

Having a bug tracking system is extremely valuable in software development, and they are
used extensively by companies developing software products. Consistent use of a bug or
issue tracking system is considered one of the "hallmarks of a good software team".

This method requires some preparation actions, before you can use it:
1. You need to get web server with Perl and database running or have a hosting with Perl

and database support.
2. You need to download BugZilla and upload it on web-server (either hosting or self-

server).
3. You need to run through BugZilla installer.

Important note: EurekaLog uses XML-RPC interface to access BugZilla. Make sure that you
have installed all required Perl packages (usual Perl package dependencies are: SOAP-Lite,
XMLRPC-Lite, and Test-Taint) and enabled XML-RPC. Please refer to BugZilla documentation
for more information.

4. You need to setup BugZilla:
create projects (for each of your products).
create "reporter" account (warning: don't use administrator account for reporting
issues).

create custom field for "counting" bug reports.
5. Fill BugZilla details in your EurekaLog-enabled application.

You also need to setup sending options and test sending . To test send place a button,
which raises exception. Let EurekaLog handle it and perform sending. Ensure that it's
working as expected. Send report again to check how duplicates are handled. Adjust any
options, if needed. Change status of issue to "closed" and retry sending. Ensure that it
works as expected.

Advantages:
Powerfull and customizable.
Bug report management.
Freeware (hosting cost not included).
SSL/TLS support.

327

105

119

390

55

158

134

http://www.mantisbt.org/wiki/doku.php/mantisbt:features
http://www.mantisbt.org/wiki/doku.php/mantisbt:features
http://www.mantisbt.org/demo/
http://www.mantisbt.org/wiki/doku.php/mantisbt:instantmantis
http://www.mantisbt.org/wiki/doku.php/mantisbt:instantmantis
http://www.mantisbt.org/wiki/doku.php/mantisbt:instantmantis
http://www.mantisbt.org/hosting.php
http://www.mantisbt.org/hosting.php
http://www.mantisbt.org/manual/manual.installation.php
http://www.mantisbt.org/manual/manual.installation.php
http://www.mantisbt.org/wiki/doku.php/mantisbt:faq
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://www.bugzilla.org/
http://www.bugzilla.org/
http://www.bugzilla.org/
http://landfill.bugzilla.org/

Integral parts 408

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Drawbacks:
May be blocked by firewall.
Requires setup .
Requires hosting OR web (http) server + database service.
User e-mail address is optional.
Requires setup for each your project.
Hard to install.
API support should be installed separately.

Constant: wsmBugZilla.

See also:
BugZilla:

Feature list
Demo
Installation instructions
FAQ
Comparison of issue-tracking systems

BugZilla method options
Managing bug reports
BugZilla setup
Other send methods
Selecting send method
Security Considerations

10.6.11 JIRA

This send method creates a new issue on JIRA bug tracker (see demo).

A bug tracking system is a software application that is designed to help quality assurance
and programmers keep track of reported software bugs in their work. It may be regarded
as a type of issue tracking system.

Many bug-tracking systems, such as those used by most open source software projects,
allow users to enter bug reports directly. Other systems are used only internally in a
company or organization doing software development. Typically bug tracking systems are
integrated with other software project management applications.

Having a bug tracking system is extremely valuable in software development, and they are
used extensively by companies developing software products. Consistent use of a bug or
issue tracking system is considered one of the "hallmarks of a good software team".

This method requires some preparation actions, before you can use it:
1. You need to get server with JAVA installed (Windows/Linux/Solaris only) and database

running or have a hosting with similar requirements.
2. You need to download JIRA and upload it on server (either hosting or self-server).
3. You need to run through JIRA installer.

Important note: EurekaLog uses JSON API to access JIRA. Make sure you have enabled
remote access via API in JIRA options. Please refer to JIRA documentation for more
information.

4. You need to setup JIRA:
create projects (for each of your products).
create "reporter" account (warning: don't use administrator account for reporting
issues).

create custom field for "counting" bug reports.
5. Fill JIRA details in your EurekaLog-enabled application.

You also need to setup sending options and test sending . To test send place a button,
which raises exception. Let EurekaLog handle it and perform sending. Ensure that it's
working as expected. Send report again to check how duplicates are handled. Adjust any

134

331

105

134

390

55

158

143

http://www.bugzilla.org/features/
http://www.bugzilla.org/features/
http://landfill.bugzilla.org/
http://www.bugzilla.org/docs/tip/en/html/installation.html
http://www.bugzilla.org/docs/tip/en/html/installation.html
https://wiki.mozilla.org/Bugzilla:FAQ
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://www.atlassian.com/software/jira/
http://www.atlassian.com/software/jira/
http://www.atlassian.com/software/jira/
http://www.atlassian.com/software/jira/try/

EurekaLog 7 Documentation409

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

options, if needed. Change status of issue to "closed" and retry sending. Ensure that it
works as expected.

Advantages:
Powerfull and customizable.
Bug report management.
Can be get as paid service with 0 setup time.
SSL/TLS support.
Setup options are easy to use.

Drawbacks:
Paid software.
May be blocked by firewall.
Requires setup .
Requires hosting OR web (http) server + database service.
User e-mail address is optional.
Requires setup for each your project.
Setup options and access rights may be not detailed enough.

Constant: wsmJIRA.

See also:
JIRA:

Feature list
Demo
Installation instructions
FAQ
Comparison of issue-tracking systems

JIRA method options
Managing bug reports
JIRA setup
Other send methods
Selecting send method
Security Considerations

10.7 Debug information providers

Debug information provider is a service class that can extract information about code from
the particular format of debug information in the executable module or external file.
EurekaLog uses debug information providers to extract information required to build
human-readable call stacks.

Available providers are:

Provider Type Description
EurekaLog build-in Standard provider for EurekaLog's own debug

information format. Injected.
MAP files plugin Provider for .map files format. External .map files

only. Can not be injected. Delphi or C++ Builder .map
files only. 3rd party .map files are not supported.

Turbo Debugger plugin Provider for Turbo Debugger format (TD32). Injected
or .tds files.

DLL exports plugin Provider for DLL with export table. Heuristic.
JCL plugin Provider for JEDI (JclDebug) format. Injected or .jbdg

files.
Microsoft plugin Provider for Microsoft formats. Requires external DLL.

External .dbg/.pdb files only. Can not be injected.
madExcept plugin Experimental provider for madExcept debug format.

Doesn't requires madExcept installed.

143

335

105

143

390

55

158

410

410

411

411

412

412

413

http://www.atlassian.com/software/jira/pricing/?tab=ondemand
http://www.atlassian.com/software/jira/features
http://www.atlassian.com/software/jira/features
http://www.atlassian.com/software/jira/try/
https://confluence.atlassian.com/display/JIRA052/JIRA+Installation+and+Upgrade+Guide
https://confluence.atlassian.com/display/JIRA052/JIRA+Installation+and+Upgrade+Guide
https://confluence.atlassian.com/display/JIRA/JIRA+FAQ
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems

Integral parts 410

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

See also:
Debug information settings
Using debug information converters
Configuring call stack

10.7.1 EurekaLog

EurekaLog debug information provider allows your application to extract information from
EurekaLog debug information format. This provider also supplies stored module options for
EurekaLog code. This provider is build-in and always enabled, you don't need special
actions to enable it.

EurekaLog uses ZLib compression and TEA encryption to store debug information. Debug
information is never stored in clear text - even if no password is set. Only unit, class,
routine names and line numbers are stored. Debug information is injected into executable
file. Format itself is a custom binary format.

Overall size is compact. Exact estimated depends on your detalization level. Format is
binary, so it's fast.

This is default, recommended and best-option for EurekaLog-enabled applications.

Note: EurekaLog information is generated from .map and (optionally) .tds files. Sometimes
other sources can be used for 3rd party compilers. These service files (i.e. .map/.tds)
must be generated, but they are no longer needed after compilation. They will be deleted
unless you explicitly ask to keep them . You don't need to distribute any additional files
when you use default EurekaLog debug information format.

See also:
Debug information providers options
Configuring call stack
Project settings for debugging
List of debug information providers
EurekaLog for shareware developers

10.7.2 .map file

MAP file provider allows your application to extract information from .map files.

.map files are text human-readable files which are generated by IDE linker during project
compilation and linking process. .map files contains debug information about compiled
module in clear text form. .map files contains segments information, units, class, routine
names and line numbers. Level of detalization for .map files is set in project options.

Use .map files when you want to use other debug tools which can understand .map files,
but do not understand EurekaLog debug information format. Consider using EurekaLog
debug format instead of .map files. .map files are large (often they are larger than
executable itself). They are text files, so parsing is required - which is slow. There is no
protection, no packing, no encryption.

You'll need to distribute .map files with your application.

Notes:
It's highly recommended to convert .map files to EurekaLog debug format. You are able to
do such conversion without DLL recompilation as explained in this article .
.map files do not have a strict format. .map files are defined as "human-readable plain
text files in free form that indicate the relative offsets of functions for a given version of a
compiled binary". EurekaLog is able to parse .map files produced by Delphi and C++
Builder linkers. EurekaLog is not able to parse .map files produced by other compilers/
linkers/tools.

See also:
Debug information providers options

243

516

48

496

234

355

48

225

409

585

426

355

http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm
http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm

EurekaLog 7 Documentation411

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Configuring call stack
Project settings for debugging
List of debug information providers
Using debug information converters
Post-processing without (re)compilation

10.7.3 TD32

Turbo Debugger provider allows your application to extract information from TD32 debug
information source. It can be external .tds file or injected information.

TD32 debug information is used by many debuggers. It's not required by Delphi/Builder IDE,
but it's often used for interoperability reasons. It's de-facto standard for Pascal-based
debuggers. TD32 contains not only names and line numbers, but also extensive information
about variables, arguments, calling conventions and so on. However, EurekaLog uses only
location information.

Use TD32 information when you want to use other debug tools which can understand TD32
format, but do not understand EurekaLog debug information format. Consider using
EurekaLog debug format instead of TD32 format. TD32 format is extremely large (sometimes
a x10 of original executable). They are binary files. There is no protection, no packing, no
encryption. All debug information is stored in clear text.

You'll need to distribute .tds files with your application or you can inject TD32 information
into executable (controlled by project options).

Note: It's highly recommended to convert .tds files to EurekaLog debug format. You are
able to do such conversion without DLL recompilation as explained in this article .

See also:
Debug information providers options
Configuring call stack
Project settings for debugging
List of debug information providers
Using debug information converters

10.7.4 Exports table

DLL exports provider allows your application to extract heuristic information about functions
in DLL based on export table.

This provider is heuristic. It doesn't give you exact information about functions. It can detect
start address of the function, but not its size. So it uses guessing about sizes.

Note: DLL Exports provider may show entries like "(possible fnMSSample+132)". Such text
means that there are some JMP or RET instructions between start of the function and actual
address in a call stack. This means:

[Positive] Address belongs to the specified function. JMP/RET instruction may be part of
the function's logic (such as try/except block);
[False-positive] Address does not belong to the specified function. JMP/RET instruction
marks the end of the function. Address itself lies within some other internal/unknown
function after the specified function.

Number after "+" sign indicate byte offset between function's start and call stack address.

No additional information is needed to work, therefore this provider can work on any DLL.

This provider is good to have in any application as last resort provider - for cases when
executable modules (DLL/BPL) do not have any other debug information source. It's highly
recommended to create debug information source for DLLs when possible.

The common alternatives for this provider:
DLL can be post-processed by EurekaLog with "DLL" profile ;
DLL can be post-processed by JCL ;
DLL can be post-processed by madExcept ;

48

225

409

516

426

426

355

48

225

409

516

410 368

412

413

Integral parts 412

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

DLL can supply .map /.tds files (this is only useful for IDEs without any exception
tracer tool installed);
DLL can supply PDB/DBG files ;
Non-Embarcadero DLL can be post-processed by EurekaLog based on output from 3rd
party compiler ;

Note: you can ask Microsoft for debug information about system DLLs. See this article for
more information.

See also:
Debug information providers options
Configuring call stack
List of debug information providers
Using Microsoft DbgHelp DLL
Using EurekaLog with DLLs post-processed by 3rd party tools (JCL, madExcept, etc.)
Using EurekaLog with non-Embarcadero compilers (Microsoft Visual Studio, etc.)

10.7.5 JCL

JCL provider allows your application to extract debug information from JEDI debug
information format. It can be external .jdbg file or injected into executable.

JEDI Code Library (JCL) is a popular freeware open-source code library for Delphi, Kylix, C++
Builder and Free Pascal. It contains JclDebug and JclHookExcept units which can be used to
build your own exception tracer from scratch.

Use JCL format when you want to use other Delphi tools which can understand JCL format,
but do not understand EurekaLog debug information format. JCL debug information format
is de-facto standard of debug information in run-time. Many Delphi-specific tools are able to
work with it. It's a custom binary format, which contains unit, class, routines names, and
line numbers. It uses ZLib packing to minimize final size. There is no password protection.
Overall this format is very similar to EurekaLog debug format.

You'll need to distribute .jdbg files with your application or inject debug information into
executables (controlled by JCL project options).

Note: many versions of Delphi and C++ Builder ships RTL and VCL packages with JCL debug
information. You can find it in .jdbg files near .bpl files in \Bin folder. So, if you build a
packaged application - you probably should enable JCL debug information provider and
distribute RTL and VCL .bpl/.jdbg files along with your application. If you want the same for
non-Delphi system DLLs - use Microsoft debug provider .

See also:
Debug information providers options
Using EurekaLog with DLLs post-processed by 3rd party tools (such as JCL, madExcept,
etc.)
Configuring call stack
Microsoft debug provider
List of debug information providers

10.7.6 Dbg/Pdb

Microsoft debug information provider allows your application to extract debug information
from Microsoft's formats. It can be DBG or PDB format. It's stored in standalone .dbg and
.pdb files.

Use Microsoft format when you want to use other non-Delphi related tools which can
understand MS format, but do not understand Delphi debug formats (such as Process
Explorer or WinDbg). You can create debug information in MS format for your project by
using freeware map2dbg and tds2pdf tools.

This provider requires Microsoft DbgHelp.dll to be present. You can get it either from
Microsoft Debugging Tools or from \Bin and \Bin64 subfolders of EurekaLog installation. You

410 411

412

496

504

355

48

409

504

495

496

412

355

495

48

412

409

http://code.google.com/p/map2dbg/
http://code.google.com/p/map2dbg/
http://code.google.com/p/map2dbg/
http://code.google.com/p/map2dbg/

EurekaLog 7 Documentation413

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

should deploy this DLL with your application. Use DLL of corresponding bitness. Do not
install this DLL to system folders.

Note: you can use MS debug format to get information for system DLLs. By default Windows
comes in release version without debug information for its DLLs (so-called "free build"). This
prevents you from getting proper information. In fact, you only can get heuristic information
based on DLL exports . However, you can ask Microsoft for debug information and get full
coverage for Microsoft DLLs. See this article for more information.

An alternative for this provider and your own custom DLLs is converting PDB/DBG debug
information into EurekaLog debug information as explained in this article .

See also:
Debug information providers options
Configuring call stack
Using Microsoft DbgHelp DLL
Using EurekaLog with DLLs compiled by 3rd party compilers (such as Microsoft Visual
Studio, etc.)
JCL debug provider
DLL exports provider
List of debug information providers
Using debug information converters

10.7.7 madExcept

madExcept provider allows your application to extract debug information from madExcept
debug information format. It can be external .mad file or injected into executable.

madExcept is an exception tracer tool. Use madExcept format when you want to use your
existing executables compiled with madExcept in EurekaLog-enabled application.

You'll need to distribute .mad files with your application or inject debug information into
executables (controlled by madExcept project options).

Note: this provider is experimental. It may not work with all version of madExcept formats.

See also:
Debug information providers options
Using EurekaLog with DLLs post-processed by 3rd party tools (such as JCL, madExcept,
etc.)
Configuring call stack
List of debug information providers

10.8 Variables

Environment variables are a set of dynamic named values that can affect the way running
processes will behave on a computer. They can be said in some sense to create the
operating environment in which a process runs. For example, an environment variable with
a standard name can store the location that a particular computer system uses to store
temporary files - this may vary from one computer system to another. A process which
invokes the environment variable by (standard) name can be sure that it is storing
temporary information in a directory that exists and is expected to have sufficient space.

You can use environment variables in any text values in your project settings . You can
insert variable by using "Variables" window . Variable is inserted as special tag. When
you run your application at run-time, any variable value will be replaced with actual value,
which is calculated at run-time.

For example, if you set your folder for saving bug-report to "%APPDATA%\MyBugReports"

then your bug reports may be saved to (few examples):
C:\Users\UserName\AppData\Roaming\MyBugReports\

C:\Documents and Settings\UserName\Application Data\MyBugReports\

411

504

496

355

48

504

496

412

411

409

516

355

495

48

409

225

228

Integral parts 414

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

C:\WINDOWS\system32\config\systemprofile\AppData\Roaming\MyBugReports\

C:\Windows\SysWOW64\config\systemprofile\AppData\Roaming\MyBugReports\

Depending on real value of %APPDATA% variable at run-time.

Note: variables names are case-insensitive.

EurekaLog
EurekaLog expands system variables set by the following special pseudo-variables. They
can be used in the same way as any other usual environment variable.

Warning: don't forget that you need to enclose variable name into '%', for example for
_BugID variable you must use '%_BugID%' text (without quotes).

EurekaLog's variables:
_ExceptType - exception's class. For example: 'EAccessViolation'. It will be replaced with
empty string if there is no exception in question.
_ExceptMsg - exception's message. For example: 'Access violation at address 00000000.
Read at address 000000'. It will be replaced with empty string if there is no exception in
question.
_CallStack - compact call stack of exception (multi-line). It will be replaced with empty
string if there is no exception in question.
_BugID - exception's BugID . For example: '47A10000'. It will be replaced with empty
string if there is no exception in question.
_Reproduce - "steps to reproduce" text as it was entered by user (in error dialog). This is
arbitrary multi-line text. Empty by default.
_BugReport - full bug report text (multi-line). It will be replaced with empty string if there
is no exception in question.
_LineBreak - the simple line break (#13#10 or #10 - depending on your platform). It's
useful to enter multi-line texts in single-line edit control.
_XYZModulePath - path to executable file without trailing path delimiter. For example: 'C:
\Program Files\My Product'. XYZ part selects module in question.
_XYZModuleName - executable file name. For example: 'Project1.exe'. XYZ part selects
module in question.
_XYZModuleDesc - description of executable file. It's extracted from file's version
information. XYZ part selects module in question.
_XYZModuleVer - version of executable file. For example: '1.0.2.0'. It's extracted from
file's version information. XYZ part selects module in question.

Where XYZ can be:
Main - .exe file of running process.
Except - module which has raised exception (applicable only if there is exception in
question).
This - your project (.exe or .DLL).

If your project is .exe - "This" will be the same as "Main". If exception was raised in your
project (and not in some other DLL) - "Except" will be the same as "This". If your application
consists only of single .exe and never catches exceptions from other DLLs - then all 3 values
will be the same. We suggest to use "Except" case as default (e.g. like %
_ExceptModuleName%).

The following variables are available only for IDE and compilation options (like pre/post build
events, external configuration path, localization path, etc.):

_IDEProject - file name of project file. Like C:\Projects\MyProject.dpr for Delphi 7

or C:\Projects\MyProject.dproj for Delphi XE.

_IDESource - file name of project source file. Like C:\Projects\MyProject.dpr for

both Delphi 7 and Delphi XE.
_IDEConfig - file name of options file. Like C:\Projects\MyProject.dof for Delphi 7,

C:\Projects\MyProject.dproj for Delphi XE or C:\Projects\Options
\External.eof for external configuration .

_IDETarget - final compiled executable file. Like C:\Projects\MyProject.exe or C:
\Projects\MyProject.dll.

421

443

EurekaLog 7 Documentation415

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

_IDESrc - folder with trailing path delimiter, containing project's files. Like C:\Projects\
_IDEDst - folder with trailing path delimiter, containing compiled executable. Like C:
\Projects\ for Delphi 7 or C:\Projects\Win32\Debug\ for Delphi XE.

System/Windows variables:
CSIDL_ABC - special folder identified by CSIDL ABC.
FOLDERID_DEF - special folder identified by FOLDERID DEF.

Where ABC can be:
Name of CSIDL value. For example: APPDATA or COMMON_APPDATA or LOCAL_APPDATA,
so full variable name will be %CSIDL_COMMON_APPDATA%, %CSIDL_APPDATA% or %
CSIDL_LOCAL_APPDATA%. See this topic in MSDN to get the full list of all possible CSIDL
values.
Numeric value of CSIDL. For example: 26 or $001a, so full variable name will be %
CSIDL_26% or %CSIDL_$1a%.

See also: %APPDATA% and other Windows environment variables below.

Where DEF can be:
Name of FOLDERID value. For example: RoamingAppData, ProgramData, LocalAppData or
LocalAppDataLow, so full variable name will be %FOLDERID_RoamingAppData%, %
FOLDERID_ProgramData%, %FOLDERID_LocalAppData% or %FOLDERID_LocalAppDataLow%. See
this topic in MSDN to get the full list of all possible FOLDERID values.
GUID-value of FOLDERID. For example: {3EB685DB-65F9-4CF6-A03A-E3EF65729F3D}, so
full variable name will be %FOLDERID_{3EB685DB-65F9-4CF6-A03A-E3EF65729F3D}%.

See also: %APPDATA% and other Windows environment variables below.

Note: FOLDERID values are available only for Windows Vista+. CSIDL values are available
on all Windows platforms.

Warning: if variable doesn't exist - it will be replaced with empty string. Be careful to use
variables which are available only on certain platform or environment.

You can also use any system environment variable apart from EurekaLog-specific variables
above. Just use %system-variable-name% - where system-variable-name is a name of
system variable (see below). You can use any system variable - even if it's not listed in
"Variables" window . "Variables" window lists only build-in pseudo-variables and some
commonly used system variables.

Windows
In Windows, the set command without any arguments displays all environment variables

along with their values:

228

http://msdn.microsoft.com/en-us/library/bb762494(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb762494(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd378457(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd378457(VS.85).aspx

Integral parts 416

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Example of environment variables list

To set a variable to a particular value, use:

set VARIABLE=value

However, this change is temporal, as "set" command makes changes to current
environment variables, changes are not saved to system settings - thus such changes will
be lost after restart.

Permanent changes to the environment variable can be achieved through GUI (Control
Panel/System/Advanced/Environment Variables), using the setx.exe application, and editing
the registry - HKCU\Environment (for user specific variables) or HKLM\SYSTEM
\CurrentControlSet\Control\Session Manager\Environment (for system variables) - this is
not recommended for novices. The setx.exe application is part of Windows since Windows
Vista. It is also a part of Windows Resource Kit for previous Windows versions.

Use:

setx VARIABLE value

to change permanently user's (local) environment variables. Use:

setx VARIABLE value /m

to change permanently system's (global) environment variables. The later requires
administrative access.

Please note that environment variables are stored per-process and are inherited from
parent processes. Changing environment variables in system configuration will not change
environment variables of already running processes. For example, using "set" command in
console will change environment block of console process - because "set" is internal
command. On the other hand, using "setx" will not alter environment block of console
process, because setx.exe is an external application and have no access to environment
variables of parent process. In most cases processes has to be restarted to get notified of
changes in stored environment variables. However, some processes may react to
broadcasts of WM_SETTINGCHANGE message, and reload/update environment variable
block.

Use SetEnvironmentVariable function to alter environment variable(s) in your own process.

To see the current value of a particular variable, use:

https://msdn.microsoft.com/en-us/library/windows/desktop/ms725497(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms725497(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686206(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686206(v=vs.85).aspx

EurekaLog 7 Documentation417

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

echo %VARIABLE%

or

set VARIABLE

Use GetEnvironmentVariable function to retrieve value of environment variable in your own
process.

To delete a variable, the following command is used:

set VARIABLE=

or

setx VARIABLE ""

setx VARIABLE "" /m

(depending on local/global scope)

Unfortunately, the setx.exe application will only clear variable, but not delete it completely.
However, the final result is the same (e.g. empty value).

Note: The names of environment variables are case-insensitive in Windows.

Important Note: Windows environment variables are specific to user account. Each user
account has its own set of variables. EurekaLog will use variables of user running your
executable. For example, if you are writing a Win32 Service application - such application is
run by "Local System" account by default. "Local System" account has its own environment
variables values, which are different from environment variables values of your current
interactive user account.

Standard Windows environment variables
1. General pseudo-variables - these variables generally expand to discrete values, such as

the current working directory, the current date, or a random number. They look like
environment variables, but they are not:

%CD% - this variable points to the current directory. Equivalent to the output of the
command cd when called without arguments.

%DATE% - this variable expands to the current date. The date is displayed according
to the current user's date format preferences. EurekaLog also offers %DATEFMT%
pseudo-variable, which represents current date in fixed format.
%ERRORLEVEL% - this variable points to the current error level. If there was an
error in the previous command, this is what you need to check against to find out
about that. Not applicable outside of cmd shell.
%RANDOM% - this variable returns a random number between 0 and 32767.
%TIME% - this variable points to the current time. The time is displayed according to
the current user's time format preferences. EurekaLog also offers %TIMEFMT%
pseudo-variable, which represents current time in fixed format.

2. System path variables - these variables refer to locations of critical operating system
resources, and as such generally are not user-dependent:

%AllUsersProfile% (%PROGRAMDATA% for Windows Vista, Windows 7) - expands to

the full path to the All Users profile directory. This profile contains resources and

settings that are used by all system accounts. Shortcut links copied to the All Users'
Start menu or Desktop folders will appear in every user's Start menu or Desktop,
respectively.
%ComSpec% this variable contains the full path to the command processor, cmd.exe.
%PATH% - this variable contains a semicolon-delimited (do not put spaces in
between) list of directories in which the command interpreter will search for an
executable file that matches the given command.
%ProgramFiles% - this variable points to Program Files directory, which stores all

https://msdn.microsoft.com/en-us/library/windows/desktop/ms683188(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms683188(v=vs.85).aspx

Integral parts 418

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

the installed applications. The default is C:\Program Files. In 64-bit editions of
Windows (XP, 2003, Vista), there are also %ProgramFiles(x86)% which defaults to

C:\Program Files (x86) and %ProgramW6432% which defaults to C:\Program Files. The

%ProgramFiles% itself depends on whether the process requesting the environment

variable is itself 32-bit or 64-bit (this is caused by Windows-on-Windows 64-bit
redirection).
%CommonProgramFiles% - this variable points to Common Files directory.
%SystemDrive% - is the drive upon which the system folder was placed. Also see
next item.
%SystemRoot% - is the location of the system folder, including the drive and path.
The drive is the same as %SystemDrive% and the default path on a clean installation

depends upon the version of the operating system. By default, on a clean installation:
Windows NT 5.1 (Windows XP) and newer versions use \WINDOWS. Windows NT 5.0

(Windows 2000) use \WINNT.
%TEMP% and %TMP% - these variables contain the path to the directory where
temporary files should be stored.
%WinDir% - this variable points to the Windows directory. It is identical to the %
SystemRoot% variable above on modern systems.

3. User management variables - these variables store information related to resources and
settings owned by various user profiles within the system. As a general rule, these
variables do not refer to critical system resources or locations that are necessary for the
OS to run:

%AppData% - contains the full path to the Application Data folder of the logged-in
user.
%LOCALAPPDATA% - this variable is the temporary files of Applications. Its uses
include storing of Desktop Themes, Windows Error Reporting, Caching and profiles of
web browsers.
%UserDomain% - holds the name of the Workgroup or Windows Domain to which
the current user belongs. The related variable, %LOGONSERVER%, holds the hostname

of the server that authenticated the current user's logon credentials (name and
password). For Home PCs, and PCs in a Workgroup, the authenticating server is
usually the PC itself. For PCs in a Windows Domain, the authenticating server is a
domain controller (a primary domain controller, or PDC, in Windows NT 4-based
domains).
%UserName% - is the name/login of current user.
%UserProfile% - is the location of the current user's profile directory, in which is
found that user's HKCU registry hive (NTUSER). Users can also use the %USERNAME%
variable to determine the active users login identification.

Notes:
Some variables exist only on modern versions of Windows and aren't available on old/
previous versions.
Some variables exist only in 64-bit edition of Windows. For example, %ProgramW6432%
are not supported in 32-bit operating systems.
Some of the variables depend on the bitness of the caller and thus lead to different
results, depending on whether the caller is 32- or 64-bit application. For example,
program installers typically use %ProgramFiles% to install the application in the Program

Files folder. Thus, the 64-bit installer will install the program in C:\Program Files\, and

32-bit installer - in C:\Program Files (x86)\.

Some variables are valid only for 32-bit or 64-bit processes. Refer to MSDN for more
information.
CSIDL and FOLDERID values are special EurekaLog's pseudo-variables. They always use
WinAPI to obtain folder's path. Variables like %APPDATA% are usual environment variables,

so they can be altered by parent process.

Important Note: Windows environment variables are specific to user account. Each user
account has its own set of variables. EurekaLog will use variables of user running your
executable. For example, if you are writing a Win32 Service application - such application is
run by "Local System" account by default. "Local System" account has its own environment
variables values, which are different from environment variables values of your current
interactive user account.

http://msdn.microsoft.com/en-us/library/dd378457(VS.85).aspx

EurekaLog 7 Documentation419

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Examples of default values for Windows environment variables

Variable Windows XP and below Windows Vista and above

%ALLUSERSPROFILE
%

C:\Documents and Settings\All Users C:\ProgramData

%APPDATA% C:\Documents and Settings
\{username}\Application Data
(normal user account)

C:\WINDOWS\system32\config
\systemprofile\Application Data\
(local system account)

C:\Users\{username}\AppData
\Roaming (normal user account)

C:\WINDOWS\system32\config
\systemprofile\AppData (local
system account)

%COMPUTERNAME
%

{computername} {computername}

%
COMMONPROGRAMF
ILES%

C:\Program Files\Common Files C:\Program Files\Common Files

%
COMMONPROGRAMF
ILES(x86)%

C:\Program Files (x86)\Common Files C:\Program Files (x86)\Common
Files

%COMSPEC% C:\Windows\System32\cmd.exe C:\Windows\System32\cmd.exe

%HOMEDRIVE% C: C:

%HOMEPATH% \Documents and Settings
\{username}

\Users\{username}

%LOCALAPPDATA% C:\Users\{username}\AppData
\Local

%LOGONSERVER% \\{domain_logon_server} \\{domain_logon_server}

%PROGRAMFILES% C:\Program Files C:\Program Files

%
PROGRAMFILES(X86
)%

C:\Program Files (x86) C:\Program Files (x86)

%SystemDrive% C: C:

%SystemRoot% C:\Windows C:\Windows

%TEMP% and %TMP
%

C:\Documents and Settings
\{username}\Local Settings\Temp
(normal user account)

C:\Windows\Temp (local system
account)

C:\Users\{username}\AppData
\Local\Temp (normal user
account)

C:\Windows\Temp (local system
account)

%USERDOMAIN% {userdomain} {userdomain}

%USERNAME% {username} {username}

%USERPROFILE% C:\Documents and Settings
\{username}

C:\Users\{username}

%WINDIR% C:\Windows C:\Windows

%PUBLIC% C:\Users\Public

%PROGRAMDATA% C:\ProgramData

%PSModulePath% C:\system32
\WindowsPowerShell\v1.0
\Modules\

See also:
Using variables 228

Part

XI

EurekaLog 7 Documentation421

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

11 Advanced topics

Advanced articles covers different topics to get you better understanding of EurekaLog and
exception tracers in general. These articles are not required for basic knowledge, so new
users may skip these articles to read them later.

11.1 BugID

BugID is a 4-byte unsigned integer (LongWord) which is used to identify exception, for
example: 76BA0000. Two exception with the same BugID value are considered to be the
same. Two bug reports are considered to be duplicates of each other if they are bug
reports about exceptions with the same BugID. BugID is used to establish uniqueness for
many EurekaLog features, for example:

"Do not save duplicate exceptions" option identifies unique reports via BugID;
Sending identifies unique reports via BugID;
EurekaLog Viewer identifies unique reports via BugID.

BugID consists of two parts. Hi-word is defined by EurekaLog. Low-word is not used by
EurekaLog and it's left for your customizations. For example, if BugID is 76BA0000, then hi-
word (defined by EurekaLog) is $76BA, low-word (defined by you) is $0000.

Hi-word of BugID is a CRC16 value of string ("BugID ident") which includes:
application and module identification
exception class (including additional error number for Win32 and OLE errors)
two lines from call stack

"BugID ident" does not include exception message and exact error location (address). Only
human-readable names are taken from call stack (unit name, class name and routine
name). Thus, BugID will not change when you rebuild your application.

You can alter BugID (either by appending custom lo-word or fully replace it) in
OnCustomBugID event handler.

Note:

See also
ExceptionInfo.BugID property
Exception filters
Customization example

11.2 Compiling your project with EurekaLog

EurekaLog requires post-processing of your file in order to work . If you compile your
project inside IDE, then this post-processing is performed by IDE expert:

264

302

344

38

http://pastebin.com/1XgK25Zr
http://pastebin.com/1XgK25Zr

Advanced topics 422

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

"EurekaLog" / "post-processing" stage during compilation. Notice "EurekaLog:" prefix
on second line.

"EurekaLog" / "post-processing" stage in IDE output
(use the following IDE main menu command: View / Messages)

EurekaLog 7 Documentation423

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Same window expanded - this is output from a normal successful compilation

Don't have EurekaLog IDE expert installed?

1. If you compile your application inside IDE - then it is the simplest case: because you
don't need to do anything. You just enable EurekaLog for your project and compile it.

2. However, if you're compiling your project outside IDE (say, you're using command-line
compilation, build server or build script) or you don't have EurekaLog IDE expert installed
(don't want to use it) - then you need to post-process your compiled project manually
(see this article for more details).

Post-processing includes injecting additional information into your compiled executable
module: EurekaLog's options and debug information .

See also:
EurekaLog post-process compilers
Reconfiguring EurekaLog for manual control
Minimum parameters needed
Post-processing without (re)compilation
Using EurekaLog with automated builds
Delphi 2007+
FinalBuilder
EurekaLog compiler's command-line parameters
Using EurekaLog with Delphi Personal/Turbo/Starter editions
Working with EurekaLog configurations
Configuring project for leaks detection

11.2.1 EurekaLog post-process compilers

Note: this article is part of explaining compilation outside of IDE .

EurekaLog provides two command-line compilers which performs post-processing :
ecc32.exe for Delphi/RAD Studio and emake.exe for C++ Builder. These files are located in
the same directory as EurekaLog packages. I.e. like 'C:\Program Files (x86)\Neos Eureka
S.r.l\EurekaLog 7\Packages\Studio16\ecc32.exe' (this is just example).

596

33

423

40

423

451

424

426

429

429

431

432

23

439

508

421

421

Advanced topics 424

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Notes:
Actually, ecc32.exe is exactly the same as emake.exe (it is the same file, but with
different file name). Modern EurekaLog versions use the same file as both ecc32.exe and
emake.exe for all IDE versions and personalities.
Additionally, ecc32speed.exe is also provided. ecc32speed.exe is the same as
ecc32.exe, except it does not contain debugging code, which allows it to execute slightly
faster. EurekaLog uses ecc32speed.exe by default (from IDE). If debug output / verbose
options are enabled, then EurekaLog will use ecc32.exe. There is no difference in calling
ecc32.exe and ecc32speed.exe.

These new compilers integrate the standard dcc32.exe/make.exe features plus the
EurekaLog features, so you can now just use the new ecc32.exe/emake.exe command-line
compiler instead of the standard dcc32.exe/make.exe compiler. By using the EurekaLog
command-line compiler - you can now compile your projects just like when you used the
standard compiler, now adding to your projects the new EurekaLog features.

When ecc32.exe/emake.exe/ecc32speed.exe is called - it will compile your project and
then add the EurekaLog settings and debug information to the application. Any parameters
you pass to ecc32.exe/emake.exe are passed onto dcc32.exe/make.exe as in a normal
compilation. The EurekaLog options are taken from the standard project options file .

Note: the emake.exe command-line compiler doesn't support ".bpr"/".bdsproj"/".cbproj"
files (it only supports ".mak" files). To generate the ".mak" file from a ".bpr" you can use
the bpr2mak.exe command-line program. See also: post-processing without compilation
.

So ecc32.exe/emake.exe/ecc32speed.exe can be used just like dcc32.exe/make.exe and
you can find plenty of information on these standard parameters in the Delphi help file.
There is a minimal standard options which have to be set for EurekaLog to function
properly.

If ecc32.exe/emake.exe/ecc32speed.exe is used without any EurekaLog custom
parameters it will simply call the standard compiler (dcc32.exe or make.exe) and after
that it will alter the compiled file by adding the EurekaLog options and debug data.
If ecc32.exe/emake.exe/ecc32speed.exe is used with EurekaLog's --el_prepare or --
el_alter_exe custom parameter (see here) it will not call the call the standard
compiler (dcc32.exe or make.exe), it will only alter (project or already compiled) file by
adding the EurekaLog options and debug data.

Additionally to standard parameters, ecc32.exe/emake.exe/ecc32speed.exe supports
custom EurekaLog parameters for customizing post-processing.

See also:
Compiling your project with EurekaLog
Minimum parameters needed
Post-processing without (re)compilation
Using EurekaLog with automated builds
Delphi 2007+
FinalBuilder
EurekaLog compiler's command-line parameters

11.2.2 Minimum parameters needed

Note: this article is part of explaining compilation outside of IDE .

If you're using build tool (such as IDE, FinalBuilder, etc.) to compile your project, then your
project already have all required parameters for EurekaLog. See this article for more
information about required parameters and optimal setup.

However, if you're are compiling your project manually - then there is a minimum set of flags
needed to get EurekaLog to work. You also need to tell the compiler where EurekaLog files
are - so files can be included as part of the compiling process.

440

426

424

426

432

421

424

426

429

429

431

432

421

58

EurekaLog 7 Documentation425

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Absolute minimum is:
Generation of debug information must be enabled (-$D+);

Generation of map file must be enabled - "Detailed" is recommended choice (-GD);

Path to EurekaLog's dcu/obj files must be specified (-U<path>);

EurekaLog's conditional symbols must be set (-D<symbols>);

For example:

Example

"-UC:\Program Files (x86)\Neos Eureka S.r.l\EurekaLog 7\Lib\Win32
\Release\Studio16" -GD -$D+ -DEUREKALOG;EUREKALOG_VER7

Of course, you have to adjust:
platform name (Win32)

profile name (Release)

IDE version name (Studio16)

The command line for dcc32.exe would looks like this:

Example

dcc32 "your-project" "-UC:\Program Files (x86)\Neos Eureka S.r.l
\EurekaLog 7\Lib\Win32\Release\Studio16" -GD -$D+ -
DEUREKALOG;EUREKALOG_VER7

You may need to add more options for your specific case. Please note that minimum
options may be not enough for your needs. For example, you may want to have more
debug options enabled (such as using debug version of system units, range-checking, etc.).
Please see this article for more information about recommended setup.

The command line for ecc32.exe would looks like this:

Example

ecc32 "your-project" "-UC:\Program Files (x86)\Neos Eureka S.r.l
\EurekaLog 7\Lib\Win32\Release\Delphi16" -GD -$D+ -
DEUREKALOG;EUREKALOG_VER7 --el_config="your-options.eof"

You may need to add more options for your specific case.

Maybe the simplest way to get a proper command-line for building your project is to install
EurekaLog IDE expert (if it's not installed already), allow it to handle your project, compile
your project and take a look at actual options for dcc32.exe/make.exe. You can do this via
View / Messages command, switching to Build page and expanding dcc command line
branch:

58

58

432

Advanced topics 426

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

A typical command line to build your project without using MS-Build

Note: this feature may be not available in your Delphi version.

If you're using a build script, then you already have this kind of "scary" command line - then
all you need to do is to either change dcc32.exe to ecc32.exe, make.exe to emake.exe
OR to add additional options as outlined in example above.

If you don't have this "scary" command-line yet - you may want someone else to take care
about this. This "someone" can be IDE, build server/tool (like FinalBuilder). And in this case
you need to post-process your file without compilation (since compilation along with
"scary command-lines" will already be performed by other tool)...

See also:
Compiling your project with EurekaLog
EurekaLog post-process compilers
Post-processing without (re)compilation
Using EurekaLog with automated builds
Delphi 2007+
FinalBuilder
EurekaLog compiler's command-line parameters

11.2.3 Post-processing without (re)compilation

Note: this article is part of explaining compilation outside of IDE .

This can be useful in situations where 3rd party build tools are not able to directly run
ecc32.exe/emake.exe (or you just don't want to build "scary" command-line). So,

426 426

421

423

426

429

429

431

432

421

423 424

EurekaLog 7 Documentation427

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

you're using "someone" to build your project as usual - this can be IDE, build server/tool
(like FinalBuilder). Just don't forget to set mandatory options for your project.

Now you need to post-process your already compiled project without recompiling it. To
achieve this we just need to use another EurekaLog command line parameter: --
el_alter_exe .

Here is how the command line would look given that our application has already been
compiled and we just want to add EurekaLog's features:

Example (Delphi 4-7)

ecc32 --el_alter_exe=Project1.dpr

Example (Delphi 2005-2006)

ecc32 --el_alter_exe=Project1.bdsproj

Example (Delphi 2007+)

ecc32 --el_alter_exe=Project1.dproj

Example (Delphi 2007+ with performance boost)

ecc32speed --el_alter_exe=Project1.dproj

Example (C++ Builder 5-6)

emake --el_alter_exe=Project1.bpr

Example (C++ Builder 2006)

ecc32 --el_alter_exe=Project1.bdsproj --el_mode=Builder

Example (C++ Builder 2007+)

ecc32 --el_alter_exe=Project1.cbproj --el_mode=Builder

Note: EurekaLog is able to recognize both project files (such as .dpr) and project
configuration files (such as .dproj). It's recommended to specify project configuration files
(such as .dproj) when possible.

If you want to specify the complied application's file name use:

Example

ecc32 --el_alter_exe=Project1.dpr;.\Debug\Win32\Project1.exe

(replace "ecc32" -> "emake" for C++ Builder, replace ".dpr" extension if
needed - as in the previous example above)

You may also need to specify absolute or relative paths to files in some cases.

Important Note: post-processing will inject information into already compiled executable. It
can not recompile or change the project. If you are switching between EurekaLog
configurations - your .dpr source file may need to be changed (e.g. to change included
EurekaLog units in uses clause). To achieve this we just need to use another EurekaLog

command line parameter: --el_prepare .

A typical batch file to build your project with EurekaLog may look like this:

Example

58

421

432

432

Advanced topics 428

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

@echo off

REM Step 1: [Pre-Build] adjust .dpr source before compilation

ecc32 --el_prepare=Project1.dproj --el_config=Project1_Debug.eof

REM Step 2: compile your project

call "C:\Program Files (x86)\Embarcadero\RAD Studio\9.0\bin
\rsvars.bat"
msbuild Project1.dproj /t:Build /p:config=Debug;platform=Win32

REM Step 3: [Post-Build] post-process your project - inject options and/
or debug information

ecc32 --el_alter_exe=Project1.dproj;.\Debug\Win32\Project1.exe --
el_config=Project1_Debug.eof

--el_config switch is optional.

Note: EurekaLog shows command-line to post-processing your project for your convenience
at General tab in EurekaLog project options :

Ready to use command-line in EurekaLog project options

This edit is read-only. Just select all text, copy it into Windows clipboard and insert in place
where you want to invoke EurekaLog's post-processing.

You can also use ecc32 to post-process executables compiled by non-Embarcadero
compilers (such as Microsoft Visual Studio). You can use NUL as project file name and supply
--el_config argument to specify location of EurekaLog options (.eof file). You can create .eof
file by exporting EurekaLog options from any project or you can use standalone Settings
Editor tool . You would need to add --el_source argument to indicate location of debug
information (which is stored in PDB for Visual Studio).

Example

ecc32 --el_alter_exe=NUL;.\MS\VC\MSSample.dll --el_config=.\MS\VC
\MSSample.eof --el_source=PDB

See also:
Compiling your project with EurekaLog
EurekaLog post-process compilers
Minimum parameters needed
Using EurekaLog with automated builds
Delphi 2007+
FinalBuilder
Reconfiguring EurekaLog for manual control

234 225

617

421

423

424

429

429

431

451

EurekaLog 7 Documentation429

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

EurekaLog compiler's command-line parameters

11.2.4 Using EurekaLog with automated builds

Note: this article is part of explaining compilation outside of IDE .

Direct calling of ecc32.exe/emake.exe/ecc32speed.exe rather than using standard
EurekaLog expert is often used in automated build scenarios. Many EurekaLog's users
setup a build server, where they can build working project automatically without calling IDE.
Usually it involves usage some sort of make program (tool) or .bat/.cmd-files. In all those
cases compilation is performed by calling dcc32.exe/make.exe directly. The EurekaLog
expert is not used, so it has no chances in adding "EurekaLog's magic" to application.

In those cases you need to manually add a call to ecc32.exe/emake.exe/ecc32speed.exe.
There are two options:

[Script] If you have control over name of compiler ("dcc32.exe"/"make.exe") - then just
replace it to "ecc32.exe"/"emake.exe" ;
[Tool] If you don't have control over name of "dcc32.exe"/"make.exe" - then you need to
insert additional calls of ecc32.exe/emake.exe with --el_prepare/--el_alter_exe
parameters :
o [Delphi 2006 and below] You need to insert a call to ecc32.exe/emake.exe/

ecc32speed.exe before and after project compilation ;
o [Delphi 2007 and above] You can insert a call to ecc32.exe/emake.exe/

ecc32speed.exe to project's pre- and post-build events .

See also:
Compiling your project with EurekaLog
EurekaLog post-process compilers
Minimum parameters needed
Post-processing without (re)compilation
Delphi 2007+
FinalBuilder
Reconfiguring EurekaLog for manual control
EurekaLog compiler's command-line parameters

11.2.5 Delphi 2007+

Note: this article is part of explaining compilation outside of IDE .

Using ecc32.exe/emake.exe/ecc32speed.exe with Delphi 2007+ is very easy. That's
because Delphi 2007+ uses MS-Build tool and have pre/post-build commands - so calling
of ecc32.exe/emake.exe/ecc32speed.exe can be performed automatically during build.

Note: do not confuse IDE build events and EurekaLog build events . This article uses only
IDE build events.

The simplest way to use ecc32.exe/emake.exe in Delphi 2007+ is to add a call to
ecc32.exe/emake.exe/ecc32speed.exe to Pre-Build and Post-Build events:

Delphi command-line compiler

Pre-Build Event:
"C:\Program Files (x86)\Neos Eureka S.r.l\EurekaLog 7\Packages
\Studio16\ecc32.exe" "--el_prepare=$(PROJECTPATH)" "--
el_profile=$(Config)"

Post-Build Event:
"C:\Program Files (x86)\Neos Eureka S.r.l\EurekaLog 7\Packages
\Studio16\ecc32.exe" "--
el_alter_exe=$(PROJECTPATH);$(OUTPUTPATH)" "--el_profile=$(Config)"

C++Builder command-line compiler (RAD Studio)

432

421

423

426

432

426

429

421

423

424

426

429

431

451

432

421

426

351

http://docwiki.embarcadero.com/RADStudio/en/Build_Events
http://docwiki.embarcadero.com/RADStudio/en/Build_Events
http://docwiki.embarcadero.com/RADStudio/en/Build_Events

Advanced topics 430

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Post-Build Event:
"C:\Program Files (x86)\Neos Eureka S.r.l\EurekaLog 7\Packages
\Studio16\ecc32.exe" "--
el_alter_exe=$(PROJECTPATH);$(OUTPUTPATH)" "--el_profile=$(Config)"
--el_mode=Builder

C++Builder command-line compiler

Post-Build Event:
"C:\Program Files (x86)\Neos Eureka S.r.l\EurekaLog 7\Packages
\Builder6\emake.exe" "--
el_alter_exe=$(PROJECTPATH);$(OUTPUTPATH)" "--el_profile=$(Config)"

(replace Studio16 with real name of your IDE)

Important Note: "Config" variable may be not available in your IDE. In this case - please,

remove --el_profile switch from the command line.

See Post-processing without (re)compilation article for more information about used
command-line switches.

For example:

Adding a call to ecc32/emake/ecc32speed to your project

If you do this - you'll no longer need to perform any special actions to build your project. It
doesn't matter how you build it: manually (msbuild Project1.dproj /t:Win32 /
p:config=Debug), with build server/tool - the ecc32.exe/emake.exe/ecc32speed.exe will
be invoked automatically (as long as MS-Build is used).

Notes:
If you build your project without MS-Build (by calling dcc32.exe/make.exe directly) - then
this option will have no effect. And you'll still need to call ecc32.exe/emake.exe/
ecc32speed.exe as explained here .
Some build tools (such as FinalBuilder) may ignore MS-Muild settings, thus pre- and
post-build events will not run. And you'll still need to call ecc32.exe/emake.exe/
ecc32speed.exe as explained here .
You may want to disable EurekaLog IDE expert assist when using manual pre/post-build
events. See this and this articles for more information on reconfiguring your project
for manual control.

See also:
Compiling your project with EurekaLog
EurekaLog post-process compilers
Minimum parameters needed
Post-processing without (re)compilation
Reconfiguring EurekaLog for manual control
Using EurekaLog with automated builds
FinalBuilder

604

426

423

431

423

448 449

421

423

424

426

451

429

431

http://docwiki.embarcadero.com/RADStudio/en/Building_a_Project_Using_an_MSBuild_Command
http://docwiki.embarcadero.com/RADStudio/en/Building_a_Project_Using_an_MSBuild_Command

EurekaLog 7 Documentation431

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

EurekaLog compiler's command-line parameters
Post-build events in EurekaLog options
Different EurekaLog settings for "Debug" and "Release" profiles
Read-only projects

11.2.6 FinalBuilder

Note: this article is part of explaining compilation outside of IDE .

Using ecc32.exe/emake.exe with FinalBuilder is very easy. That's because FinalBuilder has
"Use EurekaLog compiler" option.

Build Delphi project options

All you need to do is to open properties of each "Build Delphi Win32 Project"/"Build C++
Builder Win32 Project" action and to enable "Use EurekaLog Compiler" checkbox. That's all.

Please, refer to FinalBuilder's help file for more information: Actions Reference /
Compilers / Embarcadero / Build Delphi Project.

Notes:
FinalBuilder will always build your project with your default EurekaLog configuration
(unless you override configuration).
Extra command line options are passed to ecc32.exe, so you may add any additional

EurekaLog-specific switches . In other words, when "Use EurekaLog Compiler" option is
enabled - FinalBuilder will call ecc32 instead of dcc32, --el_prepare/--el_alter_exe
options are not used. Therefore, you can specify additional options for ecc32 (such as --

432

351

448

449

421

432

Advanced topics 432

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

el_config, etc.; as well as arguments to dcc32) via FinalBuilder's "Extra Command Line

Options" option.
You may need to specify "Extra Command Line Options" option. This depends on your
project's configuration. See Minimum parameters needed to know about required
parameters. Instead of manually specifying options - we recommend you to setup your
project options as specified here and mark "Load settings from project file", "Compiler"
and "Linker" checkboxes on "Project" tab in FinalBuilder action's properties dialog. You
may also uncheck "Load settings from project file" options, but setup compiler and linker
options in the manner which is described in the above mentioned article.
Alternatively, you may uncheck "Use EurekaLog Compiler" option, and add new action to
your FinalBuilder script. Add "Exec program" action right after your "Build Delphi Win32
Project" action. Insert a call to ecc32/emake with your custom options to this new
"Exec program" action.
FinalBuilder will not execute build events from MS-Build configuration. Therefore, if you
have added a call to ecc32/emake/ecc32speed to your post-build event - it will be
ignored.

See also:
Compiling your project with EurekaLog
EurekaLog post-process compilers
Minimum parameters needed
Post-processing without (re)compilation
Using EurekaLog with automated builds
Delphi 2007+
EurekaLog compiler's command-line parameters

11.2.7 ecc32/emake command line options

Note: this article is part of explaining compilation outside of IDE .

EurekaLog provides ecc32.exe , emake.exe , and ecc32speed.exe
command-line compilers . These compilers pass all command line options to default
dcc32.exe and make.exe compilers.

Additionally, these EurekaLog post-process compilers supports additional EurekaLog-
related options, which allows you to customize EurekaLog's post-processing behaviour.

Notes:
EurekaLog options switches are not passed to default dcc32.exe and make.exe
compilers.
EurekaLog options switches always start with "--el_" prefix.

Do not forget to wrap arguments with spaces in double quotes (").
EurekaLog is able to recognize both project files (such as .dpr) and project configuration
files (such as .dproj). It's recommended to specify project configuration files (such as

.dproj) when possible.

EurekaLog can recognize arguments with and without "=". For example, the following

arguments are equivalent to each other:

--el_config"Project1.eof"
--el_config=Project1.eof
"--el_config=Project1.eof"

EurekaLog IDE expert calls ecc32.exe/emake.exe/ecc32speed.exe to post-process
executables after compilation . Unlike command line, you have no direct control over calls
to ecc32.exe/emake.exe/ecc32speed.exe when doing compilation from IDE. However, you
still can use the custom EurekaLog arguments which are discussed below. Do the following
to add any custom argument for ecc32.exe/emake.exe/ecc32speed.exe being invoked
from IDE:
1. Open your project in IDE;
2. Go to the "Project" / "EurekaLog Options" menu;
3. Switch to the "Advanced" / "Custom/Manual" page;
4. Search for "ECC32AdditionalOptions" option. If such option not found (which is

424

58

426

429

421

423

424

426

429

429

432

421

421 421 421 421 421

421

221

423

EurekaLog 7 Documentation433

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

default), you can add it to any location. Example of option:

ECC32AdditionalOptions="--el_compiler=dcc32speed.exe --
el_priority=$20"

Important note: Double-quotes in the example above is a part of the settings syntax for
the "Custom/Manual" page and not a part of the command-line arguments itself.

The above line is just example, you can alter it as you want to.

Notes:
There is no "EMAKEAdditionalOptions" option. Use "ECC32AdditionalOptions" to

add command-line options for both ecc32.exe/ecc32speed.exe and emake.exe
"ECC32AdditionalOptions" option does not replace command-line, it merely adds new

arguments. Therefore, you should be careful and do not specify arguments which are
already in the command-line (e.g. --al_alter_exe and --el_config).

EurekaLog-specific options for ecc32.exe/emake.exe/ecc32speed.exe are:

1. --el-prepare/--el_alter_exe

These options instructs the EurekaLog compiler to not compile the project (via invoking
dcc32/emake) and only add the EurekaLog options and debug data into already compiled
application (you can also optionally specify the compiled application's filename).

1. By default EurekaLog's compiler compile your application AND post-processes it.
2. By specifying any of the options - you will disable compilation, so EurekaLog's compiler

will perform only pre/post-processing.

Note: you must have compiled .exe/.dll/.bpl file and a corresponding .map file to use --
el_alter_exe option.

Basically, --el_prepare switch acts as pre-build event, --el_alter_exe acts as post-build
event:
1. --el_prepare switch will modify .dpr source file by adjusting list of EurekaLog units in

uses clause. This is useful when you switch between different EurekaLog configurations.
This switch will do nothing in most cases (nothing to change), thus it is optional, but
recommended.

2. --el_alter_exe switch will inject EurekaLog options and compressed debug information
into your executable. This is mandatory.

You should never specify both --el_prepare and --el_alter_exe in the same command line.
Use either --el_prepare or --el_alter_exe or none.

These switches are useful when used with 3rd party tools that are not able to directly run
the ecc32.exe command-line compiler. It's also useful if you don't want to bother with
compiling your project by yourself (via direct call to dcc32/make) and assign this task to
someone else (such as IDE, FinalBuilder, etc.).

Delphi Example (Delphi 4-7)

--el_prepare=ProjectFile.dpr
--el_alter_exe=ProjectFile.dpr[;ProjectFile.exe]

Delphi Example (Delphi 2005-2006)

--el_prepare=ProjectFile.bdsproj
--el_alter_exe=ProjectFile.bdsproj[;ProjectFile.exe]

Delphi Example (Delphi 2007+)

442

Advanced topics 434

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

--el_prepare=ProjectFile.dproj
--el_alter_exe=ProjectFile.dproj[;.\Debug\Win32\ProjectFile.exe]

C++Builder Example

--el_alter_exe=MakeFile.mak
--el_alter_exe=ProjectFile.bpr[;ProjectFile.exe]
--el_alter_exe=ProjectFile.bdsproj[;ProjectFile.exe]
--el_alter_exe=ProjectFile.cbproj[;.\Debug\Win32\ProjectFile.exe]

Non-Embarcadero Example

--el_alter_exe=NUL;MSCppDll.dll

Path ".\Debug\Win32\" is only an example. Replace it with your value or just remove it (in

case of .exe file being in the same folder as project file).

Part in [] is optional, but recommended. Of course, you should remove [] symbols for real-
life examples (e.g. --el_alter_exe=ProjectFile.cbproj;.\Debug\Win32
\ProjectFile.exe).

Note: you can specify NUL as project file name if the following conditions are satisfied:

1. You have specified compiled file name (optional part of --el_alter_exe switch);
2. You have specified config file name via --el_config switch (see below);
3. You have specified mode via --el_mode switch (see below).

You may optionally use --el_source switch (see below) for non-Embarcadero compilers. --
el_mode switch have no effect for non-Embarcadero compilers.

See this article to learn more about using NUL and --el_source.

2. --el_target

Specifies output file name. Optional. By default EurekaLog tries to get this from project's
options (which is not always possible). It's not needed for --el_alter_exe switch, since
output file name can be specified inside --el_alter_exe switch itself.

Example

--el_target=D:\Output\Bin\Project1.exe

Usually this switch is needed for projects with multiple configuration profiles, because
EurekaLog may not know which profile to use.

Note: this option is ignored when --el_prepare or --el_alter_exe switches are used.

3. --el_profile

This option allows you to specify a profile name (build configuration). Profile name is used to
select different configuration file. Usual names are 'Debug' and 'Release', but you are free to
create any other custom configuration.

Profile name is used to select .eof file to load EurekaLog settings from. The base
configuration is used by default (e.g. Project1.eof). Specifying non-empty profile name

will load EurekaLog configuration from Project1_ProfileName.eof file instead.

Example

496

EurekaLog 7 Documentation435

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

--el_profile=Debug

If there is no such .eof file - base configuration will be used.

Note: this option is ignored when --el_config switch is used.

4. --el_config

This option is used to compile your project with a different (alternative) EurekaLog options
than options which are stored in the project itself.

Example

--el_config=Project1.eof

See also: how to get .eof file .

By default EurekaLog uses EurekaLog options from project configuration file
(.dof, .bdsproj, .dproj, .bpr, .cbproj). It also respect external configuration option

. You don't need to use this option if you want to compile your EurekaLog-enabled project
(because your typical project configuration will be used automatically). You only need to use
this option when your project does not contain EurekaLog configuration; or you want to
override your settings.

See also:
Using external configuration .
EurekaLog post-process compilers .
EurekaLog IDE expert .

5. --el_pid

Specifies Project ID (PID). Project ID is a unique GUID of the project. It is used by EurekaLog
to identify projects. For example, for password storing (caching), BugID creation, alias
building in bug trackers, etc. Different projects are supposed to have different project IDs.

By default - project ID is extracted from .dproj, .bdsproj, .cproj files and then stored in base
configuration (.eof file). You may want to specify project ID manually when using external
configurations (e.g. using --el_config option), sharing configurations between projects,

or if you simply have different project for essentially the same program.

Example

--el_pid={72C4CABF-E763-4606-89DE-5AA914D8F763}

--el_pid=72C4CABF-E763-4606-89DE-5AA914D8F763

--el_pid=72C4CABFE763460689DE5AA914D8F763

You may create a new GUID to use as project ID. Or you may copy GUID from .dproj/
.bdsproj/.cproj file.

Note: this option is ignored when --el_prepare switch is used.

6. --el_mode

Switches between Delphi and C++ Builder project. Optional. You must add this switch only if
you rename EurekaLog compiler's file. Possible values are "Delphi" or "Builder".

227

443

443

423

221

240

Advanced topics 436

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Delphi example

--el_mode=Delphi

C++ Builder example

--el_mode=Builder

Default is "Delphi mode" for ecc32.exe/ecc32speed.exe and "C++ Builder mode" for
emake.exe.

Note: ecc32.exe and emake.exe is the same file.

7. --el_ide

Specifies alternative IDE version. IDE version affects which dcc32 is used to compile project,
also how .map file is parsed, and how unit names are encoded. You have to use correct IDE

version. E.g. version 7 when you work with project compiled by Delphi 7.

Delphi 7 example

--el_ide=7

RAD Studio 10.1 Berlin example

--el_ide=24

Default version is determinated by ecc32.exe/emake.exe/ecc32speed.exe location. For
example, ecc32.exe from C:\Program Files\EurekaLog 7\Packages\Delphi7\ will

use version 7, ecc32.exe from C:\Program Files\EurekaLog 7\Packages\Studio14\
will use version 14. Therefore, you have to specify this option only if you copy ecc32.exe/
emake.exe/ecc32speed.exe to non-standard folder, or when you want to compile/post-
process project for another/different IDE.

Note: see IDE name mapping .

8. --el_compiler

This options instructs the EurekaLog to use alternative command-line compiler instead of
default dcc32/make,

Example

--el_compiler=dcc32speed.exe

"--el_compiler=C:\Program Files\CodeGear\Delphi\7.0\Bin
\dcc32speed.exe"

Notes:
This option is ignored when --el_prepare or --el_alter_exe switches are used.
This is not the same as --el_mode option (see above). You can't change dcc32.exe to
make.exe with --el_compiler option only. If you change Delphi compiler to C++ Builder
(or visa versa) - you should use --el_mode option. If you want to change Delphi compiler
to alternative Delphi compiler (or C++ Builder compiler to alternative C++ Builder compiler)
- you should use --el_compiler option. Also, these two options can be used together.

9. --el_source

604

EurekaLog 7 Documentation437

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

This option specifies which source should be used to create EurekaLog debug information.
Default is .map file which should be in Borland-compatible format. Microsoft .map files are
not supported. C++ Builder mode (see --el_mode switch above) regenerates .map file from
.tds file (or injected TD32 info) - to complete .map file with line numbers.

Possible values are "" (empty string, default - use project's preferences), "MAP" (use .map
file, default), "TDS" (use TD32), "PDB" (use PDF file), or "DBG" (use DBG file).

Warning: non-default values are experimental.

See this article to learn more about using --el_source.

Example

--el_source=MAP

--el_source=PDB

Note: this option is ignored when --el_prepare switch is used.

10. --el_injectjcl/--el_createjcl

These options will additionally inject JCL (JEDI Code Library) debug information directly into
your executable (--el_injectjcl), or create an external .jdbg file (--el_createjcl).

This option does not replace normal EurekaLog post-processing. I.e. JCL debug information
is added over EurekaLog's own data.

JCL debug information is supported by modern IDE versions, thus it is very useful to add to
your .BPL files (and any other DLL which may be loaded/used by IDE).

Example

--el_injectjcl

--el_createjcl

Note: these options are ignored when --el_prepare switch is used.

11. --el_createdbg

This option will create an additional .dbg file.

This option requires map2dbg.exe tool present in EurekaLog's \Bin folder. You have

manually download this tool and copy it into \Bin folder of EurekaLog! Check the

following locations:
https://code.google.com/p/map2dbg/
https://github.com/andremussche/map2dbg
https://github.com/garethm/map2dbg

DBG is debug information format supported by Microsoft. You can use this option when you
need to work on your executables with Microsoft tools.

Example

--el_createdbg

Notes:
Only 32-bit executables are supported by this option.
This option is ignored when --el_prepare switch is used.

496

https://code.google.com/p/map2dbg/
https://github.com/andremussche/map2dbg
https://github.com/garethm/map2dbg

Advanced topics 438

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

12. --el_verbose/--el_verbose_no_logs

These option instructs the EurekaLog compiler to produce more messages for debug
purposes. If you have some strange issues with EurekaLog compiler - try to use this option
to see what's going wrong.

Usually you don't need this option, it is used only for troubleshooting.

Example

--el_verbose
--el_verbose_no_logs

EurekaLog compiler will also create a few debug files. You can safely delete them if they
aren't needed. They aren't used by EurekaLog and are generated only for debugging
purposes. Those files are:

your-project_EL_debug.eof - contains a copy of injected options.
your-project.map_EL - contains a copy of injected debug information.

--el_verbose_no_logs option will not create additional log files.

Important Note: This option is limited in ecc32speed.exe. We recommend to use
ecc32.exe/emake.exe for this option.

13. --el_gui_error

Shows errors in message boxes instead of writing them to the console. Optional.

Usually you want to add this switch, if you run compiler from IDE or other GUI tool. You
probably don't want to specify it, if you run compiler from console or automated build script.

Note: EurekaLog compiler will set exit code (ERRORLEVEL) to non-zero value on any failure.
Your build script can diagnose for success/failure compiles by analyzing process return code.

14. --el_priority

This option specifies class of process priority for ECC32/EMAKE. You can use any valid
numeric value for process priority.

Example

--el_priority=$20

--el_priority=128

15. --el_nologo

This option suppresses standard ECC32/EMAKE's logo message with version and copyright
information. You can use this option to get cleaner console output (for example, to redirect
and analyze output).

This option does not affect actual processing of your project.

16. --el_nostats

http://msdn.microsoft.com/ru-ru/library/windows/desktop/ms683211(v=vs.85).aspx
http://msdn.microsoft.com/ru-ru/library/windows/desktop/ms683211(v=vs.85).aspx
http://msdn.microsoft.com/ru-ru/library/windows/desktop/ms683211(v=vs.85).aspx

EurekaLog 7 Documentation439

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

This option suppresses writing compilation statistical information (such as sizes, times, etc.).
You can use this option to get cleaner console output (for example, to redirect and analyze
output).

This option does not affect actual processing of your project.

Examples
Some examples of full command lines:

Example 1

ecc32speed --el_alter_exe=Project1.dproj;.\Debug\Win32\Project1.exe

Example 2

emake --el_mode=Delphi --el_alter_exe=Project1.dproj;.\Debug\Win32
\Project1.exe

Example 3
(for using in post-build event)

"C:\Program Files (x86)\Neos Eureka S.r.l\EurekaLog 7\Packages
\Studio16\ecc32speed.exe" "--
el_alter_exe=$(PROJECTPATH);$(OUTPUTPATH)"

Example 4

ecc32 Project1.dpr "-UC:\Program Files (x86)\Neos Eureka S.r.l
\EurekaLog 7\Lib\Win32\Release\Delphi7" -GD -$D+ -
DEUREKALOG;EUREKALOG_VER7 --el_config=Project1_Debug.eof --
el_verbose --el_gui_error

See also:
Compiling your project with EurekaLog
EurekaLog post-process compilers
Minimum parameters needed
Post-processing without (re)compilation
Reconfiguring EurekaLog for manual control
Using EurekaLog with automated builds
Delphi 2007+
FinalBuilder
Using external configuration

11.3 Working with configurations

This series of articles explains working with EurekaLog configuration in details.

Default behavior
EurekaLog installs IDE expert . IDE expert is extension for your IDE, which adds
EurekaLog's menu items to IDE. It also allows saving additional information (EurekaLog
options) with your project. By default EurekaLog stores its per-project configuration in .eof
file with same name as your project. See Storing EurekaLog options for more
information.

Note: previous EurekaLog versions stored EurekaLog options inside project file instead of
.eof file.

429

421

423

424

426

451

429

429

431

443

221

440

Advanced topics 440

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

External configurations
You can also store EurekaLog configuration in external files. External EurekaLog
configuration files also have .eof file extension.

.eof files can be obtained:
by using "Export" button in project options dialog ;
by saving options to new file in external settings editor;
by manual creation and editing in any text editor;
by copying another .eof file.

EurekaLog will use external configuration if:
it is specified as external options file in EurekaLog project options
it was passed via --el_config option to command-line post-processor

See Using External configuration for more information.

Default folder for saving .eof files (i.e. folder for "Export configuration" dialog) is %AppData%

\Neos Eureka S.r.l\EurekaLog\Profiles\ (e.g. like C:\Users\UserName\AppData
\Roaming\Neos Eureka S.r.l\EurekaLog\Profiles\). Any .eof file placed in that

location will appear as "custom" project type . .eof files outside of the above mentioned
folder will not appear in "Project type" option. Apart from %AppData%\Neos Eureka S.r.l
\EurekaLog\Profiles\ folder, a typical places to store .eof files are folder or sub-folder of

your project.

Manual configuration
You can also manage EurekaLog configuration manually. This can be done:

by uninstalling IDE expert

by using "DoNotTouchXYZ" options

EurekaLog supports the following options, which you can enter at Custom/Manual page :
DoNotTouch=1 - disables all EurekaLog's assist for the project. It will behave as if IDE
expert is not installed at all.
o DoNotTouchCompilation=1 - disables post-processing. You have to invoke ecc32/emake

tools manually .
o DoNotTouchOptions=1 - disables changing project options. You have to manually

configure your project .
o DoNotTouchUnits=1 - disables inserting/deleting unit into project's uses clause. You have

to include EurekaLog's code manually.
o DoNotTouchPackages=1 - disables modification of run-time packages list.

See Different EurekaLog settings for 'Debug' and 'Release' profiles and Read-only
projects for two practical examples of manual controlled configuration.

See also:
Using external configuration
Compiling your project with and without EurekaLog
Different EurekaLog settings for 'Debug' and 'Release' profiles
Read-only projects
Sharing EurekaLog settings in project group
Reconfiguring EurekaLog for manual control
Compiling your project with EurekaLog
Using EurekaLog with other software

11.3.1 Storing EurekaLog options

EurekaLog stores configuration in .eof files. .eof file is a UTF-8 encoded text ini-file, which
can be edited in any text editor , or in specialized Settings Editor tool, included with
EurekaLog.

EurekaLog stores base project configuration in file with same name as project file. For

227

234

432 423

443

363

356

426

58

448

449

443

445

448

449

450

451

421

514

442

EurekaLog 7 Documentation441

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

example, if you have Project1.dpr - then EurekaLog will save base configuration into

Project1.eof file. Such file will be used by default in all cases (compilation from IDE, from

command-line, etc.).

Additionally, you may manually create individual configurations for each profile (each build
configuration). For example: Project1_Debug.eof. See Different EurekaLog settings for

Debug and Release profiles for more information.

Note: you may create additional (external) configurations .

Any .eof-file different from base or profile configuration is considered to be external
configuration . Default folder for saving external .eof files (i.e. folder for "Import
configuration" and "Export configuration" dialogs) is %AppData%\Neos Eureka S.r.l

\EurekaLog\Profiles\ (e.g. like C:\Users\UserName\AppData\Roaming\Neos Eureka
S.r.l\EurekaLog\Profiles\). Any .eof file placed in that location will appear as "custom"

project type .

"Project type" option shows two .eof files

.eof files outside of the above mentioned folder will not appear in "Project type" option. For
example, base configuration of your project will never appear as custom profile.

Apart from %AppData%\Neos Eureka S.r.l\EurekaLog\Profiles\ folder, a typical

places to store external .eof files are folder or sub-folder of your project.

Note: older EurekaLog versions stored EurekaLog options directly inside project options
file:

DOF Delphi 4-7
BDSPROJ Delphi 2005-2006
DPROJ Delphi 2007 and later

448

443

443

363

Advanced topics 442

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

BPR C++Builder 5-6
BDSPROJ C++Builder 2006
CBPROJ C++Builder 2007 and later

When you open such file in modern EurekaLog version - old options will be imported, saved
into usual .eof file, and erased (technically, not erased: EurekaLog will simply not bother to
save/write into project options file, and IDE will eventually overwrite non-standard blocks).
You still can store settings in such files manually, and you can use Settings Editor tool to
force-save settings into these files.

See also:
Syntax for editing EurekaLog options
Using external configuration
Comping with EurekaLog
Options / Custom/Manual page

11.3.1.1 EurekaLog options syntax

EurekaLog options are stored in text ini-like file . EurekaLog options are stored as set of
"name=value" pairs. They are written under "[Exception Log]" section. You can edit options
manually via text editor or Options / Custom/Manual page .

Notes:
We do not recommend to manually edit EurekaLog settings, unless you need to add/
change your own custom options, or change undocumented or hidden settings (e.g.
setting which has no option in UI).
EurekaLog stores full set of options when exporting options to external configuration

. EurekaLog stores only options with values different from defaults when saving base
configuration .

A short example of .eof file contents:

[Exception Log]
EurekaLog Version=8000
Activate=1
atFixSafeCallException=1
atVCL=1
atWin32=1
DeleteMapAfterCompile=0
Encrypt Password=""
idEurekaLog=1
idEurekaLogDetailed=1
idMSClassic=1
idStepsToReproduce=1
InjectCode=1
InjectInfo=1
InjectOptions=1
loEnableMMDebugMode=1
ProjectID="{C2698C33-6841-47D6-980E-8692EE785B06}"

The following rules are applied:
Each option should occupy single line only (line breaks inside text parameters are allowed
via encoding - see below);
Integer values are stored directly;
Each option has form of 'Name=Value';

Boolean values are stored as 0 (False) or 1 (True);

Float values are stored as fixed-point values, decimal delimiter is always '.', e.g. '12.345';

Enumeration values are stored as integers (not as text);
String values are enclosed in double quotes ('"'). This allows you to store spaces and line

breaks inside text parameters:
o Empty strings may be stored as two double quotes ('""') or just as empty param ('');

442

443

421

356

440

356

227

443

440

EurekaLog 7 Documentation443

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

o '"' symbol should be escaped encoded as '\q';

o Line breaks should be encoded as '\r\n';

o '\' symbol should be escaped by doubling it (e.g. '\\');

o '%' symbol should be escaped by doubling it (e.g. '%%');

o While you can store non-ASCII symbols "as is" - we strongly recommend to encode

them as '%Uhex-code', for example, '%U044F' for unicode character #$44F (aka #1103,

aka Cyrillic Small Letter Ya).
Options are sorted for your convenience, but new options can be entered and placed in
any order. There is no need to preserve sort order;
Options with names started with "_" will not be saved into executable. Those are design-
time only options, they are saved in project options, but not injected into final
executable.
There is no predefined list of allowed option names;
We suggest to use 'Custom_' prefix for your own keys. EurekaLog will never have any
option name, starting with 'Custom_'. Thus, your names will not collide with EurekaLog
settings;
You can retrieve any option at run-time via
CurrentEurekaModuleOptions.CustomField['Option-Name'].

See also:
Storing EurekaLog options
Using external configuration
Options / Custom/Manual page

11.3.2 Using external configuration

You may want to store configuration in separate .eof file for many reasons. For example,
you may want to share common configuration between multiple projects. Another reason
may be not having Delphi / C++ Builder project at all. For example, if you need EurekaLog
configuration for Microsoft Visual Studio DLL .

External configuration is stored in .eof files . These files are just renamed text ini-files .

.eof files can be obtained:
by using "Export" button in project options dialog ;
by saving options to new file in external settings editor;
by manual creation and editing in any text editor;
by copying another .eof file.

Notes:
Using the same configuration for different project types is usually not a good idea. For
example, sharing configuration between packages, DLL, GUI and service applications is a
bad idea. Create one configuration file for each type of projects in your project group (e.g.
one configuration - for GUI; another configuration - for DLLs; and so on).
Alternatively, you may want to copy configuration between projects. Use import / export
functionality in this case.
Default location for saving .eof files (i.e. folder for "Export configuration" dialog) is %

AppData%\Neos Eureka S.r.l\EurekaLog\Profiles\ (e.g. like C:\Users\UserName
\AppData\Roaming\Neos Eureka S.r.l\EurekaLog\Profiles\).

Any .eof file placed in default location will appear as "custom" project type . .eof files
outside of the default location will not appear in "Project type" option.
Apart from default location, a typical places to store .eof files are folder or sub-folder of
your project.

1. Specifying external configuration file using IDE expert
You can specify external configuration file at "General" tab in the EurekaLog project
options dialog :

440

443

356

496

440 442

227

227

363

234

225

http://www.fileformat.info/info/unicode/char/044f/index.htm
http://www.fileformat.info/info/unicode/char/044f/index.htm
http://www.fileformat.info/info/unicode/char/044f/index.htm
http://www.fileformat.info/info/unicode/char/044f/index.htm

Advanced topics 444

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Specifying external configuration file in EurekaLog project options

Note: .eof file name can be arbitrary. It doesn't have to be the same name as the project; it
doesn't have to be placed in the same folder.

2. Specifying external configuration file using command-line compiler
You can specify external configuration file via --el_config command-line option .

Note: ecc32/emake respects "use external configuration" option in the project (see above),
so you can specify external configuration file with IDE expert - this option will be used by
ecc32/emake. No need to use --el_config switch manually (but you still can use it, if you
want to).

3. Using external configuration without IDE expert installed
When you don't have IDE expert installed - you can not edit EurekaLog configuration of the
project from IDE. And no post-processing will be performed. However, your Project1.eof
file will still be untouched (not deleted). Therefore, you can edit it with external Settings
Editor tool (or just plain text editor). And this file will automatically be used if you decide to
make manual post-processing .

See also:
Storing EurekaLog options
Project options
Command-line compilers
Compiling your project with EurekaLog
Compiling your project with and without EurekaLog
Different EurekaLog settings for "Release" and "Debug" profiles
Working with configurations

432

421

426

440

234

423

421

445

448

439

EurekaLog 7 Documentation445

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

11.3.3 Compiling your project with and without EurekaLog

A common task for developers is compiling their projects with or without EurekaLog. For
example, a developer may want to compile a project with EurekaLog for production
(release), but compile the same project without EurekaLog for development (debug).

This use case have a good reasoning: EurekaLog is production diagnostic tool , which
means it is designed to report about problems "post-morten", it also means that EurekaLog
uses fast-enough approaches, as opposed to using heavy debugging code. Therefore, it is
preferable to use debug tools (such as IDE debugger, debugging memory manager, OS's
checked build, etc.) to locate issues while developing applications, and use EurekaLog to
catch remaining issues "on the field".

And some developers use EurekaLog only for local debugging, so they want to enable
EurekaLog for development, but disable it for production.

Important Note: This article will discuss the case when you want to have EurekaLog
enabled in one profile, but not in another. If you want EurekaLog to be enabled for both
Debug and Release profiles, but with different configuration - please, see Different
EurekaLog settings for 'Debug' and 'Release' profiles article instead.

Anyway, the basic idea is that you (as developer) may want to compile your application with
and without EurekaLog. And you also need to do this (i.e. switch configurations) regularly.
There are several possible methods to do this.

1. (Correct) method #1: Define/Undefine EUREKALOG conditional symbol
EurekaLog units are included in your project as this:

program Project1;

uses

 {$IFDEF EurekaLog}
 EMemLeaks,
 EResLeaks,
 EDialogWinAPIMSClassic,
 EDialogWinAPIEurekaLogDetailed,
 EDialogWinAPIStepsToReproduce,
 EDebugExports,
 EFixSafeCallException,
 EMapWin32,
 EAppVCL,
 ExceptionLog7,

 {$ENDIF EurekaLog}
 your-units;

Where EUREKALOG symbol is defined in your project options:

68

448

Advanced topics 446

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

EUREKALOG symbol is define in project's options

You may undefine (e.g. remove) EUREKALOG symbol from certain build configurations

(profiles). Do not remove EUREKALOG_VER7 symbol, remove only EUREKALOG symbol.

Note: EurekaLog post-processing will first check if EUREKALOG symbol is present; if it is not

defined - post-processing will be skipped.

2. (Wrong) method #2: Use "Activate EurekaLog" option
The first, an obvious (and a wrong) way to archive the above mentioned goal is to use
"Activate EurekaLog" option . While this may work for many projects (basically - for those,
which options were not changed much), this option will not get the desired behavior for all
cases. For example, if you want to use EurekaLog in your project, but do not want to use
EurekaLog's memory debugging features , then "Activate EurekaLog" option will not work
for you: turning on "Activate EurekaLog" option will also turn on "Enable extended memory
manager" option.

Long technical explanation
1. "Activate EurekaLog" option is not a real option. It is a meta-switch, which does
nothing by itself, it just enables or disables other options (and among them is the
"Enable extended memory manager" option). The primary goal of "Activate EurekaLog"
switch is to enable EurekaLog and bring it to default working condition.

2. "Enable extended memory manager" option is designed to work with AND without
EurekaLog. In other words, you can disable EurekaLog in your project and enable
"Enable extended memory manager" option - and have EurekaLog's memory filter. This
is a designed behaviour - to allow to have shared memory manager in an executable
module which is designed to work with other EurekaLog-enabled executable module. An
obvious default state for "Enable extended memory manager" option is disabled, i.e. in
a brand new project "Enable extended memory manager" option will be in disabled
state - because otherwise all projects will have EurekaLog memory filter on board. So,
when you enable "Activate EurekaLog" option - it has to turn on the "Enable extended
memory manager" option.

P.S. There are few additional optional features which can work with and without full
EurekaLog in your project - see "Additional hooks" option on this page .

Therefore, while sometimes using "Activate EurekaLog" option may work for your project,
there are cases when it will not work as you want it to. For such cases there are several
other methods - listed below.

3. Method #3: Always compile with EurekaLog, but disable EurekaLog at run-
time
The easiest and most simple method is just have the same executable for all cases. Compile
your project with EurekaLog - as you would do it for production/release. Then add check like
this at startup:

234

250

352

EurekaLog 7 Documentation447

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

if ThisIsADeveloperMachine then

 SetEurekaLogState(False); // completely disable EurekaLog

where ThisIsADeveloperMachine is your custom function to determinate if you are

running on developer machine or not. You may use IsDebuggerPresent function as
ThisIsADeveloperMachine function. Or you may read registry for specific "magic" value.

You may also disable only part of EurekaLog - instead of disabling the entire EurekaLog. For
example, you may turn off leaks registering (call
EMemLeaks.DisableMemLeaksRegistering). Or you may turn off sending (set

CurrentEurekaLogOptions.SenderClasses := esmNoSend). Etc.

If you are not satisfied with run-time customization (as it will still add performance penalty
at compilation and startup) - then you have to really compile your application without
EurekaLog.

4. (Workaround) method #4: Disable "Catch memory leaks" and use
"Activate EurekaLog" option
Often a reason behind having "Enable extended memory manager" option turned off is
performance considerations. If this is a case - then you can use the following method: turn
on "Enable extended memory manager", turn off "Catch memory leaks" (and possible some
other options on "Memory problems" page - but keep "Enable extended memory manager"
turned on), and use "Activate EurekaLog" option to turn EurekaLog on/off. This way you
don't need to have different settings for different profiles.

Long technical explanation
1. You get most performance hit from "Catch memory leaks" option, as EurekaLog has
to build call stack for each memory allocation; while "Enable extended memory
manager" option itself does not have major impact on performance.
2. It is strongly recommended to keep "Enable extended memory manager" option
turned on when possible, as EurekaLog uses MM filter to track lifetime of exception
objects. The worst case scenario would be: using Delphi 2007 or earlier, having "Enable
extended memory manager" option turned off, having "Use low-level hooks" option
turned off - EurekaLog won't be able to track lifetime of exception objects in such
configuration.

5. Method #5: Switch real options instead of switching "Activate EurekaLog"
meta-switch
As mentioned above, the "Activate EurekaLog" option is a meta-switch: it turns on/off other
options. Therefore, the problem is that "Activate EurekaLog" option may turn on/off some
particular option that you want to remain untouched ("Enable extended memory manager"
option is just one example, discussed above - method #4).

The obvious way around this behavior is to ignore "Activate EurekaLog" option and turn
on/off individual options.

For example, instead of switching "Activate EurekaLog" option - try switching "Add
EurekaLog's code", "Add module's options" and "Add debug information" options (expand
advanced view on "General" page to see these options).

6. Method #6: Use custom configurations
Switching individual options (method #4) may become rather inconvenient and prune to
errors - especially when number of options to change is quite large.

There is a way to switch all options at once:
Create configuration for your project with EurekaLog enabled;
Export EurekaLog configuration in external .eof file, be sure to save it in the default folder
(i.e. do not change folder in "Export" dialog), give it a descriptive name like "Configuration
for MyProject with EurekaLog";

259

234

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680345%28v=vs.85%29.aspx

Advanced topics 448

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Create configuration for your project without EurekaLog enabled;
Export EurekaLog configuration in external .eof file, be sure to save it in the default folder
(i.e. do not change folder in "Export" dialog), give it a descriptive name like "Configuration
for MyProject without EurekaLog";

Now you can switch between two sets of options via "Application type" combo-box - just
in two clicks:

Custom profiles in "Project type" combo-box

You can also use --el_config option and define/undefine EUREKALOG conditional symbol.

7. Method #7: Use different compilation profiles
Alternative to method #6 (having several EurekaLog configurations for the same
compilation/build profile) is method #7: have different EurekaLog configurations for different
compilation/build profiles. This method is harder to setup and maintain, but it allows you to
use build-in IDE's "profiles" feature to switch between different configurations. This method
is described in a separate article .

See also:
Compiling your project with EurekaLog
Using external configuration
Different EurekaLog settings for "Release" and "Debug" profiles
Reconfiguring EurekaLog for manual control
Read-only projects
Working with configurations

11.3.4 Different EurekaLog settings for 'Debug' and 'Release' profiles

This article is supposed to answer on one common question asked by our customers. They
want to use different EurekaLog settings for different compilation profiles. This article will

234

432

448

421

443

448

451

449

439

EurekaLog 7 Documentation449

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

explain how to do this.

Important note: This article will discuss the case when you want to have EurekaLog
enabled in both Debug and Release profiles, but with different configuration. If you want
EurekaLog to be enabled for Debug profile and be disabled for Release profile (or visa
versa) - please, see Compiling your project with and without EurekaLog article instead.

Well, first - unfortunately, there is no IDE solution for certain technical reasons. But this
doesn't mean that you can't do this. You can't use automatic solution, but you can perfectly
set all options manually.

For the purposes of this article we will use EurekaLog 7.6 and Delphi XE. The discussed
features may be unavailable in older versions. Please, see Reconfiguring EurekaLog for
manual control article for an alternative method to set up profiles.

See also:
Storing EurekaLog options
ecc32/emake command line options
Using external configuration
Compiling your project with and without EurekaLog
Reconfiguring EurekaLog for manual control
Read-only projects
Working with configurations

11.3.5 Read-only projects

Some developers set their project files (such as .dpr or .dproj) to read only. Read-only
project files are used as indicators to version control software. However, putting your
project to read-only will prevent EurekaLog from working properly - because EurekaLog
needs to modify your project to include EurekaLog units and adjust options for debugging.

Step 1: initial setup of EurekaLog in your project
First, you have to configure EurekaLog in your project for the first time. You have to remove
read only attribute from your project files to do this. Next, open your project, open
EurekaLog project options and configure EurekaLog as you usually would do.

This step will set your project options for debugging, include EurekaLog units into your
application, and store EurekaLog options with your project.

Step 2: [optional] disable EurekaLog's assist for project files
Next, you have to tell EurekaLog that it should not try to modify your project files. Usually
EurekaLog will try to do this. If your project files are set as read only - EurekaLog will fail
and ask you to make your files writable. However, since we already set up EurekaLog -
there is no need to make any further modifications.

Note: EurekaLog will only try to modify your project files if it does not match EurekaLog
configuration (for example, map file generation is disabled, or uses clause in DPR file does
not include EurekaLog units). If there is no need to make changes - EurekaLog will not try
to modify/write project files. Therefore, you may skip this step and use "file is read-only"
errors as indication that configuration was changed and project needs to be adjusted.

You can instruct EurekaLog to skip project modifications this by enabling
"DoNotTouchOptions", "DoNotTouchUnits", and "DoNotTouchPackages" options. Open

EurekaLog project options (Project / EurekaLog options), go to "Advanced" / "Custom/
Manual" category, add the following lines to any location:

DoNotTouchOptions=1

445

451

440

432

443

445

451

449

439

Advanced topics 450

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

DoNotTouchUnits=1
DoNotTouchPackages=1

Close dialog with OK button and save your project. Now EurekaLog will not try to modify
project options or list of units.

Step 3: re-enable read-only status
Finally, it's time to enable your read-only attribute back for project files. Your project files
can be read-only and EurekaLog will work. EurekaLog will be fully functional. EurekaLog will
post-process your project on each compilation by using currently set options.

Non-EurekaLog read-only projects
If you want to work with read-only projects without using EurekaLog for them, but still have
EurekaLog IDE expert installed - then you have to instruct EurekaLog to skip your non-
EurekaLog projects (otherwise EurekaLog may try to remove itself from the project and fail
cause project is read-only). To do this - create empty .eof text file with the same name as
your project. For example, if you have Project1.dpr project - then you should create new

Project1.eof file. Place the following lines to this .eof file (use Notepad to edit file; it's a

text file):

[Exception Log]
DoNotTouch=1

Save changes. Done.

See also:
Storing EurekaLog options
Using external configuration
Compiling your project with and without EurekaLog
Different EurekaLog settings for "Debug" and "Release" profiles
Reconfiguring EurekaLog for manual control
Working with configurations

11.3.6 Sharing EurekaLog settings in project group

Sometimes you work on a project with large amount of Delphi projects grouped into project
group. You may either want to share a common EurekaLog settings between projects or set
EurekaLog settings for few projects simultaneously.

Generally speaking, blindly sharing EurekaLog settings between several different projects is
not a good idea. Various projects may be of a different type: like VCL application, DLL,
packages, etc. These projects must have slightly or significantly different EurekaLog
settings.

Therefore, a better idea would be to put all of your projects into logical groups, each group
should have exactly the same EurekaLog settings. For example, you may select a group of 1
project for main executable, a group for DLLs and a group for packages. In other words,
your project group may have either one or several logical groups of projects.

Once you have decided which projects should have different EurekaLog settings - it is time
to actually assign them. Unfortunately, IDE does not provide a way to edit options of
multiple projects simultaneously. You only can edit one project at time. Therefore, you
should use one of the following workarounds:

1. Option #1: Export / Import

1. You should configure EurekaLog for one particular project in a logical group.
2. Then you can use "Export" button to export EurekaLog settings into .eof file.
3. Save this file somewhere outside of project sources.

440

443

445

448

451

439

227

EurekaLog 7 Documentation451

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

4. Open each other project from the same logical group.
5. Import EurekaLog settings from .eof file saved on steps 2-3. Use "Import" button for

that.
6. Repeat steps 4-5 for each project in logical group.
7. Repeat steps 1-6 for each logical group. You may re-use saved configuration as base

settings for step 1.
8. Done. You may delete .eof file, it is no longer needed.

This sequence will assign exactly the same EurekaLog settings for all projects in the same
logical group. However, any further changes to EurekaLog settings in any of projects will
not affect other projects in the same logical group. If you want to make changes in all
projects in a logical group - then you must edit options in one project and then repeat steps
2-6.

2. Option #2: Using External Configuration

1. You should configure EurekaLog for one particular project in a logical group. Choose
project carefully, as it will become a master-project for your group.

2. (Optional) Use "Export" button to save EurekaLog settings into .eof file.
3. Open each other project from the same logical group.
4. Check "Use external configuration" option and select .eof file created on step 2 (an

open dialog will be opened automatically; if not - use "..." button to manually show open
dialog).

5. Repeat steps 3-4 for each project in logical group.
6. Repeat steps 1-5 for each logical group. You may import saved configuration as base

settings for step 1. However, do not save all configurations into a single file. You must
save each configuration into file corresponding to the project.

7. Done. Do not delete any .eof files - they are required.

This sequence will also assign exactly the same EurekaLog settings for all projects in the
same logical group. However, now your settings are stored in the single .eof file rather than
individual .eof files for each project. The advantage of this method is that you can edit
EurekaLog options of master-project - and this will automatically "adjust" options in all
projects from the same logical group.

If you want to make some particular project to be different from its logical group - then you
can uncheck "Use external configuration" option, import .eof file from master-project, and
adjust settings for this project.

Note: there is no inheritance support in EurekaLog's settings.

See also:
Storing EurekaLog options
Using external configuration
Compiling your project with and without EurekaLog
Different EurekaLog settings for "Debug" and "Release" profiles
Reconfiguring EurekaLog for manual control
Working with configurations

11.3.7 Reconfiguring EurekaLog for manual control

This article will discuss how you can control EurekaLog manually - without assistance of IDE
expert . This may be useful if you want to use EurekaLog without IDE expert installed, if
you want consistent behavior between IDE and your build tool, or for any other reason.

Step 1: get working solution for single profile
First, we create a new VCL application and place a button to raise exception. Then go to
Project/EurekaLog options, enable EurekaLog and specify type of this application (VCL
Forms). You can also set other options as you desire. Now run the application and confirm
it's working as expected.

227

234

440

443

445

448

451

439

604

Advanced topics 452

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Step 2: reconfigure project for manual control

A: Creating options
For the next step you should go to "Project" / "EurekaLog options" and use "Export" button
to create .eof file. Place it in the same folder as your project (by default "Profiles" folder is
suggested, switch to your project's folder). Name it as you like. For example:
Project1_Custom_Config.eof.

B: Disable IDE assist
Now, don't close options dialog, but go to "Advanced" / "Custom/Manual" and add
"DoNotTouch=1" line (without quotes) in any place (as new line). This will disable any

assist for your project from IDE expert. Close settings and save your project.

Note: do not add "DoNotTouch=1" line to configuration created on step A above.

You can confirm if option is taking effect by disabling EurekaLog, saving your project and
observing that there are no changes in your .dpr file - all units are still included even if no
EurekaLog is enabled.

Note: EurekaLog also supports "DoNotTouchCompilation", "DoNotTouchOptions",

"DoNotTouchUnits", and "DoNotTouchPackages" options for more precise control over

options. Set "DoNotTouch" option to completely disable EurekaLog assist for the project; or

set one or several "DoNotTouchXYZ" options. "DoNotTouchCompilation" option disables

post-processing assist. Enable this option if you intend to invoke ecc32/emake manually.
"DoNotTouchOptions" disables modification of project options and defines. Enable this

option if you want to manage project options manually. "DoNotTouchUnits" disables

modification of units in uses clause. Enable this option if you want to manually manage your
units. "DoNotTouchPackages" option disables modifications in run-time packages list.

Alternatively, you may simply disable/remove EurekaLog IDE expert.

C: Setting up post-processing
Now, it's time to restore post-processing for your application . Go to "Project" /
"Options" (not EurekaLog options) and look for build events options .

Add the following command as pre-build event which is invoked before compilation:

IF EXIST "C:\Program Files (x86)\Neos Eureka S.r.l\EurekaLog 7\Packages\Studio16\ecc32.exe"
"C:\Program Files (x86)\Neos Eureka S.r.l\EurekaLog 7\Packages\Studio16\ecc32.exe"
"--el_prepare=$(PROJECTPATH)"
"--el_config=Project1_Custom_Config.eof"

Add the following command as post-build event which is invoked after successful
compilation:

IF EXIST "C:\Program Files (x86)\Neos Eureka S.r.l\EurekaLog 7\Packages\Studio16\ecc32.exe"
"C:\Program Files (x86)\Neos Eureka S.r.l\EurekaLog 7\Packages\Studio16\ecc32.exe"
"--el_alter_exe=$(PROJECTPATH);$(OUTPUTPATH)"
"--el_config=Project1_Custom_Config.eof"

Notes:
Both command lines are broken into several lines for readability. Do not break into lines
when entering command-line to pre/post-build events in IDE;
Replace "C:\Program Files (x86)\Neos Eureka S.r.l\EurekaLog 7\" folder with

real EurekaLog installation path on your machine;
Replace "Studio16" with corresponding name for your IDE;

Replace "Project1" with your real project name;

You can find the IDE's $(Config) and $(Platform) variables useful. $(Config) will be

replaced with build configuration name (profile) - such as Debug and Release.

$(Platform) will be replaced with short name of the platform - such as Win32, Win64,

421

429

604

EurekaLog 7 Documentation453

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

OSX. So you can have file like Project1_Win32_Debug.eof and use "--
el_config=Project1_$(Platform)_$(Config).eof" switch.

So, the resulting command-line may look like this when run:

IF EXIST "C:\Program Files (x86)\Neos Eureka S.r.l\EurekaLog 7\Packages\Studio16\ecc32.exe"
"C:\Program Files (x86)\Neos Eureka S.r.l\EurekaLog 7\Packages\Studio16\ecc32.exe"
--el_alter_exe"C:\Projects\Project1.dproj;C:\Projects\Debug\Win32\Project1.exe"
"--el_config=Project1_Custom_Config.eof"

Note that this is an example of final command as it will be executed by IDE. You should NOT
use this form of command (with already expanded variables) - please use the first example
with $(...) variables.

D: Check that everything works
Now compile your project and run it. If you have done everything correctly - the result must
be the same as on step 1: the correct EurekaLog-enabled application with expected
behavior as set in external .eof file (even though the EurekaLog was disabled in project).

In case of any build errors - take a look at compiler output as shown in "Messages"
window. It's docked at the bottom of IDE window by default. "Output" tab is near "Build"
tab, which is active by default. If you don't see "Messages" window - use View/Messages
command to show it, then switch to output window. The correct compilation will get you
such messages:

Build started 2012.06.29 16:58:04.
__
Project "C:\Projects\Project1.dproj" (Build target(s)):
Target _PasCoreCompile:
 C:\program files (x86)\embarcadero\rad studio\8.0\bin\dcc32.exe //-- options

cut to save space --// Project1.dpr

Target PostBuildEvent:
 IF EXIST "C:\Program Files (x86)\Neos Eureka S.r.l\EurekaLog 7\Packages
\Studio16\ecc32.exe" "C:\Program Files (x86)\Neos Eureka S.r.l\EurekaLog 7\Packages
\Studio16\ecc32.exe" "--el_alter_exe=C:\Projects\Project1.dproj;.\Debug\Win32
\Project1.exe" "--el_config=Project1_Custom_Config.eof"
 EurekaLog Command-Line Compiler v7.0.1.0 for Delphi 15.0
 --

 Loading EurekaLog options...
 EurekaLog postprocessor start...
 EurekaLog's code was added
 EurekaLog's options were added
 EurekaLog's data was added
 File size before: 2'159'616
 File size after: 2'185'216
 File size diff: +25'600
 Debug info size: 287'554
 Symbols size: 58
 Functions size: 4
 Stripped size: -138'240
 Number of units: 209
 Number of procedures: 10'136
 Number of lines: 28'124
 Total time: 00:00:00.639
 Compilation time: 00:00:00.026
 Prepare time: 00:00:00.015
 Post-process time: 00:00:00.597
 Events time: 00:00:00.001
 Memory usage:
 Allocated: 7'576'806
 RAM: 29'999'104

Advanced topics 454

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 Private: 27'066'368
 Virtual: 105'299'968
 EurekaLog postprocessor end
Build succeeded.
 0 Warning(s)
 0 Error(s)
Time Elapsed 00:00:01.91

Step 3: [optional] configuring alternative profiles
Finally, you may create any number of additional configuration profiles. The first thing you
need to do - is to decide if you want EurekaLog for this configuration or not. The difference
is that you need different project options set for different cases. As well as different unit
set.

First, conditional directives. Go to "Project" / "Options" and look to "Delphi Compiler" /
"Conditional Defines" option. Now, if you want EurekaLog for this profile - add EUREKALOG
conditional symbol. If you don't want EurekaLog for this profile - remove EUREKALOG
conditional symbol. Repeat this step for each profile of your project that you're going to use.

Second, the options of the project. EurekaLog requires certain options to be set in order to
work. Also, some option may increase or decrease detalization of EurekaLog. So, if you
want to use EurekaLog in certain profile - then you have to setup all required options
manually. Please, read this article to know what options must be set. For other profiles
(in which EurekaLog will not be used) you can set options as you desire, there are no
limitations.

Third, included units - those will be handled by --el_prepare switch which is used above.

Fourth, you have to create .eof file for each configuration profile and save it with
corresponding name.

At last - make sure that pre/post-build events that we set in options at previous step are
applied for all profiles (you can do this by entering command to Base profile and checking
that it wasn't overwritten by another profiles).

Notes:
You can use EBase unit to test whenever EurekaLog was enabled for your application or
not. This unit is specially designed to be included in any application without including full
EurekaLog's code.

Now, do a test - switch to different configuration profiles, make a build, run application and
test it.

Note: it's recommended to make a full rebuild when changing profiles or target platform.

Conclusion
This article explained the basics of manual control over configuration of your project.

As a side note - let's discuss relation between settings and configuration profile names:
In classic application: the debug profile has maximum debug options set, and the release
profile has minimum debug options set.
It's different for applications with exceptions tracers . Exception tracer requires more
info than you usually use for debugging sessions (think about "Use Debug DCUs" option).
So typically it's reversed now: you want maximum options for release version of your
application and medium (moderate) options for debugging. Therefore, you can either
swap profiles (i.e. use "debug" profile for the release version of your application) or to
completely re-setup options between profiles.

See also:
Storing EurekaLog options

58

40

440

EurekaLog 7 Documentation455

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

ecc32/emake command line options
Using external configuration
Compiling your project with and without EurekaLog
Read-only projects
Working with configurations

11.4 Using EurekaLog in DLL

These articles will describe pitfalls and "gotcha"s for using and handling exceptions in DLLs.
It will also discuss using exception tracer tools in DLLs.

1. Introduction
2. What is the proper way to handle exceptions in DLLs
3. Using exception tracer tool in DLLs
4. Using exception tracer with frameworks in DLLs
5. Using exception tracer with COM objects
6. Using EurekaLog with DLLs post-processed by 3rd party tools (JCL, madExcept, etc.)
7. Using EurekaLog with non-Embarcadero DLLs (Microsoft Visual Studio, etc.)
8. Enabling debug information for system DLLs
9. Configuring project for leaks detection

11.4.1 Introduction

1. What is DLL
2. What is exception
3. How DLLs report about failures

See also:
What is the proper way to handle exceptions in DLL
Creating bug reports for DLL exceptions

11.4.1.1 What is DLL

DLL is a library of functions. DLL can not be run as normal application - because it lacks
entry point. It is not a solid program, it is a collection of functions. It requires someone else
to call functions.

Application (.exe file) can load DLL (.dll file) and call a function from it. DLL is isolated file, not
related to application. Therefore, DLL and application can be written in different
programming languages.

Application is often called a "host application" or just "host" . Both DLL and host are also
called "executable modules" or just "modules". Sometimes "application" is referred to host
with loaded DLLs (not just the host itself).

DLL and application need to understand each other. So, a set of rules must be established
to communicate. Such set of rules is called "API".

432

443

445

449

439

455

457

473

484

488

495

496

504

508

455

456

457

457

470

Advanced topics 456

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

API is a contract between host and DLL

API can be developed by you or some other developers/company. If you're the API
developer - then you can decide how DLL will work with host. If you're not the API
developer - then you can only follow already established rules, but you can't invent your
own rules.

See also:
Using frameworks as wrapper for API
Using system or 3rd party API
Developing your own API

11.4.1.2 What is exception

Exception is represented by an object (class instance) in most modern high-level
programming languages. This means that exceptions can be inherited from base classes, as
well as be extended with arbitrary properties.

Since exception is a way to interrupt normal execution path of a code - it requires support
from hardware level. Modern CPUs provides such support. However, user-mode applications
do not have direct access to the hardware. Therefore, operating system provides method to
use exceptions on particular hardware. This is called SEH ("Structured Exception Handling")
in Windows.

Exception on operating system level is represented by its address, code, options ("flags")
and up to 15 4-byte integers ("params"). High-level programming languages use SEH and
this low-level representation as basis for their own exception handling. For example,
exception in high-level programming language (i.e. exception object) is implemented as OS
exception with special code (for example: $EEECFADE for Delphi) and pointer to object is
stored in exception params. Exceptions with other codes are wrapped in generic class
(EExternalException for Delphi).

Short conclusion:
1. There are 3 levels of exceptions support: hardware, OS, and programming language.
2. User-mode code has access to OS and language levels.
3. OS exceptions are compatible among all programming languages.
4. Language exceptions are specific to programming language and could not be properly

used in another programming language.

458

459

467

EurekaLog 7 Documentation457

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

See also:
What is the proper way to handle exceptions in DLL

11.4.1.3 How DLLs report about failures

Remember that object and class implementations are specific for programming language
and compiler. I.e. a Delphi application doesn't know how to work with objects/classes from
(for example) Microsoft C++ (and visa versa). This means that hi-level exception raised in
DLL could not be properly handled by host application, unless both DLL and host are
compiled by the same compiler and exception class uses the virtual destructor.

Also note that mixing OS and language exceptions within same module is confusing/
problematic thing.

Therefore, APIs for DLLs usually do not use exceptions as a way to report errors. Instead:
functions can use error codes - such as numeric codes, success/failure flags (booleans) and
so on. There are de facto standard ways to report errors - provided by operating system
(for example: GetLastResult, HRESULT - on Windows). However, 3rd party DLLs may use
arbitrary error reporting method.

See also:
What is the proper way to handle exceptions in DLL

11.4.2 What is the proper way to handle exceptions in DLL

As you should already understood by now : rule #1 when working with exceptions in
DLLs is "never let exception escape DLL". That because caller may not know how to work
with exception object generated by different programming language. For example, a Delphi
.exe file have no idea to to read exception message from Microsoft C++ exception; it
doesn't know how to properly release exception object after exception is handled.
Therefore, all exceptions in DLL functions must be captured and handled by translating
them to error code or other error signature as required by DLL API.

How this should be done? That highly depends on what your DLL API is. This also depends
on what framework you do use. There are 3 possible cases:
1. You develop DLL by using a framework . For example: you write a control panel applet

by using VCL. Or you write ISAPI module by using IntraWeb.
2. You develop DLL for already established API without using a ready framework . For

example: you write a plugin for 3rd party application (like Total Commander). Or you write
a global system hook (which requires DLL).

3. You develop both DLL and API specification . For example: you write your own DLL to
be used by different applications.

See also: Creating bug reports for DLL exceptions .

What if I don't want to follow best practice rules?
You may want not to follow this rule ("never let exception escape DLL"). For example, you
are sure that both host and all DLLs are always compiled by the same compiler version.
Such usage case usually means using packages instead of DLLs. However, you may want to
use DLLs for some other reasons.

In this case you can instruct EurekaLog to handle exceptions from other modules. You can
enable this behavior by disabling "Capture stack only for exceptions from current module"
option . You should probably disable chained exceptions support for DLLs that let
exceptions escape DLL and be handled by the caller. This feature requires ability to track life
time of exceptions objects. This is not possible for general case (e.g. host and DLL are
compiled by different compilers and there is no assist from RTL for tracking exception
objects). This feature may work in some specific configurations. See this article for more
information.

Such usage case means using a single instance of exception tracer in application . Host

457

457

455

458

459

467

470

237 573

48

474

Advanced topics 458

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

.exe must have exception tracer with above mentioned options changed and enabled
support for all necessary debug information formats . DLLs must have debug information
source, but no exception tracer.

DLLs can:
be post-processed by EurekaLog with "DLL" profile ;
be post-processed by JCL (without having JclHookExcept active);
be post-processed by madExcept (without exception tracer activation);
supply .map /.tds files (this is only useful for IDEs without any exception tracer tool
installed);
supply PDB/DBG files ;
Non-Embarcadero DLL can be post-processed by EurekaLog based on output from 3rd
party compiler ;

See also:
Creating bug reports for DLL exceptions
Configuring call stack
List of supported debug information formats

11.4.2.1 Framework

This is the simplest case - because all pitfalls are already handled by a framework. All your
code is called by the framework. All exception from your code are handled by the
framework. Framework handles exceptions and convert them to something (what is
required by the API).

355

410 368

412

413

410 411

412

496

470

48

409

EurekaLog 7 Documentation459

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Framework takes care of passing exceptions between host and DLL

In this case you can just write your code as you usually do. Framework will provide a
default handling and error reporting. Some frameworks also allow you to alter default
handling (useful for customizations). You should refer to the documentation of your
framework if you want to do such customizations. Usually, there is some sort of global
Application.OnException event, which you may assign to your handler's code.

Note: some frameworks handles exceptions within DLL by showing error message in DLL
and passing "fail" to the caller. Some frameworks leaves decision about what do to with the
exception to the caller - which may show error message for exception or may do something
else (like re-try or perform alternative solution). Therefore, the creation of bug reports for
exceptions from DLL is not always an easy question. Some possible approaches are
illustrated in this article .

11.4.2.2 System or 3rd party API

This case is a more complex. Basically, you need to study the API and figure out how you
should report about errors in your function. You can not use arbitrary nor default way -

470

Advanced topics 460

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

because API is already established by someone. It's not you who develop API. You only
develop a DLL.

Note: when you write EurekaLog-enabled DLL to be used in non EurekaLog-enabled host
(such as Explorer, Internet Explorer, Microsoft Office, etc.) - you have to compile your DLL
with "Standalone DLL" profile . See also .

Let's consider a little example. Suppose that you want to write a global system hook - the
one that is installed via SetWindowsHookEx function. Global hook requires you to place your
handler code inside DLL, so that DLL can be injected in all running programs (which makes
the hook a global one).

Naturally, API (i.e. communication rules between OS and your code) is already established -
it's defined by Microsoft (as a developer of hooking functions). Therefore, the first thing that
you should do is to study documentation for the functions. You pass a pointer to your
handler's code via second argument in SetWindowsHookEx function (lpfn param). Prototype
of the handler depends on what kind of hook do you want to use. Let's use WH_GETMESSAGE
hook for this example. This means that we must study description of GetMsgProc callback.

The important part for error handling looks like this:

If code is less than zero, the hook procedure must return the value returned by
CallNextHookEx.

If code is greater than or equal to zero, it is highly recommended that you call
CallNextHookEx and return the value it returns; otherwise, other applications that have
installed WH_GETMESSAGE hooks will not receive hook notifications and may behave
incorrectly as a result. If the hook procedure does not call CallNextHookEx, the return
value should be zero.

In other words, your code could not report any failure reason. All that you can do is either
return 0 or return whatever CallNextHookEx returns.

Therefore, your DLL code must looks at least like this:

library Project2;

uses
 Windows;

function MyHook(Code: Integer; _wParam: WPARAM;
 _lParam: LPARAM): LRESULT; stdcall;
begin
 try
 if Code >= 0 then
 begin

 // <- your code
 end;
 except

 // There is no way to report errors,

 // so we must handle all exceptions
 end;
 Result := CallNextHookEx(Code, _wParam, _lParam);
end;

Usually it's not a good idea to silently hide all exceptions. If API doesn't allow you to report
about errors - then you should at least implement some kind of logging, so you can store
information about exception in the log. Some possible solutions for except block are
examined in this article .

Let's see another example. Suppose you're writing a control panel applet without using any
framework. This means that you must write and register DLL. DLL must export CPlApplet

369 480

470

http://msdn.microsoft.com/en-us/library/windows/desktop/ms644990(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644990(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644990(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644990(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644981(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644981(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644981(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644981(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb776392(v=vs.85).aspx

EurekaLog 7 Documentation461

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

function. This function will be used for all communication between OS and your code.
Description of CPlApplet says:

The return value depends on the message.
For more information, see the descriptions of the individual Control Panel messages.

This means that you also must study each message from the system that you want to
process. Luckily, most messages require you to handle errors in the same way:

If the CPlApplet function processes this message successfully, the return value is zero;
otherwise, it is nonzero.

So, you should write your DLL at least like this:

library Project2;

uses
 Windows;

function CPlApplet(hwndCPl: HWND; uMsg: UINT;
 lParam1, lParam2: LPARAM): LongInt; stdcall;
begin
 try
 case uMsg of
 ...
 end;

 Result := 0;
 except
 Result := 1;
 end;
end;

exports
 CPlApplet;

end.

Since you can't report what is actual report is - a good idea would be to report error to the
user. We can safely do this because control panel applet is a single interactive GUI
application. Showing error as dialog box is not a good idea for non-interactive applications
(such as services) or code that may be used multiple times (such as global hook).

library Project2;

uses
 Windows;

function CPlApplet(hwndCPl: HWND; uMsg: UINT;

http://msdn.microsoft.com/en-us/library/windows/desktop/bb776392(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb787973(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb787973(v=vs.85).aspx

Advanced topics 462

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 lParam1, lParam2: LPARAM): LongInt; stdcall;
begin
 try
 case uMsg of
 ...
 end;

 Result := 0;
 except
 on E: Exception do
 begin
 MessageBox(hwndCPl, PChar(E.Message),
 'Error', MB_OK or MB_ICONERROR);
 Result := 1;
 end;
 end;
end;

exports
 CPlApplet;

end.

Of course, since you can show error message - you can show the entire bug report instead:

EurekaLog 7 Documentation463

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

library Project2;

uses

 // EurekaLog units for "Standalone DLL":
 EMemLeaks,
 EResLeaks,
 EDialogWinAPIMSClassic,
 EDialogWinAPIEurekaLogDetailed,
 EDialogWinAPIStepsToReproduce,
 EDebugExports,
 ExceptionLog7,

 // EurekaLog units for our code
 EExceptionManager,

 Windows;

function CPlApplet(hwndCPl: HWND; uMsg: UINT;
 lParam1, lParam2: LPARAM): LongInt; stdcall;
begin
 try
 case uMsg of
 ...
 end;

 Result := 0;
 except
 on E: Exception do
 begin
 EExceptionManager.Handle(E, ExceptAddr);
 Result := 1;
 end;
 end;
end;

exports
 CPlApplet;

end.

(Of course, your DLL must be compiled with EurekaLog enabled, DLL must use "Standalone
DLL" profile , you should configure dialogs, bug reports, sending).

Please note that code above is just example. Not all messages to control panel applet have
the same requirements. You should study description of each message that you're going to
handle in your code. For example, CPL_INIT message has different requirements:

If initialization succeeds, the CPlApplet function should return nonzero. Otherwise, it
should return zero.
If CPlApplet returns zero, the controlling application ends communication and releases
the DLL containing the Control Panel application.

Therefore, you need to use such code to handle CPL_INIT message:

369

Advanced topics 464

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

library Project2;

uses
 Windows;

function CPlApplet(hwndCPl: HWND; uMsg: UINT;
 lParam1, lParam2: LPARAM): LongInt; stdcall;
var
 SuccessCode, FailureCode: LongInt;
begin

 // "If initialization succeeds, the CPlApplet function should return nonzero.

 // Otherwise, it should return zero."
 if uMsg = CPL_INIT then
 begin
 SuccessCode := 1;
 FailureCode := 0;
 end
 else

 // "If the CPlApplet function processes this message successfully,

 // the return value is zero; otherwise, it is nonzero."
 begin
 SuccessCode := 0;
 FailureCode := 1;
 end;

 try
 case uMsg of
 ...
 end;

 Result := SuccessCode;
 except
 on E: Exception do
 begin
 MessageBox(hwndCPl, PChar(E.Message),
 'Error', MB_OK or MB_ICONERROR);
 Result := FailureCode;
 end;
 end;
end;

exports
 CPlApplet;

end.

Next example would be a Shell extension. Shell extensions are implemented as COM
objects. That means that you need to write and register a DLL, which follows COM rules. A
COM rule for error handling is to use HRESULT as return value of any method. There are two
ways to work with HRESULT. First one is quite direct: you write a function/method that
returns HRESULT and you convert each exception to HRESULT value:

EurekaLog 7 Documentation465

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

...

function ConvertExceptionToHRESULT(const E: Exception): HRESULT;
begin

 Result := E_FAIL; // <- this is just a simple example

 // See HandleSafeCallException function from ComObj unit

 // to see more complicated example
end;

type
 ICopyHook = interface(IUnknown)
 ['{000214FC-0000-0000-C000-000000000046}']
 function CopyCallback(Wnd: HWND; wFunc, wFlags: UINT;
 pszSrcFile: PWideChar; dwSrcAttribs: DWORD;
 pszDestFile: PWideChar; dwDestAttribs: DWORD): HRESULT; stdcall;
 end;

 TMyHook = class(TInterfacedObject, ICopyHook)
 protected
 function CopyCallback(Wnd: HWND; wFunc, wFlags: UINT;
 pszSrcFile: PWideChar; dwSrcAttribs: DWORD;
 pszDestFile: PWideChar; dwDestAttribs: DWORD): HRESULT; stdcall;
 end;

function TMyHook.CopyCallback(Wnd: HWND; wFunc, wFlags: UINT;
 pszSrcFile: PWideChar; dwSrcAttribs: DWORD; pszDestFile: PWideChar;
 dwDestAttribs: DWORD): HRESULT; stdcall;
begin
 try

 // your code

 Result := S_OK;
 except
 on E: Exception do
 Result := ConvertExceptionToHRESULT(E);
 end;
end;

function DllCanUnloadNow: HRESULT; stdcall;
begin
 try

 if { it's OK to unload DLL } then
 Result := S_OK
 else
 Result := S_FALSE;
 except
 on E: Exception do
 Result := ConvertExceptionToHRESULT(E);
 end;
end;

...

The second way is to use Delphi wrapper for HRESULT. Delphi compiler provides assisting for HRESULT returning methods via safecall keyword. Any function like this:

function Funcensten1(... some arguments ...): HRESULT; stdcall;
function Funcensten2(... some arguments ...; out AResult: TSomeType): HRESULT; stdcall;

Advanced topics 466

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

has the same protype and the same calling convention as such function:

procedure Funcensten1(... some arguments ...); safecall;
function Funcensten2(... some arguments ...): TSomeType; safecall;

In other words, the above code fragments are binary compatible with each other. So, for
example, DLL may use first code block and host may use second code block - and both will
work correctly.

The difference between HRESULT/stdcall and safecall headers is assisting from Delphi
compiler. Each safecall function and method automatically handles all exceptions within
itself. Moreover, each call to safecall function/method automatically converts HRESULT return
value back to exception.

So, the second way to work with HRESULT is:

...

type
 ICopyHook = interface(IUnknown)
 ['{000214FC-0000-0000-C000-000000000046}']
 procedure CopyCallback(Wnd: HWND; wFunc, wFlags: UINT;
 pszSrcFile: PWideChar; dwSrcAttribs: DWORD; pszDestFile: PWideChar;
 dwDestAttribs: DWORD); safecall;
 end;

 TMyHook = class(TInterfacedObject, ICopyHook)
 protected
 procedure CopyCallback(Wnd: HWND; wFunc, wFlags: UINT;
 pszSrcFile: PWideChar; dwSrcAttribs: DWORD; pszDestFile: PWideChar;
 dwDestAttribs: DWORD); safecall;
 end;

procedure TMyHook.CopyCallback(Wnd: HWND; wFunc, wFlags: UINT;
 pszSrcFile: PWideChar; dwSrcAttribs: DWORD; pszDestFile: PWideChar;
 dwDestAttribs: DWORD); safecall;
begin

 // your code
end;

function DllCanUnloadNow: HRESULT; stdcall;

// Unfortunately, it's not possible to customize return code

EurekaLog 7 Documentation467

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

// to be S_FALSE for simple function.

// Otherwise DllCanUnloadNow could have been written like this:

// procedure DllCanUnloadNow; safecall;
begin
 try

 if { it's OK to unload DLL } then
 Result := S_OK
 else
 Result := S_FALSE;
 except
 on E: Exception do
 Result := ConvertExceptionToHRESULT(E);
 end;
end;

...

Converting exception to HRESULT value will be done automatically by Delphi's RTL code.

Notes:
A more detailed description of using COM can be found in this article ;
Barebone converting to HRESULT in ConvertExceptionToHRESULT may be insufficient for
your needs. It's possible to customize it by overriding SafeCallException method. See
Delphi help for more information;
Possible implementations of ConvertExceptionToHRESULT with creation of bug reports are
discussed in this article ;
COM also allow you to ship additional information with exception. See SetErrorInfo
function.

See also:
Using exception tracer with COM objects
Creating bug reports for DLL exceptions

11.4.2.3 Your own API

When you want to develop a new DLL which will be used by many applications ("common
DLL") or if you want to write an application which may be extended with 3rd party DLLs
("plugins") - then you need to develop API, i.e. set of rules which will be used to
communications between host and DLLs.

COM - a default solution to design API
It's a good idea to provide an informative and easy way to report and handle errors. An
easy solution would be to use COM . That's because COM is relatively modern API, which
provides a decent way to work with errors. COM also has support in many frameworks.

Second best bet - HRESULT via interfaces or functions
If you think that COM is an "overkill" for your application, then you have to develop your
own API. It would be a good idea to use HRESULT as base of error handling part in your API.
That's because HRESULT offers a good range of possible error values, it has additional
support in Delphi (via safecall) and it's familiar for many Windows developers.

So, functions from your DLL may looks like this:

488

470

488

470

488

http://docwiki.embarcadero.com/Libraries/en/System.TObject.SafeCallException
http://docwiki.embarcadero.com/Libraries/en/System.TObject.SafeCallException
http://docwiki.embarcadero.com/Libraries/en/System.TObject.SafeCallException
http://docwiki.embarcadero.com/Libraries/en/System.TObject.SafeCallException
http://docwiki.embarcadero.com/Libraries/en/System.TObject.SafeCallException
http://msdn.microsoft.com/ru-ru/library/windows/desktop/ms221409(v=vs.85).aspx
http://msdn.microsoft.com/ru-ru/library/windows/desktop/ms221409(v=vs.85).aspx

Advanced topics 468

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

library Project2;

uses
 Windows;

procedure Init; safecall;

// the same as:

// function Init: HRESULT; stdcall;
begin

 // your code
end;

function DoSomething(A1: Integer; const A2: WideString): Integer; safecall;

// the same as:

// function DoSomething(A1: Integer; const A2: WideString;

// out AResult: Integer): HRESULT; stdcall;
begin

 // your code

 Result := { ... };
end;

procedure Done; safecall;

// the same as:

// function Done: HRESULT; stdcall;
begin

 // your code
end;

exports
 Init, DoSomething, Done;

end;

As an alternative to a "safecall compiler magic" - you may write the same code as this:

library Project2;

uses
 Windows;

function Init: HRESULT; stdcall;

// the same as:

// procedure Init; safecall;
begin
 try

 // your code

 Result := S_OK;
 except
 on E: Exception do
 Result := ConvertExceptionToHRESULT(E);
 end;
end;

function DoSomething(A1: Integer; const A2: WideString;

EurekaLog 7 Documentation469

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 out AResult: Integer): HRESULT; stdcall;

// the same as:

// function DoSomething(A1: Integer; const A2: WideString): Integer; safecall;
begin
 try

 // your code

 AResult := { ... };

 Result := S_OK;
 except
 on E: Exception do
 Result := ConvertExceptionToHRESULT(E);
 end;
end;

function Done: HRESULT; stdcall;

// the same as:

// procedure Done; safecall;
begin
 try

 // your code

 Result := S_OK;
 except
 on E: Exception do
 Result := ConvertExceptionToHRESULT(E);
 end;
end;

exports
 Init, DoSomething, Done;

end;

Both implementations are binary compatible with each other and do the same thing. The
difference is that second implementation allows you to control exception handling.

Note: it's also a good idea to use interfaces instead of simple functions in your DLLs.
Interfaces allow you to customize safecall handling by overriding SafeCallException method.
Interfaces also allow you to simplify memory management and avoid using shared memory
manager.

Possible ways to handle exceptions within DLLs
ConvertExceptionToHRESULT is some function that you need to write which will handle
exceptions and converts failure reasons to HRESULT codes. The simplest implementation
may look like this:

function ConvertExceptionToHRESULT(E: Exception): HRESULT;
begin
 Result := E_FAIL;
end;

(The same function is used as default action for TObject.SafeCallException method.)

Obviously, such primitive function will ignore any exception's info and just report
"something went wrong" to the caller. A more complex implementation of this function
can be found in System.Win.ComObj unit - see HandleSafeCallException function. (This

http://docwiki.embarcadero.com/RADStudio/en/Object_Interfaces_Index
http://docwiki.embarcadero.com/Libraries/en/System.TObject.SafeCallException
http://docwiki.embarcadero.com/Libraries/en/System.TObject.SafeCallException
http://docwiki.embarcadero.com/Libraries/en/System.TObject.SafeCallException
http://docwiki.embarcadero.com/Libraries/en/System.Win.ComObj
http://docwiki.embarcadero.com/Libraries/en/System.Win.ComObj
http://docwiki.embarcadero.com/Libraries/en/System.Win.ComObj.HandleSafeCallException
http://docwiki.embarcadero.com/Libraries/en/System.Win.ComObj.HandleSafeCallException

Advanced topics 470

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

function is used as default action for TComObject.SafeCallException method.)

uses
 ComObj;

function ConvertExceptionToHRESULT(E: Exception): HRESULT;
const
begin
 Result := HandleSafeCallException(E, ExceptAddr, GUID_NULL, GUID_NULL, '');
end;

This example will additionally pass error message and help context via IErrorInfo interface.
This example pass empty values for COM-related information (error ID, source ID and help
file name). You can use these values as you want in your own API. COM applications should
fill these values with actual information (this task is done automatically for VCL-based COM
objects - see TComObject.SafeCallException method).

Creating bug reports for DLL exceptions
Please note that no implementation of ConvertExceptionToHRESULT in the above examples
creates bug report for the exception.

Creating bug reports for DLL exceptions is not an easy question - because final handling of
the exception is not under your control. It is the caller of your DLL who decides what to do
with the exceptions from your DLLs. Surely, exception from your DLL may be handled as
usual: by showing error message to end user, asking to send bug report to developers, etc.
However, exception from your DLL may also be silently handled by the caller and failed
action will be repeated. Or the caller may try to execute fallback method with alternative
solution (for example, the code that tries to set application for auto-launch may write to
HKEY_LOCAL_MACHINE registry key. If this action will fail due to application being run under
limited user account - the code may switch to HKEY_CURRENT_USER key, e.g. re-try action
with other params).

For these reasons you can not simply show error dialog and ask to send bug report -
because:

If exception from your DLL will be handled as error by the caller - then the error message
will appear twice: first from your DLL as bug report, second - from the caller;
If exception from your DLL will be handled as non-error by the caller (i.e. the caller may
re-try action or try alternative solutions) - then your DLL will show "false" error message
(user will see error dialog - even though requested action will be completed by the caller).

Some possible solutions to this problem are explored in this article .

See also:
Using exception tracer with COM objects
Creating bug reports for DLL exceptions

11.4.2.4 Creating bug reports for DLL exceptions

Exceptions should never leave DLLs . This means that exceptions should be handled in
exported functions and converted to some error sign (a flag, an integer error code,
HRESULT code, etc.). The entire life-time of any exception from DLL can be illustrated by this
example:

470

488

470

457

http://docwiki.embarcadero.com/Libraries/en/System.Win.ComObj.TComObject.SafeCallException
http://msdn.microsoft.com/en-us/library/windows/desktop/ms221233(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms221233(v=vs.85).aspx
http://docwiki.embarcadero.com/Libraries/en/System.Win.ComObj.TComObject.SafeCallException

EurekaLog 7 Documentation471

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Advanced topics 472

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Exception's life-time in COM applications

This example uses COM application for illustration, but the similar is true for any other good
designed DLL with minor adjustments.

Notice that such approach will not create bug reports for the exceptions. Each exception
from DLL (callee) is converted to "error code". No error message is shown to user. Error
message shown to user comes from second exception - the one that was raised by caller/
host.

Creating bug reports for DLL exceptions is not an easy question - because final handling of
the exception is not under your control. It is the caller of your DLL who decides what to do
with the exceptions from your DLLs. Surely, exception from your DLL may be handled as
usual: by showing error message to end user, asking to send bug report to developers, etc.
However, exception from your DLL may also be silently handled by the caller and failed
action will be repeated. Or the caller may try to execute fallback method with alternative
solution (for example, the code that tries to set application for auto-launch may write to
HKEY_LOCAL_MACHINE registry key. If this action will fail due to application being run under
limited user account - the code may switch to HKEY_CURRENT_USER key, e.g. re-try action
with other params).

For these reasons you can not simply show error dialog and ask to send bug report -
because:

If exception from your DLL will be handled as error by the caller - then the error message
will appear twice: first from your DLL as bug report, second - from the caller;
If exception from your DLL will be handled as non-error by the caller (i.e. the caller may
re-try action or try alternative solutions) - then your DLL will show "false" error message
(user will see error dialog - even though requested action will be completed by the caller).

You can try to use different approaches for creating bug reports for exceptions in DLLs. A
very simple approach would be to append call stack to exception message:

uses
 ComObj;

function ConvertExceptionToHRESULT(E: Exception): HRESULT;
const
begin
 Result := HandleSafeCallException(E + E.StackTrace, ExceptAddr, GUID_NULL, GUID_NULL, '');
end;

(Works for both "DLL" and "Standalone DLL" profiles.)

This is a very simple, but still a good way. A great advantage is that this approach will work
in any host - even if host have no exception tracer enabled. If exception from your DLL will
be recognized as an error by the caller, then the caller will show error message - and your
error message includes call stack. This will give you information about the problem. And this
will work for any host - including Internet Explorer (ActiveX), Microsoft Office (COM plugins),
etc.

However, the limitation of the above method is that it will not provide you a full bug report
(with environment information, CPU/Assembly dump, etc.). It will only show a call stack.

Other possible solution would be to configure DLL to create bug report files silently - i.e.
without dialogs and sending reports and to create new bug report for each exception that
leaves DLL:

EurekaLog 7 Documentation473

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

uses
 ComObj, EAppType;

function ConvertExceptionToHRESULT(E: Exception): HRESULT;
const
begin
 _ExceptionManagerHandle(E, ExceptAddr);
 Result := HandleSafeCallException(E, ExceptAddr, GUID_NULL, GUID_NULL, '');
end;

(Works for both "DLL" and "Standalone DLL" profiles.)

Therefore, all bug reports from DLL will be collected in bug reports output folder for DLL:
If your .exe host is not EurekaLog-enabled - you can't automatically show and/or send
DLL bug reports. However, you may manually open bug reports to study bugs.
If your .exe host is EurekaLog-enabled - it can attach these files to its own bug report as
additional files:
o [Recommended] If your application uses a single instance of exception tracer (i.e.

host .exe has EurekaLog, DLL does not have EurekaLog - all DLLs are compiled with
"DLL" profile). This means that both host and DLLs will use the same exception
tracer and the same options. Thus, all bug reports will be stored in the same file. You
need to allow multiple bug reports in bug report file by setting "Max. reports in one
file" option to value greater than 1. You should also set "Send entire bug report file
with multiple reports" option to send all reports together.

o [Not recommended] If your application uses multiple instances of exception tracer
(i.e. both host .exe and DLLs have EurekaLog - all DLLs are compiled with "Standalone
DLL" profile). You can supply a name to bug report file as "help file name":

function ConvertExceptionToHRESULT(E: Exception): HRESULT;
const
begin
 _ExceptionManagerHandle(E, ExceptAddr);
 Result := HandleSafeCallException(E, ExceptAddr, GUID_NULL, GUID_NULL,
 ExceptionManager.Info(E, ExceptAddr).Options.OutputLogFile(''));
end;

A caller may use help file name property to figure out file name with bug report from
DLL.

You can design and implement any other solution to create bug report files. You can
combine the above solutions.

See also:
Using exception tracer with COM objects
Using exception tracer with system/3rd party API
Developing DLL API

11.4.3 Using exception tracer tool in DLLs

Many developers prefer to use exception tracer tool in their DLLs. Exception tracer collects
information about problems in your code, allowing you to diagnose failures more easily.

Remember what exception tracer does to your application :

474

368

264

304

480

369

488

459

467

38

Advanced topics 474

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

EurekaLog-enabled executable

Exception tracer includes its code in your module. It also injects some data - debug
information and options. Both (code and data) are required for exception tracer to function.

When you have more than just single executable module - things become interesting.
Exception tracer could be inserted into one module or into each module:
1. There is single instance of exception tracer in application
2. Each module has its own exception tracer code

First case is good when you can afford enabling exception tracer in host application.
Centralized management will allow you to reduce performance cost when you have many
DLLs. For example, consider application with 50 DLLs (keep in mind "plugins" scenario).
Each exception must be analyzed by exception tracer. If each DLL has its own exception
tracer - then each exception will be analyzed 50 times. A good idea would be to have only
one instance of exception tracer, so information is collected only once. Any DLL can ask
central exception tracer for information about exception.

Second case is good when host application is out of your control. Since you can not use
exception tracer in host - then the only choice left is to add it to DLL. Each DLL will have its
own isolated exception tracer. Examples are ActiveX (host will be Internet Explorer), COM
(host can be Microsoft Office), etc.

See also:
Using exception tracer with COM objects

11.4.3.1 Single instance of exception tracer

This case require you to enable exception tracer for host application. You should do this in
the same way as you do it for typical application without any DLLs. For example, if you have

474

480

488

EurekaLog 7 Documentation475

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

VCL Forms application as the host - then you need to enable EurekaLog for host application
and set application type to "VCL Forms Application". This will add EurekaLog code and data
into final .exe file. It would also set hook for Forms.TApplication.HandleException method,
which will allow to automatically handle exceptions without writing any code.

Now, the host has exception tracer. The host must be configured with different settings
depending on your API design:

If your API follows the best practice ("never let exception escape DLL") - you don't
need to alter any other options;
If your API does not follow the best practice ("never let exception escape DLL") - you
have to disable "Capture stack only for exceptions from current module" and chained
exceptions support options as explained here .

Each DLL must also has EurekaLog enabled and application type must be set to "DLL".
Such settings will inject debug information into DLL, but will not include exception tracer
code. Rather DLL will ask host application for information. Please note that majority of
EurekaLog settings will be ignored for DLL, since there will be no EurekaLog code in your
DLL.

Note: it's not strictly necessary to enable EurekaLog for DLLs in this example. You can just
supply debug information and keep EurekaLog off. For example, DLLs can:

be post-processed by EurekaLog with "DLL" profile ;
be post-processed by JCL (without having JclHookExcept active);
be post-processed by madExcept (without exception tracer activation);
supply .map /.tds files (this is only useful for IDEs without any exception tracer tool
installed);
supply PDB/DBG files ;
Non-Embarcadero DLL can be post-processed by EurekaLog based on output from 3rd
party compiler ;

Host application loads multiple DLLs with "DLL" profile

Let's see this on practice. Create a new VCL application and place buttons to invoke
functions from DLL.

457

457

237

573 457

409

410 368

412

413

410 411

412

496

Advanced topics 476

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

...

type
 TForm1 = class(TForm)
 Button1: TButton;
 Button2: TButton;
 Button3: TButton;
 procedure Button1Click(Sender: TObject);
 procedure Button2Click(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 procedure Button3Click(Sender: TObject);
 private
 FDLL: HMODULE;
 end;

var
 Form1: TForm1;

implementation

{$R *.dfm}

procedure TForm1.FormCreate(Sender: TObject);
begin
 FDLL := LoadLibrary('Project2.dll');
 Win32Check(FDLL <> 0);
end;

procedure TForm1.FormDestroy(Sender: TObject);
begin
 FreeLibrary(FDLL);
 FDLL := 0;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 raise Exception.Create('Error Message');
end;

procedure TForm1.Button2Click(Sender: TObject);
var
 P: procedure;
begin
 P := GetProcAddress(FDLL, 'Test1');
 Win32Check(Assigned(P));
 P;
end;

procedure TForm1.Button3Click(Sender: TObject);
var
 P: procedure;
begin
 P := GetProcAddress(FDLL, 'Test2');
 Win32Check(Assigned(P));
 P;
end;

EurekaLog 7 Documentation477

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

...

Code is pretty simple: we load DLL on form's creating and unload it when form is gone.
There are 3 buttons on the form to invoke different testing routines. First button raises
exception in application itself. The 2nd and 3rd buttons raise exceptions in DLL.

Don't forget to enable EurekaLog for host and set application type to "VCL Forms
Application". That's all.

Now, create a new DLL project:

library Project2;

uses

 // Added automatically

 EAppDLL, // "DLL" profile

 // Added manually
 Windows,
 SysUtils,
 Classes;

{$R *.res}

procedure Test1;
begin

 // This is just example! It's highly not recommended to do this.
 raise Exception.Create('Error Message');
end;

procedure Test2;
var
 Msg: String;
begin

 // Recommended way: handle exceptions, do not let them escape DLL
 try
 raise Exception.Create('Error Message');
 except
 on E: Exception do
 begin
 Msg := E.ToString + sLineBreak + E.StackTrace;
 MessageBox(0, PChar(Msg), 'Error', MB_OK or MB_ICONSTOP);
 end;
 end;
end;

exports
 Test1,
 Test2;

end.

This simple DLL exports 2 functions to test exceptions. First function raises exception and
lets it escape DLL, so it will be catched by caller. In our test example caller would be the
host application. Such approach is not recommended - as it's already explained above: you
should never let exceptions escape DLL. This is done only for example (illustration). It will
work correctly for our case, because DLL and exe are both compiled by the same compiler.
This will not work properly for generic case. So, it's only suitable for testing.

Advanced topics 478

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Note: if you want to raise exception in DLL and catch it by the caller - then do not use DLLs.
Use packages instead. Using packages will guarantee compatible compiler for host and DLL
(package). It's also generally less problematic with all cross-modules communications.

Second function illustrate more correct approach: we catch exceptions in function and
handle them somehow. For this example we will do very simple handling: just display error
message with stack trace. More proper approach was discussed above: you should use
some kind of error indication (such as boolean flag, HRESULT, etc.) to indicate failure
condition to the caller.

Now, enable EurekaLog for this DLL and set application type to "DLL".

Note: EAppDLL unit will be added automatically when you set profile to "DLL". This unit
contains default callbacks into host to ask for exception's info and handling. You may use
your own custom callbacks instead.

Compile both host and DLL project, run host application.

Hit buttons 1-3.

Typical exception in host application
Call stack shows only items for exe

EurekaLog 7 Documentation479

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Exception escaped DLL
Call stack shows mixed exe/DLL lines
Notice line numbers for routine in DLL

Exception did not escape DLL, it was handled by DLL by displaying error message
(screenshot was cut to save space)

Call stack shows mixed exe/DLL lines
Notice line numbers for routine in DLL

Please note that last case was a simple example of trivial exception handling in DLL. You
may be not satisfied with looks of error dialog. You may want not just "error message", but
complete bug report. To do this - you need to replace the call to MessageBox with a call to
exception manager. Normally, it would be ExceptionManager.Handle. However, there is no
exception manager in our DLL. We'll show how to do this in the "Working with frameworks

Advanced topics 480

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

and exception tracers in DLLs " article or "Creating bug reports for DLL exceptions "
article).

See also:
Creating bug reports for DLL exceptions

11.4.3.2 Multiple instances of exception tracer

This case does not require you to enable exception tracer for host application. You can do it,
but it's not required. Typically this approach should be used only when you develop DLLs to
be used in non-EurekaLog enabled host. If you have EurekaLog enable for the host -
please try to implement case 1 approach .

Since host application do not necessary have exception tracer - you must to include tracer
in each of your DLLs. Each DLL will have exception tracer. All tracers and DLLs will be
independent of each other. Each exception will be catched by each exception tracer in each
DLL.

Therefore, each DLL must has EurekaLog enabled and application type must be set to
"Standalone DLL". Such settings will add exception tracer in each DLL and inject debug
information.

Important notice: Windows 2000 does not provide any way to set exception hook in
documented way. This means that any exception tracer have to install low-level injecting
hook for internal routines. Only single module can install such hook reliably for the same
routine. If two or more different modules attempt to install such hook - it will either fail or
crash. Therefore, it's highly not recommended to use multiple instances of exception tracers
on Windows 2000. Windows XP and above do not have such issues, because newer
systems allow you to install arbitrary amount of exception hooks via documented API. This
API is called VEH: Vectored Exception Handling. If you can't use single instance of exception
tracer and have to support Windows 2000: we suggest to use Delphi 2009 or above and
disable "Use low-level hooks" option . Delphi 2009 introduced better integration between
application and exception tracer. It allow you to react on hi-level exceptions without need
to install low-level hook (however, low-level hook still may be installed to capture CPU
state). Combination of Windows 2000 and any IDE before 2009 (such as Delphi 7) will not
work reliably for multiple instances of exception manager - regardless of options in those
modules.

484 470

470

474

259

EurekaLog 7 Documentation481

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Host application loads multiple DLLs with "Standalone DLL" profile

Let's see this on practice. We'll use the same host application for this example. Of course, it
has EurekaLog enabled, but remember that it's not necessary. You may turn EurekaLog off
for host application, if you want. Actually, let's do this for the sake of better illustration. So,
open your host application project, disable EurekaLog for it and recompile (all source code
will remain the same as above).

We'll use the same DLL project for this example. We'll make only few changes. Open DLL
project and change application type from "DLL" to "Standalone DLL". This will also replace
EAppDLL unit in uses clause with multiple EurekaLog units. Also, go to dialogs options and
change "None" to any dialog that you like. We will use "MS Classic" for this example.

This could be all, but since now we have full exception tracer on board - why not ask it to
handle exceptions? We can replace our old MessageBox with a call to exception manager.
So full changed code will looks like:

Advanced topics 482

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

library Project2;

uses

 // Automatically generated:
 EMemLeaks,
 EResLeaks,
 EDialogWinAPIMSClassic,
 EDialogWinAPIEurekaLogDetailed,
 EDialogWinAPIStepsToReproduce,
 EDebugExports,
 EDebugJCL,
 ExceptionLog7,

 // Added manually:
 EExceptionManager,
 Windows,
 SysUtils,
 Classes;

{$R *.res}

procedure Test1;
begin
 raise Exception.Create('Error Message');
end;

procedure Test2;
begin
 try
 raise Exception.Create('Error Message');
 except
 ExceptionManager.ShowLastExceptionData;
 end;
end;

exports
 Test1, Test2;

end.

Save all and recompile. Run application and hit all 3 buttons:

Typical exception in host application
There is no bug report, since host application do not have exception tracer

EurekaLog 7 Documentation483

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Exception escaped DLL
There is no bug report, since exception was caught by host application (without

exception tracer)

Exception did not escape DLL, it was handled by DLL by displaying complete bug report
Call stack shows only lines within DLL

There is no information about exe, because exe do not have any debug infomation

This example gives you full EurekaLog support within DLL, but host .exe completely lacks
any support. It doesn't even have debug information, so even exception tracer from DLL is
unable to display call stack for exe. Of course, this can be fixed by enabling EurekaLog for
exe. Just remember that host application is not always under your control.

See also:
Using exception tracer with COM objects 488

Advanced topics 484

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

11.4.4 Using exception tracer with frameworks in DLLs

The previous sections assumed that you write DLLs without using any frameworks. If
you use framework (such as VCL or IntraWeb), then your actions will be slightly different.
That's because framework already contain some sort of exception handling code.

A general concept would be the same. You can use either "DLL" or "Standalone DLL"
profiles for your DLLs. So the previous facts would be the same. Additionally, you have to
configure DLLs for your framework. EurekaLog has support for common cases out of the
box. For example, if you use Forms unit in your DLL (i.e. your DLL has forms) - then you need
to hook Application.HandleException method. This can be done by enabling "VCL Forms
application" option on Advanced/Code/Hooks page in EurekaLog project options . This is
true for both "DLL" and "Standalone DLL" profiles.

Note: "Standalone DLL" profile with "VCL Forms application" option on Hooks page is equal
to "VCL Forms Application" profile. When you enable such options - DLL profile will be
switched to "VCL Forms Application" profile. This is normal behavior. After all, a profile is just
set of predefined options. If you change options to match another profile - it will be shown
as used. There is no build-in profile for "DLL" profile with "VCL Forms application" option, so
"DLL" profile will not be changed after enabling option.

Now, let's change our example to illustrate this on practice. As usual, host application will
remain unchanged. All changes will be done for DLL.

1. Single instance of exception tracer
2. Multiple instances of exception tracer

See also:
Using exception tracer with COM objects

11.4.4.1 Single instance of exception tracer

Create new DLL project, enable EurekaLog and set application type to "DLL". Since we're
going to use forms in our DLL - go do Advanced/Code/Hooks page in EurekaLog project
options and enable "VCL Forms application" option.

Now, create a new form for DLL, place a button to raise exception:

...

type
 TForm2 = class(TForm)
 Button1: TButton;
 procedure Button1Click(Sender: TObject);
 end;

implementation

{$R *.dfm}

procedure TForm2.Button1Click(Sender: TObject);
begin
 raise Exception.Create('Error Message');
end;

...

And change DLL code as:

473

473

352

484

487

488

352

EurekaLog 7 Documentation485

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

library Project2;

uses

 // Automatically generated by EurekaLog

 EAppDLL, // "DLL" profile

 EAppVCL, // "VCL Forms application" hook

 // Added manually
 EAppType,
 Windows,
 SysUtils,
 Classes,

 Unit2 in 'Unit2.pas' {Form2};

{$R *.res}

procedure Test1;
begin
 try
 raise Exception.Create('Error Message');
 except
 on E: Exception do

 // Ask exception manager in host application to process this exception
 _ExceptionManagerHandle(E, ExceptAddr);
 end;
end;

procedure Test2;
var
 Form: TForm2;
begin
 try
 Form := TForm2.Create(nil);
 try
 Form.ShowModal;
 finally
 FreeAndNil(Form);
 end;
 except
 on E: Exception do

 // Ask exception manager in host application to process this exception
 _ExceptionManagerHandle(E, ExceptAddr);
 end;
end;

exports
 Test1, Test2;

end.

Normally, if you want to ask EurekaLog to process exception (display error dialog with bug
report, send it to developer, etc.) - then you have to call ExceptionManager.Handle.
However, we can not do this in our case, because we've used "DLL" profile, which means
no exception tracer (and no exception manager) in our DLL. That's why we use
_ExceptionManagerHandle function instead of ExceptionManager.Handle.

_ExceptionManagerHandle function is a lightweight exception manager. If there is exception
tracer code in current module - the function will invoke it (i.e. ExceptionManager.Handle). If

Advanced topics 486

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

there is no tracer in the module - the function will try to invoke exception manager from
host application. If there is no tracer in host application either - the function will act as if
EurekaLog was disabled.

Therefore, you can use _ExceptionManagerHandle function to handle exceptions when you
don't know if there will be EurekaLog in your project. This function will automatically use
suitable way to process exceptions.

Okay, so the first function in our DLL will just raise exception in DLL function. The difference
with first example is that we handle it properly now: there is try/except block which handles
exception by asking exception manager from host application to perform full processing
(displaying bug report, sending it to developer, etc.).

Second function will create and show a modal form. There is no exception inside function
itself, but form contains button to raise exception. This exception will not be catched by our
try/except block, because exceptions in form's event handlers are handled by VCL
framework. That's why we need EAppVCL unit (it contains hooks for VCL). Try/except block in
second function will catch exceptions only for form's creating or destroying.

That's all. Save all and compile. Run application and hit all buttons. First button is not
changed at all. Second button and third button behave differently:

Button #2: Exception did not escape DLL, it was handled by DLL by displaying complete
bug report

Call stack shows mixed exe/DLL lines

EurekaLog 7 Documentation487

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Button #3: Exception was raised by form. It was handled by VCL.
EurekaLog hook displays full bug report

Call stack shows mixed exe/DLL lines

11.4.4.2 Multiple instances of exception tracer

Important notice: Windows 2000 does not provide any way to set exception hook in
documented way. This means that any exception tracer have to install low-level injecting
hook for internal routines. Only single module can install such hook reliably for the same
routine. If two or more different modules attempt to install such hook - it will either fail or
crash. Therefore, it's highly not recommended to use multiple instances of exception tracers
on Windows 2000. Windows XP and above do not have such issues, because newer
systems allow you to install arbitrary amount of exception hooks via documented API. This
API is called VEH: Vectored Exception Handling. If you can't use single instance of exception
tracer and have to support Windows 2000: we suggest to use Delphi 2009 or above and
disable "Use low-level hooks" option . Delphi 2009 introduced better integration between
application and exception tracer. It allow you to react on hi-level exceptions without need
to install low-level hook (however, low-level hook still may be installed to capture CPU
state). Combination of Windows 2000 and any IDE before 2009 (such as Delphi 7) will not

259

Advanced topics 488

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

work reliably for multiple instances of exception manager - regardless of options in those
modules.

Open/create DLL, enable EurekaLog and set application type to "Standalone DLL". Since
we're going to use forms in our DLL - go do Advanced/Code/Hooks page in EurekaLog
project options and enable "VCL Forms application" option. Also change dialog to "MS
Classic" or any other desired type.

Note: a combination of "Standalone DLL" profile + "VCL Forms application" hook will set the
same options as "VCL Forms Application" profile. That's why you'll see "VCL Forms
Application" instead of "Standalone DLL" in "Application type" option when you open project
settings next time. That's totally expected behavior. You can also initially only switch profile
to "VCL Forms Application" and do nothing else - that's because this profile will set dialogs
and turn on hooks for VCL.

The code for both DLL and exe remain unchanged from previous example . Run
application and hit the buttons. You should see the same behavior and dialogs as in
previous example.

Note that even if visual appearance seems the same - the internals are working differently
now. DLL now has its own exception tracer. _ExceptionManagerHandle function will just
invoke ExceptionManager.Handle in DLL. It will not try to communicate with exe host.

See also:
Using exception tracer with COM objects

11.4.5 Using exception tracer with COM objects

COM objects are implemented in DLLs. Therefore, COM server projects with EurekaLog
should follow usual rules for DLLs . Additionally, COM enforces additional restrictions on
error handling: therefore a most complex issue for COM object is how to report bug reports

. Many COM objects are multi-threaded. This means that you must follow guidelines for
multi-threaded applications .

To summarize restrictions on error handling:

COM objects must handle each exception in the same method, do not allow exception
escape to the caller;
Each COM object's method must be a function. Each such function must return an HRESULT
value. Each such function must have the stdcall calling convention;
COM methods must return S_OK (zero) for success calls, E_UNEXPECTED for unknown errors,
or any specific error/success code for known problems.
(Optional) COM objects may report additional details for failure error codes via IErrorInfo
interface.

Additionally, COM objects are "plugins". I.e. a single application (.exe host) may operate
with several COM object, each being loaded into the same process. Therefore, it's important
to be sure that multiple COM objects with exception tracers will not conflict with each other.
Since COM object can be used in any application host (with or without EurekaLog or
exception tracer) - it means that each COM server project must be standalone. I.e. there
must be exception tracer instance in COM server project. Thus, if application loads several
COM objects - there will be multiple instances of exception tracer active.

Important notice: Windows 2000 does not provide any way to set exception hook in
documented way. This means that any exception tracer have to install low-level injecting
hook for internal routines. Only single module can install such hook reliably for the same
routine. If two or more different modules attempt to install such hook - it will either fail or
crash. Therefore, it's highly not recommended to use multiple instances of exception tracers
on Windows 2000. Windows XP and above do not have such issues, because newer
systems allow you to install arbitrary amount of exception hooks via documented API. This
API is called VEH: Vectored Exception Handling. If you can't use single instance of exception
tracer and have to support Windows 2000: we suggest to use Delphi 2009 or above and
disable "Use low-level hooks" option . Delphi 2009 introduced better integration between
application and exception tracer. It allow you to react on hi-level exceptions without need
to install low-level hook (however, low-level hook still may be installed to capture CPU

352

484

488

457

470

547

259

http://msdn.microsoft.com/en-us/library/windows/desktop/ms679692(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms679692(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms679692(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms679692(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms679692(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms723041(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms723041(v=vs.85).aspx

EurekaLog 7 Documentation489

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

state). Combination of Windows 2000 and any IDE before 2009 (such as Delphi 7) will not
work reliably for multiple instances of exception manager - regardless of options in those
modules. If you can afford to not support Windows 2000 - it's recommended to enable "Use
low-level hooks" option .

Normally, you develop COM servers in Delphi and C++ Builder by using assist from VCL. I.e.
you use File / New / ActiveX library + File / New / COM Object. Resulting code will use
ComServ unit with TComServer class and ComObj unit with TComObject class.

"stdcall + HRESULT" vs. "safecall"
RAD Studio offers you a helper to easily follow COM requirements outlined above. Normally,
a COM method should look something like this:

type
 TSampleObject = class(TTypedComObject, ISampleObject)
 protected
 function DoSomething(Param1: Integer; const Param2: WideString; out Rslt: WideString): HResult; stdcall;
 end;

function TSampleObject.DoSomething(Param1: Integer; const Param2: WideString; out Rslt: WideString): HResult;
begin
 try
 Rslt := IntToStr(Param1 + StrToInt(Param2));

 Result := S_OK;
 except
 on EConvertError do
 Result := E_INVALIDARG
 else
 Result := E_UNEXPECTED;
 end;
end;

// ...

var
 Obj: ISampleObject;
 Value: WideString;

// ...
 OleCheck(Obj.DoSomething(1, '4', Value));

As you can see: you have to place explicit try/except block to handle all exceptions. You
have to write error handling code by yourself for each method. You have to return HRESULT
value. Function's real result must be converted to last output argument. You also have to
manually check result code (HRESULT) on caller's side (notice a call to OleCheck in the
example above). Obviously, this is not a very convenient way.

Fortunately, there is a special safecall calling convention. The safecall convention
implements exception 'firewalls'. On Win32, this implements interprocess COM error
notification. Therefore, you can use the following approach instead:

259

Advanced topics 490

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

type
 TSampleObject = class(TTypedComObject, ISampleObject)
 protected
 function DoSomething(Param1: Integer; const Param2: WideString): WideString; safecall;
 end;

function TSampleObject.DoSomething(Param1: Integer; const Param2: WideString): WideString;
begin
 Result := IntToStr(Param1 + StrToInt(Param2));
end;

// ...

var
 Obj: ISampleObject;
 Value: String;

// ...
 Value := Obj.DoSomething(1, '4');

The both code samples are binary compatible. I.e. both have the same method prototype.
The difference is that second example uses "compiler magic". Compiler automatically inserts
a hidden try/except block to catch all exceptions within method and convert them to
appropriate error code. Each exception is handled by SafeCallException virtual method of
current object. Safecall calling convention allows you to write your code in usual way: use
Result as you would normally do, no need to place exception handling blocks, no need to
check return codes on caller's side.

For more information about safecall, see System.SysUtils.ESafecallException,
System.SafeCallErrorProc, and System.TObject.SafeCallException.

When you create new COM object (server side) or import type library (client side) - you can
create/import methods either in "stdcall + HRESULT" form or in "safecall" form. The IDE's
behavior is controlled by corresponding options:

http://docwiki.embarcadero.com/Libraries/en/System.TObject.SafeCallException
http://docwiki.embarcadero.com/Libraries/en/System.TObject.SafeCallException
http://docwiki.embarcadero.com/Libraries/en/System.TObject.SafeCallException
http://docwiki.embarcadero.com/Libraries/en/System.SysUtils.ESafecallException
http://docwiki.embarcadero.com/Libraries/en/System.SafeCallErrorProc
http://docwiki.embarcadero.com/Libraries/en/System.TObject.SafeCallException

EurekaLog 7 Documentation491

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

SafeCall options under "Tools / Options" menu item

Exception's life-time with COM objects
Exception's life-time is significantly different in COM applications (compared to typical
applications). First, let's see an illustration for a normal VCL application:

Advanced topics 492

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Exception's life-time in VCL application

Here: exception is raised by some code. Exception tracer detects this moment via hooks
and creates call stack. Then exception is passed through one or more exception handlers
(such as finally and except blocks). Eventually, exception may be processed and deleted
or (in case of unknown exceptions) it could be passed to default handler. Exception tracer
intercepts default handler and create bug report for exception (shows dialog, send via
Internet, etc.).

Now, let's see how this scenario will be different for COM objects:

EurekaLog 7 Documentation493

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Advanced topics 494

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Exception's life-time in COM applications

Here: "callee module" is COM server project (DLL). Caller module is .exe host (however, it
can also be a DLL, package or even another COM object for generic case). Again, exception
is raised by some code. However, it can not be passed directly to exception's handler of the
caller. Because rule #1 for COM is: do not let exceptions escape your code. So, this
exception is catched by "firewall" ("compiler magic" for safecall methods or explicit except
block for stdcall/HRESULT).

Notice important difference: each conceptual exception is represented by two different
exceptions - one for callee side and another one for caller side. This means that there will
be two bug reports, two dialogs, etc. For this reason it's recommended to disable error
dialogs for COM server projects (switch dialog to "None") and keep visual dialog for
end user side (.exe host). COM server project will create bug report file, but will not show
any error dialog and will not submit error to developers. Then, exception will appear in caller
module (as HRESULT value + IErrorInfo interface). Caller will create another bug report,
show dialog, and send report to developer. If caller is awared about exception tracing
features in failed COM object, then caller may include bug report from failed COM object as
attachment to its own bug report.

Please note that exception travel chain may include more than one "exception -> HRESULT -
> exception" transformation. For example, your .exe host calls method from COM object,
this method calls another COM method (in the same object or in some another COM object).
If the last callee raise exception, then this exception will travel as "exception -> HRESULT ->
exception -> HRESULT -> exception".

Unfortunately, there is no standard COM facility to pass call stack from callee to caller. It's
not possible to pass original exception's information to the caller. You may try different
approaches as explained in this article (see "Creating bug reports for DLL exceptions"
section at the end of the article).

Using COM objects with exception tracer without framework (VCL)
There are no any special issues if you write COM server manually without using VCL
support. It would be just a normal DLL with exported functions. Consider COM rules as
system API. You have to wrap each method in try/except block and invoke EurekaLog to
handle exceptions.

Note: "Handle every SafeCall exception" option will have no effect, since you're not
using ComObj unit. You may use safecall methods instead of stdcall/HRESULT - based on
TObject. However, you still need to manually invoke EurekaLog from your SafeCallException
override.

Hints about options for your COM server project without VCL:
Application profile should be "Standalone DLL";
(Optional) If you're going to use VCL, CLX or FireMonkey forms in your COM object:
enable hooks for corresponding framework ;
Since exceptions in COM objects are handled in the same module (even more: in the
same method) - you should enable "Capture stack only for exceptions from current
module" option ;
Switch dialog to "None" ;
Multi-threaded COM objects: set "Default EurekaLog state in new threads" option to
"Enabled for RTL threads, disabled for Windows threads" value or enable EurekaLog
manually for each thread.

See for more information:
Creating bug reports for DLL exceptions
Using exception tracer tool in DLLs
Working with system or 3rd party API
Using EurekaLog in multi-threaded applications

Using COM objects with exception tracer and framework (VCL)

267

467

341

234

352

237

267

246

547

470

480

459

547

http://docwiki.embarcadero.com/Libraries/en/System.TObject.SafeCallException

EurekaLog 7 Documentation495

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

This approach is much easier, because you don't have to write a lot of code manually. You
don't have to write any try/except blocks. You only have to enable "Handle every SafeCall
exception" option .

Short summary of configuration:
Application profile should be "Standalone DLL";
(Optional) If you're going to use VCL, CLX or FireMonkey forms in your COM object:
enable hooks for corresponding framework ;
Since exceptions in COM objects are handled in the same module (even more: in the
same method) - you should enable "Capture stack only for exceptions from current
module" option ;
Switch dialog to "None" ;
Multi-threaded COM objects: set "Default EurekaLog state in new threads" option to
"Enabled for RTL threads, disabled for Windows threads" value or enable EurekaLog
manually for each thread;
Enable "Handle every SafeCall exception" option .
(Optional) Enable "Fix TObject.SafeCallException for hardware exceptions" option .
You must do at least one of the following:
o Enable "Use low-level hooks" option ;
o Enable "Enable extended memory manager" option ;
o Use Delphi 2009 or above.

You can also customize EurekaLog behavior via event handlers . For example, you can
disable dialog for safecall exceptions, but enable dialog for exceptions in forms. Note that
safecall exceptions are considered to be handled exceptions.

Note: you don't have to enable "Catch handled exceptions" option .

You can also study COM object demo application shipped with EurekaLog installation.

See also:
Creating bug reports for DLL exceptions
Using exception tracer tool in DLLs
Working with system or 3rd party API
Developing DLL API
Using EurekaLog in multi-threaded applications

11.4.6 Using EurekaLog with DLLs post-processed by 3rd party tools (JCL,
madExcept, etc.)
EurekaLog supports reading of some 3rd party formats of debug information. This feature
could be used in a migration scenario: when you migrate your multi-DLL project from other
solution (such as JCL, madExcept, etc.) to EurekaLog. You can re-use old DLLs without
recompiling these DLLs for EurekaLog. Your application should use the single exception
tracer scheme .

1.Your host (.exe file) should be EurekaLog-enabled with enabled support for 4rd party
debug information formats (see below).

2.Your DLL files could be:
o EurekaLog-enabled DLLs (using "DLL profile")

OR
o DLLs with 3rd party debug information which were post-processed by 3rd party

compilers (such as JCL, madExcept, etc.)

You can mix EurekaLog-enabled DLLs and "3rd party-enabled DLLs" in the same application.
In other words, EurekaLog-enabled DLLs with "DLL" profile (i.e. without exception tracer in
DLL) are interchangeable with DLLs post-processed by 3rd party tools (without including a
working exception tracer in DLL). "Standalone DLL" profile is not compatible with 3rd party
exception tracers.

Host application should have ability to read debug information from DLLs. EurekaLog
supports many formats of debug information . Support for EurekaLog's own format of
debug information is always enabled. Other formats should be enabled manually in

341

234

352

237

267

246

547

341

352

259

250

192

341

470

480

459

467

547

474

368

409

Advanced topics 496

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

EurekaLog project's options .

Note: there is no support to convert debug information from 3rd party post-processor tools
into EurekaLog debug information format. That's because all such formats are very similar to
each other. There is no significant benefit from converting debug information from some
debug information format to another format. Therefore you should just enable support for
particular format in your application. No convertation is necessary.

See also:
Single instance of exception tracer
Debug information providers
Debug information providers configuration

11.4.7 Using EurekaLog with non-Embarcadero DLLs

EurekaLog can be used with DLLs compiled by non-Embarcadero compilers - such as
Microsoft Visual Studio, etc. 3rd party compiler must generate debug information in some of
supported by EurekaLog formats (see list). Your application should use the single
exception tracer scheme .

Note: PDB format is a modern debug information format for Microsoft Visual Studio tool
chain. It can contain much more information than older DBG debug information format. DBG
format support is limited in many tools. For example. It is recommended to use PDB format
when possible.

You can mix EurekaLog-enabled DLLs and 3rd party compilers DLLs in the same application.
In other words, EurekaLog-enabled DLLs with "DLL" profile (i.e. without exception tracer in
DLL) are interchangeable with DLLs compiled by 3rd party compiler for all of the 3 cases
above (i.e. converting debug information to EurekaLog format, enabling support for
additional formats, or using plain DLL exports information). "Standalone DLL" profile is not
compatible with 3rd party exception tracers.

For the purposes of this article we will use the following sample code:

MSSample.cpp file:

#include "stdafx.h"
#include "MSSample.h"

void InternalTest(void)
{

int * P;

P = NULL;

*P = 0;
}

void Test(void)
{

InternalTest();
}

MSSAMPLE_API int fnMSSample(void)
{

Test();

return 42;
}

MSSample.h file:

#ifdef MSSAMPLE_EXPORTS

355

474

409

355

409

474

http://social.msdn.microsoft.com/Forums/windowsdesktop/en-US/e466e031-73be-4d06-aee0-462d3d91c02c/dbghelpdll-and-dbg-files-for-64bit-modules
http://social.msdn.microsoft.com/Forums/windowsdesktop/en-US/e466e031-73be-4d06-aee0-462d3d91c02c/dbghelpdll-and-dbg-files-for-64bit-modules

EurekaLog 7 Documentation497

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

#define MSSAMPLE_API __declspec(dllexport)
#else
#define MSSAMPLE_API __declspec(dllimport)
#endif

MSSAMPLE_API int fnMSSample(void);

Unit1.pas file:

procedure TForm1.Button1Click(Sender: TObject);
type
 TTestProc = function: Integer; cdecl;
var
 Lib: HMODULE;
 Test: TTestProc;
begin
 Lib := LoadLibrary('MSSample.dll');
 Win32Check(Lib <> 0);
 try
 try
 Test := GetProcAddress(Lib, '?fnMSSample@@YAHXZ');
 Win32Check(Assigned(Test));
 Test;
 except
 Application.HandleException(Sender);
 end;
 finally
 FreeLibrary(Lib);
 end;
end;

This sample DLL is compiled by Microsoft Visual Studio. It contains one exported function
(fnMSSample) which calls some internal functions (Test and InternalTest) and raises access
violation exception. It is loaded and called by the Delphi project (.exe host).

You should enable EurekaLog for host application. You should do this in the same way as
you do it for typical application without any DLLs. For example, if you have VCL Forms
application as the host - then you need to enable EurekaLog for host application and set
application type to "VCL Forms Application". This will add EurekaLog code and data into final
.exe file. It would also set hook for Forms.TApplication.HandleException method, which
will allow to automatically handle exceptions without writing any code.

Important note: Please note that above example is not recommended to use in real
projects. The example above is created to illustrate differences in debug information for
DLLs. It is not intended to illustrate DLL design principles. The problem with example design
is as following: the sample DLL does not contain any try/catch handlers, and it lets
exceptions escape DLL to the caller. This is usually a bad practice - because the caller
may not know how to work with exceptions coming from other programming language. The
above example uses hardware exception for illustration. Real-life application will probably
raise software exceptions - which are specific to programming language. Thus, a better idea
is to wrap fnMSSample function into try/catch block and convert exception into safe error
code (a simple flag, integer code, HRESULT, etc.) - as explained in this article .

Since we're going to pass exceptions from DLL to .exe (a not recommended way, but
sufficient for our example) - you have to do the following:

Disable "Capture stack only for exceptions from current module" option . This will
instruct EurekaLog to catch exceptions from any executable module. By default EurekaLog
captures only exceptions within the same module.
Disable chained exceptions support by setting all options to "Classic" position. This
feature requires ability to track life time of exceptions objects. This is not possible for
general case (e.g. host and DLL are compiled by different compilers and there is no assist

457

467

237

573

Advanced topics 498

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

from RTL for tracking exception objects). This feature may work in some specific
configurations.

You don't need to perform these changes if you're using the recommended approach of
not letting exceptions escape DLL. See example here .

Note: notice that event handler for Button1 in the above example calls exception handler
(Application.HandleException) explicitly. This is a required action for such code. That is
because exceptions from DLL will be handled in default application handler without such
explicit call - which happens after DLL will be unloaded. Therefore, an execution will go such
way without explicit try/except block:

Load DLL
Call function from DLL
Raise exception
Unload DLL
Analyze exception from (already unloaded) DLL

The last step will fail because DLL was already unloaded. This is the reason behind explicit
call to Application.HandleException. Please note that you don't need such call if you use
different buttons to load DLL/call function/unload DLL - that is because default exception
handler will guard each call of event handler.

This sample will generate the following error dialog without any additional actions:

Exception dialog for DLL without any debug information support

As you can see: the call stack lists every function within host .exe file - because host .exe
has EurekaLog debug information. DLL have no debug information. Therefore, EurekaLog is
unable to show call stack for DLL. Empty first line is exact exception address. It is shown
always - regardless of debug information available.

Of course, this is not a very useful bug report for DLL. You want to see some functions from
that DLL.

There are three possible usage cases for non-Embarcadero DLLs:

457

467

EurekaLog 7 Documentation499

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

1. Convert 3rd party debug information format into EurekaLog debug information;
2. Use 3rd party debug information without converting to EurekaLog debug information;
3. Use DLL exports provider (no debug information is available or debug information format

is not supported).

Use DLL exports provider (no debug information is available or debug
information format is not supported)
This approach is not recommended - because there will be inaccurate information in call
stacks without debug information. This case should be used only if compiler is not able to
produce debug information or debug information format is unknown to EurekaLog. Use this
approach as "last resort" measure: to show at least something for DLLs without debug
information.

1. Enable DLL exports debug information provider (see description of this provider).

Note: this case is a default configuration for EurekaLog.

The result error message will look like this:

Exception dialog for DLL without debug information but with DLL Export provider

This example is able to discover name of exported function ('fnMSSample') - thanks to DLL
Export provider. However, this example is not able to identify internal functions in DLL -
because internal functions are not exported. Therefore, internal functions are not listed at
all. And (as always) exact exception location is added to the top of the call stack.

Please note that this example also adds entries for USER32.dll and KERNEL32.dll in the call
stack.

Note: DLL Exports provider may show entries like "(possible fnMSSample+132)". Such text
means that there are some JMP or RET instructions between start of the function and actual
address in a call stack. This means:

[Positive] Address belongs to the specified function. JMP/RET instruction may be part of

355 411

Advanced topics 500

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

the function's logic (such as try/except block);
[False-positive] Address does not belong to the specified function. JMP/RET instruction
marks the end of the function. Address itself lies within some other internal/unknown
function after the specified function.

Number after "+" sign indicate byte offset between function's start and call stack address.
Greater offsets usually indicate greater chance for false-positive entries.

Use 3rd party debug information without converting to EurekaLog debug
information
This approach can be used if you want to use other tools for your executable (for example:
Process Explorer, WinDBG, external debugger, etc.). Other tools are not able to recognize
and read EurekaLog debug information. Thus, you need to supply and keep debug
information in a known format - such as PDB/DBG, TD32, etc. Both EurekaLog and other
tools will be able to use this debug information.

1. Enable generation of debug information in project's options (see below);
2. Enable support for debug information format in EurekaLog's project options (see list

of supported formats).

For example, we use Microsoft Visual Studio in the above example. You can go to "Project" /
"Properties" IDE menu item to open options for your C++ DLL project. Go to "Configuration
Properties" / "Linker" / "Debugging" and enable "Generate debug info" option. Go to Go to
"Configuration Properties" / "C/C++" / "General" and set "Debug Information Format"
option option to "Program Database" (/Zi option for ompiler) or "Program Database for Edit
And Continue" (/ZI option for compiler). Build your project. There should be .pdb file
available in the same folder as .dll file for your project.

You should deploy this .pdb file with your .dll file.

Enable support for PDB debug information format by enabling "Microsoft Dbg/PDB" option
.

Note: you can enable generation of .map files in your Visual Studio projects. However, such
files can not be used by EurekaLog. .map files do not have a strict format. .map files are
defined as "human-readable plain text files in free form that indicate the relative offsets of
functions for a given version of a compiled binary". EurekaLog is able to parse .map files
produced by Delphi and C++ Builder linkers. EurekaLog is not able to parse .map files
produced by other compilers/linkers/tools.

355

409

355

http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx
http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx
http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx
http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx
http://msdn.microsoft.com/en-us/library/958x11bc.aspx
http://msdn.microsoft.com/en-us/library/958x11bc.aspx
http://msdn.microsoft.com/en-us/library/958x11bc.aspx
http://msdn.microsoft.com/en-us/library/958x11bc.aspx

EurekaLog 7 Documentation501

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Exception dialog for DLL with .pdb file and enabled MS Debug Info provider

Since DLL now have full debug information available in .pdb file, and EurekaLog has enabled
support for reading .pdb files - there will be full information for your DLL in the call stack. All
exported and internal functions will be properly identified. All functions will have line
numbers information.

Note:
IMPORTANT: (only for "Microsoft Dbg/PDB" provider) You have to deploy .pdb file
with your DLL. Unfortunately, PDB information can not be injected into executable. Only
standalone .pdb files are supported. This is not a limitation of EurekaLog;
IMPORTANT: (only for "Microsoft Dbg/PDB" provider) You have to deploy DbgHelp.dll
file from Microsoft Debugging Tools. This file can also be found in \Bin (\Bin64) folder of
EurekaLog installation. Default DbgHelp.dll from C:\Windows is not suitable for such
usage.
You can use any other source of debug information: such as TD32 (.tds), MAP (.map), DBG
(.dbg), JDBG (.jdbg), etc. Just be sure to enable corresponding debug information provider

. Most other debug formats can be injected into executable and not require any helper
DLLs;
You can use PE Analyzer (Module Informer) tool to check whenever DLL has any
supported debug information;
You can also enable debug information for Windows DLLs to show precise information
about internal functions in system DLLs. This configuration is explained here .

Convert 3rd party debug information format into EurekaLog debug
information
.pdb files are analog of .tds files (with TD32 debug information): these files are extremely
large (debug information file could be more than 10x times larger than executable module
itself), binary, uncompressed, unencrypted, store huge amount information about
executable (functions, arguments, types, classes, scopes, line numbers, etc. - in other

355

617

504

Advanced topics 502

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

words, all information that may be needed for the debugger). Since exception tracer does
not need all this information (units/routine names and line numbers are enough) -
obviously, deploying such files along with your DLLs is not a best solution. Surely, you have
to use .pdb files if you need to load your DLL into other tools (such as Process Explorer or
WinDBG), but if you just want to use exception tracer tool with your DLL - there must be a
better way.

A better way is to convert 3rd party debug information into EurekaLog debug information.
EurekaLog debug information is compact, compressed, encrypted and stores only minimum
amount of information necessary to build call stack. All other extra information is not stored.
And you won't need any external helper DLLs - like DbgHelp.dll.

This is recommended approach. You can convert some supported debug information
formats into EurekaLog debug information format. You can do this without DLL recompilation

.

1. Enable generation of debug information in project's options (the same as in the previous
approach - see above);

2. Compile your DLL. There will be .dll file and debug information file (such as .pdb);
3. Run ecc32.exe or emake.exe to post-process your DLL file with embedding EurekaLog

debug information (see below).

Ecc32/emake tools can use --el_alter_exe command line switch to specify target .dll file for
post-processing (you should use NUL as project file name for --el_alter_exe switch - since
your DLL is not a Delphi / C++ Builder project), --el_config switch to specify EurekaLog
configuration (you have to use external .eof file since there is no Delphi / C++ Builder
project to read configuration from), --el_source to specify debug information source (default
source is Delphi / C++ Builder .map files; you have to specify where ecc32/emake should
look for debug information).

Notes:
You have to create new .eof file which will contain EurekaLog configuration for your
DLL. This file is required since there is no Delphi / C++ Builder project (which usually
stores EurekaLog configuration).
Most options in .eof file will be ignored since there is no EurekaLog code in your DLL. Only
design-time / build options will be used: such as encryption for debug information,
stripping relocs, removing function names, etc.
You can enable generation of .map files in your Visual Studio projects. However, such files
can not be used by EurekaLog. .map files do not have a strict format. .map files are
defined as "human-readable plain text files in free form that indicate the relative offsets
of functions for a given version of a compiled binary". EurekaLog is able to parse .map
files produced by Delphi and C++ Builder linkers. EurekaLog is not able to parse .map files
produced by other compilers/linkers/tools. Therefore, only Delphi / C++ Builder .map files
could be used for post-processing. Other possible source includes .tds files (TD32), any
format that DbgHelp supports (usually: .pdb and .dbg files).
PDB format is a modern debug information format for Microsoft Visual Studio tool chain. It
can contain much more information than older DBG debug information format. DBG format
support is limited in many tools. For example. It is recommended to use PDB format when
possible.

For example, we have Microsoft Visual Studio DLL project as described above. Project have
some internal function and exports one function (fnMSSample). You can go to "Project" /
"Properties" IDE menu item to open options for your C++ DLL project. Go to "Configuration
Properties" / "Linker" / "Debugging" and enable "Generate debug info" option. Go to Go to
"Configuration Properties" / "C/C++" / "General" and set "Debug Information Format"
option option to "Program Database" (/Zi option for ompiler) or "Program Database for Edit
And Continue" (/ZI option for compiler). Build your project. There should be .pdb file
available in the same folder as .dll file for your project.

Now, run ecc32.exe or emake.exe with the following command-line:

"ecc32.exe" "--el_alter_exe=NUL;MSSample.dll" "--el_config=MSSample.eof" --
el_source=PDB

(you may need to specify full or relative file paths for your files; do not forget to enclose file

426

38

443

http://msdn.microsoft.com/en-us/library/windows/desktop/ms679309(v=vs.85).aspx
http://social.msdn.microsoft.com/Forums/windowsdesktop/en-US/e466e031-73be-4d06-aee0-462d3d91c02c/dbghelpdll-and-dbg-files-for-64bit-modules
http://social.msdn.microsoft.com/Forums/windowsdesktop/en-US/e466e031-73be-4d06-aee0-462d3d91c02c/dbghelpdll-and-dbg-files-for-64bit-modules
http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx
http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx
http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx
http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx
http://msdn.microsoft.com/en-us/library/958x11bc.aspx
http://msdn.microsoft.com/en-us/library/958x11bc.aspx
http://msdn.microsoft.com/en-us/library/958x11bc.aspx
http://msdn.microsoft.com/en-us/library/958x11bc.aspx

EurekaLog 7 Documentation503

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

paths with spaces in double quotes)

This command line will convert MSSample.pdb file into EurekaLog format and inject this
information into MSSample.dll file. Options for this operation are specified in MSSample.eof
file.

Note: MSSample.pdb file may be deleted after conversion - depending on the state of
"Delete service files after compilation" option .

Resulting DLL will have injected EurekaLog debug information - which could be verified by
using PE Analyzer (Module Informer) tool . No additional debug information providers
should be enabled. The exception dialog will look like this (the same as in the previous
approach):

Exception dialog for DLL with injected EurekaLog debug information

This call stack will be the same as in the previous approach: DLL now have full debug
information which is injected into DLL file - there will be full information for your DLL in the
call stack. All exported and internal functions will be properly identified. All functions will
have line numbers information.

The difference from the previous approach is that you don't need to deploy any additional
files along with your DLL. All necessary debug information is stored inside DLL file itself.

See also:
Using EurekaLog with DLLs post-processed by 3rd party tools (JCL, madExcept, etc.)
Post-processing without (re)compilation
Working with configuration
External configuration and .eof files
PE Analyzer (Module Informer) tool

234

617

495

426

439

443

617

Advanced topics 504

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

11.4.8 Using Microsoft DbgHelp DLL

You can use MS debug format to get information for system DLLs. By default Windows
comes in "release" version - i.e. without debug information for system DLLs (so-called "free
build"). This prevents you from getting proper information. In fact, you only can get heuristic
information based on DLL exports . However, you can ask Microsoft for debug information
and get full coverage for Microsoft DLLs.

Basically, when your application needs debug information about system DLL - it can ask
Microsoft server for specific version of system DLL and download corresponding debug
information file. Unfortunately, this process is not well-suited for end-users machines, but
acceptable for developers machines. This information can be used not only by EurekaLog,
but also by other tools.

1. You'll need a good internet connection.
2. A lot of free disk space (about 512 Mb).
3. You need to create a writable folder which will be used as local cache.
4. You have to use the latest DbgHelp.dll. Default DLL which ships with Windows will not

work. Use DLL either from Microsoft Debugging Tools for Windows or from \Bin (\Bin64)
folders of EurekaLog installation.

5. You have to setup retrieving debug information (see below).

Warning: using this process will slow down building call stacks and bug reports in your
application - because information will be downloaded from the internet. This is especially
true for the first time use, when many information needs to be downloaded and it not
present in the cache. Therefore you should disable hang detection in your application.

A sample call stack without using debug information for system DLLs (information was
provided by DLL exports provider):

Module	Unit	Class Name	Routine Name	Line
richedit.exe	remain		Enumer	216[2]
USER32.dll	USER32		(possible GetWindow+508)	
USER32.dll	USER32		EnumWindows	
richedit.exe	remain	TMainForm	UpdateStatus	225[1]
richedit.exe	remain	TMainForm	SetFileName	234[4]
richedit.exe	remain	TMainForm	PerformFileOpen	325[3]
richedit.exe	remain	TMainForm	FileOpen	361[4]
...				
USER32.dll	USER32		(possible GetThreadDesktop+296)	
...				
richedit.exe	Classes		StdWndProc	
USER32.dll	USER32		(possible gapfnScSendMessage+818)	
USER32.dll	USER32		(possible GetThreadDesktop+128)	
USER32.dll	USER32		(possible CharPrevW+307)	
USER32.dll	USER32		DispatchMessageW	
richedit.exe	Forms	TApplication	HandleMessage	
richedit.exe	Forms	TApplication	Run	
richedit.exe	richeditdemo		Initialization	24[4]
kernel32.dll	kernel32		BaseThreadInitThunk	

As you can see - entries from User32.dll are confusing. Some of them mentions only
"possible" match and this match is usually wrong. This is the best that you can do without
debug information.

Consider the same call stack when retrieving debug information is set (information was
provided by Microsoft provider):

Module	Unit	Class Name	Routine Name	Line
richedit.exe	remain		Enumer	216[2]
USER32.dll	USER32		InternalEnumWindows	
USER32.dll	USER32		EnumWindows	
richedit.exe	remain	TMainForm	UpdateStatus	225[1]

412

411

411

412

EurekaLog 7 Documentation505

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

richedit.exe	remain	TMainForm	SetFileName	234[4]
richedit.exe	remain	TMainForm	PerformFileOpen	325[3]
richedit.exe	remain	TMainForm	FileOpen	361[4]
...				
USER32.dll	USER32		CallWindowProcAorW	
...				
richedit.exe	Classes		StdWndProc	
USER32.dll	USER32		InternalCallWinProc	
USER32.dll	USER32		UserCallWinProcCheckWow	
USER32.dll	USER32		DispatchMessageWorker	
USER32.dll	USER32		DispatchMessageW	
richedit.exe	Forms	TApplication	HandleMessage	
richedit.exe	Forms	TApplication	Run	
richedit.exe	richeditdemo		Initialization	24[4]
kernel32.dll	kernel32		BaseThreadInitThunk	

As you can see - entries from User32.dll are now correct.

Enabling downloading debug information for developer machine
You can enable this feature by going to "Tools" / "EurekaLog" / "IDE options" menu item:

Opening global EurekaLog options

Advanced topics 506

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

You'll see a dialog to set global EurekaLog options :

EurekaLog IDE options

1. "DbgHelp.dll path" option specifies full file name to DbgHelp DLL. You can find it in
EurekaLog's installation folder (like: C:\Program Files (x86)\Neos Eureka S.r.l\EurekaLog
7\Bin\dbghelp.dll). You can also change this path to alternative library. This is DLL from
Debugging tools for Microsoft Windows.

2. "Cache" option specifies read-write folder to be used as cache for debug info symbols.
It's empty by default, which means disabled feature. You can click on "Use defaults" button
to set default preference (which is sub-folder in your %APPDATA%, for example: C:\Users
\User\AppData\Roaming\Neos Eureka S.r.l\EurekaLog\SYMBOLS) or select your own folder.

Be sure that this folder is writable and disk have some free space (500 Mb minimum). This
cache folder is used by MS Debug info provider to store debug symbols for system
libraries.

3. "Debug symbol sources" option specifies debug info sources for MS Debug info provider
. You can add one or more sources here by using edit-box and buttons below. Source

can be local folder (like: C:\Symbols), shared network path (like: \\server\symbols) or URL of
symbol's server (like: http://server/symbols). It's empty by default, which means disabled
feature. You can click on "Use defaults" button to set default preference (which is default
Microsoft's symbol server: http://msdl.microsoft.com/download/symbols) or select your
own sources.

To quickly enable feature - you can just click on "Use defaults" button and close options
dialog via OK button. To disable feature - remove all debug symbol sources.

230

412

412

http://msdn.microsoft.com/en-us/windows/hardware/gg463009
http://msdn.microsoft.com/en-us/windows/hardware/gg463009
http://msdn.microsoft.com/en-us/windows/hardware/gg463009
http://msdn.microsoft.com/en-us/windows/hardware/gg463009
http://msdn.microsoft.com/en-us/windows/hardware/gg463009
http://server/symbols)

EurekaLog 7 Documentation507

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Enabling downloading debug information for other machines
To enable or disable this feature on any other machine you can use "Set Debug Symbols
Path" tool, which can be found in \Bin\SetDebugSymbolsPath.exe under EurekaLog
installation folder. This tool can be copied on another machine and used to set up path to
DLL, to cache, and to debug symbols source. It has the same UI as IDE options dialog:

Set Debug Symbols Path Tool

To enable feature - select DbgHelp.dll, specify path to writable folder, add URL, and click on
"Set for EurekaLog" button. To disable feature - remove all debug symbol sources and click
on "Set for EurekaLog" button.

Enabling downloading debug information for other tools (non-EurekaLog)
You can also use the similar feature in other debugging software. You can use "Set Debug
Symbols Path" tool to setup this feature or you can do it manually. To setup it with "Set
Debug Symbols Path" tool - copy \Bin\SetDebugSymbolsPath.exe file to another machine,
run it, specify all data and click on "Set for Process Explorer tool" to set these settings for
Process Explorer tool or "Set other" to set these settings for any other tool. To use "Set
other" button you need to run the tool under administrator account.

To configure this feature manually - you need to build "configuration string" in the following
format:

SRV*folder*URL

For example:

SRV*C:\ProgramData\DebugSymbols*http://msdl.microsoft.com/download/symbols

Then you'll need to enter this string into your tool as "Symbols path" folder. Refer to
documentation of your tool on where to find this setting. For example, for Process Explorer
tool you can find it under "Options" / "Configure symbols" menu item.

Advanced topics 508

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Configuring EurekaLog projects to use Microsoft symbols
Any EurekaLog-enabled application can use Microsoft symbols to get information about
system functions when building call stack. You can enable this feature by checking
"Microsoft DBG/PDB" option in debug information providers configuration .

See also:
Using debug information converters
Using EurekaLog with non-Embarcadero DLLs

11.5 Configuring project for leaks detection

This section explains working with memory and resource leaks.

1. Introduction to leaks detection ;
2. Common scenarios for using leaks detection:

a. Typical application ;
b. Typical DLL ;
c. Shared memory manager ;
d. Packaged project ;

11.5.1 About leak detection

While any error in your application is always bad, there are types of errors, which can be
not visible in certain environments. For example, memory or resources leaks errors are
relatively harmless on client machines and can be deadly on servers.

Memory leaks are a class of bugs where the application fails to release memory when no
longer needed. Over time, memory leaks affect the performance of both the particular
application as well as the operating system. A large leak might result in unacceptable
response times due to excessive paging. Eventually the application as well as other parts of
the operating system will experience failures.

Windows will free all memory allocated by the application on process termination, so short-
running applications will not affect overall system performance significantly. However, leaks
in long-running processes like services or even Explorer plug-ins can greatly impact system
reliability and might force the user to reboot Windows in order to make the system usable
again.

Applications can allocate memory on their behalf by multiple means. Each type of allocation
can result in a leak if not freed after use. Here are some examples of common allocation
patterns:

Allocation via Delphi memory manager wrapper (GetMem, AllocMem, etc)
Direct allocations from the operating system via the VirtualAlloc function
Heap memory via the HeapAlloc function
Kernel handles created via Kernel32 APIs such as CreateFile, CreateEvent, or
CreateThread, hold kernel memory on behalf of the application
GDI and USER handles created via User32 and Gdi32 APIs (by default, each process has a
quota of 10'000 handles)

Item 1 is called "memory leak" in EurekaLog; items 2-5 are called "resource leak" in
EurekaLog.

Why leaks are bad and do I always need to release all memory?
Generally speaking, often mem-leak does not mean any visible problem to a user:
application still works. Mem-leaks? So what? Program still do all tasks, that I need from it.
This is especially true for client applications: cause they work for a limited amount of time.
So mem-leak is not scary - since all memory will be reclaimed at application's exit (refer to
Jeffrey Richter's book on native code for more info) and so all leaks will be removed too. No,
I don't mean that you don't need to fight mem-leaks here: mem-leak is always bad. It is
just that mem-leaks aren't that fatal. Of course, this is not applicable for server applications.
Server applications work for long period of time, so even minor leak will be deadly.

355

516

496

166

512

513

513

514

EurekaLog 7 Documentation509

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Some other question, which is close related to above, is: "if all memory is reclaimed upon
app's shutdown - can I skip cleanup for global variables? They still will be deleted by
automatic cleanup from OS!"

Well, the formal answer is: "you can do it". This is correct and you really can do it. But "can"
does not mean "should". Obviously, there will be no technical problems with that approach.
So, why is this bad?

Because you can't find a real mem-leaks, if you do like this. If you don't pedantically clean all
of your resources - you will get a bunch of mem-leak reports. Well, leaks "by design":
technically it's a leak (since resource wasn't released), but it is not a logical leak. Since you
know, that those aren't reports about real mem-leaks - you will ignore them. And the
problem is that if there will be a report about real leak - you may just miss it.

That's why it is a common "good rule" to always clean your resources. Unfortunately, there
can be cases, when you can't do that. Those are very rare cases, but it can happen. But
general rule is: always clean your resources, if you can do it. Don't rely on system's cleanup
to throw out garbage for you. This will greatly simplify your life in the future.

Wrong approach
When newbie is inspired of the idea of catching memory leaks - he usually opens the Task
Manager and watches "Mem usage" column.

So far so good, but then he suddenly notices that this column behaves very strange, even
in a simple application: the memory is not decreasing when closing forms, but decreases at
minimizing application, etc, etc. A good question: why does newbie think that this column
represents memory allocated by his code? If you open "View"/"Select columns" menu - you'll
see many other counters, which also matches "memory definition".

So, I'll open a little secret here: the "Mem Usage" column in Task Manager represents
amount of RAM, occupied by your application. This value is not the memory, allocated by
your code (you can figure out this by yourself, when you first encounter disappearing of
memory at minimizing - of course, no one is going to free your memory without your
permission). Your application can use less RAM, then your code allocates, since it can be
swapped out to page file. And besides, RAM is spend for code too - namely, for system
libraries. System libraries are loaded in every process, but there is only one copy of each
DLL in system's memory! (I mean only code here). This value is also called "Working Set".
You can see many memory-related values in Task Manager by configuring columns. Or you
can use Process Explorer tool (add more columns into process list view too).

So let leave our Task Manager for a while and take a look at Pascal. How Delphi manages
its memory? All memory in Delphi application is controlled by memory manager. You can
change the memory manager in your application by calling SetMemoryManager. That means
that you can detect memory leaks very easy - by installing analyzer stub for memory
manager.

What does it mean that your application has a memory leak? Well, this means that your
code allocates some memory (object, string, array, etc) and forgets to release it. Forgetting
about memory's block means that this memory will still be there at application's exit.

So, to catch all memory leaks you need to enumerate all busy memory blocks at
application's exit. Every such block will represent a memory leak.

Using EurekaLog to find memory leaks
EurekaLog has a functionality of catching memory leaks too. It is off by default - because it
is not free for your application. Enabling this functionality means a little slow down and
increased memory usage . This feature has its limits , but it can be very useful for
debugging memory leaks on client's machines.

Note: memory leaks catching feature in EurekaLog is made as light-weight - to minimize
performance/resource impact on your application. Thus, you can use it in your application
deployed on end-user machines. However this means that EurekaLog provides less
information than debugging solutions. The primary target of EurekaLog is to let you know

589 589

http://technet.microsoft.com/en-us/sysinternals/bb896653
http://technet.microsoft.com/en-us/sysinternals/bb896653

Advanced topics 510

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

about the problems. Surely, you can use EurekaLog to debug problems too, but it can be
not suffice in some cases. So you may need to use other debugging tool which is designed
to debug problems, not to report them "from the fields".

In any case, to enable this feature - you need to check "Catch memory leaks" option on
"Memory problems" tab :

Memory debugging options

There are bunch of options which controls memory leaks checks activation and its
behaviour. See this section for more details about each option.

Anyway, if you activate memory leaks checks and there will be a memory leak in your
application at run-time - there will be a usual error dialog at application's exit:

Memory leaks in MS Classic style dialog

250

250

EurekaLog 7 Documentation511

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Memory leaks in EurekaLog style dialog

Memory leaks in detailed dialog

As you can see: all memory leaks will be gathered in one single report, which can be send
to you as any other EurekaLog report. The only differences from other kinds of reports are:
no CPU and Assembler tabs and no calling of event handlers.

How to resolve memory leaks
Many people seems to miss the whole point of mem-leak reports. Typical approach of
working with bug report for many people is to open code location from call stack and
analyzing it. The problem is: memory leak report does not point to the problem.

Note: be sure to read Reading and understanding bug report first, especially Searching
bug's location part.

Let's think for a second: what is a leak? Leak is... well, it is when we allocate something
and do not release/free it. So, mem-leak report can (and, actually, will) contain that
"something" - a resource; and it contains "allocation" - i.e. call stack to line of code, which
allocates resource. But where is our problem? An actual problem is sitting at "release/free"
moment! A tool can not know: where did you (your code) planned to release resource.
That's why report contain only information about allocation. There is no direct information

72

97

Advanced topics 512

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

on the problem in the report.

What does it mean, "the problem is in release"? It means, that either we lost pointer to
resource or we do have a pointer, but our release routine wasn't called for some reason.
And those are points, which you should look at.

So, what should you do with mem-leak report? Well, you first need to follow call stack and
find code. But the next thing is different (comparing to exception bug report): you don't
need to analyze this line. You need:
1. Note, what resource was allocated here (object, string, array, memory block, etc...).
2. Find, where this resource should be released "by plan" (call do destructor, out of scope,

explicit free call, etc...).
3. Found reason, why resource wasn't release at founded location.
As it was already said: there can be 2 reasons for item 3 - either we lost reference or we
missed the call.

Delphi's bugs
Before starting doing anything - make sure, that the problem really exists: run your
application in wild run without debugger. This will eliminate any possible false mem-leaks
like this.

Aside from IDE's bugs, there can be bugs in RTL/VCL too: example. It can be direct bugs
(and there is change for their fix in next Delphi version - example), or things that just can't
be fixed. Anyway, both cases introduce a mem-leaks in your application and your code has
nothing to do with it.

So what can you do here? Putting patching apart - the only thing you can do is to ignore
them (since you can't fix them). Yes, this is a workaround. You don't fix a problem - you just
hide it, so you can concentrate on problems, which you can fix. The main danger here is
overuse of such routines: do NOT add all mem-leaks as "registered" - don't forget that this
will not fix the problem!

Best Practices
Certain coding and design practices can limit the number of leaks in your code:

Use managed data types with reference counting and smart pointers wrappers for non-
managed types and functions (you will need to write your own wrapper classes).
Be aware of leak patterns with managed types: circular references between objects.
Avoid using multiple exit paths from a function. Allocations assigned to variables at
function scope should be freed in one particular block at the end of the function.
Use try/finally blocks to ensure (guarantee) finalization and dispose of memory and
resources.
Be careful with type-less functions in RTL. Any code which works with untyped argument
must be carefully analyzed for leaks possibility.

See also:
Configuring project for leaks detection
Other memory problems
Memory leaks settings
Resource leaks settings
EurekaLog memory leaks detection limitations
EurekaLog resource leaks detection limitations

11.5.2 Configurations

11.5.2.1 Typical application

This section describes leaks configuration for usual application. It can be VCL Forms
application, FMX application, console application, etc. It should not use run-time packages;
it should not use shared memory manager.

Configuration is very simple, as there is no additional issues. You can enable/disable leaks

508

171

250

255

589

589

http://qc.embarcadero.com/wc/qcmain.aspx?d=73762
http://qc.embarcadero.com/wc/qcmain.aspx?d=73762
http://qc.embarcadero.com/wc/qcmain.aspx?d=36652
http://qc.embarcadero.com/wc/qcmain.aspx?d=23063

EurekaLog 7 Documentation513

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

control in EurekaLog options (see here: memory leaks and resource leaks) - and
that's it.

Detailed explanation

EurekaLog has concepts of "memory" and "resource" leaks:
"Memory leaks" - are leaks from Delphi memory manager. Those leaks appear when code
uses GetMem/FreeMem or any wrapper for it (such as AllocMem, TObject.Create, strings,
dynamic arrays, etc.).
"Resource leaks" - are leaks from any other allocation function (such as VirtualAlloc,
HeapAlloc, etc. - see here for detailed list).

EurekaLog has EMemLeaks and EResLeaks units. EMemLeaks unit contains code to catch
"memory leaks", EResLeaks unit contains code to catch "resource leaks". These units will be
added to your project's uses clause (use "Project" / "View source" IDE's menu command to
view it) when you enable EurekaLog for your project.

Note: EMemLeaks and EResLeaks units are always included in your EurekaLog-enabled
application - even if no leaks detection is turned on in your project's options. This is not a
bug. Leaks detection can be turned on at run-time (via command-line switch or just
programmatically by some code), and leaks detection code should be executed first (before
any other code) - that's why EMemLeaks and EResLeaks units are always included.

Using leaks detection without EurekaLog

It is possible to use leaks detection without enabling entire EurekaLog for your project -
just disable EurekaLog for your project and then enable corresponding leaks detection
feature (or some other memory debugging features).

See also:
Using leaks detection in DLLs
Using leaks detection in applications with shared memory manager
Using leaks detection in packaged applications

11.5.2.2 DLLs

DLLs are no different from applications in respect to leaks detection aspect. I.e. configuring
typical DLL for leaks would be the same as configuring typical application for leaks;
configuring packaged DLL for leaks would be the same as configuring packaged application
for leaks; and so on. So:

See Using leaks detection in typical applications for learning more about configuring
typical DLLs;
See Using leaks detection in applications with shared memory manager for configuring
DLLs with shared memory manager;
See Using leaks detection in packaged applications for configuring DLLs with run-time
packages.

DLL can use any ("standalone DLL " or "DLL ") profile. This does not affect leaks
detection configuration.

See also:
Using leaks detection in typical applications
Using leaks detection in applications with shared memory manager
Using leaks detection in packaged applications

11.5.2.3 Shared memory manager

Enter topic text here.

250 255

590

513

513

514

512

513

514

480 474

512

513

514

Advanced topics 514

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

11.5.2.4 Packaged project

Enter topic text here.

11.6 Using EurekaLog with other software

EurekaLog contains various configuration options to allow you to integrate EurekaLog
with other 3rd party software tools - such as external debuggers, profilers, executable
packers, cryptors, protectors, debug information convertation tools, digital signing tools,
etc.

Common information
Different tools have different requirements. Some tools require debug information, other
tools require no changing in code (no hooks), etc. You can customize EurekaLog options for
various tools on special page in options . Of course, disabling options will result in some
sort of compromise: you will disable some features of EurekaLog, but gain more
compatibility. Sometimes you will need to write some code to bring missed features back.

Generally, your usual method when integrating EurekaLog with other software should be as
follows:
1. Configure your project for maximum possible debugging .
2. Try to compile your application with EurekaLog and external tool. You can use build

events to invoke external tool automatically when building the project.
3. If this doesn't work - open EurekaLog project options and go to "External tools " page.
4. Turn off one single option and repeat testing.
5. If this doesn't work - turn off more options.
6. Repeat this process until you get working solution.

The common rule of thumb is not to blindly disable each possible EurekaLog options. Each
EurekaLog option allows you to use certain feature. If you disable each option without
checking if this was needed at all - you may encounter unexpected behavior (like missed
feature behavior). This is especially true for such options as "Handle every SafeCall
exception", "Catch handled exceptions", memory manager options.

You can study hints for options (checkboxes) to read about recommended setup for your
tool kind. You can start with switching off not recommended options first. You can also read
detailed description of each option here .

Important note: it's highly recommended to keep "Enable extended memory manager"
option turned on (you can disable other memory checking options if you want to). Installing
filter on memory manager will allow EurekaLog to track life-time of exceptions objects
without need to install code hooks.

There are some practical guides available:
Debuggers/profilers
Debug information converters
Digital signing tools
Packers/cryptors/protectors
Localization tools
3rd party shared memory manager
COM applications
Using EurekaLog with DLLs post-processed by 3rd party tools (JCL, madExcept, etc.)
Using EurekaLog with non-Embarcadero compilers (Microsoft Visual Studio, etc.)

A common post-processing order is:
1. Debug information converters;
2. EurekaLog post-processing (IDE expert or a call to ecc32/emake);
3. Compressors/protectors;
4. Digital signature tools;

See also:
Options for integration with external software

259

259

58

351

259

259

515

516

519

520

524

524

488

495

496

351

421

259

EurekaLog 7 Documentation515

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Troubleshooting EurekaLog work
Internal errors
Enabling debug information for system DLLs
Configuring project for leaks detection

11.6.1 Debuggers and profilers

External debuggers and profilers requires source of debug information. You can keep
EurekaLog hooks installed. Therefore, your actions to integrate with external debuggers or
profiler would be:
1. Configure your project for maximum debugging . Be sure that required debug format

option is turned on.
2. Important note: Disable "Delete service files after compilation" option to keep debug

information files around after compilation (so they can be used by debugger/profiler).
3. Important note: You may want to use --el_DisableDebuggerPresent command-line

switch to disable communication between EurekaLog and debugger (such as naming
threads and output debug information).

4. You may need help from additional tools .

Example: AQTime
1. Create or open the project.
2. Enable and configure EurekaLog.
3. Open project options :

a. Set "Linking / Map file" = "Detailed" (Delphi) or "Detailed segment map" (C++ Builder).
Be sure that "Map with mangled names" option is turned off (if it's present).

b. Enable "Linking / Debug information" (new Delphi), "Include TD32 debug info" (old
Delphi) or "Full debug information" (C++ Builder). Be sure that "Place debug information
in separate TDS file" option is turned on (if it's present).

c. Enable "Stack frames", "Debug information", "Use Debug DCUs" and (optionally)
"Range checking" options on "Compiling" page (Delphi only).

d. Enable "Debug information" and "Debug line number information" options on "C++
Compiler"/"Debugging" page (C++ Builder only).

4. Open EurekaLog project options:
a. Disable "Delete service files after compilation" option .

5. (Optional) Add --el_DisableDebuggerPresent command-line switch to parameters of

your application. Note: EurekaLog could auto-detect AQTime, so adding --
el_DisableDebuggerPresent command-line switch is not strictly necessary for AQTime,

but it may be required for other 3rd party tools.
6. (Optional) You may use /EL_DisableMemoryFilter or /EL_DisableMemoryLeaks
command-line options .

7. Run your application with AQTime.
8. AQTime may display a warning about some EurekaLog routines could not be profiled due

to small size. You can safely ignore this warning.

If you've done everything correctly - you should see a profiling report after closing
application. If you didn't setup your project or didn't disable "Delete service files after
compilation" option - then you should see blank report. If you didn't specified --
el_DisableDebuggerPresent command-line switch - then your application may crash at

start time, because EurekaLog would detect the IDE debugger and try to communicate with
it.

Note: EurekaLog files are compiled with debug information by default. This means that you'll
see EurekaLog routines in final report. You may want to disable memory/resource leaks
checking to reduce noise. You can setup AQTime filtering (please refer to AQTime help
system). Or you may recompile EurekaLog with disabled debug information.

See also:
Using EurekaLog with other software
Troubleshooting EurekaLog work

613

591

504

508

58

259

516

58

259

250

619

514

613

Advanced topics 516

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

11.6.2 Debug information converters

Debug information is necessary to display human-readable code location descriptions. It's
used by many debugging-related tools to show readable information instead of RAW
pointers. There are different formats of debug information. Each tool understands some of
these formats. Another tool may understand other formats. If particular tool doesn't
understand debug information format of your executable - then it will not show any useful
information. For example, Delphi and C++ Builder supports variety of debug formats:
embedded dcu/obj, .map (output only), .tds (TD32), .rsm (remote debug), DWARF (currently:
64-bit C++ Builder only) - all of these (except for DWARF) are Borland/CodeGear/
Embarcadero-centric. On the other hand, Microsoft tools support Microsoft formats: .dbg
and .pdb. Obviously, Embarcadero and Microsoft tools do not understand each other.

You can use debug information converters to solve such issues. These converter tools will
take some form of debug information as input and convert it into another form.

Process Explorer tool shows no useful information about Delphi project

EurekaLog 7 Documentation517

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

The same project after its debug information converted to DBG format

Advanced topics 518

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Same project after enabling Microsoft debug information for system DLLs

There are tools (like map2dbg or tds2pdb) which are able to convert map/tds to dbg/pdb -
to make integration with Microsoft tools possible (such as Process Explorer or WinDbg).
Basically, such converter tools require executable and debug information source. You can
call them after compilation of your project to convert debug information file. Therefore, your
actions to integrate with debug information converter would be:
1. Configure your project for maximum debugging . Be sure that required debug format

option is turned on.
2. Disable "Delete service files after compilation" option to keep debug information files

around after compilation (so they can be used by debugger/profiler).
3. Place a call to converter tool to post-build event .

Example: Process Explorer and map2dbg tool
1. Create or open the project.
2. Enable and configure EurekaLog.
3. Open project options :

a. Set "Linking / Map file" = "Detailed" (Delphi) or "Detailed segment map" (C++ Builder).
Be sure that "Map with mangled names" option is turned off (if it's present).

b. Enable "Linking / Debug information" (new Delphi), "Include TD32 debug info" (old
Delphi) or "Full debug information" (C++ Builder). Be sure that "Place debug information
in separate TDS file" option is turned on (if it's present).

58

259

351

58

http://code.google.com/p/map2dbg/
http://sourceforge.net/projects/tds2pdb/

EurekaLog 7 Documentation519

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

c. Enable "Stack frames", "Debug information", "Use Debug DCUs" and (optionally)
"Range checking" options on "Compiling" page (Delphi only).

d. Enable "Debug information" and "Debug line number information" options on "C++
Compiler"/"Debugging" page (C++ Builder only).

4. Open EurekaLog project options:
a. Disable "Delete service files after compilation" option .

5. Open build events page and place a call to map2dbg tool to post-build event
(success): map2dbg "%_IDETarget%"

6. Build your project.

Notes:
Do not confuse post-build's success and failure events. You need to insert call to post-
build success event, not into post-build failure event.
You may need to specify full file path for tool's .exe file (like C:\Tools\map2dbg.exe).
Do not forget about surrounding double quotes for files with spaces in path.
Delphi/C++ Builder 2007+ also have build events. You can use either EurekaLog's or IDE's
build events.
Debug information converter tool may run before or after EurekaLog's post-processing .

If you've done everything correctly - you should see a information about your Delphi/C++
Builder project in Process Explorer tool. Run your application, launch Process Explorer, right-
click on your project in Process Explorer and click on "Properties", switch to "Threads" tab,
pick a thread and click on "Call stack" button. You should see readable locations about your
code instead of just module name + RAW offset.

See also:
Configuring Microsoft symbols
Using EurekaLog with other software
Post-processing without (re)compilation
Tools:
o map2dbg
o tds2pdb
o tds2pdb (another author)
o tdstrp32
o cv2pdb

11.6.3 Digital signature tools

Digital signing tools (such as SignTool.exe, X2NetSignCode.exe, etc.) can be used to
digitally sing your executable. Digital signing process is also known as code signing. You will
need some code signing tool, digital certificate and a internet connection on the build
machine.

Digital signature allows software developers to include information about themselves and
their code with their software. It also prevent changes in executables:

Content Source: End users can confirm that the software really comes from the publisher
who signed it.
Content Integrity: End users can verify that the software has not been altered or
corrupted since it was signed.

Normally, digital signing tools do not have any special requirements on executable. Of
course, you still need certificate and internet connection (for time-stamping), but executable
can be anything. No debug information is required either. Hooks and run-time modifications
are allowed without restrictions. The only possible issue: digital signing may conflict with
EurekaLog's own integrity check (CRC calculations). Therefore, your actions to integrate
with digital signing tools would be:
1. Disable "Check file for corruption" option to disable EurekaLog's checks (as they will

be superseded by digital signature).
2. Place a call to digital signing tool post-build event .

Example: automatically digitally sign executable on build
1. Create or open the project.

259

351

426

504

514

426

259

351

https://code.google.com/p/map2dbg/
http://sourceforge.net/projects/tds2pdb/
https://code.google.com/p/map2dbg/downloads/list
https://code.google.com/p/map2dbg/downloads/list
http://dsource.org/projects/cv2pdb

Advanced topics 520

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

2. Enable and configure EurekaLog.
3. Open EurekaLog project options:

a. Disable "Check file for corruption" option .
4. Open build events page and place a call to digital signing tool to post-build event

(success). Exact command line depends on your tool. Usually there should be argument to
indicate certificate file(s), time-stamping service, password for private key, description of
executable, and executable itself. You can use %_IDETarget% pseudo-variable to
automatically point to final executable file.

5. Build your project.

Notes:
Do not confuse post-build's success and failure events. You need to insert call to post-
build success event, not into post-build failure event.
You may need to specify full file path for tool's .exe file (like C:\Tools\signtool.exe).
Do not forget about surrounding double quotes for files with spaces in path.
Delphi/C++ Builder 2007+ also have build events. Do not place call to signing tool to
IDE's build events. Build events of IDE are executed as part of compilation - thus, IDE's
post-build event will fire before EurekaLog will be able to do its post-processing. This
means that EurekaLog's post-processing will modify executable and break digital
signature. Therefore, you should use EurekaLog's post-build events to call signing tool
only after compilation and post-processing.
It's not strictly necessary to disable "Check file for corruption" option. This option uses
standard CRC checksum field in PE header. Normally digital signing process will update
this field to reflect changes. However, even though this option still may work after signing
- it may be not needed, because this work will be done by OS loader when checking
digital signature on load. On the other hand, default configuration of OS allows running
executable with broken digital signature, so you may want to keep "Check file for
corruption" option turned on.

See also:
Using EurekaLog with other software

11.6.4 EXE packers, EXE cryptors, EXE protectors

Executable compression is any means of compressing an executable file and combining the
compressed data with decompression code into a single executable. When this compressed
executable is executed, the decompression code recreates the original code from the
compressed code before executing it. In most cases this happens transparently so the
compressed executable can be used in exactly the same way as the original. Examples of
executable packer tools: UPX, ASPack, Smart Pack Pro, etc.

Executable cryptor and protector tools transforms executable file in order to protect it
against disassembling and reverse engineering. This usually involves many different
techniques: encryption, packing, VM code, using hook/redirections, detecting debuggers,
etc. Examples of protector tools: ASProtect, Themida, VMProtect, etc.

Using packers and protectors tools with exception tracer tool (such as EurekaLog) is a tricky
task. That's because using exception tracer basically means "intercept exceptions", and
protectors means "do not allow to mess with this process". Therefore, exception tracer
wants to install hook (modify running process), protectors wants to prevent hooks. Clearly
these two goals are in direct conflict with each other.

You may encounter the following issues:
(EXE file changes) Packer/protector tool may detect injecting EurekaLog's data during
post-processing. The solution is to inject EurekaLog's data first and then post-process
executable with packer/protector.
(Running process changes) Packer/protector tool may detect code hooks installed by
EurekaLog. The solution is to avoid installing hooks when possible.
(Breaking code <-> debug info corresponding) Packer/protector tool may alter executable
code in such way so it will be incompatible with debug information. There is no solution to
this issue. However, most software is trying to preserve original code after unpacking.
(Conflicting tricks) Protector tools may use different kinds of tricks for protection. Some of
these techniques may conflict with exception tracer. Such issues can usually be solved by
adjusting options.

259

351

514

EurekaLog 7 Documentation521

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

You can disable the following options in EurekaLog:
Check file corruption
Use speed optimizations
Use low-level hooks
Handle every SafeCall exception
Catch handled exceptions
Code hooks
Debugging memory manager

Important note: it's highly recommended to keep "Enable extended memory manager"
option turned on (you can disable other memory checking options if you want to). Installing
filter on memory manager will allow EurekaLog to track life-time of exceptions objects
without need to install code hooks.

See also: Using EurekaLog and 3rd party shared memory manager .

Alternatively, you can also try to use the following options in your packer/protector tool:
Do not touch resources (if possible)
Avoid using VM (if possible)
Protect file instead of running process (if possible)
Disable debugger/hooks detection (if possible)
Disable virtualization of OS functions (if possible)

Generally, if your packer/protector tool has some options to integrate with digital signatures
- it would be a good idea to enable these options for using with EurekaLog too.

General information
Many protector tools allow you to wrap blocks of code into some sort of markers to indicate
that such code block should be protected/encrypted/virtualized (by replacing it with VM
code). Some code will be dynamically generated. Such modifications will break binary code
<-> source code interoperability (via debug information). Therefore, EurekaLog will not be
able to show meaningful information about such code. Heavy usage of VM/dynamical code
in your application will significantly weaken features of EurekaLog. Use only a minimally
possible amount of such code.

There are difference in using IDE and environments. The best option is to use Windows XP
or later, Delphi 2009 or later, and Win64 platform.

Windows XP allows EurekaLog-enabled application to use VEH (Vectored Exception
Handling) to capture CPU state for exceptions. Older systems require using low-level
hooks for that task (which may have problem with protectors and anti-virus software).
Delphi 2009 and above has extended exceptions support. A better integration with
exception tracer tool is possible. EurekaLog can integrate with RTL without using any
hooks on Delphi 2009+.
Win64 platform is different from Win32 platform because there is no reliable method to
build a call stack on Win32 (so each method uses heuristic to guess possible code
locations), but each function on Win64 must contain a stack frame (i.e. declare itself).
Therefore, stack tracing is always accurate on Win64 even if dynamic code is used.

"Check file corruption" option should be turned off, as almost each packer/protector
already contain the same functionality. However, it's not strictly necessary. This option uses
standard CRC checksum field in PE header. Normally packer and protector tools will update
this field to reflect changes. However, even though this option still may work after packing/
protecting - it may be not needed, because this work will be done by packer/protector
integrity checks. Unlike digital signatures, packer and protector will refuse to run modified
executable.

"Use low-level hooks" and "Code hooks" options installs hooks on routines in code. This
may cause problems with integrity checks in protectors. Disable these options to avoid it.
Low-level hooks can be replaced by using Windows XP+ and Delphi 2009+. Code hooks
may be replaced with manual invoke of exception manager . See also practical examples
below.

259

259

259

259

259

352

250

524

370

Advanced topics 522

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

"Use speed optimizations" options caches kernel information to speed up stack tracing
process. This feature may be in conflict with different protector's tricks. Disable this options
to avoid it.

The common rule of thumb is not to blindly disable each possible EurekaLog options. Each
EurekaLog option allows you to use certain feature. If you disable each option without
checking if this was needed at all - you may encounter unexpected behavior (like missed
feature behavior). This is especially true for such options as "Handle every SafeCall
exception", "Catch handled exceptions", memory manager options. Therefore the best way
is to disable options one-by-one and checking work status on each step:
1. Configure your project for maximum possible debugging .
2. Try to compile your application with EurekaLog and packer/protector. You can use build

events to invoke external tool automatically when building the project.
3. If this doesn't work - open EurekaLog project options and go to "External tools " page.
4. Turn off one single option and repeat testing.
5. If this doesn't work - turn off more options.
6. Repeat this process until you get working solution.

Example: using EurekaLog with UPX
1. Create or open the project.
2. Enable and configure EurekaLog.
3. Open build events page and place a call to UPX to post-build event (success): UPX.exe
-9 "%_IDETarget%"

4. Build your project.

Notes:
Do not confuse post-build's success and failure events. You need to insert call to post-
build success event, not into post-build failure event.
You may need to specify full file path for tool's .exe file (like C:\Tools\upx.exe).
Do not forget about surrounding double quotes for files with spaces in path.
Delphi/C++ Builder 2007+ also have build events. Do not place call to UPX to IDE's build
events. Build events of IDE are executed as part of compilation - thus, IDE's post-build
event will fire before EurekaLog will be able to do its post-processing. This means that
EurekaLog's post-processing will try to modify already packed executable. Therefore, you
should use EurekaLog's post-build events to call packer only after compilation and post-
processing.
There are no special requirements for options, but you may also want to try to disable the
above mentioned options (if you've encountered any issue). "Check file corruption" option
is a good candidate to be turned off (even if it's not strictly necessary).
You may want to use UPX's options like --compress-resources=0 or --keep-
resources=list to exclude EurekaLog's data from being compressed (EurekaLog's data is

already compressed).
You may try to use UPX's option --compress-exports=0 to avoid changing exports table.

Example: using EurekaLog with ASProtect
ASProtect tool is awared of Delphi/C++ Builder IDE and will ask you for .map file. Therefore,
it must be enabled in options and "Delete service files after compilation" option must
be turned off.

1. Create or open the project.
2. Enable and configure EurekaLog.
3. Open project options :

a. Set "Linking / Map file" = "Detailed" (Delphi) or "Detailed segment map" (C++ Builder).
Be sure that "Map with mangled names" option is turned off (if it's present).

b. Enable "Linking / Debug information" (new Delphi), "Include TD32 debug info" (old
Delphi) or "Full debug information" (C++ Builder). Be sure that "Place debug information
in separate TDS file" option is turned on (if it's present).

c. Enable "Stack frames", "Debug information", "Use Debug DCUs" and (optionally)
"Range checking" options on "Compiling" page (Delphi only).

d. Enable "Debug information" and "Debug line number information" options on "C++
Compiler"/"Debugging" page (C++ Builder only).

4. Open EurekaLog project options:

58

351

259

351

58 259

58

EurekaLog 7 Documentation523

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

a. Disable "Delete service files after compilation" option .
b. Disable "Check file corruption" option .
c. Disable "Use low-level hooks" option .
d. Disable all "Code Hooks" options . Note: your application type will be converted to

"Custom settings / Unsupported type". This is normal/expected behavior.
e. Enable extended memory manager . You can enable only extended memory

manager without any additional options.
5. Add EExceptionManager unit to uses clause of your main form's unit.
6. Place TApplicationEvents component on your main form.
7. Create new OnException event handler for TApplicationEvents component.
8. Place a "ExceptionManager.Handle(E)" call inside event handler for OnException event.
9. Build your application and check that it's working as you expect it to work.
10. Build your project with ASProtect. You can use post-build event to automatically

invoke ASProtect on each compilation: ASProtect.exe -process Project1.aspr2

Notes:
Do not confuse post-build's success and failure events. You need to insert call to post-
build success event, not into post-build failure event.
You may need to specify full file path for tool's .exe file (like C:\Tools\ASProtect.exe).
Do not forget about surrounding double quotes for files with spaces in path.
Delphi/C++ Builder 2007+ also have build events. Do not place call to ASProtect to IDE's
build events. Build events of IDE are executed as part of compilation - thus, IDE's post-
build event will fire before EurekaLog will be able to do its post-processing. This means
that EurekaLog's post-processing will modify already protected executable. Therefore,
you should use EurekaLog's post-build events to call protector tool only after compilation
and post-processing.

Example: using EurekaLog with Themida
1. Create or open the project.
2. Enable and configure EurekaLog.
3. Open project options :

a. Set "Linking / Map file" = "Detailed" (Delphi) or "Detailed segment map" (C++ Builder).
Be sure that "Map with mangled names" option is turned off (if it's present).

b. Enable "Linking / Debug information" (new Delphi), "Include TD32 debug info" (old
Delphi) or "Full debug information" (C++ Builder). Be sure that "Place debug information
in separate TDS file" option is turned on (if it's present).

c. Enable "Stack frames", "Debug information", "Use Debug DCUs" and (optionally)
"Range checking" options on "Compiling" page (Delphi only).

d. Enable "Debug information" and "Debug line number information" options on "C++
Compiler"/"Debugging" page (C++ Builder only).

4. Open EurekaLog project options:
a. Disable "Check file corruption" option .
b. Disable "Use low-level hooks" option .
c. Disable all "Code Hooks" options . Note: your application type will be converted to

"Custom settings / Unsupported type". This is normal/expected behavior.
d. Enable extended memory manager . You can enable only extended memory

manager without any additional options.
5. Add EExceptionManager unit to uses clause of your main form's unit.
6. Place TApplicationEvents component on your main form.
7. Create new OnException event handler for TApplicationEvents component.
8. Place a "ExceptionManager.Handle(E)" call inside event handler for OnException event.
9. Build your application and check that it's working as you expect it to work.
10. Build your project with Themida. You can use post-build event to automatically invoke

Themida on each compilation: Themida.exe /protect Project1.tmd

Notes:
Do not confuse post-build's success and failure events. You need to insert call to post-
build success event, not into post-build failure event.
You may need to specify full file path for tool's .exe file (like C:\Tools\Themida.exe).
Do not forget about surrounding double quotes for files with spaces in path.
Delphi/C++ Builder 2007+ also have build events. Do not place call to Themida to IDE's
build events. Build events of IDE are executed as part of compilation - thus, IDE's post-
build event will fire before EurekaLog will be able to do its post-processing. This means

259

259

259

352

250

351

58

259

259

352

250

351

Advanced topics 524

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

that EurekaLog's post-processing will modify already protected executable. Therefore,
you should use EurekaLog's post-build events to call protector tool only after compilation
and post-processing.

See also:
Using EurekaLog with other software
Troubleshooting EurekaLog work

11.6.5 Localization software

External localization software may require debug information or other support information
generated by compiler/linker. It usually does not interfere with EurekaLog in any way, so
you can keep EurekaLog hooks installed. Therefore, your actions to integrate with external
debuggers or profiler would be:
1. Configure your project for maximum debugging . Be sure that required debug format

option is turned on.
2. Disable "Delete service files after compilation" option to keep debug information files

around after compilation (so they can be used by debugger/profiler).
3. You may need help from additional tools .

See also:
Using EurekaLog with other software
Troubleshooting EurekaLog work

11.6.6 Shared memory manager

Warning: this topic talks about using shared memory manager only. If you do not share
memory manager between modules - then you can use any memory manager in any
combinations without limitations.

EurekaLog is compatible with shared memory manager from FastMM. EurekaLog is not
compatible with other implementations of shared memory manager. Therefore, if you're
using shared memory manager - then you must select (and follow) one of the following
scenario:

all modules doesn't use EurekaLog (you use 3rd party shared memory manager)
all modules use EurekaLog, but "Enable extended memory manager" option is turned off
for all modules (you use 3rd party shared memory manager)
all modules use EurekaLog and both "Enable extended memory manager" and "Share
memory manager" (or "Use existing shared memory manager") option are turned on for
all modules (you use EurekaLog's shared memory manager)
(special: FastMM integration) some modules use FastMM with sharing enabled, some
modules use EurekaLog with both "Enable extended memory manager" and "Share
memory manager" (or "Use existing shared memory manager") option turned on for all
EurekaLog-enabled modules (you use either EurekaLog's or FastMM's memory manager -
see below for more info)

In other words, you can't have shared memory manager and different settings for "Enable
extended memory manager" option in several modules. Consider enabling "Enable
extended memory manager" option as using another memory manager. Obviously, in order
to use shared memory manager, you must use the same memory manager in all modules.
That's why you can't have different settings for "Enable extended memory manager" option.

If you're not using shared memory manager - then "Enable extended memory manager"
option can be set differently for each individual module. Also, "Share memory manager" and
"Use existing shared memory manager" options should be unchecked.

Using together EurekaLog and FastMM
If you're not using shared memory manager - you can mix FastMM and EurekaLog in your
modules in any combination.

If you're using shared memory manager - you must enable "ShareMM" option for FastMM for
non-EurekaLog modules (please, refer to FastMM's documentation) and you must enable

514

613

58

259

516

514

613

EurekaLog 7 Documentation525

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

both "Enable extended memory manager" and "Share memory manager" options for
EurekaLog's modules. With these settings - you can mix FastMM and EurekaLog in your
modules in any combination.

Warning: do not enable "ShareMM" option in FastMM for EurekaLog's modules (in case you
use both FastMM and EurekaLog in the same module), unless you disable "Enable extended
memory manager" option.

Since EurekaLog is compatible with FastMM - you can (for example) compile .exe with
EurekaLog and both "Enable extended memory manager" and "Share memory manager"
options checked; and you can compile DLL with FastMM and "ShareMM" option enabled (and
without EurekaLog). This will work, and application will use EurekaLog's debugging features
if .exe is initialized first. However, if you statically link DLL to .exe - DLL will be initialized first
and FastMM will be used as application's memory manager. Thus, EurekaLog's memory
debugging capabilities will be disabled.

To always use EurekaLog's memory manager:
do not statically link to DLLs, use dynamic loading

or
use EurekaLog in all modules

or
do not use shared memory manager

Note: if you're using both EurekaLog and FastMM in the same project - be sure to list
FastMM's unit first and EurekaLog's unit seconds in uses clause of main .dpr file - regardless
of options set.

Using together EurekaLog and Delphi
Starting with Delphi 2007 - there are standard AttemptToUseSharedMemoryManager and
ShareMemoryManager functions, which you can use for sharing memory manager. These
functions are wrappers for FastMM's sharing functionality (which is a standard memory
manager since Delphi 2006).

Thus, this case is the same as "Using together EurekaLog and FastMM", but instead of
FastMM and setting "ShareMM" option you should use ShareMemoryManager function.

Warning: if you're using ShareMemoryManager function and EurekaLog in the same project -
be sure to disable "Enable extended memory manager" option.

Note: if you're using both EurekaLog and ShareMemoryManager function in the same project -
be sure to call ShareMemoryManager function before running EurekaLog's units. You can do
this by including unit which calls ShareMemoryManager function in its initialization section. You
must list this unit before any EurekaLog's units in uses clause of main .dpr file - regardless
of options set.

Usually you use EurekaLog with both "Enable extended memory manager" and "Share
memory manager" options checked for executable, and you use ShareMemoryManager
function for dynamically loaded DLLs.

Using together EurekaLog and SimpleShareMem
SimpleShareMem is wrapper for AttemptToUseSharedMemoryManager and ShareMemoryManager
functions (see above).

Thus, this case is the same as "Using together EurekaLog and FastMM", but instead of
FastMM and "ShareMM" you should use SimpleShareMem unit.

Warning: if you're using SimpleShareMem and EurekaLog in the same project - be sure to
disable "Enable extended memory manager" option.

Note: if you're using both EurekaLog and SimpleShareMem in the same project - be sure to
list SimpleShareMem unit first and EurekaLog's unit seconds in uses clause of main .dpr file -
regardless of options set.

Advanced topics 526

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Usually you use EurekaLog with both "Enable extended memory manager" and "Share
memory manager" options checked for executable, and you use SimpleShareMem unit for
dynamically loaded DLLs.

Using together EurekaLog and borlndmm.dll or ShareMem
EurekaLog is not compatible with BorlandMM.dll and ShareMem. It's recommended to use
FastMM with "ShareMM" option instead. If this is not possible - then you must disable
"Enable extended memory manager" option for all your EurekaLog-enabled modules. Using
of EurekaLog's debugging capabilities will be not possible.

Note: other EurekaLog's features (not memory-related) still will be accessible.

Using together EurekaLog and dynamic RTL in C++ Builder
EurekaLog is not compatible with BorlandMM.dll and dynamic RTL in C++ Builder. It's
recommended to use statically-linked RTL instead. If this is not possible - then you must
disable "Enable extended memory manager" option for all your EurekaLog-enabled
modules. Using of EurekaLog's debugging capabilities will be not possible.

Note: other EurekaLog's features (not memory-related) still will be accessible.

Using together EurekaLog and other 3rd party memory manager
EurekaLog is not compatible with other shared memory managers. It's recommended to use
FastMM with "ShareMM" option instead. If this is not possible - then you must disable
"Enable extended memory manager" option for all your EurekaLog-enabled modules. Using
of EurekaLog's debugging capabilities will be not possible. You may only use capabilities of
your shared memory manager, but not EurekaLog.

Note: other EurekaLog's features (not memory-related) still will be accessible.

What can go wrong
If you'll use wrong settings - you can get these issues:

false-positive memory leaks;
missing memory leaks;
heap corruption reports;
access violations;
application's crash.

Typical reasons for these issues include the following:
Your code lists units in wrong order. For example, FastMM/SimpleShareMem/etc is not the
first unit in uses of .dpr;
Your code uses conflicted settings. For example, DLL is compiled with ShareMem, but .exe
is compiled with EurekaLog's "Enable extended memory manager" option.

See also:
Memory problems options
Memory leak detection limitations
Enabling memory features for C++ Builder
Using EurekaLog with other software

11.6.7 Using EurekaLog with DLLs post-processed by 3rd party tools (JCL,
madExcept, etc.)
EurekaLog supports reading of some 3rd party formats of debug information. This feature
could be used in a migration scenario: when you migrate your multi-DLL project from other
solution (such as JCL, madExcept, etc.) to EurekaLog. You can re-use old DLLs without
recompiling these DLLs for EurekaLog. Your application should use the single exception
tracer scheme .

250

589

255

514

474

EurekaLog 7 Documentation527

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

1.Your host (.exe file) should be EurekaLog-enabled with enabled support for 4rd party
debug information formats (see below).

2.Your DLL files could be:
o EurekaLog-enabled DLLs (using "DLL profile")

OR
o DLLs with 3rd party debug information which were post-processed by 3rd party

compilers (such as JCL, madExcept, etc.)

You can mix EurekaLog-enabled DLLs and "3rd party-enabled DLLs" in the same application.
In other words, EurekaLog-enabled DLLs with "DLL" profile (i.e. without exception tracer in
DLL) are interchangeable with DLLs post-processed by 3rd party tools (without including a
working exception tracer in DLL). "Standalone DLL" profile is not compatible with 3rd party
exception tracers.

Host application should have ability to read debug information from DLLs. EurekaLog
supports many formats of debug information . Support for EurekaLog's own format of
debug information is always enabled. Other formats should be enabled manually in
EurekaLog project's options .

Note: there is no support to convert debug information from 3rd party post-processor tools
into EurekaLog debug information format. That's because all such formats are very similar to
each other. There is no significant benefit from converting debug information from some
debug information format to another format. Therefore you should just enable support for
particular format in your application. No convertation is necessary.

See also:
Single instance of exception tracer
Debug information providers
Debug information providers configuration

11.6.8 Using EurekaLog with non-Embarcadero DLLs

EurekaLog can be used with DLLs compiled by non-Embarcadero compilers - such as
Microsoft Visual Studio, etc. 3rd party compiler must generate debug information in some of
supported by EurekaLog formats (see list). Your application should use the single
exception tracer scheme .

Note: PDB format is a modern debug information format for Microsoft Visual Studio tool
chain. It can contain much more information than older DBG debug information format. DBG
format support is limited in many tools. For example. It is recommended to use PDB format
when possible.

You can mix EurekaLog-enabled DLLs and 3rd party compilers DLLs in the same application.
In other words, EurekaLog-enabled DLLs with "DLL" profile (i.e. without exception tracer in
DLL) are interchangeable with DLLs compiled by 3rd party compiler for all of the 3 cases
above (i.e. converting debug information to EurekaLog format, enabling support for
additional formats, or using plain DLL exports information). "Standalone DLL" profile is not
compatible with 3rd party exception tracers.

For the purposes of this article we will use the following sample code:

MSSample.cpp file:

#include "stdafx.h"
#include "MSSample.h"

void InternalTest(void)
{

int * P;

P = NULL;

*P = 0;

368

409

355

474

409

355

409

474

http://social.msdn.microsoft.com/Forums/windowsdesktop/en-US/e466e031-73be-4d06-aee0-462d3d91c02c/dbghelpdll-and-dbg-files-for-64bit-modules
http://social.msdn.microsoft.com/Forums/windowsdesktop/en-US/e466e031-73be-4d06-aee0-462d3d91c02c/dbghelpdll-and-dbg-files-for-64bit-modules

Advanced topics 528

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

}

void Test(void)
{

InternalTest();
}

MSSAMPLE_API int fnMSSample(void)
{

Test();

return 42;
}

MSSample.h file:

#ifdef MSSAMPLE_EXPORTS
#define MSSAMPLE_API __declspec(dllexport)
#else
#define MSSAMPLE_API __declspec(dllimport)
#endif

MSSAMPLE_API int fnMSSample(void);

Unit1.pas file:

procedure TForm1.Button1Click(Sender: TObject);
type
 TTestProc = function: Integer; cdecl;
var
 Lib: HMODULE;
 Test: TTestProc;
begin
 Lib := LoadLibrary('MSSample.dll');
 Win32Check(Lib <> 0);
 try
 try
 Test := GetProcAddress(Lib, '?fnMSSample@@YAHXZ');
 Win32Check(Assigned(Test));
 Test;
 except
 Application.HandleException(Sender);
 end;
 finally
 FreeLibrary(Lib);
 end;
end;

This sample DLL is compiled by Microsoft Visual Studio. It contains one exported function
(fnMSSample) which calls some internal functions (Test and InternalTest) and raises access
violation exception. It is loaded and called by the Delphi project (.exe host).

You should enable EurekaLog for host application. You should do this in the same way as
you do it for typical application without any DLLs. For example, if you have VCL Forms
application as the host - then you need to enable EurekaLog for host application and set
application type to "VCL Forms Application". This will add EurekaLog code and data into final
.exe file. It would also set hook for Forms.TApplication.HandleException method, which
will allow to automatically handle exceptions without writing any code.

Important note: Please note that above example is not recommended to use in real

EurekaLog 7 Documentation529

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

projects. The example above is created to illustrate differences in debug information for
DLLs. It is not intended to illustrate DLL design principles. The problem with example design
is as following: the sample DLL does not contain any try/catch handlers, and it lets
exceptions escape DLL to the caller. This is usually a bad practice - because the caller
may not know how to work with exceptions coming from other programming language. The
above example uses hardware exception for illustration. Real-life application will probably
raise software exceptions - which are specific to programming language. Thus, a better idea
is to wrap fnMSSample function into try/catch block and convert exception into safe error
code (a simple flag, integer code, HRESULT, etc.) - as explained in this article .

Since we're going to pass exceptions from DLL to .exe (a not recommended way, but
sufficient for our example) - you have to do the following:

Disable "Capture stack only for exceptions from current module" option . This will
instruct EurekaLog to catch exceptions from any executable module. By default EurekaLog
captures only exceptions within the same module.
Disable chained exceptions support by setting all options to "Classic" position. This
feature requires ability to track life time of exceptions objects. This is not possible for
general case (e.g. host and DLL are compiled by different compilers and there is no assist
from RTL for tracking exception objects). This feature may work in some specific
configurations.

You don't need to perform these changes if you're using the recommended approach of
not letting exceptions escape DLL. See example here .

Note: notice that event handler for Button1 in the above example calls exception handler
(Application.HandleException) explicitly. This is a required action for such code. That is
because exceptions from DLL will be handled in default application handler without such
explicit call - which happens after DLL will be unloaded. Therefore, an execution will go such
way without explicit try/except block:

Load DLL
Call function from DLL
Raise exception
Unload DLL
Analyze exception from (already unloaded) DLL

The last step will fail because DLL was already unloaded. This is the reason behind explicit
call to Application.HandleException. Please note that you don't need such call if you use
different buttons to load DLL/call function/unload DLL - that is because default exception
handler will guard each call of event handler.

This sample will generate the following error dialog without any additional actions:

457

467

237

573

457

467

Advanced topics 530

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Exception dialog for DLL without any debug information support

As you can see: the call stack lists every function within host .exe file - because host .exe
has EurekaLog debug information. DLL have no debug information. Therefore, EurekaLog is
unable to show call stack for DLL. Empty first line is exact exception address. It is shown
always - regardless of debug information available.

Of course, this is not a very useful bug report for DLL. You want to see some functions from
that DLL.

There are three possible usage cases for non-Embarcadero DLLs:
1. Convert 3rd party debug information format into EurekaLog debug information;
2. Use 3rd party debug information without converting to EurekaLog debug information;
3. Use DLL exports provider (no debug information is available or debug information format

is not supported).

Use DLL exports provider (no debug information is available or debug
information format is not supported)
This approach is not recommended - because there will be inaccurate information in call
stacks without debug information. This case should be used only if compiler is not able to
produce debug information or debug information format is unknown to EurekaLog. Use this
approach as "last resort" measure: to show at least something for DLLs without debug
information.

1. Enable DLL exports debug information provider (see description of this provider).

Note: this case is a default configuration for EurekaLog.

The result error message will look like this:

355 411

EurekaLog 7 Documentation531

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Exception dialog for DLL without debug information but with DLL Export provider

This example is able to discover name of exported function ('fnMSSample') - thanks to DLL
Export provider. However, this example is not able to identify internal functions in DLL -
because internal functions are not exported. Therefore, internal functions are not listed at
all. And (as always) exact exception location is added to the top of the call stack.

Please note that this example also adds entries for USER32.dll and KERNEL32.dll in the call
stack.

Note: DLL Exports provider may show entries like "(possible fnMSSample+132)". Such text
means that there are some JMP or RET instructions between start of the function and actual
address in a call stack. This means:

[Positive] Address belongs to the specified function. JMP/RET instruction may be part of
the function's logic (such as try/except block);
[False-positive] Address does not belong to the specified function. JMP/RET instruction
marks the end of the function. Address itself lies within some other internal/unknown
function after the specified function.

Number after "+" sign indicate byte offset between function's start and call stack address.
Greater offsets usually indicate greater chance for false-positive entries.

Use 3rd party debug information without converting to EurekaLog debug
information
This approach can be used if you want to use other tools for your executable (for example:
Process Explorer, WinDBG, external debugger, etc.). Other tools are not able to recognize
and read EurekaLog debug information. Thus, you need to supply and keep debug
information in a known format - such as PDB/DBG, TD32, etc. Both EurekaLog and other
tools will be able to use this debug information.

1. Enable generation of debug information in project's options (see below);
2. Enable support for debug information format in EurekaLog's project options (see list

of supported formats).
355

409

Advanced topics 532

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

For example, we use Microsoft Visual Studio in the above example. You can go to "Project" /
"Properties" IDE menu item to open options for your C++ DLL project. Go to "Configuration
Properties" / "Linker" / "Debugging" and enable "Generate debug info" option. Go to Go to
"Configuration Properties" / "C/C++" / "General" and set "Debug Information Format"
option option to "Program Database" (/Zi option for ompiler) or "Program Database for Edit
And Continue" (/ZI option for compiler). Build your project. There should be .pdb file
available in the same folder as .dll file for your project.

You should deploy this .pdb file with your .dll file.

Enable support for PDB debug information format by enabling "Microsoft Dbg/PDB" option
.

Note: you can enable generation of .map files in your Visual Studio projects. However, such
files can not be used by EurekaLog. .map files do not have a strict format. .map files are
defined as "human-readable plain text files in free form that indicate the relative offsets of
functions for a given version of a compiled binary". EurekaLog is able to parse .map files
produced by Delphi and C++ Builder linkers. EurekaLog is not able to parse .map files
produced by other compilers/linkers/tools.

Exception dialog for DLL with .pdb file and enabled MS Debug Info provider

Since DLL now have full debug information available in .pdb file, and EurekaLog has enabled
support for reading .pdb files - there will be full information for your DLL in the call stack. All
exported and internal functions will be properly identified. All functions will have line
numbers information.

Note:
IMPORTANT: (only for "Microsoft Dbg/PDB" provider) You have to deploy .pdb file
with your DLL. Unfortunately, PDB information can not be injected into executable. Only
standalone .pdb files are supported. This is not a limitation of EurekaLog;
IMPORTANT: (only for "Microsoft Dbg/PDB" provider) You have to deploy DbgHelp.dll

355

http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx
http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx
http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx
http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx
http://msdn.microsoft.com/en-us/library/958x11bc.aspx
http://msdn.microsoft.com/en-us/library/958x11bc.aspx
http://msdn.microsoft.com/en-us/library/958x11bc.aspx
http://msdn.microsoft.com/en-us/library/958x11bc.aspx

EurekaLog 7 Documentation533

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

file from Microsoft Debugging Tools. This file can also be found in \Bin (\Bin64) folder of
EurekaLog installation. Default DbgHelp.dll from C:\Windows is not suitable for such
usage.
You can use any other source of debug information: such as TD32 (.tds), MAP (.map), DBG
(.dbg), JDBG (.jdbg), etc. Just be sure to enable corresponding debug information provider

. Most other debug formats can be injected into executable and not require any helper
DLLs;
You can use PE Analyzer (Module Informer) tool to check whenever DLL has any
supported debug information;
You can also enable debug information for Windows DLLs to show precise information
about internal functions in system DLLs. This configuration is explained here .

Convert 3rd party debug information format into EurekaLog debug
information
.pdb files are analog of .tds files (with TD32 debug information): these files are extremely
large (debug information file could be more than 10x times larger than executable module
itself), binary, uncompressed, unencrypted, store huge amount information about
executable (functions, arguments, types, classes, scopes, line numbers, etc. - in other
words, all information that may be needed for the debugger). Since exception tracer does
not need all this information (units/routine names and line numbers are enough) -
obviously, deploying such files along with your DLLs is not a best solution. Surely, you have
to use .pdb files if you need to load your DLL into other tools (such as Process Explorer or
WinDBG), but if you just want to use exception tracer tool with your DLL - there must be a
better way.

A better way is to convert 3rd party debug information into EurekaLog debug information.
EurekaLog debug information is compact, compressed, encrypted and stores only minimum
amount of information necessary to build call stack. All other extra information is not stored.
And you won't need any external helper DLLs - like DbgHelp.dll.

This is recommended approach. You can convert some supported debug information
formats into EurekaLog debug information format. You can do this without DLL recompilation

.

1. Enable generation of debug information in project's options (the same as in the previous
approach - see above);

2. Compile your DLL. There will be .dll file and debug information file (such as .pdb);
3. Run ecc32.exe or emake.exe to post-process your DLL file with embedding EurekaLog

debug information (see below).

Ecc32/emake tools can use --el_alter_exe command line switch to specify target .dll file for
post-processing (you should use NUL as project file name for --el_alter_exe switch - since
your DLL is not a Delphi / C++ Builder project), --el_config switch to specify EurekaLog
configuration (you have to use external .eof file since there is no Delphi / C++ Builder
project to read configuration from), --el_source to specify debug information source (default
source is Delphi / C++ Builder .map files; you have to specify where ecc32/emake should
look for debug information).

Notes:
You have to create new .eof file which will contain EurekaLog configuration for your
DLL. This file is required since there is no Delphi / C++ Builder project (which usually
stores EurekaLog configuration).
Most options in .eof file will be ignored since there is no EurekaLog code in your DLL. Only
design-time / build options will be used: such as encryption for debug information,
stripping relocs, removing function names, etc.
You can enable generation of .map files in your Visual Studio projects. However, such files
can not be used by EurekaLog. .map files do not have a strict format. .map files are
defined as "human-readable plain text files in free form that indicate the relative offsets
of functions for a given version of a compiled binary". EurekaLog is able to parse .map
files produced by Delphi and C++ Builder linkers. EurekaLog is not able to parse .map files
produced by other compilers/linkers/tools. Therefore, only Delphi / C++ Builder .map files
could be used for post-processing. Other possible source includes .tds files (TD32), any
format that DbgHelp supports (usually: .pdb and .dbg files).

355

617

504

426

38

443

http://msdn.microsoft.com/en-us/library/windows/desktop/ms679309(v=vs.85).aspx

Advanced topics 534

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

PDB format is a modern debug information format for Microsoft Visual Studio tool chain. It
can contain much more information than older DBG debug information format. DBG format
support is limited in many tools. For example. It is recommended to use PDB format when
possible.

For example, we have Microsoft Visual Studio DLL project as described above. Project have
some internal function and exports one function (fnMSSample). You can go to "Project" /
"Properties" IDE menu item to open options for your C++ DLL project. Go to "Configuration
Properties" / "Linker" / "Debugging" and enable "Generate debug info" option. Go to Go to
"Configuration Properties" / "C/C++" / "General" and set "Debug Information Format"
option option to "Program Database" (/Zi option for ompiler) or "Program Database for Edit
And Continue" (/ZI option for compiler). Build your project. There should be .pdb file
available in the same folder as .dll file for your project.

Now, run ecc32.exe or emake.exe with the following command-line:

"ecc32.exe" "--el_alter_exe=NUL;MSSample.dll" "--el_config=MSSample.eof" --
el_source=PDB

(you may need to specify full or relative file paths for your files; do not forget to enclose file
paths with spaces in double quotes)

This command line will convert MSSample.pdb file into EurekaLog format and inject this
information into MSSample.dll file. Options for this operation are specified in MSSample.eof
file.

Note: MSSample.pdb file may be deleted after conversion - depending on the state of
"Delete service files after compilation" option .

Resulting DLL will have injected EurekaLog debug information - which could be verified by
using PE Analyzer (Module Informer) tool . No additional debug information providers
should be enabled. The exception dialog will look like this (the same as in the previous
approach):

234

617

http://social.msdn.microsoft.com/Forums/windowsdesktop/en-US/e466e031-73be-4d06-aee0-462d3d91c02c/dbghelpdll-and-dbg-files-for-64bit-modules
http://social.msdn.microsoft.com/Forums/windowsdesktop/en-US/e466e031-73be-4d06-aee0-462d3d91c02c/dbghelpdll-and-dbg-files-for-64bit-modules
http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx
http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx
http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx
http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx
http://msdn.microsoft.com/en-us/library/958x11bc.aspx
http://msdn.microsoft.com/en-us/library/958x11bc.aspx
http://msdn.microsoft.com/en-us/library/958x11bc.aspx
http://msdn.microsoft.com/en-us/library/958x11bc.aspx

EurekaLog 7 Documentation535

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Exception dialog for DLL with injected EurekaLog debug information

This call stack will be the same as in the previous approach: DLL now have full debug
information which is injected into DLL file - there will be full information for your DLL in the
call stack. All exported and internal functions will be properly identified. All functions will
have line numbers information.

The difference from the previous approach is that you don't need to deploy any additional
files along with your DLL. All necessary debug information is stored inside DLL file itself.

See also:
Using EurekaLog with DLLs post-processed by 3rd party tools (JCL, madExcept, etc.)
Post-processing without (re)compilation
Working with configuration
External configuration and .eof files
PE Analyzer (Module Informer) tool

11.7 System logging setup

System Log can be used by applications to view and report different events. System Log is
often used by Win32 service applications. However, any kind of application can use System
Log.

Note: while it is recommended to use System Log for Win32 service applications, it is not
strictly required. Win32 service applications can use typical EurekaLog bug report files
instead of System Log.

This topic contains the following subsections:
What is System Log
Registering Event Source
Configuring error dialog

495

426

439

443

617

46

536

537

543

Advanced topics 536

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Using dynamic content with System Log

Note: you can look at NT Service Application demo which is shipped with EurekaLog.

See also:
Configuring bug report

11.7.1 System Log

Many applications record errors and events in proprietary error logs, each with their own
format and user interface. Data from different applications can't easily be merged into one
complete report, requiring system administrators or support representatives to check a
variety of sources to diagnose problems.

Event logging provides a standard, centralized way for applications (and the operating
system) to record important software and hardware events. The event logging service
records events from various sources and stores them in a single collection called an event
log. The Event Viewer enables you to view logs; the programming interface also enables
you to examine logs.

Event Viewer in Windows Vista+

543

46

EurekaLog 7 Documentation537

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Event Viewer in Windows XP

Applications can use the Event Logging API to report and view events. While any application
can log events with Event Logging API, Win32 service applications use Event Logging most
commonly.

Note: while it is recommended to use System Log for Win32 service applications, it is not
strictly required. Win32 service applications can use typical EurekaLog bug report files
instead of System Log.

See also:
Registering Event Source
Configuring bug report
System Logging setup
System Log dialog

11.7.2 Registering Event Source

Before your application can add events to system log - you must to register your application
as source. If you fail to do this, then system will not be able to display your events correctly.

The event source is the name of the software that logs the event. It is often the name of
the application or the name of a subcomponent of the application if the application is large.
You can add a maximum of 16,384 event sources to the registry.

46

537

46

535

384

Advanced topics 538

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Event Viewer displays an event from the properly registered event source

The same event for unregistered event source

EurekaLog 7 Documentation539

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Preparing .res file for your application
To report events, you must first define your events in a message text file. Usually, you need
only one event (its type will be "error") for all exceptions in your application. However,
nothing stops you from having multiple events: you may want to use some "informational"
or "warning" events for non-fatal/known exceptions. See this article for tips on construction
of your message texts: Logging Guidelines.

The following example shows a sample message text file (Messages.mc):

MessageIdTypedef=DWORD
SeverityNames=(Success=0x0:STATUS_SEVERITY_SUCCESS
 Informational=0x1:STATUS_SEVERITY_INFORMATIONAL
 Warning=0x2:STATUS_SEVERITY_WARNING
 Error=0x3:STATUS_SEVERITY_ERROR
)
FacilityNames=(System=0x0:FACILITY_SYSTEM
 Runtime=0x2:FACILITY_RUNTIME
 Stubs=0x3:FACILITY_STUBS
 Io=0x4:FACILITY_IO_ERROR_CODE
)
LanguageNames=(English=0x409:MSG00409)
LanguageNames=(Italian=0x410:MSG00410)
MessageId=0x1
Severity=Error
Facility=Runtime
SymbolicName=mcEurekaLogErrorMessage
Language=English
There was an exception "%1" in the service.
See %2 file for more information.
.
Language=Italian
C'e stato un eccezione "%1" nel servizio.
Vedere il file %2 per ulteriori informazioni.
.

Warning: there must be line break at the last line with dot (.) in .mc file. In other words:
you should add a blank line at the end of the file.

This file defines one event with ID #1, which is represented in two languages: English and
Italian. This event has error type and uses two variable parts (%1 and %2) in its error
text.

To compile the Unicode message text file, use the following command:

mc -U Messages.mc

MC.exe is Message Compiler tool, which is included with Visual Studio (Express edition does
not include MC tool) or Windows SDK for Windows 7 (Windows SDK for Windows 8 does not
include command line tools). Compiling .mc file will give you a C++ header file (.h file).
Example of content from .h file for the above example of .mc file:

543

http://msdn.microsoft.com/en-us/library/windows/desktop/dd996906(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd996906(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd996906(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363667(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363667(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa385638(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa385638(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa385638(v=vs.85).aspx

Advanced topics 540

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

//

// Values are 32 bit values laid out as follows:

//

// 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

// 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

// +---+-+-+-----------------------+-------------------------------+

// |Sev|C|R| Facility | Code |

// +---+-+-+-----------------------+-------------------------------+

//

// where

//

// Sev - is the severity code

//

// 00 - Success

// 01 - Informational

// 10 - Warning

// 11 - Error

//

// C - is the Customer code flag

//

// R - is a reserved bit

//

// Facility - is the facility code

//

// Code - is the facility's status code

//

//

// Define the facility codes

//
#define FACILITY_SYSTEM 0x0
#define FACILITY_STUBS 0x3
#define FACILITY_RUNTIME 0x2
#define FACILITY_IO_ERROR_CODE 0x4

//

// Define the severity codes

//
#define STATUS_SEVERITY_WARNING 0x2
#define STATUS_SEVERITY_SUCCESS 0x0
#define STATUS_SEVERITY_INFORMATIONAL 0x1
#define STATUS_SEVERITY_ERROR 0x3

//

// MessageId: mcEurekaLogErrorMessage

//

// MessageText:

//

// There was an exception "%1" in the service.

// See %2 file for more information.

//
#define mcEurekaLogErrorMessage ((DWORD)0xC0020001L)

You can safely delete this file (you can also look inside to analyze if everything had gone as

EurekaLog 7 Documentation541

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

expected). Note the constant for mcEurekaLogErrorMessage ($C0020001). This is a full
ident of your event. This constant includes event kind ($C for "Error") and facility ID ($2 for

"Facility RunTime"), as well as event's ID itself (1).

Important: Remember this constant as you would need to enter it into your configuration
. If you're using the sample above (severity = error, facility = runtime) then this number

will always have form of $C002XXXX (where XXXX is hexadecimal representation of

event's ID) .

You will also get a set of .bin files (MSG00409.bin, MSG00410.bin, etc.) - one for each
language, and a .rc file - template for resource compiler. Example of .rc file for our case:

LANGUAGE 0x10,0x1
1 11 "MSG00410.bin"
LANGUAGE 0x9,0x1
1 11 "MSG00409.bin"

Next, you should compile auto-generated .rc file with the following command:

rc -r Messages.rc

RC.exe is Microsoft resource compiler tool, which can be found in the same location as
MC.exe. You can also use resource compiler included with Delphi or C++ Builder IDE.
Compiling .rc file will give you the .res file. You can delete .rc and .bin files after obtaining
.res file.

Now you can include .res file into your application: "Project" / "Add to project" or {$R
Messages.res} (Delphi only).

Note: instead of manually compiling .rc file - you can instruct Delphi IDE to automatically
compile it into .res file. You can do this by placing the following line into your project source
file:

{$R 'Messages.res' 'Messages.rc'}

Of course, this approach means that you must keep all .rc and .bin files around.

Tip: you can use the following command batch file to fully regenerate .res file from .mc file
with deleting all temp/intermediate files:

@echo off
del Messages.res > NUL
mc -u -U Messages.mc
del Messages.h > NUL
rc -r Messages.rc
del Messages.rc > NUL
del MSG*.bin > NUL

(you may need to adjust paths to mc/rc tools)

Note: you can look at NT Service Application demo which is shipped with EurekaLog.

Registering resource file
Once you obtained .res file and included it into your application (typically: you include .res
file into .exe file, but you can also include .res file into standalone DLL), now you can
register your executable as event source. You can do this by adding a certain registry
subkey, for example:

543

http://delphi.about.com/od/objectpascalide/a/embed_resources.htm
http://delphi.about.com/od/objectpascalide/a/embed_resources.htm
http://delphi.about.com/od/objectpascalide/a/embed_resources.htm
http://delphi.about.com/od/objectpascalide/a/embed_resources.htm
http://delphi.about.com/od/objectpascalide/a/embed_resources.htm
http://delphi.about.com/od/objectpascalide/a/embed_resources.htm
http://delphi.about.com/od/objectpascalide/a/embed_resources.htm
http://delphi.about.com/od/objectpascalide/a/embed_resources.htm
http://delphi.about.com/od/objectpascalide/a/embed_resources.htm
http://delphi.about.com/od/objectpascalide/a/embed_resources.htm
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363661(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363661(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363661(v=vs.85).aspx

Advanced topics 542

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

uses
 Registry;

procedure TServiceForm.ServiceAfterInstall(Sender: TService);
const
 EVENTLOG_AUDIT_FAILURE = $0010;
 EVENTLOG_AUDIT_SUCCESS = $0008;
 EVENTLOG_ERROR_TYPE = $0001;
 EVENTLOG_INFORMATION_TYPE = $0004;
 EVENTLOG_WARNING_TYPE = $0002;
var
 Reg: TRegIniFile;
begin
 Reg := TRegIniFile.Create(KEY_ALL_ACCESS);
 try
 Reg.RootKey := HKEY_LOCAL_MACHINE;
 if Reg.OpenKey
 ('\SYSTEM\CurrentControlSet\Services\Eventlog\Application\' + Name, True) then
 begin

 // Indicate where to look for message texts
 Reg.WriteString
 ('\SYSTEM\CurrentControlSet\Services\Eventlog\Application\' + Name,
 'EventMessageFile', ParamStr(0));

 // Indicate which message types can be reported
 TRegistry(Reg).WriteInteger('TypesSupported',
 EVENTLOG_ERROR_TYPE or EVENTLOG_INFORMATION_TYPE or EVENTLOG_WARNING_TYPE);

 end;
 finally
 FreeAndNil(Reg);
 end;
end;

procedure TServiceForm.ServiceBeforeUninstall(Sender: TService);
var
 Reg: TRegIniFile;
begin
 Reg := TRegIniFile.Create(KEY_ALL_ACCESS);
 try
 Reg.RootKey := HKEY_LOCAL_MACHINE;
 Reg.EraseSection('\SYSTEM\CurrentControlSet\Services\Eventlog\Application\' + Name);
 finally
 FreeAndNil(Reg);
 end;
end;

This sample code assumes that your application is Win32 service application, so we
can use Pre/Post-install events to register/unregister our application file as event
source. It also assumes that messages (.res file) are included into main executable
(.exe file). You can replace ParamStr(0) with another name (like resource DLL).

There are 3 standard logs (Application, System and Security) and arbitrary number of
custom logs. Normally, your application would use "Application" standard log. The

http://msdn.microsoft.com/en-us/library/windows/desktop/aa363648(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363648(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363648(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363648(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363648(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363648(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363648(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363648(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363648(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363648(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363648(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363648(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363648(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363648(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363648(v=vs.85).aspx

EurekaLog 7 Documentation543

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

above code snippet assumes that. You may also use custom log for your application.

Please note that this code example uses service name as event source name. This
name must be specified later in dialog options .

Note: you can look at NT Service Application demo which is shipped with EurekaLog.

See also:
Configuring dialog
Logging Guidelines
System Log
Using dynamic content with System Log

11.7.3 Configuring dialog

EurekaLog contains the special pseudo-dialog for system logging . You can select and
configure it on standard Dialogs page :

System log dialog options

Usually you should leave computer name and category ID empty (unless you want/need
special behavior), enter event source name (this is the name which was used during
registration) and message ID (this is ID which was used in message text file).

Important: You can get exact ID of your message from auto-generated .h file which you
should obtain on the previous step . This ID should be full ID of your event, including
severity and facility codes as well as event's ID itself.

Tip: Message ID usually have form of $C002XXXX. Where XXXX is ID of your event (such

as 1, 2, etc.) in hexadecimal form.

Note: you can look at NT Service Application demo which is shipped with EurekaLog.

See also:
System Log dialog options

11.7.4 Using dynamic content with System Log

You can write template text when you define your events. This template can include
qualificators like %1, %2, etc. Qualificator defines variable part of event. Each logged event
will contain reference to template's text, so template's text is not stored into log itself (thus,
saving storage space). But any dynamic content for qualificators will be stored inside log.
When you're viewing log - dynamic content will be inserted into qualificator's positions and
form a full error message.

EurekaLog defines two qualificator by default: exception message and full path to bug
report file.

You can alter default behavior to store arbitrary dynamic data. You can do this by altering

543

543

536

543

384

295 267

537 537

537

295

http://msdn.microsoft.com/en-us/library/windows/desktop/aa363661(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363661(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363661(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363661(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363661(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363661(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363661(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363661(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363661(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363667(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363667(v=vs.85).aspx

Advanced topics 544

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

send class . First, you need to declare your own send class which will contain your
customizations and register it within EurekaLog:

unit CustomizedSystemLog;

interface

implementation

uses
 Classes,
 EDialog,
 EDialogService;

type
 TEventLogDialog = class(EDialogService.TEventLogDialog)
 end;

initialization
 RegisterDialogClassFirst(TEventLogDialog);
end.

Next, you can alter behavior as you like. For example, default TEventLogDialog class has
virtual method FillData with default implementation as follows:

procedure TEventLogDialog.FillData(const AData: TStrings);
begin
 AData.Add(ExceptionInfo.ExceptionMessage);
 AData.Add(LogFileName);
end;

which you can override to define your own dynamic content. You can use ExceptionInfo
property of dialog class to get access to different properties of logged exception in
question. You can also use BugReport property to gain access to bug report content.

The following example defines 4 custom dynamic pieces: %1 for exception message, %2 for
exception type, %3 for compact call stack, %4 for BugID .

195

421

EurekaLog 7 Documentation545

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

unit CustomizedSystemLog;

interface

implementation

uses
 SysUtils,
 Classes,
 ECallStack,
 EDialog,
 EDialogService;

type
 TEventLogDialog = class(EDialogService.TEventLogDialog)
 protected
 procedure FillData(const AData: TStrings); override;
 end;

{ TEventLogDialog }

procedure TEventLogDialog.FillData(const AData: TStrings);
var
 Formatter: TCompactStackFormatter;
 CallStack: String;
begin
 Formatter := TCompactStackFormatter.Create;
 try
 CallStack := CallStackToString(ExceptionInfo.CallStack, '', Formatter);
 finally
 FreeAndNil(Formatter);
 end;

 // %1
 AData.Add(ExceptionInfo.ExceptionMessage);

 // %2
 AData.Add(ExceptionInfo.ExceptionClass);

 // %3
 AData.Add(CallStack);

 // %4
 AData.Add(ExceptionInfo.BugIDStr);
end;

initialization
 RegisterDialogClassFirst(TEventLogDialog);
end.

You can use the following .mc file for this example:

MessageIdTypedef=DWORD
SeverityNames=(Success=0x0:STATUS_SEVERITY_SUCCESS
 Informational=0x1:STATUS_SEVERITY_INFORMATIONAL
 Warning=0x2:STATUS_SEVERITY_WARNING
 Error=0x3:STATUS_SEVERITY_ERROR

Advanced topics 546

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

)
FacilityNames=(System=0x0:FACILITY_SYSTEM
 Runtime=0x2:FACILITY_RUNTIME
 Stubs=0x3:FACILITY_STUBS
 Io=0x4:FACILITY_IO_ERROR_CODE
)
LanguageNames=(English=0x409:MSG00409)
MessageId=0x1
Severity=Error
Facility=Runtime
SymbolicName=mcEurekaLogErrorMessage
Language=English
There was an exception #%4 of type %2 with message:%n%1%nCall stack:%
n%3
.

The result will look like this:

EurekaLog 7 Documentation547

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

An event with the 4 custom qualificators

Note: you can look at NT Service Application demo which is shipped with EurekaLog.

See also:
System Log dialog options
Registering Event Source
Configuring error dialog

11.8 Multi-threaded applications

This guide for creating multithreaded applications with EurekaLog contains the following
articles:

How to create threads ;
EurekaLog's helpers for creating threads ;
Enabling EurekaLog for background threads ;
Multithreaded call stacks ;
Multithreading options .

See also:
Configuring call stack
Using EurekaLog with COM objects

11.8.1 Creating threads

There are the following possibilities to create threads in Delphi / C++ Builder applications:
CreateThread - a basic function to create any thread. This is a system function;
o BeginThread - a wrapper for CreateThread function. This is a RTL function;

TThread - a wrapper for BeginThread function;

Frameworks (AsyncCalls, OmniThreadLibrary, etc.) - wrappers for TThread class;

o Thread pools (QueueUserWorkItem, etc.) - wrappers for CreateThread function;

Usually your code will use TThread or BeginThread as low-level thread creation routines.

Or your code may use frameworks/thread pools. You should never use CreateThread
function to create threads.

EurekaLog offers two extended routines which greatly simplify creating threads for
debugging:

BeginThreadEx function - a wrapper for BeginThread function which adds support for

naming thread and enabling EurekaLog. This function can be used in any application
without enabling/including EurekaLog.
TThreadEx class - a wrapper for TThread class which adds support for naming thread

and enabling EurekaLog. This class can be used in any application without enabling/
including EurekaLog.

It is recommended to use BeginThreadEx function instead of BeginThread function and to

use TThreadEx class instead of TThread class.

Important note: turning off low-level hooks means that EurekaLog will not install
additional hooks for API functions. This means that EurekaLog will not intercept important
system calls. For example, EurekaLog will not hook ExitThread function, which means

EurekaLog will not know when a thread exits. This will lead to thread information stored
forever - until application terminates. You can call internal _NotifyThreadGone or

_CleanupFinishedThreads functions (from EThreadsManager unit) to notify EurekaLog

about thread's termination. Such manual notifications can be avoided by using EurekaLog's
wrappers (TThreadEx , for example).

See also:

295

537

543

547

547

568

85

246

48

488

548

549

553

565

566

551

559

259

559

Advanced topics 548

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Enabling EurekaLog for background threads
Multithreading options
Multithreaded call stacks
Configuring call stack

11.8.1.1 CreateThread Function

CreateThread system function is a basic function to create any thread. Any other method for
creating threads is based on CreateThread function.

Warning: it is not recommended to directly use CreateThread function in your application.

Always use at least BeginThread function instead of CreateThread function - however,

it is recommended to use BeginThreadEx function instead of CreateThread.

BeginThread(Ex) functions contain RTL thread support code.

Thread function for CreateThread is not protected by any exception handler. Any exception

in thread created with CreateThread function will terminate the application:

Under debugger: debugger will show "Project ... faulted with message ..." notification and
terminate the application.
Free run: system will show "... has stopped working. A problem caused the program to
stop working correctly. Windows will close the program and notify you if a solution is
available" error dialog and terminate the application.

EurekaLog will install wrapper for any CreateThead's thread function to catch unhandled

exceptions in threads (as long as "Use low-level hooks" option is enabled and
corresponding threading option is set). Therefore you don't need to write any additional
code if you're going to always use EurekaLog in your applications. EurekaLog will show a
usual EurekaLog error dialog with full bug report and terminate the application.

Important note: EurekaLog has to be enabled for background threads .

Important note: turning off low-level hooks means that EurekaLog will not install
additional hooks for API functions. This means that EurekaLog will not intercept important
system calls. For example, EurekaLog will not hook ExitThread function, which means

EurekaLog will not know when a thread exits. This will lead to thread information stored
forever - until application terminates. You can call internal _NotifyThreadGone or

_CleanupFinishedThreads functions (from EThreadsManager unit) to notify EurekaLog

about thread's termination. Such manual notifications can be avoided by using EurekaLog's
wrappers (TThreadEx , for example).

However, if you want to compile your application with and without EurekaLog (for example,
as release/debug builds) or if you don't want to install low-level hooks (for better
compatibility with external tools) - then you have to wrap each thread function into
explicit try/except block like this:

function ThreadFunc(Parameter: Pointer): Integer; stdcall;
begin
 try

 // 1. Name the thread for easy identification in debugger and bug reports
 NameThread('This is my thread');

 // 2. Activate EurekaLog for this thread.
 SetEurekaLogStateInThread(0, True);

 // 3. <- ... your code for the thread ...

568

246

85

48

549

551

259

246

568

259

559

448

514

http://msdn.microsoft.com/en-us/library/windows/desktop/ms682453(v=vs.85).aspx

EurekaLog 7 Documentation549

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 Result := 0; // to indicate "success"

 except

 // Handle any exception in thread

 ApplicationHandleException(nil); // from Classes unit

 Result := 1; // to indicate "failure"

 end;
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 TID: Cardinal;
begin

 // This code ignores any failures in thread, but

 // you may want to use GetExitCodeThread function.
 CloseHandle(CreateThread(nil, 0, @ThreadFunc, nil, 0, TID));
end;

Note: while most calls to VCL are not thread-safe, ApplicationHandleException function is a
default global exception handler. This function is called to handle exceptions by multi-
threaded applications. Therefore, this function is thread-safe. Alternative approach is to
use HandleException function from EBase unit. HandleException function will show

standard error dialog if EurekaLog was not enabled. HandleException function will show

EurekaLog error dialog if EurekaLog was enabled. EBase unit is a special unit that can be

included in any application without including full EurekaLog code.

This code sample will gracefully handles any exception in thread - regardless if EurekaLog is
enabled for application or not:

EurekaLog is enabled: this sample will show usual EurekaLog's error dialog with full bug
report;
EurekaLog is not enabled: this sample will show error message in message box.

Important note: EurekaLog has to be enabled for background threads .

Warning: it is not recommended to directly use CreateThread function in your application.

Always use at least BeginThread function instead of CreateThread function - however,

it is recommended to use BeginThreadEx function instead of CreateThread.

BeginThread(Ex) functions contain RTL thread support code.

See also:
BeginThread Function
TThread Class
Enabling EurekaLog for background threads

11.8.1.2 BeginThread Function

BeginThread RTL function is basic function to create threads from Delphi / C++ Builder code.
This function is a simple wrapper for system CreateThread function .

Important note: it is recommended to use BeginThreadEx function instead of
BeginThread function.

BeginThread function has the following differences from CreateThread :
BeginThread will make other RTL calls thread-safe (such as memory/heap operations);

BeginThread will handle any unhandled thread exception by passing it into

SysUtils.ShowException routine;

568

549

551

549

553

568

548

551

548

http://docwiki.embarcadero.com/Libraries/en/System.Classes.ApplicationHandleException
http://docwiki.embarcadero.com/Libraries/en/System.Classes.ApplicationHandleException
http://docwiki.embarcadero.com/Libraries/en/System.BeginThread
http://docwiki.embarcadero.com/Libraries/en/System.SysUtils.ShowException
http://docwiki.embarcadero.com/Libraries/en/System.SysUtils.ShowException

Advanced topics 550

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

BeginThread uses more Pascal-friendly function prototype. The functionality remains the

same: there is a custom argument (pointer) and an integer return value.

There are no other differences between RTL's BeginThread and system's CreateThread
functions. Therefore BeginThread is RTL's analog of system function.

Warning: you should never use CreateThread function. Always use BeginThread/

BeginThreadEx function instead of CreateThread function.

EurekaLog will install wrapper for any BeginThread's thread function to catch unhandled

exceptions in threads (as long as "Use low-level hooks" option is enabled). Therefore
you don't need to write any additional code if you're going to always use EurekaLog in your
applications. EurekaLog will show a usual EurekaLog error dialog with full bug report and
terminate the application.

Important note: EurekaLog has to be enabled for background threads .

Important note: turning off low-level hooks means that EurekaLog will not install
additional hooks for API functions. This means that EurekaLog will not intercept important
system calls. For example, EurekaLog will not hook ExitThread function, which means

EurekaLog will not know when a thread exits. This will lead to thread information stored
forever - until application terminates. You can call internal _NotifyThreadGone or

_CleanupFinishedThreads functions (from EThreadsManager unit) to notify EurekaLog

about thread's termination. Such manual notifications can be avoided by using EurekaLog's
wrappers (TThreadEx , for example).

However, if you want to compile your application with and without EurekaLog (for example,
as release/debug builds) or if you don't want to install low-level hooks (for better
compatibility with external tools) - then you will use a default exception handling
provided by BeginThread function. Any exception in threads created with BeginThread
function will be handled by RTL by passing exception object to SysUtils.ShowException
function. However, the default processing has the following drawbacks:
SysUtils.ShowException function is a low-level function. Error dialog from

SysUtils.ShowException is a low-level error dialog (with RAW exception address), it

differs from a typical error dialog in application;
Default exception handling terminates application after exception in thread;
Default exception handling works in unexpected way when running outside of the
debugger: there will be system error dialog followed by error dialog from
SysUtils.ShowException function. There may be some other error dialogs - which are

invoked during terminating application from background thread.

Therefore, a default exception handling is usually not good enough for a typical application.

Summary: you should manually catch all exceptions in thread via explicit try/except block.
This is also indicated in BeginThread documentation "ThreadFunc should handle all of its
own exceptions". For example:

function ThreadFunc(Parameter: Pointer): Integer;
begin
 try

 // 1. Name the thread for easy identification in debugger and bug reports
 NameThread('This is my thread');

 // 2. Activate EurekaLog for this thread.
 SetEurekaLogStateInThread(0, True);

 // 3. <- ... your code for the thread ...

259

568

259

559

448

514

http://docwiki.embarcadero.com/Libraries/en/System.SysUtils.ShowException
http://docwiki.embarcadero.com/Libraries/en/System.SysUtils.ShowException
http://docwiki.embarcadero.com/Libraries/en/System.BeginThread
http://docwiki.embarcadero.com/Libraries/en/System.BeginThread

EurekaLog 7 Documentation551

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 Result := 0; // to indicate "success"

 except

 // Handle any exception in thread

 ApplicationHandleException(nil); // from Classes unit

 Result := 1; // to indicate "failure"

 end;
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 TID: Cardinal;
begin

 // This code ignores any failures in thread, but

 // you may want to use GetExitCodeThread function.
 CloseHandle(BeginThread(nil, 0, ThreadFunc, nil, 0, TID));
end;

Note: while most calls to VCL are not thread-safe, ApplicationHandleException function is a
default global exception handler. This function is called to handle exceptions by multi-
threaded applications. Therefore, this function is thread-safe. Alternative approach is to
use HandleException function from EBase unit. HandleException function will show

standard error dialog if EurekaLog was not enabled. HandleException function will show

EurekaLog error dialog if EurekaLog was enabled. EBase unit is a special unit that can be

included in any application without including full EurekaLog code.

This code sample will gracefully handles any exception in thread - regardless if EurekaLog is
enabled for application or not:

EurekaLog is enabled: this sample will show usual EurekaLog's error dialog with full bug
report;
EurekaLog is not enabled: this sample will show error message in message box.

Important note: EurekaLog has to be enabled for background threads .

See also:
CreateThread Function
BeginThreadEx Function
TThread Class
Enabling EurekaLog for background threads

11.8.1.3 BeginThreadEx Function

EurekaLog provides two helper routines to simplify thread management: BeginThreadEx
function and TThreadEx class - which should be used instead of BeginThread function and

TThread class respectively. Both routines are from EBase unit. EBase unit is a special unit

that can be included in any application without including full EurekaLog code. Therefore you
can safely use EBase unit in your applications even without EurekaLog enabled.

Both BeginThreadEx function and TThreadEx class offers two additional arguments:

Thread name;
EurekaLog's state.

Note: the EurekaLog's state will be ignored if you compile your application without
EurekaLog (or with disabled EurekaLog). On the other hand, the thread name is never
ignored. Thread name is used by debugger to show thread's name in Threads window.

Thread name is arbitrary text string which can contain any combination of characters.
Thread name will be shown in debugger (Threads window) and it will be used as thread

568

548

551

553

568

http://docwiki.embarcadero.com/Libraries/en/System.Classes.ApplicationHandleException
http://docwiki.embarcadero.com/Libraries/en/System.Classes.ApplicationHandleException

Advanced topics 552

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

caption in bug reports. You can use thread name to identificate threads.

Example of using BeginThreadEx function for this sample code :

function ThreadFunc(Parameter: Pointer): Integer;
begin

 // No additional code needed inside thread func

 // <- ... your code for the thread ...

 Result := 0; // to indicate "success"
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 TID: Cardinal;
begin

 // This code ignores any failures in thread, but

 // you may want to use GetExitCodeThread function.
 CloseHandle(BeginThreadEx(nil, 0, ThreadFunc, nil, 0, TID,

 // New argument: thread name
 'This is my thread with Parameter = ' +
 IntToHex(NativeUInt(nil), SizeOf(Pointer) * 2)));
end;

This code sample works exactly as the previous code sample . You can pass thread name
right into BeginThreadEx function. Thread will be automatically named - regardless of

EurekaLog's state.

Threads launched with BeginThreadEx will be EurekaLog-enabled by default. You can

supply optional Boolean argument for BeginThreadEx function to disable EurekaLog in

thread, for example:

 BeginThreadEx(nil, 0, ThreadFunc, nil, 0, TID, 'Thread Name', False

{ disable EurekaLog in thread });

Notes:
Thread function for BeginTheadEx function has the same signature (prototype) as thread

function for BeginThread function. I.e. you don't have to change thread function

declaration.
BeginThreadEx function has almost the same signature (prototype) as BeginThread
function: the only difference is two additional arguments, which are optional. This means
that you can just add "Ex" suffix to your existing BeginThread calls.

There is no need to wrap thread function for BeginThreadEx into explicit try/except block

- as you do this for thread function from BeginThread function . BeginThreadEx always

protect thread function with exception handling block with a call to default exception
handler - regardless of EurekaLog's state in this thread and your application. Any
exception in thread created with BeginThreadEx function will be handled by default

handler - showing either error message (if EurekaLog is not enabled) or full bug report
dialog (if EurekaLog is enabled), and thread exit code will be non-zero, application will not
be terminated. Use explicit try/except block if you want some custom processing for
exceptions (for example, if you want to terminate application after handling exception
from background thread). This also means that both thread functions (with and without
try/except blocks) are fully compatible with BeginThreadEx function.

The above facts mean that BeginThreadEx function is fully source-compatible with

BeginThread function. Therefore, you can do a search&replace "BeginThread" ->

"BeginThreadEx" over all source files for your project. This is a quick way to manually

enable EurekaLog for your threads. The same is true for TThread -> TThreadEx .
BeginThreadEx function does not terminate application when thread exception is raised.

549

551

549

570 559

EurekaLog 7 Documentation553

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Thread will return non zero exit code when there was exception in this thread. Otherwise
(i.e. if there was no exception in the thread) - the exit code will match result of the thread
function (usually - zero). This can be used to get "success/failure" exit status of the
thread - via GetExitCodeThread function.

See also:
CreateThread Function
BeginThread Function
TThread Class
Enabling EurekaLog for background threads

11.8.1.4 TThread Class

TThread class is convenient wrapper for BeginThread function . TThread is an abstract

class that enables creation of separate threads of execution in an application. Create a
descendant of TThread to represent an execution thread in a multithreaded application.

Each new instance of a TThread descendant is a new thread of execution. Multiple

instances of a TThread derived class make an application multithreaded. Define the thread

object's Execute method by inserting the code that should execute when the thread is
executed.

Important note: it is recommended to use TThreadEx class instead of TThread class.

TThread class handles all exceptions in thread function (a.k.a. Execute method) by saving

exception into FatalException property. FatalException property can be analyzed after

thread's termination.

Important note: TThread does not invoke any exception handling routine, it just merely

saves exception into FatalException property. This means that TThread silently hides all

exceptions by default. You have to analyze FatalException property manually.

EurekaLog does not contain any hook for TThread - because TThread properly handles

exceptions (even though it does not invoke any exception handler, but expects this
from its caller). However, there is a "Auto-handle TThread exceptions" option . This
option will call EurekaLog as default exception handler for TThread. Even though this

option is a fast and convenient way to handle TThread's exception - it is not

recommended to use for the following reasons:
This option will break any 3rd party code which uses TThread class and expects

FatalException property to behave as usual;

This option have no effect if EurekaLog is not enabled in your application. Therefore
you still have to write proper exception handling code if you're going to compile your
application without EurekaLog;
This option will not work if "Use low-level hooks" option is not enabled. You may
want to disable this option for better compatibility with exe protectors/packers .

Therefore it is recommended to keep "Auto-handle TThread exceptions" option turned
off and use proper exception handling as dictated by TThread's design (see below).

There is at least five different ways to handle exceptions in TThread:

1. Re-raise exception in caller thread (recommended) ;
2. Handle exception in caller thread ;
3. Handle exception in OnTerminate event handler ;
4. Handle exception by overriding DoTerminate method ;
5. Handle exception with explicit try/except block .

Note: very old Delphi versions do not have some important features of TThread. For

example, you can use only method #5 in Delphi 4 - because TThread in Delphi 4 lacks

FatalException property and there is no proper exception support at all.

Important note: EurekaLog has to be enabled for background threads .

Important note: turning off low-level hooks means that EurekaLog will not install

548

549

553

568

549

559

246

259

520

554

555

556

557

558

568

259

http://msdn.microsoft.com/en-us/library/windows/desktop/ms683190(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms683190(v=vs.85).aspx
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.Execute
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.FatalException
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.FatalException

Advanced topics 554

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

additional hooks for API functions. This means that EurekaLog will not intercept important
system calls. For example, EurekaLog will not hook ExitThread function, which means

EurekaLog will not know when a thread exits. This will lead to thread information stored
forever - until application terminates. You can call internal _NotifyThreadGone or

_CleanupFinishedThreads functions (from EThreadsManager unit) to notify EurekaLog

about thread's termination. Such manual notifications can be avoided by using EurekaLog's
wrappers (TThreadEx , for example).

#1: Re-raise exception in caller thread (recommended)
A common practice with easy approach is a simple re-raise of FatalException in the caller

thread:

type
 TMyThread = class(TThread)
 protected
 procedure Execute; override;
 end;

procedure TMyThread.Execute;
begin

 // 1. Name the thread for easy identification in debugger and bug reports
 NameThread('This is my thread');

 // 2. Activate EurekaLog for this thread.
 SetEurekaLogStateInThread(0, True);

 // 3. <- ... your thread code ...
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 Thread: TMyThread;
 E: TObject;
begin

 // Create thread
 Thread := TMyThread.Create(False);
 try

 // Wait for thread's completion.

 // This wait can be implemented in any other way.

 // E.g. you can assign OnTerminate handler;

 // or you can PostMessage from thread to main thread.
 Thread.WaitFor;

 // Analyze thread completion.

 // Re-raise any thread error in current thread.

 // You should do this only after the thread has finished.
 E := Thread.FatalException;
 if Assigned(E) then
 begin

559

EurekaLog 7 Documentation555

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 // clear FatalException property
 PPointer(@Thread.FatalException)^ := nil;
 raise E;
 end;

 finally
 FreeAndNil(Thread);
 end;
end;

This code "analyzes" thread exception by taking it out from the thread and re-raising it into
caller thread. This is an easy way to deal with exceptions from TThread. Exception will be

handled by caller thread in a usual way (e.g. via already established exception handler).
Note that normal execution path of the caller thread will be stopped - thus your code will
not continue if there was an error in the background thread. A call stack for the exception
will be call stack for the background thread - even though background thread is already
terminated, and exception is re-raised.

#2: Handle exception in caller thread
Alternative approach could be the following:

type
 TMyThread = class(TThread)
 protected
 procedure Execute; override;
 end;

procedure TMyThread.Execute;
begin

 // 1. Name the thread for easy identification in debugger and bug reports
 NameThread('This is my thread');

 // 2. Activate EurekaLog for this thread.
 SetEurekaLogStateInThread(0, True);

 // 3. <- ... your thread code ...
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 Thread: TMyThread;
 E: TObject;
begin

 // Create thread
 Thread := TMyThread.Create(False);
 try

 // Wait for thread's completion.

 // This wait can be implemented in any other way.

 // E.g. you can assign OnTerminate handler;

 // or you can PostMessage from thread to main thread.
 Thread.WaitFor;

 // Analyze thread completion.

 // You should do this only after the thread has finished.
 if Assigned(Thread.FatalException) then

Advanced topics 556

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 begin
 HandleException(Thread.FatalException);

 Abort; // thread failed - stop right here
 end;

 finally
 FreeAndNil(Thread);
 end;
end;

We can analyze failure in-place instead of re-raising exception. We use HandleException
function from EBase unit to handle exceptions.

Please note that we can not use ApplicationHandleException routine as we are going to
analyze saved/non-raised exception. ApplicationHandleException routine always

analyze active exception, it does not allow you to specify which exception should be
analyzed. HandleException function will show standard error dialog if EurekaLog was not

enabled. HandleException function will show EurekaLog error dialog if EurekaLog was

enabled. EBase unit is a special unit that can be included in any application without

including full EurekaLog code.

Note that we need to manually abort normal execution path (via Abort routine) to avoid
continue working as if there was no error.

#3: Handle exception in OnTerminate event handler
Sometimes it is not a very convenient to use WaitFor in main thread to wait for thread's

completion. You can use events for such cases:

type
 TMyThread = class(TThreadEx)
 private
 procedure Terminate(Sender: TObject);
 protected
 procedure Execute; override;
 end;

procedure TMyThread.Execute;
begin

 // 1. Name the thread for easy identification in debugger and bug reports
 NameThread('This is my thread');

 // 2. Activate EurekaLog for this thread.
 SetEurekaLogStateInThread(0, True);

 // 3. <- ... your thread code ...
end;

http://docwiki.embarcadero.com/Libraries/en/System.Classes.ApplicationHandleException
http://docwiki.embarcadero.com/Libraries/en/System.SysUtils.Abort

EurekaLog 7 Documentation557

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

// Called within Synchronize from main thread
procedure TMyThread.Terminate(Sender: TObject);
begin
 if Assigned(FatalException) then
 HandleException(FatalException);
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 Thread: TMyThread;
begin
 Thread := TMyThread.Create(True, 'My thread');
 Thread.OnTerminate := Thread.Terminate;
 Thread.FreeOnTerminate := True;

 Thread.Start; // = Resume for old Delphi versions

 Thread := nil; // never access thread var with FreeOnTerminate after Start
end;

This code will analyze thread exception by invoking exception handler for FatalException
property. We install OnTerminate event handler to automatically analyze thread exception

on thread's termination.

#4: Handle exception by overriding DoTerminate method
You can also override DoTerminate method instead of assigning OnTerminate handler. For

example:

type
 TMyThread = class(TThreadEx)
 private
 procedure DoTerminate; override;
 protected
 procedure Execute; override;
 end;

procedure TMyThread.Execute;
begin

 // 1. Name the thread for easy identification in debugger and bug reports
 NameThread('This is my thread');

 // 2. Activate EurekaLog for this thread.
 SetEurekaLogStateInThread(0, True);

 // 3. <- ... your thread code ...
end;

procedure TMyThread.DoTerminate;
begin

Advanced topics 558

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 inherited;
 if Assigned(FatalException) then
 HandleException(FatalException);
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 Thread: TMyThread;
begin
 Thread := TMyThread.Create(True, 'My thread');
 Thread.FreeOnTerminate := True;

 Thread.Start; // = Resume for old Delphi versions

 Thread := nil; // never access thread var with FreeOnTerminate after Start
end;

This code will work in the same way as the previous example.

#5: Handle exception with explicit try/except block
Surely, you can also use previous approach with explicit try/except block for TThread
class:

type
 TMyThread = class(TThreadEx)
 protected
 procedure Execute; override;
 end;

procedure TMyThread.Execute;
begin
 try

 // 1. Name the thread for easy identification in debugger and bug reports
 NameThread('This is my thread');

 // 2. Activate EurekaLog for this thread.
 SetEurekaLogStateInThread(0, True);

 // 3. <- ... your thread code ...
 except

 // Handle any exception in thread

 ApplicationHandleException(nil); // from Classes unit
 end;
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 Thread: TMyThread;
begin
 Thread := TMyThread.Create(True, 'My thread');
 Thread.FreeOnTerminate := True;
 Thread.Start;

 Thread := nil; // never access thread var with FreeOnTerminate after Start
end;

Important notes:
EurekaLog has to be enabled for background threads .
it is recommended to use TThreadEx class instead of TThread class.

549

568

559

EurekaLog 7 Documentation559

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

See also:
BeginThread Function
BeginThreadEx Function
TThreadEx Class
Anonymous threads
Enabling EurekaLog for background threads
Multithreading options
Multithreaded call stacks
Configuring call stack

11.8.1.5 TThreadEx class

EurekaLog provides two helper routines to simplify thread management: BeginThreadEx
function and TThreadEx class - which should be used instead of BeginThread function and

TThread class respectively. Both routines are from EBase unit. EBase unit is a special unit

that can be included in any application without including full EurekaLog code. Therefore you
can safely use EBase unit in your applications even without EurekaLog enabled.

Both BeginThreadEx function and TThreadEx class offers two additional arguments:

Thread name;
EurekaLog's state.

Note: the EurekaLog's state will be ignored if you compile your application without
EurekaLog (or with disabled EurekaLog). On the other hand, the thread name is never
ignored.

Thread name is arbitrary text string which can contain any combination of characters.
Thread name will be shown in debugger (Threads window) and it will be used as thread
caption in bug reports. You can use thread name to identificate threads.

TThreadEx class is descendant from TThread class - thus, all 5 exception handling

methods for TThread class is also applicable to TThreadEx class. For example:

type
 TMyThread = class(TThreadEx)
 protected
 procedure Execute; override;
 end;

procedure TMyThread.Execute;
begin

 inherited; // <- this is required

 // ... your code ...
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 Thread: TMyThread;
 E: TObject;
begin

 // Create thread
 Thread := TMyThread.Create('Thread Name');
 try

 // Wait for thread's completion.

 // This wait can be implemented in any other way.

 // E.g. you can assign OnTerminate handler;

549

551

559

562

568

246

85

48

559

Advanced topics 560

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 // or you can PostMessage from thread to main thread.
 Thread.WaitFor;

 // Analyze thread completion.

 // Re-raise any thread error in current thread.

 // You should do this only after the thread has finished.
 E := Thread.FatalException;
 if Assigned(E) then
 begin

 // clear FatalException property
 PPointer(@Thread.FatalException)^ := nil;
 raise E;
 end;

 finally
 FreeAndNil(Thread);
 end;
end;

Important note: please notice the "inherited;" call in Execute method. This call is required
for TThreadEx to make its work.

This code sample works exactly as the previous code sample . You can pass thread name
right into TThreadEx's constructor. Thread will be automatically named - regardless of

EurekaLog's state.

Threads launched with TThreadEx class will be EurekaLog-enabled by default. You can

supply optional Boolean argument for TThreadEx's constructor to disable EurekaLog in

thread, for example:

 Thread := TMyThread.Create('Thread Name', False { disable EurekaLog in

thread });

Of course, you can use the same approach while supplying Suspended argument, for

example:

 Thread := TMyThread.Create(

 False { create thread running },
 'Thread Name',

 False { disable EurekaLog in thread });

 Thread := TMyThread.Create(

 True { create thread suspended},
 'Thread Name',

 True { enable EurekaLog in thread });

TThreadEx class also supports anonymous threads :

553

562

EurekaLog 7 Documentation561

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

type
 TForm1 = class(TForm)
 ...
 private
 procedure HandleExceptionInThread(Sender: TObject);
 end;

procedure TForm1.Button1Click(Sender: TObject);
var
 Thread: TThreadEx;
begin
 Thread := TThreadEx.CreateAnonymousThread(
 procedure
 begin
 raise Exception.Create('Test');
 end,
 'My thread');
 Thread.OnTerminate := Self.HandleExceptionInThread;
 Thread.Start;

 Thread := nil; // never access thread var with FreeOnTerminate after Start

 // All anonymous threads are marked with FreeOnTerminate by default
end;

procedure TForm1.HandleExceptionInThread(Sender: TObject);
var
 Thread: TThread;
begin
 Thread := (Sender as TThread);
 if Assigned(Thread.FatalException) then
 HandleException(Thread.FatalException);
end;

Since creating OnTerminate handler just for handling exceptions in thread is a lot of work -

TThreadEx class presents a new property to handle exceptions automatically:

type
 TMyThread = class(TThreadEx)
 protected
 procedure Execute; override;
 end;

procedure TMyThread.Execute;
begin

 inherited; // <- this is required

Advanced topics 562

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 // ... your code ...
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 Thread: TMyThread;
begin
 Thread := TMyThread.Create(True, 'My thread');
 Thread.AutoHandleException := True;
 Thread.FreeOnTerminate := True;
 Thread.Start;

 Thread := nil; // never access thread var with FreeOnTerminate after Start
end;

This sample code will automatically invoke HandleException routine for FatalException
property of your thread. AutoHandleException property is also available for anonymous

threads created with TThreadEx class.

Notes:
TThreadEx class has the same signature (prototype) for both constructor and Execute
method as TThread class. I.e. you don't have to change declarations. The only difference

is two additional arguments for the constructor, which are optional. This means that you
can just add "Ex" suffix to your existing TThread calls.

You must call inherited Execute method. Most thread implementation does not call

inherited Execute methods.

The above facts mean that TThreadEx class is mostly source-compatible with TThread
class. Therefore, you can do a search&replace "TThread" -> "TThreadEx" over all source
files for your project. However, you must additionally search for each TThread declaration

and ensure that there is "inherited;" line in its Execute method. This approach can be

using for manually enabling EurekaLog for your threads.
If AutoHandleException property is enabled:

o TThreadEx does not clear FatalException property. Thus, this property still may be

used to analyze "success/failure" exit status of the thread.
o Thread will return non zero exit code when there was exception in this thread.

Otherwise (i.e. if there was no exception in the thread) - the exit code will match result
of the thread function (usually - zero). This can be used to get "success/failure" exit
status of the thread.

If AutoHandleException property is not enabled (default) - thread behavior will be the

same as for TThread class:

o FatalException property will store exception in thread.

o Thread exit code will be equal to ReturnValue property.

See also:
BeginThread Function
BeginThreadEx Function
TThread Class
Anonymous threads
Enabling EurekaLog for background threads
Multithreading options
Multithreaded call stacks
Configuring call stack

11.8.1.6 Anonymous threads

Anonymous thread is a wrapper for TThread class which simplifies "fire-and-forget"
approach. Creating new threads with bare TThread class is complex: you have to create

your own thread class. And TThread is not capable of running arbitrary code, so you can't

run just functions in threads. Another advantage of anonymous thread is capturing local

570

549

551

553

562

568

246

85

48

http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.ReturnValue
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.ReturnValue
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.ReturnValue
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.ReturnValue
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.ReturnValue
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.ReturnValue
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.ReturnValue
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.CreateAnonymousThread
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.CreateAnonymousThread
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread

EurekaLog 7 Documentation563

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

variables.

So, for example, such code with TThread class:

type
 TMyThread = class(TThread)
 private
 FLocalVar: TSomeType;
 protected
 procedure Execute; override;
 public
 property LocalVar: TSomeType read FVar write FVar;
 end;

procedure TMyMotile.Execute;
begin

 // ... some code which uses LocalVar
end;

...

var
 Thread: TMyThread;
 LocalVar: TSomeType;
begin
 Thread := TMyMotile.Create(True);
 Thread.LocalVar := LocalVar;
 Thread.FreeOnTerminate := True;
 Thread.Start;
end;

can be replaced with shorter version of the code which uses anonymous thread:

var
 LocalVar: TSomeType;
begin
 TThread.CreateAnonymousThread(
 procedure;
 begin

 // ... some code which uses LocalVar
 end).Start;
end;

Internally, anonymous thread is implemented as TAnonymousThread class which is

descendant from TThread class. Instances of TAnonymousThread are created via

CreateAnonymousThread class method. The whole code for anonymous threads is very
simple:

http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.CreateAnonymousThread
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.CreateAnonymousThread
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.CreateAnonymousThread

Advanced topics 564

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

type
 TAnonymousThread = class(TThread)
 private
 FProc: TProc;
 protected
 procedure Execute; override;
 public
 constructor Create(const AProc: TProc);
 end;

{ TAnonymousThread }

constructor TAnonymousThread.Create(const AProc: TProc);
begin
 inherited Create(True);
 FreeOnTerminate := True;
 FProc := AProc;
end;

procedure TAnonymousThread.Execute;
begin
 FProc();
end;

...

class function TThread.CreateAnonymousThread(const ThreadProc: TProc): TThread;
begin
 Result := TAnonymousThread.Create(ThreadProc);
end;

Note: anonymous threads are created in suspended state, so you must run them manually
with Start method. Suspended state allows you to alter thread's properties or pass
additional parameters before running the thread.

Important notes:
it is recommended to use TThreadEx.CreateAnonymousThread class method instead
of TThread.CreateAnonymousThread class method.
anonymous threads are created with FreeOnTerminate property set to True. This means

that you should never access thread variable after you have called Start method.

TAnonymousThread class have no additional features except being able to accept arbitrary

anonymous function to be executed in its Execute method. Since anonymous threads are
based on TThread class - the error handling for anonymous thread is the same as for the

TThread class - that is, five different methods. Obviously, you can not override
DoTerminate method (since you do not declare a class), but all other exception handling

methods are fully applicable for anonymous threads.

Important notes:
EurekaLog has to be enabled for background threads .
it is recommended to use TThreadEx class instead of TThread class to create

anonymous threads. Anonymous threads created with TThreadEx class supports

AutoHandleException property - which provides one more method to handle
exceptions for anonymous threads.

See also:
BeginThread Function
BeginThreadEx Function
TThread class

559

553

568

559

559

549

551

553

http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.Start
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.Start
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.CreateAnonymousThread
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.CreateAnonymousThread
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.CreateAnonymousThread
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.FreeOnTerminate
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.FreeOnTerminate
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.Execute
http://docwiki.embarcadero.com/Libraries/en/System.Classes.TThread.Execute

EurekaLog 7 Documentation565

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

TThreadEx Class
Thread pools
Enabling EurekaLog for background threads
Multithreading options
Multithreaded call stacks
Configuring call stack

11.8.1.7 Frameworks

There are many different threading frameworks for Delphi and C++ Builder. Examples of
threading frameworks are OmniThreadLibrary and AsyncCalls. There are few more less
known threading frameworks. Also, a threading library can be included into bigger
framework. For example, Indy have threading sub-library, JCL have synchronization
primitives, etc.

Threading frameworks offer additional features, simplify common tasks, provide cross-
platform approach, etc.

Different frameworks provide different ways to handle exceptions. You should refer to
documentation for the framework. You should complete two tasks to use EurekaLog with
threading framework:
1. Enable EurekaLog for threads created by threading framework;
2. Call EurekaLog exception handler for unhandled exceptions in threads.

Though, each framework is unique - we may suggest commonly used approaches.

Enabling EurekaLog for threading frameworks
Typically you can not control thread creation inside framework. Threads are created and
managed entirely by the framework. This means that you can not use code like
BeginThreadEx function or TThreadEx class . Therefore, you can enable EurekaLog for
framework's threads in two ways:
1. Automatic via options (not recommended);
2. Manual via SetEurekaLogStateInThread function (recommended).

Note: threads created by threading framework may be used as thread pool. This means
that a single thread may serve many different tasks. A good code should preserve thread
state - such as thread priority, FPU state, thread name, EurekaLog per-thread state, etc.
Therefore, it is better to clean after your task - as indicated in this example .

Calling exception handler
Threading frameworks use custom exception processing most of the time. Again, the exact
details on exception processing are specific to a particular framework. So, we can only look
at some common possibilities:

a). Calling default exception handler
If your threading framework calls default exception handler to handle thread exceptions -
then you don't need to do anything (since default exception handler will be hooked by
EurekaLog).

b). Re-raising exception
Some frameworks may automatically capture thread exception and re-raise it into caller
thread. If this is the case - then you don't need to anything (since exception from thread
will be captured by exception handling code of your existing thread).

c). OnTerminate-like event
One of the typical ways to handle exceptions is utilizing OnTerminate-like event handler. A
framework may offer a feature to register/install a custom callback function which will be
called when thread or task is completed - so called OnTerminate event. You can register
your function as handler for such event and analyze thread termination state. You can see
an example of this approach in the similar illustration for the TThread class .

d). Explicit try/except block
For all other cases it may be easier to just wrap your thread code into explicit try/except

559

566

568

246

85

48

551 559

569

570

572

556

http://otl.17slon.com/
http://andy.jgknet.de/blog/bugfix-units/asynccalls-29-asynchronous-function-calls/
http://docwiki.embarcadero.com/Libraries/en/System.Classes.ApplicationHandleException
http://docwiki.embarcadero.com/Libraries/en/System.Classes.ApplicationHandleException
http://docwiki.embarcadero.com/Libraries/en/System.Classes.ApplicationHandleException

Advanced topics 566

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

block and call exception handler manually. See example here .

Additional notes
EurekaLog has additional support for OmniThreadLibrary:

Thread names from OmniThreadLibrary are passed to EurekaLog;
Call stacks for exceptions in OmniThreadLibrary threads are filtered to exclude service
calls (OmniThreadLibrary internal functions).

You should include EOTL unit into your application to enable the above mentioned
integration. EOTL unit is located in \Source\Extras folder of EurekaLog installation.

See also:
BeginThreadEx Function
TThreadEx Class
Enabling EurekaLog for background threads
Multithreading options
Multithreaded call stacks
Configuring call stack

11.8.1.8 Thread Pools

A thread pool is a collection of worker threads that efficiently execute asynchronous
callbacks on behalf of the application. The thread pool is primarily used to reduce the
number of application threads and provide management of the worker threads.

Delphi and C++ Builder do not have any implementations for thread pools out of the box.
Applications that want to use thread pool may utilize system API (which is most commonly
used in the form of QueueWorkItem function) or frameworks . The specifics are different
for each API/framework, but there is a common scheme: you call some "create" function and
pass your function as argument (a callback) - which is called a "task". This action will
schedule your function (i.e. callback/task) to be executed by some thread from thread pool
at the specified moment. An important moment here is that you don't know which thread
will run your code. Thread for each task is selected (assigned) by thread pool manager.
Primary task of thread pool is re-using threads to avoid performance penalty for creating
and terminating threads. This means that single thread from thread pool will execute many
different tasks. If you schedule same task multiple times - there is no guarantee that your
task will be executed by the same thread from thread pool.

This means that arbitrary code is not safe for thread pooling. Task function (and all
functions called from task function) must be thread-pool safe. A safe function does not
assume that the thread executing it is a dedicated or persistent thread. In general, you
should avoid using thread local storage or making an asynchronous call that requires a
persistent thread, such as the RegNotifyChangeKeyValue function. A normal rule of thumb
for thread pool tasks: do not change thread state. For example, you should not terminate
thread, you should not alter FPU state, you should not alter thread priority, you should not
let exceptions escape your task function, etc. So, if you need to perform non-thread-pool
safe action - you need to revert it before returning control from your task function.

An example of a good thread-pool function:

558

551

559

568

246

85

48

565

http://msdn.microsoft.com/en-us/library/windows/desktop/ms686760(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms686760(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms686766(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms686766(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms684957(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms684957(v=vs.85).aspx

EurekaLog 7 Documentation567

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

function MyTask(lpThreadParameter: Pointer): Integer; stdcall;
begin
 try

 // ... your task code ...
 except

 // Handle any exception in task

 ApplicationHandleException(nil); // from Classes unit
 end;

 Result := 0; // Result is ignored
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 IsMultiThreaded := True;

 // Execute MyTask in a background thread
 Win32Check(QueueUserWorkItem(MyTask, nil, 0));
end;

Since a recommended approach is to manually control activation of EurekaLog per
each thread - we suggest you to use such code:

function MyTask(lpThreadParameter: Pointer): Integer; stdcall;
begin

 // Mark thread for yourself
 NameThread('This is thread pool thread with my task');
 SetEurekaLogStateInThread(0, True);
 try
 try

 // ... your task code ...

 Result := 0; // <- to indicate success
 except
 on E: Exception do

 Result := HandleException(E); // <- to handle exception and indicate failure
 end;
 finally

 // Clean after yourself

 // (i.e. mark/prepare thread for other tasks)
 NameThread('');
 SetEurekaLogStateInThread(0, False);
 end;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 IsMultiThreaded := True;

 // Execute MyTask in a background thread
 Win32Check(QueueUserWorkItem(MyTask, nil, 0));
end;

This sample code enables EurekaLog (and sets thread name) only for the duration of our
task. When our task is completed, thread will be released into thread pool - so we disable
EurekaLog (because we don't know which task will use this thread in the next time).

Important note: EurekaLog has to be enabled for background threads . And the same
"thread persistent state" rule applies to EurekaLog per-thread state: you should clean after
your task - as indicated in the above example.

568 570

568

Advanced topics 568

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Some thread pool implementations may have less restrictive rules. For example, thread pool
implementations in Delphi/C++ Builder frameworks will probably have exception handling
code established. See working with multithreading frameworks for more information.

See also:
BeginThread Function
BeginThreadEx Function
TThread class
TThreadEx Class
Multithreading frameworks
Enabling EurekaLog for background threads
Multithreading options
Multithreaded call stacks
Configuring call stack

11.8.2 Enabling EurekaLog for background threads

EurekaLog has two states which controls if EurekaLog should be active or not: a global
state and a local (per-thread) state.

1. A global state is controlled by "Activate EurekaLog" option and it could be changed in
run-time with SetEurekaLogState routine. Disabling global state will disable EurekaLog

in entire application.
2. A local state is a per-thread state - i.e. each thread has its own local state which is

independent from states of other threads. The local state for background threads is
controlled by "Default EurekaLog state in new threads" option (the main thread is
always activated by default) and it could be changed in run-time with
SetEurekaLogStateInThread routine. Disabling local state will disable EurekaLog in the

current thread, but will keep it activated in other threads.

EurekaLog will be active in a particular thread only if both conditions are true:
1. Global state is enabled (IsEurekaLogActive is True).

2. Local state is enabled (IsEurekaLogActiveInThread is True).

If global state is enabled, but local per-thread state is disabled - then EurekaLog will be
disabled (in this thread). If local state is enabled, but global state is disabled - then
EurekaLog will be disabled (again, in this thread only).

No additional actions required for single-threaded applications (apart from enabling
EurekaLog for your application): because a single-threaded application contains only main
thread, and EurekaLog is always enabled for main thread by default.

Multi-threaded applications is more complex, as multi-threaded application contains
additional threads. EurekaLog should be enabled in a particular thread in order to work.
Main thread is always enabled - regardless of EurekaLog's options. However, any
background thread is disabled by default. You have to enable EurekaLog for your
background threads. This can be done in two ways:
1. Automatic , via options (not recommended);
2. Manual , via code:

a. Using BeginThreadEx /TThreadEx (recommended)
b. Via calls to SetEurekaLogStateInThread .

See also:
Creating threads
Multithreading options
Multithreaded call stacks
Configuring call stack

565

549

551

553

559

565

568

246

85

48

234

246

569

570

551 559

570

547

246

85

48

EurekaLog 7 Documentation569

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

11.8.2.1 Automatic / options

Automatic way is a simple "Default EurekaLog state in new threads" option . This option
is set to "Disabled (recommended)" value by default. You can change this option to
"Enabled" or "Enabled for RTL threads, disabled for Windows threads" states: EurekaLog
will be enabled automatically when creating corresponding threads.

Important note: it is highly not recommended to use automatic enabling. Enable EurekaLog
manually for each of your threads .

However, the problem with automatic enabling is that EurekaLog will be enabled for ALL
threads in your application. Consider a typical multi-threaded application:

Threads in typical multi-threaded application

This simple application has only two threads created by you (your code): a main thread
(6688) and one background thread (7952). Your code created background thread to
perform lengthy calculations and to avoid GUI freezing. All other threads were created by
some 3rd party code:

There are some threads servicing system thread pool ;
There are service threads for system background tasks (such as doing async work for
WinSock);
There are threads created by frameworks that you are using (such as Indy) - mostly to
perform tasks asynchronously;
There are even threads created by Delphi/C++ Builder IDE to perform debugger tasks!

Obviously, almost all of these threads were launched with some exception handling code in
mind. Creator (3rd party code) expects these threads to behave in some specific way when
exception is raised in a thread. Injecting EurekaLog processing and handling into every
thread would be risky and unnecessary. Normally, you should only enable EurekaLog for
threads which you know. That is threads created by you, or threads which runs your code
(such as threads from thread pool). You should not enable EurekaLog for arbitrary/unknown
threads.

For this reason it is highly recommended to use manually controllable activation. You can
use BeginThreadEx function instead of BeginThread function and use TThreadEx class

 instead of TThread class to create EurekaLog-enabled threads. If you can not control
thread creation code (think of thread pools as example) - then you can use
SetEurekaLogStateInThread function .

However, there still may be cases when you want to use "Default EurekaLog state in new
threads" option:

Firstly, this option remains the most simple way to enable EurekaLog for threads. You
don't need to review/change your code (e.g. you don't need to search&replace
"BeginThread -> BeginThreadEx" and "TThread -> TThreadEx").
Second, there may be cases when you have no control over thread's code at all, but you
still want to get bug reports for exceptions in such thread (i.e. thread's exception
handling code just invokes default exception handler, which is hooked by EurekaLog).

246

570

566

551 549

559 553

566

570

http://stackoverflow.com/questions/9365947/what-are-the-other-threads-in-a-default-vcl-application-and-can-they-be-named-b
http://stackoverflow.com/questions/9365947/what-are-the-other-threads-in-a-default-vcl-application-and-can-they-be-named-b
http://stackoverflow.com/questions/9365947/what-are-the-other-threads-in-a-default-vcl-application-and-can-they-be-named-b
http://stackoverflow.com/questions/9365947/what-are-the-other-threads-in-a-default-vcl-application-and-can-they-be-named-b

Advanced topics 570

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Important Note: You can change "Default EurekaLog state in new threads" option for the
above usage cases, but we recommend to use "Enabled for RTL threads, disabled for
Windows threads" position when possible. Never turn "Default EurekaLog state in new
threads" option into "Enabled" position until really needed.

See also:
Manual activation :
o BeginThreadEx
o TThreadEx
o SetEurekaLogStateInThread
Multithreading options

11.8.2.2 Manual / code

A most simple way to enable EurekaLog in thread manually is to use BeginThreadEx /
TThreadEx :

Use BeginThreadEx function instead of BeginThread function : created thread will be
EurekaLog-enabled (by default).
Use TThreadEx class instead of TThread class : created thread will be EurekaLog-
enabled (by default).

Both routines are from EBase unit.

Important note: never use CreateThread function. Use BeginThread/BeginThreadEx
function instead.

See the above links for more details about this recommended approach.

If you can not use BeginThreadEx/TThreadEx in your code (e.g. you do not create threads

- think of thread pools as example), then you have to manually enable EurekaLog for
your threads, for example:

function ThreadFunc(Parameter: Pointer): Integer;
begin
 try

 // Both routines are from EBase unit -

 // thus both can be used in the application without EurekaLog

 // 1. Name thread for easy identification in debugger and bug reports
 NameThread('This is my thread with Parameter = ' +
 IntToHex(NativeUInt(Parameter), SizeOf(Pointer) * 2));

 // 2. Activate EurekaLog for this thread.
 SetEurekaLogStateInThread(0, True);

 // ... your normal code for the thread ...

570

551

559

570

246

551

559

551 549

559 553

566

EurekaLog 7 Documentation571

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 Result := 0;
 except
 ApplicationHandleException(nil);
 Result := 1;
 end;
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 TID: Cardinal;
begin
 CloseHandle(BeginThread(nil, 0, ThreadFunc, nil, 0, TID));
end;

Notice first actions in the thread: setting thread name (description) and enabling EurekaLog
for this thread. This template is a recommended code template. Each of your EurekaLog-
enabled threads should start with these two actions. Here is the same example for
TThread class:

type
 TMyThread = class(TThread)
 protected
 procedure Execute; override;
 end;

procedure TMyThread.Execute;
begin

 // Service calls first:
 NameThread('This is my thread ' + ClassName);
 SetEurekaLogStateInThread(0, True);

 // ... your normal thread code ...
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 Thread: TMyThread;
 E: TObject;
begin
 Thread := TMyThread.Create(False);
 try
 Thread.WaitFor;
 E := Thread.FatalException;
 if Assigned(E) then
 begin
 PPointer(@Thread.FatalException)^ := nil;
 raise E;
 end;
 finally
 FreeAndNil(Thread);
 end;
end;

...and for anonymous threads:

Advanced topics 572

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

procedure TForm1.Button1Click(Sender: TObject);
var
 Thread: TThread;
begin
 Thread := TThread.CreateAnonymousThread(
 procedure
 begin

 // Service calls first:
 NameThread('This is my anonymous thread');
 SetEurekaLogStateInThread(0, True);

 // ... your normal thread code ...
 end);
 Thread.OnTerminate := Self.HandleExceptionInThread;
 Thread.Start;
 Thread := nil;
end;

...and a very similar code may be applied to any multi-threading framework that you may
use: just insert calls to NameThread + SetEurekaLogStateInThread before your actual

thread code.

Since a single thread may serve multiple tasks in a thread pool - it is recommended to clean
after yourself:

function MyTask(lpThreadParameter: Pointer): Integer; stdcall;
begin

 // Mark thread for yourself
 NameThread('This is thread pool thread with my task');
 SetEurekaLogStateInThread(0, True);

 try

 // ... your task code ...

 Result := 0; // <- to indicate success
 except
 on E: Exception do
 Result := HandleException(E);
 end;

 // Clean after yourself

 // (i.e. mark/prepare thread for other tasks)
 NameThread('');
 SetEurekaLogStateInThread(0, False);
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 IsMultiThreaded := True;
 Win32Check(QueueUserWorkItem(MyTask, nil, 0));
end;

This sample code enables EurekaLog (and sets thread name) only for the duration of our
task. When our task is completed, thread will be released into thread pool - so we disable
EurekaLog (because we don't know which task will use this thread in the next time).

See also:
BeginThreadEx Function
TThreadEx Class

551

559

EurekaLog 7 Documentation573

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Automatic EurekaLog enabling for background threads
Creating threads

11.9 Using Windows Error Reporting

Enter topic text here.

11.10 Working with minidumps

Enter topic text here.

11.11 Nested/Chained exceptions

Building good error handling facility in your applications
Application with good and thoughtful error handling will probably use layered error handling
scheme.

Layered error handling architecture

That is, errors will first be raised as so-called low-level errors. Low-level error indicates
exact reason for failure - such as failures inside OS functions, hardware exceptions (access
violation, etc.) and so on. Usually, you're interested in low-level errors to get precision
information about failure (so you can resolve it).

Unfortunately, low-level errors suffers from the following:
1. Low-level errors from one piece of code are not different from errors from another piece
of code. I.e. they are almost identical for any code in your application (access violation from
any function is represented by the same EAccessViolation exception class). This does not
allow you to build error handling logic which can differentiate between errors.
2. Error message of low-level errors are, well, "low-level" (such as "Range Check Error",
"Index out of bounds", "Access Violation at address ... in module ... read ...", etc.). Such
error messages may be good for diagnostic purposes for developers, but they are not user
friendly. Normal users of your application could not read them. It would be better to show
more friendly messages (such as "Sorry, I can not open your file XYZ, it seems damaged").

Application can use medium- and hi-level errors to address these issues. Usually this
means that framework should handle low-level errors and translate them into framework-
specific errors. Framework-specific errors can include additional information about errors.
In other words, low-level errors are "surfaced" to framework code and are transformed into
framework exception classes. For example:

569

547

Advanced topics 574

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

type

 // Declare root class for all exceptions from some framework
 EFrameworkError = class(Exception);

 // Declare subclass for all file-related errors
 EFrameworkFileError = class(EFrameworkError)
 private

 // This subclass will hold additional information: file name
 FFileName: String;
 public
 constructor Create(const AMessage, AFileName: String);
 end;

 // Declare more subclasses to specify errors even more
 EFrameworkFileCreateError = class(EFrameworkFileError);
 EFrameworkFileOpenError = class(EFrameworkFileError);
 EFrameworkFileReadError = class(EFrameworkFileError);
 EFrameworkFileWriteError = class(EFrameworkFileError);

 // ... other errors from framework
 EOtherFrameworkError = class(EFrameworkError);

 // ...

{ EFrameworkFileOpenError }

constructor EFrameworkFileError.Create(const AMessage, AFileName: String);
begin
 inherited Create(AMessage);
 FFileName := AFileName;
end;

// --

type

 // A sample class from framework
 TFrameworkDocument = class
 private
 FFileName: String;
 FFile: TFileStream;

 protected
 procedure Open;
 procedure ReadFileInfo;

 // ...
 procedure Close;

 public
 constructor Create(const AFileName: String);
 destructor Destroy; override;

EurekaLog 7 Documentation575

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 property FileName: String read FFileName;
 end;

resourcestring

 // Error messages for framework errors
 rsUnableToOpenFile = 'Sorry, unable to open file: %s';
 rsErrorReadingHeader = 'Sorry, unable to read file header from: %s';

{ TFrameworkFile }

constructor TFrameworkDocument.Create(const AFileName: String);
begin
 inherited Create;
 FFileName := AFileName;
 Open;
end;

destructor TFrameworkDocument.Destroy;
begin
 Close;
 inherited;
end;

procedure TFrameworkDocument.Open;
begin
 Close;
 try
 FFile := TFileStream.Create
 (FileName, fmOpenReadWrite or fmShareDenyWrite);
 except

 // Catch any low-level errors (such as "access denied", etc.)

 // and wrap into framework errors with supplying more information

 // (such as file name in this example)
 Exception.RaiseOuterException
 (EFrameworkFileOpenError.Create
 (Format(rsUnableToOpenFile, [FileName]), FileName));
 end;
end;

procedure TFrameworkDocument.Close;
begin
 FreeAndNil(FFile);
end;

procedure TFrameworkDocument.ReadFileInfo;

// ...
begin
 try
 FFile.Position := 0;

 FFile.ReadBuffer({ ... });
 except

 // Catch any low-level errors (such as "error reading file", etc.)

 // and wrap into framework errors with supplying more information

 // (such as file name in this example)
 Exception.RaiseOuterException(

Advanced topics 576

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

 EFrameworkFileReadError.Create(
 Format(rsErrorReadingHeader, [FileName]), FileName));
 end;
end;

Note: Exception.RaiseOuterException construct is available only in RAD Studio 2009+.
Older versions of Delphi and C++ Builder have to use "raise" and "throw" keywords.

This example illustrates a good exception handling approach for frameworks and any
middle-level code. Re-raising low-level errors as framework exceptions allows you to specify
more information about error: such as file name and operation kind (i.e. open, read, etc.).
Such information may not be available for low-level errors. This approach also allows you to
provide more descriptive error message.

In this example:
Errors from TFileStream object are low-level errors. They are nested into framework
exception classes.
Errors from framework are triggered by low-level errors.

What are nested/chained exceptions
Chained exception is an exception which occurs during processing of another exception .
That "another" (original) exception is called "nested exception". For example:

try

 // Low-level error (a.k.a. original, first, bottom, inner, nested, root)
 raise ERangeError.Create('Invalid item index');
except

 // High-level error (a.k.a. introduced, last, top, outer, chained)
 raise EFileLoadError.CreateFmt('Error loading file %s', [FileName]);
end;

As you can see, low-level exception (nested) is the exception you're interested in. It
indicates a reason for failure. This is what you typically want to be logged. Chained
exception is triggered by original exception and provides more descriptive error message.
So, you typically want to show it to user as error message.

Thus, typically you want first exception to be logged, but last exception to be shown to end
user. Classic/default Delphi and C++ Builder behavior is to work only with last exception
always.

Delphi 2009+ only: starting with Delphi 2009 - there was new features introduced to
exceptions in RTL. Support for chained exceptions was added. There are new properties
BaseException and InnerException as well as special raising construct. In this model, you
need to use RaiseOuterException or ThrowOuterException to preserve original exception
when raising new exception. EurekaLog implements similar model with the same properties,
except it doesn't require you to use special raising construct. Any exception raising
automatically saves previous (original) exception in InnerException property. This feature
available on all supported IDE versions.

EurekaLog nested/chained exception tracking feature
Default behavior of Delphi/C++ Builder: show last (i.e. chained) exception and hide original
(i.e. nested) exception. This behavior is what you want for user, but it's not what you want
for diagnostic purposes. EurekaLog has the feature to change/customize this behavior.
Options on "Nested exceptions" page allow you to customize EurekaLog behavior
related to nested/chained exceptions.

Default settings for EurekaLog is to log original (nested) exception, but show chained
exception to user. For example, if you run example code from above for non-existed file:

40

244

http://docwiki.embarcadero.com/VCL/en/SysUtils.Exception.BaseException
http://docwiki.embarcadero.com/VCL/en/SysUtils.Exception.InnerException
http://docwiki.embarcadero.com/VCL/en/SysUtils.Exception.RaiseOuterException
http://docwiki.embarcadero.com/VCL/en/SysUtils.Exception.RaiseOuterException
http://docwiki.embarcadero.com/VCL/en/SysUtils.Exception.RaiseOuterException
http://docwiki.embarcadero.com/VCL/en/SysUtils.Exception.RaiseOuterException
http://docwiki.embarcadero.com/VCL/en/SysUtils.Exception.ThrowOuterException

EurekaLog 7 Documentation577

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Error message from chained exception is shown to user
It's descriptive and user-friendly

Original (nested root) exception is stored into bug report
Its error message indicate low-level failure reason

Advanced topics 578

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Call stack also indicate original exception

Important considerations for using nested exceptions tracking feature
EurekaLog requires ability to track life-time of exception objects for this feature. Default
EurekaLog options are configured to allow it. However, if you manually changes EurekaLog
options - you may disable features that allows EurekaLog to track life-time of exception
objects. Such options includes:

"Enable extended memory manager" option or "Use low-level hooks" option or just
use Delphi 2009+
"Capture stack only for exceptions from current module" option

For example, if you're using Delphi 7 and disable both "Enable extended memory manager"
and "Use low-level hooks" options - then EurekaLog will be unable to detect when
exception object is destroyed. Thus, tracing nested/chained exceptions feature will not
function properly. This means that you may get information about wrong exception in your
bug reports.

It's recommended to test your application when you alter "Enable extended memory
manager", "Use low-level hooks" or "Capture stack only for exceptions from current
module" options. If your application configuration fails to store proper information - please,
switch nested/chained exceptions options into "Classic" positions instead of (default)
"Recommended" positions.

See also:
Configuring call stack

11.12 Stack tracing: RAW method and frame-based method

x86-32 has no reliable way to build exact call stack. All stack tracing methods use some kind
of assumptions, heuristics and guessing. And sometimes tracing methods may be confused,
so you may have a false-positive entries in call stack or missed entries.

x86-64 always uses frame-based stack tracing (see below), because presence of stack
frames is a requirement for x86-64 calling convention. x86-64 has single stack tracing model
and it's reliable until some code explicitly decides to mess with the stack.

Usually all stack tracing methods are divided into 2 groups: frame-based tracing and RAW
tracing methods.

250 259

237

244

48

EurekaLog 7 Documentation579

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

What are stack frames
x86 CPU family (both 32 bit and 64 bit) uses hardware stack to store execution path when
calling routines (other CPUs - such as Itanium - use other means for that task). Stack
frames (also called activation records or activation frames) are special data structures on
stack which contains subroutine's state information. Each stack frame corresponds to a call
to a subroutine which has not yet terminated with a return. For example, if a subroutine
named DrawLine is currently running, having been called by a subroutine DrawSquare, the
top part of the call stack might be laid out like this:

The stack frame at the top of the stack is for the currently executing routine. The stack
frame usually includes at least the following items (in push order):

the arguments (parameter values) passed to the routine (if any);
the return address back to the routine's caller (e.g. in the DrawLine stack frame, an
address into DrawSquare's code); and
space for the local variables of the routine (if any).

A stack frame has a field to contain the previous value of the frame pointer register, the
value it had while the caller was executing. For example, the stack frame of DrawLine would
have a memory location holding the frame pointer value that DrawSquare uses (not shown in
the diagram above). The value is saved upon entry to the subroutine and restored upon
return. Having such a field in a known location in the stack frame enables code to access
each frame successively underneath the currently executing routine's frame, and also
allows the routine to easily restore the frame pointer to the caller's frame, just before it
returns.

In other words, stack frames build a chain of frames: each frame contains link to previous
frame.

It's important to understand that stack frames are not enforced on x86-32. They may be or
may be not created - the decision is up to compiler. Only naked return address may be
stored, without any additional information and without link to previous frame. However,
stack frames always must be created for x86-64 - because this is a platform's requirement.

Note: x86-32 stack frames are different from x86-64 stack frames. x86-64 uses additional
information about functions to work with stack frames. This meta-information is generated
by compiler and stored inside executable.

Frame-based stack tracing
Frame-based stack tracing builds call stack by using sequence of call frames, which are
added to the stack on call of most routines. Usually this method gives acceptable results (if
you don’t have too many very short routines - see below). You can increase it’s
effectiveness by enabling “Stack Frames” option. This method is quite precise and fast as it

http://docwiki.embarcadero.com/RADStudio/en/Stack_frames_(Delphi)
http://docwiki.embarcadero.com/RADStudio/en/Stack_frames_(Delphi)
http://docwiki.embarcadero.com/RADStudio/en/Stack_frames_(Delphi)

Advanced topics 580

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

looks only for “registered” calls. It don’t scan the entire stack – just walks by sequence of
frames, where every call frame points to another. This method will not work if FPO (frame
pointer omission) is used (x86-32 only), in cases of non-standard stack's usage (non-
standard calling convention) or in case of stack corruption.

Note: the stack tracing method for x86-64 is a frame-based stack tracing method.

RAW stack tracing
RAW tracing method works differently: it just scan the whole stack, trying to find "possible"
return addresses. Really: the frames may be or may be not present in the stack (see
below). But return addresses are always there. The problem is that there is no 100% way
to find them. So, RAW method takes every integer in stack and tries to guess: does it look
like return address? For this reason, the RAW tracing methods can be used only with some
heuristic algorithm. Created call stacks may differ significantly, depending on quality of the
heuristic. Present or missed debug information can also affect call stacks, because heuristic
may use debug information to verify return addresses. Consider the following code:

function LoadResString(ResStringRec: PResStringRec): string;
var
 Buffer: array [0..4095] of Char;
begin

 // ...
end;

This code will allocate 4 Kb of stack memory for local Buffer variable. This code does not

call ZeroMemory or FillChar to initialize Buffer to contain all zeros. Therefore, Buffer
will contain whatever was on stack before calling LoadResString. This "stack trash"

usually includes a lot of function calls - which are not related to current execution path. RAW
method will collect all these false-positive return addresses.

Note: there is no need for RAW stack tracing methods for x86-64 platform.

How stack frames are generated (x86-32 only)
Stack frame may be omitted (not created) in some cases. Consider the following code:

"Stack Frames" option is disabled

Notice that there is no blue "dot" on the left from "begin" line. This means that "begin" line
do not generate any code. I.e. there is no code to setup stack frame in this routine. That's
because this routine is very simple and do not require stack frame to manage its data.

Note: "end" line generates code. This code is a simple "ret" instruction which returns
control to caller.

"Stack Frames" option is enabled

This is the same code, but it is now compiled with “Stack Frames” option enabled. Notice
that this code has blue "dot" near "begin" line. This means that there is code to set up
routine - i.e. there is code to create stack frame. "Stack Frames" option forces compiler to

http://msdn.microsoft.com/en-us/library/2kxx5t2c.aspx
http://msdn.microsoft.com/en-us/library/2kxx5t2c.aspx
http://msdn.microsoft.com/en-us/library/2kxx5t2c.aspx
http://docwiki.embarcadero.com/RADStudio/en/Stack_frames_(Delphi)
http://docwiki.embarcadero.com/RADStudio/en/Stack_frames_(Delphi)
http://docwiki.embarcadero.com/RADStudio/en/Stack_frames_(Delphi)

EurekaLog 7 Documentation581

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

always create stack frames, even if there is no direct need for them.

"Stack Frames" option is disabled

This code still have stack frame - despite fact that "Stack Frames" option is disabled. That's
because this routine uses string type. String type is auto-managed type, so compiler need
to setup initialization and finalization code and create stack frame. Any more or less
complex routine (especially with local variables and arguments) will have stack frame
regardless of "Stack Frames" option's state - for the same reason: compiler needs stack
frame to manage routine's data.

How stack frames affects call stacks (x86-32 only)
Below are two examples on how stack frames affects call stacks.

Stack frames for offsets
EurekaLog and many other diagnostic software allow you to view so-called offsets . Line
offset is calculated as a difference between the first line in routine and the line in question.
For example:

Line numbers for routine with stack frame

A call to Hide method is located at 28[1] line, which reads as "line #28, it has difference in
one line from the first line of current routine" (some tools may indicate the same as 28[2],
which reads: "second line in the routine" - in other words, some tools may use 1-based
numbering instead of 0-based). Anyway, the point here is that the first line for routine is
"begin" line. It's not "procedure", it's not first line of source code. That's because start of
the routine is defined by code. And first code for this routine appears in "begin" line - which
is indicated by a blue dot across "begin" line in editor's gutter. Therefore, "begin" line is the
first line in this method (#27), "Hide" line is the second line in this routine (#28). Difference
is 1.

As you may have guessed for now: line offsets are affected by stack frames. Consider the
same code without stack frame:

Line numbers for routine without stack frame

A call to Hide method is now located at 28[0] line, which reads as "line #28, it has zero
difference from the first line of current routine - i.e. it is actually a first line" (again, some
tools may use 28[1] for the same fact). First code for this routine appears in "Hide" line in
this case. Therefore, "begin" line is not the first line in this method, it does not generate
any code, "Hide" line is the first line in this routine (#28). Difference is 0 (sinse it's the same
line).

81

Advanced topics 582

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Stack frames for frame-based methods
RTL and VCL units are compiled with "Stack Frames" option turned off. This means that any
frame-based method will not be able to find short routines in RTL/VCL units.

However, this fact also have less obvious consequence. Consider this code:

A simple object leak with "Stack Frames" option enabled

This code creates a simple memory leak by leaking instance of TStringList. EurekaLog will
detect a leak and build call stack for it. As you can see, Button1Click routine has stack
frame due to "Stack Frames" option being enabled. One may expect that frame-based
tracing method will discover a call to Button1Click and add it to the call stack.

This is not so.

The stack frame for Button1Click allows method to identify the caller (in this case:
TControl.Click). That's because stack frame does not contain information about routine
itself. It contains information about the caller: return address. Return address for
Button1Click routine will point to TControl.Click.

But what about Button1Click? Since TStringList is a class from RTL - it's compiled without
"Stack Frames" option. Thus, constructor does not have stack frame (because it's very
simple code and do not require stack frame). Therefore, it's not possible for frame-based
tracing method to identify Button1Click routine.

Note: you can recompile RTL/VCL with "Stack Frames" option turned on.

However, if you change code like this:

Memory leak with "Stack Frames" option enabled

This code will leak anonymous memory block. AllocMem is routine from memory manager. It
also do not have stack frame (because it's assembler stub). However, EurekaLog will be
able to identify Button1Click routine with any stack tracing method (including frame-based
one). That's because EurekaLog is awared of standard memory routines and able to extract
return addresses from these routines regardless of stack frames.

The difference between two samples: first code example uses "some (unknown) code
(class)", the second code example uses known memory manager function.

So, Button1Click routine will be detected in this case.

Conclusions
Short summary of the above discussed facts:

There are multiple stack tracing methods for x86-32;
There is a single stack tracing method for x86-64;
RAW tracing method produces more entries in call stack, frame-based tracing method
produces less entries (usually);
RAW tracing method may show false-positive entries, frame-based tracing method will
skip entries without proper stack frame;

http://stackoverflow.com/questions/4839532/recompiling-the-rtl-if-possible-then-how
http://stackoverflow.com/questions/4839532/recompiling-the-rtl-if-possible-then-how

EurekaLog 7 Documentation583

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

RAW tracing method is slow, frame-based tracing method is fast;
Stack frame is indicated by blue dot on code editor's gutter for routine's "begin" line;
Stack frame is created almost always:
o Stack frame is created:

When platform is x86-64 or...
When "Stack frames" option is enabled or...
When "Optimization" option is disabled or...
When routine has a lot of code or...
When routine use auto-managed type (strings, dynamic arrays, variants, etc);

o Stack frame is not created:
When platform is x86-32 and...
When "Stack frames" option is disabled and...
When "Optimization" option is enabled and...
When routine is too short or too simple;

Missing stack frame will substract 1 from all line number offsets in the routine
RTL and VCL are compiled without "Stack frames" option;
Stack frame provides information to show entry for the caller in a call stack (return
address);
Stack frame for a routine does not affect if the routine in question will be shown in a call
stack;
Immediate caller of any memory manager functions (AllocMem, GetMem, FreeMem,
ReallocMem, etc.) will be found always, regardless of tracing method and state of "Stack
Frames" option

Important note: please remember that call stack's usefulness highly depends on available
debug information from modules. EurekaLog extracts debug information with help of debug
information providers . You have to enable (to include) required providers in case if you're
going to use non-EurekaLog formats. Most remarkable formats are DLL exports and
Microsoft debug formats . Debug information providers can be enabled or disabled under
Advanced / Code / Debug information .

See also:
Stack tracing: deferred vs. immediate
Configuring call stack
Recompile RTL/VCL

11.13 Stack tracing: deferred vs. immediate

A usual solution for exception tracer is to install a callback ("hook") which is called whenever
there is a new exception raised. Exception tracer creates a call stack for the exception (full
bug report is not created yet). When exception is handled - bug report may be created by
using pre-created call stack.

This is common approach which will work on any platform (assuming that you can hook
exceptions at all). For example:

try

 raise Exception.Create('Example'); // <- call stack is created here
except

 Application.HandleException(nil); // <- bug report is created here
end;

However, it also means that each exception in your application will trigger call stack
collection code. This may be a performance problem if your application uses exceptions
extensively (i.e. not for reporting problems). Each raise of exception will take time to build
call stack for exception. For example:

409

411

504

355

583

48

http://stackoverflow.com/questions/4839532/recompiling-the-rtl-if-possible-then-how
http://stackoverflow.com/questions/4839532/recompiling-the-rtl-if-possible-then-how

Advanced topics 584

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

try

 raise Exception.Create('Example'); // <- call stack is still created here,

 // despite the fact that bug report is not created at all
except
 on E: Exception do
 ShowMessage(E.Message);
end;

x86-32 platform has unique architecture: a call stack may be build later - during exception
handling step. This feature can give a performance gain, because exception tracer now may
build call stack later - at handling state, it's not strictly necessary to build call stack when
exception is raised. Thus, there will be a huge performance boost, if most of raised
exceptions are handled by your code and not reach default handler (which will create a bug
report and, thus, a call stack). For example:

try
 raise Exception.Create('Example');
except

 Application.HandleException(nil); // <- both call stack and bug report is created here
end;

try
 raise Exception.Create('Example');
except
 on E: Exception do
 ShowMessage(E.Message);
end;

// ...no call stack is created for this case, because bug report is not created either

EurekaLog 6 does not support multiple platforms. Thus, it always use optimized approach
for x86-32 platform. EurekaLog 7 supports multiple platforms. Since other modern platforms
do not have the similar feature, EurekaLog 7 does not implement the same logic globally.
Instead, EurekaLog 7 implements universal cross-platform approach. However, EurekaLog 7
has "Delay call stack creation until handle stage" option . Enabling this option will bring
EurekaLog 6 optimized behavior for x86-32 platform. Disabling this option will use default
approach.

Thus, your Win32 applications can work with the same speed as it was with EurekaLog 6.

However, we recommend to review your code and avoid raising exceptions too often (i.e.
avoid using exception as part of normal execution path; use exceptions only for errors/rare
conditions) - that's because this optimization is not possible for other platforms, and your
code will be slow when run on non x86-32 platform. A typical fixes for your code include:

Avoid raising exception when you can pre-check error-condition. For example, it's better
to use TryStrToInt or StrToIntDef instead of StrToInt + try/except block;
Do not raise exception for non-errors. If you still need to do this - consider creating
custom exception class for this purpose and exclude exception from EurekaLog (see next
item);
You can create custom exception classes for your purposes. You can mark some exception
classes as "ignored" for EurekaLog. You can do this via filters , events (specifically:
OnRaise), attributes , or low-level handlers ;
You can also add SetEurekaLogStateInThread(0, False) and
SetEurekaLogStateInThread(0, True) around blocks of code which can raise exceptions
intensively, but your code handles all these exceptions.

See also:
Stack tracing: RAW vs. frame-based
Configuring call stack

237

185 192

190 211

578

48

http://docwiki.embarcadero.com/Libraries/en/System.SysUtils.TryStrToInt
http://docwiki.embarcadero.com/Libraries/en/System.SysUtils.StrToIntDef
http://docwiki.embarcadero.com/Libraries/en/System.SysUtils.StrToInt

EurekaLog 7 Documentation585

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

11.14 EurekaLog for shareware developers

This article will discuss EurekaLog's features that is related to shareware developers.

Checking file for corruptions
The first thing is, of course, checking the file for corruptions. You can enable this feature in
"Build Options" section .

"Check file corruption" option adds check for file corruption in your project. If you enable
this option, EurekaLog will calculate a CRC checksum of the compiled file and store it inside
file. EurekaLog will also read this checksum from file on its startup (launch). If your
executable was modified, EurekaLog will display an appropriate message and shutdown
your application immediately:

EurekaLog detected changes in executable file

You can use this option to ensure that your code wasn't modified.

Notes:
CheckSum field in the IMAGE_OPTIONAL_HEADER structure is used to store CRC value inside
executable file;
This option checks file on disk, not running process image;
Enabling this option will slow down loading and startup times on your executable. The
bigger your executable file will be - the larger will be startup time: because the entire file
must be read at startup.

As you can see it is a very simple check.

Since there is nothing that prevents the cracker from changing the CRC in the header of the
file once it has been changed, then this mechanism could not be considered as significant
protection. Its purpose is checking file on unpremeditated changes. It should not be
considered as serious line of defence against crackers. If you want to protect your file from
crackers (not from simple modifications) then you need to deploy your own custom
protection.

See also: using EurekaLog with exe packers/cryptors/protectors .

Another trick here is using executable compressor or signing the application. You see, once
you have feed your exe to file compressor (such as UPX, for example) or sign it with digital
signature - your file is changed, therefore EurekaLog fails while checking your CRC at start-
up and shutdowns your application. From your point of view: your application just stopped
working after compressing (or signing). The important point there is that compressing or
signing your application already implies file checking. Since compressed file is far more
sensitive to changes - therefore any modern file compressor contains some sort of checking
mechanism that detects changes in the very same way that EurekaLog does. The same
thing is applied to file signatures. If file is signed, then OS loader (and not the application
itself) will check it before execution to ensure that its signature was not broken. The

349

520

Advanced topics 586

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

conclusion here is simple: if you use file compressor or you sign your application, then you
can safely turn off the EurekaLog's "Check file corruption" option.

BTW, if you are writing an installer on your own - then you probably don't want to build it as
single exe-file AND enable some sort of checking on it (EurekaLog's check, file compressor or
digital signature). Why? Well, imagine that you got a 200 Mb installer in one single exe file
and your client launches it. Whatever mechanism you use - it will scan the ENTIRE file at
start-up. And scanning 200 Mb takes a lot of time! User can think that your application
hangs. It is a lot better to make a (minimum) two-files distribution (small installer exe and
large application archive) or turn off protection for installer.

And, finally: remember, that even digital signature is a helper anti-malware mechanism for
end-users and not an anti-crack protection! Digital signature on exe can only ensure user
that this file was not modified and don't come from hacker instead of real application
developer. It does not protect your application from cracker, since cracker can just simply
remove digital signature.

Debug information: Pros and Cons
Another very important feature for shareware developers is a debug information .
EurekaLog embeds debug information into your executable to help you track source of
your bugs. By default debug information is included only in dcu-files and don't go into your
exe file. It is not possible to display a proper call stacks with methods and units names and
source lines without the debug information. Because of this, EurekaLog gather all debug
information from your application and attaches it to executable as a resource.

The debug information is not stored in clear text, of course - it is compressed and
encrypted. But since the password is stored in the exe itself - again, nothing prevents
cracker from reading the password and decoding debug information. What kind of bonus
can receive a cracker from debug information? Well, debug information contains names of
units, classes, methods, function and procedures. Plus line numbers. It does not contain
your source code, but, indeed, it is very interesting information.

Because of it, the very common question is: "isn't an executable file compiled with
EurekaLog easier to crack?".

Well, it depends on many settings.

Let's check it out.

Yes, it is true, that including debug information to your application CAN make cracker's life
easier. But it do not mean, that crack will appear automatically. Cracker still need to study
your protection, and if your protection is written good, then it is not contained in dedicated
procedures, but rather spread over all of your code. Since there is no "protection
procedures", then reading procedure names gives no valuable information (and if you still
have those - just give them a non-descriptive names). Surely, you can exclude certain
"sensitive" routines from debug information by using {$D-} before routine and {$D+} after
routine, but this will introduce gaps in debug information, which could be noticed by a
cracker.

In any case, even if debug information included in clear text (which is not, even without
password), it can only speed up the study of your application. It can not suggest a way to
crack. With or without debug info cracker will do the very same things. Therefore the
difference "debug info" <> "no debug info" is equivalent of "crack can appear sooner" <>
"crack can appear later", but not the equivalent of "app is cracked" <> "app can not be
cracked".

Though you can do a certain steps to prevent cracker from gaining even this speed-up
bonus from your debug information.

First: you can exclude certain procedures from being included into debug information
attached to exe. Just wrap them in compiler's directives that switches debug information on
and off (it's {$D+/-}). But, again, the cracker can see the "white spaces" in debug info
coverage (if that idea comes to his mind too), so this will lead him directly to your protection
code (good for honeypots though).

40

38

EurekaLog 7 Documentation587

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Second: you can disable adding methods, functions and procedure names to your
executable. You can do it by enabling "Do not store the Class/Procedure names" option .
With enabled option the only information that goes into your exe file is units names and line
numbers. Of course, now your reports do not contains these names too. But call stack is still
useful to you, since there are unit names and line numbers with offsets - these are enough
to track down the problem, though it may be harder to do.

See this article for detailed explanations of the offsets.

Third: if you really worry about your names - you can encrypt debug information with
custom password, which isn't stored in executable. You can do it by typing password in the
"Debug information encryption password" option . So debug information will not be useful
without a password (which is not stored in application).

Encrypted call stack

Well, you can not view the call stack (and assembler information) directly - it will be
encrypted (EurekaLog uses TEA - this well-known cipher has very compact code). But you
can load such encrypted report into EurekaLog's Viewer , enter your password (which
you do know and cracker is not) and view unencrypted report.

How reliable is this method? TEA has few weaknesses. TEA is susceptible to a related-key
attack which requires chosen plaintexts. Because EurekaLog projects is compiled by you
and it happens rarely (much less that about 8'000'000 projects which is required for this
attack to succeed) - this attack type is not applicable to you. TEA also suffers from
equivalent keys, which means that the effective key size is 126 bits instead of 128 bits.

This means that cracker is left with brute-forcing 126 bit key or dictionary attack (which you
can avoid just by using random passwords). Therefore this protection method is quite
reliable, and you shouldn't be worried about your routine names to be accessible to
everyone.

See also:
Using EurekaLog with exe packers/cryptors/protectors
Configuring call stack

243

578

243

617

520

48

http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm

Advanced topics 588

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

11.15 What's the difference between SSL and TLS send modes?

Some send modes have options to turn on SSL and TLS mode for sending. What's the
difference?

Basically, SSL mode and TLS mode are just short labels to mark the following behaviour:

SSL mode

Early implementations of encrypted protocols used a different TCP port from normal
protocol, and expected an encryption negotiation to start immediately, instead of waiting
for a special command from the client using the standard port. Such protocol is usually
called by adding "s" before or after protocol's name. For example: "FTPS" (or "implicit FTPS",
not to be confused with "SFTP"), "HTTPS", "SMTPS" (or "SSMTP"). SMTP uses port 465 for
this purpose, FTP uses 990 and HTTP uses 443.

Short summary:
Encrypted connection is established immediately.
It's implicit mode.
Also called as: pure SSL, implicit SSL, FTPS, FTP/SSL, implicit FTPS, HTTPS, SMTPS, SSMTP,
implicit SMTP, secure SMTP.
Ports: SMTP - 465 (called "SMTPS"), FTP - 990 (called "implicit FTPS"), HTTP - 443 (called
"HTTPS").

TLS mode

Later implementations of protocols used a different approach. The connection is initially
established to unsecured port as with normal protocol. Once a connection is established,
the client issues a special command (usually it's a STARTTLS, AUTH SSL or AUTH TLS). If the
server accepts this, the client and the server negotiate an encryption mechanism. If the
negotiation succeeds, the data that subsequently passes between them is encrypted.
Because connection is established as unsecure - the same port (compared to normal
protocol) can be used. However, sometimes a different port can be used. Protocol is called
"FTPES" (or "explicit FTPS") for FTP, "SMTP AUTH" or "ESMTP" (extended SMTP) for SMTP.

Short summary:
Connection established as unsecured (plain) and switched to secure mode on demand
(special command).
It's explicit mode.
Also called as: explicit SSL, STARTTLS, AUTH TLS, FTPS, FTP/SSL, FTPES, explicit FTP,
ESTMP, SMTP AUTH, explicit SMTP.
Ports: SMTP - 25 or 587, FTP - 21, HTTP - not applicable.

Note: such names (with "SSL" and "TLS") may be a little confusing, because both SSL and
TLS are application-layer cryptographic protocols. TLS is just a successor of SSL, i.e. TLS 1.0
is SSL 3.1. TLS is application protocol independent. Higher-level protocols can layer on top
of the TLS protocol transparently. The TLS standard, however, does not specify how
protocols add security with TLS; the decisions on how to initiate TLS handshaking and how
to interpret the authentication certificates exchanged are left to the judgment of the
designers and implementors of protocols that run on top of TLS.

So, both so-called "SSL mode" and "TLS mode" will use TLS or SSL protocol (depending on
handshake's result) for handling encrypted connections. Words "SSL" and "TLS" are used
just as short convenient "labels" for modes, meaning "encrypted protocol, old version,
implicit" for "SSL" and "encrypted protocol, new version, explicit" for "TLS".

This is common interpretation to be seen in other software as well.

http://en.wikipedia.org/wiki/SMTPS
http://en.wikipedia.org/wiki/FTPS
http://en.wikipedia.org/wiki/HTTP_Secure

EurekaLog 7 Documentation589

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

You can know which mode to select by reading help/FAQ for your server. Usually, it's TLS
mode, when available. If you can't figure out the proper mode - try TLS mode first. If it
works - keep it, if not - switch to SSL mode.

TLS mode will revert back to plain mode, if issuing special command will be unsuccessful (for
example, if server doesn't support secure mode). Such "probing" is not possible for SSL
mode, since you must connect in already defined state (secured or unsecured), while TLS
mode decides this while negotiating with server. That's why you may keep TLS mode
always enabled (unless you need SSL mode only).

Note: EurekaLog doesn't support SFTP protocol (which is based on SSH; SFTP stands for
"SSH File Transfer Protocol").

See also:
Send modes

11.16 Memory leaks detection limitations

The EurekaLog memory leaks detection has some limits, which derives from its internal
structure.

EurekaLog detects the memory leaks at the application's exit, so at this state the program
has just freed all its non-static resources (resources allocated at run-time as objects
created with the Create constructor, variables allocated with the GetMem function, etc).

This technique generating the following limitations:
1. Enabling memory leak detection has little performance penalty (no more than about 5%

for memory operations), because EurekaLog needs to build call stack for each memory
allocation;

2. Enabling memory leak detection has little memory usage penalty (about 200 bytes for
each memory allocation on x86-32 and about 400 bytes on x86-64);

3. Memory leak report automatically hides Assembler and CPU sections;
4. EurekaLog will not execute standard events during processing memory leak reports (this

is because required resources was freed);
5. Call stack for memory leak is limited to 35 entries;
6. Memory leaks detection works only for standard Delphi's heap / memory manager (i.e.

GetMem/FreeMem/ReallocMem); it can not find leaks with other memory managers (like
HeapAlloc/HeapFree or VirtualAlloc/VirtualFree). Use resource leaks ability for that.

7. EurekaLog is unable to show human-readable call stack if DLL which created leak has
been unloaded (this limitation is applicable only for applications with installed shared
memory manager).

8. If you use shared memory manager - you must compile all modules with same memory
manager settings. If you don't use shared memory manager - there is no additional
limitations.

9. (C++ Builder only) "Dynamic RTL" is not supported in C++ Builder. If you enable "Dynamic
RTL" option - EurekaLog's memory features will be disabled.

See also:
Enabling memory features for C++ Builder
Memory leaks detection options
Solving memory leaks
Configuring project for leaks detection

11.17 Resource leaks detection limitations

The EurekaLog resource leaks detection has some limits, which derives from its internal
structure.

EurekaLog detects the resource leaks at the application's exit, so at this state the program
has just freed all its non-static resources (resources allocated at run-time).

390

255

255

250

166

508

http://en.wikipedia.org/wiki/SSH_File_Transfer_Protocol
http://en.wikipedia.org/wiki/Secure_Shell

Advanced topics 590

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

This technique generating the following limitations:
1. Enabling resource leak detection has little performance penalty (no more than about 5%

for resource operations), because EurekaLog needs to build call stack for each resource
allocation;

2. Enabling resource leak detection has little memory usage penalty (about 200 bytes for
each resource allocation on x86-32 and about 400 bytes on x86-64);

3. Resource leak report automatically hides Assembler and CPU sections;
4. EurekaLog will not execute standard events during processing resource leak reports (this

is because required resources was freed);
5. Call stack for resource leak is limited to 35 entries;
6. EurekaLog is unable to show human-readable call stack if DLL which created leak has

been unloaded.
7. Resource monitoring is performed by hooking imported DLL functions.
8. Resource leaks are checked only for supported functions . Leaks in other functions will

be not traced.

See also:
Enabling memory features for C++ Builder
Memory leaks detection options
Solving memory leaks
Configuring project for leaks detection

11.17.1 List of functions

This is a list of functions which are monitored by resource leaks feature. This list is expected
to be expanded as we would test more functions.

Currently monitored by default functions are:

HeapCreate/HeapDestroy
HeapAlloc/HeapReAlloc/HeapFree
HeapLock/HeapUnlock
CreateCompatibleDC/CreateDC/CreateIC/DeleteDC
GetDC/ReleaseDC

You can also add functions manually by using HookWin32API function from EResLeaks unit.

For example:

uses
 EResLeaks;

initialization
 HookWin32API('Kernel32.dll', 'HeapCreate', 'Heaps', 'Heaps', 3, True, ctEqual, 0, -1);
 HookWin32API('Kernel32.dll', 'HeapDestroy', 'Heaps', 'Heaps', 1, False, ctEqual, 0, 0);

 HookWin32API('Gdi32.dll', 'CreateCompatibleDC', 'Device Contexts', 'Device Contexts', 1, True, ctEqual, 0, -1);
 HookWin32API('Gdi32.dll', 'CreateDC', 'Device Contexts', 'Device Contexts', 4, True, ctEqual, 0, -1);
 HookWin32API('Gdi32.dll', 'CreateIC', 'Device Contexts', 'Device Contexts', 4, True, ctEqual, 0, -1);
 HookWin32API('Gdi32.dll', 'DeleteDC', 'Device Contexts', 'Device Contexts', 1, False, ctEqual, 0, 0);

 HookWin32API('AdvAPI32.dll', 'CreateRestrictedToken', 'Handles', 'Tokens', 9, True, ctEqual, 0, 8);
 HookWin32API('AdvAPI32.dll', 'OpenProcessToken', 'Handles', 'Tokens', 3, True, ctEqual, 0, 2);
 HookWin32API('AdvAPI32.dll', 'OpenThreadToken', 'Handles', 'Tokens', 4, True, ctEqual, 0, 3);
 HookWin32API('AdvAPI32.dll', 'DuplicateToken', 'Handles', 'Tokens', 3, True, ctEqual, 0, 2);
 HookWin32API('AdvAPI32.dll', 'DuplicateTokenEx', 'Handles', 'Tokens', 6, True, ctEqual, 0, 5);

 HookWin32API('Kernel32.dll', 'CloseHandle', 'Handles', 'Handles', 1, False, ctEqual, 0, 0);
end.

590

255

250

166

508

EurekaLog 7 Documentation591

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

See also:
Resource leaks options
Resource leaks detection limitations

11.18 Internal Errors

This article is for application developers, which use EurekaLog exception tracer tool. If
you are not a developer of the application - please, contact developers of application
and let them know about this issue.

Sometimes your application may show "EurekaLog crash report", also known as "Internal
Error bug report". This article explains such reports.

255

255

40

Advanced topics 592

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

A typical internal error report in EurekaLog

What are internal errors
Internal error is (fatal) exception raised during capturing information about another
exception (non-fatal). This exception is unexpected and it indicates wrong state of your
application. When such exception is encountered - EurekaLog stops application and shows
internal error report. It's not possible to continue normal work after encountering fatal
exception. Internal error report is generated to avoid application's hang or crash (indeed:
exception -> capture information about exception -> get another exception -> capture
information about exception -> get yet another exception -> etc. until hang or crash). It's
not possible to perform normal exception processing (collect call stack, save bug report file,
send bug report to developers) for the same reasons.

EurekaLog 7 Documentation593

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

How to read internal error report
Original (non-fatal) exception is shown last (as ActiveXYZ):

ActiveObj : (Exception) Error Message
ActiveAddr : $004C197E - [00400000] CompileAllUnits.exe - CompileAllUnits - -
Initialization - 18[78]

Unexpected (fatal) exception is shown first:

Address : $004BA333 - [00400000] CompileAllUnits.exe - EExceptionHook - -
GetExceptionStackInfoProcHandler - 658[263]
Module : CompileAllUnits.exe
Exception : EAccessViolation
Message : Access violation at address 004BA333 in module
'CompileAllUnits.exe'. Write of address 00000000

Location where fatal exception was discovered is indicated by "Section":

Section : GetExceptionStackInfoHook

Middle part of internal error report (LastXYZ) shows value of
ExceptionManager.LastThreadException. Usually this part doesn't hold any additional
valuable information.

Unfortunately, it's not possible to create proper call stack for internal error report: because
collecting call stack means calling the crashed code again (so it's highly likely that it will
cause another crash). That's why call stack show only location, which has detected the
problem (up to GetExceptionStackInfoHook in the above example), not the location which
has actually encountered a problem (there is no info in call stack about routines called from
GetExceptionStackInfoHook).

What causes internal errors
Internal errors can be caused either by bugs in EurekaLog's code or by bugs in your code.
Usually, fatal exception is access violation exception occurred when EurekaLog collects
information about ordinal exception.

Internal errors can be caused by the following reasons:
Allowing application to continue to work after it encounters its first unhandled exception.
Unknown exception (especially access violation) puts your application into unknown state.
This state may be unstable, so any further work may cause crashes. For example, you
may get access violation exception due to memory corruption bug in your code. And you
continue to run your application after handling this exception. However, memory state is
still corrupted. Thus, when next exception occurs, and EurekaLog tries to work with it -
EurekaLog may trigger access violation exception due to corrupted memory.
Bugs in EurekaLog code.
Bugs in your code.

What is panic mode
When EurekaLog encounters unexpected exception during processing of another exception
- it puts itself into so-called "panic mode". This is "safe-fallback" mode designed to continue
work to complete creation of internal error report.

Panic mode:
Outputs debug messages to indicate failure condition;
Notifies attached debugger (if present) about failure condition by triggering forced
software breakpoint. If you're running application under debugger - you can stop on this
breakpoint and investigate the crash;
Disables EurekaLog in all threads. This is done to avoid calling crashed code for any
possible further exceptions;

Advanced topics 594

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Installs memory manager replacement. This is done to allow allocating and disposing
memory blocks when internal error was caused by corrupted memory manager state.

Panic mode is used for all fatal exceptions, not just for internal errors. For example, when
EurekaLog discovers corruption of memory block with its debugging memory manager - it
puts itself into panic mode to allow to continue work despite memory corruption.

How to solve internal errors
Unfortunately, it's not possible to get exact reason for internal error from internal error
report. That's because internal error report is created when fatal exception is discovered,
not when it occurs. So, report doesn't contain information about exact location of the
problem, only indication to generic code's section. Internal error report allows you to know
that something is wrong in your application, but you need to do additional work to figure
out reason.

If you have reproducible test case to invoke internal error - please, contact EurekaLog
support to get assist with resolving your issue.

Otherwise, you may try the following:
Configure your project for maximum debugging . Most notably (but not suffice): enable
"Use Debug DCUs" option and remove any {$D-} directives in your code;
Try to run your application under debugger. Do not disable stopping on exceptions and
non-user breakpoints. You can try to investigate reason or capture screenshots to submit
them later to EurekaLog's support;
Try to enable "Enable extended memory manager" option ;
Try to disable "Enable extended memory manager" option and use 3rd party
debugging memory manager (such as FastMM in full debug mode or SafeMM);
Try to comment your customization code . Exceptions raised by your event handlers
sometimes may lead to internal errors;
Try to set _AllowBypassInternalErrors global variable (EBase unit) to True and set
_InternalError global variable to nil (do this in any place before internal error occurs).
See if this can give you more information in internal error report. These options will
disable creation of internal error reports and will allow you to continue your application's
work on your own risk;
Try to set _ForceEurekaLogForInternalErrors global variable (EExceptionHook unit) to
True (do this in any place before internal error occurs). See if this can give you more
information in internal error report. This option will enable EurekaLog for fatal exceptions
(as mentioned above: EurekaLog is disabled by default for fatal exceptions). Of course,
internal error reports must be enabled;
Try to use internal debug mode .

How to change default behavior of internal errors handler
EurekaLog allows you to customize default behavior for internal errors via low-level
customizations . You can use the following low-level possibilities:
EBase._InternalError - allows you to install your own internal error handler. You can use
this to show another message, to create another bug report, etc. You can also to reset
this handler to nil.
EBase._AllowBypassInternalErrors - allows you to ignore internal errors. This option has
no effect if _InternalError handler is assigned.
EExceptionHook._ForceEurekaLogForInternalErrors - allows you to use EurekaLog for
internal errors. This possibly may collect more information about fatal exception, but also
may cause application's crash without creating internal error report.

See also:
Troubleshooting problems at run-time
Configuring project for debugging
Low-level handlers

58

250

250

189

613

211

613

58

211

http://www.eurekalog.com/support.php
http://www.eurekalog.com/support.php
http://www.eurekalog.com/support.php
http://docwiki.embarcadero.com/RADStudio/en/Compiling
http://docwiki.embarcadero.com/RADStudio/en/Compiling
http://docwiki.embarcadero.com/RADStudio/en/Compiling
http://docwiki.embarcadero.com/RADStudio/en/Compiling

Part

XII

Troubleshooting 596

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

12 Troubleshooting

This section should help you to resolve problems with EurekaLog.

Problems?
Troubleshooter
Installation issues
Activation issues
Frequently Asked Questions
Knowledge base
Other problems

12.2 Installation problems

Note: these are troubleshooting guidelines for EurekaLog 7 only. If you install other
version of EurekaLog - use corresponding help resources.

Please, use our installation troubleshooter first. If it did not help or you can't use it:

You should do the following to make a clean reinstall in case of any problems:

1. Uninstall all installed EurekaLog versions (see also: full manual uninstallation for
uninstalling EurekaLog 7).

2. Delete all dcu files, related to your project (you've already should have deleted dcu files
related to EurekaLog on previous step).

3. Download the latest EurekaLog version (or RC version, if you like).
4. Install EurekaLog under the same user account. I.e. if you run/work in Delphi under

"User1" account - then run installer under "User1" account, not "User2".
5. Note, that there should be your Delphi version present during installation process. I.e. if

you have Delphi 7 and Delphi 2009 installed, the EurekaLog's installer should show you
both options (switches) during installation (like IDE support/Delphi/Delphi 7 and
IDE support/Delphi/Delphi 2009).

6. Restart your PC.

Most common problems:

Q: I do not see my IDE version in the installer
A: First, make sure that you have EurekaLog for Delphi/C++ Builder (because we also have
EurekaLog for .NET, which is a different thing). If you do not see all installed Delphi versions
in EurekaLog's installer - then probably your Delphi installation was somehow corrupted
and EurekaLog installer doesn't see your installations. Try to reinstall or repair your Delphi
installation.

EurekaLog installer looks for path values in the registry. For example: HKEY_LOCAL_MACHINE
\SOFTWARE\Embarcadero\BDS\8.0\RootDir=C:\Program Files (x86)\Embarcadero\RAD Studio
\8.0\ (don't forget about Wow6432Node node on x86-64 machines).

An easiest way to fix this is to run "Repair" or "Reinstall" of your IDE.

Q: I do not see EurekaLog menu items in IDE after installation
A: If you do not see EurekaLog in Delphi's IDE after installation (and you DID check
appropriate switch during installation) - check your package settings:
1. Automatically. Use Start Menu / Programs / EurekaLog 7 / Manage menu item (run it

under administrator account). Click on "EurekaLog 7 with IDE expert" button under your
IDE to install EurekaLog.

2. Manually. Open IDE and go to "Component"\"Install Packages". See if there is
EurekaLog package and it has a checkbox marked. If checkbox is unchecked - then switch
it on. If there is no EurekaLog's expert package - then click on "Add" button and pick a
package from your \bin\ folder. More information .

Q: I see "File not found: XYZ" error when I compile my project
A: EurekaLog is not registered in your IDE or it is not registered properly. Check your

596

606

215

615

605

598

https://support.eurekalog.com/index.php?/Troubleshooter/List
http://support.eurekalog.com/index.php?_m=knowledgebase&_a=view
http://support.eurekalog.com/index.php?_m=knowledgebase&_a=view
https://support.eurekalog.com/index.php?/Troubleshooter/List
https://support.eurekalog.com/index.php?/Troubleshooter/List

EurekaLog 7 Documentation597

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

search paths:
1. Automatically. Use Start Menu / Programs / EurekaLog 7 / Manage menu item (run it

under your account). Click on "EurekaLog 7 with IDE expert" button under your IDE to
register EurekaLog.

2. Manually. Open IDE and go to "Tools"\"Options". Set library search paths to appropriate
folder in \Lib subfolder of EurekaLog installation. More information .

Q: I see "Unit XYZ was compiled with different version of ABC" or "Could not compile
used unit XYZ" errors when I compile my project
A: Your project uses old or wrong files. Clean .dcu/.obj files of your project and make a full
build. If this will not help - please check search paths of your project and your IDE as
explained here .

Q: My IDE (with many installed components and extensions) hangs or crash during
loading of EurekaLog or during project compilation, or it is unable to compile projects
(errors like "File not found" while search paths are set)
A: Delphi and C++ Builder IDEs are 32-bit processes, which are limited to 2 Gb of address
space. There are also other known limits (such as command-line length, environment
variables length and search paths length). Probably you have too many components and
extensions installed, so when you install or use EurekaLog - these limits are reached. Try to
remove unused components and extensions, try to remove search paths for unused
components or re-arrange them to move EurekaLog first. If you can not remove any
component or extension - then you can use EurekaLog without using EurekaLog IDE expert.
Please read this article fore more information.

Note: please note that limitations of 32-bit processes do not depend on your installed
hardware memory (RAM) and disk space.

Q: My IDE crashes when loading or using EurekaLog, but I do not have many
components/extensions installed - only few.
A: EurekaLog installs hook in IDE to catch errors in EurekaLog itself. In some rare cases this
feature may conflict with other similar hooks. Most typical examples of 3rd party software
with same functionality are AQTime, madExcept and JEDI Code Library (JCL). To disable
EurekaLog reporting - please uncheck "Catch EurekaLog IDE Expert errors" option .

Other issues:
If installer gives you some error, then make sure that anti-virus or any other scanner does
not interfere with unpacking files (for example, anti-virus can block access to files due to
false-positive alert). Try to clear your %TEMP% folder. Check if you have enough free disk
space. You should also try to run installer under administrator account (run it elevated
under Vista or later Windows versions). And, finally, install all available Windows updates
via Windows Update.

After installation: check if there are appropriate subfolders in EurekaLog installation
directory. For example, if you have Delphi 7 and Delphi 2009 installed, then there should be
2 sets of folders in C:\Program Files\Neos Eureka S.r.l\EurekaLog 7 (substitute with your
installation path): \Lib\Win32\Release\Delphi7 and \Lib\Win32\Release\Studio12.

Please refer to IDE names to get "Delphi 2009 <> Delphi12" mapping.

If you see EurekaLog's options in IDE , but (after enabling EurekaLog for project)
compiler says that ExceptionLog7 file is not found (or any other EurekaLog-related file) —
then add C:\Program Files\Neos Eureka S.r.l\EurekaLog 7\Lib\Win32\Release\DelphiXX

folder to your library path (Tools\Options\Library), where XX indicate your Delphi version (C
++ Builder and RAD Studio have similar paths).

If you have too many installed components or 3rd party extensions - you %PATH%
environment variable may become too large. The limit on environment block could prevent
some packages from being loaded in IDE. Try to uninstall unused components and libraries.

If you was unable to install EurekaLog automatically - you can install it manually .

See also:

598

598

221

230

604

222

598

Troubleshooting 598

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

List of all known installation problems in our Knowledge base
Troubleshooter guide
Manual installation
Where to find EurekaLog
EurekaLog IDE Setup
IDE names mapping
Uninstallation problems
EurekaLog files layout

12.2.1 Manual installation

Sometimes there is need to install EurekaLog manually. You may need manual installation
to use EurekaLog on build server without running EurekaLog installer. Or you may use
manual installation to troubleshoot installation problems. If you're reading this article to
solve installation issues - please read this article first.

This article will use the following notation:
%EUREKALOG% - installation folder of EurekaLog. For example: C:\Program Files (x86)\Neos
Eureka S.r.l\EurekaLog 7\
%IDE% - installation folder of your IDE. For example: C:\Program Files (x86)\Embarcadero
\Studio\15.0\

IDE Expert
1. Determinate name and integer version of your IDE by using this table . For example:
Studio16 for name and 16 for integer version. This article will use %IDENAME% to mark name
of your IDE and %VER% for integer version determinated on this step.

2. Check if you have %EUREKALOG%\Packages\%IDENAME%\ folder. If yes - skip to step 3. If no -
run EurekaLog installer with /Force_D%VER% and/or /Force_C%VER% command-line
switches .

3. Copy EurekaLogCore%VER%0.bpl, .dbg, .jdbg files from %EUREKALOG%\Packages\%IDENAME%\
folder to 32-bit Windows\System32 folder. It is a run-time package (EurekaLogCore). This
file will be used by IDE in steps 7 and 9 below.

4. Run your IDE.
5. Go to Components/Install packages menu item of your IDE.
6. Find any EurekaLog packages in the list. Remove them (if present).
7. Click on "Add" button and pick up %EUREKALOG%\Packages\%IDENAME%\EurekaLogExpert%VER
%0.bpl file.

8. Make sure that "EurekaLog IDE Expert" appears in package list and it has checkbox
checked.

9. Click on "Add" button and pick up %EUREKALOG%\Packages\%IDENAME%\EurekaLogComponent%
VER%0.bpl file.

10. Make sure that "EurekaLog Component" appears in package list and it has checkbox
checked.

11. Close Packages dialog.

598

603

604

604

605

619

596

604

31

https://support.eurekalog.com/index.php?/Knowledgebase/List/Index/4
https://support.eurekalog.com/index.php?/Knowledgebase/List/Index/4
https://support.eurekalog.com/index.php?/Knowledgebase/List/Index/4
https://support.eurekalog.com/index.php?/Knowledgebase/List/Index/4
https://support.eurekalog.com/index.php?/Knowledgebase/List/Index/4
https://support.eurekalog.com/index.php?/Knowledgebase/List/Index/4
https://support.eurekalog.com/index.php?/Knowledgebase/List/Index/4
https://support.eurekalog.com/index.php?/Knowledgebase/List/Index/4
https://support.eurekalog.com/index.php?/Knowledgebase/List/Index/4
https://support.eurekalog.com/index.php?/Knowledgebase/List/Index/4
https://support.eurekalog.com/index.php?/Troubleshooter/List
https://support.eurekalog.com/index.php?/Troubleshooter/List

EurekaLog 7 Documentation599

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Properly installed IDE expert (Delphi XE7)

Now you should be able to see EurekaLog IDE menu items . There also should be
TEurekaLogEvents component present on "EurekaLog" tab in component palette.

Note: all installed components and extensions are limited by limitations of 32-bit processes.
If your IDE crash after installing and/or using EurekaLog IDE expert - try to remove unused
components/extensions.

Library search paths
12. Go to Tools/Options menu item of your IDE (some IDE versions names this menu item

as "Environment options").
13. Find Library category in options dialog (it should be a tab for old IDE versions or tree

view item for new IDE versions). For C++ Builder as part of RAD Studio - look for C++
Options/Paths category.

14. Find "Library Search Paths" options (other possible name is "Library path").
15. Click on "..." button to open list of library search paths.
16. Remove all EurekaLog-related paths (if any present).
17. Add %EUREKALOG%\Lib\Win32\Release\%IDENAME%\, %EUREKALOG%\Lib\Common and %
EUREKALOG%\Source\Extras\ folders.

222

Troubleshooting 600

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Properly registered library paths (Delphi XE2)

Now you should be able to compile your projects.

18. (Optional, Delphi XE2+ only) Change platform to "64-bit Windows" and repeat steps 12-
14, only use Win64 instead of Win32 folder.

Note: search paths may be limited in length. If your changes aren't working - please
remove unused paths or move EurekaLog towards the beginning of the list.

Source browsing paths
19. Find "Browsing path" option in the same dialog.
20. Click on "..." button to open list of source browsing paths.
21. Remove all EurekaLog-related paths (if any present).
22. Add %EUREKALOG%\Source\ folder.
23. (Optional) Add all subfolders of %EUREKALOG%\Source\ folder.

EurekaLog 7 Documentation601

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Properly registered (minimal) browsing paths (Delphi XE2)

21. (Optional, Delphi XE2+) Change platform to "64-bit Windows" and repeat steps 17-20.

Note: search paths may be limited in length. If your changes aren't working - please
remove unused paths or move EurekaLog towards the beginning of the list.

Debug paths (Delphi only)
24. Find "Debug DCU paths" option.
25. Click on "..." button to open list of debug paths.
26. Remove all EurekaLog-related paths (if any present).
27. Add %EUREKALOG%\Lib\Win32\Debug\%IDENAME%\ folder.

Troubleshooting 602

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Properly registered debug path (Delphi XE2)

Now you will be able to use 2 sets of files (debug/release). When you enable "Use Debug
DCUs" option - files from Debug folder will be used. Otherwise ("Use Debug DCUs" option
unchecked) - Release folder will be used.

28. (Optional, Delphi XE2+) Change platform to "64-bit Windows" and repeat steps 23-25.

Note: search paths may be limited in length. If your changes aren't working - please
remove unused paths or move EurekaLog towards the beginning of the list.

Include paths (C++ Builder only)
29. Find "Include paths" option.
30. Click on "..." button to open list of include paths.
31. Remove all EurekaLog-related paths (if any present).
32. Add %EUREKALOG%\Lib\Common\ folder.

EurekaLog 7 Documentation603

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Properly registered include path (C++ Builder XE2)

33. (Optional, Delphi XE2+) Change platform to "64-bit Windows" and repeat steps 26-28.

Note: search paths may be limited in length. If your changes aren't working - please
remove unused paths or move EurekaLog towards the beginning of the list.

Verify project settings
34. Open your project.
35. Make sure IDE expert is not disabled for this project - go to Components/Install
packages menu item and make sure EurekaLog Expert package is present and enabled.

36. Check project options (Project/Options) - make sure there are no EurekaLog paths
listed in any options.

37. Delete all .dcu/.obj files of your project. Make a full build.

See also:
EurekaLog IDE setup
EurekaLog files layout
Where to find EurekaLog
IDE names mapping

12.2.2 Where to find EurekaLog

EurekaLog creates files and references at the following locations:

1. Installation directory. By default it is %ProgramFiles%\Neos Eureka S.r.l\EurekaLog 7\
folder (32-bit Program Files folder is used). This folder includes the following subfolders for
your IDE:

\Lib\Win32\Debug\Your-IDE\

\Lib\Win32\Release\Your-IDE\

604

619

603

604

Troubleshooting 604

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

\Source\
2. Start Menu folder. By default it is %Programs%\EurekaLog 7\ folder.
3. ApplicationData folder. It is %AppData%\Neos Eureka S.r.l\EurekaLog\ folder.
4. Software registry key. It is HKLM\Software\EurekaLab\EurekaLog\7.0\ and HKCU
\Software\EurekaLab\EurekaLog\7.0\.

5. IDE menu items. It is Project\EurekaLog Options and Tools\EurekaLog .
6. File associations.

Refer to IDE names to know more about Your-IDE names.

See also:
Installation problems
IDE menu items
EurekaLog's files layout

12.2.3 EurekaLog IDE Setup

EurekaLog performs the following steps to install itself for each IDE:

1. For each IDE EurekaLog installs a set of dcu/obj/hpp files into %EurekaLog%\Lib\Win32
\Debug\Your-IDE\ and %EurekaLog%\Lib\Win32\Release\Your-IDE\ folders.

2. EurekaLog copies EurekaLogCoreVER.bpl, .dbg, .jdbg files from %EurekaLog%\Packages
\Your-IDE\ folder to Windows\System32 folder (of corresponded bitness).

3. EurekaLog registers itself into IDE:
Adds EurekaLogExpert VER .bpl package (Component\Install package);
Adds EurekaLogComponentVER.bpl package (Component\Install package);
Adds %EurekaLog%\Lib\Win32\Release\Your-IDE\ to Library paths;

Adds %EurekaLog%\Lib\Win32\Debug\Your-IDE\ to Debug DCU paths;

Adds %EurekaLog%\Source\ to Browsing paths.

Refer to IDE names to know more about Your-IDE names.

See also:
Installation problems
IDE menu items
EurekaLog's files layout

12.2.4 IDE names mapping

Real IDE name EurekaLog name Integer version

Borland Delphi 4 Delphi4 4

Borland Delphi 5 Delphi5 5

Borland Delphi 6 Delphi6 6

Borland C++ Builder 6 Builder6 6

Borland Delphi 7 Delphi7 7

Borland Delphi 2005 Delphi9 9

Borland Developer Studio 2006 Studio10 10

CodeGear RAD Studio 2007 Studio11 11

Embarcadero RAD Studio 2009 Studio12 12

Embarcadero RAD Studio 2010 Studio14 14

Embarcadero RAD Studio XE Studio15 15

Embarcadero RAD Studio XE2 Studio16 16

Embarcadero RAD Studio XE3 Studio17 17

Embarcadero RAD Studio XE4 Studio18 18

Embarcadero RAD Studio XE5 Studio19 19

Embarcadero RAD Studio XE6 Studio20 20

Embarcadero RAD Studio XE7 Studio21 21

222

604

596

222

619

221 221 221

604

596

222

619

EurekaLog 7 Documentation605

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Real IDE name EurekaLog name Integer version

Embarcadero RAD Studio XE8 Studio22 22

Embarcadero RAD Studio 10 Seattle Studio23 23

Embarcadero RAD Studio 10.1 Berlin Studio24 24

AppMethod AppMethod 13

See also:
Installation problems
EurekaLog IDE setup
Where to find EurekaLog

12.3 Uninstallation problems

Note: these are troubleshooting guidelines for EurekaLog 7 only. If you uninstall other
version of EurekaLog - use corresponding help resources.

A. You should always use EurekaLog's uninstaller, which you could run from Start menu
(EurekaLog program group) or from "Uninstall application" Control Panel's applet.

B. If you can't find these items - you can run uninstaller manually by executing its file: C:
\Program Files (x86)\Neos Eureka S.r.l\EurekaLog 7\unins000.exe (exact path depends
on your system).

C. However, if uninstaller has failed to remove EurekaLog for some reason - here is a list of
steps to do to remove EurekaLog 7 manually:

1. Unregister EurekaLog:
Close all opened projects in your IDE and select Component / Install packages
command. Then:

o Find "EurekaLog IDE Expert" package and remove it completely (use "Remove"
button, do not just uncheck checkbox);

o Find "EurekaLog Component" package and remove it completely (use "Remove"
button, do not just uncheck checkbox).
Go to Tools / Options and select "Library" category. Remove any EurekaLog-related
paths from "Library path", "Browsing path" and "Debug DCU path".
Remove any EurekaLog-related files or folder from any other tools. For example, use
Options / Configure symbols command in Process Explorer tool, if you've setup it to
use EurekaLog's files before.

2. Close all opened Delphi/C++Builder/RAD Studio/AppMethod instances and Process
Explorer tool (or any other debug tool which may use your symbol's cache).
Alternatively, it's recommended to restart your PC.

3. Delete EurekaLog files:
Delete EurekaLog's folder, which is typically "C:\Program Files\Neos Eureka S.r.l
\EurekaLog 7".
Delete EurekaLogCore*.*, EurekaLogExpert*.*, EurekaLogComponent*.*,
ecc32.* and emake.* files from "bin" folder of your IDE.
Delete EurekaLogCore*.* files from Windows\System32 folder (both 32-bit and 64-bit).
Delete EurekaLog's program group in Start menu. You can do this by opening Start
menu and right-clicking on "EurekaLog" program group.

4. Delete EurekaLog registry settings:
Delete HKEY_CURRENT_USER\Software\EurekaLab\EurekaLog\7.0 registry key.

Delete HKEY_LOCAL_MACHINE\Software\EurekaLab\EurekaLog\7.0 registry key.

(Optionally) You can delete the entire \Software\EurekaLab\ key, if you want to.
Delete HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall

\{BB108562-6527-4FA0-8928-6F5ECDBB08CF}_is1 registry key (note: it's

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion
\Uninstall\{BB108562-6527-4FA0-8928-6F5ECDBB08CF}_is1 on 64bit machines).

5. Delete your data files:
Delete %APPDATA%\Neos Eureka S.r.l\EurekaLog\ folder. For example, it can be
C:\Users\UserName\AppData\Roaming\Neos Eureka S.r.l\EurekaLog\ folder.

596

604

603

230

Troubleshooting 606

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

(Optionally) You can delete the entire %APPDATA%\Neos Eureka S.r.l\ folder, if you
want to.
Delete each .dcu/*.obj files of your projects, which could be rebuilded from .pas/.cpp
files.

6. Delete any left-overs:
Run a search on your hard drive and look for any *.elf, *.eof, *.etf, EurekaLog*,
ecc32.*, emake.*, ExceptionLog* files. If you've found something and you don't
need this - delete it.

See also:
Installation problems
EurekaLog's files and data location
EurekaLog installation into IDE

12.4 Enabling EurekaLog problems

When you have enabled EurekaLog for your project - you must build your project:

Build your project

You will see a standard processing window, where you can see "Compiling" and "Linking"

596

603

604

33

EurekaLog 7 Documentation607

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

stages.

See also: Compiling your project with EurekaLog .

You should see one additional stage at the very end of this process. This stage is called
"post-processing ". "EurekaLog":

EurekaLog's post-processing during compilation

It indicates that EurekaLog is active, enabled and doing post-processing of your
executable.

Additionally, EurekaLog's post-processing stage will be listed in IDE compiler output - use
IDE's "View" / "Messages" command to open it:

"EurekaLog" / "post-processing" stage in IDE output

421

426

Troubleshooting 608

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Same window expanded - this is output from a normal successful compilation

If you don't see this post-processing stage and/or IDE messages output is empty - then
something is wrong.

Most common problem
You have dropped TEurekaLogEvents component on the form but did not enabled

EurekaLog for your project via "Project" / "EurekaLog Options" menu. TEurekaLogEvents
component is supposed to react on EurekaLog's events, but it does nothing if EurekaLog is
not added. Please, enable EurekaLog for your project as explained here .

Make sure that:

1. EurekaLog IDE expert is installed:

33

EurekaLog 7 Documentation609

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Verifying that EurekaLog IDE expert is installed

You should find it into "Components" \ "Install packages" IDE menu. If EurekaLog IDE
Expert package is disabled - enable it. If it's not even there - click on "Add" button and pick
EurekaLogExpert.bpl package from \Packages\IDEName\ subfolder of your EurekaLog

installation. Replace IDEName with your real IDE version. Use IDE name mapping to

determinate which folder corresponds to your IDE.

If you can't find EurekaLogExpert.bpl file - then you need to reinstall EurekaLog and

make sure that you have selected support for your IDE during installation. Please, follow
these guidelines .

2. EurekaLog is enabled in your project:

604

596

Troubleshooting 610

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Enabling EurekaLog in your project

Please, follow these guidelines . Make sure to apply proper application type for your
project!

Once you've checked and verified both items - make final confirm that EurekaLog was really
injected into your executable .

12.4.1 Verifying that EurekaLog was enabled

If both conditions (EurekaLog is enabled in your application AND EurekaLog IDE Expert is
installed) are true - then everything should be OK (see also: compilation from command line

). You can confirm this by analyzing your executable module after compilation.

Open Start / Programs and find EurekaLog folder:

33 363

610

606

421

EurekaLog 7 Documentation611

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

EurekaLog's menu items in Start menu

Find the "EurekaLog PE Analyzer" tool and run it (it should be in the "Tools" subfolder).
Select your executable file with the help of "..." button and click on "Analyze" button.

Note: you can also run PE Analyzer tool via Tools \ EurekaLog \ PE Analyzer menu item in
IDE (see also).

If your application was compiled properly, then you should see "Is EurekaLog image: True"
and information about EurekaLog version:

222

Troubleshooting 612

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Typical output from Module Informer for correct compiled file

Make sure that this information matches your expectations:
1. Compilation date is now (i.e. you're not looking into old file);
2. "Is EurekaLog image" = True;
3. EurekaLog version matches the installed version of EurekaLog (i.e. your installation is

not messed up with new and old files);
4. There are EurekaLog units inside (use detalization level "Units");
5. EurekaLog's code and data versions match each other (up to first 3 numbers);

EurekaLog code version must be higher or equal to version of data format. E.g. code =
"7.0.3.0" and data ="7.0.01" is OK, but code = "7.0.1.0" and data = "7.0.02" is not;

6. EurekaLog's code and data machine IDs match each other;

You can also change "General info" to other (more descriptive) positions. Thus, you can
inspect injected EurekaLog options, used units and other information.

If there is no problem with compiled executable, but it still doesn't work as expected - then

EurekaLog 7 Documentation613

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

you can enable debug mode to see what's going on .

12.5 EurekaLog run-time problems

Once you have verified that EurekaLog's code and data was added to your executable -
you can start to diagnose what is wrong at run-time.

Most common problems
1. You have assigned Application.OnException event handler or have used

TApplicationEvents component (VCL.AppEvnts unit).

When you assign Application.OnException event (this is also what VCL.AppEvnts unit

does) - EurekaLog assumes that you want to handle exception by yourself. You may
remove your Application.OnException handler (and remove VCL.AppEvnts unit) or call

EurekaLog manually from your handler (call HandleException routine from EBase unit).

2. You dropped TEurekaLogEvents component on the form but did not enabled EurekaLog

for your project via "Project" / "EurekaLog Options" menu. TEurekaLogEvents component

is supposed to react on EurekaLog's events, but it does nothing if EurekaLog is not added.
Please, enable EurekaLog for your project as explained here .

Additionally, EurekaLog contains self-debug code which helps you to diagnose problems
with EurekaLog itself. Usually this debug code is used when you're not able to debug your
application directly. For example, when your application stop working after protecting it with
EXE protector tool. If you pack or protect executable - it usually will not work under
debugger. That's when you can use debug code to find out the reason.

Prepare
Debug code is present only in debug version of EurekaLog .dcu files. You have to enable
debug version before using debug features:

If you're using precompiled files (default): go to Project / Options and turn on "Use Debug
DCUs" option. Alternatively, you can add explicit search path to C:\Program Files\Neos
Eureka S.r.l\EurekaLog 7\Lib\Win32\Debug\Studio11\ (change the path to match your
installation and IDE version).
If you're using recompiled files (for Enterprise only): be sure to enable "DEBUG_EL_CODE"
conditional symbol in project options.

Normal run
First, make a normal run with normally working application. Run your application with --
el_debug or --el_debug_standalone command line option. This option will turn on debugging
code in EurekaLog. Debugging code will capture and log information about EurekaLog's
work during application life time.

Notes: logging may affect performance of your application. Your application may run slower
than usual. This is a normal behavior.

Locating debug output
EurekaLog will create a el_debug.csl or your-exe-name_el_debug.csl file in the same folder

as application file. This file will contain all debug output after application's exit. If default
place (app's folder) is write protected - then file will be placed to Application Data folder.

If you can not find the debug file - use DebugView tool. Download and run this tool, then
run your application with --el_debug or --el_debug_standalone command line option. The
DebugView tool will display location for debug output file.

Note:
DebugView tool could not be used to capture debug output itself;

613

610

33

620

http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx

Troubleshooting 614

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

The difference between --el_debug and --el_debug_standalone command line options is
that --el_debug option will create a single common log file (el_debug.csl), and --
el_debug_standalone option will create one file for each EurekaLog module (.exe or DLL)
in your application (your-exe-name_el_debug.csl).

Problem run
Now, recompile your application with problematic configuration. Run it and make sure it
doesn't work as expected. Then run your application again with --el_debug or --
el_debug_standalone command line option. This will produce a new .csl file.

Note: each run will overwrite .csl file. Be sure to rename/make a copy before running
application next time.

Compare results
You can compare two log files which were captured from working and non-working
application. Find the differences. Differences will indicate what was going wrong.

EurekaLog produces .csl file - which is compatible with Raize Software's CodeSite File

Viewer tool. CodeSite File Viewer tool is shipped with recent versions of IDE, you can install
it during IDE installation or via GetIt. Alternatively, you may download a free CodeSite tools
from Raize web-site.

Note:
It is a good idea to organize log messages by threads. Additionally, you may organize by
categories.
EurekaLog streams log to CodeSite-compatible format. However, it is not a replacement
for CodeSite. It does not support dispatching (e.g. Live Viewer, Controller, destinations,
TCP, etc.), EurekaLog does not have many CodeSite features.

See also:
Internal errors
Recompiling EurekaLog

12.6 Breakpoints

Sometimes breakpoints in your project are not working. This issue is not specific to
EurekaLog (usually). This article contains several things which you should to try.

First, be sure to (re-)setup debugging options as explained here . Be sure to enable
debug information and be sure not to have directives like {$D-} in your code.
Check file paths:
o Be sure that you don't have two different units with same name in different folders (i.e.

new and old files). You may load wrong unit in editor, but debugger will operate on
another unit.

o Be sure that output folder for units is listed as library search path (per-project setting).
o Be sure that your file is included in project and it will be compiled with the project:

Check search paths of the project;
Check used files (with explicit file paths) in .dpr/.dproj files (Project / View source).

Delete old files (*.dcu, *.obj, *.lib, *.tds, *.rsm, *.bpl, *.dcp, *.exe, *.dll) and build your
project(s) (not just make/compile).
[EurekaLog] Disable "Delete service files after compilation" option .
It's possible that you've opened file that do not belong to project. File may be already
compiled or it may be not part of the project (think about exe/DLL).
It's possible that your project is DLL and DLL wasn't loaded by host process. Breakpoints
will not work until DLL is loaded. Sometimes DLL may be not loaded at all.
It's possible that code with breakpoint isn't used in your project. For example, a unit can
contain 3 functions. Functions #1 and #2 are called from the program, but function #3 is
not. Thus, breakpoints in function #3 will not work. Similarly, optimized compiler may
remove individual lines of code from the functions. For example, code line calculates value,
but this value is not used anywhere. Such code will be omitted from final executable.

591

619

58

234

http://docwiki.embarcadero.com/RADStudio/en/Installing_a_GetIt_Package
https://www.raize.com/devtools/codesite/Tools.asp

EurekaLog 7 Documentation615

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

It's possible that your code is placed in run-time package (.bpl). Thus, rebuilding your
project will not affect that unit. And that unit (in package) may be compiled without debug
information. If this is the case - then you need to either rebuild package with debug
information or remove package from being used in your project.
It's possible that debugger can not associate running program with your project. To avoid
this:
o Do not rename application and DLLs. Name project files with desired names.
o Do not move application and DLLs to other folders. Setup proper output folder instead

of moving files. This is especially true for DLLs and Win32 services.
o Do not run application (don't load DLLs) via alternative names. For example, the same

folder can be accessed via different names (folder itself, hardlink, via mapped network
share, via reparse point, subst-drive). So, if you can access the same file/folder with
different names - be sure to use exact same name in all places. This is especially true
for DLLs, because they are loaded by host process (which may be not controlled by
you). You can use Process Monitor or similar tool to check file accesses.

o Be sure that all file paths contain only ASCII symbols (latin). Do not use local symbols
with codes above 128.

o Do not alter date/time (date of creation or modification) of compiled files and .dcu/.obj/
.lib files. Changing date/time may cause debugger to consider files being changed.
"Changed" files requires recompile, thus they do not match each other. Sometimes
date/time can be changed by anti-virus software or post-processing tools (like digital
signing).

o Do not delete and do not move .dcu/.obj/.lib files. Be sure to setup unit output folder to
the right place. Be sure that unit output folder is listed in library search paths. Try to
place .dcu/.obj/.lib files in same folder as .exe/.dll/.bpl/.dcp files.

o Be sure that all files can be found. Specify search paths or include unit explicitly via
"Project / Add to project" command.

o Try to enable TD32 debug information.
o As extreme case - try to output all files in single folder. I.e. output .dcu/.obj/.lib/.exe/

.dll/.bpl/.dcp files in folder with source files.

12.8 Other problems

Please contact our support , if you wasn't able to solve your issues.16

Part

XIII

EurekaLog 7 Documentation617

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

13 Tools

EurekaLog comes with some additional tools:

Address Lookup - can get human-readable textual description of raw address location in
executable file. Can be used to browse through various sources of debug information.
Debug symbols paths - allows you to setup store for Microsoft's PDB files. PDB files can
be used by EurekaLog or Process Explorer tool to display more information in call stacks
for system DLLs.
External settings editor - it's standalone editor for EurekaLog's project settings. Can
load/save settings in .eof format and any supported IDE project type.
Module informer (PE Informer) - extracts information about compiled executable file.
Useful for diagnostic.
Threads snapshot - dumps information about threads in selected process to file. This
includes call stacks and wait chains. Useful for debugging hangs on remote machines
without debugger.
Viewer - allows you to view bug reports in more convenient way. It also can work as
general database for bug reports (i.e. bug tracker).

Part

XIV

EurekaLog 7 Documentation619

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

14 Recompilation (Enterprise)

This article will explain files layout for EurekaLog 7 installation and recompilation of
EurekaLog (applicable only for Enterprise edition).

1. Files layout
2. Recompilation

See also:
Customizing EurekaLog

14.1 Files layout

EurekaLog 7 changes way to manage its files. Now files are organized in typical manner for
Delphi libraries:
\Bin - compiled executables (tools), 32-bit. Each EurekaLog tool and helper has its .exe/
.dll files here (except for EurekaLog itself).
\Bin64 - compiled executables, 64-bit. Not all tools have 64-bit counterparts.
\Lib - precompiled EurekaLog files (units):
o \Lib\<platform> - precompiled EurekaLog units (.dcu, .obj, .hpp). Each folder has

subfolders for Debug/Release configuration and subfolder for different IDE versions.
o \Lib\Obj\<platform> - precompiled external source code (non-Delphi). This is location

for .obj files of ZLib project. ZLIb is used by EurekaLog to compress injected debug
information.

o \Lib\Common - copy of all resource files.
\Lib folder is used to compile your projects.
\Packages - EurekaLog executables (packages and command-line compiler).
\Source - source code of EurekaLog (.pas files). Full source code is available only for
Enterprise edition. Other editions have only headers (declarations). Full source code can
be used to recompile EurekaLog. By default this folder is not used by your projects.
\Source - EurekaLog files. Those are files for your application.
\Source\Extras - additional EurekaLog files. Those are add-on files, which are always
distributed with source code and they are always recompiled for your applications.
\Source\Design - files for IDE expert. Used at design-time.
\Source\Compiler - files for command-line compiler (ecc32/emake).
\Source\Common - common files (includes and resources).

\Lib folder should be mentioned in search paths either in IDE or your project. When you
compile your project - precompiled files from \Lib folder are used. EurekaLog itself is not
compiled (which is faster, saves original settings for EurekaLog compilation, does not modify
files, UAC-friendly).

There are Debug and Release subfolders in \Lib\<platform> folders.

Release contains files which were compiled with "Use Debug DCUs" option unchecked.
Debug contains files which were compiled with "Use Debug DCUs" option checked.
There are no significant differences in other compilation options for these files. Both have
debug information included.
Release folder (proper IDE subfolder - see below) should be listed in library search paths for
IDE or project.
Debug folder (proper IDE subfolder - see below) should be listed in debug search paths for
IDE or project.

If your application has "Use Debug DCUs" option checked - then files from Debug folder will
be used (regardless of Debug/Release profile in your application).
If your application has "Use Debug DCUs" option unchecked - then files from Release folder
will be used (regardless of Debug/Release profile in your application).

Important note: there are known binary incompatibilities between Release and Debug
versions of stock RTL. If you compile your unit against Debug RTL's DCUs - it may not work
with Release RTL's DCUs. That is why we ship both Release and Debug sets. Release set of
our DCUs is compiled against Release RTL's DCUs (and, additionally, have no

619

620

180

Recompilation (Enterprise) 620

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

DEBUG_EL_CODE defined), Debug set of our DCUs is compiled against Debug RTL's DCUs

(and, additionally, have DEBUG_EL_CODE defined). Therefore, if you compile your project in

Release profile, but your search paths pick up Debug folder from EurekaLog - you may get
incompatibility errors. Again, be sure that library path points to Release profile of
EurekaLog, and you have Debug paths points to Debug profile.

Both Release and Debug folders contain subfolders for various supported IDEs. To map your
IDE version to name of folder inside Release and Debug folders - see this article .

Source folder should be added to IDE browsing paths options, so IDE will be able to open
and show EurekaLog's .pas files.

Run-time package (EurekaLogCore) from Packages folder is copied to Windows\System32
folder. This is done to avoid altering %PATH% environment variable.

The entire EurekaLog folder in Program Files contains only read-only files which are not
modified for typical usage cases. All files which should be writable (such as Demos, bug
reports, profiles, translations, etc.) are installed into %APPDATA%\Neos Eureka S.r.l
\EurekaLog\ folder.

See also:
EurekaLog IDE setup
Where to find EurekaLog

14.2 Recompilation

Please read these articles first:
EurekaLog files layout
EurekaLog IDE setup

EurekaLog Enterprise comes with full source code, which you can use to recompile
EurekaLog. EurekaLog Enterprise contains additional \Projects folder, which contains
project files to compile EurekaLog. There are project files for run-time package, design-time
packages (IDE expert, component registration) and command-line compiler (ecc32/emake).
There are no special projects for EurekaLog itself, because EurekaLog is not application, but
library.

To recompile EurekaLog, you first must delete existing .dcu/.obj files. We recommend to
rename all \Lib\<platform> folders (please, keep \Lib\Obj\ and \Lib\Common untouched) to

remove them from search path, so IDE will not be able to find and use them. That way you
will be able to restore original files at any time.

The next step depends on what you want to recompile.

Packages and compilers
1. To recompile packages and/or compilers you must either run your IDE under

administrator account (this should be done only once - only for recompilation) or to
change file permissions for EurekaLog folder in Program Files to allow modifications by
limited user accounts.

2. Then you should open corresponding project file from Projects folder. Please, select
project corresponding to your IDE. You can verify it here . You can also open project
group to load all 3 projects (run-time package, design-time package and command-line
compiler).

3. (Optionally) Change settings of project(s) as you desire.
4. Compile projects. Compiled executables will be placed to Packages folder. Compiled units

will be placed to corresponding folder under Lib folder (make sure output paths exist).
5. Copy run-time package (EurekaLogCore) files into Windows\System32 folder of

corresponding bitness.

Note: alternatively, you may change output path setting of run-time package
(EurekaLogCore) project to Windows\System32 folder.

604

604

603

619

604

604

EurekaLog 7 Documentation621

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Important note: be sure to compile all packages with exact same settings. I.e. do not
compile Core package with Release profile, but Expert package - with Debug profile. Usually,
Debug profile contains DEBUG_EL_CODE conditional symbols, which enables various

"{$IFDEF DEBUG_EL_CODE} if EL_Debug then
DebugDump('ApplicationShowExceptionHandler'); {$ENDIF}" constructs, which

allows you to diagnose EurekaLog without source code. See more about this feature here
. So, if you compile packages with different settings - it may cause "unit is different

version" errors, as well as "entry point not found" errors.

EurekaLog files
A) Total recompilation
EurekaLog files which are used for your applications are located in \Source and \Source
\Common folders. The simplest way to re-create all .dcu/.obj files for these files - is to compile
run-time package (EurekaLogCore) as explained above. This will create set of precompiled
files in corresponding subfolder under \Lib folder. In some cases you can not use package
project for recompilation. Then you just need to create empty project, set it properties as
you like and add all .pas files from \Source folder. Recompiling this project will rebuild all
units.

B) Recompilation on demand
If you do not want one-time recompilation, but want to constantly use actual .pas files (so
you recompile EurekaLog each time you compile your project(s)) - then you can add a path
to Source folder to Library/Search paths. You can do this either automatically or manually.

Automatic way:
1. Run Start / Programs / EurekaLog 7 / Manage tool.
2. Find your IDE in the list and expand it.
3. Click on "(Ent. only) Install EurekaLog 7 for development".
4. Restart your IDE.

Manual way:
1. (Optional) Remove existing .dcu/.obj files for EurekaLog (as explained above) and for

your project(s).
2. Add \Source, \Source\Common and \Lib\Obj\Win32 (or Win64) folders to library search

paths of your project (or IDE - to make this change global for all projects). You should add
these folders to library search paths, not to browsing search path (as it's by default).

3. Compile your project. This will use .pas files from Source folder. EurekaLog will be
recompiled each time you compiled your project. .dcu/.obj files will be placed to units
output folder of your project (as set in its options).

This method can be used to constantly recompile EurekaLog when you changes its source
code a lot (i.e. you develop your project and make changes in EurekaLog at the same time).

Note: we highly recommend to set specific unit output folder for your project (see Project/
Options/Directories/Unit output folder). The exact location doesn't matter. But it should be
writable. That way you will be able to compile EurekaLog's .pas files even under limited user
account. Alternative is to change file permissions for EurekaLog installation folder to allow
modifications for limited user accounts.

Final notes
EurekaLog does not contain source code for ZLib library. To recompile .obj files from \Lib
\Obj folder - you must obtain source code for ZLib library. It's open-source cross-platform
freeware library written in C. See official web-site.

EurekaLog contains only Delphi source code (.pas). C++ Builder support is implemented as
compilation of Delphi files with C++ Builder. There are no .cpp/.hpp files. All shipped .obj/
.hpp/.lib/.bpi files are auto-generated from .pas files. All EurekaLog projects have
"Generate C++ files" option turned on.

Emake compiler is the same as ecc32. You can compile ecc32 and rename it to emake.

613

http://zlib.net/
http://zlib.net/

Recompilation (Enterprise) 622

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

EurekaLog uses the same ecc32 file for all IDE versions and personalities.

EurekaLog Viewer Tool uses DevExpress components. DevExpress suite is not included with
EurekaLog. To recompile Viewer you must have DevExpress components installed. Viewer
uses Express QuantumGrid, Express Printing System and ExpressBars.

http://devexpress.com/Subscriptions/VCL/
http://devexpress.com/Subscriptions/VCL/

Part

XV

Compatibility 624

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

15 Compatibility

Migration guides:
4.5: Upgrading from EurekaLog 3.x to EurekaLog 4.x
4.5.x: Upgrading from EurekaLog 4.x to EurekaLog 4.5.x
5.x: Upgrading from EurekaLog 4.5.x to EurekaLog 5.x
6.x: Upgrading from EurekaLog 5.x to EurekaLog 6.x
7.x: Upgrading from EurekaLog 6.x to EurekaLog 7.x

15.1 6.x -> 7.x

Please see our upgrade guide .

These are the changes from the old 6.x version to the new 7.x version:

1. Old ExceptionLog unit is renamed to new ExceptionLog7 unit. You should replace

references to ExceptionLog unit with references to ExceptionLog7 unit.

2. TEurekaLog component was renamed to TEurekaLogEvents component. It is

located in EComponent unit. You should delete all TEurekaLog components and

create new TEurekaLogEvents component.

3. Code from ExceptionLog unit was moved to other units (see below):

1. ECallStack
GetCurrentCallStack

GetCallStackByLevels

GetCallStackByAddresses
2. EClasses

TEurekaModuleOptions
3. EDebugInfo

GetSourceInfoByAddr
4. EModules

GetCompilationDate

IsEurekaLogModule

GetEurekaLogModuleVersion

ModuleInfoByHandle

ModuleInfoByAddr
5. ESendMail

EurekaLogSendEmail
6. ETypes

TEmailSendMode

TWebSendMode

TExceptionDialogType

TEurekaActionType

esmNoSend

esmShellClient

esmEmailClient

esmSMTPServer

esmSMTPClient

wsmNoSend

wsmHTTP

wsmFTP

wsmBugZilla

wsmFogBugz

wsmMantis

edtNone

edtMessageBox

edtMSClassic

637

637

636

633

624

627

EurekaLog 7 Documentation625

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

edtEurekaLog
4. Some code was removed or changed considerably. You should use new alternatives

instead:
1. TEurekaExceptionRecord -> TEurekaExceptionInfo

2. TEurekaExceptionRecord.CurrentModuleOptions ->

TEurekaExceptionInfo.Options
3. TEurekaLogErrorCode -> TResponse

4. TExceptionNotifyProc -> TELEvExceptionNotifyProc

5. TExceptionActionProc -> TELEvExceptionActionProc

6. TExceptionErrorProc -> TELEvExceptionErrorProc

7. TPasswordRequestProc -> TELEvPasswordRequestProc

8. TCustomDataRequestProc -> TELEvCustomDataRequestProc

9. TAttachedFilesRequestProc -> TELEvAttachedFilesRequestProc

10. TCustomWebFieldsRequestProc -> TELEvCustomWebFieldsRequestProc

11. TCustomButtonClickProc -> TELEvCustomButtonClickProc

12. TExceptionNotify -> TELEvExceptionNotifyMeth

13. TExceptionActionNotify -> TELEvExceptionActionMeth

14. TExceptionErrorNotify -> TELEvExceptionErrorMeth

15. TPasswordRequestNotify -> TELEvPasswordRequestMeth

16. TCustomDataRequestNotify -> TELEvCustomDataRequestMeth

17. TAttachedFilesRequestNotify -> TELEvAttachedFilesRequestMeth

18. TCustomWebFieldsRequestNotify -> TELEvCustomWebFieldsRequestMeth

19. TCustomButtonClickNotify -> TELEvCustomButtonClickMeth

20. ExceptionNotify-> RegisterEventExceptionNotify

21. HandledExceptionNotify -> RegisterEventExceptionNotify

22. ExceptionActionNotify -> RegisterEventExceptionAction

23. ExceptionErrorNotify -> RegisterEventExceptionError

24. PasswordRequest -> RegisterEventPasswordRequest

25. CustomDataRequest -> RegisterEventCustomDataRequest

26. AttachedFilesRequest -> RegisterEventAttachedFilesRequest

27. CustomWebFieldsRequest -> RegisterEventCustomWebFieldsRequest

28. CustomButtonClickNotify -> RegisterEventCustomButtonClick

29. StandardEurekaNotify -> ExceptionManager.StandardEurekaNotify

30. ShowLastExceptionData -> ExceptionManager.ShowLastExceptionData

31. GetLastExceptionAddress ->

ExceptionManager.LastThreadException.Address
32. GetLastExceptionObject ->

ExceptionManager.LastThreadException.ExceptionObject
33. StandardEurekaError -> ExceptionManager.StandardEurekaError

34. ForceApplicationTermination -> use dialog properties in

CurrentEurekaLogOptions or .Options property of dialog class

35. GetLastEurekaLogErrorCode -> TResponse

36. GetLastEurekaLogErrorMsg -> TResponse

37. GetLastExceptionCallStack ->

ExceptionManager.LastThreadException.CallStack
38. CallStackToStrings -> use Strings.Assign(CallStack)
39. SetCustomErrorMessage -> use properties of

ExceptionManager.LastThreadException
40. SaveScreenshot -> Screenshot (EScreenshot unit)

41. TEurekaModuleOptions.GetCustomizedTexts/SetCustomizedTexts are

replaced with .CustomizedTexts property.

42. TEurekaModuleOptions.loSaveModulesAndProcessesSections ->

TEurekaModuleOptions.loSaveModulesSection and

.loSaveProcessesSection
43. TEurekaModuleOptions.sndSendScreenshot ->

TEurekaModuleOptions.sndScreenshot
44. TEurekaModuleOptions.sndShowSuccessFailureMsg ->

TEurekaModuleOptions.sndShowSuccessMsg and .sndShowFailureMsg

Compatibility 626

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

45. TEurekaModuleOptions.sndUseOnlyActiveWindow ->

TEurekaModuleOptions.sndScreenshot
46. TEurekaModuleOptions.AppendLogs ->

TEurekaModuleOptions.SendXYZAppendLogs
47. TEurekaModuleOptions.EMailAddresses ->

TEurekaModuleOptions.SendXYZTarget
48. TEurekaModuleOptions.EMailMessage ->

TEurekaModuleOptions.SendXYZMessage
49. TEurekaModuleOptions.EMailSendMode ->

TEurekaModuleOptions.SenderClasses
50. TEurekaModuleOptions.EMailSubject ->

TEurekaModuleOptions.SendXYZSubject
51. TEurekaModuleOptions.ProxyPassword ->

TEurekaModuleOptions.SendXYZProxyPassword
52. TEurekaModuleOptions.ProxyPort ->

TEurekaModuleOptions.SendXYZProxyPort
53. TEurekaModuleOptions.ProxyURL ->

TEurekaModuleOptions.SendXYZAProxyURL
54. TEurekaModuleOptions.ProxyUserID ->

TEurekaModuleOptions.SendXYZProxyUserID
55. TEurekaModuleOptions.SMTPFrom -> TEurekaModuleOptions.SendXYZFrom

56. TEurekaModuleOptions.SMTPHost -> TEurekaModuleOptions.SendXYZHost

57. TEurekaModuleOptions.SMTPPassword ->

TEurekaModuleOptions.SendXYZPassword
58. TEurekaModuleOptions.SMTPPort -> TEurekaModuleOptions.SendXYZPort

59. TEurekaModuleOptions.SMTPServerPort ->

TEurekaModuleOptions.SendXYZPort
60. TEurekaModuleOptions.SMTPUserID -> TEurekaModuleOptions.SendXYZLogin

61. TEurekaModuleOptions.TrakerAssignTo ->

TEurekaModuleOptions.SendXYZAssignTo
62. TEurekaModuleOptions.TrakerCategory ->

TEurekaModuleOptions.SendXYZCategory
63. TEurekaModuleOptions.TrakerPassword ->

TEurekaModuleOptions.SendXYZPassword
64. TEurekaModuleOptions.TrakerProject ->

TEurekaModuleOptions.SendXYZProject
65. TEurekaModuleOptions.TrakerTrialID ->

TEurekaModuleOptions.SendXYZTrialID
66. TEurekaModuleOptions.TrakerUserID ->

TEurekaModuleOptions.SendXYZLogin
67. TEurekaModuleOptions.WebPassword ->

TEurekaModuleOptions.SendXYZAuthPassword
68. TEurekaModuleOptions.WebPort -> TEurekaModuleOptions.SendXYZPort

69. TEurekaModuleOptions.WebSendMode ->

TEurekaModuleOptions.SenderClasses
70. TEurekaModuleOptions.WebSSL -> TEurekaModuleOptions.SendXYZSSL or

SendXYZTLS
71. TEurekaModuleOptions.WebURL -> TEurekaModuleOptions.SendXYZURL

72. TEurekaModuleOptions.WebUserID ->

TEurekaModuleOptions.SendXYZAuthLogin
5. Set options were removed. Instead each set item is represented as Boolean

property:
1. TEurekaModuleOptions.LogOptions ->

TEurekaModuleOptions.loDeleteLogAtVersionChange,

TEurekaModuleOptions.loAddComputerNameInLogFileName, etc.

2. TEurekaModuleOptions.CommonSendOptions ->

TEurekaModuleOptions.sndShowSuccessFailureMsg,

TEurekaModuleOptions.sndSendEntireLog, etc.

3. TEurekaModuleOptions.ExceptionDialogOptions ->

TEurekaModuleOptions.edoShowCopyToClipOption,

EurekaLog 7 Documentation627

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

TEurekaModuleOptions.edoUseEurekaLogLookAndFeel, etc.

4. TEurekaModuleOptions.BehaviourOptions ->

TEurekaModuleOptions.boPauseBorlandThreads,

TEurekaModuleOptions.boHandleSafeCallExceptions, etc.

5. TEurekaModuleOptions.LeaksOptions ->

TEurekaModuleOptions.loCatchLeaks,

TEurekaModuleOptions.loGroupsSonLeaks, etc.

6. TEurekaModuleOptions.ShowOptions ->

TEurekaModuleOptions.soAppStartDate,

TEurekaModuleOptions.soUserEmail, etc.

7. TEurekaModuleOptions.CallStackOptions ->

TEurekaModuleOptions.csoShowDLLs,

TEurekaModuleOptions.csoShowBorlandThreads, etc.

8. TEurekaModuleOptions.CompiledFileOptions ->

TEurekaModuleOptions.cfoReduceFileSize,

TEurekaModuleOptions.cfoCheckFileCorruption, etc.

Replace XYZ in properties names above with name of actual send method. For example, to
specify URL for Mantis bug tracker - use TEurekaModuleOptions.SendMantisURL
property. The following send method prefixes are available:
1. Bugzilla;
2. Fogbugz;
3. FTP;
4. HTTP;
5. Mantis;
6. MAPI;
7. Shell;
8. SMAPI;
9. SMTPClient;
10. SMTPServer;

EMailSendMode and WebSendMode were replaced with single SenderClasses property,

which is supposed to list one, two or more send methods in specific order. Use
Finalize(Options.SenderClasses) to remove all assigned send methods. Use

Options.AddSenderClass and Options.RemoveSenderClass to add/remove method.

You can use old esmABC/wsmABC constants (for example, esmSMTP or wsmMantis).

See also:
Migration guide
What's new in EurekaLog 6.0
What's new in EurekaLog 6.1

15.1.1 Upgrage guide

This short article will describe the process of upgrading to EurekaLog 7.

Obtaining EurekaLog 7
Upgrades from older versions (EurekaLog 6, EurekaLog 5, etc.) are sold with 50%
discounts. To buy upgrade you should log in to your control panel.

627

634

634

https://www.eurekalog.com/login.php
https://www.eurekalog.com/login.php

Compatibility 628

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Log in to your control panel

If you forget your password - you can recover it by using this page.

You will see your profile after successful log in:

https://www.eurekalog.com/resetpassword.php
https://www.eurekalog.com/resetpassword.php

EurekaLog 7 Documentation629

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

User profile showing license info

There is EurekaLog 4 license in the example above. Therefore, there are download links to
full version of EurekaLog 4 installer, as well as links to download latest free Trial, tools,
demos.

Go to "Buy" page to buy upgrades:

Quick link to "Buy" page

Important: Please note that you have to be logged in. Otherwise you won't see upgrade
options on "Buy" page. The content of the "Buy" page depends on your profile and licenses.

You will see two section on the "Buy" page. First section allows you to purchase a new
license. For example, you may use this to purchase additional seats.

Compatibility 630

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Top of "Buy" page is always the same -
it allows you to buy a new license

Next, the second section will show all available upgrade options. Scroll down to see these
discounted options:

EurekaLog 7 Documentation631

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Discounted prices on "Buy" page

Important: Discounted options are only shown for logged in customers. You won't be able
to see discounted prices if you are not logged in.

There will be a block of options for each of your licenses. Use "Extend for 1 additional year"
option to upgrade your old license to latest EurekaLog version.

You will also be able to buy upgrade within your old version (for example, upgrade
EurekaLog 6 Professional to EurekaLog 6 Enterprise, or upgrade Single Developer to
Company) - for just a price difference between editions.

If you can't use our direct "Buy" page - then you can use any of our world-wide resellers.
Pick a reseller and ask it to purchasing upgrade for your EurekaLog license.

Once update is obtained - you will see download links to full version of latest EurekaLog
installer in your control panel. Be sure to use the correct login/password pair that is sent to
you in order notification e-mail. Make sure this e-mail is not blocked. Check your spam
folder.

If you have any problems with buying/upgrading/licenses - ask us (sales department).

Installing EurekaLog 7 over EurekaLog 6
You don't need to uninstall EurekaLog 6 before installing EurekaLog 7. Both versions could
be installed on the same machine. You can switch between EurekaLog versions by using
"Start Menu" / "Programs" / "EurekaLog 6" / "Manage EurekaLog in IDEs" (this option will

https://www.eurekalog.com/resellers.php
https://www.eurekalog.com/resellers.php
https://www.eurekalog.com/login.php
https://www.eurekalog.com/login.php
https://www.eurekalog.com/support.php
https://www.eurekalog.com/support.php

Compatibility 632

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

appear after installation of EurekaLog 7) and "Start Menu" / "Programs" / "EurekaLog 7" /
"Manage EurekaLog in IDEs" menu item (make sure to run both tools under administrator
account).

Use corresponding "Manage" tool to enable/disabled EurekaLog for supported IDEs. For
example, if you have EurekaLog 7 installed for Delphi 7 and want to use EurekaLog 6:
1. Run EurekaLog 7 "Manage" tool:

a. Select Delphi 7 IDE;
b. Click on "Remove EurekaLog";

2. Run EurekaLog 6 "Manage" tool:
a. Select Delphi 7 IDE;
b. Click on "Install EurekaLog 6 (recommended)".

If you want to switch back from EurekaLog 6 to EurekaLog 7:
1. Run EurekaLog 6 "Manage" tool:

a. Select Delphi 7 IDE;
b. Click on "Remove EurekaLog";

2. Run EurekaLog 7 "Manage" tool:
a. Select Delphi 7 IDE;
b. Click on "Install EurekaLog 7 (recommended)".

Be sure to close all running IDE instances when installing/uninstalling EurekaLog or
using "Manage" tool.

Of course, you can fully uninstall EurekaLog 6 and then install EurekaLog 7. However, you
must be sure that your project will work. If you haven't tried this yet - then abandoning
EurekaLog 6 is not a wise move.

Possible installation issues
If you do not see EurekaLog 7 in your IDE - please use "Start Menu" / "Programs" /
"EurekaLog 7" / "Manage EurekaLog in IDEs" menu item to activate EurekaLog (make sure
to run it under administrator account).

For other issues - please see our automatic troubleshooter or troubleshooting guide .

To diagnose installation problems - please run C:\Program Files (x86)\Neos Eureka S.r.l
\EurekaLog 7\Bin\InstallationDiagnostic.exe tool to generate log file. You can send this log
to us. Additionally you may attach installation logs which can be found at: C:\Program Files
(x86)\Neos Eureka S.r.l\EurekaLog 7\InstallationDiagnostic.log and Process.log.

Upgrading your project to EurekaLog 7
EurekaLog 7 contains A LOT of changes from EurekaLog 6. We beta-tested EurekaLog 7 for
1.5 years - about half year of public beta testing and 17 months of private beta-testing. And
we done much to ensure that upgrade process will be as much painless as possible.
However, we surely do not expect that upgrade process will go smooth. There always be
problems. There are tons of real-life live EurekaLog-enabled projects around the world, and
we just can not test them all.

1. Therefore, the first thing that you need to do - is to backup your project before
opening it in IDE with EurekaLog 7 installed. Typically, you only need to backup your
project files (i.e. like Project1.*). Then you can open your project in EurekaLog 7.

2. Once you have opened your project - please, review its options on each page. Make
sure options are set to expected values. Alternatively, you may want to "Reset" options
to defaults and make customization changes.

3. Try to compile your project. There may be errors due to changes in EurekaLog's code.
The list of changes is available here . Alter your code according to this guide.

Compilation problems
If you encounter errors like "File XYZ was compiled with different version of ABC" or "Could not
compile used unit XYZ" - then your project uses mix of old and new files.

Be sure to clear your project from old .dcu, .obj and other generated files.

596

234

624

https://support.eurekalog.com/index.php?/Troubleshooter/List
https://support.eurekalog.com/index.php?/Troubleshooter/List

EurekaLog 7 Documentation633

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Make sure that your project do not contain explicit search paths to other EurekaLog
version.
Make sure that your IDE do not contain explicit search paths to other EurekaLog version.
Try to run a disk-wide file search for EurekaLog and your project files. See if there are any
unexpected duplicates.
Sometimes it's possible that IDE do not update changes in settings. Try to run Start/
Programs/EurekaLog 7/Manage tool and click on "No EurekaLog" and then - on
"EurekaLog 7 with IDE expert" (make sure you close IDE before doing that and make sure
to run the Manage tool under administrator account). If this will not help - try to (re)setup
search paths for your IDE as explained here .

Please see also this article . Also, try troubleshooter and check common problems in our
Knowledge Base.

Get familiar with changes in EurekaLog 7
EurekaLog 7 has many changes. Some old ways of doing things were changed. Some are
considered obsolete and replaced with other methods.

You can find demos under "Start Menu" / "Programs" / "EurekaLog 7" / "Demos" menu item.
You can find quick-start guides here .
You can watch video tutorials here.
You can read migration reference here .

Get support with upgrading
If you can't resolve some issue with upgrading - then just ask us (tech-support
department).

15.2 5.x -> 6.x

These are the changes from the old 5.x version to the new 6.0 version:

1. CustomDataRequest parameter event changed ("CustomData: String" parameter is
replaced with the new "DataFields: TStrings")

2. CustomFieldsRequest event removed (replaced with the new
"CustomWebFieldsRequest" event)

3. FreezeMessage property removed (replaced with a "Messages Text Tab" field)
4. ExceptionClassName property removed (replaced with the new "ExceptionsFilters")
5. ExceptionMessage property removed (replaced with the new "ExceptionsFilters")
6. ShowTerminateBtn property removed (replaced with the "TerminateBtnOperation =

tbnone" value)
7. TExceptionDialogOption.edoShowExceptionDialog replaced with

TExceptionDialogType
8. TExceptionDialogOption.edoSendEmailChecked replaced with

TExceptionDialogType.edoSendErrorReportChecked
9. TCommonSendOption.sndCompressAllFiles removed
10. TBehaviourOption.boActivateCrashDetection replaced with AutoCrashOperation
11. TLogOption.loSaveModulesSection replaced with

TLogOption.loSaveModulesAndProcessesSections
12. TLogOption.loSaveCPUSection replaced with

TLogOption.loSaveAssemblerAndCPUSections

That's all.

See also:
Migration from 6.x -> 7.x
What's new in EurekaLog 6.0
What's new in EurekaLog 6.1
Old documentation

604

598

45

624

624

634

634

https://support.eurekalog.com/index.php?/Troubleshooter/List
https://support.eurekalog.com/index.php?/Knowledgebase/List/Index/11/eurekalog-v7
https://support.eurekalog.com/index.php?/Knowledgebase/List/Index/11/eurekalog-v7
http://www.eurekalog.com/tutorials_delphi.php
http://www.eurekalog.com/support.php
http://www.eurekalog.com/support.php

Compatibility 634

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

15.2.1 What's New in EurekaLog 6.0

Caution: this is old EurekaLog 6 documentation. This is not the latest version.

EurekaLog 6 includes new features and enhancements in the following areas:

New IDE features:

The EurekaLog Viewer is more similar to a stand alone BUG tracking tool
Full revisited EurekaLog Options form
New "IDE/Tools/EurekaLog IDE Settings" form
Run custom programs before and after every project build
History integration (for the unit line searching on modified sources)
Options to reduce the .EXE file size
Option to detect .EXE cracks

New application capabilities:

Catches of every MEMORY-LEAKS (see the "Memory Leaks Limit" page) !!!
Delivery of every BUG to the most used Web BUG-Tracking tools
Display the Dis-Assembler section
Display the Processes list section
Display of more Hardware and Software info (DPI, printer, VGA, privileges, ...)
Full .jdbg (Jedi Debug file), .MAP and .TDS (TD32 Debug file) support
Full customizable Exception-Dialog (with more styles - as MS style)
Full customizables Exceptions Filters (can choose style, behavior, messages, ...)
All the files to send are compresses and encrypted in ZIP format
Full COM and SafeCall Exceptions customization
Optionally catches every HANDLED EXCEPTION!!!
Fully customizable message texts collections (for multi-language applications)
Environment variables (%EnvironmentVariablet%) support
New ZIP compress file format to (password encryption allowed)
Add a customizable HELP button (call an event)
Full UNICODE logs handling

...and much, much more!

Compatibility issues:

For any "Compatibility Issues" try to see the "Changed from the old 5.x version"
section!

Features list:

For a more detailed features list, see the "Features" page.

15.2.2 What's New in EurekaLog 6.1

Caution: this is old EurekaLog 6 documentation. This is not the latest version.

Q: What is new in EurekaLog 6.1?
A: EurekaLog 6.1 is exactly the same as EurekaLog 6.0 (6.0.25 is the latest available
version), except one "little" detail: we've added support for new compiler from EurekaLog
7.0 (which is in development right now).

Q: Why is it 6.1? Why not 6.0.26?
A: We do only bug fixes in 6.x branch, so we get 6.0.10, 6.0.20, 6.0.25, etc. Each new
version (like 6.0.xx) contains bug fixes, but no new features. Since we've added a major
new feature - we decided to increase a version number, so new version became 6.1 -

633

EurekaLog 7 Documentation635

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

indicating addition of a major new feature.

Q: Is it safe to upgrade? Am I affected?
A: Don't worry, 6.1.xx behaves as 6.0.xx by default. You can safely upgrade and no new
changes will affect you (except the usual bug fixes). New compiler have no effect, until
explicty enabled.

Q: What's so great about new compiler?
A: In a recent 3 months there were many reports about problems with EurekaLog and
debug information (i.e. mapping between code and human-readable names of units,
methods, etc). After investigation we've discovered that there appears linker bugs (usually
on large projects), which prevents EurekaLog from proper functioning.

What does it mean? It means that for some large projects EurekaLog can't show you a
proper call stack because of wrong debug information, which is usually caused by linker's
bugs.

OK, so the new compiler from EurekaLog 7 have a new architecture and a new code (it's re-
written almost on 80%) and it is able to solve these problems (along with help of new
format of debug information).

Another advantages are:

1. Increased speed. New compiler should be (theoretically) faster than old, since we've
reduced amount of work with strings.

2. Reduced memory consumption. New compiler should be (theoretically) more conservative
about memory usage, since we're working on mapped file, instead of parsing it into
separate strings.

3. Increased stability. Any issues with compiler itself does not affect IDE, since compiler is
now run into separate process.

4. Increased detalization. New compiler is able to store routines without line numbers. Old
compiler can't do this. Usually this doesn't matter anyway, since we always recommend to
enable "Use Debug DCUs" option.

Items 2 and 3 allows you to use EurekaLog for very large projects, which wasn't possible
before (because of shared virtual address space with IDE and, thus, hitting a memory
limits).

Word "theoretically" in items 1 and 2 means that "we think so", but we don't have any
exact estimates yet. So, if you're owning a large project (say, 10+ MB .exe file or 15+ MB
.map file) - please, send us (even very approximate) details about how fast (or slow!)
compilation is with old and new compiler.

Q: Why add the compiler from EurekaLog 7 to EurekaLog 6? Why not just fix issues in
EurekaLog 6? Or just wait for EurekaLog 7 release?
A: Because it's impossible to fix these issues with old logic of compiler (there are much
technical details here, I won't going to discuss them). To solve these issues in EurekaLog 6,
one needs to almost re-write the compiler - pretty much the same job as was already
completed in EurekaLog 7 (compiler upgrade in EurekaLog 7 wasn't because of these issues
- we just improved code. Solving these issues was a side-effect).

So why just not port code from EurekaLog 7 to EurekaLog 6? Well, we tried this, but it's not
easy too, since there are a lot of changes (also remember that we dropped support for
Delphi 3, so we used new features a lot).

Why not just leave this as is, claiming that customers should wait for EurekaLog 7? I'm not
saying that EurekaLog 7 have a long road before release, but I'm saying that we care
about our customers, so we've decided to release intermediate EurekaLog 6.1, which
solves some major problems of our customers.

Thus, the only solution left is to include new compiler as an option to EurekaLog 6.

Q: When I should use new compiler?
A: If you have small/medium project and never suffer from weird call stacks - then you can
just ignore it. Don't use new compiler (which is default, BTW). Otherwise - try it. New

http://eurekalog.blogspot.com/2009/04/optimal-project-settings_21.html
http://eurekalog.blogspot.com/2009/04/optimal-project-settings_21.html
http://eurekalog.blogspot.com/2009/04/optimal-project-settings_21.html
http://eurekalog.blogspot.com/2009/04/optimal-project-settings_21.html
http://eurekalog.blogspot.com/2009/04/optimal-project-settings_21.html
http://eurekalog.blogspot.com/2009/04/optimal-project-settings_21.html
http://eurekalog.blogspot.com/2009/04/optimal-project-settings_21.html
http://eurekalog.blogspot.com/2009/04/optimal-project-settings_21.html
http://eurekalog.blogspot.com/2009/04/optimal-project-settings_21.html

Compatibility 636

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

compiler may help you to solve your issues.

Oh, and one more thing - this compiler doesn't do a lot for C++ Builder. That's because .map
files of C++ Builder miss line numbers, so EurekaLog uses .tds file instead. In other words,
there is no improvement on debug information for C++ Builder.

Q: How to use it?
A: Very simple. Just go to Project / EurekaLog options, select Build options tab and enable
Use EurekaLog 7 compiler checkbox. See also.

Q: What about command line compilation and build automation?
A: That is possible too. You can find new compiler in your EurekaLog folder under sub-folder
which corresponds to your IDE. For example:

C:\Program Files\Neos Eureka S.r.l\EurekaLog 6\Delphi15\el7c.exe

The same .exe file can be used for both Delphi and C++ Builder - just be sure that you pick
a correct version (in case if you have several different versions of IDE installed).

You can use this file exactly as the old ecc32.exe/emake.exe. Except there are few
additional options - see command line options for more information.

Q: I don't want to use experimental compiler from a EurekaLog 7, which doesn't even
have a stable release!
A: First I want to highlight that EurekaLog's code remain the same. New compiler doesn't
affect the code. It's still old good and tested 6.0.25. New compiler affects only additional
debug information. So, if you have problems with debug information, new compiler may
solve it. I.e. it's not worse than it's already is. Surely, you may not use new compiler, if you
don't need to.

Yes, new compiler comes from unstable version of EurekaLog 7. However, we've tested a
new compiler quite strict. Sure we may miss something, but it's quite stable now.

Of course, you shouldn't just enable this option and throw your application to your
customers. You need to do a few simple tests:

Try just to compile your application with new compiler - will it be successfull? New compiler
contains additional asserts, which trigger on unsupported cases. Usually this means that
your project contains new case which we doesn't cover yet.
Take a known issue with a bug report and check this issue against new compiler - will a
new bug report be better than old?
You can place a button, which raises exception somewhere deep inside your code. Will a
bug report be detailed enough?

If these tests will pass - then you can safely use new compiler. If not - please, contact us,
so we can improve our product! Just send us a your .map file with description of the
problem.

15.3 4.5.x -> 5.x

These are the changes from the old 4.5.x version to the new 5.0 version:

1. SMTPShowDialog property removed (replaced by
CommonSendOptions.sndShowSendDialog)

2. SendEntireLog property removed (replaced by
CommonSendOptions.sndSendEntireLog)

3. EurekaLogLook property removed (replaced by
ExceptionDialogOptions.edoUseEurekaLogStyle)

4. ShowExceptionDialog property removed (replaced by
ExceptionDialogOptions.edoShowExceptionDialog)

5. EmailSendOptions property renamed in EmailSendMode (with suffix replaced from
'eso' to 'esm')

6. TEurekaExtraInformation.CompiledDate replaced with
TEurekaExtraInformation.CompilationDate

7. Added the 'so' prefix at every TShowOption items

http://www.eurekalog.com/support.php
http://www.eurekalog.com/support.php

EurekaLog 7 Documentation637

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

That's all.

See also:
Migration from 5.x -> 6.x
Migration from 6.x -> 7.x

15.4 4.x -> 4.5.x

These are the changes from the old 4.x version to the new 4.5 version:

1. Changed the EmailObject property in EmailSubject
2. Changed the TEmailSendOptions type to "(esoNoSend, esoEmailClient,

esoSMTPClient, esoSMTPServer)"
3. Changed the TLogOption type to "(loNoDuplicateErrors, loAppendReproduceText)"
4. Changed the AppendToLog property to AppendLogs
5. Changed the "MuteMode" property to "ShowExceptionDialog" (with inverted sense)
6. Changed the TForegroundType
7. Changed the TMessageType type
8. Changed the TShowOption type
9. EMailSendConfirm property removed
10. EResFile.pas removed

That's all.

See also:
Migration from 4.5.x -> 5.x
Migration from 5.x -> 6.x
Migration from 6.x -> 7.x

15.5 3.x -> 4.x

Please read the following instructions if you wish to install EurekaLog 4.x as an upgrade
from EurekaLog 3.x:

1. Check the new "Exception Log Options". Some of the old options are no longer
available. Save your old options before continuing.

2. Replace the old "ExceptionHandle.OnException" event with the new ExceptionNotify
event.

3. Don't use the "TEurekaThread.EurekaHandleException" method for managing thread
exceptions. EurekaLog now has fully-automatic support for multithreaded
applications.

4. Change all references to the ExceptionLog2 unit to ExceptionLog. The
ExceptionLog2 unit was used in the old version for managing Console applications.

That's all.

See also:
Migration from 4.x -> 4.5.x
Migration from 4.5.x -> 5.x
Migration from 5.x -> 6.x
Migration from 6.x -> 7.x

633

624

636

633

624

637

636

633

624

Part

XVI

EurekaLog 7 Documentation639

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

16 License

EurekaLog Software License and Limited Warranty.

Before proceeding with the installation and/or use of this software, carefully read the
following terms and conditions of this license agreement and limited warranty. By installing
or using this software you indicate your acceptance of this agreement. If you do not accept
or agree with these terms, you may not install or use this software!

This software, including source code, documentation, compiled code and all additional
materials (the "Software") is owned by Fabio Dell'Aria.

This Software is protected by copyright laws. At all times the Software author retains full
title to the software. Subject to your acceptance of and accordance with the terms and
conditions stated in this agreement, you shall be granted a software license.

The author hereby grant you a non-exclusive, royalty free license to use the Software as
set forth below:

1....integrate the Software with your Applications, subject to the redistribution terms below;
2....modify or adapt the Software in whole or in part for the development of Applications

based on the Software.

Only for single license:
You may install a copy of the Software on a computer Desktop and/or a Notebook
(without simultaneous use) and freely move the Software from one computer to another,
provided that you are the only individual using the Software. If you are an entity, you
must designate one individual within your organization to have the right to use the
Software.

Only for company license:
Every developer of the company (limited to only one geographical address) that has
bought this license, can install and use the software.

Only for corporate license:
Every developer of the company (without any limits about the geographical address) that
has bought this license, can install and use the software.

REDISTRIBUTION RIGHTS
You are granted a non-exclusive, royalty-free right to reproduce and redistribute executable
files created using the Software .

RESTRICTIONS
Without the expressed, written consent of Software author, you may NOT:

1....distribute the Software source code or modified versions;
2....rent, lease or sell any portion of the Software on its own, without integrating it into

your executable files.

TRIAL VERSION
The Software Trial version may be freely distributed and/or used with
exceptions noted below, provided the Software is not modified in any way.

1....No person or company may distribute/uses separate parts of the Software Trial version

without written permission of the author;
2....The Software Trial version may not be distributed/uses inside of any other software

package without written permission of the author;
3....Hacks/crack, keys or key generators may not be uses/distributed.

CHANGES TO SOURCE CODE

License 640

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

The Software author reserves the right to change any part of the source in future versions
of the product. These changes may include the removal of classes, properties and methods
or the creation of new classes, properties and methods.

SELECTION AND USE
You assume full responsibility for the selection of the Software to achieve your intended
results and for the installation, use and results obtained from the Software.

LIMITED WARRANTY
This software is provided "as is" without warranty of any kind either expressed or implied,
including but not limited to the implied warranties merchantibility and fitness for a particular
purpose. The entire risk as to the quality and performance of the product is with you.
Should the product prove defective, you assume the cost of all necessary servicing or error
correction. Author do not warrants that the functions contained in the software will meet
your requirements or that the operation of the software will be uninterrupted or error free.

LIMITATION OF REMEDIES AND LIABILITY.
In no event shall Software author, or any other party who may have distributed the
software as permitted above, be liable for damages, including any general, special,
incidental, or consequential damages arising out of the use or inability to use the software
(including but not limited to loss of data or data being rendered inaccurate or losses
sustained by you or third parties or failure of the software to operate with any other
products), even if such holder or other party has been advised of the possibility of such
damages.

EurekaLog 7 Documentation641

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

Index
- % -
%_BugID% 413

%_BugReport% 413

%_CallStack% 413

%_ExceptModuleDesc% 413

%_ExceptModuleName% 413

%_ExceptModulePath% 413

%_ExceptModuleVer% 413

%_ExceptMsg% 413

%_ExceptType% 413

%_IDEConfig% 413

%_IDEDst% 413

%_IDEProject% 413

%_IDESource% 413

%_IDESrc% 413

%_IDETarget% 413

%_LineBreak% 413

%_MainModuleDesc% 413

%_MainModuleName% 413

%_MainModulePath% 413

%_MainModuleVer% 413

%_Reproduce% 413

%_ThisModuleDesc% 413

%_ThisModuleName% 413

%_ThisModulePath% 413

%_ThisModuleVer% 413

%BUG_ID% 296

%BUG_REPORT% 296

%CALL_STACK% 296

%CONTENT_TYPE% 296

%EXCEPTION_CLASS% 296

%EXCEPTION_LOCATION% 296

%EXCEPTION_MESSAGE% 296

%FILE_NAME% 296

%TITLE% 296

- . -
.dbg 412

.eof 439, 443, 445, 448, 449, 450

.jdbg 412

.pdb 412

.tds 411

- A -
ActivateFilters 343

administrator 31

application type 45

Armadillo 520

ASPack 520

ASProtect 520

AsyncCalls 565

AttachedFiles 304

attributes 185, 190

AutoCloseDialogSecs 271, 279

AutoCrashMinutes 259

AutoCrashNumber 259

AutoCrashOperation 259

- B -
basic procedures 20, 33, 38, 40, 45, 46, 52, 53,
55, 58, 68

boCopyLogInCaseOfError 341

boDoNotPauseELServiceThread 246

boDoNotPauseMainThread 246

boPauseELThreads 246

boPauseRTLThreads 246

boPauseWindowsThreads 246

boSaveCompressedCopyInCaseOfError 341

BoxedApp 520

breakpoints 614

bug 40

bug report 40, 46

bug tracker send 68, 404, 406, 407, 408

BugZilla 53, 55, 68, 105, 134, 331, 407

buy 14

- C -
C++ Builder 58

call stack 40, 79, 81, 83, 95, 96, 97, 246

CExe 520

chained exception 244, 573

changes 624, 633, 636, 637

changes from the old 3.x version 637

changes from the old 4.5.x version 636

changes from the old 4.x version 637

changes from the old 5.x version 633

changes from the old 6.x version 624

CodeVirtualizer 520

compatibility 624, 633, 636, 637

compilation 421, 423, 424, 426, 429, 431, 432

coXYZ options 266

Index 642

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

cryptor 520

csoAllowedRenderMethods 237

csoCaptureDelphiExceptions 237

csoCaptureOnlyModuleExceptions 237

csoShowBPLs 237

csoShowDLLs 237

csoShowELThreads 246

csoShowInvalid 237

csoShowPointers 237

csoShowRTLThreads 246

csoShowWindowsThreads 246

custom attributes 185, 190

CustomExceptionMessage 244

customization 45, 46, 52, 53, 180, 183, 185, 189,
190, 192, 195, 211, 212

- D -
dbg 412, 496, 527

debug information 38, 40, 58, 243, 409

debug paths tool 617

DEBUG_EL_CODE 613, 619, 620

debugging 70, 614

Delphi 58

dialog 52

dlgMsgBoxUseNative 268

DoNotTouch 448, 449

DoNotTouchCompilation 448

DoNotTouchOptions 448, 449

DoNotTouchPackages 448, 449

DoNotTouchUnits 448, 449

- E -
EDD 68

edoAttachScreenshotChecked 279

edoMandatoryEMail 271

edoOwnedWindow 271, 279

edoRestartChecked 271, 279

edoSendErrorReportChecked 268, 271, 279, 292

edoShowAttachScreenshotOption 279

edoShowCopyToClipOption 279

edoShowCustomButton 271, 279

edoShowDetailsButton 271, 279

edoShowEMailControl 271

edoShowInTopMostMode 271, 279

edoShowModal 271, 279

edoShowSendErrorReportOption 268, 271, 279,
292

edoUseEurekaLogLookAndFeel 279

edoUseRealIcon 271, 279

edoUseRealName 271, 279

edtConsole 292

edtConsoleDetailed 292

edtConsoleDump 292

edtEurekaLog 279

edtEurekaLogDetailed 279

edtMessageBox 268

edtMessageBoxDetailed 268

edtMSClassic 271

edtNone 267

edtService 295

edtWEB 296

edtWER 300

el_debug 613

--el_debug 613

el_debug_standalone 613

--el_debug_standalone 613

e-mail send 391, 393, 396, 397, 398

enable EurekaLog in your project 33, 606

Enigma 520

error 40

ErrorsNumberToSave 264

ErrorsNumberToShowTerminateBtn 271, 279

esmMAPI 315

esmShellClient 309

esmSimpleMAPI 314

esmSMTPClient 316

esmSMTPServer 319

EurekaLog 2, 4, 8, 16, 40, 68, 70, 180

EurekaLog 6 624, 627, 633, 634

EurekaLog 7 2, 4, 624, 627

EurekaLog debug paths tool 617

EurekaLog integral parts 221

EurekaLog module informer tool 617

EurekaLog parts 221

EurekaLog PE analyzer tool 617

EurekaLog settings editor tool 617

EurekaLog threads snapshot tool 617

EurekaLog viewer tool 617

EventLogCategory 295

EventLogComputer 295

EventLogEventID 295

EventLogName 295

exception 40

exception chained 40, 244, 573

exception driven development 68

exception filter 343, 344

exception filters 185, 190

exception handler 40

exception log 40

exception nested 40, 244, 573

exception tracer 40

ExceptionDialogType 267

ExceptionsFilters 343

EurekaLog 7 Documentation643

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

EXE Bundle 520

exe cryptor 520

exe packer 520

exe protector 520

EXE Stealth 520

executable module 40

eXPressor 520

extended MAPI 396

external settings editor tool 617

- F -
FAQ 215, 217, 218

features 10

feedback 105

file 217, 218

file formats 218

file saving 46, 217, 218

files 217, 218

filter 343, 344

filters 185, 190

FogBugz 53, 55, 68, 105, 108, 115, 322, 404

ForegroundTab 279

formats 218

FreezeDisableUnderDebugger 257

FSG 520

FTP upload 321, 404

- H -
handled exception 40, 70

hardware exception 40

hook 40

hooking 40

how to configure bug report 46

how to configure dialog 52

how to configure send 53

how to enable EurekaLog in your project 33

how to select application type 45

how to use EurekaLog 33, 38

HTMLLayout 296

HTTP upload 320, 398

- I -
injecting 40

installation 20, 31, 596

integral parts 221

interface 222

internal errors 591

- J -
JCL 412, 495, 526

JIRA 53, 55, 68, 105, 143, 335, 408

- L -
leak 40, 70, 97

license 10, 14, 639

limited accounts 31

loAddBugIDInLogFileName 264

loAddComputernameInLogFileName 264

loAddDateInLogFileName 264

loAppendReproduceText 271, 279

loAppendReproduceTextOnlyWhenSending 279

loDeleteLogAtVersionChange 264

log 40, 218

log formats 218

log report 40

loNoDuplicateErrors 264

loSaveAssemblerAndCPUSections 266

loSaveModulesSection 266

loSaveProcessesSection 266

- M -
madExcept 413, 495, 526

mailto: 309, 391

Mantis 53, 55, 68, 105, 119, 327, 406

MAPI 315, 393, 396

memory leak 40, 70, 97

MEW 520

Microsoft 412

microsoft visual studio 496, 527

migration 624, 627, 633, 636, 637

migration from the old 3.x version 637

migration from the old 4.5.x version 636

migration from the old 4.x version 637

migration from the old 5.x version 633

migration from the old 6.x version 624, 627

module 40, 617

module informer tool 617

MPRESS 520

multi-threading 246

- N -
nested exception 244, 573

NestedExceptionMessage 244

NestedExceptionStack 244

Index 644

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

non-administrator 31

- O -
Obsidium 520

OmniThreadLibrary 565

OutputPath 264

- P -
packer 520

panic mode 591

parts 221

password 243

pause 246

pdb 412, 496, 527

PE analyzer tool 617

PELock 520

PESpin 520

post-processing 38

problems 72, 596, 606, 614, 615

project 33, 38, 45, 58

project groups 450

protector 520

- Q -
quick start 20, 33, 38, 40

- R -
report 40, 218

report formats 218

reporting 68

resource leak 40, 70, 97

resume 246

RLPack 520

- S -
SaveLogFile 264

saving bug report to file 46

saving to file 46

selecting application type 45

selecting dialog 52

selecting send 53

send, bug tracker 404, 406, 407, 408

send, BugZilla 407

send, comparison 55

send, e-mail 391, 393, 396, 397, 398

send, extended MAPI 396

send, FogBugz 404

send, FTP upload 404

send, HTTP upload 398

send, JIRA 408

send, mailto 391

send, Mantis 406

send, MAPI 393, 396

send, overview 68, 390

send, shell 391

send, simple MAPI 393

send, SMTP client 397

send, SMTP server 398

send, web 398, 404, 406, 407, 408

SendBugZillaAppendText 331

SendBugZillaBasicAuthLogin 331

SendBugZillaBasicAuthPassword 331

SendBugZillaComponent 331

SendBugZillaCountFieldName 331

SendBugZillaLogin 331

SendBugZillaOwner 331

SendBugZillaPassword 331

SendBugZillaPort 331

SendBugZillaProject 331

SendBugZillaProxyHost 331

SendBugZillaProxyLogin 331

SendBugZillaProxyPassword 331

SendBugZillaProxyPort 331

SendBugZillaSSL 331

SendBugZillaUploadFilesForDups 331

SendBugZillaURL 331

SendBugZillaUseHardware 331

SendBugZillaUseOS 331

SendBugZillaUseVersion 331

SenderClasses 302

SendFogBugzAppendText 322

SendFogBugzArea 322

SendFogBugzBasicAuthLogin 322

SendFogBugzBasicAuthPassword 322

SendFogBugzCategory 322

SendFogBugzLogin 322

SendFogBugzOwner 322

SendFogBugzPassword 322

SendFogBugzPort 322

SendFogBugzProject 322

SendFogBugzProxyHost 322

SendFogBugzProxyLogin 322

SendFogBugzProxyPassword 322

SendFogBugzProxyPort 322

SendFogBugzSSL 322

SendFogBugzUploadFilesForDups 322

SendFogBugzURL 322

SendFogBugzUseComputer 322

SendFogBugzUseEMail 322

EurekaLog 7 Documentation645

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

SendFogBugzUseVersion 322

SendFTPLogin 321

SendFTPPassiveMode 321

SendFTPPort 321

SendFTPProxyHost 321

SendFTPProxyLogin 321

SendFTPProxyPassword 321

SendFTPProxyPort 321

SendFTPURL 321

SendHTTPAuthLogin 320

SendHTTPAuthPassword 320

SendHTTPPort 320

SendHTTPProxyHost 320

SendHTTPProxyLogin 320

SendHTTPProxyPassword 320

SendHTTPProxyPort 320

SendHTTPSSL 320

SendHTTPURL 320

SendJIRAAppendText 335

SendJIRAComponent 335

SendJIRACountFieldName 335

SendJIRAIssueType 335

SendJIRALogin 335

SendJIRAOwner 335

SendJIRAPassword 335

SendJIRAPort 335

SendJIRAProject 335

SendJIRAProxyHost 335

SendJIRAProxyLogin 335

SendJIRAProxyPassword 335

SendJIRAProxyPort 335

SendJIRASSL 335

SendJIRAUploadFilesForDups 335

SendJIRAURL 335

SendMantisAppendText 327

SendMantisBasicAuthLogin 327

SendMantisBasicAuthPassword 327

SendMantisCategory 327

SendMantisCountFieldName 327

SendMantisLogin 327

SendMantisOwner 327

SendMantisPassword 327

SendMantisPort 327

SendMantisProject 327

SendMantisProxyHost 327

SendMantisProxyLogin 327

SendMantisProxyPassword 327

SendMantisProxyPort 327

SendMantisSSL 327

SendMantisUploadFilesForDups 327

SendMantisURL 327

SendMAPIAppendLogs 315

SendMAPIMessage 315

SendMAPISubject 315

SendMAPITarget 315

SendShellEncode 309

SendShellMessage 309

SendShellSubject 309

SendShellTarget 309

SendShellUseShellExecute 309

SendShellUTF8 309

SendSMAPIAppendLogs 314

SendSMAPIMessage 314

SendSMAPISubject 314

SendSMAPITarget 314

SendSMTPClientAppendLogs 316

SendSMTPClientFrom 316

SendSMTPClientHost 316

SendSMTPClientLogin 316

SendSMTPClientMessage 316

SendSMTPClientPassword 316

SendSMTPClientPort 316

SendSMTPClientSSL 316

SendSMTPClientSubject 316

SendSMTPClientTarget 316

SendSMTPClientTLS 316

SendSMTPClientUseRealEMail 316

SendSMTPServerAppendLogs 319

SendSMTPServerFrom 319

SendSMTPServerMessage 319

SendSMTPServerSubject 319

SendSMTPServerTarget 319

SendSMTPServerUseRealEMail 319

set debug paths tool 617

settings editor tool 617

shell 309, 391

ShellExecute 391

simple MAPI 314, 393

Smart Packer Pro 520

SMTP client 316, 397

SMTP server 319, 398

sndAddBugIDInFileName 304

sndAddComputerNameInFileName 304

sndAddDateInFileName 304

sndDeleteFileAfterSend 304

sndPack 304

sndScreenshot 304

sndSendEntireLog 304

sndSendInSeparatedThread 304

sndSendLastHTMLPage 304

sndSendXMLLogCopy 304

sndShowFailureMsg 304

sndShowSendDialog 304

sndShowSuccessBugClosedOnlyMsg 304

sndShowSuccessMsg 304

software exception 40

Index 646

© 2001-2015, Neos Eureka S.r.l. All Rights Reserved.

ssActiveWindow 304

ssApplication 304

ssDesktop 304

ssForegroundWindow 304

ssNone 304

ssPrimary 304

ssWorkarea 304

stack tracing 96

standalone settings editor tool 617

support 16

SupportURL 279

suspend 246

- T -
TD32 411

tech-support 16

TerminateBtnOperation 271, 279

Themida 520

threads 246

threads snapshot tool 617

tools 514, 515, 516, 519, 520, 617

troubleshotting 72, 596, 606, 614, 615

TThread 246

tutorial 20, 33, 38, 40, 45, 46, 52, 53, 55, 58, 68,
72, 79, 81, 105, 108, 115, 119, 134, 143, 180

- U -
unhandled exception 40

unit 40

update 4, 624, 627, 633, 636, 637

upgrade 4, 624, 627, 633, 636, 637

UPX 520

UseExceptionComments 244

- V -
viewer tool 617

visual studio 496, 527

VMProtect 520

- W -
web send 398, 404, 406, 407, 408

web tracker send 404, 406, 407, 408

WebErrorCode 296

welcome 2, 8

WERCustomizeReport 300

WERPassThroughUnexpected 300

WERPassThroughUnhandled 300

WERSubmitAddRegisteredData 300

WERSubmitHonorRecovery 300

WERSubmitHonorRestart 300

WERSubmitNoArchive 300

WERSubmitNoCloseUI 300

WERSubmitNoQueue 300

WERSubmitOutOfProcess 300

WERSubmitQueue 300

WERSubmitShowDebug 300

WERSubmitStartMinimized 300

what is EurekaLog 2, 8

what's new 4, 624, 627, 633, 636, 637

what's new in 4.5.x 637

what's new in 4.x 637

what's new in 5.x 636

what's new in 6.x 633

what's new in 7.x 4, 624, 627

Win32 96

Win64 96

WinLicense 520

wsmBugZilla 331

wsmFogBugz 322

wsmFTP 321

wsmHTTP 320

wsmJIRA 335

wsmMantis 327

- X -
x86-32 96

x86-64 96

XBundler 520

XComp 520

XPack 520

- Z -
ZipPassword 304

	Welcome to EurekaLog 7
	What's New in EurekaLog 7.0
	Introduction
	Features / Editions
	How to buy
	Support

	Quick start tutorials
	Installation
	Using EurekaLog with Delphi Standard/Personal/Turbo/Starter editions
	Installation for non-admin user account
	Installation for AppWave or without IDE installed

	How to use EurekaLog
	EurekaLog's basics
	Basic terms (definitions/dictionary)

	Basic procedures
	Selecting application type
	Configuring bug report
	Configuring call stack

	Configuring dialogs
	Configuring sending report
	Selecting send method

	Configuring project itself

	Typical scenarios
	Reporting
	Debugging

	Solving bugs in your code
	Bug reports
	General section
	Call Stack section
	Call stacks
	How to read call stacks
	Call stack formats
	Multi-threaded call stacks

	Searching bug’s location
	Final notes on call stack
	Searching bug’s reason

	Modules section
	Processes
	Assembler
	CPU
	Screenshot
	Additional files

	Managing bug reports in issue tracker
	Bug trackers setup
	FogBugz setup
	Using HTTP upload

	Mantis setup
	BugZilla setup
	JIRA setup

	Using unsupported bug tracker software
	Customizing feedback
	Security Considerations

	EAccessViolation
	Leaks
	Memory problems
	Hangs and deadlocks

	Customizing EurekaLog
	EurekaLog options
	Static options
	Dynamic options
	Variables
	Filters

	Coding
	Changing options at run-time
	Custom attributes
	Events
	Subclassing
	Low-level handlers
	Modifying code of EurekaLog itself

	Frequently Asked Questions (FAQ)
	General FAQ
	Default files names and locations
	File formats

	Integral parts
	EurekaLog IDE expert
	Interface
	IDE menu items (IDE commands)
	Project options
	Import / export settings
	Using variables
	Changing default properties

	IDE options

	Options
	General page
	Features page
	Call Stack page
	BugID page
	Debug information page
	Nested exceptions page
	Multi-threading page
	Memory problems page
	Enabling memory/resource leaks features for C++ Builder

	Resource leaks page
	Hang detection page
	Restart&Recovery page
	External tools

	Bug report page
	Bug report content page

	Dialogs page
	MessageBox
	MS Classic
	EurekaLog
	Console
	System log reporting
	WEB
	Windows Error Reporting

	Report sending page
	Sending options page
	Shell send
	Simple MAPI
	MAPI
	SMTP client
	SMTP server
	HTTP upload
	FTP upload
	FogBugz
	Mantis
	BugZilla
	JIRA

	Localization page
	Advanced page
	Exceptions filters page
	Editing exception filter

	Build options page
	Build events page

	Code page
	Hooks page
	Dialogs page
	Debug information page
	Send engines page

	Custom/Manual page

	3rd party page
	Statistics

	Application types
	VCL Forms Application
	CLX Forms Application
	FireMonkey application
	VCL Control Panel Application
	VCL NT Service Application
	VCL CGI Application
	VCL ISAPI Application
	VCL IntraWeb Application
	Console Application
	DLL
	DLL (standalone)
	Package
	Unsupported application types

	Dialogs
	(none)
	RTL
	Message box
	Windows Classic
	EurekaLog
	Console
	System log
	WEB
	WER

	Send engines
	Shell
	Simple MAPI
	MAPI
	SMTP client
	SMTP server
	HTTP upload
	FTP upload
	FogBugz
	Mantis
	BugZilla
	JIRA

	Debug information providers
	EurekaLog
	.map file
	TD32
	Exports table
	JCL
	Dbg/Pdb
	madExcept

	Variables

	Advanced topics
	BugID
	Compiling your project with EurekaLog
	EurekaLog post-process compilers
	Minimum parameters needed
	Post-processing without (re)compilation
	Using EurekaLog with automated builds
	Delphi 2007+
	FinalBuilder
	ecc32/emake command line options

	Working with configurations
	Storing EurekaLog options
	EurekaLog options syntax

	Using external configuration
	Compiling your project with and without EurekaLog
	Different EurekaLog settings for 'Debug' and 'Release' profiles
	Read-only projects
	Sharing EurekaLog settings in project group
	Reconfiguring EurekaLog for manual control

	Using EurekaLog in DLL
	Introduction
	What is DLL
	What is exception
	How DLLs report about failures

	What is the proper way to handle exceptions in DLL
	Framework
	System or 3rd party API
	Your own API
	Creating bug reports for DLL exceptions

	Using exception tracer tool in DLLs
	Single instance of exception tracer
	Multiple instances of exception tracer

	Using exception tracer with frameworks in DLLs
	Single instance of exception tracer
	Multiple instances of exception tracer

	Using exception tracer with COM objects
	Using EurekaLog with DLLs post-processed by 3rd party tools (JCL, madExcept, etc.)
	Using EurekaLog with non-Embarcadero DLLs
	Using Microsoft DbgHelp DLL

	Configuring project for leaks detection
	About leak detection
	Configurations
	Typical application
	DLLs
	Shared memory manager
	Packaged project

	Using EurekaLog with other software
	Debuggers and profilers
	Debug information converters
	Digital signature tools
	EXE packers, EXE cryptors, EXE protectors
	Localization software
	Shared memory manager
	Using EurekaLog with DLLs post-processed by 3rd party tools (JCL, madExcept, etc.)
	Using EurekaLog with non-Embarcadero DLLs

	System logging setup
	System Log
	Registering Event Source
	Configuring dialog
	Using dynamic content with System Log

	Multi-threaded applications
	Creating threads
	CreateThread Function
	BeginThread Function
	BeginThreadEx Function
	TThread Class
	TThreadEx class
	Anonymous threads
	Frameworks
	Thread Pools

	Enabling EurekaLog for background threads
	Automatic / options
	Manual / code

	Using Windows Error Reporting
	Working with minidumps
	Nested/Chained exceptions
	Stack tracing: RAW method and frame-based method
	Stack tracing: deferred vs. immediate
	EurekaLog for shareware developers
	What's the difference between SSL and TLS send modes?
	Memory leaks detection limitations
	Resource leaks detection limitations
	List of functions

	Internal Errors

	Troubleshooting
	Installation problems
	Manual installation
	Where to find EurekaLog
	EurekaLog IDE Setup
	IDE names mapping

	Uninstallation problems
	Enabling EurekaLog problems
	Verifying that EurekaLog was enabled

	EurekaLog run-time problems
	Breakpoints
	Other problems

	Tools
	Recompilation (Enterprise)
	Files layout
	Recompilation

	Compatibility
	6.x -> 7.x
	Upgrage guide

	5.x -> 6.x
	What's New in EurekaLog 6.0
	What's New in EurekaLog 6.1

	4.5.x -> 5.x
	4.x -> 4.5.x
	3.x -> 4.x

	License

